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Abstract

Precision Measurement of the Strong Coupling Constant of the Minimal

Universal Extra Dimensions Model Using Like-Sign Leptons at the

Large Hadron Collider

by

Laura Fava

If new heavy particles are discovered at the Large Hadron Collider (LHC), we will need a

way to distinguish among various theoretical interpretations for the new physics beyond

the Standard Model (BSM). Models of BSM physics often predict specific relations that

must be satisfied by the couplings of the new particles. For example, the coupling of

the quark, Kaluza-Klein quark and Kaluza-Klein gluon of the minimal Universal Extra

Dimensions (mUED) model must equal the strong coupling constant of QCD up to

small symmetry-breaking corrections that are radiatively generated. Using computer

simulations, I investigate the possible precision with which one can measure this coupling

at the LHC by examining like-sign dilepton events that include additional hadronic jets

and missing transverse energy. To set bounds on the precision of a measurement of

the mUED strong coupling constant, I vary this constant away from its predicted value

and investigate the resulting change to the number of events expected at the LHC. I

show that a measurement of the mUED strong coupling constant can be constrained to

∼ 5− 25% provided the systematic uncertainty of the mUED signal can be reduced.
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Chapter 1

Introduction

On July 4, 2012, the ATLAS and CMS collaborations jointly announced the

observation of a Higgs boson [1, 2], the last piece needed to make the Standard Model

(SM) of particle physics a complete, self-contained theory. The SM is an elegant, robust,

and well-tested theory of matter and three of its four fundamental interactions — strong,

weak, and electromagnetic —all except gravity. But despite the phenomenal predictive

track record of the SM, a number of questions about the physical nature of the universe

go unresolved. The hierarchy problem, the mystery of the vast energy difference be-

tween the electoweak scale (∼ 100 GeV) and the Planck scale, the fundamental scale of

gravitational interactions (∼ 1019 GeV), cannot be solved without additional dynamics

originating outside the SM. Baryonic matter, matter composed from the quarks and

leptons of the SM, accounts for only 15.5% of the matter in the universe, the remainder

of which is called dark matter and whose nature is currently unknown [3]. The SM pre-

dicts massless neutrinos, but observed neutrino oscillations imply that neutrinos have
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mass. Furthermore, the SM provides no explanation for the asymmetry of baryons in

the universe. Attempts to address these outstanding problems require us to look to the-

ories beyond the Standard Model (BSM) with new physics that enters at the TeV scale,

now accessible at the Large Hadron Collider (LHC) [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Many

BSM models include a stable dark matter candidate, a long-sought particle which makes

up part or all of the missing matter content of the universe, and which can provide a

promising signature for searches at the LHC. Prevalent classes of BSM theories include

supersymmetry, strongly interacting dynamics for electroweak symmetry breaking, and

theories of extra dimensions. If evidence for BSM physics is discovered at the LHC,

the challenge will be to determine the correct theoretical interpretation. Different theo-

ries can predict similar signatures [14], so establishing techniques that favor or disfavor

competing paradigms is crucial.

1.1 The Standard Model

The Standard Model of particle physics describes the fundamental particles

and their electromagnetic (EM), weak, and strong interactions. The leptons and quarks

are the fundamental fermions of the theory. There are three mass generations of the

quarks and leptons, as well as an antiparticle corresponding to each particle. Each

generation of quarks is composed of an up-type quark and a down-type quark. The up

u, charm c, and top t quarks are up-type quarks, while down d, strange s, and bottom

b are down-type quarks. The quarks can interact with all the bosons. Each generation
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of leptons contains an electrically charged lepton, the electron e, muon µ, or the tau

lepton τ , and an electrically neutral lepton called a neutrino, whose flavors correspond

to the charged leptons, νe, νµ, and ντ . Both the charged and neutral leptons can interact

with the weak force, but they carry no color charge and therefore do not interact via

the strong force. Members of the lightest generation are stable and make up all the

baryonic and atomic matter in the universe —the stars, the planets, the earth and all

its inhabitants.

Interactions between the fundamental particles are mediated by gauge bosons.

The massless photon mediates the familiar electromagnetic force, responsible for all of

chemistry and most of the everyday forces we observe (other than gravity). There are

eight massless gluons that mediate the strong force, the force that binds quarks together

into mesons and baryons and keeps atomic nuclei together. The weak interactions,

responsible for most radioactive decays, are mediated by the massive charged W+ and

W− and neutral Z vector bosons.

The SM also contains the scalar Higgs boson. The Higgs is an excitation

of the field whose non-zero vacuum expectation value is responsible for electroweak

symmetry breaking (EWSB), as well as generating mass terms for the W± and Z gauge

bosons. The Higgs field also generates mass terms for the fermions (except the neutrinos)

through Yukawa interactions. The mass of the Higgs boson itself comes from explicit

mass terms in the Lagrangian that appear after EWSB. Large radiative corrections to

the Higgs mass arise from the hierarchy problem.

The mathematical framework of the SM is quantum field theory (QFT) which
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merges quantum mechanics with special relativity. Using a Lagrangian formalism, the

SM is composed of fields and interactions whose only allowed combinations are invariant

under the transformations associated with global symmetries such as translation and

rotation through space and, importantly, continuous local (gauge) transformations. As

such, the SM is a chiral gauge theory under the symmetry group SU(3)C × SU(2)L ×

U(1)Y .

Quantum electrodynamics (QED) describes, with unparalleled precision, the

interactions of electrically charged particles and the electromagnetic field. The quarks

and charged leptons carry a U(1)EM charge and participate in EM interactions which

are mediated by the photon. QED is an Abelian theory whose effect is long range and

decreases in strength with increasing distance.

Analogous to QED is quantum chromodynamics (QCD) which describes the

strong interactions between quarks and gluons. The color SU(3) gauge theory is non-

Abelian resulting in a strong coupling constant that decreases at small distance scales.

Consequently, the quarks behave essentially as free particles within hadrons, justifying

the use of perturbation theory in the study of particle interactions at colliders where

the particle interactions are at high momentum.

All the SM fermions participate in weak interactions which are mediated by

the W+,W−, and Z bosons, however a description of the weak sector does not follow

a straight-forward analogy to QED or QCD. The fields of the quarks and leptons can

be projected into their right- or left-components via the chiral projection operatorsa

aThe special properties of the γ5 matrix are described in Section 2.2.
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PR,L = (1± γ5)/2. The left- and right-handed fermions transform differently under the

SU(2)L × U(1)Y gauge group. Gauge invariance forbids explicit mass terms for all the

gauge bosons and the fermions.

Electroweak (EW) theory, set forth by Glashow, Weinberg, and Salam [15, 16,

17], resolves these issues by showing that the weak and EM interactions emerge from

the sponteanous symmetry breaking of an SU(2)L × U(1)Y gauge group. Above the

EWSB scale (& 100 GeV), gauge invariance under SU(2)L leads to the weak isospin

triplet (W1,W2,W3), from whichW± = (W1∓W2)/
√
2, and to conservation of the third

component of weak isopsin T3. TheB boson is the generator of U(1)Y symmetry that has

conserved hypercharge Y associated with it. At lower energies, electroweak symmetry

breaking via the Higgs mechanism results in an unbroken U(1)EM ⊂ SU(2)L × U(1)Y

which has conserved charge Q = T3 + Y/2. The neutral B and W3 bosons mix to form

the mass eigenstates γ and Z:









γ

Z









=









cos θW sin θW

− sin θW cos θW

















B

W3









(1.1)

where θW is the weak mixing angle which can be expressed in terms of the SU(2)L and

U(1)Y couplings (g and g′, respectively) through cos θW = g/
√

g2 + g′2 and sin θW =

g′/
√

g2 + g′2. The tree-level masses of the charged weak bosons W+ and W− relate to

the mass of Z via mZ = mW / cos θW , while one massless vector boson remains — the

photon. The weak force has a very short range, and its strength diminishes exponentially

with distance.
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In addition to generating mass terms for the gauge bosons, the Higgs mecha-

nism generates mass terms for the quarks and charged leptons. The neutrinos remain

massless in the SM, although neutrino oscillations require at least two of the three

neutrino flavors to be massive.

The SU(2) group has two base representations, a doublet and a singlet. The

left-handed quarks and leptons are assigned to doublets of the SU(2) gauge symmetry,

while the right-handed components are assigned to the singlet states:

QL =

(

u

d

)

L

, LL =

(

ν

e

)

L

, uR, dR, eR. (1.2)

Note that there are no right-handed neutrinos in the SM. The W bosons couple to the

left-handed doublets but not to the right-handed singlets.

While the Standard Model has made numerous predictions that have been

experimentally confirmed to high precision, it still has its limitations. The values of the

masses of the quarks, leptons, and Higgs boson, the strengths of the gauge couplings, and

the angles of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix are just some of the

parameters whose values must be specified “by hand,” that is, defined by experiment

and not by theory. Additionally, the SM does not include a description for gravity,

nor does it explain the asymmetry of matter and anti-matter in the universe, or why

there are three generations of quarks and leptons. These and other phenomenological

and theoretical shortcomings lead physicists to investigate theories beyond the standard

model.
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1.2 Beyond the Standard Model

Because the SM provides no description of gravitation, dark matter, or neutrino

masses, we know that it provides an incomplete picture of the universe. The SM is valid

at the EWSB scale, but the laws of physics are unknown at much higher energy scales,

such as the GUT scale (∼ 1016 GeV) or the Planck Scale (∼ 1019 GeV). For this reason

the SM is an effective field theory, valid up to the EWSB scale and possibly higher,

though how high is not known. To have a complete set of laws that govern particles

and their interactions there must be UV completion, that is, a theory that describes

physics up to the Planck scale. At some scale Λ, the new particles and interactions of

the higher energy theory take effect, and at that point the effective field theory of the

SM should match with the currently unknown high energy field theory.

How a parameter of a low energy effective field theory depends on the UV

cutoff Λ determines its degree of UV sensitivity. The gauge and Yukawa couplings of

the SM depend only logarithmically on Λ and as such are UV insensitive. However, a

scalar mass-squared term, such as that of the Higgs boson, has corrections which scale as

a positive power of the cutoff and is UV sensitive. We therefore expect the parameter

to possess contributions proportional to Λ2. If the observed low-energy value of the

parameter is not of the same order as the cutoff, there could be a few explanations.

There could be an approximate symmetry in the limit where the parameter goes to

zero. In this case, the parameter is said to “naturally” have a value significantly below

the cutoff, since it is possible to envision scenarios where the symmetry-breaking effects
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are naturally small. Alternatively, the parameter could simply be fine-tuned at the

matching scale such that its value is much less than the cutoff, and this tuning cancels

the large radiative corrections of the low energy theory. A theory with parameters that

are all either UV insensitive (meaning, at worst logarithmically dependent on Λ) or

whose UV sensitivity does not require tuning at the scale Λ is said to be natural.

