
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Extending Composable Data Services to the Realm of Embedded Systems

Permalink
https://escholarship.org/uc/item/8nt6c6pj

Author
Liu, Jianshen

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8nt6c6pj
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

EXTENDING COMPOSABLE DATA SERVICES TO THE REALM
OF EMBEDDED SYSTEMS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

Jianshen Liu

June 2023

The Dissertation of Jianshen Liu
is approved:

Professor Carlos Maltzahn, Chair

Professor Scott A. Brandt

Professor Peter Alvaro

Dr. Craig D. Ulmer

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Jianshen Liu

2023

Contents

List of Figures vi

List of Tables x

Abstract xi

Dedication xiii

Acknowledgments xiv

1 Introduction 1
1.1 Background . 3

1.1.1 General-purpose Computing 5
1.1.2 Emerging Trends in Hardware Design Paradigms 8
1.1.3 Data Services . 11
1.1.4 Summary . 14

1.2 Contributions . 14
1.3 Outline . 18

2 Related Work 21
2.1 Specialized Data Processing Hardware 21

2.1.1 Channel I/O . 21
2.1.2 Specialized Hardware for Database Systems 23

2.2 Active Storage Devices . 26
2.2.1 Active Disks . 26
2.2.2 Active Solid-state Drives 30

2.3 Programmable Network Interface Cards 33
2.4 Peer-to-Peer Systems . 36
2.5 Collectively Acting Specialized Devices 37

2.5.1 Network-connected Smart SSDs 37
2.5.2 Eusocial Storage Devices 39

2.6 Workload Orchestration . 42

iii

2.7 Scope . 43

3 Offloading Metrics 44
3.1 MBWU: Data Access Function Efficiency 45

3.1.1 Metrics for Efficiency Evaluation 47
3.1.2 Cost-benefit Quantification for Key-value Offloading 50
3.1.3 Offloading Landscapes . 56
3.1.4 Summary . 64

3.2 Data Availability . 64
3.2.1 Cost-effective Failure Domains 65
3.2.2 Model Assumptions . 67
3.2.3 Mathematical Model . 71
3.2.4 Data Availability Evaluation 74
3.2.5 Observations and Insights 77
3.2.6 Summary . 81

3.3 Conclusion . 82

4 Offloading Potential 83
4.1 Prototyping Platform . 84
4.2 General Micro-operations . 86

4.2.1 Benchmark Considerations 86
4.2.2 Normalization . 87
4.2.3 Performance Characterization 88
4.2.4 Summary . 98

4.3 Network Processing . 100
4.3.1 Benchmark Considerations 100
4.3.2 Methodology . 102
4.3.3 Network Processing Headroom Evaluation 103
4.3.4 Summary . 107

4.4 Data Partitioning . 108
4.4.1 Particle Data Flows . 109
4.4.2 Software Infrastructure for In-transit Processing 111
4.4.3 Performance of Partitioning Particle Data 115
4.4.4 Summary . 119

4.5 Parallel Data Processing . 121
4.5.1 Scientific Computing Workflows 121
4.5.2 Composable Data Service Libraries 123
4.5.3 Service Placement . 124
4.5.4 Performance of Multi-threaded Data Services 126
4.5.5 Summary . 129

4.6 Conclusion . 129

iv

5 Offloading Strategies 131
5.1 Requirements . 132

5.1.1 Communication . 132
5.1.2 Computation . 136

5.2 Bitar: Optimizing Data Compression for Serialization 137
5.2.1 Hardware Compression for In-transit Data 138
5.2.2 Compression Interfaces . 139
5.2.3 Performance Advantages 140
5.2.4 Summary . 145

5.3 Embedded Processing Pipeline . 146
5.3.1 SmartNIC Software Stack for Data Services 147
5.3.2 Distributed Particle Sifting 150
5.3.3 Summary . 156

5.4 Dynamic Offloading . 156
5.4.1 Push-back Strategies . 157
5.4.2 Additional Requirements 158
5.4.3 Query Representations . 161
5.4.4 Decision Engine Scheduling 165
5.4.5 The Decision Engine . 166
5.4.6 Summary . 184

5.5 Conclusion . 184

6 Conclusion 186
6.1 Ongoing and Future Work . 186

6.1.1 Query Performance with Dynamic Offloading 187
6.1.2 Cost-benefit Quantification for East-West Data Services . . 189
6.1.3 Security and Performance Isolation 189

6.2 Summary . 190

Bibliography 194

v

List of Figures

1.1 Performance growth in microprocessor, DRAM, network, and stor-
age over 40 years1 . 4

1.2 An outline of this thesis . 18

3.1 The basic architecture of RocksDB. The compaction process causes
read/write amplification, consuming additional CPU, memory, and
storage interconnect resources. 51

3.2 Data access amplification of the key-value function 52
3.3 Call graph of the RocksDB RMI server 54
3.4 A high-level view of the evaluation process 55
3.5 Test infrastructure for constructing offloading landscapes 57
3.6 Three offloading landscapes for testing 57
3.7 Integrated tests: workload performance as a function of the number

of storage devices on the host platform 59
3.8 Integrated tests: workload performance as a function of the number

of threads on the embedded platform 60
3.9 Network tests: workload performance as a function of the number

of storage devices on the host platform 61
3.10 Network tests: workload performance as a function of the number

of threads on the embedded platform 62
3.11 Disaggregated tests: workload performance as a function of the

number of storage devices on the host platform 63

vi

3.12 Storage systems with different building blocks: the first system uses
general-purpose servers while the second system uses embedded
storage nodes . 67

3.13 The impact of m and n on the relative benefit with HDDs 75
3.14 The impact of m and c on the relative benefit with HDDs 76
3.15 The impact of m and n on the relative benefit with SSDs 76
3.16 The impact of m and c on the relative benefit with SSDs 77
3.17 The impact of n on the relative benefit (m = 10) 78
3.18 The impact of c on the relative benefit (m = 10) 79

4.1 HPC Compute node with a BlueField-2 SmartNIC 85
4.2 Box plotting the relative performance of a set of stress-ng stressors

ran on 12 general-purpose systems and the BlueField-2 SmartNIC
(MBF2H516A-CENO_Ax). Each stressor was run for a duration
of 60 seconds. The performance figures have been normalized with
respect to the Raspberry Pi 4B (4 GB model). Triangle data points
denote the performance of the BlueField-2. Other data points are
plotted only if they are outliers, falling outside the range of the
corresponding whisker. A full version of this plot can be found
at [152]. 91

4.3 BlueField-2 throughput performance in the separated host mode . 104
4.4 BlueField-2 throughput performance by varying the delay configu-

ration (8 threads, packet size 10KB, burst 25) 105
4.5 r7525 throughput performance in the separated host mode 106
4.6 r7525 throughput performance by varying the delay configuration

(packet size 832B, burst 25) . 106
4.7 r7525 throughput performance in the embedded function mode

(packet size 832B). The left and right figures show the performance
with DPDK and kernel IP network stack for traffic bridging, re-
spectively . 108

vii

4.8 Airplane position data in a (a) point form for a snapshot in time
and (b) track form for a window of one hour 111

4.9 A simplified data serialization process of an Arrow table 114
4.10 Overhead for partitioning without compression 118
4.11 Timing breakdown for a 4-way split on the BlueField-2 using dif-

ferent software compression methods 119
4.12 Aggregate dataset sizes when varying the number of partitions and

compressing with Zstd . 120
4.13 A workflow is mapped to HPC compute resources 122
4.14 A data reorganizing service is mapped to levels of SmartNICs: Blue

boxes represent simulation tasks that run on compute nodes and
generate simulation data. Green boxes represent SmartNICs that
receive and process the handover data through the data service
pipeline. Online queries can be delivered to the SmartNICs to
achieve customized data retrieval needed for the next simulation
task. 126

4.15 Performance in Faodel’s LocalKV stress test 128
4.16 Apache Arrow threading performance 128

5.1 Single-thread (de)serialization time with different compression codecs141
5.2 (De)serialization throughput with different compression codecs and

degrees of parallelism . 142
5.3 The maximum throughput performance on the host for all three

datasets . 142
5.4 Compression ratios under different compression approaches. Thick

black borders indicate hardware (de)compression results. 145
5.5 Requirements on the environment for embedded service execution 148
5.6 Dataflow and placement for sifting particle data 151
5.7 Data preparation and injection overhead 152
5.8 SmartNIC sifting time for 100M particles 153
5.9 First stage overhead for 100M particles 154

viii

5.10 Total sifting time for different input datasets 155
5.11 Conceptual time breakdown for offloaded and pushed-back cases . 166
5.12 Arrow table (de)serialization performance. The host has two Intel

Xeon 16-core CPUs running at 2.30GHz and 512 GB of memory.
The host outperforms the BlueField-2 by 57% in deserialization
(left figure) and by 60% in serialization (right figure). 168

5.13 Performance of deserialization + serialization vs. memcpy on the
BlueField-2 . 168

5.14 The process of cardinality estimation to generate vectors of opera-
tions as input to the model to predict query execution time 172

5.15 The left figure illustrates the actual and estimated serialization time
on the BlueField-2 SmartNIC as a function of the number of rows in
a table. The right figure displays the residual (on the left axis) and
the absolute difference in percentage (on the right axis) between
the actual serialization time and the estimated time predicted by
the model. 173

5.16 The left figure depicts the actual and model-estimated serialization
sizes for Arrow tables with varying row numbers. The right figure
illustrates the residual and absolute difference in percentage be-
tween the actual and estimated serialization sizes. The error rates
observed with this model on the test data set do not exceed 6%. . 174

5.17 The left figure compares the measured time of network transfer
using Faodel with the estimated time, plotted against the serial-
ized table size. The right figure shows the residual (left axis) and
absolute percentage difference (right axis) between the actual and
estimated network transfer times. In this experiment, the table
objects were hosted on the SmartNIC, and the host sent retrieval
requests. 175

ix

List of Tables

3.1 List of Model Parameters . 70

4.1 Micro-operations Test Systems . 90
4.2 Stressor performance ranking of the BlueField-2 SmartNIC 96
4.3 Changes in the performance ranking of the BlueField-2 SmartNIC

between the 10s and 60s tests . 97

5.1 Serialization speedup with Bitar on the host 143
5.2 Deserialization speedup with Bitar on the host 144
5.3 Particle data schema . 169
5.4 Performance of cardinality estimation 178
5.5 Example query templates for predicting execution time 178
5.6 Prediction performance of execution time for different queries on

the BlueField-2. The last column shows the absolute difference in
percentage between the predicted and actual execution time. . . . 179

5.7 The operations vector produced for the case study query 5.3 . . . 180
5.8 The operations vector produced for the case study query 5.4 . . . 181
5.9 Analysis of time consumption for offloaded vs. pushed-back execu-

tion with case study queries. The first and second tables correspond
to results from queries 5.3 and 5.4, respectively. 182

x

Abstract

Extending Composable Data Services to the Realm of Embedded Systems

by

Jianshen Liu

The non-uniform improvement of computer hardware performance poses a signifi-

cant challenge for contemporary data processing in managing the growing volume

of data. General-purpose systems encounter obstacles such as design, power, and

heat management that hinder their computing power improvement. As data pro-

cessing becomes more expensive and the increasing performance demands from

applications, academia and industry are evincing interest in offloading data ser-

vices to embedded systems (i.e., system software that runs on peripherals such

as storage or network devices) to improve data processing efficiency. Given the

domain-specific nature of embedded systems, this approach opens up abundant

research opportunities, particularly as more applications rely on big data analysis

for insights.

Efficiently leveraging embedded systems for data services requires answering

three critical questions concerning why, what, and how. The “why” question per-

tains to the potential benefits of offloading a data service to an embedded system.

Answering this question requires developing a methodology that can accurately

quantify the benefits by taking into account the embedded system’s domain na-

ture and the data service workload. The “what” question pertains to what data

services to offload to an embedded system. Answering this question requires a

comprehensive understanding of the intended system and function to identify po-

tential matches for successful offloading. In this thesis, I focus specifically on

composable data services, not only because they serve as fundamental building

xi

blocks in applications, but also because their composability allows for more conve-

nient migration to diverse systems. The “how” question pertains to determining

the strategies to use for offloading. Given that embedded systems are designed

to operate within a constrained environment, effective offloading strategies are re-

quired to prevent suboptimal performance resulting from incapable or overloaded

embedded systems.

This thesis makes contributions to addressing the challenges associated with

each of these research questions. First, I develop a practical methodology fo-

cused on cost-benefit quantification and a mathematical model to evaluate the

data availability benefit of offloading data services into storage devices. Second,

I examine and evaluate composable data services in high-performance scientific

workflows to identify potential functions suitable for offloading. Finally, I explore

strategies aimed at reducing data processing overhead and scheduling workloads

dynamically to improve performance efficiency for data services running on em-

bedded systems.

xii

This thesis is dedicated to my wife and daughter for their incredible support — I

can’t believe we made it! Also, a big shout-out to my parents and in-laws for all

the support they’ve given us.

xiii

Acknowledgments

I would like to express my deepest gratitude to my advisor, Carlos Maltzahn,

for his unwavering guidance and strong support throughout my Ph.D. studies. His

timely intervention revived my research every time I struggled, and his academic

acumen helped me avoid unforeseen roadblocks. I also wish to thank Scott Brandt,

Peter Alvaro, and Matthew Curry for their consistent and constructive feedback.

I would also like to express my gratitude to Craig Ulmer. His expertise con-

stantly pushed me forward to achieve rewarding research results. I would like

to extend my thanks to Philip Kufeldt as well. His expert mentoring helped me

reach my first milestone, and I learned so much from his rigorous approach to

research. I’m grateful to Jeff LeFevre for his meticulous advice and feedback. I

sincerely thank Paul Stamwitz and Ike Nassi for their continuous critique of my

preliminary experimental results. I’m grateful to Shel Finkelstein for broadening

my perspective on the potential of my research.

Finally, I would like to thank all my senior friends in the research lab: Ivo

Jimenez, Noah Watkins, and Michael Sevilla. Your words of encouragement

helped me stay focused on my goal to graduate. I want to thank Aldrin Montana

for his valuable feedback on my presentation. I cherish the time spent with Jay-

jeet Chakraborty, Holly Casaletto, Saheed Adepoju, Esmaeil Mirvakili, and Farid

Zakaria. Your valuable suggestions and feedback have been greatly helpful.

xiv

This work was in part funded by National Science Foundation grant CNS-

1764102 and under cooperative agreement OAC-1836650 (subcontractor of Prince-

ton University), the US Department of Energy ASCR DE-NA0003525 (FWP 20-

023266, subcontractor of Sandia National Labs), and the Center for Research in

Open Source Software (cross.ucsc.edu).

xv

Chapter 1

Introduction

The contemporary data processing landscape, characterized by large and com-

plex data sets distributed across diverse domains, presents significant challenges to

general-purpose systems. These challenges stem from constraints in semiconduc-

tor miniaturization [218], energy consumption [77], I/O bandwidth [226], scalabil-

ity [3], and communication overheads [74]. Moreover, the trend towards resource

disaggregation [176, 209, 104] within the computer industry exacerbates the grav-

ity of these challenges. Despite these limitations, modern applications for machine

learning, artificial intelligence, and high-performance computing continue to drive

the ever-increasing demand for computing power to enable effective data analysis

in the era of big data. This demand far surpasses the computing requirements

of traditional applications for which general-purpose systems were originally de-

signed.

This conundrum has propelled the development of embedded systems that

couple computing with domain-specific resources, aimed at accelerating the per-

formance of specific applications offloaded to the hardware. However, due to

the non-general-purpose nature of embedded systems, comprehensive research is

required on both software and hardware design to realize the full benefits of off-

1

loading. This involves investigating not only the suitable functions to offload and

the software stacks that allow flexible offloading, data management, and commu-

nication protocols, but also coordinating with hosts and other embedded systems.

Moreover, optimizing hardware resource compositions is paramount to ensure the

cost-effectiveness of offloading to these systems.

This thesis aims to bridge the gap between hosts and embedded systems to

enable the efficient execution of composable data services that commonly serve

as fundamental building blocks in a wide range of applications. Composable data

services, such as key-value stores, data queries, and redundancy functions, en-

tail significant data movement overhead across multiple layers in general-purpose

hosts. This is because data requires to travel from the source to host processors

for function access, potentially consuming significant system I/O bandwidth and

CPU cycles that could otherwise be available to applications. Offloading these

services to embedded systems can enable data processing closer to the source, re-

sulting in benefits such as reduced data service latency, host resource utilization,

and energy consumption.

This thesis explores embedding data services in storage and network devices

to reveal the advantages of various offloading schemes with domain-specific appli-

cations (e.g., key-value data access and in-transit data management). Embedded

systems for storage differ from those for networks in that they manage the source

of large volumes of persistent data, while the latter handle streaming data flows.

While this difference results in distinct data inputs for offloaded functions, there

are similarities in many aspects of managing the data and control planes, such as

data processing frameworks and workload scheduling. Our research commences

with constructing mechanisms that systematically quantify the offloading insights

for functions of composable data services, followed by developing strategies that

2

mitigate the limitations while exploiting the efficiency provided by embedded sys-

tems. Together, these enable more informed decision-making on leveraging em-

bedded systems for composable data services.

1.1 Background

Advancements in computer technology are a constant pursuit. The exponen-

tial growth in transistor count started in the 1970s with microprocessors enabling

personal computers [229], continued with embedded systems facilitating smart-

phones and mobile apps [116], and expanded to web 2.0 and cloud computing due

to universal computing demand [84]. The rise of big data since the mid-2010s has

stimulated the development of machine learning, artificial intelligence, and, later

on, edge computing [214]. Computer hardware and applications share a symbiotic

relationship, catalyzing each other to become more efficient and performant.

However, the advancement of technology is not uniform, especially when con-

sidering the hardware components of a computer (Figure 1.1). In the early days,

processor performance increased at a faster rate than memory and storage perfor-

mance. Yet, in the mid-2000s, this trend began to change with slower components

accelerating their performance growth and the performance gap in relation to pro-

cessors starting to narrow. For example, 10 Gbps network cards were available in

2004 [248], and only six years later, an improved version of ten times the perfor-

mance, the 100 Gbps network cards, became available [249]. Notably, towards the

close of the 2010s, performance improvements in processors and DRAM seemed

to plateau, while the progress in network and storage components maintained its

steady climb.

These changes in relative performance can have a significant impact on ap-

plication and system software, which often incorporate fixed assumptions about

3

the relative speed of hardware components. As these assumptions become out

of date, they might require a complete rewrite of the software in order to effec-

tively harness the performance improvements from the underlying hardware. This

becomes especially important as new applications increasingly demand greater lev-

els of performance to handle the challenges presented by big data. Unfortunately,

general-purpose processors face significant obstacles in delivering more computing

power per processor core [146], prompting industries and researchers to explore

alternative means of meeting the ever-increasing power demands of modern ap-

plications.

Figure 1.1: Performance growth in microprocessor, DRAM, network, and storage
over 40 years1

1The processor performance data is sourced from the book “Computer Architecture: A Quan-
titative Approach” by John L. Hennessy and David A. Patterson, published in 2017 [107]. The
data was obtained in relation to the VAX 11/780 using the SPEC integer benchmarks. The
network and storage performance data is derived from Allen Samuels’ 2016 presentation [216]
titled “Consequences of Infinite Storage Bandwidth,” while the memory performance data is
obtained from the “List of Interface Bit Rates” on Wikipedia [252].

4

1.1.1 General-purpose Computing

The Power Wall

Prior to the 2000s, the semiconductor industry predominantly adhered to the

trajectory of Moore’s law, which facilitated a doubling of the number of transistors

per computer chip every 18 months while simultaneously maintaining a relatively

constant cost per chip area. During this era, computer system performance saw

a marked escalation as clock rates increased, although such progress was largely

constrained by the limited bandwidth of disk drives, which exhibited read/write

performance that peaked at approximately 200 MB/s. As such, most applications

operating on these systems preferred to transfer data from sluggish storage media

to primary memory to accelerate processing. However, since the mid-2000s, the

trajectory of microprocessor performance advancement has begun to curve owing

to the breakdown of Dennard scaling [27]. Consequently, semiconductor manu-

facturers have found that regulating the power consumption of microprocessors

has become an increasingly arduous endeavor compared to advancing the technol-

ogy aimed at reducing transistor size. More specifically, the power consumption

per silicon area has begun to surpass the power budget, which poses a signifi-

cant challenge to counteract current leakage and prevent thermal runaway. This

“power wall” has limited the increase in the practical clock rate to under 4 GHz

to date [180] — same as server processors made a decade ago.

The breakdown of Dennard scaling played a significant role in driving the

adoption of the multi-core architecture in microprocessors. With this design ap-

proach, the number of cores in a CPU socket rapidly grew from two to as many as

32 physical cores integrated into a single socket today. This shift in architecture

meant that software developers could no longer rely solely on the performance

enhancement of a single core, instead needing to bake different assumptions into

5

programs about how they are separated into serial portions, and portions that can

be parallelized with multiple cores. Nevertheless, several factors can impede par-

allelization efficiency, including the ratio of the parallelizable portion, workload

data locality, lock contention, false sharing, power consumption, and inter-core

communication. Amdahl’s law [109] dictates that the maximum speedup that

can be attained by parallelizing a computation is limited by the fraction of the

computation that cannot be parallelized. Additionally, workloads with little data

locality will eventually be bound by the memory channel bandwidth as the level of

parallelization increases. Communication between cores also affects the gain from

parallelization. Finally, power consumption challenges give rise to issues known

as “dark silicon” [78, 105], which limits the number of cores that can be activated

simultaneously.

Given these challenges, the semiconductor industry and researchers have been

actively seeking solutions to some of these problems. One promising approach

is the use of high-bandwidth memory (HBM) [120], which aims to increase the

amount of low-latency memory accessible by processor cores. HBM uses a 3D-

stacked memory architecture, enabling multiple layers of memory chips to be

stacked on top of each other using through-silicon vias (TSVs) to enable commu-

nication between the layers. Another approach gaining traction is chiplet technol-

ogy [266], which uses a modular design principle to integrate smaller chips with

specific functions, such as processing cores, memory, or input/output interfaces,

onto a larger substrate to form the final chip. These packaging technologies of-

fer the potential for continued improvements in processor performance. However,

concerns have been raised regarding carbon emissions during the manufacturing of

these chips, which may exceed those from operational energy consumption [102].

6

Cost of Performance

Computing Power Efficiency: Data centers serve as the core component

of the global digital infrastructure, enabling the storage and processing of the

ever-increasing volume of digital data. However, the proliferation of data centers

worldwide has raised concerns about their power consumption and energy effi-

ciency. A previous study [208] indicated that in 2006, US data centers consumed

almost 61 billion KWH, equivalent to 1.5% of the total energy consumption in

the country. By 2011, this figure had surged to over 100 billion KWH. At a

global scale, the energy consumption of data centers accounted for 1.1-1.5% of

total global energy consumption in 2011. More recently, it has been reported

that global data center instances increased by 550% between 2010 and 2018 [169].

Among the major contributors to energy consumption in data centers, running

server tasks and operating refrigeration systems account for approximately 40%

each. Importantly, servers consume a considerable amount of energy, even during

idle periods. As electricity costs continue to increase, power bills have become a

substantial expense for data centers [59]. Therefore, reducing energy consumption

by servers and cooling systems is critical for the sustainable development of data

centers.

Environmental Impacts: Carbon emissions resulting from computing are

a major environmental impact that arises throughout the lifecycle of computer

systems. As previously mentioned, operational energy consumption has experi-

enced a significant rise, making it a substantial source of carbon emissions. In

the era of big data, the prevalent use of machine learning [135] and deep neural

network models [185] exacerbates this issue, given their substantial energy require-

ments. For example, a leading artificial intelligence company reported that the

computational resources needed to train artificial intelligence models have been

7

doubling every 3.4 months since 2012 [11]. Furthermore, since larger datasets

and more parameters can generally improve model accuracy and capabilities, the

current trend among technology companies to employ larger models has only in-

tensified the demand for computing, leading to even greater carbon emissions.

To mitigate the impact of machine learning and neural network training on the

environment, researchers have developed estimators to predict the environmental

impact of large-scale training and to help identify strategies to make the process

more sustainable.

The manufacturing of computer hardware, particularly integrated circuits, also

contributes significantly to carbon emissions. The modern semiconductor inte-

grated circuits manufacturing process requires several hundred unique tools to

perform hundreds of process steps to ensure controlled quality and final yield [20].

A recent study has shown that the fraction of life-cycle carbon emissions attributed

to hardware manufacturing increased from 49% for the iPhone 3GS, released in

2008, to 86% for the iPhone 11 released one-decade later [102]. This highlights

the critical role of computer hardware manufacturing in the carbon footprint of

computing. Researchers are exploring greener manufacturing techniques to ad-

dress this issue, such as using renewable energy sources [86] and designing more

energy-efficient chips and productions.

1.1.2 Emerging Trends in Hardware Design Paradigms

Asymmetric Processors

The “power wall” and the limitations in scaling single-core performance have

necessitated a paradigm shift in the approach to processor core design, which

now involves trading off between functionality and performance. Traditionally,

the processor design aimed to integrate as many transistors into each core while

8

maintaining symmetric computing capability across all cores. However, as holistic

improvement is limited by the power budget, sacrificing functionality for higher

performance is becoming a necessary compromise. For instance, to enable higher

parallelism, some cores may need to simplify their capabilities to reduce per-core

area, allowing for more cores to be fitted on the same chip. Today, many modern

processors utilize a hybrid architecture where a few cores are designed to be more

powerful and power-intensive, while the others are less powerful but more efficient

to enable more efficient parallelism. These less powerful cores can undertake

tasks such as garbage collection, NUMA rebalancing, and security scanning while

leaving off advanced functions [97] (e.g., the AVX-512 instruction set) that are

only available on powerful cores.

Domain-specific Hardware

The trade-off between functionality and performance can extend beyond em-

ploying a hybrid architecture in processors to encompass the design of cores tai-

lored specifically for only certain functions or workloads2. For instance, graphics

processing units (GPUs) are equipped with cores intended for graphic processing

workloads and scientific simulations. Owing to their specific focus, the design

of each core on a GPU can be substantially simplified by excluding unnecessary

functions. For example, while CPUs typically support double-precision arith-

metic, most GPUs optimize mathematical calculations using single-precision and

half-precision floating-point arithmetic [139, 168], which are generally adequate

for graphics and scientific simulations. This simplification enables thousands of

cores to be integrated onto a single chip to maximize parallelism for targeted

workloads. Such a specialized design approach is also applicable to chips such as

Google’s tensor processing units (TPUs) [246], which aim to maximize the per-
2FPGA [134] is considered to trade flexibility for performance.

9

formance of matrix multiplications that are commonly used in machine learning

and deep learning algorithms. More recently, data processing units (DPUs) [35],

infrastructure processing units (IPUs) [34], and embedded storage devices [37]

have also been developed to optimize a relatively small set of network- or storage-

oriented operations by specifically allocating more semiconductor resources to

these operations.

These specially designed microprocessors, along with peripheral devices in-

corporated to expose necessary functions, are commonly referred to as domain-

specific embedded systems. Given the narrowed functionality of these systems,

an important question arises regarding their desired placement within a general

system to maximize their benefits. With the gradual reduction of the performance

gap between storage devices and general-purpose processors, as well as the gap

between network devices and general-purpose processors, one practical approach

is to augment these devices to enable in-situ execution of higher-level domain-

specific operations and leverage their improved performance with data locality.

The recent emergence of embedded devices for computer systems, including pro-

grammable network interface cards (or SmartNICs) and computational storage

devices [230], has highlighted this approach by enhancing one of these system

devices.

The potential for energy savings and performance improvements from using

embedded systems has been extensively researched in various application domains.

Studies have demonstrated that the use of GPUs in scientific workloads and data

analytics can result in power efficiency and computing performance that is sev-

eral orders of magnitude higher than traditional CPU environments regardless of

whether they are operating on a single core or multiple cores [112, 184]. In cloud

computing, deploying SmartNICs for microservice-based applications or packet

10

processing has been found to achieve significantly higher energy efficiency and

lower overhead than running directly on host CPUs [162, 138]. Notably, a re-

port [185] on energy consumption has claimed that data centers equipped with

machine learning-oriented accelerators can be approximately 1.4 to 2x more en-

ergy efficient than typical data centers.

In the era of Moore’s law, the development of domain-specific hardware has

long been constrained by the limited lifetime due to the performance benefit be-

ing eclipsed by the next generation of processors that are typically only eigh-

teen months away. This short period also poses a significant challenge in terms

of achieving a return on investment for developing domain-specific hardware by

amortizing sales. However, with the plateauing of single-core performance of

general-purpose processors, the benefits of specialized hardware are not expected

to diminish in the foreseeable future, and I anticipate an increase in vendors in-

vesting in the development of hardware tailored for specific application domains.

As an exemplar, NVIDIA’s BlueField SmartNIC has projected a roadmap that

anticipates a 10x improvement every two years [35]. The upcoming BlueField-3

SmartNIC, with three times more transistors and double its predecessor’s com-

pute and network capability, is already available as engineering samples in the

second quarter of 2023.

1.1.3 Data Services

Data services play an essential role in enabling efficient storage and retrieval

of data by facilitating data resiliency, availability, validity, and curation, and are

widely employed as fundamental building blocks across a diverse range of applica-

tion domains. Web applications use data services to provide a semantically richer

view of the underlying data and support advanced querying functionality [39].

11

In the context of high-performance computing (HPC) applications, data services

serve as a critical interface for client applications to access and manipulate data

while also enabling mechanisms for data storage, organization, and processing,

such as key-value stores and message queues [210]. Storage and network systems,

in particular, implement data services to offer a diverse range of characteristics

that many applications can rely on, including provisioning, data protection, data

availability, data performance, and data security [40].

Data Movement

The functionalities provided by data services require the movement of data

across multiple system components. The process typically begins with ingesting

relevant data from source devices into caches, followed by data processing and

transmission of intermediate or final results to subsequent services or applications

via appropriate channels. Depending on the scale of the data services, this process

may involve frequent data movement across systems, leading to overhead observ-

able by applications and requiring energy consumption by all relevant system

components. Past research has demonstrated that a reduction in data movement

of a key-value store can significantly improve lookup performance by order of

magnitude [163]. Additionally, another study has found that the energy cost of

moving data across the memory hierarchy is expected to be two orders of mag-

nitude higher than the cost of performing a floating point operation with double

precision [127]. To analyze the opportunities for reducing this data movement, I

categorize data services based on the logical directions of the data movement they

initiate.

The first type of data service moves data vertically, forming north-south data

movement in the system hierarchy [132]. Data queries provided by databases are

12

typical examples of this type of data service. The process typically starts with

the movement of data blocks from storage media on a local storage device to the

memory subsystem of the host. The host processor then deserializes the data to

generate data tables stored in memory. In simplified terms, while executing the

query, the processor reads the table data and writes the result back to memory

for subsequent applications to consume. If data storage and processing are disag-

gregated across multiple systems, the amount of data movement on a system can

increase significantly both internally and externally.

The second type of data service moves data horizontally between systems,

constituting east-west data movement within the system hierarchy [132]. Typi-

cally, this type of service does not directly provide application-facing interfaces

but focuses on functions enabling data reliability, availability, and scalability for

scale-out systems. This type of service includes data recovery, data scrubbing [7],

load balancing, failure discovery, and data tiering.

Streamlining Data Transfer

The advent of domain-specific hardware presents an opportunity to mitigate

data movement overhead by partially or completely offloading data services to

the hardware to leverage its specialized data processing capabilities. For data

services that initiate north-south data movement, offloading these services can

encapsulate the data movement in proximity to the source while minimizing the

propagation of bandwidth and data processing power requirements to the other

end of the traffic. A case in point is offloading SQL data services to SmartNICs

or computational storage devices, allowing data to be filtered at the source and

applications to receive the data, possibly without requiring additional resources

for further processing [162]. For data services that transfer data between devices,

13

offloading these transfers localizes the data movement overhead to lower levels

of the memory hierarchy. For instance, data redundancy for distributed storage

systems can be offloaded to SmartNICs, enabling host applications to rely on data

availability assumptions at the onset when the data is written to the network,

without concern for potential impacts from host failures [128].

1.1.4 Summary

Since the inception of computer technology, system architecture has experi-

enced a myriad of evolutionary shifts to adapt to the diversity of applications.

Notwithstanding the challenges inherent in general-purpose computing, such as

the power wall and excessive data movement, the performance requirements of

modern applications continue to rise. Consequently, there is an emergent need

for more efficient solutions to balance the system-wide resource utilization for

function execution. The sheer performance chasing of functions has thus been

superseded by the pursuit of function efficiency. Extensive research has been

conducted on storage- and network-oriented embedded systems to explore how

existing functions or applications can enhance performance while reducing energy

consumption. Additionally, researchers have recognized the potential benefits of

leveraging specialized embedded devices that collectively provide data service end-

points constructed based on higher-level APIs as a more cost-effective approach

to computing in the future.

1.2 Contributions

The scope of the thesis is to enable efficient function offloading for composable

data services tailored toward exploiting the benefits of embedded systems. The

14

thesis makes the following four contributions:

The first contribution is a novel methodology for quantifying the benefits of

offloading data access functions to storage devices. This methodology encompasses

a set of metrics designed to evaluate the efficiency of storage media performance

used by a given data access function in terms of cost, power, and space. Unlike the

speedup metrics commonly used in previous research, these metrics intend to guide

the optimization of resource composition in embedded storage devices rather than

merely disclosing changes in workload performance from offloading a particular

data service function. Based on these metrics, a prototype is developed that

implements the benefits quantification methodology and automates the process

for normalizing the cost of performance with a specific focus on evaluating the

benefits of offloading the key-value data access function. Through the use of this

prototype, I demonstrate the methodology’s effectiveness by exploring multiple

distinct offloading landscapes that illustrate the quantitative impact of offloading

configurations on the resulting benefits. A version of this work appears in HPC-

IODC 2019 [155].

