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Abstract 

Heterogeneity within Indian cities:  
Methods for empirical analysis 

by 

Krishnachandran Balakrishnan 

Doctor of Philosophy in Landscape Architecture and Environmental Planning 

University of California, Berkeley 

Professor Louise Mozingo, Chair 

 

This dissertation proposes new methods for analyzing the heterogeneity within Indian 
cities. The research focuses on developing methods which rely mainly on secondary 
datasets and demonstrates the application of the methods using data for Bangalore city. 
The dissertation is structured as a set of three papers, each of which focuses on a specific 
dimension of heterogeneity within Indian cities. The first paper uses data from the Census 
of India to generate sub-city typologies based on socio-economic attributes, housing 
quality, and access to water and sanitation infrastructure. The second paper proposes a 
predictive framework for high-resolution population density estimation in Indian cities. 
The method uses data on land-use, land-cover, street network, building height and asset 
ownership to predict population at a resolution of 30m. This paper also demonstrates the 
application of a new method for generating building height estimates at a city-wide scale 
using satellite stereo imagery. The third paper in this dissertation focuses on 
understanding heterogeneity in the volume of domestic piped water availability across 
parts of Bangalore city. It combines the high-resolution population mapping method of the 
second paper with data from the local water utility, to analyze domestic piped water 
availability.  Using normative demand scenarios, it also estimates the deficit in domestic 
piped water availability and the extent of direct or indirect dependence on groundwater in 
a spatially disaggregated manner. The dissertation concludes with a discussion on the 
patterns of spatial inequality within Bangalore, as revealed by the three papers.  
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I.   Introduction 

 

This dissertation proposes methods for understanding various dimensions of 
heterogeneity within Indian cities. It uses Bangalore as a case study to demonstrate the 
application of new methods to characterize heterogeneity across socio-economic 
parameters, population density, and domestic piped water availability. The research relies 
mainly on secondary datasets such as data from the Census of India, remote sensed data 
and other public datasets which are available from various civic agencies and planning 
authorities in Bangalore. The dissertation develops a set of generalizable methods that can 
potentially be applied to a large number of Indian cities for which these datasets are 
currently available or may become available in the near future. 

The following sections set the context for this research by first giving a very brief overview 
of the India’s urbanization trajectory and the growth of urban research in India. They 
briefly describe the various secondary data sources employed in empirical research on 
urban India, before discussing the datasets suitable for studies at the intra-urban scale. The 
last section outlines the structure of the three papers that constitute this dissertation and 
describes some of its key contributions. 

 

1. Urbanization in India  
 
According to most accounts, India is on the verge of a significant urban demographic 
transition. The total urban population of India which stands at 377 million as of 2011 is 
expected to more than double by 2050. While the percentage of urban population in India 
was 31.2% in 2011, in terms of absolute numbers, the urban population of India is larger 
than the total population of the United States in 2010. By 2050, the percentage of urban 
population in India is projected to cross 50%, with seven cities expected to have a 
population greater than 10 million (Census of India, 2011a; United Nations, 2014; United 
States Census Bureau, 2010). 

The scale of this transition can perhaps be better understood comparing it to past trends in 
urbanization in India. In 1951, when the first census of independent India was completed, 
the total population was 361 million of which the total urban population was 62.4 million 
or 17.3%. Therefore, in the 60 year period from 1951 to 2011, India added 314.6 million 
people to its urban population (Census of India, 2011a). Current projections indicate that in 
the roughly 40 year period from 2011 to 2050, India will add an additional 404 million 
people to its urban population (United Nations, 2014). 
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2. Urban research and data sources in India 

According to Ramachandran (1989), research on Indian cities from the perspective of 
social sciences was initially triggered by the work of Patrick Geddes in 1915 at the 
University of Bombay. Although there was some amount of research on Indian cities in the 
1920s and 30s, organized urban research as we understand it today started mostly in the 
1950s (Ramachandran, 1989; Mathur, 1993). 

Since the 1950s, researchers from social science disciplines ranging from geography to 
sociology to economics have studied urbanization in India at a variety of scales. Academic 
sub-fields like urban geography also matured in the country by the 1980s and 1990s 
(Ramachandran, 1989; Mathur, 1993; Thakur & Parai, 1993;).1 In comparison, research on 
cities from an environmental science perspective is relatively recent, not just in India, but 
globally (Shulenberger et.al., 2008; Pickett et.al., 2011). 

Numerous authors from both environmental science and social science disciplines have 
conducted empirical research on Indian cities using primary data. But since the emphasis 
of this dissertation is on research using secondary data, this discussion focuses on some of 
the major sources of secondary data on Indian cities. 

The Census of India has been the single most important source of secondary data for 
research on Indian cities from a social science perspective (Ramachandran, 1989). Besides 
this, urban researchers have also used the Economic Census and other sample surveys like 
the National Sample Survey and National Family Health Survey (see Mitra, 1992; Kundu & 
Sarangi, 2007; McKenzie & Ray, 2009).  

From an environmental science perspective, remote sensed datasets have been a major 
secondary data source for research related to Indian cities. They have been used 
extensively in land-cover change and urban growth analysis at regional and city scales (see 
Sudhira et.al., 2004; Ramachandra et.al., 2012). Studies related to topography, drainage and 
surface water bodies have also applied methods which rely on remote sensed data (see 
Ramachandra & Kumar, 2009). Other studies related to urban India have utilized datasets 
compiled by various state and national level bodies like the Geological Survey of India, 
central and state groundwater boards and pollution control boards (see Narain, 2012). 

 

 

 
                                                           
1 Mathur (1993) reviews urban research in India from 1960 to 1990. Thakur and Parai (1993) reviews 
research trends in urban geography in India, with a special emphasis on the period from 1980 to early 1990s. 
See Ramachandran (1989) for an overview of general trends in urban research from 1920s to 1980s. 
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3. Secondary data sources for research at the intra-urban scale 

Although several types of secondary data exist for urban research in India, not all of them 
are suitable for research at the intra-urban scale. For example, a substantial number of 
studies which rely on census data have focused on national and regional trends in 
urbanization or on analysis of socio-economic aspects of specific cities or groups of cities. 
In comparison to this, fewer studies have focused on research at the intra-urban scale. As 
Ramachandran (1989) points out, this is probably because the census data at the lowest 
intra-urban spatial units has not always been easily accessible. Even if it is accessible, all 
variables are often not available for all cities. Besides, obtaining accurate boundaries of the 
intra-urban spatial units used has been a challenge and remains so (Hyderabad Urban Lab, 
2014).  

Moreover, until August 2014, the Census of India did not release Houselisting and Housing 
data at spatial units below the scale of the city. The Houselisting and Housing component of 
the census focuses primarily on housing characteristics, household ownership of assets, 
and access to water and sanitation infrastructure. This effectively meant that, although 
technically the data existed, till 2014 it was nearly impossible for researchers to 
systematically analyze intra-urban variation across these parameters for Indian cities.  

Other datasets like the National Sample Survey and National Family Health Survey use 
coarse samples which, though useful for understanding regional and national patterns, 
cannot be used for understanding heterogeneity within Indian cities (National Sample 
Survey Organisation, 2001; International Institute for Population Sciences & Macro 
International, 2007). Similarly, data collected by various state and central environmental 
agencies like the pollution control boards and groundwater boards are often not at a 
resolution sufficient to enable intra-urban studies (see Central Groundwater Board, 2011). 

On the other hand, remote sensed data from Indian and international satellites are 
currently available at resolutions which permit regional, city-scale and even neighborhood 
scale analysis. Although much of the urban research using remote sensed data has been 
largely conducted from an environmental science perspective, there have been several 
recent efforts to integrate these methods into research related to socio-economic aspects of 
Indian cities (see Baud et.al. 2010; Denis & Marius-Gnanou, 2011).   

Researchers from both environmental science and social science backgrounds have 
extensively incorporated historical maps of Indian cities as another secondary data source. 
While geographers, urban planners and urban designers have used historic maps to 
analyze urban growth patterns and urban morphology (see Kosambi & Brush, 1988), 
environmental scientists, landscape architects and environmental planners have used it to 
evaluate changes in urban vegetation and urban hydrology (Nagendra et.al., 2011; Mathur 
& da Cunha, 2006; Mathur & da Cunha, 2009).   
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Apart from these sources, secondary data at the intra-urban scale has also been available 
from urban utilities and planning authorities. Parry (2012) uses data from urban utilities 
and local civic agencies to analyze disparity in access to educational and health care 
facilities and other amenities like parks, fire stations and solid-waste collection points in 
Srinagar. Several other studies have used similar sources of secondary data to analyze 
intra-urban variation in access to infrastructure and public utilities (see Nagne et.al., 2013; 
Mali et.al., 2013), concentration of industries and employment (Kalra, 2007) and incidence 
of vector borne diseases (Kumar et.al., 2014). 

4. Outline of papers and key contributions to literature  

This dissertation is structured as a set of three papers, each of which proposes a different 
method for examining aspects of urban heterogeneity in Indian cities. It uses Bangalore as a 
case study to demonstrate the application of the proposed methods.  

Paper1: Sub-cities of Bangalore 
The first paper focuses on heterogeneity in socio-economic status, housing conditions and 
access to infrastructure across different parts of Bangalore. The research draws on theories 
of similarity and typological analysis to identify areas within Bangalore that are similar 
across a range of different attributes. The research employs cluster analysis methods to 
delineate sub-city typologies using ward level data from Population Enumeration and 
Houselisting and Housing tables from the Census of India.2 The Population Enumeration 
tables give information on population by sex, literacy levels, employment and social status 
while Houselisting and Housing tables have information mainly about asset ownership, 
housing conditions and access to water and sanitation infrastructure (Census of India, 
2011b). 3   

In terms of data and methods, this paper advances the literature on urban heterogeneity in 
India. As discussed earlier, the Houselisting and Housing data for cities was never officially 
released at the ward level before August 2014. Hence this dataset has so far not been used 
to understand heterogeneity within Indian cities in a systematic manner. In addition, this is 
the first time that cluster analysis based methods have been used for typology delineation 
in the context of Indian cities. 

 

                                                           
2 A ward is the administrative unit below the scale of a municipal corporation in Indian cities. 
3 Caste status is the main indicator of social status available from the Census. Population Enumeration data 
gives information on the percentage of population in each ward which is considered to come under the 
Scheduled Caste or Scheduled Tribes category. ‘Scheduled Caste’ refers to socially disadvantaged 
communities and ‘Scheduled Tribes’ refers to indigenous communities in India. 
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Paper 2: Densities of Bangalore 
The second paper examines the concept of “density” and proposes a framework for 
predicting population density at 30m resolution. The proposed method utilizes data on 
land-use, land-cover, street network, building heights and asset ownership to predict 
density. Using data for the central part of Bangalore city, the research demonstrates the 
existence of a clear empirical relationship between the population within a 30m by 30m 
raster cell and its street density, building height and asset ownership values.  

This paper contributes to the literature on the spatial structure of cities and high-
resolution population density mapping. Although a few authors have proposed methods for 
high-resolution population prediction (Li & Weng, 2005; Silvan-Cardenas et.al., 2010; Bast 
et.al., 2015), this study is unique in the range of datasets it utilizes. In addition, this is the 
first time that population mapping of Indian cities has been attempted at this resolution. 

The paper also demonstrates the application of a new method for generating building 
height estimates from satellite stereo imagery using open source software (de Franchis, 
2014). Judging from literature in this field, this is the first time that satellite stereo imagery 
has been used for building height extraction at a city-wide scale in India. The proposed 
method is unique since it can be implemented without the need for surveys using 
Differential Global Positioning Systems (DGPS), or proprietary software, both of which are 
expensive and have limited the use of stereo imagery for building height extraction.  

Moreover, the research demonstrates that relatively inexpensive stereo imagery from the 
Indian stereo satellite Cartosat-1, can be used to estimate building height with an error of 
approximately one floor. Since this level of accuracy should be acceptable for most city-
scale applications, and since Cartosat-1 imagery is available for practically all Indian cities, 
the proposed method for building height extraction can be applied in the context of almost 
any Indian city. 

Paper 3: Domestic piped water deficit in Bangalore 
The third paper proposes a method for analyzing heterogeneity in domestic piped water 
availability across parts of Bangalore city. Building on the framework outlined in the 
previous paper, it first develops a population redistribution method using land-use, land-
cover, street network and building heights.  

This population distribution map is then used in conjunction with the water supply 
network map and water use data obtained from the local water utility to analyze domestic 
piped water availability in a spatially disaggregated manner. Using a normative demand 
scenario, the paper also estimates the extent of direct or indirect dependence on 
groundwater for domestic use within the study area in a spatially disaggregated way.  
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The available published literature shows that this is perhaps only the second study where 
inequality in domestic piped water availability in Indian cities has been assessed in a 
spatially disaggregated manner using secondary datasets. The only previous analysis of this 
type (Narain, 2012), is much coarser in spatial resolution and uses a method which is not 
fully explained. 

Between them, the three papers in this dissertation propose methods by which existing 
secondary datasets can be used in new ways to analyze the heterogeneity within Indian 
cities. As discussed above, the dissertation contributes to the literature on urban 
characterization, spatial structure and density of cities, and urban water supply in 
developing countries. 
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II.   Sub-cities of Bangalore1 
 

Abstract 

Urban heterogeneity could be characterized using sub-city typologies. This paper uses 
ward level Population Enumeration data and Houselisting and Housing data from the 2011 
Census of India to construct sub-city typologies for Bangalore. Such an approach was 
difficult to apply in the context of Indian cities till recently, since the previous rounds of the 
Census did not release Houselisting and Housing data at the ward level. Nine variables from 
the Census were selected to represent three broad classes of attributes for each ward: 
housing conditions, availability of amenities and socio-economic status.  Hierarchical and 
non-hierarchical cluster analysis methods were then used to delineate empirical typologies 
which permit a categorical rather than ordinal classification of the wards in Bangalore. The 
paper concludes with a discussion of the utility and limitations of such an approach in 
understanding Indian cities. 

 

1. Introduction 

1.1 Urban heterogeneity, inequality and inequity  

Cities are inherently heterogeneous entities. They exhibit variation across socio-economic, 
political, environmental and infrastructural dimensions. “Heterogeneity” and “variation” 
are relatively neutral terms that describe unevenness in the distribution of an attribute in 
comparison to the terms “inequality” and “inequity” which have varying degrees of 
normative implications.  

“Inequality” can technically refer to any variation in an observed attribute. On the other 
hand, “inequity” refers directly to injustice or unfairness arising out of variation in an 
attribute (CSDH, 2008; Starfield, 2011). But concern about a particular kind of inequality 
often implies that it could be indicative of, or lead to inequity, even when this may not be 
explicitly stated.  

The study of urban heterogeneity assumes significance in this context since several aspects 
of urban heterogeneity tend to be strongly associated with urban inequality and inequity, 
especially in the case of developing countries (Werna, 1995; Stephens, 1996; Haddad & 
Nedovic-Budic, 2006; Kilroy, 2007). 
                                                           
1 A version of this paper was previously published as Balakrishnan, K. and Anand, S. (2015), The Sub-cities of 
Bengaluru: Understanding urban heterogeneity through empirical typologies. Economic and Political Weekly. 
Vol. 50, No.22.   
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1.2 Studies of urban heterogeneity 

Globally researchers have studied urban heterogeneity from a wide range of perspectives. 
There is a large body of literature that deals with intra-urban variation in public health 
(Bradley et.al., 1992; Songsore & McGranahan, 1993; Stephens et.al., 1997) and in urban 
physical/spatial aspects like land-cover, land-use and overall urban and environmental 
structure (Cadenasso et.al., 2007; Hoffman et.al., 2008; Baud et.al., 2010; Kostof, 1991; 
Forman, 2008). 2 But the studies that are most relevant to this paper deal with intra-urban 
variation in socio-economic aspects, access to physical and social infrastructure and 
housing conditions (Barnes, 2004; Jensen & Leven, 1997; Haddad & Nedovic-Budic, 2006; 
Martinez, 2009; Murphy, 1993; Werna, 1995; Garza, 1996; Tang & Batey, 1996; Portnov, 
2002). 

In India, there have been several studies since the 1950s which have focused largely on 
heterogeneity along social dimensions within cities.  Many researchers have used 
population enumeration data from the census and/or other city specific surveys to 
generate detailed understanding of residential segregation within Indian cities (Gist, 1957; 
Bose, 1965; Mehta, 1968; Mehta 1969; Joy, 1975; Prakasa Rao & Tiwari, 1979; Mahadevia, 
1991; Vithayathil & Singh, 2012). 

But since the Census of India did not systematically release Houselisting and Housing data 
at the ward level till recently, studies of intra-urban variation which integrate social, 
economic and infrastructural aspects have been limited in India. Baud et.al. (2008 & 2009) 
and Sheolikar et.al. (2014) are some of the studies which have used ward level Houselisting 
and Housing data from the Census for studies of intra-urban variation. The former papers 
use it to construct multiple deprivation indices to study intra-urban variation in Delhi, 
Mumbai and Chennai while the latter uses it to analyze household fuel use in Bhopal to 
calculate ward level variation in CO2 emissions. 

Most other studies which have focused on intra-urban variation of socio-economic and 
infrastructural aspects in Indian cities have relied on primary surveys of various kinds. 
Ramani et.al. (2005) examines variation in health and healthcare facilities across three 
wards of Ahmedabad by surveying households and healthcare facilities. Paul (2012a & 
2012b) studies intra-ward disparities in access to education, healthcare and other urban 
amenities in Barasat and Burdwan cities using a sample survey of wards. Parry (2012) 
examines intra-urban disparity in access to urban amenities in Srinagar using population 
data from the Census of India and amenities data collected from various city agencies. 

                                                           
2 See Bradley et.al. (1992) for a review of studies related to intra-urban differentials in mortality and 
morbidity in developing countries. 
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Bangalore is one of the Indian cities which has received considerable attention in terms of 
studies of inter-ward disparity.3 Gist (1957) describes residential segregation within 
Bangalore along caste and ethnic dimensions. Prakasa Rao & Tiwari (1979) use data from a 
survey of Bangalore city to explore heterogeneity within the city across multiple socio-
economic aspects, housing conditions and access to infrastructure. The Bangalore Master 
Plan-2015 (Bangalore Development Authority, 2007) identifies shadow areas—areas 
which are deficient in terms of access to health and education infrastructure. Organizations 
like Janaagraha (2013) and the Center for Sustainable Development (2012) have conducted 
sample surveys across all 198 wards of the city to evaluate access to urban infrastructure 
and overall environmental quality. 

In August 2014, the Census of India released ward level Houselisting and Housing data for 
Indian cities for the first time. This should enable a much wider range of explorations 
related to intra-urban variation in India than was previously possible. This paper 
contributes to efforts in this direction by using ward level Census data to understand urban 
heterogeneity in Bangalore through sub-city typologies. 

1.3 Understanding urban heterogeneity through sub-city typologies 

Typology is generally understood as the study of how things can be divided into various 
“types” (Merriam-Webster’s online dictionary, n.d.), but at a more fundamental level it can 
be understood as a process of categorization which enables an individual to perceive order 
in complex phenomena.  Winch (1947) describes typologies as being created by the process 
of noting homogenous attributes in heterogeneous phenomena.4 This process of identifying 
and grouping elements based on similarity of attributes is central to theories of perception 
and learning (Tversky & Gati, 1978).  