The hierarchy problem stems from the large difference between the EWSB

scale and the presumed scale of new physics. The observed Higgs boson mass mH is

∼125 GeV, and the Higgs mass-squared m2
H is subject to quadratically-divergent loop

corrections from self-interactions, gauge loops, and fermion loops, particularly from the

top quark:

δm2
H =

Λ2

32π2

[

6λ+
1

4
(9g2 + 3g′2)− y2t

]

, (1.3)

where λ is the Higgs self coupling and yt is the top Yukawa coupling. Taking the cutoff

Λ to be very large, perhaps near the GUT or the Planck scales, leads to quantum

corrections much larger than the Higgs mass δm2
H ≫ m2

H . Apparently, the Higgs mass

would naturally be at the scale of new physics, and yet this is not what is observed.

New physics entering at the TeV scale would greatly reduce the hierarchy

problem and satisfy the requirements of naturalness by eliminating large loop corrections

from above the TeV scale. Other outstanding questions can be addressed using new

physics at the TeV scale. One particularly compelling motivation to search for new

physics at the TeV scale is that of dark matter and the so-called “WIMP Miracle”

which leads to thermal DM candidates [18, 19].

The SM does not describe all the matter or energy in the universe. In fact,
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most of the energy content of the universe, 68.3% [3], is a form of energy ominously called

dark energy. Dark energy is the reason the expansion of the universe is accelerating. The

remaining 31.7% of the universe is composed of matter, but of this 84.5% (26.8% of the

total energy content) is made up of what is known as dark matter. Only the remaining

4.9% of the energy content of the universe is made out of the baryonic matter described

by the SM [3].

Although dark matter particles do not interact electromagnetically because

of their abundance, DM has a significant impact on the large scale structure of the

universe through gravitational interactions. In addition to being electrically neutral,

any theorized DM particle candidate must be stable, long-lived, and non-relativistic.

Candidate particles with a weak interaction cross section and weak-scale mass that

satisfy these conditions are sometimes called WIMPs, short for Weakly Interacting

Massive Particles [18, 19].

In the early universe, DM undergoes creation and annihilation reactions at

equal rates when the temperature of the universe is much larger than the mass of the

DM particle [18]. The creation and annihilation of DM slowed as the universe expanded

and cooled down to a temperature below the DM mass. As the universe continued

expanding, the density of DM was diluted until DM candidates no longer found each

other, resulting in the relic abundance we see today. The predicted relic density for

a DM candidate of mass ∼ GeV-TeV with a cross section on a scale generic to weak

interactions is approximately what is observed today. This WIMP miracle points to

natural DM candidates which would have missing energy signals at a TeV scale particle
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collider such as the LHC.

A number of classes of theories have been proposed to address these open

questions in particle physics. Supersymmetry (SUSY) posits a new spacetime symme-

try that requires that every SM particle have a corresponding supersymmetric partner

particle, or sparticle, whose spin differs by 1/2. SUSY has mechanisms to resolve the

aforementioned issues and more. For versions in which the sparticles have masses at

the TeV scale, the contribution from the sparticles to loop corrections to m2
H cancel the

large contributions from SM particles, thereby resolving the hierarchy problem.

A conserved multiplicative discrete symmetry of the SUSY Lagrangian called

R-parity, where R = (−1)3(B−L)+2S for a particle of spin S with either baryon num-

ber B or lepton number L, is a feature of many SUSY models. SM particles are R-

parity even, while their corresponding supersymmetric partners are odd under R-parity.

Unbroken R-parity requires pair production of sparticles, and thus the lightest super-

symmetric partner (LSP) is stable and cannot decay into SM particles. A neutral,

weakly-interacting LSP from a particle spectrum in the GeV - TeV range makes an

excellent DM candidate.

Another approach to solving the hierarchy problem is through Composite Higgs

models [10, 11]. In these models, the Higgs boson is not an elementary scalar and is

instead a pseudo-Goldstone boson of a global symmetry containing the electroweak

group SU(2)L × U(1)Y . The global symmetry is spontaneously broken by new strong

dynamics at a higher scale. In generic composite Higgs models, the Higgs mass is

protected by the shift symmetry, but this same shift symmetry has to be broken in order
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to give the Higgs the required couplings to the gauge bosons, fermions, and itself. The

Little Higgs scenario, one specific composite Higgs model, protects the shift symmetry

by introducing new particles then requiring collective symmetry breaking [20, 21]. Some

Little Higgs models also include an additional discrete symmetry called T-parity [22, 23].

Each particle of the theory has definite T-parity, and the lightest T-odd particle (LTP)

is stable. This is frequently the BH boson, the heavy partner to the photon. Because

BH is weakly interacting, it is a potential TeV-scale DM candidate.

Two more alternatives to solving the hierarchy problem are provided via extra

dimensions (EDs). Introduced in 1998 by Arkani-Hamed, Dimopoulos, and Dvali, ADD

or the large extra dimensions scenario posulates that the 3+1 dimensions of the SM are

embedded into a space with two or more extra dimensions while allowing only gravity

to propagate in the bulk [7, 8, 9]. Meanwhile, the SM fields are restricted to a (3+1)-

dimensional brane. Generically for δ extra spatial dimensions with volume Vδ, the 4D

Planck mass MP l is related to the fundamental 4+δ-dimensional Planck mass M(4+δ)

by:

M2
P l =M2+δ

(4+δ)Vδ. (1.4)

If we takeM(4+δ) to be the fundamental mass scale, then the fundamental mass scale can

be much smaller than the observed Planck mass, even down to the TeV scale, thereby

eliminating the hierarchy problem.

Around the same time Randall and Sundrum (RS) proposed warped extra

dimensions as another extra dimensional solution to the hierarchy problem [12]. The

RS model proposes a 5D spacetime with a warped geometry that dilutes the effect of
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gravity. Two branes are separated by the extra spatial dimension with coordinate z

on an S1/Z2 orbifold with compactification radius rc. The extra dimension spans the

range −πrc ≤ z ≤ πrc with the 4D branes located at the orbifold fixed points: the 4D

“UV” or “Planck” brane is at z = 0, and the “IR” brane at πrc. The space between

the branes has a z-dependent metric:

ds2 = e−2krc|z|ηµνdx
µdxν + r2cdz

2, (1.5)

where k is the scale parameter and xµ are the coordinates for the usual four dimensions.

The SM fields are confined to the visible IR brane. Consequently, the physical mass

scales are set by a symmetry-breaking scale

v ≡ exp(krcπ)v0 (1.6)

which exponentially suppresses the mass scale v0 of the hidden UV sector. In this case,

the hierarchy problem is resolved by the exponential suppression in the visible sector of

the high fundamental energy scales.

Both ADD and RS are theories of extra dimensions that propose dynamics

testable at the LHC. A third theory of extra dimensions with dynamics at scales close to

1 TeV is Universal Extra Dimensions (UED) [13]. UED allows all SM field to propagate

in one or more extra flat, compact dimensions. Whereas ADD and RS models aim to

solve the hierarchy problem of the SM, motivations for UEDmodels include the existence

of a DM candidate particle [24, 25], the requirement of three fermion generations to

cancel gauge anomalies [26], and proton stability [27].
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As a simple extra dimensional extension of the standard model, UED pro-

vides prototype models to investigate constraints on EDs. The minimal form of UED

(mUED) posits one extra spatial dimension through which all SM fields can propagate.

While having only two free parameters, R−1, the compactification scale of the single

postulated extra dimension, and Λ, the high energy cutoff of the theory, mUED provides

interesting phenomenology including a stable WIMP-type DM candidate that results

from conservation of KK parity, analogous to R-parity in supersymmetry and T-parity

in Little Higgs models.

Signatures of mUED at the LHC can be similar to signatures from other BSM

theories, including SUSY and Little Higgs. All three models contain a conserved parity

providing a stable WIMP-type dark matter candidates that exist at the TeV scale.

Although dark matter particles cannot be directly detected in a particle accelerator,

they would have a strong missing energy signature. After a two year technical stop, the

LHC has just begun Run II, and is taking data at a center-of-mass energy of 13 TeV.

If new heavy particles are discovered, we will need a precision measurement program

at the LHC, because a linear collider, the usual purview of precision measurements, is

many years away at best.

The goal of this dissertation is to present a prescription for ascertaining the

precision with which a well-defined and predicted BSM coupling could be measured

based on the observed number of events associated with a particular signature. At tree-

level, the mUED strong coupling is the same as the SM strong coupling. For a given

collider signature, varying the mUED strong coupling constant away from its predicted
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value changes the number of mUED events expected with that signature. Bounds on the

precision of a measurement of the mUED strong coupling are taken from the confidence

bands of a plot of the varied mUED strong coupling vs. the number of expected mUED

signal events. This number counting technique does not rely on measuring the cross

sections of processes which make up the signature and therefore can accommodate cross

sections with complicated dependences on powers of the coupling in question.

There are two potential uses for such a technique as applied here to mUED. If,

at the time of implementation, the new particles were still open to multiple theoretical

interpretations (such as if measuring particle spin had not yet been feasible), an analysis

of the proposed kind could be utilized to favor or rule out mUED. Alternatively, if mUED

were the dominant paradigm, one could follow the prescribed procedure for making a

precision measurement of the mUED strong coupling in order to assess how well the

model is performing.

A major advantage to this approach for precision measurements at the LHC

is its generalizability. Future observations of new particles may not be consistent with

mUED, but an analysis of this nature could be applied to other theories with couplings

that have a well-defined relationship to the SM couplings. This technique can be used

to perform a precision measurement of a coupling or disfavor a BSM theory under the

challenging circumstances of a compressed mass spectrum and/or by using detector sig-

natures that are composed of a signal process (or multiple processes, as in the mUED

case) whose cross section relies on multiple couplings and therefore a precision measure-

ment cannot be made from the simple relationship between a measured cross section
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and the coupling of interest. Because the technique does not rely on this type of simple

relationship but instead is a number counting experiment, the detector signature can

be built up from a number of different processes, an advantage when measuring the

coupling whose processes have individually small cross sections.

This dissertation is organized as follows: In Chapter 2, I present the theoretical

background of Universal Extra Dimensions focusing on the minimal form of the theory.

Chapter 3 details the methods and results of this precision measurement technique.

Within this chapter, Section 3.1 provides a summary of the analysis scheme used. In

Section 3.2, the technique for determining the precision measurement of the mUED

strong coupling is described in detail for the parameter values R−1 = 800 GeV, ΛR =

20. In Section 3.3, this analysis is extended to cover the viable energy range 900 GeV

≤ R−1 ≤ 1300 GeV for ΛR = 20, and to the more condensed mass spectrum case

of R−1 = 800 GeV with ΛR = 5. Finally, Chapter 4 concludes the description of this

research and summarizes future directions for such a program. Appendix A lists relevant

Feynman rules for mUED signal processes. Key statistical methods are discussed in

Appendix B.
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Chapter 2

Review of Universal Extra Dimensions

Modern theories with extra compact spatial dimensions (i.e., spatial dimen-

sions of finite extent) have their origins in the 1920s with the development of Kaluza-

Klein (KK) theory, an attempt to unify general relativity with electromagnetism [28,

29, 30]. To this end, KK theory was unsuccessful and lay more or less dormant until

the 1980’s when the need for extra dimensions (ED) in string theory prompted renewed

interest in ED. Models such as those introduced in the late 1990’s by Arkani-Hamed,

Dimopoulos, and Dvali (ADD) [7, 8, 9], or Randall and Sundrum (RS) [12] provide

mechanisms to address the hierarchy problem. The ADD model does this by postulat-

ing that the 3+1 dimensions of the SM are embedded into a space with two or more

extra dimensions while allowing only gravity to propagate in the bulk. Alternatively,

the RS model proposes a 5D spacetime with a warped geometry which dilutes the effect

of gravity. By contrast, in 2001 Appelquist, Cheng, and Dobrescu advanced a theory

known as Universal Extra Dimensions (UED) [13] which proposes one or more additional
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flat spatial dimensions through which all SM fields can propagate, creating a Kaluza-

Klein (KK) tower of particles for each of the corresponding SM particles. UED does

not generally address the hierarchy problem (attempts are made in [31]), however other

compelling motivations exist. Unlike ADD and RS which generically predict shorter

proton lifetimes than are observed [32], six-dimensional models of UED limit higher

dimensional operators that lead to proton decay, extending the proton lifetime beyond

experimental bounds [27]. Six-dimensional UED models also provide a mechanism to

derive the number of fermion generations from gauge anomaly cancellation [26]. With

a TeV-scale mass spectrum and stable dark matter candidate, the lightest KK particle

(LKP), five- and six-dimensional models of UED yield interesting phenomenology to

investigate at the LHC.