The second contribution is a mathematical model that explores the impact of

embedding storage systems into storage devices on data availability. Data avail-

ability is a crucial metric for running data storage services, particularly in edge

data centers where the tax of maintaining data availability is especially high, and

offloading these services typically leads to increased data fragments being man-

aged by individual storage devices. This model features parameters that capture

the storage and compute capabilities of embedded storage nodes relative to those

of general-purpose servers and incorporates the effects of diverse data replication

schemes. The evaluation of this model mathematically illustrated that increasing

the number of independent failure domains that a failover mechanism spans can

15

significantly enhance the data availability of the system. As embedded storage

nodes are generally more cost- and space-efficient than general-purpose servers,

an edge data center can deploy a higher number of these independent nodes than

servers for constructing the basic layer of a storage system, thus significantly im-

proving data availability. The proposed model can serve as an instrumental tool

for system architects, aiding them in pinpointing the optimal balance between sys-

tem performance, cost, and data availability. This balance, in turn, contributes

to the improvement of performance efficiency for storage systems in edge data

centers. A version of this work appears in HotEdge 2020 [156].

The third contribution is a library that accelerates the performance of data

serialization, motivated by the insight that compression poses a significant bot-

tleneck to serialization efficiency. Data serialization is crucial in many data ser-

vices, such as event streaming [87] and distributed data stores [243]. The library

achieves acceleration by offloading the compression function to specialized hard-

ware accelerators. Furthermore, the library exposes a generalized API that can

be readily integrated into many serialization protocols and data management ser-

vices, such as Apache Arrow IPC format [157] and Ceph BlueStore transparent

compression [5]. Internally, the library leverages the parallelism and zero-copy

capabilities inherent in the underlying hardware to maximize performance. As

a concrete example, I demonstrate that it could accelerate Apache Arrow table

serialization performance to an extent equivalent to utilizing an entire modern

CPU socket. This performance enhancement is achieved while maintaining a sim-

ilar compression ratio on the data output and occupying substantially fewer host

CPU resources. This work highlights the necessity of adopting offloading strate-

gies that can effectively harness the specific advantages of embedded systems to

optimize the overall performance of data services. The work was presented at the

16

HPEC 2022 conference [157].

The final contribution is a mechanism for estimating the optimal placement

of executing data query workloads on in-transit data, accompanied by a policy

prototype that encapsulates this mechanism into a decision engine, designed to

operate on SmartNICs. Data query services are crucial in many data analytic

applications (e.g., data warehouses [101], business intelligence platforms [46, 201],

and network data management [88]) for providing curated data flow to service con-

sumers. While embedded systems can potentially improve the efficiency of query

workloads, their utilization poses a significant challenge in scheduling workloads

among systems of distinct architectures to avoid workload performance degrada-

tion caused by local system overload. As a core component of the decision engine,

I implement a cardinality estimator to capture the job size of a query as an oper-

ations vector and employ machine learning-based predictive models to assess the

time consumption of both execution and communication necessary for estimating

the optimal placement of a workload. The proposed mechanism presents a gener-

alized scheme to enable dynamic offloading in the context of embedded systems,

with considerations and strategies tailored to resource-constrained environments

to facilitate more efficient execution of data query services. This work is being

submitted for publication.

In addition to academic publications, the contributions presented in this thesis

and the corresponding prototypes have garnered considerable attention from the

community. First, all of these contributions were funded either by the Center

for Research in Open Source Software or Sandia National Laboratories. Second,

the performance characterization of the BlueField-2 SmartNIC, which was a part

of the research, was featured in the Next Platform and Data Centre Dynamics

magazines as soon as I posted a draft of the paper on arXiv [159]. This work was

17

also presented as a technical report authored by Sandia National Laboratories in

2021 [160]. Finally, the paper discussing the implementation of the library for

improving the performance of data serialization utilizing hardware accelerations

won the “Outstanding Student Paper” award at the 26th IEEE High-Performance

Extreme Computing Conference. Moreover, the paper that described a data re-

organization pipeline running on distributed SmartNICs was awarded the “Best

Paper” award at the 2nd Workshop on Composable Systems.

1.3 Outline

An outline of the thesis is shown in Figure 1.2.

Figure 1.2: An outline of this thesis

Chapter 2 examines related work on the success and failure of some of the

most important research efforts aimed at enabling embedded systems for specific

use cases.

Chapter 3 begins by introducing a methodology for quantifying the cost-benefit

of offloading data access functions to embedded storage devices. This methodol-

ogy is based on a set of Media-based Work Units (MBWU) normalized metrics

18

and is specifically designed to measure the efficiency in terms of cost, power, and

space for a given data access workload. The second part of this chapter focuses

on a perhaps surprising metric, namely data availability, for evaluating the ben-

efit of offloading storage systems to embedded storage devices in the context of

edge data centers. This metric is particularly important for the edge environ-

ment. Unlike traditional data centers, edge deployments operate on a smaller

scale, making them more vulnerable to catastrophic failures when consisting of

only a few failure domains with monolithic systems. Assuming edge deployments

have more embedded storage devices than hosts, offloading storage systems func-

tionality onto devices increases the number of failure domains and hence improves

data availability. The evaluation of the data availability benefit is conducted

through a mathematical model that takes into account the impacts of storage and

computing aggregation within a storage node.

Chapter 4 explores the potential of offloading data services to SmartNICs.

It begins with a thorough discussion of the methodology employed to create a

performance envelope for a SmartNIC, which reveals potential functions that can

benefit from offloading to the hardware. Subsequently, the chapter discusses the

evaluation of the computing capacity of a network function that can be accom-

modated on a specific card under different network stacks and hardware con-

figurations. Moving forward, this chapter explores data services provided by a

collective of SmartNICs treated as network processing elements with use cases

from high-performance computing workflows. Specifically, these use cases involve

the partitioning of particle data flows and multi-threaded data processing.

Chapter 5 presents the strategies identified for offloading data services onto

embedded systems. First, I introduce “Bitar,” a library designed to accelerate

data serialization performance by utilizing hardware accelerators. Next, I discuss

19

an embedded processing pipeline that distributes data objects across a cluster of

SmartNICs and employs them to transform the object layout to suit the form

required by subsequent applications. A version of this work was presented at

COMPSYS 2023 [233]. Finally, the chapter examines a critical strategy: a mech-

anism for estimating the best possible workload placement, implemented as a

decision engine. This mechanism enables the dynamic offloading of data query

services to SmartNICs to strive toward optimized performance. This work builds

upon previous research efforts in query optimization from the database and data

science communities and adapts them to the unique context of embedded systems.

Chapter 6 concludes the key findings of the thesis and charts the course for

ongoing and future work on top of the contributions made based on my under-

standing of the role of embedded systems in meeting the increasing demands of

modern applications.

20

Chapter 2

Related Work

2.1 Specialized Data Processing Hardware

2.1.1 Channel I/O

Channel I/O [221, 8] is a concept that emerged in the 1950s to offload I/O

functions to specialized hardware utilized in mainframes. Channel I/O allows

mainframes to handle IO-intensive workloads in parallel, providing a significant

advantage over other types of computers. Systems equipped with channel I/O ini-

tialize communication with channel hardware by executing a start subchannel

instruction with an operand pointing to the starting address of the loaded channel

program in memory. The channel hardware can then process I/Os from or to a

set of controllers or devices without intervention from host CPUs. This process

continues until a “success” or “failure” event occurs, which generates an I/O in-

terrupt to the host. A “success” event indicates that the channel program has

been completed successfully, with the intended data records being processed. In

contrast, a “failure” event suggests that the channel program was terminated by

an exception, requiring a future decision to proceed. The exception can be trig-

21

gered by the channel program, subsystem, or any events the underlying storage

controllers or devices raise.

Channel programs comprise channel command words (CCWs) that are de-

coded and executed by processors in channel hardware. Although these proces-

sors are usually RISC processors [186] that are less powerful than the host CPUs,

they are designed to work in parallel, making them more efficient in I/O pro-

cessing. Channel I/O can be considered a sophisticated form of direct memory

access (DMA) [253] for microcomputers, except that it can fetch and execute I/O

instructions without host CPU intervention.

The execution of a channel program is determined by the task for which it

is designed. To filter raw data from storage before further execution, a chan-

nel program may use conditional branches. This dynamic execution capability

allows host CPU cycles to be reserved for more complex operations from user

programs, which would otherwise compete with data filtering functions even with

the presence of DMA. The following code snippet provides an example of a chan-

nel program used in the IBM 2835 Storage Control and 2305 Fixed Head Storage

Module [113]:

1 Seek
2 Search Key Equal
3 TIC *-8
4 Write Data

Listing 1: A channel program example

Each CCW in the code snippet provided consists of an eight-byte command

with fields arranged in the following order: command code, data address, flags,

and count. The seek command’s data address specifies the location on the disk

to seek, allowing the program to identify the cylinder and the track on the disk to

start with. On-disk data records are organized in a count key data format [251].

22

With the search key equal command, the key field of the next record on the

track is compared with the key at the location specified in the current command’s

data address. If the comparison fails, the program pointer is updated using the

TIC command to return to the previous search command and continue the loop

until the key comparison is satisfied. When the key comparison is successful, the

storage control generates a status modifier bit to end the loop by moving the

program pointer forward by 16 bytes to execute the write command, which writes

the result data to the current record.

2.1.2 Specialized Hardware for Database Systems

In the 1970s, Lin et al. [150] devised a hardware system that implemented a

content-addressing mechanism on head-per-track rotating storage devices to opti-

mize tuple selection workloads in relational database systems of that era. Tuples

represent the form of data stored on such devices, and each tuple is characterized

by a size-fixed physical data layout comprising a predetermined number of tracks

on disks. The collection of tracks spanning a tuple is known as a “band.” The

content-addressing mechanism comprises multiple search modules integrated into

a storage device. Each search module is responsible for a contiguous sequence of

bands, with the optimal number of bands allocated to each module being deter-

mined by balancing the cost of a module against the desired performance level of

the workload.

This design was motivated by the low utilization of channels for transferring

data between memory and head-per-track rotating storage devices. This design

was potentially beneficial to specialized database systems, which were costly at

the time and could thus accommodate dedicated designs tailored to specific data

layouts. However, it is far from applicable to contemporary cost-efficient general-

23

purpose storage servers, given that the data layouts on which they operate are

typically workload-dependent.

Ozkarahan et al. [183] from the University of Toronto proposed an associa-

tive processor architecture for database management systems named “RAP”. The

RAP infrastructure can communicate with general-purpose computers outside the

infrastructure through programming language calls or I/O statements. Users are

thus able to write programs with various query languages on general-purpose com-

puters and send the query requests to the RAP infrastructure. Within the RAP,

a set of cells is managed by function controllers. Each cell is an independent data

processing microcomputer that works on its own track of data. The cell com-

prises an information search and manipulation unit and a register buffer of size

128 bytes, which is used to cache data during transfers between data on tracks

and the logical unit. Data on a track is organized into back-to-back tuples, with

each tuple representing a row corresponding to an entity in a relational data table.

As the track of data moves through the cell, data can be filtered or manipulated

by the query program running on the cell.

The RAP architecture represents a significant advancement over previous ap-

proaches that rely on search modules within head-per-track rotating storage de-

vices. This is because RAP supports a data format that allows for variable data

lengths and can perform a wider range of database management operations beyond

mere search and filtering. Furthermore, RAP’s use of inexpensive large-capacity

circulating memory devices makes it more cost-effective than the previous ap-

proach that employs customized storage devices.

Although RAP demonstrated superior performance over conventional database

systems [182], DeWitt later identified in 1979 that RAP’s performance was still

limited by its single-instruction multiple-data stream architecture [60]. As the

24

data processing capability in cells is hardwired to data tracks, the utilization

of cells is highly dependent on the relations being referenced in a query. The

natural idea for improvement was to break the hard association with tracks and

dynamically align the resource allocation for data processing according to the

available resources and the query requirements at runtime. This change enabled

the concurrent execution of queries from different users based on their priorities.

The system created with this idea was named “DIRECT.”

In this system, user queries are initially compiled into sequences of relational

algebra operations by a host processor. These algebra operations are then evalu-

ated in terms of complexity by a back-end controller and dynamically assigned to

query processors based on their complexity. Unlike RAP and previous database

system implementations, DIRECT slices a relation into equal-sized pages instead

of tracks that contain a variable number of tuples. When a processor is assigned

to a query, it operates only on the page to which it is linked at that time. Once an

operation (e.g., scanning) on a page is completed, the query processor can request

the next page that the query refers to but has not yet been processed by the back-

end controller. When multiple users issue queries on the same relation, different

query processors can share page caches from registers, thereby reducing memory

consumption and supporting inter-query concurrency. Another key differentiating

factor from other implementations with fixed computing resource assignments is

that DIRECT preserves the view of data by copying the results that satisfy the

search criterion to an associated memory buffer. This additional step of copying

data eliminates the need to lock the relation while it is being evaluated by multiple

query processors.

These early efforts focused on improving the performance of database query

operations by increasing the level of parallelism for scanning and processing data

25

from slow media. Storage devices have historically been a system bottleneck in

workload performance improvement. However, beyond the efforts seen in database

systems, few opportunities exist to generalize the pattern of developing specialized

hardware for other types of workloads. This is primarily due to two reasons. First,

relational database systems handle one of the most important workloads that

deserve investment in designing and developing specialized hardware. Second,

these systems abstract data into a standardized layout, thereby facilitating the

discovery of solutions for standardized problems.

2.2 Active Storage Devices

2.2.1 Active Disks

Garth Gibson and Erik Riedel are pioneers in exploring the advantages of

making storage devices the first-class citizens of storage systems. One of their

early works aimed to demonstrate that distributed file systems constructed with

network-attached disks capable of maintaining storage metadata (used to map

client requests to disk sectors) offloaded from traditional file managers are more

cost-efficient as they reduce the amount of server work per byte access [90].

To this end, the authors compared two different file system architectures, both

of which utilized network-attached disks. The first architecture, “Network SCSI,”

sought to preserve the SCSI protocol [257] as much as possible, and clients could

directly receive data from network-attached disks. However, since these disks

could only handle SCSI commands while clients sent file requests using POSIX

interfaces [255], a file manager was required to sit between clients and disks as the

metadata server and guard data access permissions. This file manager was usu-

ally heavily loaded due to the work required to translate read and write requests,

26

manipulate the namespace, and access control. As the file system of this architec-

ture scaled up, the performance of the file manager became increasingly critical in

ensuring sufficient bandwidth in serving the critical I/O path. Developing robust

and efficient metadata servers for a file system has therefore been an important

part of the development history of distributed storage systems. Modern solutions

for managing metadata include utilizing a cluster of metadata servers and parti-

tioning or distributing namespace to them using subtree partitioning [148] or pure

hashing [55].

Another solution to alleviate the load of metadata servers in distributed stor-

age systems is to adopt the flexibility of object storage. Accordingly, Garth’s

second architecture for comparison involved a system in which clients could di-

rectly communicate with network-attached disks using an object protocol. Disks

used in this system were required to serve on object interfaces and maintain suf-

ficient metadata information to translate object requests to locations of sectors.

While the need for a file manager persisted, its role was significantly reduced to

only mapping file names to objects and managing security aspects of requests,

thereby removing it from the critical I/O path between clients and the smart

disks. This narrowed scope of responsibility allowed the server hosting the file

manager to be leaner and more cost-effective. This is a marked difference from

the “Network SCSI” system, where the file manager had to translate every single

data access for all clients. Although this idea was still in its nascent stages at

the time, and no prototypes had been implemented, it serves as an important

example of attempting to improve the cost-efficiency of a file system by offloading

a higher-level data access function to storage devices.

“Active Disks,” proposed in 1998, represented an important milestone that

discussed the motivations and suggested possible workloads that could be offloaded

27

to hard drives [203, 202, 204, 2]. The authors put forward three statements to

support the idea of active disks:

• Performance of large database systems was limited by the bandwidth of

interconnects of storage devices.

• Technology trends showed that the feature size of silicon process technology

has continued to decrease, enabling the packaging of additional microcon-

trollers into a hard drive while maintaining its form factor.

• A growing number of applications rely on the sequential scanning of large

amounts of data, such as multimedia and data mining applications. These

applications are potential candidates for running on hard drives.

Although the aforementioned statements remain relevant today, the crux of the

issue lies in the fact that having the space for packaging extra microcontrollers

into a hard drive does not automatically guarantee that the drive can possess

the requisite power to process the applications offloaded from hosts. Additionally,

even if technically feasible, embedding a powerful microcontroller into a hard drive

does not necessarily indicate that running a data-intensive function on the drive

is more cost-effective than the traditional host-based approach.

The concept of active disks was initially founded on the premise that applica-

tion candidates could efficiently run on hard drives, a notion that far exceeded the

technological level at that time. Offloading functions to storage devices leads to

programming and management overheads in hardware and software, which could

offset or potentially outweigh the benefits of offloading application candidates.

Multiple research groups conducted the research work on active disks. One

group, in particular, focused on making the concept more practical by implement-

ing a stream-based programming model for task scheduling between hosts and ac-

28

tive disks [2]. They employed an aggressive offloading approach to distribute most

of the processing of an application to disks, using the host solely for coordination

purposes. To ensure the security and integrity of data access, their programming

model imposes strict restrictions on disk-side programs, which cannot allocate or

free up memory, nor can they initiate I/O operations. The only operations that

disk-side programs can perform are to scan the data streams provided by host-

side programs and operate on the data with a small buffer. Both disk-side and

host-side programs must be written for an application beforehand and compiled

and manually moved to the corresponding locations before execution.

Keeton et al. [126] from UC Berkeley proposed a concept similar to active

disks called “IDISKs.” However, it differs from active disks in that it allows inter-

disk communication via a high-bandwidth dedicated network. In addition to the

statements in support of active disks, the authors of IDISKs contended that the

cost of system administration and cluster packaging for database systems was sig-

nificant. Today, managing a data center is significantly less expensive than it was

twenty years ago, owing to improvements in the technologies of automating data

center management. Large data centers can now be maintained without interrup-

tion with the support of a small group of operations staff [115]. Additionally, the

space efficiency of cluster packaging has improved notably since 1998 due to the

availability of servers in multiple compact form factors.

The authors of IDISKs also anticipated that drives would continue to increase

in processing power and memory capacity. However, the history of storage de-

vice development shows that vendors have mainly focused on reducing the cost

per gigabyte. The increase of internal computing resources on a drive has been

primarily to meet media management requirements. This is because, at the time,

the benefits of offloading functions to hard drives were outweighed by the costs of

29

hardware augmentation, infrastructure changes, and software modifications. Nev-

ertheless, IDISKs proposed the first architecture in which storage devices were

interconnected through a network. The authors also raised several relevant ques-

tions within the context of computational storage [17], such as how the IDISKs

architecture will scale as the system size grows.

Unfortunately, despite the growing body of research in this area throughout

the 1990s to 2000s, the computer industry exhibited little response to materialize

augmented hard drives for executing offloaded functionalities from hosts. I posit

that several reasons have contributed to this outcome:

• The cost-effectiveness of augmented hard drives was insufficient due to semi-

conductor technology limitations.

• The performance improvements in host computing resources competed with

the potential benefits of offloading functions to storage devices.

• The POSIX data access interface [255] limited the capabilities of offloaded

functions to operations involving only the scanning of byte streams.

• Finally, the lack of systematic research on benefits quantification, offload-

ing mechanisms, and strategies has hindered the development of practical

solutions within the industry.

2.2.2 Active Solid-state Drives

While both solid-state drives (SSDs) and hard drives offer the same block

interface from the outside, they differ internally in many aspects. One important

difference is in computing power. SSDs manage data using a subsystem called

the flash translation layer (FTL), which maps logical block addresses to physical

block addresses. This mapping is complex due to the fact that data on flash chips

30

can only be erased at the block level, while data read can be done at the page

level. Since a page is much smaller than a block, efficient data mapping requires

intelligent and timely decision-making within SSDs. The FTL is also responsible

for other complicated functions, such as garbage collection, wear-leveling, error

correction code (ECC), and bad block management [123, 141]. Running all these

functions requires an SSD to be equipped with more computing resources than

those available in a hard drive.

Early research coined the term “active flash” to refer to SSDs that can perform

operations beyond normal I/O requests, borrowing from the concept of “active

disks.” While the motivation behind active disks was to decrease the server work-

load per byte access, active flash aimed to build energy-efficient domain-specific

clusters using wimpy nodes, each consisting of a flash device integrated with a

low-power processor and a small amount of DRAM. One such implementation is

“FAWN [13],” which built a distributed key-value store consuming only one-tenth

of the power consumption of a traditional server-based implementation without

sacrificing performance requirements. Nodes in a FAWN cluster are either front-

end nodes responsible for dispatching key-value requests or back-end nodes on

which specific key-value operations are processed. The implementation offloads

the key-value data access function to individual flash devices and organizes them

in a way that exposes a single key-value namespace to clients.

In addition to power efficiency, the Gordon project [41] leveraged the band-

width and latency provided by SSDs. A Gordon node is a compact PCB [256]

with several hundred gigabytes of flash memory and a high-performance Atom

processor. The authors of Gordon created a cost model to explore the design

space of a Gordon cluster using storage devices of varying performance profiles.

The results demonstrated that the performance gain from specialized hard drives

31

was modest, while the gain from specialized SSDs was significant regarding both

power savings and performance. These findings illuminated a reality observed in

previous extensive research on active disks — despite their promising outcomes,

only a handful were actually translated into products by the storage industry.

The difference in performance gain between specialized hard drives and SSDs

lies in the overheads of the data path [212]. Specifically, the internal bandwidth

of an SSD with sixteen channels and a single bank can easily exceed 6.4 GB/s,

while the typical four lanes of PCIe Gen3 connection to an SSD can only provide

4 GB/s of duplex interconnection bandwidth. Additionally, an SSD can deliver

read and write latencies below 10 µs, while the host-side I/O stack latency is

over 20 µs, implying that the latter dominates the end-to-end latency. Extensive

research is motivated by reducing these overheads and implementing in-storage

computing to improve performance for various functions, including string match-

ing, statistical calculations, data merging, and database scans [129]. However,

due to the computing resource constraints on SSDs, many implementations in-

volve FPGAs [118, 130, 142, 245], which incur costs from moving data between

the data source and the computing elements built within FPGAs.

Today’s technology has made significant advancements in the performance of

storage interconnects, providing up to 4 GB/s per lane via PCIe Gen5. Addi-

tionally, the Linux community has been optimizing the data path [66] for high-

bandwidth and low-latency storage devices such as NVMe SSD [244] and 3D-

Xpoint [263]. These achievements may seem to eliminate the motivation for off-

loading functions to SSDs. However, with modern big-data workloads requiring

data processing on hundreds or even thousands of nodes, the trends of serverless

computing and disaggregating storage have increased the complexity of network

involvement and, more importantly, the distance between processes and data. Ma-

32

hapatra et al. [166] found that while these trends individually provide significant

benefits, they collectively pose challenges. To address these challenges, they pro-

posed a system architecture that can effectively utilize domain-specialized SSDs

for serverless computing in storage-disaggregated data centers.

2.3 Programmable Network Interface Cards

The research efforts focused on enabling the programmability of network inter-

face cards can be traced back to the mid-to-late 1990s. Singh et al. [220] in 1994

observed that network protocol processing was the bottleneck for supercomputers.

They proposed a programmable network interface unit (NIU) for a specialized ap-

pliance called “Pixel Planes 5,” a custom, message-based multicomputer optimized

for interactive graphics applications. Their goal was to address network issues,

including sustaining high-bandwidth data transfer with minimal latency and sup-

porting protocol research with sufficient programmability to process a wide range

of upper-layer network protocols. The processing capability of the NIU was re-

quired by the use case that the Pixel Planes CPUs were exclusively dedicated to

graphic processing and not anything else. Thus, all protocol processing had to

be handled by the NIU. To meet these requirements, the NIU partitioned tasks

between hardware and software. All data movement was performed by hardware

to meet throughput requirements, while a microprocessor directed and initiated

the data movement and performed protocol processing to ensure programmability.

SPINE [82] proposed an alternative approach to optimizing network perfor-

mance for workstations rather than focusing on specialized applicants. This ap-

proach was motivated by the observation that improvements in I/O bus per-

formance lagged behind the improvements in processor speed and I/O devices.

To address this issue, SPINE provided an extensible runtime environment that

33

enabled applications to compute directly on the network interface. Specifically,

SPINE offered developers three key properties for constructing solutions tailored

to specific applications: runtime adaptation and extensibility, performance, safety,

and fault isolation. The first property allowed applications to define SPINE ex-

tensions at any privilege level and load them onto an intelligent I/O device. These

extensions could directly transfer data using device-to-device DMA and commu-

nicate via peer-to-peer message queues to improve performance. Furthermore,

these extensions were built with a type-safe language, enforced linking, and de-

fensive interface design to ensure that the execution of any extension would not

compromise the safety of other extensions running on the same NIC, firmware, or

host operating system. The authors showcased an IP packet forwarding extension

that ran on an embedded processor with a speed of 33 Mhz. Despite this low

processing power, the extension achieved comparable throughput to a host-based

IP forwarding system with a 200 Mhz CPU.

In 2000, Crowley et al. [56] identified several workloads suitable for pro-

grammable network interfaces, including packet classification or filtering, IP packet

forwarding, data transcoding, and duplicate data suppression. While some of

these workloads require limited processing of protocol headers, others necessitate

substantial processing capacity to achieve the network link rate. The authors ob-

served that the processing of one packet is usually independent of any other packet,

allowing for packet-level parallelism and significant performance gains. To deter-

mine the necessary processor and memory features to support application-specific

packet processing at the network link rate, the authors conducted experiments

with different cache parameters and levels of parallelism for two types of work-

loads: one that processes a portion of a packet and another that performs com-

putation over the entire packet. The results showed that fine-grain thread-level

34

parallelism, supported by simultaneous multithreaded architectures, can exploit

packet-level parallelism, aiding system architects in designing embedded proces-

sors to efficiently handle network packet-oriented workloads.

In recent years, the demand in modern applications for more advanced network

functions, such as virtualization, security features, and cost-effective approaches to

access data, has driven the emergence of programmable network interface cards,

or SmartNICs, by various vendors. With the availability of this hardware, re-

cent research has shifted its focus to designing architectures that enable differ-

ent functions to offload to SmartNICs. One such architecture is iPipe [161], an

actor-based framework that includes a runtime system for managing actors’ exe-

cution on both hosts and SmartNICs and an offloading engine that decides which

actors should be offloaded to the card based on their computation intensity. Fair-

NIC [95], on the other hand, is a system designed to provide performance isolation

between tenants using commodity SmartNICs. The system was developed with

the observation that shared SmartNICs between different tenants can lead to

unpredictable performance degradation, considering that leading data center op-

erators have deployed these cards at scale to support network virtualization and

application-specific tasks. E3 [162] is another microservice execution platform

that accelerates microservice-based applications in the data center by offloading

to SmartNICs. To achieve this, E3 uses the equal-cost multi-path load balancer as

a key technique, which allows the system to maximize performance and minimize

energy consumption. Additionally, E3 takes into account the layout of the cluster

topology in the placement of microservices. An important feature of E3 is its

ability to monitor the incoming/outgoing network throughput and packet queue

depth with the traffic manager inside a SmartNIC to identify cases when the card

is overloaded.

35

2.4 Peer-to-Peer Systems

Offloading data services that initiate east-west data movement require domain-

specific hardware capable of peer-to-peer (P2P) communication. Peer-to-peer sys-

tems [207] consider nodes in the system as equal peers and decentralize most of

the work to participating nodes that collectively provide specific services through

the network. Due to the decentralized nature of such systems, they usually ex-

hibit a high level of self-organization and strong resilience to faults and attacks.

Early P2P systems like Freenet [50] and Gnutella [205] primarily arranged peers in

unstructured P2P networks, where a query from a node was propagated through

peers to locate the requested data. However, this protocol was not particularly

efficient in system resources and network utilization, especially when searching

for rare data. In response to these inefficiencies, P2P systems evolved to incorpo-

rate structured P2P networks, typically characterized by a topology maintained

by a distributed hash table (DHT). This shift significantly improved the overall

efficiency of these systems. Different P2P systems have different DHT implemen-

tations. Chord [222] is one of the popular structured P2P systems, with a DHT

implementation with node searching/routing complexity of O(log(N)), where N

is the number of nodes in the system. Nodes in a Chord system are distributed

in a ring structure, where each position represents the ID of a node. To facilitate

request routing to other nodes, each node keeps two types of pointers: a pointer

to the immediate successor and pointers in its finger table. A pointer consists of

an IP address and port of a node. Routing with only the pointer to the imme-

diate successor is not efficient, especially for a system with millions of nodes. To

reduce the number of hops in routing a request, a node can look for a pointer in

its finger table and forward the request to the known node that is closest to the

node with the desired data. Pastry [211] has a different DHT implementation in

36

which each node maintains pointers to its successor and predecessor nodes and

pointers in a prefix-matching-based routing table. The routing table maintains

a list of pointers whose nodes share the same ID prefixes with the current node,

with different pointers associating matching prefixes of varying lengths. To select

a node for a prefix, Pastry chooses a node with the shortest round-trip time since

there may be multiple nodes that share a particular ID prefix with the current

node. Therefore, among all the nodes in a routing table, the node associated with

a short prefix is likely to be closer to the current node than the node associated

with a long prefix.

2.5 Collectively Acting Specialized Devices

2.5.1 Network-connected Smart SSDs

CORFU [19, 247] is an early example that recognizes the potential of network-

connected Smart SSDs, although it was not explicitly associated with the concept

of function offloading. CORFU’s objective was to enhance the utilization of SSDs

by allowing multiple clients to concurrently access a cluster of SSDs while pre-

serving performance efficiency and data consistency. It proposed delegating the

metadata management of a storage system to SSDs and clients as an alternative to

the centralized metadata server that would limit access bandwidth to an SSD clus-

ter. CORFU treats a cluster of SSDs as a distributed shared log, and a sequencer

acts as a centralized unit for bookkeeping the tail of the log. Clients maintain

their views of metadata for mapping log offsets to the locations of data, and when

a client needs to access the log, it queries the sequencer for the current tail po-

sition. The sequencer increases the internal counter by one to note the advance

of the tail and returns the value to the client. Clients with the allocated position

37

can calculate the corresponding flash device with their self-managed metadata

and send requests directly to that device. It is worth noting that the sequencer

is not a single point of failure, and clients without access to it can still look for

the tail position of the log by contention. The sequencer only serves to optimize

performance, and accessing it is not in the I/O path. Clients can freely write/read

to/from the targeted flash device once they have reserved the corresponding log

offset.

The CORFU system utilizes epoch numbers to account for configuration changes

arising from device replacements or failures. Specifically, each request is tagged

with an epoch number, allowing clients to issue a seal command to a subset of flash

devices, signaling that the mapping to these devices is subject to modification.

The sealed devices subsequently reject any requests with an epoch number equal

to or lower than the sealed epoch. Meanwhile, the client who initiated the seal

command prepares a map containing all the required fixes and writes the updated

mapping to an auxiliary that durably stores the version history of all mappings.

As a result, other clients who are rejected by flash devices can synchronize their

mappings with the auxiliary, ensuring consistency across the system.

The distinctive attribute of flash devices in CORFU lies in their ability to

autonomously manage the mapping of offsets to locations and respond to client

requests. This feature enables all flash devices to collaboratively form a distributed

shared log, resulting in high consistency and read/write performance that any

single storage device cannot achieve.

BlueDBM [121, 122] represents another example of the potential of connected

smart storage devices. This work is distinguished by two contributions. First, each

host has an FPGA-based smart flash array connected via a PCIe bus, enabling the

host to invoke accelerators implemented on the FPGA for data processing. Sec-

38

ond, BlueDBM employs a high-performance inter-controller network that directly

connects FPGA-based smart flash arrays without traversing the high-latency net-

work stack in host software. This network unifies the address space of flash arrays

residing in different hosts, allowing any host to view the entire storage space of the

system while delegating address translation to the flash controller. Significantly,

the host issuing the data request is oblivious to the address translation, efficiently

bypassing the network stack and addressing overhead in software. BlueDBM offers

three interfaces via a software library to user applications: a file-based interface,

a block-based interface, and an accelerator interface. Notably, the FPGA-based

flash array on a host does not directly expose a file-based interface. A user ap-

plication seeking file access must first query the physical address and offset of

the file by sending a request to the kernel file system, which knows the logical-

to-physical address mapping because the FTL of the flash array is implemented

in the device driver similar to that suggested by open-channel SSDs. Finally, the

user application can send streams of physical addresses to the FPGA and leverage

the accelerators to enhance data access.

2.5.2 Eusocial Storage Devices

Ants exhibit eusocial behavior [194] in which a colony is divided into groups

with distinct responsibilities such as foraging, brood care, patrolling, and nest

maintenance [92]. Group decision-making is crucial for achieving job efficiency,

including searching for food, assigning ants to different tasks, and responding to

external influences. Despite individual ants lacking the potential to perform these

jobs, a large group demonstrates emergent intelligence to manage complex tasks

without centralized management or high-level communication, relying solely on

biologically programmed cycles [93]. Chemical signals are used for interaction

39

among ants, which allow the group to accomplish tasks when combined with

probabilities of receiving different signals. For example, ants mark paths to food

with a chemical scent, and others follow the heaviest scent. The number of ants

assigned to a task is also maintained using this mechanism [91]. Ants can re-

member the chance of encountering different types of ants and adjust their roles

accordingly. Despite its simplicity, this mechanism enables simple participants to

function effectively in complex ways.

The concept of leveraging the collective behavior of relatively simple entities

to achieve high-level goals can also be applied to computer systems. For instance,

in 2006, Brewer et al. [31] explored the potential of using collections of spin-

ning hard drives to achieve global objectives related to input/output operations

per second (IOPS) and storage capacity. Large data centers, such as those man-

aged by Google, commonly utilize different generations and types of spinning hard

drives. Although drives of later generations may offer higher storage density, their

random seek performance may be degraded, leading to lower IOPS performance.