The heterogeneity within a city could therefore be characterized by the creation of sub-city 
typologies, where each typology consists of parts of the city which are more similar to each 
other across multiple dimensions, than to parts which may belong to other typologies. 
Generating these empirical sub-city typologies using Census data can help us understand 
Indian cities in new ways.  

Constructing sub-city typologies also provides a method of categorical classification for 
understanding cities, which is different from the ordinal classification one often sees in 
studies which use indices of ward quality or multiple deprivation. This is especially 
significant when dealing with the Census Houselisting and Housing data where variables 
like ‘size of household’ cannot be readily used in an ordinal classification system except 
                                                           
3 In this paper I use ‘Bangalore’ to refer to the area within the Bruhat Bengaluru Mahanagara Palike (BBMP) 
boundary. 
4 For a discussion on the differences between typology and classification and empirical and heuristic types 
see Winch (1947). 
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after cross-tabulation across other relevant variables (for instance variables representative 
of economic status). Unfortunately, the ward level Houselisting and Housing data and 
Population Enumeration data released by the Census of India does not permit such cross-
tabulation. 

1.4 Models and analysis methods for identifying typologies 

Similarity studies predominantly use geometric models (Shepard, 1962) or contrast 
models based on feature matching (Wittgenstein, 1953; Rosch & Mervis, 1975; Tversky, 
1977). Geometric models conceptualize the objects of study as points in a coordinate space 
of as many dimensions as observed attributes. The similarity between objects is then 
inversely related to the distance between the points in coordinate space. On the other hand, 
contrast models conceptualize objects as collections of features and similarity is measured 
by analyzing their common and distinctive features. Contrast models are more appropriate 
for objects where qualitative aspects dominate (Tversky, 1977). This paper uses a 
geometric model for delineating sub-city typologies since Census data is predominantly 
quantitative in nature.  

When using geometric models, cluster analysis or a combination of Principal Component 
Analysis (PCA) and cluster analysis are the main methods currently used for identifying 
empirical typologies.5  In the literature, these methods have been applied in a variety of 
contexts and scales.  

At the national scale, Bruce & Witt (1977) use cluster analysis for delineating city 
typologies in the United States. Orfield (2002—as cited in Hanlon 2009) and Mikelbank 
(2010) use cluster analysis to generate typologies of American suburban places while 
Hanlon (2009) uses a combination of PCA and cluster analysis for a similar study.  Among 
studies from outside the U.S., Rovan & Sambt (2003) use cluster analysis methods to group 
Slovenian municipalities into four clusters based on socio-economic variables while Soares 
et.al. (2003) uses factor analysis and cluster analysis to illustrate socio-economic 
characterization and grouping of the municipalities of Portugal.  

At the city scale, Portnov (2002) uses cluster analysis to determine patterns of intra-urban 
inequalities at the neighborhood level in Be’er Sheva, Israel. Barnes (2004) and Morenoff & 

                                                           
5 Some of the early attempts at deriving urban typologies used factor analysis. Price (1942) and Hadden and 
Borgatta (1965—as cited in Bruce & Witt (1977)), use factor analysis to identify typologies of cities in the US 
by interpreting each factor as a typology. The factor loadings were used to calculate scores for each city 
within each factor and high scoring cities within a particular factor were interpreted to be prototypical of that 
typology. A somewhat similar approach has been used by Berry & Rees (1969) and Dutt et.al. (1981) to 
analyze heterogeneity within the city of Calcutta. It is debatable whether the results of factor analysis can be 
interpreted to be ‘typologies’ since although the factors provide dimensions of comparison for the cities, it is 
not possible to derive relatively homogenous groups of cities based on similarity across the identified 
dimensions. See Ramachandran (1989) for a critique of factor analysis based study of urban areas. 



13 
 

Tienda (1997) apply a similar approach to study urban poverty and typologies of 
neighborhood change in Chicago. Owens (2012) extends the latter study to all metropolitan 
areas in the U.S. using PCA and cluster analysis while Wyly & DeFilippis (2010) uses a 
similar method to identify neighborhood types using data on demographic and housing 
conditions for all census tracts of New York City. 

2. Data and Methods 

This paper uses the ward level Population Enumeration and Houselisting and Housing Data 
from the 2011 Census of India to generate sub-city typologies for Bangalore. 6  As described 
above, in the literature, PCA is often used initially to derive a small number of components 
on which cluster analysis is then carried out. Due to the difficulty involved in meaningfully 
interpreting the components generated by a PCA, this paper implements cluster analysis 
directly on the Census variables of interest.  The full list of variables available from the 
2011 Census, at ward level for Bangalore, is given in Figure1.  

2.1 Variable selection, computation of indices and standardization 

As a first step, all variables available from the Houselisting and Housing tables and 
Population Enumeration tables were mapped onto the ward boundaries of Bangalore city 
to explore their patterns of spatial distribution. In addition, the mean, median, standard 
deviation and coefficient of variation for each variable was also computed, to understand 
trends in their statistical distribution.   

Although there are no generally accepted rules governing the relationship between sample 
size and number of variables used for cluster analysis, as a rule of thumb, when using n 
variables in cluster analysis, the sample size should be about 2𝑛 (Mooi and Sarstedt, 2011). 
Since there are 198 wards in Bangalore, the number of variables should be seven or eight 
as per this thumb rule. Two rounds of analyses are presented in this paper—the first uses 
nine variables and the second seven variables.  

The variables were selected to represent three broad classes of attributes for each ward: 
housing conditions, access to water and sanitation infrastructure and socio-economic 
status, while also capturing the variation inherent in the dataset. The full list of variables 
used and the attribute classes they represent is given in Figure 1.  Correlation matrix for 
the full set of nine selected variables is given in Table 1. 

                                                           
6 The Population Enumeration data is provided at the level of ‘individuals’, while the Houselisting and 
Housing data uses ‘households’ as the unit. For definition of ‘household’ see Census of India (2011). The 
difference in the units used across the two datasets is not significant for the analysis presented in this paper 
since it is conducted at the ward level using normalized ward level attributes which could be in any units. For 
example, a variable like ‘percentage vegetation cover’ at the ward level or ‘ward area in sq.km.’ can also be 
part of such an analysis. 



14 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

All the variables used in the analysis were standardized using a z-standardization in STATA 
since they vary in scale and units. Out of the nine variables, two—‘Material of Roof’ and 
‘Latrine Facility’—are indices computed from the percentage of households which come 
under each category of possible responses to the respective questions. ‘Latrine Facility’ was 
converted into an index while ‘Main Source of Drinking Water’ was not, since in the former 
case households fall into a wide range of categories with each category having a significant 
number of households, while in the latter case most households fall into the categories of 
‘Tap water from treated source’ or ‘Tap water from untreated source’ and hence does not 
need an index. 7   

Besides, the response category of ‘Flush/Pour latrine with piped sewer’ is highly correlated 
with the ‘Tap water from treated source’ category since both are referring to infrastructure 
provision by the city.  By computing an index for ‘Latrine Facility’ the analysis captures 
additional variation in the data represented by households which come under other 
response categories like ‘Septic tank’, ‘Service latrine’, etc. Details of the response 
categories and the weights used are given in Figure 1.8  

Cluster analysis was done on two sets of variables using STATA. The first round of analysis 
used all nine variables mentioned above while the second round excluded ‘Tap water from 
treated source’ and ‘Latrine facility’. This is because, in the case of Bangalore, it is well 
known that there is a sharp distinction between the older parts of the city and the newer 
peripheries with respect to level of access to piped water supply and sewerage systems. 9 
Initial exploratory analysis of the spatial distribution of these variables using the Census 
dataset confirms this.  A second round of cluster analysis without these two variables 
enables us to explore other lesser known patterns of urban heterogeneity which may be 
obscured by them. 

                                                           
7 In the case of ‘Main Source of Drinking Water’, the category of ‘Borewell’ also has a significant number of 
households. As per the Census Houselisting Manual (Census of India, 2011) definition these are households 
which use borewell water directly rather than through taps. But given the large number of households in this 
category I suspect that households which pump borewell water to tanks and then supply it through taps 
without treatment may also have been counted within this instead of being included in the category of ‘Tap 
water from untreated source’.  Therefore, in this paper all households which do not receive tap water from a 
treated source are lumped together. Since this leaves us with only two categories of responses for ‘Main 
Source of Drinking Water’, an index is not necessary. 
8 For both these variables, the computed indices displayed similar correlations with respect to individual 
components even when weights were scaled differently. Hence the indices computed are stable to choice of 
weights. 
9 Prior to 2007, the urban local body of Bangalore was the Bangalore Mahanagara Palike (BMP).  The BMP 
boundary was expanded by government notification on 16 January, 2007 to include seven City Municipal 
Corporations, one Town Municipal Corporation and 110 villages which were outside the BMP boundary. This 
expanded entity was reconstituted as the Bruhat Bangalore Mahanagara Palike (Government of Karnataka, 
2007). Most of these newly added areas are yet to be connected to piped water supply and sewerage systems. 
In this paper I use the term ‘core’ to refer to the central areas of BBMP which were within the erstwhile BMP 
boundary prior to 2007, and ‘periphery’ refers to the outer areas which were added in 2007. 
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2.2 Cluster analysis methods10 

Cluster analysis methods can be grouped into hierarchical and non-hierarchical methods. 
In terms of implementation, one of the key differences between them is that in hierarchical 
methods the number of clusters is not specified at the beginning while in non-hierarchical 
methods the number of clusters has to be pre-specified. In this paper I first use hierarchical 
clustering to explore the dataset and identify the number of distinct clusters which may be 
present. I then use this solution to specify the number of clusters in the non-hierarchical 
clustering procedure. Brief descriptions of hierarchical and non-hierarchical clustering 
approaches and details of the specific methods used are given below. 

2.2.1 Hierarchical clustering methods 

Hierarchical clustering—as the name suggests—creates a hierarchy of nested clusters 
ranging from one cluster with all n objects under analysis to n clusters with one object 
each, along with measurements of dissimilarity between clusters. The creation of nested 
clusters could be through a process of fusion (agglomerative algorithms) which goes from n 
clusters to 1 cluster or through a process of division (divisive algorithms) which goes from 
1 cluster to n clusters. The output can be visualized as a tree structure or dendrogram as 
shown in Figures 3 and 4 (Gordon, 1987; Duda et.al., 2000; Everitt et.al., 2011).  This paper 
uses Wards linkage algorithm for agglomerative hierarchical clustering. Ward’s linkage 
algorithm fuses clusters while minimizing the increase in within-cluster error sum of 
squares (Ward, 1963). 11   

Since the number of clusters is not pre-specified, the optimum clustering solution can be 
identified by visual inspection of the dendrogram along with statistical stopping rules. 
These stopping rules are statistical tests which check for the presence of underlying 
clusters within the data and the number of such clusters which can be identified. This 
paper uses the Calinski-Harabasz (Calinski and Harabasz, 1974) rule and the Duda-Hart 
rule (Duda et.al., 2000) as statistical methods of identifying the optimum clustering 
solution. 12 In the former case the cluster solution with the highest value for the Calinski-
Harabasz pseudo-F statistic is selected, while in the latter procedure the cluster solution 
which has a combination of higher Duda-Hart index value and lower pseudo-T-squared 
value is selected.  

 
                                                           
10 Everitt et.al. (2011) provides a comprehensive overview of cluster analysis methods. This section draws on 
the description given there.  
11 Refer Everitt et.al. (2011, p. 79) for a detailed description of various hierarchical cluster analysis methods 
and their relative advantages and disadvantages. I examined the performance of several commonly used 
hierarchical clustering algorithms before selecting Wards linkage. 
12 For a review of methods for determining number of clusters when using hierarchical cluster analysis see 
Milligan and Cooper (1985). 
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2.2.2 Non-hierarchical clustering methods 

Non-hierarchical clustering methods partition n objects into a specified number of groups 
while optimizing a numerical criterion. In general all algorithms used for non-hierarchical 
clustering start with some initial partition which divides n objects into a specified number 
of groups, after which an object is moved from its original group to a new one if it helps in 
optimizing the clustering criterion. This process of moving objects from one group to 
another is repeated till no single move helps in further optimizing the clustering criterion. 
Non-hierarchical clustering methods are sensitive to the starting partition and hence may 
not give stable results.  

This paper uses the k-medians algorithm for non-hierarchical clustering. In the k-medians 
algorithm, objects are moved to the group whose group median it is closest to, after which 
the group medians are recalculated. This is similar to the more commonly used k-means 
algorithm where instead of group medians, group means are used. Due to the use of 
medians instead of means, the k-medians algorithm is relatively more robust to outliers 
(Everitt et.al., 2011). 13 

3. Results  

In this section two sets of results will be described since cluster analysis was conducted 
initially on the complete set of nine variables and then on a reduced set of seven variables 
which excluded ‘Tap water from treated source’ and ‘Latrine facility’. While interpreting 
these results it is important to keep in mind that there are multiple decisions involved in 
arriving at a clustering solution, including choice of variables, clustering method/s, 
algorithms and stopping rules or starting partitions. There is no perfectly objective way of 
taking these decisions, as a result of which the cluster solutions should not be interpreted 
to be representative of some objective reality. Rather, the results should be evaluated on 
the basis of whether it provides an internally coherent and useful way of characterizing the 
city such that it provokes further questions and research. 

Hierarchical cluster analysis using Ward’s linkage (Ward, 1963) on nine and seven 
variables yielded the dendrograms shown in Figures 2 and 3. The dendrograms suggest 
that a four cluster solution would be optimal in both cases. This was confirmed using 
Calinski-Harabasz and Duda-Hart rules. The four cluster solutions have high values for the 
pseudo-F statistic as per the Calinski-Harabasz stopping rule (Table 2). They also have the 

                                                           
13 All starting partition methods available in STATA with the k-medians algorithm were tested. Out of these, 
the ‘p-random’ method gave the most stable results. In the p-random method the dataset is partitioned into k 
groups (where k is the specified number of clusters) and the group medians are used as the starting points for 
the k-median algorithm. 



18 
 

best combination of high Duda-Hart Index value and low pseudo-T-squared value as per 
the Duda-Hart rule. 14 

After this, a four cluster solution was generated using k-medians non-hierarchical cluster 
analysis. This provided the results given in Table 3 and 4.  Figures 9 and 10 show how they 
map onto the wards of Bangalore.15 Since the results generated from the hierarchical and 
non-hierarchical cluster analyses were found to be similar, the following sections report 
only the results obtained by the final non-hierarchical cluster analyses on nine and seven 
variables.  

3.1 Interpretation of clusters: analysis using nine variables 

Cluster 1 is characterized by high socio-economic status, high levels of access to water and 
sanitation infrastructure and very good housing conditions. In particular it has higher 
means than all other clusters for ‘No. of rooms’, ‘Asset ownership’, ‘Roof quality’ and 
‘Female literacy’. It also has the lowest mean for ‘Household size’. Let us call this sub-city 
typology the ‘High-socio-economic Town’ or ‘High-SE Town’.  

Cluster 2 has medium socio-economic status, high levels of access to water and sanitation 
infrastructure and medium housing conditions. It has the lowest mean for ‘SC population’ 
and highest mean for ‘Latrine facility’ – both by relatively thin margins. It also has the 
second highest mean in ‘Access to treated tap water’ by a very small margin. This typology 
could be called ‘Average Town’ since most of its cluster means are relatively close to the 
variable means for Bangalore. 

Cluster 3 is characterized by low socio-economic status, very low levels of access to water 
and sanitation and poor housing conditions. It gets the lowest mean for ‘Access to treated 
tap water’, ‘Latrine facility’and ‘Roof quality’. At the same time, it has the highest mean for 
‘Total workers’ and shares the lowest mean for ‘Household size’ with the High-socio-
economic Town. Let us call this typology the ‘Low-infra Worker Town’. 16 It is mostly the 
peripheral wards of Bangalore which come under this typology. 

Cluster 4 has very low socio-economic status, has reasonably high levels of access to water 
and sanitation infrastructure, and very poor housing conditions. This cluster has the 
highest mean for ‘SC population’, ‘Household size’ and ‘Access to treated tap water’, along  
                                                           
14 Although the 13 to 15 cluster solutions also have high Duda-Hart Index value and low pseudo-T-squared 
value, their utility is limited since solutions with more than seven to eight clusters are difficult to characterize 
and comprehend. 
15 Bangalore has 198 wards today, but as per the ward map available from the BBMP, two of these wards 
consist of non-contiguous areas. Vasanthpura (Ward No.197) consists of two proximate but distinct polygons 
to the south-western periphery while Hoodi (Ward No. 198) consists of four separate polygons spread across 
the north-eastern periphery. 
16 For the sake of brevity, I use the term ‘infra’ rather than ‘water and sanitation infrastructure’ to refer to the 
‘Access to treated tap water’ and ‘Latrine facility’ variables. 
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with the lowest means for ‘Total workers’, ‘No. of rooms’, ‘Asset ownership’ and ‘Female 
literacy’. Its cluster mean for ‘Roof quality’ is also very close to the lowest. Let us call this 
the ‘Low-SE Town’. Wards which come within this typology are all smaller wards from the 
urban core.  

In summary, cluster analysis on nine variables provides us four sub-city typologies for 
Bangalore. These could be called the High-SE Town, Average Town, Low-infra Worker 
Town and the Low-SE Town. The High-SE Town and the Low-SE Town each have roughly 
20% of the population of Bangalore, and the Average Town and Low-infra Worker Town 
each have about 30% of total population.  The details of population distribution across 
these sub-city typologies are in Figure 5. 

3.2 Interpretation of clusters: analysis using seven variables 

Cluster 1 is once again characterized by high socio-economic status and high quality of 
housing. Like in the previous analysis using nine variables, it has the highest means for ‘No. 
of rooms’, ‘Asset ownership’, ‘Roof quality’ and ‘Female literacy’. In this round it also has 
the lowest cluster mean for ‘SC population’. This typology can retain its name of ‘High-SE 
Town’. 

Cluster 2 is also similar to what was obtained in the previous round of analysis. This time it 
does not have the highest or lowest mean for any variable and the means for most variables 
are closer to the overall means for Bangalore city, in comparison to the last round (refer 
Table 4 for cluster means and city means and Figure 7 for radar diagram). Once again we 
can retain the name given in the previous round and call this typology the ‘Average Town’.  

Cluster 3 again has low socio-economic status along with comparatively very poor housing 
conditions. But in this round of analysis it gets the highest cluster mean for ‘Total workers’ 
by a very big margin, along with the lowest cluster mean for ‘No. of rooms’ and ‘Household 
size’. It comes third in all other variables except for ‘SC Population’ where it comes second. 
This time we can call this typology ‘Low-SE Worker Town’ since unlike in the last round, 
the defining feature of low access to water and sanitation infrastructure is not applicable 
anymore.  

Cluster 4 is also similar to what we have seen in the previous round and has very low mean 
values on socio-economic indicators along with very poor housing. It has the highest 
cluster mean for ‘SC population’ and ‘Household size’ and the lowest in all other variables 
except ‘No. of rooms’ where it is third by a very small margin. Once again we have to call 
this typology ‘Low-SE Town’. 

