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ABSTRACT OF THE DISSERTATION

A mithrilian approach to safety and robustness of autonomous cyber-physical systems

by

Tzanis Anevlavis

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Paulo Tabuada, Chair

Every engineer dreams of and strives for the day that more and more aspects of the daily

life become smart, efficient, and automated. Smart grids, smart cities, mobility on demand

and autonomous vehicles, even medical devices are a few domains with already significant

progress towards a fully autonomous future. In such an increasingly autonomous world,

guaranteeing safety and correctness of design and implementation of Cyber-Physical Sys-

tems (CPSs) is constantly under the spotlight. There is no room for error when a system

interacts with and affects human lives. Consequently, we want to design systems that are

safe and correct even when interacting with unknown, changing environments. We want

the algorithms designing those systems to be efficient upon execution and provide formal

guarantees about safety and correctness. In other words, they should act as a lightweight

and impenetrable armor for the system.

Such armors are found in the work of the father of modern fiction literature, J.R.R.Tolkien.

He conceived in his work the metal mithril [THO01], and mithril armors are described as

“light and yet harder than tempered steel”. Inspired by this, the approaches presented in

this dissertation are termed mithrilian as they are characterized by computational efficiency
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and provide formal safety and robustness guarantees. More specifically, this dissertation

discusses formal methods1 in control systems and is separated in two parts:

1. The first part concerns the synthesis of safety controllers via Robust Controlled In-

variant Sets (RCISs). A safety enforcing controller keeps the state of the system within

a set of safe states notwithstanding the presence of uncertainties. Using RCISs to design

safety controllers is natural, as any trajectory starting within these sets, can always be

forced to remain therein. On these grounds, we revisit the problem of computing RCISs

for discrete-time linear systems. Departing from previous approaches, we consider implicit,

rather than explicit, representations for controlled invariant sets. Moreover, by considering

such representations in the space of states and finite input sequences we obtain closed-form

expressions for controlled invariant sets. An immediate advantage is the ability to handle

high-dimensional systems since the closed-form expression is computed in a single step rather

than iteratively. We present thorough case studies illustrating that in safety-critical scenar-

ios the implicit representation suffices in place of the explicit RCIS. The proposed method

is complete in the absence of disturbances and we provide a weak completeness result when

disturbances are present.

2. In the second part, we switch gears and consider the problem of guaranteeing robustness

in system design. Robustness is introduced in system verification by robust Linear Temporal

Logic (rLTL). As CPSs inevitably become increasingly complex, the ability to completely

guarantee correctness of their design and implementation via exhaustive testing fades. Most

work in formal methods has focused on system correctness, i.e., in ensuring that systems

are guaranteed to meet their design specifications. We argue that correctness is necessary,

but not sufficient for a good design when a reactive system interacts with an ever-changing

uncontrolled environment.Thus, in addition to correctness, systems should also be designed

to be robust, i.e., small deviations from the assumptions made at design time should lead to,

1We aim to Motivate Invariance THeory and Robustness In Logic (MITHRIL) for control, design, and
analysis of Cyber-Physical Systems.
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at most, small violations of the design specifications. The contribution here lies in refining

the current complexity upper bound of rLTL verification and developing a tool for rLTL

verification. More specifically, we identify a large fragment of rLTL for which the verification

problem can be efficiently solved, i.e., verification can be done by using an automaton,

recognizing the behaviors described by the rLTL formula ϕ, of size at most O
(
3|ϕ|
)
, where

|ϕ| is the length of ϕ. This result improves upon the previously known bound of O
(
5|ϕ|
)
and

is closer to the LTL bound of O
(
2|ϕ|
)
. The usefulness of this fragment is demonstrated by a

number of case studies showing its practical significance in terms of expressiveness, the ability

to describe robustness, and the fine-grained information that rLTL brings to the process of

system verification. Moreover, these advantages come at a low computational overhead with

respect to LTL verification. To perform rLTL verification, we developed Evrostos, the first

tool for model-checking rLTL formulas in this fragment.
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Part I

Robust controlled invariant sets: implicit

closed-form representations and

applications
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CHAPTER 1

Introduction

In an increasingly autonomous world, safety has recently come under the spotlight. A safety

enforcing controller is understood as one that indefinitely keeps the state of the system within

a set of safe states notwithstanding the presence of uncertainties. A natural solution that

guarantees safety is to initialize the state of the system inside a Robust Controlled Invariant

Set (RCIS) within the set of safe states. Any RCIS is defined by the property that any

trajectory starting within, can always be forced to remain therein and, hence, inside the set

of safe states. Consequently, RCISs are at the core of controller synthesis for safety-critical

applications.

Since the conception of the standard method for computing the Maximal RCIS of discrete-

time systems [Ber72], which is known to suffer from poor scaling with the system’s dimension

and no guarantees of termination, numerous approaches attempted to alleviate these draw-

backs. A non-exhaustive overview is found in Section 1.1.

An alternative approach is to construct an implicit representation for an RCIS. The spe-

cific implicit representation used in this paper is a set in the higher dimensional space of

states and finite input sequences. We argue that in many practical, safety-critical applica-

tions, such as Model Predictive Control (MPC) and supervisory control, knowledge of the

explicit RCIS is not required and the implicit representation suffices. Consequently, by ex-

ploiting the efficiency of the implicit representation the aforementioned ideas are suitable for

systems with large dimensions.

In this manuscript, we propose a general framework for computing (implicit) RCISs for

2



discrete-time linear systems with additive disturbances, under polytopic state, input, and

even mixed, constraints. We consider RCISs parameterized by collections of eventually pe-

riodic input sequences and prove that this choice leads to a closed-form expression for an

implicit RCIS in the space of states and finite input sequences. Moreover, this choice results

in a systematic way to obtain larger RCISs, which we term a hierarchy. Once the (implicit)

RCIS is computed, any controller rendering the RCIS invariant can be used in practice. In

the absence of disturbances, our method is complete. Even though, this property is lost in

the presence of disturbances, a weak completeness result is established. Finally we study,

both theoretically and experimentally, safety-critical scenarios and establish that the efficient

implicit representation suffices in place of computing the exact RCIS. The content presented

in this first part of this manuscript can also be found in [ALO21a].

1.1 Related literature

Several recent methods by the author and co-authors [AT19, AT20, ALO21b, WO20] de-

velop efficient methods constructing such representations in closed-form. These approaches

consider different collections of periodic input sequences and can be viewed as special in-

stances of the method proposed here. In most of these works, the focus was on constructing

the implicit representation, but always performing a projection step afterwards and working

with the explicit RCIS. Thus, obtaining controlled invariant sets in two moves. Here, we not

only present a more general framework that encapsulates prior work, but also demonstrate

how the closed-form implicit RCISs can be used in practice.

In addition to the aforementioned methods, a plethora of works have attempted to allevi-

ate the poor scalability and the absence of termination guarantees of the standard method for

computing the Maximal CIS of discrete-time systems introduced in [Ber72]. The following

list is not exhaustive.

One line of work [KHJ14, SG12, OTH19] focuses on outer and inner approximations of

3



the Maximal CIS by solving either LPs or QPs. The resulting sets, however, are not always

invariant. Other methods compute exact ellipsoidal CISs efficiently and, thus, offer improved

scalability, such as [LTJ18] which solves Semi-Definite Programs (SDP) for a class of hybrid

systems. Nevertheless, the resulting ellipsoidal sets are generally small. In addition, for

online control problems, like MPC and supervisory control, polytopic sets are preferred to

ellipsoids. The reason is that polytopes result in either LPs or QPs, which are solved more

efficiently compared to Quadratically Constrained Quadratic Programs (QCQP) that stem

from ellipsoids.

In the presence of bounded disturbances, when the set of safe states are polytopes, [RT17]

computes inner and outer approximations of the Maximal RCIS for linear systems.

Ideas similar to ours, in the sense that finite input sequences are used, have been explored

in the context of MPC [MSR05]. The goal there is to establish asymptotic stability of a linear

system, whereas in our case we exploit finite input sequences that describe the proposed

control behavior, which leads to a closed-form expression for an implicit representation of

controlled invariant sets.

Many popular approaches first close the loop with a linear state-feedback control law, and

then compute the Robust Positively Invariant Set (RPIS) of the closed-loop system. Under

this umbrella, an idea close to ours is found in [LS15], where recurrent sets are computed

in the context of MPC for the closed-loop system in the absence of disturbances. This can

be understood as a special case of our eventually periodic approach. In the case of additive

input disturbance, [MOB18] computes RPISs for the closed-loop system and enlarge the

controllable region by use of an interpolation method.

In a similar spirit, i.e., by restricting to linear state-feedback control laws, the following

works focus on reducing the computational cost and employ iterative procedures to compute

low-complexity or fixed-complexity RCISs and their associated feedback gains. In [TJ15] low-

complexity RCISs are found via Semi-Definite Programming (SDP) for systems with norm-

bounded uncertainties. More recently, [GKF19, GF19] compute low- and fixed-complexity

4



RCISs respectively for systems with rational parameter dependence. The complexity in

[GKF19] is twice the number of states, while [GF19] is more flexible as the complexity can

be pre-decided.

The aforementioned group of methods is typically conservative as only linear state-

feedback controllers are considered.

The work of [MHO18] computes larger controlled contractive sets of specified degree

for nominal linear systems by solving Sum Of Squares (SOS) problems, but to do so prior

knowledge of a contractive set is required. The scalability of this approach is limited by

the size of the SOS problems that can be handled, and so is its extension to systems with

polytopic uncertainty as it significantly increases the size of the SOS problem [MHO18].
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CHAPTER 2

Problem formulation

Notation: Let R and N denote the set of real numbers and positive integers respectively.

Given two sets P,Q ⊂ Rn, we denote by P +Q = {x ∈ Rn | x = p+ q, p ∈ P, q ∈ Q} their

Minkowski sum and by Q− P = {x ∈ Rn | x+ p ∈ Q, p ∈ P} their Minkowsky difference.

By slightly abusing the notation, we denote the Minkowsky sum of a singleton {x} and

a set P by x + P . We denote a block-diagonal matrix M with blocks M1, . . . ,MN by

M = blkdiag(M1, . . . ,MN). A set S ⊂ Rn is convex if ∀x, y ∈ S, (1− t)x+ ty ∈ S,∀t ∈ [0, 1].

Then, given a set P ⊂ Rn, we define the convex hull of P , conv(P ), as the smallest convex

set enclosing P . Formally, conv(P ) = {
∑k

i=1 λipi|λi ≥ 0, pi ∈ P, i = 1, . . . , k, and
∑k

i=1 λi}.

Moreover, given a matrix A ∈ Rm×n and a set P ∈ Rn, we denote the linear transformation

of P through A by AP = {Ax ∈ Rm | x ∈ P}. Given a set S ⊂ Rn × Rm, we denote its

projection onto the first n coordinates by πn (S). Finally, let I and 0 denote the identity

and zero matrices of appropriate sizes respectively, while similarly 1 denotes a vector with

all entries equal to 1.

Let us begin by providing the necessary definitions.

Definition 1 (Discrete-time linear system). A Discrete-Time Linear System (DTLS) Σ is

a linear difference equation:

x+ = Ax+Bu+ Ew, (2.1)

where x ∈ Rn is the state of the system, u ∈ Rm is the input, and w ∈ W ⊆ Rd is a

disturbance term. Moreover, we have that A ∈ Rn×n, B ∈ Rn×m, and E ∈ Rn×d.
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Definition 2 (Polytope). A polytope S ⊂ Rn is a bounded set of the form:

S = {x ∈ Rn | Gx ≤ f} , (2.2)

where G ∈ Rk×n, f ∈ Rk for some k > 0.

Assumption 1. In this first part of the manuscript we focus on systems and safe sets that

satisfy the following:

1) There exists a suitable state feedback transformation that makes the matrix A of system

Σ nilpotent. For a nilpotent matrix, there exists a ν ∈ N such that Aν = 0.

2) The safe set Sxu ⊂ Rn×Rm, i.e., the set defining the state-input constraints for Σ, is

a polytope.

3) The disturbance set W ⊂ Rd is a polytope.

Remark 1. Notice that Assumption 1 is satisfied by any controllable system, as for any such

system there exists a feedback gain K ∈ Rm×n such that A + BK is nilpotent. Thus, any

controllable system satisfies Assumption 1 by pre-feedbacking the system with u = Kx + v

and taking v as the new control input [AM06, Ch.3]. In this case, the nilpotency index ν is

equal to the largest controllability index of Σ.

Given Remark 1, for the remainder of this first part of the manuscript we assume that

A is already nilpotent.

Remark 2. Our goal is to compute a representation of a controlled invariant set. To that

end, the pre-feedback transformation discussed above provides a convenient mathematical

tool for obtaining this representation. This transformation simply moves the original input

constraints to the transformed state-input space and, thus, it neither changes the original

problem nor restricts the control authority. Once we compute the controlled invariant set,

we can always apply the inverse transformation and obtain its representation in the original

state-input space.
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Definition 3 (Robust Controlled Invariant Set). Given a DTLS Σ and an associated safe

set Sxu ⊂ Rn ×Rm, a set C ⊂ Rn is a Robust Controlled Invariant Subset for Σ within

πn (Sxu) if:

x ∈ C ⇒∃u ∈ Rm,with (x, u) ∈ Sxu, such that

∀w ∈ W, Ax+Bu+ Ew ∈ C.

The main goal of this first part of the manuscript is to compute an implicit representation

of an RCIS in closed-form. Hereafter, we refer to this representation as the implicit RCIS.

Definition 4 (Implicit RCIS). Given a DTLS Σ, a safe set Sxu ⊂ Rn × Rm, and an input

sequence v : {1, . . . , q} → Rm of length q, i.e., v ∈ Rqm, a set Cxv ⊂ Rn×Rqm is an Implicit

RCIS for Σ if πn (Cxv) ⊆ πn (Sxu) is an RCIS for Σ.

The following result stems directly from Definition 3.

Proposition 2.0.1. The union and the convex hull of two robust controlled invariant sets

are robustly controlled invariant.

For dynamical systems, i.e., systems Σ as in (2.1) where B = 0, the analogous concept

to RCISs is defined below.

Definition 5 (Robust Positively Invariant Set). Given a dynamical system Σ defined as

Σ : x+ = Ax+ Ew and a safe set Sx ⊂ Rn, a set C ⊂ Rn is a Robust Positively Invariant

Subset for Σ within S if:

x ∈ C ⇒∀w ∈ W, Ax+ Ew ∈ C.

We define the accumulated disturbance set at time t by:

W t =
t∑
i=1

Ai−1EW. (2.3)
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By nilpotency of A we have that:

W∞ =
∞∑
i=1

Ai−1EW =
ν∑
i=1

Ai−1EW. (2.4)

In the literature, W∞ is called the Minimal RPIS of the system x+ = Ax+ Ew [RKK05].

Next, we introduce an operator used throughout this first part of the manuscript.

Definition 6 (Reachable set). Given a DTLS Σ and a set X ⊂ Rn, define the reachable

set from X under input sequence {ui}t−1
i=0 as:

RΣ

(
X, {ui}t−1

i=0

)
= AtX +

t∑
i=1

Ai−1But−i +W t. (2.5)

Intuitively, RΣ

(
X, {ui}t−1

i=0

)
maps a set X and an input sequence {ui}t−1

i=0 to the set of all

states that can be reached from X in t steps when applying said input sequence. Conven-

tionally, RΣ(X, ∅) = X and when X is a singleton, i.e., X = {x}, we abuse notation to write

RΣ

(
x, {ui}t−1

i=0

)
.
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CHAPTER 3

Implicit representation of controlled invariant sets for

linear systems

The classical algorithm that computes the Maximal RCIS consists of an iterative procedure

[Ber72, DC71] and theoretically works for any discrete-time system and safe set. However,

this approach is known to suffer from the curse of dimensionality and its termination is not

guaranteed.

To alleviate these drawbacks, we propose an algorithm that is guaranteed to terminate

and computes an implicit RCIS efficiently in closed-form, thus being suitable for high dimen-

sional systems. Moreover, by optionally projecting the implicit RCIS back to the original

state-space one computes an explicit RCIS. Overall, the proposed algorithm computes con-

trolled invariant sets in one and two moves respectively.

The goal of this section is to present a finite implicit representation of an RCIS. That is,

we provide a closed-form expression for an implicit RCIS characterized by constraints on the

state and on a finite input sequence, whose length is the design parameter. This results in

a polytopic RCIS in a higher dimensional space. Intuitively, the implicit RCIS contains the

pairs of states and appropriate finite input sequences that guarantee that the state remains

in the safe set indefinitely.
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3.1 General implicit robust controlled invariant sets

We begin by discussing the general construction of a polytopic implicit RCIS. Our goal is

to parameterize RCISs by collections of input sequences. Thus, we consider inputs ut to Σ

that evolve as the output of a linear dynamical system, ΣC , whose state is a sequence of q

inputs, v, i.e.:

ΣC :
vt+1 = Pvt,

ut = Hvt,
(3.1)

where v ∈ Rmq, P ∈ Rmq×mq, and H ∈ Rm×mq. The choice of a linear dynamical system

stems from our safe set being a polytope per Assumption 1. By using system ΣC we preserve

the linearity of the safe set constraints and we are, hence, able to compute polytopic RCISs

within polytopic safe sets. The resulting input to Σ can be expressed as:

ut = Hvt = HP tv0, (3.2)

for an initial choice of v0 ∈ Rmq. We can then lift system Σ, after closing the loop with ΣC ,

to the following companion dynamical system:

Σxv :

x+

v+

 =

A BH

0 P

x
v

+

E
0

w. (3.3)

Given the safe set Sxu, we construct the companion safe set Sxv defined as follows,

Sxv = {(x, v) ∈ Rn ×Rmq | (x,Hv) ∈ Sxu}. The companion system of (2.1) is the closed-

loop dynamics of (2.1) with a control input in (3.2). Then, the companion safe set simply

constrains the closed-loop state-input pairs in the original safe set, i.e., (xt, Hvt) ∈ Sxu.

Theorem 3.1.1 (Generalized implicit RCIS). Let Cxv be an RPIS of the companion system

Σxv within the companion safe set Sxv. The projection of Cxv onto the first n coordinates,

πn (Cxv), is an RCIS of the original system Σ within Sxu. In other words, Cxv is an implicit

RCIS of Σ.
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Proof. Let x ∈ πn (Cxv). Then, there exists a v ∈ Rmq such that (x, v) ∈ Cxv. Define u = Hv

and pick an arbitrary w ∈ W . By construction of Sxv, (x, u) ∈ Sxu. Since Cxv is an RPIS,

we have that (x+, v+) = (Ax + Bu + Ew,Pv) ∈ Cxv and thus x+ ∈ πn (Cxv). By Definition

3, πn (Cxv) is an RCIS of Σ in Sxu.

In what follows, we study the conditions on P and H such that the Maximal RPIS of

Σxv is represented in closed-form.

3.2 Finite reachability constraints

By definition of the companion safe set Sxv and Definition 5, we have that any state (x, v)

belongs to the Maximal RPIS of Σxv within Sxv, if and only if, the input sequence {ui}t−1
i=0,

with each input as in (3.2), satisfies:(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t ≥ 0, (3.4)

where RΣ

(
x, {ui}t−1

i=0

)
⊆ Rn, ut ∈ Rm, and the pair

(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Rn × Rm. By

Theorem 3.1.1, the above constraints characterize the states and input sequences within an

implicit RCIS of Σ, such that the pair (x, u) stays inside the safe set Sxu indefinitely. Notice

that (3.4) defines an infinite number of constraints in general. In this section, we investigate

under what conditions we can reduce the above constraints into a finite number and compute

them explicitly. Then, we use these constraints to construct the promised implicit RCIS.

Definition 7 (Eventually periodic behavior). Consider two integers τ ∈ N ∪ {0} and λ ∈ N.

A control input ut follows an eventually periodic behavior if:

ut+λ = ut, for all t ≥ τ . (3.5)

We call τ the transient and λ the period.

Proposition 3.2.1 (Finite reachability constraints). Consider a DTLS Σ satisfying Assump-

tion 1. If the input ut follows an eventually periodic behavior with transient τ ∈ N ∪ {0}
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and period λ ∈ N, then the infinite constraints in (3.4) are reduced to a finite number of

constraints.

Proof. Under Assumption 1 the matrix A is nilpotent with nilpotency index ν. Consequently,

given (2.5), the reachable set from a state x for t ≥ ν depends only on the past ν inputs:

RΣ

(
{ui}t−1

i=0

)
=

ν∑
i=1

Ai−1But−i +W∞, t ≥ ν, (3.6)

where we abuse notation and write RΣ

(
{ui}t−1

i=0

)
, omitting the state x, to denote dependency

only on the inputs. Then, for t ≥ ν + τ :

RΣ

(
{ui}t−1

i=0

)
=

ν∑
i=1

Ai−1But−i +W∞
(3.5)
=

ν∑
i=1

Ai−1But+λ−i +W∞ = RΣ

(
{ui}t+λ−1

i=0

)
.

Therefore, under inputs with eventually periodic behavior the reachability constraints repeat

themselves after t = ν + τ + λ. As a result, we can split the constraints in (3.4) as:

(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t = 0, . . . , ν − 1, (3.7)(

RΣ

(
{ui}t−1

i=0

)
, ut
)
⊆ Sxu, t = ν, . . . , ν + τ + λ− 1. (3.8)

The above suggests that
(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu for all t ≥ 0 can be replaced with only

ν + τ + λ constraints.

Proposition 3.2.1 provides a finite representation of the constraints in (3.4) under the

eventually periodic input behavior in (3.5). The next question we address concerns charac-

terizing the classes of policies that guarantee the behavior in (3.5).

3.3 Implicit robust controlled invariant sets in closed-form

Recall that our goal is to derive a closed-form expression for an implicit RCIS of Σ, which

is essentially the Maximal RPIS of the companion system Σxv by Theorem 3.1.1. So far we

proved that, in general, inputs with eventually periodic behavior result in finite reachability
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constraints. Clearly, the parameterized input in (3.2) follows an eventually periodic behavior

as in (3.5) if:

P t = P t+λ, t ≥ τ, (3.9)

i.e., P is an eventually periodic matrix with transient τ and period λ.

Proposition 3.3.1 (Structure of eventually periodic matrices). Any eventually periodic

matrix P ∈ Rn×n has eigenvalues that are either 0 or λ-th roots of unity. If τ 6= 0, i.e., P

is not purely periodic, then P has at least one 0 eigenvalue with algebraic multiplicity equal

to τ and geometric multiplicity equal to 1. If P τ 6= 0, i.e., P is not nilpotent, then P has at

least one eigenvalue that is a λ-th root of unity.

Proof. Let v 6= 0 be an eigenvector of P and δ the corresponding eigenvalue, i.e., Pv = δv.

Then, (3.9) for t ≥ τ yields:

P t = P t+λ ⇒ P tv = P t+λv⇔ δtv = δt+λv
v 6=0⇔ δt = δt+λ ⇔ δt

(
1− δλ

)
= 0,

that is, the eigenvalues δ of P are only 0 or λ-th roots of unity.

Consider now the Jordan normal form P = MJM−1 [Lau04]. This form is unique up to

the order of the Jordan blocks, and P t = MJ tM−1. Without loss of generality, we write:

J =

J1 0

0 J2

 ,
where J1 is the Jordan block corresponding to the eigenvalues of P that are 0, and J2 is the

Jordan block corresponding to the eigenvalues of P that are the λ-th roots of unity. Thus,

J1 is nilpotent. Then, when τ 6= 0, equality (3.9) is equivalent to:

P t = P t+λ ⇔MJ tM−1 = MJ t+λM−1, t ≥ τ.

Matrix J1 vanishes in exactly τ steps, i.e., Jτ1 = 0 and J t1 6= 0, for t < τ . This implies that P

has at least one 0 eigenvalue with algebraic multiplicity equal to τ and geometric multiplicity
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equal to 1, but no 0 eigenvalues of geometric multiplicity 1 and algebraic multiplicity greater

than τ .

Moreover, when P is not nilpotent, i.e., P τ 6= 0, for t ≥ τ :

J t = J t+λ
Jt
1=0,t≥τ
⇔

0 0

0 J t2

 =

0 0

0 J t+λ2

⇔ J t2 = J t+λ2 .

Thus, P has at least one eigenvalue that is a λ-th root of unity.

Corollary 3.3.2. The class of matrices described by Proposition 3.3.1 that satisfies (3.9)

can be written, up to a similarity transformation, in the following form:

P =

N Q

0 R

 , (3.10)

where N is a nilpotent matrix with nilpotency index τ , R is a matrix whose eigenvalues are

all λ-th roots of unity, i.e., Rλ = I, and Q is an arbitrary matrix.

Proposition 3.3.1 and Corollary 3.3.2 guide the designer to effortlessly select matrix P via

its eigenvalues or its submatrices. Moreover, it is reasonable to select the projection matrix

H to be surjective in order to obtain a non-trivial input in (3.2).

We now show that we can compute the desired closed-form expression for an implicit

RCIS parameterized by collections of eventually periodic input sequences.

