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Abstract

Signal Models for Robust Deep Learning

by

Soorya Gopalakrishnan

In this thesis, we illustrate via two case studies the utility of bottom-up signal modeling

and processing for learning robust models. A key feature of machine learning is the ability

to avoid detailed signal models by leveraging the large amounts of data and computational

power available today. However, the performance of the resulting networks is hampered by

vulnerability to input perturbations and easily spoofed features. We demonstrate in this work

how insights from signal modeling can inform the design of robust neural networks.

We begin by studying small adversarial perturbations that can induce large classification

errors in state-of-the-art deep networks. Here, we show that a systematic exploitation of sparsity

in natural data is a promising tool for defense. For linear classifiers, we show that a sparsifying

front end is provably effective against ℓ∞-bounded attacks, attenuating output distortion due

to the attack by a factor of roughly K/N where N is the data dimension and K is the sparsity

level. We then extend this concept to deep networks, showing that a “locally linear” model

can be used to develop a theoretical foundation for crafting attacks and defenses. Experiments

on the MNIST and CIFAR-10 datasets show the efficacy of the proposed sparsifying front end.

Along related lines, we also investigate compressive front ends that can be implemented via

binary computations in low-power hardware. Key design questions here include the impact

of hardware impairments and constraints on the fidelity of information acquisition. We show

that a compressive approach is robust to stochastic nonlinearities, and that spatially localized

computations are effective, by evaluating classification and reconstruction performance based

on the information acquired.
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The second case study pertains to robustness in a radio frequency (RF) setting. We focus

here on a potentially powerful tool for wireless security: RF device signatures capable of distin-

guishing between devices sending exactly the same message. Such signatures should be robust

to standard spoofing techniques, and to different levels of noise in data. Since the information

in wireless signals resides in complex baseband, we employ complex-valued neural networks to

learn these fingerprints. We demonstrate that, while there are potential benefits to using sec-

tions of the signal beyond just the preamble to learn signatures, the network cheats when it

can, using information such as the device ID, which can be easily spoofed, to artificially inflate

performance. We also show that noise augmentation by inserting additive white Gaussian noise

can lead to significant performance gains, which indicates that this counter-intuitive strategy

helps in learning more robust fingerprints. We provide results for two different wireless protocols,

WiFi and ADS-B, demonstrating the effectiveness of the proposed method.
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Chapter 1

Introduction

Deep neural networks represent the state of the art in machine learning in a growing number of

fields, including vision, speech and natural language processing. By leveraging large amounts

of data and computational power, these networks enable one to substitute domain expertise

with purely data-driven models. However, recent work raises important questions about the

robustness of such architectures: these networks are vulnerable to classification errors due to

tiny, almost imperceptible, perturbations [10], and, as we show below, through reliance on easily

spoofed features. In this work, we study the thesis that one can learn robust features by using

a small amount of domain expertise in conjunction with data-driven learning. Specifically, we

provide two case studies that show how insights from a bottom-up signal modeling viewpoint

can inform the design of robust neural networks.

In the first case study, we consider robustness in a rather general setting, studying small

adversarial perturbations that can fool state-of-the-art networks. We show how sparse signal

models can be used to combat these perturbations at the front end of a network. Since the

existence of adversarial examples has been conjectured to be due to the excessive linearity

of deep networks, we begin with a study of linear classifiers, and then extend our results to

standard neural networks. We also study design challenges in the hardware implementation of

1



Introduction Chapter 1

compressive front ends that leverage sparsity of natural data. The second case study focuses

on robustness in a radio frequency (RF) setting, with the goal of learning RF device signatures

from subtle nonlinear variations in wireless signals. Our interest here is in resilience to spoofing

by an adversary, and to noise in data. We demonstrate the susceptibility of such networks to

easily spoofed features and show how noise augmentation helps in learning robust signatures.

1.1 Sparsifying Front Ends

Recent work in machine learning security points out the vulnerability of deep neural networks

to adversarial perturbations [10, 7, 11]. As shown in Fig. 1.1, these perturbations can be

designed to be barely noticeable to the human eye, but can cause large classification errors in

state of the art deep networks. In this section, we attempt to provide fundamental insight into

both the vulnerability of deep networks to carefully designed perturbations, and a systematic,

theoretically justified framework for designing defenses against adversarial perturbations.

Our starting point is the original intuition in Goodfellow et al. [7] that deep networks

are vulnerable to small perturbations not because of their complex, nonlinear structure, but

because of their being “too linear”. Consider the simple example of a binary linear classifier w

operating on N -dimensional input x, producing the decision statistic g(x) = wTx. The effect

Figure 1.1: An adversarial example on GoogLeNet [6]. Figure taken from [7].

2
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of a perturbation e to the input is given by g(x+e)−g(x) = wTe. If e is bounded by ℓ∞ norm

(i.e., ∥e∥∞ = maxi |ei| ≤ ϵ), then the largest perturbation that can be produced at the output is

caused by e = ϵ sgn(w), and the resulting output perturbation is ∆ = ϵ
∑N

i=1 |wi| = ϵ∥w∥1. The

latter can be made large unless the ℓ1 norm of w is constrained in some fashion. To see what

happens without such a constraint, suppose that w has independent and identically distributed

components, with bounded expected value and variance. It is easy to see that ∥w∥1 = Θ(N)1

with high probability, which means that the effect of ℓ∞-bounded input perturbations can be

blown up at the output as the input dimension increases.

The preceding linear model provides a remarkably good approximation for today’s deep

CNNs. Convolutions, subsampling, and average pooling are inherently linear. A ReLU unit is

piecewise linear, switching between slopes at the bias point. A max-pooling unit is a switch

between multiple linear transformations. Thus, the overall transfer function between the input

and an output neuron can be written as weq(x)
Tx, where weq(x) is an equivalent “locally

linear” transformation that exhibits input dependence through the switches corresponding to

the ReLU and max pooling units. For small perturbations, relatively few switches flip, so that

weq(x+ e) ≈ weq(x). Note that the preceding argument also applies to more general classes of

nonlinearities: the locally linear approximation is even better for sigmoids, since slope changes

are gradual rather than drastic. These observations motivate us to begin with a study of linear

classifiers, before extending our results to neural networks via a locally linear model.

As we discuss in Section 2.2, the current state-of-the-art defense is based on retraining

networks with adversarial examples [12, 13]. However, the lack of insight into what it does

fundamentally limits how much we can trust the resulting networks: the sole means of verifying

robustness is through empirical evaluations. In contrast, our goal is to provide a systematic

approach with theoretical guarantees, with the potential of yielding a longer-term solution to the

design of robust neural networks. We take a bottom-up signal processing perspective and exploit

1See Section 2.1 for the definitions of the order notation Θ(.), O(.), ω(.), O(.).

3
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the rather general observation that input data must be sparse in some basis in order to avoid the

curse of dimensionality. Sparsity is an intuitively plausible concept: we understand that humans

reject small perturbations by focusing on the key features that stand out. Our proposed approach

is based on this intuition. In this work, we show via both theoretical results and experiments

that a sparsity-based defense is provably effective against ℓ∞-bounded adversarial perturbations.

Specifically, we assume that the N -dimensional input data has a K-sparse representation

(where K ≪ N) in a known orthonormal basis. We then employ a sparsifying front end that

projects the perturbed data onto the K-dimensional subspace. The intuition behind why this

can help is quite clear: small perturbations can add up to a large output distortion when the

input dimension is large, and by projecting to a smaller subspace, we can limit the damage.

Theoretical studies show that this attenuates the impact of ℓ∞-bounded attacks by a factor of

roughly K/N (the sparsity level), and experiments show that sparsity levels of the order of 1-5%

give an excellent tradeoff between the accuracy of input representation and rejection of small

adversarial perturbations.

1.1.1 Contributions

We develop a theoretical framework to assess and demonstrate the effectiveness of a sparsity-

based defense against adversarial attacks on linear classifiers and neural networks. Our main

contributions are as follows:

• For linear classifiers, we quantify the achievable gain of the sparsity-based defense via an

ensemble-averaged analysis based on a stochastic model for weights. We prove that with

high probability, the adversarial impact is reduced by a factor of roughly K/N , where K

is the sparsity of the signal and N is the signal’s dimension.

• For neural networks, we use a “locally linear” model to provide a framework for understand-

ing the impact of small perturbations. Specifically, we characterize a high SNR regime

4
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in which the fraction of switches flipping for ReLU nonlinearities for an ℓ∞-bounded

perturbation is small.

• Using the preceding framework, we show that a sparsifying front end is effective for defense,

and devise a new attack based on locally linear modeling.

• We supplement our theoretical results with experiments on the MNIST [14] and CIFAR-10

[15] datasets for a variety of recent attacks.

1.2 Compressive Front Ends

Since most natural signals are sparse in some basis, compressive projections [16] are a promis-

ing general-purpose approach for low-power front ends for acquisition of information for down-

stream estimation/learning tasks (Fig. 1.2). They can be realized using inner products with

binary coefficients, which is attractive for hardware implementation, and are expected to be re-

silient to a broad class of impairments. Successful signal reconstruction has been demonstrated

under theoretical models of impairments such as outliers [17] [18] and severe quantization [19]

[20], and successful image classification was demonstrated in recent experiments on a Large Area

Figure 1.2: Using the compressive framework as a front end for learning applications.

5
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Electronics (LAE)-based image acquisition platform [8], despite significant nonlinearities.

In this work, we carry out a case study of the LAE-based system in [8] to obtain insight into

tradeoffs in designing compressive hardware. We model and evaluate the effect of the stochastic

nonlinearities in this system, and use the model to explore alternative design choices [21]. While

we consider a large-area system, we believe that a similar approach would be highly effective

in the design of nanoscale hardware: as semiconductor processes are scaled down, significant

stochastic impairments begin to appear in the computational fabric [22].

1.2.1 Contributions

Our key results are as follows:

• We develop a synthetic model for the effect of stochastic nonlinearities in the LAE-based

system, which allows us to investigate the impact of potential modifications in hardware

design via simulations. We provide insight into the effect of these impairments by further

simplifying the synthetic model via a (slightly optimistic) Gaussian approximation.

• The LAE-based system employs row-by-row compressive sensing, with the same matrix

employed for all rows. Based on recent theory [21], we expect this to be suboptimal.

However, we show that row-by-row compressive projections, which are far easier to im-

plement than projections on the entire image, are competitive in performance, as long as

the compressive matrices used are independent across rows.

1.3 RF Signatures

With the proliferation of wireless devices in everyday life, assuring the security of such

devices becomes a critical concern. We focus here on a potentially powerful tool for this purpose:

wireless fingerprints based on hardware imperfections unique to each device (Fig. 1.3). Prior

6
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Figure 1.3: Learning RF signatures to distinguish between devices sending the same message.

work shows that it is possible to extract such fingerprints, but it is often based on features

extracted with knowledge of the underlying protocol [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

In this section, we investigate the use of a protocol-agnostic approach, employing supervised

learning of fingerprints via a neural network.

Our goal is to extract a fingerprint that enables us to distinguish between two devices sending

exactly the same message, using as input the complex baseband signal at the receiver. Since

the input is complex-valued and one-dimensional (1D), we employ a 1D convolutional neural

network (CNN) with complex-valued weights. When compared to prior approaches [33, 34] that

use real-valued networks (with real and imaginary parts of input data treated as independent

channels), these networks have a smaller degree of freedom available at the synaptic level. It

has been observed that this confers generalization benefits [35], and our results in Section 4.2

corroborate this advantage.

While we would like to develop wireless fingerprinting techniques that are protocol-agnostic,

we must remain vigilant against locking onto easily spoofed features. A naive protocol-agnostic

scheme would not distinguish between any segments of the message from which the fingerprint

is being extracted. However, for any communication protocol, the message contains transmitter

ID information, e.g. the MAC address in WiFi packets, the ICAO aircraft address in ADS-B

(Automatic Dependent Surveillance-Broadcast) air traffic control signals, etc. Such ID infor-

mation can be spoofed, hence any fingerprinting technique that uses the entire message must
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prove that it does not “cheat” by focusing just on the ID. We demonstrate that a completely

protocol-agnostic CNN is vulnerable to such involuntary cheating, and then show that using the

preamble, which is common to all packets from all transmitters, suffices to obtain reasonable ac-

curacies, despite the relatively short length of the preamble compared to the length of the entire

message. We then explore the impact of noise on training, and propose a noise augmentation

strategy for enhancing performance.

1.3.1 Contributions

We propose a protocol-agnostic fingerprinting technique using complex-valued CNNs and

demonstrate its robustness to various real-world imperfections. Our main contributions are as

follows:

• We demonstrate that supervised learning using complex-valued CNNs works well for two

different wireless protocols, WiFi and ADS-B, and compare the performance of different

complex activation functions and architectures.

• When making use of portions of the signal beyond just the preamble, we show that

networks will “cheat” whenever given the chance, resulting in artificially high accuracies

(that are independent of the noise level) by focusing on the transmitter ID information

present in these sections.

• We then focus on learning fingerprints from the preamble. Restricting to the preamble is

not strictly protocol-agnostic, but, in principle, the location and extent of the preamble

can be identified in unsupervised fashion for any given protocol by correlating packets

across different transmitters. We study the robustness of our approach to noise in the

data, and find that performance is better when the training set has lower SNR than the

test set.

