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Abstract

Objective.—In biomagnetic signal processing, the theory of the signal subspace has been applied 

to removing interfering magnetic fields, and a representative algorithm is the signal space 

projection algorithm, in which the signal/interference subspace is defined in the spatial domain as 

the span of signal/interference-source lead field vectors. This paper extends the notion of this 

conventional (spatial domain) signal subspace by introducing a new definition of signal subspace 

in the time domain.

Approach.—It defines the time-domain signal subspace as the span of row vectors that contain 

the source time course values. This definition leads to symmetric relationships between the time-

domain and the conventional (spatial-domain) signal subspaces. As a review, this article shows 

that the notion of the time-domain signal subspace provides useful insights over existing 

interference removal methods from a unified perspective.

Main results and significance.—Using the time-domain signal subspace, it is possible to 

interpret a number of interference removal methods as the time domain signal space projection. 

Such methods include adaptive noise canceling, sensor noise suppression, the common temporal 

subspace projection, the spatio-temporal signal space separation, and the recently-proposed dual 

signal subspace projection. Our analysis using the notion of the time domain signal space 

projection reveals implicit assumptions these methods rely on, and shows that the difference 

between these methods results only from the manner of deriving the interference subspace. 

Numerical examples that illustrate the results of our arguments are provided.

Keywords
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1. Introduction

The notion of signal and noise subspaces has been considered useful in the signal processing 

of data acquired using multichannel sensor arrays [1]. In biomagnetic signal processing, the 

theory of the signal subspace has been applied to removing interfering magnetic fields, and a 

representative algorithm in this regard is the signal space projection (SSP) algorithm [2–4]. 

In this algorithm, the interference subspace is defined as the span of interference-source lead 

field vectors [2, 5], and it is estimated by utilizing so-called empty-room-noise data. The 

algorithm projects the measured data onto the subspace orthogonal to the interference 

subspace to remove the interference.

In biomagnetic signal processing, the signal subspace has been defined to reflect a spatial 

property of the multichannel data [2, 5]. On the other hand, since biomagnetic signals have 

rich temporal properties, the incorporation of temporal information can be a natural and 

fruitful way to extend the notion of the conventional (spatial domain) signal subspace. In this 

paper, we propose, for the first time (as far as we know), a new definition of signal subspace 

in the time domain. The time-domain signal subspace is defined as the span of row vectors 

that contain the source time course values. Such row vectors are referred to as the source 

time course vectors.

By defining the time-domain signal subspace in this manner, we derive symmetric 

relationships between the time-domain signal subspace and the conventional (spatial-

domain) signal subspace. That is, while a column vector of signal components at a particular 

time point lies within the spatial-domain signal subspace, a row vector of signal time course 

from a particular sensor lies within the time-domain signal subspace. While the column 

space of the signal matrix is equal to the spatial domain signal subspace, the row space of 

this matrix is equal to the time-domain signal subspace.

As a review article, this paper does not propose a new method, but rather a new way of 

looking at various existing methods in a unified perspective. Actually, using the time-domain 

signal subspace, it is possible to interpret various interference removal methods as the time 

domain signal space projection. It can be shown that these methods differ only in the manner 

by which they derive the interference subspace. These methods rely on some implicit 

assumptions that are generally hidden behind their formulations, but they can be revealed by 

our analysis using the notion of the time domain SSP. Such methods include adaptive noise 

canceling [6, 7], sensor noise suppression [8], common temporal subspace projection [9], 

spatio-temporal signal space separation [10] and the recently-proposed dual signal subspace 

projection [11].

The paper is organized as follows: After reviewing the conventional (spatial-domain) signal 

subspace, the time-domain signal subspace is defined in section 2. The interference-removal 

methods utilizing the spatial-domain signal subspace are reviewed in section 3. An important 

variant of the SSP algorithm, the signal space separation (SSS) method [12–14], is also 

reviewed in this section. The time-domain SSP algorithm is introduced in section 4. Section 

5 presents interpretations of various existing algorithms as the time-domain SSP. Here, we 

argue how the interference subspace in the time domain can be derived by those algorithms. 
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We provide numerical examples that illustrate the results of our arguments in section 6. The 

Appendix provides several proofs of mathematical arguments, as well as some details of the 

SSS algorithm needed for readers to follow our arguments.

2. Signal subspaces in the spatial and time domains

2.1. Sensor array measurements

Biomagnetic measurement is usually conducted using a sensor array, which simultaneously 

measures the biomagnetic signal with multiple sensors. Let us define the measurement of the 

mth sensor at time t as ym(t). The measurement from the whole sensor array is expressed as 

a column vector y(t): y(t) = [y1(t), y2(t), … , yM(t)]T. Here, M is the number of sensors, and 

the superscript T indicates the matrix transpose. Throughout this paper, plain italics indicate 

scalars, lower-case boldface italics indicate vectors, and upper-case boldface italics indicate 

matrices. The location in the three-dimensional space is represented by r: r = (x, y, z). The 

source magnitude at r and time t is denoted as a scalar s(r, t). The source vector is denoted 

s(r, t), and the source orientation is denoted η = [ηx, ηy, ηz]T. We thus have the relationship: 

s(r, t) = s(r, t)η.

Let us assume that a unit-magnitude source exists at r. When this unit-magnitude source is 

directed in the x, y, and z directions, the outputs of the mth sensor are respectively denoted 

by lm
x (r), lm

y (r), and lm
z (r). Let us define an M × 3 matrix L(r) whose mth row is equal to 

lm
X(r), lm

y (r), lm
z (r) . This matrix L(r), referred to as the lead field matrix, represents the 

sensitivity of the sensor array at r. When the unit-magnitude source at r is oriented in the η 
direction, the outputs of the sensor array are expressed as l(r) = L(r)η. This column vector 

l(r), referred to as the lead field vector, represents the sensitivity of the sensor array in the 

direction of η at the location r.

The outputs of the sensor array y(t) are expressed as the sum of the signal component yS(t) 
and the noise ε:

y(t) = yS(t) + ε . (1)

In equation (1), yS(t) is called the signal vector, which is expressed as:

yS(t) = ∫
Ω

L(r)s(r, t)dr, (2)

where the integral on the right-hand side is carried out over a three-dimensional volume Ω 
where signal sources of interest can exist. This Ω is called the source space. In equation (1), 

an M × 1 random vector ε represents additive sensor noise, which is assumed to obey the 

normal distribution:
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p ε = 𝒩 ε 0, ϱ2I , (3)

where I is the identity matrix and ϱ2 is the variance of the sensor noise.

We denote the time series outputs of a sensor array y(t1), … , y(tK), where K is the total 

number of measured time points. It is assumed that K > M in this paper. We define the 

measured data matrix B as:

B = y t1 , …, y tK = y1, …, yK , (4)

where y(tj) is denoted yj for simplicity. We also define a matrix of the signal vector such that

BS = yS t1 , …, yS tK = y1
S, …, yK

S , (5)

where the jth column of BS is denoted y j
S. This BS is called the signal matrix in this paper. 

Then, the data model in equation (1) is expressed in matrix form as:

B = BS + Bε, (6)

where Bε is the noise matrix whose jth column is equal to the noise vector ε at time tj.

2.2. Definition of signal subspace in the spatial domain

Let us assume that a total of Q discrete sources exist. Their locations are denoted by r1, … , 

rQ, their orientations by η1, ⋯ , ηQ, and their magnitudes by s1(t), … , sQ(t). Then, the 

source distribution is expressed as:

s(r, t) = ∑
q = 1

Q
sq(t)ηqδ r − rq , (7)

where δ(r) indicates the delta function. Substituting the equation above into equation (2), the 

signal vector yS(t) is expressed as:

yS(t) = ∫
Ω

L(r) ∑
q = 1

Q
sq(t)ηqδ r − rq dr = ∑

q = 1

Q
sq(t)lq, (8)

where lq represents the lead field vector of the qth source obtained such that lq = L(rq)ηq. We 

assume that the number of sources Q is smaller than the number of sensors, i.e. Q < M. This 
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assumption is referred to as the low-rank signal assumption [5, 15], and we hold this 

assumption throughout the paper4.

Equation (8) claims that the signal vector is expressed as a linear sum of the lead field 

vectors l1, ⋯ , lQ. That is, the signal vector yS lies within a subspace spanned by l1, ⋯ , lQ. 

The subspace spanned by the source lead field vectors l1, ⋯ , lQ is defined as the signal 

subspace [5], which is denoted by ℰS, i.e.

ℰS = csp l1, ⋯, lQ . (9)

Here, the notation csp(·) indicates the column space of the matrix within the parentheses. 

Equation (8) indicates the relationship,

yS(t) ∈ ℰS . (10)

The signal vector lies within the signal subspace, which is the subspace formed by all 

possible signal vectors [1].

2.3. Definition of signal subspace in the time domain

This section introduces a novel definition of signal subspace in the time domain. To do so, 

we define a row vector sq consisting of the time course of the qth source such that

sq = sq t1 , …, sq tK , (11)

which we call the time course vector of the qth source. We then prove that a row of the 

signal matrix BS is expressed as a linear sum of the time course vectors, s1, … , sQ. We 

assume, in this paper, that the source time course vectors s1, ⋯ , sQ are linearly independent. 