2.1 General Features of UED

Characterized by one or more extra compact spatial dimensions on a flat metric

which are accessible to all the SM fields, UED is a minimal extension of the SM in

d = 4 + δ dimensions. The 4D effective field theory is valid below an energy scale Λ,

above which the d-dimensional theory is no longer perturbative. The extra dimensions

are compactified at the scale of the inverse radius of each extra dimension, R−1 < Λ.

For any given δ and compactification scheme, the theory is completely parameterized

by the size of the extra dimensions, the high energy cut-off of the theory, and by the

boundary conditions of the extra dimensions.
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One general feature of compact extra dimensions is the appearance of a KK

tower in 4-dimensions corresponding to the d-dimensional field. A field propagating

through compact extra dimensions gives rise to a set of 4D fields of different masses,

each with the same spin. Each 4D field is refered to as a KK mode, KK excitation,

or KK particle. A KK tower consists of the set of KK excitations corresponding to a

single d-dimensional field. We find the KK tower when we integrate the d-dimensional

Lagrangian density over the δ-dimensions to reduce the theory to a 4D effective theory.

Take for example a massless 5D scalar field whose 5D Lagrangian density is [33]:

L5(x, y) =
1

2
∂MΦ∂MΦ =

1

2

(

∂µΦ∂
µΦ− ∂yΦn∂yΦm

)

(2.1)

where µ = 0, 1, 2, 3 and y represents the coordinate of the fifth dimension. Assume the

5D field can be decomposed into factors dependent separately on the four Minkowski

dimensions and the fifth dimension, Φ(x, y) =
∑

n φn(x)χn(y). Then the Lagrangian

density can be rewritten as:

L5(x, y) =
1

2

∑

n,m

[

χnχm∂µφn∂
µφm − φnφm∂yχn∂yχm

]

(2.2)

By setting conditions on the fields and how they behave at the boundaries of the extra

dimension, we can simplify this double sum and elucidate the 4D effective theory. Let

us assume the fields follow periodic boundary conditions and require the following two

conditions:

∫ y2

y1

dy χnχm = δnm (2.3)

χm∂yχn

∣

∣

y2
y1

= 0 (2.4)
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The first condition, shown in (2.3), eliminates the double sum of (2.2) by requiring that

the χn(y) form an orthonormal set. Addtionally, we insist in (2.4) that the field or its

fifth dimensional derivative vanishes at the boundaries.

Applying the conditions (2.3) - (2.4), then integrating the 5D Lagrangian den-

sity over y yields the 4D effective theory:

Leff (x, y) =
1

2

∑

n

[

∂µφn∂
µφn −m2

nφ
2
n

]

(2.5)

This describes the KK tower, an infinite set of states. Each state ormode n has massmn.

The masses observable in 4D correspond to quantized momenta in the fifth dimension.

In UED, the n = 0 modes of the KK towers are the SM fields. They are

obtained from the 4D effective Lagrangian density by dimensional reduction of the

(4 + δ)-dimensional Lagrangian density of UED. As in [13, 34], denoting the usual

3+1 non-compact spacetime coordinates as xµ, µ = 0,1,2,3 and the coordinates of the

compactified dimensions as ya, a = 1, . . . , δ, the (4+ δ)-dimensional Lagrangian density

of UED is given by:

L(xµ) =
∫

dδy

{

−
3

∑

i=1

1

2ĝ2i
Tr

[

Fαβ
i (xµ, ya)Fiαβ(x

µ, ya)
]

+ LHiggs(x
µ, ya)

+ i(Q̄, ū, d̄, L̄, ē)(xµ, ya)(ΓµDµ + Γ3+aD3+a)(Q, u, d, L, e)(x
µ, ya)

+
[

Q̄(xµ, ya)
(

λ̂uu(x
µ, ya)iσ2H

∗(xµ, ya) + λ̂dd(x
µ, ya)H(xµ, ya)

)

+ h.c.
]

+
[

L̄(xµ, ya)
(

λ̂ee(x
µ, ya)H(xµ, ya) + h.c

]

}

(2.6)

Here Fαβ
i are the (4 + δ)-dimensional gauge field strengths of the SU(3)C × SU(2)L ×

U(1)Y gauge group. Dµ = ∂/∂xµ − Aµ and D3+a = ∂/∂ya − A3+a are the covariant
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derivatives with Aα = −i∑3
i=1 ĝiAr

αiT
r
i being the (4 + δ)-dimensional gauge fields, and

ĝi the corresponding gauge couplings. These couplings as well as the (4+δ)-dimensional

couplings of the Yukawa matrices, λu, λd, and λe, have dimension (mass)−δ/2. LHiggs

contains the kinetic term for the (4 + δ)-dimensional Higgs doublet, H, and the Higgs

potential. Q, u, d, L, and e are the (4 + δ)-dimensional quarks and leptons whose zero-

modes are described in the SM. Capital (lower case) letters correspond to fermion fields

with the same quantum numbers as the SM SU(2)L doublets (singlets). Summation

over fermion generations is implied.

The (4+ δ)-dimensional gamma matrices, Γα, are anti-commuting 2k+2× 2k+2

matrices, such that for an odd (even) number of compactified dimensions, δ = 2k

(δ = 2k+1). These matrices satisfy the (4+ δ)-dimensional Clifford algebra {Γα,Γβ} =

2gαβ . For an odd number of spacetime dimensions, construction of a matrix with the

properties of γ5, that is a matrix which anticommutes with the ΓM ’s and whose square

is the identity, is not possible. This leads to 2k+2-component vector-like fermions in the

case of odd extra dimensions as will be discussed below. Note that in the case of only

one extra compact dimension, the gamma matrices can be expressed in terms of the

usual 4-dimensional gamma matrices, Γµ = γµ and Γ4 = iγ5.

To obtain the effective 4D Lagrangian from the (4+δ)-dimensional Lagrangian

density, the geometry of the compactification must be specified. Orbifold compactifi-

cation, enforcing a discrete symmetry on the δ-dimensional manifold, is required to

eliminate extra degrees of freedom which arise in the n = 0 mode but are not present

in the SM. Consequentially, the chiral fermions of the SM can be obtained from the
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vector-like fermions of the KK towers. Generally, the δ-dimensional space added to the

usual (3 + 1)-dimensional Minkowski space has coordinates 0 ≤ ya ≤ πR for odd a and

−πR ≤ ya ≤ πR for even a. Furthermore, fields propagating along the ya coordinates

are subject to boundary conditions of Eq. (2.4) such that each field or its derivatives

with respect to the ya’s vanish at the orbifold fixed points ya = 0,±πR. Once the com-

pactification scheme is in place, the field content of the (4 + δ)-dimensional theory can

be specified. Orbifolding the extra dimensions breaks momentum conservation in the

extra dimensions. However symmetries associated with the fixed points have associated

conserved quantities which lead to interesting phenomenology.

2.2 Minimal UED

Minimal Universal Extra Dimensions (mUED), the focus of this work, is the

simplest UED model and consists of only one extra dimension compactified on an S1/Z2

orbifold. mUED has only two free parameters: the size of the extra dimension R−1 and

the cutoff scale of the theory Λ, commonly given as the dimensionless quantity ΛR,

which counts the number of KK modes below the cutoff. A further assumption of

mUED is that the boundary interactions of the 5D Lagrangian vanish simultanously at

the cutoff [14, 35].

Bounds on the size of the extra dimension depend on the cutoff energy. At the

benchmark value of ΛR = 20, the viable range of the compactification scale is 720 GeV

≤ R−1 ≤ 1350 GeV. A value of R−1 near the upper bound of this range is favorable for
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dark matter relic density [3, 24, 36]; values above this bound lead to overclosure of the

universe. The lower bound on R−1 was determined through collider experiments by the

ATLAS Collaboration [37].

Higgs vacuum stability arguments [38, 39] motivate the consideration of a low

ΛR scenario. The measured value of the Higgs boson implies that at some high energy,

the potential for the Higgs boson develops a second minimum to which our universe

could decay. The energy scale of this lower “true” vacuum depends sensitively on the

masses of the Higgs boson and the top quark. Any viable BSM must require the lifetime

of the universe’s decay to the true vacuum to be longer than the age of the universe.

Because mUED introduces heavier versions of the top quark which couple strongly to

the Higgs, the Higgs quartic coupling runs faster than in the SM resulting in a Higgs

potential which goes to zero much faster than in the SM. Vacuum stability requires

new physics to stabilize the observed vacuum thus constraining the upper limit of the

cutoff to ΛR ∼ 5. Although this argument for low ΛR is compelling, it has been shown

that higher-dimensional operators associated with new physics at high energies may

have a large effect on vacuum stability [40]. At ΛR = 5, the compactification scale is

viable for 740 GeV ≤ R−1 ≤ 1200 GeV, where again, the current lower bound is set

by collider searches [41], while thermal dark matter relic density sets the bound from

above [3, 24, 36].

The Z2 symmetry of the orbifold breaks momentum conservation in the fifth

dimension; however there still exists a conserved discrete symmetry called KK parity

which is a remnant of the momentum conservation. All fields are required to be either
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even or odd under the transformation y → −y. This even or oddness is characterized

by the conserved quantity P5 = (−1)n, where n is the nth mode of the KK tower. KK

parity has a number of important consequences. First, requiring fields to have definite

KK parity removes the unwanted extra degrees of freedom in the n = 0 KK excitation

that are not present in the SM. Second, the n = 1 KK excitations have odd KK parity,

therefore by KK parity conservation, the lightest KK particle (LKP) cannot decay to

SM particles which have even KK parity.