As a result, hard drives in large data centers tend to have diverse performance

characteristics. However, the workloads or applications running on these drives

may have specific performance requirements defined in terms of service level ob-

jectives (SLOs) that not every drive involved can achieve. To address this issue,

Brewer proposed leveraging the collective performance of hard drives to improve

resource utilization and cost efficiency. The key to making this approach work is

a carefully designed admission control system running on hosts capable of mon-

itoring and adapting to changes in workload and the real-time status of various

drives. Furthermore, the authors emphasized that the admission control system

should only be responsible for the policy of input/output operations while leav-

ing detailed operations, such as media management and error correction, to the

40

hardware.

Kufeldt et al. [132] proposed the concept of eusocial storage devices in 2018,

arguing that previous efforts to push back data management into storage devices,

such as mapping/placement, scrubbing, redundancy, recovery, and accessibility,

have failed due to the need for additional computing and memory, which in-

creased per-GiB costs. The emergence of the smartphone market over the past

decade has driven the cost of embedded processors below that of server proces-

sors. Additionally, more advanced and denser flash media have made it easier

to hide the cost of computing resources within the per-GiB cost of flash devices.

Eusocial storage devices embed computational capabilities and are self-managed

by high-level APIs that abstract data placement, location, movement, availability,

and recovery from the I/O path, and provide data management services through

autonomous and collective behavior between devices. Eusocial storage devices

can also be grouped into castes for scaling on a class-of-service basis. To offload

data management services to these devices, the services that work on data traffic

between applications and devices, the services that move data between different

servers, and different computational requirements need to be mapped to different

in-storage computing castes. Once these devices expose object-level service APIs

through a crossbar network, client applications can interact with storage based on

updated storage cluster configurations without considering the underlying system

architecture. Meanwhile, system infrastructure maintenance can enjoy the flexi-

bility of optimizing the disaggregated architecture of eusocial storage devices as

long as the requested application-facing quality of service (QoS) is not violated.

The paper highlights the need to change storage devices and how they can be

federated to offer service APIs beyond the traditional block-based approach, as

the performance scales differently in different hardware resources.

41

2.6 Workload Orchestration

As the programmability of embedded systems increases, the effectiveness of

offloading certain functions to hardware may not always be optimal due to the

real-time availability of resources on the hardware, particularly when embedded

systems are shared among multiple workloads or application clients. Resolving

this issue requires orchestrating the placements of workloads using strategies that

can balance performance optimization targets and resource availability among

placement alternatives. E3 [162] utilizes a reactive approach by migrating off-

loaded microservices only when overload is detected on the SmartNIC serving

the microservice. Similarly, iPipe [161] employs a reactive approach but moves

workloads among finer-grain execution environments. When the workload tail la-

tency surpasses a threshold on a SmartNIC, the queued-up workload is migrated

from the first-come-first-serve cores to cores reserved for scheduling tasks using

the deficit round-robin algorithm. Additionally, when the mean request latency

of workloads running on the first-come-first-serve cores on a SmartNIC exceeds a

threshold, indicating the SmartNIC is overloaded, workloads on the waiting list

are migrated to the host side for execution. In contrast, Clara [196] employs a

predictive approach to determine the optimal number of cores on a SmartNIC for

running a given network function program and traffic workload. This approach is

achieved using machine learning techniques inspired by TVM [47], which trains

cost models despite the vendor-specificity of accelerators (e.g., GPUs and TPUs),

and infers effective optimizations for a given tensor program. By separating the

“algorithm” (i.e., program logic) from its “schedule” (i.e., strategies of execution),

TVM-like approaches search through the schedule space to identify effective opti-

mizations. Similarly, λ-IO [264] utilizes predictive models to determine the place-

ment of workload execution. To determine the parameters of the cost model, λ-IO

42

profiles partial requests periodically. Specifically, for the first k requests in a pe-

riod, λ-IO submits them to both the host and embedded system runtimes. Each

runtime measures the values of profiling variables of a request during execution.

After k requests are completed, it calculates the average of each variable and uses

it as the values of parameters in the model.

2.7 Scope

Despite the extensive research that has been conducted on offloading func-

tions to embedded devices, designing systems that achieve beneficial offloading

for data services remains challenging. Specifically, the lack of meaningful metrics

to quantify offloading benefits still hinders the development of effective solutions,

especially for architects designing these embedded devices. Additionally, given the

performance constraints inherent in embedded devices, strategies for device-side

offload optimization driven by the varying availability of hardware resources and

streaming data have yet to be explored. Although device-side offload optimization

is particular to the devices themselves, similar to the standard query optimization

employed in database systems, optimization strategies can potentially leverage de-

rived information from outside of the devices. This thesis aims to bridge these gaps

by developing methodologies to quantify the benefits of offloading and exploring

optimization strategies for dynamic offloading of composable data services.

43

Chapter 3

Offloading Metrics

Embedded systems are specialized devices constructed with a customized re-

source composition to optimize their functionality for particular domains while

adhering to specific limitations such as cost-effectiveness, power consumption,

and space constraints. From the perspective of embedded system vendors, the

purpose-built nature of these systems enables them to allocate resources judi-

ciously, thus ensuring that each device can fulfill its intended purpose effectively.

For instance, in the case of embedded storage devices, the device’s primary focus

may be on the storage media by directing the resource allocation towards exposing

the storage media’s optimal performance. Similarly, in the case of embedded net-

work devices, the focus may be on maximizing network bandwidth, necessitating

allocating resources toward achieving the highest possible bandwidth utilization.

One of the essential questions in research concerning function offloading to

embedded systems is how to evaluate the benefits. Given that the evaluation

necessitates consideration of both the offloading function and the target offloading

system, two primary types of benefits evaluation exist. The first type involves

varying the function to be offloaded while keeping the system constant. This

approach enables application users to assess the performance of different offloading

44

functions on a particular system. In contrast, the second type entails varying the

system while keeping the function constant, which enables system architects to

optimize the resource composition of a system to improve the cost-effectiveness of

a given offloaded function.

In this chapter, we explore metrics that can effectively measure the benefits

of offloading a given function to embedded storage devices. I present the con-

cept of Media-based Work Unit (MBWU) and introduce MBWU-based efficiency

metrics. These metrics provide a comprehensive and practical framework for nor-

malizing and evaluating the cost-effectiveness of offloading a data access function

to a specific storage device, as outlined in Section 3.1. Moreover, we observe that

enabling storage devices to take on offloaded storage system functions increases

the number of failure domains in the overall system and, therefore, can enhance

data availability. Section 3.2 delivers a quantitative analysis of this data avail-

ability benefit, including a mathematical model that predicts data availability for

different host/device ratios.

3.1 MBWU: Data Access Function Efficiency

Data access functions in storage systems refer to functions that facilitate com-

munication with the persistent layer for reading and writing data. This includes

functions such as get/put operations in key-value stores, read/write operations

in filesystems, and select/project operations in database management systems.

These functions are typically highly IO-intensive, thus providing an opportunity

for optimization through offloading them to embedded storage devices, thereby

directly harnessing the optimal media performance within the device.

However, the cost-optimal placement of a data access function is affected by

two primary factors: the characteristics of the data access workload and the stor-

45

age media. For example, latency-sensitive workloads running on slower media

might favor execution by host CPUs to utilize the more substantial DRAM avail-

ability for cache, potentially leading to an adverse benefit from offloading. Con-

versely, throughput-sensitive workloads operating on faster media might benefit

from offloading execution to storage devices, as this could reduce the bandwidth

costs associated with transferring large volumes of data to host processors.

On the other hand, despite the recent progress made in function offloading

to embedded storage devices, existing research has faced criticism regarding the

efficiency of individually designed embedded devices. Specifically, it raises the

question of whether the cost-benefit of offloading a specific function could be im-

proved by optimizing the resource composition of the embedded device. Most

current evaluation methods primarily rely on external characteristics like work-

load performance and system cost, using metrics such as MB/s, Kops/s, and

$/ops. Unfortunately, these metrics fail to sufficiently capture the efficiency of the

domain-specific nature of these devices, specifically the cost to exploit the storage

performance of the devices for a specific workload. This cost could include as-

pects such as total cost of ownership, power consumption, and space usage during

workload execution. By evaluating cost based on storage performance rather than

workload performance, system architects can gain valuable insights into the effi-

ciency of a system’s storage resource utilization, allowing them to drive a balance

between the system’s resource allocation and the requirements of the offloaded

function.

Reflecting on these considerations, to quantify the benefits of offloading a data

access function from general-purpose systems to embedded devices — a process

involving systems with significantly different architectures and design trade-offs

— necessitates maintaining a consistent data access workload and storage media

46

across these systems as a reference point for comparison. Moreover, it is crucial

to account for the device’s storage performance under the workload associated

with the function. These requirements ought to be encapsulated into new metrics

to standardize the process of quantifying the benefits of offloading data access

functions to storage devices.

3.1.1 Metrics for Efficiency Evaluation

Normalization

To meet the previously outlined requirements for quantifying the benefits of

offloading data access functions, we propose a novel, throughput-oriented metric

for normalization, termed the media-based work unit, or MBWU, to en-

capsulate the storage performance of specific storage media under a given data

access workload. In particular, one MBWU denotes the peak workload through-

put performance, expressed in data access function calls per second, which can

be achieved on a particular storage media while minimizing caching effects. To

normalize the performance of a workload running on multiple storage media, we

divide the performance value by the throughput value represented by an MBWU.

This conversion translates the workload performance into a quantity (MBWUs)

reflecting the amount of storage performance that the aggregated resources of

the system running the workload can feasibly deliver. This metric exhibits the

following three characteristics:

• workload-dependent: The MBWU serves as a workload reference since it

captures the throughput performance for a specific workload. However, it

is crucial to understand that an MBWU established for one workload is not

interchangeable or applicable for normalizing the performance of a different

workload.

47

• storage media-dependent: The MBWU also serves as a storage media

reference, setting it apart from general performance evaluation metrics. Con-

sequently, it is worth noting that a measured MBWU cannot be used to

normalize the workload performance evaluated on a different storage media.

• system-neutral: The MBWU’s dependence solely on a data access work-

load and storage media makes it a system-neutral metric. This property is

particularly beneficial when examining the performance of a workload on

a system that falls below the MBWU. Such a scenario suggests underuti-

lization of the storage performance of the media on that system, indicating

potential improvements in cost-effectiveness through system resource com-

position optimization. To maintain isolation from the impacts associated

with specific systems when measuring the MBWU, minimizing the effects

of caching is also essential. While caches can enhance a workload’s perfor-

mance, these improvements depend on factors beyond the storage media,

causing the measured workload’s performance to be system-dependent.

Optimizing the resource composition of a system has long been a challenging

task for system architects. However, utilizing the MBWU metric makes it feasible

to evaluate the utilization of a system’s storage media capable performance for

a given data access workload and quantify the degree to which storage resources

are imbalanced in relation to other hardware components. This information can

serve as a valuable reference in guiding the optimization of the system’s overall

resource composition.

To evaluate the utilization of a system’s storage media performance for a given

data access workload, we can calculate the ratio of achieved MBWUs on the sys-

tem to the amount of storage media consumed by the workload. While some

systems may have sufficient capacity to house multiple storage media, various

48

constraints on the system may limit the workload’s ability to fully utilize the

aggregate performance of these media, resulting in suboptimal performance. Em-

bedded storage devices, in particular, may emphasize maximizing the utilization

of storage media performance while operating under various constraints to strike

a balance between cost and performance.

MBWU-based Efficiency Metrics

Embedded storage devices encounter significant constraints, including power

consumption, cost, and physical space limitations, that impede the achievement

of optimal storage media performance for a given data access workload. By as-

sociating MBWU with investments in a storage system, it is possible to evaluate

the cost necessary to enable the full performance of the storage media on the

system. Specifically, we can proportion the investments, such as power, cost,

and space, by dividing them by the normalized workload performance measured

in MBWU. This approach allows for quantifying the cost-effectiveness associated

with achieving a specific level of storage media performance while accounting for

the various cost factors. In this regard, we propose three MBWU-based metrics

for cost-effectiveness evaluation:

• $/MBWU for cost-efficiency: This calculates the total cost of ownership

of the system for running the data access workload divided by the number

of MBWUs achieved.

• kWh/MBWU for energy-efficiency: This calculates the system’s energy

consumption for running the data access workload divided by the number

of MBWUs achieved. It is important to align the energy consumption mea-

surement with the time frame the MBWU is measured. For example, if

49

the MBWU represents the workload performance per second, the energy

consumption should also be measured as a per-second consumption.

• m3/MBWU for space-efficiency: This calculates the volume of the system

divided by the number of MBWUs achieved. Different systems may have

various space limitations, and for an embedded storage device, the space

consumption may include the device’s dimensions and the size of accessories

required to support the device, such as substrate and interconnects.

3.1.2 Cost-benefit Quantification for Key-value Offloading

The ability to evaluate the cost-effectiveness of a data access function executed

on a storage system provides important guidelines for system architects to opti-

mize system resources. More importantly, it also enables quantifying cost benefits

associated with offloading the function to systems with varying configurations but

consistent storage media. As an illustrative case study, we conducted experiments

to quantify the cost-benefit of offloading the key-value function, chosen due to the

substantial data access overhead that this function incurs.

Overhead of Data Access Functions

We have selected the widely adopted RocksDB [38] to provide the key-value

function for our experiment. RocksDB is an open-source, high-performance, em-

bedded key-value store developed by Facebook, which is designed to offer effi-

cient and scalable storage for various applications. It is built on top of Lev-

elDB [89] and optimized for modern hardware architectures, providing high write

and read throughput, low latency, and space-efficient storage. RocksDB employs

compaction as a mechanism for managing the storage and performance of the

database over time (Figure 3.1). This process involves merging multiple smaller

50

sorted string table files into a larger, more efficient file when their size reaches a

certain threshold. The compaction process operates asynchronously behind the

scenes of user applications. However, due to frequent reads and writes during

compaction, the amount of data accessed from the underlying storage device can

be multiple times greater than the data accessed by the user application that

submits the key-value requests, leading to data access amplification.

active
memtable

write-ahead log

immutable
memtable block cache

full
Memory

Persistent
Storage

flush

Put Get

L0
SST

L1
SST

L1
SST

file system

Compaction

Figure 3.1: The basic architecture of RocksDB. The compaction process causes
read/write amplification, consuming additional CPU, memory, and storage inter-
connect resources.

For the purpose of evaluation, we utilized the Yahoo! Cloud Serving Bench-

mark (YCSB) [54], a framework designed for assessing the performance of various

distributed and cloud-based data storage systems, to generate the workload. Fig-

ure 3.2 displays the data access amplification under workload type A, with an

equal ratio of read and update operations. We collected data on the YCSB ob-

served throughput in operations per second, the RocksDB measured throughput

in MB/s, and the underlying storage device throughput under the current work-

load in MB/s. Regarding the RocksDB throughput, we observed no significant

improvement despite increasing the number of threads. However, we can note

a considerable increase of over 20% in the device’s raw throughput from 1 to

51

2 threads. Moreover, the discrepancy between the user application’s observed

throughput and the raw storage device’s measured throughput was substantial,

with the former being six times greater than the latter. The significant data access

amplification not only impedes the user application’s data access performance but

also utilizes the host CPU, memory, and storage interconnect resources to man-

age the additional operations. By offloading the key-value data access functions

to embedded storage devices, we can hide these additional operations and over-

head within the storage devices, leaving more performance for user applications

to utilize.

Figure 3.2: Data access amplification of the key-value function

Automate Quantification

The evaluation of MBWU-based cost-effectiveness involves a two-step pro-

cess. The initial step requires measuring the MBWU of the key-value data access

workload on a specific storage media. Upon the determination of MBWU, the

subsequent step is to evaluate the performance capability of a system utilizing

52

the same storage media under the identical workload, expressed in terms of the

number of MBWUs. Once the cost-effectiveness values of the systems under com-

parison are measured, we can quantify the cost-benefit of offloading the key-value

data access function from one system to another, with the latter system assumed

to be an embedded storage device.

To demonstrate the applicability of our proposed quantification method across

a variety of system configurations, we have designed an automated program to

streamline the evaluation process. This program adheres to a client-server archi-

tecture, with the server assigned to execute the key-value function, and the client

responsible for generating the workload. These components can be deployed ei-

ther on a single machine or on separate machines, thereby accommodating con-

figurations where workloads need to be delivered over the network. The YCSB is

employed as the workload generator in our implementation.

To ensure the reproducibility of the MBWU measurements, the automation ini-

tiates a pre-conditioning procedure at the outset to initialize all NAND-based stor-

age media involved in the evaluation. This procedure follows an industry-standard

method laid out by the Storage Networking Industry Association (SNIA) [225].

Upon completing the pre-conditioning, the program moves forward to launch

RocksDB daemons, corresponding to the number of storage devices in use. Each

daemon then enters a state of readiness to accept connections from YCSB.

The RocksDB daemon is implemented using Java RMI technology [250], which

exposes the interfaces of a RocksDB object such as open(), close(), get(), put(),

and delete() over the network by binding them to an RMI registry, as depicted

in Figure 3.3. Given the extensive use of ARM-based processors in embedded

systems, we have successfully extended the compatibility of the RocksDB RMI

program to support both x86 and aarch64 systems.

53

Figure 3.3: Call graph of the RocksDB RMI server

On the client side, a YCSB process is started to perform a URL lookup for

the corresponding RocksDB daemon. Upon identification of the relevant daemon,

the YCSB process proceeds to request the creation of a remote RocksDB instance

through an open() remote procedure call (RPC). This RPC provides the RocksDB

object with the path to a RocksDB options file that defines all the essential param-

eters required to properly maintain the internal LSM tree [69] and all key-value

data management policies.

During the investigation, we found that keeping a consistent RocksDB options

file across different systems can prevent issues caused by the “system-specific”

configurations generated by RocksDB. Such system-specific configurations could

lead to semantic alterations of the offloading function, potentially causing discrep-

ancies in the function’s evaluation across different systems.

Upon successfully creating a RocksDB instance, it is required to perform initial

54

data loading before running the test workload. This process is carried out by

sending key-value write requests to the RocksDB daemon through RPCs. To

ensure a consistent shape of the resulting LSM trees (i.e., the same number of

levels) on systems with different performance capabilities (e.g., a host and an

embedded storage device), we applied jitters between load requests to ensure

the system has adequate computing resources to complete data compaction. An

overview of the evaluation process of our prototype is presented in Figure 3.4.

Figure 3.4: A high-level view of the evaluation process

Throughout the automated evaluation process, the program continuously mon-

itors the system’s power, computing, and network resource utilization. The col-

lected information is important in the two-step evaluation process: first, to ensure

that the measured MBWU has maximized the storage media performance on the

key-value workload, and second, to calculate the efficiency of the offloading func-

tion running on the system with the absolute cost measured.

55

3.1.3 Offloading Landscapes

In practice, the cost-benefit quantification for offloading the key-value data

access function can be an arduous task due to the complexity of the evaluation

process and the potential variations in the offloading landscapes. Our automa-

tion program provides a systematic approach to evaluate the cost benefits across

different offloading landscapes efficiently and enables researchers to gain valuable

insights into how different landscapes may impact the benefits.

Infrastructure

To create multiple offloading landscapes for testing, we used the infrastructure

described in Figure 3.5 for the following experiments. The host platform served as

a baseline for comparison, with RocksDB running locally over the storage devices

connected directly or through a network. The host machine boasts 24 vCPUs and

a total of 64 GB DRAM.

For the embedded storage platform, we used a single-board computer (SBC)

called ROCKPro64 [192] and combined accessories to connect it to a Toshiba HG6

SSD. The SBC is equipped with a Rockchip RK3399 hexacore processor with 4

GB DRAM and is capable of running an Ubuntu 20.04 system, on which we run

a RocksDB. The SSD is connected to the SBC via an adapter on a USB 3.0 port.

56

Figure 3.5: Test infrastructure for constructing offloading landscapes

Offloading Landscapes

Figure 3.6: Three offloading landscapes for testing

57

For the purpose of evaluation, we constructed three different offloading land-

scapes to assess the cost-benefit of offloading the key-value data access function

from a host platform to an embedded platform (refer to Figure 3.6). The MBWU

for the key-value workload on the Toshiba SSD is measured to be 7314.7 ops/sec.

Integrated tests: The first offloading landscape involves evaluating integrated

performance by running both RockDB and YCSB locally on the two platforms.

The MBWUs of the host platform were measured using eight storage devices,

as this system can support up to eight direct-attached storage devices, and the

workload performance was observed to scale up with the increased number of de-

vices. However, it is important to note that if the system were to support more

storage devices, the host platform could potentially achieve a greater number of

MBWUs. This would suggest that the system’s storage resources are currently

under-provisioned for the specific key-value workload or that the computing re-

sources are over-provisioned, resulting in low cost-effectiveness for running the

function to be offloaded.

Overall, the host platform achieved a total of 5.95 MBWUs, as indicated in

Figure 3.7, with certain data points omitted to reduce the evaluation time. The

embedded platform, on the other hand, was only connected to a single storage

device and could only achieve a throughput of 0.5 MBWU (Figure 3.8).

Using the obtained MBWUs for both platforms, we can compute cost-effectiveness

for each platform, employing the three MBWU-based efficiency metrics presented

in Section 3.1.1. Our experimental results show that, when subjected to the key-

value workload, the embedded platform reduces the $/MBWU by 64% when com-

pared to the host platform. Additionally, the embedded platform demonstrates a

reduction of 39.6% in kWh/MBWU for energy consumption. These considerable

cost and energy savings substantiate the effectiveness of offloading the key-value

58

(a) Aggregated Throughput (b) Power Consumption

Figure 3.7: Integrated tests: workload performance as a function of the number
of storage devices on the host platform

data access function to embedded platforms equipped with cost-effective hard-

ware.

Network tests: The second offloading landscape differs from the first by incor-

porating a network component to separate the workload generation from the test

platforms. This change could introduce varying degrees of additional overhead

on different platforms. Although the host platform, with its abundant computing

resources, may effectively handle the network overhead due to an unbalanced re-

source allocation, the embedded platform could face a different outcome. In the

initial experiment, the embedded platform demonstrated insufficient computing

resources to maximize storage media performance. Thus, the added network over-

head in this scenario may further compromise its cost-efficiency in managing the

offloaded key-value function.

The results of the network tests are presented in Figures 1 and 2. The host

platform achieved 5.2 MBWUs, showing a 13% reduction in comparison with

the integrated test results. Meanwhile, the embedded platform achieved only 0.37

MBWUs, representing a 26% decrease in performance relative to the previous test.

Regarding the cost benefits of offloading the key-value function in this offloading

59

Figure 3.8: Integrated tests: workload performance as a function of the number
of threads on the embedded platform

landscape, the embedded platform achieved a cost-efficiency reduction of 57.86%

in $/MBWU compared to the host platform. In addition, the embedded platform

showed a 45.9% reduction in kWh/MBWU, highlighting a significant decrease in

energy consumption.

It is worth noting that the energy efficiency benefits of offloading to the em-

bedded platform were further augmented in this landscape. This result can be

attributed to the host platform utilizing the remaining computing resources to

handle the network overhead, resulting in increased energy consumption. In con-

trast, the embedded platform had already allocated all system resources for the

workload processing task, and therefore, adding the extra network overhead did

not exert significant additional energy consumption. This observation highlights

the distinct energy efficiency advantage of offloading to the embedded systems. In

particular, it underscores the importance of resource composition when consider-

ing offloading data services to optimize energy efficiency in storage systems.

60

(a) Aggregated Throughput (b) Power Consumption

Figure 3.9: Network tests: workload performance as a function of the number
of storage devices on the host platform

Disaggregated tests: This offloading landscape separates the storage compo-

nent from the host platform, simulating a common cluster deployment scheme by

disaggregating the storage. Given the significant amplification of the key-value

I/O at the storage, we added a 10 Gbps network adapter to the host platform to

transmit the amplified data I/O through the storage network via iSCSI. However,

the addition of this network adapter impacts the cost-effectiveness of the platform

in three ways. First, it slightly raises the total cost of the platform by 2%. Second,

it adds an average of 18 watts to the platform. Third, it occupies a PCIe slot

initially assigned for storage devices, thereby reducing the number of capable stor-

age devices on this platform to four. Finally, communicating with remote storage

over the network competes for system resources needed for processing key-value

workloads.

Disaggregating storage in this test exacerbates the storage resource imbalance

on our host platform. However, it is worth noting that system resource imbalance

is common in the clouds [99] and distributed storage systems [165], since building

scalable resource management to optimize resource utilization is a challenging

task. By quantifying the cost benefits from the disaggregated offloading landscape,

61

Figure 3.10: Network tests: workload performance as a function of the number
of threads on the embedded platform

we can gain insights into the potential savings that can be achieved by offloading

the key-value function from a disaggregated storage system.

The performance results of the host platform under the disaggregated config-

uration are presented in Figure 3.11. The measured number of MBWUs for the

host is 3.28, while the number of MBWUs for the embedded platform remains

unchanged as the configuration was the same as in the network tests. Combin-

ing these numbers, we observed that the embedded platform achieved substantial

cost savings — 73.4% in $/MBWU and 70.7% in kWh/MBWU. These outcomes

align with our expectations based on the network test results. Specifically, the

decreased system resource utilization on the host platform, resulting from fewer

storage devices employed in this configuration, led to a lower number of MBWUs.

Moreover, the added storage network overhead caused the platform to consume

more energy.

62

(a) Aggregated Throughput (b) Power Consumption

Figure 3.11: Disaggregated tests: workload performance as a function of the
number of storage devices on the host platform

Discussion

MBWU is a metric based on the storage media performance under a spe-

cific data access workload and is primarily considered a throughput-based metric.

However, it is important to note that the metric is not exclusively applicable to

throughput-oriented workloads. Data access functions sensitive to latency can

also harness this metric to evaluate the cost-effectiveness of potential offloading.

To transition the throughput metric to a latency metric, we can leverage the

widely observed correlation between throughput and average latency in queuing

systems [195, 22, 85]. Specifically, reducing the throughput can lower the average

request latency. Consequently, instead of measuring the maximum throughput

under full storage media performance, we can measure an MBWU that complies

with a specific latency requirement and use it to normalize the workload perfor-

mance on a system.

MBWU and MBWU-based efficiency metrics offer a means of evaluating the

efficiency with which a data access workload utilizes storage media performance.

These metrics fill an existing gap and present a new toolkit to system architects

63

striving to evaluate and optimize the resource composition of embedded storage

systems for better cost-effectiveness.

3.1.4 Summary

Existing research on function offloading has been primarily focused on eval-

uating the benefits of offloading from an application user’s perspective. In this

section, we propose a set of metrics designed to help system architects evaluate

and quantify the cost-effectiveness and benefits of offloading a given data access

function to embedded devices with specific storage media. To facilitate the evalu-

ation process, we have developed an automation program capable of quantifying

the offloading of a key-value data access function in various offloading landscapes,

thereby enabling more convenient and insightful analysis.

3.2 Data Availability

The benefits of offloading data services to embedded storage are manifold

and demand the use of performance- and non-performance-oriented metrics for a

comprehensive evaluation. A crucial factor that system architects must consider

is the impact on data availability when offloading data services since this process

may require data to be fragmented into multiple parts and processed by different

embedded systems. This section will focus specifically on quantifying the benefits

of data availability in the context of edge storage, as it represents a general problem

for small storage systems that have limited failure domains.

Edge storage has emerged as a key driver for expanding the global datas-

phere [198] with a forecast suggesting that 75% of data will be generated and

processed outside the cloud [237]. With the trend of increasing storage at the

64

edge to handle the growing demand for efficient data services, maintaining geo-

graphically distributed edge sites presents a significant challenge. Failures in edge

infrastructures require maintenance personnel to travel to remote sites to rectify

the issue, with the cost of these “truck rolls” estimated to exceed one thousand

dollars per event [259]. Unlike central data centers, edge data centers often face

environmental constraints such as limited space and power, network instability,

and temperature [137, 18]. These factors make the cost of provisioning and oper-

ating redundant resources at the edge comparable to the cost of truck rolls.

3.2.1 Cost-effective Failure Domains

Embedded storage nodes can encapsulate computing resources and storage

media in a compact form factor, making them a potentially attractive option for

building edge storage systems. In this section, we will elaborate on the reasoning

behind the benefits of utilizing embedded storage nodes for this purpose as follows:

Failure domains: Just as diversifying one’s investments can mitigate risk, a

failover mechanism that spans multiple independent failure domains can enhance

the availability of data stored in a system. A storage node represents a failure

domain because the failure of critical components, such as the CPU and DRAM,

can result in the inaccessibility of all the data hosted by that node. Thus, a

reliable failover mechanism should store redundant data on independent storage

nodes. For example, a failover mechanism using data replication should store

replicas of a data item on storage devices of different servers. Furthermore, the

complexity of a failure domain impacts its reliability, as a less complex failure

domain (i.e., with fewer disks attached to a node) is typically more reliable.

However, edge data centers often face environmental restrictions that can limit

the number of failure domains in a storage system with monolithic storage nodes

65

like general-purpose storage servers. Utilizing embedded storage nodes presents a

promising solution with several key advantages. First, their compact form factor

allows the deployment of more nodes within a given spatial constraint. Second,

their simpler system design makes them more affordable, enabling the deploy-

ment of a greater number of nodes within a specified budget constraint. Finally,

constructing storage systems using embedded storage nodes embraces a scale-out

approach, ensuring that fewer storage devices coexist within a single failure do-

main. It has been demonstrated in distributed database systems that scaling out

can effectively improve data availability [68]. This approach can be similarly ap-

plied to edge storage systems, employing embedded storage nodes to provide more

optimally sized failure domains.

Cost efficiency: Embedded storage nodes exhibit superior power and space

efficiency compared to general-purpose servers. The breakdown of Dennard scal-

ing [27], which started around 2005, signifies that improving the computing per-

formance of processors demands an increase in the power supply to the circuits.

The subsequent rise in power consumption generates more heat, which in turn ne-

cessitates more space for effective heat dissipation. Embedded storage nodes are

designed with moderate computing power and a relatively simple system design,

contributing to their improved power and space efficiency. According to our eval-

uation using the MBWU-based efficiency metrics, offloading the key-value data

access function from a host platform to an embedded platform can yield a 45.9%

increase in power efficiency and a 79.7% increase in space efficiency.

As a means of evaluating the benefits of data availability offered by embedded

storage nodes, we have constructed a mathematical model to compare a storage

system built with general-purpose servers to one that is built with embedded

storage nodes, as depicted in Figure 3.12.

66

Figure 3.12: Storage systems with different building blocks: the first system uses
general-purpose servers while the second system uses embedded storage nodes

3.2.2 Model Assumptions

Given the significant architectural differences between these two building blocks,

directly comparing the two types of systems without making certain assumptions

is challenging. Therefore, we carefully established model parameters based on

system configuration assumptions while ensuring that the generality of the re-

sults was not impacted. Our assumptions regarding the configurations of the two

systems for comparison and the reasoning are outlined as follows:

Storage Node: We assume all nodes in the storage system built with general-

purpose servers share the same configuration. This includes an identical number

and type of CPU cores, the same amount and type of DRAM, and the same num-

ber and model of block storage devices. Similarly, we assume that all embedded

devices are of the same model for storage systems constructed with embedded

storage nodes. These assumptions allow us to maintain a consistent failure rate

for components of the same type within the same type of building blocks. For

example, all CPUs within the servers would have the same failure rate.

External Redundancy: We assume that both the network and power have the

67

same level of redundancy for all nodes. This allows us to omit external depen-

dencies and focus solely on the data availability provided by the system building

blocks.

Data Redundancy: We assume both systems use 3-way replication for data

redundancy. While there are other data redundancy techniques, such as erasure

coding, we focused on data replication in this study and left the analysis of other

redundancy techniques for future work. We could increase the replication factor

from 3 to 4 or even higher. However, as studied in [49], increasing the factor to

4 does not significantly improve the probability of data loss for the scale of nodes

typically deployed at the edge. Additionally, given the space restrictions of the

edge, employing a higher replication level would require more nodes within the

limited space available for edge deployment.

Replication Scheme: We assume that both systems utilize the copyset scheme [49]

for data replication, which offers several advantages over the random replication

scheme used in some production storage systems. With random replication, where

replicas of a data chunk are stored on k nodes, the replicas can be distributed

across any combination of k nodes when the system has a sufficient number of

chunks. This can lead to the formation of joint failure domains, where any combi-

nation of k nodes becomes a potential point of failure, posing a significant risk of

data loss. In contrast, the copyset replication scheme limits the number of joint

failure domains (known as “copysets”) that share replicas, reducing the probabil-

ity of data loss when any combination of k nodes fails. This makes the copyset

scheme a more robust and reliable solution for data replication in systems with

large amounts of data and a small replication factor.

Failure Correlation: We also assume that the failures of different servers and

68

storage devices are independent. This allows us to model the probabilities of

hardware failures using the Poisson distribution [254]. The Poisson distribution is

commonly used to model the occurrence of rare events, such as hardware failures

in a storage system. Additionally, we assume that a general-purpose server can

host multiple block storage devices while an embedded storage node is limited to

a single storage device.

We list the symbols used in our mathematical model in Table 3.1 with the

following parameter assumptions:

• Rm = R
′
m and Rd = R

′
d. We make the assumption that the failure rates of

a general-purpose server and an embedded storage node, excluding storage

components, are equivalent over a specific period of time. Despite the greater

complexity of the system design of a general-purpose server in comparison

to that of an embedded storage node, which may suggest a higher possibility

of failure, we employ this assumption to derive a conservative outcome in

our comparison. Even in cases where the failure rate of the general-purpose

server, denoted as Rm, is five times greater than that of the embedded stor-

age node, denoted as R
′
m, our model shows that, when n = 4, the possibility

of data loss in an embedded storage node-based system remains lower than

in a general-purpose server-based system. We also assume equivalent failure

rates for storage devices employed in both system building blocks.

• Rd = f · Rm, where f > 0. This ratio defines the relationship between the

failure rate of a storage device and that of the computing resources in a

storage server. For spinning hard drives (HDDs), the value of f may exceed

2, whereas, for solid-state drives (SSDs), f may be less than 1. We simply

call f the ratio of failure rates.