Theorem 3.3.3 (Closed-form implicit RCIS). Consider a DTLS Σ and a safe set Sxu for

which Assumption 1 holds. Select an eventually periodic matrix P ∈ Rmq×mq and a surjective

projection matrix H ∈ Rm×mq. An implicit RCIS for Σ within Sxu, denoted by Cxv, is defined

by the constraints:(
Atx+

t∑
i=1

Ai−1BHP t−iv,HP tv

)
⊆ Sxu −W t × {0}, t = 0, . . . , ν − 1,(

ν∑
i=1

Ai−1BHP t−iv,HP tv

)
⊆ Sxu −W∞ × {0}, t = ν, . . . , ν + τ + λ− 1.

(3.11)
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That is, the set Cxv ⊂ Rn ×Rmq:

Cxv = {(x, v) ∈ Rn ×Rmq | (x, v) satisfy (3.11)} , (3.12)

is computed in closed-form. Moreover, Cxv is the Maximal RPIS of the companion dynamical

system in (3.3).

Proof. By Proposition 3.2.1, the set Cxv defined by (3.11) in closed-form satisfies the con-

straints in (3.4) and, thus, is the Maximal RPIS of the companion system Σxv in Sxv. Then,

by Theorem 3.1.1, Cxv is an implicit RCIS of Σ in Sxu.

Theorem 3.3.3 provides an implicit RCIS, Cxv, in closed-form. This set defines pairs of

states and finite input sequences such that the state remains in the safe set indefinitely.

Remark 3 (On the choice of input behavior). Notice that the open-loop eventually periodic

policy used to parameterize the implicit RCIS is only a means towards its computation in

closed-form. In practice, after computing an RCIS, we can use any controller appropriate for

the task at hand. This is illustrated in our case studies in Section 7, where the controller of

the system is independent of the RCIS implicit representation. For instance, once an RCIS

is available one defines a closed-loop non-periodic and memoryless controller K : Rn → Rm

for which Ax+BK(x) belongs to the RCIS when x is an element of the RCIS.

3.4 Obtaining an explicit robust controlled invariant set

Finally, one computes an explicit RCIS as the projection of Cxv onto the first n coordinates.

Proposition 3.4.1 (Computation of explicit RCIS). Consider a DTLS Σ and a safe set

Sxu for which Assumption 1 holds. Select an eventually periodic matrix P ∈ Rmq×mq and a

projection matrix H ∈ Rm×mq for ΣC. An explicit RCIS for Σ within πn (Sxu), denoted by

Cx, is computed as:

Cx = πn (Cxv) , (3.13)
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where Cxv is the implicit RCIS given in closed-form in (3.12).

Proof. By Theorem 3.1.1, Cx = πn (Cxv) is an RCIS.

Notice that (3.13) requires a projection, which is an expensive operation. The size of the

lifted space leads to a trade-off: on the one hand it can result to larger RCISs, but on the

other it requires more effort if the optional projection step is taken. As numerical examples

show in subsequent sections, this single projection step is in general more efficient than the

classical algorithm that performs projections during each iteration.
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CHAPTER 4

A hierarchy of controlled invariant sets

Our main result, Theorem 3.3.3, provides a closed-form expression for an implicit RCIS, Cxv,

with constraints on the state of the system and on a finite sequence of inputs. The resulting

sets depend on the choice of the projection matrix H and the eventually periodic matrix P

in (3.1).

In this section, we show that we can systematically construct a sequence of RCISs that

form a hierarchy, i.e., a non-decreasing sequence. Our goal is to provide a closed-form

expression for the implicit RCISs corresponding to this hierarchy. Towards this, we define a

special case of eventually periodic input behaviors, which we term as lasso input behaviors.

Definition 8 ((τ, λ)-lasso input behavior). Consider two integers τ ∈ N ∪ {0} and λ ∈ N,

and let L = τ + λ. A control input generated by the dynamical system ΣC in (3.1) follows a

(τ, λ)-lasso behavior if the corresponding P and H matrices in ΣC are block diagonal:

P(τ, λ) = blkdiag
(
P̄ , . . . , P̄

)
∈ RmL×mL,

H(τ, λ) = blkdiag
(
H̄, . . . , H̄

)
∈ Rm×mL,

(4.1)

with m blocks each and P̄ , H̄ defined as:

P̄ =

0 I

0 · · · 1 · · · 0

 ∈ RL×L,

H̄ =
[
1 0 . . . 0

]
∈ R1×L.

(4.2)

In the last row of P̄ the 1 occurs at the τ -th position. It is easy to verify that P(τ, λ) in (4.1)

is of the form (3.10). A (τ, λ)-lasso behavior has a transient of τ inputs followed by periodic

inputs with period λ.
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As a consequence of Theorems 3.3.3 and 3.4.1, when selecting the matrices P(τ, λ) and

H(τ, λ) as in (4.1), we obtain an implicit RCIS, Cxv,(τ, λ) in closed-form, and an explicit RCIS,

Cx,(τ, λ), as its projection. We utilize the (τ, λ)-lasso behavior to formalize a hierarchy of

RCISs with a single decision parameter L.

Definition 9 (Lassos of same length). Select L ∈ N. We define the set of all pairs

(τ, λ) ∈ N ∪ {0} × N corresponding to lassos of length L as:

ΘL = {(τ, λ) ∈ N ∪ {0} × N | τ + λ = L} . (4.3)

The cardinality of ΘL is exactly L.

The next result provides a way to systematically construct implicit RCISs in closed-form

such that the corresponding explicit RCISs form a hierarchy.

Theorem 4.0.1 (Hierarchy of RCISs). Consider a DTLS Σ and a safe set Sxu for which

Assumption 1 holds, and select an integer L ∈ N. Given L, the set Cxv,L ⊂ Rn ×RmL:

Cxv,L =
⋃

(τ, λ)∈ΘL

Cxv,(τ, λ), (4.4)

is the implicit RCIS induced by the L-level of the hierarchy, where each Cxv,(τ, λ) is computed

in closed-form in (3.12) with P and H as in (4.1). In addition, the explicit RCIS:

Cx,L = πn (Cxv,L) =
⋃

(τ, λ)∈ΘL

πn
(
Cxv,(τ, λ)

)
=

⋃
(τ, λ)∈ΘL

Cx,(τ, λ), (4.5)

corresponding to the L-level of the hierarchy contains any RCIS lower in the hierarchy, i.e.:

Cx,L ⊇ Cx,L′ , for any L,L′ ∈ N with L′ < L. (4.6)

Proof. First, the sets Cxv,L and Cx,L are implicit and explicit RCISs respectively as the unions

of, implicit and explicit, RCISs by Proposition 2.0.1. Next we prove (4.6) for the case of L

and L+ 1, while the more general statement follows by a simple induction argument.
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For any λ ∈ N such that (τ, λ) ∈ ΘL, we have by (4.3) that (τ + 1, λ) ∈ ΘL+1. It is easy

to conceptualize that:

Cx,(τ+1,λ) ⊇ Cx,(τ, λ), (4.7)

as a (τ, λ)-lasso input behavior can always be embedded in a (τ + 1, λ)-lasso input. Notice

now that from (4.5) it follows that:

Cx,(L+1) =
⋃

(τ, λ)∈ΘL+1

Cx,(τ, λ) =

 ⋃
(τ, λ)∈ΘL

Cx,(τ+1,λ)

⋃ Cx,(0,L+1)

(4.7)
⊇

 ⋃
(τ, λ)∈ΘL

Cx,(τ, λ)

⋃ Cx,(0,L+1)
(4.5)
= Cx,L

⋃
Cx,(0,L+1).

The above entails that Cx,(L+1) ⊇ Cx,L.

Corollary 4.0.2. Using the standard big-M formulation [Lof12] we can write the implicit

RCIS Cxv,L in closed-form as:

Cxvζ,L =

{
(x, v, ζ)

∣∣∣∣∣
L∑
i=1

ζi = 1, Gi(x, v) ≤ fi + (1− ζi)M1

}
, (4.8)

where ζ ∈ {0, 1}L, Gi and fi describe each of the L polytopes Cxv,(τ, λ) in (4.4), and M ∈ R+

is sufficiently large. The set Cxvζ,L is a polytope in Rn × RmL × {0, 1}L, and its projection

on Rn ×RmL is exactly the union in (4.4), while its projection on Rn is exactly the explicit

RCIS in (4.5).

Theorem 4.0.1 defines the promised hierarchy and provides us with an implicit RCIS for

each level of the hierarchy that can also be computed in closed-form in (4.8) at the cost of a

lift to a higher dimensional space. Fig. 4.1 illustrates the relation in (4.6), that is, how the

sets induced by each hierarchy level contain the ones induced by lower hierarchy levels.

Remark 4 (Convex hierarchy). We can replace the union in (4.4) by the convex hull

conv
(⋃

(τ, λ)∈ΘL
Cxv,(τ, λ)

)
. Then, in an analogous manner, all the above results go through re-

sulting in a hierarchy of convex RCISs. Similarly to (4.8), by standard set-lifting techniques,

one obtains a closed-form expression for the convex hull.
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Figure 4.1: RCIS corresponding to L = 1 (white), L = 2 (gray), L = 3 (teal), L = 4 (green),

L = 5 (yellow), and L = 6 (orange) for a double integrator. Safe set in blue.

Remark 5 (Partial hierarchies without union). The proposed hierarchy involves handling

a union of sets either in (4.4) or in closed-form in (4.8) by introducing an additional lift.

However, one might prefer to avoid unions of sets and rather work with a single convex set.

In this case, notice that each set Cxv,(τ, λ) involved in the hierarchy is also an implicit RCIS

computed in closed-form by Theorem 3.3.3. Two more refined guidelines for obtaining larger

sets, based on the choice of (τ, λ), are the following:

1. Given any λ ∈ N, it holds that Cx,(τ+1,λ) ⊇ Cx,(τ, λ) for any τ ∈ N ∪ {0}.

2. Given any τ ∈ N ∪ {0}, it holds that Cx,(τ, λ) ⊇ Cx,(τ,λ′) for any λ, λ′ ∈ N such that

λ = kλ′, k ∈ N, i.e., λ is a multiple of λ′, see [AT20, Section 4.6] when τ = 0.

The above can direct the designer in search of larger RCISs that are based on single implicit

RCIS.
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CHAPTER 5

Performance bound for the proposed method

Numerical examples, to be presented later, will show that the projection of the proposed

implicit RCIS onto the original state-space can coincide with the Maximal RCIS. However,

this is not always the case. When there is a gap between our projected set and the Maximal

RCIS, one may wonder if that gap is fundamental to our method. In other words, can

we arbitrarily approximate the Maximal RCIS with the projection of our implicit RCIS by

choosing better P and H matrices?

In this section we aim to answer the above question and provide insights into the com-

pleteness of our method. Given (2.4), we define the nominal DTLS Σ and the associated

nominal safe set Sxu:

Σ : x+ = Ax+Bu, (5.1)

Sxu = Sxu −W∞ × {0}, (5.2)

where A and B are the same as in (2.1). Let Cmax be the Maximal CIS of the nominal system

Σ within Sxu and define:

Couter,ν =
{
x ∈ Rn |∃{ui}ν−1

i=0 ∈ Rmν ,(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t = 0, . . . , ν − 1,

RΣ

(
x, {ui}ν−1

i=0

)
⊆ Cmax +W∞

}
.

(5.3)

Proposition 5.0.1. Couter,ν is an RCIS of Σ within Sxu.

Proof. In this proof, we use the order cancellation lemma, a special case of [GU19, Thm. 4].
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Lemma 5.0.2. Let X, Y ⊂ Rn be two closed convex sets with Y bounded. A point x ∈ Rn

is in X if and only if x+ Y ⊆ X + Y .

To prove that Couter,ν is an RCIS, we show that for any x0 ∈ Couter,ν , there exists u such

that (x0, u) ∈ Sxu and for all w ∈ W , Ax0 + Bu + Ew ∈ Couter,ν . By definition of Couter,ν ,

there exists a sequence {ui}ν−1
i=0 that, along with x0, satisfies the conditions in (5.3). We aim

to show that u0 in {ui}ν−1
i=0 is a feasible choice for u. Given (5.3), the reachable set from x0

at time ν is:

RΣ

(
x0, {ui}ν−1

i=0

)
=

ν−1∑
i=0

Aν−1−iBui +W∞ ⊆ Cmax +W∞,

with W∞ and Cmax being convex and W∞ being bounded. By Lemma 5.0.2 we have that∑ν−1
i=0 A

ν−1−iBui ∈ Cmax. Since Cmax is controlled invariant within Sxu for the nominal DTLS

Σ, there exists uν such that:(
ν−1∑
i=0

Aν−1−iBui, uν

)
∈ Sxu, (5.4)

A

(
ν−1∑
i=0

Aν−1−iBui

)
+Buν =

ν∑
i=1

Aν−1−iBui ∈ Cmax.

Consider any w ∈ W and define x1 = Ax+Bu0 + Ew:

RΣ(x1, {ui}νi=1) =
ν∑
i=1

Aν−1−iBui +W∞ ⊆ Cmax +W∞. (5.5)

From (5.4) we have that:

(RΣ(x1, {ui}ν−1
i=1 ), uν) ⊆ Sxu. (5.6)

Finally, note that for t = 0, · · · , ν − 2, we have:

(
RΣ(x1, {ui}ti=1), ut+1

)
⊆
(
RΣ(x0, {ui}ti=0), ut+1

)
⊆ Sxu. (5.7)

From (5.5), (5.6), and (5.7) we verify that x1 ∈ Couter,ν . Thus, Couter,ν is an RCIS.
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The following theorem shows that Couter,ν is an outer bound of the projection of the

proposed implicit RCIS.

Theorem 5.0.3 (Outer bound on πn (Cxv)). For a companion system Σxv as in (3.3), with

arbitrary matrices P and H, let Cxv be an RPIS of Σxv within the companion safe set Sxv.

The RCIS πn (Cxv) is a subset of Couter,ν, that is πn (Cxv) ⊆ Couter,ν.

Proof. Let x ∈ πn (Cxv). We show that x ∈ Couter,ν . By definition of Cxv, there exists a vector

v such that: (
RΣ

(
x,
{
HP iv

}t−1

i=0

)
, HP tv

)
⊆ Sxu, for all t ≥ 0. (5.8)

Define ut = HP tv. We want to verify that x and {ui}ν−1
i=0 satisfy the two conditions in the

definition of (5.3). The first condition is immediately satisfied by (5.8). It is left to show

that RΣ(x, {ui}ν−1
i=0 ) ⊆ Cmax +W∞. That is:

ν−1∑
i=0

Aν−1−iBui +W∞ ⊆ Cmax +W∞.

By Lemma 5.0.2, it is equivalent to prove that:

x ≡
ν−1∑
i=0

Aν−1−iBui ∈ Cmax.

By (5.8), we have that for t ≥ 0:(
ν−1∑
i=0

Aν−1−iBui+t +W∞, uv+t

)
⊆ Sxu ⇔

(
ν−1∑
i=0

Aν−1−iBui+t, uν+t

)
∈ Sxu

⇔
(
RΣ(x, {ui}ν+t−1

i=ν ), uν+t

)
∈ Sxu

(5.9)

According to (5.9), the control sequence {ui}ν+t−1
i=ν guarantees that the trajectory of Σ starting

at x stays within Sxu for all t ≥ 0. Thus, x must belong to the Maximal CIS of Σ in Sxu.

That is, x ∈ Cmax.
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Note here that the set Couter,ν , which serves as an outer bound for the set computed by

our method, is as hard to compute as the Maximal RCIS. Given Theorem 5.0.3 we have:

πn (Cxv) ⊆ Couter,ν ⊆ Cmax. (5.10)

Thus, the projection of our implicit RCIS can coincide with the Maximal RCIS, for appropri-

ately selected matrices P and H, only if Couter,ν = Cmax in (5.10). This potential gap between

our approximation and the Maximal RCIS is due to the fact that our method uses open-

loop forward reachability constraints under distrurbances. Finally, the following theorem

establishes weak completeness of our method.

Theorem 5.0.4 (Weak completenss). The set Couter,ν is nonempty, if and only if, there exist

matrices P and H such that the corresponding implicit RCIS Cxv is nonempty. Specifically,

Couter,ν is nonempty, if and only if, Cxv,(0,1) is nonempty.

Proof. We want to show that Couter,ν is nonempty if and only if Cxv,(0,1) is nonempty, where

Cxv,(0,1) is defined in (4.4) with respect to system Σ and safe set Sxu.

Since πn
(
Cxv,(0,1)

)
⊆ Couter,ν , immediately nonemptyness of Cxv,(0,1) implies nonemptyness

of Couter,ν .

To show the opposite direction, suppose that Couter,ν is nonempty. Then Cmax is nonempty.

Using similar arguments as in the proof of [AT19, Thm. 3.3], we know that Cmax is nonempty,

if and only if, there exists a fixed point x ∈ Cmax along with a u such that (x, u) ∈ Sxu and

Ax+Bu = x. Also, note that AW∞ + EW = W∞. Thus, we have:

(x+W∞, u) ∈ Sxu,

A(x+W∞) +Bu+ EW = x+W∞.
(5.11)

According to (5.11), for any y ∈ x+W∞, we have (y, u) ∈ Sxu and Ay+Bu+EW ⊆ x+W∞,

which implies that x + W∞ is an RCIS of Σ within Sxu. By the definition of Cxv,(0,1), it is

easy to check that (x+W∞, u) ⊆ Cxv,(0,1). Thus, Cxv,(0,1) is nonempty.
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Corollary 5.0.5 (Completeness in the absence of disturbances). In the absence of distur-

bances, Couter,ν = Cmax. Thus, by Theorem 5.0.4, there exists P and H such that Cxv is

nonempty, if and only if, Cmax is nonempty. That is, the proposed method is complete.

The significance of Theorem 5.0.4 lies in allowing to quickly check nonemptiness of Couter,ν

by computing Cxv,(0,1), which we can do in closed-form.

Even though the gap between Couter,ν and Cmax is still an open question at the writing of

this manuscript, we show that πn (Cxv) can actually converge to its outer bound for a specific

choice of H and P matrices.

Theorem 5.0.6 (Convergence to Couter,ν). There exist matrices H and P such that the

projection of the corresponding implicit RCIS Cxv approaches Couter,ν. Specifically, if H and

P are as in (4.1), by increasing τ in (4.1), πn (Cxv) converges to Couter,ν exponentially fast.

Proof. Recall from (5.3) that Couter,ν is:

Couter,ν =
{
x ∈ Rn |∃{ui}ν−1

i=0 ∈ Rmν ,(
RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t = 0, . . . , ν − 1,

RΣ

(
x, {ui}ν−1

i=0

)
⊆ Cmax +W∞

}
.

Using the matrices H and P as in (4.1), by the definition of Cxv,(τ, λ), we can write that

πn (Cxv) is:

πn (Cxv) =
{
x ∈ Rn |∃v ∈ R(τ+λ)m s.t. ut = HP tv, t ≥ 0,(

RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t = 0, . . . , ν − 1,(

RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t = ν, . . . , ν + τ + λ− 1

}
.

Since H and P are as in (4.1), it is actually the case that ut = v(t), t = 0, . . . , ν + τ + λ− 1,

where v(t) ∈ Rm is the t-th element of v ∈ R(τ+λ)m.

We want to show that πn (Cxv) converges to Couter,ν for some value of τ . First, by selecting

τ ≥ ν, it is straightforward that the constraints for t = 0, . . . , ν − 1 are the same in both

sets above.
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Next, given the expression for the reachable set in (2.5), the following set represents the

last constraint in πn (Cxv):

Cmax,(τ, λ) =
{
x ∈ Rn |∃v ∈ R(τ+λ)m

s.t. ut = HP tv, t ≥ 0, x =
ν∑
i=1

Ai−1But−i, t = ν(
ν∑
i=1

Ai−1But−i, ut

)
∈ Sxu, t = ν, . . . , ν + τ − 1 (A)(

ν∑
i=1

Ai−1But−i, ut

)
∈ Sxu, t = ν + τ, . . . , ν + τ + λ− 1 (B)

}
,

where Sxu = Sxu−W∞×{0}. The constraint (B) in Cmax,(τ, λ) represents the set of points in

Sxu rendered invariant by a periodic input with period λ, since for t > τ the input ut = HP tv

is already periodic. Its invariance is proven in [ALO21b]. This set naturally includes any

fixed point of the nominal system Σ in Sxu. Moreover, given the controlled predecessor of a

set under system Σ:

PreΣ (X) = πn ({(x, u) ∈ Rn ×Rm|(Ax+Bu) ∈ X}) ,

constraints (A) and (B) define the points that after τ steps are rendered periodically invari-

ant. In other words, the set Cmax,(τ, λ) is the τ -step controlled predecessor within πn
(
Sxu
)
of

an invariant set that contains fixed points. Then, we can rewrite πn (Cxv) as:

πn (Cxv) =
{
x ∈ Rn |∃v ∈ R(τ+λ)m s.t. ut = HP tv, t ≥ 0,(

RΣ

(
x, {ui}t−1

i=0

)
, ut
)
⊆ Sxu, t = 0, . . . , ν − 1,(

RΣ

(
x, {ui}ν−1

i=0

)
, ut
)
⊆ Cmax,(τ, λ) +W∞

}
.

The work in [GC87, CG86] proves that by taking a finite number τ of PreΣ steps (the number

of steps is defined by A, B, Sxu) we can exponentially converge to Cmax starting from a set

that contains a fixed point. This shows that for our method, by selecting a large enough τ ,

we have that Cmax,(τ, λ) converges to Cmax. Consequently, making the second set of constraints

of Couter,ν and πn (Cxv) the same and concluding this proof.
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Corollary 5.0.7 (Convergence in the absence of disturbances). Similarly to the previous

corollary, as in the absence of disturbances Couter,ν = Cmax, by Theorem 5.0.6, the proposed

method can converge to the Maximal CIS.
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CHAPTER 6

Implicit invariant sets in practice: controlled invariant

sets in one move

Using the proposed results, one has the option to project the implicit RCIS back to the

original space and obtain an explicit RCIS as proposed in the two-move approach [AT19,

AT20, ALO21b]. However, the required projection from a higher dimensional space becomes

the bottleneck of this approach.

One of the goals of this manuscript is to establish that in a number of key control

problems explicit knowledge of the RCIS is not required and the implicit RCIS suffices. In

particular, we study the problem of supervision in Section 6.1, the problem of safe planning

in Section 6.2, and the problem of determining safe hyper-boxes in Section 6.3. For these

problems, we show how the proposed methodology can be used online as the only requirement

is the implicit RCIS which admits a closed-form expression. Later, in Section 7, we provide

experiments based on the studies of this section.

6.1 Supervision of a nominal controller

In many scenarios, when synthesizing a controller for a plant, the objective is to meet a

performance criterion while always satisfying a safety requirement. This gives rise to the

problem of supervision.

Problem 1 (Supervisory Control). Consider a system Σ, a safe set Sxu, and a nominal

controller designed to meet a performance objective. The supervisory control problem asks at
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each time step to evaluate if, given the current state x, the input ũ chosen by the nominal

controller keeps the next state of Σ in a RCIS in the safe set. If not, correct ũ by selecting

an input that does so.

To solve Problem 1 one has to guarantee at every step that the pairs of states and inputs

respect the safe set Sxu. A natural way to do so is by using an RCIS. The supervision

framework operates as follows. Given an RCIS C, assume that the initial state of Σ lies in

C. The nominal controller provides an input ũ to be executed by Σ:

• if ũ is safe, that is (x, ũ) ∈ Sxu and ∀w ∈ W , Ax+Bũ+ Ew ∈ C, then its execution

is allowed;

• else ũ is corrected by selecting an input usafe such that (x, usafe) ∈ Sxu and ∀w ∈ W ,

Ax+Busafe + Ew ∈ C. Existence of usafe is guaranteed in any RCIS by Definition 3.

In practice an explicit RCIS is not needed. One can exploit any of the proposed implicit

RCISs to perform supervision. Consider an implicit RCIS Cxv for Σ within Sxu, as in Theo-

rem 3.3.3. Then supervision of an input ũ is performed by solving the following optimization

problem:

min
v
||Hv − ũ||22

s.t. (x,Hv) ∈ Sxu,

(Ax+BHv + Ew,Pv) ∈ Cxv,∀w ∈ W.

(6.1)

Notice that the input to Σ is Hv. By solving optimization problem (6.1) we compute the

minimally intrusive safe input.

Remark 6 (Implicit RCIS for supervision). The optimization problem (6.1) uses the more

general implicit RCIS Cxv from Theorem 3.3.3. One can instead use any of the sets Cxv,(τ, λ)

for some (τ, λ) or even the set Cxvζ,L in (4.8), which would result in a mixed-integer program

instead.
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Figure 6.1: The overall safe online planning framework.

6.2 Safe online planning

Based on the discussed supervision framework, we utilize the proposed implicit RCIS to

enforce safety constraints in online planning tasks. The goal here is to navigate a robot

through unknown environments without collision with any obstacles. The map is initially

unknown, and it is built and updated online based on sensor measurements, such as LiDAR.