Substituting equation (8) into equation (5), the following relationship is obtained:

BS = ∑
q = 1

Q
sq t1 lq, …, ∑

q = 1

Q
sq tK lq =

∑q = 1
Q sq t1 , …, sq tK lq

1

⋮

∑q = 1
Q sq t1 , …, sq tK lq

M

=
∑q = 1

Q lq
1sq

⋮

∑q = 1
Q lq

Msq

, (12)

where lq
1, …, lq

M, are the elements of the lead field vector lq: lq = lq
1, …, lq

M T
. Denoting the jth 

row vector of Bs by β j
S, equation (12) shows that

4Since we assume that K > M, the assumption K > M > Q holds throughout the paper.
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β j
S = ∑

q = 1

Q
lq
jsq . (13)

This equation indicates that a row vector of the signal matrix, β j
S, is expressed as a linear 

sum of sq (q = 1, … , Q). That is, we have

β j
S ∈ rsp s1

T, …, sQ
T T , (14)

where the notation rsp(·) indicates a row space of the matrix in the parentheses.

Analogous to equations (9) and (10), it is reasonable to define rsp s1
T, …, sQ

T T
 as the signal 

subspace in time domain 𝒦S, i.e.

𝒦S = rsp s1
T, …, sQ

T T . (15)

By defining the time domain signal subspace this way, we can derive symmetric 

relationships between the time domain signal subspace and the spatial domain signal 

subspace. That is, we have already shown the relationships:

column of BS: y j
S ∈ ℰS, (16)

row of BS: β j
S ∈ 𝒦S . (17)

We can show that, with the assumption K > Q, the column space of BS is equal to the spatial 

domain signal subspace, i.e.

ℰS = csp BS . (18)

The proof is presented in appendix A.1. With the assumption M > Q, the row space of BS is 

equal to the time domain signal subspace, i.e.

𝒦S = rsp BS . (19)

The proof is presented in appendix A.2.
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3. Interference removal using the spatial-domain signal subspace

3.1. Estimation of spatial-domain signal subspace

Although the signal subspace is defined in equation (9), it is difficult to use this equation to 

derive the signal subspace, because the source lead field vectors are generally unknown5. 

The signal subspace can be estimated using the time series measurement of the sensor data 

y(t) as described in the following.

According to equation (18), we can estimate the signal subspace through the estimation of 

the column space of BS. For this estimation, let us express the singular value decomposition 

of BS (M < K) as:

BS = ∑
j = 1

M
γ j
Su j

S v j
S T .

Here, the singular values γ j
S( j = 1, …, M) are numbered in decreasing order, and u j

S and v j
S are 

the spatial and temporal singular vectors, respectively. Since BS is a matrix whose rank is 

equal to Q, the singular values of BS are given as γ1
S, …, γQ

S , 0, …, 0. Namely, BS has only Q 

non-zero singular values, and the column space of BS is equal to the span of singular vectors 

corresponding to the non-zero singular values, u1
S, …, uQ

S  That is, we have the relationship

ℰS = csp u1
S, …, uQ

S . (20)

Since the signal matrix BS(and thus its singular vectors) are unknown quantities, we cannot 

use equation (20) to derive the signal subspace.

The singular vectors u1
S, …, uQ

S  are estimated using the singular vectors of B. Let us denote 

the spatial singular vectors of the data matrix B that correspond to the Q largest singular 

values as u1, … ,uQ. Then, using the noise model in equation (3), singular vectors u1, … , 

uQ are asymptotically equal to u1
S, …, uQ

S . That is, in the limit of infinite number of time 

samples, we have

ℰS = csp u1, …, uQ . (21)

The proof is presented in appendix A.4. In the case of a finite number of time samples, 

csp([u1, … , uQ]) is equal to the maximum likelihood estimate of the signal subspace ℰS:

5To derive the source lead field vectors, we must know the locations and orientations of sources. These quantities are generally 
unknown.
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ℰS = csp u1, …, uQ . (22)

A formal proof of equation (22) can be found in [15] and [16].

3.2. Signal space projection (SSP) algorithm

The signal space projection (SSP) is an algorithm intended to remove the interference 

overlapped onto the signal [2, 4]. The algorithm is based on the theory of signal subspace 

and the measurement model is

y(t) = yS(t) + yI(t) + ε, (23)

where yI(t) represents the interference overlapped on the signal vector yS(t). In this paper, 

this yI(t) represents interferences originated from outside the source space. The signal vector 

yS(t) represents all signals originated from inside the source space6. We assume that a total 

of P sources generate the interference, and yI(t) is thus expressed as

yI(t) = ∑
p = 1

P
σp(t)ξp, (24)

where ξp is the lead field vector of the pth interference source with its amplitude of σp(t). 
Note that we still assume that the row-rank signal assumption P + Q < M holds. According 

to equation (9), the interference subspace ℰI is defined as

ℰI = csp ξ1, …, ξP . (25)

The interference subspace can be estimated when the data that contain only interference are 

available. Such data are called the control data in this paper, and expressed as

yc(t) = yI(t) + ε, (26)

and the control data matrix is defined as Bc = [yc(t1), ⋯ ,yc(tK)] The spatial singular vectors 

of Bc that correspond to the P largest singular values are denoted by u1
c, …, uP

c . The projector 

onto the interference subspace, PI, is formulated such that

6Therefore, ys(t) includes interferences originated from inside the source space; such interferences include so called brain noise in 
MEG measurements. In other words, we consider the brain noise as a part of the signal and its removal is not argued in this paper.
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PI = u1
c, …, uP

c u1
c, …, uP

c T . (27)

Since the interference vector yI(t) can be expressed as yI(t) = ∑ j = 1
P a j(t)u j

c, the relationship 

(I – PI)yI(t) = 0 holds. Thus, by projecting the data vector onto the subspace orthogonal to 

the interference subspace, we have:

yS(t) = I − PI y(t) = yS(t) − PI yS(t) + I − PI ε . (28)

It is apparent from equation (28) that the projector I – PI can remove the interference yI(t) 
but also affects the signal. The influence on the signal vector is evaluated by the second term 

on the right-hand side. This term is generally small when the orthogonality between lead 

field vectors of signal sources lj (j = 1, … , Q) and the basis vectors of the interference 

subspace ui
c(i = 1, …, P) is high. The method of interference suppression based on equation 

(28) is called the signal space projection (SSP) [2, 4]. One problem we have when 

implementing SSP is the determination of P, the dimension of the interference subspace. 

This P is usually determined by thresholding the singular values. It is obvious from the 

arguments above that the underestimation of P results in a stuation that a part of yI(t) 
remains in yS(t) and conversely the overestimation may cause a large distortion of the signal 

vector yS(t) in yS(t).

3.3. Signal space separation (SSS) algorithm

A method for deriving the signal subspace based not on the span of source lead field vectors 

but on physical properties of the magnetic field predicted by Maxwell’s equations has been 

proposed [12–14, 17]. In this method, assuming that there are no sources in a region where 

sensors are located (a region called the sensor region), the sensor measurements can be 

expressed by an expansion using the vector spherical harmonics, which contains natural 

separation between the magnetic fields generated from the internal and external regions. 

Here, the internal region indicates the region closer to the origin than the sensor region, and 

the external region indicates the region farther from the origin than the sensor region.

Therefore, if the origin is properly set such that the source space Ω is included within the 

internal region, and the interference sources are located within the external region, the signal 

can be separated from the interference. Interference removal based on this idea is called 

signal space separation (SSS). The derivation of the SSS method is presented in the 

appendix B.

With the proper setting of the origin, we can derive the SSS signal extractor ГS:

ΓS = CCT CCT + DDT −1 = CCT SST −1, (29)
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where the matrices C and D are given respectively in equations (B.9) and (B.10), and S = 
[C,D]. Note that C and D are M × NC and M × ND matrices where NC and ND are defined in 

equation (B.14). The derivation of ГS is presented in appendix B.2. We use the data model in 

equation (23), and assume that equation (8) holds for yS(t) and equation (24) for yI(t). Then, 

multiplying the signal extractor ГS to the data vector y(t) gives

ΓSy(t) = ΓSyS(t) + ΓSyI(t) = ∑
q = 1

Q
sq(t)ΓSlq + ∑

p = 1

P
σp(t)ΓSξp, (30)

where the sensor noise term is dropped for simplicity.

The assumption that the source space Ω is located within the internal region leads to the 

relationship

csp C ⊃ ℰS .

Thus, the lead field vector of a signal source lq lies within the column space of C, and lq is 

expressed as a linear sum of the column vectors of C, such that

lq = ∑
j = 1

Nc
α jc j = Cα, (31)

where cj is the jth column of C, αj is the jth expansion coefficient, and α is a column vector 

containing the coefficients, i.e. α = α1, …, αNC

T
. Thus, denoting an ND × 1 column vector 

whose elements are all zero by 0, and using the derivation in equation (B.20), we can derive 

the relationship

ΓSlq = ΓSCα = ΓSS
α
0 = C CT SST −1S

α
0

       = C ST SST −1S
α
0 1: NC

≈ C STS −1STS
α
0 1: NC

       = Cα = lq .

(32)

The equation above indicates that the SSS signal extractor ГS passes the signal-source lead 

field vector lq with no distortion.