In summary, the cluster analysis with seven variables gives us four sub-city typologies, out 
of which first, second and fourth typologies retain the same names as last time, while the 
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third typology can be called Low-SE Worker Town. This time the High-SE Town and Low-
SE Worker Town each have about 23% of the total population in them while Average Town 
has about 33% and Low-SE Town has roughly 21%. Figure 5 gives details of the population 
distribution across these sub-city typologies.  

4. Discussion 

Cluster analysis methods help us understand Bangalore as comprising of four sub-city 
typologies. Across the two rounds of analysis we can observe some differences in the 
number of wards and total population which come under each typology. Figure 4 shows 
that the Low-SE Town has the same number of wards in each round of analysis. The total 
population within this typology is also relatively unchanged, with only a 1% difference 
between the two rounds. The sub-city typology maps (Fig. 9 and 10) show that in the first 
round the Low-SE Town comprised only of wards from the core area of Bangalore, while in 
the second round of analysis with seven variables, it loses some of the wards from the core 
areas but adds some peripheral wards, especially towards the north-east and south-west.  

Figures 4 and 5 also show that the High-SE Town and Average Town both see a slight 
increase in the number of wards and population from the first to the second round. In the 
case of High-SE Town there is an increase of 4.6% and 3.7% for wards and population 
respectively. In comparison, the Average Town sees a change of only 2.0% in terms of 
number of wards, while the population increases by 4.4%. As the sub-city typology maps in 
Figures 9 and 10 show, in the second round of analysis, the wards which the High-SE Town 
gains are mostly the smaller ones to the west and south west of the High-SE Town from the 
first round analysis, while it loses a few wards to the east. In comparison, most of the wards 
the Average Town gains are the larger wards towards the north, north-west and western 
peripheries of the city. 

The biggest shift in terms of population distribution across the two rounds of analyses 
occurs in the case of the Low-infra Worker Town and Low-SE Worker Town. As shown by 
Figure 5, the former had almost 32% of the total population (in the nine variable analysis) 
while the latter has only about 23% (in the seven variable analysis). This can be attributed 
to the presence of the two variables related to water and sanitation infrastructure in the 
first round of analysis which were causing the peripheral wards to cluster together since 
they all have very low means for these two variables—thereby generating the Low-infra 
Worker Town typology. 

In the second round of analysis, many of these peripheral wards fall into either the Average 
Town or Low-SE Town typologies, leaving only two patches in the periphery where most of 
the wards fall within the new typology of Low-SE Worker Town. As seen in Figure 10, the 
first patch is around Peenya Industrial Area in the north-west part of Bangalore while the  
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second extends from Hulimavu in the south to Whitefield in the east, past the roads leading 
to Electronic City. 17    

The two rounds of analyses show distinctly that there is a large section of the labor force in 
the periphery of the city which on average consists of small households that have very low 
socio-economic status, live in very poor housing conditions and have very low access to 
water and sanitation infrastructure. The analysis also shows that within the core of the city 
there are at least two very distinct groups of wards—one to the south-west and another to 
the north-east of the center of the city—which on average consist of large households 
which have very low socio-economic status and have very poor quality housing. The radar 
diagrams developed from the second round of analysis (Fig.7) gives striking evidence of the 
intra-urban heterogeneity, scale of inequality and therefore the potential inequities which 
may exist within Bangalore city. 

While interpreting these cluster results it is important to avoid what is often termed the 
‘ecological fallacy’ (Thorndike, 1939; Robinson, 1950; Selvin, 1958) at two levels—at the 
cluster level and the ward level.18 At the cluster level, no specific ward within a sub-city 
typology may have the set of mean values which are used to characterize that typology. The 
use of cluster means to delineate the typologies runs the risk of missing extreme values 
across all attribute categories.   

At the ward level, although a ward may fall into a particular typology, it does not mean that 
all neighborhoods or communities within that ward share the average characteristics 
which help us delineate that typology. This is especially true in the case of the peripheral 
wards of Bangalore which are considerably larger than the wards of the core area and have 
widely varying patterns of landcover and settlement structure. In the peripheral areas 
there are often dense high rise apartment and office clusters surrounded by open tracts of 
land or settlements which retain characteristics of villages. Since census data is not 
available below the ward level, large within-ward variations may be getting averaged out in 
such cases.  

Due to similar reasons, I have refrained from using population density as an additional 
variable. As the next chapter shows, a ward level calculation of population/sq.km which 
does not take into account land-use, land-cover and building heights can be misleading. 
This can be particularly problematic when the ward sizes differ greatly like in the case of 
Bangalore. As discussed above, the large peripheral wards of Bangalore have scattered 

                                                           
17 Electronic City is an industrial township located to the south east of Bangalore. It has a high concentration 
of information technology related industries. 
18 According to Susser (1973 - as cited in Subramanian et.al., 2009) it may be more appropriate to term this 
‘aggregative fallacy’.  
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pockets of dense developments and an average density calculated across the entire ward 
may not be representative of the density experienced by the people living in these wards. 

5. Conclusion 

The release of the ward level Houselisting and Housing data from the 2011 Census of India 
is a very welcome and long overdue step as far as Census data dissemination is concerned. 
This dataset in combination with the ward level Population Enumeration data opens up the 
potential for a wide range of new research on Indian cities at the intra-urban scale. 
Through the application of hierarchical and non-hierarchical cluster analysis, this paper 
demonstrates a method for deriving empirical sub-city typologies for Indian cities using 
this ward level census data.  

Although there are several aspects to keep in mind while interpreting the cluster analysis 
results, the sub-city typologies described in this paper provide a means of characterizing 
Bangalore city and understanding intra-urban variation in Bangalore across multiple 
dimensions at the ward level. Such an understanding could be useful in city-scale 
vulnerability studies, or in structuring more in-depth studies—for example in stratified 
sampling surveys. It could also be useful in modeling various urban economic phenomena 
like rents and house prices.  

If similar or better resolution data is available for successive or preceding census years for 
Indian cities, one could also examine the temporal stability, or trajectories of change of the 
sub-city typologies identified in this paper. Using the available dataset from the 2011 
Census, this study can also be extended to other cities to examine if the sub-city typologies 
identified in this paper remain relevant across cities within the same size class and across 
size classes.  
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III.   Densities of Bangalore 

 

 

Abstract 

This paper proposes a new method for high-resolution population density prediction in 
Indian cities. Using data for Bangalore city, the paper demonstrates that residential 
population density can be predicted at the scale of 30m by 30m raster cells, as a function of 
cell level values of street density and building height and ward level values of asset 
ownership. Building height data was generated from Cartosat-1 stereo imagery using an 
open source satellite stereo image processing software. The building height extraction was 
successfully carried out without the need for Differential GPS surveys and results indicate a 
root mean square error of approximately 3.1m. Using this building height data in 
conjunction with the other datasets, the paper demonstrates that a 30m resolution surface 
of predicted population density can be generated such that when summed to the ward 
level, the mean absolute percentage error between predicted population and known census 
population at the ward level is 10.7%. A fine-grained understanding of population densities 
in Indian cities, as enabled by the proposed method, can be beneficial to research, policy 
and practice related to urban planning. 

 

 

1. Introduction 

Density measures have a central role in research, policy and practice related to urban 
planning. In the context of cities, density is often understood as a ratio measure with the 
component of interest in the numerator and a unit of land area in the denominator. 
Researchers have examined how urban density relates to transit systems and urban 
resource use (see Newman & Kenworthy, 1989), urban economics and agglomeration 
effects (see Glaeser & Gottleib, 2009), experiential and socio-cultural aspects of cities (see 
Jacobs, 1961) and also to broader notions of urban sustainability (see Jenks et.al., 2003). 1  

On the policy and practice front, planning norms around the world attempt to use various 
forms of density regulations to control or guide urban growth (Churchman, 1999).  One 
such tool which finds widespread use in Indian cities is Floor Area Ratio (FAR) which 

                                                           
1 See Boyko & Cooper (2011) and Churchman (1999) for a detailed discussion on definitions of density and a 
review of research on the relationship between density and various aspects of urban life. 
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stipulates the ratio between total built up space and land area of a site.2 The objective is to 
regulate the overall intensity of land-use in a neighborhood by limiting the total built-up 
area which is permitted on any site (Alexander et.al., 1988).  

FAR based density regulation in Indian cities has been a cause for much debate amongst 
urban planning researchers and practitioners. Bertaud & Brueckner (2005) argue that FAR 
based regulation of job and population densities causes spatial expansion of cities which in 
turn leads to higher commuting and housing costs. Extending this study, Brueckner & 
Sridhar (2012) contend that more compact cities with closer to “international” FAR norms 
are beneficial from a consumer welfare perspective.  

But Patel (2013) proposes that such recommendations do not take into account several 
factors which distinguish Indian cities from cities in developed countries. Using the 
example of Mumbai, Patel (2013) argues that in Indian cities more people occupy the same 
amount of built-up space or street space and hence increasing FAR cannot improve quality 
of life since it will lead to an aggravation of every form of crowding. 3 According to 
Shirgaokar (2013), the analysis presented by Patel (2013) could benefit from finer scale 
data which could help compute various metrics like office space or housing units per 
square kilometer.  

This paper takes a step in this direction by proposing a new framework for high-resolution 
population density prediction. A fine-grain understanding of where the residential built-up 
space is and at what density people occupy it can potentially enable the computation of a 
whole range of spatially disaggregated metrics related to residential built-up space and 
per-capita access to various urban amenities and services. It can also be useful for  studies 
related to spatial distribution of demand for various resources within a city, assessment of 
living conditions within and across cities and for studies related to disaster risk reduction. 

The rest of this paper is structured as follows. In the next two sub-sections I provide a brief 
overview of various types of density, before focusing on definitions and issues related to 
‘measured density’. After this I discuss some of the predominant methods used for high-
resolution population interpolation, redistribution and prediction. In Section 2, I describe 
the various datasets used in the proposed population prediction framework and the steps 
involved in preparing the datasets. Section 3 provides an overview of the prediction 
framework while Section 4 describes the results obtained for Bangalore city. I conclude 
with a discussion on the advantages and shortcomings of the proposed method.  

 

                                                           
2 FAR is often referred to as Floor Space Index (FSI) also in Indian cities. If a plot has an FAR or FSI of 1, this 
means the maximum permissible built-up area on that plot is equal to the total area of the plot.  
3 The concept of crowding is discussed in greater detail in Section 1.2 
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1.1 Types of density 

In spite of the centrality of the concept of density in research, policy and practice related to 
cities, there is much debate about its definitions and how it can be used to understand and 
compare across cities and neighborhoods. First, there is the question of the parameter or 
component whose density we are interested in. For example, it could be people, built up 
space or dwelling units. Second, one has to clarify what type of density we are interested in. 
It could be measured density, which can be understood to refer to the objective physical 
components of the built environment (including people) which can be measured 
(Alexander et.al., 1988) or perceived density, which refers to the density perceived by 
people (Rapoport, 1975).  

Rapoport (1975) persuades us to go beyond simple ratio formulations of density and place 
perceived density at the core of discussions about urban density. Alexander et.al. (1988) 
provides a framework for this by conceptualizing perceived density as being influenced by 
measured density, qualitative physical features of the built environment, individual 
cognitive factors and other social and cultural factors.  

In the context of Indian cities, measured density itself is not very well understood since the 
data from the census is not made available below the ward level—a ward being the 
administrative subdivision below that of the city corporation. My attempt in this paper is to 
provide a predictive framework which will enable a high-resolution understanding of 
measured population density in Indian cities.  

1.2 Measured density: definitions and issues 

Units of measured density 
Measured density is usually expressed as a ratio, where the denominator is some unit of 
area. The numerator can be any attribute of interest like population, built-up space, 
households, dwelling units etc. The unit of area in the denominator encapsulates two 
aspects of measurement—one is the unit of measurement (sq.m., sq.km. etc.) and the other 
is the type of land-uses considered for  measurement (Alexander et.al., 1988; Churchman, 
1999; Boyko & Cooper, 2011). Both of these aspects need to be defined for the measured 
density to make sense.  For example, population density can be measured at the city level 
and expressed as people/sq.km. But the sq.km. unit in the denominator could refer to 
sq.km. of total land area, sq.km. of land with residential land-use including minor streets, or 
sq.km. of land with residential land-use excluding streets and pavements. 4  

 

                                                           
4 Alexander et.al. (1988) defines net residential area, gross residential area, neighborhood area and city area, 
depending on the types of land-uses which are considered while defining the area unit in the denominator. 
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Types of measured density 
While the denominator in the above example refers to land area outside the dwelling unit, 
this need not always be the case. For instance, when the numerator is population or 
persons, the denominator could also be area available within dwelling units. For this 
reason, Alexander et.al. (1988) distinguishes between two types of measured density—
molecular and molar. Molecular measured density refers to people per area of dwelling 
space while molar measured density refers to population, built-up space, dwelling units etc. 
divided by the external land area of interest. 5 These are also referred to as internal and 
external density in the literature (Yeung, 1977). 

Measured density and Modifiable Areal Unit Problem 
The term Modifiable Areal Unit Problem (MAUP) (Openshaw, 1984) refers to the following 
problem—the same spatial data when aggregated to different areal (spatial) units leads to 
very different understandings of reality. 6 For example when population data—which can 
be thought of as point data—is aggregated to census tracts or wards to measure population 
density, depending on how the tract or ward boundary is drawn, the same location may 
appear to have very different average population densities.  

There is a version of the MAUP which comes into play when measuring population density 
at the city scale also. Depending on how the boundary of a city is defined, the measured 
population density can be dramatically different. For example a city may have several outer 
wards which are sparsely populated, which if included in the calculation, will bring down 
the average city level population density dramatically. To somewhat compensate for this, 
Barnes (2001) proposes the concept of weighted population density, where each areal unit 
with known population is weighted by the fraction of the total city population which 
resides in it. Barnes (2001) claims that for US cities this weighted population density is 
closer to what the residents of the city on average perceive.  

1.3 High-resolution population interpolation, redistribution and prediction 

One approach which can somewhat circumvent the MAUP involves representing 
population as a continuous surface which is not dependent on arbitrary areal units 
(Mennis, 2003). The methods which attempt to provide such a finer grain understanding of 
urban population distribution can be grouped into three—point interpolation based 
methods, population redistribution methods and methods for population prediction based 
on ancillary data.  

                                                           
5 The concept of crowding is sometimes used to refer to what can be better described as molecular or internal 
measured density (Rapoport, 1975; Patel, 2013). But as Stokols (1972) and Alexander et.al. (1988) explain, 
crowding is an experiential state based on the relationship between perceived density and desirable norms. 
6 Areal unit refers to spatial unit of analysis. ‘Modifiable areal unit’ refers to the potential for re-aggregating or 
distributing spatial data from a source (original) unit of aggregation to a target (new) unit of aggregation or 
distribution. 
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Point interpolation methods 
In this paper I use the term ‘point interpolation methods’ to refer to the application of point 
interpolation techniques in generating a continuous population distribution surface based 
on source data which is aggregated to arbitrary areal units. For example, in the case of 
urban population data which is available at the level of wards, the population within each 
ward could be assigned to its centroid. Point interpolation techniques can then be applied 
based on the values at the centroids to generate a continuous surface of population 
distribution. As pointed out by Lam (1983) such an approach has several drawbacks. Most 
importantly, the total population value within the boundary of the source areal unit, as 
depicted by the continuous surface, will differ from the original known population of the 
source areal unit. In the literature, interpolation methods which have this problem are 
referred to as ‘non volume preserving’ (Lam, 1983). 

Population redistribution methods 
In this paper I use the term ‘population redistribution methods’ to refer to what is 
otherwise variously called ‘volume preserving’ (Lam, 1983) or pycnophylactic (mass 
preserving) (Tobler, 1979; Yoo et.al., 2008) interpolation methods in the literature. Both 
‘volume preserving’ and ‘pycnophylactic’ refer to areal interpolation methods where the 
total value of the variable within the source areal unit boundary does not change after 
interpolation.7 For the purpose of this paper, I find the term ‘population redistribution’ to 
be a simpler and more straightforward way of referring to such interpolation methods 
since they essentially redistribute the population of a source areal unit within its own 
boundaries. 

Population redistribution methods can be grouped into two, based on whether it uses only 
statistical areal interpolation techniques or it uses ancillary information also. The smooth 
pycnophylactic interpolation technique described by Tobler (1979) is one well-known 
method which can be applied without any ancillary information. Areal weighting methods 
which overlay target and source areal unit (or source zones) and apportion population to 
target areal units (or target zones) using a weighting scheme based on area of the source 
unit/s contained within it, also come under this category (Lam, 1983). While the areal 
weighting method assumes homogeneity in distribution of the variable of interest (in this 
case population) within the source zone, smooth pycnophylactic interpolation assumes 
heterogeneity in distribution of the variable within the source zone (Hawley, 2005). 

Population redistribution methods which use ancillary data to create a population density 
surface is referred to as dasymetric mapping (Semenov-Tian-Shansky, 1928; Wright, 1936; 
Mennis, 2009; Petrov, 2012). The term dasymetric was invented by Benjamin Semenov-
Tian-Shansky and translates approximately to ‘measuring density’ in Greek (Petrov, 2012). 
                                                           
7 Areal interpolation refers to the transfer of information from one set of source areal units to a set of target 
areal units (Fisher and Langford, 1996). 
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Dasymetric mapping as proposed by Semenov-Tian-Shansky retains the ‘volume 
preserving’ or pycnophylactic property since the population within a known spatial unit is 
only redistributed to locations of concentration as inferred from the ancillary data (Petrov, 
2012; Mennis, 2009). For example the known population within a ward can be 
redistributed to only the built-up areas within the ward, or the residential built-up areas 
within the ward. The concept of dasymetric mapping has also been applied to generate 
global scale population density maps such as Landscan (Dobson, 2000). 

Numerous authors have conducted dasymetric mapping studies using ancillary data like 
land-cover(Langford & Unwin, 1994; Holt et.al., 2004), land-use (Maantay et.al., 2007) 
LIDAR based building height (Xie, 2006); and street network (Xie, 1995; Reibel and 
Bufalino, 2005; Long & Shen, 2014). 

Population prediction based on ancillary data 
In the literature, methods for high-resolution population density prediction that use 
ancillary data along with census population figures are also often referred to as dasymetric 
mapping (Mennis, 2009; Hawley, 2005). But in this paper I distinguish between dasymetric 
methods of population redistribution (volume preserving) and predictive frameworks in 
which the volume-preserving property is absent (Mennis, 2009).  

Compared to the large number of studies which use dasymetric mapping methods, there 
has been limited work on high-resolution population density prediction. Li & Weng (2005) 
propose a population prediction framework using spectral values of pixels in multi-spectral 
remote sensed data while Silvan-Cardenas et.al. (2010) use LIDAR based building height 
data to predict population. Bast et.al. (2015) demonstrate a population prediction 
approach which uses various crowd sourced datasets from the Open Street Map project. 