The robot must only operate in the detected obstacle-free region. To ensure this, given a

path planning algorithm and a tracking controller, we supervise the controller inputs based

on the implicit RCIS. The overall framework is shown in Figure 6.1.

The safe set for the robot imposes bounds on states and inputs, which do not change

over time, but also constraints, e.g., on the robot’s position, which are given by the obstacle-

free region in the current map. As the detected obstacle-free region expands over time, the

corresponding part of the safe set does as well. Thus, differently from Section 6.1, we have

a time-varying safe set Sxu(t) satisfying Sxu(t) ⊆ Sxu(t+ 1), t ≥ 0. As the implicit RCIS

is constructed in closed-form, we can generate a new implicit RCIS Cxv(t) for each Sxu(t).

Then, at each time step t, for any t′ ≤ t, we supervise the nominal control input ũ(t) by
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solving the optimization problem:

min
v
||Hv − ũ||22

s.t. (x,Hv) ∈ Sxu

(Ax+BHv + Ew,Pv) ∈ Cxv(t′), ∀w ∈ W.

(6.2)

We denote the optimization problem in (6.2) by P(t, t′). As Sxu(t) ⊆ Sxu(t+ 1), Cxv(t′) is a

valid implicit RCIS in Sxu(t) for all t ≥ t′. Thus, as long as P(t, t′) is feasible, the optimizer

v∗ of P(t, t′) is a safe input that guarantees the next state lies in the RCIS. Furthermore,

if P (t, t′) is feasible, by definition of RCIS, P (t + 1, t′) is also feasible. Thus, if P (0, 0) is

feasible, for all t > 0, there exists t′ ≤ t such that P (t, t′) is feasible. That is, the recursive

feasibility of P (t, t′) is guaranteed. In practice, to take advantage of the latest map, we

always select t′ to be the latest time instant t∗ for which P (t, t∗) is feasible.

To summarize, at each time step, we first construct the implicit RCIS Cxv(t) based on the

current map. Then, given the state and nominal control input, we solve P(t, t∗) to obtain

the minimally intrusive safe input. This input guarantees that the state of the robot stays

within Sxu(t) for all t ≥ 0, provided that P(0, 0) is feasible.

6.3 Safe hyper-boxes

For high dimensional systems, the exact representation of an RCIS Cx can be a set of thou-

sands of linear inequalities. This provides reduced insight as it is quite difficult to clearly

identify regions of each state vector entry that lie within the RCIS. In contrast, hyper-boxes

are straightforward to grasp in any dimension, providing immediately information about

which region of each state they contain. Based on this motivation, we explore how im-

plicit RCISs can be used to find hyper-boxes that can be considered safe as in the following

definition.

Definition 10 (Safe hyper-boxes). Consider a system Σ, a safe set Sx, and an RCIS
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Cx ⊆ Sx. Define a hyper-box B = [b1, b1]× · · · × [bn, bn] = [b, b] ⊂ Rn. We call a hyper-box

B safe if B ⊆ Cx.

To simplify the presentation we only consider state constraints, Sx, instead of Sxu. Notice

that by Definition 10, a safe hyper-box is not necessarily invariant. A safe hyper-box B

entails the guarantee that the trajectory starting therein can remain in Sx forever, but not

necessarily within B. We aim to address the following problem.

Problem 2. Find the largest1 safe hyper-box B within Cx.

One can solve Problem 2, again, by use of an implicit RCIS Cxv. A hyper-box B can be

described by a pair of vectors
(
b, b
)
∈ Rn ×Rn. Then, using similar arguments to Section 3,

we compute in closed-form an implicit RCIS CB characterizing all hyper-boxes
(
b, b
)
that

remain in Sx under eventually periodic inputs. The eventually periodic inputs are given by

a vector v ∈ RmL with L = τ +λ. Then, the set CB lives in Rn ×Rn ×RmL and is described

by:

At
[
b, b
]

+
t∑
i=1

Ai−1BHP t−iv ⊆ Sx −
t∑
i=1

Ai−1EW, t = 0, . . . , ν − 1,

ν∑
i=1

Ai−1BHP t−iv ⊆ Sx −
ν∑
i=1

Ai−1EW, t = ν, . . . , ν + L− 1.

(6.3)

The above constraints can all be written as linear inequalities in
(
b, b, v

)
∈ Rn ×Rn ×RmL.

Assume then that CB is:

CB =


(
b, b, v

)
∈ Rn ×Rn ×RmL

∣∣∣∣∣∣∣∣∣ GB

b

b

v

 ≤ fB

 ,

1The largest, as measured by volume, hyper-box within a set might not be unique. We choose an appropriate
heuristic for maximizing the volume of a set that leads to a well-defined convex optimization problem. Hence,
the term “largest” refers to the heuristic used.
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where GB and fB are such that they model (6.3). One, then, solves Problem 2 using the

implicit RCIS CB by solving the following convex optimization problem:

max
η=(b,b,v)

γ
(
b− b

)
s.t. GB η ≤ fB,

where γ(y) = (Πn
i=1yi)

1
n is the geometric mean function, which is used as a heuristic for the

volume of the hyper-box. Function γ is concave, and maximizing a concave function can be

cast as a convex minimization problem [BV04].

Remark 7 (Invariant and recurrent hyper-boxes). Two special cases of the above are in-

variant hyper-boxes, when τ = 0, λ = 1, see also [AT19], and recurrent hyper-boxes, when

τ = 0, λ > 0, see also [AT20, ALO21b].

A related question to Problem 2 is to evaluate if a proposed hyper-box is safe. This is of

interest when evaluating if the initial condition, e.g., the proposed hyper-box, of a problem

guarantees generation of safe trajectories. Another scenario of interest consists in evaluating

if a hyper-box around a point xc, where the system is required to operate, is safe. Motivated

by the above, consider the following problem.

Problem 3. Given a configuration point (xc, ρ) ∈ Rn × Rn
+, evaluate if the hyper-box with

center xc and edge length 2ρ, i.e., B = [xc − ρ, xc + ρ] ⊂ Rn is safe.

Problem 3 is solved by a simple feasibility LP:

find η = (xc − ρ, xc + ρ, v)

s.t. GB η ≤ fB.

More complicated questions can be formulated. For instance, to find the largest safe box

around a configuration point. The solutions of Problems 2 and 3 can be combined to solve

this more elaborate question.
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Remark 8 (Complexity when using implicit RCISs). In this section we showed how several

key problems in control are solved without the need of projection and of an explicit RCIS,

which results in extremely efficient computations since the implicit RCISs are computed in

closed-form. The decision to be made is the size of the lift, i.e., the length of the input

sequence. From a computational standpoint, this choice is only limited by how large an

optimization problem one affords solving given the application.
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CHAPTER 7

Case studies

7.1 cis2m: a library for computing controlled invariant sets in 2

moves and closed-form implicit representations

To complement our theoretical contributions and make the results useful to the community,

we have developed a library, named cis2m, for the computation of implicit and explicit

RCISs based on the proposed method. At the time of writing this manuscript, cis2m comes

as a standalone C++ library and also as a MATLAB package.

The case studies that follow in this chapter were performed on a MacBook Pro (Retina,

Mid 2012) with a 2.3 GHz Quad-Core Intel Core i7 Processor and 8 GB 1600 MHz DDR3

RAM. Finally, instructions to replicate the case studies, can be found at the space where

the library lives: https://github.com/janis10/cis2m.

7.2 Supervision of a quadrotor for obstacle avoidance using explicit

RCIS

We begin by tackling the supervision problem, defined in Section 6.1, for the task of quadrotor

obstacle avoidance. That is, we filter nominal inputs to the quadrotor to ensure collision-

free trajectories. The dynamics of the quadrotor can be modeled as a non-linear system

with 12 states [MD13]. Nonetheless, this system is differentially flat, which implies that the

states and inputs can be rewritten as a function of the so-called flat outputs and a finite
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number of their derivatives [ZS14]. Exploiting the differential flattness property, we obtain

an equivalent linear system that expresses the motion of a quadrotor. Moreover, the original

state and input constraints can be overconstrained by polytopes in the flat output space.

For details on the above see [PAT21]. Then, the motion of a quadrotor can be described by:

x+ = Ax+Bu+ Ew,

where A = blkdiag(A1, A2, A3), B = blkdiag(B1, B2, B3), and:

Ai =


1 Ts

T 2
s

2!

0 1 Ts

0 0 1

 , Bi =


T 3
s

3!

T 2
s

2!

Ts

 .
The state x ∈ R9 contains the 3-dimensional position, velocity, and acceleration, while the

input u ∈ R3 is the 3-dimensional jerk. The matrix E and disturbance w are selected

appropriately to account for various errors during the experiment.

The operating space for the quadrotor is a hyper-box with obstacles in R3, see Fig. 7.1.

Therefore, the safe set is described as the obstacle-free space, a union of overlapping hyper-

boxes in R3, along with box constraints on the velocity and the acceleration of the quadrotor:

S =
N⋃
j=1

[
p
j
, pj

]
× [v, v]× [a, a] ,

where
[
p
j
, pj

]
⊂ R3, for j = 1, . . . , N , is a hyper-box in the obstacle-free space, [v, v] ⊂ R3

denotes the velocity constraints, and [a, a] ⊂ R3 denotes the acceleration constraints. The

safe set is a union of polytopes, while our framework is designed for convex polytopes. Since

we already know the obstacle layout, we compute an explicit RCIS for each polytope in the

safe set. As these polytopes overlap we expect, and it is actually the case in our experiments,

that the RCISs do so as well. This allows, when performing supervision, to select the input

that keeps the quadrotor into the RCIS of our choice when in the intersection of overlaping

RCISs and, hence, navigate safely.
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Figure 7.1: Quadrotor operational region. Obstacles in purple transparent boxes. Nominal

trajectory (red), corrected trajectory (blue), supervision active (green).

The goal of this case study is to ensure collision-free trajectory tracking. The nominal

trajectory is the red straight line depicted in Fig. 7.1, moving the quadrotor from a start

point to an end point through the obstacles. As we can appreciate, the supervised trajectory,

blue curve, takes the quadrotor around the obstacles and, safely, to the end point. When

the supervision is active, the quadrotor performs more aggressive maneuvers to avoid the

obstacle as seen particularly in Fig. 7.2b and Fig. 7.2c, where we omit the z-axis as in this

experiment the quadrotor maintains a relatively constant altitude. A video of the experiment

is found at https://tinyurl.com/drone-supervision-cis. For visualizing the trajectory

and the obstacles in the video, we used the Augmented Reality Edge Networking Architecture

(ARENA) [CON].
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(a) Quadrotor position
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Figure 7.2: Quadrotor trajectory in x-y plane: nominal trajectory (red), corrected trajectory

(blue), supervision active (green).
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In this experiment we utilized the explicit RCIS Cx = πn
(
Cxv,(τ, λ)

)
with (τ, λ) = (0, 6).

Even though we computed the projection, this operation was done in just several seconds

for this specific system. Further, as we see later in Section 7.4, our one-time projection

scales better than the classical algorithm that computes the Maximal CIS. Notice that, as

mentioned in Remark 5, we used just one of the individual implicit RCISs comprising this

hierarchy level. Our hardware platform is the open-source Crazyflie 2.0 quadrotor. The

position is measured in m, the velocity in m/s, the acceleration in m/s2, and the jerk in

m/s3. The operating space for the position is [−2, 2]× [−2, 2]× [0, 1] and the obstacles are as

seen in Fig. 7.1. The starting point is (−1.35,−1.30, 0.7) and the end point is (1.0, 0.3, 0.7).

The velocity constraints are [−1.0, 1.0], the acceleration constraints are [−2.83, 2.83], and

the jerk constraints are [−59.3, 59.3]. The sampling time for the supervision was set at

Ts = 0.18s. For the estimation of the state we use a Kalman filter where the measurements

are the position of the quadrotor and its attitude as obtained by the motion capture system

OptiTrack. The optimization problems were solved by GUROBI [Gur20].

7.3 Safe online planning using implicit RCIS

Next, we solve the safe online planning problem, discussed in Section 6.2, for ground robot

navigation. The map is initially unknown and is built online based on LiDAR measurements.

While navigating the robot needs to avoid the obstacles, indicated by the dark area in Fig. 7.3,

and reach the target point. This case study is inspired by the robot navigation problem in

[BBB19]. The robot’s motion, using forward Euler discretization, is:

x+ =

I ITs

0 I

x+

 0

ITs

u,
where the state x = (px, py, vx, vy) ∈ R4 is the robot’s position and velocity on the 2D map,

and the input u = (u1, u2) ∈ R2 is the acceleration.
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Figure 7.3: Robot operational space: initial position (yellow arrowhead), target position

(cyan), unsafe region (dark area).

The safe set consists of two parts:

1. The time-invariant constraints vx, vy ∈ [−v, v] and u1, u2 ∈ [−u, u].

2. The time-varying constraint of (px, py) within the obstacle-free region, shown by the

white nonconvex area in Fig. 7.3.

The obstacle-free region, denoted by M(t) ⊆ R2, is determined by a LiDAR sensor using

data up to time t. Combining the two constraints, the safe set at time t is:

Sxu(t) ={(px, py, vx, vy, u1, u2) | (px, py) ∈M(t), vx, vy ∈ [−v, v], u1, u2 ∈ [−u, u]}.

Note that M(t) ⊆M(t+ 1) and, thus, Sxu(t) ⊆ Sxu(t+ 1) for all t ≥ 0.

The overall control framework was shown in Fig. 6.1. Initially, the map is blank and the

path planner generates a reference trajectory assuming no obstacles. At each time instant t,

the map is updated based on the latest LiDAR measurements and the path planner checks if
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Figure 7.4: Simulation at t = 0s (top), 40s (middle), and 78.6s (bottom). Left: reference

path (red), actual trajectory (blue), LiDAR measurements (blue disks). Right: obstacle-free

region M(t) (white) and unknown region (grey); purple boxes are the 10 largest boxes in

M(t) that contain the current robot position.
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the reference trajectory collides with any obstacles in the updated map. If so, it generates a

new, collision-free, reference path. Then, the nominal controller provides a candidate input

ũ = (ũ1(t), ũ2(t)) tracking the reference path. When updating the reference trajectory, a

transient period is needed for the robot to follow the new reference tightly. Moreover, the

path planner cannot guarantee satisfaction of the input constraints. To resolve these issues,

we add a supervisory control to the candidate inputs. Based on the updated obstacle-free

region M(t), we construct the safe set Sxu(t) and compute an implicit CIS Cxv,(τ, λ)(t) within

Sxu(t). To handle the nonconvexity of Sxu(t), we first compute a convex composition of

Sxu(t). Then, when constructing the implicit CIS, we let the reachable set at each time belong

to one of the convex components in Sxu(t), encoded by mixed-integer linear inequalities. For

details see [LO21]. The convex decomposition of Sxu(t) becomes more complex over time,

which slows down the algorithm. To lighten the computational burden, we replace the full

convex composition by the union of the 10 largest hyper-boxes in Sxu(t) as the safe set.

Given the constructed implicit CIS Cxv,(τ, λ)(t) at time t, we supervise the nominal control

input ũ(t) by solving P(t, t∗) in (6.2), as discussed in Section 6.2. Note that P (t, t∗) becomes

a mixed-integer program as we introduced binary variables for the convex composition of

the safe set and, therefore, in the implicit CIS.

For conducting our simulations, we use a linear feedback controller as the nominal con-

troller. The MATLAB Navigation Toolbox is used to simulate a LiDAR sensor with sensing

range of 100 m, update the map, and generate the reference path based on the A* algo-

rithm. The simulation parameters are (τ, λ) = (6, 4), Ts = 0.1s, v = 5m/s, u = 5m/s2. The

mixed-integer program P(t, t∗) is implemented via YALMIP [Lof04] and solved by GUROBI

[Gur20]. The average computation time for constructing the lifted set Cxv,(τ, λ)(t) and solving

P(t, t∗) at each time step is 2.87s. The average computation time shows the efficiency of our

method, considering the safe set is nonconvex and being updated at every time step.

The simulation results are shown in Fig. 7.4. The robot reaches the target region at

t = 78.6s, and thanks to the supervisor, it satisfies the input and velocity constraints, while
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always staying within the time-varying safe region. As a comparison, when the supervisor is

disabled, the velocity constraint is violated at time t = 1.2s. The full simulation video can

be found at https://youtu.be/mB9ir0R9bzM .

7.4 Scalability and quality

In this subsection we illustrate the scalability of the proposed method and compare with

other methods in the literature. We consider a system of dimension n as in (2.1) that is

already in Brunovsky normal form [Bru70].

An =

0 I

0 0

 , Bn =

0
1

 ,
where An ∈ Rn×n and Bn ∈ Rn. This assumption does not affect empirical performance

measurements as the transformation that brings a system in the above form is system-

dependent and, thus, can be computed offline just once. To generalize the assessment of

performance, we generate the safe set as a random polytope of dimension n and we average

the results over multiple runs. Moreover, we constraint our input to [−0.5, 0.5] and the

disturbance to [−0.1, 0.1].

7.4.1 Scalability of implicit invariant sets

We first show the scalability of computing implicit invariant sets, both by computing the full

hierarchy, i.e., all the invariant sets that form a hierarchy level, and by computing individual

invariant sets themselves.

We begin with the case of no disturbances, that is, we compute implicit CISs. Under

this scenario, Fig. 7.5 shows the runtimes to compute implicit CISs as the system dimension,

n, grows. In particular, Fig. 7.5a and Fig. 7.5b show the computation times for Cxv,L, for

different levels L of the hierarchy and for polytopes with 2n and n2 constraints respectively.

Our method computes implicit CISs in less than 0.5 seconds for systems of size n = 200
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Figure 7.5: Absence of disturbances. Computation times for Implicit CISs for different

levels L of the full hierarchy, i.e., computing L Implicit CISs per level. (a) Safe sets with 2n

constraints, n ≤ 200. (b) Safe sets with n2 constraints, n ≤ 100.

when the safe set has 2n constraints, and in around 5 seconds for n = 100 and safe sets with

n2 constraints, that is 10000 constraints in this example. This study validates the efficiency

of our method in the case of nominal systems with no system model disturbances.

We now proceed to the case where system disturbances are present. This scenario is

presented in Fig. 7.6. More particularly, in Fig. 7.6a and Fig. 7.6b, we observe that in

the presence of disturbances computations are slower and, actually, are almost identical for

different values of L. This is attributed to the presence of the Minkowsky difference in the

closed-form expression (3.11) that dominates the runtime and depends on the nilpotency

index of the system. Still, we are able to compute implicit RCISs in closed-form for systems

with up to 20 states fairly efficiently in this experiment.

The above results suggest the applicability of our approach to scenarios involving online

computations, as shown already in Section 7.3, and showcases the power of the implicit rep-

resentation. Furthermore, in our experience, the numerical result of a projection operation,
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Figure 7.6: Presence of disturbances. Safe sets with 2n constraints, n ≤ 20. Computation

times for Implicit RCISs. (a) Different levels L of the hierarchy. (d) Individual implicit

RCIS, Cxv,(τ, λ), for different values of (τ, λ).

depending the method used, can be sometimes unreliable. Contrary to this, our closed-form

expression does not suffer from such drawback.

7.4.2 Quality of the computed sets and comparison to other methods

We now compare our method with different methods in the literature, both in runtime and

quality of the computed sets as measured by the percentage of their volume compared to

the Maximal (R)CIS. Even though, we already provided a comprehensive analysis in terms

of runtime for our method, we still present a few cases for the shake of comparison. We

compare our approach to the Multi-Parametric Toolbox (MPT3) [HKJ13] that computes

the Maximal (R)CIS, Cmax, the iterative approach in [TJ15] that computes low-complexity

(R)CISs, and the one in [LTJ18] that computes ellipsoidal CISs.

The runtimes of each method are reported in Fig. 7.7. The difficulty of computing Cmax

is apparent from the steep corresponding curve. The low-complexity methods in [TJ15] and
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Figure 7.7: Computation times for Cxv,(0,2), its projection Cx,(0,2), the methods in [TJ15]

and [LTJ18], and Cmax. Logarithmic scale. Note: [LTJ18] is evaluated in the absence of

disturbances as it considers only nominal systems. For the other methods the performance

without disturbance is similar or better.

[LTJ18] are considerably faster, and [LTJ18] that solves Sum-Of-Square Programs is slightly

faster than even our implicit representation. However, our sets are superior in quality as we

detail next.

First, in the absence of disturbances, the relative volume of the computed sets with

respect to Cmax is presented in Table 7.1. Since for n ≥ 7 MPT3 does not terminate after

several hours and the computed set before termination is not invariant, we present the

relative volumes only for 2 ≤ n ≤ 6. Our method returns a very close approximation of

Cmax even with small values of (τ, λ) and computes substantially larger sets compared to

the other techniques. In other words, our implicit representation retains the best out of two

worlds: computational efficiency and close approximations of Cmax. This is illustrated in two

dimensions in Fig. 7.8.

In the presence of disturbances, the results are similar and are reported in Table 7.2,

where we omit the method in [LTJ18] that was not designed for the presence of disturbances.
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Table 7.1: Absence of disturbances. Volume percentage with respect to the Maximal CIS.

Algorithms: Our method computing different implicit CISs Cxv,(τ, λ), the LMI method in

[TJ15], and the method in [LTJ18] computing ellipsoidal CISs. (S) denotes a singleton set.

Our method LMI method [TJ15] Ellipsoidal CIS method [LTJ18]

System dimension Cxv,(0,2) Cxv,(2,2) Cxv,(4,2)

n = 2 100 100 100 42.43 45.69

n = 3 100 100 100 16.31 24.66

n = 4 99.92 100 100 3.69 14.41

n = 5 99.75 100 100 0.47 10.50

n = 6 97.81 99.07 100 0 (S) 3.89

Figure 7.8: Two dimensional system in Brunovsky normal form. Randomly generated safe

set (blue), Cx,(1,2) = Cmax (green), Cellips from [LTJ18] (orange), and Clmi from [TJ15] (red).

By increasing the magnitude of the disturbance, it is the case that some times our method

could fail to compute non-empty sets. This is expected given the weak completeness result

of Theorem 5.0.4. However, it is empirically the case even in the presence of disturbances,
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Table 7.2: Presence of disturbances: volume percentage with respect to the Maximal RCIS.

Algorithms: Our method computing different implicit RCISs Cxv,(τ, λ) and the LMI method

in [TJ15]. (S) denotes a singleton set.

Volume (%) Our method LMI method [TJ15]

System dimension Cxv,(0,2) Cxv,(2,2) Cxv,(4,2)
n = 2 100 100 100 31.99

n = 3 98.24 99.67 99.96 16.35

n = 4 99.02 99.42 99.88 4.36

n = 5 98.75 99.74 99.81 3.64

n = 6 91.17 96.07 97.91 0 (S)

Table 7.3: Computation time when projecting the implicit RCIS, Cxv,(τ, λ), to obtain the

explicit CIS Cx,(τ, λ) = πn
(
Cxv,(τ, λ)

)
for various values of (τ, λ). Times are in seconds.

System dimension n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

Cx,(0,2) 0.295 0.533 0.873 1.936 31.41 195.4 4970.7

Cx,(2,2) 0.402 0.711 1.119 2.126 134.3 >7200 >7200

Cx,(2,4) 0.541 0.890 1.359 2.553 603.4 >7200 >7200

Cx,(3,8) 0.635 0.981 2.108 4.783 971.6 >7200 >7200

Cmax 0.369 0.895 2.410 21.62 6365.1 >7200 >7200

that when we compute non-empty sets they approximate Cmax closely.

Finally, Table 7.3 presents the times to compute explicit RCISs for various pairs (τ, λ).

Notice that the selected pairs (τ, λ) result in increasingly larger RCISs as outlined in Re-

mark 5. Comparing the runtimes to obtain an explicit RCIS to the time needed to compute

Cmax, we see that even when computing the explicit representation, our one-time projection

outperforms the classical algorithm that requires smaller projections, but at each iteration.

Of course, selecting a (τ, λ) that belongs to higher levels of the hierarchy increases the pro-

jection time due to the larger projection gap. As the reported times show, this becomes

quite cumbersome when considering larger systems. However, our approach still provides

an affordable way to compute explicit CISs by selecting lower levels of the hierarchy, e.g.,

(τ, λ) = (0, 2).
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CHAPTER 8

Discussion & Conclusion

The first part of the manuscript discussed a method for computing RCISs for discrete-

time linear systems for which there exist a feedback transformation that makes the A matrix

nilpotent. In particular, every controllable linear system belongs to this class. By considering

controllers that exhibit eventually periodic behavior, a closed-form expression for an implicit

RCIS, in the space of states and finite input sequences, is provided, as well as a hierarchy

of RCISs for a special controller choice. The proposed method was validated in a number

of safety-critical scenarios, including supervision for obstacle avoidance of a Crazyflie 2.0

quadrotor, and the scalability of the efficient implicit representation was established on high

dimensional systems.

