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Abstract of the Dissertation

Three Essays on Applied Microeconomic Theory

by

Yu-Jing Xu

Doctor of Philosophy in Economics

University of California, Los Angeles, 2014

Professor Hugo Hopenhayn, Chair

This dissertation consists of three essays on Applied Microeconomic Theory.

The first chapter studies investment incentives in a dynamic random search

environment where a seller can make unobservable and selfish investments to

reduce his production cost before searching for buyers. In the unique steady state

equilibrium, although sellers make positive investments, equilibrium payoffs and

the social welfare are a) constant given any search friction and b) equal to the

values that would be created if there were no investment. These results hold

even in the limit, with the investment strategy converges to the first best and the

stationary investment distribution converges to a point mass at no investment.

The second chapter demonstrates how sorting conditions change in search

frictions, in a dynamic random matching environment where heterogeneous buy-

ers have private types and heterogeneous sellers make take-it-or-leave-it offers.

We first establish the existence of steady-state equilibrium and then characterize

sorting conditions under two extreme search frictions. Positive (negative) assor-

tative matching requires the production function to be log-supermodular (log-

submodular) with maximal search frictions. When search frictions vanish, the

condition for positive (negative) sorting returns to supermodularity (submodular-

ity).
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The last chapter examines how patents influence firms’ allocation of resources

over a portfolio of projects with different non-obviousness. We consider the situa-

tion where two identical firms have the replicas of two projects. One is known to

be good and the other is risky but is more innovative conditional on being good.

Compared to the allocation of resources without any patent, the total amount of

resources allocated on the risky project is more efficient. However, the compe-

tition for the patent of the safe project also induces firms to inefficiently delay

experimenting the risky project. Overall, the welfare effect of patents might be

negative.
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CHAPTER 1

Unobservable Investments and Search Frictions

1.1 Introduction

In many situations, investments are not relation-specific and the non-investing

party cannot perfectly observe the level of investments. An investor is therefore

not held up as defined in the classic holdup literature, in the sense that after

making investment, he could walk away from an aggressive price offer and still be

able to utilize his investment in the future. The current article tries to answer the

following two questions. Are the positive continuation payoff and the rents created

from the unobservability enough to incentivize agents to invest more efficiently?

If so, is there any social welfare generated from positive investments? In the

environment considered in this article, the answer to the first question is yes.

Quite surprisingly, the answer to the second one is no.

With these questions in mind, I propose a discrete time infinite horizon random

search model, where agents can make pre-entry, unobservable and selfish invest-

ments, and focus on steady state of the equilibrium. The two sides of the market

are called “supplier” and “retailer”. At the beginning of each period, there are

one unit mass of ex ante identical newly born suppliers and retailers entering the

market. A supplier entrant is endowed with a technology to produce one unit of

output at cost x0 and he can invest to reduce his production cost before entry. De-

note the cost resulting from the efficient investment by x∗. Meanwhile, a retailer

entrant is endowed with the ability to sell one unit of a supplier’s output at price
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y0 > x0. After the investment stage, all agents (entrants and incumbents, i.e.,

agents who did not leave the market in the previous period) are randomly paired

and the retailer in each pair makes a take-it-or-leave-it offer, without observing

the investment. If the offer is accepted, then production takes place, the monetary

transfer is made and both agents leave the market permanently. Otherwise, the

pair is dissolved and both agents search in the next period. 1

In the unique steady state equilibrium, suppliers use mixed strategy over in-

vestments between zero and the efficient investment, and retailers play mixed

strategy over these suppliers’ reserve prices.2 There are two interesting implica-

tions of this result. First of all, suppliers using mixed strategy implies that in-

vestments are positive even if sellers have no bargaining power. Secondly, mixed

pricing strategy implies that price dispersion emerges in equilibrium even with all

identical agents.

This article then characterizes three properties of the steady state equilibrium.

First of all, although investments are always positive, agents’ payoffs as well as

the social welfare are constant given any search friction and they are the same as

if there were no investment. To understand this result, first note that suppliers

get zero ex ante payoff, following the same logic as in Diamond (1971). Therefore,

the social welfare is equal to a retailer’s ex-ante payoff. For a retailer who offers

a price lower than the reserve price of a type x0 supplier, there is strictly positive

probability that the profitable trade is not conducted. Therefore, the welfare that

could be generated from the positive investment is burnt due to the delay in trade

and no welfare gain is realized in equilibrium.

Secondly, as search frictions diminish, which is modelled as the shrinking time

1The setting reflects a broad set of applications. Besides the vertical relationships between
suppliers and retailers, the modelled environment might also represent, for instance, product
markets where consumers invest in complementary goods before searching stores.

2In a Coasian setting where the buyer’s investment determines his valuation, Gul (2001) shows
that the investment strategy must be a mixed strategy and that the seller mixes over prices in
the first round. The current result demonstrates that the same intuition carries through to a
random search environment.
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interval time interval between periods, more underinvested suppliers congest the

market and retailers price more aggressively. To be more precise, the stationary

cost distribution, i.e. the cost distribution of incumbents, converges in distribution

to a point mass at the initial cost x0 and the price offer distribution converges in

distribution to a point mass at the reserve price of a type x∗ supplier. Because the

cost distribution of incumbents is less efficient, it takes more periods in expectation

for a retailer to meet a supplier whose cost is low enough to be willing to accept his

price. This result shows that trading inefficiency is more severe as search frictions

diminish.

The third property is that the investment strategy becomes efficient as search

frictions vanish, shifting towards the opposite direction as the stationary cost

distribution does. As shown in the second property, retailers price extremely

aggressively in the limit. As a result, underinvested suppliers leave the market with

almost zero probability each period. Therefore the proportion of underinvested

exits converges to zero, despite the fact that the proportion of underinvested

suppliers on the market converges to 1. In steady state, the cost distribution of

entrants are the same as that of exits. Consequently, the investment strategy also

converges in distribution to a point mass at x∗.

Combining the second and the third properties, we can better understand why

the social welfare is constant across search frictions. As search frictions diminish,

on the one hand investments are more efficient but on the other hand the trading

inefficiency is more severe. The net effect of the two is zero.

If we revisit the two questions raised at the beginning, in the current set-

ting where investments are unobservable and not relation-specific, although in-

vestments become efficient as search frictions vanish, the social welfare is not

improved.

The baseline model is extended along two dimensions to incorporate the pos-

sibilities of two-sided investments and two-sided offers. In the first extension,
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retailer entrants could also invest before entry to raise the revenue from selling

one unit of the output. The results of the baseline model continue to hold. In

particular, agents’ payoffs and the social welfare equal the values that would be

created if investments were observable. As search frictions vanish, the investment

strategy becomes efficient while the stationary cost distribution converges to a

point mass at x0. Moreover, we have a set of new results regarding the retailer’s

investment strategy. First of all, although retailers have all the bargaining power,

they still underinvest and use a mixed strategy over an interval of investments

given any search friction. Secondly, the retailers’ minimum investment level rises

as search frictions diminish but the investment strategy converges in distribution

to a point mass at the minimum level.

The second extension concerns the situation where suppliers also make take-

it-or-leave-it offers occasionally. The result of welfare equivalence between observ-

able and unobservable investments still holds. The least efficient supplier invests

positive amount, since he is a residual claimant when he makes the offer. This

minimum investment level converges to the efficient level as search frictions vanish

or as the suppliers’ bargaining power goes to 1. Hence the investment strategy as

well as the social welfare converges to the first best.

Related Literature

The most related work is Gul (2001), which examines the holdup problem in

a Coasian setting where a buyer’s valuation is determined by his unobservable

investment prior to the bargaining game. Similar to our model, equilibrium in-

vestment strategy must be a mixed strategy and it becomes efficient as the time

between each offer shrinks to zero. The difference is that in the setting of Gul

(2001) the social welfare converges to the first best, resulting from the fact that,

as emphasized in Lau (2008), there is no ”bargaining delay” in the limit. In our

model, although the investment strategy is efficient, almost all suppliers on the

market are the underinvested type. The per-period trading probability of any

4



price other than the highest price is therefore bounded away from 1. This de-

lay in trade erodes any welfare gain that could be generated from the efficient

investment.

Compared to the literature, we made some simplification assumptions to keep

the model tractable. We assume that investments are purely selfish, whereas

other works investigate investment incentive with cooperative investments (Che

and Hausch (1999), Mailath Postlewaite and Samuelson (2012), Hermalin (2013),

etc). Moreover, investments are assumed to be unobservable. In reality, the non-

investing party might get some information about investments or the outcome

of investments (Rogerson (1992), Lau (2008), Hermalin and Katz (2009), etc).

Finally, in stead of assuming free entry (Acemoglu (1996), Davis (2001), Acemoglu

and Shimer (1999), etc), we assume that there are fixed measure of entrants in

each period.

This article also links to the literature on price (wage) dispersion. The non-

existence of a single wage equilibrium with heterogeneous workers in a dynamic

search framework is well-known in the literature (Albrecht and Vroman (1992) and

their succeeding papers). We demonstrate that price dispersion is also a reason

for heterogeneity if it results from agents’ costly investments: price dispersion

generates a distribution of probability of trading and it in turn makes workers

indifferent among investments. To my best knowledge, the current study is the

first attempt to examine the possibility of the joint emergence of participants’

heterogeneity and the price dispersion in a random search environment.

The searching stage of our model is similar to settings of voluminous works on

search and bargaining games with asymmetric information (for instance, Rubin-

stein and Wolinsky (1990), Satterthwaite and Shneyerov (2007), Shneyerov and

Wong (2010a), Lauermann (2012) (2013), etc). The participants in these models

are assumed to born with heterogeneous types. One of the central topics in this

literature is to understand the efficiency impact of information frictions and search
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Figure 1.1: Timeline

frictions. Our results suggest that these two frictions not only affect the ex post

trade efficiency but may also impact the ex ante investment efficiency.

The rest of this chapter is organized as follows. The model is introduced in

section 2 where we also solve the first best and the observable investment bench-

marks. Section 3 derives equilibrium restrictions and shows the existence and the

uniqueness of the steady state equilibrium. The equilibrium is characterized in

section 4. Section 5 examines one extension of the baseline model with two-sided

investments and section 6 considers another extension with two-sided offers. Dis-

cussions on robustness and other extensions are in section 7. Finally, section 8

concludes this chapter.

1.2 The Model and Benchmark Specifications

1.2.1 The Model

We consider a discrete time infinite horizon random search model that involves

pre-entry investment. The timeline of this game is illustrated in Figure 1.1.

Player: The players are supplier and retailers. In each period, there are one

unit mass of newly born suppliers and retailers entering the market. A retailer

is endowed with the ability to sell one unit of a supplier’s output and collect

revenue y0; a supplier entrant is endowed with a technology that produces one

unit of output at cost x0. We consider the “gap” case in this article, that is, the

minimum surplus from trade y0 − x0 is assumed to be strictly positive.

Strategy: Upon entering the market, a supplier can invest c(x) to reduce the
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production cost to x ≥ 0. We assume c(x0) = c′(x0) = 0 and c′(0) < −1, and for

any x < x0, c(x) is strictly decreasing and strictly convex. All entrants on both

sides then join the incumbents on the market who did not exit in the last period.

The market sizes on both sides are assumed to be the same. In each period, one

retailer is randomly matched with one supplier and vice versa. The retailer in

each pair makes a take-it-or-leave-it offer p, which is a monetary transfer from the

retailer to the supplier, and the supplier decides whether or not to accept it.

Therefore, a supplier’s strategy consists of two components: a investment s-

trategy CDF Fe(x) and a reserve price function rS(x), where Fe(x) measures the

probability that the investment is strictly larger than c(x) and rS(x) is the the

lowest price that a supplier with cost x is willing to accept. A retailer’s strategy

is a price offer CDF H(p), where H(p) equals the probability of offering a price

weakly lower than p.

Preference: If the offer is accepted, one unit of output is produced and sold,

which leaves the supplier payoff p− x and the retailer payoff y0 − p. Both agents

exit the market permanently. Otherwise, the pair is dissolved and both agents

search in the next period. All agents have the same discount factor β ∈ [0, 1),

which is the parametrization of search frictions in the current setting.

Information: A crucial assumption is that retailers have no information about

investments. In addition, the matching is anonymous.

We will end this section with remarks on the simplification assumption of

selfish investment. This assumption excludes any signalling and moral hazard

problem. While investments in many applications are (partially) cooperative, for

instance, a supplier’s investment improves the quality of his output which increases

a retailer’s revenue directly, the current setting can serve as a benchmark model

for future work with more general assumptions on investments. Discussions on

the robustness of other assumptions is postponed to section 1.7.1.
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1.2.2 Benchmark Specifications

The First Best

We first characterize the efficient allocation, which consists of both efficient

investment and efficient trade.

At the search stage, a social planner would find it optimal to conduct trade

between any pair of agents given any cost distribution, since the surplus from

trade is always positive and postponing trading is costly due to discounting.

Given that trades take place immediately at the search stage, if a supplier

invests to reduce his cost to x, he increases the social welfare by x0 − x with

investment c(x). A social planner will thus choose x∗ > 0 defined by c′(x∗) = −1

so that the marginal cost of investment equals the marginal benefit.

Observable Investment

Next consider the situation where investments are observable. Following the

same logic in Diamond (1971), because buyers have all the bargaining power, a

supplier with any cost x gets zero search stage payoff. To be more precise, ob-

serving the production cost, the retailer in the current match and in all future

matches will offer the supplier’s discounted continuation payoff. Because the dis-

count factor is strictly less than 1, this infinitely repeated discounting leads to

zero search stage payoff. The suppliers therefore have no incentive to invest.

Therefore, in the unique equilibrium, no supplier invests and all retailers offer

price x0. Investments are inefficient while trades are efficient.

1.3 The Steady State Equilibrium

Let us now solve the steady-state equilibrium in the decentralized market. A

steady state equilibrium consists of a supplier’s investment strategy CDF Fe(x)

when he is an entrant and reserve price function rS(x) when he is an incumbent,

8



a retailer’s price offer distribution CDF H(p) and a stationary cost distribution

F (x).

1.3.1 The Supplier’s Problem

At the search stage, a supplier with cost x chooses the lowest price he is willing

to accept, i.e. the reserve price rS(x). Given a price offer distribution H(p), his

trading probability is 1−H(rS(x)) +Pr(p̃ = rS(x)), which is decreasing in rS(x).

The maximization problem of a type x supplier can be summarized as follows,

U(x) = max
r
{(E(p̃ | p̃ ≥ r)− x)(1−H(r) + Pr(p̃ = r)) + (H(r)− Pr(p̃ = r))βU(x)}

(1.1)

Solving the above problem, the reserve price rS(x) is specified as follows:

rS(x) = x+ βU(x) (1.2)

The reserve price function can be interpreted as usual. The first term x reflects

the fact that a more efficient supplier (with a smaller x) has stronger incentive

to trade and is willing to accept lower prices. In addition, the opportunity to

search in the future raises the reserve price, the magnitude of which is positively

associated with the discount factor and the equilibrium continuation payoff, as

captured in the second term.

It is intuitive to infer that a more efficient supplier has higher search stage

payoff U(x) and is willing to accept lower price offers. Denote the highest cost on

the support of F (x) by x̄. The following lemma confirms this conjecture.

Lemma 1.1. In any steady-state equilibrium, U(x) is strictly decreasing and con-

tinuous in x, with U(x̄) = 0. rS(x) is strictly increasing and continuous in x.

Otherwise mentioned, all proofs of this article are provided in the appendix.

9



Lemma 1.1 implies that x̂(p), the inverse function of rS(x) is well-defined,

continuous and strictly increasing. Function x̂(p) specifies the highest type of a

supplier who is willing to accept price p. Intuitively, x̂(p) strictly increases in p

since a lower price will be accepted only by a supplier with lower production cost.

In addition, lemma 1.1 shows that the search stage payoff of the least efficient

supplier is zero. This is the case because the same logic as in Diamond (1971)

holds for this supplier. In equilibrium, no retailer would offer a price higher

than this supplier’s reserve price. Therefore, the supplier can trade only when

he meets a retailer who offers his reserve price, which leaves him his discounted

continuation payoff. Then by the same infinitely repeated discounting argument,

the least efficient supplier must get zero search stage payoff.

Lemma 1.1 also implies that the highest cost equals the initial cost, i.e. x̄ = x0.

A supplier with the highest cost gets zero search stage payoff and therefore has

no incentive to invest at all. His ex-ante payoff therefore equals 0. In equilibrium,

ex-ante identical suppliers must be indifferent over any x on the support of the

investment strategy Fe(x), and weakly prefer these x to any other x that is not

on the support. In other words, H(p) must be such that

U(x)− c(x) = 0, for any x on the support of Fe(x) (1.3)

U(x)− c(x) ≤ 0, for any x not on the support of Fe(x) (1.4)

1.3.2 The Retailer’s Problem

A retailer’s strategy is a price offer CDF H(p). We know from the last section

that if p is offered, any supplier with cost lower than x̂(p) will agree to trade.

Recall that the probability of meeting a retailer with cost weakly lower than x is

F (x). The probability of trade therefore equals F (x̂(p)).

The equilibrium F (x) must be such that it makes a retailer indifferent over any
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p on the support of H(p). That is, p solves the following maximization problem,

π = max
p
{(y0 − p)F (x̂(p)) + (1− F (x̂(p)))βπ} (1.5)

In addition, offering any p′ that is not on the support, a retailer must get a

weakly lower profit, i.e.,

π′ = (y0 − p′)F (x̂(p′)) + (1− F (x̂(p′)))βπ′ ≤ π (1.6)

1.3.3 The Supplier’s Investment Strategy

The last piece of the model is the entrant cost distribution, which equals the

supplier’s investment strategy3. In steady state, the measure of outflow of any

type must equal the measure of inflow of the same type. A supplier with type

x leaves the market if he gets an offer that is weakly higher than rS(x) (which

happens with probability 1−H(rS(x))). Meanwhile, the measure of entrants with

type lower than x is Fe(x). Therefore, the steady-state equilibrium require that

for any x on the support,

Fe(x) =
F (x)−

∫ x
x
H(rS(x̃))dF (x̃)

1−
∫ x̄
x0
H(rS(x̃))dF (x̃)

(1.7)

Notice that we wrote down the above equation as if the support of F (x) is an

interval. This is merely for the sake of shortening the expression. We will prove

that it is indeed an interval in the next section.

1.3.4 Equilibrium Existence and Uniqueness

Let us first summarize the dynamic of a steady-state equilibrium. The price

offer strategy H(p) is such that it makes a supplier indifferent across any x on

the support of Fe(x). The investment strategy Fe(x) together with the trading

3Since there are one unit mass of entrants on both sides each period, we get the equivalence
between the entrant cost distribution and the investment strategy as we abuse the law of large
number as usual.
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strategy determine the stationary cost distribution F (x), which makes a retailer

indifferent across any price on the support of H(p).

Proposition 1.1. In any steady state equilibrium, the price offer distribution

H(p), the supplier’s investment strategy Fe(x) and the stationary cost distribution

F (x) have the following properties,

1. F (x) and Fe(x) have support [x∗, x0] with the unique point mass at x∗.

2. H(p) has support [rS(x∗), rS(x0)] and is atomless;

Although all agents are identical ex-ante, proposition 1.1 shows that the sta-

tionary price offer distribution and the investment strategy are non-degenerate.

The unobservability of investments is the key behind this result. Suppose all sup-

pliers choose the same investment level. As a result, all retailers will offer the same

price, which makes a supplier a residual claimant. Therefore, depending on the

price offered, a supplier will find it optimal to invest either efficiently or nothing.

In the case where the supplier invests efficiently, retailers will best response to offer

x∗ and extract the entire surplus. Hence, suppliers are fully held up and have no

incentive to invest. In the case where the supplier invests zero, retailers will best

response to offer x0. The supplier will then deviate to the efficient investment.

This cycle can never be an equilibrium.

We would also speculate that there might be a gap on the support of the

price distribution and the stationary cost distributions. For instance, it is possi-

ble that prices on an interval (p1, p2) are not offered, because suppliers with types

x ∈ (x̂(p1), x̂(p2)) are not on the market in equilibrium and hence there is no gain

from offering their reserve prices. Meanwhile, no suppliers choose to become type

x ∈ (x̂(p1), x̂(p2)) because their reserve prices are not offered. Unfortunately, this

intuition neglects one equilibrium restriction: a supplier must be indifferent be-

tween x̂(p1) and x̂(p2). Because no price between p1 and p2 is offered, two suppliers

having these two costs trade with the same probability. Therefore, U(x) is linear
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on the interval (x̂(p1), x̂(p2)). On the other hand, the investment cost function

c(x) is strictly convex. Hence, a supplier could never be indifferent between these

two investment levels.

Proposition 1.1 establishes that there is no point mass on the price distribution

either. Any point mass will result in a jump in the probability of trade, which

in turn leads to a kink in U(x). However, the investment cost function c(x) is

smooth everywhere. This again contradicts the indifference condition.

This proposition also shows that the lowest production cost on the market is

the efficient cost x∗, since a supplier with the lowest cost trades in the first period

with probability one: any price offer on the market is weakly higher than his

reserve price. Since his investment is unobservable to the retailer, this supplier

becomes the residual claimant and hence invests efficiently.

Finally, the measure of type x∗ suppliers must be positive, since a retailer who

offers rS(x∗) must get positive payoff. Moreover, there is no other point mass,

because any other point mass would lead to a jump in the retailer’s payoff as a

function of p. This contradicts the retailer’s indifference condition.

Notice that the above results and intuitions hold even when β = 0, in which

case the retailer in each pair is a monopolist. The monopolist is indifferent over

an interval of prices because in the current setting the stationary cost distribution

is adjusted through investment and trading strategies so that the elasticity of the

demand function is always 1 over the interval of prices.

In the rest of this section, we will first solve H(p) and F (x), and then show

the existence and the uniqueness of the steady state equilibrium.

H(p) can be solved from the envelope condition of U(x). We are allowed to

take the derivative of U(x) because we have proved that the support is an interval,

and that U(x)− c(x) = 0 for any x on the support. The smoothness of c(x) thus
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implies the smoothness of U(x). The envelope condition is

U ′(x) = −(1−H(rS(x))) +H(rS(x))βU ′(x) (1.8)

Using the equilibrium restriction that U ′(x) = c′(x), H(p) can be solved,

H(p) =
1 + c′(x̂(p))

1 + βc′(x̂(p))
(1.9)

F (x) is solved from the retailer’s indifference condition. If a retailer offers

rS(x0) = x0, he can trade with probability 1. Therefore π = y0 − x0.

Any other price on the support must yield the same expected profit. In other

words,

(y0 − p)F (x̂(p)) + [1− F (x̂(p))]βπ = y0 − x0

Therefore, the stationary cost distribution F (x) equals,

F (x) =


0, if x ∈ (−∞, x∗),

y0−βπ−x0

y0−βπ−x−βc(x)
, if x ∈ [x∗, x0],

1, if x ∈ (x0,+∞).

(1.10)

We summarize this section with the following proposition.

Proposition 1.2. Steady state equilibrium exists and is unique.

