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Over the past few decades, residential buildings along the coastal areas of the United States

have suffered enormous structural damage and economic losses due to hurricane strikes. The

significant variations in the building characteristics of residential buildings lead to distinctive

building-level vulnerabilities under extreme winds. Therefore, an accurate representation of

the building inventory is critical for quantifying regional hurricane risk.

In this dissertation, a regional wind risk assessment framework is developed to evaluate

hurricane-induced structural damage and economic losses for residential communities. Un-

like existing loss models that represent the building stock by archetype models with limited

variations in building characteristics, the proposed framework applies site-specific risk as-

sessments on every house in the region of interest based on parcel-based building inventories.

A sensitivity analysis is conducted to investigate the effects of different building features on

building vulnerability to identify the most critical features and explore the means of simpli-

fying the building modeling process. To apply site-specific damage assessments at regional

level, an automatic building modeling workflow is integrated into the framework, which is

ii



supported by property-specific characteristics extracted through machine learning-aided data

collection approaches.

The framework is applied to residential communities in New Hanover County, North

Carolina. Through site-specific risk assessments on 1,746 realistic building models, the overall

variance in building-level damage and loss results among single-family houses is evaluated.

The damage results reveal significant differences in wind vulnerability due to variations in

architectural features. Furthermore, a comparative study shows that the aggregated regional

loss calculated based on refined building models is substantially higher than that derived

from building archetypes used in existing regional loss models. The building inventory

generation and building modeling modules integrated into the framework largely reduce

the inherent uncertainties of hurricane risk prediction. The high-resolution damage and loss

results produced by the framework offer insights into local risk conditions, which facilitate

the improvement of hazard risk mitigation and post-disaster management strategies.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Wood-frame residential buildings, the most prevalent building type in the United States, are

particularly fragile under extreme winds, such as hurricanes and tornadoes (van de Lindt

and Dao, 2009). According to insurance claim files from past hurricanes (Sparks et al.,

1994), the majority of wind losses are caused by breaches in the building envelope and

resulting rain penetration. Various building characteristics, such as roof type, roof pitch,

and building shape, have significant impacts on the wind pressures acting on the building

envelope (Meecham et al., 1991; Wiik and Hansen, 1997; Xu and Reardon, 1998; Shao et al.,

2018; Sarma et al., 2023). An alteration in any of these attributes can result in distinctive

wind performance of the structure (Li, 2005; Brown-Giammanco et al., 2018; Masoomi et al.,

2018).

Based on functional and aesthetic needs, the appearance of single-family residential build-

ings in the United States varies substantially. However, the variations of very few building

features are considered in the archetype building models adopted by existing regional wind

loss frameworks, including the Federal Emergency Management Agency (FEMA) HAZUS-

MH model (Vickery, 2006) and the Florida Public Hurricane Loss Model (FPHLM) (Pinelli

et al., 2011; Hamid, 2021). The simplified and idealized building models can potentially

compromise the validity of wind damage and loss estimation. The adoption of more detailed

building models is mainly hindered by two obstacles. First, the determination of wind loads
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for buildings with complex geometries is challenging due to limited experimental results.

Second, the building attributes of interest are usually missing in available datasets, which

obstructs the mapping from building prototypes to the building stock.

This dissertation presents an end-to-end framework for quantifying the wind risk of large-

scale single-family residential building stock. The proposed framework aims to improve the

regional wind loss projection by incorporating detailed and realistic building models into wind

damage simulations. The framework starts with the generation of a parcel-based building in-

ventory, followed by building-level risk assessments that incorporate a variety of site-specific

building properties. The enriched building data and associated building modeling methodol-

ogy considerably reduce the uncertainties in the building inventory and enhance the accuracy

of damage and loss estimation.

1.2 Objective and Scope

The research objective of this dissertation is to develop a regional wind risk assessment

framework (Fig. 1.1) by integrating machine learning-based building inventory generation

and automatic building modeling. The framework aims to improve the understanding of

wind risk for single-family residential building stock by adopting detailed building models

built upon enriched building inventories. The main tasks that support this objective are

introduced in the following sections.

Figure 1.1: General steps of the regional wind risk assessment framework
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1.2.1 Construction of parcel-based building inventories

The building inventory is an essential input for the wind risk assessment, and parcel-based

building inventory allows for damage and loss estimation at the individual building level.

However, many building characteristics important in determining wind vulnerability, such

as roof type and roof pitch, are often missing or of low-quality in existing building databases.

Recent advancements in computer vision have provided powerful tools to extract building

attribute data from remote sensing data. Large-scale building inventories can be produced

by combining advanced image processing methods with publicly available remote sensing

database such as Google Maps. In addition, statistical models can be adopted to infer

missing building features based on the correlations among different building characteristics.

Consequently, an integrated model that incorporates various data collection techniques is

necessary for the construction of high-resolution building inventories for use in wind risk

assessment.

1.2.2 Archetype-based modeling methodology for individual buildings

The implementation of site-specific risk assessments requires the construction of 3D building

models that provide the layout and location of building components. Due to the complex na-

ture of single-family residential construction, simplifications are necessary when converting

real structures to building models. Integrating building archetypes into individual building

modeling can effectively reduce the computational complexity of the modeling process. The

development of efficient modeling methodologies must also take into account the availability

of building attribute data and the capability of the wind vulnerability model. To accurately

reflect the wind performance of the original structure, the building model should be capable

of capturing critical building characteristics, which requires an understanding of the relative

importance of building features to building vulnerability. On the other hand, the build-

ing modeling methodology guides the development and optimization of the building data
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collection process.

1.2.3 Automation of site-specific wind risk assessment

To conduct site-specific risk assessment at the regional scale, it is necessary to automate the

assessment process. The framework must be able to automatically create building models,

generate building components, and determine wind pressures on each component unit. This

enables the forecast of wind damage for individual buildings and the estimation of aggregated

regional losses. The proposed assessment methodology incorporates the correlations among

building attributes and the spatial variance of the building inventory, which facilitates the

improvement of post-disaster recovery strategies. The building-level results also reveal the

variance of wind vulnerability for single-family houses, providing insight into the relative

importance of each building variable.

1.3 Case Study Area

New Hanover County, located on the southeastern coast of North Carolina, is selected as the

study area for this dissertation. It is comprised of various municipalities, including the city of

Wilmington and coastal towns of Wrightsville Beach, Kure Beach, and Carolina Beach. As

part of the hurricane-prone Eastern Seaboard, New Hanover County is particularly vulner-

able to direct tropical cyclone strikes. Recent major hurricanes that affected New Hanover

County include Irene (2011), Matthew (2016), and Florence (2018). Hurricane Florence,

which made landfall in Wrightsville Beach as a Category 1 hurricane, resulted in 24 billion

dollars in damages. Over the past decade, extensive efforts have been made to quantify the

regional hazards, predict the wind losses, and improve the post-disaster management strate-

gies in this area (Apivatanagul et al., 2011; Peng, 2013; Peng et al., 2014; Wang et al., 2020).

Nonetheless, due to the lack of field studies, a comprehensive building inventory dataset for

New Hanover County is not yet available. Therefore, substantial assumptions and approx-
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imations were made when describing the building stock at risk, introducing considerable

uncertainty to the regional loss estimation. In this dissertation, the distribution of criti-

cal building characteristics for the single-family residential building stock in New Hanover

County is investigated. Furthermore, the regional wind risk assessment framework is im-

plemented to 1,746 single-family houses in two residential communities (Fig. 1.2) in New

Hanover County, denoted as study areas 1 and 2. The selected study areas are considered

to be representative of residential neighborhoods in coastal and non-coastal regions of the

United States. The differences in building density and vegetation coverage between these

areas aid in evaluating the generalizability of the building inventory generation methodology

proposed in this dissertation.

Figure 1.2: Locations and satellite images of study areas
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1.4 Contributions

The main contributions of this study are summarized below:

1. The sensitivity analysis described in Chapter 3 provides a quantitative evaluation of

the relative importance of building characteristics in wind vulnerability modeling of

roof sheathing. Specifically, it assesses the effects of building shape and roof pitch, the

variations of which have not been incorporated into the building archetypes used by

existing wind vulnerability models.

2. An archetype-based modeling methodology for complex-shaped roofs is developed. The

proposed method largely simplifies the modeling of complex roofs and reduces the

amount of required input data. This methodology allows for the inclusion of complex

roof geometries in wind damage analysis, which improves the accuracy of wind damage

and loss estimation.

3. Data collection methods are developed to produce reliable and low-cost building in-

ventories through machine learning, which can be extended to other hazards. The

advanced techniques enable the generation of large-scale and high-resolution building

inventories. Strategies are created to filter out low-quality remote sensing data and

impute any missing data, which improve the reliability and completeness of the build-

ing inventory. The generalizability of the proposed methods is also examined through

the case study.

4. Large-scale building datasets, including building features that are not available in pub-

licly available databases, are created using manual investigation and machine learning.

The building datasets reveal the distribution of critical building characteristics and

guide the development of more detailed and realistic building archetypes.

5. Site-specific risk assessments are conducted on a large-scale building inventory, which

reveal the overall variance in wind vulnerability of single-family houses, taking into
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account a variety of building characteristics. The building-level wind damage results

provide insights into the main sources of uncertainty that affect the building perfor-

mance under extreme winds.

1.5 Organization

This dissertation consists of six chapters. Following the introduction in Chapter 1, Chapter

2 reviews the existing wind vulnerability modeling methodology and the state-of-the-art

techniques for building inventory generation.

In Chapter 3, a parametric sensitivity analysis is conducted to evaluate the effects of crit-

ical building characteristics on wind fragility for roof sheathing, with the focus on buildings

with non-rectangular footprints. Roof archetypes are developed to simplify the modeling of

individual buildings, and suggestions for building modeling and data collection are provided.

Chapter 4 describes a building inventory generation model designed to extract building

information from remote sensing data. The construction of the training data, as well as the

training and evaluation of the model, are explained in detail. Case studies are presented for

the application of the inventory generation pipeline at neighborhood and city scales.

In Chapter 5, the wind damage and loss assessment model is elaborated through a case

study. The model is applied to the single-family residential building stock in residential

communities. The results are discussed in terms of fragility curves and expected annual

losses for individual buildings. The aggregated regional wind loss is also compared with the

wind loss calculated using building archetypes with average building features.

Chapter 6 summarizes the main contributions and conclusions of this study, as well as

the directions of future work based on the limitations of the proposed framework.
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CHAPTER 2

LITERATURE REVIEW

This chapter provides an overview of the existing literature related to classification and

modeling methods of the single-family residential building stock. Section 2.1 summarizes the

critical building characteristics that are identified to have a significant impact on the building

performance under extreme winds. Section 2.2 describes the building models employed by

existing wind loss frameworks, and discusses the limitations of those models in terms of

building configurations. Furthermore, Section 2.3 reviews the state-of-the-art techniques

for collecting building metadata, which can be adopted to create high-resolution building

inventories.

2.1 Major Building Characteristics for Single-family Houses

This section introduces the externally visible building characteristics (depicted in Fig. 2.1)

that were identified to have critical effects on building performance under high winds. The

effect of each building feature is discussed based on available wind tunnel tests, post-disaster

damage data, and probabilistic vulnerability assessments. Additionally, typical configura-

tions for each building feature for single-family dwellings in the United States are intro-

duced. Efforts to evaluate the impact of individual building characteristics on wind loads

and building performance facilitate the development of a building data collection and mod-

eling methodology.
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Figure 2.1: Critical building characteristics for wind vulnerability modeling of single-family

houses

Roof type

In the hurricane-prone region of the United States, gable and hip roofs are the dominant

roof types for single-family residential buildings (Vickery, 2006; Crandell et al., 1993). Post-

disaster studies (Crandell et al., 1993; Brown-Giammanco et al., 2018) show that hip roofs

suffer significantly less damage than gable roofs, due to differences in wind pressure distri-

bution and roof framing structure (Meecham et al., 1991). The peak negative pressures on

gable roofs are substantially higher than those on hip roofs, as concluded in previous wind

tunnel tests (Gavanski et al., 2013; Xu and Reardon, 1998; Shao et al., 2018).

Building shape

Most single-family houses in the United States have non-rectangular footprints (Meloy et al.,

2007). The building shape affects the layouts of both roof and wall structures. Recent studies

conducted wind tunnel tests on low-rise buildings with complex-shaped roofs (e.g., L- and

T-shaped roofs) (Shao et al., 2018; Parackal et al., 2016; Uematsu et al., 2022; Sarma et al.,

2023). The experimental results show distinctive magnitude and distribution of wind pres-

sures between non-rectangular and rectangular roofs with the same roof type (gable/hip).
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Additionally, Sarma et al. (2023) assessed the wind vulnerability of roof sheathing on gable

roofs with different building shapes. It is concluded that complex gable roofs have sub-

stantially different wind vulnerability compared rectangular-shaped gable roofs. However,

due to limited number of models assessed, the effect of building shape on roof vulnerability

remains unclear. On the other hand, researchers have not paid attention to the wind load

and vulnerability of non-rectangular wall structures for low-rise buildings.

Roof pitch

The roof pitch for single-family houses in the coastal area has a wide range. Based on a survey

of the national distribution of typical roof pitch values conducted by the NAHB Research

Center (Gurley et al., 2005), fractions of site-built houses with roof pitches lower than 5/12,

between 5/12 and 6/12, and over 6/12 are 17%, 40%, and 43%, respectively. It was observed

in the post-disaster survey of Hurricane Harvey (Brown-Giammanco et al., 2018) that roof

slope had a notable impact on roof sheathing and roof underlayment damage. Based on

the investigation of 213 single-family dwellings, the failure frequency for roof sheathing is

16% lower for steep roofs (greater than 7/12) than for moderate-slope roofs (2/12 - 7/12).

The effect of roof pitch on roof pressures was also evaluated by wind tunnel tests (Xing

et al., 2018; Xu and Reardon, 1998). Xing et al. (2018) conducted experiments on gable-roof

building models of 11◦, 22◦, and 31◦ roof pitch and concluded that gable roofs with a lower

roof pitch experience higher suction pressures. Xu and Reardon (1998) evaluated effect of

roof pitch on wind pressure on hip roofs using building models of 15◦, 20◦, and 30◦ roof

pitch. The results showed that the increase in roof pitch resulted in higher peak suction

on hip roofs. Based on the post-disaster data and wind tunnels results, roof pitch has a

significant effect on roof damage for both gable and hip roofs, even with frequently used roof

pitch angles.

10



Roof overhang

Roof overhangs are frequently used for single-family houses for rainfall protection and shading

purposes. The typical size of an overhang ranges from 12 inches and 24 inches. Wind

tunnel tests conducted by Wiik and Hansen (1997) and Mostafa et al. (2022) show that

the overhang experiences higher uplift wind forces compared to other areas of the roof, and

larger overhangs suffer higher suctions. Li (2005) evaluated the effect of overhangs on

extreme wind fragility for roof sheathing. The fragility analysis demonstrates that houses

with roof overhangs have a significantly higher probability of roof sheathing damage than

those without overhangs.

Number of stories

Single-family houses are typically one- or two-story buildings. The number of building stories

is associated with multiple building characteristics. First, buildings with more stories have

greater building height, inducing higher wind pressure on the roof. Li (2005) calculated

the roof sheathing fragility for both one- and two-story building models and concluded that

roof height had minor effect on roof sheathing fragility. In addition, a post-disaster study

by Crandell et al. (1993) showed that two-story buildings did not suffer significantly more

severe roof damage than one-story buildings.

Second, buildings with more stories have substantially more windows, which increases the

probability of window damage due to wind pressure and wind-borne debris. The breakage

of the windows can result in water ingress (Pita et al., 2012) and the change in internal

pressures (Liu and Saathoff, 1981), which can trigger interior damage and progressive dam-

age of other envelope components. These effects were supported by the post-disaster site

investigation by Crandell et al. (1993), which showed that two-story buildings experienced

significantly higher damage ratio than single-story buildings for building envelope damage

and interior damage due to water intrusion.
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Garage

As shown in Fig. 2.2, there are three common types of garage for single-family houses in the

United States: attached garages, detached garages, and carports. Among these types, only

attached garage is considered for the wind vulnerability modeling methodology developed

by previous studies (Vickery, 2006; Pinelli et al., 2011; Peng, 2013; Chung Yau et al., 2011).

As the largest opening on the single-family houses, garage door is a weak link in the building

system. Failure of the garage door changes the internal wind pressure dramatically, and

triggers the damage of other building components (Crandell et al., 1993).

Figure 2.2: Typical garage types for single-family houses in the United States

2.2 Wind Vulnerability Modeling of Single-family Houses

This section reviews the wind vulnerability modeling of single-family houses using proba-

bilistic methods, with a focus on the building attributes considered in existing models. The

capabilities and limitations of existing models are discussed, as well as potential improve-

ments that can be implemented to increase the accuracy of damage prediction.

The wind vulnerability modeling of single-family houses generally requires two types

of building-related variables: building configuration and structural configuration. Building

configuration refers to the general building characteristics, such as the building area, roof

type, and number of stories. Structural configuration represents the types and capacities of

building components and structural connections. Typical building components considered for
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the physical damage modeling of wood-frame single-family houses are illustrated in Fig. 2.3.

Figure 2.3: Building components considered for wind damage calculation for wood-frame

single-family houses

Existing regional wind loss models, including the Federal Emergency Management Agency

(FEMA) HAZUS-MH model (Vickery, 2006) and the Florida Public Hurricane Loss Model

(FPHLM) (Pinelli et al., 2011; Hamid et al., 2011), implement wind damage simulations on

building archetypes designed based on typical building configurations. Variations of critical

building characteristics, including roof type (gable/hip), number of stories (one/two), and

garage condition (Y/N), are considered in the building archetypes for single-family houses.

When determining the aggregated regional loss, the model houses are mapped to the building

stock based on the statistical distribution of the aforementioned features at the regional level

(e.g., census-tract level). Due to limited building inventory data and a lack of understanding

regarding the impact of architectural features, variations of many critical building attributes

(e.g., building shape and roof pitch) are neglected. As a result, rectangular-shaped building

models with simple roof shapes and a single roof pitch value are adopted for the building

archetypes. In terms of the structural configuration, component resistances are usually es-

timated based on the building location and construction year (Hamid, 2021; Peng, 2013),

which are correlated with building design codes and local retrofit policies.

Extensive efforts were devoted to improving the wind vulnerability modeling methodol-
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ogy for rectangular-shaped low-rise residential buildings. Lin and Vanmarcke (2010) devel-

oped the debris risk analysis methodology for quantifying the failure probability of openings

due to wind-borne debris. Ji et al. (2020) introduced a simplified approach to simulate the

progressive damage process of the building envelope due to changes in internal wind pres-

sures. Chung Yau et al. (2011) integrated assessments of wind pressure damage and wind-

borne debris effect to estimate the wind loss for residential neighborhoods. Unnikrishnan

and Barbato (2016) developed a performance-based hurricane engineering framework with

multilayer Monte Carlo Simulation to compare building performance with different retrofit

strategies.

On the other hand, only a limited number of studies have examined the wind perfor-

mance of non-rectangular residential buildings, with the majority of assessments focusing

on roof components. Amini and van de Lindt (2014) developed tornado fragilities for the

roof system of four complex gable-roofed buildings and one simple hip-roofed building using

wind loads calculated based on ASCE 7-10 (ASCE, 2010). Masoomi et al. (2018) conducted

fragility analysis on the same set of building models considering both straight-line winds and

tornadoes, using ASCE 7-10 (ASCE, 2010) and ASCE 7-16 (ASCE, 2016). Stewart et al.

(2018) developed fragility curves for metal roof sheeting on a complex hip-roof building using

wind pressure data obtained from wind tunnel tests. Similarly, Sarma et al. (2023) assessed

roof sheathing vulnerabilities for seven gable-roof building models with different building

shapes using wind pressure coefficients derived from wind tunnel tests.

In summary, existing wind vulnerability models are developed based on simplified and

idealized building models, which can lead to errors and biases in the damage and loss predic-

tions. However, recent advancements in risk assessment methodologies for irregular buildings

have made it possible to integrate non-rectangular building models into the wind risk as-

sessment framework. This will provide a more realistic description of the building stock and

improve the accuracy of damage and loss estimation.
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2.3 Building Data Collection Techniques

As introduced in Section 2.2, wind vulnerability modeling of single-family houses requires

detailed descriptions of exterior building features. Existing regional wind loss models mainly

rely on publicly available datasets (e.g., tax appraisers’ databases) to derive the statisti-

cal distribution of building attributes based on selected geographic area units (e.g., census

tracts). However, many critical building characteristics (e.g., roof type) are missing in such

datasets (Pita et al., 2008). Post-disaster studies, which mainly focus on damaged buildings,

provide a means of collecting building inventory data. In a case study conducted by Vickery

(2006), roof type and number of stories of 1,633 homes were manually labeled using aerial

images to classify the residential building stock in Florida. Building inventories generated

through manual data collection process are usually limited to hundreds to thousands of

buildings, which are not sufficient to produce statistically significant results and can cause

bias when extrapolated to large-scale building stocks.

Recent advancements in machine learning have provided powerful tools to extract detailed

building information using predictive modeling and image processing. Machine learning-

based building data collection methods can be classified into two major types. One type

of approach is predicting unknown building characteristics using other correlated building

variables. This type of approach is widely used for missing data imputation. Pita et al.