• m
′ = c·m, where c >= 1. An embedded storage node may have less process-

69

Table 3.1: List of Model Parameters

Name Description
m the number of servers in the storage system
m

′ the number of embedded storage nodes in the storage system
n the number of storage devices in a server
Rm the failure rate of a server excluding the storage components
Rd the failure rate of a block storage device in a server
R

′
m the failure rate of an embedded storage node excluding the

storage component
R

′
d the failure rate of the storage device in an embedded storage

node
w the scatter width of the copyset replication

* For the purpose of aiding retention, we utilize “m” to signify “machine” and “d” to
indicate “device” in the following notations: Rm, Rd, R

′

m, R
′

d.

ing power than a general-purpose server. In such cases, it may be necessary

to use multiple embedded storage nodes to achieve a level of performance

comparable to that of a server. We call c the ratio of computing per-

formance.

• n >= 2. We assume that each server will host multiple block storage devices,

with a minimum requirement of two storage devices per server. We call n

the ratio of storage performance.

• m >= 3. As we use 3-way replication for data redundancy, it is necessary

to have a minimum of three failure domains, each corresponding to a server,

to provide fault tolerance.

By defining these ratios, we can evaluate the effects of changes in the relative

probabilities of failure between the two storage systems, and consequently evaluate

the impact of these changes on the probability of data loss.

70

3.2.3 Mathematical Model

The scatter width parameter specifies the number of nodes to which the data

on a given node can be replicated. Based on the assumptions regarding the con-

figurations of the two types of storage systems, the total number of copysets in

the general-purpose server-based storage system and the embedded storage node-

based storage system are given by lgp = wm
6 and les = wm

′

6 , respectively (see

Section 3.2 in [49]). For simplicity, we assume that data will be replicated to

storage devices with the same index. For instance, if 1, 4, 7 is a copyset, the data

on disk 1 of node 1 will be replicated to disk 1 of node 4 and disk 1 of node 7.

Note that a different device mapping for replication could be employed, but it

should not impact the results obtained from our model.

For storage systems constructed with general-purpose servers, the occurrence

of data loss can stem from one of three situations. First, multiple server failures

may lead to data loss if at least three of these servers fall within the same copyset.

Second, data loss can result from multiple storage device failures if at least three

of these devices are hosted by servers in the same copyset, and all three devices

share the same device index. Finally, a combination of three or more failures

can result in data loss, whereby a particular combination of simultaneous failures

leads to the loss of data.

Since server failures are independent, we can express the probability of fail-

ures involving exactly k servers by applying the probability mass function of the

Poisson distribution:

P (failures of k servers) = Rm
ke−Rm

k! (3.1)

71

Similarly, the probability of failures involving exactly j storage devices is:

P (failures of j storage devices) = Rd
je−Rd

j! (3.2)

We can then express the possibilities of the aforementioned situations that

cause data loss as follows:

(i) Pm(k) = P (failures of k servers) × Nm(k)(
m
k

) (3.3)

(ii) Pd(j) = P (failures of j storage devices) × Nd(j)(
mn
j

) (3.4)

(iii) Pm,d(k, j) = P (failures of k servers) (3.5)

× P (failures of j storage devices)

× Nm,d(k, j)(
m
k

)
×

(
mn
j

)

Equation 3.3 defines Nm(k) as the number of k-combinations of servers, re-

quiring in any combination at least three servers to fall within the same copyset.

Equation 3.4 defines Nd(j) as the number of j-combinations of block storage de-

vices, requiring each combination to contain at least three devices sharing the

same device index whose hosts are in the same copyset. Lastly, equation 3.5 de-

fines Nm,d(k, j) as the number of combinations that contain failures of k servers

and j storage devices, which requires at least three failures in each combination

to be associated with a copyset. Specifically, for each combination, there must

be a copyset that contains either one failed server with the other two servers in

the copyset hosting two failed storage devices that share the same device index,

or two failed servers with the remaining server in the copyset hosting the failed

storage device.

72

By adding up the possibilities of these cases, we can get the possibility of data

loss for the storage system constructed with general-purpose servers:

Pgp =
m∑

k=3
Pm(k) +

mn∑
j=3

Pd(j)

+
m∑

k=2

mn∑
j=1

Pm,d(k, j) +
mn∑
j=2

Pm,d(1, j)
(3.6)

Similarly, the possibility of data loss for the storage system constructed with

embedded storage nodes is:

Pes =
m

′∑
k=3

P
′

m(k) +
m

′∑
j=3

P
′

d(j)

+
m

′∑
k=2

m
′∑

j=1
P

′

m,d(k, j) +
m

′∑
j=2

P
′

m,d(1, j)

(3.7)

where

P
′

m(k) = R
′
m

k
e−R

′
m

k! × N
′
m(k)(
m′

k

) (3.8)

P
′

d(j) = R
′
d

j
e−R

′
d

j! × N
′
d(j)(
m′

j

) (3.9)

P
′

m,d(k, j) = R
′
m

k
e−R

′
m

k! × R
′
d

j
e−R

′
d

j! ×
N

′
m,d(k, j)(

m′

k

)
×

(
m′

j

) (3.10)

Finally, to compare the possibility of data loss between the two types of storage

systems, we can evaluate the ratio between Pgp and Pes:

Relative Benefit = Pgp

Pes

(3.11)

73

3.2.4 Data Availability Evaluation

The proposed model utilizes expressions such as Nm(k) and Nd(j) to represent

the number of combinations that could potentially lead to data loss. However, the

effectiveness of these expressions is subject to the values of m and w, and it may

not always be possible to identify an optimal scheme that yields non-overlapping

copysets covering all servers in the storage system. Therefore, it becomes necessary

to compare the two systems based on predetermined, fixed values of k and j. As

an illustration, consider the scenario where k + j ≤ 3, represents cases where

exactly three components failed. The relative probability of data loss between the

two systems is:

Relative Benefit = Pm(3) + Pd(3) + Pm,d(1, 2) + Pm,d(2, 1)
P ′

m(3) + P
′
d(3) + P

′
m,d(1, 2) + P

′
m,d(2, 1) (3.12)

In this scenario, we have Nm(3) = lgp, Nd(3) = nlgp, Nm,d(1, 2) = Nm,d(2, 1) =

3nlgp and N
′
m(3) = N

′
d(3) = les, N

′
m,d(1, 2) = N

′
m,d(2, 1) = 3les.

Referring to equation 3.12, we can generate plots by fixing f and w to reason-

able values and examine the correlation between the relative benefit, the number

of servers m, the ratio of computing performance c, and the ratio of storage per-

formance n. To this end, we present a series of figures from 3.13 to 3.16. We

set w = 4 since it offers comparable performance in terms of recovery time to

random replication on small clusters [49]. To evaluate the impact of m and n, we

conservatively set c = n, indicating that the total number of block storage devices

in the server-based system equals the number of nodes in the embedded storage

node-based storage system. Additionally, to illustrate the impact of m and c, we

set n = 12 to emulate a moderate-sized edge server.

Figure 3.13 presents an evaluation of the impact of variations in the number

74

of servers and the ratio of storage performance on the relative benefit. We set

f = 2 as the ratio of failure rates for HDDs, according to [240]. The figure

demonstrates that despite the total number of storage devices in the server-based

system being equal to the total number of nodes in the embedded storage node-

based system, the latter has a lower probability of data loss. This is primarily

due to the embedded storage node-based system having more independent failure

domains over which the copyset replication scheme can span. For instance, when

each server hosts four storage devices, the relative benefit can be as high as 7.1. In

Figure 3.14, when c = 12, the total number of storage devices in the server-based

system equals the number of embedded storage nodes. However, we observe a

significant relative benefit even when c < 12. This figure supports our hypothesis

that less complex failure domains tend to be more reliable.

Figure 3.13: The impact of m and n on the relative benefit with HDDs

Figures 3.15 and 3.16 use f = 0.06 to emulate the low failure rate of SSDs,

based on a previous study [261] that indicates only 5.6% of all hardware failure

events are due to SSDs. Under this configuration, the primary risk of hardware

failures stems from computing resources such as CPU and DRAM, resulting in

steeper growth in the curves shown in these figures compared to those with HDDs.

75

Figure 3.14: The impact of m and c on the relative benefit with HDDs

For example, in the scenario where a server hosts four SSDs, the relative benefit

reaches 20.7. The result suggests that storage systems employing SSDs may be

better suited to a scale-out architecture that employs less complex building blocks,

such as embedded storage nodes, to achieve more cost-effective data availability.

Figure 3.15: The impact of m and n on the relative benefit with SSDs

76

Figure 3.16: The impact of m and c on the relative benefit with SSDs

3.2.5 Observations and Insights

Based on the evaluation above, we present our key observations that may

provide valuable guidance to storage system architects seeking to optimize the

data availability of their systems while minimizing costs.

Insight 1: The lower the failure rate of storage devices used in servers, the

higher the Relative Benefit of embedded storage.

Figure 3.17 depicts a frame obtained from the figures 3.13 and 3.15 at m = 10.

This figure compares a server-based system with ten servers (10 failure domains),

each hosting n storage devices, to an embedded storage node-based system with

10n nodes (10n failure domains). Given that SSDs have a lower failure rate than

HDDs, the increasing gap in relative benefits between these two types of devices

indicates that aggregating storage devices with a lower failure rate in a server can

result in a higher relative risk of data loss. In addition, this figure presents that:

77

Insight 2: The more storage devices the server aggregates (higher storage

aggregation), the higher the Relative Benefit of embedded storage.

Figure 3.17: The impact of n on the relative benefit (m = 10)

Insight 3: The more computing resources the server aggregates (higher

compute aggregation), the higher the Relative Benefit of embedded storage.

Figure 3.18 depicts a frame obtained from the figures 3.14 and 3.16 at m = 10.

This figure compares a server-based system with ten servers (10 failure domains),

each hosting 12 storage devices, to an embedded storage node-based system with

10c nodes (10c failure domains). The trends observed in the two curves depicted

in the figure reinforce our hypothesis that the greater the number of independent

failure domains the failure mechanism can encompass, the lower the risk of data

loss. Furthermore, our results indicate that to augment the computing capacity of

78

a storage system, scaling out with embedded storage nodes may offer an additional

benefit in terms of data availability, as opposed to scaling up each storage server.

Figure 3.18: The impact of c on the relative benefit (m = 10)

Insight 4: Scaling out the resources of a storage system offers a non-linear

improvement in the Relative Benefit.

That is, storage systems with higher resource aggregation can benefit more

from scaling out the system.

Discussion

About the model: i) It is better to be able to calculate the possibility of

data loss without fixing the value of k and j. To achieve this, a general formula is

required to compute the values of Nm(k), N
′
m(k), Nd(j), and N

′
d(j) for any values

of m and w, even in cases where optimal schemes are not present. However,

79

solutions to these expressions remain elusive. In future work, we may employ

stochastic simulations to estimate the probability of generating a subset of size

k to cover any predefined equal-sized subsets to solve this problem. ii) It is

pertinent to acknowledge that the assumption of independent failures of different

servers or nodes may not always hold. The need for data redistribution, when

failures occur, can lead to excessive traffic, potentially reducing the lifetime of

involved storage devices. Additionally, the repair rate may be incorporated in our

study in the future to facilitate the simulation of uncorrelated failures using the

Markov model [96, 33].

Performance of embedded storage nodes: Embedded storage nodes are

generally less powerful than general-purpose servers, primarily attributed to their

compact form factor, which limits the space available for packaging computing

resources. However, scale-out storage systems augmented with embedded storage

nodes can offer higher aggregate bandwidth, making them especially attractive

to bandwidth-sensitive functions such as in content delivery services [236]. For

latency-sensitive workloads, domain-specific accelerators can be utilized on em-

bedded storage nodes to optimize applications by tailoring functions that benefit

most from running within these nodes. Our proposal for using embedded storage

nodes does not aim to replace general-purpose servers in storage systems; instead,

it serves as a complement to enable more cost-effective execution of profitable

functions.

External complexity: The adoption of embedded storage nodes in storage

systems may necessitate additional network connection ports for communication,

which may raise concerns regarding data loss due to the increased network com-

plexity. However, it is important to note that traditional storage devices also

require connections with ports inside servers, such as SAS/SATA ports. Conse-

80

quently, the storage device connection complexity remains relatively unchanged

when using embedded storage nodes. Furthermore, no conclusive evidence indi-

cates a significant difference in failure rates between storage device connectors and

network ports.

System design: Resizing the failure domains of storage systems requires a

careful balance between hardware cost and performance. A reduction in the size

of a failure domain may lead to an increased cost per gigabyte, as each server

will host a smaller number of storage devices, contrary to the conventional notion

that the cost of computing resources can be amortized by increasing the number

of storage devices within a server. However, servers with finer-grained resources

may prove to be more cost-effective than aggregating resources to increase their

power. This model can play an important role in system design, aiding system

architects in determining the optimal balance between the size of a failure domain,

hardware cost, and performance.

3.2.6 Summary

This study provides additional insights into the benefits of employing embed-

ded storage nodes to improve data availability and potentially reduce operational

costs for small storage systems. These systems are typically characterized by a

restricted number of failure domains, a scenario frequently encountered in edge

infrastructures. Embedded storage nodes present more optimally sized failure

domains, thereby facilitating the deployment of a greater number of nodes to at-

tain these improvements. Our evaluation demonstrates that embedded storage

node-based systems offer a significantly lower data loss risk than general-purpose

server-based systems (7 to 20 times lower). These findings emphasize the potential

of systems built on embedded storage nodes to offer a cost-effective and reliable

81

solution for sites operating with small storage systems.

3.3 Conclusion

This chapter presents several metrics that can assist system architects in

achieving a cost-optimized balance when designing embedded systems. The MBWU

and MBWU-based efficiency metrics quantify the performance utilization of stor-

age media and associated costs of achieving the performance under a given data

access workload. Additionally, we present a mathematical model to analyze the

trade-offs between multiple resource ratios in a system that can impact system

performance and the cost of realizing the performance in terms of data availability.

These metrics and evaluating methodologies can serve as valuable tools in embed-

ded system design, providing a comprehensive understanding of the benefits of

utilizing embedded storage hardware for data service functions and workloads.

82

Chapter 4

Offloading Potential

Embedded devices have the potential to significantly enhance system perfor-

mance by leveraging their unique capabilities. For instance, computational storage

devices can utilize high-bandwidth and low-power internal data links to process

data in place, while programmable network interface cards, or SmartNICs, can

improve system performance by taking over networking and data processing tasks

from the host CPU. However, given the diverse requirements of different applica-

tions, it is essential to have a comprehensive and quantified understanding of the

performance of these embedded devices, particularly under application-relevant

workloads. This understanding can help avoid discrepancies in performance ex-

pectations and facilitate the creation of performance envelopes for customizing

functions of applications that can benefit from offloading.

In the high-performance computing (HPC) and high-performance data analyt-

ics (HPDA) communities, there has long been a vision of improving application

workflows through the use of programmable processing elements embedded in the

network fabric [133]. Vendors’ recent introduction of SmartNICs has piqued their

interest in exploring potential roles these devices may play in the data paths of

simulation and data processing applications. To address this gap, this chapter

83

presents an in-depth performance characterization of a representative SmartNIC,

specifically the NVIDIA Bluefield-2 SmartNIC. This examination spans four dif-

ferent dimensions, each with its unique scope ranging from general to application-

specific aspects. Section 4.2 discusses the performance of general micro-operations

on the SmartNIC by using techniques similar to MBWU for normalization, except

that in this case the performance of a Raspberry Pi serves as the reference. Sec-

tion 4.3 explores the network processing capacity of an offloaded data processing

function. In Section 4.4, the focus shifts to the performance of data partitioning,

a critical function that enables SmartNICs to distribute and manage in-transit

data. Finally, Section 4.5 examines parallel data processing, evaluating the de-

vice’s performance when processing data streams with multiple threads.

4.1 Prototyping Platform

In recent years, multiple hardware vendors have introduced network devices

that feature user-programmable CPUs or FPGAs. These resources enable de-

velopers to “push down” application-specific functionality to remote hardware to

help customize queries and reduce the amount of data returned. Multiple net-

work companies have created powerful SmartNICs that can inspect and process

network data as it moves between the host and the network. Current generation

SmartNICs feature multiple processor cores, sizable amounts of volatile and non-

volatile memory, and direct access to high-speed communication networks. As

such, SmartNICs present a new opportunity for optimizing application workflows

in HPC platforms.

One promising setup to embed SmartNICs in the network fabric for optimizing

application workflows is to co-locate them with HPC compute nodes. Figure 4.1 il-

lustrates possible interactions between the host and a local BlueField-2 SmartNIC

84

with virtual protocol interconnect (VPI) or InfiniBand support. This SmartNIC

has eight A72 ARM processor cores running at 2.75 GHz, 16 GB of DRAM, and

60 GB of eMMC storage. The connection with the host is via PCIe Gen 4.0 x

16 lanes. For network capability, it includes two 100 Gb/s network ports that

can interact with either InfiniBand or Ethernet. The default software stack for

the card boots an Ubuntu 20.04 Linux installation from the eMMC storage. This

OS operates independently from the host and is visible through drivers that pro-

vide network and console access to the card. The embedded processors can be

configured to either (1) intercept traffic between the host and the network (i.e.,

embedded function mode) or (2) serve as a separate host that shares access to

the network ports (i.e., separated host mode). Special-purpose hardware acceler-

ators are available for offloading encryption, compression, and regular expression

operations.

Host
CPUs

DRAM

Compute Node

Network

Host GPUs

BlueField-2
SmartNIC

ARM
CPUs

16GB
DRAM

ConnectX-6
Network
Interface

PCIe
Hardware Accelerators

60GB
eMMC

Figure 4.1: HPC Compute node with a BlueField-2 SmartNIC

85

4.2 General Micro-operations

One of the main questions when considering offloading functions to embedded

devices is: which functions should be offloaded to achieve the maximum bene-

fit? Ideally, answering this question requires evaluating the performance of every

possible function that an embedded system is capable of to identify those that

specific applications can leverage.

4.2.1 Benchmark Considerations

Accurately capturing the performance matrix of embedded devices is difficult

due to their unique architectures and the limited resources they possess. Direct

evaluation using applications or integrated tests often fails to identify the strengths

and weaknesses of device operations, as the overhead from weak operations can

overshadow the few strong operations. To address this issue, microbenchmarks

are well-suited for evaluating specific operations of embedded devices since each

focuses on particular aspects of their system or hardware.

For this evaluation, we selected the stress-ng tool [131], which comprises a

comprehensive set of stressor functions designed to test and cover a broad spec-

trum of low-level system operations. For example, the msync stressor is used

to test the msync(2) system call, while the CPU stressor evaluates the CPU’s

floating-point, integer, and bit manipulation operations individually. With 250

stressors that cover a wide range of resource and operation domains, including

disk IO, network IO, DRAM, filesystem, system calls, CPU operations, and CPU

cache, stress-ng is a robust and reliable tool for microbenchmarking. Inside the

stress-ng tool, these test domains are classified into “classes.” Our evaluation

collected performance results from multiple systems and analyzed the differences

both at the individual stressor and stressor class levels, providing a detailed insight

86

into an embedded device’s strengths and weaknesses.

4.2.2 Normalization

One challenge in comparing the performance results from various stressors lies

in the inconsistent performance units they use. While each stressor reports the

performance result in terms of the execution rate (i.e., “bogo-ops-per-second”, read

as “bogus operations per second”) for the specific test operation it conducts, varied

overheads associated with the test operations of different stressors make a direct

comparison of these performance figures infeasible. Consequently, it becomes

difficult to answer the specific question of which operations can perform better

on the embedded device. Listing 2 shows the example results from two stressors

executed on the same machine.

- stressor: branch
bogo-ops: 14511254875
bogo-ops-per-second-usr-sys-time: 36305366.212159
bogo-ops-per-second-real-time: 1451159699.206867
wall-clock-time: 9.999764
user-time: 399.700000
system-time: 0.000000

- stressor: memrate
bogo-ops: 283
bogo-ops-per-second-usr-sys-time: 0.700877
bogo-ops-per-second-real-time: 27.980803
wall-clock-time: 10.114077
user-time: 388.940000
system-time: 14.840000

Listing 2: Stress-ng example results

To address this issue, we have normalized the stressor performance results rel-

ative to those obtained from a Raspberry Pi 4B (RPi4B) — specifically the 4 GB

87

DRAM model. This approach is similar to the introduction of the MBWU for

normalizing the performance of data access workloads, albeit with a slight modifi-

cation; in this context, the unit of measurement is a Raspberry Pi-based work

unit, or RPWU, as the “WU” is normalized to a RPi4B. It should be noted

that while the RPi4B is not a high-performance embedded system, its widespread

adoption makes it an ideal reference system for the comparison of our results by

other researchers interested in the data.

4.2.3 Performance Characterization

To evaluate the relative advantages of different operations running on the

BlueField-2, we executed stress-ng on the BlueField-2 SmartNIC and a variety

of host systems available at CloudLab [200], as listed in Table 4.1. Among these

12 host systems, 11 are equipped with Intel x86 processors; the remaining system,

the m400, is an ARMv8-based system. It should be noted that while it may not

be appropriate to compare the performance of the BlueField-2 card’s embedded

processor to that of general-purpose servers’ processors, the host systems used

in this study are relatively outdated. For instance, the d710 operates on a on a

12-year-old processor.

We sequentially executed all available stressors on each test system. Every

stressor ran for a fixed period of 60 seconds, with one instance being launched

on each online CPU core. To ensure the accuracy and reliability of our results,

we repeated this execution process five times on each system and computed the

average performance for each stressor. Certain stressors were not executed due

to various reasons, such as requiring root privileges or specific hardware features

that were not available on the test system. For instance, the rdrand stressor was

not executed on the BlueField-2 SmartNIC and the m400 system, because the

88

ARM CPU does not support the rdrand instruction. Figure 4.2 displays the final

normalized performance numbers of stressors from all test systems.

89

T
ab

le
4.

1:
M

ic
ro

-o
pe

ra
tio

ns
Te

st
Sy

st
em

s

ID
Sy

st
em

C
P

U
(R

el
ea

se
D

at
e)

C
or

es
D

R
A

M
D

is
k

N
IC

1
c2

20
g1

In
te

lE
5-

26
30

v3
@

2.
4

G
H

z
(Q

3’
14

)
2

x
8

12
8G

B
(D

D
R

4-
18

66
)

2
x

SA
S

H
D

D
,1

x
SA

TA
SS

D
2

x
10

G
b,

1
x

1G
b

2
c2

20
g2

In
te

lE
5-

26
60

v3
@

2.
6

G
H

z
(Q

3’
14

)
2

x
10

16
0G

B
(D

D
R

4-
21

33
)

2
x

SA
S

H
D

D
,1

x
SA

TA
SS

D
2

x
10

G
b,

1
x

1G
b

3
c2

20
g5

In
te

lX
eo

n
Si

lv
er

41
14

@
2.

2
G

H
z

(Q
3’

17
)

2
x

10
19

2G
B

(D
D

R
4-

26
66

)
1

x
SA

S
H

D
D

,1
x

SA
TA

SS
D

2
x

10
G

b,
1

x
1G

b
4

c6
22

0
X

eo
n

E5
-2

65
0

v2
@

2.
6

G
H

z
(Q

3’
13

)
2

x
8

64
G

B
(D

D
R

3-
18

66
)

2
x

SA
TA

H
D

D
2

x
10

G
b,

4
x

1G
b

5
c8

22
0

In
te

lE
5-

26
60

v2
@

2.
2

G
H

z
(Q

3’
13

)
2

x
10

25
6G

B
(D

D
R

3-
16

00
)

2
x

SA
TA

H
D

D
2

x
10

G
b,

1
x

40
G

b
IB

6
d4

30
In

te
lE

5-
26

30
v3

@
2.

4
G

H
z

(Q
3’

14
)

2
x

8
64

G
B

(D
D

R
4-

21
33

)
2

x
SA

TA
H

D
D

,1
x

SA
TA

SS
D

2
x

10
G

b,
2

x
1G

b
7

d7
10

In
te

lX
eo

n
E5

53
0

@
2.

4
G

H
z

(Q
1’

09
)

1
x

4
12

G
B

(D
D

R
3-

10
66

)
2

x
SA

TA
H

D
D

4
x

1G
b

8
ds

s7
50

0
In

te
lE

5-
26

20
v3

@
2.

4
G

H
z

(Q
3’

14
)

2
x

6
12

8G
B

(D
D

R
4-

21
33

)
45

x
SA

TA
H

D
D

,2
x

SA
TA

SS
D

2
x

10
G

b
9

m
40

0
A

R
M

v8
A

tla
s/

A
57

(6
4-

bi
t)

@
2.

4
G

H
z

1
x

8
64

G
B

(D
D

R
3-

16
00

)
1

x
M

.2
SS

D
2

x
10

G
b

10
m

51
0

In
te

lX
eo

n
D

-1
54

8
@

2.
0

G
H

z
(Q

4’
15

)
1

x
8

64
G

B
(D

D
R

4-
21

33
)

1
x

N
V

M
e

SS
D

2
x

10
G

b
11

r3
20

X
eo

n
E5

-2
45

0
@

2.
1

G
H

z
(Q

2’
12

)
1

x
8

16
G

B
(D

D
R

3-
16

00
)

4
x

SA
TA

H
D

D
2

x
1G

b
12

xl
17

0
In

te
lE

5-
26

40
v4

@
2.

4
G

H
z

(Q
1’

16
)

1
x

10
64

G
B

(D
D

R
4-

24
00

)
1

x
SA

TA
SS

D
4

x
25

G
b

13
M

BF
2H

51
6A

-C
EN

O
_

A
x

A
R

M
v8

A
72

(6
4-

bi
t)

@
2.

5
G

H
z

1
x

8
16

G
B

(D
D

R
4-

16
00

)
eM

M
C

fla
sh

m
em

or
y

2
x

10
0

G
b/

s
or

1
x

20
0G

b/
s

*
A

ll
sy

st
em

s
ex

ce
pt

th
e

M
B

F2
H

51
6A

-C
EN

O
_

A
x

(B
lu

eF
ie

ld
-2

Sm
ar

tN
IC

)
ra

n
U

bu
nt

u
20

.0
4

(k
er

ne
l5

.4
.0

-5
1-

ge
ne

ric
).

*
Te

st
s

w
er

e
al

lc
on

du
ct

ed
on

th
e

ex
t3

fil
es

ys
te

m
.

90

0.1

1

10

100

af
-a

lg

ba
d-

al
ts

ta
ck

bi
gh

ea
p

br
an

ch br
k

bs
ea

rc
h

ca
ch

e

ch
at

tr

ch
ow

n

cl
oc

k

cl
on

e

co
nt

ex
t

co
py

-f
ile

cp
u

de
nt

ry

de
v

di
r

di
rd

ee
p

dn
ot

ify

en
v

ep
ol

l

ev
en

tfd

ex
ec fif
o

fil
e-

io
ct

l

fo
rk

fp
-e

rr
or

fs
ta

t

fu
nc

ca
ll

fu
te

x

ge
t

ge
td

en
t

P
er

fo
rm

an
ce

 (
vs

. p
i4

_4
gb

)

c220g1

c220g2

c220g5

c6220

c8220

d430

d710

dss7500

m400

m510

MBF2H516A-CENO_Ax

r320

xl170

0.1

1

10

100

ge
tr

an
do

m

hd
d

hr
tim

er
s

hs
ea

rc
h

ic
ac

he

in
od

e-
fla

gs

in
ot

ify

io
pr

io

iti
m

er

kl
og

lo
ck

a

lo
ck

bu
s

lo
ck

of
d

lo
ng

jm
p

ls
ea

rc
h

m
ad

vi
se

m
al

lo
c

m
co

nt
en

d

m
kn

od

m
m

ap

m
re

m
ap

m
sy

nc

na
no

sl
ee

p

ne
td

ev

ni
ce

op
co

de

pe
rs

on
al

ity po
ll

pt
hr

ea
d

qs
or

t

re
ad

ah
ea

d

re
na

m
e

P
er

fo
rm

an
ce

 (
vs

. p
i4

_4
gb

)

0.1

1

10

100

re
so

ur
ce

s

re
vi

o

rs
eq

sc
he

dp
ol

ic
y

se
ek

se
m

-s
ys

v

sh
el

ls
or

t

si
ga

br
t

si
gc

hl
d

si
gn

al

si
gp

ip
e

si
gs

eg
v

si
gs

us
pe

nd

sk
ip

lis
t

sl
ee

p

so
ck

so
ck

ab
us

e

so
ck

m
an

y

sp
lic

e

st
ac

k

st
ac

km
m

ap

sy
si

nf
o

tim
er

tim
er

fd

ts
ea

rc
h

ud
p

ud
p-

flo
od

ve
cm

at
h

vf
or

km
an

y

vm

vm
-a

dd
r

P
er

fo
rm

an
ce

 (
vs

. p
i4

_4
gb

)

Figure 4.2: Box plotting the relative performance of a set of stress-ng stressors
ran on 12 general-purpose systems and the BlueField-2 SmartNIC (MBF2H516A-
CENO_Ax). Each stressor was run for a duration of 60 seconds. The performance
figures have been normalized with respect to the Raspberry Pi 4B (4 GB model).
Triangle data points denote the performance of the BlueField-2. Other data points
are plotted only if they are outliers, falling outside the range of the corresponding
whisker. A full version of this plot can be found at [152].

91

Individual Results Analysis

As anticipated, the performance of most operations on the BlueField-2 card

falls short compared to the majority of systems used for comparison, with the ex-

ception of the RPi4B. However, there were several tests in which the BlueField-2

outperformed the other systems, warranting further investigation. On the other

hand, for operations where the BlueField-2 card performed significantly worse,

system designers need to be careful when offloading functions that involve such

operations, so these operations also deserve detailed examination. A detailed

analysis of these two types of operations follows. Note that the number inside the

parentheses next to each stressor name represents the ranking (from best to worst)

of the BlueField-2 card’s performance for that stressor among all test systems.

af-alg (#1): AF_ALG [239, 262] is the user space interface for accessing the ker-

nel crypto API, which enables user programs to leverage the cipher and hash func-

tions provided by hardware cryptographic accelerators. The BlueField-2 Smart-

NIC features multiple hardware accelerators for cryptography, including the TLS

data-in-motion accelerator, the AES-XTS 256/512-bit data-at-rest accelerator,

the SHA 256-bit accelerator, and the true random number accelerator, which sig-

nificantly contributed to the outstanding performance in this stress test.

lockbus and mcontend (#1): The lockbus stressor tests data writes with

pointer advancements while injecting write barriers in between. Similarly, the

mcontend stressor employs multiple threads to concurrently update and read data

residing in virtual memory regions mapped to the same physical memory pages.

Both these stressors mimic the access patterns of applications that demand ag-

gressive memory access. The superior performance exhibited by the BlueField-2

card in these two tests may be attributed to its cache subsystem’s effectively de-

signed policy.

92

stack (#1), mremap (#3), stackmmap and madvise (#5), msync (#6),

mmap (#8), malloc, and vm (#13): These stressors exercise the virtual

memory subsystem of the operating system running on the SmartNIC. While the

BlueField-2 card excels at some memory operations, it does not perform as well as

other systems in more common operations, such as mmap and malloc. Therefore,

it is difficult to generalize the memory access advantages of this card, as appli-

cations that heavily depend on these operations might encounter a significantly

worse memory access performance compared to operating on a general-purpose

host.

chattr and inode-flags (#5), ioprio (#6), file-ioctl (#7), dnotify and

getdent (#12), copy-file, dentry, dir, and fstat (#13): These stressors fo-

cus on exercising filesystem interfaces. Given that the BlueField-2 card only has

eMMC storage, the performance outcomes of these operations are as expected,

and we do not expect to offload functions that would heavily rely on the perfor-

mance of the on-card persistent storage. Note that getdent(2) and fstat(2) are

system calls that can be easily triggered by simple commands such as “ls.”

fp-error (#7), vecmath (#9), branch, funccall, bsearch, hsearch, lsearch,

qsort and skiplist (#11), longjmp and shellsort (#12), cpu, opcode,

and tsearch (#13): These stressors focus on testing the CPU’s logical and

arithmetic operations using various mathematical algorithms. For example, the

cpu stressor performs bit manipulations, computes square roots, determines the

greatest common divisor, and calculates the Apéry’s constant. It is intriguing

to observe that the arithmetic performance of the BlueField-2, as indicated by

the relative performance result of the cpu stressor, is even lower than that of the

RPi4B. In contrast, the vecmath test on the BlueField-2 displayed comparatively

superior performance than certain host systems, such as the m510 with a D-1548

93

CPU (Q4’15), the r320 with an E5-2450 CPU (Q2’12), and the d710 with a Xeon

E5530 CPU (Q1’09). This observation is noteworthy as the vecmath operation

could provide benefits to a broad range of data processing applications.

cache (#11), icache (#13): The cache stressor assesses the efficiency of the

last-level CPU cache by repeatedly reading and writing values to and from it. The

benchmark results indicate that the BlueField-2 slightly outperforms the E5-2630

v3 (Q3’14), the E5-2660 v2 (Q3’13), and the Xeon E5-2450 (Q2’12), but falls

short of the RPi4B’s performance. This result can be attributed to the fact that

the BlueField-2 utilizes an L3 cache as its last-level cache, whereas the RPi4B

utilizes an L2 cache. Additionally, the icache stressor evaluates the instruction

cache performance of the CPU by simulating load misses caused by modifications

to a function pointer. Based on the performance ranking of the BlueField-2 on

these tests, it is fair to conclude that its CPU cache does not exhibit a significant

competitive advantage over other systems.

sigsegv (#9), timerfd (#10), signal, clock, and timer (#11), itimer, sig-

pipe, sigsuspend, and sleep (#12), nanosleep (#13): The performance of

these stressors reflects the interrupt performance of the operating system. Based

on the results, it is recommended that any functions offloaded to the BlueField-2

should, if possible, avoid reliance on the operating system’s timing and interrupt

interfaces.

readahead (#11), hdd and seek (#13): As the storage IO performance is di-

rectly impacted by the performance of the underlying storage media, it is unlikely

that these storage IO-related tests will exhibit exceptional performance. In fact,

the eMMC flash used by the BlueField-2 is slower than most of the enterprise-class

storage drives used by the CloudLab servers.