1.4 Equilibrium Characterization

1.4.1 Constant Payoffs and Social Welfare

As shown in the previous section, suppliers always invest with positive probability

given any search friction. We would expect that the social welfare is higher than

what we would get in the benchmark case with observable investment, where

suppliers have no incentive to invest. However, the following theorem shows that

this is unfortunately not the case.
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Theorem 1.1. For any β ∈ [0, 1), the supplier’s ex-ante payoff equals 0, the

retailer’s ex-ante payoff and the social welfare equal y0 − x0.

Proof. we know v = U(x)−c(x) = 0 and π = y0−x0. The social welfare therefore

equals v + π = y0 − x0.

Comparing agents’ payoffs and the social welfare with those of the benchmark

case with observable investment, we can easily verify that values are the same.

This is because the unobservability, which incentivizes investments, also causes

trading inefficiency. The welfare gain generated from investments could be realized

fully only if supplier entrants and retailer entrants are paired with each other and

agree to trade in the first period after they enter the market. However, this is

impossible with the presence of information frictions and search frictions: because

of the unobservability, both the cost distribution and the price distribution are

non-degenerate in equilibrium. Profitable trades are therefore conducted only

probabilistically. In other words, there is expected delay in trade for any retailer

whose price offer is strictly lower than rS(x0). The welfare lose due to the delay

in trade exactly offsets the welfare gain from the more efficient investments.

From section 3.1, we already know that the ex ante payoff of suppliers is zero,

since the least efficient supplier gets zero ex ante payoff and all suppliers are

indifferent across investment levels. Given that the supplier’s payoff as well as the

social welfare are the same in both scenarios with observable and unobservable

investments, the division of the surplus must also be the same.

In the next section, we will examine how search frictions affect investment

and trading efficiency. The result shows that as β increases, on the one hand

more entrants invest efficiently but on the other hand, it takes more periods for

a retailer offering a given price to trade. The fact that investment efficiency and

trading efficiency moving towards the opposite direction explains why the social

welfare is constant given any search friction.
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1.4.2 Comparative Statics and the Limiting Case

Consider any supplier with cost x ∈ (x∗, x0), if the price distribution remain-

s constant as meetings become more frequent, the supplier trades with higher

probability per unit of time. Consequently, the marginal benefit of investment,

which strictly increases in the probability of trade, will be strictly larger than the

marginal cost of investment. To keep a supplier indifferent across investments

with smaller search frictions, retailers must price more aggressively. That is, the

per-period trading probability 1−H(rS(x)) must strictly decreases in β. Indeed,

∂(1−H(rS(x)))

∂β
=

(1 + c′(x))c′(x)

(1 + βc′(x))2
< 0, for any x ∈ (x∗, x0)

As search frictions vanish, the probability of trade 1−H(rS(x)) must converges

to 0 for any x ∈ (x∗, x0). Or equivalently, retailers price extremely aggressively

in the limit: the price offer distribution must converge in distribution to a point

mass at rS(x∗). Otherwise, any supplier trades for sure within any small amount

of time if the trading probability is bounded away from zero as the time between

successive meetings shrinks to zero. The marginal benefit of investment therefore

becomes 1 and a supplier cannot be indifferent across investment levels. This

is a contradiction. We can also verify this intuition from equation (1.9). As

β converges to 1, the probability of trade 1 − H(rS(x)) converges to 0 for any

x ∈ (x∗, x0).

Next we show that the stationary cost distribution F (x) is less efficient as β

increases. If F (x) stays constant when meetings get more frequent, a retailer who

is originally indifferent over price offers would strictly prefer to offer the lowest

price rS(x∗). Therefore, the probability of trade of a retailer offering a price lower

than rS(x0) must decrease in β. That is, the stationary cost distribution F (x)

with a larger β first order stochastic dominates an F (x) with a smaller β. Indeed,
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Figure 1.2: Stationary Supplier Type Distribution

(In this example: x0 = 1.5, c(x) = 1
2
(x− x0)2, y0 = 2.2.)

the derivative of F (x) with respect to β confirms this conjecture,

∂F (x)

∂β
=

(y0 − x0)(x− x0 + c(x))

[y0 − βπ − x− βc(x)]2
< 0

In the limit, it is straight forward to verify that F (x) converges in distribution

to a point mass at x0 from equation (1.10). That is, incumbents compose almost

entirely of suppliers who invested zero amount. This result is shown graphically

in Figure 1.2. Intuitively, if F (x) is bounded away from 0 in the limit for some

x < x0, then the per-period trading probability of a retailer offering rS(x) is

strictly positive. Again, as the time between successive meetings shrinks to zero,

it is as if the retailer could trade immediately. Hence, a retailer who offers rS(x0)

would find it optimal to lower the price offer to rS(x) without lowering trading

probability, leading to a contradiction.

In steady state, the cost distribution of entrants is the same as that of exits

to keep the stationary cost distribution constant over periods. Since the cost

distribution of incumbents becomes less efficient as β increases, we would expect

that exits and hence entrants also consist more of underinvested suppliers as search

frictions diminish. That is, the investment strategy Fe(x) becomes less efficient
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Figure 1.3: Supplier’s Investment Strategy

(In this example: x0 = 1.5, c(x) = 1
2
(x− x0)2, y0 = 2.2.)

as β increases.

It turns out that the opposite result holds: Fe(x
∗) strictly increases in β,

i.e., an entrant invests efficiently with strictly larger probability. In the limit,

the investment strategy becomes efficient. The investment strategy of the same

example is plotted in Figure 1.3.

To understand this result, we only need to figure out why exits consist of

more efficient suppliers as β increases by the steady-state equilibrium restriction

(1.7). We know that a supplier who invests efficiently always exits the market

immediately independent of β. In addition, we have three observations from the

previous analysis: as β increases, 1) larger proportion of incumbents are underin-

vested type; 2) per-period trading probabilities of underinvested suppliers strictly

decrease; 3) the stationary cost distribution has larger mass on high costs and

hence the average cost of underinvested suppliers strictly increases, which implies

that a supplier with the average cost exits with lower probability. The first effect

raises the proportion of underinvested exits, as captured by the previous intuition.

The rest two effects explain why the proportion of underinvested exits decreases
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in β: any underinvested supplier exits less often and the composition of the un-

derinvested suppliers becomes more inefficient. These three effects change in β at

the same rate. Therefore, the net effect is that the investment strategy converges

to a point mass at x∗ as β goes to 1.

The above comparative statics and the limiting results are summarized in the

following propositions.

Theorem 1.2. As β increases to 1, in the steady state equilibrium

1. H(rS(x)) strictly increases for any x ∈ (x∗, x0) and converges in distribution

to a point mass at rS(x∗);

2. F (x) strictly decreases for any x ∈ [x∗, x0) and converges in distribution to

a point mass at x0;

3. Fe(x
∗) strictly increases and Fe(x) converges in distribution to a point mass

at x∗.

From this proposition, we can better understand the mechanism behind the

constant social welfare result. As β increases, new entrants invest more efficiently

and this could potentially generate additional social welfare if the trading efficiency

remains constant. Unfortunately at the same time trades become more inefficient.

As β increases, the incumbent cost distribution has more mass on high costs.

Consequently, for a retailer who offers a given price, it takes more periods in

expectation to find a supplier whose cost is low enough so that he is willing to

accept the price. The retailer’s payoff is independent of the magnitude of search

friction, because the expected time to trade is constant: although the time between

two successive periods shrinks, it also takes more periods on average to trade. We

already know that suppliers always get zero ex ante payoff. The constant retailer’s

ex ante payoff is equivalent to the constant social welfare.
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We will end this section with some comments on empirical implications of

the results. The fact that the cost distributions of entrants and of incumbents

move in the opposite directions suggests that cross sectional data may not be a

satisfactory measure of investment efficiency. According to the current model,

the incumbent cost distribution is affected by not only the investment decision,

but also the trading strategy. For instance, consider the limiting case where

β → 1. The cross sectional data would suggest that almost all suppliers invest

little, whereas in fact almost all entrants invest efficiently. Therefore, to measure

investment efficiency, we need to look at the time series data and identify the cost

distribution of entrants.

We can also derive several testable implications from Theorem 1.2. For in-

stance, the frequency of meeting is 1) negatively correlated with entrant/market

ratio; 2) positively correlated with investment efficiency; 3) negatively correlated

with the efficiency of stationary cost distribution and 4) positively correlated with

the aggressiveness of price distribution.

The rest of the article extends the baseline model along two directions. Section

1.5 considers the situation where a retailer could also invest to raise the revenue.

Section 1.6 examines a two-sided offering case where a supplier makes a take-it-

or-leave-it offer with positive probability.

1.5 Two-Sided Investments

We often observe that both sides of the market make investments before searching

for trading partners. For instance, a retailer could also decide how much resource

to spend on advertising, which could potentially raise the revenue from selling one

unit of the product.

Suppose before entering, a retailer can invest to increase the revenue from y0

to y with investment e(y), where e(y0) = e′(y0) = 0 and e(y) is strictly increasing
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and strictly convex for any y > y0. The surplus from trade between a type x

supplier and a type y retailer is assumed to be y−x. Notice that this assumption

implies that there is no complementarity between a supplier’s and a retailer’s

investments and this feature simplifies analysis a lot4. Finally, the observability

of retailer’s investment could be arbitrary. Results of this section do not depend

on the assumption about the observability of y, since there is no complementarity

by assumption and retailers have all the bargaining power.

We again consider the benchmarks of a) the first best, b) observable supplier’s

investment. In the first best benchmark, since there is no complementarity, social-

ly optimal trading strategy requires all agents to trade upon their first meetings.

Given this trading strategy, a social planner would invest efficiently on both sides,

i.e., all suppliers invest to reduce the production cost to x∗ and all retailers invest

to raise the profit to y∗, where y∗ is defined implicitly by e′(y∗) = 1.

In the benchmark case with observable investments, all suppliers invest zero

and all retailers offer x0 and invest efficiently. In equilibrium, a supplier gets

payoff 0 and a retailer gets payoff y∗− x0− e(y∗), which is also the social welfare.

In the rest of this section, we will first derive optimality conditions of the

steady state equilibrium and then characterize the equilibrium.

1.5.1 The Steady State Equilibrium

Since there is no complementarity, retailers’ investments do not benefit suppliers

directly and suppliers only care about the price distribution. Therefore, the suppli-

er’s problem is exactly the same as in the baseline model and previous equilibrium

restrictions for suppliers must continue to hold with two-sided investments.

4In the case with one-sided investment, we could impose this assumption without loss of
generality, since all retailers are identical. In the two-sided investment case, however, this
assumption excludes some interesting scenarios that we could observe in many industries. For
instance, the surplus from trade could be supermodular, that is, a higher supplier’s investment
level leads to a larger marginal benefit of the retailer’s investment.
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As a result, this section will focus on the retailer’s problem. A retailer’s strat-

egy consists of his investment strategy CDF Ge(y) and the price offer p(y). p(y)

maximizes the search stage payoff of a type y retailer, which is denoted as Π(y),

Π(y) = max
p
{(y − p)F (x̂(p)) + [1− F (x̂(p))]βΠ(y)} (1.11)

Moreover, the following indifference conditions must hold, which essentially

require a retailer to be indifferent across any y on the support of the investment

strategy Ge(y) and weakly prefer those y to any other y that is not on the support,

Π(y)− e(y) = π ≥ 0, for any y on the support of Ge(y) (1.12)

Π(y)− e(y) ≤ π, for any y not on the support of Ge(y) (1.13)

Proposition 1.3. In any steady state equilibrium with two-sided investments,

p(y) is single-valued and increases in y for any y on the support of Ge(y).

Proposition 1.3 shows that price offer increases in retailer’s type. Intuitively,

it costs more for a retailer who has higher revenue to delay trade. Therefore,

he is willing to offer a higher price to ensure trade. Consequently, a retailer

with the highest revenue ȳ on the support of Ge(y) will offer the highest price,

which will be accepted by any supplier. In equilibrium, a type x0 supplier will

be exactly indifferent between accepting and rejecting the offer. In other words,

p(ȳ) = x0 and F (x̂(p(ȳ))) = 1. Therefore, Π(ȳ) = ȳ − x0 and π = Π(ȳ)− e(ȳ) =

ȳ − x0 − e(ȳ) > 0.

Proposition 1.3 also demonstrates that given his ex-ante investments, a retailer

will never play mixed pricing strategy at the search stage. Suppose that there

are two retailers investing the same e(y) but offer different prices. In particular,

retailer 1 offers price p1 and retailer 2 offers price p2, with p1 > p2. Given the non-

degenerate cost distribution, retailer 1 trades faster in expectation and therefore

has larger marginal benefit of investment. On the other hand, since they choose
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the same investment level, the marginal cost of investments are the same for both

retailers. Then the optimality condition of investment, which equates the marginal

benefit and the marginal cost, cannot hold simultaneously for these two retailers.

We have a contradiction.

More interestingly, the pure pricing strategy implies that retailers, although

they have all the bargaining power, will play mixed investment strategy and hence

underinvest with strictly positive probability. We already know from the baseline

model that the price offer distribution H(p) is non-degenerate when supplier’s

investments are unobservable. Retailers therefore must offer different prices. A

higher price induces stronger incentive to invest, since a retailer can trade faster

in expectation with a higher price. In fact, as shown in the following proposition,

retailers will play mixed investment strategy over a convex interval.

Proposition 1.4. In any steady state equilibrium with two-sided investments,

the supplier’s investment Fe(x), the stationary cost distribution F (x), the retailer

investment Ge(y) and the stationary revenue distribution G(y) have the following

properties,

1. Fe(x) and F (x) have support [x∗, x0] with the unique point mass at x∗.

2. Ge(y) and G(y) have support [y, y∗] and is atomless, where y is uniquely

determined by

y∗ − x0 − e(y∗) = [y − x∗ − βc(x∗)]e′(y)− e(y) (1.14)

The last component of the model is the steady-state revenue distribution con-

straint. That is, the investment strategyGe(y) must equal the revenue distribution

of retailers who exit the market. A retailer exits when his offer is accepted, which

happens with probability F (x̂(p(y))). Combined with G(y), the distribution of

exits is determined. Equating the entrant and exit distributions, we have the
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following equilibrium restriction.

Ge(y) =

∫ y
y
F (x̂(p(ỹ)))dG(ỹ)∫ ȳ

y
F (x̂(p(ỹ)))dG(ỹ)

(1.15)

We are now ready to solve the equilibrium. The convex supports and the

indifference conditions imply that both U(x) and Π(y) are differentiable for x

and y on the support. We can therefore use envelope conditions to solve for the

stationary distributions and the price offer function p(y). The derivation also

proves the existence and uniqueness of steady-state equilibrium. We summarize

the results in the following proposition.

Proposition 1.5. The steady state equilibrium with two-sided investment exists.

The stationary cost distribution CDF F (x) is defined by (1.17), the suppliers’ in-

vestment strategy CDF Fe(x) is defined by (1.7), the reserve price rS(x) is defined

by (1.2), the stationary revenue distribution CDF G(y) is defined by (1.18), the

retailers’ investment strategy CDF is defined by (1.15) and the price offer p(y) is

defined by (1.16).

Moreover, the steady state equilibrium is unique.

p(y) = y − e(y) + y∗ − x0 − e(y∗)
e′(y)

(1.16)

F (x) =


0, if x ∈ (−∞, x∗),
(1−β)e′(ŷ(rS(x)))
1−βe′(ŷ(rS(x)))

, if x ∈ [x∗, x0], where ŷ(p) is the inverse of p(y)

1, if x ∈ (x0,+∞).

(1.17)

G(y) =


0, if y ∈ (−∞, y)

1+c′(x̂(p(y)))
1+βc′(x̂(p(y)))

, if y ∈ [y, y∗],

1, if x ∈ (y∗,+∞).

(1.18)

In the baseline model, we demonstrated that the equilibrium payoffs and the

social welfare are the same as if investments were observable. This result still

holds in the two-sided investments extension.
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Theorem 1.3. In the steady state equilibrium with two-sided investment, the

supplier’s ex-ante payoff v equals 0, the retailer’s ex-ante payoff π and the social

welfare equals y∗ − x0 − e(y∗).

1.5.2 Comparative Statics and the Limiting Case

The comparative statics and the limiting results regarding H(p), F (x) and Fe(x)

in theorem 1.2 can be extended here. We will therefore devote this section to

analyzing how the retailers’ investment strategy Ge(y) and the stationary revenue

distribution G(y) change in search frictions.

First of all, the the lower bound y as defined in condition (1.14) strictly in-

creases in β. To understand this result, we know that a type y retailer offers the

price which equals a type x∗ supplier’s reserve price x∗ + βc(x∗). Therefore, his

price offer strictly increases in β. In addition, the trading probability is strictly

lower, as F (x∗) strictly decreases in β. Meanwhile, we know that a retailer’s ex

ante payoff is independent of β. Therefore, y must strictly increases in β to keep

the retailer’s ex ante payoff constant.

Furthermore, the limit of y as β → 1 is strictly less than y∗. In other words, the

underinvesting result holds even when search frictions vanish. Intuitively, as long

as the price distribution is non-degenerate, which is the case with any β ∈ [0, 1),

the investment strategy Ge(y) is non-degenerate.

The stationary revenue distribution G(y) also adjusts as β changes so that the

resulting price distribution makes a supplier indifferent across investment levels.

We know from the baseline model that price distribution shifts towards lower

reserve prices as β increases. Combined with the fact that the price offer p(y)

strictly increases in y, there must be larger mass of retailers who invest small

amount and offer low prices. G(y) therefore converges in distribution to a point

mass at y in the limit. Figure 1.4 graphically shows the above two results using a
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Figure 1.4: Stationary Retailer Type Distribution

(In this example: x0 = 1.5, c(x) = 1
2
(x− x0)2, y0 = 2.2, e(y) = 1

2
(y − y0)2.)

numerical example.

The retailers’ investment strategy Ge(y) also converges in distribution to a

point mass at y as β goes to 1. We know that G(y) converges to a point mass

at y. In addition, the per-period trading probability of a retailer with any type

y < y∗ goes to zero in the limit. The revenue distribution of retailers who exit

therefore converges to a point mass at y. Entrants who replace these exits hence

also have the same limiting revenue distribution. 5 The investment strategy with

the same set of parameters is plotted in Figure 1.5.6

The above discussions are summarized in proposition (1.6).

Proposition 1.6. In the steady-state equilibrium with two-sided investment, as β

increases to 1,

5Notice that the above argument will not hold if there is a point mass at y∗, like what we
had for the supplier’s limiting investment strategy. The reason is that, when there is positive
measure of agents who exit the market with probability 1, the average exit type might be higher
than y or even approaches y∗.

6To clarify, although the investment strategy has more mass on lower types, we cannot
conclude that the investment strategy becomes less efficient, because the lowest revenue y strictly

increases in β.
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Figure 1.5: Retailer’s Investment Strategy

(In this example: x0 = 1.5, c(x) = 1
2
(x− x0)2, y0 = 2.2, e(y) = 1

2
(y − y0)2.)

1. (i) The lowest revenue y strictly increases; (ii) A retailer with revenue that

equals the t ∗ 100th percentile of G(y) offers the reserve price of a more

efficient supplier, for any t ∈ (0, 1).

In the limit, (i) y is still bounded away from y∗, i.e., limβ→1 y < y∗; (ii)

Ge(y) and G(y) converge in distribution to a point mass at y.

2. (i) F (x) strictly decreases for x ∈ [x∗, x0) and converges in distribution to

a point mass at x0; (ii) Fe(x
∗) strictly increases and Fe(x) converges in

distribution to a point mass at x∗.

1.6 Two-Sided Offers

In some situations a supplier also has the opportunity to make offers occasionally.

This section extends the baseline model to incorporate such possibility.

Specifically, in each meeting, nature randomly selects the supplier to make a

take-it-or-leave-it offer with probability α ∈ (0, 1) and selects the retailer with

the complementary probability. Therefore, a supplier’s strategy now also includes

27



price offer pS(x) and a retailer’s strategy also includes reserve price rR.

It is not hard to see that rR = y0 − βπ, that is, a retailer is willing to pay the

price if it leaves him more than his discounted continuation payoff. Therefore, a

supplier with any cost will propose pS(x) = rR if rR − x is weakly larger than

βU(x).

1.6.1 Benchmark: Observable Investment

As a benchmark, let us first characterize the steady-state equilibrium with observ-

able investment. It is easy to verify that conditional on investing positive amount,

a supplier will choose x̄ that solves the following maximization problem.

max
x
{α(y0 − x− βπ)

1− β(1− α)
− c(x)}

Therefore, x̄ is implicitly defined by,

c′(x̄) =
−α

1− β(1− α)
(1.19)

Depending on parameters, one of the following two equilibria will arise. The

detailed analysis of the above two equilibrium and is included in the appendix.

Equilibrium 1: Market size > Entrant size. In situations with α(y0 − x̄) < c(x̄),

in the steady-state equilibrium, a supplier’s ex ante payoff v = 0, a retailer’s

ex ante payoff π = α(y0−x̄)−(1+αβ−β)c(x̄)
αβ

, entrant cost distribution Fe(x) is a point

mass at x̄, incumbent cost distribution F (x) has two point mass at x0 and x̄, with

F (x̄) = (1−β)π
(1−α)(y0−x̄−βc(x̄)−βπ)

. In equilibrium, trade takes place only when a retailer

meets an invested supplier.

Equilibrium 2: Market size = Entrant size. In situations with α(y0 − x̄) ≥ c(x̄),

in the steady-state equilibrium, a supplier’s ex ante payoff v = α(y0 − x̄) − c(x̄),

a retailer’s ex ante payoff π = (1 − α)(y0 − x̄), both Fe(x) and F (x) are a point

mass at x̄. In equilibrium, agents trade in their first meetings.
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Proposition 1.7. In the two-sided offer case with observable investment, as β

converges to 1, Fe(x̄) converges in distribution to a point mass at x∗ and the

social welfare converges to the first best.

Proposition 1.7 shows that even if investments are observable, when suppliers

have some positive bargaining power, investments become efficient in the limit.

To understand this result, note that with a continuum of suppliers and retailers,

a retailer’s reserve price is independent of his opponent’s investments. Hence a

supplier is the residual claimant of his investments when he makes the offer. As the

time between two meetings shrinks to zero, any positive α implies that the supplier

has the chance to make the offer almost immediately after entry. Therefore he

becomes the full residual claimant and will invest efficiently, although he only gets

α share of the total surplus from trade.

Moreover, the social welfare also convergence to the first best, since not only

investments but also trades are efficient. This is apparent with equilibrium 2. In

equilibrium 1, the proportion of invested type is bounded away from zero in the

limit. Hence, a retailer can find an invested supplier almost immediately when

meetings become extremely frequent. Trades are therefore efficient in the limit.

To simplify the analysis, in the rest of the section, I will focus on situations

where the condition in equilibrium 2 is satisfied, i.e., α(y0 − x̄) ≥ c(x̄). The

analysis of the other case is similar and is available upon request.

1.6.2 Steady-State Equilibrium

Let us turn to the steady-state equilibrium. We can first show that for any x on

the support of Fe(x), trade always takes place if a type x supplier is selected to

make the offer. The detailed proof is provided in the appendix. This claim is true

if the surplus from trade y0 − x − βπ − βU(x) is non-negative for any x on the

support. Note that the surplus being negative implies that a type x supplier can
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never trade and must get zero search stage payoff. However, investment is costly

and this leads to a contradiction.