(2011) applied Bayesian Belief Networks and Classification and Regression Trees to impute

missing roof-type data using building characteristics such as construction year and building

value. Taghinezhad et al. (2020) examined several regression models for imputing missing

first floor elevation data. The statistical models are easy to train and can be used to predict

both categorical and numerical variables. However, the implementation of such methods

heavily rely on the availability of other building information. Moreover, building features, like

building value, are correlated with building location, which reduce the prediction accuracy

when applied to different areas (Pita et al., 2011).
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Another approach is extracting building information using remote sensing data with Con-

volutional Neural Networks (CNNs) through Representation Learning (Bengio et al., 2013).

Representation learning extracts the features automatically through its learning process,

without the need for hand-crafted features, thus offering higher generalizability than statisti-

cal and hand-crafted features which might not generalize to unseen data well (El-Hariri et al.,

2019). Deep learning-based data collection methods for various building attributes have been

developed by previous studies through image classification, object detection, and semantic

segmentation. CNNs were trained to predict roof type using satellites imagery (Buyukdemir-

cioglu et al., 2021; Wang et al., 2021; Alidoost and Arefi, 2018). Kang et al. (2018) developed

an automatic workflow for building instance classification using street view images. In ad-

dition, extensive studies have been focused on roof segmentation using satellite and aerial

imagery (Wu et al., 2018; Merabet et al., 2015), and building facade segmentation using

street view images (Dai et al., 2021). Previous experiments have demonstrated that CNNs

could be used to generate building inventories efficiently with high accuracy. Nevertheless,

low-quality remote-sensing data are frequently encountered due to various reasons (e.g., tree

occlusion), which reduces the robustness of classification or segmentation (Jayaseeli and

Malathi, 2020; Zambanini et al., 2020). Considering the complex nature of residential envi-

ronments, the generalizability and effectiveness of deep learning-based methods for producing

building metadata remain unclear. Additional pre- and post-processing steps are necessary

to identify low-quality remote-sensing data and impute the resulting missing data in order

to create reliable and comprehensive building inventories.

Facilitated by publicly available remote sensing databases (e.g., Google Maps), deep

learning models can be adopted to predict building features critical for wind risk assess-

ments. A machine learning-aided model can be developed to construct large-scale and

high-resolution building inventories. These enriched building inventories can enhance the

understanding of the residential building stock and support more detailed building modeling

than existing models.
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CHAPTER 3

SENSITIVITY ANALYSIS FOR EXTREME WIND

FRAGILITY OF ROOF SHEATHING

This chapter presents a parametric sensitivity analysis for evaluating the effects of critical

roof features on wind fragility for roof sheathing. The analysis results are used to identify

the relative importance of building characteristics for wind vulnerability modeling, which

facilitates the development of building archetypes and building data collection methods.

Section 3.1 introduces the background and motivation of the sensitivity analysis. Section 3.2

describes the building models used for the fragility analysis, followed by the explanation

of the fragility modeling methodology in Section 3.3. In Section 3.4, fragility curves for

building models with different roof shapes and roof pitches are presented, and the results are

discussed in terms of failure probabilities and fragility parameters. In the end, roof modeling

approaches for assessing the building’s wind vulnerability are provided in Section 3.5, and

the limitations of the analysis are discussed in Section 3.6.

3.1 Introduction

Damage to the roofs of single-family residential buildings is frequently observed in extreme

wind hazard events. Uplift pressure acting on roofs can remove roof sheathing panels from

roof framing. Loss of a single piece of the roof sheathing can cause rainwater penetration,

resulting in severe interior damage and corresponding content losses (Sparks et al., 1994).

Moreover, the loss of roof sheathing can induce sudden internal pressurization and affect the
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wind pressure applied on other building components (Liu and Saathoff, 1981). Hence, accu-

rately predicting the performance of roof sheathing is critical for damage and loss estimation

of the whole building structure.

Based on functional and aesthetic needs, most single-family residential buildings in the

United States have non-rectangular footprints with resulting complex roof configurations.

The roof pitch for residential buildings can vary from 3:12 (14◦) to 12:12 (45◦) (Brown-

Giammanco et al., 2018). Previous research on the reliability of roof sheathing subjected to

high wind has mostly focused on simple roof shapes with rectangular building plans (Elling-

wood et al., 2004; Lee and Rosowsky, 2005; Li, 2005; van de Lindt and Dao, 2009). Only

a limited number of studies considered building models with complex roof shapes and non-

rectangular building plans (Amini and van de Lindt, 2014; Masoomi et al., 2018; Stewart

et al., 2018; Sarma et al., 2023). Nevertheless, due to the limited number of building models,

the effects of roof shape and roof pitch on roof sheathing fragilities remain unclear. Con-

sequently, this study conducts a quantitatively evaluation of the effects of roof shape and

roof pitch on roof sheathing fragility by assessing a large number of realistic building models

with various roof shapes and roof pitches. The goal of this analysis is to provide guidance

for improving the vulnerability modeling for single-family houses and to explore potential

simplifications for site-specific building modeling.

3.2 Building Models

Two sets of building models were used to evaluate roof type and roof pitch effects on roof

sheathing fragility, respectively. The first set includes 47 building models (5 rectangular

gable-roofed, 18 complex gable-roofed, 1 rectangular hip-roofed, and 23 complex hip-roofed

cases), designated Types 1-47 (Figs. 3.1 and 3.2). The 47 building models were classified into

Groups 1-12 based on roof complexity, with the number of ridgelines for gable roofs (one to

five) and the number of roof corners for hip roofs (four to nine) used as the primary features
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representing the roof complexity. Groups 1-2 and 3-6 represent buildings with rectangular

gable roofs and complex gable roofs, respectively. Groups 7 and 8-12 represent buildings with

rectangular hip roofs and complex hip roofs, respectively. Building models were designed

to have similar plan areas and dimensions. Roof configurations and building properties

of building models were developed based on common practice in residential construction.

Roof sheathing panels are placed following a staggered patter with 50% offset. They are

intended to be representative of most single-family houses in hurricane-prone areas of the

United States. Table 3.1 presents the properties of building model set 1. The building

dimensions and roof configuration for Structure Type 6 are shown in Fig. 3.3 as an example.

Roof dimensions and panel layouts for gable- and hip-roofed building models are shown in

Fig. 3.1 and Fig. 3.2, respectively.
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Figure 3.1: Dimensions and panel layouts for gable-roof building models (all dimensions are

given in meters)
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Figure 3.3: Dimensions and roof sheathing layout, Structure Type 6 (all dimensions are

given in meters)

Table 3.1: Dimensions and characteristics of building models (Set 1)

Properties Type 1-5 Type 6-23 Type 24 Type 25-47

Plan dimension (m) 11.0× 17.7 14.6× 17.7 11.0× 17.7 14.6× 17.7

Roof area (m2) 211.8 209.0− 210.9 211.8 209.0− 213.7

Roof type Gable Gable Hip Hip

No. of stories 1 1 1 1

Wall height (m) 2.4 2.4 2.4 2.4

Roof slope 6/12 (∼ 26.6◦) 6/12 (∼ 26.6◦) 6/12 (∼ 26.6◦) 6/12 (∼ 26.6◦)

Roof framing spacing (m) 0.61 0.61 0.61 0.61

Overhang (m) 0.30 0.30 0.30 0.30

22



The second set of 40 building models includes four baseline structures, designated Type

A-D, with ten different roof pitches (Fig. 3.4). The baseline structures are considered repre-

sentative of gable- and hip-roofed buildings with rectangular and non-rectangular footprints.

The roof pitches vary from 3/12 (14◦) to 12/12 (45◦), covering commonly used pitch angles

in residential buildings. Building properties for the four baseline models are summarized in

Table 3.2.

Figure 3.4: Characteristics of building models (Set 2) (a) Roof configurations and dimensions

for baseline building models. The panel layouts are shown for 4:12 pitched roofs. (b) Selected

roof pitch (all dimensions are given in meters)
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Table 3.2: Dimensions and characteristics of building models (Set 2)

Properties Type A Type B Type C Type D

Plan dimension (m) 11.0× 17.7 14.6× 17.7 11.0× 17.7 14.6× 17.7

Roof type Gable Gable Hip Hip

No. of stories 1 1 1 1

Wall height (m) 2.4 2.4 2.4 2.4

Roof framing spacing (m) 0.61 0.61 0.61 0.61

Overhang (m) 0.30 0.30 0.30 0.30

3.3 Fragility Modeling Methodology

3.3.1 Damage states

The failure of roof sheathing due to wind load is usually caused by negative wind pressure

(suction) acting on the panel, which causes multiple nail withdrawals and leads to the removal

of roof sheathing from roof framing. The limit state for the uplift of an individual roof

sheathing panel can be expressed by

g(R,W,D) = R− (W −D) (3.1)

where R = uplift capacity of roof sheathing, W = uplift wind load acting on the roof

sheathing, D = dead load. The failure of individual roof sheathing is defined as g(·) < 0.

For the fragility of a roof sheathing system, which consists of multiple roof panels, five damage

states were considered, which are consistent with previous studies (Lee and Rosowsky, 2005;

Amini and van de Lindt, 2014): (DS1) no roof sheathing failure, (DS2) one roof sheathing

panel fails, (DS3) more than one, and less than or equal to 10% of roof sheathing panels

fail, (DS4) more than 10%, and less than or equal to 25% of roof sheathing panels fail,
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(DS5) more than 25% of roof sheathing panels fail. Roof sheathing with smaller panel size

has higher wind uplift capacity (Lee and Rosowsky, 2005). As shown in Figs. 3.1 and 3.2,

roof panels with small dimensions are frequently observed at the edge of roof segments for

complex roofs. Due to lack of experimental data for the uplift capacity of non-standard roof

panels, roof sheathing panels smaller than 6 sq ft are neglected in the fragility analysis.

3.3.2 Fragility analysis

Fragility analysis was applied to evaluate the performance of roof sheathing under high wind

incorporating the uncertainties in loads and resistance. Following the method described

by Masoomi et al. (2018), wind fragilities for the roof sheathing system can be defined as

the conditional probability of exceeding a specific damage state under a given wind speed v

Fr(V ) = P [DS > dsi|V = v] (3.2)

The fragility curves were developed using Monte Carlo simulations with 10,000 samples.

Figure 3.5 summarizes the main steps of the Monte-Carlo simulation for the roof sheathing

fragility assessment.
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Figure 3.5: Simulation procedure for roof sheathing fragility assessment

3.3.3 Uplift capacity

For this study, the statistics of the wind-uplift capacity (R) of roof sheathing were obtained

for 13 mm × 1.2 m × 2.4 m (1/2 in × 4 ft × 8 ft) oriented strand board (OSB) fastened

to nominal 51 by 102 mm (2 by 4 in.) Southern Yellow Pine (SYP) lumber spaced 24 in.
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on-center, using 8d common nails (3.33 mm (0.131 in.) diameter, 63.5 mm (2.5 in.) long).

The nail spacing is 6 in. along the edge of the panel and 12 in. at interior locations. The

statistics of uplift capacity were obtained from experimental results by Datin et al. (2011)

(Table 3.3). The uplift capacities of roof panels in the same building are assumed to be

partially correlated due to similar environment, material, and construction conditions (He

and Hong, 2012). For each building sample, the resistance for roof panels is generated from

a multivariate lognormal distribution with correlation coefficients equal to 0.4, as suggested

by Peng (2013).

Table 3.3: Resistance (R), dead load (D), and wind load (W ) statistics

Parameters Category Mean COV Distribution Referencea

R
8DC6/12 129.4 (psf) 0.12 Lognormal 1

ccSPF 154.9 (psf) 0.17 Lognormal 1

D 3.5 (psf) 0.1 Normal 2

Kz

One-story 0.82 0.14 Normal 2

Two-story 0.84 0.14 Normal 2

Kd C&C 0.89 0.16 Normal 2

GCpi

Enclosed 0.15 0.33 Normal 2

Partially enclosed 0.46 0.33 Normal 2

Kzt Deterministic (1.0) 2

a References: 1 = Datin et al. 2011; 2 = Lee and Rosowsky 2005.

3.3.4 Dead load and wind load

The dead load (D) considered in Eq. 3.1 is the self-weight of the roof sheathing panel. The

self-weight of the roof cover, which is assumed to be an asphalt shingle in this study, is
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negligible compared to the weight of roof sheathing. The dead load is assumed to remain

constant in time and is modeled by a normal distribution (Lee and Rosowsky, 2005). The

statistics of dead load are summarized in Table 3.3.

In this study, wind loads acting on individual roof panels were calculated based on ASCE

7-16 (ASCE, 2016). Wind provisions in ASCE 7-16 focus solely on rectangular buildings, and

buildings with non-rectangular footprints are not included. Shao et al. (2018) conducted wind

tunnel experiments on L- and T-shaped structures and concluded that wind provisions in

ASCE 7 standard could provide a reasonable estimation of wind pressures acting on complex-

shaped roofs. In ASCE 7-16 (ASCE, 2016), roof sheathing is modeled as components and

cladding (C&C). The wind pressures on C&C of low-rise buildings were determined by the

following equation:

W = qh(GCp −GCpi) (3.3)

where qh = velocity pressure evaluated at mean roof height; GCp = external pressure co-

efficient; GCpi = internal pressure coefficient. The nominal value of the external pressure

coefficient (GCp) for roof panels was determined using the weighted-average method ex-

plained by Lee and Rosowsky (2005). GCp values for different wind pressure zones are

functions of the roof slope given in ASCE 7-16 (ASCE, 2016). The velocity pressure, qh, was

determined from ASCE (2016):

qh = 0.00256KzKztKdV
2(lb/ft2); V in mi/h (3.4)

where Kz = velocity pressure exposure coefficient; Kzt = topographic factor; Kd = wind

directionality factor; V = 3-sec gust speed at 10 m (33 ft) above ground in open terrain. The

velocity pressure exposure coefficient (Kz) is determined based on the mean roof height and

the exposure category. For this study, the exposure category is assumed to be Exposure C for

open terrain with scattered obstructions. Wind pressures for C&C were determined based

on the assumption that wind comes from any possible direction. The wind directionality

factor (Kd) was applied to account for the reduced probability of maximum winds coming
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from any direction and maximum wind pressure occurring for any given wind direction. It

is assumed that GCp follows a normal distribution with the mean-to-nominal value equal

to 0.95 and a coefficient of variation equal to 0.12 (Ellingwood and Tekie, 1999). The wind

zones for GCp on complex roofs adopted in this study are illustrated in Fig. 3.6, which are

modified from the wind zones defined for rectangular roofs in ASCE 7-16 (ASCE, 2016).

Appendix A summarizes the GCp values for C&C on gable and hip roofs with different roof

pitches. The statistics for other wind load parameters used in this study are summarized in

Table 3.3.

Figure 3.6: Wind pressure zones for GCp for C&C on roofs: (a) Gable roofs; (b) Hip roofs

29



Openings in the building envelope created by failed roof sheathings are likely to change

the internal pressure (Stewart et al., 2018; Qin and Stewart, 2019; Sarma et al., 2023). The

approach proposed by Lee and Rosowsky (2005) is applied in this study to consider this

effect. Damage conditions for roof sheathings are first checked with the internal pressure

coefficient (GCpi) for an enclosed building. If at least one roof sheathing fails, the internal

pressure is recalculated based on a partially enclosed structure. The damage conditions for

undamaged roof panels are checked with the updated internal pressure. The positive GCpi

values, which result in the worst loading condition for roof sheathing, are used in this study.

The statistics for GCpi and other wind load parameters used in this study are summarized

in Table 3.3.

3.4 Fragility Curves

3.4.1 Effect of roof shape

3.4.1.1 Gable roofs

Figure 3.7 shows the fragility curves for exceeding DS1 and DS4 of all gable-roofed building

models (Type 1-23). The median wind speeds of fragility curves (i.e., the wind speed as-

sociated with 50% failure probability) of all gable-roofed buildings are shown in Fig. 3.8 to

illustrate the differences in fragilities between different building models. All building models

have very similar standard deviations, and the fragility curves with higher median values

have lower failure probability given the same wind speed. As shown in Figs. 3.7 and 3.8,

the failure probabilities increase with the higher complexity of roof shapes. The rectangular

gable roofs (Group 1-2) experience lower failure probabilities than non-rectangular gable

roofs (Group 3-6), and the difference increases for more severe damage states. For rectan-

gular gable roofs, the simple gable roof (Group 1) is less vulnerable than cross-gable roofs

(Group 2), and the difference decreases drastically for more severe damage states. For non-
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rectangular gable roofs, the structures in the same group show similar performance under

high winds, as shown in Fig. 3.7. The probability of no roof sheathing failure for Type 1

(rect./ 1 ridgeline) is 13% higher than Type 2 (rect./ 2 ridgelines), and 36% higher than

Type 21 (comp./ 5 ridgelines) for a wind speed of 63 m/s (142 mph). The probability of

at least 25% roof sheathing failure for Type 1 is 35% lower than Type 20 (comp./ 5 ridge-

lines) for a wind speed of 73 m/s (163 mph). The aforementioned difference in fragility curves

demonstrates that the effect of roof shape on roof sheathing fragility is considerable for gable

roofs. The increased roof sheathing failure probabilities with more complex gable roofs can

be explained by the distribution of wind pressure on gable roofs. It was observed in wind

tunnel tests conducted on rectangular and non-rectangular gable-roof buildings (Marshall,

1975; Gavanski et al., 2013) that peak suction appears along roof ridges, roof edges, and roof

corners. A larger portion of the roof panels is located in the high wind pressure zones for

more complex gable roofs, which results in overall higher wind loads and a higher likelihood

of experiencing roof sheathing damage for gable roofs with higher complexity.

Figure 3.7: Fragility curves for gable-roofed buildings (Type 1-23)
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Figure 3.8: Median wind speed of fragility curves for gable-roofed buildings (Type 1-23)

3.4.1.2 Hip roofs

Figure 3.9 shows the fragility curves for hip-roofed buildings (Type 24-47). The median wind

speeds for fragility curves for the four damage states are plotted in Fig. 3.10. The median

wind speeds for fragility curves are similar for non-rectangular hip-roofed buildings (Groups

8-12). As shown in Fig 3.9, the fragilities show higher variance for more severe damage states

(DS3 and DS4). Notable differences in fragilities can be observed between the rectangular

hip-roofed building (Type 24) and non-rectangular hip-roofed buildings (Type 25-47) for

DS3 and DS4. The probability of at least 25% roof sheathing failure for Type 24 (4 roof

corners) is 9% lower than Type 37 (5 roof corners) for a wind speed of 78 m/s (174 mph). In

contrast to the gable-roofed buildings, all non-rectangular hip-roofed buildings show similar

wind fragilities regardless of the roof complexity. Different effects of roof shape on roof

sheathing fragility for gable and hip roofs might be caused by different roof configurations

and wind pressure distributions. As shown in Fig. 3.6, the roof panels near the hip lines
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and roof edges cover the majority of the roof. The variation of peak negative wind pressures

between different wind zones for hip roofs is lower than the gable roofs. When determining

the wind loads on roof sheathings for hip roofs, the differentiation between different roof

zones is less critical than other building characteristics, like roof height and roof slope, as

concluded by Gavanski et al. (2013). In contrast, the differentiation of roof zones was found

to be crucial for gable roofs.

Figure 3.9: Fragility curves for hip-roofed buildings (Type 24-47)
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Figure 3.10: Median wind speed of fragility curves for hip-roofed buildings (Type 24-47)

3.4.1.3 Gable versus hip roofs

Figure 3.11 shows the fragility curves for all gable-roof buildings are to the left of those for

hip-roof buildings, which indicates that roof sheathing on gable roofs is more likely to be

damaged than hip roofs despite variation in roof shapes. It is consistent with the observations

from post-disaster surveys that hip roofs had better performance than gable roofs during

hurricanes (National Research Council, 1991; FEMA, 1992). As depicted in Fig 3.11, the

variance of fragilities for gable roofs with different roof configurations is substantially higher

than for hip roofs. As summarized in the post-disaster survey of Hurricane Andrew (Crandell

et al., 1993), hip roofs experienced significantly less damage than gable roofs regardless of

building shapes, and hip-roof buildings showed less variance in roof damage ratio compared

to gable-roof buildings. Brown-Giammanco et al. (2018) assessed the roof sheathing damage

for residential buildings after Hurricane Harvey. Roof structure damage was mainly observed

in neighborhoods experiencing 54 m/s (120 mph) to 63 m/s (140 mph) gust wind. Gable
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roofs showed 18% higher roof sheathing damage frequency for than hip roofs. As shown in

Fig. 3.11 (a), for a wind speed of 58 m/s (130 mph), the probability of no roof sheathing

failures for a rectangular gable-roof building (Type 1), an L-shaped gable roof (Type 7), and

a gable roof with four ridgelines (Type 15) are 8%, 20%, and 29% lower than the T-shaped

hip roof (Type 29). Considering the variation in other building characteristics, the roof

sheathing damage probabilities predicted by the fragility analysis show good agreement with

the observed damage data.