2. Data 

This paper applies a new predictive framework for generating a 30m resolution population 
density surface for Bangalore city. The proposed method uses data on land-cover, land-use, 
building height, street network and asset ownership information to predict population. The 
30m resolution is primarily dictated by the lowest resolution dataset—the Landsat data 
used for land-cover mapping (U. S. Geological Survey, 2015). Besides, the Shuttle Radar 
Topography Mission (SRTM) data (Farr et.al., 2007)—which, as described in Section 2.4, 
was one of the datasets used to generate building height maps—is also of 30m resolution. 

The municipal corporation of Bangalore was called Bangalore Mahanagara Palike (BMP) till 
2007.  The BMP boundary was expanded by government notification on 16 January, 2007 
to include seven City Municipal Corporations, one Town Municipal Corporation and 110 
villages which were outside the BMP boundary. This expanded entity was reconstituted as 
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the Bruhat Bangalore Mahanagara Palike (Government of Karnataka, 2007).8 Today it 
contains 198 wards and is called the Bruhat Bengaluru Mahanagara Palike or BBMP, which 
roughly translates to Greater Bangalore Municipal Corporation.9  

While the initial intent was to apply the predictive framework to the region within the 
current administrative boundary of Bangalore (BBMP boundary), available land-use data 
was accurate only for the region within the 2007 administrative boundary of Bangalore 
(BMP boundary). As a result, the current research focuses on the areas which are within 
the BMP boundary.  Figure1 shows all the 198 wards of BBMP (Bruhat Bengaluru 
Mahanagara Palike, 2016) overlaid with a population density choropleth (population in a 
ward/ ward area) for BBMP wards which fall within the boundary of the erstwhile BMP. 

2.1 Preparation of land-cover data 

Land-cover map for the BBMP area was prepared using 30m resolution Landsat 5 (U. S. 
Geological Survey (USGS), 2015) data from 18 January 2011, downloaded from the USGS 
EarthExplorer website. All seven bands of the dataset were used to conduct an 
unsupervised classification into 50 classes using ArcGIS 10.2. This was then reclassified 
into Water, Vegetation, Built-up and Vacant land-cover classes (Fig. 2) using Google Earth 
imagery from 11 March 2011 as a ground truth reference class (Google Earth, 2011). 10, 11 

Accuracy assessment of land-cover classification 
To assess the accuracy of the land-cover classification, 400 raster cells were randomly 
selected (384 cells required for 95% confidence level and 5% error) converted to polygons 
and transferred into Google Earth. The predicted classification as obtained using ArcGIS 
was compared with actual land-cover classes observed in Google Earth for these 400 cells. 
Based on this, an error matrix was computed (Table 1) and overall accuracy was estimated 
to be 85% (Foody, 2002). 

General problems with accuracy assessment of land-cover classification 
Based on these measures, although the classification is accurate enough for the purpose of 
his paper, it is important to mention some of the issues faced while conducting this 
accuracy assessment.  As pointed out by Foody (2002), there could be problems of       

                                                           
8 Bangalore is the capital of the state of Karnataka 
9 In 2014, the name of the city was changed from Bangalore to Bengaluru (Times News Network, 2014). Since 
the analysis presented is based on Census data from 2011, I will refer to the city as Bangalore. 
10 All types of buildings (residential, industrial, commercial etc.) and streets were classified as built-up. As 
described in Section 2.2, the land-use map was then used to identify residential built-up cells from within this 
built-up class.  
11 Streets are classified as built-up. But major streets will be removed at a later stage of analysis when I 
intersect the built-up map with the residential land-use map, to extract residential built-up cells. This is 
because the land-use map represents streets as the gaps between land parcels and so during the intersection 
step, the cells which fall in these gaps between land-use parcels will be ignored. 
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mis-registration between reference imagery and the Landsat data, especially since Google 
Earth imagery exhibits slight lateral shifts between imagery acquired on different dates. 

Besides this, since each cell in the Landsat data is 30mX30m, when conducting the accuracy 
assessment I was checking the land-cover visible in Google Earth imagery within each 
randomly selected 30mX30m cell. In many cases one such cell contained two or more land-
cover classes in the Google Earth imagery. For example a cell may contain water, vegetation 
and vacant land. In such cases whichever land-cover class appeared to cover maximum 
extent of the cell was assigned as the ‘true’ land-cover status of that cell.  

If one were to conduct an accuracy assessment by inspecting the land-cover classes within 
each cell by visiting the specific cell locations on ground, the problem seems even more 
difficult to surmount, since there will be errors related to determining the boundary of each 
cell on ground before even getting to issues arising from the presence of multiple types of 
land-cover within the same cell. Moreover, it is difficult to gain access to inspect areas 
within a randomly selected set of cells. As a result only cells which fall within publicly 
accessible areas may get surveyed leading to a biased sample.  

In general, my experience with attempting to conduct accuracy assessment makes me 
skeptical of land-cover classification accuracy assessment results which are often reported 
in research papers—including mine. 

2.2 Preparation of land-use data 

The data on existing land-use available with the local planning authority (the Bangalore 
Development Authority or BDA), was from 2004 (Fig. 3). The subsequent round of existing 
land-use survey is currently in progress as of January 2016 and hence was unavailable for 
the analysis presented in this paper. While the land-use data is from 2004, the population 
data available from the Census of India (Census of India, 2011a), is based on population 
enumeration conducted in 2011 (Census of India, 2011b). This effectively means that the 
year of population enumeration by the Census falls in the middle of the period between two 
rounds of land-use survey.   

One option to deal with the difference in years of Census population enumeration and land-
use survey was to interpolate the population numbers for 2004 based on data from the 
2001 and 2011 Census data. But this was impractical since the ward boundaries for the 
Census population numbers from 2001 were not available. As a result, the only feasible 
way of using land-use in this research was to update the 2004 land-use data to reflect the 
changes up till 2011. This also meant that it was more appropriate to focus the study on the 
BMP boundary since this area has seen relatively less land-use change compared to the 
peripheral parts of the city which were added to the BMP area in 2007 to create the BBMP 
jurisdiction.   
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2.2.1 Steps involved in updating land-use map 
As a first step towards updating land-use data from 2004, the study assumed that all 
parcels which were classified as having residential land-use in 2004 remained residential 
in 2011 also. The next step was to systematically evaluate all changes from non-residential 
uses to residential over the period from 2004 to 2011. Out of these, two types of non-
residential to residential land-use change are especially significant to this study—those 
involving the creation of apartment buildings or dense informal settlements. These are 
significant to high-resolution density studies since they both represent high population 
density raster cells, which if missed can lead to large errors. 

Adding new apartment buildings to the land-use map 
A dataset related to sewage treatment plants in large housing developments, prepared by 
the Karnataka State Pollution Control Board (KSPCB) was used to understand where the 
new high-rise apartments have been built. In 2004, a new rule stipulated that all new 
apartment buildings of more than 20,000 sq.m. total built-up area in parts of the city with 
sewerage network, or apartment buildings of more than 5000 sq.m. total built-up area in 
parts of the city without sewerage network need to install small scale sewage treatment 
plants (STPs) (KSPCB, 2013). The housing developers were required to take permission 
from KSPCB before installing STPs. In 2013, KSPCB prepared a report which provided 
information about all STPs for which permission had been granted since 2004 (KSPCB, 
2013).  

Using this dataset, a total of 285 residential apartment buildings were geocoded. Out of 
these only 30 were within the BMP area (Fig. 1), which supports the earlier assertion that 
much of the land-use change since 2004 has happened outside the BMP area.  The 
remaining 30 apartment buildings were visually inspected using Google Earth imagery 
from 23 January, 2010 (Google Earth, 2010) to check if their construction was complete by 
this date.12 The completion dates of these projects were checked using data from real 
estate websites also. Based on this, only 8 apartment buildings were found to be complete 
within the BMP area by early 2010. Therefore these parcels were added to the land-use 
map as residential parcels. 

Adding informal settlements to land-use data 
According to the Karnataka Slum Development Board (KSDB), there are 542 slums or 
informal settlements within the Bangalore Urban District (KSDB, 2014) —the urban 
district being a significantly larger area than the BBMP boundary. Out of this list, 105 

                                                           
12 Although the census population enumeration was conducted in February-March 2011 (Census of India, 
2011b) the date of 23rd January 2010 was used as a cut-off date to determine the changes to be made to the 
land-use map since this was the closest date for which Google Earth imagery was available for the entire 
study area. Besides large apartment buildings are known to take time be fully occupied. 
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settlements within BMP area were identified and their boundaries demarcated and ground-
truthed by a planning consultancy firm in Bangalore named INDE. 13  

All 105 settlements for which boundaries were available were georeferenced in ArcGIS and 
then exported to Google Earth to check for errors. Visual inspection of settlement grain in 
Google Earth imagery (Google Earth, 2010), was used to confirm that settlement 
boundaries were accurate. These polygons were then added as residential land-use parcels 
to the land-use map from 2004. 

Checking for conversion from non-residential to residential land-use  
The list of land-use classes as per the land-use map of 2004 can be seen in Figure 3. The 
land-cover map was used to do a preliminary assessment of land-use change in the 
Agriculture and Vacant classes since if these classes have not witnessed any land-use 
conversion, they should not have any built-up cells within them. The comparison between 
land-use and land-cover maps showed that there was significant land-use conversion from 
2004 to 2011 within these land-use classes. As described below, several steps were then 
carried out to identify the residential built-up cells within these two land-use classes. 

For the Agriculture category, all the parcels from the land-use map, which were greater 
than one cell in area (30mX30m = 900 sq.m.) were exported to Google Earth (142 
polygons). Each polygon was checked for land-use conversion in Google Earth using 
imagery from 23 January 2010. If there was conversion to built-up, then the overall size 
and texture of the built-up area was used to estimate whether it was residential land-use. 
Based on this a new layer of polygons was generated which consisted of all the areas which 
had changed from agricultural to residential land-use. 

Since the Vacant category consisted of 23481 parcels it was not feasible to inspect each 
parcel in Google Earth as described above. Instead, polygons were created from built-up 
cells of the land-cover map which fell within Vacant land-use class. Out of the resulting 
7395 polygons, all polygons greater than 8100sq.m. in area (nine 30X30 cells), were 
selected and exported to Google Earth (304 polygons). Like in the case of Agriculture 
category, these 304 polygons were also inspected in Google Earth using imagery from 23 
January 2010 and corrected based on whether they had changed to residential land-use. 

Since it was infeasible to examine each of the remaining 7091 polygons (of area less than 
8100 sq.m. each) which contained areas where Vacant parcels had been built upon, these 
were assumed to have residential built-up. To understand the extent of errors this 
assumption may cause, a random set of 411 cells (384 cells required for 95% confidence 
level with 5% error) were selected and exported to Google Earth for visual inspection. 

                                                           
13 The principal of INDE, Mr. Mohan Rao, generously shared the data on these settlements for use in this 
research. 
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Based on this it was estimated that 75.8% of the cells had converted to residential built-up. 
This effectively meant that the remaining 24.2% cells were assigned residential land-use 
erroneously. Since most of the Vacant land-use parcels are to the periphery of the BMP 
area, this may cause peripheral wards to show significant errors in density estimation. 

In the Trades & Businesses category (which consists of commercial land-use parcels), all 
parcels which were less than one cell in area (900 sq.m.) were considered to be residential. 
This is because a lot of the smaller commercial establishments have residential uses on 
upper levels and the land-use map does not clearly categorize such mixed-use parcels. 
While the assumption that all parcels less than one cell in area in this land-use class is 
residential is a significant approximation, it helps capture some of the residential use in 
mixed land-use parcels which would otherwise be completely missed. Since smaller 
commercial establishment were found to be somewhat uniformly distributed across all 
wards, the errors should also be distributed uniformly. 

The categories of Sports and Recreation, Transport, Public-utilities (like water and 
electricity), Tanks & Lakes, Quarries, Industrial and Offices & Services categories were 
assumed to not have any residential built-up. While it is known that Industrial land-use 
does get converted into residential land-use, such land-use conversions occur mostly in the 
case of large apartment buildings which were already captured using the dataset on STPs 
described earlier. 

The Public/Semi-public and Unclassified categories presented a special kind of problem. 
The former includes all government institutions from the legislative assembly to 
educational and research institutions, while the latter consists mainly of land which is 
controlled by the defence forces and related research institutions. Both these categories 
have residential areas within them, but it is not possible to identify where these residential 
areas are within these land-use parcels. Therefore, all the built-up cells within these two 
categories were assumed to have some level of residential population. Only the most 
obvious exceptions like the state legislative assembly campus were excluded from this. 14 
Since the land-use classes of Public/Semi-public and Unclassified essentially contain 
government Institutions, for ease of communication, in the rest of this paper I will use the 
term ‘Govt. land-use’ to collectively refer to both these categories. 

2.3 Preparation of street network data 
Street network data was obtained from the local water utility as pdf files and converted to a 
polyline feature class in ArcGIS format. This was then georeferenced using the land-use 
map layer from the planning authority. The line density function in ArcGIS with search 
radius of 90m was used to generate a 30m resolution street density map (Fig. 4). The 

                                                           
14 Even in this case there may be few residences for the legislative assembly staff – but compared to the total 
built up it was assumed to be very insignificant and hence neglected. 
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search radius of 90m was used so that the street density of any given cell is an average of 
the street network density in its immediate vicinity. If the search radius is made very small, 
then in neighborhoods with a sparse street network, a cell which has a street passing 
through it will get a high value, while an adjacent cell through which the street does not 
pass may get a considerably lower value—in other words, the decay in the influence of a 
street would be very rapid with increasing distance from it. Thus a larger search radius 
enables the influence of a street to decay less abruptly—which I propose is closer to what 
happens in reality. 

2.4 Extraction of building height data from satellite stereo imagery 
The term ‘satellite stereo imagery’ refers to image pairs of the earth surface generated by 
satellites which are equipped to capture multiple images of the same earth surface region 
from different points in space (Poli and Caravaggi, 2012). Given information about the 
camera sensor, its orientation and satellite location, it is possible to calculate the 
relationship between points on the earth surface and pixels on the image. Once this is done, 
the shift or disparity that any point located on the earth surface (or on objects on the earth 
surface) exhibits when viewed from two different locations in space can be computed using 
the stereo image pair. These disparity maps can be processed to calculate the elevation of 
each point, thereby yielding a model of the earth surface which includes the terrain and all 
other objects like buildings and vegetation which may exist on it (d’Angelo et.al., 2010).  In 
contrast to a Digital Elevation Model (DEM) which captures only the terrain, a model of the 
earth surface which includes the terrain and all objects which exist on the terrain is 
referred to as a Digital Surface Model (DSM) (U. S. Geological Survey, 2016).  

Building height extraction from satellite stereo imagery involves the following key steps: 
1. Generation of the DSM,  
2. Subtraction of the terrain (Digital Elevation Model or DEM) to get the normalized DSM or 
nDSM—which consists of all objects that extend above the terrain. 
3. Removal of vegetation from the nDSM to obtain only building heights 

Description of stereo imagery 
The Indian Space Research Organization (ISRO) has a high-resolution satellite with stereo 
imaging capabilities called Cartosat-1. The satellite has two 2.5m resolution panchromatic 
cameras—one facing forward (Fore) by 26o  from the vertical and another facing 
backwards (Aft) by 5o from vertical as shown in Figure 7 (National Remote Sensing Centre, 
2015). As the satellite travels in its orbit at a height of approximately 618 km, first the Fore 
camera starts capturing a scene on the ground and after about 50 seconds of orbital travel, 
the Aft camera starts capturing the same scene from the new position of the satellite 
(National Remote Sensing Centre, 2015). Together the Fore and Aft images comprise the 
stereo pair for a single ground scene. 
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The National Remote Sensing Centre (NRSC) provides Cartosat-1 imagery of 2.5m 
resolution for a fraction of the cost of other high-resolution stereo imaging satellites. Two 
image pairs from January 2012 were purchased from NRSC to cover the BMP area. Each 
image comes with relevant metadata and a Rational Polynomial Coefficient (RPC) file. The 
RPC file provides information on the sensor type, sensor orientation and satellite location 
at the time of image capture (National Remote Sensing Centre, 2015). 

Method for DSM and nDSM generation 
In the literature, building height extraction using stereo imagery is usually accomplished 
using proprietary photogrammetry software (see Shaker et.al., 2011). These need manual 
intervention at various stages of processing and use highly accurate Ground Control Points 
(GCPs) measured using a Differential GPS (DGPS) to correct for any errors which may exist 
in the RPC files. In 2014, a new open source software called S2P (Satellite Stereo Pipeline) 
was developed which enables fully automated processing of satellite stereo imagery (de 
Franchis, et.al., 2014) without the need for GCPs obtained through DGPS surveys. But the 
lack of accurate GCPs may lead to errors in both georeferencing and height estimates in the 
output DSM and nDSM. Subsequent sections describe the nature of errors encountered and 
the calibration and validation steps which were taken to correct them. 

5m resolution DSMs were generated for each Cartosat stereo image pair using S2P. Both 
the DSMs did not align accurately with known georeferenced layers of data like the street 
network. This is because RPC files are not accurate enough to enable precise geolocation of 
processed DSMs (C. de Franchis, personal communication, 13 January 2016). Both the 
DSMs were realigned using clearly visible building edges and street intersections from the 
street network layer. After this, a 5m DEM was generated by interpolating the 30m SRTM 
data using bilinear interpolation in ArcGIS 10.2.15 This DEM was subtracted from the DSM 
layer to generate the nDSM. As shown in Figure 5, both the nDSMs exhibited a clear spatial 
bias in terms of height values. According to de Franchis (personal communication, 13 
January 2016) and Titarov (2008) this is also due to RPC errors. 

It was not possible to remove trees from the nDSM at this resolution due to the lack of 5m 
resolution land-cover or vegetation map. As described in subsequent sections, vegetation 
removal was achieved using the 30m land-cover map after resampling the nDSM also to 
30m resolution. This is a potential source of errors in the overall population density 
estimation method. 

 

 
                                                           
15 Bilinear interpolation uses known values from the four nearest input cells to interpolate the value at a 
given point location or output cell. The output value is determined as a weighted distance average of these 
known values (Environmental Systems Research Institute, 2011). 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

Ground truthing  
To make up for the lack of GCPs surveyed using DGPS, this paper uses a set of reference 
building heights to calibrate the DSM by removing the spatial bias. A different set of 
reference building heights were then used for accuracy assessment of the building height 
prediction. The reference building heights were collected by visiting 14 different 
neighborhoods across the city and counting the number of occupiable floors in a sample of 
buildings in each neighborhood.  Reference building heights were collected for a total of 
1318 buildings. As shown in Figure 5, the neighborhoods were chosen such that they were 
well distributed across the entire study area and also covered the various settlement types 
which are seen across the BMP area. 

The height estimation was done by counting the number of occupiable floors since physical 
measurement of building height was not feasible for a large enough sample.  All minor 
constructions on building roofs like water tanks, temporary roofs etc were ignored since 
the objective here is to estimate the volume of space available for people to live in. The 
number of occupiable floors was then written down for each building on a hard copy of a 
digitized building footprint map of the neighborhood. 

A new point feature class was created by placing a point at the approximate centroid of 
each building footprint polygon for which the floors had been counted. Each point was then 
assigned the respective floor numbers counted during the building height survey. The floor 
count value was then multiplied by an average floor height of 3.25m to get the height 
estimate for each building.16 This was deemed to be the actual height of each building. 