We can follow the same logic as in the baseline model to verify that in steady-

state, the support of Fe(x) and F (x) is [x∗, x̄] and retailers play mixed pricing

strategy over [rS(x∗), rS(x̄)].

In equilibrium, a supplier’s ex-ante payoff v and a retailer’s ex-ante payoff π

must be non-negative. Using indifference conditions, to solve for v and π, we only

need to focus on a supplier with cost x̄ and a retailer who offers rS(x̄). Combining

their value functions,

U(x̄) =
α(y0 − x̄− βπ)

1 + αβ − β
= c(x̄) + v

1− αβ
1− α

π = y0 − x̄− βc(x̄)− βv

We can solve v and π:

v = α(y0 − x̄)− c(x̄) (1.20)

π = (1− α)(y0 − x̄) (1.21)

By the assumption α(y0− x̄)− c(x̄) ≥ 0, both v and π are positive. Moreover,

comparing these equilibrium payoffs and the social welfare with those values in

the observable investment benchmark, we can conclude that the equivalent result

still holds in this extension.

1.6.3 Comparative Statics and the Limiting Case

From (1.19) we know that the highest cost on the market x̄ is determined by

c′(x̄) = −α
1−β(1−α)

. It is straight forward to verify that x̄ strictly decreases in α and

β, i.e., the highest cost on the support is closer to the efficient cost when a supplier

has larger bargaining power or when meetings become more frequent. A supplier
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with cost x̄ is the residual claimant only when he makes the offer, the probability

of which in one unit of time strictly increases in α and β. This supplier therefore

has stronger incentive to invest is α or β is larger.

In the limit as β → 1 or as α→ 1, x̄ converges to x∗ and hence the investment

strategy becomes efficient. Although in the baseline model the investment strategy

also converges to the first best, the mechanism behind the result is quite different.

In addition, the two-sided offer case has different prediction on the welfare

consequences of diminishing search frictions. While it is still true that any in-

vestment above the minimum level does not generate any welfare gain due to

delay in trade, since the minimum level itself converges to the efficient level, the

equilibrium social welfare converges to the first best in the limit.

For situations where α(y0 − x̄) < c(x̄), we can also show that the limiting

investment strategy is efficient and that equilibrium social welfare is equal to the

first best.

We summarize the above discussion in the following proposition.

Proposition 1.8. In the unique steady-state equilibrium with two-sided offers, the

highest production cost x̄ strictly decreases in β and α. Moreover, the investment

strategy converges in distribution to a point mass at x∗ as β → 1 or α→ 1.

The equilibrium social welfare strictly increases in α and β, and converges to

the first best as β → 1 or α→ 1.

1.7 Final Remarks

1.7.1 Robustness

In this section, we will check the robustness of results of the baseline model to

some alternative assumptions.

Uneven Sizes and (or) General Matching Technology. In the baseline
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model, I assume that the measures of incumbent suppliers and retailers are the

same and that each player is paired with one player from the other side for sure in

each period. The main results are robust if instead we have uneven sizes on two

sides of the market and (or) general matching technology so that the probability

of not being paired in one period is positive.

To be more precise, the equilibrium investment strategy Fe(x) is still non-

degenerate with convex support [x, x0] and a retailer plays mixed pricing strategy

over reserve prices of these types. The difference is that x is larger than the efficient

cost if a supplier cannot be paired with probability 1 each period. Moreover,

because the indifference conditions still hold, the equilibrium payoffs and the

social welfare equal the values generated with observable investments. Finally,

as β converges to 1, x converges to x∗: as meetings become more frequent, it

is as if the most efficient suppliers could trade immediately and hence they will

invest efficiently. The convergence results of F (x) and Fe(x) also extend to a more

general market condition, with different rates of convergence that depend on the

sizes of two sides and the matching technology.

Exogenous Death Shock. Suppose instead, each player experiences an exoge-

nous death shock with positive probability in each unit of time. For the most part

of the analysis, this is equivalent to redefining a smaller discount factor which also

converges to 1 in the limit. The only complication is that now the group of exit

suppliers also include those who have death shock so we need to rewrite the sta-

tionary distribution condition. But this again only affects the rate of convergence

of Fe(x) and hence the original results still hold qualitatively.

1.7.2 Other Possible Extensions

Investments are Observable with Positive Probability. As the previous

analysis shows, the social welfare that could be generated from positive investment
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is completely eroded by the inefficiency of trade. If in the search stage investments

could be observed with positive probability q, then profitable trades could be

conducted with no delay when investments are observable. We can show that given

any search friction, partial information yields strictly higher social welfare than

no information (and full information). The optimal q trades off the discouraged

investment incentive and the increased trading efficiency.

This idea is also emphasized in Lau (2008), where the same result holds in a

Coasian setting with one round of price offer. The difference is that in her setting,

no information is better when the bargaining has infinite rounds and the time

between two successive rounds shrinks to zero. On the contrary, in the current

setting the trading inefficiency is the most severe in the limit and hence partial

information could improve social welfare over all search friction levels.

Two-Sided Investments and Offers. It is also possible to extend the model to

incorporate two-sided investments and two-sided offers. With both sides investing,

it is unclear ex-ante what the socially optimal bargaining power would be.

Unfortunately, a model with continuous investment technology is no longer

tractable. Instead, I consider a one-period, binary-investment-choice and sym-

metric version of the baseline model, where both sides can make price offer with

positive probability and can invest. The preliminary result shows that in non-

trivial cases where the cost of investment is large so that it is impossible to incen-

tivize both sides to invest, the social welfare is maximized when one side has all

the bargaining power.

1.8 Conclusion

This article examines the investment incentive and its welfare consequences in an

infinite horizon random search and bargaining game with unobservable and selfish

investments.
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We demonstrated that in the unique steady state equilibrium, both the in-

vestment strategy and the price offer distribution are non-degenerate with convex

supports. Unobservability generates rent for high investment and therefore incen-

tivizes investment even if suppliers have no bargaining power.

However, positive investments fail to generate any social welfare for any search

friction. Trading inefficiency caused by unobservability erodes the welfare gain

that could be created.

Moreover, we showed that as meetings become more frequent, quite strikingly,

the investment distributions of incumbents and entrants shift in the opposite

directions: incumbent investment distribution converges to a point mass at no

investment whereas an entrant’s investment becomes efficient.

1.9 Appendices

1.9.1 Proof of Lemma 1.1

Step 1: U(x) Strictly Decreasing. Since type x supplier can always choose the

reserve price of type x+ ε, for some ε > 0, U(x) must be strictly decreasing in x.

Step 2: rS(x) Strictly Increasing. Multiply both sides of the supplier’s value

function by β and add x, we get the following equation after rearranging,

rS(x)− β[E(p̃ | p̃ ≥ rS(x))(1−H(rS(x)) + Pr(p̃ = rS(x)))

+ rS(x)(H(rS(x))− Pr(p̃ = rS(x)))] = (1− β)x (1.22)

The left hand side strictly increases in rS(x) while the right hand side strictly

increases in x. Therefore, rS(x) must be strictly increasing in x.

Step 3: Continuity. From the last step, we know that the rS(x̄) is the highest

reserve price on the market. Clearly, no retailer will offer a price that is higher

than that. Therefore, for type x ≥ x̄, H(rS(x)) = 1 and U(x) = 0.
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For x < x̄, since U(x) decreases in x, U(x) can only have downward jump.

Suppose U(x) jumps down at point x. Because rS(x) = x + βU(x), rS(x) must

also jump downwards. However, this contradicts rS(x) being strictly increasing.

Therefore, for any x, U(x) is continuous. rS(x) is also continuous as a result.

Step 4: U(x̄) = 0. Since r(x̄) is the highest price that a retailer is willing to offer,

equation (1.1) for x = x̄ becomes U(x̄) = βU(x̄). Therefore U(x̄) = 0.

1.9.2 Proof of Proposition 1.1

Step 1: supports of F (x), Fe(x) and H(p).

The closeness is obtained from the assumption that suppliers and retailers will

trade in the case of indifference.

Before showing the convexity, it is worth noticing that a price offer p being on

the support of H(p) implies x̂(p) being on the support. Otherwise, the retailer

offering price p is not optimizing because he can lower the price to rS(x′) without

affecting the probability of trade, where x′ is the highest supplier type that is

smaller than x and on the support.

Now suppose that there exist p1, p2 on the support of H(p), such that any

p ∈ (p1, p2) is not on the support. Since p1 and p2 are on the support, there exist

worker type x1 and x2 on the support such that rS(xi) = pi, i = 1, 2. For any

x ∈ (x2, x1), U ′(x) is a constant since

U ′(x) =
−1 +H(p2)

1− βH(p2)

On the other hand, c′(x) strictly increases in x. Together with the continuity of

U(x), U(x1) − c(x1) < U(x2) − c(x2). This is a contradiction. Therefore, the

support of H(p) is convex. By the continuity of rS(x), the support of F (x) and

Fe(x) is also convex.

The lowest price offer in equilibrium is never lower than the reserve price of
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the most efficient suppliers, i.e., H(rS(x)) = 0. Plugging it into the envelope

condition, U ′(x) = c′(x) = −1. This implies that x = x∗.

Hence, the support of F (x) and Fe(x) is [x∗, x0] and the support of H(p) is

[rS(x∗), rS(x0)].

Step 2: H(p) has no point mass.

We first show Pr(p̃ = rS(x0)) = 0. Suppose Pr(p̃ = rS(x0)) = q > 0, then

U ′(x0−) = −q
1−β+βq

< c′(x0). This is a contradiction.

Next, we solve H(p). Notice that U(x) is differentiable for any x on the

support, because the support is convex, c(x) is differentiable and U(x)− c(x) = 0.

This also implies that rS(x) and x̂(p) are differentiable for any x and p on the

support. Hence, H(p) can be solved from the equilibrium condition that U ′(x) =

c′(x),

H(rS(x)) =
1 + c′(x)

1 + βc′(x)
⇒ H(p) =

1 + c′(x̂(p))

1 + βc′(x̂(p))
(1.23)

It is straightforward to verify that H(p) has no atom.

Step 3: Point mass at x∗ and no other point mass.

We already know that rS(x∗) is on the support of H(p). For a retailer who

offers this price, he would get zero payoff if F (x∗) = 0. In this case, the retailer

would find it profitable to deviate to offering rS(x0) = x0 and get strictly positive

payoff.

Suppose that there is a point mass at x ∈ (x∗, x0], then there exist ε, such

that retailers would find it profitable not to offer price p ∈ (rS(x− ε), rS(x)). This

contradicts the convexity property of the support.

1.9.3 Proof of Theorem 1.2

We have shown the first two parts of the theorem.
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By equation (1.7), the proportion of type x∗ entrants equals,

Fe(x
∗) =

F (x∗)

1−
∫ x0

x∗
H(rS(x))f(x)dx

= [1 +
1− F (x∗)

F (x∗)

∫ x0

x∗
(1−H(rS(x)))

f(x)

1− F (x∗)
dx]−1

= [1 + A]−1

By Median Value Theorem, there exist a x̃ ∈ (x∗, x0) such that,

A =
1− F (x∗)

F (x∗)

∫ x0

x∗
(1−H(rS(x)))

f(x)

1− F (x∗)
dx

=
1− F (x∗)

F (x∗)
[1−H(rS(x̃))]

=
−c′(x̃)(x0 − x∗ − βc(x∗))

(y0 − x0)(1 + βc′(x̃))

Take derivative with respect to β,

∂A

∂β
=
−c′′(x̃) ∂x̃

∂β
(x0 − x∗ − βc(x∗)) + c′(x̃)[c(x∗) + c′(x̃)(x0 − x∗)]

(y0 − x0)(1 + βc′(x̃))2

Therefore, the sufficient conditions for the derivative to be negative are

∂x̃

∂β
> 0 and c(x∗) + c′(x̃)(x0 − x∗) > 0

We first show that the first condition is satisfied. x̃ is defined by,∫ x0

x∗
(1−H(rS(x)))

f(x)

1− F (x∗)
dx =

−c′(x̃)

1 + βc′(x̃)
(1.24)

From the previous analysis, as β increases 1−H(rS(x)) strictly decreases for

any x ∈ (x∗, x0). As a result, the left hand side of (1.24) strictly decreases in β.

On the other hand,

∂ −c′(x̃)
1+βc′(x̃)

∂β
=
−c′′(x̃) ∂x̃

∂β
+ [c′(x̃)]2

(1 + βc′(x̃))2

Since the derivative has to be negative so that (1.24) holds, ∂x̃
∂β

> 0 must be

satisfied.
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This in turn implies we only need to check the second sufficient condition for

β = 0, because c′(x̃) is the smallest when β = 0. It is straight forward to check

that the density of the stationary type distribution strictly increases in x, since,

f(x) =
(y0 − x0 − βπ)(1 + βc′(x))

[y0 − βπ − x− βc(x)]2

Therefore,

− c′(x̃) =

∫ x0

x∗
−c′(x)

f(x)

1− F (x∗)
dx <

∫ x0

x∗
−c′(x)

1

x0 − x∗
dx =

c(x∗)

x0 − x∗

⇒ c(x∗) + c′(x̃)(x0 − x∗) > 0

We have proved that those two sufficient conditions both hold and thus

∂Fe(x
∗)

∂β
> 0

Next, we will prove that in the limit Fe(x
∗)→ 1, which is equivalent to x̃→ x0,

where x̃ is defined by,∫ x0

x∗
(1−H(rS(x)))f(x)dx = [1−H(rS(x̃))][1− F (x∗)] (1.25)

For any ε ∈ (0, x0 − x∗), we can rewrite the left hand side of (1.25) as∫ x0−ε

x∗
(1−H(rS(x)))f(x)dx+

∫ x0

x0−ε
(1−H(rS(x)))f(x)dx

=[1−H(rS(x1))][F (x0 − ε)− F (x∗)] + [1−H(rS(x2))][1− F (x0 − ε)] (1.26)

where x1 ∈ (x∗, x0 − ε) and x2 ∈ (x0 − ε, x0).

Combining (1.25) and (1.26) we have the following equation,

[H(rS(x̃))−H(rS(x2))][1− F (x∗)] = [H(rS(x1))−H(rS(x2))][F (x0 − ε)− F (x∗)]

(1.27)

Here F (x0 − ε)− F (x∗) can be rewritten as,

(1− β)(y0 − x0)
−x∗ − βc(x∗) + (x0 − ε) + βc(x0 − ε)

(y0 − βπ − x0 + ε− βc(x0 − ε))(y0 − βπ − x∗ − βc(x∗))
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We can verify that for any ε and φ, there exist an η, such that when 1 − β < η,

F (x0 − ε)− F (x∗) < φ. Therefore, the right hand side of (1.27) converges to 0 in

the limit. This implies x̃ converges to x2 in the limit. Since x2 ∈ (x0 − ε, x0), for

small enough ε, x̃ converges to x0.

1.9.4 Proof of Proposition 1.3

Step 1: p(y) increasing.

If the support of G(y) is degenerate, then we have nothing to prove.

Otherwise, consider any y1 and y2 on the support with y1 > y2. Denote

p1 = p(y1) and p2 = p(y2). Since p1 (p2) solves the maximization problem of type

y1 (y2), the following inequality must hold,

(y1 − p1)F (x̂(p1))+[1− F (x̂(p1))]βΠ(y1)

≥ (y1 − p2)F (x̂(p2)) + [1− F (x̂(p2))]βΠ(y1)

(y2 − p2)F (x̂(p2))+[1− F (x̂(p2))]βΠ(y2)

≥ (y2 − p1)F (x̂(p1)) + [1− F (x̂(p1))]βΠ(y2)

Adding two equation, we have

(y1 − y2)[F (x̂(p1))− F (x̂(p2))] ≥ [F (x̂(p1))− F (x̂(p2))][βΠ(y1)− βΠ(y2)]

Since y1 − y2 > β[Π(y1) − Π(y2)], the above inequality implies F (x̂(p1)) ≥

F (x̂(p2)). This proves p(y) increases in y.

Step 2: Single-Valued.

We can apply the same proof to show that the support of F (x) is [x∗, x0].

Therefore, F (x) is a strictly increasing function of x.

Suppose there exist y that is on the support of Ge(y), such that p1 > p2 are

both optimal price offers of a type y retailer. His search stage payoff can be
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rewritten as,

Πi(y) = (y − pi)F (x̂(pi)) + [1− F (x̂(pi))]βΠi(y), i = 1, 2

It is easy to verify that Π′1(y) > Π′2(y). This contradicts the equilibrium

constraint Π(y)− c(y) = π.

1.9.5 Proof of Proposition 1.4

Step 1: We can apply the same proof to show that the support of Fe(x) and F (x)

is [x∗, x0].

Step 2: F (x̂(p(y))) > 0 follows from Π(y) = π+ e(y) > 0. Together with previous

results that p(y) increases in y, x(p(y)) = x∗. Hence F (x∗) > 0 and by (1.7)

Fe(x
∗) > 0, i.e., there is a point mass at x∗.

Next we show that x∗ is the only point mass. Suppose F (x) jump upwards at

point x̃ > x∗. Denote the corresponding reserve price x̃ + βU(x̃) by p̃. Then for

any retailer type, offering p̃ is strictly better than offering any p ∈ [p̃ − ε, p̃] for

some small ε. Therefore, no price p ∈ [p̃ − ε, p̃] will be offered. This contradicts

the previous result that the support of H(p) is convex.

Step 3: The compactness of the support of Ge(y) and G(y) comes from the fact

that y∗ is finite and that all agents choose to trade when indifferent.

To see convexity, suppose there exist y1, y2 on the support and any y ∈ (y1, y2)

is not. Then p(y1) < p(y2), otherwise Π′(y) will be constant in the interval and the

indifference condition at point y1 and y2 cannot be satisfied. However, combined

with the monotonicity of p(y), this implies any p ∈ (p(y1), p(y2)) is not on the

support of H(p). We have a contradiction.

Because the support of G(y) is convex, we can use the envelope condition and

indifference condition to determine ȳ and y. That is,

e′(ȳ) = Π′(ȳ) = 1 and e′(y) = Π′(y) =
F (x∗)

1− β(1− F (x∗))
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Therefore ȳ = y∗. We know π = y∗ − x0 − e(y∗). Using indifference condition,

y is pinned down by

y∗ − x0 − e(y∗) = (y − x∗ − βc(x∗))e′(y)− e(y)

It is straightforward to verify that y < y∗. The right hand side strictly increases

in y and equals zero when y = y0. In addition, it is strictly larger than the left

hand side when y = y∗. Therefore, y is uniquely determined by equation (1.14)

and y < y∗.

Finally, no point mass result comes from the fact that no point mass on the

support of H(p) is permitted in equilibrium.

1.9.6 Proof of Proposition 1.5

Combining the envelope condition of Π(y) and the indifference condition that

Π′(y) = e′(y) for any y on the support,

F (x̂(p(y))) =
(1− β)e′(y)

1− βe′(y)
for any y on the support

We can use the equilibrium condition Π(y)− e(y) = π to solve p(y).

(y − p(y))e′(y)− e(y) = y∗ − x0 − e(y∗)

⇒ p(y) = y − e(y) + y∗ − x0 − e(y∗)
e′(y)

We can easily verify that p(y) is continuous and strictly increases in y. There-

fore, the inverse function y(p) exists. We can therefore define F (x) and G(y).

From the previous discussion, we can see that F (x), Fe(x), G(y) and Ge(y)

defined above are the only distributions that satisfies equilibrium restrictions.

Hence, the steady state equilibrium is unique.
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1.9.7 Proof of Proposition 1.6

Step 1: Take derivative of equation (1.14) with respect to β, we get

[y − x∗ − βc(x∗)]e′′(y)
∂y

∂β
= c(x∗)e′(y)

Therefore,
∂y

∂β
is strictly positive.

Denote the t ∗ 100th percentile of G(y) with β as yt,β, i.e.,

G(yt,β) =
1 + c′(x̂(p(yt,β)))

1 + βc′(x̂(p(yt,β)))
= t

⇒ 1− t = −(1− tβ)c′(x̂(p(yt,β)))

Therefore, when β increases, x̂(p(yt,β)) strictly decreases.

Step 2: limβ→1 y < y∗ can be shown by plugging in β = 1 and y = y∗ into equation

(1.14). It is easy to check that the left hand side is strictly smaller the right hand

side.

Consider any y > y. Since x̂(p(y)) > x∗, 1 + c′(x̂(p(y))) > 0. Then it is

straightforward to verify that β → 1, G(y)→ 1 for any y > y.

For any y > y, there exist y̌ and ˇ̌y, such that

Ge(y) =

∫ y
y
F (x̂(p(ỹ)))dG(ỹ)∫ y∗

y
F (x̂(p(ỹ)))dG(ỹ)

=
F (x̂(p(y̌)))G(y)

F (x̂(p(ˇ̌y)))

=
e′(y̌)(1− βe′(ˇ̌y))

e′(ˇ̌y)(1− βe′(y̌))
G(y)

When β → 1, both y̌ and ˇ̌y approaches y following the same argument as in

the proof for proposition 1.2, and G(y) approaches 1 for any y > y. Therefore,

Ge(y)→ 1 for any y > y.

1.9.8 Two Equilibria with Observable Investment and Proof of Propo-

sition 1.7

Equilibrium 1. Assume α(y0 − x̄) ≤ c(x̄).
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If a supplier invests, he will invest to reduce his production cost to x̄. Given

π, his ex ante payoff v = α
1+αβ−β (y0− x̄−βπ)− c(x̄). To make sure that suppliers

are indifferent between x̄ and x0, v must equal 0. Therefore,

π =
α(y0 − x̄)− (1 + αβ − β)c(x̄)

αβ
(1.28)

If F (x̄) = q, we can also solve π as follows,

π = αβπ + (1− α)[q(y0 − x̄− βc(x̄)) + (1− q)βπ]

Equating two π, q can be solved,

q =
(1− β)π

(1− α)(y0 − x̄− βc(x̄)− βπ)

q is always positive. The condition that q is less than 1 is equivalent to

α(y0 − x̄) ≤ c(x̄).

The last equilibrium condition we need to verify is that y0 − x0 − βπ ≤ 0.

After plugging in π, this condition is equivalent to c(x̄) ≤ α
1+αβ−β (x0 − x̄). This

condition is satisfied since c′(x̄) = −α
1+αβ−β and c(x) is strictly convex.

Equilibrium 2. Assume α(y0 − x̄) > c(x̄).

All supplier entrants invest to reduce their production cost to x̄. Agents’ ex

ante payoffs can be solved: v = α(y0 − x̄)− c(x̄) and π = (1− α)(y0 − x̄). By the

assumption, both are positive.

Proof of proposition 1.7.

As β → 1, the right hand side of equation 1.19 converges to −1, which implies

x̄ → x∗. Since Fe(x) is a point mass at x̄ in both equilibrium, the limiting

distribution converges to a point mass at x∗.

In equilibrium 2, the social welfare equals y0 − x̄ − c(x̄). Hence the social

welfare converges to the first best.

In equilibrium 1, the social welfare equals π defined in equation (1.28). We

can also verify that as β → 1, π → (y0 − x∗ − c(x∗)).
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1.9.9 Proof: Non-Negative Surplus From Trade

If y0−x0 ≥ βU(x0)+βπ, by the strictly monotonicity of rS(x), y0−x > βU(x)+βπ

for any x < x0.