At this point we want to outline a number of potential open questions. Recall that we

compute a closed-form expression for an implicit RCIS by using linear, eventually periodic

controllers. A question that arises is whether there exist other controllers for linear systems

that encapsulate the behavior of the proposed method and still provide similar computational

performance. In other words, what is the maximal class of controllers we can consider in order

to provide a closed-form expression for a polyhedral implicit RCIS given a polyhedral safe

set and a linear system? Moreover, at the time of writing, another open question concerns

the gap between the outer bound on the proposed method Couter and the Maximal RCIS Cmax

in presence of disturbances. Ideally, we would like to be able to characterize the existence

and the size of such gap given the linear system model, the safe set, and the disturbance set.

When does such a gap exist and how close is Couter to Cmax? Answering such a question would
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allows us to further understand the limitations of the proposed method. From a practical

perspective, it would be interesting to explore if one can obtain a minimal representation,

i.e., irredundant in terms of inequality constraints, of the closed-form implicit RCIS. This

would not only speed up the computation of the implicit RCIS, but it will also speed up

its projection back to the original space, as well as, any of the optimization problems that

involve the implicit RCIS as part of the constraints, e.g., the supervision framework we

discussed.

Another interesting discussion concerns some limitations in the problem we consider. Our

method considers polyhedral safe sets, that is state, input, and mixed state input constraints

that are described by linear inequalities. Even though this covers already a large amount of

applications, there are important scenarios with non-polyhedral or non-convex constraints.

In such cases, one can still benefit from using our method by under-approximmating the given

sets with the largest polyhedral set contained therein or even disjunctions of polyhedral sets.

This introduces a trade-off: on the one hand obtaining a conservative RCIS for the given

scenario and therefore a conservative set of safe actions, and on the other doing so very

efficiently, in closed-form, and benefiting from the formal safety guarantees that it provides.

Such a scenario was actually considered in Section 6.2 and 7.3 where the safe set obtained by

our LiDAR sensor is highly non-convex and we operated on disjunctions of polyhedral sets.

Notice, however, that operating on disjunctions of sets comes at the cost of solving mixed-

integer programs instead of convex programs from an optimization perspective. In the same

line of thinking, a case of interest is handling dynamic input constraints. For instance, our

actuation is such that the available inputs at a given moment depend on the inputs used on

previous time steps. Such a scenario can be incorporated in our static polyhedral constraints

by augmenting the state of the system to include the appropriate sequence of inputs and

impose constraints on this sequence. Based on the above, the proposed method can cover a

wide variety of important scenarios.
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Part II

rLTL verification: now faster than ever

before!
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CHAPTER 9

Introduction

As Cyber-Physical Systems (CPS) inevitably become increasingly complex, the ability to

completely guarantee correctness of their design and implementation via exhaustive testing

fades. Moreover, almost every aspect of contemporary life is becoming intertwined with

CPSs, such smart grids, smart cities, mobility on demand and autonomous vehicles, and

even medical devices. Consequently, in an attempt to reduce design errors, formal methods

have been investigated to support modeling and verification of CPS and, in particular, of its

reactive components.

Most work in formal methods has focused on system correctness, i.e., in ensuring that

systems are guaranteed to meet their design specifications. We argue that correctness is

necessary, but not sufficient for a good design when a reactive system interacts with an

ever-changing uncontrolled environment. To illustrate this point, just consider the correct-

ness specifications for open reactive systems, which are typically written in the form of an

implication:

ϕ⇒ ψ, (9.1)

where ϕ is an environment assumption and ψ is a system guarantee. In Linear Temporal

Logic (LTL) the implication in (9.1) is equivalent to ¬ϕ ∨ ψ, and, ergo, whenever the as-

sumption ϕ is violated the above specification yields no information on the guarantee. In

other words, the system can behave arbitrarily. Thus, in addition to correctness, systems

should also be designed to be robust, i.e., small deviations from the assumptions made at

design time should lead to, at most, small violations of the design specifications. While it
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is hard to dispute that design time assumptions may not hold in the environments where

systems will actually be deployed, since these may not be completely known at design time

or may be evolving over time, how to formally describe robustness is a question that has

not received enough attention despite the recent efforts described in Section 9.1. In this

part of the manuscript, we address this problem by studying a recently developed logic,

termed robust Linear-time Temporal Logic and abbreviated as rLTL, that allows to specify

robustness. Its syntax closely mirrors that of LTL to lower the barriers to its adoption. Its

semantics, however, is different in many regards. In particular, it is a many-valued logic so

that one can reason about the different ways in which assumptions and guarantees can be

violated.

To shed more light into the mechanics of rLTL, consider the LTL formula 2p with p an

atomic proposition. There is only one way in which this formula is satisfied, namely when

p holds at every time step. In contrast, there are several ways in which this formula can be

violated over an infinite trace: (1) the worst possible violation occurs when p fails to hold

at every time step; (2) a slightly better scenario is where p holds for at most finitely many

time instants; (3) better yet would be that p holds at infinitely many instants, while still

failing to hold at infinitely many instants; (4) finally, among all the possible ways in which

2p can be violated, the most preferable case would be the one where p fails to hold for at

most finitely many time instants. The semantics of rLTL is exactly designed to distinguish

between these different ways.

In preliminary work [TN16], we introduced a fragment of rLTL that only contained the

always and eventually operators. We showed, in that restricted context, that we can decide

if a system satisfies an rLTL formula ϕ by using an automaton with size O
(
5|ϕ|
)
, where |ϕ|

denotes the length of ϕ. The corresponding automaton for LTL has size O
(
2|ϕ|
)
and the

change in the base of the exponential follows from the fact that LTL is a 2-valued logic,

whereas rLTL is 5-valued. This manuscript offers a fragment of rLTL that also includes the

next, until, and release operators, while placing a syntactic restriction on the antecedent
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of nested implications. For the proposed fragment of rLTL the verification problem can be

solved more efficiently, i.e., by using an automaton of size O
(
2|ϕ|−κ(ϕ)3κ(ϕ)

)
, where κ(ϕ)

measures the number of unique subformulae of ϕ that contain always and release opera-

tors. Construction of smaller automata is achieved by using temporal testers and exploiting

properties of the proposed fragment. In particular, this provides the upper bound O
(
3|ϕ|
)

on the size of this automaton which is closer to the LTL bound. In prior work [APN18]

we achieve the same complexity bound, but for a smaller fragment of rLTL. The fragment

studied in [APN18] does not contain the release operator and allows at most one implication

operator at the outermost level. Consequently, the fragment proposed here is substantially

larger as evidenced by the second of our case studies, detailed next.

To illustrate the usefulness of rLTL and the proposed fragment, we offer several case

studies that demonstrate: (1) how rLTL can identify a non-robust system, whereas LTL

cannot, as it does not provide information about the guarantee of an implication when

the environment deviates from the modeling assumptions; (2) how the proposed fragment

contains the most important reactivity patterns [DAC99]; and (3) how the five truth values

provide insightful information when a specification is violated, which can be useful for a

designer seeking to improve the designed system and/or the specification. Moreover, the

computational overhead associated with rLTL model-checking is relatively low with respect

to LTL model-checking, and also rLTL model-checking, within the proposed fragment, scales

similarly to LTL model-checking with respect to the size of the model-checked formula, as

shown by our experiments. The content of this second part of the manuscript has been

published in [APN22].

9.1 In a labyrinth of robustness

A number of efforts has been made in order to express the “correct” notion of robustness

with regards to cyber-physical systems in formal methods. In this section, we present an
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extensive, but not exhaustive, review of various formalizations of robustness. We begin by

a series of approaches, which require the designer to provide information in addition to the

desired specification.

In [BCG14], two quantitative robustness concepts are combined in a common framework

for robust synthesis. The first one, robustness for safety, looks at how often the assumptions

and the guarantees are violated, and asks for their ratio to be bounded by k ∈ N (k-

robustness). Counting is achieved through error functions provided by the designer. The

second concept, robustness for liveness, considers specifications of the form ∧i∈I 32pi ⇒

∧j∈J 32qj, where pi, qj are atomic propositions, and then compares the number of violated

assumptions to the number of violated guarantees. The rLTL semantics, even though being

able to distinguish between the different ways in which a specification can be violated,

does not distinguish between the violation of one assumption from the violation of multiple

assumptions. Hence, the second approach cannot be compared to the one proposed here.

Furthermore, we make no distinctions between safety and liveness properties.

Moreover, in [BCE19], a different framework for robust synthesis is proposed, that does

not encompass the one above. Different notions of robustness are considered, e.g., a robust

system satisfies a guarantee, even though a finite number, or even all, of the inputs are

hidden/misread, or even though the assumption is violated finitely/infinitely often. Many

of the considered notions are incorporated in rLTL, and in fact our definition of robustness

allows systems to satisfy weaker guarantees, whenever the assumptions are also weakened,

which is more general. Nonetheless, we cannot compare with the notions of robustness

in [BCE19] that count the number of violations, since the rLTL semantics distinguishes only

between zero, finite, and infinite violations of a specification.

In the intriguing work of [RBN16], a link between both MTL/LTL, and Linear Time-

Invariant (LTI) filtering is established. Specifically, it is shown that LTI filtering corresponds

to MTL if addition and multiplication are interpreted as max and min, and if true and false

are interpreted as one and zero. By using different filtering kernels, one expresses weaker
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or stronger interpretations of the same formula. However, this burdens the designer both

with the choice of kernels and the use multiple semantics to reason about how weakening

the assumptions leads to weakening the guarantees.

Contrary to all the approaches described so far, which require robustness metrics to be

provided by the designer, when working with rLTL the designer only needs to provide the

desired specification and no other information. Hence, we ease the designer’s effort since it

is not always clear which quantitative metric leads to the desired qualitative behavior.

Another interpretation of robustness is provided in [48] as the difference between the

number of steps violating the guarantee and the number of steps violating the assumption

of a reactive specification. A more robust reactive system produces smaller such differences,

and robustness is evaluated quantitatively as a mean-payoff objective, averaged over all

executions of the system. Alternatively, the discounted-sum can be used as a quantitative

objective, which offers convergence properties over infinite runs. Moreover, this objective

has been shown to pair well with qualitative LTL constraints, both in the reinforcement

learning domain [WET15] and to obtain sound and efficient automata-based algorithms for

quantitative reasoning [BCV21]. Again, such approaches are not comparable to ours since

rLTL distinguishes only between zero, finite, and infinite violations of a specification.

In the domain of software systems, [ZGK20] defines robustness as the largest set of de-

viating environmental behaviors under which the system still guarantees a desired property.

Therefore, robustness is defined, with respect to a property, as the set of all deviations under

which a system continues to satisfy that property. Although this work focuses on comput-

ing robustness, rather than characterizing it, it is possible that certain temporal deviations

could be expressed in rLTL. Additional noteworthy works, although incomparable with the

methods described here, are [CGL10] and [MS09], which consider continuity properties of

software expressed by the requirement that a deviation in a program’s input causes a pro-

portional deviation in its output. Although natural, these notions of robustness only apply

to the Turing model of computation and not to the reactive model of computation employed

57



in this work.

A plethora of works exists regarding robustness of specifications when reasoning over real-

valued, continuous-time signals, with the most prominent being [FP09], [DM10]. In these

works, no discussion of the specific choices made when crafting the many-valued semantics

is provided. Interestingly, though, the notion of “time robustness” in [DM10] is close to the

one of rLTL in the sense that it measures the time needed for the truth value of a formula to

change. Nevertheless, in this line of work robustness is derived from the real-valued nature

of the signals, whereas in rLTL, we reason over the more classical setting of discrete-time

and Boolean valued signals, with robustness derived from the temporal evolution of these

signals. Consequently, the works of [FP09], [DM10], and their extensions can be considered

of orthogonal and complementary nature to ours.

Another relevant approach of multi-valued extensions of LTL is found in [ABK16]. This

work introduces two quantitative extensions of LTL, one by propositional quality operators

termed LTL[F ], parameterized by a set F of functions over [0, 1], and one by discounting

operators termed LTLdisc[D], parameterized by a set D of discounting functions. Both logics

employ a many-valued variant of LTL to reason about quality, and the satisfaction value

of a specification is a number in [0, 1], which describes the quality of the satisfaction. The

use of a many-valued semantics in the context of quality is as natural as in the context

of robustness. In fact, it was shown in [TN16] that by dualizing the semantics of rLTL in

a specific sense we obtain a logic that is adequate to reason about quality. Nevertheless,

there are strong conceptual differences between the approach taken in this work and the

approach in [ABK16]. First, our notion of robustness or quality is intrinsic to the logic,

while the approach in [ABK16] requires the designer to provide their own interpretation in

the form of the sets F or D of functions that parameterize the logic. Second, there are

several choices to define the logical connectives on the interval [0, 1]. As an illustration for

the latter, note that there are three commonly used conjunctions: Łukasiewicz’s conjunction

a ∧ b = max{0, a + b − 1}, Gödel’s conjunction a ∧ b = min{a, b}, and the product of real
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numbers a ∧ b = a · b also known as Goguen’s conjunction. Moreover, each such choice

leads to a different notion of implication via residuation. Whether Gödel’s conjunction,

used in [ABK16], is the most adequate to formalize quality is a question not addressed

in [ABK16]. In contrast, we carefully discuss and motivate all the choices made when

defining the semantics of rLTL with robustness considerations.

The last body of work related to the contents of this manuscript is [KL07, AK14] on

lattice automata and lattice LTL. The syntax of lattice LTL is similar to the syntax of LTL

except that atomic propositions assume values on a finite lattice (which has to satisfy further

restrictions such as being distributive). Although both lattice LTL as well as rLTL are many-

valued logics, lattice LTL derives its many-valued character from the atomic propositions.

In contrast, atomic propositions in rLTL are interpreted classically (i.e., they only assume

two truth values). Therefore, the many-valued character of rLTL arises from the temporal

evolution of the atomic propositions and not from the nature of the atomic propositions or

their interpretation. In fact, if we only allow two truth values for the atomic propositions

in lattice LTL, as is the case for rLTL, lattice LTL degenerates into LTL. Hence, these two

logics capture orthogonal considerations, and results on lattice LTL and lattice automata do

not shed light on how to address similar problems for rLTL.

9.2 Beyond rLTL verification

This second part of the manuscript studies the verification problem for rLTL. As we have

already mentioned, the rLTL semantics allows for specifying robustness and is able to distin-

guish between the different ways in which a specification is violated in a qualitative manner,

that is, between zero, finitely, and infinitely many violations. Nonetheless, rLTL does not dis-

tinguish between different numbers of assumptions being violated and, hence, cannot count

over bounded time segments where a specification is defined as a conjunction of assumptions,

each corresponding to a time step.

59



In addition to the verification problem, other problems for rLTL have been studied in

the literature. The work in [TN16] studies the synthesis problem for a restricted fragment

that contains only the always and eventually operators, while [TN15] extends the same

results to full rLTL. Both works consider the environment to be antagonistic, which is not

very realistic and leads to suboptimal controllers. This issue is addressed in [NNZ21] by

introducing adaptive strategies, which are not more complex than the classical ones, and

take advantage of the environment making bad moves. Furthermore, the runtime monitoring

problem, i.e., checking properties of infinite words based on a given finite prefix, is studied

in [MNS20] in the context of rLTL. Finally, different shortcomings of LTL, other than the

lack of robustness, such as the limited expressiveness and the lack of quantitative features,

have been addressed by other extensions like Linear Dynamic Logic [Var11] and Prompt-

LTL [KPV09] respectively. While the above logics and rLTL address each shortcoming

separately, the work in [NWZ19] shows how to combine any two of the aforementioned

extensions and at the same time do not incur any additional complexity overhead from

merging the logics.
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CHAPTER 10

Review of Linear Temporal Logic (LTL) and LTL

model-checking

Notation: Let N = {0, 1, . . .} be the set of natural numbers and B = {0, 1} the set of

Boolean values with 0 interpreted as false and 1 interpreted as true. For a set A, let 2A be

the powerset of A, i.e., the set of all subsets of A, let Aω be the set of all infinite sequences

of elements of A, and let card(A) denote the cardinality of A. An alphabet Σ is a finite,

nonempty set whose elements are called symbols. An infinite word σ is an infinite sequence

σ = a0a1 · · · ∈ Σω of symbols with ai ∈ Σ, i ∈ N. For an infinite word σ = σ0σ1 · · · ∈ Σω

and i ∈ N, let σ(i) = σi denote the i-th symbol of σ and σi.. the (infinite) suffix of σ starting

at position i, i.e., σi.. = σiσi+1 . . . ∈ Σω. Notice that σ0.. = σ.

We begin by describing the syntax and semantics of Linear Temporal Logic (LTL) and

recall the model-checking problem. This will form the backdrop against which rLTL will be

introduced. The syntax of LTL is defined as follows.

Definition 11 (LTL syntax). Let P be a nonempty, finite set of atomic propositions. The

set of all LTL formulae on P, written LTL(P), is the smallest set satisfying:

• each p ∈ P is an LTL formula; and

• if ϕ and ψ are LTL formulae, then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ ⇒ ψ, ©ϕ, 3ϕ, 2ϕ,

ϕ U ψ, and ϕ R ψ.

The closure of ϕ, denoted by cl(ϕ), is the set of its distinct subformulae, defined as:
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• cl(p) = {p}, if p ∈ P (atomic propositions);

• cl(op(ϕ)) = {op(ϕ)} ∪ cl(ϕ), if op ∈ {¬,©,3,2} (unary operators); and

• cl(op(ϕ, ψ)) = {op(ϕ, ψ)} ∪ cl(ϕ) ∪ cl(ψ), if op ∈ {∧,∨,⇒,U ,R} (binary operators).

The length of a formula ϕ ∈ LTL(P), defined as |ϕ| = card(cl(ϕ)), is the number of distinct

subformulae it contains.

For notational convenience, we have added syntactic sugar in the above definition by

including the operators ∧, ⇒, 2, 3, R with their usual meaning as part of the syntax,

although they can be defined using the ¬, ∨, and U operators.

Usually, the semantics of LTL are defined in terms of a satisfiability relation between

an LTL formula over the set of atomic propositions P and an infinite word over Σ = 2P .

Having in mind the rLTL version of these notions, we provide a mathematically equivalent

definition of the semantics as a mapping W assigning an infinite word σ ∈ Σω and an LTL

formula ϕ to the element W (σ, ϕ) ∈ B.

Definition 12 (LTL Semantics). The LTL semantics is a mapping W :
(
2P
)ω×LTL(P)→

{0, 1}, inductively defined as follows for p ∈ P and ϕ, ψ ∈ LTL(P):

• For atomic propositions: W (σ, p) =


0, if p /∈ σ(0),

1, if p ∈ σ(0).

• For logical connectives:

W (σ,¬ϕ) = 1−W (σ, ϕ), W (σ, ϕ ∧ ψ) = min {W (σ, ϕ),W (σ, ψ)},

W (σ, ϕ ∨ ψ) = max {W (σ, ϕ),W (σ, ψ)}, W (σ, ϕ⇒ ψ) = max {W (σ,¬ϕ),W (σ, ψ)}.
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• For temporal operators:

W (σ,©ϕ) = W (σ1.., ϕ), W (σ,3ϕ) = sup
i≥0

W (σi.., ϕ), W (σ,2ϕ) = inf
i≥0

W (σi.., ϕ),

W (σ, ϕ U ψ) = sup
j≥0

min

{
W (σj.., ψ), inf

0≤i<j
W (σi.., ϕ)

}
,

W (σ, ϕ R ψ) = inf
j≥0

max

{
W (σj.., ψ), sup

0≤i<j
W (σi.., ϕ)

}
.

The evaluation of the mapping W on the LTL formula ϕ and the infinite word σ, W (σ, ϕ),

is the valuation of ϕ over σ.

Having introduced the semantics of LTL, we now recall the problem of LTL model-

checking [CGP99, CHV18, KPR98, LP85, PZ08, Sch02, VW86], which is essential in formal

in verification. Given a model of a system, the question is to decide whether or not all

possible executions of the model satisfy a specification. Traditionally, these models are

described by Kripke structures [CHV18, Section 2.2], and the specifications are described by

LTL formulae.

Definition 13 (Kripke structures). A Kripke structure over a set P of atomic propositions

is a quadruple K = (Q,Q0, R, `), where Q is a finite set of states, Q0 ⊆ Q is a set of initial

states, R ⊆ Q × Q is a set of transitions, and ` : Q → 2P is the labeling function that

associates each state with a set of atomic propositions.

A path in K is an infinite sequence of states q0q1 · · · ∈ Qω such that q0 ∈ Q0 and

(qi, qi+1) ∈ R for all i ∈ N. Any path induces a corresponding computation `(q0)`(q1) · · · ∈(
2P
)ω .

In addition to Kripke structures, Büchi automata are another ingredient in the solution

of the LTL model-checking problem. LTL formulae can be translated to Büchi Automata

(BA) [BKL08, Section 4.3], [CHV18, Section 4.2] and the set of words they recognize.

Definition 14 (Büchi Automaton). A (non-deterministic) Büchi Automaton (BA) is

a quintuple A = (Q,Σ, Q0,∆, F ) consisting of a nonempty, finite set Q of states, a (finite)
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input alphabet Σ, a set of initial states Q0 ⊆ Q, a (nondeterministic) transition relation

∆ ⊆ Q× Σ×Q, and a set F ⊆ Q defining the acceptance conditions.

The run of a BA on a word σ ∈ Σω (also called input) is an infinite sequence of states

q0q1 . . . ∈ Qω satisfying q0 ∈ Q0 and (qi, σ(i), qi+1) ∈ ∆ for all i ∈ N. A run ρ is called

accepting if at least one of its infinitely often occurring states is in F . The language of a

BA A, denoted by L(A), is the set of all infinite words σ ∈ Σω for which an accepting run

of A exists.

The translation of an LTL formula ϕ to a BA Aϕ is done in two steps: 1) the LTL formula

ϕ is translated to a Generalized Büchi Automaton (GBA); and 2) the GBA is translated to

a BA.

Definition 15 (Generalized Büchi Automaton). A (non-deterministic) Generalized Büchi

Automaton (GBA) is a quintuple G = (Q,Σ, Q0,∆,F) consisting of a nonempty, finite set

Q of states, a (finite) input alphabet Σ, a set of initial states Q0 ⊆ Q, a (nondeterministic)

transition relation ∆ ⊆ Q× Σ×Q, and a set F ⊆ 2Q denoting the acceptance conditions.

The run of a GBA is defined analogously to the run of a BA. The difference is that a

run is accepting if its set of infinitely often occurring states contains at least one state from

each accepting set in F . Note that there may be no accepting sets, in which case any infinite

run trivially satisfies this property.

Transforming a GBA G into an equivalent BA A requires creating card(F) many copies

of G. The acceptance set of copy Gi is connected to the states of copy Gmod(i+1,card(F)),

i = 1, . . . , card(F). Then, the accepting condition for A asks that any accepting state of

the first copy is visited infinitely often. This implies that the accepting sets of each copy are

visited infinitely often too. For more details see [BKL08, Section 4.3.4].

Proposition 10.0.1 (Section 5.2, [BKL08]). Any LTL formula ϕ can be translated to a

GBA Gϕ with at most 2|ϕ| states and at most |ϕ| accepting conditions. Moreover, the GBA

Gϕ can be translated to a BA Aϕ with at most |ϕ| · 2|ϕ| states.
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Therefore, the time complexity of translating an LTL formula ϕ to a GBA Aϕ is O
(
2|ϕ|
)
,

and that of translating an LTL formula ϕ to a BA Aϕ is O
(
|ϕ| · 2|ϕ|

)
.

Problem 4 (LTL model-checking). Given a set of atomic propositions P, a Kripke structure

K and an LTL formula ϕ, do all the computations of K satisfy ϕ?

The classical approach to solving Problem 4 has running time depending linearly on the

size of the Kripke structure and exponentially on the length of the LTL formula.

Corollary 10.0.2 (LTL model-checking). The standard procedure for model-checking an

LTL formula ϕ on a Kripke structure K is as follows [BKL08, Section 5.2], [CHV18, Section

4]:

1. Construct a BA AK such that AK accepts a computation π ∈
(
2P
)ωif and only if π is

a computation of K. The size of AK is linear in the size of K, i.e., in its number of

states denoted by |K|.

2. Construct a BA A¬ϕ recognizing the words satisfying the negation of ϕ, i.e., ¬ϕ. The

size of A¬ϕ is exponential in |ϕ|, specifically O
(
|ϕ| · 2|ϕ|

)
by Proposition 10.0.1.

3. Compose AK with A¬ϕ to obtain AK,¬ϕ, which recognizes all the words of L (AK)

that do not satisfy ϕ, i.e., L (AK,¬ϕ) = L (AK) ∩ L (A¬ϕ). The size of AK,¬ϕ is

O
(
|K| · |ϕ| · 2|ϕ|

)
.

4. Check the emptiness of L (AK,¬ϕ): if AK,¬ϕ only recognizes the empty language, then

L(AK) satisfies ϕ.