Figure 3.11: Fragility curves for all buildings in building model set 1: (a) DS1; (b) DS4

3.4.1.4 Statistical analysis

To evaluate the statistical significance of the results, analysis of variance (ANOVA) was

used to determine if the fragility parameters (median and standard deviation) of different

groups are statistically different at the confidence level of 95%. Fragility parameters for

building model set 1 and the ANOVA test results are summarized in Appendix B. For gable-

roofed building models (Type 1-23), ANOVA analysis shows that rectangular gable-roofed

buildings (Group 1-2) have significantly higher median wind speeds for fragility curves than

those with non-rectangular roofs (Group 3-6). The median wind speeds for Groups 3 (2
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ridgelines) and Group 4 (3 ridgelines) have no significant difference in fragility curves for

DS1, DS3 and DS4. The median wind speeds for Group 5 (4 ridgelines) and Group 6 (5

ridgelines) have no significant difference in fragility curves for DS1 and DS2. The median

wind speeds differ significantly for fragility curves with other damage states and other groups.

As the complexity of roof configuration (i.e., the number of ridgelines) increases, the failure

probability of roof sheathing rises significantly.

For hip-roofed building models (Type 24-47), ANOVA test results show that the median

wind speeds for the fragility curves for the rectangular hip roof (Type 24) are significantly

higher than non-rectangular hip roofs (Type 25-47). For non-rectangular hip roofs (Group

7-11), the fragility parameters do not significantly differ between groups. In summary, rect-

angular hip roofs have better performance than non-rectangular hip roofs. While for non-

rectangular hip roofs, the complexity of roof configurations shows a minor effect on the roof

sheathing fragility.

3.4.2 Effect of roof pitch

Figures 3.12 and 3.13 present the fragility curves and corresponding median wind speeds of

gable-roofed buildings (Type A and B) with ten different roof pitches. For the rectangular

gable-roofed building (Type A), as shown in Fig. 3.12(b), the median wind speeds increase

significantly for 5/12 roof pitch compared to those for 3/12 and 4/12 roof pitch. The proba-

bility of no roof sheathing failure for Type A of 4/12 roof pitch is 23% lower than 5/12 roof

pitch for a wind speed of 63 m/s (142 mph). With the increase of roof pitch beyond 5/12,

the median wind speeds change moderately. For the complex gable-roofed building (Type

B), two notable increments of median wind speeds can be observed when roof pitch exceeds

4/12 and 6/12. The probability of more than 25% roof sheathing failure for structure Type

B of 7/12 roof pitch is 35% and 10% higher than 4/12 and 5/12 roof pitch, respectively, for

a wind speed of 72 m/s (161 mph). For roofs steeper than 6/12, similar to Type A, roof

pitch shows a moderate effect on roof sheathing fragilities.
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Figure 3.12: Fragility curves for gable-roof buildings with different roof pitches: (a) Structure

type A; (b) Structure type B

Figure 3.13: Median wind speed of fragility curves for gable-roof buildings: (a) Structure

type A; (b) Structure type B

For hip-roofed buildings, similar trends between roof pitch and roof sheathing fragilities

for structure types C and D can be found in Figs. 3.14 and 3.15. For frequently used hip

roof pitches (3/12 - 6/12), the variation of roof pitch influences roof sheathing fragilities
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moderately. The probability of no roof sheathing failure for Type D with 5/12 roof pitch

is 8% higher than those for 3/12 roof pitch for a wind speed of 71 m/s (158 mph). As

shown in Fig. 3.15, for Types C and D, the median wind speeds reach the maximum value

for 7/12 roof pitch and drop rapidly for higher pitch angles. Generally, roof pitch shows

more substantial effects on the fragilities of the complex hip-roofed building (Type D) than

rectangular hip-roofed building (Type C) for roof pitches smaller 7/12.

Figure 3.14: Fragility curves for hip-roof buildings with different roof pitches (DS1): (a)

Structure type C; (b) Structure type D
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Figure 3.15: Median wind speed of fragility curves for hip-roof buildings: (a) Structure type

C; (b) Structure type D

In summary, the effect of roof pitch on roof sheathing fragilities is substantial for gable

roofs with a roof pitch smaller than 7/12 and hip roofs with a roof pitch larger than 6/12.

For gable roofs with roof pitches smaller than 7/12, roof pitch shows a stronger effect on

roof sheathing fragilities for complex roofs than those for simple roofs. For hip roofs, the

effect of roof pitch roof sheathing fragilities is similar for simple and complex roofs. Fragility

parameters for building model set 2 are summarized in Appendix B for brevity.

3.4.3 Comparison with other characteristics

Fragility analysis was applied to selected building models with modified building properties

to assess the importance of roof type and roof pitch relative to other critical building and

structural characteristics. Fragility curves for Type 7 (L-shaped gable roof) and Type 29 (T-

shaped hip roof) with different resistance types, number of stories, and overhang conditions

are shown in Figs. 3.16 and 3.17. To evaluate the effect of resistance on roof sheathing fragili-

ties, the fragility curves were developed for structures with closed-cell sprayed polyurethane

foam (ccSPF) retrofitted panels (Table 3.3). Fragility curves for Type 1 (simple rectangular
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gable roof) and Type 24 (rectangular hip roof) are used to demonstrate the effect of roof

configurations. Figure 3.16 suggests the effects of roof shape and roof pitch are as critical as

the uplift capacity for gable roofs. The impact of roof overhang and the number of stories on

roof sheathing fragilities is moderate compared to other characteristics. For hip roofs, the

roof shape and roof pitch show minor effects on the fragilities compared to other properties,

as shown in Fig. 3.17.

Figure 3.16: Fragility curves for Type 7 with different building features: (a) DS1; (b) DS4
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Figure 3.17: Fragility curves for Type 29 with different building features: (a) DS1; (b) DS4

3.5 Roof Modeling Methodology

The fragility analysis presented in Section 3.4 suggests that roof shape has a more significant

effect on roof sheathing fragility for gable roofs than for hip roofs. Specifically, gable roofs

with more complex configurations experience higher probabilities of roof sheathing failure.

Conversely, wind fragilities for non-rectangular hip roofs show minimal differences for differ-

ent roof shapes. Among all building models, despite variations in roof shapes, gable-roofed

buildings show higher fragilities than hip-roofed buildings. The roof covering can be modeled

following the same methodology as the roof sheathing (Gurley et al., 2005). Therefore, the

conclusions drawn for the effects of roof shape and roof pitch on roof sheathing fragility can

be extended to roof covering.

As a result, five baseline roof types, comprising buildings with rectangular and non-

rectangular footprints, are defined to develop the archetype roof configurations for wind

vulnerability modeling. Table 3.4 provides detailed descriptions of these roof types. Two

roof types - simple hip and cross-hip - are defined for hip roofs with rectangular or non-

41



rectangular building footprints. Based on the ANOVA test results (Section 3.4.1.4), three

roof types are created to represent gable roofs, distinguished by the number of ridgelines.

Roofs classified as the same type, when other building characteristics are the same, should

have similar wind performance and can be modelled using the same roof layout.

Furthermore, five roof archetypes (Fig. 3.18) were developed for modeling the proposed

roof types (Table 3.4). The roof plan for each roof archetype is designed considering the

ease of modeling and its popularity among single-family dwellings. Compared to building

archetypes with only simple gable and hip roofs used by existing wind loss models, the five

roof types proposed in this study provide a more realistic description of the single-family

building stock, hence leading to more accurate prediction of building damages and losses

under wind hazards. Since non-rectangular roofs are proven to be more vulnerable than

rectangular roofs, the inclusion of non-rectangular building archetypes in wind vulnerability

modeling will result in higher estimation of wind losses.

Table 3.4: Proposed roof types for single-family houses

Roof type Notation Description

Simple gable g Gable roof with one ridgeline

Simple cross-gable scg Gable roof with two or three ridgelines

Complex cross-gable ccg Gable roof with more than three ridgelines

Simple hip h Rectangular hip roof

Cross-hip ch Non-rectangular hip roof
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Figure 3.18: Archetype roof plans for different roof types

Results from building models with different roof pitches show that the roof pitch influ-

ences roof sheathing fragility considerably, and the effect differs between gable and hip roofs.

In the case of gable roofs with roof pitches below 7/12, the failure probability of roof sheath-

ing decreases rapidly as the roof pitch increases. On the other hand, the effect of roof pitch

on roof sheathing fragility for hip roofs with pitches smaller than 7/12 is moderate. When

the roof pitch exceeds 6:12, the fragility of gable roofs changes moderately with different

roof pitches, while the failure probability of roof sheathing in hip roofs increases drastically

when the roof pitch rises. Therefore, it is reasonable to neglect the roof pitch variation for

intermediate-sloped (3/12 - 6/12) hip roofs and steep-sloped (greater than 6/12) gable roofs

for the wind vulnerability assessment of roof sheathing. Moreover, since hip roofs with a

roof pitch greater than 6/12 are rare in practice, the effect of roof pitch on roof sheathing

fragility for hip roofs is moderate.

In conclusion, differentiation between intermediate-sloped (3/12 - 6/12) and steep-sloped

(larger than 6/12) roofs is critical for the accuracy of wind damage and loss assessment. Using

building archetypes with only intermediate-sloped roofs can result in an overestimation of

the failure probability of roof components. Additionally, when modeling gable roofs, more

detailed roof pitch configurations (e.g., smaller and larger than 20◦) should be considered.
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3.6 Limitations

This study aims to provide an evaluation of the effects of roof shape and roof pitch on roof

sheathing fragility using the analysis methods adopted by current wind vulnerability models,

including the FEMA HAZUS-MH model (Vickery, 2006) and the FPHLM model (Hamid

et al., 2011), and previous research on fragility analysis for non-rectangular buildings (Amini

and van de Lindt, 2014; Masoomi et al., 2018). Due to the lack of data on wind pressures on

complex roofs, key assumptions were made when conducting the fragility analysis for roof

sheathing.

First, the wind pressures applied on roof sheathing were calculated using the code-based

method. Wind pressures were determined based on the maximum wind pressure considering

all possible wind directions instead of a specific wind direction since the wind pressure data

for directional cases is unavailable for non-rectangular buildings. As shown in Eqs. 3.3

and 3.4, a wind directionality factor (Kd) is applied to account for the reduced probabilities

of maximum winds coming from any given direction and the maximum pressure coefficient

occurring for any given wind direction (ASCE, 2016). As discussed by Lee and Rosowsky

(2005), the wind directionality factor is conservative, and the actual wind pressures should

be lower than those used in this study.

Second, the change in internal wind pressure due to the damage of openings (e.g., win-

dows, doors) is not considered in the fragility analysis. If the increase of internal wind

pressure due to the damage of openings were considered, the failure probabilities for roof

sheathing would be higher than those shown in Section 3.4.

Last, the external wind pressure coefficients (GCp) provided in ASCE 7-16 (ASCE, 2016)

are determined based on the roof pitch. For ease of use, the roof pitches are classified into

three groups (7◦ − 20◦, 20◦ − 27◦, and 27◦ − 45◦), and the GCp values for roof pitches within

the same group are assumed to be the same, except for hip roofs with roof pitches larger

than 27◦. As a result, the fragility curves Figs. 3.12 and 3.14 may have a larger variance for
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roof pitches within the same group and a smaller variance between different groups when

using more accurate wind pressure data.

3.7 Summary

The effects of critical building characteristics, including roof shape and roof pitch, on roof

sheathing fragility are evaluated in this chapter. The fragility analysis was conducted on

building models with rectangular and non-rectangular footprints. The comparison between

fragility curves indicates that roof shape has a more significant effect on roof sheathing

fragility for gable roofs than for hip roofs. For gable roofs with more complex configurations,

roof sheathing experiences higher failure probabilities and shows a larger variance in fragili-

ties. In contrast, wind fragilities for hip roofs show minimal differences for different roof

shapes. Among all building models, despite variations in roof shapes, gable-roofed buildings

exhibit higher fragilities than hip-roofed buildings. For both gable and hip roofs, a larger

variance in roof sheathing fragility is observed for more severe damage states.

Results for building models with different roof pitches show that roof pitch also influ-

ences roof sheathing fragility considerably. For roof pitches smaller than 7:12, the failure

probabilities of roof sheathing panels in gable roofs decrease rapidly with the increase of roof

pitch. For hip roofs, roof pitch has a moderate effect on roof sheathing fragility when the

roof pitch is smaller than 7:12. When the roof pitch exceeds 6:12, the failure probability of

roof sheathing in hip roofs increases drastically when the roof pitch rises.

Based on the fragility results, the inclusion of complex roof geometries in wind dam-

age calculation is important to avoid underestimation of building damages. Consequently,

five roof archetypes were designed to model single-family houses with different shapes. On

the other hand, it is suggested that the variation of roof pitch should be considered when

modeling gable roofs since roof sheathing fragilities show a substantial difference between

frequently used roof pitches. Following the suggestions on roof modeling drawn from the
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sensitivity analysis, Chapter 4 presents the development of a building inventory generation

model, including the creation of building-level roof type and roof pitch data. Chapter 5

describes the site-specific building modeling method based on the roof archetypes.
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CHAPTER 4

BUILDING INVENTORY GENERATION MODEL

This chapter presents a building inventory generation model as part of the regional wind risk

assessment framework. The proposed model aims to collect building metadata for single-

family houses by integrating remote sensing and real estate data with computer vision tech-

niques and statistical models. The development of this model has three main purposes:

(1) evaluate the efficiency and generalizability of machine learning in building inventory

generation; (2) produce large-scale building inventories to improve the understanding of

single-family residential building stock; (3) generate building inventory inputs for the wind

damage and loss model in Chapter 5.

Section 4.1 provides an overview of the model, including data sources and the data gen-

eration pipeline. Section 4.2 describes a baseline building inventory that provides a general

understanding of the typical configurations and distribution of critical building attributes.

Section 4.3 explains in detail the development of each data collection module. Finally, in Sec-

tion 4.4, case studies for generating city-level roof-type data and neighborhood-level building

inventories are presented.

4.1 Overview

The building inventory generation model aims to produce accurate and low-cost building

metadata using machine learning-based methods (e.g., semantic segmentation, classification,

and regression). Among the building characteristics that are critical for the building’s wind
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vulnerability, those selected to be predicted using machine learning satisfy at least one of

the following criteria:

• The building characteristic is not available in existing databases, but is distinguishable

in building images or highly correlated with other available building features.

• The building feature data predicted using machine learning are more accurate than

existing data.

The structure of the proposed model is illustrated in Fig. 4.1, which consists of four

data collection modules for roof plan dimensions, roof type, number of stories, and roof

pitch. This model relies on Google Maps and Zillow’s Transaction and Assessment Database

(ZTRAX) (Zillow, 2018) as its primary data sources. Google Maps provides low-cost and

regularly updated satellite images and street view images at the building level. ZTRAX is

the largest real estate database in the United States. It contains geographic information,

property characteristics, and prior valuations for 150 million parcels, covering most single-

family dwellings in the United States. However, certain critical building characteristics

required for the wind risk assessment, such as roof type and roof pitch, are not available in the

ZTRAX database. This limitation motivates the development of the inventory generation

model. The construction of the building inventory for the region of interest starts with

acquiring basic building information (e.g., building address, construction year, and building

value) from the ZTRAX database. Next, satellite and street view images are downloaded

based on the building address via Google Maps APIs. A semantic segmentation model is

then applied to satellite images to extract roof outlines, which are used to measure roof

dimensions and produce refined satellite images. The roof type and number of stories are

predicted by CNNs based on the satellite and street view images. Finally, a regression model

is used to predict the roof pitch based on other building characteristics. Details of each data

collection module are described in Section 4.3.
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Figure 4.1: Structure of the building inventory generation model

To evaluate the performance of the inventory generation model for the study area, a series

of testing datasets were constructed based on houses in New Hanover County for different

data extraction tasks. To ensure a robust evaluation, buildings in New Hanover County were

excluded from the training datasets for roof segmentation, roof classification, and number

of stories classification. A different strategy is applied to the roof pitch prediction, which is

implemented with a regression model. Considering that the correlation between roof pitch

and other building features (e.g., year built and building value) may be location-sensitive,

both the training data and testing data were constructed using buildings in New Hanover

county.
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4.2 Baseline Building Inventory

A baseline building inventory, which includes 1,314 randomly selected single-family houses in

New Hanover County, was created to provide a general description of the single-family resi-

dential building stock in the study area. The building attributes for the baseline inventory

were gathered from the ZTRAX database and building images (i.e., satellite and street view

images). Categorical and numerical building features in the baseline inventory are summa-

rized in Tables 4.1 and 4.2, respectively. The baseline building inventory serves three main

purposes in this study. First, it provides the typical configurations of critical building char-

acteristics and guides the selection of corresponding data generation methodology. Second,

the statistical distribution of building features derived from the baseline inventory facilitates

the validation and correction process of the prediction results. Finally, the baseline inventory

is used as the training data for predicting the roof pitch.

Table 4.1: Categorical building attributes in the baseline building inventory

Parameter Category Source

Roof type Simple gable, simple cross-gable,
complex cross-gable, simple hip,
cross-hip, mix

Satellite images

Exterior wall material Asbestos shingle, brick, brick veneer,
rock, siding, wood, wood shingle

ZTRAX

Topography Level grade, above street level, rolling ZTRAX
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Table 4.2: Numerical building attributes in the baseline building inventory

Parameter Unit Source

Building area sqft ZTRAX

First floor area sqft ZTRAX

Roof area sqft Satellite images

Bounding box area sqft Satellite images

Roof length ft Satellite images

Roof width ft Satellite images

Roof pitch degree Satellite and street view images

Garage area sqft ZTRAX

Building value dollar ZTRAX

Year built ZTRAX

Number of stories ZTRAX and street view images

The critical building characteristics that are not available in the ZTRAX database were

extracted from building images through manual inspection. These building characteristics

include roof plan dimensions, roof type, and roof pitch. As shown in Fig. 4.2, roof plan

dimensions were measured from satellite images. The roof area (Ar) represents the area of

the roof polygon, while the roof length (L) and width (B) are defined as the length and

width of the entire roof structure, determined by fitting the smallest rectangle enclosing the

roof outline. Additionally, the area of the fitted rectangle is referred as the bounding box

area (Ab).
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Figure 4.2: Measurement of roof dimensions using a building-level satellite image

The roof dimensions are calculated based on the ground resolution (qgr) of satellite images

using the following equations (Microsoft, 2022):

qgr = 513592.67×
cos(latitude× π

180
)

2zoom level
(ft/pixel) (4.1a)

Ar = q2grArp (4.1b)

L = qgrLp (4.1c)

B = qgrBp (4.1d)

where latitude is the latitude of the centroid of the building; zoom level represents the

zoom level used for downloading the satellite images, which is set to be 20 for single-family

dwellings; Arp, Lp, and Bp are the roof area, length, and width measured in pixels from the

satellite image. The measurement method for roof dimensions was validated using building

footprint data provided by Los Angeles Region Imagery Acquisition Consortium (LARIAC)

Program 1. Roof areas for 40 single-family houses calculated using Eqs. 4.1a and 4.1b were

compared with the building footprint areas in the LARIAC dataset. As shown in Fig. 4.3,

the measured roof area shows good agreement with the building footprint area recorded in

1https://lariac-lacounty.hub.arcgis.com/
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the LARIAC dataset. The roof plan dimensions were measured for each building in the

baseline inventory. Figure 4.4 shows the distribution of roof area for the baseline inventory,

which ranges from 585 to 5,021 sqft. Approximately 90% of houses have a roof area between

1,000 and 3,000 sqft.

Figure 4.3: Validation of the roof dimension measurement process

Figure 4.4: Distribution of roof area for houses in the baseline inventory

53



The roof type of each building is also classified using satellite images according the roof

types defined in Table 3.4. The distribution of roof types is presented in Fig. 4.5. The ratio

of gable roofs to hip roofs is approximately 4:1, and houses with mix-shaped roofs, which

are roofs with a combination of gable and hip roof sections, account for 8% of the buildings

in the baseline dataset. All mix-shaped roofs have complex roof configurations, except for

one building that has a simple roof with a rectangular outline. In addition, flat roofs are not

observed in the baseline inventory.

Figure 4.5: Distribution of roof types for houses in the baseline inventory

Another critical roof feature, roof pitch, is measured using two methods depending on

the building’s orientation in the street view image. If the street view image shows the gable

end wall, as depicted in Fig. 4.6 (a), the roof pitch can be directly measured. However, if the

house has a hip roof or the gable end wall is not visible, the roof height is measured in the

street view image, as presented by Fig. 4.6 (b), and then adjusted based on the perspective

effect. Finally, the roof pitch is calculated by the following equation:

θ = arctan(
2hs

Bs

) (4.2)

where hs = adjusted roof height considering the perspective effect; Bs = width of the
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corresponding roof segment. One single roof pitch value is recorded for each building. If

the building has roof segments with different roof pitches, the pitch angle for the main roof

segment is used. The measured roof pitch in degree or radian is converted to the closest

standard roof pitch in the number of inches the roof rises for every 12 inches in depth.

Figure 4.6: Measurement of roof pitch: (a) Direct measurement for buildings with gable end

wall visible in street view images; (b) Indirect measurement based on roof height and plan

dimensions

Figure 4.7 shows the distribution of roof pitch for the baseline inventory. The roof pitch

varies between 2/12 (9◦) and 16/12 (53◦). The fraction of houses with roof pitch below

20◦, between 20◦ and 27◦, and above 27◦ is 29%, 44%, and 27%, respectively. The most

common roof pitch values are 4/12 (18◦) and 5/12 (23◦), accounting for up to 58% of the

houses investigated. Roof pitches of 4/12 and 5/12 are also used for the building archetypes

in HAZUS-MH (Vickery, 2006) and FPHLM (Gurley et al., 2005), respectively. However,

around 40% of houses have roof pitches steeper than 5/12, which can result in distinctive

performance of roofs during hurricanes.
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Figure 4.7: Distribution of roof pitch for houses in the baseline inventory

4.3 Building Data Collection Methods

This section describes the development of building data collection modules that constitute

the inventory generation model. Sections 4.3.1 - 4.3.4 introduce the data collection methods

for roof plan dimension, roof type, number of stories, and roof pitch. The core of each

method is a machine learning model, augmented by pre-processing and post-processing steps

to generate the input data and refine the results.