Now suppose y0 − x̌ < βU(x̌) + βπ and x̌ < x0, where x̌ is the upper bound

of the support. Since rS(x̌) = x̌ + βU(x̌), this implies y0 − rS(x) < βπ. In this

case, the supplier with type x̌ can never trade on the market: when the supplier

makes the offer, y0 − x̌ < βU(x̌) + βπ, i.e., the surplus of trade is not enough to

compensate the forgone discounted continuation values; when the retailer makes

the offer, rS(x̌) > y0 − βπ, i.e., the retailer is unwilling to offer the reserve price.

As a result, U(x̌) = 0, which implies U(x̌) − c(x̌) < 0. This contradicts x̌ being

on the support.

Next, suppose y0 − x0 < βU(x0) + βπ and x̌ = x0. Then there exist some

x1 < x0 such that for any x ∈ (x1, x0), y0 − x < βU(x) + βπ. By the argument

from last step, any x ∈ (x1, x0) is not on the support. We then show that F (x0) =

Fe(x0) = 1 so that it is without loss of generality to assume x̌ = x1. For any type

x ∈ (x1, x0] supplier’s value function is

U(x) =
α[y0 − x− δπ] + (1− α)(rS(x0)− x)Pr(p̃ = rS(x0))

1− (1− α)β[1− Pr(p̃ = rS(x0))]

This implies that for any x ∈ (x1, x0]

U ′(x) =
−α− (1− α)Pr(p̃ = rS(x0))

1− (1− α)β[1− Pr(p̃ = rS(x0))]

To satisfy the restriction that U(x)− c(x) = v for any x on the support, α and

Pr(p̃ = rS(x0)) must be zero. This further implies that the probability of a type

x0 supplier exiting the market is zero. Therefore, Fe(x0) must be one. Otherwise

the mass of supplier type x0 will blow up. Without loss of generality, we can thus

redefine x̌ as x1. Then by the same argument as before, y0 − x̌ ≥ βU(x̌) + βπ.
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CHAPTER 2

Search with Private Information: Sorting and

Price Formation (joint with Kenneth Mirkin)

2.1 Introduction

We investigate the sorting of heterogeneous agents in a two-sided market where

the value of a traded good depends on both buyer and seller types, focusing on

a setting in which trade is hindered by search frictions and private information.

Becker (1973) serves as a benchmark characterization of sorting—in a ”friction-

less” world, Positive Assortative Matching (henceforth PAM) arises when output

is supermodular in types, while Negative Assortative Matching (NAM) occurs

with submodular output. We depart from Becker’s setting by restricting the in-

teractions of agents in two ways. First, it is difficult to meet potential trading

partners, as each buyer encounters only a random seller in each period (and vice

versa). Second, in each meeting of potential trade partners, the buyer is privately

informed about her type.

More precisely, our environment is a repeated, bilateral matching market. Buy-

ers and sellers are heterogeneous and have persistent types. These buyers and

sellers are randomly matched pairwise in each period, and if the pair agree to

trade, the buyer receives the joint output, which is an increasing function of both

agents’ types. In each match, the seller’s type can be jointly observed, but only

the buyer knows her own type (and thus knows the joint output). In turn, the

seller has all the bargaining power and can make a take-it-or-leave-it offer.
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This setting reflects a broad set of applications—it is straightforward to imag-

ine a market for vertically-differentiated products, where consumers differ in pref-

erences across goods. In the housing market, for instance, homes for sale vary

in kitchen appliances, and sellers are visited by buyers with different marginal

return to better appliances. Our model can be seen as the case in which the

buyer’s preference is her private information. Similarly, this might represent the

hiring process in a labor market where heterogeneous workers and firms produce

joint output. For consistency, we describe the model’s agents as buyers and sellers

throughout the analysis to follow, but where appropriate, it will be insightful to

draw motivation from other such applications.

Our study has two primary objectives—we want to characterize: (i) the sorting

patterns that arise in the environment described above and (ii) the patterns in the

price distribution that give rise to this sorting. Both tasks require us to understand

how each seller determines her reserve price and how this decision changes over

seller types. At its most basic level, optimal seller behavior is governed by the

following intuition: Because output rises in type, a higher type seller faces a choice

of how best to use this extra output—she can simply keep it in each of the trades

she would have had, or alternatively, she can give it to buyers to incentivize more

of them to trade with her. If prices rise in seller type by the precise amount to

generate no sorting at all (meaning that different sellers match with the same set of

buyers), then these sellers are clearly choosing the former. If prices are constant

across types, sellers are choosing the latter. Inbetween these two outcomes—

if sorting is positive, but prices are rising in seller type—sellers are choosing a

combination of the two.

Unfortunately, the simplicity of this intuition masks the underlying complexity

of equilibrium decisions and interactions; in contrast to related models in the ex-

isting literature (e.g. - Shimer and Smith, 2000; Smith, 2006; Atakan, 2006), both

prices and matching sets arise endogenously in our model. As a result, neither

49



of the aforementioned objectives is straightforward to achieve, so we will take an

indirect approach.1 We will see that, given prices, matching sets are intimately

related to continuation values, and we will attempt to use this relationship to

overcome the difficulty of characterizing equilibrium. Specifically, we will investi-

gate how the patterns of interest depend on the factor by which agents discount

the future (β), focusing especially on the extreme cases in which β = 0 (the static

case) and β −→ 1 (search frictions become insignificant).2

In the static case, our analysis is simplified because the discounted continu-

ation value is zero. We find that the direction of sorting depends on the log-

supermodularity of output—log-supermodular production functions give rise to

PAM, while log-submodularity leads to NAM. This is a stronger condition than

the supermodularity than governs sorting in a frictionless market. Intuitively, the

buyer’s private information generates an additional tradeoff for the seller between

terms of trade and probability of trade. Higher types have a greater incentive to

take advantage of their higher type-specific output by increasing the probability

of trade (i.e. - by relaxing the terms of trade to induce more types to participate).

This incentive pushes equilibrium sorting towards negative assortative even with

a supermodular production function. Positive sorting therefore requires an output

function with stronger complementarity. It is also worth noting that stronger log-

concavity in buyer type of output weakens sorting in either direction, because this

decreases the benefits to the seller of trying to trade with more types (lowering

the price will induce less movement in the marginal, indifferent buyer under this

condition).

1We also have a characterization of sorting and prices for the general, dynamic setting with
discount factors in (0, 1), but this is quite messy analytically, and the conditions are difficult to
link coherently to economic intuition. Of course, these findings are available from the authors
upon request.

2Throughout the analysis, the distribution of buyer types entering the market in each period
is assumed to satisfy the common increasing hazard rate property. Output is assumed to be
everywhere positive, log-concave in buyer type, and strictly increasing in both buyer and seller
types.
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We also characterize how prices move with seller type: we find that prices

increase in seller type if output exhibits a sufficiently strong combination of su-

permodularity and log-concavity in buyer type. For instance—if output is concave

in the buyer’s type, then it need only be supermodular for prices to rise with type.

If output is merely log-concave in buyer type, however, then it must satisfy the

more stringent condition of log-supermodularity to induce prices to rise in type.

At the other extreme, we can think of the case with increasingly patient agents

as a setting with disappearing search frictions. We find that, when β −→ 1, the

inefficiency associated with private information disappears, and matching sets

reduce to the unique stable matching of a frictionless market (when it exists).

Thus, the standard supermodularity (submodularity) reemerges as the condition

for PAM (NAM). In this case, we can neatly characterize prices analytically, and

in equilibrium, each agent obtains her marginal contribution to total surplus up

to a constant.

This frictionless limit is particularly informative regarding sorting and how it

depends on the interplay between private information and search. Our analysis

suggests generally that, when buyers have private information, agents are less

likely to capitalize on productive complementarities by sorting positively. This

resistance to sorting disappears, however, when we reduce search frictions. By

removing the time preference of agents, we weaken the monopolistic aspect of

bilateral trade, which allows agents to appropriate their marginal contributions.

In this sense, increasing market competition can help agents sort efficiently even

in the presence of private information.

This chapter proceeds as follows: Section 2 frames our findings in the context

of related literature. Section 3 introduces the model and establishes the existence

of a search equilibrium. Section 4 characterizes sorting and price formation when

the model is effectively static (β = 0), and Section 5 offers results for the other

extreme case as agents become patient. Finally, Section 6 draws connections
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between these limiting cases and concludes.

2.2 Related Literature

As we will discuss below, our analysis builds upon previous theoretical work re-

lated to assortative matching. Studies in this area often attempt to answer two

primary questions: (1) What types of agents will match with each other? (2)

What types of agents would match with each other to optimize overall welfare,

and if these matching patterns differ, why? To properly place our analysis in the

context of this literature, we will compare our setting to several that have been

previously studied, both through objective sorting characterizations and through

insights regarding the relationship between sorting, search, and asymmetric infor-

mation.

2.2.1 Sorting and Frictions

The Frictionless Matching Benchmark

A standard benchmark used for comparison is the frictionless, ”Walrasian”

setting studied by Becker (1973) and Rosen (1974). In this environment, there is

full information regarding prices and types, and meeting trade partners is fully

costless for buyers and sellers. Becker famously demonstrated that supermodular

production functions give rise to PAM in this environment.

Beyond this, though, recent studies have taken a renewed interest in sorting,

trying to understand how it is impacted by departures from the frictionless bench-

mark. Among these frictional extensions, the setting we study is especially well-

suited for comparison to those involving two particular classes of frictions—the

bilateral monopoly which arises in random search (Shimer and Smith, 2000; Smith,

2006; Atakan, 2006) and the coordination frictions in directed search (Eeckhout

and Kircher, 2010). We elaborate upon these connections below.
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Random Search

There are obvious connections between our study and a series of papers on

sorting with random search (Shimer and Smith (2000), Smith (2006) and Atakan

(2006)).

Our study differs from these primarily in its incorporation of buyer private

information—in the studies mentioned above, there is full information and an

exogenously given sharing rule (under transferable utility) in each meeting of

potential partners.

These studies focus exclusively on the impact on sorting of random search

frictions. Competition is modeled in a reduced form way (Nash Bargaining). In

contrast, we focus on the discriminatory behavior that accompanies one-sided

private information. Random search is not itself our ultimate, but rather the

channel through which we vary the strength of bilateral monopoly power (via the

discount factor).

In Shimer and Smith (2000), search is itself the reason that PAM requires more

stringent conditions than in the frictionless setting. In our case, private informa-

tion is behind our stricter conditions for PAM—log-supermodularity is required

even in our static environment. Repeated search—specifically the future’s value—

actually weakens the requirements for PAM, and the standard supermodularity

condition again becomes sufficient in the frictionless limit. As the monopoly pow-

er in each match vanishes, the conditions for sorting (and the equilibrium itself)

become identical regardless of whether the buyer’s type is private information.

Directed Search

Eeckhout and Kircher (2010) study a static, one-shot setting with buyer private

information and directed search. The friction therefore comes from coordination

frictions. In contrast, we ignore coordination frictions entirely—searching agent is

matched bilaterally to a potential trade partner in each period. This enables us to
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focus on the interplay between private information and random search frictions,

free of interference from coordination friction-based mechanisms.

Note that, when viewed through the lens of timing, the two settings appear to

be much more closely related. Eeckhout and Kircher’s sellers use posted prices to

sort agents prior to meeting, while our sellers sort only after the buyer has arrived.

In simplest terms, our sellers used ex post sorting, while Eeckhout and Kircher’s

sellers sort ex ante. Intuitively, we focus on settings in which the search process

is too imprecise for agents to be guided toward specific trading partners.3

2.2.2 Efficiency

Coarse Matching

Our results can also be thought of as related to coarse matching (Chao and

Wilson, 1987; McAfee, 2002; Hoppe et. al., 2011; Shao, 2011), a type of sorting

equilibrium in which agents can sort into groups/locations, but these groups can-

not fully separate types, and matching is probabilistic within these groups. A key

insight of this literature is that the failure of complete sorting need not induce

large efficiency losses, and this can be interpreted as a justification for the applied

relevance of sorting, in light of the critique that the precision and complexity of

theoretical sorting patterns precludes their occurrence in reality.

In some sense, our search equilibrium entails coarse matching—with any search

frictions, matching will not be one-to-one, so each agents will have a nontrivial

matching set. In the context of the coarse matching literature, our findings can be

interpreted as demonstrating the role of prices as a potential mechanism through

which coarse matching can arise.4

3In some sense, our analysis can be viewed as a bridge between such studies of private
information in directed search and the literature considering full information, random search.

4The connection to coarse matching may become stronger in future versions of this article,
where we hope to characterize the efficiency properties of equilibrium in our model and how the
magnitude of search frictions impacts these properties.
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2.3 The Model

We consider a discrete-time, dynamic model with heterogeneous buyers and sellers.

There are equal measures of buyers and sellers each period in the equilibrium of

the steady state economy, where buyer types x are distributed according to cdf

FB (x), and seller types y are distributed according to cdf FS (y).5 Each buyer is

randomly matched with one seller (and vice versa) in each period. In each pair,

seller types become observable, while buyer types remain private information.

Sellers make take-it-or-leave-it offers P (y) to buyers.

If trade occurs, output z(x, y) is produced and both parties leave the market

permanently with utility z(x, y) − P (y) for the buyer and P (y) for the seller.

Those who do not trade experience an exogenous exit shock with probability δ, in

which case they leave the market. Otherwise, remaining buyers and sellers play

the same game in the following period, along with exogenous measures of newly

entering buyers and sellers, ΓB and ΓS. These new entrants are drawn from fixed

distributions γB(x) and γS(y) over the bounded intervals [x, x] and
[
y, y
]
. The

”effective” discount factor for all players is β = δ × β′, where β′ is the discount

factor.

A type x buyer is willing to accept price P (y) if P (y) ≤ z(x, y)−βV0(x), where

V0(x) is the buyer’s equilibrium payoff. Unlike in a frictionless market, equilibrium

will not entail a deterministic, one-to-one matching. Rather, each type will match

probabilistically with one agent from a range of ”acceptable” types on the opposite

side of the market. We therefore denote a type x buyer’s surplus from trading

with a type y seller as s(x, y) = z(x, y) − βV0(x) − P (y). Given P (y), we call

the set of sellers whose price will be accepted by a type x buyer as the buyer x’s

matching set and denote the equilibrium matching set as MB(x).

MB(x) = {y : s(x, y) ≥ 0}

5As will soon be obvious, these distributions have bounded supports in equilibrium.
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We can therefore express V0(x) as

V0(x) =

∫
MB(x)

(z(x, y)− P (y))dFS(y)

1− β + β
∫
MB(x)

dFS(y)

MS(y) in turn defines a type y seller’s matching set MS(y) = {x : s(x, y) ≥ 0}.

Obviously, y ∈MB(x) if and only if x ∈MS(y).

Given FB(x) and V0(x), seller y chooses P (y) to solve

Π(y) = max
P
{P
∫
MS(y;P,V0(x))

dFB(x) + (1−
∫
MS(y;P,V0(x))

dFB(x))βΠ(y)}

The last equilibrium condition is the steady-state condition: the measure of

outflow of any type must equal the measure of inflow of the same type. The pdf of

the type distribution f and pdf of the entrant type distribution γ therefore must

satisfy,

f̂B(x) =
γB(x)

δ + (1− δ)
∫
MS(x) f̂S(y)dy∫

f̂S(y)dy

f̂S(y) =
γS(y)

δ + (1− δ)
∫
MB(y) f̂B(x)dx∫

f̂B(x)dx

where fi(i = S,B) satisfy fB(x) =
f̂B(x)∫
f̂B(x)dx

and fS(y) =
f̂S(y)∫
f̂S(y)dy

For subsequent analysis, we impose the following assumptions on z(x, y):

Assumption 2.1. The output function z(x, y) is twice continuously differentiable,

strictly increasing in both arguments, and log-concave in x.

We devote the remainder of this section to technical preliminaries for the

sorting analysis. First, we offer a fairly general existence proof for an equilibrium

in which prices are continuous in seller type. Following Shimer and Smith (2000),

we then define PAM and NAM with non-degenerate matching set. Finally, we close

the section by providing conditions that will allow us to tractably characterize
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sorting. In particular, we provide sufficient conditions on z (·, ·) to ensure that

convex seller matching sets will arise.

Existence

We will focus on equilibrium where price is continuous in seller type. Therefore,

when proving the existence, we first assume that P (y, V0) is continuous. At the

end of the existence proof, we then verify that the equilibrium price is indeed

continuous.

We use Schauder fixed point theorem to prove the existence. In particular, we

will show that the mapping from the continuation payoff V0(x) to itself defined

by equilibrium conditions is well-defined and continuous. We will approach the

problem by first providing some preliminary results, which is lemma 2.1, 2.2 and

2.3, and then show that the mapping is continuous in proposition 2.1.

Throughout this chapter, we assume that the output function is either super-

modular or submodular.

Assumption 2.2. (SUP ) The output function z (x, y) is supermodular.

(SUB) The output function z (x, y) is submodular.

Lemma 2.1. Given (A1), a type x buyer′s outside option function V0(x) satisfies

V0(x) ≥ 1

1− β

∫
M

(z(x, y)− P (y)− βV0(x))fS(y)dy

for any M ⊆ [y, ȳ]. In addition, V0(x) is non-negative, increasing in x and Lips-

chitz continuous in equilibrium. In addition, if price is continuous in seller type

and either A2-Sup or A2-Sub holds, V0(x) is differentiable in equilibrium, with

V ′0(x) =

∫
M(x)

z1(x, y)fS(y)dy

1− β + β
∫
M(x)

fS(y)dy

Unless otherwise mentioned, all proofs are provided in the appendix. Define

the indicator function d(x, y). d(x, y) = 1 if and only if s(x, y) ≥ 0 and d(x, y) = 0

otherwise.
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Lemma 2.2. Given A1, A2-Sup or A2-Sub, any Borel measurable mapping V0 →

d(x, y) from outside option functions to match indicator functions is continuous.

For the existence proof, we also need to show that the endogenous distribution

is continuous in the indicator function d(x, y). To do this, we need to assume that

the pdf of entrant distributions are bounded and that the measures of entrants

are the same on both sides.

Assumption 2.3. γB(x) ∈ (0,∞) and γS(y) ∈ (0,∞) for any x and y, and∫
γB(x)dx =

∫
γS(y)dy.

Lemma 2.3. The mapping d(x, y) → (fB(x), fS(y)) is well-defined and continu-

ous.

With the above preliminary results, we are now ready to show the existence

of the equilibrium.

Proposition 2.1. Given A1 and A2-Sup or A2-Sub, there exists equilibrium with

prices continuous in seller types.

Definition of Sorting

As we can see, matching sets in an environment with search frictions are nor-

mally non-degenerate. A natural definition of sorting for such conditions is that

provided in Shimer and Smith (2000)—for PAM, they require that the set of

mutually agreeable matches form a lattice. More explicitly:

Definition 2.1. Take x1 < x2 and y1 < y2.

PAM: There is PAM if y1 ∈MB (x1) and y2 ∈MB (x2) whenever

y1 ∈MB (x2) and y2 ∈MB (x1) .

NAM: There is NAM if y1 ∈MB (x2) and y2 ∈MB (x1) whenever

y1 ∈MB (x1) and y2 ∈MB (x2) .
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Note that convex matching sets for both buyers and sellers are necessary con-

ditions for either PAM or NAM.

Convexity of Seller Matching Set

For the earlier existence result, it was unnecessary to place restrictions on

agents’ matching sets. Obviously, though, the definitions of PAM and NAM above

will be economically meaningful only if matching sets are convex. We therefore

provide sufficient conditions on z(x, y) for this to always be the case.

Assumption 2.4. z1(x, y) is log-supermodular.

Assumption 2.5. z12(x, y) is log-supermodular.

Proposition 2.2. Given A4 and A5, the seller′s matching set MS(y) is convex

for any y.

2.4 Limits of Search Frictions: β = 0 (One-Shot Bilateral

Monopoly)

In this section, we consider the case in which agents do not value the future at all

(β = 0) – the one-period game. In other words, all agents experience death shock

after one period.

If a seller y chooses the price that equals the output with a type x buyer, i,e,

P (y) = z(x, y), then any buyer with type above x will accept the price. Therefore,

choosing P (y) is equivalent to selecting the marginal type x∗(y) to maximize the

expected profit. That is,

Π(y) = max
x̃
{z(x̃, y)(1− FB(x̃))}

Theorem 2.1. When β = 0, P (y) = z(x∗(y), y) where the marginal type x∗(y) is

determined by:

z1(x∗(y), y)(1− FB(x∗(y))) = z(x∗(y), y)fB(x∗(y)) (2.1)
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Further, both P (y) and x∗(y) are unique for any y.

As usual, x∗ is chosen so that marginal revenue equals marginal cost. The

left hand side of equation (2.1) is the marginal revenue of raising the marginal

type: the price is raised by the amount z1(x∗(y), y) and the seller can collect

this increment with probability 1 − FB(x∗(y)), which is essentially the trading

probability. The right hand side is the marginal cost of rasing the marginal type:

the seller can no longer sell to type x∗(y) buyers and therefore the loss equals the

price (z(x∗(y), y)) times the probability of meeting a type x∗(y) buyer (fB(x∗(y))).

Let us now characterize sorting. Under the threshold rule and the assumptions

that ensure differentiability, the definition of PAM (NAM) reduces to the condition

that the derivative of the marginal type is positive (negative). That is, sorting

is positive if ∂x∗(y)
∂y
≥ 0 and is negative if ∂x∗(y)

∂y
≤ 0. So we only need to do a

comparative static exercise to find out under what conditions is the derivative

positive.

Theorem 2.2. Sorting is positive (PAM) if the output function z(x, y) is log-

supermodular and sorting is negative (NAM) if z(x, y) is log-submodular.

Proof. From the equilibrium condition that determines x∗(y), it is easy to see that

∂x∗

∂y
=

z12[1− F (x∗)− z2f(x∗)]

2z1f(x∗) + zf ′(x∗)− z11[1− F (x∗)]

=
z12z − z1z2

(z1)2
× 1

2 + z
z1

f ′

f
− z11z

(z1)2

(2.2)

From the first line to the second line, we plugged in the equilibrium condition and

rearranged terms.

We also know that 1−F
f

decreases in x. This implies

∂

∂x

1− F
f

=
−f 2 − (1− F )f ′

f 2
< 0

⇒ 1 +
1− F
f

f ′

f
> 0⇒ z

z1

f ′

f
> −1
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Therefore,

2 +
z

z1

f ′

f
− z11z

(z1)2
> 2− 1− 1 ≥ 0

The sorting is positive if z12z− z1z2 ≥ 0, i.e., z(x, y) is log-supermodular; It is

negative if z12z − z1z2 ≤ 0, i.e., z(x, y) is log-subermodular.

To avoid repetition, we will only focus on PAM case in the following discussion,

since the intuition for NAM is symmetric. Notice that log-supermodularity is a

stronger condition than supermodulartiy, because z12 has to be larger than z1z2
z

,

which is strictly positive. Hence with search and information frictions, we need

stronger complementarity to ensure positive sorting.