8
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• We show that noise augmentation, or insertion of additional white Gaussian noise (AWGN),

can significantly improve performance, presumably because it aids in learning more robust

fingerprints. In particular, it is important to add noise to test data as well as the training

data (with more noise added to training data) to yield benefits.
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Chapter 2

Sparsifying Front Ends for Adversarial

Learning

In this chapter, we discuss how a systematic exploitation of sparsity in natural data can be used

to combat ℓ∞-bounded adversarial perturbations in deep neural networks. Section 2.2 covers

relevant background on adversarial attacks and defenses, along with an overview of work on

sparse representations. We then present the details of our sparsity-based defense scheme in

Section 2.3. An ensemble-averaged performance analysis of our approach is provided in Section

2.4 for linear classifiers, followed by an extension to neural networks in Section 2.5. Finally,

Section 2.6 details experimental results demonstrating the effectiveness of the proposed defense.

2.1 Notation

Here we define the notations Θ(.), O(.), ω(.), and O(.):

• f = O(g) if and only if there exists a constant C > 0 such that |f/g| < C,

• f = Θ(g) if and only if there exist two constants C1, C2 > 0 such that C1 < |f/g| < C2,
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• f = ω(g) if and only if there does not exist a constant C > 0 such that |f/g| < C, and

• f = O(g) if and only if g = ω(f).

2.2 Background

It was initially surmised that the vulnerability of deep networks to adversarial perturbations

[10] is due to their highly complex, nonlinear nature. However, the success of linearization-based

attacks [7, 36] indicates that it is instead due to their “excessive linearity.” This is further backed

up by work on the curvature profile of deep neural networks [37, 38] showing that their decision

boundaries in the vicinity of natural data can be approximated as flat along most directions.

Our work on attack and defense is grounded in a locally linear model for neural networks, and

the results discussed later demonstrate the efficacy of this approach. We now put our work

in context by discussing some of the leading attack and defense strategies, followed by a brief

background on sparse signal processing.

2.2.1 Adversarial attacks

Attacks are commonly in the form of additive perturbations to the data, limited in size via

an ℓp norm constraint. The first known adversarial attack was developed by Szegedy et al. [10].

Given an image x ∈ [0, 1]N , a classifier f : [0, 1]N → {1, . . . , L} which assigns label l = f(x),

and an adversarial target t ̸= l, this attack finds an ℓ2−small perturbation e via

min
e

c |e|+ L(x+ e, t)

s.t. x+ e ∈ [0, 1]N .

(2.1)

where L is the loss function associated with the classifier. The above optimization was solved via

box-constrained L-BFGS (limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm [39]),
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with a line search to find the smallest c for which f(x+ e) = t. This approach was effective,

but slow.

The next attack proposed by Goodfellow et al. [7] is the well-known Fast Gradient Sign

Method (FGSM), which devises an ℓ∞-constrained perturbation. This is a single-step attack

that exploits local linearity. Given an ℓ∞ attack budget ∥e∥∞ < ϵ, FGSM employs a first-order

Taylor expansion of the loss function L(·):

e = ϵ sgn(∇xL(x, l)), (2.2)

where l is the true label. This is a highly efficient and popular attack. It has been observed that

adversarial examples generated using FGSM can be transferred across different architectures [40],

enabling the use of substitute networks to attack real-world black box models [41]. Empirical

studies indicate that these examples lie in a high-dimensional subspace that overlaps across

different models, leading to transferability [42].

Kurakin et al. [43, 44] proposed an iterative modification to FGSM:

ek+1 = clipϵ(ek + δ sgn(∇xL(x+ ek, l))) (2.3)

where δ ≪ ϵ and clipϵ(·) enforces the ℓ∞ attack budget at each iteration. While FGSM and

iterative FGSM are both non-targeted attacks in their original forms, they can be modified to

target a label t by simply replacing L(x, l) with −L(x, t) [43, 44]. A variant of iterative FGSM

which starts from a random perturbation around x is known as Projected Gradient Descent

(PGD) [12].

Our approach to ℓ∞-bounded attacks is similar in approach to FGSM and iterative FGSM.

Indeed, it is identical to these for binary classification, but yields better performance because it

takes a locally optimal approach to creating classification errors.
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Another iterative attack that exploits the linearity hypothesis is DeepFool, developed by

Moosavi-Dezfooli et al. [36]. This attack seeks minimal perturbations that cause misclassifica-

tion for the version of the classification function g(·) linearized around x+ek at iteration k. For

simplicity we present the algorithm for binary classifiers. Each iteration solves

min
ek+1

∥ek+1∥2

s.t. g(x+ ek) +∇xg(x+ ek)
Tek+1 = 0.

(2.4)

The solution to this optimization can be computed in closed form. We refer to [36] for details

on the multi-class version. An extension of DeepFool [45] that iterates over different data points

can be used to design data-agnostic perturbations, resulting in attacks that can be transferred

across images. The explanation proposed in [45] is based on empirical studies of the geometry

of decision boundaries, which indicate that they are highly correlated in the vicinity of natural

images.

Finally, one of the strongest currently known attacks is the ℓ2-bounded attack proposed by

Carlini and Wagner [46]. Given an image x ∈ [0, 1]N and the pre-softmax outputs of a network

{Z1(x), Z2(x), . . . ZL(x)}, the Carlini-Wagner attack solves

min
e

∥e∥22 + c max

(
max
i̸=t

Zi(x+ e)− Zt(x+ e),−κ
)

s.t. x+ e ∈ [0, 1]N ,

(2.5)

This is an improved formulation of an optimization originally proposed by Szegedy et al. [10].

The box constraint in equation (2.5) can be removed by using the substitution x + e =

(tanh(w) + 1)/2; the optimization is then readily solved via gradient-based techniques and a

binary search for c. This attack is computationally expensive, but it has been known to break

several defenses that claimed robustness against other attacks [46, 47, 48]. [46, 47, 48].

In the NIPS 2017 competition on black box adversarial attacks and defenses [49], the top
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three attacks all used extensions of iterative FGSM: by adding a momentum term [50], and

generating it on an ensemble of classifiers with random perturbations and augmentation.

Thus, state of the art attacks are all based on some form of iterative optimization, and hence

require some gradient computation. While some defenses implicitly or explicitly make gradients

difficult to compute, it was shown by Athalye, Carlini and Wagner [51] that it is possible to

effectively approximate the gradient even when it is being “obfuscated”. Indeed, this paper

provides an excellent snapshot of the most powerful adversarial attacks to date, using variants

of the PGD and Carlini-Wagner attacks to break a number of defenses.

The results in [51] indicate that attempting to put hurdles in the attacker’s path to op-

timization have a limited chance of success. Our approach to defense, instead, is to try to

construct machines that naturally reject perturbations that are “small enough”, no matter how

cleverly they are crafted. In essence, now that machines are competitive with humans in image

and speech recognition in many settings, we now wish to also attain the robustness naturally

exhibited by the human visual and auditory systems, which have no problem rejecting small

perturbations.

We also note that there has been work on bounding the minimal perturbation necessary for

misclassification, averaged over the distribution of input data. Upper bounds on this quantity

have been developed as a function of class distinguishability and misclassification rate [52], and

loose lower bounds have been developed based on model parameters [53]. Unfortunately, these

provide little insight on either attack or defense strategies.

2.2.2 Defense techniques

Existing defense mechanisms against adversarial attacks can be broadly divided into two

categories: (a) empirical defenses, based purely on intuitively plausible strategies, together with

experimental evaluations, and (b) provable defenses with theoretical guarantees of robustness.
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We briefly discuss the empirical work related to our defense, and then give an overview of

provable defense techniques.

Empirical Defenses

Given that the success of deep networks can be largely attributed to increased availability

of data and computational power, a natural defense strategy is to simply train the network with

adversarial examples. Such adversarial training was first proposed in [7], which used adversarial

examples generated using the FGSM attack. However, retraining with just single-step pertur-

bations is ineffective against iterative attacks [43]. Improved versions include retraining with

single-step attacks transferred from other models [54] and with iterative attacks with random

starting points [12]. These have proven to be more effective: for example, the defense in [12] is

one of the few that showed resistance to the state of the art attacks in [51]. One disadvantage

of adversarially trained networks is the higher computational cost due to the large number of

examples that must be generated and used for training. Observing that adversarial training can

lead to gradient obfuscation if the number of attack steps is small, Qin et al. [13] try to increase

the local linearity of the loss surface via a regularizer. This is cost-effective (the number of

attack steps can be made smaller) and surprisingly, performs better than standard adversarial

training for ImageNet. We note that this is different from the local linearity of the logits that

we consider. In our view, a fundamental drawback of such empirical approaches is that we

have no insight or explicit control on the structure of the network, or of the neuronal outputs,

which leaves empirical experiments as the only means of checking their robustness. Thus, while

adversarial training is an invaluable tool, it does not provide the assurances we are ultimately

seeking.

Preprocessing the input to the network is another important class of defenses. Indeed, the

top two defenses in the NIPS 2017 competition on adversarial attacks and defenses [49] were

based on such preprocessing, via a neural network based denoiser [55], and via random resizing
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and padding [56]. A variety of other defenses utilize preprocessing techniques that are implicitly

sparsity-based, including JPEG compression [57, 58], PCA [59], and projection onto GAN-

based generative models [60, 61]. However many such defenses were found to confer robustness

purely by obfuscating gradients necessary for the adversary, and were successfully defeated by

the gradient approximation techniques developed by Athalye, Carlini and Wagner in [51]. In

contrast, our sparsity-based defense is robust to the attack techniques in [51]. Overall, the

evaluations in such prior work have been purely empirical in nature. Our proposed framework,

grounded in a locally linear model for neural networks, provides a foundation for systematic

pursuit of sparsity-based preprocessing.

Provable Defenses

There is a growing body of work focused on developing provable guarantees of robustness

against adversarial perturbations [62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. While

we do not provide an exhaustive discussion, we illustrate some typical characteristics of these

approaches.

Many provable defenses focus on retraining the network with an optimization criterion that

promotes robustness towards all possible small perturbations around the training data. For

example, the “certified defense” of Raghunathan et al. [62] considers neural networks with one

hidden layer and tries to upper bound the ℓ1 norm of the gradient of the classifier around the

data point by the optimal value of a semidefinite program (SDP). It then optimizes this SDP

relaxation during training to obtain a more robust network. The certificates provided are quite

loose, and are outperformed by other defenses, including ours. A tighter SDP relaxation is

developed in [63] to certify the robustness of any given network, but it is not used to train a

new robust model. Both the SDP certificates are computationally restricted to fully-connected

networks. Another provable defense by Kolter and Wong [64] employs a linear programming

(LP) based approach to bound the robust error. This is more efficient than the SDP approach,
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and can be scaled to larger networks [65]. The LP technique works well for small perturbations,

but for larger perturbation sizes there is a penalty on the accuracy without attacks.

A different training technique based on distributionally robust optimization was proposed by

Sinha et al [66], providing a certificate of robustness for attacks whose probability distribution

is bounded in Wasserstein distance from the original data distribution. Although the theoretical

guarantees do not directly translate to norm-bounded attacks, this approach yields good results

in practice for small perturbation sizes. Another defense that works well is that of Mirman et

al [67], who use the framework of abstract interpretation to develop various upper bounds on

the adversarial loss which can be optimized over during training. Some other provable defenses

try to limit Lipschitz constants related to the network output function, for example via cross-

Lipschitz regularization [68] and ℓ2 matrix-norm regularization of weights [69] in order to defend

against ℓ2-bounded attacks. However the bounds in [68] are limited to 2-layer networks, and

[69] is based on layerwise bounds that have been shown to be loose [62, 64].

All of the above techniques try to train the network so as to make its output less sensitive

to input perturbations by modifying the optimization framework employed for network training.

In contrast, our defense takes a bottom-up signal processing approach, exploiting the sparsity

of natural data to combat perturbations at the front end, while using conventional network

training. It is therefore potentially complementary to defenses based on modifying network

training. Another related work that uses sparsity-based preprocessing is [71], which studies

ℓ0-bounded attacks. These are not visually imperceptible (unlike the ℓ∞-bounded attacks that

we study), but they are easy to realize in practice, for example by placing a small sticker on an

image. For this class of attacks, [71] shows that the sparse projection can be reformulated as a

compressive sensing (CS) problem, and obtain a provably good estimate of the original image

via CS recovery algorithms.

For ℓ2-bounded attacks, Fawzi et al. [72] derive an upper bound on the smallest attack

budget that misclassifies every image, under the assumption of a generative model that maps
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Gaussian random vectors to images. This upper bound can be achieved by a classifier that is

linear in the latent space. While interesting, it has not yet translated to a defense strategy. It

differs from our work on ℓ∞-bounded attacks, where we find an upper bound on the output

distortion for a fixed attack budget. There is also a line of work on verifying the robustness

of a given network by using exact solvers based on discrete optimization techniques such as

satisfiability modulo theory [73, 74] and mixed-integer programming [75, 76]. However these

techniques have combinatorial complexity (in the worst-case, exponential in network size), and

so far have not been scaled beyond moderate network sizes.

2.2.3 Sparse representations

It is well-known that most natural data can be compactly expressed as a sparse linear

combination of atoms in some basis [77, 78, 79]. Such sparse representations have led to state-

of-the-art results in many fundamental signal processing tasks such as image denoising [80, 81],

neuromagnetic imaging [82, 83], image super-resolution [84], inpainting [85], blind audio source

separation [86], source localization [87], etc. There are two broad classes of sparsifying dictionar-

ies employed in literature: predetermined bases such as wavelets [77, 88], and learnt bases which

are inferred from a set of training signals [81, 89, 90]. Bases learnt via the latter approach are

usually overcomplete in nature. Overcompleteness of representations is a fundamental property

exhibited by the biological receptive fields of the mammalian primary visual cortex [91, 92], as

well as artifical neural networks trained with backpropagation [93]. Such bases have been found

to outperform predetermined dictionaries. Sparsity has also been suggested purely as a means

of improving classification performance [94], which indicates that the performance penalty for

appropriately designed sparsity-based defenses could be minimal.
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2.3 Sparsity Based Defense

2.3.1 Problem Setup

For simplicity we start with binary classification. Given a binary inference model g : RN →

R, we assume that its input data x ∈ RN has a K-sparse representation (K ≪ N) in a known

orthonormal basis Ψ:
∥∥ΨTx

∥∥
0
≤ K. Let us denote by x̂ a modified version of the data sample

x. We now define a performance measure ∆ that quantifies the robustness of g(·):

∆(x, x̂) = |g(x̂)− g(x)|.