 Calibration 
To remove the spatial bias and calibrate the northern nDSM, a set of 123 random points 
which fell within the boundary of this nDSM was selected from the point feature class 
mentioned above. The building height predicted by the nDSM at each of these points was 
extracted with bilinear interpolation using the Extract Values to Points tool in ArcGIS.  

The difference between the actual building heights from the ground truth survey and the 
predicted building heights from the nDSM was used to calculate a 2-degree polynomial 
trend surface of best fit. This trend surface was then subtracted from the northern nDSM to 
generate a calibrated nDSM without spatial bias in elevation values. A similar procedure 
using a different set of 123 random points was then carried out for the southern nDSM. 

Accuracy assessment 
Accuracy assessment was carried out for both the nDSMs using the remaining points from 
the ground truthing survey. 509 points were used for the northern nDSM and 635 points 

                                                           
16 Based on my experience as a practicing architect, height of a floor in most buildings in Indian cities are in 
the range of 3 to 3.5m. Hence 3.25 was used as average height.  
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were used for the southern one for this purpose. In the case of the northern nDSM, the 
predicted and actual building heights had a correlation coefficient (R) of 0.87 and a Root 
Mean Square Error (RMSE) of 3.12m. The southern nDSM had an R value of 0.89 and RMSE 
of 3.06m 

An RMSE value of 3.06 – 3.12m means that overall the model is able to predict the number 
of occupiable floors with an error of about one floor. This indicates that the calibrated 
nDSM is performing sufficiently well for the purposes of this research. Given that this level 
of accuracy has been possible without the use of expensive DGPS survey, S2P output 
calibrated with ground truthed building heights appears to be a very cost effective means 
of generating nDSMs of urban areas using Cartosat-1 imagery. 

3. Methods 

The previous four sections (2.1 to 2.4) described how the land-cover, residential land-use, 
street density and building height maps for the BMP area were prepared. This section 
describes the method followed in developing the population prediction model. 

3.1 Identify residential built-up cells within BMP area 

Primary Residential Built-up Cells 
Since the land-cover dataset shows us what is built-up and the land-use dataset shows us 
what is residential, by intersecting the two it is possible to extract the built-up cells which 
are residential in land-use (Fig. 9 & 10). These cells can be called primary residential built-
up cells (Primary RBCs) and the population of these cells can be estimated as described in 
Sections 3.3 to 3.5. 

Government Residential Built-up Cells 
As described earlier, since it is not possible to identify which parts of the Govt. land-use 
parcels may have residential population, all of it is assumed to have some level of 
residential use. Therefore the Govt. land-use category is intersected with the built-up land-
cover to extract the Govt. built-up cells which can be called Govt. RBCs (Fig. 9 & 10). Since 
there is no information about the number of people living in these cells, as described in 
Section 4, a constant population per cell is assigned to these cells. 

Informal Residential Built-up Cells 
Since the population in a cell is to be predicted based on the street network density and 
building height of a cell, it is necessary to separate out a third kind of residential built-up 
cells. These are cells within the known informal settlement boundaries which are built-up 
but happen to have very low street network density. This is necessary because, very dense 
informal settlements often do not have any streets which find representation in the street 
network dataset. As discussed in Section 3.3, lower street network density may indicate  
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lower population in a cell, as a result of which the cells in a very dense informal settlement 
with very low street network density may end up getting a very low predicted population.  

To address this problem, first of all a definition of very low street density was required. The 
distribution of street density values was approximately Gaussian, and hence values more 
than one standard deviation below the mean (< 25.1 km/km2) were defined as very low 
street density. Then all built-up cells with very low street network density within informal 
settlements were identified by intersecting the land-cover dataset, the informal settlement 
polygons and a subset of the street density dataset which contained only cells with values 
less than 25.1 km/km2. We can call the cells in this layer Informal RBCs (Fig. 9 & 10).17  

Estimating population per cell for Informal RBCs 
Average population density per unit height for Informal RBCs was estimated using the 
population numbers from the KSDB database, the number of Informal RBCs within each 
settlement and the average height of such cells within each settlement.  This average 
population density per unit height was then multiplied by the mean height of Informal 
RBCs within each informal settlement to arrive at an estimate of population density per 
Informal RBC for each informal settlement. The total population represented by these 
Informal RBCs within each ward was then subtracted from the Census population for each 
ward, such that a new adjusted Census population number was derived for every ward 
within the BMP area (Eq. 1, Eq. 2 & Eq. 3). 

 𝑃𝑤 = 𝑃𝑟𝑒𝑠 + 𝑃𝑔𝑜𝑣 + 𝑃𝑖𝑛𝑓       (1) 

 𝑃𝑤 = ∑ 𝑃𝑐.𝑟𝑒𝑠𝑤 + ∑ 𝑃𝑐.𝑔𝑜𝑣𝑤 + ∑ 𝑃𝑐.𝑖𝑛𝑓𝑤     (2) 

 𝐴𝑑𝑗.𝑃𝑤 = 𝑃𝑤 − 𝑃𝑖𝑛𝑓     (3) 

Where 

𝑃𝑤   𝑖𝑠 𝑤𝑎𝑟𝑑 𝑙𝑒𝑣𝑒𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑝𝑒𝑟 𝑐𝑒𝑛𝑠𝑢𝑠 
𝑃𝑟𝑒𝑠,𝑃𝑔𝑜𝑣 ,𝑃𝑖𝑛𝑓 𝑎𝑟𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑃𝑟𝑖𝑚𝑎𝑟𝑦,𝐺𝑜𝑣𝑡 𝑎𝑛𝑑 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑙 𝑅𝐵𝐶𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑖𝑛 𝑎 𝑤𝑎𝑟𝑑 
𝑃𝑐.𝑟𝑒𝑠,𝑃𝑐.𝑔𝑜𝑣 ,𝑃𝑐.𝑖𝑛𝑓 𝑎𝑟𝑒 𝑐𝑒𝑙𝑙 𝑙𝑒𝑣𝑒𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦,𝐺𝑜𝑣𝑡 𝑎𝑛𝑑 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑙 𝑅𝐵𝐶 

�
𝑤

 𝑖𝑠 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑤𝑎𝑟𝑑 𝑙𝑒𝑣𝑒𝑙 

𝐴𝑑𝑗.𝑃𝑤  𝑖𝑠 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑤𝑎𝑟𝑑 

3.2 Assign street network density and building height values  
To extract street network density and building heights from the appropriate maps, the 
primary residential built-up cells layer was converted into a point feature class. The values 
                                                           
17 It is important to bear in mind that the Informal RBC layer does not contain all RBCs within known informal 
settlements. Instead, it contains only those RBCs which lie within known informal settlement boundaries and 
have very low street density.  The remaining RBCs which fall within known informal settlement boundaries 
but do not have very low street density are included within the Primary RBC layer. 
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from the street density and building height rasters were then extracted to this point feature 
class using the Extract Values to Points tool in ArcGIS.  

3.3 Relationship between street network density, building height and population 
Let us start by imagining a 30mX30m primary residential RBC which is one floor high.  In 
this case, higher street density (as defined by total street length divided by total area of 
cell) can be conceptualized as increasing the number of subdivisions within that built-up 
cell. Increased number of subdivisions potentially translates into more number of 
residential units, although each would be of smaller size compared to another built-up cell 
which has fewer streets and hence fewer subdivisions. Therefore higher street density is 
potentially indicative of higher population density in primary RBCs.  

In the literature, several authors have demonstrated the relationship between street 
density and population density. Peponis et. al. (2007) demonstrate that density of streets 
increases in proportion to the density of properties. They also propose that since streets 
within a neighborhood exist to service properties, this could be illustrative of a 
fundamental relationship between street morphology and parcel density.  Peponis et.al. 
(2007) further show that there is a strong correlation between population density (per 
km2) and street length per km2. 

Using a sample of 100 one km X one km street network patches from the densest areas of 
Greece (ranging from 1200 people/km2 to 27000 people/km2) Maniadakis & Varoutas 
(2012) show that the topological and geometric properties of street networks do have a 
relationship with population density. Although the relationship they find is not particularly 
strong, they show that as population density increases, street networks tend to have higher 
total length, higher number of nodes and higher number of edges. 

If we assume that there exists a relationship between street density and population density 
within a 30mX30m cell, this relationship cannot be linear, since beyond a point the number 
of people occupying one cell cannot steadily increase ad infinitum. Instead, the relationship 
is probably better characterized by a log function or a square root function, such that, as 
street density increases beyond a limit, the rate of increase in population density decreases. 
Therefore, to start with, the population density within a primary RBC can be stated to be 
proportional to some function f of street density (Eq. 4).  

 

 𝑃𝑐.𝑟𝑒𝑠  ∝ 𝑓(𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠)     (4)  

Where  

𝑃𝑐.𝑟𝑒𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 30𝑚𝑋30𝑚 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑅𝐵𝐶 
𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑒𝑒𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 30𝑚𝑋30𝑚 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑅𝐵𝐶 
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Now we will consider the case where the residential built-up cell has multiple floors. An 
increase in the number of floors that each cell has can be conceptualized as increasing the 
intensity of use of the residential built-up cell by making multiple levels available for use. In 
this case it is possible that the number of people who can occupy a given residential built-
up cell also increases linearly as the number of floors increases.  But as the number of 
dwelling units increases, the probability of dwelling units remaining vacant may also 
increase. Therefore, the relationship between population and building height in a primary 
RBC could be characterized by a linear, log or a square root function.  So we could state that 
population in a primary RBC is proportional to some function g of building height. 

 𝑃𝑐.𝑟𝑒𝑠 ∝ 𝑔(𝐵𝑙𝑑.ℎ𝑡𝑐.𝑟𝑒𝑠)     (5) 

Where  

𝐵𝑙𝑑.ℎ𝑡𝑐.𝑟𝑒𝑠 𝑖𝑠 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ℎ𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 30𝑚𝑋30𝑚 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑅𝐵𝐶 

3.4 Asset ownership as a variable in understanding population density 
Street density and average building height within a 30mX30m residential built-up cell is 
technically only giving us an understanding about the characteristics of residential space 
within that built-up cell. But population within such a cell would also depend on how much 
space each individual tends to occupy. Since residential built-up space is an expensive 
commodity, we can hypothesize that the amount of space that an individual or a household 
can afford to occupy is related to the level of affluence of the individual or household. 
Therefore areas with the same level of residential built-up density (as measured by the 
ratio of built-up space to land) can have very different population densities, if the 
molecular densities (Alexander et.al., 1988) of the dwelling units in these areas vary 
widely. 

The Census of India measures several asset ownership variables, like ownership of cell 
phones, motorbikes, cars etc. which can indicate the level of affluence or wealth of urban 
households. But as of 2016, these variables are published only at the ward level. Therefore, 
while street network density, building height and affluence of households could potentially 
help us predict population at the level of 30mX30m residential built-up cell, the first two 
variables are available at the level of the 30mX30m cell, while the last variable is only 
available at the ward level. The following section describes how this problem was 
addressed. 

3.5 Setting up the population density model 
Assuming that the relationship between population and street network density and 
building height at the cell level are best described by Equations 4 and 5, we can combine 
them to arrive at Equation 6 below. 

 𝑃𝑐.𝑟𝑒𝑠  ∝  𝑓(𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗ 𝑔(𝐵𝑙𝑑.ℎ𝑡𝑐.𝑟𝑒𝑠)     (6)  
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At ward level this can be rewritten as Equation 7 since ∑ 𝑃𝑐.𝑟𝑒𝑠𝑤  is the same as 𝑃𝑟𝑒𝑠 or the 
total population within all primary RBCs of a ward  

  

� 𝑃𝑐.𝑟𝑒𝑠
𝑤

 ∝� [ 𝑓(𝑆𝑡. 𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗ 𝑔(𝐵𝑙𝑑. ℎ𝑡𝑐.𝑟𝑒𝑠)] 
𝑤

 (7) 

 

If we were to attempt to predict population within primary RBCs at a ward level using only 
those variables which are available at the cell level, then this would be our final equation. 
So for sake of brevity, we can call ∑ [ 𝑓(𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗ 𝑔(𝐵𝑙𝑑. ℎ𝑡𝑐.𝑟𝑒𝑠)] 𝑤  our temporary 
prediction at the ward level or 𝑇𝑃𝑤 . 

This simplifies Equation 7 and gives us Equation 8. 

� 𝑃𝑐.𝑟𝑒𝑠
𝑤

 ∝  𝑇𝑃𝑤 (8) 

But based on Section 3.4, we can assume that the population within a primary RBC has a 
relationship to the level of affluence within that cell. While asset ownership variables from 
the census can be used as a proxy for household wealth, these variables are only available 
at the ward level. Therefore we can state that sum of population of all primary RBCs within 
a ward is related to some function h of one of the ward level household asset ownership 
variable 𝐴𝑠𝑤 from the census. This gives us Equation 9. 

� 𝑃𝑐.𝑟𝑒𝑠
𝑤

 ∝ ℎ(𝐴𝑠𝑤) (9) 

Combining Equation 8 and Equation 9 we can state that 

� 𝑃𝑐.𝑟𝑒𝑠
𝑤

 ∝ ℎ(𝐴𝑠𝑤) ∗ 𝑇𝑃𝑤 (10) 

Or after expanding 𝑇𝑃𝑤  it could be written as 

� 𝑃𝑐.𝑟𝑒𝑠
𝑤

 ∝ ℎ(𝐴𝑠𝑤) ∗ �� [ 𝑓(𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗ 𝑔(𝐵𝑙𝑑. ℎ𝑡𝑐.𝑟𝑒𝑠)]
𝑤

� (11) 

 

Hence, the sum of population of all primary RBCs within a ward is proportional to 𝑇𝑃𝑤 
multiplied by some function h of a ward level asset ownership variable 𝐴𝑠𝑤 . 

Equation 11 consists of two cell level variables and one ward level variable. The options 
available for the functional forms f, g & h and the options available for the census asset 
ownership variable 𝐴𝑠𝑤 are described below 
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𝑓(𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) log or square root 

𝑔(𝐵𝑙𝑑.ℎ𝑡𝑐.𝑟𝑒𝑠) linear, log or square root 

ℎ(𝐴𝑠𝑤) unknown functional form h.   𝐴𝑠𝑤 can be percentage of  households 
which own personal computer, car, two-wheeler etc. 

 

The optimum combination of functional forms of f, g & h, for each option of  𝐴𝑠𝑤 was 
determined through trial and error. 

To start with, f was set to log function and g was set to linear. Since h has an unknown 
functional form Equation 10 was rewritten as below 

∑ 𝑃𝑐.𝑟𝑒𝑠 𝑤
𝑇𝑃𝑤

 ∝ ℎ(𝐴𝑠𝑤) 

 

(12) 

But 

� 𝑃𝑐.𝑟𝑒𝑠
𝑤

= 𝐴𝑑𝑗.𝑃𝑤 −� 𝑃𝑐.𝑔𝑜𝑣
𝑤

 

 

(13) 

And 

� 𝑃𝑐.𝑔𝑜𝑣
𝑤

= 𝑃𝑐.𝑔𝑜𝑣 ∗ 𝑁𝑔𝑜𝑣  (14) 

Where  

𝑃𝑐.𝑔𝑜𝑣  𝑖𝑠 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑒𝑎𝑐ℎ 𝐺𝑜𝑣𝑡 𝑅𝐵𝐶 𝑖𝑛 𝑎 𝑤𝑎𝑟𝑑 
𝑁𝑐.𝑔𝑜𝑣  𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑜𝑣𝑡 𝑅𝐵𝐶 𝑖𝑛 𝑎 𝑤𝑎𝑟𝑑 

To initiate the estimation of function h we can start by assuming 𝑃𝑐.𝑔𝑜𝑣 = 0 

Therefore Equation 12 can be rewritten as 

𝐴𝑑𝑗.𝑃𝑤
𝑇𝑃𝑤

 ∝ ℎ(𝐴𝑠𝑤) 

 

(15) 

Equation 15 was then used to run ordinary least squares (OLS) regressions with 𝐴𝑠𝑤 set to 
ward level census variables like percentage of households which own personal computer, 
car, two-wheeler etc. The R-square value of the regression results was used to evaluate 
which known functional form best approximates h in the case of each option of 𝐴𝑠𝑤. 

This exercise was then carried out for each of the functional form options available for f & g 
also. The results obtained from this procedure and the final prediction framework and 
results is described in the next section. 
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4. Results 

The average population per unit height for Informal RBCs was estimated to be 16.61 
persons, based on the method outlined in Section 3.1. This number was multiplied by the 
mean height of RBCs within each informal settlement to arrive at the average population 
per RBC for each informal settlement. This was then multiplied by total number of Informal 
RBCs within each settlement to estimate the total population within each informal 
settlement. Total population in Informal RBCs within all settlements of a ward was then 
deducted from the ward population from the Census of India to arrive at a new Ward-level 
Adjusted Population for each ward (𝐴𝑑𝑗.𝑃𝑤) as shown in Equation 3. 

Using this Ward-level Adjusted Population, the trial and error procedure revealed that 
almost all options for 𝐴𝑠𝑤 had an approximately logarithmic relationship to 𝐴𝑑𝑗.𝑃𝑤 𝑇𝑃𝑤⁄  , 
based on the initial setting of f as a log function and g as a linear function. The relationship 
was particularly strong when ward level ‘percentage of households which own cars’ 
variable was used for 𝐴𝑠𝑤. 

Upon trying out all functional form options for f and g with the car ownership variable for 
𝑠𝑤 , the highest R-square value for regressions based on Equation 15 was obtained for the 
following combination. 