To see the intuition behind this result, consider two sellers, one with a higher

type y1 and the other one with a lower type y2. Suppose currently they choose

the same marginal type and each of them is deciding whether or not to raise the

marginal type, facing the trade-off between price and probability of trade.

If they raise the marginal type by one unit, because of supermodularity, the

type y1 seller can enjoy larger price increment. This means that a higher type

seller has stronger incentive to raise his marginal type. On the other hand, the

loss of giving up the marginal type buyer is the current selling price times the

probability of meeting the marginal type. Since the price of y1 is strictly higher,

he loses more from a reduced trading probability. Hence a higher type seller also

has stronger incentive to increase his trading probability which is equivalent to

lower his marginal type.

Recall that PAM requires a higher type seller to choose higher marginal type.

Therefore, the first effect must be large enough to outweigh the second one. In

other words, supermodularity is not sufficient. Positive sorting then requires an

output function with stronger complementarity, in particular log-supermodularity.

In Figure 2.1, we plot the marginal type function x∗(y) with parameter spec-
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Figure 2.1: Seller Marginal Types

ΓB(x) ∼ U(0, 1); z(x, y) = η (x+ y) + xy + κ, η ∈ (0, 1), κ ∈ (0, η)

ifications as shown beneath the figure. From this example, we can easily verify

two conclusions we had. First of all, the log-supermodular condition is stronger

than supermodular: the output function z(x, y) is always supermodular, but it is

log-supermodular if and only if κ > η2. Secondly, the sorting is positive if and

only if z(x, y) is log-supermodular.

When sorting is positive, a higher type seller finds it optimal to scarifies the

probability of trade for a higher price.

Lemma 2.4. If sorting is positive, P (y) is increasing in y and the trading prob-

ability decreases in y.

Proof. Because the trading probability equals 1−FB(x∗(y)), as x∗(y) increases in

y, the trading probability decreases. To show P (y) increases in y, notice that,

∂P (y)

∂y
= z1

∂x∗

∂y
+ z2 > 0
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2.5 Limits of Search Frictions: β → 1 (Frictionless Limit)

In this section, we consider the special case where the length of each period shrinks

to zero. That is, β′ → 1 and δ → 0. Therefore the actual discount factor β → 1.

Theorem 2.3. Given A2-SUP or A2-SUB, for any ξ > 0, there exists ε > 0 such

that for any β > 1− ε,

1. d(x, y) = 1 if and only if s(x, y) ∈ [0, ξ);

2. µ(MB(x)) ∈ [0, ξ) and µ(MS(y)) ∈ [0, ξ);

3. The matching set converges to the perfect positive assortative matching if

z(x, y) is supermodular, i.e., there exist a strictly increasing function m(x)

defined on [x, x̄] such that 1) m(x) = y and m(x̄) = ȳ, 2) for any (x, y) with

d(x, y) = 1, | x−m−1(y) |< ξ and | y −m(x) |< ξ.

4. The matching set converges to the perfect negative assortative matching if

z(x, y) is submodular, i.e., there exist a strictly decreasing function m(x)

defined on [x, x̄] such that 1) m(x) = ȳ and m(x̄) = y, 2) for any (x, y) with

d(x, y) = 1, | x−m−1(y) |< ξ and | y −m(x) |< ξ.

As search frictions vanish, we find that Becker’s result can be restored even

if information frictions remain, that is, supermodular (submodular) condition is

sufficient to ensure positive (negative) sorting in the limit. To understand this

result, note that although sellers still face the trade-off between price and trading

probability per period, they care less and less about the latter as they meet buyers

more and more often, because however small their matching sets are, they can

almost for sure sell before they experience death shock. Therefore, they will keep

raising the price as long as their matching set is non-empty.

Recall the intuition we had in the static case. A higher type seller has both

stronger incentive to secure trade and stronger incentive to raise marginal type.
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The direction of sorting depends on the relative strength of these to incentives. As

argued in the last paragraph, the first incentive grows inconsequential as we ap-

proach to the frictionless limit. Therefore, supermodularity is sufficient to ensure

positive sorting.

Based on the function m(x), we can further derive the equilibrium price and

thus the division of surplus in equilibrium.

Theorem 2.4. The equilibrium price pointwise converges to price function P ∗(y),

where

P ∗(y) = z(x, y) +

∫ y

y

z2(m−1(ỹ), ỹ)dỹ, if z(x, y) is supermodular;

P ∗(y) = z(x̄, y) +

∫ y

y

z2(m−1(ỹ), ỹ)dỹ, if z(x, y) is submodular.

The above theorem shows that besides the equilibrium matching set, the equi-

librium price also approaches Walrasian: each player gets her marginal contribu-

tion in the limit. Because the buyer in a match can meet another trading partner

almost immediately and almost for sure, the seller faces competitions from other

sellers. The price increment of a higher type seller thus equals the seller’s marginal

contribution.

2.6 Conclusion

The presence of buyer private information does impede sorting, and we have

highlighted the relationship between the strength of this effect and the degree

of competition in the market. At one extreme, when there is bilateral monopoly

power in each buyer-seller meeting, PAM requires a log-supermodular production

function, which is of course a stronger condition than standard supermodularity.

Higher types also have higher opportunity costs of failing to trade, so the added

incentives to ensure trade takes place are in conflict with sorting.
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These incentives remain relevant in a dynamic frictional setting, but they grow

inconsequential as we approach the frictionless limit. Thus, as search frictions van-

ish, the sorting consequences of private information do as well, and the standard

supermodularity condition is sufficient to generate positive sorting.

2.7 Appendices

2.7.1 Proof of Lemma 2.1

Step 1: Inequality and non-negative. First of all,

V0(x) =

∫
MB(x)

(z(x, y)− P (y))fS(y)dy + β[1−
∫
MB(x)

fS(y)dy]V0(x)

⇒ V0(x) =
1

1− β

∫
MB(x)

(z(x, y)− P (y)− βV0(x))fS(y)dy

For any M 6= MB(x), it either exclude y ∈MB(x), in which case z(x, y)−P (y)−

βV0(x) > 0, or include y /∈ MB(x), in which case z(x, y) − P (y) − βV0(x) < 0.

The inequality thus follows.

Clearly, V0(x) is non-negative.

Step 2: Increasing in x. Consider x2 ≥ x1,

(1− β)[V0(x2)− V0(x1)]

=

∫
MB(x2)

(z(x2, y)− P (y)− βV0(x2))fS(y)dy

−
∫
MB(x1)

(z(x1, y)− P (y)− βV0(x1))fS(y)dy

≥
∫
MB(x1)

[z(x2, y)− z(x1, y)− β(V0(x2)− V0(x1))]fS(y)dy

⇒ V0(x2)− V0(x1) ≥

∫
MB(x1)

[z(x2, y)− z(x1, y)]fS(y)dy

1− β + β
∫
MB(x1)

fS(y)dy
≥ 0

Step 3: Lipschitz. Following the same steps,

V0(x2)− V0(x1) ≤

∫
MB(x2)

[z(x2, y)− z(x1, y)]fS(y)dy

1− β + β
∫
MB(x2)

fS(y)dy
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Combine the two inequalities and use the fact that | z(x2, y) − z(x1, y) |≤

κ(x2 − x1),

−κ(x2 − x1)
∫
MB(x1)

fS(y)dy

1− β + β
∫
MB(x1)

fS(y)dy
≤ V0(x2)− V0(x1) ≤

κ(x2 − x1)
∫
MB(x2)

fS(y)dy

1− β + β
∫
MB(x2)

fS(y)dy

| V0(x2)− V0(x1) |≤ κ(x2 − x1) follows and thus V0(x) is L-continuous.

Step 4: Differentiability.

Step 4.1: MB(x) is continuous.

First, we show MB(x) is u.h.c. Take any sequence (xn, yn) → (x, y) with

yn ∈ MB(xn) for any n. Therefore z(xn, yn) − βV0(xn) − P (yn) ≥ 0 for all n.

In the limit, z(x, y) − βV0(x) − P (y) ≥ 0 because z(x, y), V0(x) and P (y) are

continuous. This implies y ∈M(x).

Next, we show that surplus function is rarely constant in one variable.

Define Ns(x) = {y : s(x, y) = 0}, Ns(y) = {x : s(x, y) = 0} and Ns = {(x, y) :

s(x, y) = 0}. Pick x 6= x′ and y 6= y′, such that s(x, y) = s(x′, y) = s(x, y′) = 0.

If A2-Sup or A2-Sub is satisfied, it must be true that s(x′, y′) 6= 0. To see that,

notice

s(x, y)− s(x′, y) = z(x, y)− z(x′, y)− β(V0(x)− V0(x′))

s(x, y′)− s(x′, y′) = z(x, y′)− z(x′, y′)− β(V0(x)− V0(x′))

Because z(x, y) − z(x′, y) 6= z(x, y′) − z(x′, y′), 0 = s(x, y) − s(x′, y) 6= s(x, y′) −

s(x′, y′), which implies s(x′, y′) 6= 0.

Following a similar approach to that in Appendix B of Shimer and Smith

(2000), we show that the following measures are zero almost everywhere: µ(Ns(x)) =

0 for a.e. x, µ(Ns(y)) = 0 for a.e. y and µ(Ns) = 0 a.e.

To show a.e. l.h.c. take any sequence xn → x and any y ∈ MB(x). If there

exists a subsequence xm of xn, such that for any xm,

sup
ŷ
{z(xm, ŷ)−βV0(xm)−P (ŷ)} ≥ z(x, y)−βV0(x)−P (y) ≥ inf

ŷ
{z(xm, ŷ)−βV0(xm)−P (ŷ)}
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By the continuity of z(x, y) and P (y), there exists at least one ym that satisfies,

z(xm, ym)− βV0(xm)− P (ym) = z(x, y)− βV0(x)− P (y)

If there are multiple solutions, pick the one that is the closest to y. This defines

a sequence {ym}. Clearly, ym ∈ MB(xm). We only need to show that for almost

all x, there exist a subsequence yk of ym, such that yk → y.

First of all, a convergent subsequence always exists because {ym} is bounded.

Suppose yk → ỹ.

Case 1. We first consider the case where there exist ε > 0 and K > 0 such that

for any k > K and any haty ∈ [y − ε, y + ε], ŷ /∈ MB(xk). In this scenario, it is

possible that ỹ 6= y. However, the measure of {x, y} that satisfies this condition

is 0.

Case 2. Next, we consider all complement scenarios, that is, for any δ > 0 and

K > 0, there exist k > K and ŷ ∈ [y − ε, y + ε], such that ŷ ∈MB(xk).

Suppose yk → ỹ 6= y. Since we have excluded the case 1, there exists ε̂ > 0

and K1 > 0, such that for any k > K1,

| z(xk, y)− z(x, y)− β(V0(xk)− V0(x)) |> 2ε̂

On the other hand, by continuity of z and V0, there exist K2, such that for all

k > K2,

| z(xk, y)− z(x, y)− β(V0(xk)− V0(x)) |

≤| z(xk, y)− z(x, y) | +β | V0(xk)− V0(x) |< 2ε̂

We can pick K̂ = max{K1, K2}. The above two inequalities hold at the same

time. This is a contradiction.

Finally consider the case where subsequence xm does not exist, i.e., for any

subsequence xm, either supŷ{z(xm, ŷ)−βV0(xm)−P (ŷ)} < z(x, y)−βV0(x)−P (y)
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or inf ŷ{z(xm, ŷ)−βV0(xm)−P (ŷ)} > z(x, y)−βV0(x)−P (y). Here we just show

the proof for the first case since the second case is similar.

Define ym ∈ argmax{z(xm, ŷ)− βV0(xm)− P (ŷ)}. If there are more than one

argmax, pick the one that is closer to y. By constructing ym this way, we can

then follow the same prove of the previous case to show that any convergence

subsequence of ym must converge to y.

Step 4.2: Decomposition of the slope of outside option.

Take any sequence xn → x, for each n,

(1− β)
V0(xn)− V0(x)

xn − x
=

∫
MB(xn)−MB(x)

z(xn, y)− P (y)− βV0(xn)

xn − x
fS(y)dy

+

∫
MB(x)

[
z(xn, y)− z(x, y)

xn − x
− βV0(xn)− V0(x)

xn − x
]fS(y)dy

Take limit n→∞, the first integral vanishes because 1) MB(x) is continuous

a.e. and when it is not continuous, the measures of the limiting set and the set

in the limit are the same, and 2) buyers participate optimally. Rearranging terms

we get the proposed derivative.

2.7.2 Proof of lemma 2.2

We have proved that the surplus function is rarely constant in one variable in

lemma 2.1. Define set
∑

s(η) = {(x, y) : |s(x, y)| ∈ [0, η]}. This set shrinks

monotonically to ∩∞k=1

∑
s(1/k) = Ns.

lim
η→0

(µ× µ)(
∑
s

(η)) = (µ× µ)(∩∞k=1

∑
s

(1/k)) = (µ× µ)(Ns) = 0

Let V 1
0 and V 2

0 be two outside option functions, and d1 and d2 be the corre-

sponding match indicator functions.

Since P (y, V0) is continuous in V0, for any ε > 0, there exist η′ > 0, such that

β ‖ V 1
0 (x)− V 2

0 (x) ‖< η′ ⇒| P (y, V 1
0 )− P (y, V 2

0 ) |< ε, for any y
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In words, we can always pick close enough outside option functions such that

the price functions are close. Let η = 2 max{η′, ε}.

If s1(x, y) = z(x, y) − βV 1
0 (x) − P (y, V 1

0 ) > η, s2(x, y) = z(x, y) − βV 2
0 (x) −

P (y, V 2
0 ) > 0. So d1(x, y) = d2(x, y) = 1. By the same logic, If s1(x, y) <

−η, s1(x, y) < 0. So d1(x, y) = d2(x, y) = 0. As a result, {(x, y) : d1(x, y) 6=

d2(x, y)} ⊆
∑

s1(η). The Lebesgue measure of
∑

s1(η) vanishes as η → 0. The

continuity is thus established lim‖V 1
0 (x)−V 2

0 (x)‖→0 ‖ d1(x, y)− d2(x, y) ‖L 1= 0.

2.7.3 Proof of Lemma 2.3

Step 1: The mapping is well-defined. Given entrant γB(x) and γS(y), the mapping

is well defined if there exist unique fB and fS solves the following system of

equations,

fB(x) =
γB(x)

δ + (1− δ)
∫
d(x,y)fS(y)dy∫

fS(y)dy

fS(y) =
γS(y)

δ + (1− δ)
∫
d(x,y)fB(x)dx∫

fB(x)dx

From those conditions, we know that fB(x) ∈ [γB(x), γB(x)/δ] and fS(y) ∈

[γS(y), γS(y)/δ].

One can apply similar log transformation method as in Shimer and Smith

(2000) and rewrite the problem into a fixed-point problem.

ΦB(h) = log
γB(x)

δ + (1− δ)
∫
d(x,y)ehS(y)dy∫

ehS(y)dy

ΦS(h) = log
γS(y)

δ + (1− δ)
∫
d(x,y)ehB(x)dx∫

ehB(x)dx

where hB(x) = log fB(x), hS(y) = log fS(y), h = (hB, hS)′. The mapping is well

defined if Φ(h) = h has a unique fixed point. We prove it using Contraction
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Mapping Theorem. Consider h1 and h2,

ΦB(h2)− ΦB(h1) = log
δ + (1− δ)

∫
d(x,y)eh

1
S(y)dy∫

e
h1
S

(y)
dy

δ + (1− δ)
∫
d(x,y)e

h2
S

(y)
dy∫

e
h2
S

(y)
dy

≤ log
δ + (1− δ)e‖h1

S−h
2
S‖

∫
d(x,y)eh

2
S(y)dy∫

e
h2
S

(y)
dy

δ + (1− δ)
∫
d(x,y)e

h2
S

(y)
dy∫

e
h2
S

(y)
dy

≤ log
δ + (1− δ)e‖h1

S−h
2
S‖

δ + (1− δ)

= log[δ + (1− δ)e‖h1
S−h

2
S‖]

The first inequality follows because e‖h
1
S−h

2
S‖ > eh

1
S(y)−h2

S(y) for any y. We thus

have

ΦB(h2)− ΦB(h1)

‖ h1
S − h2

S ‖
≤ log[δ + (1− δ)e‖h1

S−h
2
S‖]

‖ h1
S − h2

S ‖

In addition, we know that hS(y) ∈ [log(γS(y)), log(γS(y))−log δ], which implies

‖ h1
S−h2

S ‖∈ [0,− log δ]. Since the right hand side of the above inequality increases

in ‖ h1
S − h2

S ‖,

ΦB(h2)− ΦB(h1)

‖ h1
S − h2

S ‖
≤

log[δ + 1−δ
δ

]

log 1
δ

= χ ∈ (0, 1)

The same argument applies to the other direction and one thus get

‖ ΦB(h1)− ΦB(h2) ‖
‖ h1

S − h2
S ‖

≤ χ

We have the symmetric inequality for y. Denote Φ(h) = (ΦB(h),ΦS(h))′,

combining the two inequalities,

‖ Φ(h1)− Φ(h2) ‖≤ A ‖ h1 − h2 ‖

where A is a matrix with | A |= −χ2 ∈ (−1, 1). We thus proved that it is a

contraction mapping.
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Step 2: Continuity.

DefineGB(d, f)(x) = fB(x)[δ+(1−δ)
∫
d(x, y) fS(y)∫

fS(y)dy
dy]−γB(x) andGS(d, f)(y) =

fS(y)[δ + (1 − δ)
∫
d(x, y) fB(x)∫

fB(x)dx
dx] − γS(y), G(d, f) = (GB(d, f), GS(d, f)). In

equilibrium, G(d, f) = 0

Suppose that there exist d1 and d2 with ‖ d1 − d2 ‖L 1→ 0, such that ‖

f 1 − f 2 ‖L 19 0. Then ‖ G(d1, f 2) ‖L 1> ε̂. WOLG, assume ‖ GB(d1, f 2) ‖L 1> ε.

On the other hand,

‖ GB(d1, f 2) ‖L 1= ‖ GB(d1, f 2)−GB(d2, f 2) ‖L 1

= ‖ f 2
B(x)(1− δ)

∫
(d1(x, y)− d2(x, y))

f 2
S(y)∫
f 2
S(y)dy

dy ‖L 1< ε

The last line follows since
f2
S(y)∫
f2
S(y)dy

and f 2
B(x) are bounded for any x and y.

This leads to a contradiction.

2.7.4 Proof of Proposition 2.1

Step 1: Equilibrium exists if T (V0) = V0 has unique fixed point, where,

T (V0) =

∫
max{z(x, y)− P (y, V0), βV0(x)}fV0

S (y)dy

Step 2: Following Schauder Fixed Point Theorem, we need a nonempty, closed,

bounded and convex domain ψ such that,

1. T : ψ → ψ.

2. T (ψ) is an equicontinuous family.

3. T is a continuous operator.

Let ψ be the space of L-continuous functions V0 on [x, x̄], with lower bound

0 and upper bound supx,y z(x, y). Clearly, ψ is nonempty, closed, bounded and

convex.
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Step 3: T : ψ → ψ and T (ψ) is an equicontinuous. Take x2 6= x1,

| TV0(x2)− TV0(x1) |

≤
∫
| max{z(x2, y)− P (y, V0), βV0(x2)}

−max{z(x1, y)− P (y, V0), βV0(x1)} | fV0
S (y)dy

≤
∫
| max{z(x2, y)− z(x1, y), β(V0(x2)− V0(x1))} | fV0

S (y)dy

Since both z(x, y) and V0(x) are L-continuous, T (ψ) is L-continuous, which implies

equicontinuous. This also establishes T is a mapping from ψ to ψ.

Step 4: T is continuous. Take V 2
0 6= V 1

0 in ψ, for any x,

| TV 2
0 (x)− TV 1

0 (x) |

= |
∫

max{z(x, y)− P (y, V 2
0 ), βV 2

0 (x)}fV
2
0

S (y)dy

−
∫

max{z(x, y)− P (y, V 1
0 ), βV 1

0 (x)}fV
1
0

S (y)dy |

≤ |
∫

max{z(x, y)− P (y, V 2
0 ), βV 2

0 (x)}fV
2
0

S (y)dy

−
∫

max{z(x, y)− P (y, V 2
0 ), βV 2

0 (x)}fV
1
0

S (y)dy |

+ |
∫

(max{z(x, y)− P (y, V 2
0 ), βV 2

0 (x)}

−max{z(x, y)− P (y, V 1
0 ), βV 1

0 (x)})fV
1
0

S (y)dy |

=D1(x) +D2(x)

For D1(x)

D1(x) ≤
∫

max{z(x, y)− P (y, V 2
0 ), βV 2

0 (x)} | fV
2
0

S (y)− fV
1
0

S (y) | dy

≤ sup
x,y

[max{z(x, y)− P (y, V 2
0 ), βV 2

0 (x)}]
∫
| fV

2
0

S (y)− fV
1
0

S (y) | dy

Since fS(y) is continuous in V0, as ‖ V 2
0 − V 1

0 ‖→ 0, D1(x)→ 0.
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For D2(x),

D2(x) ≤
∫
| max{z(x, y)− P (y, V 2

0 ), βV 2
0 (x)}

−max{z(x, y)− P (y, V 1
0 ), βV 1

0 (x)} | fV
1
0

S (y)dy

≤
∫
| max{P (y, V 1

0 )− P (y, V 2
0 ), βV 2

0 (x)− βV 1
0 (x)} | fV

1
0

S (y)dy

Since P (y, V0) is continuous in V0, as ‖ V 2
0 − V 1

0 ‖→ 0, D2(x)→ 0.

Step 5: Verify that there exists at least one price function that is con-

tinuous in y and V0 in equilibrium.

If it does not cause any confusion, we will abuse the notation and use P (y, V0)

to also denote the set of optimal prices of a seller with type y given V0. Seller′s

problem is maxp Ω(y, p, V0). Ω(y, p, V0) is continuous in those three arguments

because the matching set MS(p; y, V0) is almost everywhere continuous6. In ad-

dition, p ∈ [0, supx,y{z(x, y)}], which is compact valued. By Maximum Theorem,

P (y, V0) is u.h.c. in y and V0.

Next, we can show that P (y, V0) is also l.h.c. in y and V0. If we decompose

the slope of Ω along price,

(1− β)
Ω(y, pn, V0)− Ω(y, p, V0)

pn − p

=[pn − βΩ(y, pn, V0)]

∫
M(y,pn,V0)−M(y,p,V0)

fB(x)dx

pn − p

+ [1− βΩ(y, pn, V0)− Ω(y, p, V0)

pn − p
]

∫
M(y,p,V0)

fB(x)dx

=[pn − βΩ(y, pn, V0)]

∑K1

i=1

∫ x̄i(y,pn,V0)

xi(y,pn,V0)
fB(x)dx−

∑K2

j=1

∫ x̄j(y,p,V0)

xj(y,p,V0)
fB(x)dx

pn − p

+ [1− βΩ(y, pn, V0)− Ω(y, p, V0)

pn − p
]

∫
M(y,p,V0)

fB(x)dx

K1 and K2 in the first term might be infinite, but there are always countable

6The proof of the a.e. continuity of M(p, y, V0) is similar to the proof of the a.e. continuity
of M(x) and thus is skipped here. The proof is available upon request.
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number of bounds in the matching set. Take pn → p, we get the derivative,

Ω2(y, p, V0) =

∫
M(y,p,V0)

fB(x)dx+D(y, p, V0)

1− β + β
∫
M(y,p,V0)

fB(x)dx

where, D(y, p, V0) =
∑
i

[fB(x̄i(y, p, V0))
∂x̄i(y, p, V0)

∂p
− fB(xi(y, p, V0))

∂xi(y, p, V0)

∂p
]

∂x̄i(y, p, V0)

∂p
=

1

z1(x̄i(y, p, V0), y)− βV ′0(x̄i(y, p, V0))

∂xi(y, p, V0)

∂p
=

1

z1(xi(y, p, V0), y)− βV ′0(xi(y, p, V0))

The last two lines follow from the boundary condition and Implicit Function

Theorem.