For example, for a linear classifier g(x) = wTx, the performance measure is ∆(x, x̂) = |wT (x̂−

x)|.

We now consider a system comprised of the classifier g(·) and two external participants: the

adversary and the defense, depicted in Fig. 2.1.

1. The adversary corrupts the input x by adding a perturbation e, with the goal of causing

misclassification:

max
e

∆(x, x̂) s.t. ∥e∥∞ < ϵ.

We are interested in perturbations that are visually imperceptible, hence we impose an

ℓ∞-constraint on the adversary.

2. The defense preprocesses the perturbed data via a function f : RN → RN, with the goal

of minimizing the adversarial impact ∆.

This setup can be easily extended to multiclass classification as we show in Section 2.5.5.
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x +

e

f(·) g(·)

Adversary Defense

x x̂

Figure 2.1: Block diagram of the system, depicting an adversarial example x = x+ e (with ℓ∞
constraint on e), a preprocessing defense f(·) and a classifier g(·).

2.3.2 Sparsifying Front End Description

We propose a defense based on a sparsifying front end that exploits sparsity in natural data

to combat adversarial attacks. Specifically, we preprocess the input via a front end that computes

a K-sparse projection in the basis Ψ. Figure 2.2 shows a block diagram of our model for a neural

network, depicting an additive perturbation followed by sparsity-based preprocessing.

Here is an intuitive explanation of how this defense limits adversarial perturbations. If the

data is exactly K-sparse in domain Ψ, the front end leaves the input unchanged (x̂ = x) when

there is no attack (e = 0). The front end attenuates the perturbation by projecting it onto

the space spanned by the basis functions corresponding to the K retained coefficients. If the

perturbation is small enough, then the K retained coefficients corresponding to x and x + e

remain the same, in which case the neural network sees the original input plus the projected,

and hence attenuated, perturbation.

Let HK : RN → RN represent the block that enforces sparsity by retaining the K coefficients

x +

e

ΨT

Retain
K largest

coefficients
Ψ

Retain only
top K

coefficients

T

2

Sparsifying front end

x x̂

Figure 2.2: Sparsifying front end defense: For a basis in which the input is sparse, the input is
projected onto the subspace spanned by the K largest basis coefficients.

20



Sparsifying Front Ends for Adversarial Learning Chapter 2

largest in magnitude and zeroing out the rest. We can now define the following:

• The support SK of the K-sparse representation of x:

SK(x) ≜ supp
(
HK

(
ΨTx

))

• The projection PK of e onto the subspace that x lies in:

PK(e,x) ≜
∑

k∈SK(x)

ψkψ
T
k e.

• The high SNR regime is the operating region where the perturbation does not change the

subspace that x lies in:

High SNR: SK(x) = SK(x+ e). (2.6)

We characterize the conditions guaranteeing (2.6) in Prop. 1.

If we operate at high SNR, we get

HK

(
ΨT (x+ e)

)
= HK

(
ΨTx

)
+ e = ΨTx+ e,

where

ēk =


ψT

k e, if k ∈ SK(x)

0, otherwise.

Therefore, the front end preserves the signal, i.e. HK

(
ΨT (x+ e)

)
= ΨTx+HK(Ψ

Te), and hence
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its output x̂ can be written as follows:

x̂ = x+
∑

k∈SK(x)

ψkψ
T
k e = x+ PK(e,x).

Thus the effective perturbation is PK(e,x), which lives in a lower dimensional space. Its impact

is therefore significantly reduced. In Sections 2.4 and 2.5, we quantify the reduction in adver-

sarial impact via an ensemble-averaged analysis based on a stochastic model for the classifier

g(·).

2.3.3 Characterizing the High SNR Regime

We can gain valuable design insight by characterizing the conditions that guarantee high SNR

operation of the sparsifying front end, as stated in the following proposition:

Proposition 1 For sparsity level K and perturbation e with ∥e∥∞ ≤ ϵ, the sparsifying front

end preserves the input coefficients if the following SNR condition holds:

SNR ≜ λ

ϵ
> γ,

where λ is the magnitude of the smallest non-zero entry of HK(Ψ
Tx) and γ = 2 maxk ∥ψk∥1.

Proof: By Holder inequality, the SNR condition implies that

λ > ϵ γ ≥ 2 max
k

∣∣ψT
k e
∣∣ ≥ ∣∣ψT

i e
∣∣+ ∣∣ψT

j e
∣∣ ∀ i, j.

In particular, we can choose i and j such that

min
i∈SK(x)

(∣∣ψT
i x
∣∣− ∣∣ψT

i e
∣∣) > max

j /∈SK(x)

∣∣ψT
j e
∣∣
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where we have used the fact that λ = mini∈SK(x)

∣∣ψT
i x
∣∣. We can now use the triangle inequality

to get

min
k∈SK(x)

∣∣ψT
k (x+ e)

∣∣ > max
j /∈SK(x)

∣∣ψT
j e
∣∣.

It is easy to see that this is equivalent to SK(x+ e) = SK(x), which completes the proof.

Remark 1 The SNR condition is easier to satisfy for bases with sparser, or more localized,

basis functions (smaller M). For example, we expect a wavelet basis to be better than a DCT

basis. As we will see later in Section 2.4.2, this is also a favorable criterion for performance in

the white box attack scenario.

Remark 2 Another important design parameter is the value of K, which must be chosen keep-

ing the following in mind: lower sparsity levels allow us to impose high SNR even for larger

perturbations, but if the data is only approximately K-sparse, this results in unwanted signal

perturbation. These must be traded off to optimize classification performance.

All of our subsequent analysis in this section is based on the assumption that the SNR con-

dition in Proposition 1 holds. In this case, the sparsifying front end is signal-preserving, hence

the output distortion can be quantified solely by analyzing its effect on the adversarial pertur-

bation. In our experiments with MNIST data, we find that the SNR condition is approximately

satisfied for the range of K that works most effectively (1-5% of the coefficients in a wavelet

basis). We start with a study of linear classifiers and then extend our results to neural networks

via a locally linear model.

2.4 Analysis for Linear Classifiers

Consider a linear classifier g(x) = wTx. We calculate the adversarial impact for various

attack models and quantify the efficacy of our defense by using a stochastic model for w.
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2.4.1 Impact of Adversarial Perturbation

When the front end is not present, the impact of the attack is ∆ = wTe. By Holder

inequality, we have

∆ = wTe ≤ ∥e∥∞∥w∥1 ≤ ϵ ∥w∥1 ≜ ∆0, (2.7)

where the second inequality follows from the ℓ∞ attack budget constraint. We can observe that

e0 = ϵ sgn(w) achieves equality in (2.7), which means that e0 is the optimal attack when the

adversary has knowledge of w. We use ∆0 = ϵ∥w∥1 as a baseline to assess the efficacy of our

defense.

When the defense is present, the adversarial impact ∆ becomes

∆ =
∣∣wT (x̂− x)

∣∣ = ∣∣wT PK(e,x)
∣∣ = ∣∣eT PK(w,x)

∣∣ (2.8)

where the second equality follows from the definition of PK(e,x). We can now consider two

scenarios depending on the adversary’s knowledge of the defense and the classifier:

1. Semi-white box scenario: Here perturbations are designed based on the knowledge of w

alone, and therefore the attack remains

eSW = ϵ sgn(w).

Using (2.8), the output distortion becomes

∆SW = ϵ
∣∣sgn(wT )PK(w,x)

∣∣. (2.9)

We note that the attack is aligned with w.

2. White box scenario: Here the adversary has the knowledge of both w and the front
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end, and designs perturbations accordingly. accordingly. This results in the following

optimization problem:

max
e

∣∣eT PK(w,x)
∣∣

s.t. ∥e∥∞ < ϵ.

We can use the same Holder inequality based argument as before to prove that the optimal

perturbation is

eW = ϵ sgn(PK(w,x)),

The resulting output distortion can be written as

∆W = ϵ ∥PK(w,x)∥1.

Thus, instead of being aligned with w, eW is aligned to the projection of w onto the

subspace that x lies in.

2.4.2 Ensemble Averaged Performance

We now provide an analysis that quantifies the robustness provided by sparsification over

an ensemble of linear classifiers, by imposing a stochastic model for w. Specifically, we show

that the defense attenuates the output distortion by a factor of K/N for the semi-white box

attack, and by at least O(K polylog(N)/N) for the white box attack, where K is the sparsity

of the signal and N is the signal dimension.

Assumption 1 We assume a random model for w = (w1, . . . , wN )T , where the entries {wi}Ni=1

are i.i.d. with zero mean and median: E[w1] = 0 and E[sgn(w1)] = 0. Let E[|w1|] = µ = Θ(1)

and E
[
w2
1

]
= σ2 = Θ(1).
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We observe that the baseline adversarial impact ∆0 = ϵ ∥w∥1 scales with N . This is formalized

in the following proposition:

Proposition 2 ∆0/N converges to ϵ µ almost surely, i.e

Pr

(
lim

N→∞

∆0

N
= ϵ µ

)
= 1.

Thus, with no defense, the adversarial impact scales as Θ(N).

Proof: ∆0 is the sum of i.i.d. random variables ϵ |wi| with finite mean: E[ϵ |wi|] = ϵ µ <∞.

Hence we can apply the strong law of large numbers, which completes the proof.

We now state the following theorems that characterize the performance of the sparsifying

front end defense in the semi-white box and white box scenarios.

1. Semi-White Box Scenario:

Theorem 1 As K and N approach infinity, ∆SW/K converges to ϵ µ in probability, i.e.

lim
K→∞

Pr

(∣∣∣∣∆SW

K
− ϵ µ

∣∣∣∣ ≤ δ

)
= 1 ∀ δ > 0.

Remark 3 After sparsification, the impact ∆SW of the adversarial perturbation scales linearly

with the sparsity level K. Thus, the sparsifying front end provides an attenuation of K/N on

the effect of the semi-white box adversarial attack.

Proof: Let us assume without loss of generality that SK(x) = {1, . . . ,K}. We can rewrite

the adversarial impact (2.9) as

∆SW = ϵ |ZK |, where ZK =

K∑
i=1

sgn(w)Tψkψ
T
kw.

The following lemma provides an upper bound on the mean and variance of ZK .
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Lemma 1 The mean and variance of ZK are bounded by linear functions of K.

E[ZK ] = Kµ, var(ZK) ≤ K
(
σ2 + µ2

)
.

Proof: We can write ZK =
∑K

i=1 UiVi, where

Ui =

N∑
m=1

ψi[m]wm, Vi =

N∑
m=1

ψi[m] sgn(wm).

We observe that for i, j ∈ {1, . . . ,K}, E[UiVi] = µ, and

var(UiVi) = σ2 + µ2 − 2µ2
N∑

m=1

ψ4
i [m],

cov(UiVi, UjVj) = −2µ2
N∑

m=1

ψ2
i [m]ψ2

j [m], i ̸= j.

Hence we get E[ZK ] = Kµ, and

var(ZK) =

K∑
i=1

var(UiVi)−
K∑

i,j=1
i ̸=j

cov(UiVi, UjVj)

= K
(
σ2 + µ2

)
− 2µ2

N∑
m=1

K∑
i,j=1

ψ2
i [m]ψ2

j [m]

≤ K
(
σ2 + µ2

)
.

We can now apply Chebyshev’s inequality to YK = ZK/K, noting that E[YK ] = µ and δ(YK) ≤(
σ2 + µ2

)
/K. Using the bounds in the lemma, we obtain

Pr(|YK − µ| ≤ δ) ≥ 1− 1

K

(
σ2 + µ2

δ2

)
∀ δ ≥ 0. (2.10)
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Note that |∆SW/K − ϵ µ| = ϵ ||YK | − µ| ≤ ϵ |YK − µ|. The statement of the theorem follows by

(2.10) and letting K → ∞ in the above inequality.

2. White Box Scenario:

We begin with the following lemma that provides a useful upper bound on the impact of the

white box attack.

Lemma 2 An upper bound on the white box distortion ∆W is given by

∆W ≤ ϵ

K∑
k=1

∣∣ψT
kw
∣∣∥ψk∥1.

Proof:

∆W = ϵ∥PK(w,x)∥1 = ϵ
N∑
i=1

∣∣∣∣∣
K∑
k=1

(
ψT

kw
)
ψk[i]

∣∣∣∣∣
≤ ϵ

N∑
i=1

K∑
k=1

∣∣ψT
kw
∣∣|ψk[i]| = ϵ

K∑
k=1

∣∣ψT
kw
∣∣∥ψk∥1.

Remark 4 The upper bound is exact if the supports of the K selected basis functions do not

overlap. In our MNIST experiments, this is approximately satisfied for the range of K that works

most effectively (1-5% of the coefficients in a wavelet basis).

Remark 5 Since the upper bound has K terms, the distortion cannot grow slower than K. As

stated in the following theorem, however, if the basis functions are “localized” with ℓ1 norms that

do not scale too fast with N , then the output distortion scales as O(K polylog(N)).

Theorem 2 Under the assumptions ∥ψk∥1 = O(logN), ∥ψk∥∞ = O(1) ∀ k ∈ {1, 2, . . . ,K},

28



Sparsifying Front Ends for Adversarial Learning Chapter 2

and ∥w∥∞ = O(1), we have the following upper bound for ∆W:

lim
N→∞

Pr(∆W ≤ O(K polylog(N))) = 1.