94

sem-sysv (#2), fifo (#9), eventfd, poll (#11), futex (#12), hrtimers

(#12), clone, exec, fork, nice, and pthread (#13): The stressors under

consideration are scheduler-related, with the System V interprocess communica-

tion (IPC) [29] serving as a key communication mechanism between processes in

Linux. Specifically, the sem-sysv stressor assesses the ability of a pair of pro-

cesses to increase and decrease a shared semaphore, with exceptions injected to

the system-call arguments. Notably, the BlueField-2 SmartNIC demonstrates ex-

ceptional performance in this stressor, surpassing all x86_64 systems. This result

may be attributable to certain architectural advantages of the ARM processors,

as evidenced by the high rankings of the m400 ARM (#1) and RPi4B systems

relative to other stressor tests. However, the BlueField-2 performed poorly in

other scheduler-related stressors, such as the futex stressor test, which evaluates

the futex(2) [258] system call utilized to wait for a specific condition to become

true.

sockabuse (#11), epoll, sockmany, sock, udp-flood, and udp (#13): The

stressors in question evaluate the performance of the kernel network stack. Based

on the rankings, it appears that the networking performance of the BlueField-2,

in conjunction with the kernel network stack, is inferior to that of most other

systems. In Section 4.3, we will conduct an in-depth evaluation of the network

performance of this device.

Table 4.2 displays the performance ranking of the BlueField-2 SmartNIC for

each stressor test conducted on all test platforms. Due to the considerable number

of stressors evaluated, we have opted to present only the best and worst results

of the BlueField-2. This list is valuable in gaining insights into the types of

operations that should or should not be offloaded to the BlueField-2 SmartNIC.

Finally, to investigate the potential impact of thermal or caching effects on

95

Table 4.2: Stressor performance ranking of the BlueField-2 SmartNIC

Stressor Stressor Classes Ranking
af-alg CPU | OS 1
klog OS 1
lockbus CPU_CACHE | MEMORY 1
mcontend MEMORY 1
splice PIPE_IO | OS 1
stack VM | MEMORY 1
dev DEV | OS 2
sem-sysv OS | SCHEDULER 2
get OS 3
mremap VM | OS 3
chattr FILESYSTEM | OS 5
inode-flags OS | FILESYSTEM 5
madvise VM | OS 5
personality OS 5
stackmmap VM | MEMORY 5
sysinfo OS 5
ioprio FILESYSTEM | OS 6
msync VM | OS 6
brk OS | VM 7
file-ioctl FILESYSTEM | OS 7
fp-error CPU 7
bigheap OS | VM 8
mknod FILESYSTEM | OS 8
mmap VM | OS 8
revio IO | OS 8
context MEMORY | CPU 9
dirdeep FILESYSTEM | OS 9
fifo PIPE_IO | OS | SCHEDULER 9
locka FILESYSTEM | OS 9
lockofd FILESYSTEM | OS 9
sigsegv INTERRUPT | OS 9
vecmath CPU | CPU_CACHE 9
chown FILESYSTEM | OS 10
env OS | VM 10
timerfd INTERRUPT | OS 10
bad-altstack VM | MEMORY | OS 14
getrandom OS | CPU 14
inotify FILESYSTEM | SCHEDULER | OS 14
netdev NETWORK 14
rename FILESYSTEM | OS 14
resources MEMORY | OS 14
rseq CPU 14
schedpolicy INTERRUPT | SCHEDULER | OS 14
sigabrt INTERRUPT | OS 14
sigchld INTERRUPT | OS 14
vforkmany SCHEDULER | OS 14
vm-addr VM | MEMORY | OS 14

* We only show the stressors that the BlueField-2 SmartNIC ranks ⩽ 10 or
the last among all test systems.

96

Table 4.3: Changes in the performance ranking of the BlueField-2 SmartNIC
between the 10s and 60s tests

Stressor Stressor Classes 10s Test 60s Test
af-alg CPU | OS 7 1
bigheap OS | VM 14 8
branch CPU 14 11
brk OS | VM 11 7
cache CPU_CACHE 14 11
dirdeep FILESYSTEM | OS 13 9
klog OS 5 1
seek IO | OS 7 13
sigfd INTERRUPT | OS 14 11

stressor performance, we conducted a secondary round of testing where each stres-

sor was run for only 10 seconds instead of 60 seconds. The results are presented

in Table 4.3, which includes only tthose stressors where the BlueField-2 saw more

than a two-place shift in the rankings. The stressors that showed the greatest

changes in the ranking were those related to CPU and CPU cache performance.

For instance, the bigheap stressor tests virtual memory performance by increasing

the allocated memory size of a process using the REALLOC(3) [140] system call.

Moreover, we found that the BlueField-2’s stressor rankings in the 60-second test

were generally higher than those in the 10-second test. This suggests that the

ARM CPU on the BlueField-2 may require a warm-up period for optimal per-

formance. As for thermal dissipation, we observed no significant influence on the

BlueField-2’s performance.

Class Results Analysis

stress-ng has categorized stressors into 12 classes, each representing a crucial

aspect of the system’s hardware or software. To ascertain whether the BlueField-2

possesses a domain of operations in which it outperforms the other systems, we

examined the average relative performance of each stressor class for every test

system. Full details on the results of this investigation can be found at [153].

97

In general, we observed that the BlueField-2’s average performance aligns with

that of the 12-year-old x86_64 server d710 and the ARM server m400. Nonethe-

less, the relative performance of the BlueField-2’s stressor classes exhibits sig-

nificant variations, with no single class of operations demonstrating dominant

performance over other systems, except for the DEV class. The DEV class, com-

prising five stressors, probes multiple Linux device interfaces under /dev, such

as /dev/console, /dev/full, /dev/null, /dev/loop*, among others. The efficacy of

these interfaces, however, may not easily translate into tangible benefits for the

functions offloaded to the BlueField-2.

However, the effectiveness of these interfaces may not easily translate into tan-

gible benefits for offloaded functions. While the class-based stressor analysis did

not reveal any promising information, it does suggest that the SmartNIC requires

more robust resource integration than what the BlueField-2 currently offers for

executing traditional system operations. This enhancement is necessary to handle

relatively complex, latency-sensitive functions offloaded from hosts. In contrast,

asynchronous or throughput-sensitive functions have different resource require-

ments in the execution environment. By leveraging potential advantages such as

data locality and cost-efficient parallelization offered by many of these low-power

systems, it is still possible to develop a more optimized solution for executing

these asynchronous or throughput-sensitive functions within the SmartNICs.

4.2.4 Summary

In summary, our evaluation has revealed that the BlueField-2 SmartNIC ex-

hibits superior performance only in a limited set of traditional system operations

compared to general-purpose server systems. These operations span diverse do-

mains of the system, including memory contention, cryptographic, and IPC op-

98

erations. For functions that primarily rely on these operations, offloading to the

BlueField-2 SmartNIC could lead to improved performance. However, it is im-

portant to note that the superior performance of an individual operation on this

card does not necessarily lead to the better performance of the operation class as

a whole. For instance, while the mcontend and stack stressor tests exhibit the

best performance on the BlueField-2 among all test systems, the average relative

performance of the memory class stressors on the card is inferior to that of most

other systems used for comparison in our experiment. Therefore, when offloading

functions to the BlueField-2 SmartNIC, it is crucial to carefully tailor the func-

tions to leverage the limited advantageous operations available on the card, unless

hardware accelerators can be utilized.

Generally, the BlueField-2 SmartNIC shows better performance when han-

dling memory-related operations compared to CPU-, storage IO-, and kernel

network stack-related tasks. However, there are notable exceptions within the

CPU operations, particularly those involving encryption and vector calculations.

These exceptions can be attributed to the built-in accelerators on the SmartNIC

that enhance these specific operations. The optimized ARM architecture of the

BlueField-2 SmartNIC may also contribute to the superior performance observed

for vector calculations.

Based on our analysis, one type of function that has the potential for prof-

itable offloading to the SmartNIC is transparent encryption/decryption or com-

pression/decompression functions utilized in data serialization. Moving these

functions to the SmartNIC could significantly save the host’s CPU cycles for

applications while reducing function execution latency. Other types of functions

that may be profitable for offloading are those that can effectively leverage the

efficiency of the SmartNIC’s (virtual) memory access operations, IPC operations,

99

and vector mathematics operations. A concrete example could be a data trans-

formation function utilizing Apache Arrow [147], the de facto in-memory data

processing library. This library stores data in a dense columnar format and pro-

vides an IPC mechanism for transferring Arrow columnar arrays across processes

and systems. This approach enables data communication between different ap-

plications to use a well-defined data representation and eliminates the potential

transformation overhead caused by translating between on-disk and in-memory

representations. Apache Arrow has a large open-source community that has at-

tracted data scientists and software developers to build Arrow-based data pro-

cessing systems [188, 187, 238, 6, 117].

4.3 Network Processing

When analyzing the embedded computing resources of a SmartNIC, a key ques-

tion arises regarding the amount of processing headroom available after accounting

for the network stack overhead. Accurately quantifying the processing headroom

on a SmartNIC enables applications to identify the most efficient network stack to

use within the embedded environments, and to establish a performance envelope

that stipulates the complexity level of latency-sensitive network functions targeted

for offloading.

4.3.1 Benchmark Considerations

Handling high-speed network transfers can consume significant computing re-

sources, depending on the network stack in use. To measure the processing head-

room during network transfers, we aim to obtain a measurement result as close

to the upper bound as possible. This means determining the maximum remain-

100

ing CPU time that can be allocated to an offloaded function without impacting

normal network performance. To achieve this objective, it requires an efficient

and lightweight traffic generator that imposes minimal overhead on network data

transfers.

Our initial tests of commonly used network performance measurement utili-

ties, such as iPerf [228], nuttcp [227], and Netperf [119], showed suboptimal per-

formance. The poor performance of these tools may be due to their high-overhead

communication between the user and kernel space. Therefore, we tend to solutions

where the core network function is run only in the kernel or user space.

The Linux pktgen [232] is a kernel space module that generates UDP packets

within the kernel space and injects them directly into the kernel IP network stack.

Utilizing pktgen for processing headroom measurements offers several advantages.

First, we observed that its single-thread performance was roughly 15% higher

than the aforementioned measurement tools in resource-restricted environments.

Second, pktgen has built-in support for symmetric multiprocessing by binding a

generator thread to each CPU core. This feature is crucial for high-speed net-

work environments, especially for network speeds at 100Gb/s, which are hard to

saturate with only a single core (e.g., a single instance of iPerf achieved less than

40Gb/s in a previous study [72]). Finally, pktgen natively supports multi-queue

devices, enabling the mapping of the socket buffer’s transmission queue, network

interrupts, and associated generator thread to the same CPU core. This feature

reduces the overhead of cross-core communication, thus significantly improving

the throughput that a single thread can generate.

Additionally, pktgen offers several parameters for performance tuning, of which

we highlight three as being critical to our experiments. First, the “delay” param-

eter controls the duration allocated for emitting a burst of packets (not the gap

101

between consecutive bursts). By setting the delay to a value smaller than that

required for sending a burst of packets, throughput remains unaffected. However,

setting the delay larger than the send time of a burst results in the generator

thread spinning until the next allocated time. Altering this parameter allows

for the capture of free CPU time that is not involved in handling network traf-

fic. Second, the “clone_skb” parameter governs the policy of packet reuse for

transmission. Setting this parameter to zero eliminates the overhead of memory

allocation for packets. Although this parameter is useful for modeling the data

pattern based on its repetition, for measuring the upper bound of the processing

headroom, it is recommended to set it to zero. Finally, the “burst” parameter

specifies the maximum number of packets that can be queued before triggering

the bottom half of the network stack. This parameter can be adjusted to optimize

interrupt coalescing.

4.3.2 Methodology

Measuring the processing headroom with pktgen requires a two-step process,

primarily because each pktgen generator thread operates in an infinite loop and

fully occupies the associated CPU core when activated. The first step involves

determining the minimum configuration necessary to achieve the highest possible

bandwidth with the SmartNIC. This is accomplished by performing parametric

sweeps over the packet size, the number of generator threads, and the value of

“burst”, while recording the variations in throughput. In the second step, the value

of “delay” is gradually increased to change the allocated time for sending a burst,

with the goal of finding the maximum delay that the SmartNIC can accommodate

while still maintaining the same network throughput. The processing headroom

can then be calculated by subtracting the time spent sending a batch of packets

102

without delay, as determined in the first step, from the maximum delay evaluated

in the second step.

In addition to measuring the processing headroom for the BlueField-2 Smart-

NIC, we applied this method to a general-purpose host for comparison purposes.

The results are discussed in Section 4.3.3. However, a different approach was

necessary to evaluate the processing headroom when the BlueField-2 SmartNIC

is running under the embedded function mode, as this mode uses a different data

path for host communication. In this case, we did not run pktgen within the

SmartNIC itself but instead ran it on the host to allow the SmartNIC to for-

ward packets using its ARM cores. The evaluation for this mode is discussed in

Section 4.3.3.

4.3.3 Network Processing Headroom Evaluation

Headroom Evaluation in Separated Host Mode

In the initial step of our performance evaluation, we conducted a sweeping

analysis of packet sizes ranging from 128B to 10KB. For packets larger than 10KB,

it resulted in the termination of the pktgen process and hence were excluded from

the analysis. The throughput measurement results are depicted in Figure 4.3.

While it was anticipated that the BlueField-2’s embedded processors would be

less powerful than those of host processors, it was unexpected that the SmartNIC

would struggle to saturate the hardware bandwidth with its ARM cores. Our

experiments revealed that the BlueField-2 was only capable of saturating 60%

of the total bandwidth, even with the largest packet size and all CPU cores.

This finding underscores the fact that achieving 100 Gbps throughput is still a

resource-intensive task, even for modern ARM cores in the absence of network

stack optimization.

103

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 1026 with 8 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

BURST (packet size 128 bytes)

1 threads

2 threads

3 threads

4 threads

5 threads

6 threads

7 threads

8 threads

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 29009 with 8 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

BURST (packet size 4096 bytes)

1 threads

2 threads

3 threads

4 threads

5 threads

6 threads

7 threads

8 threads

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 50103 with 8 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

BURST (packet size 8192 bytes)

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 61789 with 8 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

BURST (packet size 10K bytes)

Figure 4.3: BlueField-2 throughput performance in the separated host mode

Additionally, the suboptimal performance gain observed by simply offloading

host functions with traditional network stacks to the SmartNIC underscores the

need for adapting network stacks to leverage the strengths of the SmartNIC. In

other words, offloading network functions to the SmartNIC alone is not sufficient

to attain optimal performance. Rather, optimizing network stacks is also essential.

Given that pktgen cannot saturate the full network bandwidth of the BlueField-

2 with its ARM cores, we seek to investigate the amount of CPU time that can be

allocated to offloaded functions if the required bandwidth is reduced to half of the

full specification. As indicated in Figure 4.4, the maximum delay for achieving 50

Gbps throughput with a packet size of 10KB and burst size of 25 is approximately

320µs. In the case of transmission without delay, we can deduce from Figure 4.3

that the time required to send the same number of packets of the same size in a

burst is 253µs. The difference between the two values represents the remaining

wall clock CPU time available for each core to execute the offloaded functions’

computation logic, accounting for 21% of the time taken to send a packet burst.

It is important to note that these results are based on the assumption that we

104

aim to only achieve 50% of the total bandwidth.

0

20000

40000

60000

80000

100000

128000 192000 256000 320000 384000 448000 512000
T

H
R

O
U

G
H

P
U

T
 (

M
b/

se
c)

DELAY (ns)

Figure 4.4: BlueField-2 throughput performance by varying the delay configu-
ration (8 threads, packet size 10KB, burst 25)

To provide a comparison of processing headroom between a general-purpose

host and the BlueField-2 SmartNIC with the same network interface, we con-

ducted a similar evaluation on the host where the SmartNIC card was installed.

The host was a CloudLab machine of the r7525 type, featuring two 32-core AMD

7542 CPUs operating at 2.9 GHz and 512 GB DDR4-3200 memory. Through

experimentation with varying packet sizes from 128B to 1KB, we determined that

a packet size as small as 832B is sufficient to saturate the full link. Figure 4.5

presents the results of throughput as a function of the burst and packet size. The

host’s superior system resources allow the network link to be fully saturated with

only five threads (equivalent to 5 vCPU cores) and a burst size of 25. Although

additional threads have little impact on throughput for the 832B packet size,

we observed a decrease in throughput with larger packet sizes (e.g., 1KB) when

more threads were utilized. We attribute this decrease in performance to resource

contention.

To assess the host’s capacity to maintain full bandwidth, we introduced delays

for bursts with the minimum packet and burst size identified in the previous step,

as depicted in Figure 4.6. The result indicates that the host can sustain an 8-us

delay per burst under the same number of threads. This delay accounts for less

than 1% of the CPU time available to handle additional computation logic on the

105

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 12406 with 4 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

BURST (packet size 128 bytes)

1 threads

2 threads

3 threads

4 threads

5 threads

6 threads

7 threads

8 threads

9 threads

10 threads

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 24866 with 4 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

BURST (packet size 256 bytes)

1 threads

2 threads

3 threads

4 threads

5 threads

6 threads

7 threads

8 threads

9 threads

10 threads

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 68002 with 4 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

BURST (packet size 512 bytes)

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 97191 with 7 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

BURST (packet size 832 bytes)

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 97680 with 5 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

BURST (packet size 1024 bytes)

Figure 4.5: r7525 throughput performance in the separated host mode

aforementioned five cores. It is, however, noteworthy that the host still has the

remaining 123 vCPU cores available for utilization by applications.

0

20000

40000

60000

80000

100000

0 2000 4000 6000 8000 10000 12000 14000 16000

T
H

R
O

U
G

H
P

U
T

 (
M

b/
se

c)

DELAY (ns)

1 threads

2 threads

3 threads

4 threads

5 threads

6 threads

7 threads

8 threads

Figure 4.6: r7525 throughput performance by varying the delay configuration
(packet size 832B, burst 25)

106

Headroom Evaluation in the Embedded Function Mode

Given that the BlueField-2 utilizes a distinct data path for communicating with

the host in its embedded function mode, it prompts the question of whether the

SmartNIC experiences a change in the processing headroom in this mode. In the

embedded function mode, the ARM processor situates itself between the network

port and the host, mandating that all traffic between the network interface on the

host’s operating system and the physical network port cross through the ARM

system. To evaluate the upper bound processing headroom of the SmartNIC, we

ran pktgen on the host rather than the ARM system to maximize the SmartNIC’s

processing resources intended for traffic bridging. The BlueField-2 supports both

the kernel IP stack and the userspace network stack (i.e., DPDK [42]) for bridging

Ethernet traffic. The throughput observed from the host under these two network

stacks is illustrated in Figure 4.7. Our findings reveal that, when utilizing the

kernel IP stack, the SmartNIC has a CPU availability of 78.5%, whereas when

operating under DPDK, it has an availability of 87.5%. These results indicate

a significant leap in processing headroom compared to the separated host mode,

suggesting that the embedded function mode makes for a more advantageous con-

figuration for in-transit data processing in scenarios where the functionalities of

the separated host mode are not mandated. Furthermore, our analysis indicates

that, similar to host systems, DPDK remains the more efficient option for man-

aging traffic on this embedded system.

4.3.4 Summary

Quantifying the processing headroom for network functions running on a Smart-

NIC enables the delineation, in a quantitative manner, of the capacity that the

SmartNIC reserves for dealing with streaming data without curtailing its network

107

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 97465 with 8 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b
/s

e
c
)

BURST

BURST

1 threads

2 threads

3 threads

4 threads

5 threads

6 threads

7 threads

8 threads

0

20000

40000

60000

80000

100000

0 5 10 15 20 25

max throughput 98893 with 8 threads

T
H

R
O

U
G

H
P

U
T

 (
M

b
/s

e
c)

BURST

Figure 4.7: r7525 throughput performance in the embedded function mode
(packet size 832B). The left and right figures show the performance with DPDK
and kernel IP network stack for traffic bridging, respectively

bandwidth performance. Despite the noticeable overhead experienced by the cur-

rent generation of the BlueField SmartNIC when processing Ethernet packets with

the Linux kernel IP stack, it is anticipated that future generations will exhibit

significant improvements in this area, making it easier for host network functions

relying on traditional network stacks to harness the performance benefits derived

from offloading to the SmartNIC. The embedded function mode of the BlueField-2

offers an alternative means for running network functions targeting packet inter-

ception and manipulation. This mode involves significantly lower overhead and,

as such, appeals to network use cases operating at a lower level. The DPDK

userspace network stack provides an opportunity for offloaded network functions

to trade protocol functionality for enhanced network performance when running

in this mode, as evidenced by our results, where it incurred the least overhead

from this network stack.

4.4 Data Partitioning

Transitioning from the detailed discussion of opportunities for offloading gen-

eral functions to SmartNICs, it is important to also consider practical applications

that could potentially benefit from this shift. Notably, HPC and Geographic In-

108

formation Systems (GIS) are two areas that often deal with intricate data man-

agement services and complex data flows, especially those pertaining to particle

data.

4.4.1 Particle Data Flows

Many HPC and GIS applications operate on particle data and rely on complex

data management services to route particle state information between producers

and consumers distributed throughout the network. While particle datasets are

smaller in size than multimedia datasets, application data flows can be challenging

to implement because the datasets contain many small items that are tedious to

inspect. As such, it is beneficial to consider hardware environments that can

offload the task of reorganizing and sifting through the in-transit data. In this

section, we provide application examples from the HPC and GIS spaces, and

discuss a common data-flow use case where data is transitioned from a spatially-

organized form to a temporally-organized form.

Particle Simulations in Scientific Computing

Many simulations in scientific computing employ particle-in-cell (PIC) meth-

ods [106, 15, 62] to model different phenomena. These simulations manage a large

collection of discrete particles and track their progress as they transit through time

and space. A particle is defined by a small amount of state information, such as

its position, velocity, charge, and type. Given that simulation fidelity improves as

the number of particles in the simulation increases, researchers typically leverage

parallel simulation techniques to distribute the data and work across many com-

pute nodes. Although a simulator’s particle data may contain a treasure trove of

information for scientists, the sheer size of this data makes it infeasible to save

109

except in the case of occasional checkpointing. Analysts may run supplemental

analysis applications in parallel with the simulation and inspect subsets of the

data without impeding the simulation. To enable this, the ability to rapidly sam-

ple and export sizable portions of the data would allow users to apply external

analytics in a workflow and inspect how the individual particle states evolve over

time.

Asset Tracking with Geographic Information Systems

A similar need to collect and process large amounts of particle data can be

found in GIS applications that manage sensor data about real-world assets, such

as airplanes, ships, and land vehicles. Although the “particles” in these systems

are significantly larger in physical size than those in the simulations, the process-

ing challenges for manipulating the data flows are the same: different distributed

sensor systems produce continuous feeds of observation data that need to be re-

organized to be of value to downstream consumers.

Reorganizing Spatial Indices to Temporal Indices

One hardship of working with particle data flows is that there are significant

differences between the way producers and consumers expect data to be organized.

Producers typically organize data in a spatial manner, where each sensor generates

an update for all items in a physical region during a particular time interval. In

contrast, analytics consumers often need data organized temporally for each item.

As illustrated in Figure 4.8 with airplane data, temporal tracks (b) can yield

better insight into patterns of activity than positional snapshots (a) alone.

Distributed, log-structured merge (LSM) trees [190] are a convenient mecha-

nism for converting particle data flows from a spatial organization to a temporal

110

Figure 4.8: Airplane position data in a (a) point form for a snapshot in time
and (b) track form for a window of one hour

organization when multiple producers and consumers are involved. In this ap-

proach, a collection of processing elements is used to reorganize data as it moves

through different stages in the tree. Each processing element absorbs incoming

data until it reaches its storage capacity. When compaction is necessary, data is

split based on particle IDs and transmitted to the next appropriate processing ele-

ment in the tree. While processing elements only need to store, sift, and transmit

blocks of particles, they can greatly improve the searchability of online datasets.

4.4.2 Software Infrastructure for In-transit Processing

Data-intensive applications in both science and commercial enterprises are of-

ten constructed using multiple systems with independent implementation histories

and choices of programming languages. A key operating expense of these appli-

cations is the movement of data across these systems. But what sounds like a

problem of moving data between systems is really the challenge of efficiently (1)

converting the data from a system’s internal in-memory representation to a wire

format and (2) accessing large amounts of data via record-by-record API calls.

111

This is precisely the challenge that Apache Arrow1 set out to address, an open-

source project that since 2016 has been quickly gaining adoption within the data

science community.

Apache Arrow

The key insight underlying the design of the Apache Arrow ecosystem is that

by creating an efficient, open data processing platform around a common, and

efficient in-memory data representation, with many different programming lan-

guage bindings (including C, C++, C#, Go, Java, JavaScript, Julia, MATLAB,

Python, R, Ruby, and Rust), data can move efficiently between the ecosystem’s

data processing engines running on different systems. Data processing and ex-

change can be implemented with a number of building blocks, including the Par-

quet file format [242], the Flight framework for efficient data interchange between

processes [170], the Gandiva LLVM-based JIT computation for executing analyt-

ical expressions by leveraging modern CPU SIMD instructions to process Arrow

data [191], the Awkward Array for restructuring computation on columnar and

nested data [193], and the streaming data processing engine named Acero [53] to

process complex user queries on tabular data. On top of these building blocks

exist a number of Arrow integration frameworks, including the Fletcher frame-

work that integrates FPGAs with Apache Arrow [188], NVIDIA’s RAPIDS cuDF

framework that does similar for GPUs [197, 223], the Plasma high-performance

shared-memory object store [181], the Skyhook distributed storage plug-in to

embed Arrow processing engines within Ceph storage objects [43, 45], and the

Substrait effort to standardize an open format for query plans between query op-

timizers and processing engines [177]. Today, many more projects are adopting

the Apache Arrow in-memory representation and the Dataset Interface that ab-
1https://github.com/apache/arrow

112

https://github.com/apache/arrow

stracts over a variety of file formats and other data sources [14], such as Apache

Spark [215], Dask [206], and Polars. The amount of significant investment poured

into this ecosystem is reflected by its recent cadence of four major version releases

per year, with the most recent being version 9.0.0, which resolved 1061 issues by

114 distinct contributors over three months.

Data Organization in Apache Arrow and Opportunities

Apache Arrow represents tabular data in a columnar, randomly-accessible,

in-memory format that allows for nested data structures and null values. The

format is designed to maximize CPU throughput by optimizing the data layout

for pipelining, SIMD instructions [178], and cache locality, enabling zero-copy

access in shared memory. Data is communicated by schema information involving

one or more optional metadata dictionary batches followed by record batches. A

record batch is composed of multiple arrays, each representing a part of the data

from one or more fields of a table. Record batches are designed to be the unit

of data processing communicated to and from processing engines. Batching of

records minimizes the need for record-based API calls, and the batch size can

be optimized for pipeline processing, while the columnar layout allows for SIMD

instructions.

Arrow IPC format is a protocol that encodes record batches into contiguous

bytes for storing in either files or memory. This encoding process is known as

serialization. Fig. 4.9 shows how a typical Arrow table is serialized into a byte

sequence in the IPC format.

The schema of a table is first serialized and written to the output memory

buffer. Then, for each record batch, the arrays it contains will be serialized one

after another according to their types. With all record batches being serialized

113

Figure 4.9: A simplified data serialization process of an Arrow table

resulting in a buffer vector, these buffers will be compressed in parallel for better

compression throughput. The number of threads that will be spawned in this

process typically matches the size of the buffer vector. For most array types, se-

rializing an array produces two buffers — a data buffer and an additional buffer

containing the metadata called the validity bitmap. As a result, the total number

of threads started is a multiple of the number of columns, which can keep many

cores busy. For example, in one of our reference datasets for experiments, the

loaded Arrow table contains 17 columns; however, the compression phase spawns

35 threads occupying more cores than the ones available from a CPU socket. As

such, the generated compression workload may hinder or stall performance-critical

applications such as simulations that are running on the same host. Leveraging

the compression accelerator from the BlueField-2 SmartNIC provides an opportu-

nity to break the dependence of compression performance on intensive computing

resource occupation.

114

Applicability to other data management libraries

While Apache Arrow meets several of our needs, our work can be adapted to

other important data management libraries. HDF5 [98] is an established library

for representing scientific data in stored data. Although it does not include a

rich set of primitives for dispatching queries on in-memory data, it does provide

a modular interface for extending the library’s capabilities. Kokkos [75] is a com-

putational library that aims to provide performance portability across different

data-parallel architectures. Its data views provide a simple structure for hosting

data vectors in a way that simplifies transport. Similarly, VTK-m [174] is a library

for facilitating data-parallel visualization operations.

4.4.3 Performance of Partitioning Particle Data

In an effort to more comprehensively evaluate the potential of SmartNICs

in processing particle data flows, we implemented a data partitioning algorithm

used in LSM trees. In this work, we used Apache Arrow to represent particles in a

tabular form that is suitable for transfer over the network and leveraged Arrow’s

filtering operations to split a table into smaller tables based on particle IDs. We

measured the amount of time required to unpack, partition, and repack data for

three particle datasets from different communities to demonstrate the flexibility

of this approach.

Implementation

We constructed a C++ program that inspects and processes in-transit data

objects in network data flows. This program is supplied with a contiguous-memory

data object and is expected to provide one or more contiguous result objects

that are to be sent to different locations. For this work, we use Apache Arrow’s

115

IPC methods to handle transformations between a serialized object that can be

transported in the network and an in-memory format that is suitable for tabular

computations.

The partitioning algorithm examines a table and uses a small number of bits

in the particle ID field to determine which output table should hold each particle.

Although Arrow provides a group-by function that would be useful for performing

a split in a single pass, it is currently limited to statistical operations. As such,

we implemented the partitioning as a multistep algorithm that executes a select

query to generate each table. While far from ideal, this approach is acceptable

in the LSM tree work because of the low-fanout requirements of the distributed

algorithm.

Reference Datasets

Three particle datasets were used in these experiments to provide better insight

into the performance of the algorithm with different data:

• TrackML Particle Tracking Challenge (“Particles”) [12]: CERN sup-

plied a particle simulation dataset for a machine learning competition hosted

through Kaggle in 2018. This dataset contains 10 numerical fields per par-

ticle.

• OpenSky Network (“OpenSky Planes”) [217]: The OpenSky Network

collects worldwide ADSB information for airplanes from volunteers. Entries

contain 16 fields composed of a mix of numerical and string values.

• NOAA Maritime (“Ships”) [179]: NOAA provides historical AIS position

data for ships near the US coastline. Daily data was converted to a particle

format that contained 17 fields composed of a mix of numerical and string

values.

116

Given that the BlueField-2 SmartNIC operates with 16GB of DRAM, we set

a 1GB limit for the size of uncompressed data to use in our experiments. We

decompressed each dataset, selected the number of rows that would be closest to

1GB in size, and then recompressed the data to serve as input to the experiments.

Experiments

Performance experiments were conducted on a compute node that features a

32-core AMD EPYC 7543P processor and a BlueField-2 VPI card. In the first

experiment, we measured the overall amount of time required for the host or

SmartNIC to unpack, partition, and repack the tabular data into 2 to 16 output

partitions. As depicted in Figure 4.10, the host operates roughly four times faster

than the BlueField-2 when processing uncompressed data. Increasing the number

of partitions increased the processing time in most cases. A closer inspection

of the “Particles” dataset revealed an ID address space issue that resulted in

a distribution imbalance. These issues can be mitigated by hashing the ID or

selecting ranges that are more meaningful to the application.

The second experiment examines the impact of Apache Arrow’s built-in soft-

ware compression mechanisms on performance. These tests vary whether the

input and output objects are serialized with no compression, LZ4 Frame compres-

sion [51], or Zstd compression [52]. Figure 4.11 provides the timing breakdowns

for unpacking, partitioning, and repacking 1GB of particle data when perform-

ing a 4-way split. As expected, uncompressed data is significantly faster to read

than compressed data. Repacking the data, however, is similar in all cases. This

overhead highlights the fact that serialization by itself is an expensive operation.

Examining the output sizes of the individual, serialized partitions generated

in the second experiment provides greater insight into how partitioning affects

117

2 4 8 16
Number of Partitions

0

2

4

6

8

10

12

14

16

18

20

Ti
m

e
(s

)

Overall Partitioning Time (1GB, No Compression)
BlueField-2: OpenSky Planes
BlueField-2: NOAA Ships
BlueField-2: Particles
Host: OpenSky Planes
Host: NOAA Ships
Host: Particles

Figure 4.10: Overhead for partitioning without compression

compression results. Figure 4.12 provides a breakdown of how large each output

partition is when using Zstd compression and the lowest 1 to 4 bits of the particle

ID to split the three input datasets. In the OpenSky Planes dataset, the lower

bits of the ID are diverse and yield equally-sized output partitions. There is a

slight decrease in the aggregate size of the output data as the number of partitions

increases because the individual partitions have more data redundancy that the

compression algorithm can exploit.

In contrast, the NOAA Ships and the Particles datasets have less diversity

in the lower bits of the particle ID field. As such, the partitioning algorithm

splits the data into uneven portions. This property is undesirable because it may

create load-balancing issues with downstream consumers of this data. While the

aggregate size of the NOAA Ships dataset improves as the number of partitions

increases, the Particles dataset does not as its IDs can only be split into three

partitions. These examples indicate that it is worthwhile for architects to under-

118

Figure 4.11: Timing breakdown for a 4-way split on the BlueField-2 using dif-
ferent software compression methods

stand the characteristics of their data and select partition address bits that will

result in balanced outputs.

4.4.4 Summary

While the host processors in our data partitioning experiment yielded better

performance, it is important to note that the BlueField-2’s embedded processors

were performant enough to be of value in many data flows. Scenarios where

producers generate periodic bursts of data are applicable, as the SmartNIC can

absorb the bursts and process the data before the next wave arrives.