The assumption that all the interference sources are located within the external region leads 

to the situation that the column space of D includes the interference subspace, i.e.

csp D ⊃ ℰI .
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Therefore, the lead field vector of an interference source ξp lies within the column space of 

D, and ξp is expressed as

ξp = ∑
j = 1

ND
ϕ jd j = Dϕ, (33)

where dj is the jth column of D, ϕj is the jth expansion coefficient, and ϕ is a column vector 

containing these coefficients: ϕ = ϕ1, …, ϕND

T
. Again denoting the NC × 1 column vector 

whose elements are all zero by 0, we have the relationship

ΓSξq = ΓSDϕ = ΓSS
0
ϕ

≈ C STS −1STS
0
ϕ 1: NC

= C0 = 0. (34)

The equation above indicates that the signal extractor ГS completely blocks the lead field 

vector of an interference source ξq. Consequently, substituting (32) and (34) into (30), we 

obtain

ΓSy(t) = ΓSyS(t) + ΓsyI(t) = ∑
q = 1

Q
sq(t)Γslq + ∑

p = 1

P
σp(t)ΓSξp = ∑

q = 1

Q
sq(t)lq = yS(t) . (35)

The equation above shows that by multiplying the signal extractor ГS with the data vector 

y(t), the signal vector yS(t) is selectively extracted with no distortion. This distortionless 

signal extraction is a major advantage of the SSS algorithm over the SSP algorithm.

4. Time-domain signal space projection

If we obtain the basis vectors of the interference subspace in the time domain, it is possible 

to remove the interference by projecting the measured data onto the subspace orthogonal to 

the time-domain interference subspace. We define the interference matrix BI as

BI = yI t1 , …, yI tK . (36)

Then, the data model in equation (23) is expressed as

B = BS + BI + Bε . (37)

Let us define the time course vector of the pth interference source, σp, as
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σp = σp t1 , …, σp tK . (38)

Then, the interference subspace in the time domain, 𝒦I, is defined as

𝒦I = rsp σ1
T, …, σP

T T . (39)

We assume that time course vectors σ1
T, …, σP

T are linearly independent in this paper.

If basis row vectors of the interference subspace in the time domain are estimated as ψ1, … , 

ψP, defining ϒ as ϒ = ψ1
T, …, ψP

T T
, we can compute the projector onto 𝒦I such that

ΠI = ϒT ϒϒT −1ϒ . (40)

We denote the jth row of BI by β j
I. Since β j

I is expressed as the linear sum of 

ψ j: β j
I = ∑ j = 1

P c jψ j, we thus have β j
I I − ΠI = 0. Therefore, projecting the data matrix B onto 

the subspace orthogonal to 𝒦I, the estimated signal matrix BS is given by

BS = B I − ΠI = BS + BI + Bε I − ΠI

      = BS − BSΠI + Bε I − Πl .
(41)

The method of removing the interference BI based on equation (41) is referred to as the 

time-domain signal space projection (time-domain SSP). The influence of the time domain 

SSP on the signal component is assessed by the second term BSПI on the right-hand side of 

equation (41). This term becomes small when the correlations between the time courses of 

the signal and interference sources are small. This can be considered an advantage of the 

time-domain SSP over the spatial-domain SSP. This is because in many real-life 

applications, the time courses of the signal and interference sources are expected to differ 

significantly, but the orthogonality of lead field vectors between signal and interference 

sources may not be so high. In the next section, we show that a number of existing 

interference removal methods can be interpreted as the time domain SSP, and that these 

methods differ only in their manner of deriving the basis vectors of the time-domain 

interference subspace.
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5. Interference removal based on the time-domain SSP

5.1. Adaptive noise canceling(ANC)

Adaptive noise canceling(ANC) is an interference removal method which makes use of data 

from reference sensors. The reference sensors collect data containing interference but not the 

signal of interest [6, 7, 18]. It is assumed that the sensor array is equipped with a total of J 
additional reference sensors, and the outputs of the reference sensors are denoted by a J × 1 

column vector yR(t). Then, the data model is expressed as

y(t) = yS(t) + yI(t) + ε, (42)

yR(t) = yI(t) + ε . (43)

Note that y(t), yS(t), yI(t) and ε are M × 1 column vectors, and yR(t), yI t , and ε are J × 1 

column vectors. ANC tries to remove the interference yI(t) from the data vector y(t) by 

taking out components maximally correlated with the reference sensor data yR(t). This 

removal is carried out by regressing y(t) with yR(t), i.e.

y t = ZyR t + d t , (44)

where Z is an M × J coefficient matrix of this multi-variate regression, and the residual 

signal d(t) represents the interference removed results. Here, the coefficient matrix Z is 

obtained by solving the minimization problem:

Z = argmin
Z

y(t) − ZyR(t) 2 , (45)

where 〈·〉 indicates time average. That is, Z is determined so as to maximize the correlation 

between y(t) and yR(t). The interference-removed results are expressed as:

d(t) = y(t) − Z yR(t) = y(t) − y(t)yR
T(t) yR(t)yR

T(t) −1yR(t) . (46)

To understand the relationship between ANC and the time-domain SSP, Let us rewrite 

equation (46) using a matrix form. To do so, the matrix of the reference sensor data is 

defined as BR, such that

BR = yR t1 , …, yR tK .

Using the data matrices of BR and B, we have

Sekihara and Nagarajan Page 13

J Neural Eng. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



y(t)yR
T(t) = 1

K BBR
T,   and  yR(t)yR

T(t) = 1
K BRBR

T . (47)

Thus, denoting the interference removed results as BS: BS = d t1 , …, d tK , equation (46) is 

rewritten as

BS = B − BBR
T BRBR

T −1BR

     = B I − BR
T BRBR

T −1BR = B I − ΠR ,
(48)

where ПR indicates the projector onto the row space of BR defined such that

ΠR = BR
T BRBR

T −1BR . (49)

Comparison between equations (41) and (48) makes it clear that ANC is equivalent to the 

time-domain SSP if the relationship ПI ≈ ПR holds where ПI is the projector onto the 

interference subspace defined in equation (40). Actually, if the sensor noise is small, the row 

space of BR can reasonably approximate the row space of BI, which is equal to the 

interference subspace under the low rank signal assumption J > Q. However, when the 

sensor noise is not negligibly small or when the reference sensor data contains components 

not contained in the measurement sensor data, ПR and ПI may have some difference, and 

results from the ANC algorithm may contain errors.

5.2. Common temporal subspace projection (CTSP)

Common temporal subspace projection (CTSP) also removes the interference by making use 

of the reference sensor data [9]. The difference between CTSP and ANC is that CTSP 

assumes that the reference sensor data contain components that exist only in the reference 

sensor data but not in the measurement sensor data. The data model assumed in CTSP is 

expressed as

B = BS + BI + Bε, (50)

BR = BI + Bw + Bε, (51)

where a J × K matrix Bw indicates the components that are contained only in the reference 

sensor data, and J × K matrices, BI and Bε, are the interference and noise matrices of the 
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reference sensor data. Here, we assume BwBS
T = 0. According to the arguments in appendix 

A.5, equation (50) leads to the relationship,

rsp B = rsp BS + BI + Bε ⊂ rsp BS + rsp BI + rsp Bε = 𝒦S + 𝒦I + 𝒦ε, (52)

where 𝒦ε indicates 𝒦ε =  rsp  Bε . Equation (51) leads to

rsp BR = rsp BI + Bw + Bε ⊂ rsp BI + rsp Bw + rsp Bε = 𝒦I + 𝒦w + 𝒦ε, (53)

where 𝒦w and 𝒦ε indicate 𝒦w =  rsp  Bw  and 𝒦ε =  rsp  Bε . The relationships 

rsp  BS = 𝒦S and rsp  BI =  rsp  BI = 𝒦I are used here. Then, according to the arguments 

in appendix A.6, equations (52) and (53) lead to the following relationships among sets of 

basis vectors:

𝒮B ⊂ 𝒮S ∪ 𝒮I ∪ 𝒮ε (54)

𝒮BR
⊂ 𝒮I ∪ 𝒮w ∪ 𝒮ε (55)

where sets of basis vectors of rsp(B) and rsp(BR) are respectively denoted by 𝒮B, 𝒮BR
, i.e. 

rsp (B) =  span  𝒮B  and rsp  BR =  span  𝒮BR
7. Also, sets of basis vectors of 𝒦S, 𝒦I, 𝒦w, 

𝒦ε, and 𝒦ε are respectively denoted by 𝒮S, 𝒮I, 𝒮w, 𝒮ε, and 𝒮ε.

We assume that the noise time courses are orthogonal to each other, and they are orthogonal 

to the signal and interference time courses, resulting in the relationships: 𝒮ε ∩ 𝒮ε = ∅, 

𝒮ε ∩ 𝒮S = 𝒮ε ∩ 𝒮I = 𝒮ε ∩ 𝒮w = ∅, and 𝒮ε ∩ 𝒮S = 𝒮ε ∩ 𝒮I = 𝒮ε ∩ 𝒮w = ∅. Here ∅ indicates 

the empty set. We also use 𝒮S ∩ 𝒮w = ∅, which results from the orthogonality assumption 

BwBS
T = 0. Then, using the proof in appendix A.7 and the distributive property, we can derive

𝒮B ∩ 𝒮BR
⊂ 𝒮S ∪ 𝒮I ∪ 𝒮ε ∩ 𝒮I ∪ 𝒮w ∪ 𝒮ε

  = 𝒮S ∩ 𝒮I ∪ 𝒮w ∪ 𝒮ε ∪ 𝒮I ∩ 𝒮I ∪ 𝒮w ∪ 𝒮ε ∪ 𝒮ε ∩ 𝒮I ∪ 𝒮w ∪ 𝒮ε

  = 𝒮S ∩ 𝒮I ∪ 𝒮I ∪ ∅ = 𝒮S ∩ 𝒮I ∪ 𝒮I = 𝒮I .