Thus, the impact of adversarial perturbation in the case of white box attack is attenuated by a

factor of O(K polylog(N)/N) compared to having no defense.

Proof: We first state the following convergence result:

Lemma 3 ψT
kw → N (0, σ2) in distribution.

Proof: We show that we can apply Lindeberg’s version of the central limit theorem, noting

that ψT
kw =

∑N
i=1 Yi, where Yi = ψk[i]wi are independent random variables with E[Yi] = 0 and

var(Yi) = σ2i , with
∑N

i=1 σ
2
i = σ2.

Now, given δ > 0, we investigate the following quantity in order to check Lindeberg’s

condition:

L(δ,N) =
1

σ2

N∑
i=1

E
[
Y 2
i 1{|Yi|>δσ}

]
.

From the ℓ∞ assumptions on ψk and w, we observe that

E
[
ψ2
k[i]w

2
i 1{|Yi|>δσ}

]
≤ O2(1)O2(1) Pr{(|Yi| > δσ)}

= O2(1)O2(1) Pr

{(
|wi| >

δσ

O(1)

)}
.

Also note that ∀ δ > 0, ∃M s.t. ∀N > M , |wi| < δσ/O(1) ∀ i ∈ {1, . . . , N}. Hence we get

limN→∞ L(δ,N) = 0, which is Lindeberg’s condition.
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We can use Lemmas 2 and 3 to obtain

Pr(∆W > δ) ≤ Pr

(
ϵ

K∑
k=1

∣∣ψT
kw
∣∣ ∥ψk∥1 > δ

)

≤ Pr

(
K∪
k=1

{∣∣ψT
kw
∣∣ > δ

ϵK∥ψk∥1

})

≤
K∑
k=1

Pr

(∣∣ψT
kw
∣∣ > δ

ϵK∥ψk∥1

)

=

K∑
k=1

2Q

(
δ

ϵ σK∥ψk∥1

)
= 2KQ

(
δ

ϵ σ
O
(

1

K logN

))
,

where the last step follows from the ℓ1 assumption on ψk, and Q(x) is the Gaussian tail dis-

tribution function
∫∞
x e−t2/2dt /

√
2π. We complete the proof by setting δ = O(K polylog(N))

which makes the right-hand side of the above equation vanish as N approaches infinity.

A practical take-away from the above theoretical results is that, in order for the defense to be

effective against a white box attack, not only do we need input sparsity (K ≪ N), but we also

need that the individual basis functions be localized (small in ℓ1 norm). The latter implies,

for example, that sparsification with respect to a wavelet basis, which has more localized basis

functions, should be more effective than with a DCT basis.

2.4.3 The Low SNR Scenario

So far, we have assumed operation in the high SNR regime, i.e, (2.6) holds. However, for

larger values of ϵ, or in scenarios where x is only approximately K-sparse, SK(x+e) and SK(x)

could be different (and possibly overlapping) sets of K basis vectors. This would affect the

optimal adversarial perturbation. Here we introduce an iterative algorithm which obtains an

enhanced version of the white box attack in the low SNR regime. At iteration i, we calculate

e
[i+1]
IW = e

[i]
IW + δ sgn

(
PK

(
w,x+ e

[i]
IW

))
,
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where δ < ϵ Essentially, we refine our estimate of the support SK(x + e) at each iteration by

calculating the projection of w on to the top-K basis vectors of x+ e (rather than just x).

However, as we discuss in our experiments (Section 2.6.1), this scenario is not of practical

interest because low SNR occurs only for large values of ϵ or ρ.

2.5 Analysis for Neural Networks

In this section, we build on the preceeding insights for neural networks by exploiting lo-

cally linear approximations. For simplicity we start with a 2-layer, fully connected network

trained for binary classification, and then extend our results to a general network for multi-class

classification.

2.5.1 Locally Linear Representation

Consider first binary classification using a neural network with one hidden layer with M

neurons, as depicted in Fig. 2.3. Since ReLU units are piecewise linear, switching between

slopes of 0 and 1, they can be represented using input-dependent switches. Given input x, we

denote by si(x) ∈ {0, 1} the switch corresponding to the ith ReLU unit. Now the activations

of the hidden layer neurons can be written as follows:

ai = ReLU
(
wT

i x− bi
)
= si(x)w

T
i x− si(x) bi.

The output of the neural network can be written as

y(x) = wT
0 a =

M∑
i=1

si(x)w0[i]w
T
i x−

M∑
i=1

si(x)w0[i] bi

= weq(x)
Tx− beq(x).

31



Sparsifying Front Ends for Adversarial Learning Chapter 2

x

w2

b2

w1

b1

wM

bM

...

ReLU

... w0

Sigmoid

a1

a2

aM

y(x)

Hidden layer

Figure 2.3: Two layer neural network for binary classification. ReLU units are piecewise linear,
hence the network is locally linear: y(x) = weq(x)

T x− beq(x).

where

weq(x) =

M∑
i=1

si(x)w0[i]wi, beq(x) =

M∑
i=1

si(x)w0[i] bi.

This locally linear model extends to any standard neural network, since convolutions and

subsampling are inherently linear and max-pooling units can also be modeled as switches. For

more than 2 classes, we will apply this modeling approach to the “transfer function” from the

input to the inputs to the softmax layer, as discussed in Section 2.5.5.

2.5.2 Impact of Adversarial Perturbation

Now we consider the effect of an ℓ∞-bounded perturbation e on the performance of the

network. For ease of notation, we write weq = weq(x), weq = weq(x+ e), and beq = beq(x+ e).

32



Sparsifying Front Ends for Adversarial Learning Chapter 2

The distortion due to the attack can be written as

∆ = y(x+ e)− y(x)

= weq
T (x+ e)− beq −weq

Tx+ beq

= weq
Te+

[
(weq −weq)

Tx−
(
beq − beq

)]
(2.11)

We observe that the distortion can be split into two terms: (i) weq
Te that is identical to the

distortion for a linear classifier, and can be analyzed within the theoretical framework of Section

2.4 and (ii) (weq −weq)
Tx−

(
beq − beq

)
, that is determined by the ReLU units that flip due to

the perturbation.

In the next section, we provide an analytical characterization of a “high SNR” regime in

which the number of flipped switches is small, motivated by iterative attacks which gradually

build up attack strength over a large number of iterations (with a per-iteration ℓ∞-budget of

δ ≪ ϵ). When very few switches flip, the distortion is dominated by the first term in (2.11),

and we can apply our prior results on linear classifiers to infer the efficacy of the sparsifying

front end in attenuating the distortion. As we discuss via our numerical results, this creates a

situation in which it might sometimes be better (depending on dataset and attack budget) for

the adversary to try to make the most of network’s nonlinearity, spending the attack budget in

one go trying to flip a larger number of switches in order to try to maximize the impact of the

second term in (2.11).

2.5.3 Characterizing the High SNR Regime

We now investigate the conditions that guarantee high SNR at neuron i, i.e. si = si, where

si denotes the switch when the adversary is present.
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We observe that

si =



1− si, wT
i x− bi ∈

[
min

(
−wT

i e, 0
)
,

max
(
−wT

i e, 0
)]

si, wT
i x− bi /∈

[
min

(
−wT

i e, 0
)
,

max
(
−wT

i e, 0
)]
,

This implies the following sufficient condition for high SNR at neuron i:
∣∣wT

i x− bi
∣∣ > ∣∣wT

i e
∣∣.

Assumptions 1 To establish our theoretical result, we make a few mild technical assumptions:

1. The data is normalized in ℓ2-norm and bounded: ∥x∥2 = 1 and ∥x∥∞ = O(1).

2. The ℓ∞ budget δ ≤ |bi|/∥wi∥1 − C ∀ i = 1, . . . ,M and for some C = Θ(1) > 0. Note that

this assumption is justified in an iterative/optimization-based attack, where the adversary

gradually spends the budget over many iterations.

3. The number of neurons M = ω(1) as N gets large.

4. For each neuron i = 1, . . . ,M , we model the {wi[k], k = 1, . . . , N} as i.i.d, with zero mean

E[wi[k]] = 0. We assume that E
[
wi[k]

2
]
= σ2i = Θ(1).

Theorem 3 With high probability, the high SNR condition (s = s) holds for 1− O(1) fraction

of neurons, i.e.

lim
N→∞

Pr

(
|S|
M

= 1− O(1)

)
= 1,

where S =
{
i :
∣∣wT

i x− bi
∣∣ > ∣∣wT

i e
∣∣}.

Proof: We first state the following lemma:

34



Sparsifying Front Ends for Adversarial Learning Chapter 2

Lemma 4 wT
i x→ N (0, σ2i ) in distribution.

Proof: We show that we can apply Lindeberg’s version of the CLT, noting that wT
i x =∑N

j=1 Uj is the sum of independent random variables, where Uj = xj wi[j] with E[Uj ] = 0,

var(Uj) = σ2i x
2
j and

∑N
j=1 σ

2
i x

2
j = σ2i .

Now given a constant c1 = Θ(1) > 0, we investigate the following quantity in order to check the

Lindeberg condition:

L(c1, N) =
1

σ2i

N∑
j=1

E
[
U2
j 1{|Uj |>c1σi}

]
From the assumptions on wi and x, we observe that

E
[
x2j w

2
i [j]1{|Uj |>δσi}

]
≤ O2(1)Θ(1)Pr(|Uj | > c1σi)

= O2(1)Θ(1)Pr

(
|wi[j]| >

c1σi
O(1)

)

The ℓ∞ assumption on wi also implies that ∀ c1 > 0, ∃N0 s.t. |wi[j]| < c1σi/O(1), ∀ j ∈

{1, . . . , N}, N > N0. Hence we obtain that limN→∞ L(δ,N) = 0, which verifies the Lindeberg

condition.

Noting that wT
i x− bi → N (−bi, σ2i ), we can now write

Pr
(∣∣wT

i x− bi
∣∣ > ∣∣wT

i e
∣∣) ≥ Pr

(∣∣wT
i x− bi

∣∣ > δ∥wi∥1
)

= Pr
(
wT

i x− bi > δ∥wi∥1
)
+ Pr

(
wT

i x− bi < −δ∥wi∥1
)

= Q

(
δ∥wi∥1 + bi

σi

)
+Q

(
δ∥wi∥1 − bi

σi

)
≥ Q

(
δ∥wi∥1 − |bi|

σi

)
= Q

(
∥wi∥1
σi

(
δ − |bi|

∥wi∥1

))
= Q

(
Θ(N)

(
δ − |bi|

∥wi∥1

))
→ 1 as N → ∞,

where Q(x) = 1√
2π

∫∞
x e−t2/2dt and δ < |bi|

∥wi∥1
by Assumption 2. The theorem follows by using

a union bound over i = 1, . . . ,M .
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2.5.4 Attacks

We assume that the adversary knows the true label, a reasonable (mildly pessimistic) as-

sumption given the high accuracy of modern neural networks. We consider attacks that focus

on maximizing the first term in (2.11), using a high SNR approximation to the distortion:

∆ = y(x̂)− y(x) = weq
T PK(e,x) = e

T PK(weq,x),

Here weq ≈ weq(x) =
∑M

i=1 siw0[i]wi if we are applying a small perturbation to the input

data. However, for iterative attacks with multiple small perturbations, weq would evolve across

iterations.

We can now define attacks in analogy with those for linear classifiers. The adversary can

use an “effective input” x1 to compute the locally linear model weq = weq(x1). For example,

the adversary may choose x1 = x if making a small perturbation, or may iterate computation

of its perturbation using x1 = x+ e. The adversary can also use a possibly different “effective

input” x2 to estimate the set of basis coefficients retained by the sparse front ends. Armed with

this notation, we can define two attacks:

Semi-white box: ASW(x1, ϵ) = ϵ sgn(weq(x1)),

White box: AW(x1,x2, ϵ) = ϵ sgn(PK(weq(x1),x2)).

We make no claims on the optimality of these attacks. They are simply sensible strategies based

on the locally linear model, and as we show in the next section, they are more powerful than

existing FGSM attacks for multiclass classification.

For simplicity, we set x1 = x2 for the white box attack, and simplify notation by denoting

it by AW(x1, ϵ). A (suboptimal) default choice is to set x1 = x2 = x, relying on a high SNR

approximation for both the network switches and for the sparsifying front end. However, we

can also refine these choices iteratively, as follows.
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Iterative versions: We choose a particularly simple approach, in which we use a small attack

budget δ to change weq by small amounts and update the “direction” of the attack, maintaining

the overall ℓ∞ constraint at each stage:

ek+1 = ek +A(x+ ek, δ)

ek+1 = clipϵ(ek+1),

where clipϵ(e) ≜ max(min(e, ϵ),−ϵ). We believe there is room for improvement in how we

iterate, but this particular choice suffices to illustrate the power of locally linear modeling.

Remark 6 The Fast Gradient Sign Method (FGSM) attack puts its attack budget along the

gradient of the cost function J(·) used to train the network. For binary classification and the

cross-entropy cost function, we can show that it is equivalent to the semi-white box attack with

x1 = x. Specifically, we can show that

eFGSM = ϵ sgn(∇xJ(x, l)) = ASW(x, ϵ)

where l is the true label, by verifying that the gradient is proportional to weq(x). For a larger

number of classes, however, insights from our locally linear modeling can be used to devise more

powerful attacks than FGSM.

2.5.5 Multiclass Classification

In this subsection, we consider a multilayer (deep) network with L classes. Each of the

outputs of the network can be modeled using the analysis in the previous section as follows:

yi = w
{i}
eq

T
x− b{i}eq , i = 1, . . . , L,
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x

w
{2}
eq

b
{2}
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w
{1}
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b
{1}
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w
{L}
eq

b
{L}
eq

...