Each 5D massless gauge field is made up of five (Aµ,A5) components, each of

which has an associated KK tower. By requiring the Aµ (A5) to be even (odd) under KK

parity, the Aµ,0 make up the components of a SM gauge boson, while A5,0 is eliminated

from the theory, thus preventing the phenomenological problem of an undetected zero

mode scalar field. For each n ≥ 1 mode, a particular gauge choice (the unitary gauge)

in which the Aµ,n absorb the A5,n through a Higgs-like mechanism. The A5,n become

the longitudinal polarization states of the massive Aµ KK towers [42, 43, 44]. The

Higgs doublet, H, must also be even under KK parity to ensure the appearance of the

SM Higgs boson. The 5D gauge and Higgs bosons are decomposed into KK modes as

follows:

Aa
µ(x

µ, y) =
1√
πR

[

Aa
µ,0(xµ) +

√
2

∞
∑

n=1

Aa
µ,n(xµ) cos

(ny

R

) ]

(2.7)

H(xµ, y) =
1√
πR

[

H0(xµ) +
√
2

∞
∑

n=1

Hn(xµ) cos
(ny

R

) ]

(2.8)

Here, Aa
µ represents the U(1)Y , SU(2)L, SU(3)C gauge fields as in (2.6). The normal-

ization reflects the range of integration 0 ≤ y ≤ πR.
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Because one cannot construct a 5-dimensional matrix with the properties of

γ5, that is, a matrix whose square is the identity and that anticommutes with all the γµ,

a single KK tower cannot give rise to fermions whose left and right-handed components

transform differently with respect to SU(2)L. This leads to vector-like fermions in 5D.

Two KK towers of fields exist for each SM fermion, one, Ψ, which has the quantum

numbers of the SU(2)-doublet representation, and one, ψ, which has the quantum

numbers of the SU(2)-singlet representation. To eliminate the extra degrees of freedom

introduced by doubling the number of fermions, use the usual 4D projection operators

PL, PR = 1
2(1 ∓ γ5) and require Ψ(xµ, y), ψ(xµ, y) to be even, odd under KK parity.

The left and right-handed projections of the 5D fields are odd and even, respectively

under the transformation y → −y:

Ψ(x, y) = (PL + PR) Ψ(x, y)
y→−y−−−−→ (−PL + PR) Ψ(x,−y) = Ψ(x,−y). (2.9)

In this way, each factorized term in the tower is completely odd or completely even.

With the definite parity requirement, the fermionic towers take the form:

Ψ(xµ, y) =
1√
πR

[

PLΨ0(x
µ) +

√
2

∞
∑

n=1

(

PLΨ
(L)
n (xµ) cos

(ny

R

)

+ PRΨ
(L)
n (xµ) sin

(ny

R

))]

(2.10)

ψ(xµ, y) =
1√
πR

[

PRψ0(x
µ) +

√
2

∞
∑

n=1

(

PLψ
(R)
n (xµ) cos

(ny

R

)

+ PRψ
(R)
n (xµ) sin

(ny

R

))]

. (2.11)

Here Ψ represents the 5D fields with the same quantum numbers as Q or L, while ψ

represents the 5D fields with the same quantum numbers as u, d, or e. The SM fermions
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are given by ΨSM = PLΨ0 + PRψ0.

At tree level, the mUED mass spectrum is almost completely degenerate. The

mass of each excitation of a KK tower associated with a SM particle X is approximately

equal to the size of the extra dimension:

m2
Xn

=
n2

R2
+m2

X0
. (2.12)

The zero mode massmX0
is the mass of the SM particleX and is generated via the Higgs

mechanism. Radiative corrections lift the degeneracy of the mUED mass spectrum.

Contributions to the KK masses include bulk corrections which arise from 5D Lorentz-

violating corrections and from the renormalization of radiatively generated terms in the

5D Lagrangian which are localized at the boundaries (i.e., fixed points) of the orbifold.

The combined mass corrections at one loop relevant to this worka are those to the KK

gluon g1, the KK SU(2) doublet quarks Q1, the KK vector bosons W±
1 and Z1, the KK

SU(2) doublet leptons L1, and the KK photon γ1, the LKP [35]:

δ(m2
Bn

) =
g21

16π2R2

(−39

2

ζ(3)

π2
− n2

3
ln ΛR

)

δ(m2
Wn

) =
g22

16π2R2

(−5

2

ζ(3)

π2
+ 15n2 ln ΛR

)

δ(m2
gn) =

g23
16π2R2

(−3

2

ζ(3)

π2
+ 23n2 ln ΛR

)

δ(mQn
) =

n

16π2R

(

6g23 +
27

8
g22 +

1

8
g21

)

ln ΛR

δ(mLn
) =

n

16π2R

(

27

8
g22 +

9

8
g21

)

ln ΛR, (2.13)

where ζ(3) ≈ 1.2020 . . . is the Riemann zeta function. With the radiative corrections,

aFor the complete set of radiative mass corrections, see Refs. [34, 35].
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(a) R−1 = 800 GeV, ΛR = 20 (b) R−1 = 800 GeV, ΛR = 5

Figure 2.1: Mass spectra for the first KK level at one-loop for R−1 = 800 GeV for (a)
ΛR = 20 and (b) ΛR = 5. Masses were computed using CalcHEP-3.4.7 [45, 46].

the n2

R2 term in (2.12) is replaced by n2

R2 + δ(m2) for bosons and by ( nR + δ(m))2 for

fermions. These substitutions are made in this way because the zero mode masses

corresponding to the SM particles do not receive additional radiative corrections. All

mass corrections are dependent on ln(ΛR) which leads to a more compressed spectrum

for smaller values of ΛR than for a higher energy cutoff as can be seen in Fig 2.1.

With the small lifting of degeneracy, the KK particles can decay promptly via

KK parity conserving interactions (see Fig 2.2). For the n = 1 mode, all KK particle

interactions must occur in pairs. This leads to the stability of the LKP. In mUED for

R−1 ∼ 1 TeV, the “Weinberg” mixing angle for the first level excitations is very small

(∼ 10−3) [35], so γ1 is made up almost completely of B1, and has mγ1 ∼ R−1. Because

the LKP is a weakly interacting massive particle with a mass detectable at the LHC,

γ1 makes an interesting dark matter candidate.

Another notable feature of mUED is that the couplings for the SM particles
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Figure 2.2: The n = 1 KK decay chain. Solid lines represent the dominant transitions.
Taken from Ref. [14].

are the same for all modes within a KK tower. Of particular interest to this work is the

strong coupling (referred to as g3 in (2.12), simply called g going forward). At tree-level,

the strong coupling associated with n ≥ 1 modes is predicted to be the same as that for

the SM:

gsm(qqg) = gsm(Q1Q1g) = gued(q Q1g1). (2.14)

This relationship gives a straightforward prediction for the mUED strong coupling that

is testable at the LHC. The next chapter describes a technique for determining how

precisely the mUED strong coupling could be measured at the LHC.
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Chapter 3

Precision Measurement at the LHC

3.1 Analysis Scheme

The investigation into the precision with which one can measure the mUED

strong coupling relies on the following assumptions: 1) New particles consistent with

mUED have been discovered at the LHC. 2) The masses of these particles, particularly

in the g1 and Q1 cascade decays, have been determined. 3) The LHC has been running

at its design center-of-mass energya, 14 TeV, and 4) the integrated luminosity is ≥ 100

fb−1.

The proton-proton collisions at the LHC generate an abundance of KK gluons

and KK quarks. The largest production cross sections yield a collider signature of jets

plus missing energy, which, unfortunately has large SM background arising from Z+jets,

W±+jets, tt̄, and QCD backgrounds contributions. To minimize the SM background,

aWhile these simulations were run assuming the LHC design energy of 14 TeV, the next LHC run
is scheduled to have a center-of-mass energy of 13 TeV. This energy is high enough that the mUED
processes described in this paper will still be within reach at the LHC.
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we first considered a monojet signal in the vein of Ref. [47]. This signature requires the

production of a KK quark with a KK vector boson, and the production cross section

combined with the relatively compressed mass spectrum of mUED did not produce

enough high transverse momentum monojets in excess of the SM background to make

the precision measurement.

Alternatively, because KK gluons and KK quarks frequently produce leptons

during their cascade decays, selecting for like-sign dilepton events, which have a rel-

atively smaller SM background at the LHC, provides an attractive signal to use for

investigating mUED. In this analysis, I look for an excess number of like-sign dilepton

events over the expected number of Standard Model events of the signal of interest:

pp→ l±l± + jets +��ET (3.1)

where l = e or µ, and there are two or more jets in addition to missing energy.

If mUED correctly describes the newly discovered particles, then by Eq. (2.14)

gued/gsm ∝ 1, and for specific values of R−1 and ΛR there is an associated number

of signal events, S1, expected to be produced at the LHC. However if the ratio of the

mUED and SM strong couplings is not necessarily unity but instead gued/gsm = c, where

c is some constant value, then a different number of signal events, Sc, is expected to

be produced at the LHC. This variation of the coupling away from the predicted value

is similar to the “κ-framework” used to explore the coupling structure of a Higgs-like

particle at the LHC [48]. For each estimate Sc, a profile likelihood calculator is used

to find the central confidence intervals with 68.3% and 95.4% coverage. The profile
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likelihood calculator requires two trials of every event simulation, one to construct a

model of the likelihood, and one to supply the “observed” number of events. To test

how precisely gued can be measured, one varies this ratio of the mUED and SM strong

couplings away from unity and evaluate how this variation changes the ratio κ:

κ =
Sc
S1
, (3.2)

The bounds on the precision of a gued measurement are taken from the confidence bands

of the plot of gued/gsm vs. κ, where for a given measurement of κ, there is a range of

possible values of gued consistent with that measurement.

If the spins of the new particles have not been identified, then there could be

multiple theoretical interpretations [14]. In this case, the strong coupling of the new

particles may not be the mUED strong coupling but rather an unknown BSM strong

coupling. The technique for determining the precision measurement of gued could be

used to eliminate mUED as the correct interpretation. For ease of notation, the strong

coupling of the new particles will be referred to as gued, although it could be the coupling

of an alternative theory such as SUSY [14].

3.2 Precision measurement of UED strong coupling

The demonstration of this technique for assessing the precision measurement

of the mUED strong coupling focuses on the parameter values R−1 = 800 GeV, ΛR =

20. This scenario is just above the current lower bound of the size of the extra di-

mension while using the benchmark value for the cutoff. This value provides the best
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Decay BR Comments

g1 → q,Q1 40% q 6= t, Q1 6= T1

Q1 → q,W1 65% Q1 6= T1

Q1 → q, Z1 32% Q1 6= T1

W1 → l, ν, γ1 78% l = e, µ; decays went through either L1 or ν1

Z1 → l+, l−, γ1 39% l = e, µ; decays went through L1

Table 3.1: Relevant branching ratios for mUED scenario: R−1 = 800 GeV and ΛR =
20. Branching ratios were computed using CalcHEP-3.4.7 [45, 46]. In all cases the SM
quarks q and KK quarks Q1 are not SM or KK top quarks. The KK leptons (charged
and neutral) decay exclusively to SM leptons and the LKP.

representation of the utility of the technique by balancing the size of the cross section

with the compression of the mass spectrum. Relevant masses and branching ratios for

this scenario are shown in Fig. 2.1(a) and Table 3.1 respectively.