(56)

7Here, an expression of 𝒳 =  span 𝒮X  indicates that a set of basis vectors 𝒮X spans the subspace 𝒳
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Namely,

𝒮I ⊃ 𝒮B ∩ 𝒮BR
(57)

holds. According to the arguments in appendix A.8, we can obtain the relationship,

𝒦I = span 𝒮I ⊃ span 𝒮B ∩ 𝒮BR
= span 𝒮B ∩ span 𝒮BR

     = rsp B ∩ rsp BR .
(58)

The equation above claims that the intersection between rsp(B) and rsp(BR) forms a subset 

of the interference subspace 𝒦I. An algorithm that derives basis vectors of the intersection 

between two subspaces is described in appendix A.9. Using this algorithm, the orthonormal 

basis vectors of the intersection rsp(B) ∩ rsp (BR) can be obtained. Denoting these basis 

vectors as ψ1, … , ψr, we can remove the interference and obtain the estimated signal matrix 

BS such that

BS = B I − ψ1, …, ψr ψ1, …, ψr
T . (59)

The time domain SSP in equation (59) cannot perfectly remove the interference because the 

basis vectors ψ1, …, ψr span only a part of the interference subspace. Nonetheless, we can 

still expect that the method can reduce the interference if rsp(B) ∩ rsp(BR) is a reasonable 

approximation of 𝒦I. The algorithm that performs the interference removal in a manner 

described above is called common temporal subspace projection (CTSP) [9].

5.3. Dual signal subspace projection (DSSP)

5.3.1. Pseudo signal subspace projector.—Dual signal subspace projection (DSSP) 

removes the interference without using either the reference sensor data or control data such 

as the empty-room-noise data [11]. The algorithm assumes the data model in equation (50) 

with the assumption that the interference sources are located outside the source space. The 

DSSP algorithm uses the so-called pseudo signal subspace projector, and to derive it, voxels 

are defined over the source space Ω, in which the voxel locations are denoted r1, …, rN. The 

pseudo signal subspace ℰ̆S is defined such that

ℰ̆S = csp L r1 , …, L rN . (60)

If the voxel interval is sufficiently small and voxel discretization errors are negligible, we 

have the relationship ℰ̆S ⊃ ℰS. Therefore, a vector contained in the signal subspace is also 

contained in the pseudo signal subspace, i.e. if x ∈ ℰS, then x ∈ ℰ̆S.
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Let us derive the orthonormal basis vectors of the pseudo signal subspace ℰ̆S. To do so, 

defining a matrix F as F = [L(r1),L(rN)], we compute the singular value decomposition of F,

F = ∑
j = 1

M
λ je j f j

T, (61)

where we assume the relationship M < N. If the singular values λ1, … , λτ are distinctively 

large, and other singular values λτ+1, … , λM are nearly equal to zero, the singular vectors 

e1, … , eτ forms orthonormal basis vectors of the pseudo signal subspace ℰ̆S and the 

projector onto ℰ̆S is obtained using

P̆S = e1, …, eτ e1, …, eτ
T . (62)

Note that, since ℰ̆S ⊃ ℰS, the orthogonal projector I − P̆S  projects out the signal vector, i.e. 

I − P̆S yS t = I − P̆S BS = 0.

5.3.2. DSSP algorithm.—The DSSP algorithm applyies P̆S and I − P̆S to the data matrix 

B to create two kinds of datasets:

P̆SB = BS + P̆SBI + P̆SBε, (63)

I − P̆S B = I − P̆S BI + I − P̆S Bε . (64)

In equation (64), the signal of interest is suppressed by multiplying I − P̆S  with the data 

matrix, and a virtual reference time series is estimated8. Here, we use P̆SBS = BS and 

I − P̆S BS = 0. According to the arguments in appendix A.5, the following relationships 

hold:

rsp P̆SB ⊂ rsp BS + rsp P̆SBI + rsp P̆SBε , (65)

rsp I − P̆S B ⊂ rsp I − P̆S BI + rsp I − P̆S Bε . (66)

8This procedure is called the generalized sidelobe canceller in [19].
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The arguments in appendix A.3 prove that the relationships, rsp  P̆SBI = 𝒦I and 

rsp  I − P̆S BI = 𝒦I hold. Thus, using rsp BS = 𝒦S, equations (65) and (66) lead to

rsp P̆SB ⊂ 𝒦S + 𝒦I + �̆�ε, (67)

rsp I − P̆S B ⊂ 𝒦I + �̆�ε′, (68)

where we use the notations, rsp  P̆SBε = �̆�ε and rsp I − P̆S Bε = �̆�ε′ . Let us define the sets 

of basis vectors of rsp P̆SB  and rsp I − P̆S B  as 𝒮PS
 and 𝒮PI

, (i.e. rsp  P̆SB = span 𝒮PS
 and 

rsp I − P̆S B . According to the arguments in appendix A.6, equations (67) and (68) can be 

converted into relationships among the sets of basis vectors, which are written as

𝒮PS
⊂ 𝒮S ∪ 𝒮I ∪ �̆�ε, (69)

𝒮PI
⊂ 𝒮I ∪ �̆�ε′, (70)

where basis vector sets of �̆�ε and �̆�ε′  are denoted �̆�ε and �̆�ε′ .

Since the relationship

P̆SBε I − P̆S Bε
T = P̆SBεBε

T I − P̆S = ρ2P̆S I − P̆S = 0,

holds, �̆�ε and �̆�ε′  has no intersection, i.e. �̆�ε ∩ �̆�ε′ = ∅. Also, assuming that BSBε
T = BIBε

T, the 

relationships �̆�ε ∩ 𝒮S = �̆�ε ∩ 𝒮I = ∅ and �̆�ε′ ∩ 𝒮S = �̆�ε′ ∩ 𝒮I = ∅ hold. Therefore, using the 

proof in appendix A.7 and the distributive property, we can derive the following relationship:

𝒮PS
∩ 𝒮PI

⊂ 𝒮S ∪ 𝒮I ∪ �̆�ε ∩ 𝒮I ∪ �̆�ε′

  = 𝒮S ∩ 𝒮I ∪ �̆�ε′ ∪ 𝒮I ∩ 𝒮I ∪ �̆�ε′ ∪ �̆�ε ∩ 𝒮I ∪ �̆�ε′
  = 𝒮S ∩ 𝒮I ∪ 𝒮I ∪ ∅ = 𝒮S ∩ 𝒮I ∪ 𝒮I = 𝒮I .

(71)

Namely, we have
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𝒮I ⊃ 𝒮PS
∩ 𝒮PI

. (72)

According to the arguments in appendix A.8, we derive

𝒦I = span 𝒮I ⊃ span 𝒮PS
∩ 𝒮Pl

= span 𝒮PS
∩ span 𝒮PI

     = rsp P̆SB ∩ rsp I − P̆S B .
(73)

The quation above shows that the intersection between rsp P̆SB  and rsp I − P̆S B  forms a 

subset of the interference subspace 𝒦I. The basis vectors of the intersection are derived 

using the algorithm described in appendix A.9. Once the orthonornal basis vectors of the 

intersection rsp P̆SB ∩ rsp I − P̆S B  are obtained, we can compute the projector onto the 

intersection, and time-domain SSP can be implemented. If the intersection 

rsp P̆SB ∩ rsp I − P̆S B  is a reasonable approximation of 𝒦I, this time-domain SSP will be 

able to remove interferences effectively. The method of removing the interference in a 

manner as described above is called dual signal subspace projection (DSSP) [11].

Note that since the intersection rsp P̆SB ∩ rsp I − P̆S B  is only a subset of the interference 

subspace 𝒦I, the method cannot perfectly remove interferences. However, we can observe 

that rsp P̆SB ∩ rsp I − P̆S B  becomes a better approximation of 𝒦I, if the interference BI is 

significantly greater than the signal BS (and the sensor noise Bε), resulting in a situation that 

the interference terms are dominated in P̆SB and I − P̆S B. This may explain our empirical 

findings, which are a little counter-intuitive, that the method works better for larger 

interferences.

5.4. Spatio-temporal signal space separation (tSSS)

In section 3.3, we argue that one prerequisite of the signal space separation (SSS) algorithm 

is that all interference sources be located in the external region. However, this requirement is 

not always fulfilled, as interference sources can also be located fairly close to the source 

space. In this case, the SSS extractor ГS cannot adequately remove the interference. Spatio-

temporal signal space separation algorithm (tSSS) has been developed for such situations 

[10].

This algorithm first applies the SSS extractors ГS and ГI to the data matrix B to create two 

kinds of data sets:

ΓSB = BS + ΓSBI + ΓSBε, (74)
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ΓIB = ΓlBI + ΓIBε, (75)

where we use the relationships, ГSBS = BS, and ГIBS = 0. We thus obtain,

rsp ΓSB ⊂ 𝒦S + rsp ΓSBI + rsp ΓSBε , (76)

rsp ΓlB ⊂ rsp ΓlBI + rsp ΓlBε , (77)

where we use rsp BS = 𝒦S.

When an interference source is located close to the source space, the lead field vector of this 

source, ξp, may have components expanded by the columns of C, as well as components 

expanded by the columns of D, resulting in,

ξp = Cα′ + Dϕ′, (78)

where α′ and ϕ′ are vectors containing the expansion coefficients. Therefore, by 

multiplying the SSS signal extractor to ξp, we have

ΓSξp = ΓS Cα′ + Dϕ′ = Cα′ = πp, (79)

which shows that ГS changes the interference lead field from ξp to πp. Similarly, by 

applying ГI to ξp, we have

ΓIξp = ΓI Cα′ + Dϕ′ = Dϕ′ = πp, (80)

which shows that the lead field ξp is changed to πp.