4.3.1 Roof plan dimension measurement

4.3.1.1 Workflow overview

Roof plan dimensions, including roof area (Ar), bounding box area (Ab), roof length (L),

and roof width (B), are measured based on roof outlines extracted from building-level satel-

lite images. Publicly available building footprint datasets (e.g., OpenStreetMap (Haklay
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and Weber, 2008) and FEMA USA Structures2) applied strong regularization algorithms to

the building footprint polygons, which reduced the accuracy of building dimensions mea-

sured based on those building outlines. Moreover, building footprints in the aforementioned

datasets are limited in availability for single-family dwellings. On the other hand, building

area data provided by real estate datasets (e.g., ZTRAX database (Zillow, 2018)) are based

on the living area, which can differ substantially from the roof area. Nevertheless, this data

can still be used as the reference value to check the validity of roof dimensions measured

from images.

To generate more accurate roof dimension data, a roof segmentation model is created

to extract roof outlines from building-level satellite images. The workflow for the proposed

dimension measurement process is depicted in Fig. 4.8. First, the building geolocation (i.e.,

longitude and latitude of the centroid of the building) is acquired based on the building

address using Google Geocoding API 3. Using Google Maps Static API 4 with the zoom level

set to be 20, the building-level satellite image is downloaded and fed into a roof segmentation

model to extract the roof outline. The roof plan dimensions are then calculated based on the

roof outline. Finally, the roof dimensions are cross-checked against real estate building area

data and approximations are made to erroneous roof dimensions. In addition, the refined

satellite image is generated by cropping the images using the roof outline, serving as the

input for the roof type classification.

2https://gis-fema.hub.arcgis.com/pages/usa-structures

3https://developers.google.com/maps/documentation/geocoding

4https://developers.google.com/maps/documentation/maps-static
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Figure 4.8: Workflow for roof plan dimension measurement process

4.3.1.2 Roof segmentation

A benchmark dataset consisting of 1,396 building-level satellite images for single-family

houses was constructed to train the roof segmentation model. The images were manually

annotated to create the roof segmentation masks. The dataset was split into 1,117 images for

training and 279 images for validation. Data augmentation techniques, including rotation,

mirror, and adjustment of brightness and exposure, were applied to the training images to

expand the dataset and avoid overfitting. U-Net (Ronneberger et al., 2015), a Convolutional

Neural Network (CNN) initially developed for biomedical image segmentation, was selected

for the roof segmentation task. The architecture of the U-Net model is presented in Fig. 4.9.

It works efficiently with small training datasets and has been widely used for automatic

building detection and segmentation tasks on satellite and aerial imagery (Ji et al., 2019;

Abdollahi et al., 2022; Wu et al., 2018). The model was trained for 400 epochs using Adam

Optimizer with the learning rate = 0.0001, and the model with the lowest validation loss

was selected. The Dice and Jaccard indices of the segmentation model evaluated on the
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validation images are 0.963 and 0.932, which are calculated by:

Dice(Ap, Agt) =
2∥Ap ∩ Agt∥
∥Ap∥+ ∥Agt∥

(4.3a)

Jaccard(Ap, Agt) =
∥Ap ∩ Agt∥
∥Ap ∪ Agt∥

(4.3b)

where Ap = predicted segmentation masks; Agt = ground truth segmentation masks.

Figure 4.9: Illustration of the U-Net architecture

A testing dataset consisting of 277 building-level satellite images was created to evaluate

the performance of the roof segmentation model. The Dice and Jaccard indices of the

segmentation model evaluated on the test images are 0.847 and 0.739, respectively. For the

purpose of this study, only the segmentation result for the target building (i.e., the building in

the center of the image) is required, and the segmentation of neighboring buildings does not

affect the measurement of dimensions for the target building. Therefore, the segmentation

results were also assessed for solely the target building, and the resulting Dice and Jaccard

indices are 0.881 and 0.791, respectively. Figure 4.10 compares the area of ground truth and

predicted roof masks for testing images. The results indicate that the roof masks predicted
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by the U-Net model can offer an accurate estimation of the roof area. For some buildings, the

predicted roof masks underestimate the roof area, partially due to obstruction from trees.

Figure 4.10: Roof mask area for the testing dataset

Following the roof segmentation, a series of post-processing steps (e.g., removal of noises

and regularization of the roof polygons) are applied to the segmentation masks to produce

the roof outlines. A bounding box is then fitted to the roof polygon for measuring roof length

and width. The representative roof segmentation and outline extraction results are shown in

Fig. 4.11. The roof outlines and boxing boxes are shown in green and blue lines, respectively.

As depicted in Fig. 4.11 (e) and (f), the segmentation quality of the neighboring buildings

does not affect the outline extraction for the target buildings.
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Figure 4.11: Representative roof segmentation and outline extraction results on the testing

dataset

Figure 4.12 compares the building footprints obtained from our model and publicly avail-

able building footprint datasets for single-family houses in New Hanover County. As shown

in Fig. 4.12, the roof segmentation model developed in this study produce more accurate

roof outlines than existing datasets, especially for buildings with complex roof configurations.

The refined roof outlines capture the details of roof structures and provide better estimation

of the roof geometry.
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Figure 4.12: Comparison of building footprints: (a) The model developed in this study; (b)

Microsoft OpenStreetMap; (c) FEMA USA Structures

4.3.1.3 Dimension refinement

Once the roof outline is identified, roof plan dimensions are measured in pixels and scaled fol-

lowing Eq. 4.1. However, low-quality satellite images caused by tree blockage (Fig. 4.13) can

potentially reduce the accuracy of roof segmentation, resulting in erroneous roof dimensions.

The usefulness of the low-quality images varies under different severity of tree occlusions.

Heavily blocked rooftop images (Fig. 4.13 (c)) lead to inaccurate roof outlines and bounding

boxes, while the images of slightly blocked roofs (Figs. 4.13 (a) and (b)) may still produce

correct bounding box. Moreover, for rectangular-shaped buildings, the roof area may be cor-

rectly derived from the bounding box (Fig. 4.13 (a)) even if the roof outline is not accurate.

Therefore, to take the best use of the segmentation results, the validities of the roof outline
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and the bounding box are check separately and different dimension refinement processes are

applied to buildings with different roof types.

Figure 4.13: Incorrect roof outlines due to tree occlusion: (a) Slightly blocked rectangu-

lar roof with incorrect roof outline and correct bounding box; (b) Slightly blocked non-

rectangular roof with incorrect roof outline and correct bounding box; (c) Heavily blocked

roof with incorrect roof outline and bounding box

To ensure the validity of the roof dimensions obtained from images, the roof area (Ar)

and bounding box area (Ab) are checked and refined using the building area data provided by

the ZTRAX database. Different dimension refinement processes are applied to simple roofs

(i.e., simple gable and simple hip) and complex roofs (i.e., simple cross-gable, complex cross-

gable, and cross-hip), as described in Fig. 4.14. The roof-to-floor ratio (Rrf ), box-to-floor

ratio (Rbf ), and aspect ratio (Ra) are calculated using the following equations:

Rrf =
Ar

Af + Ag

(4.4a)

Rbf =
Ab

Af + Ag

(4.4b)

Ra =
L

B
(4.4c)

where Af = first floor area; Ag = garage area. The incorrect roof dimensions are updated

using the following equations:

63



For simple roofs,

Ar = R⋆
bf (Af + Ag) (4.5a)

B =
√

Ar/R⋆
r (4.5b)

L = R⋆
rB (4.5c)

For complex roofs,

Ar = R⋆
rf (Af + Ag) (4.6a)

Ab = R⋆
bf (Af + Ag) (4.6b)

B =
√

Ab/R⋆
r (4.6c)

L = R⋆
rB (4.6d)

where R⋆
rf = mean roof-to-wall ratio; R⋆

bf = mean box-to-floor ratio; R⋆
r = mean aspect

ratio. For the case study, R⋆
rf , R

⋆
bf , and R⋆

r are calculated based on the baseline building

inventory with respect to each roof type, as summarized in Table 4.3.
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Figure 4.14: Flowchart of the roof dimension refinement process

Table 4.3: Mean roof geometry parameters calculated for the baseline building inventory

Roof type Roof-to-floor ratio Box-to-floor ratio Aspect ratio

Simple gable 1.24 1.41 1.73

Simple cross-gable 1.22 1.51 1.52

Complex cross-gable 1.24 1.61 1.38

Simple hip 1.27 1.39 1.86

Cross-hip 1.26 1.60 1.59
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4.3.2 Roof type classification

4.3.2.1 Roof classes

As introduced in Section 3.5, roofs for single-family dwellings are classified into five types

based on their wind performance: simple gable, simple cross-gable, complex cross-gable,

simple hip, and cross-hip. Among the five roof types, gable and hip roofs with different

roof complexity are differentiated, providing a more detailed and realistic description of the

building stock compared to the roof types used by existing models. In addition, buildings

with a combination of gable and hip roof sections are classified as one of the five roof types

based on visual similarity. Example building models with each type of roof are depicted

in Fig. 4.15. In this study, roof types are predicted using the refined single-building-level

satellite images produced by the roof segmentation process (Section 4.3.1). Following the

image collection process described in Section 4.3.1.1, low-quality images that cannot provide

sufficient information for rooftops may be obtained. As shown in Fig. 4.16, mainly three

categories of images are considered to be low-quality: (1) unrecognizable roofs caused by

tree occlusion, (2) mislocated images caused by incorrect building geolocation, and (3) de-

molished buildings. Among the three cases, tree occlusion is most frequently observed. To

avoid erroneous roof data caused by low-quality images, an additional roof class, denoted as

unknown, is considered in the model.
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Figure 4.15: Example building models with different types of roofs

Figure 4.16: Example low-quality satellite images: (a) Rooftop is heavily blocked by trees;

(b) Geolocation of the building is incorrect; (c) The building was demolished

4.3.2.2 Overall workflow

The proposed roof type classification workflow for single-family houses is shown in Fig 4.17.

For a selected area, the refined satellite images obtained from the roof segmentation model are

first used to predict the roof types. After the roof-type data for all buildings are generated,

the neighboring buildings for buildings with missing roof types (i.e., roof types classified as
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unknown) are identified. In the end, the missing roof data are populated by a data imputation

algorithm using critical building attributes and neighborhood-level roof characteristics.

Figure 4.17: Flowchart for roof type classification

4.3.2.3 Training

A benchmark satellite image database was constructed to train the CNN model for the roof

type classification. The dataset consists of 11,834 building-level satellite images collected

from Google Maps for single-family houses on the eastern coast of the United States. The

images were manually labeled and adjusted to ensure that each image only included one

complete roof. Twenty percent of images for each category were randomly selected for
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the validation dataset. The number of training and validation images for each class are

summarized in Table 4.4. The representative satellite images for each roof class in the

training dataset are shown in Fig. 4.18.

Table 4.4: Distribution of training and validation images for the roof classification model

Roof type
Number of images

Training Validation

Simple gable 1820 455

Simple cross-gable 1805 451

Complex cross-gable 1160 290

Simple hip 1037 259

Cross-hip 1823 456

Unknown 1822 456
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Figure 4.18: Examples satellite images in the training dataset for roof type classification

The generalizability (i.e., accuracy regarding unseen test data) of neural networks is

considered to be related to the representativeness of the training sets (i.e., adequate samples

to define the target data domain) (Schwendicke et al., 2021; Zhang et al., 2020). Fine-tuning,

a branch of Transfer Learning methods, is a viable tool to improve the generalizability

of neural networks on image-related tasks, specifically with limited observations. In this

study, the roof classification model was obtained by fine-tuning a deep CNN architecture,

VGG-19 (Simonyan and Zisserman, 2014) (Fig. 4.19), that is pre-trained on the ImageNet

dataset (Russakovsky et al., 2015) with more than 10 million images. The pre-trained model

has a Softmax layer of size 1000, which is associated with the 1000 image categories in the
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ImageNet dataset. The VGG-19 architecture was proved to have the best performance on

classification tasks on remote sensing data among the state-of-the-art CNN models, including

roof classification using satellite images (Buyukdemircioglu et al., 2021) and building use type

classification using street view images (Kang et al., 2018). Image augmentation techniques,

including rotation, mirror, and adjustment of exposure and contrast, were applied to the

training images to expand the training dataset and avoid overfitting. The images were re-

scaled to the size of 224×224 pixels per the VGGNet architecture. The batch size is set to

32 images. The stochastic gradient descent (SGD) optimizer is used for the optimization

process, with the learning rate and momentum selected to be 1×10−5 and 0.99, respectively.

During training, the last fully connected layer and its Softmax layer (Fig. 4.19) are modified

to have 6 dimensions regarding the 6 roof type classes. First, the new fully connected layers

and the output layer are trained on the training dataset for 40 epochs, and the rest of the

network is used as a fixed feature extractor. After the training of the fully connected layers

is complete, all layers of the network are fine-tuned for 16 epochs. Early stopping based

on the validation accuracy is applied to the training process, and the model with highest

validation accuracy is selected. The overall validation accuracy of the selected model is 97%.

The confusion matrix of the VGG-19 model evaluated on the validation dataset is shown in

Fig. 4.20.
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Figure 4.19: VGG-19 architecture adopted from Simonyan and Zisserman (2014)

Figure 4.20: Confusion matrix of VGG-19 for roof type classification evaluated on validation

dataset
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4.3.2.4 Testing

Two testing datasets were constructed to evaluate the model performance on single-family

houses in New Hanover County. All testing images were manually labeled. The first testing

dataset—denoted as testing dataset A—consists of buildings with pure gable, pure hip, and

unknown roofs. The second testing dataset—denoted as testing dataset B—is composed of

buildings with mixed roof shapes (i.e., the roof has a combination of gable roof sections and

hip roof sections) while the dominant roof type is still differentiable. For each testing set,

the precision, recall, and F1 score were calculated for each roof class using the following

equations:

Precision =
TP

TP + FP
(4.7a)

Recall =
TP

TP + FN
(4.7b)

F1 score =
2× Precision×Recall

Precision+Recall
(4.7c)

where TP , FP , and FN are the number of True Positive, False positive, and False Negative

prediction results. The overall Precision, Recall, and F1 score are determined using the

weighted-average values among all classes.

Testing dataset A includes 500 building-level satellite images. The confusion matrix of

the VGG-19 model evaluated on testing datasets A is shown in Fig. 4.21, and the scores of

the model are summarized in Tables 4.5. As shown in Fig. 4.21, the model achieved high

classification accuracy among all roof classes. Misclassification mainly happens between

gable roofs with different complexity levels (i.e., simplex gable, simple cross-gable, and com-

plex cross-gable) that have high inter-class variance and intra-class similarity. Moreover, the

model achieved the F1 scores of 0.99 when predicting images labeled unknown, proving the

capability of the model to filter out low-quality images.
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Figure 4.21: Confusion matrix of VGG-19 evaluated on test datasets A (buildings with pure

gable, pure hip, and unknown-type roofs)

Table 4.5: Performance of VGG-19 on testing dataset A (buildings with pure gable, pure

hip, and unknown-type roofs)

Roof type Precision Recall F1 score Support

Simple gable 0.96 0.96 0.96 89

Simple cross-gable 0.94 0.95 0.94 111

Complex cross-gable 0.96 0.97 0.97 116

Simple hip 0.95 0.97 0.96 39

Cross-hip 0.99 0.96 0.97 93

Unknown 1.00 0.98 0.99 52

Overall 0.96 0.96 0.96 500
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Single-family houses with non-rectangular building shapes are often observed to have a

combination of gable and hip roof shapes. However, mix-shaped roofs cannot be modeled

using the existing wind risk assessment methodology. Following the roof type classification

principles suggested by HAZUS-MH (Vickery, 2006), buildings with mixed roof shapes should

be classified using the dominant roof type available in building archetypes. To assess the

performance of the CNN model on buildings with mixed roof shapes, testing dataset B was

created, which consists 150 images for mix-shaped roofs. Rectangular-shaped roofs with

mixed roof shapes are rare in practice, and the dominant roof type for such roofs is hard to

differentiate. Therefore, only non-rectangular houses were considered in the testing dataset.

Each image was labeled with one of the complex roof classes (i.e., simple cross-gable, complex

cross-gable, and cross-hip) based on the dominant roof shape. Example images for each roof

class are shown in Fig. 4.22. The confusion matrix of the CNN model evaluated on the

testing dataset B is depicted in Fig. 4.23, and the precision, recall, and F1 score for each

class are listed in Table 4.6. As shown in Fig. 4.23, the prediction accuracy for mix-shaped

roofs is lower than roofs with pure gable or hip roof styles. But the dominant roof type is

still correctly identified for most mix-shaped roofs. In summary, the testing results prove

the capability of the CNN model to generate reliable and reasonable roof-type data using

satellite images.
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Figure 4.22: Example satellite images in testing dataset B (buildings with complex and

mixed roof shapes)

Figure 4.23: Confusion matrix of VGG-19 evaluated on testing dataset B (buildings with

mixed roof shapes)
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Table 4.6: Performance of VGG-19 on testing dataset B (buildings with mixed roof shapes)

Roof type Precision Recall F1 score Support

Simple cross-gable 0.90 0.75 0.82 36

Complex cross-gable 0.80 0.86 0.83 57

Cross-hip 0.90 0.91 0.90 57

Overall 0.86 0.85 0.86 150

4.3.2.5 Missing roof data population

As discussed in Section 4.3.2.1, low-quality images are identified by the CNN model, resulting

in missing roof-type data in the building inventory. Roof type was found to be correlated with

other building characteristics (e.g., year built and building area) (Pita et al., 2011; Hamid,

2021). To improve the completeness of the database and support more detailed analysis

(e.g., neighborhood-level analysis), data imputation algorithms were developed to populate

missing roof-type data. Valid roof-type data predicted by the CNN model are considered as

the ground truth. Other critical building characteristics, including year built, building value,

building area, and number of stories, were obtained from the ZTRAX database. Random

Forest and Support Vector Machine were used for imputing missing data, which are machine

learning models widely used for building-related classification tasks (Mohajeri et al., 2018;

Castagno and Atkins, 2018; Taghinezhad et al., 2020; Soares et al., 2021). Based on wind

tunnel tests (Shao et al., 2018; Parackal et al., 2016), roof type to be gable or hip has a more

significant effect on wind pressures acting on the roof than the building shape. Therefore,

different models were trained to predict roof type (gable/hip) and roof complexity (sim-

ple/complex) to simplify the classification task to binary classification and avoid cumulative

errors. Figure 4.24 shows how roof features predicted by the imputation models are mapped

to the roof types defined in Table 3.4. For simplification, complex cross-gable roofs are used

for representing all complex gable roofs (i.e., simple cross-gable and complex cross-gable).
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Figure 4.24: Process of mapping roof features predicted by imputation algorithms to roof

types

Besides critical building characteristics, the spatial correlation of roof types is also consid-

ered to improve the performance of imputation models. As shown in Fig. 4.25, single-family

houses in the same neighborhood tend to have similar roof styles. Therefore, roof type of a

given building can be estimated based on the roof types of its neighboring buildings. The

roof type (gable/hip) for each house in the building database is predicted using the domi-

nant roof type (gable/hip) of the neighboring houses located within the search radius. For

example, if more than 50% of neighbors for a given building have hip roofs, that building is

predicted to have a hip roof. The neighbor type and the neighbor complexity, which repre-

sents the proportion of neighbors with gable roofs (i.e., simple gable, simple cross-gable, and

complex cross-gable) and with complex roofs (i.e., simple cross-gable, complex cross-gable,

and cross-hip), are calculated for each building and used as input features for training the

machine learning models. The missing neighboring roof features were imputed using the

mean values in the corresponding study area. The roof-type imputation process incorporat-

ing critical building characteristics and neighborhood-level roof characteristics is illustrated

in Fig. 4.26. The training and testing of the roof-data imputation models are described

through a case study in Section 4.4.1.
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Figure 4.25: Neighborhoods with similar roof styles

Figure 4.26: General steps of missing roof-type data imputation

4.3.3 Number of stories classification

4.3.3.1 Number of stories for single-family houses

As introduced in Section 2.1, the number of stories effects the wind vulnerability modeling on

determining the building height and the distribution of openings. In the open terrain, wind

pressures on roofs for two- and three-story buildings determined using ASCE 7-16 (ASCE,

2016) are about 7% and 15% higher than single-story buildings. Since the floor height

is similar between single-family dwellings, the wall height can be estimated based on the

number of stories. The distribution of the number of stories for single-family houses in New
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Hanover County is listed in Table 4.7. As recorded in the ZTRAX database, most single-

family houses are one- or two-story buildings, while very few houses have more than two

stories.