119

0

100

200

300

400

500

Da
ta

se
t S

ize
 (M

B)

OpenSky Planes

0

100

200

300

400

500

Da
ta

se
t S

ize
 (M

B)

NOAA Ships

2 4 8 16
Number of Partitions

0

100

200

300

400

500

Da
ta

se
t S

ize
 (M

B)

Particles

Figure 4.12: Aggregate dataset sizes when varying the number of partitions and
compressing with Zstd

Implementing the partitioning operation with Apache Arrow highlighted its

development advantages. Arrow’s well-reasoned data primitives and existing sup-

port for serialization, compression, and processing greatly simplified the imple-

mentation effort. Our implementation worked with all three datasets without

modification, even though each dataset had different data components and ID bit

widths. Although the current version of Arrow does not have all the primitives

of a higher-level library such as Pandas [171], it contains adequate primitives to

120

implement a variety of operations.

4.5 Parallel Data Processing

HPC workflows and applications typically employ composable data service li-

braries [210], such as low-level remote direct memory access (RDMA) software,

key-value data stores, and lightweight query engines, to establish and tailor data

flows among various compute-intensive tasks for modeling, simulation, and anal-

ysis (or ModSim). These libraries constitute multiple software components that

can be combined to construct application-specific services. Despite the impor-

tance of composable data service libraries in workflows, one criticism of current

work is that services run on the system’s compute nodes, consuming resources

that could otherwise be available to ModSim tasks [231, 26, 70, 32]. Moreover,

these services can generate interrupts due to their asynchronous execution, po-

tentially introducing unnecessary delays to ModSim tasks that generally rely on

periodic synchronizations to proceed. With the advent of SmartNICs, offloading

data service workloads to these devices presents an opportunity to isolate services

from compute nodes, thereby recuperating valuable resources. In light of the

constrained-resource environment of SmartNICs, the immediate research ques-

tions arise regarding the performance of running data services on these devices

and their capability to optimally harness the device’s parallelization whenever

possible.

4.5.1 Scientific Computing Workflows

Advanced scientific computing workflows may involve multiple, parallel tools

that run on different nodes in an HPC platform at the same time. For example,

121

the workflow depicted in Figure 4.13 first uses a low-fidelity simulation to gen-

erate coarse-grained results that deep-learning tools can use to make predictions

about the simulation’s general behavior. These predictions are then used during

a high-fidelity simulation to make better decisions about optimizations such as

load balancing. Output results from the high-fidelity simulation are then routed

through visualization and I/O staging tools to extract insight and reorganize data

before it is archived to disk.

Low-Fidelity Simulation

High-Fidelity Simulation

In-Transit
Store

ML/DL
Training

Results

VIZ

Parallel
File

System

Job
Mgmt

= Compute Node

= Parallel Simulation Job

= Data Management Job

= Analytics Job

IO

Parallel
File

System

Figure 4.13: A workflow is mapped to HPC compute resources

The traditional means of passing data between workflow tasks has been to

write intermediate results to disk [61]. While NVMe storage has dramatically

improved performance [24], I/O is still a significant impediment in workflows as

data must be transformed from an in-application representation to an archival,

on-disk format. Additionally, file I/O libraries can be inconvenient for developers

as the interfaces are primarily designed to read and write data rather than process

it.

122

4.5.2 Composable Data Service Libraries

As a means of improving how data flows between workflow tools, research

groups have constructed composable data service libraries for HPC platforms, in-

cluding DataSpaces [67], Mochi [210], and Faodel [234]. These libraries provide

flexible communication software that makes it easier to route data from one appli-

cation’s memory space to another’s without using the file system. An important

aspect of this work is that users are presented with higher-level primitives than are

normally found in communication libraries to enable data extraction and retrieval

customized to the requirements of the data consumer. In addition to low-level

RPC, RDMA, and data query facilities, composable data service libraries include

key/value stores, REST API engines, and I/O drivers for interacting with external

data repositories. These features simplify development and enable users to reason

about their data at higher levels of abstraction.

Faodel provides an example of a composable data service library that sup-

ports multiple HPC platform architectures. Faodel is open-source2 C++ software

that includes drivers for InfiniBand [189], RoCE [100], and Cray Aries [10] net-

work fabrics. Faodel is composed of several components: an RDMA portabil-

ity library (NNTI) for low-level communication; a state-machine engine (OpBox)

for managing asynchronous tasks; a memory-management library (Lunasa) for

tracking memory allocations for network-accessible objects; a directory service

(DirMan) for maintaining workflow configuration information; a key/blob service

(Kelpie) for safely transferring objects between servers; and a lightweight web

server (Whookie) to allow users to query a remote service. In prior work, we have

used Faodel for I/O staging and checkpointing [23], coupling visualization appli-

cations to simulation codes, and insulating users from platform-specific storage
2https://github.com/faodel

123

https://github.com/faodel

issues [224].

Data Processing Library Extensions

Researchers in the HPC and data science communities have independently con-

structed advanced, data processing libraries that greatly complement the function-

ality of composable data service libraries. These libraries define robust data struc-

tures for organizing information and are designed to exploit the parallel-processing

capabilities of modern CPUs and GPUs. Popular data processing libraries in this

space include VTK-m [175], Kokkos [76], and Apache Arrow.

4.5.3 Service Placement

There are currently three locations in HPC platforms where researchers typi-

cally host data management services: in situ, in vitro, and in storage. In-situ ap-

proaches place services inside the individual actions of a workflow. This approach

reduces the overhead of interacting with a service, but increases build complexity,

sacrifices application resources to the service, and introduces fate sharing between

the application and the service. In-vitro approaches host services in external nodes

within the platform. This approach provides fault isolation but adds extra com-

munication overhead and increases the overall node count for a workflow. Finally,

in-storage approaches such as Skyhook [44] embed data services within the plat-

form’s storage nodes. However, system policies may forbid users from executing

code in these servers for security and reliability reasons.

Over the last decade, hardware vendors have introduced programmable net-

work interface cards or SmartNICs that enable users to place custom computations

at the edge of the network fabric. While the original motivation for developing

SmartNICs was to allow security researchers to monitor and inspect network flows

124

in real time [138, 213], the need for tighter infrastructure control in cloud com-

puting platforms has driven SmartNIC vendors to create more powerful cards.

Vendors such as NVIDIA (formerly Mellanox), Fungible, Chelsio, Intel, and Xil-

inx have constructed SmartNICs that allow users to embed computations at the

network’s edge. While some SmartNIC architectures employ FPGAs or ASICs

to maximize packet processing performance, most feature a multicore embedded

processor that is easier for developers to leverage.

Following the release of the InfiniBand-based BlueField-2 adapter, multiple in-

stitutions have deployed HPC platforms that feature SmartNIC-enabled compute

nodes [65, 124, 21, 164]. These architectures offer an opportunity to migrate data

services into SmartNICs. We see multiple advantages in this approach. First,

hosting services in SmartNICs enables services to be placed near applications in

an isolated space that does not consume host resources. As such, the host can of-

fload low-priority or asynchronous tasks that might otherwise impede applications.

Second, SmartNIC-enabled compute nodes add compute and memory resources to

the platform without requiring additional network infrastructure. Finally, vendor

roadmaps indicate that future generations of SmartNICs will include processor

and accelerator enhancements. While current SmartNIC hardware is sufficient for

basic data management tasks, upcoming products may take on greater responsi-

bilities in processing data pipelines.

Figure 4.14 shows an example of offloading a data reorganizing service to

multiple SmartNICs. The SmartNICs are logically assigned to multiple levels to

expand the data processing capability. When local SmartNICs receive simulation

data from the host, they split it into segments and forward the results to the

SmartNICs at the subsequent level for more detailed organization or concatenation

with supplementary processing. Since SmartNICs now manage in-transit data, it

125

is also possible to map data retrieval services to these devices and use lightweight

query engines to facilitate tailored data flows, thereby relieving the query overhead

that would otherwise be paid by compute nodes.

Figure 4.14: A data reorganizing service is mapped to levels of SmartNICs:
Blue boxes represent simulation tasks that run on compute nodes and generate
simulation data. Green boxes represent SmartNICs that receive and process the
handover data through the data service pipeline. Online queries can be delivered
to the SmartNICs to achieve customized data retrieval needed for the next simu-
lation task.

4.5.4 Performance of Multi-threaded Data Services

We conducted multiple experiments to examine the low-level performance

characteristics of the BlueField-2’s embedded processors while executing differ-

ent operations with composable data service libraries. This section presents the

results of our experiments, with a specific focus on the multi-threaded performance

of bookkeeping using Faodel and data processing using Arrow Acero.

126

Bookkeeping Overhead on the SmartNIC

Faodel provides a stress-test tool for measuring how quickly a system can

perform different tasks. Similar to stress-ng [131], performance numbers lack

meaning in isolation, but provide a useful way to compare different architectures.

Faodel’s LocalKV test uses a workload that employs multiple threads to put,

get, and delete objects from a local, in-memory, 2D hash map. Key names are

intentionally picked to either seek or avoid collisions. This test exercises common

data processing tasks, such as hashing, reference counting, lock handling, and

managing memory allocations.

We executed the LocalKV test on a diverse set of platforms to observe how the

BlueField-2’s processors performed compared to other architectures. The proces-

sors included: a 32-core AMD EPYC 7543P (Zen3) processor, a 68-core Knights

Landing (KNL) processor, and BlueField-1 and BlueField-2 SmartNICs with 16

and 8 Arm cores respectively. As depicted in Fig. 4.15, aggregate performance

(decreases/increases) as thread counts increase in the collision (seeking/avoiding)

experiments. Current server processors are roughly four times faster when using

the same number of threads, and an order of magnitude faster when using all

cores. Interestingly, the BlueField-2 outperforms the data-parallel KNL proces-

sors, which were employed in the previous generation of HPC platforms and had

known performance limitations [151].

Processing Arrow Data

Our Arrow experiments with the BlueField-2 focused on creating queries with

inherit parallelism and verifying that execution performance improves as the num-

ber of threads increases. For this work, we selected two types of queries that op-

erate on three-dimensional particle data. The first query filters an input dataset

127

20 21 22 23 24 25

Threads

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
Op

er
at

io
ns

/s

Collision Seeking
Zen3
BlueField-2
BlueField-1
Knights Landing

20 21 22 23 24 25

Threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Collision Avoiding

Zen3
BlueField-2
BlueField-1
Knights Landing

Figure 4.15: Performance in Faodel’s LocalKV stress test

based on a bounding box that is picked to select 1/8th of the original particles.

The second query computes the squared magnitude of the velocity of each particle

and returns the minimum and maximum values. We created a particle dataset

with 8M records and then measured the amount of time required to complete the

queries using a variable number of threads on the BlueField-2 and a host system

with a total of 32 Xeon E5-2698 processor cores.

0 10 20 30
Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

)

Filtering
SmartNIC
Host

0 10 20 30
Threads

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

)

Aggregation
SmartNIC
Host

Figure 4.16: Apache Arrow threading performance

128

The performance results presented in Fig. 4.16 confirm that Apache Arrow can

parallelize queries and leverage multiple processor cores to improve performance.

Latency drops significantly when moving from 2 to 3 threads for both systems.

However, there are only minimal improvements beyond 5 threads. While the host

is much more powerful than the embedded processor on the SmartNIC, it is only

37.8% faster than the SmartNIC when using 8 cores for this workload.

4.5.5 Summary

The flexibility of HPC applications to be composed and deployed across vari-

ous systems provides numerous benefits. Our study found that composable data

services exhibit high adaptability in multicore embedded systems and are capable

of parallelizing data processing workloads to achieve better performance. Despite

their inferior performance on the BlueField-2 when compared to powerful HPC

hosts, offloading these services to adjacent yet separated compute environments

facilitated by SmartNICs, can potentially alleviate resource contention on HPC

hosts, which has long been criticized as an issue.

4.6 Conclusion

In this chapter, we have explored the potential of offloading general opera-

tions using techniques similar to MBWU, where we normalized incommensurate

performance results with RPWU. We identified several operations as beneficial

candidates for offloading that can help alleviate resource contention on hosts. In

addition, we evaluated the processing headroom for network functions offloaded to

a SmartNIC, and our results showed that network stacks and configurations can

substantially influence the performance of offloaded functions. These components,

129

namely RPWU and processing headroom, emerged as potential metrics from our

exploration of a SmartNIC, and could complement those introduced in Chapter 3.

However, as there may be more undiscovered metrics, relying solely on individual

metrics could underestimate the opportunities of a device. Therefore, it is vital

to carefully explore hardware in the context of specific data services. Building

upon this, we further investigated the offloading potential of data partitioning

and parallel data processing in HPC workflows.

It is important to recognize that the processing resources available to a Smart-

NIC are considerably less than those available to a host. In this study, we observed

that the BlueField-2’s ARM processors performed approximately an order of mag-

nitude slower than host systems, primarily due to a combination of processor and

memory bandwidth limitations. The gap between embedded and server processors

is not unexpected and is unlikely to change in the foreseeable future.

While SmartNICs are not general-purpose accelerators, there are several sce-

narios where we expect the hardware to be beneficial to applications. First, Smart-

NICs are sufficient for performing simple data processing operations that do not

involve complex computations. Second, data flows that involve memory contention

operations, IPC operations, or encryption can leverage the card’s hardware archi-

tecture advantages and accelerators to achieve a speedup. Finally, despite their

relatively slower performance compared to servers, it may be advantageous to

offload low-rate, asynchronous event processing to SmartNICs, due to the distur-

bances these operations have on other tasks that run on the host. Offloading to

SmartNICs offers resource isolation and locality benefits that are attractive for

many data services and applications.

130

Chapter 5

Offloading Strategies

Offloading functions to embedded devices is not a panacea for enhancing sys-

tem performance. As the previous chapters show, offloading requires strategic

navigation of a myriad of trade-offs tailored to the specifics of individual use cases

while designing data services and applications to ensure offloading the right func-

tions at the right time. However, accomplishing this is a challenging endeavor,

as it entails identifying appropriate workloads and enabling proper distribution

of these workloads among multiple embedded devices, addressing the interactions

between functions, and scheduling workloads across functions to achieve optimal

performance improvements.

This chapter continues to use the example of optimizing particle data flows

in the context of HPC scientific workflows with SmartNICs, with a focus on ar-

ticulating the strategies we have developed for identifying workloads, enabling

workload distribution, and addressing function interactions and scheduling. I be-

gin with an in-depth examination of the requirements for offloading data services

to SmartNICs in Section 5.1. To address some of these requirements, I developed

a data compression library called “Bitar,” which employs hardware compression

to reduce data serialization overhead, as discussed in Section 5.2. Section 5.3

131

presents a comprehensive account of the implementation of an embedded pro-

cessing pipeline that enables data transformation and facilitates data-sifting tasks

using SmartNICs. Finally, in Section 5.4, I dive into dynamic offloading and ex-

hibit a mechanism and the corresponding implementation as a decision engine

that empowers SmartNICs to make informed decisions regarding the placement

of data query workload execution.

5.1 Requirements

The potential evaluation of embedded devices provides crucial insights into the

significance of communication and computation to achieve optimal performance

for offloaded data services. Based on the evaluation results, we identify the fol-

lowing high-level requirements for devising strategies to offload data services to

SmartNICs.

5.1.1 Communication

Composable data services utilize various approaches to effectively organize

and reroute large volumes of data to adapt to consumption patterns, leading to

dynamic changes in data management criteria across nodes as data propagates

through the processing pipeline. For example, a data service may use different

strategies to aggregate input data based on its current stage in the pipeline. In

early-stage processing, where received data is more prone to shuffling as gen-

erated by ModSim tasks, aggregating this data with lower precision can reduce

computational overhead. Conversely, for processing running at later stages, higher

precision may be utilized for aggregation, as the received data is mostly processed

and thus, the workload can be efficiently reduced even with parameters of higher

132

precision. Offloading these dynamically changing workloads to SmartNICs is chal-

lenging, as it requires a mechanism to specify data processing workloads based

on the runtime parameters in diverse scenarios. Additionally, to enable the off-

loading of customized data retrieval workloads to these devices, it is essential to

have a flexible means of defining workloads by the request initiators, allowing for

the delivery of workloads through the network and their execution on SmartNICs

without incurring significant preprocessing overhead. In order to address these de-

mands, a workload definition specification that encompasses the following features

is required and is expected to support:

• data inputs of different types. For example, some data may be in

string type, and some are in integer type. Simulation particle data typically

contains arrays of data, so the specification should also support defining

data of different array types;

• different operations on data input. Data services can utilize various

operations to transform the input to be more readily consumable. This

transformation process may involve applying operations such as arithmetic,

logical, comparison, and aggregation functions to the data;

• user-defined functions (UDFs) to facilitate different use cases. User-

defined functions offer valuable flexibility in the data processing. These func-

tions are not necessarily resource-intensive and can be executed efficiently

even on resource-constrained devices like SmartNICs. An example of UDF

may be to apply a ceiling to a value only if it falls below a certain threshold;

• constructing composable definitions. Data services often involve a se-

ries of operations, typically chained in sequence. For instance, a workflow

might require executing a comparison operation after an arithmetic one, or

133

conducting an aggregation operation following a projection and a series of

logical operations;

• referring to local or remote data inputs. Workload definitions often

require to reference data located on remote nodes or disparate SmartNICs.

This scenario is particularly prevalent when one node delegates a particular

task to another, yet the requisite data for the said task is not under the

ownership of the delegating node;

• constructing definitions with high-level interfaces. A workload def-

inition may contain hierarchical operations, which can be tedious to con-

struct and challenging to manage using low-level expressions. Providing

high-level interfaces to abstract away the complexity of breaking it down

into corresponding operations and applying conversion and canonicalization

when necessary aids in building data services, enabling service developers

to express their desired logic in a more intuitive and straightforward man-

ner. This can be especially important when working with large datasets or

intricate workflows that require multiple steps to achieve the desired result;

• constructing serializable definitions. This is because instructing a

SmartNIC to perform a specific task requires sending a workload definition

over the network.

The second facet of the communication requirements lies in the overhead as-

sociated with the network transfer of data generated by offloaded workloads. As

discussed in Section 4.3, data transfer using the traditional Linux kernel TCP/IP

stack can lead to significant overhead, especially on systems with limited comput-

ing resources. Additionally, when it comes to data marshalling or serialization,

achieving efficiency is crucial to allow the majority of SmartNICs’ computational

134

resources to be dedicated to data processing. Therefore, the data transfer process

should possess the capability to:

• leverage low-overhead or accelerated data transports (e.g., RDMA).

HPC platforms typically employ RDMA for communication between differ-

ent services. Being able to use these transports can improve the performance

of data processing pipelines;

• serialize data into a concise on-the-wire format. As a counterexample,

although JSON is a widely-used data format that represents structured data

in a string format suitable for network transmission, it is more optimized

for readability than binary size, making it less suitable for data-intensive

services. Formats like Google Protobuf [25] and FlatBuffers [143], on the

other hand, emphasize reducing the size of serialized data, making them

more suitable for such contexts;

• serialize and deserialize data efficiently. Data serialization can con-

sume significant computing resources on embedded systems, even those

equipped with multicore processors and multiple gigabytes of memory. This

is due to the segmented memory copying involved in processing small-sized

data items that require rearrangement on a contiguous memory space. The

memory space may even be reallocated multiple times due to the uncertainty

of its final size. To minimize the impact of data serialization on system per-

formance, it is crucial to optimize the process using efficient algorithms and

data structures.

135

5.1.2 Computation

Given the limited computing resources on SmartNICs, the ability to explore

parallelism when possible for data service workloads is crucial. Although workload

definitions may not provide sufficient information to guide parallelization, the

workload execution engine needs to have the capability to partition a workload

into segments and delegate them to distinct threads by harnessing the available

computing power on the system. However, care should be taken to avoid over-

parallelization that could potentially overload the system. Overall, the execution

engine is expected to be capable of:

• formulating execution plans to facilitate parallelism. Workload defi-

nitions are not necessary to specify the parts that can be executed in parallel.

In fact, the execution engine can use algorithms, such as topological sort-

ing, to identify independent operations within a workload definition. These

independent operations can subsequently be scheduled to run in parallel.

Ideally, the complexity of this process, including identifying and locating

the necessary data inputs, should be managed internally by the execution

engine, keeping it abstracted from workload definitions;

• leveraging local resources to maximize execution efficiency. Given

that modern SmartNICs are equipped with multicore computing capabili-

ties to manage advanced data services, the execution engine should, once

the workload execution plan is established, make the utmost use of the

SmartNIC’s available computational power.

In certain domain-specific areas, security considerations may take precedence

and therefore need to be taken care of and included as part of the requirements.

HPC systems are often administered with firewalls and authentication controls

136

and adhere to a reserve-before-use model to ensure secure access. As our current

research is primarily focused on optimizing HPC workflows, we have consciously

chosen to exclude these security considerations from our current scope of study.

5.2 Bitar: Optimizing Data Compression for Se-

rialization

Data compression plays a crucial role in data serialization and is particularly

significant for data-intensive applications, as it minimizes the amount of data

that needs to be transmitted over networks, cached in memory, and stored on

disk. Most large-scale data I/O libraries, such as Avro [241], Parquet, ORC [235],

and Arrow IPC, come equipped with built-in support for a myriad of compression

codecs. As such, any application that processes this data must be capable of

decompressing and compressing the data in a manner that complies with the

library’s data format.

However, it is well-known that data compression is a computationally inten-

sive task [149, 81, 1, 37] for general-purpose host processors, not to mention

that if it is handled only by embedded processors. The BlueField-2 SmartNIC is

equipped with a hardware compression accelerator that supports the DEFLATE

algorithm [64]. DEFLATE is widely used and is a key part of standards such as

PNG [28], HTTP [173], TLS [111], and SSH [267]. More importantly, this algo-

rithm is part of the zlib compression family, which enables the use of hardware

compression as needed, with the option to decompress using software in appli-

cations and vice versa. This interoperability is critical because it enables data

processing tasks to be “pushed down” and offloaded from the host or “pushed

back” when the accelerator becomes saturated with work. The BlueField-2’s com-

137

pression hardware is currently accessed through the Data Plane Development Kit

(DPDK) [42, 83], which is a library for constructing high-performance data-plane

applications on top of a variety of network hardware devices. The compression

hardware is designed to process streams of data packets in an efficient manner,

with DMA hardware facilitating the movement of data between the accelerator

and memory.

5.2.1 Hardware Compression for In-transit Data

As demonstrated in Section 4.4, converting between on-the-wire and in-memory

formats is an important and time-consuming task for systems that process in-

transit tabular data. Given that the Bluefield-2 SmartNIC provides a compression

accelerator and multiple cores that Apache Arrow can leverage, it is worthwhile

to explore the different compression options that are available for packing and

unpacking data. We conducted three experiments to answer the following three

questions: (1) Is the compute overhead caused by software-based compression

significant enough to justify offloading the (de)compression to hardware accelera-

tors? (2) How does the throughput performance of hardware-based compression

compare with software-based compression in a threaded environment? (3) Does

the compression ratio change between the hardware- and software-based methods?

Hardware Compression Challenges

The BlueField-2’s compression hardware can be accessed through the Data

Plane Development Kit (DPDK) library. Unfortunately, this library is highly

tuned for network operations and is organized around a packet-processing model

that can be cumbersome for other types of applications. We faced several chal-

lenges in adapting DPDK’s compression functions to process our Arrow data.

138

First, individual data packets have a maximum size of 64KB. To compress larger

amounts of data, developers must slice input and output buffers into packet-sized

segments and then generate a packet that connects a list of compression com-

mands for processing each segment. Second, converting between contiguous and

segmented data representations can result in extra memory allocations and copies

that disrupt the throughput of the data flow through the compression hardware.

Optimizing the pipeline requires a detailed understanding of both DPDK and the

hardware, and is tedious for users that simply want to (de)compress large blocks of

data. Third, embedded hardware environments have limited resources. Therefore,

recycling resources after each compression operation while still managing errors is

extremely important. Finally, a single ARM CPU core may not be sufficient for

maximizing the performance of the compression accelerator. As such, it is valu-

able to construct a pipeline that pre-allocates memory and divides work among

cores as needed.

5.2.2 Compression Interfaces

To simplify accessing the compression hardware for data compression, we im-

plemented the Bitar [154] library on top of DPDK and Arrow. Bitar provides a

convenient (de)compression API and features zero-copy processing, synchronous

and asynchronous operation, and multicore/multidevice support. Notably, Bitar

is designed to function without the need for root privileges, a feature not com-

monly seen in DPDK-based applications. Bitar also allows users to access the

BlueField-2’s compression hardware from either the host’s or BlueField-2’s pro-

cessors.

139

5.2.3 Performance Advantages

All experiments in this section were carried out on a CloudLab [73] host with

two AMD EPYC 7542 CPUs (a total of 64 cores), 512 GB of DDR4 memory, and

a BlueField-2 SmartNIC connected with PCIe 4.0 x16 lanes. Each experiment was

run on all three reference datasets (see Section 4.4.3) with a maximum outstanding

data window size of 160MB due to memory constraints imposed by DPDK and

the pipelined nature of the compression hardware.

Since Bitar has not yet been fully integrated into Arrow, our experiments com-

press Arrow tables differently depending on whether software- or hardware-based

compression is measured. The software-based approach relies on Arrow’s existing

compression mechanisms, which serialize and compress each column independently

before writing the final output buffer (i.e., “inner compression”). In contrast, the

hardware-based approach serializes the entire table and then streams the data

through the compression hardware (i.e., “outer compression”). While the former

is preferred, the latter is sufficient for network transfers. Furthermore, comparing

the performance of these approaches can help determine the benefits of integrating

hardware compression into Arrow.

Software Compression Overhead with A Single Thread

Our first research question focuses on whether software-based compression

overhead is significant enough to justify hardware acceleration. To answer this

question, we constructed an experiment measuring the time for a single thread to

pack and unpack Arrow data in software using different codecs. We intentionally

excluded the memory allocation time in this experiment, given that it can be

preallocated using historical knowledge of output buffer sizes.

Timing results for the “Particles” dataset (see Figure 5.1) indicate that serial-

140

38

724

932

10

223

366

0

136

332

0
75

183

0

200

400

600

800

1000

UNCOMPRESSED LZ4 Frame Zstd

Ti
m

e
 [

m
se

c]

BF2 (Ser.) Host (Ser.) BF2 (Deser.) Host (Deser.)

Figure 5.1: Single-thread (de)serialization time with different compression
codecs

ization without compression is efficient, thanks to the zero-copy buffer design of

Arrow’s IPC format. However, involving either LZ4 Frame or Zstd compression in-

troduces significant CPU overhead and increases time consumption by one to two

orders of magnitude. For example, serialization without compression on the host

takes 10 milliseconds, while adding LZ4 Frame compression to the serialization

increases the time to 223 milliseconds. We observed similar results using the other

two reference datasets. Given that compression is a significant impediment to per-

formance, we conclude that acceleration is worthwhile in performance-sensitive

applications.

Serialization Throughput in a Threaded Environment

Our second question focuses on how well the software- and hardware-based

compression methods perform in a threaded environment. One advantage of Ar-

row is that it automatically parallelizes the packing and unpacking of tables by

dispatching each column’s work to its own thread. In Bitar’s case, multiple threads

can be used to maximize the amount of work supplied to the compression hard-

ware. Since the (de)compression is part of the (de)serialization process in Arrow,

we conducted experiments to observe how the (de)serialization throughput im-

proves when scaling (de)compression to use an optimal number of worker threads.

141

Figure 5.2: (De)serialization throughput with different compression codecs and
degrees of parallelism

Figure 5.3: The maximum throughput performance on the host for all three
datasets

Figure 5.2 shows the throughput measurements for the “OpenSky Planes” ref-

erence dataset. Without limiting the number of threads in the experiment, both

LZ4 Frame and Zstd used 35 threads during compression and decompression. In

contrast, the hardware compression throughput with Bitar was maximized when

using only two threads, as we did not see higher throughput with more threads.

Note that, due to the slower memory subsystem of the SmartNIC, the serializa-

tion throughput with Bitar on the host is higher than that on the SmartNIC. In

general, for this dataset Bitar outperformed software-based compressions in all

cases. The maximum throughput on the host with different codecs for each of

the three datasets is summarized separately in Figure 5.3. To better illustrate

the advantages of using the hardware accelerator for (de)compression, we list the

142

(de)serialization speedup with Bitar in Table 5.1 and 5.2. For compression with a

single thread on the host, depending on the codec and dataset used, serialization

with Bitar can achieve between 4.6-8.6x higher throughput than serialization with

software-based compressions. For compression with multiple threads, the use of

Bitar can speed up the serialization throughput on the host by 1-2x. For decom-

pression with a single thread on the host, using Bitar can speed up throughput

by 3.3-10.8x. For multithreaded decompression, Bitar outperformed ZSTD in all

cases, but was observed to fall behind LZ4 Frame in the case with a wide dataset

that loaded in many columns (i.e. 19). This is because the wider the dataset is,

the more cores it can leverage during the (de)compression phase. However, since

deserialization with Bitar can already achieve greater than 100 Gbps throughput

that has maxed out the SmartNIC’s network bandwidth, the marginal benefit of

the additional (de)compression throughput above the NIC’s network capability

achieved by the resource-intensive software-based approach is minimal consider-

ing the limited local storage support on the NIC, especially for tasks focusing on

transferring in-transit data. Conservatively speaking, based on these results, the

throughput of the compression accelerator rivals that of a software implementa-

tion that consumes all the cores of a modern CPU socket. For example, although

Bitar’s performance is lower than that of LZ4 Frame with 42 threads in the case of

testing with the “Ships” dataset, it is greater than the same codec’s performance

with 35 threads when testing with the “OpenSky Planes” dataset.

Table 5.1: Serialization speedup with Bitar on the host

Particles OpenSky Planes NOAA Ships
LZ4 Frame (single thread) 4.61 4.71 4.71
Zstd (single thread) 7.55 7.89 8.58
LZ4 Frame (multiple threads) 1.39 1.44 0.95
Zstd (multiple threads) 2.06 2.00 1.43

143

Table 5.2: Deserialization speedup with Bitar on the host

Particles OpenSky Planes NOAA Ships
LZ4 Frame (single thread) 4.46 3.30 4.59
Zstd (single thread) 10.84 9.51 10.20
LZ4 Frame (multiple threads) 1.78 1.13 0.65
Zstd (multiple threads) 2.72 2.52 1.45

Impact on Compression Ratio

Our third question focuses on quantifying how the compression ratio changes

when switching between different configurations of the software- and hardware-

based compression methods. The compression ratio is computed by dividing the

compressed IPC buffer size for a particular configuration by the uncompressed IPC

buffer size. We expect the ratio to change in the Bitar hardware implementation

because (1) a different compression algorithm is used and (2) the implementation

applies compression on the entire table instead of individual columns.

The compression ratios for different configurations are presented in Figure 5.4.

Results listed for Bitar are presented for one and two threads to illustrate that

splitting the work into multiple threads does not have a significant impact on

output size. The hardware-based compression using the DEFLATE algorithm

provides a compression ratio that is between that of the LZ4 frame and Zstd codecs

in all three datasets. These measurements confirm that offloading computations to

the BlueField-2’s compression accelerator does not result in a significant sacrifice

in the compression ratio.

Discussion

These performance results reveal that general-purpose CPUs are not particu-

larly efficient in (de)compression tasks as the single-thread performance is far lower

than that accelerated by compression hardware. Moreover, (de)compression using

general-purpose cores cannot effectively scale the performance with the degree of

144

51%
55%

41%

51%
55%

41%

58% 61%

47%46% 46%

31%

0%

10%

20%

30%

40%

50%

60%

70%

Particles OpenSky Planes NOAA Ships

R
a
ti

o

Bitar (1 thread) Bitar (2 threads) LZ4 Frame Zstd

Figure 5.4: Compression ratios under different compression approaches. Thick
black borders indicate hardware (de)compression results.

parallelism. In the database arena, recent applications have begun to advocate the

use of specialized storage devices that can perform transparent (de)compression to

optimize throughput and latency [37, 260]. We believe that similar efforts should

be made to improve the performance of in-transit data processing. That is, in-

stead of occupying an entire modern CPU socket to gain optimal (de)compression

performance, applications can benefit more from running complex logic on these

general-purpose cores and offloading compression tasks to hardware accelerators

deployed along the data path. For distributed data analytics, having the ability to

(de)compress data at near network speeds and with only a fraction of the system’s

available compute cores is essential for streaming data across nodes.

5.2.4 Summary

While current-generation SmartNICs are slower at processing data than servers,

they can perform fundamental data-sifting tasks that are commonly required by

different workflows. The compression hardware is particularly appealing for this

work, as it allows users to efficiently unpack, process, and repack in-transit data

products. However, the current interface for accessing the hardware is challenging

to leverage and an obstacle for developers. We present Bitar as a reusable library

145

for simplifying compression on the BlueField-2 cards.

Apache Arrow provides a data model and a collection of operators that are

particularly well-suited for processing data on embedded devices that are part of

a eusocial processing environment. Arrow’s tabular notation allowed us to devise

a general framework for storing and processing particle data that did not need to

be adjusted when switching between datasets. We note that other types of data

may not map to a tabular form as elegantly.

There are multiple paths forward from this work. Having completed the on-

card processing work, we will transition to network tasks related to distributing

data between SmartNICs and coordinating resource utilization across a distributed

system. Based on the TCP bottlenecks observed in previous work, it is impera-

tive that these operations take place with RDMA primitives. For the compression

work, Arrow will need minor adjustments to allow general users to take advantage

of Bitar. These adjustments include modifying Arrow’s IPC format to support the

DEFLATE codec, incorporating Bitar into Arrow’s list of approved third-party li-

braries, and updating Arrow to route data through Bitar when appropriate. These

changes would allow for finer-grained access to Arrow data than our current work,

as the compression would be applied to individual columns instead of serialized

tables.

5.3 Embedded Processing Pipeline

The criticism of running composable data services on the compute nodes of an

HPC platform, occupying simulation tasks’ resources, catalyzes to seek answers to

two research questions: How should we construct software to implement services

on these devices? Can distributed services perform useful work on SmartNICs?