The time complexity of Step 4 in terms of the size of K and the length of the LTL formula

ϕ is:

O
(
|K| · |ϕ| · 2|ϕ|

)
. (10.1)

The above represents the classical, and tight, upper bound for the time complexity of LTL

model-checking.
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In this work, we are concerned with solutions to the model-checking problem that employ

a translation of formulae to GBAs as we described in the previous paragraph. For this reason,

when discussing the complexity of the model-checking problem induced by different temporal

logics, we focus on the size of the corresponding GBA. For example, for an LTL formula ϕ

the corresponding GBA has size O
(
2|ϕ|
)
, and in Sections 12 and 13 we will derive similar

upper bounds for rLTL and an rLTL fragment respectively.
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CHAPTER 11

The Syntax and Semantics of Robust Linear Temporal

Logic

The main goal of robust Linear Temporal Logic (rLTL) is to embed a notion of robustness

into LTL. With this in mind, we crafted the syntax of rLTL so as to closely resemble that of

LTL by using robust versions of LTL operators. In addition to defining the rLTL syntax, we

also define the rLTL semantics in this section and justify the necessity of the many-valued

semantics, i.e., the five rLTL truth values. We do so by first considering the rLTL�,⟐(P)

fragment, i.e., the fragment of rLTL formulae that only allows the “robust always” � and

“robust eventually” ⟐ temporal operators. This fragment was first introduced in [TN16],

and in this section we extend those results from the fragment rLTL�,⟐(P) to full rLTL.

11.1 rLTL Syntax

We begin by presenting the rLTL syntax.

Definition 16 (rLTL syntax). Let P be a nonempty, finite set of atomic propositions. The

set of all rLTL formulae on P, written rLTL(P), is the smallest set satisfying:

• each p ∈ P is an rLTL formula; and

• if ϕ and ψ are rLTL formulae, then so are ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ V ψ, �ϕ, ⟐ϕ, �ϕ,

ϕ U· ψ, and ϕ R· ψ.

The length of a ϕ ∈ rLTL(P), denoted by |ϕ|, is the number of its distinct subformulae.
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Notice that in LTL, the conjunction and implication operators can be derived from nega-

tion and disjunction. This is no longer the case in rLTL since it has a many-valued semantics.

On these grounds, we directly included conjunction and robust implication as part of the

rLTL syntax in Definition 16. The same reason justifies the presence of the robust release

operator R· , which, in the case of LTL, can be derived from the until and negation operators

as ϕ R ψ = ¬ (¬ϕ U ψ).

11.2 The rLTL�,⟐(P) fragment

Consider, as a running example, the LTL formula 2p with p an atomic proposition. There is

only one way in which this formula can be satisfied, namely when p holds at every time step.

In contrast, there are several ways in which this formula can be violated. Our goal is to find

a semantics that distinguishes between these different ways. We aim for such distinction to

be limited by what can be expressed in LTL so that we can easily leverage the wealth of

existing results on LTL verification and synthesis.

By intuitively investigating the different ways in which 2p is violated over an infinite

trace, we are able to distinguish the following four cases: (1) the worst possible violation

occurs when p fails to hold at every time step; (2) a slightly better scenario, which still

violates 2p, is where p holds for at most finitely many time instants; (3) better yet would be

that p holds at infinitely many instants, while still failing to hold at infinitely many instants;

(4) finally, among all the possible ways in which 2p can be violated, the most preferable case

would be the one where p fails to hold for at most finitely many time instants. Consequently,

our robust semantics is designed to distinguish between satisfaction and these four possible

different ways to violate 2p. However, as convincing as this argument might be, a question

persists: in which sense can we regard these five alternatives as canonical?
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11.2.1 Why 5 truth values?

We answer this question by interpreting satisfaction of 2p as a counting problem, and show-

ing that there exists a partition of the infinite strings Bω = {0, 1}ω, which is induced by the

LTL2,3 formulae. The semantics of the LTL 2 operator is given by:

W (σ,2ϕ) = inf
i∈N

W (σi.., ϕ). (11.1)

We make the following observation: the truth value of the LTL formula 2ϕ on the infinite

word σ ∈ Σω is invariant under permutations of W ω(σ, ϕ) = W (σ0.., ϕ)W (σ1.., ϕ) · · · . To

make this observation precise, let f : N→ N be a permutation of N, i.e., a bijection. Then,

we have:

inf
i∈N

W (σi.., ϕ) = inf
i∈N

W (σf(i).., ϕ). (11.2)

The above property shows that the 2 operator counts the number of zeros in the infinite

stringW ω(σ, ϕ) ∈ {0, 1}ω. When this number is 0,W (σ,2ϕ) is one (true), and otherwise zero

(false). The position where zeros occur is not relevant, only their presence or their absence is.

Towards characterizing how to count in LTL2,3, we first note that by successively applying

permutations that swap position i with position i + 1 and leave all the remaining elements

of N unaltered, we can transform any string ρ ∈ {0, 1}ω into one of the following forms

1ω, 0k1ω, (01)ω, 1k0ω, 0ω, where k ∈ N. Moreover, since LTL2,3 is stutter-free [PW97], it

follows that the previous cases degenerate into the following five:

1ω, 01ω, (01)ω, 10ω, and 0ω. (11.3)

We interpret these as the ability to count if the number of zeros and ones is zero, finite, or

infinite. If we denote by (z, o) the number of zeros and ones, with z, o ∈ {zer, fin, inf}, then

we have:

• 1ω corresponds to (zer, inf).
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• 01ω corresponds to (fin, inf).

• (01)ω corresponds to (inf, inf).

• 10ω corresponds to (inf, fin).

• 0ω corresponds to (inf, zer).

We can thus conclude the need for 5 truth values to describe the 5 different ways of counting

zeros and ones. Concretizing this discussion, in particular (11.3), on the running example of

the formula 2p, we obtain the following canonical forms that can be distinguished:

{p}ω, ({¬p}{p})+ {p}ω, ({¬p}{p})ω , ({¬p}{p})+ {¬p}ω, and {¬p}ω. (11.4)

It is no surprise that these are exactly the five cases discussed in the beginning of this

subsection.

The considerations in this section suggest the need for a semantics that is 5-valued rather

than 2-valued so that we can distinguish between the aforementioned five cases. Therefore,

we need to replace Boolean algebras by a different type of algebraic structure that can

accommodate a 5-valued semantics. Da Costa algebras, reviewed in the next section, are an

example of such algebraic structures.

11.2.2 da Costa Algebras

According to our running example 2p, the desired semantics should have one truth value

corresponding to true and four truth values corresponding to different shades of false. It is

instructive to think of truth values as the elements of B4, i.e., the four-fold Cartesian product

of B, that arise as the possible values of the 4-tuple of LTL formulae:

(2p,32p,23p,3p). (11.5)

To ease notation, we denote such values interchangeably by b = b1b2b3b4 and b =

(b1, b2, b3, b4) with bi ∈ B for i ∈ {1, 2, 3, 4}. The value 1111 then corresponds to true
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since 2p is satisfied. The most preferred violation of 2p (p fails to hold at only finitely many

time instants) corresponds to 0111, followed by 0011 (p holds at infinitely many instants

and also fails to hold at infinitely many instants), 0001 (p holds at most at finitely many

instants), and 0000 (p fails to hold at every time instant). Such preferences can be encoded

in the linear order:

0000 ≺ 0001 ≺ 0011 ≺ 0111 ≺ 1111, (11.6)

that renders the set:

B5 = {0000, 0001, 0011, 0111, 1111} , (11.7)

a (bounded) distributive lattice with top element > = 1111 and bottom element ⊥ = 0000.

Formally, B5 is the subset of B4 consisting of the 4-tuples (b1, b2, b3, b4) ∈ B4 satisfying the

monotonicity property:

i ≤N j implies bi ≤B bj, (11.8)

where i, j ∈ {1, . . . , 4}, ≤N is the natural order on the natural numbers and ≤B is the natural

order on the Boolean algebra B. In B5, the meet u can be interpreted as minimum and the

join t as maximum with respect to the order in (11.6). We use u and t when discussing

lattices in general and use min and max for the specific lattice B5 or the Boolean algebra B.

The first choice to be made in using the lattice (B5,min,max) to define the semantics of

rLTL�,⟐(P) is the choice of an operation on B5 modeling conjunction. It is well know that

all the desirable properties of a many-valued conjunction are summarized by the notion of

triangular-norm, see [H98, NPM99]. One can compare two triangular-norms s and t using

the partial order defined by declaring s ≤ t when s(a, b) ≤ t(a, b) for all a, b ∈ B5. According

to this order, the triangular-norm min is maximal among all triangular-norms (i.e., we have

t(a, b) ≤ min{a, b} for every a, b ∈ B5 and every triangular-norm t). This shows that if we

choose any triangular-norm t different from min, there exist elements a, b ∈ B5 for which

we have t(a, b) < min{a, b}. Hence, any choice different from min would result in situations
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where the value of a conjunction is smaller than the value of the conjuncts, which is not

reasonable when interpreting the value of the conjuncts as different shades of false. To

illustrate this point, consider the formula 2p∧2q and the word σ = ∅{p, q}ω. As introduced

above, the value of 2p on σ corresponds to 0111 and the value of 2q on σ corresponds to

0111 since on both cases we have the most preferred violation of the formulae. Therefore,

the value of 2p ∧2q on σ should also be 0111 since the formula 2p ∧2q is only violated a

finite number of times. It thus seems natural1 to model conjunction in B5 by min and, for

similar reasons, to model disjunction in B5 by max.

As in intuitionistic logic, our implication is defined as the residue of u2. In other words,

we define the implication a→ b by requiring that c � a→ b if and only if cua � b for every

c ∈ B5. This leads to:

a→ b =


1111 if a � b; and

b otherwise.

However, we now diverge from intuitionistic logic (and most many-valued logics) where

negation of a is defined by a→ 0000. Such negation is not compatible with the interpretation

that all the elements of B5, except for 1111, represent (different shades of) false and thus

their negation should have the truth value 1111. To make this point clear, we present in

Table 11.1 the intuitionistic negation in B5 and the desired negation compatible with the

interpretation of the truth values in B5.

1Note that there are situations where it is convenient to model conjunction differently. In the work of
Bloem et al. [BCG10], the specific way in which robustness is modeled requires distinguishing between the
number of conjuncts that are satisfied in the assumption ∧i∈Iϕi. This cannot be accomplished if conjunction
is modeled by min, and a different triangular-norm would have to be used for this purpose. Note that both
Łukasiewicz’s conjunction as well as Goguen’s conjunction have the property that their value decreases as
the number of conjuncts that are true decreases.

2This is also done in context of residuated lattices that is more general than the Heyting algebras used
in intuitionistic logic. Recall that a residuated lattice is a lattice (A,u,t), satisfying the same additional
conditions, and equipped with a commutative monoid (A,⊗,1) satisfying additional compatibility conditions.
Since we chose the lattice meet u to represent conjunction, we have a residuated lattice where ⊗ = u and
1 = >.
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Table 11.1: Desired negation vs. intuitionistic negation in B5.

Value Desired negation Intuitionistic negation

1111 0000 0000

0111 1111 0000

0011 1111 0000

0001 1111 0000

0000 1111 1111

What is then the algebraic structure on B5 that supports the desired negation, dual to

the intuitionistic negation? This very same problem was investigated in [Pri09], and the

answer is da Costa algebras.

Definition 17 (da Costa algebra). A da Costa algebra is a sextuple (A,u,t,�,→, · ) where:

• (A,u,t,�) is a distributive lattice where � is the ordering relation derived from u and

t,

• → is the residual of u (i.e., a � b→ c if and only if a u b � c for every a, b, c ∈ A),

• a � b t b for every a, b ∈ A, and

• a � b whenever c t c � a t b for every a, b, c ∈ A.

In a da Costa algebra, one can define the top element > to be > = at a for an arbitrary

a ∈ A; note that> is unique and independent of the choice of a. Hence, the third requirement

in Definition 17 amounts to the definition of top element, while the fourth requirement can

be simplified to a � b whenever > � atb. We can easily verify that B5 is a da Costa algebra

if we use the desired negation defined in Table 11.1.

It should be mentioned that working with a 5-valued semantics has its price. The law

of non-contradiction fails in B5 (i.e., a u a may not equal ⊥ = 0000 as evidenced by taking

73



a = 0111). However, since a u a ≺ 1111, a weak form of non-contradiction still holds as

au a is to be interpreted as a shade of false but not necessarily as the least preferred way of

violating au a, which corresponds to ⊥. Contrary to intuitionistic logic, the law of excluded

middle is valid (i.e., a t a = > = 1111). Finally, a = 0111 shows that a 6= a, although it is

still true that a→ a. Interestingly, we can think of the double negation:

a =


1111, if a = 1111,

0000, otherwise,

as quantization in the sense that true is mapped to true and all the shades of false are

mapped to false. Hence, double negation quantizes the five different truth values into two

truth values (true and false) in a manner that is compatible with our interpretation of truth

values.

11.2.3 Semantics of rLTL�,⟐(P) on da Costa Algebras

The semantics of rLTL�,⟐(P) is given by a mapping V , called valuation as in the case of

LTL, that maps an infinite word σ ∈ Σω and an rLTL�,⟐(P) formula ϕ to an element of

B5. In defining V , we judiciously use the algebraic operations of the da Costa algebra B5 to

give meaning to the logical connectives in the syntax of rLTL�,⟐(P). In the following, let

Σ = 2P , where P is a finite set of atomic propositions.

The semantics of rLTL is a mapping V :
(
2P
)ω×rLTL(P)→ B5. On atomic propositions

p ∈ P , V is defined by:

V (σ, p) =


0000, if p /∈ σ(0); and

1111, if p ∈ σ(0).
(11.9)

Hence, atomic propositions are interpreted classically, i.e., only two truth values are used.

Since we are using a 5-valued semantics, we provide a separate definition for all the four
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logical connectives:

V (σ,¬ϕ) = V (σ, ϕ), (11.10)

V (σ, ϕ ∧ ψ) = V (σ, ϕ) u V (σ, ψ), (11.11)

V (σ, ϕ ∨ ψ) = V (σ, ϕ) t V (σ, ψ), (11.12)

V (σ, ϕV ψ) = V (σ, ϕ)→ V (σ, ψ). (11.13)

Note how the semantics mirrors the algebraic structure of da Costa algebras. This is no

accident since valuations are typically algebra homomorphisms.

Unfortunately, da Costa algebras are not equipped3 with operations corresponding to �

and ⟐, the robust versions of 2 and 3, respectively. Therefore, we resort to the counting

interpretation in Section 11.2.1 to motivate the semantics of �. Formally, the semantics of

� is given by:

V (σ,�ϕ) =

(
inf
i≥0

V1(σi.., ϕ), sup
j≥0

inf
i≥j

V2(σi.., ϕ), inf
j≥0

sup
i≥j

V3(σi.., ϕ), sup
i≥0

V4(σi.., ϕ)

)
, (11.14)

where Vk(σ, ϕ) = πk ◦ V (σ, ϕ) for k ∈ {1, 2, 3, 4} and πk : B5 → B are the projections on the

k-th element of a truth value defined by:

πk(a1, a2, a3, a4) = ak. (11.15)

To illustrate the semantics of �, let us consider the simple case where ϕ is just an atomic

proposition p. This means that one can express V (σ,�p) in terms of the LTL valuation W

by:

V (σ,�p) = (W (σ,2p),W (σ,32p),W (σ,23p),W (σ,3p)) . (11.16)

In other words, V1(σ,�p) corresponds to the LTL truth value of 2p, V2(σ,�p) corresponds

to the LTL truth value of 32p, V3(σ,�p) corresponds to the LTL truth value of 23p, and

3One could consider developing a notion of da Costa algebras with operators in the spirit of Boolean
algebras with operators [JT51]. We leave such investigation for future work.
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V4(σ,�p) corresponds to the LTL truth value of 3p. Equation (11.16) connects the semantics

of � to the counting problems described in Section 11.2.1 and to the 4-tuple of LTL formulae

in (11.5).

The last operator is ⟐, whose semantics is given by:

V (σ,⟐ϕ) =

(
sup
i≥0

V1(σi.., ϕ), sup
i≥0

V2(σi.., ϕ), sup
i≥0

V3(σi.., ϕ), sup
i≥0

V4(σi.., ϕ)

)
. (11.17)

According to the counting problems used in Section 11.2.1 to motivate the proposed seman-

tics, there is only one way in which the LTL formula 3p, for an atomic proposition p, can

be violated. Hence, V (σ,⟐p) is one of only two possible truth values: 1111 or 0000. We

further note that ⟐ is not dual to �, as expected in a many-valued logic where the law of

double negation fails.

Having defined the semantics of rLTL�,⟐(P), let us now see if the formula �p V �q,

where �p is an environment assumption and �q is a system guarantee with p, q ∈ P , lives

to the expectations set in the introduction and to the intuition provided in Section 11.2.1.

1. According to (11.16), if 2p holds, then �p evaluates to 1111 and the implication

�p V �q is true, i.e., the value of �p V �q is 1111, if �q evaluates to 1111, that

is, if 2q holds. Therefore, the desired behavior of 2p ⇒ 2q, when the environment

assumptions hold, is retained.

2. Consider now the case where 2p fails but the weaker assumption 32p holds. In this

case �p evaluates to 0111 and the implication �pV �q is true if �p evaluates to 0111

or higher. This means that 32q needs to hold.

3. A similar argument shows that we can also conclude the following consequences when-

ever �pV �q evaluates to 1111: 23q follows whenever the environment satisfies 23p

and 3q follows whenever the environment satisfies 3p. We thus conclude that the se-

mantics of �p V �q captures the desired robustness property by which a weakening

of the assumption �p leads to a weakening of the guarantee �q.
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11.3 Full rLTL(P)

In this section, we present the semantics of full rLTL(P) by providing the semantics for three

additional operators: the “robust release”, denoted by R· , the “robust until”, denoted by U· ,

and the “next”, denoted by �, operators.

11.3.1 Why 5 truth values?

We revisit this question to better motivate the full rLTL semantics. According to the safety-

progress classification of temporal properties, eloquently put forward in [CMP93, MP87], 2p

defines a safety property. It can be expressed as A(L) with L being the regular language

Σ∗{p} and A the operator generating all the infinite words in
(
2P
)ω with the property

that all its finite prefixes belong to L. In addition to A, we can find in [CMP93, MP87] the

operators E, R, and P defining guarantee, response, and persistence properties, respectively.

The language E(L) consists of all the infinite words that contain at least one prefix in L,

the language R(L) consists of all the infinite words that contain infinitely many prefixes in

L, and the language P (L) consists of all the infinite words such that all but finitely many

prefixes belong to L. Using these operators we can reformulate the semantics of �p from

(11.14) as:

V (σ,�p) =



1111 if σ ∈ A(L);

0111 if σ ∈ P (L) \ A(L);

0011 if σ ∈ R(L) \ (A(L) ∪ P (L));

0001 if σ ∈ E(L) \ (A(L) ∪ P (L) ∪R(L)); and

0000 if σ /∈ E(L).

(11.18)

We thus obtain a different justification for the five different truth values used in rLTL

and why the five different cases in (11.4) can be seen as canonical. Moreover, we can build

on this perspective to define the semantics of the robust release and the robust until.
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11.3.2 Semantics of full rLTL(P)

We are now ready to define the semantics for the “robust release” R· , and “robust until” U·

operators. Equality (11.18) suggests how we can define the 5-valued semantics for the release

operator. Recall that the LTL formula pR q, for atomic propositions p and q, defines a safety

property, and that its semantics is given by:

W (σ, p R q) = inf
j≥0

max

{
V1(σj.., q), sup

0≤i<j
V1(σi.., p)

}
. (11.19)

We can interpret max
{
V1(σj.., q), sup0≤i<j V1(σi.., p)

}
above as the definition of the regular

language L = Σ∗{q} + Σ∗{p}Σ+ and infj≥0 as the requirement that every prefix of a string

satisfying pR q belongs to L, i.e., as the definition of the operator A. Therefore, the 5-

valued semantics can be obtained by successively enlarging the language A(L) through the

replacement of the operator A, formalized by inf in Equation (11.19), by the operators P

formalized by sup inf, R formalized by inf sup, and E for formalized by sup. This observation

leads to the semantics:

V (σ, ϕ R· ψ) = (V1(σ, ϕ R· ψ), V2(σ, ϕ R· ψ), V3(σ, ϕ R· ψ), V4(σ, ϕ R· ψ)) , (11.20)

where:

V1(σ, ϕ R· ψ) = inf
j≥0

max

{
V1(σj.., ψ), sup

0≤i<j
V1(σi.., ϕ)

}
,

V2(σ, ϕ R· ψ) = sup
k≥0

inf
j≥k

max

{
V2(σj.., ψ), sup

0≤i<j
V2(σi.., ϕ)

}
,

V3(σ, ϕ R· ψ) = inf
k≥0

sup
j≥k

max

{
V3(σj.., ψ), sup

0≤i<j
V3(σi.., ϕ)

}
,

V4(σ, ϕ R· ψ) = sup
j≥0

max

{
V4(σj.., ψ), sup

0≤i<j
V4(σi.., ϕ)

}
.

Similarly to LTL, �ψ = false R· ψ holds, thereby showing that the semantics for the

R· operator is compatible with the semantics of the � operator. We glean further intuition

behind the definition of R· by considering the special case where ϕ is given by p and ψ is
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given by q, for two atomic propositions p, q ∈ P . Expressing V (σ, p R· q) in terms of an LTL

valuation W , we obtain:

V (σ, p R· q) = (W (σ, p R q), W (σ,32q ∨3p), W (σ,23q ∨3p), W (σ,3q ∨3p)) .

As long as p occurs, the value of p R· q is at least 0111. It could be argued that the

semantics of p R· q should also count the number of occurrences of q preceding the first

occurrence of p. As we detail in Section 11.5, this can be expressed in rLTL by making use

of the proposed semantics.

In LTL, the U operator is dual to the R operator, but such relationship does not extend

to rLTL in virtue of how negation was defined. Hence, the semantics of the U· operator has

to be introduced separately. Analogously to above, we interpret the LTL semantics of p U· q,

given by:

W (σ, p U q) = sup
j≥0

min

{
V1(σj.., q), inf

0≤i<j
V1(σi.., p)

}
, (11.21)

as defining the language E ({p}∗{q}). In the hierarchy of the operators E, R, P , and A,

defined by the inclusions A(L) ⊂ P (L) ⊂ R(L) ⊂ E(L) for any regular language L, the

language E ({p}∗{q}) cannot be enlarged as it sits at the top of the hierarchy. Therefore,

the semantics of the U· operator is given by:

V (σ, ϕ U· ψ) = (V1(σ, ϕ U· ψ), V2(σ, ϕ U· ψ), V3(σ, ϕ U· ψ), V4(σ, ϕ U· ψ)) , (11.22)

where:

Vk(σ, ϕ U· ψ) = sup
j≥0

min

{
Vk(σj.., ψ), inf

0≤i<j
Vk(σi.., ϕ)

}
, for each k ∈ {1, 2, 3, 4}.

We obtain, by definition, that the semantics of the U· operator is compatible with the

semantics of the ⟐ operator in the sense that ⟐ψ = true U· ψ.

Finally, we define the robust semantics of next as a direct generalization of the LTL

semantics from B to B5:

V (σ,�ϕ) = V (σ1.., ϕ). (11.23)
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11.4 Review of rLTL semantics

To recap the previous discussion, we compactly present the formal rLTL semantics below.

Definition 18 (rLTL Semantics). The rLTL semantics is a mapping V :
(
2P
)ω×rLTL(P)→

B4, inductively defined as follows for p ∈ P and ϕ, ψ ∈ rLTL(P):

• For atomic propositions: V (σ, p) =


0000, if p /∈ σ(0),

1111, if p ∈ σ(0).

• For logical connectives:

V (σ,¬ϕ) = V (σ, ϕ), V (σ, ϕ ∧ ψ) = V (σ, ϕ) u V (σ, ψ),

V (σ, ϕ ∨ ψ) = V (σ, ϕ) t V (σ, ψ), V (σ, ϕV ψ) = V (σ, ϕ)→ V (σ, ψ).

• For temporal operators:

V (σ,�ϕ) = V (σ1.., ϕ),

V (σ,⟐ϕ) =

(
sup
i≥0

V1(σi.., ϕ), sup
i≥0

V2(σi.., ϕ), sup
i≥0

V3(σi.., ϕ), sup
i≥0

V4(σi.., ϕ)

)
,

V (σ,�ϕ) =

(
inf
i≥0

V1(σi.., ϕ), sup
j≥0

inf
i≥j

V2(σi.., ϕ), inf
j≥0

sup
i≥j

V3(σi.., ϕ), sup
i≥0

V4(σi.., ϕ)

)
,

V (σ, ϕ U· ψ) = (V1(σ, ϕ U· ψ), V2(σ, ϕ U· ψ), V3(σ, ϕ U· ψ), V4(σ, ϕ U· ψ)) ,

where: Vk(σ, ϕ U· ψ) = supj≥0 min {Vk(σj.., ψ), inf0≤i<j Vk(σi.., ϕ)} , k ∈ {1, 2, 3, 4}.