Soft
max

p1

p2

pL

y1

y2

yL

Equivalent hidden layer

Figure 2.4: Multilayer (deep) neural network with L classes. Each of the L pre-softmax outputs

(logits) is locally linear: yi = w
{i}
eq

T
x− b

{i}
eq , i = 1, . . . , L.

where y = [y1, y2, ..., yL]
T , pi = Si(y), and the softmax function Si(y) = eyi/

(∑L
j=1 e

yj
)
.

Assume that x belongs to class t (with label t known to the adversary).

Locally linear attack: The adversary can sidestep the nonlinearity of the softmax layer, since

its goal is simply to make yi > yt for some i ̸= t. Thus, the adversary can consider L− 1 binary

classification problems, and solve for perturbations aiming to maximize yi − yt for each i ̸= t.

We now apply the semi-white and white box attacks, and their iterative versions, to each pair,

with weq = w
{i}
eq − w{t}

eq being the equivalent locally linear model from the input to yi − yt.

After computing the distortions for each pair, the adversary applies its attack budget to the

worst-case pair for which the distortion is the largest:

max
i,e

yi(x+ e)− yt(x+ e), s.t. ∥e∥∞ ≤ ϵ

FGSM: Unfortunately, the FGSM attack does not have a clean interpretation in the multi-

class setting. Taking the gradient of the cross-entropy betwen one-hot encoded vector of the
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x
“3”

e = ε sgn(w) x̄ = x+ e
“7”

(a) A natural image and its adversarial counterpart (misclassified as “7”).

x
“7”

x̄ = x+ eW

“3”
x̂ = ΨHK(ΨT x̄)

“7”

(b) After sparsification, the perturbed image is no longer adversarial.

Figure 2.5: Sample images depicting the interplay between attack and defense: tiny adversarial
attacks can fool a classifier, but sparsity-based preprocessing can restore accuracy by projecting
the attack down to a lower dimensional subspace.

true label l (l[k] = δtk) and the final output of the model p = [p1, p2, ..., pL], with J(l,p) =

−
∑L

i=1 li log (pi), we obtain

eFGSM = ϵ sgn

(
w{t}

eq (pt − 1) +
∑
k ̸=t

w{k}
eq pk

)
.

This does not take the most direct approach to corrupting the desired label, unlike our locally

linear attack, and is expected to perform worse.
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2.6 Experimental Results

In this section we demonstrate the effectiveness of sparsifying front ends on inference tasks

on the MNIST [14] and CIFAR-10 [15] datasets. Code is available at

https://github.com/soorya19/sparsity-based-defenses/. We first provide results for binary linear

classifiers (“3” versus “7”), and then report on experiments with neural networks, for both binary

and multi-class classification.

2.6.1 Linear Classifiers

Set-up: Here we train a linear SVM g(x) = wTx + b to classify digit pairs d1 and d2 from

the MNIST dataset. The “direction” of the attack is opposite that of the correct class: if the

SVM predicts class d1 when g(x) < 0 and d2 when g(x) > 0, the perturbation is of the form

x = x + ϵ sgn(w) for images of class d1, and x = x − ϵ sgn(w) for class d2. We assume that

the adversary has access to the true labels. For the defense, we use the Daubechies-5 wavelet

[95] to perform sparsification and retrain the SVM with sparsified images (for various sparsity

levels) before evaluating performance.

Results: We consider the case of 3 versus 7 classification. When no defense is present, an

attack1 with ϵ = 0.1 completely overwhelms the classifier, with accuracy dropping from 98.64%

to 0.25% as depicted in Fig. 2.5a. Fig. 2.5a shows a sample image before and after attack.

1The reported values of ϵ correspond to images normalized to [0, 1].

Table 2.1: Binary classification accuracies for linear SVM, with ϵ = 0.1 for attacks and ρ = 2%

for defense.

No defense Sparsifying
front end

Semi-white box attack 0.25 98.37
White box attack 0.25 95.37

40
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(b) Accuracy vs. attack budget, where the defense uses ρ=2%.

Figure 2.6: Binary classification accuracies for the linear SVM as a function of the sparsity level
ρ and attack budget ϵ.

Insertion of the sparsifying front end confers resiliency to attacks: at low values of ρ, accuracy

is restored to near-baseline levels. The optimal value of ρ must trade off signal distortion versus

perturbation attenuation. We find ρ = 2% to be the best choice for the 3 versus 7 scenario,

and report on the accuracies obtained in Table 2.1. Results for other digit pairs show a similar

trend. Insertion of the front end greatly improves resilience to adversarial attacks. The optimal
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value of ρ lies between 1− 5%, with ρ = 2% working well for all scenarios.

To give a concrete feel of the front end at work, Fig. 2.5b shows an example image, the

attacked image, and the attacked image after sparsification.

Fig. 2.6 reports on accuracy as a function of sparsity level ρ and attack budget ϵ. At the low

values of ρ that we are interested in, the white box attack is more damaging than the semi-white

box attack. At higher ρ, a white box attack performs worse than the semi-white box attack:

the high SNR condition in Proposition 1 is no longer satisfied, hence the white box attack is

attacking the “wrong subspace”. This behavior can also be observed in Fig. 2.6b where attacks

with larger ϵ violate the high SNR condition. As discussed in 2.4.3, it is easy to devise iterative

white box attacks that do better by refining the estimate of the K-dimensional subspace in the

following manner:

e[i+1] = e[i] + δ sgn
(
PK

(
w, x+ e[i]

))
,

with δ < ϵ. Essentially, we refine our estimate of the support using multiple steps, and also

reduce the step size in each iteration, so that the support does not vary too much in between iter-

ations. We can observe from the figures that the attack with iterated projections performs better

in the low SNR region. However, this scenario is not of practical interest, since front ends with

large ρ do not provide enough attenuation of the adversarial perturbation, and perturbations

with large ϵ are no longer visually imperceptible.

2.6.2 Neural Networks

For neural networks, we perturb images with the following attacks in the white box setting:

(a) the locally linear attack,

(b) its iterative version,

(c) FGSM [7],
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(d) iterative FGSM [43],

(e) projected gradient descent (PGD) [12], and

(f) momentum iterative FGSM [50] (winner of the NIPS 2017 competition on adversarial

attacks and defenses [49]).

For PGD, we use multiple random restarts and calculate accuracy over the most successful

restart(s) for each image. We evaluate three versions of the attacks: one that uses the backward

pass differential approximation (BPDA) technique of [51] to approximate the gradient of the

front end as 1, a second version where the gradient is calculated as the projection onto the top

K basis vectors of the input, and a third version where we iteratively refine the projection as

described in the previous section. We report accuracies for the version that causes the most

damage.

Set-up: For binary classification of MNIST digits “3” and “7”, we use a 2-layer fully-connected

network with 10 neurons. For multi-class MNIST, we use a 4-layer CNN consisting of two

convolutional layers (with 20 and 40 feature maps, each with 5x5 filters) and two fully-connected

layers (containing 1000 neurons each, with dropout) [96]. For CIFAR-10, we use a 32-layer

ResNet [97] and follow the data augmentation strategy of [97] for training. For the sparsifying

front end, we use the Daubechies-5 wavelet for binary MNIST, Coiflet-1 for multiclass MNIST

and Symlet-9 for CIFAR-10, and retrain the networks with sparsified images.

MNIST results: Figure 2.7 reports on binary classification accuracies for the 2-layer NN as a

function of attack budget, showing that the front end improves robustness across a range of ϵ.

As shown in Section 2.5.4, FGSM is identical to the locally linear attack for binary classification,

so we do not label it in the figure. We note that images are normalized to the range [0, 1], so

by the end of the chosen range of ϵ, perturbations are no longer visually imperceptible.
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Table 2.2: Multiclass classification accuracies for 4-layer CNN, with ϵ = 0.2 for attacks and
ρ = 3.5% for defense.

No defense Sparsifying
front end

No attack 99.31 98.97
Locally linear attack 28.43 78.27
FGSM 42.01 85.35

Iterative locally linear attack 7.36 74.38
Iterative FGSM 6.34 74.97
Momentum iterative FGSM 6.99 73.55
PGD (100 random restarts) 5.12 61.04

Table 2.2 reports on multiclass classification accuracies for the 4-layer CNN, with attacks

using an ℓ∞ budget of ϵ = 0.2. Iterative attacks are run for 1000 steps with a per-iteration

budget of δ = 0.01, except for PGD and the iterative locally linear attack which use 100 steps

of δ = 0.05. Without any defense, a strong adversary can significantly degrade performance,

reducing accuracy from 99.31% to 5.12%. In contrast, when a sparsifying front end is present

(with sparsity level ρ = 3.5%), the network robustness measurably improves, increasing accuracy

to 61.04% in the worst-case scenario. We note that the locally linear attack is stronger than

FGSM, and the iterative locally linear attack is competitive with single runs of the other iterative

attacks.

Tables 2.3 compares the front end defense with the state-of-the-art empirical defense of

[12] and the provable defenses of [62] and [65]. We run the adversarial training defense on

our network architecture and report on accuracies obtained. For [62] and [65], we use publicly

available pretrained models and report both empirical and certified performance. When the

attack budget is small (ϵ = 0.1), the sparsifying front end is competitive with existing defenses,

with better accuracies than the provable defense of [62]. At the higher budget of ϵ = 0.2,

the adversarial training defense of Madry et al provides better performance. The front end still
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(b) Accuracy vs. attack budget, with sparsifying front end (ρ = 3%).

Figure 2.7: Binary classification accuracies for 2-layer NN as a function of ϵ (with the iterative
attack using 1000 steps).

offers a measurable degree of robustness, with the advantage that it is computationally much less

expensive than adversarial training, which requires one to retrain the network with adversarial

images, resulting in an M -fold slowdown if we use M steps for the attack [12]. For ϵ = 0.3,

the performance of the sparsifying front end drops to 13.15%. This is not entirely surprising,

since our theoretical guarantees apply for a high SNR regime corresponding to relatively small
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Table 2.3: Comparison to other defenses on MNIST. For defenses with certified bounds, numbers in
blue denote lower bounds on adversarial accuracy. Numbers in black denote PGD attack accuracy with
100 steps and 100 random restarts.

Attack
budget Defense Adversarial

accuracy
Natural
accuracy

ϵ = 0.1 Sparsifying front end 92.18 98.97
Madry et al 95.83 99.54

Raghunathan et al 88.00, 65.00 95.72
Wong et al 97.33, 96.33 98.81

ϵ = 0.2 Sparsifying front end 61.04 98.97
Madry et al 92.95 99.20

ϵ = 0.3 Sparsifying front end 13.15 98.97
Madry et al 90.57 99.15

Wong et al 86.21, 54.34 88.84

perturbations. We believe this is because sparse projections alone, especially with an off-the-

shelf basis, are not “nonlinear enough” to discriminate between desired signal and perturbation

for large attack budgets.

We have also performed experiments that combine the front end with adversarial training,

with the result that accuracy improves from 61.04% (when using the front end alone) to 80.07%

at ϵ = 0.2. We note that there is no performance increase compared to pure adversarial training

if the same value of ϵ is used for both training and testing. However, sparsification seems to

provide some robustness to mismatch between training and test conditions; in particular, if

we test at a value of ϵ larger than what the network was trained for. For example, accuracy

increases from 35.65% (using adversarial training alone) to 69.04% when we train at ϵ = 0.1

and test at ϵ = 0.2. These results are obtained using a 100-step PGD attack with 100 random

restarts; in the training phase, we use a 40-step PGD attack as in [12].

CIFAR-10 results: Table 2.4 reports on CIFAR-10 accuracies with a 32-layer ResNet. Front

end sparsification is performed after converting color images to the (Y , Cb, Cr) decorrelated color
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Table 2.4: CIFAR-10 accuracies for ResNet-32 at ϵ = 2/255. Defenses are tested with a 1000-step PGD
attack.

Defense Adversarial
accuracy

Natural
accuracy

No defense 11.32 91.11
Sparsifying front end 39.60 62.30
Adversarial training 66.82 88.63
Front end + adv. training 67.21 88.02

space and then projecting to the wavelet basis. Since human vision is relatively less sensitive to

chrominance, we impose higher sparsity in the Cb and Cr axes.

When using the front end alone, we can improve robustness from 11.32% to 39.60% at

sparsity levels of (3.5, 1, 1)%. However, there is a drop in natural accuracy due to the high

level of sparsity imposed. We can significantly improve both metrics by combining the front end

defense, using less drastic sparsity levels, with adversarial training. Specifically, a front end with

sparsity levels (50, 25, 25)%, together with adversarial training using 5 steps of PGD, results

in 67.21% adversarial and 88.08% natural accuracies, respectively. We note that the accuracy

under attack is 0.4% better than using adversarial training alone.
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Chapter 3

Robust Compressive Front Ends for

Learning

This chapter explores the use of compressive sensing based front ends for downstream learning

and inference tasks. Section 3.1 provides a brief review of the compressed sensing principle.

Since measurement matrices with random binary coefficients are effective, compressive front

ends can be implemented in low-power hardware, as described in Section 3.2. Such an approach

should be robust to stochastic noise in hardware, and be amenable to design constraints that

may require localized computations. Section 3.3 presents a synthetic model of the measurement

process, followed by analysis of stochastic nonlinearities and row-wise computations, showing

that compressive information acquisition is robust to these impairments and constraints.