Table 4.7: Distribution of number of stories for single family houses in New Hanover

County (Zillow, 2018)

Number of stories Number of buildings Fraction

One-story 48670 71.0%

Two-story 19594 28.6%

Three-story and above 253 0.4%

When predicting the height of a single-family house based on the number of stories,

special considerations need to be taken into account for elevated homes and houses with

attics. In near-coastal areas, many homeowners choose to elevate their houses to reduce

the impact of floods (English et al., 2017; Kreibich et al., 2005). The space beneath these

elevated houses, referred to as the base floor, can be either enclosed or open with a height

similar to the typical floor height (Fig. 4.27). However, the base floor of elevated houses

is not recorded in the ZTRAX database, which can lead to underestimating the building

height. On the other hand, many one-story houses with attics (Fig. 4.28) are considered

having two stories in the ZTRAX database, which may result in an overestimation of the

roof height.
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Figure 4.27: Typical elevated single-family houses with different enclosure condition of the

base floor: (a) Enclosed; (b) Partially enclosed; (c) Partially open

Figure 4.28: Single-story houses with attics considered to be two-story in ZTRAX

Consequently, two indicators of the number of building stories, nh
s and no

s, are defined

for estimating the building height and the opening layout, respectively. When counting nh
s ,

attics are neglected, and the base floor of an elevated home is included. The value of no
s is

determined by

no
s =


nh
s , if nh

s < nz
s.

nz
s, otherwise.

(4.8)

where nz
s = number of stories obtained from ZTRAX. The number of stories for different

types of houses are illustrated in Fig. 4.29. A CNN model is created to identify nh
s using street

view images. The prediction of nh
s is treated as a classification problem since limited options

of the number of stories are available for single-family houses. The houses are classified to
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be one-, two-, or three-story, among which three-story houses are mainly represent elevated

homes along the coastal line.

Figure 4.29: Number of stories for single-family houses

4.3.3.2 Overall workflow

The proposed workflow for predicting nh
s is shown in Fig. 4.30. First, street view images are

downloaded from Google Maps using Google Maps Street View Static API5. Next, images

are fed into an image filter to remove the low-quality images that do not include a clear view

of the house. Then, nh
s for buildings with low-quality images is determined using the value

of nz
s, while nh

s for the rest of buildings is classified based on the street view image using a

CNN model developed in this study.

5https://developers.google.com/maps/documentation/streetview
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Figure 4.30: Flowchart for the number of stories classification process

Google Maps Street View Static API enables batch download of street view images. Given

the building address, the camera is directed to the building by default. The parameter for

defining the zoom level, fov, is set to be 60 for single-family houses. Images are downloaded

to be the size of 400 × 400 pixels, and resized to be 224 × 224 pixels. Similar to the

satellite images, low-quality street view images can also be obtained due to various reasons.

The building can be blocked by the street trees (Fig. 4.31(a)), blurred as requested by

house owners (Fig. 4.31(b)), or unavailable in the gated communities (Fig. 4.31(c)). The

pre-trained Places365-ResNet (Zhou et al., 2017) is used to filter out the low-quality street

view images by predicting the scene of the image. The Places365-CNNs are trained on the

Places2 Dataset, including about 1.8 million images from 365 scene categories. The top 3

prediction results on the example street view images using pre-trained Places365-ResNet are
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shown in Fig. 4.32. If the top 3 prediction results do not include any building-related scene

category (e.g., house, garage/outdoor, and manufactured home), the image is considered to

be low-quality and removed from the image dataset for the number of stories classification.

Figure 4.31: Example low-quality street view images: (a) The building is heavily blocked by

trees; (b) The building is blurred; (c) The image is unavailable

Figure 4.32: Top 3 prediction results on example street view images using Places365-ResNet:

(a) The building can be clearly viewed; (b) The building is heavily obscured; (c) The building

is not visible

4.3.3.3 Training

A street view image dataset including 4,200 images, 1,400 images per class, is created for

training the CNN model for the number of stories classification task. The dataset is split

into 80% (1120 images per class) for training and 20% (280 images per class) for validation.
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All images are manually classified into the three classes. The training images are mirrored

to expand the training dataset. The representative training images for each class are shown

in Fig. 4.33. A one-story house with an attic is labelled to be one-story, and the houses

with a half second floor are considered as two-story buildings. The base floor of the raised

houses is considered to be an additional floor. For example, the elevated one-story house is

classified to be two-story. Similar to the roof type classification discussed in Section 4.3.2,

the pre-trained VGG-19 network (Simonyan and Zisserman, 2014; Russakovsky et al., 2015)

is fine-tuned using the aforementioned street view image dataset. The training parameters

are set to be the same as those for training the VGG-19 model for roof classification. The

fully connected layers are fine-tuned first for 26 epochs, and then the whole network is fine

tuned for 23 epochs. The confusion matrix of the CNN model evaluated on the validation

dataset is shown in Fig 4.34. The overall prediction accuracy is 98.8%,

Figure 4.33: Example street view images in the training dataset for number of stories clas-

sification
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Figure 4.34: Confusion matrix of the number of stories classification model evaluated on the

validation dataset

4.3.3.4 Testing

A testing dataset consisting of 500 street view images is constructed to evaluate the per-

formance of the CNN model on classifying the number of stories. The testing images are

randomly selected for single-family houses in New Hanover County and manually labelled.

The example images in the testing dataset are shown in Fig. 4.35. The confusion matrix

and the classification metrics of the VGG-19 network evaluated on the testing dataset are

shown in Fig. 4.36 and Table 4.8. The CNN model shows high prediction accuracy for all

classes. Lower prediction accuracy can be seen for two-story buildings compared to one-

and three-story buildings. It is partially caused by the two-story houses with half second

floor, which are hard to be differentiated from the one-story houses with attics. In summary,

the CNN model is proved to be capable of identifying the number of stories efficiently and

accurately. The image-based number of stories data also provide more reasonable estimation
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of the mean roof height than using the real-estate number of stories data.

Figure 4.35: Example street view images in the testing dataset for single-family houses in

New Hanover County
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Figure 4.36: Confusion matrix of the number of stories classification model evaluated on the

testing dataset

Table 4.8: Performance of the number of stories classification model on the testing dataset

Number of stories Precision Recall F1 score Support

One-story 0.98 0.99 0.99 329

Two-story 0.96 0.91 0.93 118

Three-story 0.90 0.98 0.94 53

Overall 0.97 0.97 0.97 500

4.3.4 Roof pitch prediction

4.3.4.1 Introduction

Roof pitch is a critical roof characteristic for 3D roof modeling. It affects the magnitude

of the wind pressure on the roof, the layout of the roof components (e.g., roof sheathing

88



panels), and the resulting wind vulnerability. Roof pitch of 4/12 or 5/12 are adopted for

defining the building archetypes for single-family dwellings in existing wind vulnerability

models. Nevertheless, as shown in the roof distribution of the baseline building inventory

(Fig. 4.7), considerable amount of houses have roof pitches beyond 5/12, which leads to

significant difference in wind fragilities as discussed in Chapter 3. Therefore, the quality of

roof pitch data is vital for the accuracy of the wind damage and loss calculation. Roof pitch

data can be directly extracted from 3D LiDAR data (Mohajeri et al., 2018), which is costly

and limited in availability. While the roof pitch can be measured from the building images

following the steps described in Section 4.2, the process is difficult to be automated and

generalized. Consequently, regression models were considered to predict the roof pitch using

other building characteristics, which can produce roof pitch data efficiently with sufficient

accuracy. The roof pitch data are converted to be in degrees for training and evaluating the

models.

Since the roof pitch is not recorded in any available building inventory, the regression

models are developed based on the baseline building inventory, as introduced in Section 4.2.

Buildings with mixed-shape roofs were removed from the dataset, which resulted in 1,204

single-family houses in the building inventory. The available building features obtained

from ZTRAX database and building images are summarized in Tables 4.1 and 4.2. De Bar-

ros Soares et al. (2021) used Random Forest to predict roof pitch with building features (e.g.,

roof material and roof type) for estimating solar potential of the rooftops. The resulting R2

score and mean absolute error (MAE) of the model evaluated on the validation dataset are

0.37 and 5.5◦, respectively. With different building characteristics available in our dataset, a

feature selection process was implemented to find the most relevant building features, which

can help reduce the quantities of input features, increase the efficiency of the model, and

avoid overfitting.
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4.3.4.2 Feature selection

As discussed in Chapter 3, roofs of pitch angles smaller and larger than 30◦ have significantly

different wind fragilities for roof sheathing. Therefore, the roof pitch prediction model must

to be capable to differentiate steep-sloped roofs (larger or equal to 7/12 (30◦)) from the

intermediate-sloped roofs (3/12 (14◦) - 6/12 (27◦)). As required by building codes (ICC,

2018), attics of single-family houses needs to satisfy a minimum ceiling height, which relies

on a relatively steep roof pitch (Fig. 4.37). Thus, identifying the attic condition of houses

can largely enhance the model’s performance in predicting steep roofs.

Figure 4.37: Representative single-family houses with attics and steep roofs. Roof pitch: (a)

8/12 (34◦); (b) 10/12 (40◦); (c) 16/12 (53◦)

Although not recorded in the ZTRAX database, the attic condition could be inferred from

the available building area and number of stories data. An empirical equation is derived to

determine if a single-family house has an attic

ATT =


1, if Ab + Ag − no

s(Af + Ag) > 150 ft2 or nh
s < nz

s.

0, otherwise.

(4.9)

where Ab, Af , and Ag are the total building area, first floor area, and garage area provided

in the ZTRAX database; nz
s is the number of stories obtained from the ZTRAX database;

no
s and nh

s represent the number of stories for estimating the opening layout and the building
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height. ATT equal to 1 indicates the building has an attic. The value of ATT is calculated

for every building in the baseline building inventory. The distribution of roof pitch for houses

with different attic conditions is presented in Fig. 4.38. Among buildings classified as having

an attic, 97% of the buildings have roof pitch angles larger or equal to 7/12 (30.3◦). It shows

that Eq. 4.9 is effective in identifying the steep-sloped roofs.

Figure 4.38: Distribution of roof pitch with different attic conditions for the baseline inven-

tory

To identify collinear features, the hierarchical clustering analysis (HCA), which organizes

the data points into groups based on their similarities, were implemented on the available

building characteristics. The HCA was conducted on the Spearman rank-order correlations

using Ward’s linkage. Dendrogram of the hierarchical clustering on the Spearman rank-order

correlations and the heatmap of the correlation coefficients between the building features are

shown in Fig. 4.39 (a) and (b). Different distance thresholds were evaluated to determine

the optimal threshold for grouping the features. Random Forest is chosen to be fitted to the

building data for predicting the roof pitch. For each threshold value, one feature is selected

from each group and the model performance is assessed using 10-fold cross validation. The
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comparison of model performance with different thresholds is shown in Fig. 4.40. It can be

seen that the root mean square error (RMSE) stops decreasing after the threshold reaches 0.6.

Accordingly, the tolerance threshold of 0.6 is chosen and nine groups of features are obtained.

When selecting the features, the building attributes recorded in the ZTRAX database (e.g.,

first floor area) are prioritized over those extracted from the images (e.g., roof area) to avoid

the erroneous data caused by the image-based data generation process. As a result, nine

building features are selected after removing the collinear features: topography, garage area,

year built, first floor area, exterior wall, roof type, number of stories, building value, and

attic.

Figure 4.39: Correlation between building characteristics: (a) Dendrogram of the hierarchical

clustering on the Spearman rank-order correlations; (b) Heatmap of the Spearman rank-order

correlations
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Figure 4.40: Comparison of the model performance on predicting roof pitch with different

thresholds

To evaluate the relative contributions of building features in predicting roof pitch, per-

mutation feature importance was calculated for each selected feature using the Random

Forest Regressor. The building dataset was randomly split into 75% for training and 25%

for validation. Figure 4.41 shows the permutation importance evaluated on the validation

dataset. Results indicate that the attic condition and year built have the largest impact on

the model performance, while building value, roof type, and first floor area also contribute to

predicting the roof pitch. The rest of features, which showed minimal impact on prediction

accuracy, were discarded. As a result, five features are used for roof pitch prediction, and

the quantity of dependent variables is further condensed.
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Figure 4.41: Permutation feature importance evaluated on validation dataset for roof pitch

prediction using Random Forest

4.3.4.3 Training

Three advanced machine learning models, Random Forest, Support Vector Regression, and

Gradient Boosted decision trees, are trained for predicting roof pitches. The hyperparameters

of each model are tuned, and the performance of each model is evaluated using 10-fold cross-

validation. The R2 score and Root Mean Square Error (RMSE) calculated for each model

are summarized in Table 4.9. The R2 score represents the proportion of the total variance

in the dependent variable that can be explained by the independent variables. A higher

R2 score indicates that the prediction results are closer to the ground truth. As shown in

Table 4.9, the Random Forest algorithm outperformed the other two models and is thus

selected for predicting roof pitch for the case study. The Random Forest model achieved a

RMSE of 4.37◦, which is approximately the difference between two adjacent standardized

pitch values (e.g., the difference between roof pitches of 4/12 and 5/12 is 4.18◦).
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Table 4.9: Performance of machine learning models on roof pitch prediction

Model R2 RMSE

Random Forest 0.57 4.37◦

Support Vector Regression 0.45 4.94◦

Gradient Boosted decision trees 0.54 4.54◦

4.3.4.4 Testing

To further evaluate the performance of the Random Forest algorithm on unseen data, a

testing dataset comprised of 60 single-family houses in New Hanover County is created. The

roof pitch for each testing building is measured from building images following the methods

introduced in Section 4.2. The R2 score and RMSE of the model evaluated on the testing

dataset is 0.65 and 4.92 degree, respectively. For visualization of the results, the predicted

roof pitch, which is in degree, is converted to the closest standard roof pitch (the ratio of

inches rise per horizontal foot). The comparison between the predicted and ground truth roof

pitch (Fig. 4.42) shows that the model could provide reasonable approximation of the roof

pitch based on other building characteristics and many steep roofs are correctly identified.

Figure 4.42 shows that the model tends to underestimate the roof pitch for steep roofs, which

can result in conservative estimation of the wind damage.
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Figure 4.42: Prediction of roof pitch on testing dataset with Random Forest Regression: (a)

Roof pitch in degree; (b) Standardized roof pitch

4.4 Case Study

Two sets of case studies were conducted to assess the generalizability of the proposed model

in automatic building data collection. Section 4.4.1 presents the generation of city-level

roof-type datasets using the roof type classification module described in Section 4.3.2. Sec-

tion 4.4.2 presents the production of neighborhood-level building inventories, serving as the

input for the wind loss model introduced in Chapter 5.

4.4.1 Roof type classification

As the essential building feature considered in existing wind vulnerability models, roof type

is frequently missing from publicly available databases (Pita et al., 2008). To evaluate the

distribution of roof types with the enriched roof classes proposed in this dissertation, the

roof classification model was used to generate city-level roof-type datasets. Apart from New
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Hanover County, the model was also applied to the central region of Miami-Dade County,

FL (Fig. 4.43), where extensive studies on regional wind risk assessment have been con-

ducted (Vickery, 2006; Pinelli et al., 2011). The building addresses for 68,504 and 93,268

single-family houses were obtained for New Hanover County and Miami-Dade County, re-

spectively, from the ZTRAX database.

Figure 4.43: Case study area in Miami-Dade County and associated census tract boundaries

4.4.1.1 Roof type classification using satellite imagery

Given the building address, building-level satellite images were downloaded using Google

APIs and cropped based on the floor area to optimize the scale of images. The CNN model

was then applied to the obtained images to predict roof types. The predicted neighborhood-

level roof type map is shown in Fig. 4.44, where roof-type labels are shown at building

centroids obtained using Google Geocoding API. Valid roof-type data (i.e., roofs not classified

as unknown) was obtained for more than 80% of buildings. Roof types for 17% and 11% of

houses in New Hanover County and Miami-Dade County were classified as unknown, and the

city-level roof type distribution for the rest of the houses is summarized in Fig. 4.45. It can be

seen in Fig. 4.45 that gable roof is the dominant roof type in both areas, which is consistent
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with the roof-type data collected by previous studies (Vickery, 2006; Crandell et al., 1993).

The proportion of houses with hip roofs is 19% higher for New Hanover County than those

for Miami-Dade County. The ratio between gable and hip roof in Miami-Dade County is

1.6:1, which is close to the ratio of 2:1 derived from tax appraisers’ databases for Brevard

County and Escambia County in Florida (Gurley et al., 2005). Regarding roof complexity,

72% and 63% of houses has complex roofs (i.e., simple cross-gable, complex cross-gable,

and cross-hip) in New Hanover County and Miami-Dade County, respectively. On the other

hand, a considerable amount of houses have simple rectangular roofs, and simple gable roof

is the second most frequently observed roof type in both study areas.

Figure 4.44: Predicted roof type map for study areas
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Figure 4.45: Roof type distribution for study areas

A census tract is often chosen as the geographic area unit for regional wind risk assess-

ments. The distribution of building attributes, including roof type, is usually determined for

each census tract to model the building stock. To investigate the distribution of roof type

in the level of census tracts, the proportions of single-family houses with gable roofs (i.e.,

simple gable, simple cross-gable, and complex cross-gable) and complex roofs (i.e., simple

cross-gable, complex cross-gable, and cross-hip) were calculated for each census tract in study

areas and plotted in Figs. 4.46 and 4.47. As shown in Fig. 4.46, gable roof is the dominant

roof type in all census tracts in New Hanover County, with the proportion of houses with

gable roofs varying from 55% to 92%. On the contrary, in central Miami-Dade County, hip

roof is the predominant roof type for 26% of census tracts. More than 80% of single-family

houses have hip roofs in three census tracts. Regarding roof complexity, the proportion of

houses with complex roofs varies between 39% and 97% in New Hanover County and between

16% and 97% in Miami-Dade County. Significant spatial variance in roof type distribution

is shown at both city and census tract levels. Adjacent census tracts can have completely

different roof type distribution. Therefore, detailed roof-type data is crucial for the accuracy

of wind vulnerability assessments.
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Figure 4.46: Fraction of single-family houses with gable roofs per census tract in study areas.

(census tracts with less than ten houses were removed from the map)

Figure 4.47: Fraction of single-family houses with complex roofs, including simple cross-

gable, complex cross-gable and cross-hip roofs, per census tract in study areas (census tracts

with less than ten houses were removed from the map)
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4.4.1.2 Missing roof data population

As described in Section 4.3.2.5, data imputation models can be trained to predict missing

roof types due to low-quality satellite images. Through the image-based roof classification,

valid roof-type data was obtained for 56,863 and 76,045 single-family houses in New Hanover

County and Miami-Dade County using the CNN model, which is considered as the ground

truth for training the imputation models. Four values of search radius, 50m, 80m, 100m, and

150m (Fig. 4.48), were tested to find the optimal search radius for the neighboring buildings.

Prediction accuracy was calculated based on the houses with neighboring houses available,

and the proportion of homes without any neighbor within the search radius was counted.

It can be seen in Table 4.10 that the prediction accuracy decreases with a larger search

radius, while a smaller search radius results in a higher likelihood of failing to find neighbors.

Consequently, a search radius of 80m is selected to ensure high prediction accuracy and data

availability. The neighbor type and the neighbor complexity were calculated for each building

and used as input features for training the machine learning models.

Figure 4.48: Candidate search radius used to calculate neighborhood-level roof type distri-

bution for predicting missing roof-type data
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Table 4.10: Prediction accuracy of roof type (gable or hip) using dominant roof type sur-

rounding each building, and the proportion of buildings missing neighbors within the search

radius

Search radius (m)
New Hanover Miami-Dade

Accuracy Missing data Accuracy Missing data

50 86.8% 6.5% 77.4% 4.3%

80 84.9% 1.6% 76.1% 0.7%

100 84.4% 0.9% 74.6% 0.2%

150 83.4% 0.5% 72.7% 0.2%

To select the most relevant features for predicting roof type, permutation feature im-

portance was evaluated for all available building attributes, which measures the decrease in

prediction accuracy when permuting a feature. Building database for each study area is split

into 75% for training and 25% for validation. Permutation importance for each feature was

calculated on the validation dataset for each model. Plots of permutation importance calcu-

lated based on Random Forest for buildings in Miami-Dade County are shown in Fig. 4.49 as

an example. As expected, the roof style of neighboring buildings plays the most important

role in roof type prediction. The year built and the building area are also found to be rele-

vant for predicting the roof type, which is in agreement with conclusions drawn by Hamid

(2021). The features selected for predicting roof type and roof complexity are summarized

in Table 4.11.
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Figure 4.49: Permutation feature importance evaluated on validation dataset for Miami-

Dade County with Random Forest : (a) Predicting roof to be gable or hip; (b) Predicting

roof to be simple or complex

Table 4.11: Features used for roof type and roof complexity prediction with data imputation

algorithms

Property Category Feature

Roof type Gable/hip Year built, building area, neighbor roof type

Roof complexity Simple/complex Year built, building area, neighbor roof complexity

Random Forest and Support Vector Machine algorithms were trained to predict roof type

and roof complexity for each study area. The 10-fold cross-validation was implemented to

assess the performance of each model. Two testing datasets, consisting of 200 houses with

unknown roof types for each study area, were created to examine the capability of the mod-

els to predict missing roof data. Roof types of the testing buildings were manually labelled

based on satellite and street view images downloaded from Google Maps. The locations and

103



the ground truth of roof types of the testing buildings are illustrated in Fig. 4.50. The vali-

dation and testing accuracy of each model predicting roof type and complexity are listed in

Tables 4.12 and 4.13. Random Forest and Support Vector Machine show similar validation

accuracy, while Random Forest performs better on the testing datasets. Moreover, the mod-

els achieved higher accuracy in predicting roof type than in predicting roof complexity. As

shown in Tables 4.12 and 4.13, the testing accuracies are generally lower than the validation

accuracies, which might be caused by the low-quality neighbor data for the buildings in the

testing datasets. Buildings with unknown roof types are usually located in neighborhoods

with high vegetation coverage, which increases the probability of those buildings having tree-

blocked neighbors. In summary, the imputation models could provide reasonable estimation

for the missing roof data, while the performance of the models drops in neighborhoods with

high plant density. The prediction of the roof complexity is more sensitive to the quality of

neighboring roof data than the prediction of roof type to be gable or hip.