Take any sequence (yn, V n
0 ) → (y, V0). Consider any p ∈ argmaxp̂Ω(y, p̂, V0).

For interior p, p solves the first order condition Ω2(y, p, V0) = 0. To show P (y, V0)

is l.h.c., we need to construct a sequence pn, such that

1. pn ∈ P(y
n, V n

0 ) and,

2. pn → p.

Pick sequence pn such that it solves Ω2(yn, pn, V
n

0 ) = 0 and it is the solution

that is closest to p. (Without loss of generality, assume interior solutions exist

along the sequence.) The first condition is satisfies by construction. Since the

sequence is bounded, there must exist a convergent sequence pk. Suppose pk →

p′ 6= p. Then there exists ε > 0 and K1 > 0, such that for any k > K1,

| Ω2(yk, p, V k
0 ) |> ε

On the other hand, if we can show that Ω2(y, p, V0) is continuous in y and V0,

then for any ε > 0, there exist K2 > 0, such that for any k > K2,

| Ω2(yk, p, V k
0 )− Ω2(y, p, V0) |=| Ω2(yk, p, V k

0 ) |< ε
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Define K = max{K1, K2}, the above two inequalities hold simultaneously for ε

and any k > K. It is a contradiction.

The only step left is to show the continuity of Ω2(y, p, V0), which is equivalent

to showing the continuity of D(y, p, V0).

First we claim that fB(x) is continuous in x for any given V0. Notice that

0 ≤| log fB(xn)− log fB(x) |

=| log γB(xn)− log γB(x) + log
δ + (1− δ)

∫
MB(x)

fS(y)dy

δ + (1− δ)
∫
MB(xn)

fS(y)dy
|

≤| log γB(xn)− log γB(x) | + | log
δ + (1− δ)

∫
MB(x)

fS(y)dy

δ + (1− δ)
∫
MB(xn)

fS(y)dy
|

Both absolute values go to zero. Therefore, log fB(x) is continuous and so is

fB(x).

Next we show that ‖ (V n
0 )′ − V ′0 ‖→ 0 as ‖ V n

0 − V0 ‖→ 0.

(1− β)(V n
0 )′ =

∫
MB(x,V n0 )

(z1(x, y)− β(V n
0 )′)f

V n0
S (y)dy

⇒(V n
0 )′ − V ′0 =

1

1− β + β
∫
MB(x,V0)

f
V n0
S (y)dy

{
∫
MB(x,V n0 )−MB(x,V0)

[z1(x, y)− β(V n
0 )′]f

V n0
S (y)dy

+

∫
MB(x,V0)

[z1(x, y)− βV ′0 ][f
V n0
S (y)− fV0

S (y)]dy}

⇒ ‖ (V n
0 )′ − V ′0 ‖→ 0 as ‖ V n

0 − V0 ‖→ 0

As a result, ∂x̄i(y,p,V0)
∂p

and
∂xi(y,p,V0)

∂p
are continuous in y and V0. Combining

with the continuity of xi, x̄i and fB(x), D(y, p, V0) is continuous in y and V0.

In sum, P (y, V0) is u.h.c. and l.h.c., and thus continuous. Therefore, there

exists a price function P (y, V0) that is continuous in y and V0.
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2.7.5 Proof of Proposition 2.2

A sufficient condition for M(y) to be convex is s(x, y) being quasi-concave in x.

Since s(x, y) is continuous and differentiable in x, by definition, we only need show

that s(x1, y) < s(x2, y) for x < x1 < x2 implies s1(x1, y) ≥ 0.

Fix any x < x1 < x2 < x̄.

Step 1: s1(x, y) ≥ 0 for all y ≥ ŷ (where ŷ is defined below).

In the spirit of Diamond and Stiglitz (1974), Shimer and Smith (2000) adopt a

Single Crossing Property (SCP) for gambles in their analysis, and the usefulness

of this property extends to our setting. Since z12(x, y) is log-supermodular, there

exists ŷ such that

z1(x1, ŷ) =

∫
M(x1)

z1(x1, y)fS(y)dy∫
M(x1)

fS(y)dy

Therefore,

βV ′0(x1) =
β
∫
M(x1)

z1(x1, y)fS(y)dy

1− β + β
∫
M(x1)

fS(y)dy

=
βz1(x1, ŷ)

∫
M(x1)

fS(y)dy

1− β + β
∫
M(x1)

fS(y)dy

≤z1(x1, ŷ)

This implies s1(x1, ŷ) = z1(x1, ŷ) − βV ′0(x1) ≥ 0. By the supermodularity of

z(x, y), for any y ≥ ŷ, s1(x1, y) ≥ s1(x1, ŷ) ≥ 0.

Step 2: V0(x1) < V0(x2) and z(x1, y) < z(x2, y) whenever s(x1, y) < s(x2, y) and

y < ŷ.

If s(x1, y) ≥ s(x2, y) at x2, there is nothing to verify.
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If s(x1, y) < s(x2, y) at x2,

z(x2, y)− z(x1, y) > βV0(x2)− βV0(x1)

=
β
∫
M(x2)

z(x2, y)fS(y)dy

1− β + β
∫
M(x2)

fS(y)dy
−

β
∫
M(x1)

z(x1, y)fS(y)dy

1− β + β
∫
M(x1)

fS(y)dy

≥
β
∫
M(x1)

[z(x2, y)− z(x1, y)]fS(y)dy

1− β + β
∫
M(x1)

fS(y)dy

By the SCP for gambles, for all x′ > x1,∫
M(x1)

z1(x′, y)fS(y)dy∫
M(x1)

fS(y)dy
≥ z1(x′, ŷ)

Integrate over x′ ∈ [x1, x2],∫
M(x1)

[z(x2, y)− z(x1, y)]fS(y)dy∫
M(x1)

fS(y)dy
≥ z(x2, ŷ)− z(x1, ŷ)

By strict supermodularity of z(x, y), z(x2, ŷ) − z(x1, ŷ) > z(x2, y) − z(x1, y).

Combining all inequalities,∫
M(x1)

[z(x2, y)− z(x1, y)]fS(y)dy∫
M(x1)

fS(y)dy
>
β
∫
M(x1)

[z(x2, y)− z(x1, y)]fS(y)dy

1− β + β
∫
M(x1)

fS(y)dy

⇒
∫
M(x1)

[z(x2, y)− z(x1, y)]fS(y)dy > 0

⇒z(x2, y) > z(x1, y) and V0(x2) > V0(x1)

Step 3: s1(x1, y) ≥ 0 whenever s(x1, y) < s(x2, y) and y < ŷ.

If s(x1, y) ≥ s(x2, y) at x2, there is nothing to verify.

If s(x1, y) < s(x2, y) at x2, we know
V ′0(x1) =

∫
M(x1) z1(x1,y)fS(y)dy

1−β+β
∫
M(x1) fS(y)dy

V0(x2)− V0(x1) ≥
∫
M(x1)[z(x2,y)−z(x1,y)]fS(y)dy

1−β+β
∫
M(x1) fS(y)dy

⇒ V ′0(x1)

V0(x2)− V0(x1)
≤

∫
M(x1)

z1(x1, y)fS(y)dy∫
M(x1)

[z(x2, y)− z(x1, y)]fS(y)dy

≤ z1(x1, ŷ)

z(x2, ŷ)− z(x1, ŷ)
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By the log-supermodularity of z1(x, y), for y < ŷ,

z1(x1, ŷ)[z(x2, y)− z(x1, y)] ≤ z1(x1, y)[z(x2, ŷ)− z(x1, ŷ)]

⇒ z1(x1, ŷ)

z(x2, ŷ)− z(x1, ŷ)
≤ z1(x1, y)

z(x2, y)− z(x1, y)

⇒ V ′0(x1)

V0(x2)− V0(x1)
≤ z1(x1, y)

z(x2, y)− z(x1, y)

⇒ βV ′0(x1) ≤ z1(x1, y)
βV0(x2)− βV0(x1)

z(x2, y)− z(x1, y)
< z1(x1, y)

The second inequality in the last line follows because z(x2, y) − z(x1, y) >

βV0(x2)− βV0(x1).

Therefore, s1(x1, y) = z1(x1, y)− βV ′0(x1) > 0.

2.7.6 Proof of Theorem 2.3

It is easy to see that seller y′s profit Π(y)→ P (y)1{M(y) 6= ∅} when β → 1.

Part 1: We first show d(x, y) = 1 ⇐⇒ s(x, y) = z(x, y)− P (y)− βV0(x) ∈ [0, ξ)

for any ξ > 0.

Direction ”⇐” follows from the construction of function d(x, y).

To see the other direction, notice that d(x, y) = 1 implies z(x, y) − P (y) −

βV0(x) ≥ 0. Suppose there exist ξ̃ > 0, x and y such that z(x, y)−P (y)−βV0(x) >

ξ̃ in equilibrium. Then the seller y can raise Π(y) by increasing P (y). This leads

to a contradiction.

Part 2: Suppose there exist ξ̃ > 0 and y such that µ(MS(y)) > ξ̃. In the proof

of lemma 2.1, we have proved that the surplus function s(x, y) is rarely constant.

Therefore, for a.e., µ(MS(y)) > ξ̃ implies s(x, y) > ξ̂ for some x and ξ̂. Contradict

the conclusion of the last step.

Following the same reasoning, µ(MB(x)) ∈ [0, ξ) for any ξ > 0 a.e.

Next, suppose s(x, y) is non-negative and constant when x = x̃ and y ∈ [ỹ1, ỹ2].

We claim that µ([ỹ1, ỹ2]) converges to 0 when β → 1. Otherwise, type x buyers
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will trade and exit the market faster than other types, which makes type y sellers’

(y ∈ [ỹ1, ỹ2]) expected profit converge to zero. This is a contraction.

Finally, suppose s(x, y) is non-negative and constant when y = ỹ and x ∈

[x̃1, x̃2]. We can again show that µ([x̃1, x̃2]) converges to 0 when β → 1. Suppose

otherwise. Then type ỹ sellers will trade and exit the market faster than other

types, which makes type x buyers’ (x ∈ [x̃1, x̃2]) payoff V0(x) converge to 0.

Then s(x, ỹ) converges to z(x, ỹ)−P (ỹ). Since z(x, y) strictly increases in x, this

contradicts s(x, ỹ) being constant.

Part 3: Pick any x, x′, y, y′ such that d(x, y) = d(x′, y′) = 1. We first show that

x > x′ implies y ≥ y′ under the assumption of supermodularity. Suppose this is

not the case, then supermodularity implies,

z(x′, y) + z(x, y′)− P (y)− P (y′)− βV0(x)− βV0(x′) >

z(x, y) + z(x′, y′)− P (y)− P (y′)− βV0(x)− βV0(x′) = 0

⇒ s(x′, y) + s(x, y′) > 0

On the other hand, we know that s(x′, y) ≤ 0 and s(x, y′) ≤ 0 for sufficiently

large β from the last step. This leads to a contradiction. Therefore, x > x′ implies

y ≥ y′ if the output function is supermodular. Similarly, y > y′ implies x ≥ x′ if

supermodular.

Next, we claim that the matching set of any type of buyer or seller is non-empty

if there exist at least one lower type with non-empty matching set. Suppose other-

wise, say M(x̂) = ∅. Define x̂∗ as any element in the set {x : x < x̂ and M(x) 6= ∅}

and pick any ŷ∗ ∈M(x̂∗). It follows that V0(x̂) = 0 and V0(x̂∗) ≥ 0, contradiction.

Finally, suppose x̃ is the highest buyer type such that M(x̃) = ∅. We will show

that for any ξ > 0, there exist ε, such that x̃− x < ξ for any β > 1− ε. Suppose

otherwise. Then it must be the case that fB(x1)/fB(x2) =∞ for any x1 ∈ [x, x̃)

and any x2 ∈ [x̃, x̄]. Sellers with type y then have incentive to lower price by a

small amount and increase their trading probability.
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To sum up, the matching approaches to the perfect positive assortative under

the assumption of supermodularity.

The proof of perfect negative assortative matching under submodularity is

essentially the same and thus is skipped here.

2.7.7 Proof of Theorem 2.4

We will only the show the proof with supermodular output function z(x, y). The

proof with a submodular z(x, y) is essentially the same and is available upon

request. When β → 1, for any x, the derivative of buyer′s value function

V ′0(x)→ z1(x,m(x))

This implies

V0(x)→V0(x) +

∫ x

x

z1(x̃,m(x̃))dx̃

=V0(x) +

∫ x

x

dz(x̃,m(x̃))−
∫ m(x)

y

z2(m−1(ỹ), ỹ)dỹ

Since z(x,m(x)) − P (m(x)) − βV0(x) → 0, the price of y = m(x) type seller

can be computed,

P (y)→z(m−1(y), y)− V0(m−1(y))

→z(x, y) +

∫ x

x

dz(x̃,m(x̃))

− [(V0(x) +

∫ x

x

dz(x̃,m(x̃))−
∫ m(x)

y

z2(m−1(ỹ), ỹ)dỹ]

=z(x, y)− V0(x) +

∫ y

y

z2(m−1(ỹ), ỹ)dỹ

Here, V0(x) = 0 following the same argument as in Diamond (1971).
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CHAPTER 3

Patents and Allocation of Resources over

Innovation Projects

3.1 Introduction

The patent system is designed to encourage innovation. The standard view is

that it encourages innovation by providing the inventor exclusive access to the

new technology. How much the society could benefit from the patent system

depends on the way it influences firms’ innovation activities. One observation is

that firms usually have a portfolio of projects to choose from, some being more

innovative but riskier. Then an important aspect of the innovation activity is the

allocation of resources over projects.

The aim of this chapter is therefore to understand how patents influence firms’

allocation of resources when they have a portfolio of innovation projects. Further-

more, we would like to examine whether the patent system improves the social

welfare given the environment described in this article.

To be more precise, the model considered in this chapter is based on the

two-armed Poisson bandit model with two players. We assume that there are two

identical firms, each endowing with the replica of two new technologies, technology

R and technology S. Technology S is known to be good, which means that it can

deliver outputs after exponentially distributed random times. Technology R is

riskier in the sense that it is good only with some probability and no output will

be delivered if it is bed. At the same time, the outputs of R have higher value, and
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in that way it is more innovative. Each firm has one unit of resources per unit of

time and need to decide the proportion spent on R. Notice that using technology

R reveals information and therefore it is also a learning process. We will hereafter

follow the literature and use experimentation to refer to the behavior of using

technology R.

Moreover, we assume that the patent system is present. The firm that first

delivers outputs using certain technology, or equivalently, has a breakthrough in

certain technology, is granted the patent for that technology. The other firm has

to pay license fees that are exogenously determined at the market of patents to

use that technology.

As a benchmark, the allocation of resources with no patent has been studied

in Keller, Rady and Cripps (2005)1. They showed that the unique symmetric

Markov equilibrium can be summarized by two posteriors. Technology R is used

exclusively for beliefs above the higher posterior. Part of resources are allocated

on R when the belief decreases to posteriors in between. Finally, technology S

is used exclusively when the belief drops to the lower posterior. The equilibrium

allocation of resources is inefficient along two dimensions: the total amount of

experimentation is insufficient and there is delay in experimentation.

Using the above results as benchmark, this chapter will focus on the effect of

patents. Intuitively, when firms compete for patents, their allocation of resources

is not only influenced by their belief about R being good, but also the patent

status of two technologies. We will first show how patents influence allocation of

resources, and then analyse the welfare change due to patents.

We will show in section 3.4 that with patents, the experimentation intensity

along the equilibrium path is non-monotonic in the posterior in the absence of

a breakthrough in R. At the beginning of the game when no patent has been

1In Keller, Rady and Cripps(2005), technology S yields constant flow payoff. This difference,
though, does not change any of the results.
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claimed, using certain technology has additional benefit due to the patent system,

which is the license fee of that technology if a breakthrough occurs. Firms will use

technology R exclusively when the posterior is high and will start to mix when the

posterior drops. Since technology S is good, one firm will have a breakthrough in

S for sure after they start to mix and the patent for S will be claimed. Following

the breakthrough in S, the additional benefit of using S no longer exist but the

additional benefit of using R is still present (although the license fee for R might

be different). As a result, the experimentation intensity jumps upwards and is

higher than the intensity we would have without patents, and the total amount

of experimentation is larger as well.

The equilibrium allocation of resources described above implies that patents

have two opposing welfare effects. Patents on the one hand increases the total

amount of experimentation closer to the socially efficient level. On the other

hand, the patent system introduces competition for the patent of the less innova-

tive technology. This competition induces firms to inefficiently allocate too much

resources on S too early and causes delay in experimentation, as we can see from

the jump of experimentation intensity at the moment the patent of S is claimed.

Since the magnitude of the above two opposing effects depend on the prior,

the net welfare effect of patents depends on the prior as well. Furthermore, the

net effect may even be negative when the prior falls in certain range. In section

3.5, we construct a numerical example where we are worse off with patents if the

priors is close to 1.

This model can be applied to many industries and is related to discussions

about whether and by how much patents can encourage innovation, which have

always drawn people’s attention. For instance, over the past years, there are

many discussions in the media on the ‘innovation crisis’ that the pharmaceutical

industry is facing. One evidence supporting the existence of such crisis is the fact

that most new drugs are merely minor modifications of existing treatments (so
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called ‘me-too’ drugs). Some blame the patent system. Peter Lansbury, Professor

of Neurology in Harvard Medical School wrote in an article,

”... This system (the patent system) was created to reward the innovator, but

today, it rewards the imitator. That’s because the requirements for patenting a

particular drug have not significantly changed for 50 years. The science of drug

discovery, though, has changed dramatically ... Drugs that mimic the mechanism

of action of Viagra, Vioxx or Lipitor may be patented even though they are not in-

novative, do not serve an unmet medical need, and are often no more effective than

the ‘trailblazers’ on which they are based...”(Peter Lansbury, The Washington

Post. Nov 16, 2003. pg. B.02)

The relation between patents and innovation has been examined vastly. Patents

encourage innovation by granting innovators ex-post monopoly power (Arrow

(1962), Tirole (1988), Scotchmer (2004) etc). Patents at the same time create

competition. In the literature of patent races, a central result is that R&D in-

vestment is usually excessive due to this competition (Loury (1979), Lee and

Wilde(1980), Dasgupta and Stiglitz (1980), Reinganum (1981), Fudenberg et al.

(1983), Grossman and Shapiro (1987), etc). There are also insights about how best

to encourage innovation (Gilbert and Shapiro (1990), Klemperer (1990), Hopen-

hayn and Mitchell (2001), Hopenhayn, Llobet, and Mitchell (2006), etc). While

this chapter is inspired by previous works in many aspects, the nuance of this

article is that we focus on the situation where firms have a portfolio of projects

and that we study how patents influence their allocation of resources among them.

This chapter is also related to strategic experimentation literature (Bolton and

Harris (1999), Keller, Rady and Cripps (2005), etc). The two-armed bandit model

has been applied to study innovation decisions in several recent papers. Acemoglu,

Bimpikis and Ozdaglar (2011) demonstrates that appropriately designed patents

can eliminate delay in experimentation which would occur when each firm has

different risky project. Dosis et al. (2013) applies the model to study a patent
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race game. They show that when a firm can only acquire a patent after the risky

research phase and the development phase, the free-riding effect might dominate

the tragedy-of-the-commons effect. The differences between these papers and ours

are that firms in their models have essentially one project and that they mainly

focus on the learning aspect of the multi-armed bandit model.

The rest of the chapter is organized as follows. We formally describe the model

in section 2, and derive the socially optimal allocation of resource as well as the

allocation of resources that would emerge in an equilibrium without patents in

section 3. The unique symmetric Markov equilibrium is solved and analyzed in

section 4. We construct two numerical examples in section 5 to show that we

might be worse off with patents. We then demonstrate in section 6 that imposing

more stringent requirements of patentability can improve the welfare. Section 7

concludes this chapter.

3.2 The Model

There are two homogeneous firms competing in an industry2. Time is continuous

t ∈ [0,∞) and the discount rate is r > 0. Each firm is endowed with replicas

of two technologies, technology ‘R’ and technology ‘S’, and one unit of perfectly

divisible resources per unit of time. A technology enables a firm to produce using

its resources. Technology S is new but known to be good. It produces one unit of

regular products after some exponentially distributed random times. Technology

R, on the other hand, can be either ‘good’ or ‘bad’. If it is bad, it never produces

independent of the amount of resources allocated to it. If it is good, it produces one

unit of superior products after some exponentially distributed random times. At

t = 0, it is common knowledge that project R is good with probability p0 ∈ (0, 1).

The arrivals of successful productions are independent across two firms. Over

2The model can be easily extended to N identical firms.
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the time period [t, t + dt], if a firm devotes resources kt ∈ [0, 1] on R, then its

technology R produces with probability ktλdt conditional on being good and its

technology S produces with probability (1 − kt)λdt, where the constant λ > 0 is

known to all players. We will call the first successful production using a certain

technology among two firms a ‘breakthrough’ in that technology. We will also

follow the literature and call kt, the resources allocated on R, the ‘experimentation

intensity’ throughout this chapter.

At any time t, consumers’ valuation of one unit of the regular products is s < 1

and their valuation of one unit of the superior products is 1. Moreover, we assume

that there are more than two units of demand for each type of product at any

time.

Finally, a firm’s allocation of resources and production outcomes are instantly

observed by the other firm.

Patents

The firm that has a breakthrough in a certain technology is granted the patent

for that technology. Without permission from the patent owner, the other firm

is excluded from using any part of that technology. Here we assume that as

an outsider of the industry, the authority (the patent office) does not know the

non-obviousness of projects and will grant patents for all of them.

The owner of a patent can license it to the other firm, i.e., permit the other

firm to use the patented parts of the technology in exchange for license fees. We

assume that the license fee is a lump-sum transfer at the time when the patent

is granted. Depending on the order of breakthroughs, there are three relevant

license fees. It is possible that the first breakthrough is with technology R. We

denote the licence fee of this patent by Rr. Since technology S is inferior, no

patent will be granted afterwards. It is also possible that the first breakthrough

is with technology S. We denote the license fee of technology S by Rs. If there
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is a breakthrough in technology R followed, then the non-overlapping parts of

technology R will be granted a patent, with the license fee Ra.