𝑓(𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) log  

𝑔(𝐵𝑙𝑑.ℎ𝑡𝑐.𝑟𝑒𝑠) square root 

ℎ(𝐴𝑠𝑤) h as log and 𝐴𝑠𝑤  as ‘percentage of households which own cars’ 
 

The above combination gave an R-square value of 0.8363 

Therefore Equation 15 can be rewritten as below 

𝐴𝑑𝑗.𝑃𝑤
𝑇𝑃𝑤

 ∝ ln (𝐶𝑎𝑟𝑤) 

 

(16) 

Where 

𝐶𝑎𝑟𝑤 𝑖𝑠 𝑤𝑎𝑟𝑑 𝑙𝑒𝑣𝑒𝑙 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑐𝑎𝑟 𝑜𝑤𝑛𝑖𝑛𝑔 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠  

And 

 𝑇𝑃𝑤 = � [ln(𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗  �𝐵𝑙𝑑.ℎ𝑡𝑐.𝑟𝑒𝑠 ]
𝑤

 

Based on the parameters obtained from the regression equation with R-square value of 
0.8363, Equation 16 can be rewritten as shown below. 
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𝐴𝑑𝑗.𝑃𝑤
𝑇𝑃𝑤

�
=  −2.7302 ∗ [ln(𝐶𝑎𝑟𝑤)] + 13.151 

 

 
 
(17) 

Where 

𝐴𝑑𝚥.𝑃𝑤�  𝑖𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑊𝑎𝑟𝑑 

Since 𝑇𝑃𝑤 is known for all wards this can be rewritten as  

 
𝐴𝑑𝑗.𝑃𝑤� = 𝑇𝑃𝑤 ∗ {−2.7302 ∗ [ln(𝐶𝑎𝑟𝑤)] + 13.151} 

 

 
(18) 

Equations 17 and 18 have been obtained by assuming 𝑃𝑐.𝑔𝑜𝑣 = 0. If  𝑃𝑐.𝑔𝑜𝑣  ≠ 0 then based on 
Equation 16, for each value of 𝑃𝑐.𝑔𝑜𝑣 there will be a new regression equation of the form  

𝐴𝑑𝑗.𝑃𝑤 − ∑ 𝑃𝑐.𝑔𝑜𝑣𝑤  
𝑇𝑃𝑤

 ∝ ln (𝐶𝑎𝑟𝑤) 

 

(19) 

Changing 𝐴𝑑𝑗.𝑃𝑤 to 𝐴𝑑𝚥.𝑃𝑤�  Equation 19 can be rewritten as Equation 20 
   

 

𝐴𝑑𝚥.𝑃𝑤� −  ∑ 𝑃𝑐.𝑔𝑜𝑣𝑤
𝑇𝑃𝑤

=  𝐶1 ∗ [ln(𝐶𝑎𝑟𝑤)] + 𝐶2 
 
(20) 

Or 
𝐴𝑑𝚥.𝑃𝑤� −  � 𝑃𝑐.𝑔𝑜𝑣

𝑤
 = 𝑇𝑃𝑤 ∗ {𝐶1 ∗ [ln(𝐶𝑎𝑟𝑤)] + 𝐶2} 

 

 
(21) 

  
Or 

𝐴𝑑𝚥.𝑃𝑤�  = 𝑇𝑃𝑤 ∗ {𝐶1 ∗ [ln(𝐶𝑎𝑟𝑤)] + 𝐶2} +  � 𝑃𝑐.𝑔𝑜𝑣
𝑤

  

 
 

 
(22) 

Or 
𝐴𝑑𝚥.𝑃𝑤�  = 𝑇𝑃𝑤 ∗ {𝐶1 ∗ [ln(𝐶𝑎𝑟𝑤)] + 𝐶2} +  𝑃𝑐.𝑔𝑜𝑣 ∗ 𝑁𝑔𝑜𝑣   

 
 

 
(23) 

For every value of 𝑃𝑐.𝑔𝑜𝑣 , using Equation 19, we can obtain a new regression equation which 
gives parameters 𝐶1  and 𝐶2. These parameters can then be used to compute 𝐴𝑑𝚥.𝑃𝑤�  as 
shown in Equation 23. Therefore for every value of 𝑃𝑐.𝑔𝑜𝑣, Mean Absolute Error (MAE) and 
RMSE can also be calculated based on the difference between 𝐴𝑑𝑗.𝑃𝑤  and 𝐴𝑑𝑗.𝑃𝑤� . 

𝑃𝑐.𝑔𝑜𝑣 values ranging from 1 to 15 were used to identify the optimum value of 𝑃𝑐.𝑔𝑜𝑣 which 
would provide the lowest values for both MAE and RMSE. As Figure 11 shows, although 
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RMSE was minimum (and approximately the same) for 𝑃𝑐.𝑔𝑜𝑣 = 4, 5 or 6, amongst these 
MAE was minimum for 𝑃𝑐.𝑔𝑜𝑣 = 4. Hence this was assumed to be the optimum value of 𝑃𝑐.𝑔𝑜𝑣.  

Using  𝑃𝑐.𝑔𝑜𝑣 = 4 gave the regression equation shown in Figure 12 which has a higher R-
square value of 0.842 in comparison to the one obtained using Equation 17.  Therefore Eq. 
23 can be rewritten as below, using the parameters 𝐶1  and 𝐶2 obtained from the regression 
equation shown in Figure 12 and with 𝑃𝑐.𝑔𝑜𝑣 = 4. 

𝐴𝑑𝑗.𝑃𝑤� = 𝑇𝑃𝑤 ∗ {−2.7333 ∗ [ln(𝐶𝑎𝑟𝑤)] + 13.091} + 4 ∗ 𝑁𝑔𝑜𝑣  
 

(24) 

Equation 24 gave MAE value of 4683.94 persons and RMSE value of 6702.59 while the 
median of absolute error was 3199.54 persons. When using absolute percentage error 
values for each ward, mean error was 12.44% and median error was 8.81%.  

4.1 OLS regression diagnostics and Geographically Weighted Regression 
However, the results of the OLS regression diagnostics indicated that the modeled 
relationship may be spatially non-stationary. The significant Koenker’s studentized Breush-
Pagan statistic (Breush & Pagan, 1979; Koenker, 1981) obtained in the OLS diagnostics 
indicates the existence of heteroskedasticity.18 To check for spatial autocorrelation the 
standard residuals were mapped onto the wards within the study area and Morans-I 
(Moran, 1950) test was carried out in ArcGIS. The results show that the standard residuals 
are clustered in their distribution indicating a significant level of spatial autocorrelation 
(Fig. 13 & Fig. 14).  Therefore the global solution obtained from the OLS regression is 
probably insufficient to model the influence of localized spatial phenomena. 

Based on this, a geographically weighted version (Brunsdon et.al., 1996) of Equation19 was 
carried out in ArcGIS with 𝑃𝑐.𝑔𝑜𝑣 = 4 . Morans-I test was then conducted using the standard 
residuals of this Geographically Weighted Regression (GWR). The results indicate that the 
standard residuals from the GWR are randomly distributed (Fig. 15 & Fig.16). The GWR 
improved the adjusted R-squared value to 0.88 and the RMSE reduced to 5558.46 persons. 
The MAE was 3999.35 and median absolute error was 2785.09. Using absolute percentage 
error values for each ward, this works out to a mean absolute error of 10.70% and median 
absolute error of 7.87%. 

The ‘corrected Akaike’s Information Criterion’ (AICc) is another measure which can 
indicate relative goodness of fit of regression models (Akaike, 1973; Hurvich & Tsai, 1989). 
As the difference in AICc values between two models increases, the probability of the 
model with the lower value being a better approximation of the true unknown process 
increases. According to Burnham & Anderson (2002) if the difference between AICc values  

                                                           
18 Koenkers studentized Breush-Pagan statistic is more robust to outliers in comparison to the original 
Breush-Pagan statistic (Koenker, 1981; Lyon & Tsai, 1996).  
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of two models is greater than seven then we can infer that the model with the lower AICc 
value is a better one with a high probability. When AICc values differ by more than 10 we 
can infer that the probability of the model with the lower AICc value being better is very 
high. The AICc value obtained for the GWR was lower than that of the OLS regression model 
by 31. This indicates that the GWR model is a significant improvement upon the OLS 
regression model. 

4.2 Generating the 30m resolution population density surface 
As explained in Section 3.1, the population in Bangalore can be conceptualized as living 
within three types of RBCs—Informal RBCs which consist of built-up cells with very low 
street density values within known informal settlements, Primary RBCs which consists of 
the built-up areas whose land-use has been identified to be residential and Govt. RBCs 
which consist of residential areas within the Public/Semi-public and Unclassified Land-
uses. Out of these, the population to be assigned to Informal RBCs was calculated as 
described in Section 3.1, the population to be assigned to Primary RBCs was predicted 
based on methods described in Sections 3.3 to 3.5 and the population to be assigned to 
each Govt. RBC was determined based on minimization of MAE and RMSE of 𝐴𝑑𝚥.𝑃𝑤� −
𝐴𝑑𝑗.𝑃𝑤  as per Equation 23. Since the population to be assigned to all RBCs is now known, 
the results were mapped onto the RBCs in ArcGIS to generate the 30m resolution 
population density surface shown in Figure 18. 

5. Discussion 

5.1 Comparison with ward level population density map 
The 30m resolution population density surface map generated by assigning the estimated 
population numbers to all RBCs (Fig. 18) shows much greater granularity than ward level 
estimates of average population density generated by dividing the total people in a ward by 
total area of the ward (Fig. 17). Besides identifying finer scale variation in density within a 
ward, it is also able to give a neighborhood level understanding of population density by 
identifying neighborhoods with relatively homogenous density characteristics which cut 
across wards which appear to have very different average population densities at the ward 
level.  

For example, Figures 19 to 21 show the area marked as region A in Figures 17 and 18, as 
seen in the ward level average population density map, 30m population density surface 
and Google Earth. According to the ward level average population density map, wards 116 
and 147 have very different average population densities. The area within the dotted line in 
the 30m population density surface shows us that a relatively homogenous and dense 
neighborhood straddles these two wards (Fig. 20). This is corroborated by the Google 
Earth imagery which clearly shows the neighborhood which cuts across the boundary 
between wards 116 and 147 (Fig. 21). Similarly, Figures 22 to 24, show the area marked as  
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region B (Fig. 17 and Fig.18) in the northern part of BMP. Here, once again the 30m 
population density surface (Fig. 23) provides a much more detailed picture of relative 
differences in population densities within a ward. It also clearly delineates contiguous 
patches of similar density which cuts across wards. 

However, the use of ward level car-ownership data could lead to errors since it can 
somewhat average out the heterogeneity in population distribution across the various 
neighborhoods within a ward—for example when a ward with mostly wealthy households 
has a small neighborhood which is relatively less wealthy. In this case since every primary 
RBC in the ward is being weighted on the basis of the average ward level car-ownership 
data, it is possible that the population in less wealthy areas within the same ward may be 
substantially under-predicted. This seems to be happening in the case of the area within 
the dotted line in ward 32 in Figure 22. Google Earth imagery (Fig. 24) shows us that this 
patch is may be similar in spatial characteristics to the neighborhoods in the wards which 
lie to its immediate south (wards 31 and 48).  

On average ward 32 is considerably wealthier than wards 31 and 48 since census data tells 
us that 26.8% of households in ward 32 own car while only 5.6% and 2.5% of households 
own a car in wards 31 and 48 (Census of India, 2011c). But it is quite possible that the 
wealthier households are located outside the area indicated by the dotted line while, 
judging from the settlement characteristics which are visually apparent from Google Earth 
imagery (Fig. 24), the neighborhood within the dotted line may consist largely of 
households which are similar in wealth to Wards 31 and 48. But the use of ward level car-
ownership data appears to have an averaging effect and the population density in the RBCs 
within the dotted line are predicted to be much lower than those of the cells within Wards 
31 and 48. Similarly the 30m population density surface is probably over-predicting the 
population density of RBCs in the wealthier areas of ward 32 which, based on visual 
assessment of settlement grain, appear to be located north of the area within the dotted 
line. 

5.2 Problems with accuracy assessment 
Although the 30m population density surface provides a detailed picture of population 
density variation within a ward, there is no reliable method of assessing the accuracy of the 
predicted cell level population figures. This is because the census publishes urban 
population data only at the ward level. For the 2011 Census, the Census of India did publish 
population figures at the enumeration block level for Bangalore (Census of India, 2011b) 
but the enumeration block boundaries are not available making it impossible to use this 
data for accuracy assessment. Therefore the only practical way of assessing the accuracy of 
cell level population prediction is to sum them up at the ward level and compare it to 
known ward level census population figures as demonstrated in Section 3.5.  
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5.3 Comparison with sub-city typologies 
The seven variable sub-city typologies presented in Balakrishnan & Anand (2015) helps 
understand urban heterogeneity through socio-economic typologies (Fig. 26). The mean 
values for various socio-economic attributes for each typology are shown in Figure 25.19 By 
comparing the sub-city typologies with the 30m population density surface, it becomes 
apparent that most of the Low-Socio-Economic typology (Low-SE) wards, comprise largely 
of the densest neighborhoods within the BMP area. Figure 27 shows the 30m population 
density surface overlaid with the boundaries of the Low-SE wards within the BMP area.  

5.4 Potential sources of errors 
One of the major sources of errors in population estimation could be the discrepancy in 
year of acquisition of the various data layers. While the population enumeration for the 
2011 Census was conducted in 2010, the Landsat Data is from 2011 and the Cartosat data 
is from 2012 since this was the best cloud-free data available. Moreover, the land-use data 
was available for the year of 2004 and it had to be updated to 2011 (the year of Census 
enumeration) based on the procedure described in Section 2.2.2.  

Although the Cartosat imagery has a resolution of 2.5m, the vegetation removal from the 
nDSM had to be conducted by using the land-cover map which was generated from the 30m 
Landsat data. This could potentially lead to incomplete removal of vegetation which may 
have contributed to errors in building height estimation. The lack of information about 
residential areas within the land-uses classes of Public/Semi-public and Unclassified, could 
also be contributing to errors in population estimation. 

Most significantly it is important to note that although the paper describes a predictive 
framework, it is not possible to validate it at the ward-level based on the available data. 
This is because, as demonstrated earlier, spatial non-stationarity of the OLS model needs to 
be addressed for using Geographically Weighted Regression (GWR) and GWR works 
effectively only if there are several hundred features (Environmental Systems Research 
Institute, 2016). Since there are only 137 wards in the dataset, splitting it into a calibration 
and validation datasets would have rendered the GWR procedure ineffective. Hence further 
research with a larger dataset is required to fully validate the approach described in this 
paper. Further research is also required to show whether the proposed predictive 
framework is applicable to other Indian cities. 

 

 

                                                           
19 It is important to note that the sub-city typologies in Balakrishnan & Anand (2015) were generated using 
all wards within the BBMP boundary. If sub-city typologies were to be generated using only the BMP wards, 
the results may be quite different. 
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6. Conclusion 

This paper describes a method for predicting population density at the scale of 30mX30m 
raster cells. Using data on land-cover, land-use, street network, building height and ward 
level data on car ownership, the proposed method is shown to predict cell level population 
density such that, when summed up at the ward level, the mean absolute percentage error 
between predicted ward level population and known ward level population from the 
census is 10.7%. 

The paper demonstrates that population within a cell is proportional to log of street 
density value and square root of building height value within a cell. It also shows that as the 
average wealth of households within a ward decreases, the molecular density (internal 
density) within residential units increases. The research also demonstrates that the 
relationship between population density, street density, building height and ward level car 
ownership is spatially non-stationary. As pointed out by Patel (2013), the notion of internal 
density within residential units has significant implications for urban planning paradigms 
which emphasize regulation of Floor Area Ratio (FAR). While planners attempt to regulate 
intensity of land-use by stipulating FAR values, it is important to bear in mind that this 
regulates only the volume of built-up space. As the method outlined in this paper shows, 
the internal density of the same quantum of built-up space can vary widely across different 
parts of the same city. 

A fine-grained understanding of population density can be a very useful tool in examining 
the fundamental structure of Indian cities and in exploring the heterogeneity within them. 
It can also contribute to improving access to urban services and amenities, resource 
allocation, infrastructure planning and disaster risk reduction in cities. 
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IV.   Domestic Piped Water Deficit in Bangalore 

 

Abstract 

This paper proposes a method for evaluating deficit in domestic piped water availability 
within Indian cities in a spatially disaggregated way. The proposed method uses data on 
land-use, land-cover, street density and building height to first generate a 30m resolution 
population dasymetric map for the central part of Bangalore city. This dasymetric map is 
then used in conjunction with the water supply network map and water use data to 
generate a 30m resolution map which estimates the volume of water available per capita 
per day in households across the study area. Results indicate that almost half the 
population within the study area could be receiving less than 100 liters per capita per day 
of domestic piped water. The analysis also shows that 31.65% of the total domestic water 
use within the study area could be dependent on some form of groundwater. The paper 
concludes with a discussion on inequality in access to domestic piped water supply within 
central Bangalore, as revealed by the proposed method.  

 

1. Introduction 

Domestic piped water supply in Indian cities exhibits a high degree of heterogeneity. 
Access to the supply network, frequency of supply and volume of water available to 
individuals vary widely within and across cities (Narain, 2012).  Data from the 2011 Census 
shows that, in cities with more than 100,000 people, 72% of urban households have access 
to tap water from a treated source on average (Wankhade et.al., 2014).1 But the level of 
access reduces significantly for cities with smaller population and the average across all 
urban areas is 62%.  

The level of access to the piped network gives only a partial picture about the state of 
service provisioning since the volume of water available to individuals and the frequency of 
supply is usually inadequate. Data from 1405 Urban Local Bodies (ULBs) obtained through 
a service level status analysis exercise undertaken in 2010-11 (Ministry of Urban 
Development, 2012), indicates that average domestic water availability (measured at the 
consumption end) is 69.2 liters per capita per day (lpcd). 2 The average duration of 

                                                           
1 The Census of India does not specifically ask whether households have access to municipal piped water 
supply. The data about access to ‘tap water from a treated source’ can be considered to be a reasonable 
approximation to municipal supply. 
2 Urban Local Bodies refers to the municipal governance institutions in India.  
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continuous supply, which meets standards of minimum supply pressure, across all the 
ULBs was only 3.2 hours a day. 

Similar exercises conducted in 2011-2012 (1202 ULBs) and 2012-2013 (1067 ULBs) 
indicate average domestic water availability to be 78.5 lpcd and 100 lpcd respectively, 
while the median values were 74 lpcd and 85 lpcd. The data from 2012 and 2013 show that 
average duration of continuous water supply across all ULBs was 4.1 and 5.4 hours per day 
respectively (CEPT University, 2014).  

1.1 Standards for water supply in India 
In comparison to the service levels achieved, the Ministry of Urban Development sets the 
benchmark for average volume of domestic water supply (measured at the consumption 
end) at 135 lpcd and for duration of continuous supply at 24 hours a day (Ministry of 
Urban Development, 2012). On the other hand, standards for volume of supply set by the 
Central Public Health and Environmental Engineering Organization (CPHEEO), recommend 
a maximum of 150 lpcd (CPHEEO, 1999) for metropolitan and mega cities which have 
sewerage systems.3, 4 The CPHEEO standard includes water requirements for commercial, 
institutional and minor industries, but adds that bulk supply to such establishments should 
be assessed separately. 

Meanwhile, the Bureau of Indian Standards recommends 150 – 200 lpcd as the minimum 
water requirement for residents of urban areas with a population greater than 100,000. 
Out of this 45 lpcd is suggested as the volume of water required for toilet flushing 
purposes. It also recommends that the minimum water requirement standard can be 
reduced to 135 lpcd for households which are in Lower Income Group category or 
Economically Weaker Section of Society category (Bureau of Indian Standards, 1993). 

1.2 Variation in water demand estimates and volume of water supplied across cities 
While no Indian city manages to provide 24 hours continuous domestic water supply for all 
consumers (Ministry of Urban Development, 2012), there is wide variation in the volume of 
water supplied across Indian cities and in the water demand estimates made by ULBs. 
Based on a survey of 71 cities Narain (2012) points out that in spite of the multitude of 
existing standards related to volume of water requirement in Indian cities, every ULB 
appears to come up with its own benchmark for per capita water requirement. By 

                                                           
3 The Census of India defines ‘metropolitan’ cities as those with a population more than 1 million (Census of 
India, 2011a). While it is unclear what CPHEEO means by ‘megacities’, the United Nations defines megacities 
as those with a population more than 10 million (United Nations, 2014). 
4 The CPHEEO does not define what percentage of the households in a city needs to be connected to a 
sewerage network for this standard to be applicable. The CPHEEO standard excludes Unaccounted for Water 
(UFW) which can be an additional 15% maximum. UFW refers to water which is supplied into the network, 
but is lost due to leakages, illegal connections etc. (CPHEEO,1999).  
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comparing official urban water demand estimates to city population, Narain (2012) shows 
that the per capita domestic water demand assumed by ULBs ranges from 120 to 389 lpcd. 