Figure 4.50: Location and ground truth roof type of buildings in the testing dataset

104



Table 4.12: Validation and testing accuracy of predicting roof type (gable or hip) with

different models

Model

New Hanover Miami-Dade

10-fold Cross
Validation

Testing
accuracy

10-fold Cross
Validation

Testing
accuracy

Random Forest 0.85 0.89 0.78 0.72

Support Vector Machine 0.85 0.88 0.77 0.68

Table 4.13: Validation and testing accuracy of predicting roof complexity (simple or complex)

with different models

Model

New Hanover Miami-Dade

10-fold Cross
Validation

Testing
accuracy

10-fold Cross
Validation

Testing
accuracy

Random Forest 0.81 0.64 0.77 0.66

Support Vector Machine 0.82 0.64 0.77 0.64

4.4.2 Building inventory generation

The building inventory generation model was implemented to the two neighborhoods intro-

duced in Section 1.3. It can be seen from bird’s eye view images (Fig. 4.51) that study area

1 has lower building density and higher vegetation coverage than study area 2. In addition,

houses in study area 1 are mainly single-story buildings, while many houses in study area 2

are multi-story elevated houses. As recorded in the ZTRAX database, there are 816 and 930

single-family houses in study areas 1 and 2, respectively. Building metadata was collected

for each house following the process described in Section 4.1.
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Figure 4.51: Bird eye’s view images of study areas (images are from Google Earth)

Basic building information (e.g., year built, building value, and building area) was first

gathered from the ZTRAX database. Distributions of year built and building value are

shown in Figs. 4.52 and 4.53 with respect to the study area. As shown in Fig. 4.52, the year

built for houses in study area 1 spreads between 1960 and 2000, while buildings in study area

2 were largely built around 2000. Twenty-one percent and eleven percent of single-family

houses in study areas 1 and 2 were constructed before 1968, which may lead to lower wind

resistance for those buildings. Regarding the building value (Fig. 4.53), houses in study area

2 are generally more expensive than those in study area 1. Building value for study area

2 is also observed to have a higher variance. The mean and standard deviation of building

value are $255,287 and $75,552 dollars for study area 1, and $376,127 and $116,731 dollars

for study area 2.
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Figure 4.52: Distribution of year built for study areas

Figure 4.53: Distribution of building value for study areas
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To measure basic roof plan dimensions (i.e., roof area, length, and width), roof outlines

were extracted from satellite images using a roof segmentation model. Through the dimen-

sion correction and refinement process described in Section 4.3.1.3, plan dimensions of 12%

(95 out of 816 buildings) and 17% (154 out of 930 buildings) of houses in study areas 1 and

2 were identified to be incorrect and recalculated based on building areas. Similar distribu-

tions of roof areas can be seen in Fig. 4.54 for study areas 1 and 2. The average roof areas

for study areas 1 and 2 are 2749 sqft and 2111 sqft, respectively. The roof segmentation

model also produced refined satellite images (Fig. 4.55) that reduced the disturbance from

surrounding buildings, used as the input for the roof type classification module.

Figure 4.54: Distribution of roof area for study areas
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Figure 4.55: Comparison between original images from Google Maps and refined images

produced by the roof segmentation model

The VGG-19 network was then applied to refined satellite images to predict roof types.

Roof types for 1% (9 out of 816 buildings) and 5% (47 out of 930 buildings) of buildings

in study areas 1 and 2 were classified as unknown due to low-quality images. In study area

1, tree occlusion is the main cause of unknown roof types, while demolished houses account

for most low-quality images in study area 2. Missing roof-type data were imputed using

the Random Forest model following the process described in Section 4.4.1.2. Figure 4.56

presents distributions of roof types for study areas. As consistent with the city-level roof

type distribution (Fig. 4.45), the gable roof is the dominant roof type in both neighborhoods.

Nevertheless, the proportion of buildings with gable roofs is 26% higher in study area 1 than

those in study area 2. In both study areas, nearly 60% of houses have complex roofs, and

simple gable roof is the most frequently observed roof type.
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Figure 4.56: Distribution of roof type for study areas

The number of stories for estimating the building height (nh
s ) was extracted from street

view images following the process presented in Section 4.3.3. First, the pre-trained Places365-

ResNet was used to filter out low-quality images by predicting the image scene. Street view

images for 65% (529 out of 816 buildings) and 92% (858 out of 930 buildings) of buildings in

study areas 1 and 2 were identified to contain a clear view of the building, which is consistent

with the fact that the study area 1 has a higher tree coverage. Next, a CNN was used to

predict nh
s based on street view images, and the missing nh

s values were simply replaced by

nz
s (the number of stories provided by the ZTRAX database). The distribution of nh

s is

presented in Fig. 4.57, together with the distribution of nz
s. The value of nh

s differs from nz
s

for 9% (74 out of 816 buildings) and 45% (422 out of 930 buildings) houses in study areas

1 and 2. In study area 1, the existence of houses with attics resulted in lower proportion of

two-story houses for nh
s . While in the study area 2, elevated houses caused higher nh

s values

than nz
s.
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Figure 4.57: Distribution of number of stories for study areas

As the last step of the building inventory generation process, the roof pitch for each build-

ing was predicted using the Random Forest model based on critical building characteristics.

Different roof pitch distributions (Fig. 4.58) were obtained for study areas 1 and 2 due to the

variance in other building features (e.g., year built and building value) as discussed earlier.

Roof pitches for buildings in study areas range from 4/12 (18◦) to 10/12 (40◦). The identifi-

cation of very steep roofs was facilitated by considering the attic condition. Determined by

Eq. 4.9, 26% and 43% of houses in study areas 1 and 2 are classified as having an attic. As

observed from the prediction results. houses with attics were predicted to have roof pitches

of at least 8/12 (34◦). Houses with roofs steeper than 30◦, which have substantial different

wind performance than intermediate-sloped roofs, account for 46% and 75% of buildings in

study areas 1 and 2.
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Figure 4.58: Distribution of roof pitch for study areas

The application of the building inventory generation model on study areas shows good

generalizability of the data collection methods. Despite the complex residential environment,

high-quality building images were obtained for most single-family houses. Data refinement

and imputation algorithms incorporated into each data collection module enhanced the va-

lidity and completeness of the building inventory data. Special considerations for houses with

attics and elevated homes further improve the accuracy of predicting building height and

roof pitch. High-resolution building inventories created by the model revealed the variance of

critical building characteristics in the neighborhood scale. More realistic building archetypes

and more detailed regional wind loss models can be developed based on the high-resolution

building inventory created by the proposed model.

112



4.5 Summary

This chapter presents an automated building inventory generation model for producing large-

scale inventories for single-family houses. The process of creating building metadata was

made efficient and low-cost by integrating remote sensing and real estate data with machine

learning models. High prediction accuracy was achieved when evaluating each data collection

module on labelled data in the study area. Considering deficiencies in the building images,

validation and correction process is incorporated into data collection modules to identify

low-quality images and incorrect prediction results. Corresponding imputation algorithms

were developed to populate missing data and update erroneous data, which largely improve

the reliability and completeness of the building inventory.

The proposed model demonstrated good generalizability in creating regional building in-

ventories through case studies. The obtained building data offer insight into the distribution

of critical building characteristics. High spatial variances of key building features were ob-

served, showing that the quality and level of detail of the building inventory is crucial for

the accuracy of regional wind damage and loss estimations. The high-resolution building

database provides guidance for developing more realistic building archetypes compared to

those adopted by existing wind vulnerability models. The building inventory produced by

the proposed model can also be used as inputs for assessing the risk for other types of hazards

(e.g., flood and earthquake). In Chapter 5, an automated site-specific wind risk assessment

model is developed based on the enriched building inventory.
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CHAPTER 5

DAMAGE AND LOSS ASSESSMENT MODEL

This chapter describes a regional loss model built upon the building feature data collected

through the inventory generation model introduced in Chapter 4. The proposed model eval-

uates the direct loss due to wind pressure damage for single-family houses. The aggregated

regional loss is calculated based on site-specific risk assessments applied to every house in

the area of interest. To improve the accuracy of damage estimation, an automated building

modeling workflow, which is developed based on roof archetypes constructed in Chapter 3, is

integrated into the damage model. This model aims to improve the accuracy of damage and

loss estimation by adopting more realistic and detailed building models. The building-level

damage and loss results are used to evaluate the overall variance of the building’s wind per-

formance, considering uncertainties in architectural and structural properties. A case study

of 1,746 single-family houses is conducted to evaluate the effects of architectural and struc-

tural features on the building’s wind vulnerability. The change in regional loss consequences

due to refined building models is also discussed.

Section 5.1 details the key components of the regional loss model. The hazard scenarios

and building inventory are first described, followed by a thorough explanation of the site-

specific risk assessment pipeline, which involves building modeling, damage analysis, and

loss analysis. Section 5.2 presents the representative building models created for the damage

analysis. Sections 5.1.5 - 5.4 show the damage and loss results for buildings in the study

area. Finally, the limitations of the proposed model are discussed in Section 5.5.
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5.1 Model Description

5.1.1 Overview

The regional loss model evaluates hurricane-induced loss for wood-frame single-family resi-

dential building stock through site-specific risk assessments. The model is developed based

on parcel-based building inventories, which include architectural features, component resis-

tances, and value of every single-family house in the region of interest. As shown in Fig. 5.1,

the site-specific loss estimation consists of several steps conducted in sequence. For a given

building, a 3D building model and associated component layouts are created based on archi-

tectural features, such as roof type and number of stories. Next, a component-based damage

model is used to assess the damage condition for each modeled component. The damage

model produces the distribution of component damage ratio as a function of wind speeds.

Finally, the annual expected loss due to component damage is determined based on a set of

probabilistic hurricane scenarios, which include the wind speed at the building location and

the annual occurrence probability of each hurricane event.

Figure 5.1: General steps for the site-specific wind loss model

Compared to existing regional loss models such as HAZUS-MH and FPHLM, several

improvements are made to the proposed model: (1) The damage analysis includes non-

rectangular buildings with complex-shaped roofs; (2) The variability of more building fea-

tures (e.g., plan dimensions and roof pitch) are considered in the building models, which

are treated as deterministic values in existing models; (3) Damage and loss estimation is

conducted at individual building level, taking into account the correlations between different
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building features.

5.1.2 Probabilistic hurricane scenario

The regional wind hazard was represented using a set of probabilistic hurricane scenarios

developed by Apivatanagul et al. (2011). The hurricane scenario dataset was developed for

the eastern half of North Carolina using the optimization-based probabilistic scenario (OPS)

method. First, a large set of candidate hurricane scenarios, including over 50,000 scenarios

that cover the entire study area and the full range of intensities, was constructed using the

empirical track method (ETM) (Vickery et al., 2000). For each hurricane scenario, the wind

speed was calculated for the centroid of each census tract. A reduced set of hurricanes that

match the true hazard scenario was then selected using a mixed-integer linear optimization

model (Apivatanagul et al., 2011). Finally, the adjusted annual occurrence probability was

calculated for each hurricane event in the reduced set. The resulting hurricane scenario

dataset consists of 97 hurricane scenarios with corresponding annual occurrence probability.

For each hurricane scenario, the 3-sec gust wind speed at 10 m (33 ft) above ground is

available for each 2010 census tract in the study area. The reduced hurricane dataset enables

computationally efficient analysis of regional losses and captures the spatial correlation of

wind speeds.

Buildings in each selected neighborhood are located within the same census tract. Conse-

quently, the wind speed associated with each hurricane scenario is consistent among buildings

in the same study area. The cumulative annual occurrence probability of the 97 hurricane

scenarios for the study area is plotted in Fig. 5.2. The wind speeds associated with Saffir-

Simpson hurricane wind scales are provided by ASCE 7-16 (ASCE, 2016). As shown in

Fig. 5.2, the regional hazard scenarios used for the wind loss analysis are very similar be-

tween the two neighborhoods. The probability of at least one hurricane affecting the study

area each year is approximately 32%. For study areas 1 and 2, the probabilities of experi-

encing at least one Category 1 hurricane per year are 4% and 5%, respectively.
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Figure 5.2: Annual exceedance probability of wind speed and associated hurricane categories

for hurricane scenarios

5.1.3 Building inventory

The building inventory required for the loss model consists of three key components (Fig. 5.3):

building geolocation, building configuration, and structural configuration. The building con-

figuration includes the architectural features, as well as other critical building information

such as construction year and building value. The structural configuration of each building,

referred to as the component types and their associated wind resistance. The geolocation and

building configurations for buildings in the study area were collected using the inventory gen-

eration model described in Chapter 4. Regarding the structural configuration, single-family

houses in the United States typically are not engineered, and the building components usually

have very similar configurations. With the evolution of building design code, wind mitiga-

tion strategies may be applied for different components to enhance the wind resistance. The
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probability of having such alternations can be estimated based on the building’s geolocation

and construction year (Peng, 2013; Hamid, 2021).

Figure 5.3: Key components of the building inventory

For the wind vulnerability model developed in this study, wind pressures are determined

using a prescriptive approach based on ASCE 7-16 (ASCE, 2016). In the ASCE 7 stan-

dard, wind loads are calculated following different procedures for Main Wind Force Resisting

System (MWFRS) and Components and Cladding (C&C). The MWFRS is defined as the

structural components that resist wind loads transferred from other components, while C&C

represents the building envelope components that experience wind loads directly, which are

mainly non-structural components. The building components generally considered in wind

damage analysis for wood-frame single-family houses are summarized in Table 5.1.
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Table 5.1: Building components for wind damage modeling of wood-frame residential build-

ings

Component type Component

Components and Cladding Roof covering, roof sheathing,
window, entry door, garage door

Main Wind Force Resisting System Roof-to-wall connection, wall structure

While the code provisions are primarily developed for rectangular-shaped buildings with

simple roof shapes, wind pressures on C&C for non-rectangular buildings can be determined

using ASCE 7 (ASCE, 2016) by adjusting the wind zones, as introduced in Section 3.3.4.

On the other hand, the calculation method for wind pressures on MWFRS is currently

unavailable for buildings with irregular footprints due to the lack of experimental data.

Furthermore, damage of the envelope components and the resulting water intrusion are the

major causes of the wind loss (Ellingwood et al., 2004; Pita et al., 2012). Given these reasons,

only C&C is considered in the damage and loss calculation in this dissertation. The proposed

model can be easily adjusted to incorporate the MWFRS when wind data becomes available

in the future.

Peng (2013) investigated typical component configurations and their retrofitted alterna-

tives for single-family houses in New Hanover County. Multiple configurations were defined

for each component type based on building design codes, local retrofit policies, common

construction practices, and expert judgements. In this study, component configurations sug-

gested by Peng (2013) are adopted for estimating the structural configuration for individual

buildings, with modifications made to component capacities according to available litera-

ture. The component configurations and associated resistance statistics are summarized in

Table 5.2. Peng (2013) also estimated the fraction of the building stock with each com-

ponent configuration based on the building location (coastal or not) and year built. Since

all buildings in the study area locate in the coastal area, distribution of component con-
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figurations is simply determined by the year built (Table 5.3), resulting in total 9 different

combinations of component configurations. The component configurations are sampled to

each building based on the predefined probability, assuming that different component types

occur independently.

Table 5.3: Estimated distribution of component configurations by year built (modified

from Peng (2013))

Component Configuration
Year built

Pre 1968 1968-1997 Post 1997

Roof covering (RC)
1 1 0.1 0

2 0 0.9 1

Roof sheathing (RS)
1 1 1 0.5

2 0 0 0.5

Openings (O)

1 1 0.8 0.5

2 0 0.1 0.25

3 0 0.1 0.25

5.1.4 Building modeling

The 3D building model is created for each home to determine the building and component

geometries, which affect the quantity of component units and associated wind loads con-

sidered in the damage analysis. Based on the location of building components, C&C for

single-family houses can be classified into roof components and wall components. Roof com-

ponents consist of roof covering and roof sheathing, and wall components include windows,

entry doors, and garage doors. The component-based wind vulnerability assessment requires

the geometry and spatial location of each component unit, which is complicated and compu-

tationally expensive to be calculated with regular programming languages (e.g., Python and
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MATLAB). Therefore, Grasshopper1, a visual programming language for parametric model-

ing, is adopted to generate individual building models and component layouts. Grasshopper

runs within Rhinoceros 3D computer-aided design application (Rhino)2, and the modeling

of a batch of buildings can be automated through the built-in Python editor in Rhino. The

general steps for building modeling are shown in Fig. 5.4. First, the roof model is created

based on roof geometries and roof type, followed by the generation of roof components. The

wall structure is then modeled based on the roof outline and number of stories. Finally, the

openings are created on each face of the building.

Figure 5.4: General steps for the building modeling process

Roof modeling

In previous studies, the construction of site-specific building models was achieved using 3D

LiDAR data (Kashani et al., 2016; Zhou and Gong, 2018). However, creating such models

requires high-quality remote sensing data, which are usually expensive and limited in avail-

ability. In addition, single-family houses often have irregular roof planes and mixed-shaped

roofs, which are beyond the capability of existing damage assessment methodologies. Conse-

quently, a simplified modeling approach (Fig. 5.5) is developed to produce computationally

feasible roof models for damage calculations. Based on the sensitivity analysis described

in Chapter 3, roof models are created by combining archetype roof plans (Fig. 3.18) with

site-specific roof geometries (i.e., roof plan dimensions and roof pitch). The simplified roof

1https://www.grasshopper3d.com/

2https://www.rhino3d.com/
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model is expected to have similar wind performance (i.e., roof covering and roof sheathing

fragility) to the true roof structure. Inputs needed for the roof modeling are the roof type

(Table 3.4), roof plan dimensions (i.e., roof area, length, and width), and roof pitch.

Figure 5.5: Roof modeling process

The roof modeling process begins with selecting the archetype roof plan based on the

roof type. The detailed dimensions of the roof plan are then calculated through iterations

to meet the basic roof plan dimensions. Based on the roof pitch, the roof plan is converted

to the 3D roof model. One single roof pitch is used to model the entire roof, assuming

all roof segments have the same roof slope. Following the creation of the roof model, roof

sheathing panels are placed on each roof plane based on the common practice in single-family

residential construction. Roof covering is modeled using the same layout as the roof sheathing

instead of using their actual dimension for simplification (Gurley et al., 2005). Example

roof plans and roof panel layouts for cross-hip roofs with different basic plan dimensions

are illustrated in Fig. 5.6. The proposed method largely simplifies the requirements for

input data for roof reconstruction. Meanwhile, the accuracy of the damage estimation is

improved by adopting site-specific roof dimensions, compared to using building archetypes

with deterministic dimensions.
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Figure 5.6: Roof plan and panel layout for cross-hip roofs with different plan dimensions

Wall modeling

Following the construction of roof model, outline of the wall structure is determined by

offsetting the roof outline, assuming a roof overhang of 12 inches. The wall height is estimated

by multiplying nh
s by the story height, which is assumed to be 9 ft (Peng, 2013). Once the

wall structure is modeled, openings are created on each face of the building. One single size

is employed for each opening type, as shown in Table 5.4. First, windows are generated on

each wall section along each story with spacing set to 15 ft. Next, two entry doors are placed

on the front and back sides of the building. If the building has an attached garage, a garage

door is modeled in the front face of the building. Finally, any window that overlaps with

doors is removed. The opening layouts created for buildings with different roof shapes are

depicted in Fig. 5.7.

Table 5.4: Dimension of openings for building modeling

Component Width (ft) Height (ft)

Window 6 3.5

Entry door 3 7

Garage door 9 7
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Figure 5.7: Opening layouts for buildings with different roof types: (a) Simple gable and

hip; (b) Simple cross-gable; (c) Complex cross-gable; (d) Cross-hip

As introduced in Section 4.3.3, two indicators, nh
s and no

s, are used to describe the number

of stories for building height estimation and opening modeling. An elevated home can be

identified using the following equation:

ELE =


1, if nh

s > no
s.

0, otherwise.

(5.1)

where no
s is determined based on Eq. 4.8; ELE = 1 indicates that the house is elevated.

In order to achieve a more accurate representation of the opening distribution, the opening

generation for an elevated home simply skips the first floor, as demonstrated in Fig. 5.8.