The main purpose of this chapter is to understand how rewards from patents

influence firms’ allocation of resources. To simply the analysis, we will not model

the market for patents explicitly. Rather, we take Rs, Rr and Ra as exogenously

given, assuming that 1) Rs, Rr and Ra are positive; 2) Rs + Ra − Rr ≥ 0 and 3)

firms are willing to pay these fees.

3.3 The First-Best and Benchmark Case Without Patents

As a comparison, we first examine the following two cases. In the first case, two

firms work cooperatively and we achieve the first best. In the second case, we

consider the situation where there is no patent and two firms behave strategically.

From the assumptions on the demand side, we know that a firm will sell one

unit of the regular product at the price s and the superior product at the price

1. The parallel case has been studied by Keller Rady and Cripps (2005) (here-

after KRC). We therefore skip detailed analysis and rewrite their corresponding

propositions.

Proposition 3.1 (Proposition 3.1 in KRC). When two firms work cooperatively,

there is a cut-off belief p∗ given by

p∗ =
s

s+ (1 + 2λ/r)(1− s)
(3.1)

such that when p < p∗ it is socially optimal for both firms to use technology S

exclusively and when p > p∗ it is socially optimal for both to use technology R

exclusively.

To simplify the expression, we use Ω(p) to denote 1−p
p

.

Proposition 3.2 (Proposition 5.1 in KRC). The experimentation game without

patents has a unique symmetric Markov equilibrium with the common posterior
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belief as the state variable. In this equilibrium, there are two thresholds plb < phb

where plb is given by,

plb =
s

1 + λ(1− s)/r
(3.2)

and phb solves the following equation,

1 +
λ

r
− s− 2λs

r
+
phbλ

r
− (1− phb )s

plb
+ (1− phb )s ln

Ω(phb )

Ω(plb)
= 0

Technology S is used exclusively when p < plb and technology R is used exclusively

when p > phb . For p ∈ [plb, p
h
b ], the experimentation intensity is

kb(p) =
rZ(p)/λ− s

s− p

where for p ∈ [plb, p
h
b ],

Z(p) = (1− p)s(ln Ω(p)

Ω(plb)
− 1

plb
) + 1 +

λ

r
− s.

Comparing this equilibrium allocation of resources with the socially optimal

experimentation intensity, we notice that both the total amount of experimenta-

tion and the experimentation intensity after p is lower than phb is inefficient. To

see the former, the posterior at which the firms abandon technology R is higher

than what is socially optimal, i.e. plb > p∗. This implies that the total amount of

resources allocated on technology R is inefficient. To see the later, firms allocate

only proportion of resources on technology R in equilibrium when their posterior

drops below phb , while using technology R exclusively at those posteriors is socially

optimal. This procrastination in experimentation also causes welfare loss.

To intuitively understand why insufficient experimentation and procrastination

emerge in equilibrium, notice that using technology R before a breakthrough gen-

erates information about R and therefore creates positive externality. Strategic

firms will not internalize such externality and hence will under-provide experi-

mentation in terms of both the total amount and the intensity at each instinct of

time.
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It is natural to consider patent system as a candidate to alleviate this problem,

for it enables a firm to benefit from the information it generates. To be more

precise, once its experimentation leads to a breakthrough, the other firm cannot

use the information for free and therefore the free-riding incentives are reduced.

However, at the same time the patent system introduces competition for the

inferior technology, which will distract firms from experimenting on R. As shown

in later sections, the resulting efficiency loss might even be larger the efficiency

gain in some circumstances and we are better off without the patent system.

In the rest of the chapter, we will often compare the equilibrium outcomes

with and without patents. We will therefore refer the second case examined in

this section, i.e. the situation where firms act strategically without patents, as

the benchmark case.

3.4 Symmetric Markov Equilibrium with Patents

We now turn to the allocation of resources that arises when firms behave strate-

gically under patent system. We will focus on symmetric Markov Equilibrium.

Compared to the benchmark case, we now need an additional state variable to

indicate weather or not there is a breakthrough in S, since the allocation of re-

sources in principle could depend on it. Therefore, we have two state variables

(p,1), where the indicator function 1 equals 1 if there is a breakthrough in tech-

nology S.

All combinations of state variables can be classified into the following three

categories.

H-r: the set of state variables with p = 1, i.e., the set of histories following a

breakthrough in R.

H-s: the set of state variables with p < 1 and 1 = 1, i.e., the set of histories

following a breakthrough in S and no breakthrough in R.
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H-n: the set of state variables with p < 1 and 1 = 0, i.e., the set of histories

following no breakthrough in either technologies.

To abbreviate notations, although there are two state variables, we will use

W (p) to denote the value function with state variables in H-s and use U(p) to

denote the value function with state variables in H-n.

3.4.1 Equilibrium Allocation of Resources with H-r

Since when technology R is good it is more efficient than S, both firms will use R

exclusively after a breakthrough in R. The discounted present value for each firm

equals λ
r
.

3.4.2 Equilibrium Allocation of Resources with H-s

Let us now consider the situation where the combination of state variables is an

element in H-s. If firm i has a breakthrough in R, the other firm will transfer Ra

to i and the combination of state variables jumps to H-r. Otherwise, state vari-

ables remain in H-s with a lower posterior. Denote the combined experimentation

intensity by the two firms at time t by Kt. The change of posteriors between time

t and time t+ dt is

pt+dt − pt = dpt = −λKtpt(1− pt)dt (3.3)

A firm chooses ks(p) ∈ [0, 1] to maximizes its payoff W (p),

W (p) = max
k∈[0,1]

{λkpdt(1 +Ra) + λk̂s(p)pdt(−Ra) + λ(k + k̂s(p))pdt(1− rdt)
λ

r

+ λ(1− k)dts+ λ(2− k − k̂s(p))dt(1− rdt)W (p+ dp)

+ (1− λ(k + k̂s(p))pdt− λ(2− k − k̂s(p))dt)(1− rdt)W (p+ dp)}

Here k̂s(p) denotes the other firm’s allocation of resources when the common

posterior is p. Apply first order expansion to W (p + dp), plug in dp from (3.3)
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and neglect all second order terms, we can rearrange the above equation as,

r

λ
W (p) = max

k∈[0,1]
k{bs(p,W )− cs(p,W )}

+ k̂s(p)[p(−Ra +
λ

r
−W (p))− p(1− p)W ′(p)] + s (3.4)

where

bs(p,W ) = p[1 +Ra +
λ

r
−W (p)],

cs(p,W ) = s+ p(1− p)W ′(p).

λbs(p,W ) is the expected benefit of using technology R. A firm could benefit

from using R only if it leads to a breakthrough, which happens with probability λp

and increases the total payoff by 1 +Ra + λ
r
−W (p). λcs(p,W ) is the opportunity

cost of using technology R. It consists of two parts. The first part λs is the

foregone expected lump-sum payoffs from S. The second part λp(1 − p)W ′(p) is

the reduction of the value function, because no good news reduces the posterior.

It is easy to see that the Bellman equation (3.4) is linear in k. Therefore, the

best response function is

ks(p)


= 0, if cs(p,W ) > bs(p,W ),

∈ [0, 1], if cs(p,W ) = bs(p,W ),

= 1, if cs(p,W ) < bs(p,W ).

(3.5)

Combining the Bellman equation and the above best response function (3.5),

we can use the following alternative way to represent the best response function,

ks(p)


= 0, if r

λ
W (p) < s+ k̂s(p) [s− p(1 + 2Ra)] ,

∈ [0, 1], if r
λ
W (p) = s+ k̂s(p) [s− p(1 + 2Ra)] ,

= 1, if r
λ
W (p) > s+ k̂s(p) [s− p(1 + 2Ra)] .

Therefore, the equilibrium allocation of resources depends on whether r
λ
W (p)

is larger than, equal to or smaller than s + k̂s(p) [s− p(1 + 2Ra)] for a given
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k̂s(p). Meanwhile, W (p) must satisfies the following O.D.E. after plugging in

ks(p) = k̂s(p),

if ks(p) = 1, W ′(p) +
2p+ r/λ

2p(1− p)
W (p) =

2λ+ r

2(1− p)r
(3.6)

if ks(p) ∈ [0, 1], W ′(p) +
1

1− p
W (p) =

1 +Ra + r/λ

1− p
− s

p(1− p)
(3.7)

if ks(p) = 0, W (p) =
λ

r
s (3.8)

We can solve the symmetric equilibrium allocation of resources when state

variables are in H-s, which is summarized in the following proposition.

Proposition 3.3. The symmetric equilibrium allocation of resources when state

variables are in H-s is unique. Technology S is used exclusively when p < pls and

technology R is used exclusively when p > phs . pls equals

pls =
s

1 + λ(1−s)
r

+Ra

(3.9)

and phs is uniquely defined by

r

λ
W (phs ) = 2s− phs (1 + 2Ra) (3.10)

where for p ∈ [pls, p
h
s ],

W (p) = −(1− p)s(ln Ω(pls)

Ω(p)
+

1

pls
) + 1 +

λ

r
+Ra − s (3.11)

For p ∈ [pls, p
h
s ], the fraction of resources allocated to technology R is

ks(p) =
rW (p)/λ− s
s− p− 2pRa

Proof. For a given k̂, we can define a line

Dk̂ = {(W, p) ∈ R+ × (0, 1) : W =
λ

r

[
s+ k̂(s− p(1 + 2Ra))

]
}

For k̂ = 0, the line is horizontal with value rs
λ

. As k̂ increases, the line rotates

clock-wise around the point (W, p) = ( rs
λ
, s

1+2Ra
) until k̂ = 1. Therefore, in a
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symmetric equilibrium there must be two posteriors phs and pls such that 1) phs is

the largest posterior where W (p) intersects the line W = r
λ

[s+ s− p(1 + 2Ra))]

and 2) pls is the smallest posterior where W (p) equals rs
λ

.

We can solve O.D.E. (3.7) with pls, p
h
s and Cm

s to be determined,

for p ∈ [pls, p
h
s ],W (p) = (1− p)Cm

s + 1 +
λ

r
+Ra − s+ (1− p)s ln Ω(p)

pls and Cm
s are then determined using smooth-pasting condition and value-

matching condition at pls, i.e., W ′(pls) = 0 and W (pls) = λs
r

.

For p ∈ [pls, p
h
s ], the experimentation intensity ks(p) is solved by plugging in

k̂ = ks(p) into Dk̂. Finally, we solve phs from the condition that ks(p
h
s ) = 1.

If we compare the benefit of using R here and in the benchmark case, a firm

expects to get the additional payoff λpRa when patents could be granted. This

incentivizes the firm to devote more resources on technology R given any posterior.

This observation suggests that the firm will start to use mixed resource allocation

later and will abandon technology R only if they are more pessimistic about it.

This intuition is verified in the following proposition.

Proposition 3.4. Assume Ra ∈ (0, λ(1−s)
r

), the symmetric equilibrium allocation

of resources when state variables are in H-s is more efficient compared to the

benchmark case:

1. p∗ < pls < plb and phs < phb ,

2. k∗(p) ≥ ks(p) ≥ kb(p) for any p ∈ (0, 1) and ks(p) > kb(p) for any p ∈

(pls, p
h
b ).

Proof. Please refer to Appendix 3.8.1.
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As shown in KRC, for a given prior, the total amount of experimentation is

completely determined by the posterior at which the firms stop using R (Lemma

3.1 in KRC). In the next section, we will formally demonstrate that when we start

with state variables in H-n, the set of state variables will eventually become an

element in H-s if there is no breakthrough in R. Combining these two facts, we

can conclude that in the absence of a breakthrough in R, the total amount of

experimentation is closer to the socially optimal amount with patents.

3.4.3 Equilibrium Allocation of Resources with H-n

We now turn to symmetric equilibrium allocation of resources when the state

variables are in H-n, i.e. neither of the two technologies has a breakthrough. If a

firm has a breakthrough with technology R (or S), it will receive monetary transfer

Rr (or Rs) from the other firm and the state variables become an element in H-r

(or H-s). Otherwise, the state variables are still in H-n with a lower posterior.

A firm chooses kn(p) ∈ [0, 1] to maximizes its payoff U(p),

U(p) = max
k∈[0,1]

{λkpdt(1 +Rr) + λk̂n(p)pdt(−Rr) + λ(k + k̂n(p))pdt(1− rdt)λ
r

+ λ(1− k)(s+Rs)dt+ λ(1− k̂n(p))(−Rs)dt

+ λ(2− k − k̂n(p))dt(1− rdt)W (p+ dp)

+ (1− λ(k + k̂n(p))pdt− λ(2− k − k̂n(p))dt)(1− rdt)U(p+ dp)}

It can be rearranged as

2λ+ r

λ
U(p) = max

k∈[0,1]
k{bn(p, U)− cn(p, U,W )}+ k̂n(p)[p(−Rr +

λ

r
− U(p))

+Rs −W (p) + U(p)− p(1− p)U ′(p)] + s+W (p) (3.12)

where

bn(p, U) = p[1 +Rr +
λ

r
− U(p)],

cn(p, U,W ) = [s+Rs +W (p)− U(p)] + p(1− p)W ′(p).
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Like before, λbn(p, U) and λcn(p, U,W ) are the benefit and the opportunity

cost of using technology R, respectively. A firm gets positive payoffs from R only

if there is a breakthrough, which happens with probability λp and increases the

overall payoff by 1 + Rr + λ
r
− U(p). The opportunity cost of R consists of two

parts, the forgone expected incremental λ[s+Rs+W (p)−U(p)] and the reduction

in payoff λp(1− p)W ′(p) due to lower posterior.

The best response function kn(p) is similar to (3.5), with threshold cn(p, U,W ) =

bn(p, U). Combining the Bellman equation, we can write the best response func-

tion in the following way,

kn(p)


= 0, if 2λ+r

λ
U(p) < s+W (p) + k̂n(p) [s+ 2Rs − p(1 + 2Rr)] ,

∈ [0, 1], if 2λ+r
λ
U(p) = s+W (p) + k̂n(p) [s+ 2Rs − p(1 + 2Rr)] ,

= 1, if 2λ+r
λ
U(p) > s+W (p) + k̂n(p) [s+ 2Rs − p(1 + 2Rr)] .

(3.13)

In symmetric equilibrium, there are again two thresholds pln and phn such that

cn(p, U,W ) > bn(p,W ) for any p < pln, cn(p, U,W ) < bn(p,W ) for any p < phn and

cn(p, U,W ) = bn(p,W ) for any p ∈ [pln, p
h
n]. This claim will be rigorously proven

when we show proposition 3.7. Here we will proceed the analysis given this result.

Plugging the symmetric allocation k̂n(p) = kn(p) into the Bellman equation

(3.12), kn(p) for p ∈ (pln, p
h
n) is solved as

kn(p) =
(2 + r

λ
)U(p)− s− 2W (p)

−p(1 + 2Rr) + s+ 2Rs

(3.14)

For p ∈ (0, pln], both firms will switch3 to technology S in symmetric equilibri-

um. This implies that for p ∈ (0, pln],

U(p) =
λ

2λ+ r
[s+ 2W (p)] (3.15)

3Here we use the word ‘switch’ instead of ‘abandon’. This is because, as will be shown later,
firms will return to technology R after a breakthrough in S.
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For other posteriors, the value function U(p) must satisfy a set of differentiation

equations in symmetric equilibrium. For p ∈ (pln, p
h
n), bn(p, w) = cn(p, U,W ),

which is equivalent to

U ′(p)− U(p)

p
=

1 +Rr + λ
r

1− p
− s+Rs +W (p)

p(1− p)
(3.16)

For p ∈ [phn, 1), U(p) satisfies the following O.D.E.

U ′(p) +
2p+ r

λ

2p(1− p)
U(p) = p(1 +

2λ

r
) (3.17)

With a constant Cr
n yet to be determined, the solution to (3.17) is

U(p) =
λ

r
p+ Cr

n(1− p)Ω(p)
r

2λ (3.18)

In the rest of the section, we will solve the symmetric equilibrium allocation

of resources when state variables are in H-n. We can first show that the firms

switch to S when they are more optimistic comparing to the threshold with H-

s, i.e., pln ≥ pls. Intuitively, this is because now there are also rewards for a

breakthrough in S. The competition for the patent of S incentivizes the firms to

delay the experimentation on R.

After switching to S, the posterior p stays at pln because there is no further

information generated on R. Moreover, since the arrival rate λ > 0, a breakthrough

in S occurs with probability 1. This implies that the set of state variables will

become an element in H-s for sure. Combining with the fact that pln ≥ pls, the

firms will return to R at least partially after a breakthrough in S.

Proposition 3.5. The largest posterior below which a firm uses S exclusively is

higher with H-n compared to that with H-s, i.e. pln ≥ pls. In the absence of a

breakthrough in R before p drops to pln, the firms will resume using R after a

breakthrough in S.

Proof. Suppose pln < pls. Then there exist δ > 0, such that for any p ∈ (pln, p
l
n+δ),

W (p) = λs
r

and k(p) ∈ (0, 1).
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For these p, the value function satisfies the O.D.E (3.16). After plugging in

W (p), U(p) can be solved as

U(p) = pC + s(1 +
λ

r
) +Rs − p ln Ω(p)[(1 +

λ

r
)(1− s) +Rr −Rs]

The constant C and pln are then pinned down from value-matching condition

and smooth-pasting condition:

(value-matching) U(pln) =
λs

2λ+ r
(1 +

2λ

r
)

(smooth-pasting) U ′(pln) = 0

pln therefore takes the following solution,

pln =
s+Rs

1 + λ
r
(1− s) +Rr

We already know pls = s
1+λ

r
(1−s)+Ra

. pls > pln is then equivalent to

s(Ra +Rs −Rr) +Rs[(1 +
λ

r
)(1− s) +Ra] < 0

The above condition is never satisfied under our assumptions about licence

fees. We have reached a contradiction. Therefore, pln ≥ pls.

Depending on the parameters, pln could be smaller or larger than phs . In par-

ticular, define a function of parameters T ,

T = s ln
Ω(phs )

Ω(pls)
+

2λ+ r

r
(Rs +

Ra +Rs −Rr

Ω(phs )
)

When T ≥ 0, pln ≥ phs . Otherwise, pln < phs . We will solve each case as follows.

Case 1: pln ≥ phs .

We first focus on the situation where T ≥ 0. From the last section, we can

solve the value function W (p) for p ∈ [pln, 1)

W (p) =
λ

r
p+ Cr

s (1− p)Ω(p)
r

2λ (3.19)

where, Cr
s =

2λ

r

s− phs −Rap
h
s

(1− phs )Ω(phs )
r

2λ
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Plug W (p) into O.D.E. (3.16), U(p) (p ∈ [pln, p
h
n]) can be solved as,

U(p) = pCm
n + s+Rs − p(1− s+Rr −Rs) ln Ω(p) +

2λ

r + 2λ
Cr
s (1− p)Ω(p)

r
2λ

pln and Cm
n are then uniquely determined from the value-matching condition

and smooth-pasting condition at pln.

pln =
Rs + λ+r

2λ+r
s

Rr + 1− λ
2λ+r

s
(3.20)

Cm
n = (1− s+Rr −Rs) ln Ω(pln)− 1− s+Rr −Rs

1− pln
+

2λ2

r(2λ+ r)
(3.21)

We have derived kn(p) for p ∈ [pln, p
h
n] in (3.14). Using the fact that kn(phn) = 1,

phn is implicitly determined by

(2 +
r

λ
)U(phn)− 2W (phn) = −phn(1 + 2Rr) + 2s+ 2Rs (3.22)

Finally, when p ≥ phn, we know that U(p) takes the form (3.18). The constant

Cr
n is determined by value-matching condition at phn:

λ

r
phn + Cr

n(1− phn)Ω(phn)
r

2λ =
λ

2λ+ r
[2W (phn) + 2s− phn − 2phnRr + 2Rs]

Case 2: pln < phs .

This is the case when T < 0. For p close to pln, W (p) is represented by (3.11).

Plug it into O.D.E. (3.16), U(p) for p ∈ [pln, p
h
s ] can be solved,

U(p) =pC l
n + 1 +Ra +Rs − s− s ln Ω(pls)−

s

pls
+
λ

r

+ [s(1− p) + p(Ra +Rs −Rr)] ln Ω(p) (3.23)

Combining the value-matching condition and the smooth-pasting condition at

pln,

C l
n =

2λs

2λ+ r
[ln Ω(pls) +

1

pls
] +

rs

2λ+ r
[ln Ω(pln) +

1

pln
]

− (Ra +Rs −Rr)[ln Ω(pln)− 1

1− pln
]
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and pln is uniquely determined from

s ln
Ω(pln)

Ω(pls)
+

2λ+ r

r
(Rs +

Ra +Rs −Rr

Ω(pln)
) = 0 (3.24)

The next step is to solve phn. We can first show that the firms will start to

allocate resources to technology S when they are more optimistic if the patent of

S has not been granted, i.e. phn > phs . Notice that this claim holds trivially in case

1, since phn > pln ≥ phs .

Proposition 3.6. The smallest posterior above which a firm uses R exclusively

is higher with H-n compared to that with H-s, i.e. phn > phs .

Proof. Please refer to appendix 3.8.2.

Because phn > phs , for p ∈ [phs , p
h
n] W (p) is represented by (3.19). Plug it into

O.D.E. (3.16), U(p) is solved as,

U(p) = pCh
n + s+Rs − p(1− s+Rr −Rs) ln Ω(p) + pCr

s

2λ

2λ+ r
Ω(p)

r+2λ
2λ

The constant Ch
n is pinned down from smooth-pasting condition at phs ,

Ch
n =(1− s+Rr −Rs)

(
ln Ω(phs )−

1

1− phs

)
− Cr

sΩ(phs )
r

2λ

(
2λ

2λ+ r
Ω(phs )−

1

phs

)
+ C l

n − s
(

ln Ω(phs ) +
1

phs

)
(3.25)

We know kn(phn) = 1. Use this condition, phn is defined explicitly from the

following equation,(
2λ+ r

λ
Ch
n −

2λ

r
+ 1 + 2Rr

)
phn −

2λ+ r

λ
(1− s+Rr −Rs)p

h
n ln Ω(phn)

+
r

λ
(s+Rs) = 0 (3.26)

The symmetric equilibrium allocation of resources with H-n is summarized in

the following proposition.

103



Proposition 3.7. The symmetric allocation of resources that emerges in Markov

equilibrium with H-n is unique. Technology S is used exclusively when p ≤ pln and

technology R is used exclusively when p ≥ phn. For p ∈ [pln, p
h
n], the experimentation

intensity kn(p) is expressed in (3.14) with the corresponding U(p) and W (p).

1. When T ≥ 0, pln ≥ phs . pln is expressed in (3.20) and phn is implicitly deter-

mined by (3.22).

2. When T < 0, pln < phs . pln is implicitly defined in (3.24) and phn is implicitly

determined by (3.26).

Proof. The above discussions have already proved this proposition except for the

claim that there exist two thresholds pln and phn. Let us define a curve D̂k̂ for a

given k̂ based on the best response function (3.13),

D̂k̂ = {(U, p) ∈ R+ × (0, 1) : U =
λ

2λ+ r

(
s+W (p) + k̂ [s+ 2Rs − p(1 + 2Rr)]

)
}

If k̂ = 0, this curve coincides with the curve λ
2λ+r

(s+W (p)). As k̂ increases,

The curve rotates clock-wise around point (U, p) = ( λ
2λ+r

(s + W ( s+2Rs
1+2Rr

)), s+2Rs
1+2Rr

)

until k̂ = 1. Therefore, in a symmetric equilibrium there must be two posteriors

phn and pln such that 1) phn is the largest posterior where U(p) intersects the line

U = λ
2λ+r

(s+W (p) + s+ 2Rs − p(1 + 2Rr)) and 2) pln is the smallest posterior

where U(p) equals λ
2λ+r

(s+W (p)).