Using data from a survey of 2734 households across seven large Indian cities, Shaban & 
Sharma (2007) show that actual water use depends more on volume of supply (availability 
at consumption end), rather than consumer demand.5 Of the seven cities in their study, 
only Kolkata (115.6 lpcd) had average water consumption greater than 100 lpcd. The other 
six cities ranged from 77.1 lpcd in Kanpur to 96.2 lpcd in the case of Hyderabad with the 
average consumption across all seven cities being 92 lpcd. Meanwhile, the percentage of 
households which considered the level of water availability to be adequate ranges from a 
high of 82% in Madurai to a low of 49% in Hyderabad with an average of 71% across all 
seven cities. 

1.3 Spatial inequality in domestic piped water availability within Indian cities 
As described earlier, it is possible to understand extent of domestic access to piped water 
supply network in an aggregated manner at the ward level using Census data (Census of 
India, 2011b). Variation in volume of supplied water across Indian cities and average hours 
of continuous supply at a city level can also be reasonably well understood based on data 
from the service level status analysis (see Ministry of Urban Development, 2012) and the 
71 city survey described in Narain (2012) apart from other smaller surveys like Shaban & 
Sharma (2007). But what is less clear is the heterogeneity or spatial inequality in domestic 
piped water availability within Indian cities. 

While there are several studies which show the extreme inequality in access to water 
supply faced by slums within cities (see Gronwall et.al., 2010; Narain, 2012), studies which 
reveal spatial heterogeneity in volume of water received by households within a city are 
fewer in number. Narain (2012) shows that different parts of Delhi gets widely varying 
volumes of water per capita, but the method of analysis used is unclear. Other surveys in 
Delhi (Zerah, 2000) and Chennai (Srinivasan, 2008) also give an indication of the extent of 
heterogeneity in volume of piped water received by households with access to the supply 
network in different parts of these cities.  

Using Bangalore as a case study, this paper proposes a method for improving our 
understanding of the spatial heterogeneity in volume of piped water received by 
households within Indian cities. Section 2 describes the data and methods used, while 
Section 3 describes the results obtained. The paper concludes with a discussion on some of 
the benefits and shortcomings of the proposed method.  

 

                                                           
5 The cities surveyed in Shaban & Sharma (2007) are Delhi, Mumbai, Kolkata, Hyderabad, Kanpur, 
Ahmedabad and Madurai. 
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2. Methods and Data 

Conceptually the proposed method consists of the following five steps: 

a) Mapping the spatial distribution of population within the city at 30m resolution 
b) Mapping the population with access to the water supply network 
c) Estimation of the total population with access to the supply network within each spatial 
zone for which water supply / consumption data is available 
d) Calculation of average water availability within each service station 
e) Generation of deficit scenario maps using normative lpcd demand estimates 

The subsections below describe the study areas, methods and datasets used in greater 
detail. 

2.1 Extent of study areas 
The municipal corporation of Bangalore was called Bangalore Mahanagara Palike (BMP) till 
2007.  The BMP boundary was expanded by government notification on 16 January, 2007 
to include seven City Municipal Corporations, one Town Municipal Corporation and 110 
villages which were outside the BMP boundary. This expanded entity was reconstituted as 
the Bruhat Bangalore Mahanagara Palike (Government of Karnataka, 2007).6 Today it 
contains 198 wards and is called the Bruhat Bengaluru Mahanagara Palike or BBMP, which 
roughly translates to Greater Bangalore Municipal Corporation.7  

While the initial intent of this paper was to analyze the population distribution and 
domestic piped water availability in the entire region within the current administrative 
boundary of the city of Bangalore (BBMP boundary), available land-use data was accurate 
only for the region within the 2007 administrative boundary of Bangalore (BMP boundary). 
As a result, the study area for population distribution comprises of parts of Bangalore city 
within the erstwhile BMP boundary. As discussed in Section 3, the spatial units of the water 
utility based on which water supply data is available, does not coincide with the ward 
boundaries. Hence a subset of these spatial units of water supply which cover much of the 
area within the BMP boundary is used as the study area for domestic water availability 
analysis. 

Figure1 shows all the 198 wards of BBMP (Bruhat Bengaluru Mahanagara Palike, 2016) 
overlaid with a population density choropleth for BBMP wards which fall within the 
boundary of the erstwhile BMP which forms the study area for population distribution 
analysis. Section 3 describes in detail the process of delineating the boundary of the study 
area for domestic water availability analysis.  

                                                           
6 Bangalore is the capital of the state of Karnataka 
7 In 2014, the name of the city was changed from Bangalore to Bengaluru (Times News Network, 2014). Since 
the analysis presented is based on Census data from 2011, I will refer to the city as Bangalore. 
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2.2 Mapping population at 30m resolution 
Balakrishnan (2016), demonstrates a framework for predicting population density at 30m 
resolution in Indian cities. The method outlined in this paper uses a similar approach to 
redistribute population (rather than predict population), such that the ‘pycnophylactic’ 
property is maintained (Tobler, 1979).  Such population redistribution methods which use 
ancillary data to create a population density surface is referred to as dasymetric mapping 
(Semenov-Tian-Shansky, 1928; Wright, 1936; Mennis, 2009; Petrov, 2012).The proposed 
method uses data on land-use, land-cover, building heights and street density to 
redistribute ward level census population numbers to generate a 30m resolution 
dasymetric map such that the total population within each ward boundary remains 
accurate after redistribution. 

Since the details regarding preparation of the various datasets are already described in 
Balakrishnan (2016), this section focuses on describing the population redistribution 
method. The description given builds on the overall predictive framework outlined in 
Balakrishnan (2016). 

As described in Balakrishnan (2016), the residential population within a ward can be 
conceptualized as being distributed over three types of Residential Built-up Cells (RBCs) – 
Primary, Govt. and Informal.8 

Let 

𝑃𝑤 = 𝑃𝑟𝑒𝑠 + 𝑃𝑔𝑜𝑣 + 𝑃𝑖𝑛𝑓       (1) 

 𝑃𝑤 = ∑ 𝑃𝑐.𝑟𝑒𝑠𝑤 + ∑ 𝑃𝑐.𝑔𝑜𝑣𝑤 + ∑ 𝑃𝑐.𝑖𝑛𝑓𝑤     (2) 

Where 

𝑃𝑤   𝑖𝑠 𝑤𝑎𝑟𝑑 𝑙𝑒𝑣𝑒𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑝𝑒𝑟 𝑐𝑒𝑛𝑠𝑢𝑠 
𝑃𝑟𝑒𝑠,𝑃𝑔𝑜𝑣 ,𝑃𝑖𝑛𝑓 𝑎𝑟𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑃𝑟𝑖𝑚𝑎𝑟𝑦,𝐺𝑜𝑣𝑡 𝑎𝑛𝑑 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑙 𝑅𝐵𝐶𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑖𝑛 𝑎 𝑤𝑎𝑟𝑑 

𝑃𝑐.𝑟𝑒𝑠,𝑃𝑐.𝑔𝑜𝑣 ,𝑃𝑐.𝑖𝑛𝑓 𝑎𝑟𝑒 𝑐𝑒𝑙𝑙 𝑙𝑒𝑣𝑒𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦,𝐺𝑜𝑣𝑡 𝑎𝑛𝑑 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑙 𝑅𝐵𝐶 𝑖𝑛 𝑎 𝑤𝑎𝑟𝑑  

�
𝑤

 𝑖𝑠 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑤𝑎𝑟𝑑 𝑙𝑒𝑣𝑒𝑙 

 

Based on the method outlined in Balakrishnan (2016), 𝑃𝑐.𝑔𝑜𝑣 and 𝑃𝑐.𝑖𝑛𝑓 are known for all 
30m cells. Therefore for each ward 𝑃𝑔𝑜𝑣 and  𝑃𝑖𝑛𝑓 are also known and hence 𝑃𝑟𝑒𝑠 can be 
calculated as per Equation 3. 

𝑃𝑟𝑒𝑠 = 𝑃𝑤 − 𝑃𝑔𝑜𝑣 −  𝑃𝑖𝑛𝑓  (3) 
 
                                                           
8 Refer Balakrishnan (2016), for a description of Primary, Govt. and Informal RBCs. 
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Therefore only the known 𝑃𝑟𝑒𝑠 values of a ward have to be redistributed across the primary 
residential built up cells (RBCs) within the ward. This can be achieved as described below. 

Based on the results from Balakrishnan (2016), it is known that the population within a 
primary RBC is proportional to log of street density value of the cell and square root of 
building height value of the cell. This gives us Equation 4. 

𝑃𝑐.𝑟𝑒𝑠 ∝ ln(𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗  �𝐵𝑙𝑑. ℎ𝑡𝑐.𝑟𝑒𝑠  (4) 
Where 

𝑃𝑐.𝑟𝑒𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 30𝑚𝑋30𝑚 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑅𝐵𝐶 

𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑒𝑒𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 30𝑚𝑋30𝑚 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑅𝐵𝐶 

𝐵𝑙𝑑.ℎ𝑡𝑐.𝑟𝑒𝑠 𝑖𝑠 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ℎ𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 30𝑚𝑋30𝑚 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑅𝐵𝐶 

Since 𝑃𝑟𝑒𝑠 =  ∑ 𝑃𝑐.𝑟𝑒𝑠𝑤   we can derive Equation 5 from Equation 4 
 

𝑃𝑟𝑒𝑠 ∝� [ln(𝑆𝑡. 𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗  �𝐵𝑙𝑑. ℎ𝑡𝑐.𝑟𝑒𝑠 ]
𝑤

 (5) 

Therefore 

𝑃𝑟𝑒𝑠 = 𝑘 ∗� [ln(𝑆𝑡. 𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗  �𝐵𝑙𝑑. ℎ𝑡𝑐.𝑟𝑒𝑠 ]
𝑤

 (6) 

Where 

𝑘 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 

Therefore  

𝑃𝑐.𝑟𝑒𝑠 = 𝑘 ∗ ln(𝑆𝑡. 𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗  �𝐵𝑙𝑑. ℎ𝑡𝑐.𝑟𝑒𝑠  (7) 

For every ward, 𝑘 can be calculated as shown below 

𝑘 =  
𝑃𝑟𝑒𝑠

∑ [ln(𝑆𝑡. 𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗  �𝐵𝑙𝑑. ℎ𝑡𝑐.𝑟𝑒𝑠 ]𝑤
 

(8) 

Therefore within every ward, 

𝑃𝑐.𝑟𝑒𝑠 =  
𝑃𝑟𝑒𝑠  ∗ ln(𝑆𝑡.𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗  �𝐵𝑙𝑑. ℎ𝑡𝑐.𝑟𝑒𝑠 

∑ [ln(𝑆𝑡. 𝑑𝑒𝑛𝑐.𝑟𝑒𝑠) ∗  �𝐵𝑙𝑑. ℎ𝑡𝑐.𝑟𝑒𝑠 ]𝑤
 

(9) 
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Using Equation 9 the population to be assigned to every 30mX30m primary RBC (𝑃𝑐.𝑟𝑒𝑠) 
within any ward can be calculated, such that the total population within all primary RBCs 
within the boundaries of a ward is equal to the known 𝑃𝑟𝑒𝑠 value of that ward.Once the 
respective 𝑃𝑐.𝑟𝑒𝑠,𝑃𝑐.𝑔𝑜𝑣 & 𝑃𝑐.𝑖𝑛𝑓 values are assigned to all Primary, Govt. and Informal RBCs, 
the residential population dasymetric mapping can be completed. 

2.3 Mapping the population with access to the water supply network 
The Bangalore Water Supply and Sewerage Board (BWSSB) is the organization which is 
responsible for providing water supply and sewerage services within the Bangalore urban 
region. The area within which BWSSB is mandated to provide services is partitioned into 
zones called ‘divisions’. Each division consists of multiple zones called ‘subdivisions’, each 
of which in turn consists of several smaller zones called ‘service-stations’ (Fig. 2). The 
water supply network data for each subdivision was obtained from the Bangalore Water 
Supply and Sewerage Board as a separate pdf file. The overall network map was generated 
by digitizing these pdf files and georeferencing and merging them in ArcGIS 10.2 (Fig. 2). 

Water supply data (measured at the consumption end) and data on number of connections 
was collected from the BWSSB at the subdivision and service-station levels. But this data is 
given for four different categories of connections—Domestic, Partial Non-Domestic, Non-
Domestic and Industrial. Partial Non-Domestic refers to residences which may have other 
small scale establishments attached where water may be used for non-domestic purposes 
(eg: dental clinics). As per the water accounting system followed by BWSSB, the volume of 
water supplied to the residential population within Govt. RBCs is subsumed within the 
Non-Domestic category. Therefore the water availability analysis in this paper focuses only 
on Primary and Informal RBCs since the total water available to these two types of RBCs 
can be calculated by combining data on the Domestic and Partial-Non Domestic categories.9 
The sum of volume of water supplied to Domestic and Partial-Non Domestic categories 
(measured at consumption end) is used for the domestic piped water availability analysis 
in the rest of this paper.  

Conceptually, a buffer zone of stipulated width can be created around the water supply 
network in ArcGIS to identify the regions where RBCs potentially have access to the 
network. BWSSB officials stated that land parcels upto a maximum of 80’-90’ from the 
supply network could potentially access the network (S. Narahari, personal 
communication, 29 October 2015). But since the residential plot sizes in some areas are 
considerably bigger, using a buffer distance of 90’ would have missed several of the 
buildings which were set back from the adjoining streets in these large plots. Therefore 
after measuring the sizes of some of the largest residential parcels from the land-use 
                                                           
9 The assumption that total domestic water availability is the sum of Domestic and Partial Non-Domestic 
categories, could lead to an overestimation of the water which is available for domestic purposes. But given 
the nature of data available, this appears to be the most reasonable way of proceeding. 
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dataset, 90m was used for the buffer distance (Fig. 4). This means that the extent of access 
to piped water network as indicated by Figure 4 may be an overestimate, since in most 
regular neighborhoods RBCs more than 90’ from the network may not have access to piped 
water supply.  

2.4 Estimation of population with access to supply network in each service-station  
Once the buffer zone was created, it was used to clip the population dasymetric map and 
extract only the Primary and Informal RBCs which fell within the buffer. The Zonal 
Statistics as Table tool in ArcGIS 10.2 was then used to calculate the total residential 
population with access to supply network within each service-station by using the service-
station boundaries as the ‘zone’ boundaries.  

2.5 Calculation of water availability within each 30m cell 
Monthly average water availability data (measured at the consumption end) for the 
calendar year 2015 was collected from BWSSB for each service-station. This was used to 
calculate an average daily water availability figure for each service-station for the entire 
year. But water supply measured at the consumption end is based on meter readings and 
could be an underestimate of total water available to residential users since there could be 
several users whose meters are not working or are using illegal connections.10 The BWSSB 
estimates that across the city, an average of 11.28% of supplied water (measured at 
distribution end) could be ‘unaccounted for’ due to these reasons—of which 10% is 
attributed to malfunctioning meters and 1.28% to illegal connections.  

But volume of supply at distribution end is known only at the subdivision level and that too 
in an aggregated manner for all categories of consumers. Based on the data available it is 
known that 92% of the total measured water consumption across the service-stations in 
the study area can be attributed to the Domestic and Partial Non-Domestic category users. 
If we assume that the 11.28% of supplied water which is ‘unaccounted for’ is actually 
consumed by all categories of users in proportion to their measured consumption, then we 
can infer that the proportion of supplied water consumed by users in the Domestic and 
Partial Non-Domestic categories—but unaccounted for—is 10.38% (92% of 11.28%). 
Therefore 10.38% of total water supplied (measured at distribution end) within each 
subdivision was calculated and this volume was allocated as share of ‘unaccounted 
domestic water consumption’ to each service-station within it. This allocation was done in 
proportion to the total number of Domestic and Partial Non-Domestic category connections 
within each service-station.11  

                                                           
10 Some of the domestic users could be relying on public taps also. BWSSB estimates that 0.28% of total 
supplied water (measured at distribution end) is consumed via public taps. Since this a comparatively small 
figure it was ignored in the analysis.  
11 This allocation could not be done on the basis of population within each service-station since large parts of 
many subdivisions fall outside the study area for high-resolution population mapping. 
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Since we have no information on heterogeneity in supply within a service-station, there 
was no choice but to assume that the total water available for domestic use within each 
service-station is equally divided amongst the population which has access to the piped 
network. This gives us an average lpcd figure for each service-station (Fig. 7 & 8). 

2.6 Generation of deficit scenario maps using normative demand estimates 
Due to supply constraints, in Indian cities, the volume of water used by households is not 
dependent on demand, but on availability of water (Shaban & Sharma, 2007). Based on a 
2005 survey of 2734 households across seven cities, Shaban & Sharma (2007), show that 
while there is variation in water use across socio-economic categories, the difference 
between the highest and lowest categories is around 20 lpcd. Their results indicate that 
average per capita water use ranges from 78.9 to 102 lpcd across socio-economic 
categories and from 77.1 to 115.6 lpcd across the seven cities.  

According to the World Health Organization (WHO), average availability of 100-200 lpcd is 
considered the ‘optimal access’, while average availability of 50 lpcd is considered 
‘intermediate access’ which can meet all basic consumption, hygiene and sanitation 
requirements (Howard & Bartram, 2003; World Health Organization, 2003). Gleick (1996) 
also suggests 50 lpcd as the minimum water required to meet basic human needs.  

As discussed in Section 1.1, in India, the various norms for water supply set by government 
agencies are in the range of 135 to 200 range (for cities with population more than 
100,000) with the Ministry of Urban Development stipulating 135 lpcd, measured at the 
consumption end, as the benchmark for volume of water availability. (Ministry of Urban 
Development, 2012).  

Based on the above stated information, for this study I have chosen 100 lpcd as a 
conservative demand norm, which can be used to identify water deficit. While this may not 
be perfect, it can be considered as a demand scenario which is helping us understand a 
deficit scenario. Spatially disaggregated water deficit can then be estimated by first 
calculating demand within each 30mX30m RBC and then calculating the gap between water 
availability and normative water demand. 

3. Results 
Figure 5 shows the population dasymetric map for the BMP area prepared on the basis of 
the method outlined in Section 2.2, after removal of the Govt. RBCs. The Govt. RBCs have 
been removed since, as discussed in Section 2.3, the analysis in this paper focuses on 
Primary and Informal RBCs only. As Figure 2 shows, since the ward boundaries do not 
coincide with BWSSB service-station boundaries, it was necessary to select a subset of 
service-stations which provide a satisfactory coverage of the BMP region. Figure 3 shows 
the 69 selected service-station boundaries overlaid on the BMP boundary.  
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As can be seen from Figure 3, some service-stations which extend beyond the BMP 
boundary also had to be included in the study since these covered a significant part of the 
city within the BMP boundary. These service-stations were selected on the basis of the 
extent of their piped network which exists outside the BMP boundary. Only those service-
stations where the extent of piped network outside the BMP boundary was relatively minor 
compared to the piped network extent inside the BMP boundary were selected.  