In this section, we focus on answering these questions by defining requirements to

146

enable interoperability and data service pipelining with SmartNICs and discussing

a software-stack prototype and its performance on current hardware. Finally, we

present a case study in which a distributed particle-sifting service runs on a 100-

node HPC cluster that features BlueField-2 SmartNICs.

5.3.1 SmartNIC Software Stack for Data Services

To efficiently bridge the gap between resource-rich hosts and resource-constrained

SmartNICs running data management services, we need a software stack that can

orchestrate these services among hosts and SmartNICs while minimizing the im-

pact on applications and maximizing the reuse of existing software. This software

stack must address communication issues (e.g., How do applications interact with

remote SmartNICs over the network? How can SmartNICs work collectively?) as

well as computational issues (e.g., How are computations defined and executed by

services? How can the system be extended with new operations?). In this section,

we define our list of requirements for this software stack and discuss how a suitable

environment for hosting services in SmartNICs can be constructed through the

combination of the Faodel and Apache Arrow libraries.

Service Requirements

Based on our experiences with workflow environments, we identify five basic

requirements we expect from an environment where services execute in embedded

devices (Figure 5.5). (1) Each service endpoint requires a unique identity that

other entities in the platform can reference and access via efficient communication

mechanisms. (2) Users must be able to control the mapping of services to physical

resources at runtime and group several devices together in a way that allows the

devices to work together. (3) Users must be able to trigger service computations

147

locally and remotely. (4) The stack should present a flexible data-processing API

that is robust and has community acceptance. (5) Data-parallel computations

must automatically exploit available CPU resources.

Figure 5.5: Requirements on the environment for embedded service execution

Communication: Faodel

We selected the Faodel library to serve as a foundation for the communication

portion of our software stack prototype because it is open source, written in C++,

has support for both x86 and Arm, and includes existing primitives for working

with endpoints scattered about a platform. Specific details about how Faodel

fulfills our requirements follow.

• System-wide Accessibility: Faodel assigns a unique identifier to each

endpoint that is used to establish both HTTP and RDMA communication.

Faodel’s Kelpie library provides an easy-to-use mechanism for safely trans-

ferring key-labeled objects between endpoints using RDMA mechanisms.

Users can put, get, list, and delete objects on local or remote endpoints.

• Resource Pools: Kelpie uses a simple pool abstraction for grouping mul-

tiple endpoints together for related work. A pool contains a list of endpoint

members and a distribution policy that maps key labels to pool members.

By supplying different pool configurations at start time, users can change

the behavior of their data flows.

148

• Dispatching Computations: While Kelpie is agnostic about data for-

mats and computations, it provides two methods for invoking computations

at endpoints. First, an endpoint may run its own main loop that periodically

inspects the state and reacts to changes. Second, users may invoke compu-

tations on objects at remote endpoints through user-defined functions.

Computation: Apache Arrow

Apache Arrow was selected to implement the data computations in this work

because it provides a rich set of primitives for storing and querying tabular data,

is open-source C++, and is actively developed by a large community. Specific

aspects of Arrow that meet our requirements follow.

• Common Data Representation: Arrow’s tabular data model is suitable

for describing many kinds of scientific datasets and provides a useful stan-

dard for data exchange. In addition to efficient, in-memory data structures

for storing and processing tabular data, Arrow includes serialization software

for converting data to a standard, on-wire format. This software simplifies

development and improves interoperability with other libraries.

• Data-Parallel Computations: One of the benefits of Arrow’s robust,

tabular data model is that users can specify high-level queries that can be

processed efficiently with parallel-processing techniques. Specifically, Arrow

includes a streaming data processing engine named Acero [53] that processes

complex user queries on tables. Acero extracts a computational graph from

a query and then maps the data flow to local processing cores.

149

Integration Challenges and Requirements

We faced two integration concerns while constructing our software stack for

data management services. First, small portions of Faodel and Arrow target

processor-specific features. While both libraries had previously been ported to

x86 and Arm processors, extensive testing was required to ensure data handoffs

between the two architectures functioned correctly. The second integration chal-

lenge involved finding a means of transporting Arrow data using Faodel’s native

objects. Our current solution is to use Arrow’s IPC serialization mechanisms to

embed one or more tables in a Faodel object. A wrapper class was developed to

convert between an in-memory Arrow table and the payload section of a Faodel

object.

Additionally, we define multiple requirements for building a particle-sifting

service. First, the service must be implemented in a distributed manner that

spreads the data and work across available resources to ensure efficient execution

and memory utilization. Second, processing elements (PEs) must be able to accu-

mulate data and operate asynchronously to allow the system to react to dynamic

runtime characteristics. Finally, the service must minimize the amount of time

required for a simulation to inject a new wave of data.

5.3.2 Distributed Particle Sifting

We constructed software on top of Faodel and Arrow to implement a mul-

tistage sifting algorithm that uses a collection of SmartNICs (or Hosts) as PEs

in a linear pipeline. As illustrated in Fig. 5.6, simulation ranks sample particle

data for the current time step and inject a copy of it to the PE hosted at the

local SmartNIC. Once a user-defined accumulation threshold is crossed, the PE

performs a compaction operation. During compaction, the PE splits all of its

150

accumulated data into smaller objects based on bits in each record’s particle ID

field [158], and transmits each output object to its corresponding PE in the next

stage of processing. Particles become more sorted as they move through each of

the stages.

While PEs can be mapped to any physical SmartNIC or host in the system,

it is expected that multiple, neighboring PEs will exist at a single location to

reduce communication costs. The actual steering of data between PEs is managed

through a combination of a key-labeling scheme and the use of Faodel pools to

determine where data is routed. The key-labeling scheme concatenates the next

stage’s ID and the currently-matched Particle ID bits to pick a unique destination

for the data. Additional source info is embedded in a separate portion of the key

to avoid collisions with the data from other PEs.

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

P2(0)

P1(1)

P1(0)

4

5

6

7

0

1

2

3

P0(0)

PE Pool Membership

1 3

Simulation Sifting PEs

Stages: 2

Logical Dataflow

P0(1)

P0(2)

P0(3)

P0(4)

P0(5)

P0(6)

P0(7)

1 3Stages: 2

Figure 5.6: Dataflow and placement for sifting particle data

Multistage sifting systems with low PE fanout and high numbers of compute

nodes can easily result in a few nodes in the system becoming overwhelmed with

all the simulation’s data. To mitigate this problem, we use Faodel’s pool notation

to limit the number of nodes to which a PE can distribute data. At start time,

software generates a collection of pools in the cluster that correspond to where

151

different PEs reside. For example, the network depicted in Fig. 5.6 shows three

stages and PEs that can split each object into four possible outputs. The 6th PE

in stage 1 uses pool “P1(1)” to route to four possible destinations, while the 6th

PE in stage 2 uses “P2(0)” to route to eight possible destinations.

Injection Overhead

The first step in reorganizing the particle data is for each host in the simulation

to sample its current data, convert it to serialized Arrow data, and then trans-

fer it to the local SmartNIC. We constructed a benchmark to quantify injection

overheads and varied the transfer size from 1M–64M particles (37MB–2.4GB). As

presented in Fig. 5.7, transferring the data to the card through Faodel’s primitives

consumed 81% of the overall injection time. For 64M particles, we observed an

overall transfer rate of 1.32GB/s.

1M 2M 4M 8M 16M 32M 64M
Particles

0.0

0.5

1.0

1.5

Ti
m

e
(s

)

5.24 GB/s

1.77 GB/s

Transfer to SmartNIC
Convert to Arrow and Serialize

Figure 5.7: Data preparation and injection overhead

Impulse Response

To explore sifting performance for different configurations, we constructed an

impulse response benchmark that injects uniform data to each of stage 1’s PEs

and then measures the amount of time required for all compaction events to take

place in a synchronous manner. We varied the number of splits performed by each

152

PE and selected the minimum number of stages that would be required to fully

distribute data across 100 SmartNICs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1

25

50

75

100
Sm

ar
tN

IC
 N

od
e

4 Stages, 4 Splits per Stage

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1

25

50

75

100

Sm
ar

tN
IC

 N
od

e

2 Stages, 16 Splits per Stage

Split
Publish

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

1

25

50

75

100

Sm
ar

tN
IC

 N
od

e

1 Stage, 128 Splits per Stage

Figure 5.8: SmartNIC sifting time for 100M particles

Fig. 5.8 presents the split and publish timings required to process 100M par-

ticles on 100 SmartNICs. While performing 128 splits allows the work to be

completed in a single pass, doing so is slightly slower than doing 4-way splits over

4 stages of work. Our experiments indicate that 16 splits per object yielded the

best solution for the SmartNICs. In most cases, split time was more expensive

153

than the publish time. Overall, the current implementation provides a relatively

uniform distribution of work and data across the nodes.

4 8 16 32 64 128
Splits per Stage

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)

SmartNICs
Hosts

Figure 5.9: First stage overhead for 100M particles

Reducing first-stage overhead is important as it makes the sifting network

more responsive to injected data. We repeated the previous experiment on 100

EPYC 7543P Zen3 server nodes to measure the first-stage performance for a range

of splits. As depicted in Fig. 5.9, the 32-core host processors were roughly four

times faster than the 8-core Arm processors.

In the final set of measurements, we conducted impulse response tests for 10M,

100M, and 1,000M particles. The overall sifting times for 100 SmartNICs and 100

host systems are presented in Fig. 5.10. Performance scaled linearly in both cases.

The host systems were again roughly four times faster than the SmartNICs.

Discussion

In terms of raw performance, the hosts are noticeably faster than the Smart-

NICs at sifting the particle dataset in a distributed manner. However, there are

multiple scenarios where lower performance is acceptable, such as when time step

154

0 5 10 15 20 25
Total Time (s)

10M

100M

1,000M

Nu
m

be
r o

f P
ar

tic
le

s

0.13

0.66

6.06

0.39

2.23

22.88

SmartNICs - 16 Splits
Hosts - 16 Splits

Figure 5.10: Total sifting time for different input datasets

snapshots take place infrequently or host memory is highly constrained. In these

examples it is valuable for the host to be able to rapidly pass data to the Smart-

NIC, reclaim memory, and return to the simulation.

The overhead of serializing data and injecting data to the SmartNIC was sub-

stantially higher than expected and a significant opportunity for improvement.

Future work will focus on optimizing the transfer path between the host and its

local SmartNIC. NVIDIA’s recent DOCA library [36] includes host-to-card DMA

transfer software that is expected to remedy this problem. It is also likely that

converting, serializing, and injecting data in smaller fragments will help pipeline

the process.

This case study demonstrates that Faodel and Arrow can provide a useful

environment for hosting data management services on a collection of SmartNICs.

The ability to change the behavior of the system by supplying a configuration

with different pool definitions enabled us to fine-tune the implementation without

rebuilding the software.

155

5.3.3 Summary

SmartNICs offer a new location in HPC architectures for hosting data man-

agement services. Constructing a software stack that can support these services

involves developing a communication plane that allows different endpoints in the

platform to interact with the SmartNIC, and data processing software that can

efficiently dispatch computations on datasets that adhere to a well-defined data

model. Future work with SmartNICs must create a stronger coupling between the

host and its local SmartNIC, and take advantage of vendor-specific features for

accelerating performance.

5.4 Dynamic Offloading

Enabling data services and software stacks to run within distributed Smart-

NICs only unilaterally tackles the offloading challenges. Given the constrained

resource environment on SmartNICs, running data services without a dynamic off-

loading mechanism that allows SmartNICs to decide and “push back” operations

may result in suboptimal performance of the services and potentially propagating

performance lags to subsequent simulation tasks. For example, when a SmartNIC

is loaded with operations for data sifting, the concurrent demands for customized

data streams from the SmartNIC may be impeded due to the insufficient availabil-

ity of parallel processing cores or memory resources for effective data processing.

To address this problem, it is essential to have an efficient mechanism that Smart-

NICs can execute in situ and react to workload requests based on the runtime

resource context and the performance requirements of the respective workflows.

Retrieving customized data streams is a standard requirement in HPC simu-

lation to allow different simulation tasks to consume only the relevant data parts.

156

For example, a simulation task may be interested only in particle data collected

from events occurring within a specific region for analysis. Given that in-transit

data is hosted by SmartNICs, the dynamic offloading of data query workloads

presents an ideal use case that relieves performance concerns by potentially real-

locating workloads to hosts, while continuing to explore the data locality benefits

from running within the SmartNICs.

In this section, we begin by exploring the classes of push-back strategies that

enable dynamic offloading. Subsequently, we delve into the requirements that

extend beyond the implementation of one-way offloading. Finally, we provide a

comprehensive account of our experience building a dynamic offloading decision

engine and evaluating its performance. The statistics generated by the decision

engine can be harnessed by schedulers based on job sizes or predictive models,

therefore rendering it a highly versatile component that can offer substantial ben-

efits to a wide range of data services.

5.4.1 Push-back Strategies

Different push-back strategies reflect different goals for offloading workloads.

Similar to the various congestion control strategies used in the network domain to

optimize packet data workloads, push-back strategies for data service workloads

can be categorized into two classes.

The first class of strategies is utilization-oriented. In the network congestion

control arena, Cubic TCP [103] is an example of this strategy class that effi-

ciently achieves high bandwidth utilization in the face of high latency. Previous

research [161] has explored this direction for offloading distributed applications,

such as real-time data analytics engines and replicated key-value stores, onto

SmartNICs with the goal of maximizing NIC compute utilization.

157

The second class of strategies is performance-oriented. TCP Vegas [30], among

other TCP congestion control algorithms, exemplifies this approach by prioritiz-

ing packet delay over packet loss as a signal to determine when packets should be

rejected. These strategies may emphasize a particular performance metric over

others, such as prioritizing low latency at the expense of reduced throughput per-

formance by limiting the queue size. Similarly, a performance-oriented strategy

for data service workloads may push back workloads to hosts based on latency

reasons, despite the presence of available resources on the SmartNIC for work-

load execution. We are interested in implementing a strategy that optimizes the

latency of query workloads, as simulation tasks tend to be more sensitive to the

latency performance in data retrieval than the resource utilization of individual

SmartNICs.

5.4.2 Additional Requirements

Dynamically offloading workloads that depend on in-transit data in HPC dif-

fers from assigning workloads to serverless functions across nodes in cloud comput-

ing. First, HPC simulations are subject to crashes, revisions, and periodic modi-

fications. Therefore, accessing current data takes precedence over historical data

regarding data availability. Second, the sheer volume of the in-transit data makes

maintaining up-to-date replications on external resources unaffordable. Third,

the limited computing and memory resources available on SmartNICs prohibit

the management of data replications within the data service pipeline, as it can

hamper the SmartNICs’ ability to provide offloaded data services. As such, for a

given data service workload, the placement of the workload execution is binary:

it can either run on the SmartNIC where the required data resides or on a host if

pushing it back is deemed necessary.

158

Moreover, while previous work on TCP congestion control exhibits similari-

ties with dynamic offloading for data service workloads, TCP congestion control

typically adjusts to workload patterns based on packet sizes, as evidenced by con-

stantly updating the congestion window size [9]. However, the job size of a data

service workload, such as a data query, is not immediately obvious.

Additionally, to enable workloads to be dynamic offloading, the execution en-

gine is required to be architecture-agnostic and capable of running on systems of

different architectures (e.g., x86 and ARM) to produce consistent results when

given the same workload definitions and data inputs. This is not possible if

architecture-dependent features are exposed to the definition or input, causing

the interfaces of the engine to rely on those features. Finally, given the streaming

nature of the data on SmartNICs, it is important for the decision engine to adapt

to different workloads during runtime without compromising the efficiency and

reliability of the overall system. We expect that this engine is capable of:

• determining which workloads to push back to meet the current

workflow’s requirements. For example, deciding not to push back a

workload may improve the system’s processing throughput but cause a neg-

ative impact on the execution latency of the current workload. Therefore,

deciding when to push back is policy relevant as different policies may lead

to conflicting decision results;

• estimating the job size of a workload. Many job scheduler algorithms

(e.g., shortest remaining time first and credit-based fair queuing) rely on the

assumption that job size is either known or easily accessible when the job

comes. To effectively utilize schedulers that have been developed through

years of effort in our query workload dynamic offloading, it is essential to

convert the workload definition received by the decision engine into a job

159

size representation that can be used as input by the scheduler.

• generating micro-level decisions for workloads defined by compos-

able definitions. A workload definition may contain complex operations

that are compute-intensive for embedded processing and operations that are

IO-intensive but cheap in computation. Being able to extract the benefits of

offloading such a workload from hosts at a finer granularity and taking ad-

vantage of data locality amplifies the advantages of offloading to embedded

systems;

• working with dynamic workloads and data inputs. Given the stream-

ing nature of data services running on SmartNICs, it is imperative that the

decision engine is capable of processing various inputs in real time;

• being accurate enough to justify the value of offloading services to

embedded systems. Note that the accuracy improvements may not have

a linear relationship with increases in offloading value. We should carefully

balance efforts to improve accuracy toward the specific goal of offloading

and the potential impacts of the improvement;

• being efficient in initializing and running. Decision engines may re-

quire a warm-up period to collect statistics or adapt to current workload

patterns before functioning correctly. The initialization process should be

efficient and impose trivial overhead on the running services. Once com-

plete, the decision-making process regarding ’push-back-or-not’ should rely

solely on current statistics with minimal computing and memory overheads;

• mitigating the push-back storm. This could happen when multiple

SmartNICs push back workloads to the same host, causing a reduction in

160

performance compared to when the workloads are processed by these Smart-

NICs individually.

5.4.3 Query Representations

Database management systems (DBMS) follow a multi-layered approach to

process queries, wherein a query is translated into different representations at

various system layers [94, 63]. Although a SQL statement is precise, parsing, and

converting it into a logical plan, which specifies the data sources and operators

to apply, demands significant computational resources. The logical plan is subse-

quently transformed into a physical plan that considers the data placement and

local resource capacity to optimize query execution.

Leveraging composable data services in HPC simulation offers the advantage of

customizing the placement of different services to enhance workflow performance.

Considering the constrained resource availability on a SmartNIC, it is prudent to

leave functions with substantial overhead, such as query parsing, on more capable

systems and place only the core execution function that consumes logical plans

on SmartNICs. Therefore, having serializable logical query plans as workload

definitions becomes necessary to enable the dynamic offloading of query workloads.

Logical Query Declaration with Arrow Acero

Arrow Acero is a data computation execution engine that supports a variety

of data processing operations, including filtering, sorting, aggregation, and cus-

tom user-defined functions. Importantly, it also provides complete semantics for

constructing composable logical query declarations in C++. For instance, we can

define an aggregate declaration on top of a projection declaration. Listing 3 and 4

shows how an example SQL query for aggregation maps to the corresponding

161

composable declaration in Arrow Acero.

select count(id) as column_hash_count_id from particles
where x >= 0.3 and y < 0.42 and z <= 0.68
group by particle_id

Listing 3: A SQL query for counting the number of records of particles captured
within a certain region

Intermediate Query Representation with Substrait

Substrait is an open-source project1 that aims to create a cross-language spec-

ification for data computing operations. It focuses on the semantics of each oper-

ation and provides a consistent way to describe them. The goal of this project is

not to replace SQL but to work alongside it to provide capabilities that SQL lacks,

such as a standard and open format for query plans. By leveraging substrait, it

becomes possible to convert a logical query plan into a binary representation as a

substrait plan in either ProtoBuf or JSON format. This plan can then be sent over

the network to the workload execution engine running on a SmartNIC. For any

remaining operations that the SmartNIC pushed back, a portion of the substrait

plan can be piggybacked with the intermediate result and forwarded to the host

where the original data retrieval request was initiated. Upon receipt, the host can

detect the presence of the substrait plan, execute it on the data, and complete the

push-back operation. Listing 5 presents a snippet of a substrait plan in JSON.

1https://substrait.io/

162

https://substrait.io/

auto declaration = arrow::compute::Declaration::Sequence({

{"named_table",
arrow::compute::NamedTableNodeOptions{{"particles"},

table_schema}},

{"filter",
arrow::compute::FilterNodeOptions{arrow::compute::call(

"and_kleene",
{arrow::compute::call(

"and_kleene",
{arrow::compute::call("greater_equal",

{field_x, arrow::compute::literal(0.3)}),
arrow::compute::call("less",

{field_y, arrow::compute::literal(0.42)})}),
arrow::compute::call("less_equal",

{field_z, arrow::compute::literal(0.68)})})}},

{"aggregate", arrow::compute::AggregateNodeOptions{
{{"hash_count", "id", "column_hash_count_id"}},
{"particle_id"}}}

});

Listing 4: The corresponding Arrow Acero declaration of the above SQL query

163

{
...
"extensions": [

{
"extensionFunction": {

"functionAnchor": 0, "name": "count"
}

}
],
"relations": [

{
"root": {

"input": {
"aggregate": {

"input": {
"read": {

"baseSchema": {
"names": [

"id", "time", "particle_id",
"x", "y", "z", "vx", "vy", "vz"

],
...

},
"namedTable": { "names": ["particles"] }

}
},
"measures": [

{
"measure": {

"functionReference": 0,
"phase": "AGGREGATION_PHASE_INITIAL_TO_RESULT",
"invocation": "AGGREGATION_INVOCATION_ALL"

}
}

]
}

...
}

Listing 5: A substrait plan snippet in JSON represents the same work as in SQL
select count(*) from particles. Ellipses indicate omitted content.

164

5.4.4 Decision Engine Scheduling

We assume that the massive amount of particle data generated by HPC sim-

ulations is streamed to the data pipeline managed by SmartNICs. To maximize

memory utilization, each SmartNIC is required to manage gigabytes of data in its

service lifespan. This substantial amount of data necessitates that the execution

of each query maximizes the utilization of SmartNIC’s processor cores by lever-

aging the parallelism provided by the Arrow Acero execution engine. Therefore,

although multiple queries can possibly be queued up locally, a SmartNIC can

execute only a single query at a time.

On the other hand, simply queuing queries in a decision engine for schedul-

ing without dissecting the query and estimating the job size is insufficient, as

highlighted in Section 5.4.2. Most data storage and network schedulers rely on a

predefined unit of work to determine the queue length, such as the “block” unit

of data request for storage schedulers or the “packet” unit of network request

for network schedulers. While the size of a unit of work is generally assumed to

remain constant throughout a given workload, a query by itself does not provide

enough insight into the job size. The amount of work required by a query is also

dependent on the dataset size associated with the query. Therefore, before apply-

ing well-known schedulers, whether they are reactive or proactive, it is necessary

to evaluate the job size of the query.

Reactive scheduling: A scheduler of this type can incrementally revise its

internal state in response to the current workload pattern. Reactive scheduling

is often used in dynamic environments where predicting what will happen next

is difficult. One example of reactive scheduling is the deficit round-robin algo-

rithm [219] used for scheduling tasks in real-time systems or packets in network

devices. Because of its reactive nature, the optimal scheduling decision can be de-

165

layed for individual requests. Previous research [161] has explored implementing

this type of scheduling in SmartNICs for offloading distributed applications.

Predictive scheduling: This type of scheduling tries to forecast the cost

of a workload request by analyzing the current context (e.g., historical data and

predictive models) and proactively making scheduling decisions accordingly. This

approach is commonly employed by database query optimizers [114] to determine

the most effective query plan to execute a given query.

As a means of evaluating the efficiency of SmartNICs in making offloading de-

cisions using predictive scheduling, the following section discusses the components

of our decision engine and prediction performance.

5.4.5 The Decision Engine

Cost Analysis

In order to decide whether to push back a query workload, the decision engine

must consider several factors regarding its time consumption. For any query work-

load that is executed by a SmartNIC when offloaded or a host when pushed back,

the time it takes for the query initiator to receive the final result is conceptually

broken down and depicted in Figure 5.11.

Ti
m

e

Raw Data Deserialization

Query Execution

Result Serialization

Network Transfer

Result Deserialization

Offloaded

Apache Arrow

Faodel

Network Transfer

Raw Data Deserialization

Query Execution

Pushed-back (single obj) Pushed-back (multiple objs)

Raw Data Serialization

Raw Data Deserialization

Query Execution

Network Transfer

Figure 5.11: Conceptual time breakdown for offloaded and pushed-back cases

Serialization Time: SmartNICs store particle data objects in Arrow IPC

166

streaming format, requiring deserialization before query execution. Arrow IPC’s

efficient data structure allows for zero-copy reconstruction of Arrow tables from

IPC buffers by simply establishing reference pointers to the data source with a

single thread. Figure 5.12 (left) demonstrates that deserialization performance is

independent of table size, remaining nearly constant within each platform.

After query execution, the resulting table is required to be serialized into an

IPC buffer before it is transmitted back to the request initiator. However, as

depicted in Figure 5.12 (right), the time taken for serialization depends on the

table size.

Figure 5.11 presents a scenario under the third bin where queries rely on mul-

tiple data objects necessitating their merging prior to network transfer. This

necessity arises because, despite each data object being managed as a serialized

object on SmartNICs, the simultaneous transmission of multiple objects could

incur significant overhead from memory and network management. This is par-

ticularly relevant for efficient network transports like RDMA, where their setup

and completion costs favor larger transfers, thus further emphasizing the need

for merging. In practice, during data processing, it is common for SmartNICs to

handle a greater number of smaller data objects. This can be exemplified by the

particle sifting process (Section 5.3.2), which generates many smaller tables as

data traverses the reorganization pipeline. Consequently, it is not unusual for a

query workload to depend on multiple data objects. The significance of this lies in

the fact that the merging process inflates the cost of pushing back workloads, thus

making multi-object queries more favorable for direct execution on SmartNICs.

Our evaluation, depicted in Figure 5.13, shows that due to the efficiency of the

Apache Arrow in-memory data format, the performance overhead associated with

data merging via memcpy is comparable to the combined cost of data deserial-

167

ization and serialization, even for smaller data objects of size less than 10 MiB.

Therefore, the process of serialization can be utilized as a means to merge data.

Conversely, for queries that reference a single object, the corresponding data can

be transmitted directly to the network, bypassing the cost of data merging.

Table Number Rows

Ti
m

e
(n

s)

0

10000

20000

30000

40000

10 1000 100000 10000000

Host BlueField-2

Table Number Rows

Ti
m

e
(u

s)

50

500

5000

50000

500000

10 1000 100000 10000000

Host BlueField-2

Figure 5.12: Arrow table (de)serialization performance. The host has two In-
tel Xeon 16-core CPUs running at 2.30GHz and 512 GB of memory. The host
outperforms the BlueField-2 by 57% in deserialization (left figure) and by 60% in
serialization (right figure).

Table Number Rows

Ti
m

e
(u

s)

1

10

100

1000

10000

100000

1000000

10 1000 100000 10000000

Deserialize+Serialization Memcpy

Figure 5.13: Performance of deserialization + serialization vs. memcpy on the
BlueField-2

Network Transfer Time: Performing data filtering within SmartNICs can

substantially reduce network data transfer overhead, depending on the query’s

selectivity. To evaluate the change in network overhead between offloaded and

pushed-back execution, we can measure the difference in round-trip time required

168

Table 5.3: Particle data schema

Field Type Range
id uint64

time uint64
particle_id uint64

x double 0.0 ∼1.0
y double 0.0 ∼1.0
z double 0.0 ∼1.0

vx double -100 ∼100
vy double -100 ∼100
vz double -100 ∼100

to request data buffers of different sizes from a SmartNIC.

Query Execution Time: This is the most challenging part because it in-

volves the analysis of a query to estimate the amount of work required based

on the complexity of its input table and query conditions. Without loss of

generality, our analysis is based on data that conforms to the schema shown in

Table 5.3. Let’s consider the following simple SQL filter query

select * from particles where x < 0.5 (5.1)

The execution engine first locates the columnar data of x, compares the value of

each x with the constant, and stores the comparison results (i.e., boolean values)

in an array that has the same size as the column x. Each value in the boolean array

indicates whether the current row of x should be included in the final result set.

This process can be extended to queries with compound conditions by recursively

merging internal conditions. Specifically, for a query with the filtering conditions

x < 0.5 and y >= 0.3, we can evaluate the boolean values for the left-hand and

right-hand sides of the logical “and” function and then merge the values of the

two generated boolean arrays at the same index. In this way, multiple boolean

arrays can be “collapsed” into a single array. Once this process is complete, rows

169

that are marked as selected are copied, and the final result table is constructed.

For a simple query like 5.1, the computational requirements can be partitioned

into three distinct components: 1) The comparison component, which involves a

number of comparison operations equal to the number of rows in the table; 2)

The filtering component, which requires a number of scan operations equal to the

product of the number of rows in the table and the number of projected columns,

to facilitate data preparation for selection; and 3) The selection component, which

necessitates a number of copy operations equal to the product of the number of

rows that satisfy the filter condition and the number of projected columns, to

assemble the final result set. It is worth noting that different functions (e.g., com-

parison and selection) may have significantly different computational overheads.

For instance, the power function consumes 10 times more CPU time than a logical

function such as “and” on a BlueField-2 SmartNIC.

A similar analysis can be performed for more complex queries by counting the

number of operations of different functions involved. However, care should be

taken when evaluating a query involving statements with composed conditions.

Consider the following SQL query, which involves a filtering statement composed

of two conditions:

select particle_id from particles where

power(x, 2) < 0.3 and power(y, 2) > 0.1
(5.2)

When estimating the computational requirements of this query, the relationship

between the conditions must also be considered. Specifically, this query can be

represented by two logical plans, one where both filtering conditions are expressed

together in a single logical expression, and the other where the two conditions

are separated into two logical expressions, resulting in optimized execution. By

170

splitting the conditions, the data reduction achieved by the first filter can be

utilized in the second filter, reducing the overall computational cost. Thus, for

this optimized logical plan, the count of comparison and power operations involved

in the second filter should be based on the result set size obtained after the first

filtering.

In database systems, estimating the result set size of a query is referred to

as cardinality estimation [268], and it represents a fundamental task in query

processing and optimization. This field is a highly active area of research due

to its wide-ranging applications, including network security monitoring [80], data

streams [4], search engines and online data mining [108, 172].

To estimate the cardinality of a query or condition, we employ statistical tools

grounded in prior research and commonly used assumptions in modern data man-

agement systems (e.g., PostgreSQL [71] and Spark SQL [16]). Specifically, for each

column in a particle partition staged on a SmartNIC, we create a histogram that

provides valuable insights into the distribution of values. By querying the quantile

of the constant specified in a filtering condition within the appropriate histogram

and applying the uniformity assumption to the statistics of each bin of the his-

togram, we are able to accurately estimate the cardinality of the condition. For

compound conditions, we apply the independence assumption on sub-conditions

to estimate the overall cardinality. In the case of aggregation conditions, we use

tools that summarize the degree of data uniqueness of a column to estimate the

cardinality of a query like select count(particle_id) from particles where

x < 0.5.

To optimize the accuracy of our estimates in the face of complex queries and

dynamic data flows, we progressively update and revise each histogram as new

particle data is received, merged, or migrated.

171

Ultimately, we use the quantified number of operations as a vector to capture

the job size of a query, which can then be incorporated into offloading schedulers

based on relative job sizes or predictive models. Figure 5.14 presents a high-level

view of the cardinality estimation process, with the results used as input for model

prediction.

Figure 5.14: The process of cardinality estimation to generate vectors of oper-
ations as input to the model to predict query execution time

Implementation

To realize a decision engine for predictive scheduling, it is necessary to accu-

rately predict the time required for each factor identified in the previous section.

Once a SmartNIC receives a query workload request, the predicted time consump-

tion for each factor can be aggregated, and a decision to push back the workload

can be made by comparing the total predicted time consumption to that of push-

ing back the workload for execution by the host.

Predicting Serialization Time: Predicting the time required to serialize an

Arrow table is a relatively straightforward task using machine learning techniques.

To collect a training dataset, we measured the serialization time of 877 Arrow ta-

bles filled with randomly generated particle data on the BlueField-2 SmartNIC.

172

Each table was generated with a random number of rows ranging from 1 to 225.

We used random forest regression as the algorithm for training. The prediction

performance for serialization on the BlueField-2, as observed in a randomly gen-

erated test set, is presented in Figure 5.15. Notably, the prediction performance

is seen to have an error rate within 7%, indicating the robustness and accuracy of

our model.

Table Number Rows

Ti
m

e
(u

s)

50
100

500
1000

5000
10000

50000
100000

500000
1000000

10 1000 100000 10000000

Actual Estimated

Table Number Rows

R
es

id
ua

l (
us

)

A
bs

 D
iff

 (%
)

-75000

-50000

-25000

0

25000

50000

0

1

2

3

4

5

6

7

10 1000 100000 10000000

Figure 5.15: The left figure illustrates the actual and estimated serialization
time on the BlueField-2 SmartNIC as a function of the number of rows in a table.
The right figure displays the residual (on the left axis) and the absolute difference
in percentage (on the right axis) between the actual serialization time and the
estimated time predicted by the model.

Predicting Network Transfer Time: We used the Faodel library to handle

data delivery and dispatch computations required for executing query workloads.

While it is possible to predict the network transfer time required for a query work-

load based on both the schema of the resultant table object and the number of

rows in the table, our approach was to anchor the prediction on the size of the ta-

ble object to be transferred, which could be deduced from a prior prediction. This

strategy was chosen as it isolates the network time modeling from the complex-

ity of the table content, thus protecting the network time model from potential

changes in the table schema in the future. The task of capturing the complexity

of the table content can then be delegated to a separate model, which translates

it into a value representing the size of the serialized table object to be used as

173

input for the network time model.

In scenarios where the query workload is executed on the SmartNIC, the size

of the serialized object can be predicted by considering the number of rows in the

resulting table, as depicted in Figure 5.16. Conversely, when the query workload

is to be pushed back for execution, the total serialized size of the data objects

referenced by the query can be determined by aggregating their respective sizes.

To construct a training dataset for predicting network transfer time based on

the data size to be transferred, we measured the round-trip time of requests dis-

patched to a SmartNIC to fetch local IPC buffers of varying sizes. We trained our

model using the random forest regression algorithm, and the performance results

for the communication between an HPC compute node and a local BlueField-2

SmartNIC on a randomly generated table test set are illustrated in Figure 5.17.

This model consistently maintained error rates within single-digit percentages on

the test set.