However, these extractors never change the time courses of interference sources. Thus, using 

the same arguments as in appendix A.3, we can prove that rsp ΓSBI = 𝒦I and 

rsp ΓIBI = 𝒦I hold, and equations (76) and (77) become

rsp ΓSB ⊂ 𝒦S + 𝒦I + 𝒦ε′, (81)

Sekihara and Nagarajan Page 20

J Neural Eng. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rsp ΓIB ⊂ 𝒦I + 𝒦ε″ . (82)

Sets of basis vectors of rsp(ГSB) and rsp(ГIB) are respectively denoted by 𝒮ΓS
 and 𝒮ΓI

. 

Then, according to the arguments in appendix A.6, we can obtain

𝒮ΓS
⊂ 𝒮S ∪ 𝒮I ∪ 𝒮ε′, (83)

SΓl
⊂ 𝒮I ∪ 𝒮ε″, (84)

where sets of basis vectors of 𝒦S, 𝒦I, 𝒦ε′ , and 𝒦ε″ are respectively denoted by 𝒮S,𝒮I, 𝒮ε′ , 

and 𝒮ε″. Asumuing that relationships, 𝒮S ∩ 𝒮ε″ = 𝒮I ∩ 𝒮ε″ = ∅, and 𝒮I ∩ 𝒮ε′ = 𝒮ε″ ∩ 𝒮ε′ = ∅

hold, we can finally obtain

𝒮I ⊃ 𝒮ΓS
∩ 𝒮ΓI

, (85)

and according to the arguments in appendix A.8, we derive the relationship:

𝒦I ⊃ rsp ΓSB ∩ rsp ΓIB . (86)

The basis vectors of the intersection rsp(ГSB) ∩ rsp(ГIB) are obtained using the algorithm in 

appendix A.9, and they can be used for forming the projector onto the interference subspace. 

Making use of the interference subspace projector obtained in this manner, the tSSS 

algorithm performs the time-domain SSP for interference removal. Again, although these 

basis vectors span only a subset of the interference subspace, the method can effectively 

remove the interference if the intersection rsp(ГSB) ∩ rsp(ГIB) is a reasonable 

approximation of 𝒦I. One such case is that the interference terms are dominated in the data 

sets ГSB and ГIB.

5.5. Sensor noise suppression (SNS)

The sensor noise suppression (SNS) algorithm has been developed to suppress sensor noise 

[8]. The algorithm assumes the data model

B = BS + Bε . (87)
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A key assumption of the SNS algorithm is that βj, the jth row of B, lies within a span of all 

the rows of B except the jth row, i.e.

β j ∈ rsp β1
T, …, β j − 1

T , β j + 1
T , …, βM

T T . (88)

Thus, (βj is expressed as the linear sum of the other rows:

β j
T = ∑

i ≠ j
ωiβi

T = Θ jω j, (89)

where

Θ j = β1
T, …, β j − 1

T , β j + 1
T , …, βM

T , (90)

ω j = ω1, …, ω j − 1, ω j + 1, …, ωM
T . (91)

In the equations above, the notation ∑i ≠ j indicates the summation from i = 1 to M, except i 

= j, and ωi (i = 1, … , j − 1, j + 1, … , M) are weights of the linear summation.

The optimum weight, ω j, can be obtained using least squares fitting:

ω j = argmin
ω j

β j
T − Θ jω j

2 .

The solution is

ω j = Θ j
TΘ j

−1Θ j
Tβ j

T . (92)

This ω j is substituted into equation (89), and the denoised row β j is obtained as

β j = β jΘ j Θ j
TΘ j

−1Θ j
T . (93)

It can be seen in equation (93) that the sensor noise suppression algorithm is the time-

domain SSP, assuming that rsp(Θj) approximates the time-domain signal subspace 𝒦S and 

the projector Θ j Θ j
TΘ j

−1
Θ j

T approximates the projector onto 𝒦S.
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When the number of sensors are large, rsp(Θj-) should reasonably approximate rsp(B). 

When the sensor noise is negligibly small, rsp(B) then approximates rsp(BS), which is equal 

to 𝒦S, resulting in the projector Θ j Θ j
TΘ j

−1
Θ j

T that approximates the projector onto 𝒦S. 

However, when the sensor noise is not small, (which is exactly the case where the SNS 

algorithm is needed,) rsp(B) differs from rsp(BS), and the projector Θ j Θ j
TΘ j

−1
Θ j

T may 

differ from the signal subspace projector, resulting in the low performance of the SNS 

algorithm in such cases.

6. Numerical examples

6.1. Data generation

A series of computer simulations were carried out to provide illustrative examples of the 

results of our arguments in the preceding sections. A sensor alignment of the 275-channel 

whole-head sensor array from the Omega™ (VMS Medtech, Coquitlam, Canada) 

neuromagnetometer was used. The configuration of the sensor array arranged on the helmet 

surface is shown in figure 1, in which the filled circles indicate the locations of sensors. In 

our experiments, all these sensors were assumed to be magnetometers. We assumed six 

reference sensors, consisting of two sets of vector magnetometers in addition to the 

measurement sensors on the helmet, and the reference sensor arrangement is shown also in 

figure 19.

A single dipole source, which generated the signal magnetic field, was assumed to exist at 

(0,0,10) with the orientation of (1,1,0). The location was 7 cm below the center of the sensor 

array. The time course assigned to this source is shown in figure 2(a). In our numerical 

experiments, the time t is expressed with the unit of time points ranging from t = −1200 to 

1200.

We assumed four interference sources whose coordinates are listed in the top four rows of 

table 1, which indicates that these interference sources were 500–800 cm away from the 

signal source. The time courses assigned to these four interference sources are shown in 

figure 2(b).

Sensor time courses were generated by projecting the source time course in figure 2(a) onto 

the sensor time courses through the lead field computed using Sarvas’ formula [20]. The 

sensor time courses of the signal magnetic field (after adding sensor noise) are shown in 

figure 3(a). The magnetic field map across sensors at t = 520 is shown in figure 3(b). (The 

instant at t = 520 is shown by the broken vertical line in figure 2(a).) Note that the sensor 

time courses in figure 3(a) and the field map in figure 3(b) can work as the ground truth in 

interference removal experiments described below.

Also, the time courses of the interference sources in figure 2(b) were converted to the sensor 

time courses of the interference using the lead field computed from the Biot-Savart law [18, 

9Note that this arrangement of the reference sensors is assumed solely for our numerical experiments, and differs from the true 
arrangement in the Omega neuromagnetometer system.
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20]. The use of the Biot-Savart law here is due to our assumption that these interference 

sources are non-biological sources. The interference magnetic field was overlapped onto the 

signal magnetic field with the interference-to-signal ratio (ISR) equal to 6. Here, the ISR is 

defined as ‖BI ‖/‖BS‖ where ‖X‖ indicates the Frobenius norm of a matrix X. The 

interference-overlapped sensor time courses are shown in figure 3(c). Since the interference 

is much stronger than the signal magnetic field, the sensor time courses are dominated by the 

interference. The magnetic field map of the interference-overlapped sensor data is shown in 

figure 3(d).

6.2. Results of interference removal experiments

6.2.1. Experiments on signal space projection (SSP).—We applied the signal 

space projecton (SSP) algorithm described in section 3.2 to the interference-overlapped 

sensor data in figure 3(c). The SSP algorithm requires control data, (which contain only 

interference) to estimate the interference subspace. Such control data, generated using a set 

of different interference-source time courses, are shown in figure 4(a). The results of SSP 

interference removal are shown in figure 4(b), indicating that the interference has been 

largely removed. The field map of the interference-removed sensor data is shown in figure 

4(c). The comparison between the resultant field map in figure 4(c) and the map of the 

signal-only magnetic field in figure 3(b) indicates that a considerable amount of signal 

distortion occurs in the SSP interference-removed results.

6.2.2. Experiments on adaptive noise canceling (ANC) and common 
temporal subspace projection (CTSP).—Adaptive noise canceling (ANC) and 

common temporal subspace projection (CTSP) were applied to the same interference-

overlapped sensor data in figure 3(c). In these experiments, the reference sensor data shown 

in figure 5(a) were used, and the interference removal results are shown in figure 6. 

According to the resultant sensor time courses in figures 6(a) and (c), these methods 

removed most of the interference. The maps of the interference-removed results in figures 

6(b) and (d) indicate that almost no signal distortion was caused.

Next, we performed experiments in which the reference sensor data contained, in addition to 

the interference, a fluctuation that did not exist in the data from the measurement sensors 

arranged on the helmet. In these experiments, the reference sensor data shown in figure 5(b) 

were used, and the results of ANC interference removal are shown in figure 7(a). These 

results show that a fairly large amount of interference remained due to the incorrect 

reference sensor data. The results of CTSP interference removal are shown in figure 7(b). 

Here, the interefernce was nearly completely removed despite the fact that the reference 

sensor data contained an additional component. This is because the data model of the CTSP 

algorithm allows components to exist only in the reference data but not in the measured data.

6.2.3. Experiments on signal space separation (SSS).—The signl space 

separation (SSS) algorithm was tested on the interference-overlapped sensor data in figure 

3(c). This algorithm requires neither control noise data nor reference sensor data. It solely 

relies on the spatial separation between signal and intereference sources. The resultant 

interference-removed sensor time courses are shown in figure 8(a), and the field map of 
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these sensor data at t = 520 is shown in figure 8(b). These results show that the SSS 

algorithm nearly perfectly removed the interference. This is because the prerequisite of the 

SSS method, the conditions that signal sources be located within the internal region, and 

interference sources be located within the external region, was nearly perfectly satisfied in 

these numerical experiments.