The selected subset of 69 service-stations which define the study area was then used to clip 
the population dasymetric map yielding the Primary and Informal RBCs within the study 
area which was used for further analysis (Fig. 6). The buffer of piped water supply network 
shown in Figure 4 was then used to clip these RBCs, thereby providing the map of all 
Primary and Informal RBCs which potentially have access to piped water network. After 
this, based on the method described in Section 2.5, the per capita water availability within 
each service-station was estimated yielding the map shown in Figure 7.  

This water availability estimate was then used to calculate the percentage of population 
which fall within various categories of water availability. Six water availability categories 
each of 50 lpcd bandwidth were created since 50 lpcd can be assumed to be the minimum 
requirement for basic human needs(Howard & Bartram, 2003; World Health Organization, 
2003; Gleick, 1996) and I have chosen 100 lpcd as the normative demand for deficit 
scenario generation. Based on this, we can see that 46.93% of the population within 
Primary and Informal RBCs in the study area are water deficient (Fig. 8). Out of this,        
13.5 percent of people do not get the 50 lpcd which is considered the basic minimum for 
human needs. Figure 8 shows a simplified map of the RBCs within the study area using 
these six categories of per capita water availability.  

It is important to remember that the water deficit scenarios mentioned above refers only to 
deficit in availability of piped water supply. As studies in Indian cities have shown, 
households rely on a spectrum of water supply options to meet their water requirement. 
This can range from purchase of packaged water for drinking and potable uses to reliance 
on various forms of private self-supply based on wells or bore-wells, to purchasing water 
from private water tankers (Srinivasan, 2008; Ranganathan, 2014; Narain, 2012). Almost 
all of these alternatives to piped water supply depend on some form of groundwater 
(Narain, 2012). As a result, while estimates of availability in piped water supply as 
described above may not indicate absolute deficit, it may indicate some form of 
groundwater dependence (Narain, 2012; Foster and Mandavkar, 2008). 

The method described in this paper could therefore also be used to generate overall 
estimates of domestic piped water supply and groundwater dependence. The total daily 
volume of domestic piped water supplied (measured at consumption end) to the 4.96 
million people in the Primary and Informal RBCs within the study area is 442.21MLD. 
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The total domestic piped water deficit figure for the Primary and Informal RBCs within the 
study area can be calculated using the population dasymetric map shown in Figure 6 and 
the water availability map shown in Figure 7.  Based on these datasets and using a 
normative demand estimate of 100 lpcd, the total domestic piped water deficit works out 
to 204.81 MLD.  

If we assume that this deficit of 204.81MLD is somehow met using the various alternate 
water supply options discussed earlier, then the total domestic water use within Primary 
and Informal RBCs of the study area can be estimated to be 647.02MLD (442.21 MLD of 
piped water + 204.81 MLD from other sources). If, as discussed earlier, the deficit of 
204.81MLD is met from alternate supply options which directly or indirectly depend on 
groundwater, then the percentage of total domestic groundwater use within the Primary 
and Informal RBCs of the study area can be estimated to be 31.65% of the total domestic 
water use described above. 

4. Discussion 

The results obtained indicate that almost half of the population in Primary and Informal 
RBCs within the service-stations selected for study are potentially experiencing deficit in 
domestic piped water availability. Figure 7 shows that significant disparity in piped water 
availability across different parts of the study area. While some of the residential areas in 
the central part of the city receive almost 300 lpcd of domestic piped water, many other 
parts of the city receive close to 50 lpcd or less. 

4.1 Comparison with ward level asset ownership map 
Figure 9 shows the domestic piped water availability map with ward boundaries overlaid 
on it. This enables us to compare the domestic piped water availability with average ward 
level wealth estimates as indicated by car ownership (Fig. 10). Comparing Figures 9 and 10, 
we can see that most of the wealthier wards (> 32.4% households owning cars) in the 
center of the study area and to the south and south-east have higher level of domestic 
water availability also. But some of the wards with similar levels of car ownership which 
are located to the south-west, west, north and east have significantly lower levels of water 
availability in comparison.  

Although several of the wealthier wards appear to receive high levels of domestic piped 
water supply, based on the available data it is not possible to conclusively say whether 
wealthier neighborhoods in general tend to have higher levels of water availability. This is 
because we neither have any estimates for wealth below the scale of the ward, nor do we 
have any data on heterogeneity in water availability within a ward.  

On the other hand, it seems reasonably clear that some of the poorest wards within the 
study area do have the lowest levels of per capita domestic piped water availability. As 
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Figure 9 shows, there are two clusters of wards—to the south-west and north-east of the 
center of the study area—which tend of have very low levels of water availability. The ward 
level car ownership map (Fig. 10) suggests that these are probably some of the poorest 
wards within the study area as well. 

4.2 Comparison with sub-city typologies 
By comparing the per capita water availability map with the sub-city typologies map (Fig. 
11) for Bangalore (Balakrishnan & Anand, 2015), it is evident that most of the areas within 
the Low-SE typology wards also happen to have the lowest levels of per capita domestic 
piped water availability. In particular, the two clusters—to the south-west and north-east 
of the center of the study area—appear to be the worst off. These two sets of wards appear 
to have not only the lowest levels of water availability but also on average have very low 
housing quality, high percentage of Scheduled Caste population and very low scores on 
several other socio-economic indicators as shown in Figure 12. 

4.3 Comparison with census data on access to domestic piped water supply 
Figure 13 shows the percentage of households in BBMP wards who indicated that their 
primary source of water is ‘tap water from a treated source’ as per the Census of India 
(2011c). By comparing this to Figure 2 it is apparent that the wards within the BMP area 
which are well covered by the piped water supply network, have the highest percentage of 
households with access to ‘tap water from a treated source’, while the wards outside the 
BMP area score very low on this metric. 

Upon comparing Figures 13 and 9 we can see that, in general, the wards towards the south 
in Figure 9 which have higher domestic piped water availability show up as wards where 
more than approximately 90% of the households state ‘tap water from treated source’ to be 
their primary source of domestic water supply. Similarly, the wards to the north, north-east 
and east in Figure 9 which have low levels of domestic piped water availability have lower 
values in Figure 13 also. But the somewhat surprising trend is that the wards to the west 
and south-west, including some of the poorest wards which as per Figure 11 come within 
the Low SE typology, and which as per Figure 9 have the lowest levels of domestic piped 
water availability, appear to have very high values in Figure 13. I do not have a satisfactory 
explanation for why this could be happening. 

The analysis presented in this paper shows that even within the wards which as per the 
Census have the highest levels of access to ‘tap water from treated source’, and which as 
per the BWSSB piped water supply network data have the highest levels of network 
coverage, 31.65% of the total domestic water is actually dependent on some form of 
groundwater. If one were to conduct a similar analysis for the entire BBMP area, then the 
percentage of total domestic water use which is dependent on some form of groundwater is 
bound to be significantly higher.  
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Besides, this study has only analyzed domestic water use, whereas industrial and 
commercial uses are also very significant in terms of total volume. At the least, the wards 
outside the BMP area are bound to show high dependence on some form of groundwater 
for industrial and commercial uses also. Therefore it seems very likely that if we were to do 
a water availability analysis for the entire BBMP area taking into account domestic, 
commercial and industrial water uses, the total share of groundwater use is bound to be 
high—probably significantly higher than the 50% mark. 

4.4 Shortcomings of the analysis 
The analysis presented here should be interpreted only as a water availability scenario 
which is based on a normative demand scenario of 100 lpcd. Since water use in Indian 
cities is constrained by level of supply, it is not possible to have a clear understanding of 
what the actual water demand of various socio-economic groups or neighborhoods are. 
Therefore in some sense it could be claimed that the “actual deficit” may be lower in many 
areas if people have just worked their lives around the reality of low water availability and 
therefore make do with less than 100 lpcd.  

But at the other end of the spectrum, it is also possible that there are neighborhoods which 
get 150 or 200 lpcd but find that insufficient because of the kind of lifestyle these 
neighborhoods or households aspire to. So there could be overestimation of “actual deficit” 
at the lower end of the water availability spectrum and underestimation of “actual deficit” 
at the upper end of the spectrum. But what is very clear from the analysis presented, is the 
spatial inequality in levels of domestic piped water availability. 

The total domestic water availability has been calculated by adding up the total water 
consumption figures for the Domestic and Partial Non-Domestic categories for all service-
stations. This could lead to an overestimation of the total water which is actually available 
for domestic uses, since some of the water from the Partial Non-Domestic category may be 
used for small establishments which are operating out of residences (eg: health clinics). 
Moreover, as described in Section 2.5, an adjustment factor has been applied to account for 
water that is used but not accounted for in the consumption figures due to faulty meters or 
illegal connections. This adjustment factor is based on estimates by the BWSSB for their 
entire service area and its applicability for the study area could be debated. 

As discussed in Section 3, there are a few service-stations which have some amount of 
piped network extending outside the BMP boundary. For the purpose of analysis, all the 
water consumed within these service-stations were assigned to the RBCs within the BMP 
area since the land-use data required to prepare the population dasymetric map was 
complete only for the BMP area. Therefore in some of the outer edges of the study area 
there could be RBCs whose water availability has been overestimated. 
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There could also be errors in the dasymetric mapping at the ward level since the 𝑃𝑐.𝑔𝑜𝑣 and 
𝑃𝑐.𝑖𝑛𝑓 values have been taken from Balakrishnan (2016) which uses a population prediction 
framework that cannot as yet be fully validated at the 30m resolution due to lack of data at 
the appropriate level. Besides, the Census population figures used in the dasymetric 
mapping are from 2011 (Census of India, 2011a), while the water availability data is from 
2015. Although it is possible that much of the population growth and land-use change since 
2007 has happened outside the BMP boundary (Balakrishnan, 2016), there could be errors 
which arise from the use of datasets from different years.  

Another potential issue with the analysis is that the network maps obtained from BWSSB 
could be incomplete as isolated pipeline fragments were noticed in several areas, especially 
towards the outer edges of the BMP area. In addition, the assumption that all RBCs within 
90m of any pipeline has access to the water supply network may not be very robust since 
according to BWSSB officials, only land parcels which are within 80’ – 90’ of the network 
can potentially access it (S. Narahari, personal communication, 29 October 2015). But since 
the analysis was based on built up cells and not land parcels, it was necessary to use a 90m 
buffer distance such that RBCs in the center of very large plots which had pipe lines 
adjacent to the plot boundary but not within 90’ of the RBC, would not show up as RBCs 
without water supply network connectivity. 

5. Conclusion 

This paper describes a method for generating population dasymetric maps of Indian cities 
and using them to understand resource demand / deficit scenarios. Using data for the 
central part of Bangalore city, the paper shows how this method can be used to understand 
domestic piped water availability within Indian cities in a spatially disaggregated way.  

The dasymetric mapping method demonstrates a potential application of the empirical 
relationship between population density of a 30mX30m Primary RBC and its street density 
and building height values as described in Balakrishnan (2016). The analysis using data on 
water availability illustrates the stark spatial inequalities in availability of domestic piped 
water supply, apart from potential dependence on various forms of groundwater 

The water availability analysis also shows that almost half the city could be experiencing 
some level of deficit in domestic piped water availability, while 31.65% of the total 
domestic water use within the study area could be dependent on some form of 
groundwater. The analysis also highlights the extreme inequality faced by some of the 
wards within the BMP area, which not only have very low availability of piped water 
supply, but also have very low scores on various socio-economic and housing quality 
indicators.  
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V.   Conclusion 

 

 

The research presented in this dissertation proposes methods for understanding 
heterogeneity within Indian cities. The methods described in the three papers, use existing 
datasets from secondary sources for this purpose. The results obtained by applying these 
methods to Bangalore city reveal significant heterogeneity across multiple dimensions. 

1. Summary of results 

Figures 1 to 5 show heterogeneity in socio-economic and housing conditions, residential 
population density and domestic piped water availability across Bangalore. The map of 
sub-city typologies (Fig. 1) indicates that there are several clusters of wards within the 
BMP boundary which have very low values for socio-economic and housing indicators 
(Low SE Town). Two large clusters of wards—to the south-west and north-east of the 
center—are especially prominent. We can also see that there are large clusters of wards 
which belong to the High-SE category, to the north, south and eastern parts of the area 
within the BMP boundary. 

The paper on density prediction demonstrates a new method for generating building 
heights at a city-wide scale with a root mean square error of 3.06 to 3.12m. Although other 
authors have used Cartosat-1 stereo imagery to estimate building heights for smaller 
neighborhoods in urban India (see Saha, 2014), this is the first time that building height 
extraction and accuracy estimation has been conducted at this scale for an Indian city using 
Cartosat-1 stereo imagery. 

Figure 3 shows that most of the wards which come within the Low-SE Town also tend to 
have neighborhoods with very high levels of population density. Since the highest 
population density class in Figure3 has a very wide range (76.1 – 205.2 persons/900sq.m.), 
Figure 4 shows the variation within this density class. While many neighborhoods within 
the High SE Town wards have population densities in the range of 20 to 25 
persons/900sq.m. or less (Fig. 3), several areas within the Low SE Town wards have 
population densities which are more than five times this value (Fig. 3 & 4).  

Figure 5 shows the variation in access to domestic piped water availability across 
Bangalore. Once again we can see that there are several areas which get less than 50 liters 
per capita per day (lpcd) of water while many other parts of the study area receive more 
than five times that volume. The analysis presented in this dissertation also shows that 
approximately 31.65% of domestic water use, within the study area, is dependent on direct 
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or indirect sources of groundwater. It is important to bear in mind that the study focused 
only on domestic piped water supply in the central part of Bangalore which has the highest 
levels of piped network connectivity. Therefore, if a similar analysis were to be carried out 
for all types of water uses for the entire area within the current administrative boundary of 
Bangalore city, the total extent of groundwater dependence is bound to be much higher. 

2. Heterogeneity, inequality, inequity 

Figure 1 and Figure 2 together indicate the extent of residential segregation of scheduled 
caste population at the ward level in Bangalore. As Figure 2 shows, the Low-SE Town 
wards have very high proportion of Scheduled Caste population while having very low 
values for other housing and socio-economic indicators. Since the 1950s, several 
researchers have highlighted the extent of residential segregation by caste, religion, region 
of origin and ethnicity which is prevalent across Indian cities (Gist, 1957; Bose, 1965; 
Mehta, 1968; Mehta 1969; Joy, 1975; Prakasa Rao & Tiwari, 1979; Mahadevia, 1991; 
Vithayathil & Singh, 2012; Sidhwani, 2014). In particular, Mehta (1969) uses data from 
1822 to 1965 to show how residential segregation on the basis of caste and religion has 
remained relatively stable over almost 150 years in the city of Pune in western India. 

 The paper on sub-city typologies shows that apart from ward level residential segregation 
on the basis of caste, the wards which have high scheduled caste population tend to also be 
spatially clustered and have low values for other socio-economic and housing quality 
indicators on average (Fig. 1 & Fig. 2). The results from population density prediction and 
dasymetric mapping show that these wards which have a high proportion of scheduled 
caste population also tend to have the highest population densities (Fig. 3). The final paper 
on domestic piped water availability further shows that many of these areas receive the 
lowest levels of piped water supply while being connected to the supply network (Fig. 5).   

The term “heterogeneity”, used liberally in this dissertation, refers only to variation in an 
attribute—including instances where the variation is purely random. As discussed in the 
first paper, the word “inequality” begins to convey a certain normative implication. The 
results for Bangalore, obtained using the methods proposed in this dissertation, calls for a 
reassessment of the appropriateness of these terms. The systematic and severe spatial 
inequalities evident in Bangalore are nothing short of serious “inequities.”  

Significantly, there could also be a substantial level of residential segregation on the basis 
of religion in Bangalore. But the available data does not permit us to understand this 
dimension of residential segregation and the potential spatial inequalities and inequities it 
engenders. 
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3. Directions for further research 

Each of the methods presented in this dissertation could be extended to several other cities 
in India for which the required data is currently available. For example, the census data 
used for the analysis presented in the first paper on sub-city typologies is available for 
thousands of cities across the country since August 2014. Census data for these cities could 
be used to understand whether the sub-city typologies identified are stable or variable 
across size classes and city types. 

The method for high-resolution density prediction illustrates a spatially non-stationary 
relationship between population density, street density, building height and ward level 
asset ownership indicators. A sound theoretical foundation for this is currently lacking and 
could be a direction for future research. The building height estimation method developed 
in this paper on density prediction can be applied to almost any city in India, since it uses 
stereo satellite data which is readily available for practically the entire country. As noted 
elsewhere, the building height estimation method does not need expensive DGPS surveys 
or proprietary stereo image processing software.  

The high-resolution population density prediction and dasymetric mapping methods can 
potentially be used to analyze living conditions, access to urban amenities and demand and 
availability of a wide range of resources across any city. In short, the proposed methods can 
be taken forward into a variety of intra-urban research areas where the focus is on per 
capita demand/availability/access to any resource or amenity. Besides, high-resolution 
population distribution information can be combined with various other datasets to 
understand extent of exposure to hazards such as urban flooding. 

In comparison to the methods proposed in the first two papers, the analysis of domestic 
piped water availability can be extended to relatively fewer cities in India at present since 
information on water supply network may not be readily available for many cities.  

Although the analysis presented in the first paper helps us understand the heterogeneity 
within Bangalore at the ward level, the population density prediction and dasymetric 
mapping presented here shows the potential variation which exists at even finer scales. 
Wards which appear to belong to one typology in the first paper can be seen to have 
neighborhoods of many different spatial types within them as per the 30m resolution 
population prediction and redistribution maps. This should make us very cautious about 
even ward level generalizations within Indian cities. It also shows that it is important to 
understand the heterogeneity within Indian cities at the scale of neighborhoods.  

 

 



 101 
 

 References 

Bose, N. K. (1965). Calcutta: A premature metropolis. Scientific American, 213, 90-102.  

Gist, N. P. (1957). The ecology of bangalore, india: An east-west comparison. Social Forces, , 356-
365.  

Joy, A. (1975). The Spatial Organization of a South Indian City: Coimbatore,  

Mahadevia, D. (1995). Emerging Process of Residential Segregation in Metropolitan Cities: Case 
Study of Mumbai and Chennai,  

Mehta, S. K. (1968). Patterns of residence in poona (india) by income, education, and occupation 
(1937-65). American Journal of Sociology, , 496-508.  

Mehta, S. K. (1969). Patterns of residence in poona, india, by caste and religion: 1822–1965. 
Demography, 6(4), 473-491.  

Prakasa Rao, V., & Tewari, V. (1979). Structure of an indian metropolis: A study of bangalore.  

Saha, D. K. (2014). DSM extraction and evaluation from cartosat-1 stereo data for bhopal city, 
madhya pradesh. International Journal of Scientific and Research Publications, 4(5)  

Sidhwani, P. (2015). Spatial inequalities in big indian cities. Economic & Political Weekly, 50(22), 
55.  

Vithayathil, T., & Singh, G. (2012). Spaces of discrimination. Economic & Political Weekly, 47(37), 
60-66.  

 