Figure 5.8: Opening layouts for elevated houses
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5.1.5 Damage analysis

The estimation of wind-induced pressure damage is implemented with a component-based

damage model. Each building is treated as a collection of building components, and each

component consists of multiple units. The damage condition is checked for each compo-

nent unit by comparing the wind load with resistance. The physical damage condition for

component unit i is represented using a limit state function:

g(Ri,Wi, Di) = Ri − (Wi −Di) (5.2)

where Ri = component capacity, Wi = wind load acting on the component, Di = dead load

(only applicable for roof components). The failure of individual component unit is defined as

g(·) < 0. The limit states considered in the proposed model are: (1) uplift of roof covering,

(2) uplift of roof sheathing, (3) breakage of window, and (4) failure of entry door and garage

door. To evaluate the damage condition in the building level, several damage states are

defined to reflect the overall damage severity based on the damage condition of individual

component, as proposed by HAZUS-MH (Hamid et al., 2011). The description of building

damage states is summarized in Table 5.5. The damage ratio of roof components (i.e., roof

covering and roof sheathing) is defined as the percentage of area damaged, while the damage

ratio of openings is defined as the percentage of failed units. It should be noted that the

damage to the roof-to-wall connection and wall structure is not considered for describing the

building-level damage states since they are not modeled in this study, which only affects the

DS4 defined by HAZUS-MH (Hamid et al., 2011).
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Table 5.5: Damage states for wood-frame residential buildings

Damage
state

Description
Roof covering

failure
Roof sheathing

failure
Opening failure

1 Minor damage > 2% and ≤ 15%a No
One window,
door, or garage
door failurea

2 Moderate damage > 15% and ≤ 50%a 1− 3a
> 1 and

≤ the larger of
20% and 3a

3 Severe damage > 50%a > 3 and ≤ 25%a
> the larger of
20% and 3
and ≤ 50%a

4 Destruction Typically> 50% > 25%a > 50%a

Note: Each damage state is defined as the occurrence of any component failure condition

in the corresponding row marked with a.

Vulnerability and fragility curves are developed to visualize the damage results and com-

pare the damage condition among different buildings. The component vulnerability is defined

as the mean damage ratio of the corresponding component under a given wind speed. Based

on the damage states defined in Table 5.5, the wind fragilities at the component level can

be defined as the conditional probability of exceeding a specific damage state under a given

wind speed v, which can be expressed as

Fr(V ) = P [DS > dsi|V = v] (5.3)

At the building level, the fragility curve for damage state j is defined as the conditional

probability of exceeding any of the marked component damage state at row j of Table 5.5

under a given wind speed v

Fr(V ) = P [
⋃
i

(DS > dsij)|V = v] (5.4)
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Dead load is considered in the limit state function for roof components, which acts in

the opposite direction as the uplift wind pressure. The dead load for roof cover, which is

the self-weight asphalt shingles, is modeled by a normal distribution with the mean value of

2 psf and the coefficient of variation of 0.1 (Masoomi et al., 2018). The dead load of roof

sheathing is considered as the sum of self-weights for roof covering and roof sheathing, which

are sampled independently. The statistics for the self-weight of roof sheathing is summarized

in Table 3.3.

Wind pressure acting on each component unit is determined using Eqs. 3.3 and 3.4.

It is assumed that wind comes from any possible direction, and the wind directionality

factor (Kd) is applied to account for the reduced probability of maximum winds coming

from any direction and maximum wind pressure occurring for any given wind direction.

The velocity pressure exposure coefficient (Kz) and external pressure coefficient (GCp) vary

among component units. Kz is determined based on the height of the component, which

is assumed to be the height of the centroid for openings and the mean roof height for roof

components. The aggregated GCp for each component unit is calculated using the weighted-

average method (Lee and Rosowsky, 2005), based on wind zones projected on the building

model. The wind zones for C&C on roofs and walls are illustrated in Figs. 3.6 and 5.9,

respectively. The nominal negative GCp for zones 4 and 5 are -1.1 and -1.4 (ASCE, 2016).

GCp for roof zones, which is a function of roof type and roof pitch, are summarized in

Appendix A. To be consistent with the FPHLM model (Gurley et al., 2005), the exposure

category for the study area is assumed to be Exposure C. The statistics for other wind

pressure coefficients are summarized in Table 3.3.
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Figure 5.9: Wind pressure zones for GCp for C&C on walls

Breaches in the building envelope caused by the failure of roof sheathing or openings

have a substantial effect on internal pressure, which can trigger progressive damage to the

structural system (Ji et al., 2020; Qin and Stewart, 2019). The effect of opening damage on

internal pressures is coupled with wind directions (Gurley et al., 2005; Ji et al., 2020), which

cannot be integrated into the proposed model due to a lack of experimental data for irregular

buildings. Consequently, only the change of internal pressure due to roof sheathing failure is

considered, and the deterministic approach (Lee and Rosowsky, 2005; Masoomi et al., 2018)

described in Section 3.3.4 is adopted again for the building damage model.

Component resistance is sampled based on the predefined configurations using the cor-

responding distribution shown in Table 5.2. The capacities of building components in the

same building are assumed to be partially correlated due to similar environment, material,

and craftsmanship conditions (He and Hong, 2012). Correlation coefficients for capacities

are assumed to be 0.4 between different units of the same component type (e.g., different

roof sheathing panels), and 0.2 between different component types (e.g., roof sheathing and

window) (Peng, 2013). For each building sample, the resistances for building components

are generated from a multivariate normal distribution with the aforementioned correlation

coefficients.

The damage analysis for individual buildings is performed through a Monte-Carlo simula-

tion with 2,000 samples. A flowchart of the damage model is shown in Fig. 5.10. Forty-eight
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discrete wind speeds and forty discrete damage ratio values are defined for the damage anal-

ysis, which are summarized in Appendix C. For each wind speed, the component damage

condition is evaluated using a two-step check, as proposed by FPHLM (Gurley et al., 2005).

During the initial failure check, the building envelope is considered to be intact, and the

internal pressure is determined based on an enclosed building. The damage for roof cov-

ering and roof sheathing is checked based on randomized resistance, dead load, and wind

load. Once the initial check is completed, the dead load and internal pressure are updated

according to the damage condition of roof components. If a roof cover unit is damaged,

the self-weight of roof covering will be excluded from the dead load for the roof sheathing

at the same location. Conversely, the roof cover placed over a failed roof panel is directly

set to be failed. If one roof sheathing panel fails, the internal pressure will be recalculated

based on a partially enclosed building. Then, the final failure check is applied to all modeled

components based on the updated loading condition, and the final damage ratio is computed

for each component. Through 2,000 iterations, the probability of falling into each predefined

damage ratio interval is calculated for each component.
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Figure 5.10: Flowchart of wind damage analysis

5.1.6 Loss analysis

The direct loss resulting from both exterior and interior damage is assessed for individual

buildings. The exterior damage, represented by the damage ratio of building envelope com-

ponents, is calculated using the damage model described in Section 5.1.5. The damage ratio

of interior and utility components is estimated based on exterior damage, using a set of

empirical equations developed by FPHLM (Gurley et al., 2005). The process of determining

of interior damage is summarized in Appendix D for brevity. The economic loss is defined

as the cost required to replace the damaged components, which is assumed to be propor-

tional to the cost of constructing a new building of the same type. The replacement cost
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ratio of each component, defined as the cost of replacing the component divided by the cost

of constructing a new house, is calculated for a typical wood-frame single-family house in

the FPHLM model. The replacement cost ratios for exterior and interior components, as

provided by FPHLM, are summarized in Table 5.6.

Table 5.6: Component replacement ratio

Component Replacement ratio (%) Component Replacement ratio (%)

Roof sheathing 5 Interior 35

Roof cover 6 Mechanical 7

Window 6 Electrical 9

Entry door 1 Plumbing 11

Garage door 2

Additionally, the replacement threshold of roof sheathing and roof covering is set to be

35% (Gurley et al., 2005). It means that if more than 35% of roof sheathing or roof covering

fails, all roof sheathing or roof covering units need to be replaced. The cost of replacing the

whole building is estimated using the building value (BV ) provided by the ZTRAX database.

Using the probabilistic hurricane scenarios described in Section 5.1.2, the expected annual

loss (EAL) for individual buildings is determined by

EAL =
nc∑
i=1

nh∑
j=1

nd∑
k=1

BV · Ci · Pi[DR = drk|V = vj] · hj (5.5)

where nc = number of components; nh = number of hurricanes; nd = number of damage

ratios; Ci = replacement cost ratio of component i; drk = damage ratio k; vj = wind speed

of hurricane scenario j; Pi[DR|V ] = probability of component i experiencing damage ratio

DR given wind speed V ; hj = annual occurrence probability of hurricane scenario j. The

regional loss is computed by summing up the EAL for every house in the study area.
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5.2 Building Modeling Results

Building models are created for houses in the study area following the process described

in Section 5.1.4. Representative building models with the associated true structures are

depicted in Fig. 5.11. In the case of buildings with rectangular footprints and simple roof

shapes (Figs. 5.11 (a) and (d)), building models closely match the actual structure because

the archetype roof configuration for simple roofs is identical to the actual roof configuration.

For non-rectangular buildings (Figs. 5.11 (b), (c), and (e)), roof models are simplified by the

roof archetypes, which capture the dominant roof type (gable/hip) and relative roof com-

plexity. Additionally, special building features, such as the steep roof of building with an

attic (Figs. 5.11 (c)) and the increased height of elevated houses (Figs. 5.11 (e)), are reflected

in the building models. The incorporation of a variety of site-specific variables into the mod-

eling process largely reduces the inherent uncertainty in quantifying the building resistance.

From the perspective of disaster risk assessment, the simplification and idealization of the

building models are beneficial and necessary. For instance, irregular roof planes (Fig. 5.11

(a)) and vertical irregularities (Fig. 5.11 (f)) are frequently observed in residential construc-

tions, which are beyond the capability of existing damage analysis methods. However, those

features are automatically disregarded through the modeling process, resulting in building

models that are suitable for the site-specific risk assessment.
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Figure 5.11: Comparison between building models and actual structures (building images

are from Google Earth)

5.3 Damage Results

The pressure-induced wind damage is assessed for 1,746 houses in the two neighborhoods

using the component-based damage model described in Section 5.1.5. The damage results

are presented in both component and building levels based on the damage states defined in

Table 5.5. The large-scale building inventory adopted for the damage analysis incorporates

most possible combinations of critical building characteristics, providing a good representa-
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tion of the overall distribution of wind vulnerabilities for single-family houses.

5.3.1 Component-level damage results

The damage vulnerability curves of roof components (i.e., roof covering and roof sheathing)

are plotted in Fig. 5.12 with respect to different component configurations. The compo-

nent configurations considered for the case study are described in Table 5.2. As shown in

Fig. 5.12 (a), damage curves for buildings with a strong roof sheathing configuration (RS2)

are all on the right side of those with the standard configuration (RS1). It demonstrates

that, regardless of variations in the building configuration, buildings with RS1 are expected

to experience more severe roof sheathing damage than those with RS2. In the case of roof

cover vulnerabilities (Fig. 5.12 (b)), roof covering with higher capacities (RC2) also show

substantially lower damage ratios. Nevertheless, it can be seen that several curves associated

with different roof cover types cross over each other, indicating that buildings with RC2 may

have a higher expected damage ratio than those with RC1 due to the differences in architec-

tural features (e.g., roof type and number of stories). Additionally, substantial variances in

the damage curves are observed for buildings with the same roof sheathing or roof covering

configuration, indicating that the building configuration effects the roof vulnerability con-

siderably. The variance in roof vulnerabilities for the same component type is attributed to

the site-specific building features considered in the building models, including roof type, roof

pitch, roof dimension, and mean roof height. These variables impact both the number of

component units and the wind pressure acting on each unit. Under a Category 3 hurricane

(122-142 mph), the differences in mean damage ratios among different buildings can be up

to 16% and 38% for RS1 and RC1, respectively.

135



Figure 5.12: Damage vulnerability for roof components: (a) Roof sheathing; (b) Roof cov-

ering

Figure 5.13 shows the roof sheathing fragility curves for exceeding DS1 and DS3. The

fragility curves for exceeding DS1 (Fig. 5.13 (a)) exhibit wide variability, with several build-

ings with RS2 having higher fragilities than those with RS1. As shown in Fig. 5.13 (b),

the fragility curves associated with the same sheathing type demonstrate lower variance for

DS3 than for DS1. This suggests that the impact of building configuration is reduced for

more severe damage states, which may be partially due to the exclusion of the roof-to-wall

connection damage in the damage model. Conversely, the difference between fragility curves

of RC1 and RC2 (Fig. 5.14) is smaller for DS2 than for DS1. For all evaluated buildings,

the average median wind speeds for RC1 and RC2 are 101 mph and 130 mph, respectively,

for exceeding DS1, and 127 mph and 149 mph, respectively, for exceeding DS2. The overall

variance among fragility curves for roof covering is less than that for roof sheathing, taking

into account the variability in architectural and structural properties.
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Figure 5.13: Fragility curves for roof sheathing damage: (a) DS1 (no roof sheathing failure);

(b) DS3 (25% of roof sheathing failure)

Figure 5.14: Fragility curves for roof covering damage: (a) DS1 (15% of roof covering failure);

(b) DS2 (50% of roof covering failure)

To compare the wind vulnerability of openings across different buildings, window damage
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curves are plotted in Fig. 5.15. Similar to roof components, component resistance is the

most critical factor in determining the vulnerability of windows. Buildings with higher

window capacities are expected to suffer substantially less window damage, regardless of

other building variables. The variance in damage ratios for the same type of window is

primarily due to differences in plan dimensions and the number of stories, which affect the

number and elevation of windows. The increased opening height considered for elevated

homes also results in higher wind pressures on each window and higher probabilities of

window damage. Additionally, the pressure damage of windows is correlated with the damage

condition of roof sheathing, which affects the internal pressures acting on windows.

Figure 5.15: Window damage vulnerability

In summary, the wind vulnerability at component level is mainly controlled by the com-

ponent configuration, which determines the wind resistance. Based on the vulnerability and

fragility curves, components with higher capacities are expected to sustain significantly less

damage. However, it is observed that the variance in architectural features, which impacts

138



the number and wind loads of component units, can also affect the component damage con-

dition considerably. In certain cases, due to different building configurations, buildings with

retrofitted components may suffer more severe damage than those with standard components.

5.3.2 Building-level damage results

The building-level fragility curves are depicted in Fig. 5.16 based on damage states defined

in Table 5.5. Building-level fragility curves generally show greater variance than those for

individual components since the building-level damage states can be triggered by multiple

failure modes defined based on different components. The median wind speeds exceeding DS1

range between 86 mph and 144 mph, respectively, and the median wind speeds exceeding DS4

vary between 150 mph and 216 mph, respectively. A total of nine combinations of component

configurations are assigned to buildings in the study area. Newly constructed houses are

more likely to implement hurricane mitigation strategies, which result in higher component

capacities. It can be observed from Fig. 5.16 that the fragility curves for each damage state

can be classified into two groups, which are caused by different component configurations.

Damage states 1-3 are mainly controlled by roof covering damage, while damage state 4 is

primarily attributed to roof sheathing failure. Similar to the component-level fragilities, the

variation in architectural features also leads to a significant discrepancy in the fragilities at

the building level, even among buildings with identical component configurations.
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Figure 5.16: Building-level fragility curves: (a) DS1; (b) DS2; (c) DS3; (d) DS4

140



5.4 Loss Results

The expected annual loss (EAL) due to exterior and interior damage was calculated for every

single-family house in the study area. By summing up the losses for individual buildings,

the aggregated regional losses of $162,829 and $229,215 are obtained for study areas 1 and 2,

respectively. Figure 5.17 shows the distribution of building-level EAL for each study area.

The mean and standard deviation of EAL for individual houses is $200 and $202 for study

area 1 and $246 and $180 for study area 2. Under similar hazard scenarios, the distributions

of EAL are similar between the two study areas. On the other hand, substantial variance is

observed in building-level EAL in both residential communities due to different architectural

features, component capacities, and building values.

Figure 5.17: Distribution of expected annual loss at building level

Based on the probabilistic hurricane scenarios considered in the loss calculation, Fig-

ure 5.18 plots the annual probabilities of exceedance of building-level losses. The results
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show that houses can potentially suffer significantly higher losses than the annual expected

values under strong hurricanes. The variance in building-level losses increases substantially

under more severe hurricane scenarios. The greater divergence observed among the loss

curves in study area 2 may be caused by the higher variance in building values for study

area 2 (Fig. 4.53).

Figure 5.18: Annual probabilities of loss exceedance for individual buildings: (a) Study area

1; (b) Study area 2

To evaluate the effect of refined building models on regional loss estimation, an alterna-

tive approach was applied to calculate aggregated regional loss using building archetypes,

referred to as the archetype-based assessment. The difference between the archetype-based

assessment and the assessment developed in this study is that the building archetypes in-

corporate fewer variables related to architectural features. Based on building archetypes

adopted by existing regional loss models (Vickery, 2006; Gurley et al., 2005; Peng, 2013),

variations of three architectural features are considered for modeling single-family houses:

roof type (gable or hip), number of stories (one or two), and garage condition (Y or N).

Table 5.7 summarizes the differences between the building archetypes and site-specific mod-
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els constructed in this study. Deterministic building geometries (e.g., plan dimension and

roof pitch) for building archetypes were determined based on the values used by Peng (2013)

and Gurley et al. (2005). They are also close to the mean value of each parameter derived

from the baseline building inventory (Section 4.2). Other building characteristics, such as

overhang and wall height, are identical between the building prototypes and site-specific

models. As a result, eight building archetypes are created and mapped to houses in the

study area. The building archetypes for houses with garages are illustrated in Fig. 5.19. The

number of stories for mapping the archetypes is determined based on no
s. Buildings larger or

equal to two stories are all modeled by two-story archetypes. Apart from building models,

the structural configuration and building value used for the damage and loss analysis are the

same between the two types of assessments.

Table 5.7: Comparison between building archetypes and site-specific building models

Building property Archetype Site-specific model

Plan dimension 60 ft × 30 ft Varies

Roof pitch 5/12 (∼ 22.6◦) Varies

Roof typea g/h g/scg/ccg/h/ch

Number of stories one/two one/two/three

Elevated homeb N Y

a Roof types are defined in Table 3.5.

b Increased building and component height for elevated houses.
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Figure 5.19: Building models and opening layouts for archetype-based loss assessment

The building-level expected annual losses calculated based on two types of assessments

are compared in Fig. 5.20. For the majority of houses, the archetype-based assessment

produces a lower loss estimation compared to the assessment using site-specific models. The

increased building-level loss is primarily caused by the inclusion of non-rectangular building

models in the damage analysis, which have substantially higher roof fragilities than those

for rectangular buildings. As shown in Fig. 4.56, most houses in both study areas have

complex roof shapes and non-rectangular building footprints. Moreover, a large portion

of houses in study area 2 are elevated. The increased building height for elevated homes,

which is considered in the site-specific model, results in a higher probability of roof and

opening damage. To compare the loss results at regional level, the aggregated regional

losses calculated using different assessment methods are presented in Fig. 5.21. Compared

to the archetype-based assessment, the loss assessment based on site-specific building models

predicts 20% and 32% higher regional losses for study areas 1 and 2, respectively. In total,

the assessment based on site-specific models produced 27% higher loss estimation than the
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archetype-based assessment. Due to the existence of elevated houses in study area 2, the

difference in predicted regional loss between the two approaches is more significant for study

area 2 than for study area 1. The results suggest that the building archetypes used by existing

loss models may lead to underestimating the regional loss consequences. The accuracy of

regional loss estimation can be improved substantially by adopting more realistic and detailed

building models for damage analysis.

Figure 5.20: Building-level expected annual losses calculated using different types of assess-

ments: (a) Study area 1; (b) Study area 2
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Figure 5.21: Comparison of regional losses between assessments using building archetypes

and site-specific building models

5.5 Model Limitations

Facilitated by parcel-based building inventories with enriched building attribute data, the

wind damage model was developed based on site-specific building models that are more

realistic and detailed than building archetypes adopted by existing models. A major im-

provement for the building model is the inclusion of complex roof geometries and associated

non-rectangular building footprints. To incorporate non-rectangular buildings in the damage

assessment, a prescriptive approach was adopted to calculate wind loads based on previous

research on fragility analysis for non-rectangular buildings (Amini and van de Lindt, 2014;

Masoomi et al., 2018). Due to the lack of data on wind pressures on complex-shaped build-

ings, key assumptions and simplifications were made for the proposed model.

First, the external wind pressures acting on building envelope components are deter-

mined under the worst loading scenario assuming all possible wind directions since direction-

specified wind pressure data are not available for non-rectangular buildings. This method
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is not applicable to MWFRS components for non-rectangular buildings, including roof-to-

wall connections and wall structures. Therefore, only the damage to C&C is considered

for the component-based damage model. As defined by the Saffir-Simpson Hurricane Wind

Scale (Taylor et al., 2010), site-built houses are expected to experience roof structure and

wall structure damage under Category Four Hurricanes (143-172 mph). Consequently, ex-

cluding MWFRS in the damage calculation may underestimate the wind losses under very

high wind speeds.

Second, the wind damage model only considered the pressure damage to the components.

However, wind-borne debris is also a major cause of structural damage under hurricanes,

which is usually generated from the damaged components of surrounding buildings (Twis-

dale et al., 1996; Minor, 2005). The debris effect can cause window breakage at a relatively

low wind speed and induce internal pressurization, which can then exacerbate the pressure

damage (Chung Yau et al., 2011). While under higher wind speeds, the pressure damage

gradually controls the damage to windows, causing the loss attributed to pressure damage to

be predominant (Unnikrishnan and Barbato, 2016). Thus, neglecting the debris effect in the

damage model results in underestimating the loss at lower loss levels. Unfortunately, previous

research on modeling the envelope damage due to wind-borne debris only considered rectan-

gular buildings, and the available methods are coupled with the wind directions (Chung Yau

et al., 2011; Ji et al., 2020), which cannot be integrated into the proposed model in this

dissertation.