3.1 Background

A generic approach to dimension reduction for high-dimensional data with an unknown

low-dimensional structure is to use compressive transformations that pseudo-randomly project

observations to a low-dimensional subspace. Compressive sensing theory [98, 99] states that if
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an N -dimensional signal x is K-sparse in an orthonormal basis Ψ,

x = Ψs, ∥s∥0 ≤ K

then it can be recovered from O(K log(N/K)) projections which can be chosen independently

of the specific signal realization. Specifically, M -dimensional measurements y of the form

y = Φx = ΦΨx

are effective when the overall matrix ΦΨ satisfies the restricted isometry property (RIP).

Definition 1 A matrix A ∈ RM×N is said to satisfy the restricted isometry property of order

K if there exists δK ∈ (0, 1) such that

1− δK ≤ ∥Ax∥22
∥x∥22

≤ 1 + δK ∀x s.t ∥x∥0 ≤ K. (3.1)

For example, matrices with i.i.d. subgaussian entries can be shown to satisfy the RIP with

δK ≈ 0, with high probability, when M = O(K log(N/K)). Such measurement matrices, along

with recovery algorthms such as ℓ1 minimization [98], iterative hard thresholding (IHT) [100] and

orthogonal matching pursuit (OMP) [101], provide strong recovery guarantees. In particular,

elements of Φ can be chosen ±1 with equal probability, hence compressive signal representations

can be obtained at low complexity using binary matrix transformations. As shown by Eftekhari

et al. [21], it is also possible to satisfy the RIP with compressive projections which operate on

portions of the original vector (i.e., with block diagonal Φ), which is attractive for hardware

implementations and is directly relevant for our case study, as discussed later.
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Abstract — This paper presents an image compression 

system based on large-area electronics (LAE).  Typically, 
such operations are unviable in LAE due to the limitations of 
thin-film devices (i.e. low performance and high variability). 
The presented system overcomes this by performing 
compression using a random-projection matrix, requiring 
only simple, variation-tolerant circuits, implemented using 
amorphous-silicon (a-Si) thin-film transistors (TFTs). 
Integrated with an array of a-Si photoconductors 
representing an 80×80 active matrix for image sensing, up to 
80× compression of the 80 signal interfaces is performed. 
Image classification over numerical digits from the MNIST 
database [1] achieves average error rates of 2-25% for 8-80× 
compression (e.g. 7% at 20× compression).  As well, image 
reconstruction is demonstrated at up to 6× compression.   

Index Terms — Compressed sensing, image classification, 
thin film sensors, thin film transistors.  

I. INTRODUCTION 

LAE technology is based on processing semiconductor 
thin-films at low temperatures. This enables large numbers 
of sensors to be formed on substrates such as glass or 
plastic, which can be physically large, enabling integration 
of millions of sensors. However, processing sensor data 
requires CMOS ICs, since active thin-film devices, such 
as TFTs, suffer from low performance and high variability, 
making them unable to implement complex functions. 
This necessitates thousands of interfaces between LAE 
and CMOS, even when accessing sensors via an active 
matrix, thus limiting scalability in the number of sensors. 
In this paper, we present an approach that substantially 
reduces the number of interfaces, by performing image 
compression via a random-projection matrix composed of 
highly variable, low-performance TFTs.   

Fig. 1 shows the system block diagram. In an NR×NC 
active-matrix array of sensors, scanning row-by-row 
reduces the sensor interfaces from NR×NC to ~NC (plus a 
few row-scanning control signals). The NC-interface signal, 
designated as the vector ݔറ, is fed into a compression block, 
which further reduces it to an M-interface signal ݕറ, giving 
a compression factor of NC/M. Transmitted to the CMOS 
domain, ݕറ  can then be used to reconstruct the image; 
though, in this work our primary interest is in applications 
requiring classification of the sensed image.   

 
Fig. 1. Architecture of image sensing and compression system. 
 

Previously, we presented a system [2] that directly 
applies TFT-implemented machine-learning classifiers to 
sensor data. However, this requires specialized circuitry to 
program and store analog voltages in the TFT classifiers. 
Conversely, the proposed system needs only very simple, 
variation-tolerant TFT circuits with no programming, and, 
applied in conjunction with an active matrix, achieves 
greater reduction in the number of interfaces.  

II. OVERVIEW OF THE APPROACH 

Many image compression algorithms (e.g. JPEG) utilize 
a transform domain, such as the 2-D discrete-cosine 
transform (DCT), where the image information is sparse 
(i.e. has a small number of nonzero transform coefficients). 
However, DCT computation is too complex to implement 
using TFTs.  Instead, we perform compression via a 
random-projection matrix.  That is, the compressed output 
 റ is derived from linear combinations corresponding toݕ
multiplication of the signal ݔറ with a matrix, designated as 
઴. The elements of ઴ are set to ±1 randomly with a 
uniform probability. Theoretical work has shown that 
compression via such random projections can preserve the 
inner product between vectors, which is precisely the 
information needed by certain classification algorithms [3]. 
This suggests that image detection can be performed 
directly on the compressed outputs. Compression is now 
reduced to simple add/subtract operations over the signal 
samples with an implied tolerance to random variations, 
making implementation via TFT circuits possible.  
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Figure 3.1: Architecture of image acquisition system [8].

3.2 Image Acquisition System

A practical example of a low-power compressive front end is the LAE-based image acquisition

platform [8] in Fig. 3.1. Images are projected onto an array of photoconductor sensors, and

illumination levels are sensed as voltages. The matrix of sensors is then scanned row-by-row,

and each row x is fed into a compression block. The compression matrix, which is the same

for each row, consists of ±1 elements, implemented via highly variable, low-performance thin-

film transistors (TFTs). The compressed signal y is collected for all rows and then used for

classification and reconstruction tasks.

There are two sources of noise in the measurement process (Fig. 3.2): variations in the

image sensors, and variations in Id vs. Vgs curves across TFTs in the compression block.

3.3 Synthetic Model

We model the nonlinear measurement process as follows:

1. Transform each row of the image x to the range [10, 22]
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Figure 3.2: Sources of noise in the measurement process: (a) Variation in the output voltage
of image sensors, for low and high input illumination, (b) Id vs. Vgs curve for TFTs in the
compression block, showing variation over 80 devices.

Measured Data

Synthetic Data

Figure 3.3: Images reconstructed from 5x compression: synthetic vs. measured data.

2. Add piecewise uniform noise, with parameter c (nominal value = 5)

x̃ =


u(10, 10 + c) x ≤ 10 + c

u(x− c/2,x+ c/2) 10 + c ≤ x ≤ 22− c

u(22− c, 22) 22− c ≤ x

where u(a, b) denotes a realization of the uniform random variable U(a, b).

3. Perform random scaling from a set of 80 functions, and then compress:

y = ΦfR(x̃)
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Figure 3.4: Classification performance: synthetic vs. measured data.

Overall, this results in the following synthetic model for each row of the image:

y = ΦfR(x+ n(x)) (3.2)

3.3.1 Verification with Measured Data

We first attempt to verify the synthetic model via comparisons of reconstruction and classi-

fication performance with measured data. Measurements are available for 1500 MNIST images

(resized to 80×80). We perform RBF-SVM classification on the measured and synthetic data us-

ing 1000 training and 500 test images, and reconstruction via the GPSR algorithm [102] with the

assumption that the data is sparse in the 2D-DFT basis. Reconstruction performance (Fig. 3.3)

is qualitatively similar for both measured and synthetic data, while classification performance

(Fig. 3.4) indicates that the synthetic model is pessimistic.

Now we proceed to analyze the impact of hardware impairments. We divide our analysis

into two parts: impact of row-by-row compression, and stochastic nonlinearities.

3.3.2 Row-by-row compression

Eftekhari et al. [21] study block diagonal compressive matrices operating on portions of the

signal, and show that RIP properties depend on the characteristics of the basis in which the signal

is sparse. These results are directly relevant here, since we consider row-by-row compressive
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Figure 3.5: Three types of compression matrices.

measurements for an image. Specifically, we consider 3 types of binary compression matrices

(Fig. 3.5): (1) Compression on the full image; (2) row-by-row compression with independent

matrices across rows; (3) row-by-row compression with the same compressive matrix for each

row.

The results in [21] show that matrices of types 2 and 3 can satisfy RIP with high probability,

but the minimum number of measurements required scales linearly with the coherence of the

sparsifying basis for type 2, and with its block coherence for type 3. Definitions can be found in

Appendix B.

While we do not exactly know the sparsifying basis for images, we can gain design intuition
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Figure 3.6: CDF of ∥Φx∥/∥x∥ over 60,000 MNIST images (upscaled to 80× 80)
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Figure 3.7: Images reconstructed from 5x compression with different matrix types.

by assuming that images are sparse in the 2D-DFT basis. The 2D-DFT basis has small coherence

and large block coherence (see Appendix), so that type 2 matrices (independent across rows)

are expected to perform better than type 3 matrices (used in the experimental system). We test

this hypothesis by plotting the CDF of ∥Φx∥/∥x∥ over 60,000 MNIST images (Fig. 3.6). We

see that ∥Φx∥/∥x∥ deviates from 1 when the compressive matrix is the same for each row, but

that use of independent matrices leads to near-RIP behavior.

Next we compare the 3 matrices with respect to GPSR reconstruction (Fig. 3.7) and linear

SVM classification, using 60,000 images for training and 10,000 for testing (Fig. 3.8). Recon-

struction and classification results show the same trend as for geometry preservation, especially

at higher compression factors.

3.3.3 Stochastic nonlinearities

In order to derive insight into how the nonlinearities are impacting performance, we analyze

the synthetic noise z = ΦfR(x + n(x)) − Φf0(x) by plotting a histogram over 60,000 MNIST
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Figure 3.8: Classification performance for different matrix types.
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Figure 3.9: Histogram of synthetic noise.

images (Fig. 3.9). We observe the close match with a Gaussian, and therefore propose a

simplified noise model:

y = Φf0(x) + nGauss (3.3)

The variance of nGauss is estimated from the histogram.

To verify our simplified model, we compare reconstruction and classification performance

(Figs. 3.10 and 3.11), via GPSR reconstruction and linear SVM classification with 60,000 MNIST

images for training and 10,000 for testing. (Images are compressed using matrix type 2). Classi-

fication results indicate that the Gaussian model is slightly optimistic, but it is still a reasonable

approximation that provides insight into the effect of stochastic impairments.

Measured Data

Synthetic Data

Synthetic (TFT) 
 Model

Gaussian  
Model

Figure 3.10: Images reconstructed from 5x compression (matrix type 2): synthetic vs. Gaussian
model.
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Figure 3.11: Classification performance: synthetic vs. Gaussian model.
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Chapter 4

Robust RF Signatures

This chapter studies the robustness of radio frequency (RF) signatures that can distinguish be-

tween devices sending exactly the same message, by focusing on subtle hardware impairments

unique to each device. Our goal is to extract such signatures in a protocol-agnostic fashion via

supervised learning. Section 4.1 provides background on nonlinear effects that can contribute

towards such signatures, along with a discussion of prior work in this area. We describe the

complex-valued network architecture we use in Section 4.2 and explore the effect of different

design choices for data from two wireless protocols: WiFi and ADS-B. In Section 4.4, we demon-

strate the pitfalls of usng the entire packet to learn signatures, in which case networks rely on

easily spoofed components of data. Finally, the impact of noise on performance is detailed in

Section 4.3, motivating the use of noise augmentation to learn robust signatures.

4.1 Background

A generic model for a radio frequency (RF) wireless transmitted signal (shown in Fig. 4.1)

is as follows:

sRF (t) = sc(t) cos 2πfct− ss(t) sin 2πfct
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Figure 4.1: Block diagram of a wireless communication system.

where fc denotes the carrier frequency, or the frequency of the electromagnetic wave that “carries”

the information-bearing waveforms sc (riding on the cosine of the carrier) and ss (riding on the

sine of the carrier). Typical parameters for WiFi, for example, are fc of 2.4 or 5.8 GHz, and sc,

ss having bandwidths of 20 MHz.

The receiver strips the carrier away to recover sc(t) and ss(t), and then processes them to

decode the information bits that they carry. For a typical wireless channel, there are multiple

paths from transmitter to receiver, so multiple delayed, attenuated and phase-shifted versions

of the transmitted waveform sum up at the receiver. These transformations are best modeled

by thinking of the information-bearing waveform as a complex-valued signal, s(t) = sc(t) +

jss(t), where j =
√
−1. The effect of a wireless channel is then modeled as a complex-valued

convolution. The carrier frequency used at the receiver is not precisely the same as at the

transmitter, and the impact of such carrier frequency offset (CFO) is also most conveniently

modeled in the complex domain.

While RF processing is designed to produce as little distortion as possible, in practice, there

are nonlinearities, typically with some characteristics unique to each transmitter because of man-

ufacturing variations, which can in principle provide RF signatures. Variations in components

such as DACs and PAs are inevitable even for transmitters manufactured using exactly the same

process. Transistors, resistors, inductors, and capacitors within a device vary around nominal

values, typically within a designed level of tolerance, and the goal is to translate the resulting
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Figure 4.2: (a) Scatterplots of noisy QPSK constellation points with and without I-Q imbalance,
(b) Example of DAC non-ideality, (c) Example variations of PA nonlinearities across transmit-
ters.

variations in transmitter characteristics into a device signature. We discuss here some example

effects, depicted in Figure 4.2, that may contribute towards such a signature.

• I-Q Imbalance: This results from mismatch in the gain and phase of the in-phase (I) and

quadrature (Q) signal paths for upconversion. The phase of the cosine and sine of the

carriers may not be offset by exactly π/2, and the path gains along the branches may not

be equal.

• Differential Nonlinearity (DNL) due to DAC: DNL is defined as the discrepancy between

the ideal and obtained analog values of two adjacent digital codes due to circuit component

non-idealities [103].