We have shown in proposition 3.5 and 3.6 that because of the competition for

the patent of S, the firms start to use S and completely switch to S with more

optimistic posteriors, comparing to the situation when state variables are in H-s.

In fact, not only the thresholds are less efficient, the experimentation intensity is

lower given any posterior as the following proposition shows.

Proposition 3.8. kn(p) ≤ ks(p) for any p and kn(p) < ks(p) for any p ∈ (pls, p
h
n).

Proof. Please refer to Appendix 3.8.3.
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3.4.4 Equilibrium Allocation with No Breakthrough in R

Let us summarize this section by illustrating the equilibrium allocation of re-

sources, assuming that there is no breakthrough in R along the way. If there

is a breakthrough in R, we know that both firms will devote all resources on R

afterwards.

Suppose we start with a prior p0 > phn. The Firms use R exclusively before the

posterior drops to phn. After that, the firms start to allocate part of their resources

on S, [1− kn(p)] to be precise. The proportion of resources allocated on S increases

as the posterior decreases and reaches 1 when the posterior drops to pln. In the

meantime, one firm must have a breakthrough in S at some posterior p ∈ [pln, p
h
n].

At the moment of the breakthrough in S, the experimentation intensity jumps

upwards from kn(p) to ks(p). Finally, the experimentation intensity decreases to

0 as the posterior drops to pls, and the firms use S exclusively from then on.

It is worth noticing that in equilibrium, the relationship between experimenta-

tion intensity and time (or equivalently, posterior) is non-monotonic. It is piece-

wise non-increasing but has an upward jump at the time (the posterior) of the

breakthrough in S.

3.5 Welfare Effect of the Patent System: an Example

This section will discuss the equilibrium welfare outcomes with the patent system

and compare it to the ones without patents. From the analysis in the above

section, we know that the patent system has two opposing effects on social welfare.

On the one hand, the patent system could improve the social welfare because

the total amount of experimentation is closer to the socially optimal amount. This

can be seen from the fact that pls < plb.

On the other hand, the competition for the patent of S also leads to delay
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in experimentation, which causes efficiency loss. In equilibrium, phn > phs and

pln > pls.

Summing up these two opposing effects, the overall welfare effect of the patent

system might even be negative. Moreover, the magnitudes of these two effects

depend on the prior p0. For p0 ∈ [pls, p
l
b], the second effect is absent because

firms stop using R in the the benchmark case as well. For larger posteriors, the

negative effect arises and it causes the largest welfare loss if we start with the prior

p0 = phn. When the prior increases to 1, the difference between the welfare with

and without the patent system decreases to 0. Intuitively, when technology R are

almost certain to be good, it is very likely that a breakthrough in technology R

will happen immediately. Therefore neither the total amount of experimentation

nor the delay of experimentation matters much.

To illustrate the fact that we might be better-off without patents and the

way the welfare effect of the patent system depends on priors, we construct the

following example.

Example 3.1. We make the following assumptions on parameters:

1. preference: r = 0.1;

2. technology: s = 0.6, λ = 0.2;

3. license fees: Rs = 0.2× λs
r

= 0.24,Ra = 0.2× λ(1−s)
r

= 0.16, Rr = Rs +Ra =

0.4.

In figure 3.1, we plot allocation of resources as well as the difference between

welfare with and without patents.

In this plot, we can see how equilibrium allocation of resources evolves over

time in the absence of a breakthrough in R. Starting with prior p0 > pln, the

experimentation intensity moves along kn(p) curve. Eventually there will be a
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Figure 3.1: Welfare Difference and Resource Allocations in Example 3.1

breakthrough in S and the experimentation intensity will then jump upwards to

the curve ks(p). Moreover, comparing to the benchmark case, the total amount of

experimentation is larger. However, the allocation of resources with patents also

features new form of delay. In particular, the firms will spend part of or even all

of their resources on S when the posterior is between pln and phn.

Because of the additional delay in experimentation, in this example the welfare

is lower with patents if the prior is near phn, the belief at which the additional delay

matters the most.

Of course, there are situations where the negative effect never outweigh the

positive effect given any prior and hence we are strictly better-off with patents.

In the next example, we increase Ra and decrease Rs by the same amount. As

shown in figure 3.2, the equilibrium payoffs with patents are always larger.

Example 3.2. All parameter assumptions are the same as in example 3.1 except

for Rs and Ra. In this example, we assume that Rs = 0.184 and Ra = 0.216.

From the above discussion, we can conclude that the welfare effect of patents
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Figure 3.2: Welfare Difference and Resource Allocations in Example 3.2

depend on where the prior is. The patent system is more effective if firms believe

that their risky technology is unlikely to be good to begin with. Without the

rewards provided by the patent of R in the presence of a breakthrough, firms would

experiment with lower intensities or completely abandon technology R when it is

still worth trying socially. On the other hand, the patent system is less effective or

might even cause net welfare loss when the prior is large. If we take into account

costs of maintaining the patent system and enforcing patents, the patent system

is less desirable when the prior is large.

3.6 More Stringent Requirements of Patentability

As illustrated in previous sections, the inefficiency of the patent system results

from the fact that the patent of technology S distracts the firms from experiment-

ing technology R. A natural candidate to alleviate this problem is to impose more

stringent requirements of patentability, which reduces the rewards for the patent
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of technology S.

In this section, we examine this intuition using a comparative static analyse.

In particular, we will focus on how equilibrium outcomes alter as we change Rs

and Rr by the same amount. These two license fees move by the same amount if,

for example, the authority changes the probability of identifying a less innovative

technology (technology S in this case) when an accused infringer challenges the

validity of the patent.4 Rs would decrease if such probability increases. Rr would

be lower as well, since the court will more likely decide that the value added from

using R is not as high.

Denote the increment in Rs and Rr by δ. A negative δ is then equivalent to a

decrease in Rs and Rr.

Proposition 3.9. ∂kn(p)
∂δ
|δ=0≥ 0 for any p.

Proof. Please refer to Appendix 3.8.4.

This proposition demonstrates that if the authority strengthens the require-

ments of patentability in a way that lowers both Rs and Rr, then the procrasti-

nation caused by patents can be reduced. Notice that ks(p) is independent of Rs

and Rr. Hence, the proposition also implies that the overall equilibrium experi-

mentation intensity is closer to the first best resource allocation. The society will

therefore be strictly better off.

3.7 Conclusion

The patent system is generally considered as a mechanism to encourage innova-

tion. Based on a two-player two-armed Poisson bandit model, we studied how

patents influence firms’ allocation of resources across two projects: technology R

4Typically in a lawsuits of infringement, it is the right of the accused infringer to challenge
the validity of the patent. A patent can be found invalid based on information collected and
requirements of patentability.
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is more innovative and technology S is safer. In an economy without patents,

firm’s allocation of resources is inefficient along two dimensions, i.e., the total

amount of experimentation in the absence of a breakthrough is insufficient and

the experimentation intensity over time features procrastination.

In the unique symmetric Markov equilibrium, we showed that patents on the

one hand increase the total amount of experimentation in the absence of a break-

through in R, but on the other hand introduce new form of procrastination. To be

more precise, firms will not abandon technology R till they are more pessimistic

and hence the total amount of resources allocated on R is closer to the socially

optimal amount. However, patents also introduce competition for the patent of S

and it tempts the firms to allocate resources on S too early and too much.

As a result, the sign of the net welfare effect of patents depends on the prior

the game starts with. For median priors, the negative effect resulting from the

additional delay is insignificant and hence the social welfare is strictly higher with

patents. For large priors, the welfare loss from delay in experimentation might

dominate the welfare gain from larger total amount of experimentation. Therefore,

the net welfare gain for large priors is either very small or negative. These results

imply that the patent system is more effective when the prior is in median range.

Finally, we showed that the equilibrium outcomes with patents could be im-

proved if the authority raises the probability of identifying a technology that is

known to be good.

3.8 Appendices

3.8.1 Proof of Proposition 3.4

Step 1: Compare plb as expressed in (3.2) and pls as expressed in (3.9), it is easy

to verify that as long as Ra > 0, pls < plb. In addition, if we compare pls and p∗ as
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expressed in (3.1), pls > p∗ from the assumption that Ra <
λ(1−s)

r
.

Next we show phs < phb . Define the following two functions,

F h
b (p) = −s(1 +

λ

r
) + p(1 +

2λ

r
− λs

r
) + (1− p)s ln

Ω(p)

Ω(plb)

F h
s (p) = −s(1 +

λ

r
) + p(1 +

2λ

r
− λs

r
+

2λ+ r

r
Ra) + (1− p)s ln

Ω(p)

Ω(pls)

phb and phs are implicitly determined by F h
b (phb ) = 0 and F h

s (phs ) = 0, respec-

tively. We have following observations about F h
b (p) and F h

s (p).

F h
b (p)− F h

s (p) = −p
[

2λ+ r

r
Ra + Ω(p)s ln

Ω(plb)

Ω(pls)

]
(3.27)

(F h
b )′(p) = s

[
1

plb
− 1

p
+ ln

Ω(plb)

Ω(p)

]
> 0, for p > plb

(F h
s )′(p) = s

[
1

pls
− 1

p
+ ln

Ω(pls)

Ω(p)

]
+

2λ

r
Ra > 0, for p > pls

(F h
b )′(p)− (F h

s )′(p) = s

[
1

plb
− 1

pls
+ ln

Ω(plb)

Ω(pls)

]
− 2λ

r
Ra < 0

Suppose phb ≤ phs . Then it must be the case that F h
b (plb) − F h

s (plb) > 0. Plug

p = plb into (3.27), the condition that F h
b (plb)− F h

s (plb) > 0 is equivalent to

ln

[
1 +

Ra

(1 + λ/r)(1− s)

]
>

2λ+ r

r

Ra

(1 + λ/r)(1− s)

Denote x = Ra
(1+λ/r)(1−s) > 0. The above inequality then becomes

ln(1 + x) >
2λ+ r

r
x

We know when x = 0, ln(1 + x) = 2λ+r
r
x and when x > 0, d ln(1+x)

dx
= 1

1+x
<

1 < 2λ+r
r

= d((2λ+r)x/r)
dx

. Therefore the above inequality can never hold. We have

a contradiction. Hence, phb > phs .

Step 2: It is easy to see that for any p ≤ pls and p ≥ phb , kb(p) = ks(p). If phs ≤ plb,

then kb(p) < ks(p) holds trivially for any p ∈ (pls, p
h
b ) and we have proved the

statement.
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Let us consider the case where phs > plb. For any p ∈ (pls, p
l
b] and p ∈ [phs , p

h
b ), it

is straightforward to verify that kb(p) < ks(p). The final step is to check that the

inequality also holds for p ∈ (plb, p
h
s ). For those posteriors, kb(p) and ks(p) take

following values,

kb(p) =
rZ(p)/λ− s

s− p

ks(p) =
rW (p)/λ− s
s− p− 2pRa

Therefore, the sufficient condition for the inequality to hold is W (p)−Z(p) ≥ 0

for any p ∈ (plb, p
h
s ). This can be verified below.

W (p)− Z(p) = p

[
Ω(p)s ln

(
1 +

Ra

(1 + λ/r)(1− s)

)−1

+Ra

]
> 0

3.8.2 Proof of Proposition 3.6

When T ≥ 0, phn > pln ≥ phs .

When T < 0, suppose phn ≤ phs . Then from (3.14), phn is determined by,

(2 +
λ

r
)U(phn)− 2W (phn) = 2s− phn(1 + 2Rr) + 2Rs

where U takes the form of (3.23) and W takes the form of (3.11). Plugging in

U(phn) and W (phn), the above condition becomes

1 +Ra +
λ

r
+Rs −

2λ+ r

r
s+

λ

r
phn(1 + 2Rr)− s[ln

Ω(pls)

Ω(phn)
+

1

pls
]

+ phns[ln
Ω(pln)

Ω(phn)
+

1

pln
] +

2λ+ r

r
phn(Ra +Rs −Rr)[ln

Ω(phn)

Ω(pln)
+

1

1− pln
] = 0 (3.28)

We know phs is determined by (3.10), which is equivalent to,

1 +Ra +
λ

r
− 2λ+ r

r
s+

λ

r
phs (1 + 2Ra) + s[ln

Ω(phs )

Ω(pls)
− 1

pls
](1− phs ) = 0 (3.29)

Define the following two functions based on the left hand side of (3.28) and
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(3.29).

Fn(p) =1 +Ra +
λ

r
+Rs −

2λ+ r

r
s+

λ

r
p(1 + 2Rr)− s[ln

Ω(pls)

Ω(p)
+

1

pls
]

+ ps[ln
Ω(pln)

Ω(p)
+

1

pln
] +

2λ+ r

r
p(Ra +Rs −Rr)[ln

Ω(p)

Ω(pln)
+

1

1− pln
]

Fs(p) = 1 +Ra +
λ

r
− 2λ+ r

r
s+

λ

r
p(1 + 2Ra) + s[ln

Ω(p)

Ω(pls)
− 1

pls
](1− p)

It is straight forward to compute the difference between the slope of Fn(p) and

Fs(p) at any p ∈ [pln, 1),

F ′n(p)− F ′s(p) =−Rs + s(
1

pln
− 1

pls
) +

2λ

r
(Rr −Ra −Rs)

+
2λ+ r

r
(Ra +Rs −Rr)[ln

Ω(p)

Ω(pln)
+

1

1− pln
− 1

1− p
]

We can verify

F ′n(p)− F ′s(p) < 0, for any p ∈ (pln, 1)

Combining with the assumption phn ≤ phs , it must be true that Fs(p
l
n)−Fn(pln) <

0. The difference equals

Fs(p
l
n)− Fn(pln) = plns{−(

r

2λ+ r
ln

Ω(pls)

Ω(pln)
+ 1)Ω(pln) + Ω(pls)}

The condition Fs(p
l
n)− Fn(pln) < 0 is therefore equivalent to(

Ω(pls)

Ω(pln)

) r
2λ+r

> e
Ω(pls)

Ω(pln)
−1

We know Ω(pls)
Ω(pln)

≥ 1 because pls ≤ pln. As a result,(
Ω(pls)

Ω(pln)

) r
2λ+r

≤ e
Ω(pls)

Ω(pln)
−1

We have a contradiction. Therefore, it must be the case that phn > phs when

T < 0.
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3.8.3 Proof of Proposition 3.8

In case 1, the proposition holds trivially since phs < pln.

In case 2, it is easy to see that the claim holds for any p ≤ pln and p ≥ phs .

Therefore, we only need to check if kn(p) < ks(p) for any p ∈ (pln, p
h
s ).

Recall that kn(p) equals

kn(p) =
2λ+r
λ
U(p)− 2W (p)− s

−p(1 + 2Rr) + s+ 2Rs

=
r
λ
W (p)− s+ 2λ+r

λ
[U(p)−W (p)]

s− p− 2pRa + 2(Rs − pRr + pRa)

Notice that Rs − pRr + pRa > 0 and that,

ks(p) =
r
λ
W (p)− s

s− p− 2pRa

Hence, a sufficient condition for kn(p) < ks(p) is that U(p)−W (p) < 0 for any

p ∈ (pln, p
h
s ). We can verify this condition as follows. For p ∈ (pln, p

h
s ),

U(p)−W (p)

=
r

2λ+ r
ps

[
ln

Ω(pln)

Ω(pls)
+

1

pln
− 1

pls

]
+ p(Ra +Rs −Rr)

[
ln

Ω(p)

Ω(pln)
+

1

1− pln

]
+Rs

U ′(p)−W ′(p)

=
r

2λ+ r
s

[
ln

Ω(pln)

Ω(pls)
+

1

pln
− 1

pls

]
+ (Ra +Rs −Rr)

[
ln

Ω(p)

Ω(pln)
+

1

1− pln
− 1

1− p

]
< 0

The inequality follows since p > pln. Finally, plug in p = pln into U(p)−W (p),

U(pln)−W (pln) =
r

2λ+ r
plns

[
1

pln
− 1

pls

]
< 0

Therefore, U(p)−W (p) < 0 for any p ∈ (pln, p
h
s ).
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3.8.4 Proof of Proposition 3.9

We can first verify that T increases in δ, which implies that we move from the

more efficient case 2 to the less efficient case 1. As shown earlier,

T = s ln
Ω(phs )

Ω(pls)
+

2λ+ r

r
(Rs +

Ra +Rs −Rr

Ω(phs )
)

Next we will show that for a given T , the inequality always hold for both case

1 and case 2. Recall that for p ∈ [pln, p
h
n], kn(p) equals

kn(p) =
2λ+r
λ
U(p)− 2W (p)− s

−p(1 + 2Rr) + s+ 2Rs

It is straightforward to verify that the denominator strictly increases in δ.

Therefore, ∂kn(p)
∂δ
|δ=0≥ 0 is equivalent to the condition that 2λ+r

λ
U(p) − 2W (p)

weakly decreases in δ for corresponding U(p) and W (p).

Let us first consider case 1 where pln ≥ phs . In this scenario,

2λ+ r

λ
U(p)− 2W (p) =

2λ+ r

λ
[pCm

n + s+Rs − p(1− s+Rr −Rs) ln Ω(p)]− 2λ

r
p

where

Cm
n = (1− s+Rr −Rs) ln Ω(pln)− 1− s+Rr −Rs

1− pln
+

2λ2

r(2λ+ r)

⇒ ∂Cm
n

∂δ
= −1− s+Rr −Rs

(1− pln)2pln

∂pln
∂δ

Therefore

∂
[

2λ+r
λ
U(p)− 2W (p)

]
∂δ

=
2λ+ r

λ

[
1− p(1− s+Rr −Rs)

pln(1− pln)2

∂pln
∂δ

]
Plug in

pln =
Rs + λ+r

2λ+r
s

Rr + 1− λ
2λ+r

s

and

∂pln
∂δ

=
1− s+Rr −Rs[
1 +Rr − λ

2λ+r
s
]2
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The above derivative becomes,

∂
[

2λ+r
λ
U(p)− 2W (p)

]
∂δ

=
2λ+ r

λ

[
1− p

pln

]
≤ 0

Hence, kn(p) decreases in δ in case 1. In case 2, we can again first compute

2λ+r
λ
U(p)− 2W (p) and show that it decreases in δ.

For p ∈ [pln, p
h
s ],

2λ+ r

λ
U(p)− 2W (p)

=
r

λ
{ps

[
ln Ω(pln) +

1

pln

]
+

[
−s ln Ω(pls)−

s

pls
+ 1 +Ra +

λ

r
+ (1− p)s ln Ω(p)− s

]
}

+
2λ+ r

λ
{Rs − p(Ra +Rs −Rr)

[
ln Ω(pln)− 1

1− pln

]
} (3.30)

In the above expression, pls is independent of δ and pln is implicitly determined

by the following equation,

s ln
Ω(pln)

Ω(pls)
+

2λ+ r

r

[
Rs +

1

Ω(pln)
(Ra +Rs −Rr)

]
= 0

By the implicit function theorem,

∂pln
∂δ

= −2λ+ r

r
(1− pln)

[
− s

pln
+

2λ+ r

r(1− pln)
(Ra +Rs −Rr)

]−1

Take derivative of (3.30),

∂
[

2λ+r
λ
U(p)− 2W (p)

]
∂δ

=
p

(1− pln)pln

[
− rs

λpln
+

(2λ+ r)(Ra +Rs −Rr)

λ(1− pln)

]
∂pln
∂δ

+
2λ+ r

λ

=
2λ+ r

λ

[
1− p

pln

]
≤ 0

The last line follows after plugging in ∂pln
∂δ

. Next, we discuss the case when

p ∈ [phs , p
h
n]. With these beliefs,

2λ+ r

λ
U(p)− 2W (p) =

2λ+ r

λ

[
pCh

n + s+Rs − p(1− s+Rr −Rs) ln Ω(p)
]
− 2λ

r
p
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where Ch
n is given by (3.25) and hence ∂Chn

∂δ
= − 1

pln
.

Therefore

∂
[

2λ+r
λ
U(p)− 2W (p)

]
∂δ

=
2λ+ r

λ

[
1− p

pln

]
≤ 0

3.9 Bibliography

Acemoglu, D., Bimpikis, K., Ozdaglar, A., 2011. ”Experimentation, Patents,

and Innovation,” American Economic Journal: Microeconomics 3: 37-77.

Arrow, K., 1962. ”Economic Welfare and the Allocation of Resources for In-

vention,” The Rate and Direction of Inventive Activity: Economic and Social

Factors, Princeton, NJ: Princeton University Press, 609-626.

Bolton, P., Harris, C., 1999. ”Strategic Experimentation,” Econometrica 67(2):

349-374.

Dasgupta, P., Stiglitz, J., 1982. ”Invention and Innovation under Alternative

Market Structure: The Case of Natural Resources,” Review of Economic Studies

49(4): 567-582.

Dosis, A., Gershkov, A., Muthoo, A., Perry, M., 2013. ”Strategic Experimenta-

tion in Patent Races,” working paper.

Fudenberg, D., Gilbert, J., Stiglitz, J., Tirole, J., 1983. ”Preemption, Leapfrog-

ging and Competition in Patent Races,” European Economic Review 22(1): 3-31.

Gilbert, R., Shapiro, C., 1990. ”Optimal Patent Length and Breadth,” RAND

Journal of Economics 21(1): 106-112.

Grossman, G., Shapiro, C., 1987. ”Dynamic R&D Competition,” Economic

Journal 97: 372-387.

117



Hopenhayn, H., Mitchell, M., 2001. ”Innovation Variety and Patent Breadth,”

RAND Journal of Economics 32(1): 152-166.

Hopenhayn, H., Llobet, G., Mitchell, M., 2006. ”Rewarding Sequential Inno-

vators: Prizes, Patents, and Buyouts,” Journal of Political Economy 114(6):

1041-1068.

Keller, G., Rady, S., Cripps, M., 2005. ”Strategic Experimentation with Expo-

nential Bandits,” Econometrica 73(1): 339-368.

Klemperer, P., 1990. ”How Broad Should the Scope of Patent Protection Be?,”

RAND Journal of Economics 21(1): 113C30.

Lansbury, P., 2003. ”An INnovative Drug Industry? Well, No,” Washington,

DC: The Washington Post (Nov 16), B.02.

Lee, T., Wilde, L., 1979. ”Market Structure and Innovation: A reformulation,”

Quarterly Journal of Economics 94(3): 395-410.

Loury, G., 1980. ”Market Structure and Innovation,” Quarterly Journal of Eco-

nomics 93(2): 429-436.

Reinganum, J., 1981. ”Dynamic Games of Innovation,” Journal of Economic

Theory 25(1): 21-41.

Tirole, J., 1988. The Theory of Industrial Organization Cambridge, MA: MIT

Press.

Scotchmer, S., 2004. Innovation and Incentives. Cambridge, MA: MIT Press.

118