Third, the change in internal pressure due to the damage of openings (e.g., windows and

doors) is not considered in the damage analysis. Similar to the modeling of window damage

due to debris effect, the internal pressurization due to opening damage is also correlated with

the directions of winds (Ji et al., 2020; Stewart et al., 2018; Gurley et al., 2005), which cannot

be captured by the proposed model. Considering the increase of internal pressures due to

opening damage would lead to higher estimated losses than those shown in this dissertation.

Last, only the losses due to the replacement cost of damaged envelope components and
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associated interior damage are considered in the proposed model. Incorporating contents

loss and the interior loss due to MWFRS damage in the loss estimation would increase the

loss results at both building and regional levels. The difference between the regional losses

estimated using different approaches presented in Section 5.4 would also be amplified.

5.6 Summary

This chapter presents a regional wind loss model used to estimate the direct loss due to

building envelope damage to single-family dwellings. In the proposed model, site-specific

damage and loss analysis is conducted on individual houses in the area of interest. The dam-

age of building envelope components is assessed based on building models that incorporate

a variety of site-specific building features. A set of roof archetypes is employed to simplify

the modeling process while capturing the distinctive wind performance between roofs with

different shapes and complexities.

The proposed model was used to estimate hurricane-induced damage and loss for two

residential communities in New Hanover County, which include 1,746 single-family houses.

The damage results indicate that component capacities have a more critical effect on the

building performance than the combined effect of architectural features. The adoption of

hazard mitigation measurements, which increases the wind resistance of building compo-

nents, significantly reduces the component failure probabilities, and enhances the building

performance under extreme winds. Although architectural features have less significant ef-

fects compared to component configurations, they still contribute to substantial uncertainties

in component and building-level fragilities. Furthermore, the regional losses calculated based

on different building modeling approaches were compared. The aggregated regional losses

calculated using building archetypes and site-specific building models differ by 20%. The

results suggest that the building archetypes adopted by existing regional loss models may

lead to underestimating the wind loss. It also demonstrates that the refined building mod-
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els developed in this dissertation, which provide a more realistic representation of the real

structures, can efficiently improve the accuracy of damage and loss estimation.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This dissertation focuses on improving the structural characterization phase in the wind risk

assessment framework for wood-frame single-family houses. To develop efficient and accurate

building modeling methodologies, the relative importance of different building variables in

wind vulnerability modeling was evaluated. Building shape and roof pitch, the variations

of which are not considered in existing loss models, show significant effects on the building

performance under extreme winds. Non-rectangular buildings with complex roof geometries

should be incorporated into the building models to avoid underestimating the structural

damage. Additionally, roofs with similar features (e.g., number of ridgelines) exhibit similar

wind vulnerabilities.

Moreover, site-specific risk assessments applied to a large number of buildings provides

insights into the relative contribution of building variables to the damage and loss estima-

tion at building and regional levels. The damage results indicate that component capacities

have a more critical effect on the building performance than the combined effect of archi-

tectural features, while the variation in exterior building features can also cause substantial

difference in the building vulnerability. The regional loss results demonstrate that a better

representation of the building stock (e.g., including non-rectangular building models, mod-

eling elevated homes with increased building height) significantly increases the estimated

regional loss, which in turn addresses that the building archetypes adopted by existing loss
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models can potentially underestimate the hurricane-induced loss.

To support the construction of detailed building models, AI-aided data collection tools

were developed to extract exterior building features from remote sensing data. The machine

learning models show good generalizability and achieve high accuracy in predicting various

building characteristics that are not available in publicly available datasets. The proposed

building inventory generation model enables the production of large-scale and high-resolution

building inventories with enrich building property data. The case studies reveal a great

spatial variance in the distribution of critical building characteristics, which can lead to

distinctive local hurricane risk.

An automated modeling process was built upon the parcel-based building inventories to

create 3D building models for individual buildings. Five archetype roof configurations were

designed to simplify the modeling of roof structures while capturing the distinctive wind

performance between roofs with different shapes and complexities. The adoption of site-

specific building models for damage analysis largely reduces the inherent uncertainties in

hurricane risk prediction and enables the damage and loss estimation at individual building

level. The high-resolution damage and loss results produced by the framework can accurately

reflect the spatial distribution of building inventories and associated local risk conditions,

which facilitates the improvement of hazard risk mitigation and post-disaster management

strategies.

6.2 Future Work

Future work can be conducted in following areas to improve the proposed framework:

• With more wind pressure data for complex-shaped buildings available in the future, the

wind directionality can be incorporated into the damage analysis, which can further

enable the evaluation of the debris effect and the adjustment of internal pressures due

to opening damage.
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• The building inventory generation model can be improved to collect building informa-

tion related to the structural configuration. Building images contain useful information

for component configurations (e.g., roof covering type) and hurricane retrofit strate-

gies (e.g., hurricane shutters), which can be extracted using deep learning models.

The structural properties obtained based on image-processing can greatly reduce the

uncertainties associated with the wind resistance of buildings.

• Based on the building-level damage results derived in this study, machine learning mod-

els can be trained to predict fragility parameters (e.g., mean and standard deviation

of component fragility curves) directly from critical building characteristics, without

the need for structural analysis. This can significantly reduce the computational cost

of assessing the wind risk of a large geographic area while still capturing the variation

in wind vulnerability between individual buildings.

• The storm surge flood risk assessment can be integrated into the proposed framework.

The inventory generation model is capable of identifying elevated houses, which is one

of the most common flood mitigation measurements for single-family houses. Given

the available building inventory data, site-specific floor risk assessment can be added

to the framework to provide a more comprehensive evaluation of hurricane-induced

losses.
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APPENDIX A

EXTERNAL WIND PRESSURE COEFFICIENTS

Tables A.1 and A.2 summarize the negative external wind pressure coefficients (GCp) for

C&C on gable and hip roofs, as defined in ASCEC 7-16 (ASCE, 2016). GCp is defined as a

function of roof pitch and effective wind area for each wind zone. The wind zones associated

with gable and hip roofs are illustrated in Fig. 3.6. The GCp values shown in Tables A.1

and A.2 are used to determine wind pressures on roof sheathing and roof covering, which

have effective wind area smaller than 10 ft2 (Rosowsky and Schiff, 1996).

Table A.1: Nominal value of negative GCp for C&C on gable roofs

Location Roof pitch
Wind zone

1 2e 2n 2r 3e 3r

Roof

3/12 and 4/12 -2.0 -2.0 -3.0 -3.0 -3.0 -3.6

5/12 and 6/12 -1.5 -1.5 -2.5 -2.5 -2.5 -3.6

Larger than 6/12 -1.8 -1.8 -2.0 -1.8 -3.2 -2.0

Overhang

3/12 and 4/12 -2.5 -2.5 -3.5 -3.5 -4.1 -4.7

5/12 and 6/12 -2.0 -2.0 -3.0 -3.0 -3.6 -4.7

Larger than 6/12 -2.6 -2.6 -2.8 -2.6 -4.0 -2.8
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Table A.2: Nominal value of negative GCp for C&C on hip roofs

Location Roof pitch
Wind zone

1 2e 2r 3

Roof

3/12 and 4/12 -1.3 -1.8 -2.4 -1.8

5/12 and 6/12 -1.4 -2.0 -2.0 -2.0

7/12 -1.2 -1.8 -1.5 -2.0

8/12 -1.3 -2.1 -1.8 -2.4

9/12 -1.4 -2.3 -2.0 -2.7

10/12 -1.4 -2.5 -2.3 -3.0

11/12 -1.5 -2.6 -2.5 -3.3

12/12 -1.5 -2.8 -2.7 -3.6

Overhang

3/12 and 4/12 -1.8 -2.3 -2.9 -2.9

5/12 and 6/12 -1.9 2.5 -2.5 -3.1

7/12 -2.0 -2.6 -2.3 -2.8

8/12 -2.1 -2.9 -2.6 -3.2

9/12 -2.2 -3.1 -2.8 -3.5

10/12 -2.2 -3.3 -3.1 -3.8

11/12 -2.3 -3.4 -3.3 -4.1

12/12 -2.3 -3.6 -3.5 -4.4
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APPENDIX B

FRAGILITY PARAMETERS FOR ROOF

SHEATHING

Tables B.1 - B.5 summarize the lognormal parameters for roof sheathing fragility curves

developed for the sensitivity analysis described in Chapter 3. Tables B.6 and B.7 present the

results of the ANOVA tests on the median of fragility curves between different model groups

in building model set 1. The building models used for the fragility analysis are introduced

in Section 3.2, and the damage states for roof sheathing are described in Section 3.3.1.

Table B.1: Lognormal parameters for roof sheathing fragilities (building model set 1)

Structure type

Damage state

1 2 3 4

λ ξ λ ξ λ ξ λ ξ

1 5.011 0.122 5.022 0.119 5.084 0.118 5.147 0.118

2 4.964 0.123 4.979 0.120 5.055 0.118 5.127 0.118

3 4.972 0.123 4.987 0.120 5.068 0.118 5.139 0.118

4 4.965 0.122 4.982 0.119 5.064 0.118 5.133 0.118

5 4.965 0.123 4.980 0.120 5.057 0.118 5.129 0.119

6 4.935 0.121 4.948 0.119 5.019 0.117 5.086 0.118

7 4.951 0.121 4.962 0.119 5.030 0.117 5.091 0.117

8 4.940 0.120 4.951 0.119 5.021 0.118 5.092 0.118

9 4.951 0.123 4.962 0.120 5.028 0.118 5.087 0.119

10 4.923 0.122 4.935 0.119 5.004 0.117 5.067 0.118

11 4.926 0.121 4.939 0.119 5.005 0.117 5.068 0.118
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12 4.936 0.121 4.949 0.119 5.026 0.118 5.091 0.118

13 4.943 0.121 4.954 0.119 5.019 0.117 5.080 0.118

14 4.928 0.121 4.941 0.119 5.013 0.118 5.081 0.118

15 4.920 0.121 4.931 0.119 4.995 0.118 5.066 0.118

16 4.916 0.120 4.926 0.118 4.989 0.117 5.054 0.118

17 4.920 0.119 4.932 0.117 4.994 0.117 5.054 0.117

18 4.915 0.122 4.927 0.119 4.994 0.118 5.059 0.118

19 4.917 0.120 4.926 0.117 4.985 0.116 5.041 0.117

20 4.912 0.119 4.921 0.118 4.980 0.117 5.040 0.117

21 4.898 0.121 4.910 0.119 4.976 0.118 5.049 0.118

22 4.913 0.120 4.923 0.118 4.982 0.118 5.037 0.117

23 4.914 0.121 4.925 0.119 4.985 0.118 5.047 0.118

24 5.078 0.120 5.084 0.119 5.117 0.118 5.170 0.118

25 5.072 0.119 5.076 0.118 5.103 0.117 5.143 0.118

26 5.072 0.118 5.077 0.117 5.104 0.116 5.145 0.118

27 5.071 0.118 5.076 0.117 5.102 0.117 5.143 0.118

28 5.072 0.119 5.077 0.118 5.103 0.118 5.145 0.118

29 5.075 0.119 5.079 0.118 5.107 0.118 5.148 0.118

30 5.076 0.119 5.081 0.118 5.110 0.117 5.154 0.118

31 5.077 0.119 5.081 0.118 5.110 0.117 5.152 0.118

32 5.077 0.119 5.081 0.118 5.109 0.117 5.152 0.118

33 5.073 0.120 5.078 0.118 5.105 0.118 5.146 0.118

34 5.073 0.119 5.077 0.118 5.103 0.118 5.143 0.119

35 5.071 0.119 5.075 0.118 5.100 0.117 5.138 0.118

36 5.072 0.119 5.076 0.118 5.103 0.117 5.144 0.118

37 5.073 0.119 5.078 0.118 5.104 0.117 5.143 0.117

38 5.076 0.119 5.080 0.118 5.107 0.118 5.147 0.118

39 5.075 0.119 5.079 0.118 5.106 0.117 5.145 0.118

40 5.076 0.119 5.081 0.118 5.108 0.118 5.147 0.118

41 5.074 0.119 5.078 0.118 5.105 0.117 5.145 0.118

42 5.072 0.118 5.076 0.117 5.102 0.117 5.141 0.118

43 5.075 0.119 5.079 0.118 5.106 0.117 5.146 0.118
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44 5.072 0.119 5.076 0.118 5.101 0.117 5.139 0.118

45 5.079 0.119 5.084 0.118 5.112 0.117 5.152 0.118

46 5.078 0.120 5.082 0.119 5.109 0.117 5.150 0.118

47 5.073 0.119 5.077 0.118 5.102 0.117 5.141 0.118

Table B.2: Lognormal parameters for roof sheathing fragilities (Structure Type A)

Roof pitch

Damage state

1 2 3 4

λ ξ λ ξ λ ξ λ ξ

3/12 4.930 0.121 4.940 0.119 4.996 0.117 5.057 0.118

4/12 4.915 0.121 4.926 0.119 4.980 0.118 5.047 0.118

5/12 4.987 0.123 5.000 0.121 5.070 0.118 5.143 0.118

6/12 5.011 0.122 5.022 0.119 5.084 0.118 5.147 0.118

7/12 5.018 0.123 5.033 0.120 5.097 0.118 5.141 0.118

8/12 5.018 0.123 5.032 0.120 5.096 0.118 5.140 0.118

9/12 5.016 0.124 5.030 0.121 5.093 0.118 5.135 0.118

10/12 5.014 0.124 5.028 0.121 5.090 0.118 5.132 0.118

11/12 5.014 0.124 5.028 0.121 5.090 0.118 5.131 0.119

12/12 5.011 0.124 5.025 0.121 5.088 0.118 5.130 0.118

Table B.3: Lognormal parameters for roof sheathing fragilities (Structure Type B)

Roof pitch

Damage state

1 2 3 4

λ ξ λ ξ λ ξ λ ξ

3/12 4.913 0.121 4.922 0.118 4.972 0.116 5.028 0.117

4/12 4.916 0.120 4.926 0.118 4.974 0.116 5.027 0.117

5/12 4.958 0.121 4.969 0.119 5.038 0.117 5.100 0.117

6/12 4.951 0.121 4.962 0.119 5.030 0.117 5.091 0.117
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7/12 4.976 0.123 4.991 0.120 5.079 0.118 5.133 0.119

8/12 4.975 0.124 4.990 0.121 5.076 0.118 5.130 0.118

9/12 4.972 0.123 4.988 0.121 5.074 0.118 5.129 0.119

10/12 4.972 0.123 4.987 0.120 5.073 0.118 5.128 0.118

11/12 4.970 0.123 4.984 0.121 5.071 0.119 5.127 0.118

12/12 4.968 0.124 4.982 0.121 5.067 0.119 5.122 0.119

Table B.4: Lognormal parameters for roof sheathing fragilities (Structure Type C)

Roof pitch

Damage state

1 2 3 4

λ ξ λ ξ λ ξ λ ξ

3/12 5.085 0.121 5.091 0.119 5.127 0.119 5.174 0.119

4/12 5.075 0.121 5.082 0.119 5.120 0.118 5.168 0.119

5/12 5.081 0.119 5.086 0.118 5.118 0.118 5.172 0.119

6/12 5.078 0.119 5.083 0.119 5.117 0.117 5.170 0.118

7/12 5.096 0.119 5.101 0.119 5.138 0.118 5.212 0.120

8/12 5.045 0.119 5.050 0.118 5.090 0.118 5.163 0.118

9/12 5.000 0.120 5.007 0.119 5.047 0.117 5.114 0.118

10/12 4.961 0.119 4.968 0.118 5.010 0.117 5.073 0.117

11/12 4.929 0.119 4.937 0.118 4.980 0.117 5.045 0.117

12/12 4.901 0.120 4.908 0.119 4.954 0.117 5.020 0.117

Table B.5: Lognormal parameters for roof sheathing fragilities (Structure Type D)

Roof pitch

Damage state

1 2 3 4

λ ξ λ ξ λ ξ λ ξ

3/12 5.054 0.120 5.061 0.118 5.099 0.117 5.146 0.118

4/12 5.053 0.120 5.060 0.118 5.097 0.117 5.144 0.118
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5/12 5.076 0.120 5.081 0.118 5.109 0.118 5.150 0.118

6/12 5.076 0.119 5.081 0.118 5.107 0.118 5.148 0.118

7/12 5.096 0.119 5.101 0.118 5.134 0.118 5.192 0.119

8/12 5.041 0.119 5.046 0.118 5.083 0.117 5.139 0.118

9/12 4.994 0.120 5.000 0.119 5.038 0.118 5.092 0.118

10/12 4.955 0.119 4.961 0.118 5.000 0.118 5.050 0.118

11/12 4.919 0.119 4.926 0.118 4.966 0.116 5.015 0.117

12/12 4.888 0.118 4.896 0.117 4.936 0.117 4.984 0.117

Table B.6: ANOVA test on the median of fragility curves between gable-roof building model

groups

Group A Group B
p-value

DS1 DS2 DS3 DS4

1 2 0.001 0.001 0.041 0.341

1 3 0.001 0.001 0.001 0.001

1 4 0.001 0.001 0.001 0.001

1 5 0.001 0.001 0.001 0.001

1 6 0.001 0.001 0.001 0.001

2 3 0.002 0.001 0.001 0.001

2 4 0.001 0.001 0.001 0.001

2 5 0.001 0.001 0.001 0.001

2 6 0.001 0.001 0.001 0.001

3 4 0.085 0.076 0.131 0.137

3 5 0.001 0.001 0.001 0.001

3 6 0.001 0.001 0.001 0.001

4 5 0.064 0.028 0.001 0.004

4 6 0.001 0.001 0.001 0.001

5 6 0.597 0.408 0.103 0.024
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Table B.7: ANOVA test on the median of fragility curves of complex hip-roof building model

groups (Groups 7-11)

Damage state 1

Sum of squares df F-value p-value

Between groups 0.000044 4 2.739 0.061

Within groups 0.000072 18

Damage state 2

Sum of squares df F-value p-value

Between groups 0.000043 4 2.441 0.084

Within groups 0.000080 18

Damage state 3

Sum of squares df F-value p-value

Between groups 0.000055 4 1.450 0.258

Within groups 0.000172 18

Damage state 4

Sum of squares df F-value p-value

Between groups 0.000072 4 0.977 0.444

Within groups 0.000333 18
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APPENDIX C

BASIC PARAMETERS FOR DAMAGE ANALYSIS

Table C.1 summarizes the discrete wind speeds selected for the damage analysis. The wind

speeds are the 3-second gust wind speeds measured at 10 meters above the ground. Ta-

ble C.2 lists the discrete component damage ratios used for damage and loss calculation.

Smaller intervals are adopted for lower damage ratios, which usually have higher occurrence

probabilities.

Table C.1: Wind speed

Index Wind speed (mph) Index Wind speed (mph) Index Wind speed (mph)

1 0 17 95 33 175

2 20 18 100 34 180

3 25 19 105 35 185

4 30 20 110 36 190

5 35 21 115 37 195

6 40 22 120 38 200

7 45 23 125 39 205

8 50 24 130 40 210

9 55 25 135 41 215

10 60 26 140 42 220

11 65 27 145 43 225

12 70 28 150 44 230

13 75 29 155 45 235

14 80 30 160 46 240

15 85 31 165 47 245

16 90 32 170 48 250
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Table C.2: Component damage ratio

Index Damage ratio Index Damage ratio Index Damage ratio

1 0 15 0.12 28 0.52

2 0.004 16 0.14 29 0.56

3 0.008 17 0.16 30 0.60

4 0.012 18 0.18 36 0.64

5 0.016 19 0.20 37 0.68

6 0.020 20 0.22 38 0.72

7 0.024 21 0.24 39 0.76

8 0.028 22 0.28 40 0.80

9 0.032 23 0.32 41 0.84

10 0.036 24 0.36 42 0.88

11 0.04 25 0.40 43 0.92

12 0.06 26 0.44 44 0.96

13 0.08 27 0.48 45 1.00

14 0.10
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APPENDIX D

INTERIOR DAMAGE CALCULATION

The damage ratios of interior and utility components are calculated based on the damage

ratios of building envelope components, using a set of empirical equations developed by

FPHLM (Gurley et al., 2005). The process of interior and utility damage calculation is

summarized below:

1. Calculate the damage ratio of each building envelope component, x, using the damage

model described in Section 5.1.5.

2. For each building envelope component, compute the interior damage ratio, y, using

the corresponding interior equation shown in Table D.1. In the equations shown in

following steps, R is a Weibull random variable with a mean of 1.

3. Calculate the damage ratio of interior components as Yint = max(y), where Yint ∈ [0, 1].

4. Calculate the damage ratio of mechanical components as Ymech = max(0.4Ry), where

Ymech ∈ [0, 1].

5. Calculate the damage ratio of electrical components as Yelec = max(0.5Ry), where

Yelec ∈ [0, 1].

6. Calculate the damage ratio of plumbing components as Yplum = max(0.35Ry), where

Yplum ∈ [0, 1].
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Table D.1: Interior damage equations

Component Interior equation

Roof sheathing y = 1.29x

Roof cover y = 0.62x2 − 0.2x

Window y = 0.39x2 + 0.31x

Door y = 0.26x
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