V (σ, ϕ R· ψ) = (V1(σ, ϕ R· ψ), V2(σ, ϕ R· ψ), V3(σ, ϕ R· ψ), V4(σ, ϕ R· ψ)) ,

where:

V1(σ, ϕ R· ψ) = inf
j≥0

max

{
V1(σj.., ψ), sup

0≤i<j
V1(σi.., ϕ)

}
,

V2(σ, ϕ R· ψ) = sup
k≥0

inf
j≥k

max

{
V2(σj.., ψ), sup

0≤i<j
V2(σi.., ϕ)

}
,

V3(σ, ϕ R· ψ) = inf
k≥0

sup
j≥k

max

{
V3(σj.., ψ), sup

0≤i<j
V3(σi.., ϕ)

}
,

V4(σ, ϕ R· ψ) = sup
j≥0

max

{
V4(σj.., ψ), sup

0≤i<j
V4(σi.., ϕ)

}
.
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11.5 Examples

In this section, we showcase the applicability of the proposed semantics with a number of

examples.

11.5.1 The usefulness of implications that are not true

We argued in the previous section that rLTL captures the intended robustness properties for

the specification �p V �q whenever this formula evaluates to 1111. But does the formula

�p V �q still provide useful information when its value is lower than 1111? It follows

from the semantics of implication that V (σ,�p V �q) = b, for b ≺ 1111, occurs when

V (σ,�q) = b, i.e., whenever a value of b can be guaranteed despite b being smaller than

V (σ,�p). The value V (σ,�pV �q) thus describes which weakened guarantee follows from

the environment assumption whenever the intended system guarantee does not. This can be

seen as another measure of robustness: despite �q not following from �p, the behavior of

the system is not arbitrary, a value of b is still guaranteed. The usefulness that the different

shades of false provide is further discussed in Section 14 in the context of a concrete case

study.

11.5.2 GR(1) in rLTL

The GR(1) fragment of LTL is becoming increasingly popular for striking an interesting

balance between its expressiveness and the complexity of the corresponding synthesis prob-

lem [BJP12]. A GR(1) formula is an LTL(2,3) formula of the form:

∧
i∈I

23pi ⇒
∧
j∈J

23qj, (11.24)
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where pi and qj are atomic propositions and I, J are finite sets. We obtain the rLTL version

of (11.24) simply by dotting the boxes and the diamonds:

∧
i∈I

�⟐ pi V
∧
j∈J

�⟐ qj. (11.25)

Any valuation V for �⟐ pi can be expressed in terms of a valuation W for LTL as:

V (σ,�⟐ pi) = (W (σ,23pi), W (σ,23pi), W (σ,23pi), W (σ,3pi)) .

Therefore, V (σ,�⟐ pi) can only assume three different values: 1111 when 23pi holds, 0001

when 23pi fails to hold but 3pi does hold, and 0000 when 3pi fails to hold. Based on

this observation, and assuming that (11.25) evaluates to 1111, we conclude that
∧
j∈J 23qj

holds whenever
∧
i∈I 23pi does, as required by (11.24). In contrast to (11.24), however, the

weakened system guarantee
∧
j∈J 3qj holds whenever the weaker environment assumption∧

i∈I 3pi does.

11.5.3 Non-counting formulae

All the preceding examples were counting formulae. We now consider the simple non-

counting formula 2(p ⇒ 3q), which requires each occurrence of p to be followed by an

occurrence of q. The word σ1 = {p}{q}∅ω clearly satisfies this formula although its permu-

tation σ2 = {q}{p}∅ω does not. In addition to being a non-counting formula, 2(p ⇒ 3q)

is one of the most popular examples of an LTL formula used in the literature known as the

“request-response” property, and, for this reason, constitutes a litmus test to rLTL. Actually,

such formula is part of the reactive specification patterns identified in [DAC99], which are

part of our case studies in Section 14. The semantics of the dotted version of 2(p ⇒ 3q)

can be expressed using an LTL valuation W as:

V (σ,�(pV ⟐q)) =

(W (σ,2(p⇒ 3q)),W (σ,23p⇒ 23q),W (σ,32p⇒ 23q),W (σ,2p⇒ 3q)) .
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It is interesting to observe how the semantics of ϕ = �(p V ⟐q) recovers: strong fairness,

also known as compassion, when the value of ϕ is 0111; weak fairness, also known as jus-

tice, when the value of ϕ is 0011; and the even weaker notion of fairness represented by the

LTL formula 2p ⇒ 3q, when the value of ϕ is 0001. The fact that all these different and

well known notions of fairness naturally appear in the proposed semantics is another strong

indication of rLTL’s naturalness and usefulness.

11.5.4 Counting with “robust release”

As we discussed before, the semantics of ϕ R· ψ does not count how many times ψ holds

before the first occurrence of ϕ. This property, however, is captured by the rLTL formula:

(ϕ R· ψ) ∧ (¬ϕ U· ψ) . (11.26)

To see why, we assume ϕ = p and ψ = q for atomic propositions p and q. Then, express the

semantics of the rLTL formula (11.26) in terms of an LTL valuation W as:

V (σ, (p R· q) ∧ (¬p U· q)) = (W (σ, p R q),W (¬p U q),W (¬p U q),W (¬p U q)) .

Note how we can now distinguish between three cases: (1) p R q holds, corresponding to

value 1111; (2) q holds at least once before being released by p, corresponding to value 0111;

and (3) q does not hold before being released by p, corresponding to value 0000.

11.5.5 Non-decomposition of “robust until”

The previous example showed how the LTL equivalence between ϕ R ψ and (ϕ R ψ) ∧

(¬ϕ U ψ) is not valid in rLTL. Another LTL equivalence that is not valid in rLTL is the

decomposition of the until operator into its liveness and safety parts, that is the equivalence

between ϕ U ψ and 3ψ ∧ (ψ R (ψ ∨ ϕ)). The rLTL formula ⟐ψ ∧ (ψ R· (ψ ∨ ϕ)) expresses
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a weaker requirement than ϕ U· ψ that is also useful to express robustness. When ϕ and ψ

are the atomic propositions p and q, respectively, the semantics of ⟐ψ ∧ (ψ R· (ψ ∨ ϕ)) can

be expressed in terms of an LTL valuation W as:

V (σ,3q ∧ (q R (q ∨ p))) = (W (σ, p U q), W (σ,3q), W (σ,3q), W (σ,3q)) .

Whereas ϕ U· ψ only assumes two values, ⟐ψ ∧ (ψ R· (ψ ∨ ϕ)) assumes three possible values

allowing to separate the words that violate ϕ U ψ into those that satisfy 3q and those that

do not.
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CHAPTER 12

The rLTL model checking problem

12.1 Relating LTL and rLTL

In this section we discuss, at the technical level, the relationships between rLTL(P) and

LTL(P). Recall the mappings πj : B5 → B introduced in (11.15), πj(a1, a2, a3, a4) = aj,

j ∈ {1, 2, 3, 4}. Composing πj with the rLTL valuation V we obtain the function Vj = πj ◦ V

that transforms an infinite word σ ∈ Σω and an rLTL(P) formula ϕ into the element

Vj(σ, ϕ) ∈ B. Each truth value in B5 can be viewed as a sequence of 4 bits. Consequently,

we show how to translate an rLTL(P) formula ϕ into four LTL(P) formulae ϕ1, . . . , ϕ4 such

that:

πj(V (σ, ϕ)) = Vj(σ, ϕ) = W (σ, ϕj) , (12.1)

for all σ ∈ Σω and j ∈ {1, . . . , 4}. The key idea is to emulate the semantics of each operator

occurring in ϕ component-wise by means of dedicated LTL formulae. To make this clear and

straightforward, we define the operator:

ltl : {1, . . . , 4} × rLTL(P)→ LTL(P), (12.2)

as in Table 12.1. Then, each ϕj formula is constructed as:

ϕj := ltl(j, ϕ). (12.3)

It is not hard to verify that the formulae ϕj have indeed the desired meaning. Moreover,

notice that due to the ordering of the rLTL truth values in B5, see (11.6), it follows that:

W (σ, ϕj) ≥ W (σ, ϕi), for j ≥ i. (12.4)

85



Table 12.1: The rLTL semantics via the ltl operator.

Operator Symbol Semantics for p ∈ P , ϕ, ψ ∈ rLTL(P).

Atomic Proposition ∀i ∈ {1, 2, 3, 4} : ltl(i, p) = p.

Negation ¬ ∀i ∈ {1, 2, 3, 4} : ltl(i,¬ϕ) = ¬ltl(1, ϕ).

Conjunction ∧ ∀i ∈ {1, 2, 3, 4} : ltl(i, ϕ ∧ ψ) = ltl(i, ϕ) ∧ ltl(i, ψ).

Disjunction ∨ ∀i ∈ {1, 2, 3, 4} : ltl(i, ϕ ∨ ψ) = ltl(i, ϕ) ∨ ltl(i, ψ).

Robust Implication V
∀i ∈ {1, 2, 3} : ltl(i, ϕV ψ) = (ltl(i, ϕ)⇒ ltl(i, ψ)) ∧ ltl(i+ 1, ϕV ψ),

ltl(4, ϕV ψ) = (ltl(4, ϕ)⇒ ltl(4, ψ)).

Next � ∀i ∈ {1, 2, 3, 4} : ltl(i,�ϕ) =©ltl(i, ϕ).

Robust Eventually ⟐ ∀i ∈ {1, 2, 3, 4} : ltl(i,⟐ϕ) = 3ltl(i, ϕ).

Robust Always �

ltl(1,�ϕ) = 2ltl(1, ϕ),

ltl(2,�ϕ) = 32ltl(2, ϕ),

ltl(3,�ϕ) = 23ltl(3, ϕ),

ltl(4,�ϕ) = 3ltl(4, ϕ).

Robust Until U· ∀i ∈ {1, 2, 3, 4} : ltl(i, ϕ U· ψ) = ltl(i, ϕ) U ltl(i, ψ).

Robust Release R·

ltl(1, ϕ R· ψ) = ltl(1, ϕ) R ltl(1, ψ),

ltl(2, ϕ R· ψ) = 3ltl(2, ϕ) ∨32ltl(2, ψ),

ltl(3, ϕ R· ψ) = 3ltl(3, ϕ) ∨23ltl(3, ψ),

ltl(4, ϕ R· ψ) = 3ltl(4, ϕ) ∨3ltl(4, ψ).

Although the above construction only incurs a linear blowup in the number of subformulae of

ϕj, the resulting LTL formula itself might be exponentially larger when explicitly constructed

due to the recursive substitution.
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Next, we show that the LTL(P) semantics can be recovered from the first bit of the

rLTL(P) semantics. Specifically, for any φ ∈ LTL(P), there exists a ϕ ∈ rLTL(P), such that

V1(σ, ϕ) = W (σ, φ) for every σ ∈ Σω. The construction of a suitable ϕ ∈ rLTL(P), given

any φ ∈ LTL(P), is straightforward given Table 12.1. First, every implication ψ1 ⇒ ψ2 in

φ ∈ LTL(P) is replaced by the equivalent in LTL formula ¬ψ1∨ψ2. Second, φ is brought into

negation normal form. Finally, by taking the robust version of the latter LTL formula, i.e.,

replacing the LTL temporal operators with their corresponding rLTL temporal operators,

one obtains the desired ϕ ∈ rLTL(P).

Remark 9. In the construction above, we replace every implication in the LTL formula φ by

its LTL-equivalent negation form. This is justified as, given the semantics of rLTL and LTL

respectively, we have that for any infinite word σ ∈ Σω the first bit of the rLTL valuation,

V1(σ, ϕV ψ), and the LTL valuation, W (σ, ϕ1 ⇒ ψ1), are related as follows:

V1(σ, ϕV ψ) ≤ V1(σ,¬ϕ ∨ ψ) = W (σ,¬ϕ1 ∨ ψ1) = W (σ, ϕ1 ⇒ ψ1).

Furthermore, we can construct simple examples for which the inequality above is strict, i.e.,

it fails to be an equality. For instance, consider the LTL formula 2p ⇒ 2q, its corre-

sponding rLTL formula �pV �q, and the word σ = ∅{p}ω. Then, on one hand it holds

that V1(σ,�pV �q) = 0, but on the other hand we can easily verify the following equalities

V1(σ,¬� p ∨�q) = 1 = W (σ,2p⇒ 2q).

The preceding discussion leads to the following result.

Lemma 12.1.1. Any rLTL formula ϕ ∈ rLTL(P) can be translated to four LTL formulae

ϕj ∈ LTL(P), j = 1, 2, 3, 4, as in (12.3) and such that (12.1) holds, with |ϕj| ≤ c|ϕ|,

for some c > 0. Moreover, for any LTL formula φ ∈ LTL(P), one can systematically

construct an rLTL formula ϕ ∈ rLTL(P), such that V1(σ, ϕ) = W (σ, φ) for every σ ∈ Σω

and with |ϕ| = |φ|. The aforementioned translations imply decidability of any problem for

rLTL(P), whose corresponding problem for LTL(P) is decidable. Moreover, due to their

effective translations to each other, LTL(P) and rLTL(P) are equally expressive.
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Proof. Translating φ ∈ LTL(P) to ϕ ∈ rLTL(P) only involves replacing the LTL temporal

operators with their rLTL counterparts, which implies that |ϕ| = |φ|. The translation of

ϕ ∈ rLTL(P) to ϕj ∈ LTL(P), j = 1, 2, 3, 4, is provided in (12.3). This translation also

results in a linear increase in the number of the unique subformulae, i.e., |ϕj| ≤ c|ϕ|, and

the exact coefficient c > 0 is computed in Appendix A.1.

12.2 rLTL model-checking: definitions and background

Similarly to LTL, rLTL gives rise to various decision problems. One of the most important

problems is the model-checking problem. In this section we first formalize this problem in the

context of rLTL. Then, through the translation from rLTL to LTL provided in Section 12.1,

the decidability of the rLTL model-checking problem is immediately settled. However, the

treatment provided by the translation results in the construction of relatively large automata,

which is inefficient for the purposes of model-checking. Therefore, we review the tighter

known complexity bounds for the reader’s convenience. Although the proof of such results is

outside of the scope of this work (the interested reader is referred to [TN15, TN16] for more

details), they provide the setting in which we can appreciate the results in Section 13 on an

rLTL fragment for which the model checking problem can be solved with lower complexity.

As discussed in our review of LTL, given a model of a system that is represented as a GBA,

the LTL model-checking problem essentially asks whether or not all possible computations

of the model satisfy an LTL specification. In a similar manner, the rLTL model-checking

problem is intuitively understood as the question of “to what degree does a model satisfy

a specification?”. The specification in this section is represented by an rLTL formula. For

simplicity, we consider the model of the system to be given directly as a GBA. This leads to

the following formulation of the rLTL model-checking problem.

Problem 5 (rLTL model-checking). Given a set of atomic propositions P, a GBA G with the

corresponding set of words L(G) ⊆
(
2P
)ω that it recognizes, an rLTL formula ϕ ∈ rLTL(P),
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and a truth value b ∈ B5, we ask if V (σ, ϕ) ≥ b holds for all σ ∈ L(G).

In practice, one would be more interested in finding what is the largest b ∈ B5 such that

V (σ, ϕ) ≥ b holds for all σ ∈ L(G). Section 12.3 provides the answer to Problem 5, and

repeatedly solving this problem for decreasing values of b addresses the optimization problem

of finding the largest b ∈ B5 such that V (σ, ϕ) ≥ b for all σ ∈ L(G). Note that this requires

at most four invocations of the rLTL model-checking procedure and, hence, does not change

the asymptotic complexity of the problem.

12.3 Improved bounds for rLTL model-checking

In the preceding section, we provided a simple means to translate rLTL formulae into LTL

formulae via the ltl operator in (12.2). Hence, as a consequence of Lemma 12.1.1 the de-

cidability question for Problem 5 is settled. In practice, however, this translation involves

a blow-up, which results in relatively large automata that would then be used to solve the

rLTL model-checking problem.

To alleviate this problem, a more efficient approach, via a direct translation from rLTL(P)

formulae into Generalized Büchi Automata (GBAs), was presented in [TN16] for the rLTL�,⟐

fragment and for the full rLTL in [TN15]. This construction, given an rLTL(P) formula ϕ,

results in a GBA with O
(
5|ϕ|
)
states, where |ϕ| is the number of subformulae of ϕ. This

is the same complexity as for the LTL translation, which results in an automaton with size

in O
(
2|ϕ|
)
, once we replace 2 with 5 since rLTL is 5-valued while LTL is 2-valued. Recall

that in this work, we reason about the model-checking complexity by focusing on the size of

the corresponding GBA constructed from a given formula. On these grounds, we recall the

following result from [TN16, TN15].

Theorem 12.3.1. Given an rLTL(P) formula ϕ, the rLTL model-checking problem (Prob-
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lem 5) can be decided by using an automaton with at most:

O
(
5|ϕ|
)

(12.5)

states, where |ϕ| denotes the length of formula ϕ, i.e., the number of its distinct subformulae.

Interestingly, the many valued semantics of rLTL allows posing useful optimization prob-

lems in system verification. For instance, as discussed in the beginning of this section, one

might be interested in the largest value that a system guarantees. Therefore, by repeatedly

solving Problem 5 for decreasing truth values, one finds the largest value that a system guar-

antees. Theorem 12.3.1 provides a non-trivial upper bound, when compared to the direct

translation via the ltl operator, as the following example suggests.

Example 1. Consider the rLTL(P) formula �p V �q, and assume we wish to check

V (σ, ϕ) = 0111 for every σ ∈ L(G), where G is the GBA representing the model of a given

system. By using the ltl operator in Table 12.1, this is equivalent to model-checking the

formula:

ltl(2,�pV �q) = (23p⇒ 23q) ∧ (32p⇒ 32q) ∧ (3p⇒ 3q).

The original rLTL formula is of length 5, and the LTL formula above has length 15. Hence,

by naïvely applying LTL complexity bounds (10.1), we count an upper bound of 215 states the

corresponding GBA, which is worse than the upper bound of 55 states from (12.5).
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CHAPTER 13

A fragment for efficient rLTL model-checking

Theorem 12.3.1 states that the rLTL(P) model-checking problem can be solved by using a

GBA of size O
(
5|ϕ|
)
. Nonetheless, this bound is still more expensive than the one of the

LTL(P) model-checking problem, which is O
(
2|ϕ|
)
. It is then natural to ask the following

question, can we find a fragment of rLTL(P) for which the model-checking problem can be

solved more efficiently?

To motivate an answer to the above question, we show that the high complexity of

rLTL(P) model-checking stems from the fact that the four bits of an rLTL truth value are

coupled by the V and ¬ operators.

Example 2. Consider the rLTL(P) formula ϕ given by ¬(p V (q R· r)), where p, q and r

are atomic propositions. To compute, for example, the 4-th bit of its valuation, one needs to

unfold the corresponding LTL(P) formula:

ltl(4,¬(pV (q R· r))) = ¬ltl(1, pV (q R· r))

= ¬
(

(ltl(1, p)⇒ ltl(1, q R· r)) ∧ ltl(2, pV (q R· r)
)

= ¬
(

(p⇒ (q R r)) ∧ ltl(2, (pV (q R· r)))
)

=
(
p ∧ ¬(q R r)

)
∨ ¬
((

ltl(2, p)⇒ ltl(2, q R· r)
)
∧ ltl(3, pV (q R· r))

)
=
(
p ∧ ¬(q R r)

)
∨ ¬
((
p⇒ (3q ∨32r)

)
∧ ltl(3, pV (q R· r))

)
.

If we continue unfolding the formula, we see that one needs to check an LTL formula that

non-trivially depends on the bits 1, 2, and 3 of the valuation of ϕ.
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With this intuition in mind, we aim to identify a fragment of rLTL(P) that suffers

minimally from the coupling required by, e.g., the robust implication.

13.1 Main results

We begin by defining the following fragments of rLTL(P).

Definition 19 (Fragments rLTL\{V}(P) and rLTL\{V}(P)). Given a set of atomic proposi-

tions P, define rLTL\{V}(P) ⊂ rLTL(P) as the set of all rLTL formulae that either do not

contain any V operator, or if they do, the antecedent of the implication does not contain any

� or R· operators. Then define the more general fragment rLTL\{V}(P) as:

rLTL\{V}(P) = rLTL\{V}(P)
⋃{

ψ1 V ψ2

∣∣ψ1, ψ2 ∈ rLTL\{V}(P)
}
, (13.1)

which allows for one V operator on the outermost level with no restrictions on the implica-

tion’s antecedent.

The main result of this section establishes refined complexity bounds for the model-

checking problem of the above defined fragments.

Theorem 13.1.1. Consider a set of atomic propositions P. The rLTL model-checking prob-

lem for any formula in rLTL\{V}(P) can be solved by performing at most 4 LTL model-

checking steps, each using an automaton with at most:

O
(
2|ϕ|−κ(ϕ)3κ(ϕ)

)
(13.2)

states, where κ(ϕ) = card ({ψ ∈ cl(ϕ) | ψ = �ψ1}) + card ({ψ ∈ cl(ϕ) | ψ = ψ1 R· ψ2}) , i.e.,

the number of distinct subformulae of ϕ of the form �ψ and ψ1 R· ψ2, and |ϕ| is the length

of ϕ.

Remark 10. Similarly to LTL, one can verify that for any ϕ ∈ rLTL(P), it holds that

⟐ϕ = true U· ϕ, and �ϕ = false R· ϕ. Hence, the function κ(ϕ) can be understood as
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the number of distinct ψ1 R· ψ2 subformulae of ϕ, accounting for those underlying the �

operators.

The above result provides a smaller complexity bound for the rLTL model-checking prob-

lem, which is closer to the tight bound of the LTL model-checking problem, i.e., O
(
2|ϕ|
)
. In

fact, in the absence of � and R· operators, the bound in (13.2) reduces to that of LTL. A

special case of Theorem 13.1.1 is the result proposed in [APN18], where the same complexity

bound is proven for a smaller rLTL fragment, specifically the set of rLTL formulae that do

not contain any R· or V (regardless of their antecedent) operators, or that allow for at most

one V operator only on the outermost level.

Remark 11. Throughout this section we compare the model-checking complexity of the pro-

posed fragment rLTL\{V}(P) to that of full LTL. This is justified by observing that for any

LTL formula φ ∈ LTL(P), after replacing every implication ψ1 ⇒ ψ2 therein by ¬ψ1 ∨ ψ2,

the corresponding rLTL formula belongs to the proposed fragment. This observation follows

directly by (13.1).

To illustrate the practicality of the proposed fragment rLTL\{V}(P), we examine the LTL

formulae found in the Büchi Store [TTC13], an open repository of LTL formulae. More than

95% of the corresponding rLTL versions of these formulae belong to rLTL\{V}(P). Moreover,

as discussed in Section 14.3 in more detail, all the relevant reactivity patterns [DAC99] fit into

the fragment rLTL\{V}(P). Finally, the proposed fragment includes the GR(1) fragment.

These considerations establish rLTL\{V}(P) as a practically useful fragment of rLTL.

We devote the rest of this section to formally proving Theorem 13.1.1. Towards this, we

introduce Algorithm 1. At a high level, Algorithm 1 translates an rLTL formula into four LTL

formulae and then model-checks each of them. The key idea is that when operating within

the proposed fragment, the four formulae are independent of each other. It is actually this

independence that allows us to construct smaller automata, by the use of temporal testers,

and attain the desired complexity bounds. By exploiting the ordering of the five truth values
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Algorithm 1: Model-checking algorithm for the rLTL\{V}(P) fragment.

Input: A language L(G) generated by a GBA G, and a formula ϕ ∈ rLTL\{V}(P).

Output: The truth value of ϕ on L(G), i.e., b(L(G), ϕ) ∈ B5.

for j = 0, 1, 2, 3 do
w := infσ∈L(G) W (σ, ltl(4− j, ϕ)).

if w = 0 then
return B5[j]

return B5[4]

in (11.6) the algorithm stops once an LTL formula is falsified.

Overall in this section we prove the following points: (1) the fragment rLTL\{V}(P)

allows independent bit-wise computations for the rLTL model-checking problem; (2) smaller

automata can be constructed for the formulae in the rLTL\{V}(P) fragment by utilizing

temporal testers; and (3) for any formula in the rLTL\{V}(P) fragment, the claimed bound

on the size of the corresponding automaton is satisfied.

13.2 Bit-wise independence of rLTL\{V}(P) and insights on the ro-

bust implication

The goal of this section is to establish that for any formula ϕ ∈ rLTL\{V}(P), the truth

value of the j-th bit of its valuation, Vj(σ, ϕ), is independent of any bit i 6= j. Recall from

Definition 19 that rLTL\{V}(P) contains all rLTL formulae that either do not contain any

V operators or, if they do, there exist no � or R· operators in the implication’s antecedent.

For the formulae that do not contain any V operators, the desired result is easily verified

by inspection of Table 12.1. For the formulae that contain V, but their assumptions do not

contain any � or R· operators we perform the following analysis.

As Examples 1 and 2 show, theV operator induces coupling of the different LTL formulae
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corresponding to the bits of an rLTL truth value. Thus, we now draw insight on when it

makes sense for an implication to be evaluated robustly. The notion of robustness, namely

that “small violations of the assumption lead to, at most, small violations of the guarantee”,

is infused in the semantics of the V operator, see (11.13), since by weakening the assumption

and the guarantee, different rLTL truth values are obtained. Consequently, we investigate

what “weakening a formula” means in the context of rLTL.