We then moved two of the interference sources closer to the signal source by assigning the 

coordinates in the last two rows of table 1 to these sources. The distances between the new 

locations of the two interference sources and that of the signal source were approximately 40 

cm, and the spatial separation between the signal and intereference sources could be 

insufficient. The sensor data overlapped by the interference, generated from the nearby 

interference sources, are shown in figure 9(a), and the field map is shown in figure 9(b). The 

SSS algorithm was applied to these interference-overlapped data, and the results are shown 

in figures 9(c) and (d). In these experiments, the SSS method failed to remove the 

intereference. This is because the two interference sources were located fairly close to the 

signal source, resulting in the violation of the prerequisite for the SSS method.

6.2.4. Experiments on spatio-temporal signal space separation (tSSS) and 
dual signal subspace projection (DSSP).—The spatio-temporal signal space 

separation (tSSS) algorithm was applied to the interference-overlapped sensor data in figure 

3(c), and to the nearby interference data in figure 9(a). The interference-removed results are 

shown in figure 10. The results demonstrate that the tSSS algorithm can effectively remove 

the interferences not only caused by distant sources but also caused by nearby sources. The 

field maps in figures 10(b) and (d) demonstrate that almost no signal distortion was caused 

in the interference removal process.

The dual signal subspace projection (DSSP) algorithm was applied to the sensor data in 

figure 3(c) and the data in figure 9(a). The interference-removal results are shown in figure 

11. The results demonstrate that the DSSP algorithm is also effective in the case of nearby 

interference sources, as well as in the case of distant interference sources. The field maps in 

figures 11(b) and (d) demonstrate that the DSSP interference removal results are free of 

signal distortion.

6.2.5. Experiments on sensor noise suppression (SNS).—The sensor noise 

suppression (SNS) algorithm was also tested with noisy sensor data. Gaussian noise was 

added to the signal magnetic data in figure 3(a). Here, the signal to noise ratio (SNR) was set 

to 10 where the SNR was defined as ‖BS‖/‖Bε‖. The time courses of resultant noisy sensor 

data are shown in figure 12(a) and the field map is in (b). The SNS denoised results are 

shown in figure 12(c). Comparison between the sensor time courses before SNS denoising in 

figure 12(a) and after denoising in (c) shows a significant reduction in sensor noise through 

SNS denoising. The denoised magnetic field map in figure 12(d) indicates that no 

observable distortion is caused.
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7. Summary

This paper reviews subspace-based interference removal methods with an emphasis on the 

time domain signal subspace. We first provide a concise review on the conventional spatial-

domain signal subspace and the signal space projection (SSP) method. We then extend the 

notion of signal subspace to the time domain by proposing a novel definition of the time-

domain signal subspace, and introduce time domain signal space projection. We show that 

many existing interference removal methods can be interpreted as a form of the time domain 

SSP. These methods include adaptive noise canceling, sensor noise suppression, common 

temporal subspace projection, spatio-temporal signal space separation and the recently 

proposed dual signal subspace projection. We also show that the difference between these 

methods is primarily due to their manner of deriving the interference subspace. Numerical 

examples that illustrate the results of our arguments are provided.

Appendix A.: Supplementary mathematical arguments

A.1. Proof of equation (18): 𝓔S = csp BS

We first prove that csp BS =  csp y1
S, …, yK

S ⊃ ℰS. To do so, we show that if x ∈ ℰS, 

x ∈  csp y1
S, …, yK

S ⊃ ℰS holds. Assuming that x ∈ ℰS, the vector x is expressed as a linear 

sum of the lead field vectors lq (q = 1, … , Q), such that

x = ∑
q = 1

Q
ωqlq . (A.1)

In order to show that x ∈  csp y1
S, …, yK

S , we show that x in equation (A.1) is also expressed 

as a linear sum of y j
S:

x = ∑
j = 1

K
α jy j

S . (A.2)

Actually, substituting equation (8), into (A.2), and using equation (A.1), we get

∑
j = 1

K
α j ∑

q = 1

Q
sq

jlq = ∑
q = 1

Q
∑
j = 1

K
α jsq

j  lq = ∑
q = 1

Q
ωqlq, (A.3)

where sq(tj) is denoted sq
j . Comparing the coefficients of the vector lq on the left and right 

sides gives following set of Q linear equations:
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α1s1
1 + ⋯ + αKs1

K = ω1,

α1s2
1 + ⋯ + αKs2

K = ω2,

          ⋮                      ⋮

α1sQ
1 + ⋯ + αKsQ

K = ωQ .

Assuming that K > Q, for an arbitrary set of ω1, … , ωQ, a set of α1, … , αK exists, and this 

fact leads to the conclusion that equation (A.2) holds for an arbitrary x x ∈ ℰS . Thus, the 

relationship csp y1
S, …, yK

S ⊃ ℰS holds. Note that we assume that the source time courses 

s j
1, …, s j

K( j = 1, …, Q) are linearly independent.

We next show that ℰS ⊃  csp y1
S, …, yK

S . To do so, we show that if x ∈  csp y1
S, …, yK

S , 

x ∈ ℰS holds. If x ∈  csp y1
S, …, yK

S , equation (A.2) holds. Substituting equation (8) into 

equation (A.2), we obtain

x = ∑
j = 1

K
α jy j

S = ∑
j = 1

K
α j ∑

q = 1

Q
sq

jlq = ∑
q = 1

Q
∑
j = 1

K
α jsq

j  lq, (A.4)

which shows that the vector x is expressed as a linear sum of lq(q = 1, … , Q), namely, 

x ∈ ℰS. This leads to the conclusion that ℰS ⊃  csp y1
S, …, yK

S . In summary, since both 

directions csp y1
S, …, yK

S ⊃ ℰS, and ℰS ⊃  csp y1
S, …, yK

S  hold, the relationship 

ℰS =  csp BS  holds.

A.2. Proof of equation (19): 𝒦S =  rsp BS

𝒦S =  rsp BS  can be shown just as ℰS =  csp BS  was shown in appendix A.1. We first show 

that if x ∈ 𝒦S, the relationship x ∈  rsp β1
S, …, βM

S  holds. If x ∈ 𝒦S, the relationship

x = ∑
q = 1

Q
ωqsq . (A.5)

holds. If this vector x sartisfies x ∈  rsp β1
S, …, βM

S , x is expressed as

x = ∑
j = 1

M
α jβ j

S . (A.6)
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Using equation (13) and the arguments in the preceding section, under the assumption M > 

Q, for an arbitrary set of ω1, … , ωQ, a set of α1, … , αM exists. Therefore, equation (A.6) 

holds, and rsp β1
S, …, βM

S ⊃ 𝒦S also holds.

We next show that if x ∈  rsp β1
S, …, βM

S , then x ∈ 𝒦S holds. If x ∈  rsp β1
S, …, βM

S , 

equation (A.6) holds. Substituting equation (13) into equation (A.6), we get

x = ∑
j = 1

M
α jβ j

S = ∑
j = 1

M
α j ∑

q = 1

Q
lq
jsq = ∑

q = 1

Q
∑
j = 1

M
α jlq

j  sq . (A.7)

The equation above shows that x ∈ 𝒦S holds. Threrefore, 𝒦S ⊃  rsp β1
S, …, βM

S  holds. In 

summary, since both directions rsp β1
S, …, βM

S ⊂ 𝒦S and 𝒦S ⊂  rsp β1
S, …, βM

S  hold, the 

relationship 𝒦S =  rsp BS  holds.

A.3. Proof of 𝒦I =  rsp XBI  where X = P̆S or X = I − P̆S

Using the same arguments as in the preceding section, we can prove that 𝒦I =  rsp XBI

holds where X = P̆S or X = I − P̆S  and P̆S is the the pseudo signal subspace projector 

defined in equations (62). Using equation (24), multiplying X with the interference vector 

yI(t) gives

X yI t = ∑
p = 1

P
σp t Xξp = ∑

p = 1

P
σp(t)ξ̆ p, (A.8)

where we use the notation ξ̆ p = Xξp. That is, the matrix X changes ξp to ξ̆ p, but the 

multiplication by X never affects the time course σp(t). Therefore, we get the following 

relationship:

XBI = X ∑
p = 1

P
σp t1 ξp, …, ∑

p = 1

P
σp tK ξp

        = ∑
p = 1

P
σp t1 ξ̆ p, …, ∑

p = 1

P
σp tK ξ̆ p

        =
∑p = 1

P σp t1 , …, σp tK ξ̆1
p

⋮

∑p = 1
P σp t1 , …, σp tK ξ̆M

p
=

∑p = 1
P ξ̆1

pσp

⋮

∑p = 1
P ξ̆M

p σp

,

(A.9)
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where ξ̆1
p, …, ξ̆M

p  are the elements of ξ̆ p: ξ̆ p = ξ̆1
p, …, ξ̆M

p T
. Equation (A.9) shows that 

denoting the jth row of XBI as β̆ j
I we get the relationship β̆ j

I ∈ 𝒦I. Thus, using the arguments 

in appendix A.2, we can prove that the relationship 𝒦I =  rsp XBI  holds.