3.2.1 Kaluza-Klein quark and gluon production at the LHC

To investigate the mUED strong coupling, consider subprocesses involving first

level KK gluons g1 and SU(2) doublet quarks Q1:

qg → Q1 g1

qq → Q1Q1

qq → g1 g1

gg → Q1Q1, (3.3)
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examples of which are shown in Figs. 3.1 and 3.2b. These processes all involve one or

more KK gluons and have cross sections proportional to g2ued, g
3
ued, g

4
ued, or some linear

combination of these factors. If the cross sections of the hard processes were directly

proportional to some unique power of gued, I could make an estimate of the precision

measurement of gued using the signal uncertainty as in Refs. [47, 49, 50]. However, the

mixture of powers of gued makes this approach intractable. Because the technique to

assess the possible precision of the measurement of gued described here relies only on

the number of events of the given signal and not on the cross section of a particular

process, I am free to investigate a signal made up of different processes. This approach

has the benefit of evaluating the precision measurement of the coupling even though the

cross sections of the signal have complicated dependences on gued. I therefore follow the

number counting technique described in this section.

Due to the mass hierarchy of the n = 1 KK modes, g1 and Q1 will cascade

decay through the KK vector bosons, Z1 and W±
1 , leading to final states with Standard

Model quarks and leptons as well as missing energy:

Q1 → q +W1 → jet + l +��ET

Q1 → q + Z1 → jet + l+l− +��ET , where one lepton is lost

g1 → q +Q1 → 2 jets + l +��ET ,

g1 → q +Q1 → 2 jets + l+l− +��ET , where one lepton is lost (3.4)

The mUED signal is defined as all subprocesses of the form given in Eq. (3.3) that

bFeynman rules applicable to mUED signal processes are given in Appendix A.
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Figure 3.1: Diagrams for qg → Q1g1, the process which yields the largest contribution
to the signal cross section. The gued coupling appears at the boxed vertices. Note that
σQ1g1 ∝ g2ued.

Figure 3.2: Diagrams for qq → Q1Q1, the process which yields the second largest
contribution to the signal cross section. The gued coupling appears at the boxed vertices.
Note that σQ1Q1

∝ c1 + c2g
2
ued + c3g

4
ued. In this case, some diagrams do not contain the

mUED strong coupling, however the c2g
2
ued and c3g

4
ued terms account for > 90% of the

cross section of this process.
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contain at least one q Q1g1 vertex and proceed through the decays shown in Eq. (3.4)

that result in the signal of interest —exactly two like-sign leptons, two or more hard

jets, and missing energy in the final state.

3.2.2 Major Backgrounds and Signal Selection

Signal and background samples were simulated in pp collisions at a center-

of-mass energy of 14 TeV. The mUED signal and background tree-level matrix ele-

ments and KK cascade decays were generated using mUED model filesc[46] within

CalcHEP-3.4.7 [45], and were subsequently interfaced with Herwig++-2.7.0 [52] for

showering and hadronization. For consistency with the tt̄ background, the simulations

were run with the CT10nlo [53] parameterization of the parton distribution function

(PDF) using LHAPDF [54]. The Herwig++ output was analyzed using HepMC-2.06.01 [55]

and ROOT [56]. Electrons and muons with pT > 5 GeV were considered isolated if no

more than 10 GeV was inside a cone of radius ∆R =
√

∆φ2 +∆η2 = 0.2 around the

lepton momentum, where φ and η are the azimuthal angle and pseudorapidity respec-

tively. Jets were identified using fastjet-2.4.2 [57, 58], where I employed the anti-kT

jet clustering algorithm [59] with ∆R = 0.7 and required each jet to have pT > 30 GeV.

To find the number of signal events for varying gued/gsm, I customized the

mUED model files by varying the strong coupling associated with the q Q1g1 vertex

according to gued/gsm = c, for c = (0.7, 0.8, . . . , 1.2, 1.3), while fixing the particle masses

cAlthough a more recent set of mUED model files [51] were produced in 2012, the structure of the
model files created by Cheng, Matchev, and Schmaltz, provided the needed flexibility in the treatment
of the mUED strong coupling and masses, which depend directly on gued [35].
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at the values generated with the unchanged strong coupling (c = 1). I fix the masses

at their predicted values because of the assumption that the masses of the particles

observed at the LHC are consistent with the particle spectrum for mUED. Fixing the

masses prevents additional changes to the mUED cross sections via the mass corrections

given in Eq. (2.13). I then generated the hard processes in CalcHEP and continued the

event simulation as described above.

There are two types of backgrounds to the signal processes: SM and mUED.

The SM background is dominated by semileptonic tt̄ decay with a smaller but non-

neglibible contribution fromW±W±jj. The tt̄ events were generated to next-to-leading

order in αS via POWHEG [60, 61, 62, 63], while W±W±jj processes were generated at

tree-level with MadGraph5-v1.5.10 [64]. The CT10nlo parameterization of the PDF

was used in implementing both SM backgrounds. Event files were then run through

Herwig++ and analyzed as described above.

All mUED processes that were not identified as signal were considered as

mUED background. The mUED background was produced simultaneously with the

signal events as previously noted. All possible first level KK processes were produced

and allowed to cascade decay.

mUED production cross sections, branching ratios and masses were taken from

the CalcHEP simulations. Signal process cross sections decrease significantly as R−1

increases as shown in Fig. 3.3. For ΛR fixed at 20, the cross section for all processes

contributing to the mUED signal for R−1 = 1200 GeV is less than 10% that of R−1 =

800 GeV. The tt̄ and W±W±jj cross sections were taken from POWHEG and MadGraph5
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Figure 3.3: mUED signal cross sections as a function of R−1. Cross sections were
computed using CalcHEP-3.4.7 [45, 46]

respectively.

Because the mUED signal is characterized by two like-sign leptons, two or

more jets, and missing energy, the signal was selected by following the cutflow shown

below and in Table 3.2.

• Anticipated trigger: pT,l1 > 25 GeV, pT,j1 > 100 GeV, ��ET > 100 GeV

• Exactly two isolated like-sign leptons: ee, µµ, or eµ, as long as both leptons have

the same charge

• Two hard jets: pT,j1 > 200 GeV, pT,j2 > 100 GeV

• Missing energy: ✚✚ET > 250 GeV
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cut SM bkg. mUED bkg. signal S/
√
B

events generated 8.24× 107 1.83× 106 107,700 11.7

trigger 4.29× 106 365,000 21,900 10.2

like-sign leptons 60,900 786 4,980 20.1

2 hard jets 16300 171 1,220 9.5

missing pT 1310 101 810 21.6

max lepton pT 508 91 721 29.5

b-tag veto 162 90 714 45.0

Table 3.2: Cutflow for mUED scenario: R−1 = 800 GeV and ΛR = 20, with assumed
integrated luminosity of 100 fb−1 at center-of-mass energy

√
s = 14 TeV. Trigger cuts

demand pT,l1 > 25 GeV, pT,j1 > 100 GeV, ��ET > 100 GeV. The SM background is
composed of tt̄ and WWjj events. All other SM backgrounds are negligible.

• Maximum lepton momentum: pT,l1 < 60 GeV

• b-jet veto: tagging efficiency of ǫ = 70%, light quark mistag rate ofD = 1% [65, 66]

These cuts are optimized for S/
√
B for the R−1 = 800 GeV, ΛR = 20 scenario. I imple-

mented the first four cuts to select the signal of interest. The compressed mass spectrum

of mUED limits the transverse momentum of the final state particles. Making these cuts

aggressive enough to adequately reduce the tt̄ background sacrifices the mUED signal

events. The final two cuts were applied to further reduce the substantial tt̄ background.

A cut on the maximum value for the transverse momentum of the hardest lepton was

implemented because the tail of the tt̄ distribution of hardest lepton’s pT extends well

beyond that of the mUED signal as shown in Fig. 3.4. The b-jet veto effectively increases
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Figure 3.4: Distribution of pT of the hardest lepton of events with exactly two like-sign
leptons for mUED scenario: R−1 = 800 GeV, ΛR = 20. There are too few WWjj
events too be seen in the histogram.

S/
√
B because only approximately 3% of the mUED signal contains events with b-jets.

The working point of 70% efficiency with a mistag rate of 1% was chosed to optimize

S/
√
B. These simple cuts reduced both the SM and mUED background to levels such

that S/
√
B ≥ 14 for an extra dimension as large as R−1 = 1100 GeV with ΛR = 20.

Although for this pilot study I did not implement a detector simulation, I

estimated the detector effects by smearing the momenta of the final state particles

using a Gaussian function before applying cuts. For example, to test how sensitive

the lepton momentum is to the lepton trigger cut and the maximum lepton pT cut, I

smeared the pT of the hardest lepton with a Gaussian function with a mean of 1 and

with a variance of 10%. I then observed the change in the number of events passing

cuts. I found that the number of events that passed cuts were insensitive to cut values,
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and the resulting change to the bounds on gued were negligible.

3.2.3 Sources of mUED signal uncertainty

The systematic signal uncertainty is as shown in Table 3.3. All errors were

added in quadrature. The error in the luminosity is specified by the LHC [67, 68]. I

determined the CT10nlo PDF uncertainty using the Hessian technique as recommended

by the CTEQ collaboration [69, 70, 71]. The NLO uncertainty was obtained by varying

the renormalization scale Q around the central value Q0 as 1
2Q0 ≤ Q ≤ 2Q0, where

Q0 =
√

2stu/(s2 + t2 + u2) and taking the maximum percent discrepancy of the number

of signal events. The author is not aware of any studies done to assess how precisely

the first level KK masses or R−1 could be measured at the LHC. For this reason, I

estimated the uncertainty associated with the mass measurements of g1, Q1, and γ1 by

assuming the masses associated with these particles are known to within a benchmark

value of ± 10 GeV (assuming that masses can be measured as precisely as predicted for

certain SUSY scenarios [72]), then ran simulations with the masses adjusted accordingly

and took the largest percentage change in the number of signal events as the systematic

signal uncertainty associated with the uncertainty of the KK masses.

The current assessment of the systematic error gives a total systematic signal

uncertainty of 64%, a value too high to conduct the analysis at hand. If new particles

are discovered over the next few years, it is reasonable to expect a diminution of the

individual sources of uncertainty such that the total systematic uncertainty of the signal

may be reduced to within 10-30%. At the present time, the uncertainties due to PDF
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error ∆S/S

luminosity 3.0%

PDF uncertainty 38.1%

NLO corrections 34.0%

∆mKK = 10 GeV 38.4%

total 64.0%

Table 3.3: Current assessment of relative errors of number of signal events for mUED
scenario: R−1 = 800 GeV and ΛR = 20 with assumed integrated luminosity of 100 fb−1

at
√
s = 14 TeV. Errors were added in quadrature. All uncertanties except that due to

luminosity are expected to decrease by the time the LHC reaches 100 fb−1.

uncertainty, NLO corrections, and KK particle mass uncertainty are all comparable to

each other. The large PDF uncertainty can likely be attributed to the combination of

the low fractional momentum of the incoming quarks and high momentum transfer of

the pp collisions at the LHC [73]. Once the LHC has been running at its design energy

long enough to reach 100 fb−1, PDFs will certainly be better constrained at 14 GeV.

Improvements to NLO corrections are also expected: if mUED candidate particles had

been discovered, then loop corrections to the mUED processes will have been calculated.