Definition 20 (Weakened rLTL(P) formula). Given a formula ϕ ∈ rLTL(P), we say that

ϕ admits a weakened version if there exists an infinite word σ ∈ Σω such that the valuation

of ϕ on σ we have that V (ϕ, σ) ∈ {0001, 0011, 0111}.

Based on the above definition, for any rLTL formula ϕ that does not admit a weak-

ened version and any infinite word σ ∈ Σω, we have that V (ϕ, σ) ∈ {0000, 1111}, i.e., the

valuation of ϕ admits only a binary truth value. This is equivalent to the statement that

the corresponding LTL formulae ϕj, for j ∈ {1, 2, 3, 4}, defined in (12.3) are semantically

equivalent. Given the rLTL semantics, we make the following crucial observation.

Proposition 13.2.1. Given a formula ϕ ∈ rLTL(P), if ϕ admits a weakened version, then

ϕ contains at least one � or one R· operator.

Proof. We prove the result by contraposition. Consider any ϕ ∈ rLTL(P) that does not

contain any � or R· operators. The proof proceeds in three steps.

1. If, additionally, ϕ does not contain any V operators, by inspection of Table 12.1 we

see that the corresponding LTL formulae ϕj, for j ∈ {1, 2, 3, 4}, defined in (12.3) are

identical. Thus, the valuations W (σ, ϕj), j ∈ {1, 2, 3, 4}, over any σ ∈ Σω are equal,

and, hence, V (σ, ϕ) ∈ {0000, 1111}.

2. If ϕ is of the form φV ψ, where neither φ nor ψ contain a V operator, then from the

semantics of robust implication in (11.13) we have that V (σ, ϕ) = 1111 if V (σ, φ) �
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V (σ, ψ), and that V (σ, ϕ) = V (σ, ψ) otherwise. Furthermore, from the point above

V (σ, φ), V (σ, ψ) ∈ {0000, 1111}, and, hence, V (ϕ, σ) ∈ {0000, 1111}.

3. Finally, if ϕ ∈ rLTL(P) does not contain any � or R· operators, but may contain an

arbitrary number of V operators, the same result follows simply by induction on the

subformulae of ϕ.

Therefore, if ϕ does not contain a �, or a R· operator, then it does not admit a weakened

version. Equivalently, if ϕ admits a weakened version, then ϕ contains at least one �, or

one R· operator. This concludes the proof.

We use this proposition to determine when it is necessary to evaluate an implication

robustly. Given an rLTL formula of the form ϕ V ψ, if the assumption ϕ does not admit a

weakened version, then the implication does not have to be evaluated robustly, and the LTL

equivalence ¬ϕ ∨ ψ can be used instead. The following proposition formalizes this idea.

Proposition 13.2.2. An rLTL(P) formula ϕ V ψ is semantically equivalent to ¬ϕ ∨ ψ,

i.e., for any σ ∈ Σω it holds that V (σ, ϕ V ψ) = V (σ,¬ϕ ∨ ψ) if ϕ does not contain any �

or R· operators.

Proof. Consider the rLTL formula ϕ V ψ, where ϕ does not contain a robust implication

operator for simplicity. The valuation of ϕ V ψ over σ ∈ Σω, denoted by V (σ, ϕ V ψ), is

equal to:(
W

(
σ,

4∧
j=1

(ϕj ⇒ ψj)

)
,W

(
σ,

4∧
j=2

(ϕj ⇒ ψj)

)
,W

(
σ,

4∧
j=3

(ϕj ⇒ ψj)

)
,W (σ, ϕ4 ⇒ ψ4)

)
,

(13.3)

where ϕj, ψj, for j ∈ {1, 2, 3, 4}, are defined in (12.3) by using the ltl operator according

to Table 12.1. If ϕ contains no � and no R· , as described by Proposition 13.2.1, the LTL
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formulae ϕj are identical. Let us denote all of them by ϕ1. Then V (σ, ϕV ψ) becomes:(
W

(
σ,

4∧
j=1

(ϕ1 ⇒ ψj)

)
,W

(
σ,

4∧
j=2

(ϕ1 ⇒ ψj)

)
,W

(
σ,

4∧
j=3

(ϕ1 ⇒ ψj)

)
,W (σ, ϕ1 ⇒ ψ4)

)
,

(13.4)

where we can see that, contrary to (13.3), all the antecedents are now identical. We now

show that (13.4) is equal to:

(W (σ, ϕ1 ⇒ ψ1) , W (σ, ϕ1 ⇒ ψ2) , W (σ, ϕ1 ⇒ ψ3) , W (σ, ϕ1 ⇒ ψ4)) . (13.5)

For any σ ∈ Σω:

1. Assume W (σ, ϕ1) = 0. Then W (σ, ϕ1 ⇒ ψj) = 1, for j ∈ {1, 2, 3, 4}, and both (13.4)

and (13.5) are equal to 1111.

2. Assume W (σ, ϕ1) = 1, and denote each truth value in B5 as:

B5 = {0000, 0001, 0011, 0111, 1111} = {B5[0],B5[1],B5[2],B5[3],B5[4]} .

If W (σ, ψj) = 0 for all j ∈ {1, 2, 3, 4}, then both (13.4) and (13.5) are equal to B5[0].

Else, let k be the smallest element of {1, 2, 3, 4} such that W (σ, ψk) = 1. Then, by

(12.4), we have that W (σ, ψj) ≥ W (σ, ψk) for j ≥ k, yielding W (σ, ψj) = 1 for j ≥ k,

which, in turn, implies that both (13.4) and (13.5) are equal to B5[5− k].

The above shows that (13.4) and (13.5) are equal when evaluated over any σ ∈ Σω. By

using the LTL equivalence between ϕj ⇒ ψj and ¬ϕj ∨ ψj, we have that (13.5) is equal to:

(W (σ,¬ϕ1 ∨ ψ1) , W (σ,¬ϕ1 ∨ ψ2) , W (σ,¬ϕ1 ∨ ψ3) , W (σ,¬ϕ1 ∨ ψ4)) , (13.6)

and, thus, equal to (13.4). This yields the desired equality V (σ, ϕV ψ) = V (σ,¬ϕ ∨ ψ).

The result for any ϕ ∈ rLTL(P) that does not contain any �, or R· operators, but may

contain an arbitrary number of V operators, follows simply by induction on the subformulae

of ϕ since neither the assumptions, nor the guarantees of these implications contain any �

or R· operators.
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Finally, by Proposition 13.2.2 and the rLTL semantics in Table 12.1, we are able to

conclude that for any ϕ ∈ rLTL\{V}(P) the value of Vj(σ, ϕ) is independent of any bit i 6= j.

This concludes the objective of this section.

13.3 Introducing temporal testers

In this section, we review the concept of temporal testers [PZ08, KPR98]. Temporal testers

are discrete transition systems equipped with justice conditions. One of the appeals of

temporal testers is that they can be used to obtain automata recognizing infinite words that

satisfy an LTL formula by composing testers recognizing its subformulae. For example, from

testers for the formulae p U q and 2r, one can construct a tester for p U (2r) by composing

the testers for p U q and 2r using the constraint q = 2r. We start by providing the necessary

definitions.

Definition 21. A temporal tester for an LTL formula ϕ ∈ LTL(P) is defined as a tuple

Tϕ = (S,Θ, R,J ) where:

• S is the set of states, S ⊆ Bcl(ϕ). Each state x ∈ S is a function x : cl(ϕ)→ B mapping

a formula ψ ∈ cl(ϕ) to an element of B. We denote the evaluation of x on ψ as xψ

and interpret it as the truth value of ψ at the state x.

• Θ ⊆ S is a set of initial states.

• R ⊆ S × S is a transition relation.

• J = {J1, . . . , JK} ⊆ 2S is the set of justice requirements, where J ⊆ S for each J ∈ J .

A computation of a tester is an infinite sequence of states γ = x(0)x(1) . . . such that x(0) ∈ Θ,(
x(i), x(i+1)

)
∈ R for i ≥ 0, and for every J ∈ J , γ contains infinitely many states x(i) ∈ J .

Given a computation γ, we let σ(γ) ∈
(
2P
)ω be the word σ(γ) = σ0(γ)σ1(γ) . . . where σi(γ)

is the subset of P defined by p ∈ σi(γ) if and only if x(t)
p = 1.
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𝑥𝑝 , 𝑥𝑞, 𝑥𝑝U𝑞 𝑥𝑝 , 𝑥𝑞, 𝑥𝑝U𝑞

𝑥𝑝 , 𝑥𝑞, 𝑥𝑝U𝑞

𝑥𝑝 , 𝑥𝑞, 𝑥𝑝U𝑞

𝑥𝑝 , 𝑥𝑞, 𝑥𝑝U𝑞

(a) Tester TpUq.

𝑥𝑝 , 𝑥^𝑝 𝑥𝑝 , 𝑥^𝑝𝑥𝑝 , 𝑥^𝑝

(b) Tester T3p.

𝑥𝑝 , 𝑥□𝑝 𝑥𝑝 , 𝑥□𝑝𝑥𝑝 , 𝑥□𝑝

(c) Tester T2p.

𝑥𝑝 , 𝑥□𝑝 , 𝑥^□𝑝

𝑥𝑝 , 𝑥□𝑝 , 𝑥^□𝑝

𝑥𝑝 , 𝑥□𝑝 , 𝑥^□𝑝 𝑥𝑝 , 𝑥□𝑝 , 𝑥^□𝑝

𝑥𝑝 , 𝑥□𝑝 , 𝑥^□𝑝

(d) Tester T32p with two disjoint components.

Figure 13.1: At each state, for a subformula ψ, xψ denotes xψ = 1, and x̄ψ denotes xψ = 0. All

states are valid initial states. The double line states are contained in the justice requirement.

It is easily verified that the above definition of a temporal tester is equivalent to the one

in [PZ08, KPR98].

Example 3 (A tester for the until operator adapted from [PZ08]). A tester for p U q, where

p and q are atomic propositions, is as follows:

TpUq :



S =
{
x(1), x(2), x(3), x(4), x(5)

}
,

Θ = S,

R =
{

(x, x′) ∈ S × S | xpUq = xq ∨
(
xp ∧ x′pUq

)}
,

J = {J1}, J1 = {x ∈ S | ¬xpUq ∨ xq = 1} .

(13.7)

The above tester can be represented as an automaton with 5 states, see Figure 13.1a.

In the general case, the tester TϕUψ, where ϕ and ψ are LTL(P) formulae, is constructed
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by composition of the testers for their subformulae. The following definition is adapted

from [KPR98, Section 3.2], [PZ08, Section 7].

Definition 22 (Composition of Temporal Testers). The synchronous parallel composition

of two testers is (S,Θ, R,J ) = (S1,Θ1, R1,J1) 9 (S2,Θ2, R2,J2), where S = S1 ∪ S2,

Θ = Θ1 ∩Θ2, R = R1 ∩R2, and J = J1 ∪ J2.

1. For a unary LTL operator op, a tester Top(ϕ) is given by Top(p)|p←ϕ 9 Tϕ, where the

subscript p ← ϕ denotes that we replace every instance of xp and xop(p) in the first

tester, by xϕ and xop(ϕ) respectively.

2. For a binary LTL operator op, a tester Top(ϕ1,ϕ2) is given by Top(p,q)|p←ϕ1,q←ϕ2 9 Tϕ1 9

Tϕ2, where we replace every instance of xp, xq and xop(p,q) in the first tester, by xϕ1,

xϕ2, and xop(ϕ1,ϕ2) respectively.

By using the identities 3p = true U p, 2p = ¬3¬p, and TpUq, we construct T3p and T2p,

which are shown in Figures 13.1b and 13.1c. By composing them, we obtain T32p, shown in

Figure 13.1d. Such testers play an important role in proving smaller upper bounds for the

rLTL model-checking problem. Towards this, the following results from [APN18] provide

recursive bounds on the size of a tester Tϕ for an LTL(P) formula ϕ.

Definition 23 (Size of a tester). Given a tester Tϕ for ϕ ∈ LTL(P), let |Tϕ| denote its size,

i.e., the number of its states, and let |Tϕ|i be the number of states where xϕ = i. Then, for

any formulae ϕ, ψ ∈ LTL(P), and i, j, k ∈ B:

• for any unary operator op, |Top(ϕ)|i,j is the number of states where xϕ = i, xop(ϕ) = j,

• for any binary operator op, |Top(ϕ1,ϕ2)|i,j,k is the number of states where xϕ = i, xψ = j,

xop(ϕ,ψ) = k.

The number of states in a tester can be decomposed as follows for any ϕ, ψ ∈ LTL(P):

|Top(ϕ)| =
∑
i,j

|Top(ϕ)|i,j, |Top(ϕ1,ϕ2)| =
∑
i,j,k

|Top(ϕ1,ϕ2)|i,j,k.
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Proposition 13.3.1. Let p, q be two atomic propositions in P, ψ1, ψ2 ∈ LTL(P) be two LTL

formulae, and op denote an LTL operator. The following holds:

|Top(ψ1)|i,j ≤ |Tψ1 |i · |Top(p)|i,j, (13.8)

|Top(ψ1,ψ2)|i,j,k ≤ |Tψ1 |i · |Tψ2|j · |Top(p,q)|i,j,k. (13.9)

Corollary 13.3.2 (Recursive Bounds). Consider a tester Tϕ for ϕ ∈ LTL(P). The following

recursive bounds hold on its number of states |Tϕ|:

if ϕ is p ∈ P : |Tϕ| = 2, (13.10)

if ϕ is ¬ψ : ∀i, j : |T¬ψ|i,j =


|Tψ|i, if i 6= j,

0 otherwise,
, (13.11)

if ϕ is op(ψ), op ∈ {3,2,©} : |Tϕ| ≤ 2 · |Tψ|, (13.12)

if ϕ is 32ψ : |Tϕ| = |T32ψ| ≤ 3 · |Tψ|, (13.13)

if ϕ is op(ψ1, ψ2), op ∈ {∨,∧,⇒} : |Tϕ| ≤ |Tψ1| · |Tψ2|, and (13.14)

if ϕ is ψ1 U ψ2 or ϕ is ψ1 R ψ2 : |Tϕ| ≤ 2 · |Tψ1| · |Tψ2|. (13.15)

Similarly to LTL, see Corollary 10.0.2, the complexity of the rLTL model-checking prob-

lem is proportional to the size of the GBAs constructed, see Theorem 12.3.1. Hence, we

are motivated to construct GBAs with the smallest possible number of states and accepting

conditions. We focus on elementary temporal testers arising in the study of rLTL formulae

and use them to construct smaller GBAs using the following remark.

Remark 12 (Link with Generalized Büchi Automata). For any tester Tϕ = (S,Θ, R,J ),

one can construct a GBA Gϕ = (Q,Σ, Q0,∆,F) whose runs correspond to the computations

of the tester as follows:

• Q = S, Q0 = {x ∈ Θ | xϕ = 1}, and F = J .

• (q, σ, q′) ∈ ∆ if and only if (q, q′) ∈ R and σ =
{
p ∈ P | q′p = 1

}
.
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Notice the relation between Q0 and Θ. Since Tϕ detects whether a computation satisfies ϕ

or ¬ϕ, in order to obtain a GBA Gϕ whose runs satisfy ϕ, it suffices to remove from Θ any

state x satisfying xϕ = 0.

Remark 13 (Justice requirements). In TpUq, and therefore in T3p, T2p, the number of

justice requirements J ∈ J is always 1. By Definition 22, it follows that the composition

T32p = T3p|p←2p 9 T2p has two justice requirements:

J = {x ∈ S | ¬x32p ∨ x2p = 1} ∪ {x ∈ S | x2p ∨ ¬xp = 1}.

The above justice requirements are met simultaneously at two of the states, (xp, x2p, x32p) and

(x̄p, x̄2p, x̄32p). In light of this, we use J = {x ∈ S | (xp∧x2p∧x32p)∨¬(xp∨x2p∨x32p) = 1}

for the tester in Figure 13.1d, while preserving the computations of T32p = T3p|p←2p 9T2p.

In this regard, the tester T32p in Figure 13.1d is optimized.

We are now ready to proceed onto constructing smaller, specialized GBAs for the frag-

ment rLTL\{V}(P) and prove the refined complexity upper bounds.

13.4 Refined complexity bounds

The next lemma is integral to providing the promised complexity bounds of Theorem 13.1.1.

Lemma 13.4.1. Given a set of atomic propositions P, for any ϕ ∈ rLTL\{V}(P) and any

j ∈ {1, 2, 3, 4}:

|Tltl(j,ϕ)| ≤ 2|ϕ|−κ(ϕ)3κ(ϕ), (13.16)

where κ(ϕ) = card ({ψ ∈ cl(ϕ) | ψ = �ψ1}) + card ({ψ ∈ cl(ϕ) | ψ = ψ1 R· ψ2}) , i.e., the

number of distinct subformulae of ϕ of the form �ψ and ψ1 R· ψ2, and |ϕ| is the length of ϕ.

Proof. To maintain a streamlined presentation we provide a sketch of the proof here. The

full proof of Lemma 13.4.1 is found in Appendix A.2.
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Given any ϕ ∈ rLTL\{V}(P) we prove the claimed bound on |Tltl(j,ϕ)|, j ∈ {1, 2, 3, 4},

by induction on the length of the formula for all operators except for the R· operator. In

the base case where ϕ is of length 1, i.e., an atomic proposition, (13.16) is satisfied as an

equality given (13.10). For the induction step, if ϕ is of the form op(ψ), with op any unary

rLTL operator, or of the form op(ψ1, ψ2), with op any binary operator except for R· , then

the claim in (13.16) is proved using (13.11) through (13.15).

Finally, in the case of the R· operator we construct specialized testers for each bit, which

we prove to be correct and to satisfy the claimed bound (13.16) in the Appendix.

So far, Lemma 13.4.1 shows that we can construct specialized temporal testers of smaller

size. These, in turn, can be used to construct smaller GBAs as per Remark 12. To con-

clude the proof of Theorem 13.1.1, we consider Algorithm 1 for rLTL model-checking.

This algorithm model-checks the LTL formulae corresponding to each bit of the truth

value of an rLTL formula, and by exploiting the order of the truth values in B5, that is

0000 ≺ 0001 ≺ 0011 ≺ 0111 ≺ 1111, it benefits from an early stopping criterion if the value

of a bit is zero. In particular, consider the language L(G) generated by a GBA G, and as-

sume we wish to model-check a formula ϕ of the form ψ1 V ψ2 ∈ rLTL\{V}(P), as defined

in (13.1). Denote, again, each truth value in B5 as:

B5 = {0000, 0001, 0011, 0111, 1111} = {B5[0],B5[1],B5[2],B5[3],B5[4]} .

Let b(L(G), ϕ) ∈ B5 be the computed truth value. Algorithm 1 first model-checks the corre-

sponding LTL formula ϕ4, which is of the form ltl(4, ψ1) ⇒ ltl(4, ψ2). From Lemma 13.4.1

and Remark 12, this first model-checking step makes use of an automaton with the number

of states as in (13.2). There are two possible outcomes:

1. the formula is violated, i.e., b(L(G), ϕ) = B5[0], Algorithm 1 terminates and Theo-

rem 13.1.1 holds;

2. the formula is satisfied, i.e., b(L(G), ϕ) � B5[1], and we need to check bit 3.
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However, having checked bit 4, and given that neither ψ1, nor ψ2 contain a V opera-

tor since they belong in rLTL\{V}(P), it follows from the semantics in Table 12.1 that

V3(σ, ϕ) = W (σ, ltl(3, ψ1)⇒ ltl(3, ψ2)). We can, hence, perform a second model-checking

step, using an automaton with size, again, as in (13.2), and decide if b(L(G), ϕ) = B5[1] or

b(L(G), ϕ) � B5[2]. The two other bits are computed similarly if needed.

Overall, the number of model-checking steps that the algorithm goes through depends

on b(L(G), ϕ). If we have exactly ` < 4 bits set to 1 in the valuation, then we need ` + 1

model-checking steps, i.e., to check that the bit ` is valued 1 and that the next bit is val-

ued 0. The fourth verification disambiguates between the values B5[3] and B5[4]. Hence, if

b(L(G), ϕ) = B5[`], we do min(` + 1, 4) model-checking steps. Consequently, by using Algo-

rithm 1, the rLTL model-checking problem for any ϕ ∈ rLTL\{V}(P) is solved by performing

at most 4 LTL model-checking steps, each using an automaton with at mostO
(
2|ϕ|−κ(ϕ)3κ(ϕ)

)
states. This concludes the proof of Theorem 13.1.1 and this section.
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CHAPTER 14

Case studies

In the introduction we argued that system correctness is not sufficient for a good design as

the system needs to also be robust. Towards this goal, we provide a series of case studies that

exemplify the usefulness of rLTL when compared to standard LTL. We compare rLTL and

LTL verification in terms of the ability to guarantee robustness, the information provided

via verification, and the computational costs. Our case studies1 show that model-checking

in the proposed fragment rLTL\{V}(P):

1. identifies a non-robust system, which cannot be directly done with standard LTL;

2. provides access to fine-grained information about the degree of specification violations,

which can be useful towards improving the design;

3. incurs a relatively small computational overhead with respect to LTL model-checking;

4. scales similarly to the LTL model-checking with respect to the size of the given formula,

although slightly more expensive.

14.1 Evrostos: the rLTL verifier

To support our theoretical contributions, i.e., identifying the fragment rLTL\{V}(P) and

proving the refined complexity bounds for rLTL verification, we developed Evrostos2 [ANP19].

1Our case studies are available at: https://github.com/janis10/evrostos/tree/master/case_studies/.

2Evrostos is available at: https://github.com/janis10/evrostos.
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Evrostos is an open-source tool dedicated to rLTL model-checking within the fragment

rLTL\{V}(P), and it is built on top of an LTL model-checker.

On a high level, it consists of two different components. The first component is an rLTL-

to-LTL translator that takes a formula ϕ ∈ rLTL\{V}(P) and returns the four corresponding

LTL formulae ϕj ∈ LTL(P), j = 1, 2, 3, 4. The second component implements Algorithm 1

that model-checks the LTL formulae corresponding to each bit of the truth value of an rLTL

formula, and by exploiting the order of the rLTL truth values, it benefits from an early

stopping criterion if the value of a bit is zero. Each model-checking step is carried out

by state-of-the-art LTL model-checkers. At the time of writing this manuscript, Evrostos

supports two modes:

1. smv-mode, which uses NuSMV3 [CCG02] as the underlying model-checker for system

models given in smv format; and

2. pml-mode, which uses SPIN4 [Hol97] for system models given in pml format.

The syntax of rLTL closely resembles that of LTL to ease adoption, and in a similar

manner the input format of Evrostos for rLTL formulae closely follows the one contemporary

model-checkers use for LTL. The notation for the rLTL and the LTL operators used by

Evrostos is as in Table 14.1.

14.2 Case study 1: Aircraft Wheel Brake System (WBS)

For our first case study, we revisit the aircraft WBS described in the Aerospace Information

Report (AIR) 6110 [Aut11]. As aerospace systems have become more complex with the

passing of time, it is essential that their development proceeds in a systematic way that

3NuSMV is available at: http://nusmv.fbk.eu.

4SPIN is available at: http://spinroot.com.
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minimizes errors. Towards this, the Federal Aviation Administration (FAA) specifies meth-

ods and guidelines [ARP96, Aut10] for manufacturers, e.g., Boeing and Airbus, to guarantee

that the development of products meets the necessary performance and safety requirements.

AIR6110 provides an application of the specified processes [ARP96, Aut10] to the example

of a WBS. The WBS comprises a complex hydraulic plant managing two landing gears, each

with four wheels, and controlled by an independent computer system.

An extended formal verification of the WBS is found in [BCF15] and the .smv models

used can be found in the references therein. The formal modeling and analysis are based

on the integration of the contract-based design tool OCRA [CDT13], the model-checker

nuXmv [CCD14], and the xSAP platform for model-based safety analysis [BBC16].

Table 14.1: Operators of rLTL and LTL in Evrostos.

rLTL LTL

Operator Evrostos Symbol Operator Evrostos Symbol

Negation ¬ ! Negation ¬ !

Disjunction ∨ | Disjunction ∨ |

Conjunction ∧ & Conjunction ∧ &

Robust Implication V => Implication ⇒ − >

Next � rX Next © X

Robust Always � rG Always 2 G

Robust Eventually ⟐ rF Eventually 3 F

Robust Until U· rU Until U U

Robust Release R· rR Release R R
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14.2.1 Formal specifications:

A number of safety requirements from the AIR6110 document are formalized in LTL and

are expressed as reactive specifications, where the assumption is on the environment of

the WBS and the guarantee is the exact safety specification [BCF15]. Here we focus on

the requirement “S18-WBS-R-0325-wheelX: never inadvertent braking of wheel X without

locking”. The environment assumption for the safety specifications is that “at all times the

power of the system is on, the power of the hydraulic pumps is on, and the hydraulic supplies

maintain their nominal values”. The above assumption and guarantee are formalized as a

reactive LTL specification:

2

(
2∧
i=1

poweri

2∧
i=1

pump_poweri
2∧
i=1

hydraulic_supplyi = 10

)
⇒ (14.1)

2¬

¬mechanical_pedalL ∧ wheel_status = rolling

∧ wheel_braking_force > 0 ∧ ground_speed > 0

 ,

where poweri, pump_poweri, hydraulic_supplyi are the i-th system’s power, pump power

(both boolean), and hydraulic supply (integer) respectively, mechanical_pedalL (boolean)

is true if the left pedal is pressed, ground_speed (integer) is the aircraft’s current speed rel-

ative to the ground, wheel_status is either rolling or stopped, and wheel_braking_force

(integer) is the force applied by the brakes to the wheel.