A.4. Asymptotic equivalence between singular vectors of B and Bs

Let us respectively denote sample covariance matrices of B, BS, and Bε by R, RS, and Rε, 

which are obtained such that R = 1
K BBT, and RS = 1

K BSBS
T. Assuming that BS and Bε are 

uncorrelated, from equation (6) we have

R = RS + Rε . (A.10)

Assuming the noise model in equation (3) and infinite number of data samples, the noise 

covariance matrix is given by

Rε = ϱ2I . (A.11)

Sample covariance matrices RS and R are expressed using the eigen decomposition as:

RS = ∑
j = 1

Q
γ j

S 2u j
S u j

S T, (A.12)

R = ∑
j = 1

M
γ j

2u ju j
T . (A.13)

Substituting equations (A.12), (A.13) and (A.11) into equation (A.10), we can obtain

∑
j = 1

M
γ j

2u ju j
T = ∑

j = 1

Q
γ j

S 2u j
S u j

S T + ϱ2 ∑
j = 1

M
u j

S u j
S T . (A.14)

Therefore, we have the following asymptotic relationships:

γ j
2 = γ j

S 2 + ϱ2  for  j = 1, …, Q, (A.15)
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γ j
2 = ϱ2  for  j = Q + 1, …, M, (A.16)

u j = u j
S  for  j = 1, …, M . (A.17)

Equation (A.17) indicates the asymptotic equivalence between the singular vectors of B and 

BS.

A.5. Row space of sum of matrices

Defining two subspaces as 𝒳 and 𝒴, the sum of 𝒳 and 𝒴 is defined such that [21],

𝒳 + 𝒴 = x + y x ∈ 𝒳 and y ∈ 𝒴 . (A.18)

That is, the sum of 𝒳 and 𝒴 is defined as a set of all possible sums between x x ∈ 𝒳  and 

y y ∈ 𝒴 . Then, we show that, for two arbitrary matrices X and Y, the relationship

rsp X + Y ⊂ rsp X + rsp Y . (A.19)

holds. To show this, let us denote row vectors of X, Y, and Z = X + Y by x, y, and z, 

respectively. By definition, for z (z ∈ rsp(Z)), the relationship,

z = x + y

holds where x ∈ rsp(X) and y ∈ rsp(Y). Thus, z ∈ rsp(X) + rsp(Y) holds, and we have shown 

rsp(X + Y) ⊂ rsp(X) + rsp(Y).

A.6. Basis vectors that span sum of subspaces

Next, we derive the basis vectors of 𝒳 + 𝒴. Sets of the basis vectors of 𝒳 and 𝒴 are 

respectively denoted by 𝒮X = x1, …, xμ  and 𝒮Y = y1, …, yν . Let us assume that x ∈ 𝒳, 

y ∈ 𝒴, and z ∈ 𝒳 + 𝒴. We then have

z = x + y = ∑
j = 1

μ
c jx j + ∑

j = 1

ν
d jy j .

Therefore, the relationship

z ∈ span x1, …, xμ, y1, …, yν (A.20)
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holds. Defining a set of the basis vecors of 𝒳 + 𝒴 as 𝒮X + Y, equation (A.20) indicates that 

𝒮X + Y is equal to

𝒮X + Y = x1, …, xμ, y1, …, yν

        = x1, …, xμ ∪ y1, …, yν = 𝒮X ∪ 𝒮Y .
(A.21)

The equation above shows that the basis vectors of the sum of subspaces are obtained as the 

union of the basis vector sets that span each of the subspaces.

A.7. Proof: If 𝒳 ∩ 𝒳′ and 𝒴 ⊂ 𝒴′, then 𝒳 ∩ 𝒴 ⊂ 𝒳′ ∩ 𝒴′  holds

If x ∈ 𝒳 ∩ 𝒴, the relationships, x ∈ 𝒳 and x ∈ 𝒴, hold. Since 𝒳 ⊂ 𝒳′ and 𝒴 ⊂ 𝒴′, we have 

x ∈ 𝒳′ and x ∈ 𝒴′. Therefore, x ∈ 𝒳′ ∩ 𝒴′, and we have shown 𝒳 ∩ 𝒴 ⊂ 𝒳′ ∩ 𝒴′ .

A.8. Proof of span 𝒮X ∩ 𝒮Y = span 𝒮X ∩ span 𝒮Y

Two subspaces are denoted by 𝒳 and 𝒴, and sets of their basis vectors by 𝒮X = x1, …, xμ

and 𝒮Y = y1, …, yν . Let us also define a set of basis vectors SX ∩ 𝒮Y = z1, …, zr  where the 

dimension of the intersection is r. If x ∈  span 𝒮X ∩ 𝒮Y , we can write x as a linear sum: 

x = ∑ j = 1
r w jz j. The fact that z j ∈ 𝒮X leads to x ∈ 𝒳 =  span 𝒮X . Also, the fact that z j ∈ 𝒮Y

leads to x ∈ 𝒴 =  span 𝒮Y . Therefore, x ∈ 𝒳 ∩ 𝒴 =  span 𝒮X ∩  span 𝒮Y  holds, and we can 

show span 𝒳 ∩ 𝒴 ⊂  span 𝒳 ∩  span 𝒳 .

The other direction of the proof is as follows. If x ∈  span 𝒮X ∩  span 𝒮Y , we have 

x ∈  span 𝒮X  and x ∈  span 𝒮Y . Thus, x is expressed as a linear sum of basis vectors that 

belong to both 𝒮X and 𝒮Y, namely, a linear sum of z1, …, zr . Therefore, x ∈  span 𝒮X ∩ 𝒮Y , 

and this indicates span 𝒮X ∩  span 𝒮Y ⊂  span 𝒮X ∩ 𝒮Y . Since we have shown the both 

directions, we have shown span 𝒮X ∩ 𝒮Y =  span 𝒮X ∩  span 𝒮Y .

A.9. Derivation of basis vectors that span intersection of two row spaces

Let us assume that X and Y are low-rank data matrices. We define the basis vectors of rsp(X) 

as 𝒮X = x1, …, xμ  where μ is the dimension of rsp(X), and the basis vectors of rsp(Y) as 

𝒮Y = y1, …, yν  where v is the dimension of rsp(Y). The procedure used to find a set of 

basis vectors of rsp(X) ∩ rsp(Y) is described below. The procedure is according to [22].

An orthonormal set of basis vectors of the intersection is obtained as a set of the principal 

vectors whose principal angles are equal to zero. To find those principal vectors, we define 

matrices whose columns consist of the basis vectors such that
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U = x1
T, …, xμ

T , (A.22)

V = y1
T, …, yν

T . (A.23)

The results of singular-value decomposition of a matrix UTV are expressed as

UTV = Q

cos θ1 ⋯ 0
⋮ ⋱ ⋮
0 … cos θν

TT, (A.24)

where Q and T are matrices whose columns consist of singular vectors, and we assume that 

μ> v. In equation (A.24), singular values of the matrix UTV are equal to the cosines of the 

principal angles between the two subspaces csp x1
T, …, xμ

T =  rsp X  and 

csp y1
T, …, yν

T =  rsp Y . The intersection has the property that the principal angles are 

equal to zero. Thus, by observing the relation

cos θ1 = cos θ2 = ⋯ = cos θr

            ≈ 1 > cos θr + 1 ⩾ ⋯ ⩾ cos θν ,

the dimension of csp(U) ∩ csp(V), (namely, the dimension of rsp(X) ∩ rsp(Y)) is determined 

to be r. The principal vectors are then obtained either as the first r columns of the matrix UQ 

or the first r columns of the matrix VT. Defining the first r columns of UQ as ψ1
T, …, ψr

T, the 

vectors ψ1, … , ψr form an orthonormal basis set for the intersection rsp(X) ∩ rsp(Y).

Appendix B.: Signal space separation (SSS) method

B.1. Derivation of SSS basis vectors

This section presents an overview of the signal space separation (SSS) method [12–14] with 

an emphasis on the derivation of SSS signal and interference extractors. One of basic 

assumptions of the SSS method is that the sensors are installed in a source-free region, 

which is referred to as the sensor region in this paper. Then, the magnetic field at r, B(r) is 

expressed using the spherical polar coordinate r = (r, θ,ϕ) as
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B(r) = − μ0 ∑
𝓁 = 1

∞
∑

m = − 𝓁

𝓁
α𝓁, m

ν𝓁, m(θ, ϕ)
r𝓁 + 2

          −μ0 ∑
𝓁 = 1

∞
∑

m = − 𝓁

𝓁
β𝓁, m r𝓁 − 1ω𝓁, m(θ, ϕ),

(B.1)

where μ0 indicates the magnetic permeability of free space. In equation (B.1), vℓ,m(θ,ϕ) and 

ωℓ,m(θ, ϕ) are the modified vector spherical harmonics [12, 23].

In the right-hand-side of equation (B.1), the first term represents the magnetic field 

generated from sources located closer to the origin than the sensors. The region closer to the 

origin than the sensors is referred to as the internal region. The second term represents the 

magnetic field from sources located farther from the origin than the sensors. The region 

farther from the origin than the sensors is referred to as the external region. If an appropriate 

choice of the origin can result in the signal sources of interest to be located within the 

internal region and all interference sources to be located within the external region, equation 

(B.1) provides a natural separation between the signal and interference. This is the key idea 

of the SSS method.