The signal uncertainty associated with the precision of the masses may be harder to

reduce. Due to the compressed mass spectrum of mUED, small changes in mass can

significantly restrict the energy available to decay particles yielding a large change in

the number of signal events that pass cuts. Particle masses will need to be measured

with greater sensitivity to alleviate this source of error.
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3.2.4 Bounds on the gued measurement

To determine the bounds on the precision with which one can measure gued, I

ran full event simulations for gued/gsm = c, with c = 0.7, 0.8, . . . , 1.2, 1.3, and observed

the effect on κ, the number of signal events for a given c relative to the number of signal

events for c = 1. The upper and lower bounds on κ were found by employing a profile

likelihood calculator, based on the results described in Ref. [74], implemented in the

RooStats [75] framework of ROOT. The bounds on gued were extracted by plotting the

confidence intervals associated with κ as in Fig. 3.5.

The profile likelihood calculator builds a model based on the expected numbers

of mUED signal and total background events, following Poisson distributions, and their

associated Gaussian-distributed systematic uncertainties. A sample data set is then

constructed as the total “observed” number of events. Using the method of maximum

likelihood, the calculator estimates the number of expected signal events S and its lower

and upper bounds for central confidence intervals with 68.3% and 95.4% coverage. I

ran two complete simulation trials for each value of c, then used the two trials to build

the model (trial 1) and supply the “observed” data set (trial 2).

At the present time, the systematic uncertainty on the signal is 64%, however,

as discussed above, this is expected to be largely reduced by the time an experimental

analysis of this type is undertaken. In the calculator, I used more optimistic estimates of

the signal uncertainty: 10%, 20%, and 30%. The major source of background events is

tt̄, which currently has an estimated combined scale and PDF cross section uncertainty
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of ∼12% as calculated by the Hathor tool [76]. Cross sections derived at next-to-next-to-

leading order in Ref. [77] reduce the uncertainty to 4−6%. The background uncertainty

is assigned at the benchmark value of 10% in all cases, as the current uncertainty on

the major background source is expected to be reduced by the time the LHC reaches

100−1 fb.

Fig. 3.5 shows the correlation between κ and the coupling ratio for R−1 = 800

GeV and ΛR = 20, with an assumed integrated luminosity of 100 fb−1 at
√
s = 14

TeV. A measurement at the LHC of κ = 1 would correspond to an observation of the

number of signal events expected for mUED in which gued = gsm. For an optimistic

scenario of a 10% systematic signal uncertainty, a κ = 1 measurement would indicate

that gued falls somewhere within ±7% of its predicted value to 95.4% confidence level

(CL). More conservatively, if the systematic signal uncertainty is as high as 30%, the

same observation would imply that gued could lie anywhere between −20% and +13%

of its predicted value, again to 95.4% CL. Alternatively, if κ were observed to be a value

other than one, one could use the relationship between gued/gsm and κ to determine

whether or not the number of events observed are consistent with mUED to 68.3%

or 95.4% CL. For example, an observation of κ = 0.75 would still be consistent with

mUED for a systematic signal uncertainty of 20% or 30%, however, if the systematic

signal uncertainty is brought down as low as 10%, an observation of κ = 0.75 would no

longer be consistent with mUED to 95.4% C.L.
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3.3 Results of precision measurement of strong coupling

The technique for determining the possible precision which which the mUED

strong coupling could be measured at the LHC as described above was used to scan the

viable range of R−1: 900 ≤ R
−1 ≤ 1300 GeV in 100 GeV increments for the cutoff ΛR =

20. Because the masses of the KK particles scale with R−1, this parameter scan provides

insight into how heavier mass spectra affect the bounds on the precision measurement

of gued. Whereas R−1 controls the scale of the mass spectrum of KK particles, both R−1

and ΛR control the compression of the spectrum. The bounds for R−1 = 800 GeV with

ΛR = 5 were therefore also assessed in order to investigate the case of a very compressed

mass spectrum. Results for the full range of R−1 at ΛR = 20 and R−1 = 800 GeV with

cutoff ΛR = 5 with assumed integrated luminosity of 100 fb−1 are shown in Figs. 3.5

- 3.11. The complete bounds on a precision measurement of gued are given in Tables 3.4

and 3.5.

As R−1 increases, we generally see a relaxation on the bounds on the possible

precision of a gued measurement for the fixed cutoff ΛR = 20. The mass differences

between KK parent and daughter particles in the decay chains (cf. Eq. (3.4) and Fig. 2.2)

increase with larger R−1, giving rise to harder jets and leptons and larger transverse

missing energy in the final state. However, this advantage is in tension with the decrease

in the production cross sections associated with the heavier mass spectra (cf. Fig. 3.3).

Using this technique of varying the mUED to SM strong coupling ratio, upper

and lower bounds were set at 95.4% C.L. on the precision with which the gued coupling
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Figure 3.5: gued/gsm vs. κ for R−1 = 800 GeV with ΛR = 20. The assumed integrated
luminosity is 100 fb−1 at

√
s = 14 TeV.
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Figure 3.6: gued/gsm vs. κ for R−1 = 900 GeV with ΛR = 20. The assumed integrated
luminosity is 100 fb−1 at

√
s = 14 TeV.
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Figure 3.7: gued/gsm vs. κ for R−1 = 1000 GeV with ΛR = 20. The assumed integrated
luminosity is 100 fb−1 at

√
s = 14 TeV.
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Figure 3.8: gued/gsm vs. κ for R−1 = 1100 GeV with ΛR = 20. The assumed integrated
luminosity is 100 fb−1 at

√
s = 14 TeV.
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Figure 3.9: gued/gsm vs. κ for R−1 = 1200 GeV with ΛR = 20. The assumed integrated
luminosity is 100 fb−1 at

√
s = 14 TeV.
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Figure 3.10: gued/gsm vs. κ for R−1 = 1300 GeV with ΛR = 20. The assumed integrated
luminosity is 100 fb−1 at

√
s = 14 TeV.

49



Figure 3.11: gued/gsm vs. κ for R−1 = 800 GeV with ΛR = 5. The assumed integrated
luminosity is 100 fb−1 at

√
s = 14 TeV.
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R−1 (GeV) ΛR Sig. unc. -2σ -1σ +1σ +2σ

800 20 10% 0.943 0.971 1.033 1.067

20% 0.892 0.947 1.061 1.114

30% 0.810 0.922 1.090 1.151

900 20 10% 0.932 0.965 1.035 1.070

20% 0.877 0.940 1.060 1.108

30% 0.809 0.913 1.087 1.130

1000 20 10% 0.939 0.969 1.052 1.103

20% 0.903 0.951 1.083 1.130

30% 0.769 0.930 1.107 1.159

1100 20 10% 0.921 0.960 1.043 1.088

20% 0.869 0.943 1.061 1.129

30% 0.758 0.921 1.084 1.178

Table 3.4: Bounds on gued/gsm for R−1 = 800, 900, 1000, and 1100 GeV, ΛR = 20 with
assumed integrated luminosity of 100 fb−1 at

√
s = 14 TeV. Systematic background

uncertainty is 10% in all cases.
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R−1 (GeV) ΛR Sig. unc. -2σ -1σ +1σ +2σ

1200 20 10% 0.873 0.937 1.031 1.062

20% 0.823 0.912 1.042 1.084

30% 0.714 0.880 1.055 1.110

1300 20 10% 0.900 0.948 1.082 1.139

20% 0.822 0.931 1.104 1.168

30% 0.732 0.912 1.122 1.200

800 5 10% 0.931 0.964 1.029 1.060

20% 0.901 0.949 1.041 1.083

30% 0.795 0.931 1.056 1.113

Table 3.5: Bounds on gued/gsm for R−1 = 1200 and 1300 GeV, ΛR = 20 and for R−1 =
800 GeV, ΛR = 5 with assumed integrated luminosity of 100 fb−1 at

√
s = 14 TeV.

Systematic background uncertainty is 10% in all cases.
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could be determined for the viable range of compactification scale at ΛR = 20 and for

the lower ΛR test case for all three tested values of the systematic signal uncertainty.

The bounds for all points in the parameter scan except for R−1 = 1200 and 1300 GeV

were determined using cuts optimized for the test scenario R−1 = 800 GeV, ΛR = 20.

Because the transverse momenta of the final state leptons, jets and invisible particles

increases with R−1, reoptimizing the cuts for the higher values of the compactification

scale, R−1 = 1200 and 1300 GeV, was required to set bounds at 95.4% C.L. The only

change in the cutflow was to the missing transverse energy cut which required ��ET >

300 GeV instead of 250 GeV.

For fixed R−1, lower values of ΛR yield a more compressed mass spectrum,

with the mass of the LKP essentially unchanged. This results in significantly lighter

KK quarks and gluons, leading to a large increase in the production cross sections of the

processes of interest. For R−1 = 800 GeV, the signal production cross section increased

by over 50% for ΛR = 5 compared to ΛR = 20. The more tightly compressed mass

spectrum also restricts the momenta of the outgoing leptons, jets, and invisible particles.

For R−1 = 800 GeV, S/
√
B was reduced from 45.0 for ΛR = 20 to 13.1 for ΛR = 5.

The biggest limitation of this technique as applied to the mUED signature of

two like-sign leptons, two or more jets, and missing energy is the reduction of the signal

to background ratio for larger values of R−1 or smaller value of ΛR. The compressed

mass spectra of the mUED scenarios make it difficult to severely reduce the tt̄ back-

ground through these simple selection cuts. For example, the hardest leptons coming

from tt̄ decays are likely those coming from the subsequent W → lν decays, in which
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the charged lepton and neutrino have negligible mass compared to the W , so that the

mass difference is ∆mW,lν ≈ 80 GeV. For the mUED decays, the mass difference in the

W1 → lL1 decays is only ∆mW1,lL1
≈ 25 GeV for R−1 = 800 GeV, ΛR = 20 and only

∆mW1,L1
≈ 34 GeV for the less compressed spectrum of R−1 = 1200 GeV, ΛR = 20.

A first approach to boosting signal and reducing the tt̄ background would be to

optimize event selection cuts for each point in the mUED parameter space. Implement-

ing a more sophisticated set of cuts is also likely to improve the precision measurment.

The tt̄ events which pass event selection cuts can be sensitive to the choice of PDF.

In this study, the tt̄ simulations employed the CT10nlo PDF for consistency with the

choice of PDF for mUED events. However, when tt̄ events were simulated using the

MSTW2008nlo PDF [78], the production cross section was higher, but the number of

events which passed selection cuts was significantly lower, yielding much tighter bounds

on gued. Constraining the PDFs at higher energies will have a substantial impact on

the size of the tt̄ background in the future.

The current size of tt̄ background causes the systematic background uncer-

tainty to dominate over the statistical uncertainty; thus, increasing the luminosity to

300 fb−1 or 3000 fb−1 yields only marginal improvement on the precision measurement.