• Power Amplifier Nonlinearity: Power amplifiers (PAs) are ideally linear, but start saturat-

ing at high input voltages. There is a significant literature on PA modeling [104, 105, 106,

107], as well as on the impact of PA nonlinearities on communication systems with high

dynamic range such as OFDM [108, 109]. A common model is a memoryless polynomial
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fit (typically up to third order) of the form:

y(t) = a1x(t) + a2x
2(t) + a3x

3(t) + ...+ anx
n(t) (4.1)

Recent promising results on wireless fingerprints for PA nonlinearities, extracted using

DNNs, are reported in [110].

Of course, we seek to devise DNNs that extract signatures based on a combination of char-

acteristics such as those in Figure 4.2. It is possible to extract signatures from either the

transient (microsecond-length) signals transmitted during the on/off operation of devices, or

via the steady-state packet information present in between the start and end transients. We

focus here on work that employs the steady-state method since it is of more practical utility [25].

Work in this area can be broadly divided into two categories: traditional approaches that use

handcrafted features as device characteristics, and techniques that employ machine learning to

obtain fingerprints.

4.1.1 Traditional approaches

Remote physical device fingerprinting using small, microscopic deviations in device hardware

called clock skews was introduced in [111]. The clock skew of a single device was observed to be

fairly consistent over time, but clock skews varied significantly across devices, enabling finger-

printing. For wired devices in wide area networks, [111] estimated clock skews using TCP/IP

packet headers. This technique was extended by [26] to wireless local area networks where

more accurate measurements are possible from the Time Synchronization Function timestamps

in IEEE 802.11 frames. However, these two detection methods were defeated by [27] which

devised attacks to spoof the clock skew of a fake device to mimic that of a real one. Using more

parameters such as jitter and fitting errors to measure the authenticity of the skew can mitigate

these spoofing attempts. More recently, [32] proposed using the carrier frequency offset (CFO)
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as a long-term device fingerprint, with the offset estimated using channel state information

(CSI) measurements. While application layer spoofing of CFO is difficult [32], using the CFO

as a mechanism for physical security has two key drawbacks: first, it does not provide a stable

signature, since the oscillator frequency drifts over time; second, an adversary manipulating

baseband signals can easily alter the CFO.

4.1.2 Machine learning based approaches

The first use of discriminatory classifiers for fingerprinting was in [25], which used a k-nearest

neighbor (k-NN) classifier after preprocessing WiFi data to extract the log-spectral-energy of

the preamble. A different preprocessing step was proposed in [24], involving demodulation error

metrics such as frequency offset and I/Q offset, followed by a support vector machine (SVM).

For the ADS-B air traffic control protocol, [28] performed k-means clustering on features based

on inter-arrival times of aircraft position, velocity and identification messages. A similar inter-

arrival approach was shown in [29] to be effective for WiFi fingerprinting, with a real-valued

neural network (NN) operating on the extracted features. In [30], the carrier phase offset of

ADS-B signals was used as input to an NN to learn fingerprints. For IEEE 802.15.4 ZigBee

devices, [31] proposed the use of a real-valued CNN operating on an error signal obtained by

subtracting out the ideal estimated signal from received data. These techniques work well, but

they rely on protocol-specific signal modeling and preprocessing prior to learning, in contrast to

our approach.

A purely learning based approach was studied in [33, 112], albeit for modulation recognition

and not device fingerprinting. Each packet was sliced into multiple training examples using

sliding windows, with the real and imaginary parts of complex data treated as independent

channels. These were then input to a real-valued CNN capable of recognizing different analog

and digital modulation types. The use of a real-valued CNN for WiFi device fingerprinting

61



Robust RF Signatures Chapter 4

was studied in [34], with sliding window preprocessing similar to prior work. As discussed

in Section 1.3, our proposed method of learning complex-valued representations has potential

generalization benefits over real-valued approaches [35].

4.2 Architecture

4.2.1 Overview

We use neural networks with complex-valued weights and biases to learn features from

complex-valued wireless signals. Such complex-valued embeddings have found use in speech,

music and vision tasks [113, 9]. Here we employ the framework of [9] which performs complex

backpropagation by using partial derivatives of the cost with respect to the real and imaginary

parts of each parameter. We make use of 1D complex convolutional layers with the following

choices of activation functions (depicted in Fig. 4.3):

• ModReLU - This function preserves input phase and affects only the absolute value. Here

b is a learned bias.

ModReLU(z) = max(|z| − b, 0) ej z .

• CReLU - Unlike ModReLU this function does not preserve phase, with separate ReLUs

applied on the real and imaginary parts of the input. The phase of the output is therefore

limited to [0, π/2].

CReLU(z) = max(Re(z), 0) + jmax(Im(z), 0).

The loss in phase information can be potentially compensated by using filters with a larger

number of channels that are capable of providing phase derotation.
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Figure 4.3: ModReLU and CReLU activation functions in the complex plane. ModReLU pre-
serves the phase of all inputs outside a disc of radius b, while CReLU distorts all phases outside
[0, π/2] (the first quadrant). Figure adapted from [9].

Fig. 4.4 depicts a sample complex convolutional architecture for ADS-B signals. We use a series

of complex 1D convolutions followed by an | · |2 layer to convert complex representations to

real ones, and then a series of real-valued layers after a temporal averaging layer to obtain the

fingerprint.

4.2.2 Performance

We provide results for an external database for two different wireless protocols:

• WiFi data containing a mix of IEEE 802.11a (fc = 5.8 GHz) and 802.11g (fc = 2.4 GHz)

from commercial off-the-shelf devices, with a signal bandwidth of 20 MHz.

• ADS-B narrowband air traffic control signals (fc = 1.09 GHz, narrowband) collected in

the wild from 100 airplanes.

We start by using only the preamble for fingerprinting, with signals normalized to unit power.

When sampled at 20 MHz, the length of the preamble is 320 I/Q samples for both protocol

types.

We report accuracies for the following networks:
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Figure 4.4: Complex-valued 1D CNN architecture for ADS-B signals.

• ADS-B : 100C 40× 20− 100C 5× 1− | · |2 − Avg − 100D.

• WiFi : 100C 20× 10− 100C 10× 1− | · |2 − Avg − 100D.

The notation should be read as follows:

• ⟨number of filters⟩ C ⟨convolution size⟩ × ⟨stride⟩

• ⟨number of neurons⟩ D

where C denotes a convolutional layer and D a fully connected layer, with complex-valued layers

prior to the | · |2 layer and real-valued layers afterward. ‘Avg’ denotes a temporal averaging layer.

We train networks for 200 epochs with a batch size of 100, using the Adam optimizer with default

hyperparameters and ℓ2 regularization constant of 10-3.

We achieve 99.53% fingerprinting accuracy for 19 WiFi devices without channel distortion,

using 200 samples per device for training and 100 for testing. For the ADS-B protocol, we

obtain 81.66% accuracy with 100 devices (using 400 samples per device for training and testing).

Fig. 4.5 compares the convergence of ModReLU and CReLU architectures. Both activation

functions have similar convergence time, with ModReLU resulting in slightly higher accuracy

for both the training and test sets.

Table 4.1 compares the performance of complex-valued and real-valued networks (for which

real and imaginary parts of data are treated as different channels). If we fix the number of

feature maps, a complex filter would contain twice as many parameters as an equivalent real
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Figure 4.5: Evolution of training accuracy over epochs for ModReLU and CReLU architectures
(ADS-B, 100 devices). ModReLU provides a small (5%) gain in train and test accuracies over
CReLU, with similar convergence behavior.

filter. Therefore, we consider real networks where the number of channels is scaled by factors of

1, 1.4 and 2. We find that the complex network outperforms its real counterparts, with a gain

in accuracy of 6.66% for ADS-B and 1.64% for WiFi.

Fig. 4.6 visualizes the first and second convolutional layer of the ADS-B architecture, show-

ing the input signal that maximizes the activations of each filter. Since transmitter-characteristic

nonlinear effects manifest themselves primarily in short-term transitions of amplitude and phase,

the filters in the first layer can capture these effects by spanning a small multiple of the symbol

Table 4.1: Performance comparison between networks with complex and real weights (when
using only the preamble).

Dataset Network type Accuracy No. of real
parameters

ADS-B Complex 81.66 128,400
Real 73.84 78,400
Real (1.4x) 73.25 133,680
Real (2x) 75.00 246,600

WiFi Complex 99.53 216,219
Real 97.32 116,219
Real (1.4x) 97.53 217,899
Real (2x) 97.89 430,419
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Figure 4.6: Visualizations of the first and second convolutional layer for ADS-B (ModReLU
architecture). Each row shows the input signal that maximizes the activation of a particular
filter, computed using gradient ascent starting from random noise. Convolutional filters in the
first layer span 2 input symbols; filters in the second layer span 6 symbols.

interval (2 symbols). To compute these signals, we start from randomly generated noise and

use 200 steps of gradient ascent to maximize the absolute value of each filter output, with the

signal normalized to unit power at each step.

4.3 Resilience to Spoofing of ID

In this section, we investigate the potential benefits to using post-preamble portions of the

signal and analyze the robustness of our network to the presence of device ID information in such

portions. We would like the network to focus on nonlinear transmitter characteristics embedded

in the packets rather than the device ID which can be easily spoofed. We expect these nonlinear

features to be stable over time, as compared to the device ID which is localized in time. Here

we focus on the ADS-B protocol and begin by describing its packet structure.
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4.3.1 ADS-B Packet Structure

We consider two different types of ADS-B packets: Mode S and Mode S Extended, depicted

in Fig. 4.7. For both packet types, the first 16 symbols consist of a preamble that is identical

across devices, while symbols 17-40 contain the ICAO address which is unique to each device.

The two modes have different packet lengths, with 64 symbols in Mode S and 120 symbols

in Mode S Extended. For this reason, we prune Mode S Extended packets to 64 consecutive

symbols, using an offset to determine the first selected symbol. We consider three different

scenarios for the offset: an offset of zero, a randomly chosen offset and a fixed offset where we

choose the last 64 symbols.

4.3.2 Performance

Performance for each scenario is shown in Fig. 4.8. We report on accuracies for 100 devices,

using 400 samples per device for training and testing. We obtain a very high accuracy of 99.29%

when we do not use any offset, but this reduces to 65.64% and 75.49% in the scenarios with

offsets. The picture becomes clearer when we examine the performance for Mode S and Mode

S Extended: the two packet types have identical accuracies in the scenario without offset, but

in the other scenarios, Mode S dominates performance. Such a temporal dependence indicates

that the network is not learning the true nonlinearities, but rather focusing on device IDs from

the payload for Mode S. It is easy to obtain 99% accuracy by restricting attention to just the

ICAO address (which can be easily spoofed), which is a clear indicator of “cheating”.

A natural approach to prevent such involuntary cheating might be to delete symbols 17-40

(which correspond to the ICAO address). However the presence of parity bits towards the end

of the packet makes this approach insufficient. One can observe that a combination of parity

and preamble sections can potentially reconstruct the ICAO address, and indeed in practice

we obtain artificially high accuracies similar to prior scenarios. In contrast, when we restrict
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attention to the preamble alone, accuracy decreases to 81.66%, which is still much better than

pure chance. Another approach might be to set the kernel size of the first convolutional layer

to 2 symbols, so as to prohibit the network from learning the ICAO address even if we allow

access to the entire packet. This reduces accuracy to 97.28%, but it is still much higher than

when we use only the preamble. At first glance it may seem like small filter sizes at the first

layer are sufficient to prevent cheating, but one just needs to look at the second layer to see that

its filters actually extend over 6 symbols.

These experiments show that allowing networks to access ID information is unwise: networks

“cheat” whenever given the chance and ignore transmitter-characteristic nonlinearities in favor

of localized device information. We can mitigate this by allowing access to only the preamble,

in which case we obtain the nonlinear fingerprints we are looking for.

4.4 Impact of Noise

This section studies the effect of noise on classification accuracy. We first study the impact

of real-world noise and then discuss noise augmentation strategies to enhance performance.

Preamble
16 bits

ICAO address
24 bits

Parity
24 bits

Preamble
16 bits

ICAO address
24 bits

Message: (x, y, z), v

56 bits

Parity
24 bits

Figure 4.7: Packet structure of ADS-B signals. Top: Mode S; bottom: Mode S Extended. The
first 16 symbols of both packet types are device-independent, while the next 24 symbols are
highly device-dependent.
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Figure 4.8: Classification accuracies for ADS-B (100 devices) when using post-preamble data.
Here we use architecture 100C 100×50 – | · |2 – 100C 10×2 – Avg – 100D. For details on
notation, see Section 4.2.2.

4.4.1 Impact of naturally occurring noise

We study the effect of different levels of noise in the training and test sets, using ADS-B

data with 100 devices in each scenario. When we cheat by using the ICAO address as described

in the previous section, we obtain artificially high accuracies that are independent of the noise

level, indicating that such a network can be easily spoofed even when the data is noisy.

When we use only the preamble, we observe a surprising trend (shown in Table 4.2): per-

formance improves when the training data is noisier than the test data. In contrast, when

the training SNR is higher than the test SNR, we obtain high training accuracies but low test

accuracies. While this result might seem initially counter-intuitive, it is a reasonable hypothesis

that noise forces the network to learn features that are more robust to perturbations.
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4.4.2 Noise augmentation

We perform noise augmentation by inserting various levels of additional white Gaussian

noise (AWGN) in the training and test sets, and report on accuracies as a function of injected

noise levels in Table 4.3. Here SNRaug denotes the signal to artificially injected noise ratio, so

that SNRaug = ∞ corresponds to no noise injection. We consider two datasets: 100 ADS-B

devices corresponding to the first row of Table 4.2, with 400 signals per device for training

and testing; and 100 WiFi devices in an outdoor environment, with 800 signals per device for

training and 200 for testing.