The development of the WBS in AIR6110 followed four evolutionary architectures:

1. Arch1: comprises one Braking System Control Unit (BSCU) and one Hydraulic Circuit

(HC) backed by an accumulator.

2. Arch2: includes additional backup components: two BSCUs, a green and a blue HC.

3. Arch3: the two BSCUs of the control system are replaced by one dual channel BSCU.

4. Arch4: accumulator placement is modified, a link from the control system validity to

the selector valve in the physical system is added.
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For more details see [BCF15].

14.2.2 Example scenario:

We consider the Arch4 architecture and investigate how rLTL identifies a non-robust system,

which cannot be directly done in LTL. While the nominal Arch4 model is correct and robust,

we introduce a modification that makes it non-robust. In particular, we inject a bug in the

sensor of the left pedal that makes it periodically miss the pressing of the pedal. This results

in the BSCU not always receiving an electrical signal when the left pedal is pressed. To

demonstrate our case, we consider a scenario where the environment assumption is violated

finitely many times. This is reasonable as during the course of a flight, there can be pertur-

bations to the environment assumption, but we expect the assumption to stabilize and not

fail catastrophically. For example, the power input of the system might be interrupted, but

eventually becomes stable.

Model-checking separately the guarantee in (14.1) under the model with the sensor bug

returns false. Model-checking separately the assumption in (14.1) under the environment

scenario above returns false. However, model-checking the LTL specification in (14.1) under

the discussed scenario returns true. This is a consequence of the fact that in LTL, violation

of the assumption leads to vacuous satisfaction of the specification.

In contrast to LTL model-checking, we evaluate the corresponding rLTL reactive speci-

fication:

�

(
2∧
i=1

poweri

2∧
i=1

pump_poweri
2∧
i=1

hydraulic_supplyi = 10

)
V (14.2)

� ¬

¬mechanical_pedalL ∧ wheel_status = rolling

∧ wheel_braking_force > 0 ∧ ground_speed > 0

 .

Using Evrostos, the resulting rLTL truth value is 0011. This is interpreted as the guarantee

being both satisfied and violated infinitely often under the environment of this scenario. To

be more precise, the assumption is eventually always satisfied, meaning that its truth value
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is 0111. However, the sensor pedal does not always pick up the pressing of the left pedal,

meaning that it misses infinitely often during a system execution and, hence, the truth value

of the guarantee is 0011. By the semantics of robust implication in (11.13) we expect the

truth value of the specification to be 0011, which is what Evrostos returns.

The above case study demonstrates the fact that the LTL implication cannot provide any

actual information about the guarantee of a reactive specification whenever the assumption

fails. Contrary, the rLTL implication does really verify whether a guarantee is satisfied, is

violated, and to what degree.

14.3 Case study 2: Meaningful reactivity rLTL patterns

For the second case study, we exhibit the practicality of the proposed fragment rLTL\{V}(P)

in Definition 19, and illustrate how rLTL provides more insight when a specification is

violated compared to LTL. We first consider reactivity patterns of practical importance that

occur commonly in the specification of concurrent and reactive systems [DAC99]. Typical

behaviors include the occurrence of a given event during system execution, such as absence,

existence, and universality, or the relative order in which multiple events occur during system

execution, such as precedence and response. The following corollary stems from studying all

the relevant LTL patterns [DAC99].

Corollary 14.3.1. The relevant reactivity patterns [DAC99] fall under the rLTL\{V}(P)

fragment, as described in Definition 19, when written in rLTL.

It is the case for all these patters that the antecedent of any nested implication does

not contain a 2 or a R operator. Hence, the same holds for their rLTL counterparts. By

Proposition 13.2.2, we can equivalently write any robust implication formula ϕ V ψ in

these patterns, as ¬ϕ ∨ ψ, which makes them immediately part of the efficient fragment

rLTL\{V}(P). We verified this for the 97 LTL formulae in [DAC99].
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Remark 14. A number of the patterns [DAC99] are expressed using the “weak until” operator

W, which is related to the U operator by the LTL semantic equivalence between pWq and

p U (q ∨ 2p), and to the R operator by the LTL semantic equivalence between pWq and

q R (q ∨ p). It can be verified that in the context of rLTL, only the second equivalence

captures the desired meaning of a robust version of the W operator. Therefore, to obtain

the rLTL versions of these patterns, we first replace every subformula of the form pWq with

q R (q ∨ p).

14.3.1 Benchmark: Rigorous Examination of Reactive Systems (RERS)

The second goal of this case study is to showcase how rLTL provides more fine-grained

information when a specification is violated, as opposed to LTL, by mapping an LTL false

boolean value to different shades of false. To show this, we utilize the benchmarks found in

the RERS Challenge [RER20]. The RERS Challenge contains a rich repository of problems

of increasing complexity.

Using available benchmarks, we analyze meaningful reactive specifications that fall un-

der the patterns [DAC99], that is 160 formulae spanning from RERS 2016 to RERS 2019.

We use the provided promela models from the RERS LTL parallel track and evaluate the

rLTL counterparts of the specifications therein using Evrostos [ANP19]. Our findings are

summarized in Table 14.2.

The considered set is balanced between falsified and satisfied specifications. Focusing on

the falsified formulae, one appreciates the variation of the different shades of false that rLTL

provides. More specifically, Table 14.2 indicates that, empirically, it is rarely the case that a

falsified reactive specification fails catastrophically. Instead, a weaker version holds most of

the times. In particular, when looking only at the formulae that do admit a weaker version

according to Proposition 13.2.1, the value 0000 is not observed at all. To better interpret

the above analysis, consider as an example the truth value 0111. This value can be actually

understood as “the safety specification holds with a delay”, i.e., it is violated only finite times
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Table 14.2: Occurrence frequency for each different rLTL truth value for 160 properties from

the RERS benchmark.

rLTL Truth Value

1111 0111 0011 0001 0000

Frequency (160 formulae) 53.75% 13.75% 25.625% 4.375% 2.5%

Frequency (70 falsified formulae

that admit a weakened version)
− 31.43% 58.57% 10% 0%

over any infinite trace of the system. This information can guide the designer towards more

efficiently fixing the faulty model, so as to trace the root of the problem, or can provide

insight about modifying a possibly inaccurate specification.

14.4 Case study 3: Studying the complexity blowup between LTL

and rLTL

We now aim to meaningfully compare the runtimes between LTL model-checking, and rLTL

model-checking in the fragment rLTL\{V}(P). Towards this, we study the time complexity

blowup, ζ, between LTL and rLTL, which is defined below.

The complexity of the rLTL model-checking problem for any ϕ ∈ rLTL\{V}(P) , with

respect to the GBA constructed for ϕ, is between O
(
2|ϕ|
)
and O

(
3|ϕ|
)
as Theorem 13.1.1

establishes. Similarly, the complexity of the LTL model-checking problem for the correspond-

ing LTL formula ϕ1 is O
(
2|ϕ1|

)
. Recall ϕ1 is obtained as the LTL version of ϕ simply by

substituting the rLTL operators with their LTL counterparts. Let the times required to solve

the LTL and the rLTL model-checking problems be tLTL and trLTL respectively. We know

that tLTL is proportional to 2|ϕ1|, and notice that |ϕ| = |ϕ1|. Furthermore, trLTL ≥ tLTL,

and, hence, we can write trLTL = 2ζ|ϕ|, ζ ≥ 1. Then, we ask what is the exponent ζ that
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rLTL Times (sec.)

min(trLTL) max(trLTL) mean(trLTL)

0.26 726.8 66.3

LTL Times (sec.)

min(tLTL) max(tLTL) mean(tLTL)

0.04 291.0 26.3

Time Complexity Blowup

min(ζ) max(ζ) mean(ζ)

1.016 1.122 1.058
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Figure 14.1: Automated Air Traffic Control System. Left: minimum, maximum, and mean

runtimes for rLTL and LTL model-checking, and time complexity blowup between rLTL and

LTL. Right: Comparison between runtimes for rLTL and LTL (logarithmic scale). Computed

over 24 experiments.

describes the overhead, i.e., what is the time complexity blowup. From the expressions above

we obtain:

ζ = 1 +
log2

(
trLTL

tLTL

)
|ϕ|

.

Since the time complexity of rLTL model-checking for the proposed fragment rLTL\{V}(P)

is proportional to at most 3|ϕ|, we have an upper bound for ζ of log2(3) = 1.58.

We use as a benchmartk the model of an Automated Air Traffic Control System [ZR14],

designed for the Automated Airspace Concept (AAC), and the specifications therein. ACC is

a high-level generic framework proposed as a candidate for the Next Generation Air Traffic

Control System, which was under development at NASA. The goal of ACC is to always

ensure the safe separation of commercial aircrafts within a given airspace sector, in order

to prevent potential collisions. Figure 14.1 shows on the left the minimum, maximum, and
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Figure 14.2: Scalability comparison: model-checking runtimes for (14.3) and (14.4) for dif-

ferent number of philosophers n = 1, . . . , 9 (logarithmic scale).

mean runtimes to model-check 12 safety and reactivity specifications, over 2 system models

(original and abstract model) for a total of 24 experiments, and on the right how these

runtimes are distributed. At a first glance, rLTL verification is somewhat more expensive

computationally, which is expected as its runtime is proportional to at most 3|ϕ| for a formula

ϕ ∈ rLTL\{V}(P). However, observe that the time complexity blowup, ζ, is well below this

upper bound, even at its maximum value in this benchmark, meaning that the empirical

time complexity of rLTL for the fragment we consider is close to that of LTL.

14.5 Case study 4: Scalability

For our last set of experiments, we present a scalability case study for rLTL within the

proposed fragment. To this end, we select the well-known model of the dining philosophers

and consider the following specification, φ, saying that if whenever a philosopher is ready
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they eventually eat, then the first philosopher will eventually eat:(
n∧
i=1

23readyi ⇒ 23eati

)
⇒ eat0.

The above LTL formula contains nested implications with an 2 operator, which are not

allowed in the proposed fragment rLTL\{V}(P). However, we can equivalently rewrite the

LTL formula as: (
n∧
i=1

¬(23readyi) ∨23eati

)
⇒ eat0, (14.3)

and then the corresponding rLTL specification ϕ is:(
n∧
i=1

¬(�⟐ readyi) ∨�⟐ eati

)
V eat0. (14.4)

This specification presents a complex temporal structure as it contains multiple � and ⟐

operators, as well as an V operator on the outermost level and, hence, is an appropriate

candidate for our case study. We fix the model to have ten philosophers and then record

the runtimes for evaluating (14.3) and (14.4) for n = 1, . . . , 9. Our findings are summarized

in Fig. 14.2. The specification ϕ belongs to rLTL\{V}(P) and by Theorem 13.1.1 can be

model-checked using automata of size O
(
2|ϕ|−κ(ϕ)3κ(ϕ)

)
. We can appreciate that the run-

times for model-checking the rLTL specification scale in the same manner as those for the

corresponding LTL model-checking, although slightly higher as expected by the aforemen-

tioned automaton size. This validates our theoretical results. This case study is also in

agreement with the results presented in Fig. 14.1 when studying the complexity blow-up

between LTL and rLTL.
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CHAPTER 15

Conclusion

The logic rLTL provides a means to formally reason about both correctness and robustness

in system design. While its syntax closely resembles that of LTL to ease its adoption, its se-

mantics embeds a notion of robustness expressing that small deviations from the assumptions

made at design time should lead to, at most, small violations of the design specifications.

In this paper we presented a large fragment of rLTL, for which the verification problem can

be efficiently solved by using an automaton of size O
(
2|ϕ|−κ(ϕ)3κ(ϕ)

)
, where κ(ϕ) measures

the number of unique subformulae of ϕ that contain always and release operators. This

bound is closer to the LTL bound of O
(
2|ϕ|
)
and an improvement to the previously known

bound of O
(
5|ϕ|
)
. Moreover, at the time of publication there is no known non-trivial lower

bound and finding such bound is an open problem. The usefulness of this fragment has been

demonstrated by a number of case studies showing its expressiveness, the ability to capture

robustness, and the benefits of the information the designer gains from the 5-valued seman-

tics towards refining the system and/or the specifications. Moreover, these advantages come

at low computational overhead with respect to LTL model-checking, and a small learning

curve from the designer as the syntax of rLTL closely mirrors that of LTL.
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APPENDIX A

Appendix

A.1 Proof of Lemma 12.1.1

Proof. By using the ltl operator defined in Table 12.1 one translates any rLTL formula

ϕ ∈ rLTL(P) to four LTL formualae ltl(j, ϕ) ∈ LTL(P), j = 1, 2, 3, 4, as defined in (12.3).

We show that the number of the unique subformulae resulting by the translation is linear to

the size of ϕ, i.e.,:

card

(
4⋃
j=1

cl
(
ltl(j, ϕ)

))
≤ c|ϕ|, (A.1)

for some c ∈ N. We use an induction argument and show that (A.1) holds for c = 12.

Base Case. Take any ϕ ∈ rLTL(P) of length 1, i.e., ϕ is p ∈ P . Then the claim holds

straightforwardly as: card
(⋃4

j=1 cl(ltl(j, p))
)

= card
(⋃4

j=1 cl(p)
)

= |p| ≤ 12|p|.

Induction. First, consider any ϕ ∈ rLTL(P) of the form ψ1 R· ψ2 and note that
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|ϕ| = |ψ1|+ |ψ2|+ 1. Then:

4⋃
j=1

cl
(
ltl(j, ϕ)

)
=

4⋃
j=1

cl(ltl(j, ψ1 R· ψ2))

= cl
(
ltl(1, ψ1) R ltl(1, ψ2)

)
∪ cl

(
3ltl(2, ψ2) ∨32ltl(2, ψ1)

)
∪ cl

(
3ltl(3, ψ2) ∨23ltl(3, ψ1)

)
∪ cl

(
3ltl(4, ψ2) ∨3ltl(4, ψ1)

)
=

4⋃
j=1

cl
(
ltl(j, ψ1)

) 4⋃
j=1

cl
(
ltl(j, ψ2)

)
∪
{

ltl(1, ψ1) R ltl(1, ψ2)
}

∪
{
3ltl(2, ψ2),2ltl(2, ψ1),32ltl(2, ψ1),3ltl(2, ψ2) ∨32ltl(2, ψ1)

}
∪
{
3ltl(3, ψ2),3ltl(3, ψ1),23ltl(3, ψ1),3ltl(3, ψ2) ∨23ltl(3, ψ1)

}
∪
{
3ltl(4, ψ2),3ltl(4, ψ1),3ltl(4, ψ2) ∨3ltl(4, ψ1)

}
.

In turn the above implies that:

card

(
4⋃
j=1

cl
(
ltl(j, ϕ)

))
≤ card

(
4⋃
j=1

cl
(
ltl(j, ψ1)

))
+ card

(
4⋃
j=1

cl
(
ltl(j, ψ2)

))
+ 12

≤ 12|ψ1|+ 12|ψ2|+ 12 = 12(|ψ1|+ |ψ2|+ 1) = 12|ϕ|,

where in the last inequality we used the induction hypothesis from (A.1) for c = 12. The other

operators, with the exception of implication and negation, are similar and, thus, omitted for

the sake of conciseness.

We next consider ϕ ∈ rLTL(P) of the form ψ1 V ψ2 and observe, given Table 12.1, that:

cl
(
ltl(j, ϕ)

)
⊇ cl(ltl(i, ϕ)), i ≥ j, i, j ∈ {1, 2, 3, 4}.
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Then we have that:
4⋃
j=1

cl
(
ltl(j, ϕ)

)
= cl

(
ltl(1, ϕ)

)
= cl(ltl(1, ψ1 V ψ2)) = cl

(
4∧
j=1

ltl(j, ψ1)⇒ ltl(j, ψ2)

)

=
4⋃
j=1

cl
(
ltl(j, ψ1)

) 4⋃
j=1

cl
(
ltl(j, ψ2)

)
4⋃
j=1

{
ltl(j, ψ1)⇒ ltl(j, ψ2)

} 3⋃
k=1

{
4∧
j=k

ltl(j, ψ1)⇒ ltl(j, ψ2)

}

⇒ card

(
4⋃
j=1

cl
(
ltl(j, ϕ)

))
≤ card

(
4⋃
j=1

cl
(
ltl(j, ψ1)

))
+ card

(
4⋃
j=1

cl
(
ltl(j, ψ2)

))
+ 7

≤ 12|ψ1|+ 12|ψ2|+ 7 = 12(|ψ1|+ |ψ2|+ 1) = 12|ϕ|,

The case of negation is similar as cl
(
ltl(j, ϕ)

)
= cl(ltl(i, ϕ)), i 6= j, i, j ∈ {1, 2, 3, 4}. This

concludes the proof by induction.

Finally, |ltl(j, ϕ)| ≤ card
(⋃4

j=1 cl
(
ltl(j, ϕ)

))
≤ 12|ϕ|, j ∈ {1, 2, 3, 4}, which proves that

the translation complexity is linear in the size of the formula, i.e., linear in the number of

its unique subformulae, and concludes the proof.

A.2 Proof of Lemma 13.4.1

Proof. The proof follows from the rLTL semantics as defined in Table 12.1, Proposition 13.3.1,

and Corollary 13.3.2. We proceed by induction for all operators except for the R· operator,

for which we construct a specialized tester.

Base Case. Take a formula ϕ ∈ rLTL\{V}(P) of length 1, i.e., ϕ is p ∈ P . Then we get

|Tp| = 2|ϕ| = 2, which is the higher possible number of states here, and the claim holds.

Induction. First, consider formulae ϕ ∈ rLTL(P) of the form op(ψ), where op is any

unary rLTL operator. Note that |ϕ| = |ψ|+ 1.

1. If op is �, from (13.13) we obtain for j ∈ {1, 2, 3, 4}:∣∣Tltl(j,�ψ)

∣∣ ≤ 3
∣∣Tltl(j,ψ)

∣∣ ≤ 3 · 2|ψ|−κ(ψ)3κ(ψ) ≤ 2|ψ|−κ(ψ)+1−13κ(ψ)+1 = 2|ϕ|−κ(ϕ)3κ(ϕ),
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which holds for the second and third bit.

2. If op is any other unary rLTL operator, from (13.11), (13.12) we obtain for j ∈ {1, 2, 3, 4}:∣∣Tltl(j,op(ψ))

∣∣ ≤ 2
∣∣Tltl(i,ψ)

∣∣ ≤ 2|ψ|+1−κ(ψ)3κ(ψ) = 2|ϕ|−κ(ϕ)3κ(ϕ),

where i = 1 if op is ¬, and otherwise i = j.

Consider now ϕ ∈ rLTL(P) of the form op(ψ1, ψ2), where op is a binary operator. Its

length is |ϕ| = |ψ1|+ |ψ2|+ 1.

1. If op is either ∧ or ∨, from (13.14) we obtain for j ∈ {1, 2, 3, 4}:∣∣Tltl(j,op(ψ1,ψ2))

∣∣ ≤ ∣∣Tltl(j,ψ1)

∣∣ · ∣∣Tltl(j,ψ2)

∣∣ ≤ 2|ψ1|+|ψ2|−κ(ψ1)−κ(ψ2)3κ(ψ1)+κ(ψ2) ≤ 2|ϕ|−κ(ϕ)3κ(ϕ).

2. If op is U· , from (13.15) we obtain for j ∈ {1, 2, 3, 4}:∣∣∣Tltl(i,ψ1U· ψ2)

∣∣∣ ≤ 2
∣∣Tltl(j,ψ1)

∣∣ · ∣∣Tltl(j,ψ2)

∣∣ ≤ 2|ψ1|+|ψ2|+1−κ(ψ1)−κ(ψ2)3κ(ψ1)+κ(ψ2) ≤ 2|ϕ|−κ(ϕ)3κ(ϕ).

This concludes the proof by induction.

Finally, we need to prove the same bounds for the R· operator. This case is slightly more

tricky, but it suffices to show that for any ϕ, ψ ∈ LTL(P), there exist appropriate testers

such that:

|TϕRψ| ≤ 3 · |Tϕ| · |Tψ|, (A.2)

|T32ψ∨3ϕ| ≤ 3 · |Tϕ| · |Tψ|, (A.3)

|T23ψ∨3ϕ| ≤ 3 · |Tϕ| · |Tψ|, (A.4)

|T3ψ∨3ϕ| ≤ 3 · |Tϕ| · |Tψ|, (A.5)

which by Table 12.1 are the testers for the corresponding 4 LTL formulae due to the R·

operator.

1. Proof of (A.2): The inequality follows from (13.15). Notice that we can replace the

constant 3 by a 2 here.

2. Proof of (A.3): The LTL formulae 32q ∨ 3p and 3(2q ∨ p) are semantically equiva-

lent for any p, q ∈ P . Thus, we construct a tester for 3(2q ∨ p) in Figure ?? by following
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the composition rules. This tester has at most 3 nodes that assign the same value to the

atomic propositions p and q: two states assign (xp, xq, xϕ) = (0, 1, 1), and one state assigns

(xp, xq, xϕ) = (0, 1, 0). From this and Proposition 13.3.1 we conclude (A.3).

3. Proof of (A.4): We provide a specialized tester for any ϕ of the form 23q ∨3p in Fig-

ure ?? and prove its correctness, i.e., show that the tester is both sound and complete [PZ08,

Section 5]. Recall from Definition 21 that given a computation γ, we let σ(γ) ∈
(
2P
)ω be

the word σ(γ) = σ0(γ)σ1(γ) . . . where σt(γ) is the subset of P defined by p ∈ σt(γ), if and

only if, x(t)
p = 1. Soundness is defined as follows.

Definition 24 (Soundness). Given a formula ϕ ∈ LTL(P), a tester Tϕ is sound if for all

computations γ = x(0)x(1) . . . of Tϕ, we have that x(t)
ϕ = 1, if and only if, W (σ(γ)t..., ϕ) = 1,

where σ(γ)t... is the suffix of σ(γ) starting at the t-th position.

To prove soundness we consider all possible initial states for computations γ = x(0)x(1) . . .

of Tϕ:

• If x(0) is any of the three states on the left, then at time t = 0, we haveW (σ(γ), ϕ) = 0.

• If x(0) is any of the two middle states, then W (σ(γ), p) = 1, hence W (σ(γ), ϕ) = 1.

• If x(0) is any of the rightmost states, then either the computations visit one of the

middle states, or never do so. In the first case, we have W (σ(γ),3p) = 1. In the

second case, they had to visit the bottom right node infinitely often due to the justice

requirements. Therefore, W (σ(γ),23q) = 1. Combining the two cases results in

W (σ(γ), ϕ) = 1.

We conclude that the tester is sound and move onto proving its completeness.

Definition 25 (Completeness). Given a formula ϕ ∈ LTL(P), a tester Tϕ is complete if

for any word σ ∈
(
2P
)ω, there exists a computation γ of T, such that ∀t ≥ 0, x(t)

ϕ = 1, if and

only if, W (σt..., ϕ) = 1, where σt... is the suffix of σ starting at the t-th position.
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To prove completeness, we consider words σ ∈ {p, q}ω and different cases based on which

subformulae of ϕ they satisfy:

• If σ satisfies 3p, pick a computation with initial state either in the middle or in the

right parts of the tester. The computation remains in these parts and visits middle

states as many times as p occurs in σ. If it occurs infinitely often, then the computation

satisfies the justice requirements. Otherwise, there is a t > 0 after which σt... satisfies

2¬p, which is discussed next.

• If σ satisfies 2¬p, we are only interested in the evolution of the xq variables. In

particular, the corresponding computations are to remain either in the left or in the

right parts of the tester. Hence, we can ignore the two middle nodes here. To conclude,

observe that by doing so, we obtain a tester for 23q (see Figure 13.1d and the fact

that 32ψ is equivalent to ¬23¬ψ).

The tester is therefore sound and complete. The constant 3 in (A.4) is obtained by

counting the corresponding number of nodes in Tϕ for all combinations of xp and xq, and

then using Proposition 13.3.1. There are 3 nodes such that xp = xq = 0.

4. Proof of (A.5): The proof here is direct when considering the following LTL equalities

3p ∨3q = 3(p ∨ q) = true U (p ∨ q) and equations (13.14) and (13.15).

This proves the bound for the R· operator and concludes the proof.
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(b) Tester T23q∨3p.

Figure A.1: All states are initial, double line states are contained in the set of justice re-

quirements.
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