The tt̄ background will need to be reduced in order for increased statistics to improve

the result.
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Chapter 4

Conclusion

In this dissertation I have presented a method for determining how precisely

a well-defined coupling of a theory could be measured at the LHC assuming that new

particles had been discovered and their masses had been characterized. As applied

to the strong coupling of mUED, this technique is viable for the full parameter range

800 GeV ≤ R−1 ≤ 1300 GeV, ΛR = 20 and for the low ΛR test case of R−1 = 800

GeV, ΛR = 5 as observed at the LHC with a center-of-mass energy of 14 TeV (and

presumably the current run at
√
s =13 TeV) and integrated luminosity of 100 fb−1. If

an experimental measurement of the excess number of events over the background of

the signature of two like-sign leptons with two or more jets and missing energy falls near

κ = 1 as defined in Eq. 3.2, then the maximal precision of the measurement of gued/gsm

corresponds to the upper and lower bounds of the confidence bands of Figs. 3.5 - 3.11

associated with the measured value of κ. If the number of signal events were to lie above

or below κ = 1, then it may be possible to exclude mUED as the appropriate theory to
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describe the particles to 68.3% and/or 95.4% C.L., as the measured coupling would not

be consistent with mUED.

Improvements to the possible precision measurement of the mUED strong cou-

pling could be made with a reduction of SM background. Future results from the design-

energy run of the LHC, including better tuning of PDFs for tt̄ and for mUED processes

will help in reducing the systematic uncertainty of both signal and background con-

tributions to the event signature. The signature events in this analysis were selected

using a set of simple cuts. To perform this analysis on data generated from the LHC,

a more sophisticated set of criteria for event selection would be prudent to achieve a

larger signal to background ratio.

A useful extension to this analysis would be the inclusion of a third lepton in

the collider signature. This would bolster the signal as well as decrease the tt̄ background

if a suitable cut on the third lepton is made.

An analysis of this type would be augmented by a complementary study in-

vestigating processes that rely on different branching ratios within mUED, for example,

processes involving the production and decay of KK SU(2)-singlet quarks q1 within

mUED. The dominant decay of q1 is q1 → q+ γ1, which means that for events in which

two q1 are directly produced from parton-parton interactions or from a decaying g1,

the resulting signature would be two or more jets plus large missing energy. If the

formidable SM background of Z+jets, W±+jets, tt̄, and QCD background can be re-

duced, then applying the described method for assessing how precisely gued could be

determined would indicate the robustness of the technique.
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Non-minimal forms of UED also present interesting and rich particle spec-

tra. For instance, one may consider non-vanishing bulk masses and boundary localized

terms [79]. Alternatively, embedding the mUED model in a larger space with N addi-

tional dimensions of O(eV−1), accessible only to gravity [80] and a (4+N)-dimensional

Planck scale can result in prompt decay of the LKP: γ1 → γ+G, where G is a tower of

graviton states, with mass between 0 and R−1. The ATLAS collaboration is currently

conducting searches for this model [81] and have set the lower 95% CL limit on R−1 at

1.4 TeV.

The prime benefit of the method presented here is its generalizability. Unlike

other approaches to assessing the precision with which a coupling may be measured,

which rely on a direct relationship between the process cross section and the coupling

(such as σ ∝ g2), the technique can be applied to processes whose cross sections have

complicated dependences on the coupling. This allows for measurements of couplings

via a BSM signature that is composed of a collection of processes whose combined events

can be seen in aggregate against the SM background. Because this approach is general,

the technique can be applied to other versions of UED or other BSM theories with

predicted SM-like couplings.
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Appendix A

Select Feynman Rules for mUED

Below is a list of Feynman rules needed to compute scattering amplitudes of the

mUED signal processes (cf. Eq. (3.3)) and the subsequent two-body decays within the

resulting cascade decay chains. Vertices shown in Table A.1 contain the strong coupling,

here denoted as g3. These vertices are needed for the production of SU(2)-doublet KK

quarks and KK gluons, and for the decay of a KK gluon into a SU(2)-doublet KK quark.

Vertices shown in Table A.2 contain either the weak coupling g2 or the electromagnetic

coupling g1. These vertices appear in the decay chains starting from the SU(2)-doublet

KK quark.

These Feynman rules were derived in [46] from the compactified 5-dimensional

Lagrangian given in Eq. (2.6) after dimensional reduction. All processes are KK-parity

conserving and given in terms of 4-dimensional fields.
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= −ig3fabc[(p−q)λgµν+(q−r)µgλν+(r−p)νgλµ]

= −ig3γµT c
baPL

Table A.1: Feynman rules for colored particles. The fabc are the structure constants for
SU(3)c. gµν is the 4D metric tensor (+,−,−,−). The left-handed projection operator

is represented as PL = 1−γ5

2 .

59



= −i g2√
2
γµPLVFf ′

= −iI3g2γµPL

= −iY2 g1γµPL

Table A.2: Feynman rules for weakly and electromagnetically interacting particles. f
and F1 represent SM and n = 1 KK SU(2) fermions respectively. I3 is the weak
isospin. Y stands in for the fermion hypercharges. The left-handed projection operator

is represented as PL = 1−γ5

2 .
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Appendix B

Statistical Methods

The outcomes of particle physics experiments are non-deterministic. We use

the data gathered from an experiment, or, as in this case, a simulated experiment,

usually given as a random sample from a large set, to statistically infer properties

of a given probabilistic model. The technique developed in this dissertation relies on

estimating the number of mUED signal-type events detected at the LHC and assessing

the uncertainty of this estimate. The uncertainty of this estimate depends not only on

the statistical flucuations of the signal but also on the number of background events and

the systematic uncertainties of both the signal and background. The estimate for the

number of signal events was performed in two trials using Monte Carlo methods. The

estimate for the confidence intervals for the signal, here the range of possible values of

the signal in which the true value of the signal lies with a probability of 68.3% or 95.4%,

was determined via the profile likelihood ratio, an extension of the Method of Maximum

Likelihood. Additionally, Bayesian statistics were employed to test the consistency of
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the results from the Monte Carlo trials. These statistical methods are discussed below,

following a review of key concepts needed for their discussion.

Key concepts of parameter estimation

To discuss the methods of parameter estimation employed in this analysis,

some background in probability and statistics is needed. Of particular importance are

the concepts of probability and probability distributions, random variables, statistical

tests, and parameter estimation.

Consider the sample space S which consists of the set of all possible outcomes

of a particular experiment, and denote A,B ⊆ S are any pair of events. For any subset

(i.e., outcome) such as A of S, one assigns the probability P (A) that A will occur. The

real number P (A) must satisfy the following three axioms:

P (A) ≥ 0,

P (A ∪B) = P (A) + P (B) if A ∩B = ∅,

P (S) = 1. (B.1)

A number of other properities can be derived from these axioms (see, e.g., Refs. [82, 83]).

The probability of outcome A given outcome B, known as the conditional

probability P (A|B) is (assuming P (B) 6= 0):

P (A|B) =
P (A ∩B)

P (B)
. (B.2)
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Likewise, assuming P (A) 6= 0, the probability of B given A is:

P (B|A) = P (B ∩A)
P (A)

. (B.3)

Since A ∩B = B ∩A, Eqs. (B.2) and (B.3) combine to form:

P (A|B) =
P (B|A)P (A)

P (B)
, (B.4)

an equation known as Bayes’ theorem.

When a probability distribution is specified on the sample space of the exper-

iment, the probabilities of all the possible outcomes must sum to one. The outcomes

of experiments can be expressed in different ways so long as their probabilities follow

the axioms of Eq. (B.1). A random variable x is a function that maps each possible

outcome s ⊂ S a real number x(s). With a probability distribution specified on the

sample space of the experiment, the probability distribution for the possible values of

any random variable x can be determined.

The purpose of a statistical test is to determine the compatibility of the ob-

served data with the hypothesized probabilities. Generally, the hypothesis specifies a

probability distribution f(x;θ) for the random variable x, where the distribution has a

defined form and is dependent on a limited number of free parameters θ = (θ1, . . . , θm).

When f(xi;θ) is taken to be a function of the parameters θ with the data xi fixed, this

factor is called the likelihood function L:

L(θ) =
n
∏

i=1

f(xi;θ). (B.5)

To investigate the agreement between data and theory, one constructs a test statistic

t(x) a random variable that can be used to distinguish between alternative hypotheses.
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The goal of parameter estimation is to find the estimate of the parameters that

best describe the data. A statistic used to estimate a parameter θ is called an estimator.

To characterize how “good” an estimator is, consider a few of its properities. An

estimator is said to be consistent if as the sample size increases the estimate approaches

the true value of the parameter. The bias of an estimator is the difference between the

expectation value of the estimator and the true value of the parameter, and an estimator

is called unbiased if this difference is zero. An estimator is said to be efficient if the

variance of the estimator, V [θ], is equal to the Rao-Cramer-Frechet bound:

V [θ] =

(

1 +
∂b

∂θ

)/

E

[

− ∂2 logL

∂θ2

]

. (B.6)

If the likelihood depends on more than one unbiased and efficient parameter,

the inverse of the covariance matrix of their estimators Vij = cov[θiθj ] is

(V −1)ij = E

[

− ∂2 logL

∂θi∂θj

]

. (B.7)

This technique can be used to find the variance of an estimator (each diagonal element

of Vij gives the variance of a particular parameter), even if the parameter was estimated

using a method other than maximum likelihood.

B.1 Method of Maximum Likelihood

The goal of the analysis described in this work was to determine how precisely

the mUED strong coupling, gued, could be measure at the LHC for the energy range.

To do this, I varied the strength of gued and observed how this changed s, the predicted
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number of events in excess of the predicted background for the signature of interest.

Then, by finding the confidence intervals in which the probability of finding the true

value of s is 68.3% or 95.4%, I created confidence bands for gued/gsm vs. κ, where κ is

the number of signal events for the value of gued/gsm modulo the number of signal events

for gued = gsm as seen in Figs. 3.5 - 3.9. I predicted s and the number of background

events b using Monte Carlo simulations. To find the confidence intervals for s while

incorporating the systematic uncertainties of the mUED signal and total background,

I employed the method of maximum likelihood as implemented in the RooStats [75]

package of ROOT [56], based on the results described in [74]. This approach identifies

the confidence intervals with the desired coverage by taking as input a representative

data set, called the Asimov data set, defined such that when one uses it to evaluate the

estimators for all parameters, one obtain the true parameter values [74]. One generates

estimates for the true parameter values from a Monte Carlo model using a very large

data sample. One then applies the method of maximum likelihood in the form of the

profile likelihood ratio which treats the number of background events as well as the

systematic uncertainties of the signal and background as nuisance parameters.

The functional form of the probability distribution for a random variable is

often known (or at least a well-motivated prediction of the form can be made), but

the parameters of the distribution may not be. For example, the number of events

n observed in counting experiments in particle physics follow a Poisson probability
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distribution with mean and variance ν:

P (n|ν) = νn

n!
e−ν . (B.8)

The parameter ν is unknown, and the goal in the counting experiment is to estimate

this parameter given the data n.

The method of maximum likelihood is a powerful technique for parameter esti-

mation used frequently in particle physics. When the functional form of the probability

distribution for a random variable is known, but the parameters θ are not, one may

maximize the likelihood for the unknown parameters to obtain the maximum likelihood

estimators of the distribution. Given a differentiable likelihood function, as in Eq. (B.5),

the best estimators θ̂ = θ̂1, . . . , θ̂m of the unknown parameters are determined by max-

imizing the likelihood for each parameter:

∂L

∂θi
= 0, i = 1, . . . ,m. (B.9)

The likelihood function for this analysis is the product of the distributions that describe

the number of events observed in the experiment and the distributions for the systematic

uncertainties of the signal and background events.