Noise insertion yields significant performance benefits, with 19.83% improvement for ADS-B

and 7.64% improvement for outdoor WiFi. We note, however, that it is important to add noise

to both the training and test sets. Adding noise to only the training set can result in poor

performance: for the WiFi data, at 20 dB train SNRaug, test accuracy drops to 2.09% (with

76.32% training accuracy).
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Table 4.2: Accuracy as a function of SNR for ADS-B (100 devices), using only the preamble.
Here low SNR corresponds to <2 dB, medium SNR to 2-5 dB and high SNR to >5 dB.

Test SNR Train SNR Test accuracy Train accuracy

Low High 32.29 90.50
Medium 51.26 84.83

Medium High 68.85 90.80
Low 71.13 80.51

High Medium 81.66 83.71
Low 73.48 80.53

Table 4.3: Effect of noise augmentation on ADS-B and outdoor WiFi fingerprinting. The ADS-B
dataset corresponds to the first row of Table 4.2 (with low test SNR, high train SNR). Noise
injection improves ADS-B performance from 32.29% (which corresponds to train SNRaug =
test SNRaug = ∞, i.e. no noise insertion) to 52.12% when train SNRaug = 10 dB and test
SNRaug = 50 dB. Outdoor Wifi accuracy improves from 61.73% to 69.37% .

(a) ADS-B (100 devices)

Train
SNRaug

Test
SNRaug 20 dB 50 dB 100 dB ∞

10 dB 48.39 52.12 51.89 43.28

15 dB 52.12 50.75 51.98 40.63

20 dB 35.25 47.63 45.44 15.29

25 dB 36.38 45.74 45.29 11.82

∞ 25.67 33.55 34.77 32.29

(b) WiFi (100 devices, outdoor environment)

Train
SNRaug

Test
SNRaug 20 dB 50 dB 100 dB ∞

10 dB 61.65 62.21 61.90 3.04

15 dB 63.37 62.92 61.00 2.97

20 dB 69.37 69.06 67.83 2.09

25 dB 68.53 69.02 68.17 2.87

∞ 29.90 31.45 30.93 61.73
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Conclusions and Future Work

5.1 Sparsifying Front Ends

Our results make the case that sparsity is a crucial tool for limiting the impact of adversarial

attacks on neural networks. We have also shown that a “locally linear” model for the network,

an implicit premise behind state-of-the-art iterative attacks, provides key design insights, both

for devising and combating adversarial perturbations. Our proposed sparsifying front end makes

an implicit assumption on the generative model for the data that we believe must hold quite

generally for high-dimensional data, in order to evade the curse of dimensionality. We believe

that these results are the first steps towards establishing a comprehensive design framework,

firmly grounded in theoretical fundamentals, for robust neural networks, that is complementary

to alternative defenses based on modifying the manner in which networks are trained.

While many state of the art defenses are based on modifying the optimization involved

in training the overall neural network, ours is a bottom-up approach to robustness which is

potentially more amenable to interpretation, and to theoretical guarantees based on a statistical

characterization of the input. However, much further work is required in order to realize this

potential. First, developing sparse generative models matched to various datasets is required
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for design of sparsifying front ends. Even for the simple MNIST dataset considered here, the

orthogonal wavelet basis considered here is only a first guess, and we believe that it can be

improved upon by learning from data, and by use of overcomplete bases. Second, our placeholder

scheme of picking the largest K coefficients could be improved by devising computationally

efficient and data-adaptive techniques for enforcing sparsity. Lastly, while our work highlights

the role of sparse projections in attenuating perturbations, our theoretical framework applies to

a high SNR regime corresponding to relatively small attack budgets. In practice, the accuracy

with our defense deteriorates for large attack budgets. Thus, sparse projections alone are not

enough to provide robustness against large adversarial perturbations, and additional ideas are

needed to construct a bottom-up approach that is competitive with the current state of the art

defense based on adversarial training of the entire network.

While we have restricted attention to simple datasets and small networks in this work in

order to develop insight, the design of larger (deeper) networks for more complex datasets

is our ultimate objective. Our preliminary results for CIFAR-10 with a 32-layer ResNet are

encouraging, showing that some level of sparsification, along with adversarial training, yields

slightly better accuracy under attack than adversarial training alone. However, detailed insight

into the front end and network structure required to attain robustness remains a wide open

research problem.

5.2 Compressive Front Ends

We show that compressive projections are robust to real-world hardware nonlinearities via

our case study of an LAE-based image acquisition system. Our synthetic model, together

with guidance from recent theory on block diagonal compressive matrices [21], enables us to

explore design tradeoffs. Specifically, spatially localized compressive projections, which are

easier to implement, can be highly effective, as long as the compressive matrices are appropriately
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designed (e.g., independent across rows of an image).

5.3 Robust RF Signatures

In this work, we have demonstrated the efficacy of complex-valued CNNs for wireless fin-

gerprinting. This technique does not rely on signal domain knowledge and, as illustrated by

our experiments with WiFi and ADS-B data, can be used across diverse wireless protocols. We

show the vulnerability of the approach to “cheating” using transmitter ID when using the entire

message to extract the fingerprint. When using the preamble alone, reasonably high accuracies

are obtained, and performance is significantly enhanced by noise augmentation. Open issues

worth investigating include (a) provably non-cheating, protocol-agnostic strategies that use the

entire packet, (b) automatic extraction of the preamble given data corresponding to any proto-

col, (c) utilizing multiple packets for decisionmaking; and (d) developing detailed insight into

the nature of the signatures extracted, and the impact of noise augmentation.
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Additional Empirical Results

SNR of sparsifying front end

Figure A.1 reports on the overlap in theK-dimensional supports of x and x+e for attacks on

linear SVM and CNN. We can observe that the SNR condition in Section 2.3.3 is approximately

satisfied for most of the images.

Figure A.4 depicts perturbed images with various support overlaps for the SVM, showing

an example in each scenario where the defense succeeds and another where the defense fails.

For the fraction of images with low SNR, the adversary can cause significant image distortion

by shifting the support of the K selected basis functions, but however such distortions do not

necessarily lead to misclassification. As we can observe from the histograms, the distribution of

SNRs for images where the defense fails is almost identical to those for which it succeeds.

SNR of ReLU units

Figure A.2 reports on the percentage of ReLU units that flip in one iteration of the iterative

locally linear attack with δ = 0.01. When the defense is present, the high SNR condition in
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(a) Support overlap for white box attack on linear SVM with ϵ = 0.1 and K = 15.
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(b) Support overlap for PGD attack (with 100 random restarts) on CNN with ϵ = 0.2 and K = 27.

Figure A.1: Histograms of support overlap, i.e. |SK(x) ∩ SK(x+ e)| for attacks on linear SVM
and CNN. Plots are normalized to be probability densities, i.e. the area under each histogram
sums to 1.
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(b) With sparsifying front end (ρ = 3.5%).

Figure A.2: Histograms of the percentage of ReLU units that flip in a single step of the iterative
locally linear attack with δ = 0.01, for the 4-layer CNN on MNIST. Plots are normalized to be
probability densities.
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Figure A.3: Plots showing the mean percentage of ReLU units that flip in each attack step, for
a 1000-step iterative FGSM attack with δ = 0.01 and ϵ = 0.2 on the 4-layer CNN with defense
(ρ = 3.5%). Error bars represent 1 standard deviation from the mean.
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Section 2.5.2 is approximately satisfied. Figure A.3 shows the evolution of the SNR condition

with attack step for a 1000-step iterative FGSM attack. We can observe that on average, the

percentage of ReLUs that flip in each iteration stays relatively small over attack iterations.

However, as the next section shows, it could be better for the adversary to try to make

the most of the network’s nonlinearity, for example by using iterative attacks with random

initializations (PGD), so as to cause a large number of switches to flip to maximize the impact

of the second term in Eq. (2.11), Section 2.5.2.

More details on attack performance

Table A.1 reports on attack performance for the 3 versions described in Section 2.6.2: one

that uses the backward pass differential approximation (BPDA) technique of [51] to approximate

the gradient of the front end as 1, a second version where the gradient is calculated as the

projection onto the top K basis vectors of the input, and a third version where we iteratively

refine the projection. For iterative attacks, we refine the projection for 20 steps within each

attack step.

For PGD, we use 100 random restarts and report accuracy over the most successful restart(s)

for each image. We report on the effect of changing the per-iteration budget and number of

steps for iterative FGSM in Table A.2, with little change in accuracies beyond 100 iterations.

Effect of sparsification on performance without attacks

Sparsification causes a slight performance hit in the accuracy without attacks: for the 4-layer

CNN, accuracy reduces from 99.31% to 98.97%. For the 2-layer NN, we report implicitly on

this effect in Figure 2.7 (the ϵ = 0 points): the accuracy goes from 99.33% to 99.28%. We note

that sparsity has also been suggested purely as a means of improving classification performance
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Defense success. Support overlap |SK (x) ∩ SK (x + e)| = 15, K = 15.

(a) Defense success, high support overlap.

x e x + e

PK (x) PK (x + e)− PK (x) PK (x + e)

Defense success. Support overlap |SK (x) ∩ SK (x + e)| = 9, K = 15.

(b) Defense success, low support overlap.
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Defense failure. Support overlap |SK (x) ∩ SK (x + e)| = 15, K= 15.

(c) Defense failure, high support overlap.
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PK (x) PK (x + e)− PK (x) PK (x + e)

Defense failure. Support overlap |SK (x) ∩ SK (x + e)| = 9, K= 15.

(d) Defense failure, low support overlap.

Figure A.4: Sample images with low and high support overlap, for white box attack on the
linear SVM with ϵ = 0.1 and ρ = 2%. The first row of each subfigure shows the original image,
the perturbation and the attacked image, while the second row shows the effect of sparsification.
Here PK(x+ e) denotes the projection of x+ e onto its own K-dim. support i.e. SK(x+ e).
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Table A.1: Multiclass classification accuracies for 4-layer CNN on MNIST, with ϵ = 0.2 for
attacks and ρ = 3.5% for defense. Iterative attacks were run for 1000 steps of δ = 0.01, except
for the attacks marked ∗ which use 100 steps of δ = 0.05. Projections were iterated for 20 steps
within each attack step.

BPDA
of 1 Projections Iterated

projections

Locally linear attack 82.02 86.08 78.27
FGSM 85.35 88.18 85.84

Iter. locally linear attack 76.00 77.27 74.38∗
Iter. FGSM 74.97 79.88 75.33
Momentum iter. FGSM 74.79 73.55 —
PGD (100 restarts) 64.62∗ 65.48∗ 61.04∗

Table A.2: Iterative FGSM accuracies (ϵ = 0.2) as a function of the per-iteration budget δ and
number of steps used, for the 4-layer CNN with front end (ρ = 3.5%), using BPDA of 1.

δ = 0.01 δ = 0.05 δ = 0.1

20 steps 80.84 75.52 75.32
100 steps 75.13 75.17 75.02
1000 steps 74.97 75.10 75.02
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(e.g., see [94]) and hence believe that with additional design effort, the performance penalty will

be minimal.

Experiments on the Carlini-Wagner ℓ2 attack

Since the Carlini-Wagner ℓ2 attack does not have a fixed bound on the distance between

adversarial and true images [46], we report on histograms of distances in Figure A.5 (for the

4-layer CNN). We set the confidence level of the attack to 0, which corresponds to the smallest

possible ℓ2 distance in the C&W attack formulation. The final classification accuracy is 0.92%,

but 94.18% of the perturbed images lie outside the ℓ∞ budget of interest (ϵ = 0.2). The attack

is successful in terms of causing misclassification, but since it is an ℓ2 attack, it fails to produce

perturbations conforming to the ℓ∞ budget. We generate the attack using the CleverHans

library (v2.1.0), with default values of attack hyperparameters (listed below) and a backward

pass differential approximation (BPDA) [51] of 1 for the gradient of the front end.

learning_rate = 5e-3, binary_search_steps = 5, max_iterations = 1000,

initial_const = 1e-2.
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(b) ℓ∞ distance, with front end (ρ = 3.5%).
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(d) ℓ2 distance, with front end (ρ = 3.5%).

Figure A.5: Histograms of adversarial examples generated by the C&W ℓ2 attack on the 4-layer
CNN.
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Appendix B

Coherence of the 2D Fourier Basis

Consider an image X ∈ RL×L. If W is the 1D-DFT matrix of size L× L, then the 2D-DFT of

X is

F2(X) =WXW.

Vectorizing, we get

vec(F2(X)) = vec(WXW ) = (W ⊗W )vec(X),

using the property vec(ABC) = (CT ⊗A)vec(B), where ⊗ is the Kronecker product. Hence the

2D-DFT matrix of size L2 × L2 is:

W2 =W ⊗W. (B.1)

Now we compute the coherence and block-coherence as defined in [21]. Assume that W2 is

of size N ×N and there are J blocks in the compressive matrix. The coherence of W2 is defined
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as the similarity between W2 and the canonical basis:

µ(W2) =
√
N max

i,j
|⟨W2(i), ej⟩|

=
√
N max

i,j
|W2(i, j)|

= 1, (B.2)

where ej denotes the jth column of the canonical basis for CN .

The block-coherence γ(W2) is defined as

γ(W2) =
√
J max

1≤n≤N
∥[U1 en U2 en . . . UJ en]∥,

where W2 = [UT
1 , ...U

T
J ]

T and Uj ∈ C
N
J
×N . The second term is essentially the maximal spectral

norm when any column of W2 is reshaped into an (N/J) × J matrix. Now the entries of the

first column of W2 all equal 1/
√
N , so when reshaped into matrix form its spectral norm is 1.

Hence the block-coherence of W2 is

γ(W2) =
√
J. (B.3)
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