Let us derive the SSS basis vectors. To do so, we denote the output of the jth sensor by yj, its 

location by rj and its orientation by ζj. Then, we have

y j = B r j ⋅ ζ j = yint
j + yext

j , (B.2)

where the notation · represents the inner product between two vectors, and yint
j  and y ext 

j

represent the two components of the jth sensor outputs generated from the internal and 

external regions, respectively. These components are expressed as

yint
j = − ∑

𝓁 = 1

∞
∑

m = − 𝓁

𝓁
α𝓁, m

ν𝓁, m θ j, ϕ j ⋅ ζ j

r j
𝓁 + 2 , (B.3)

yext
j = − ∑

𝓁 = 1

∞
∑

m = − 𝓁

𝓁
β𝓁, m r j

𝓁 − 1 ω𝓁, m θ j, ϕ j ⋅ ζ j , (B.4)

where we set μ0 = 1 for simplicity. Let us define the internal and external components of the 

data vector y as yint = yint
1 , …, yint

M T
 and yext = yext

1 , …, yext
M T

 which are expressed such that
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yint = ∑
𝓁 = 1

∞
∑

m = − 𝓁

𝓁
α𝓁, mc𝓁, m (B.5)

yext = ∑
𝓁 = 1

∞
∑

m = − 𝓁

𝓁
β𝓁, md𝓁, m, (B.6)

where column vectors cℓ,m and dℓ,m are given by

c𝓁, m =

1
r1

𝓁 + 2 ν𝓁, m θ1, ϕ1 ⋅ ζ1

⋮
1

rM
𝓁 + 2 ν𝓁, m θM, ϕM ⋅ ζM

     and

d𝓁, m =
r1

𝓁 − 1 ω𝓁, m θ1, ϕ1 ⋅ ζ1
⋮

rM
𝓁 − 1 ω𝓁, m θM, ϕM ⋅ ζM

  .

(B.7)

Truncating the summation with respect to the index ℓ to LC for yint and LD for yext, we finally 

obtain

y = yint + yext = ∑
𝓁 = 1

LC
∑

m = − 𝓁

𝓁
α𝓁, mc𝓁, m + ∑

𝓁 = 1

LD
∑

m = − 𝓁

𝓁
β𝓁, md𝓁, m . (B.8)

Thus, defining

C = c1, − 1, c1, 0, c1, 1, …, cLC, LC
, (B.9)

D = d1, − 1, d1, 0, d1, 1, …, dLD, LD
, (B.10)

α = α1, − 1, α1, 0, α1, 1, …, αLC, LC

T
, (B.11)
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ϕ = β1, − 1, β1, 0, β1, 1, …, βLD, LD

T
, (B.12)

we obtain

y = Cα + Dϕ = C, D
α
ϕ

= Sx (B.13)

where S = [C,D] and x = [αT, ϕT]T. Here, C is an M × NC matrix, and D is an M × ND 

matrix where

NC = LC
2 + 2LC,  and  ND = LD

2 + 2LD . (B.14)

B.2. SSS signal and interference extractors

When the key assumption that sources of interest are located in the internal region and all 

interference sources are located in the external region holds, yint represents the signal of 

interest and yext represents the interference. Assuming that M > NC + Nd, and using equation 

(B.13), the least squares estimate of x is obtained as:

x = STS −1ST y . (B.15)

Considering that x = αT, ϕT T
 and using α, the signal component yint is estimated as

y int = Cα . (B.16)

We now derive the SSS signal and interference extractors, and rewrite equation (B.16) using 

the signal extractor. To do so, let us define an operation to make a new column vector [ai, 

… , aj]T by using the ith to jth components of a = [a1,…,aM]T as [a][i:j] (namely, [a][i:j] = [ai,

… , aj]T). From equation (B.15), we have

α = STS −1ST y
1: NC

. (B.17)

When the condition number of a matrix STS is small, i.e. the column spaces of C and D are 

well separated, the relationship
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α = STS −1ST y
1: NC

≈ STS + κI −1ST y
1: NC

(B.18)

holds, where κ is a small positive constant10. Using the matrix inversion formula

STS + κI −1ST y = ST SST + κI −1y, (B.19)

we get

α = STS + κI −1ST y
1: NC

= ST SST + κI −1y
1: NC

    = CT SST + κI −1y ≈ CT SST −1y = CT CCT + DDT −1y .
(B.20)

Using equation (B.16), we finally obtain

y int ≈ CCT CCT + DDT −1y . (B.21)

Accordingly, we can conclude that the interference removal by SSS is achieved by 

multiplying

ΓS = CCT CCT + DDT −1
(B.22)

with the data vector y. That is, the matrix ГS plays a role as a filter that passes the signal of 

interest and blocks the interference. In this paper, ГS is called the SSS signal extractor. Note 

that, since relationships (ГS)2 = ГS and (ГS)T = ГS do not hold, ГS is not a projector. In 

exactly the same manner, we can derive

yext ≈ Dϕ ≈ DDT CCT + DDT −1y . (B.23)

Therefore, defining ГI as

ΓI = DDT CCT + DDT −1, (B.24)

10This equation simply claims that when the condition number of STS is small, nearly identical inverse matrices can be obtained 
either with or without the regularization term κI.
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ГI plays a role as a filter that passes the interference but blocks the signal of interest. This ГI 

is called the SSS interference extractor in this paper.
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Figure 1. 
An arrangement of the 275-channel whole-head sensor array of the Omega™ (VMS 

Medtech, Coquitlam, Canada) neuromagnetometer used in our numerical experiments. 

Locations of sensors are indicated by filled circles. Locations and orientations of six 

reference sensors consisting of two sets of vector magnetometers are shown. Here, (a), (b) 

and (c), respectively, show coronal, axial, and sagittal views of the sensor arrangement. Note 

that the arrangement of the reference sensors was assumed solely for our numerical 

experiments, and differs from the true arrangement in the Omega neuromagnetometer 

system.
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Figure 2. 
(a) Time course of the signal source assumed in our numerical experiments. The time t is 

expressed with the unit of time point ranging from t = −1200 to 1200. The broken vertical 

line indicates the time point at t = 520. The field maps at this time point are shown in the 

following figures. (b) Time courses of the four interference sources assumed in our 

numerical experiments.
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Figure 3. 
(a) Time courses of the signal magnetic field with Gaussian noise with the signal-to-noise 

ratio (SNR) equal to 32. (b) The magnetic field map of the signal magnetic field at t = 520. 

(c) Time courses of interference-overlapped sensor data with the interference-to-signal ratio 

(ISR) equal to 6. (d) The magnetic field map of the interference overlapped sensor data at t = 
520.
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Figure 4. 
(a) Simulated empty-room noise data used in the SSP interference removal experiments. (b) 

Sensor time courses of the SSP interference-removal results. (c) Magnetic field map of the 

SSP interference removal results. The map at t = 520 is shown.
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Figure 5. 
(a) Time courses of reference sensor data used in ANC and CTSP interference-removal 

experiments of which results are shown in figure 6. (b) Time courses of reference sensor 

data containing a large additive fluctuation. The data were used in ANC and CTSP 

interference removal experiments of which results are shown in figure 7.
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Figure 6. 
Results of ANC and CTSP interference removal experiments. The reference sensor data used 

in the experiments are shown in figure 5(a). (a) Sensor time courses of ANC interference 

removal results. (b) Magnetic field map of the ANC interference-removal results. (c) Sensor 

time courses of CTSP interference removal results. (d) Magnetic field map of the CTSP 

interference-removal results. The field maps at t = 520 are shown for (b) and (d).
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Figure 7. 
Results of ANC and CTSP interference removal experiments when the reference sensor data 

shown in figure 5(b) were used. (a) Sensor time courses of ANC interference-removal 

results. (b) Sensor time courses of CTSP interference-removal results.
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Figure 8. 
Results of SSS interference-removal experiments. (a) Sensor time cources of SSS 

interference removal results. (b) Magnetic field map of the SSS interference removal results. 

The map at t = 520 is shown
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Figure 9. 
(a) Sensor time courses of interference-overlapped data generated with nearby interference 

sources. (b) Magnetic field map of the interference-overlapped data in (a). (c) Sensor time 

courses of SSS interference removal results obtained from the sensor data in (a). (d) 

Magnetic field map of the interference removal results obtained from the sensor data in (a). 

The maps at t = 520 are shown for (b) and (d).
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Figure 10. 
Results of tSSS interference removal experiments. (a) Sensor time courses of interference 

removal results obtained using the interference-overlapped data in figure 3(c). (b) Magnetic 

field map of the interference removal results in (a). (c) Sensor time courses of interference 

removal results obtained using the nearby-interference data in figure 9(a). (d) Magnetic field 

map of the interference removal results. The maps at t = 520 are shown for (b) and (d).
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Figure 11. 
Results of DSSP interference removal experiments. (a) Sensor time courses of interference 

removal results obtained using the interference-overlapped data in figure 3(c). (b) Magnetic 

field map the interference removal results in (a). (c) Sensor time courses of interference 

removal results obtained using the nearby-interference data in figure 9(a). (d) Magnetic field 

map of the interference removal results in (c). The maps at t = 520 are shown for (b) and (d).
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Figure 12. 
Results of SNS denoising experiments. (a) Sensor time courses of signal plus Gaussian noise 

data generated for SNS denoising experiments. The signal-to-noise ratio (SNR) was set at 

10. (b) Magnetic field map of the generated sensor data. (c) Sensor time courses of denoised 

results. (d) Magnetic field map of the denoised results. The maps at t = 520 are shown for (b) 

and (d).
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Table 1.

Locations of interference sources assumed in numerical experiments.

Source number Location (cm) Distance from signal source (cm)

1 (100, −30, 500) 510

2 (5, −50, 600) 600

3 (−27, −495, 21) 500

4 (755, −342, 37) 830

1 (10, 30, 30) 41

2 (5, −20, −30) 39
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