Often the parameters of the likelihood can be separated into two categories:

parameters of interest and nuisance parameters. The nuisance parameters are parame-

ters of the model which cannot be eliminated from the model but are nevertheless not

the focus of the experiment.

Generally, when the likelihood is a function of a single parameter of interest

π and of nuisance parameters θi the maximum likelihood estimators (MLE’s) are given
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by:

(π̂, θ̂i) = argmax
π,θi

L(π, θi) (B.10)

Unlike the likelihood, the profile likelihood, L(π, θ̂π) is a function of only the parameter

of interest (and the subscript i has been dropped for convenience). The profile likelihood

is constructed by first estimating each nuisance parameter by treating the parameter of

interest π as being fixed to some value (indicated by the subscript π):

θ̂π = argmax
θ

Lπ(θ) (B.11)

This procedure is repeated so there is one curve Lπ for each value of π. Note that

because θ̂π is a function only of the parameter π, the profile likelihood L(π, θ̂π) is a

function of the parameter of interest only and not of the nuisance parameters. The

estimator for π is found by maximizing the profile likelihood

π̂ = argmax
π

Lπ(θ̂π) = argmax
π

L(π, θ̂π). (B.12)

Consider now the profile likelihood ratio λ(π) constructed from the profile

likelihood and the maximum likelihood:

λ(π) =
L(π, θ̂π)

L(π̂, θ̂)
, (B.13)

where it should be noted that θ̂ represents the global best estimate of each nuisance

parameter. A convenient test statistic for a hypothesized value of π is:

tπ = − log λ(π). (B.14)

From Eq. (B.13), the profile ratio λ must fall in the range 0≤ λ ≤ 1, with values near

1 implying good agreement between the data and the hypothesized value of π. In turn,
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higher values of tπ indicate that the hypothesized value of π is inconsistent with the

data.

The log-likelihood is frequently employed as a test statistic in counting ex-

periments. Because the distributions that make up the likelihood in Eq. (B.18) are

exponential, what were products in the likelihood become sums in the log-likelihood,

simplifying calculations substantially.

Another simplification to estimating the parameter of interest is by use of the

Asimov data set. This representative data set is used to evaluate the Asimov likelihood

LA and corresponding profile likelihood ratio λA:

λA(π) =
LA(π, θ̂π)

LA(π̂, θ̂)
=
LA(π, θ̂π)

LA(π′,θ)
, (B.15)

where π′ is the mean value of π given by the Monte Carlo simulation, and θ are the

known (or assumed) values of the nuisance parameters.

There is uncertainty associated with parameter estimation. The central con-

fidence interval [a, b] = [π̂ − c, π̂ + d] is the interval in which the true value of π has

equal probability of being in the interval [c, π] or [π, d]. As discussed in [82], even if

the likelihood function is a not a Gaussian function of the parameters, as in this case

where L is composed of the product of Poisson and Gaussian distributions, the central

confidence interval can still be approximated using

− logL(π̂+d
−c ) = − logLmax +

N2

2
, (B.16)

where N = Φ−1(1−α/2) is the quantile of the standard Gaussian corresponding to the

desired confidence level 1− α.
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The number of events n observed in counting experiments in particle physics

follow a Poisson probability distribution with mean and variance ν as shown in Eq. (B.8).

In the analysis described in this dissertation, the signature of interest is composed of

both signal and background events with expected means s and b, and thus ν = s + b.

The systematic uncertainties of signal and background events are treated as following a

Gaussian probability density function with mean µ and variance σ2:

P (m|µ, σ2) = 1√
2πσ

exp

[

− 1

2

(

m− µ

σ

)2]

. (B.17)

For the signal and background uncertainties, it is assumed that m − µ = 1, and the

variance is σ2s = 0.1, 0.2, or 0.3 for the signal. Similarly, for the background uncertainty,

the variance is taken to be σ2b =0.1.

The likelihood function, L(n|s, b, σ2s , σ2b ), defines the probablity of observing

the number of events n given the parameters s, b, σ2s , and σ
2
b :

L(n|s, b, σ2s , σ2b ) =
(

(s+ b)n

n!
e−(s+b)

)(

1√
2πσs

e−
1

2

(

1

σs

)2
)(

1√
2πσb

e
− 1

2

(

1

σb

)2
)

(B.18)

Of the four parameters, I am only interested in finding ŝ, the best estimate of s, and

σŝ, the variance of this estimate of s, based on the number of events n observed. The

parameters, b, σ2s , and σ
2
b , are nuisance parameters.

I run two trials of Monte Carlo simulations to obtain two sets of estimates for

s and b. The representative Asimov data set is built from the estimates of s and b from

Trial 1 as well as from the assumed systematic uncertainties σs = 0.1 and σb = 0.1. Trial

2 plays the role of the experiment, and its estimates comprise the “observed” number

of events n = s+ b. With values for n, s, b, σs, and σb for the likelihood in Eq. (B.18),
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Figure B.1: The blue curve is the distribution of the profile likelihood ratio for R−1 =
800 GeV, ΛR = 20, with gued = gsm. Minimizing the profile likelihood ratio identifies
the expected number of signal events. The green horizontal line identifies movement of
1/2 away from the minimum. The values of s corresponding to this movement away
from the minimum given the upper and lower limits of the confidence interval with
68.3% coverage.

I utilized the profile ratio calculator implemented in the RooStats package of ROOT to

numerically minimize − log λ(s), where λ(s) is the profile likelihood ratio constructed

from the Asimov data set. To find the central confidence interval of s with 68.3%

coverage, I plot the profile likelihood ratio vs. s and find the values of s that satisfy Eq.

(B.16) with N = Φ−1(1− α/2) = 1 as is seen in Figure B.1. I repeat this procedure for

95.4% coverage, where the bounds on this confidence interval are the values of s that

correspond to moving away from the minimum of − log λ by 2 units. I can then again

find these confidence intervals when σs = 0.2 or 0.3. The entire procedure is done for
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each variation of gued at each point in the parameter space of 800 GeV ≤ R−1 ≤ 1300

GeV, ΛR = 20, and at R−1 = 800 GeV, ΛR = 5.

B.2 Estimating cut efficiencies and their uncertainties us-

ing Bayesian statistics

Searching for a signature of interest involves selecting events that pass selection

criteria (i.e., cuts) designed to maximize the contribution from signal processes to the

signature while minimizing contributions from background processes. The selection

efficiency, ǫ, is the conditional probability that an event will pass the cut. Because the

true efficiency of the cut is not known, the efficiency must be estimated. This estimate

for the efficiency is made from repeated trials of applying the cut, in which k events

are selected out of n independent trials. Because each event either succeeds or fails in

passing the cut, k is binomially distributed with a probability of success, ǫ:

P (k|n, ǫ) = n!

k!(n− k)!
ǫk(1− ǫ)n−k. (B.19)

To find P (ǫ|k, n), the probability that the true value of the efficiency is in the

interval (ǫ, ǫ+ dǫ), apply Bayes’ theorem:

P (ǫ|k, n) = P (k|n, ǫ)P (ǫ|n)
Z

. (B.20)

Here, P (ǫ|n) is the probability that ǫ is the “true” value of the efficiency before the

data, k, are taken, and Z is a normalization constant. A reasonable choice for the prior,

P (ǫ|n), is a uniform distribution on the interval [0, 1] [84]. This follows from the fact
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that event selection follows a binomial process, forcing the efficiency to fall somewhere

in the stated range, while at the same time, there is no reason to prefer any particular

value within that range. Given a uniform prior, Z can be calculated (as shown in [84]),

and the result is:

P (ǫ|k, n) = Γ(n+ 2)

Γ(k + 1)Γ(n− k + 1)
ǫk(1− ǫ)n−k. (B.21)

The peak of this distribution is k/n, and this is the estimate for the efficiency.

Because P (ǫ|k, n) is not generally symmetric, particularly for values of k close

to 0, as is the case in this analysis, using the square root of the variance to measure

the uncertainty of the estimate of the efficiency will not ensure that the probability of

finding the true value of ǫ within the interval will be 68.3% as it would with a normal

distribution. Instead, a measurement of the asymmetric errors can be made by finding

the smallest credible interval [a,b] ⊂ [0,1] with posterior probability λ, such that the

minimization of the interval b− a is constrained by:

∫ b

a
P (ǫ|k, n)dǫ = λ (B.22)

If such an interval can be found for λ = 68.3%, then the uncertainty can be understood

in much the same way as a quote of ±1σ as for a normal distribution.

The solution for a and b can be found formally using the method of Lagrange
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multipliers [84, 85]. This is done by simultaneously solving the non-linear equations:

C + ρak(1− a)n−k = 0

C + ρbk(1− b)n−k = 0

Ba(k + 1, n− k − 1)−Bb(k + 1, n− k − 1) = Cλ, (B.23)

where C = Γ(k + 1)Γ(n − k + 1)/Γ(n + 2), ρ is the Lagrange multiplier, and λ is

the desired probability content of the confidence interval. The last line features the

incomplete Beta function, Bx(u, v), defined by:

Bx(u, v) =

∫ x

0
tu−1(1− t)v−1dt. (B.24)

Finding the solution is non-trivial. Fortunately, a solution has been implemented in

ROOT under the TEfficiency::Bayesian() class.

To test the consistency of results from the Monte Carlo generators and my

signal selection algorithms, I tested the compatibility of trials 1 and 2 in each variation

of gued/gsm for each R−1 and ΛR. I did this by assessing the asymmetric uncertainties

of the cut efficiencies for each trial, then comparing trial 1 to trial 2 to ensure that

the trials were in agreement with each other within 68.3% to 95.4%. Additionally, I

conducted two trials of each SM background, tt̄ and W±W±jj and made a similar

comparison of the trials.

Looking for good agreement between the two trials for each gued/gsm, I checked

the consistency of the efficiency of each cut described in Section (cutflow table) as well

as the efficiency of all cuts applied compared to the initial number of events generated.
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Cut applied ǫ1 ǫ2 Z score

mUED signal events generated 0.0904±0.0006 0.0906±0.0006 0.266

trigger 0.204±0.003 0.207±0.003 1.054

like-sign leptons 0.227±0.007 0.232±0.007 0.758

2 hard jets 0.245±0.015 0.249+0.015
−0.014 0.288

missing pT 0.663+0.032
−0.033 0.677+0.031

−0.032 0.433

all cuts/mUED signal events generated 0.0075+0.0007
−0.0006 0.0081±0.0007 0.937

Table B.1: Cut efficiencies for signal events for mUED scenario: R−1 = 800 GeV, ΛR =
20 (gued/gsm = 1) for trials 1 and 2 which served as the model and observed events
respectively.

The results in Table B.1 show that in most cases the uncertainties are sym-

metric around the estimate for the efficiency k/n, and when the uncertainties are asym-

metric, they are barely so. Treating the uncertainties from Trial 1 as symmetric and

labeling them as σ1, the Z-score is defined as:

Z =
ǫ1 − ǫ2
σ1

. (B.25)

The Z-scores in Table B.1 are typical of the results across all trials of varying gued.

The Z-score varied between 0.015 and 5.545, being above 3.0 only six times (out of 210

Z-scores calculated) and was below 2.0 80% of the time.
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