Table Number Rows

Ta
bl

e
Si

ze
 (K

B
)

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000 10000000

Actual Estimated

Table Number Rows

R
es

id
ua

l (
K

B
)

A
bs

 D
iff

 (%
)
-30000

-20000

-10000

0

10000

20000

0

1

2

3

4

5

6

1 10 100 1000 10000 100000 1000000 10000000

Figure 5.16: The left figure depicts the actual and model-estimated serialization
sizes for Arrow tables with varying row numbers. The right figure illustrates the
residual and absolute difference in percentage between the actual and estimated
serialization sizes. The error rates observed with this model on the test data set
do not exceed 6%.

Predicting Query Execution Time: We used the Theta Sketch [57] and

KLL Sketch [125] algorithms from the Apache DataSketches library [199] to derive

the distinct counting and histogram statistics of particle data tables, respectively.

174

Table Size (KB)

Ti
m

e
(u

s)

200

400

800

2000

4000

8000

20000

40000

80000

200000

10000 100000 1000000 10000000 100000000

Actual Estimated

Table Size (KB)

R
es

id
ua

l (
us

)

A
bs

 D
iff

 (%
)

-7500

-5000

-2500

0

2500

5000

0

1

2

3

4

5

6

7

10 100 1000 10000 100000

Figure 5.17: The left figure compares the measured time of network transfer
using Faodel with the estimated time, plotted against the serialized table size.
The right figure shows the residual (left axis) and absolute percentage difference
(right axis) between the actual and estimated network transfer times. In this
experiment, the table objects were hosted on the SmartNIC, and the host sent
retrieval requests.

One of the significant advantages of this library is its ability to handle stream-

ing data efficiently using the provided interfaces to update the created statistics

over time, which is the key feature to be leveraged in our use case. Specifically,

the library’s single-update function satisfies the requirement for processing data

one item at a time, while the bulk-update function enables merging statistics cre-

ated for different tables. Additionally, the library offers parameters that allow

us to fine-tune the accuracy of the estimation, enabling us to assess the trade-

offs between estimation performance and memory consumption. Note that when

counting the number of operations of different functions required by a query, the

accuracy of the operation counts depends on the estimated cardinality of the

sub-conditions in the query. Therefore, improving the accuracy of cardinality

estimation can positively impact the precision of job size estimation for a query.

Our cardinality estimator currently supports queries that involve filtering, pro-

jection, aggregation, or any combinations of these operations, as demonstrated in

Table 5.4. The estimator is also capable of estimating reducible conditions, such

as the condition sqrt(vy) > 20 in query Q4, by utilizing statistics based solely

175

on fields. Another example of this feature is the condition abs(vx) < 30, which

can be internally transformed to vx > -30 and vx < 30, allowing the use of his-

togram statistics for vx to estimate its cardinality. Furthermore, the estimator can

estimate queries that rely on multiple data sources, as exemplified by query Q5.

This capability is particularly significant because it enables workloads to query

multiple partitions of data tables on the same SmartNIC simultaneously.

Performance evaluations show that the majority of estimations have an error

rate within 1% of the actual cardinality, though some estimations may experience

relatively high errors due to the aggregation of multiple statistics’ biases. For

instance, in query Q8, the estimator employs histogram statistics for the three

filtering conditions and distinct counting statistics for the one aggregation condi-

tion. Additionally, it requires applying the distinct counting statistics to a subset

of the table resulting from the filtering, which can introduce significant errors if

the data itself is biased. The final column of Table 5.4 highlights the minimal cost

of conducting cardinality estimation on the BlueField-2 SmartNIC, enabling the

prediction of query workload placements with minimal resource utilization.

To convert an operation counts vector into execution time, we again utilized

machine learning techniques. Our training dataset was created using query tem-

plates and randomized particle tables of varying sizes. Each query template was

a C++ logical plan with placeholders that were filled with randomly generated

constants to generate concrete logical plans. For instance, the query template

select * from particle_id where x >= k1 and y < k2 and z <= k3 could

be instantiated by substituting k1, k2, and k3 with numerical values. Table 5.5

presents some of our query templates in SQL form. Each record in our training

dataset contained information on the number of operations performed by each

function, the number of rows in the table queried, the number of threads used to

176

execute the workload, and the actual execution time of the query. We employed

the random forest model to train the data, and the prediction performance of a

test set of queries is displayed in Table 5.6. It is worth noting that our cardinal-

ity estimator supports counting operations for sub-conditions, and therefore the

execution time model can predict the time required to execute sub-conditions of

a query. This capability enables us to make micro-level decisions for workloads

defined by composable definitions.

177

T
ab

le
5.

4:
Pe

rfo
rm

an
ce

of
ca

rd
in

al
ity

es
tim

at
io

n
ID

SQ
L

T
ot

al
In

pu
t

R
ow

s
E

st
im

at
ed

R
ow

s
A

ct
ua

l
R

ow
s

D
iff

(%
)

C
os

t
(%

)
Q

1
se

le
ct

∗
fro

m
pa

rt
ic

le
s

w
he

re
x

>
=

0.
7

an
d

y
<

0.
3

an
d

z
<

=
0.

1
10

48
58

0
95

66
.8

7
94

69
1.

03
%

0.
14

%
Q

2
se

le
ct

∗
fro

m
pa

rt
ic

le
s

w
he

re
x

>
=

0.
7

an
d

po
we

r(
vx

,2
)

+
po

we
r(

vy
,2

)
+

po
we

r(
vz

,2
)

<
=

10
59

1.
0

50
44

22
0

86
71

70
86

16
82

0.
64

%
0.

01
%

Q
3

se
le

ct
x,

po
we

r(
vx

,2
)

+
po

we
r(

vy
,2

)
+

po
we

r(
vz

,2
)

as
sq

ua
re

_
of

_
ve

lo
ci

ty
fro

m
pa

rt
ic

le
s

w
he

re
sq

ua
re

_
of

_
ve

lo
ci

ty
<

=
13

10
.0

68
53

59
18

68
3

17
13

8
9.

02
%

0.
02

%
Q

4
se

le
ct

∗
fro

m
pa

rt
ic

le
s

w
he

re
3

+
vx

∗
2

<
=

10
0

or
sq

rt
(v

y)
>

20
17

61
67

0
13

11
37

0
13

08
00

0
0.

26
%

0.
06

%
Q

5
se

le
ct

∗
fro

m
(s

el
ec

t
∗

fro
m

pa
rt

ic
le

s_
1

w
he

re
x

>
=

0.
7

un
io

n
se

le
ct

∗
fro

m
pa

rt
ic

le
s_

2
w

he
re

y
<

0.
3)

w
he

re
z

<
=

0.
1

78
64

32
23

33
8.

2
23

42
8

0.
38

%
0.

08
%

Q
6

se
le

ct
co

un
t(

id
),

m
in

(x
),

m
ax

(x
)

fro
m

pa
rt

ic
le

s
13

73
63

0
1

1
0.

00
%

0.
04

%

Q
7

se
le

ct
co

un
t(

co
lu

m
n_

id
),

m
in

(c
ol

um
n_

ro
un

d_
x)

,m
ax

(c
ol

um
n_

ro
un

d_
x)

fro
m

(s
el

ec
t

id
as

co
lu

m
n_

id
,r

ou
nd

(x
,2

)
as

co
lu

m
n_

ro
un

d_
x,

bi
t_

w
ise

_
an

d(
pa

rt
ic

le
_

id
,1

5)
as

co
lu

m
n_

bi
t_

w
ise

_
an

d_
pa

rt
ic

le
_

id
fro

m
pa

rt
ic

le
s)

gr
ou

p
by

co
lu

m
n_

bi
t_

w
ise

_
an

d_
pa

rt
ic

le
_

id

21
46

82
0

16
16

0.
00

%
0.

01
%

Q
8

se
le

ct
co

un
t(

id
)

as
co

lu
m

n_
ha

sh
_

co
un

t_
id

fro
m

pa
rt

ic
le

s
w

he
re

x
>

=
0.

7
an

d
y

<
0.

3
an

d
z

<
=

0.
1

gr
ou

p
by

pa
rt

ic
le

_
id

15
55

01
0

13
56

2.
7

11
27

7
20

.2
7%

0.
09

%

•
D

iff
(%

)
co

lu
m

n
sh

ow
s

th
e

ab
so

lu
te

pe
rc

en
ta

ge
di

ffe
re

nc
e

be
tw

ee
n

th
e

es
tim

at
ed

an
d

ac
tu

al
ou

tp
ut

ro
w

s
of

th
e

qu
er

y,
ca

lc
ul

at
ed

by
us

in
g

th
e

fo
rm

ul
a

ab
s(

es
tim

at
ed

_
ro

ws
-

ac
tu

al
_

ro
ws

)
/

ac
tu

al
_

ro
ws

.

•
C

os
t

(%
)

co
lu

m
n

sh
ow

s
th

e
C

PU
tim

e
fo

r
es

tim
at

io
n

as
a

pe
rc

en
ta

ge
of

th
e

C
PU

tim
e

fo
r

qu
er

y
ex

ec
ut

io
n

on
a

B
lu

eF
ie

ld
-2

Sm
ar

tN
IC

.

•
Ea

ch
qu

er
y

is
ev

al
ua

te
d

in
its

lo
gi

ca
lq

ue
ry

pl
an

re
pr

es
en

ta
tio

n.
T

he
pr

es
en

ta
tio

n
of

SQ
L

qu
er

ie
s

in
th

e
ta

bl
e

is
fo

r
th

e
pu

rp
os

e
of

ill
us

tr
at

io
n

an
d

ea
se

of
un

de
rs

ta
nd

in
g.

T
ab

le
5.

5:
Ex

am
pl

e
qu

er
y

te
m

pl
at

es
fo

r
pr

ed
ic

tin
g

ex
ec

ut
io

n
tim

e

ID
T

em
pl

at
e

T
1

se
le

ct
∗

fro
m

pa
rt

ic
le

s
w

he
re

x
>

=
k1

an
d

y
<

k2
an

d
z

<
=

k3
T

2
se

le
ct

∗
fro

m
pa

rt
ic

le
s

w
he

re
vy

>
k1

or
(v

x
∗

k2
)

<
=

k3
T

3
se

le
ct

∗
fro

m
pa

rt
ic

le
s

w
he

re
po

we
r(

vz
,2

)
∗

k1
>

k2
T

4
se

le
ct

∗
fro

m
pa

rt
ic

le
s

w
he

re
po

we
r(

x,
2)

<
=

k1
or

z
∗

k2
<

k3
or

vz
>

k4
T

5
se

le
ct

co
un

t(
∗)

fro
m

pa
rt

ic
le

s
w

he
re

x
<

k1
T

6
se

le
ct

pa
rt

ic
le

_
id

,p
ow

er
(v

x,
2)

+
po

we
r(

vy
,2

)
+

po
we

r(
vz

,2
)

fro
m

pa
rt

ic
le

s
w

he
re

x
>

=
k1

T
7

se
le

ct
pa

rt
ic

le
_

id
,x

∗
k1

,y
∗

k2
,z

∗
k3

fro
m

pa
rt

ic
le

s
w

he
re

x
>

=
k4

an
d

y
<

k5
an

d
z

<
=

k6
T

8
se

le
ct

pa
rt

ic
le

_
id

,x
+

k1
,y

-k
2,

z
-k

3
fro

m
pa

rt
ic

le
s

w
he

re
z

>
k1

an
d

z
<

=
k4

T
9

se
le

ct
pa

rt
ic

le
_

id
,(

vx
+

k1
)

∗
k2

,(
vy

-k
3)

∗
k4

,(
vz

+
k5

)
∗

k6
fro

m
pa

rt
ic

le
s

w
he

re
(v

x
+

vy
+

vz
)

>
k1

T
10

se
le

ct
pa

rt
ic

le
_

id
,x

+
y

-z
,v

x
-v

y
+

vz
fro

m
pa

rt
ic

le
s

w
he

re
x

>
k1

an
d

y
<

k2
an

d
z

>
k3

178

T
ab

le
5.

6:
Pr

ed
ic

tio
n

pe
rfo

rm
an

ce
of

ex
ec

ut
io

n
tim

e
fo

r
di

ffe
re

nt
qu

er
ie

s
on

th
e

Bl
ue

Fi
el

d-
2.

T
he

la
st

co
lu

m
n

sh
ow

s
th

e
ab

so
lu

te
di

ffe
re

nc
e

in
pe

rc
en

ta
ge

be
tw

ee
n

th
e

pr
ed

ic
te

d
an

d
ac

tu
al

ex
ec

ut
io

n
tim

e.
Fu

nc
ti

on
ad

d
an

d_
kl

ee
ne

fil
te

r
gr

ea
te

r
gr

ea
te

r_
eq

ua
l

le
ss

le
ss

_
eq

ua
l

m
ul

ti
pl

y
or

_
kl

ee
ne

po
w

er
se

le
ct

su
bt

ra
ct

ta
bl

e_
ro

w
s

nu
m

_
th

re
ad

s
ab

s
di

ff(
%

)
R

1
0

0
4.

82
42

e+
06

0
0

4.
82

42
e+

06
0

0
0

0
3.

01
62

4e
+

06
0

48
24

19
5

5
0.

19
03

88
R

2
0

0
4.

82
42

e+
06

0
4.

82
42

e+
06

0
0

4.
82

42
e+

06
0

4.
82

42
e+

06
3.

10
69

5e
+

06
0

48
24

19
5

2
3.

87
43

2
R

3
0

4.
82

42
e+

06
4.

82
42

e+
06

9.
64

83
9e

+
06

0
0

0
4.

82
42

e+
06

0
0

3.
71

32
6e

+
06

0
48

24
19

5
7

11
.3

24
2

R
4

4.
82

42
e+

06
0

4.
82

42
e+

06
4.

82
42

e+
06

4.
82

42
e+

06
0

0
4.

82
42

e+
06

4.
82

42
e+

06
4.

82
42

e+
06

4.
61

51
6e

+
06

0
48

24
19

5
8

24
.7

21
2

R
5

0
9.

64
83

9e
+

06
4.

82
42

e+
06

9.
64

83
9e

+
06

0
0

4.
82

42
e+

06
4.

82
42

e+
06

0
4.

82
42

e+
06

40
45

00
0

48
24

19
5

7
19

.5
86

1
R

6
0

4.
82

42
e+

06
4.

82
42

e+
06

0
0

0
9.

64
83

9e
+

06
4.

82
42

e+
06

0
0

1.
10

71
4e

+
06

0
48

24
19

5
1

8.
76

74
R

7
0

0
4.

82
42

e+
06

4.
82

42
e+

06
0

0
0

4.
82

42
e+

06
0

0
28

13
08

0
48

24
19

5
8

35
.9

42
1

R
8

0
9.

64
83

9e
+

06
4.

82
42

e+
06

4.
82

42
e+

06
0

4.
82

42
e+

06
4.

82
42

e+
06

4.
82

42
e+

06
0

9.
64

83
9e

+
06

32
24

06
0

48
24

19
5

3
23

.7
68

7
R

9
0

0
4.

82
42

e+
06

9.
64

83
9e

+
06

0
0

0
0

4.
82

42
e+

06
1.

14
13

4e
+

07
3.

80
44

8e
+

06
0

48
24

19
5

4
4.

76
39

8
R

10
0

9.
64

83
9e

+
06

4.
82

42
e+

06
4.

82
42

e+
06

9.
64

83
9e

+
06

0
0

0
0

0
24

94
46

0
48

24
19

5
2

2.
52

94
1

R
11

0
0

0
0

0
0

0
0

0
4.

82
42

e+
06

0
4.

82
42

e+
06

48
24

19
5

5
0.

39
85

28
R

12
0

0
4.

82
42

e+
06

4.
82

42
e+

06
0

4.
82

42
e+

06
4.

82
42

e+
06

1.
32

44
8e

+
07

9.
64

83
9e

+
06

0
4.

41
49

4e
+

06
0

48
24

19
5

3
23

.6
18

4
R

13
3.

17
11

6e
+

06
0

4.
82

42
e+

06
0

0
4.

82
42

e+
06

0
0

0
4.

75
67

5e
+

06
1.

58
55

8e
+

06
0

48
24

19
5

1
4.

42
84

5
R

14
1.

02
4e

+
06

4.
82

42
e+

06
4.

82
42

e+
06

0
0

4.
82

42
e+

06
4.

82
42

e+
06

0
0

0
51

20
00

51
20

00
48

24
19

5
7

17
.0

59
9

R
15

1.
17

32
8e

+
07

0
4.

82
42

e+
06

4.
82

42
e+

06
0

0
0

6.
25

33
1e

+
06

0
0

2.
08

44
4e

+
06

4.
16

88
8e

+
06

48
24

19
5

1
4.

24
34

3
R

16
4.

06
55

6e
+

06
0

4.
82

42
e+

06
9.

64
83

9e
+

06
0

0
4.

82
42

e+
06

0
9.

64
83

9e
+

06
0

4.
06

55
6e

+
06

1.
21

96
7e

+
07

48
24

19
5

3
29

.3
89

179

Case Studies

Let us proceed with two case studies to exemplify the application of our deci-

sion engine in estimating the beneficial execution location for a query workload.

We began by using our prediction models to estimate the time consumption as-

sociated with each factor shown in Figure 5.11. This process considered both

offloading and pushing back the workload to a host equipped with two Intel Xeon

16-core E5-2698 CPUs running at 2.30GHz and 512 GB of memory. We then

measured the actual time consumption of the query workload by executing it on

both the SmartNIC and the host system. By comparing these sets of data, we

could evaluate the effectiveness and accuracy of our decision engine, which bases

its scheduling decisions on aggregating all the estimated time consumption factors.

Note that in both case studies, the queries only rely on individual data objects,

so there was no overhead from data merging.

In the first study, we analyze a query applied to a particle dataset comprised

of 6,177,731 rows:

select * from particles where

x >= 0.7 and y < 0.3 and z <= 0.1
(5.3)

The actual execution of this query results in a total of 55,517 rows, comprising

all columns from the dataset and accounting for 0.9% of the total rows. The

cardinality estimator projects an output of 55,036.7 rows, exhibiting a difference

of 0.865% from the actual row count. Additionally, the estimator generated the

following operations vector for the query on the given dataset:

Table 5.7: The operations vector produced for the case study query 5.3

and_kleene filter greater_equal less less_equal select table_rows
12355500 6177730 6177730 6177730 6177730 55036.7 6177731

180

The second study employs a query slightly different from the first one to ex-

amine the crossover point where offloading and pushing back result in similar

execution costs:

select * from particles where

x >= 0.5 and y < 0.55 and z <= 0.67
(5.4)

Executing this query on the same dataset yields 1,136,847 rows, representing

18.4% of the total row count. The cardinality estimator predicts a return of

1,152,860 rows, marking a minor discrepancy of 1.41%. The operations vector is

generated as follows:

Table 5.8: The operations vector produced for the case study query 5.4

and_kleene filter greater_equal less less_equal select table_rows
12355500 6177730 6177730 6177730 6177730 1152860 6177731

The estimated and actual time consumption for each of the time factors in

the two scenarios are summarized in the table 5.9. The query execution time

for the SmartNIC is both measured and estimated using six threads, whereas,

for the host, it is measured and estimated utilizing 32 host threads. This bias

is intentionally introduced to account for the host’s superior availability of com-

puting resources. Despite this adjustment, the comparison reveals that for the

first query, choosing offloaded execution significantly reduces execution latency

by 74.64%. This outcome can be attributed to the significant network transfer

cost that dominates the total execution latency in the scenario of pushed-back

execution. As for the second query workload, execution latency is comparable

whether conducted on the SmartNIC or the host. While the estimation slightly

leans towards pushing back, keeping execution on the SmartNIC reduces latency

by only 1.38%.

181

Table 5.9: Analysis of time consumption for offloaded vs. pushed-back execution
with case study queries. The first and second tables correspond to results from
queries 5.3 and 5.4, respectively.

Offloaded Pushed-back
Estimated (us) Actual (us) Abs Diff Estimated (us) Actual (us) Abs Diff

Raw Data Deserialization 28.928 28.928 0% 12.353 12.353 0%
Query Execution 54737.5 49316 10.99% 7781.469 8936 12.92%
Result Serialization 1012.84 1039.47 2.56% - - -
Network Transfer 2289.95 2258.25 1.40% 189298 198676 4.72%
Result Deserialization 12.353 12.353 0% - - -
Sum 58081.57 52655 10.31% 197091.82 207624.35 5.07%

Offloaded Pushed-back
Estimated (us) Actual (us) Abs Diff Estimated (us) Actual (us) Abs Diff

Raw Data Deserialization 28.928 28.928 0% 12.353 12.353 0%
Query Execution 93173 88511 5.27% 16799.339 15525 8.21%
Result Serialization 87124.1 86932.8 0.22% - - -
Network Transfer 35034.4 35781.1 2.09% 189298 198676 4.72%
Result Deserialization 12.353 12.353 0% - - -
Sum 215372.78 211266.18 1.94% 206109.69 214213.35 3.78%

Discussion

There are alternative approaches to gathering insights to make workload place-

ment decisions. Yang [264] proposed an online sampling-based approach for han-

dling dynamic workload offloading to computational storage devices. While this

approach may be more intuitive to reason about, it necessitates periodic sam-

pling to maintain prediction accuracy in the face of dynamic workloads. This

periodic sampling requirement may negatively impact workload performance on

these embedded devices due to their limited resources. In contrast, constructing

a prediction model using offline data resolves the limitations on data size and

computational requirements. Our case study found that offline data modeling can

deliver high accuracy while minimizing the cost of generating decisions for query

workload placements.

Our next step is to apply the decision engine to facilitate dynamic offloading

between hosts and SmartNIC pipelines that govern data flows, and to assess the

performance and potential trade-offs. Although the model is specifically designed

182

for SmartNICs, it can also be extended to encompass embedded storage devices

typically deployed at the end of the data processing pipeline. Additionally, the re-

sults produced by our decision engine can be used not only for making micro-level

decisions on composable workload definitions to allow partial workload offloading,

but also for implementing reactive schedulers in cases where throughput perfor-

mance is prioritized.

Our current decision engine does not support join table queries, as we have

primarily focused on the data model of the particle dataset. Despite extensive

research [145, 265, 167, 79] on estimating the cardinality of join queries, findings

suggest that prediction accuracy may significantly decrease with an increase in the

number of joins [136, 144]. Thus, careful evaluation is required before extending

our decision engine to support join queries. Additionally, in situations where

higher prediction accuracy is necessary, further efforts to improve our current

results may be necessary for future work. Nevertheless, our research demonstrates

the potential of even basic machine-learning techniques in facilitating dynamic

offloading and enabling the extension of data services to embedded systems.

There are multiple directions forward from this work. One possible direction

is to explore the potential benefits of implementing caches for serialized particle

data, which could help mitigate the overhead of pushing back query workloads.

However, this approach immediately raises a question of how much performance

can be improved to cache in-transit data. Moreover, as SmartNICs manage parti-

tioned particle data for various reasons, pushing back query workloads for general

queries requires merging all relevant data before transferring over the network to

minimize network management overhead. As depicted in Figure 5.13, the time

taken for memory copying is comparable to the combined time for deserialization

and serialization on the SmartNIC, even when the table partition size is relatively

183

small. Therefore, a careful evaluation is required to quantify the effects of caching

and determine the scenarios where applying caches could provide performance

benefits.

Another possible direction is to explore the classification of query types based

on their suitability for offloading to SmartNICs. Certain queries are well-suited for

offloading, particularly those that involve scanning large datasets with minimal

computation. For example, the query select count(*) from particles can

almost always be executed more efficiently on a SmartNIC than on a host. In

this scenario, the execution engine can scan only a single column of the table and

generate the result containing only one row, resulting in improved performance.

However, pushing back this query requires serializing all data and transferring it

over the network, resulting in substantial overhead.

5.4.6 Summary

Dynamic offloading is an essential function that enables extending data services

to embedded systems, such as SmartNICs, without potentially degrading perfor-

mance. We have discussed two strategies for pushing back data service workloads,

the challenges involved in implementing a decision engine to determine whether

to push back, and our implementation of the engine. The results are promising,

and we are looking forward to applying the decision engine and evaluating the

performance of dynamic offloading for HPC data service workloads.

5.5 Conclusion

The implementation of dynamically offloading HPC data service workloads to

embedded systems presents significant challenges, requiring efficient solutions to

184

communication, computation, and scheduling complexities. In addressing some of

these challenges within a domain-specific area for managing particle data flows,

we implemented Bitar to reduce data serialization overhead during communica-

tion. Additionally, we developed a particle-sifter pipeline that enables different

endpoints within the HPC platform to interact with groups of SmartNICs and

transform data into a sorted format. Finally, we discussed our implementation of

a decision engine that facilitates making workload placement decisions for data

query workloads.

185

Chapter 6

Conclusion

In this chapter, I draw conclusions by discussing the ongoing work, outlining

potential future research directions, and providing a summary that encapsulates

our principal findings.

6.1 Ongoing and Future Work

Embedded systems are highly specialized for domain-specific usage. To har-

ness the benefits of employing embedded systems, continuous research efforts are

required to identify potential use cases and implement appropriate solutions, as

evidenced in the history of the challenges faced in employing embedded systems

across diverse applications. While this thesis contributes to the fields from eval-

uation metrics to potential use cases and strategies for achieving performance

benefits, there remains ample space for exploration, such as investigating new

hardware designs, exploring novel software architectures, and optimizing the in-

tegration of embedded systems with emerging technologies.

186

6.1.1 Query Performance with Dynamic Offloading

In the chapter discussing offloading strategies, I presented the performance

estimation of the decision engine. However, the actual performance of online

query workloads, in accordance with the scheduling of the decision engine, is yet

to be evaluated. There exist several questions that require further investigation

to achieve optimal scheduling performance:

• Runtime Resource Availability: Although our model includes the num-

ber of threads as a feature for predicting query execution time, there are

other runtime factors or resources that can also impact performance, such

as the availability of memory, memory and network bandwidth, and CPU

core scaling frequency. As more data service workloads are offloaded to

SmartNICs, the effects of these resources’ availability can become increas-

ingly significant. Further research is required to investigate the impact of

these factors on query execution performance and to develop more accurate

predictive models that incorporate them. There are tools we may leverage

to trace the resource utilization of a system at runtime, such as Jaeger [110]

and OpenTracing API1.

• Congestion Control: There are scenarios in which multiple SmartNICs

may decide to push back data query workloads to the same host that initi-

ated all these requests. This can lead to the host becoming overloaded, re-

sulting in worse execution performance for the pushed-back workloads than

if only a portion of the SmartNICs were to push back their workloads. To

avoid overloading the host with pushed-back aggregation, initially, we may

incorporate a probability of pushback into requests from the same host. This

can help reduce the likelihood of all sent requests returning to the host. We
1https://github.com/opentracing

187

https://github.com/opentracing

can also prorate this probability based on the relative benefit of executing

the workload on the host, allowing workloads with a greater relative benefit

to be more likely to be pushed back. However, since this is not an optimal

solution, it may eventually require SmartNICs and hosts to exchange their

runtime status through an additional peer-to-peer channel.

• Query Workload Classification: The presence of data serialization over-

head when a workload is designated for pushback implies that certain query

workloads may be less likely to be pushed back. For instance, executing the

query select count(*) from particle entails significant I/O operations

but fewer computing operations. Moreover, the computational requirement

of this query workload could be even lower than that of serializing the ref-

erenced dataset. Thus, executing this workload on SmartNICs is preferred,

even when the SmartNIC is overloaded. Conversely, there are query work-

loads that necessitate more computing operations than I/O. These work-

loads will likely be pushed back to the host for improved performance.

Classifying queries based on the likelihood of being pushed back can aid

data consumer services in optimizing and scheduling their requests. Addi-

tionally, identifying the boundaries of each class can assist embedded system

designers in configuring resources to optimize for a given type of workload.

These areas may constitute only a subset of the space that needs to be explored.

Moreover, the necessary accuracy of workload execution time prediction may be

sensitive to the performance gap between the embedded device and the host. I

hope that further efforts will be directed towards these areas to fully realize the

benefits of dynamic offloading for query and additional data service workloads.

188

6.1.2 Cost-benefit Quantification for East-West Data Ser-

vices

While our MBWU evaluation prototype successfully demonstrated the ben-

efits of offloading data access functions with north-south data movement, it is

important to note that the MBWU-based methodology for cost-benefit quantifi-

cation can also be used for data services moving data in the east-west direction

within the system hierarchy. However, additional challenges are associated with

measuring an MBWU, as the configurations that can maximize the performance

of every involved storage device simultaneously may not be intuitively practical.

Additionally, it can be arduous to separate a specific east-west data service from

other integrated services within an application. As a result, evaluating the benefits

of offloading east-west data services is expected to require significant engineering

efforts or may need to compromise with the measurement results reflecting the

benefits of a bundle of services. For example, Ceph’s data replication service is

coupled with the data authentication and encryption service [58], making it dif-

ficult to separate the replication service without potentially breaking the service

protocol. Our preliminary results show that offloading an entire OSD to embedded

storage devices may result in a negative cost benefit.

6.1.3 Security and Performance Isolation

As embedded devices, such as SmartNICs, become more prevalent and widely

adopted in data centers, security and performance isolation issues are increas-

ingly important due to multi-tenancy requirements for sharing resources on the

same embedded system. Existing security frameworks provided by device ven-

dors mainly focus on communication between hosts and the device [48]. However,

functions offloaded to the device also require security isolation between workloads

189

with the same or different functions [269]. Solutions such as eBPF are gaining

attention for enabling zero-trust for network functions. However, similar solutions

are needed to apply to embedded devices, with the challenge of ensuring efficiency

in a constrained environment. In addition to security, enabling performance iso-

lation is critical to avoid workloads with the same priority being starved during

resource competition. FairNIC [95] proposes an approach based on static resource

partitions such as core IDs and physical memory regions. However, as workloads

on embedded systems become more dynamic and the computing power on these

devices continues to increase, time-sharing solutions are promising, similar to most

of the process schedulers employed in Linux [29].

6.2 Summary

The tension between the increasing demand for computing efficiency in data

processing and the narrowing outlook of computing power delivery by general-

purpose systems has underscored the significance of domain-specific hardware, or

embedded systems, as essential components for improving the performance effi-

ciency of data services. Despite the relevance of past research outcomes, effectively

leveraging embedded systems in the current era of big data and advanced technol-

ogy capable of providing a higher density of computing power integration presents

both opportunities and challenges, particularly when considering the specialized

nature of these systems. In addressing these challenges, this thesis aims to ex-

plore three dimensions, namely why, what, and how, to tap into the potential of

embedded systems and overcome these challenges:

Why Offloading (Chapter 3): I tackle this challenge by proposing a set of

metrics and evaluation methodologies to quantify the cost-benefit of offloading a

190

data access function. Our MBWU-based efficiency metrics can assist system ar-

chitects and application developers in measuring the improvement in cost, power,

and space efficiency through offloading based on a normalization of the expenses

to the performance of a given storage media. I have also developed a prototype

that implements the MBWU-based evaluation methodology, which automates the

benefit evaluation of offloading the key-value data access function to systems with

varying configurations. The results demonstrate that our metrics provide valuable

insights into the resource composition of a system for optimizing the efficiency of

running the specific data access workload. Additionally, I presented a mathemat-

ical model to evaluate the data availability benefit of utilizing embedded storage

nodes to construct data storage layers. As embedded storage nodes are more cost-

and space-efficient, edge data centers can deploy more of these nodes as indepen-

dent failure domains, leading to a significant improvement in the data availability

benefit compared to storage systems constructed with general-purpose servers that

typically have a high degree of storage and computing integration.

What to Offload (Chapter 4): I tackle this challenge by proposing a method

with microbenchmarks to create performance envelopes for embedded devices. I

further evaluated the processing headroom for network functions offloaded to a

specific SmartNIC. These evaluations provide valuable insights into the functions

and use cases that applications can leverage. Although the current generation

of SmartNICs lags behind general-purpose systems in terms of data processing

performance, offloading to embedded hardware is particularly attractive for ap-

plications that require a large number of asynchronous operations for data ma-

nipulation and distribution, as well as operations that can benefit from hardware

accelerators. In addition, I evaluated two specific use cases: partitioning par-

ticle data flows and executing parallel data processing from HPC workflows on

191

the BlueField-2 SmartNIC. The results indicate that offloading these functions to

SmartNICs can reduce performance interference to host applications by isolating

I/O intervention, which is a significant benefit in optimizing HPC workloads.

How to Offload (Chapter 5): I tackle this challenge by proposing strate-

gies to better utilize the resources on embedded systems. Our approach involves

the development of a library called “bitar,” which enhances the performance of

data serialization, a critical component of many data services. Bitar leverages

the parallelism and zero-copy capabilities of the accelerator hardware to improve

data compression performance, achieving performance efficiency superior to that

of modern general-purpose processors. I then demonstrated an embedded pro-

cessing pipeline with a software stack that applies large-scale data transformation

processes on a cluster of SmartNICs. Finally, I designed a decision engine that

enables the dynamic offloading of a common data service, the data query service,

to SmartNICs. This engine estimates the execution time for both offloaded and

pushed-back query scenarios to determine the most efficient placement for exe-

cuting a query workload. This work builds upon existing research efforts in the

fields of database query optimization and predictive models used in data science,

thus opening the door to continuously optimizing the dynamic offloading of data

services to embedded systems.

The benefits of utilizing embedded systems for data services are multifaceted,

often varying based on the specifics of application use cases. Therefore, thought-

ful software and hardware design is indispensable for harnessing the performance

potential of offloaded data services. This thesis contributes to both software and

hardware design dimensions, providing insights that system designers and appli-

cation developers can utilize to optimize data services on embedded systems. I

hope this thesis can serve as a stepping stone toward a future where more efficient,

192

cost-effective data service solutions become the standard.

193

Bibliography

[1] Mohamed S Abdelfattah, Andrei Hagiescu, and Deshanand Singh. Gzip on
a chip: High performance lossless data compression on fpgas using opencl.
In Proceedings of the international workshop on openCL 2013 & 2014, pages
1–9, 2014.

[2] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: Programming
model, algorithms and evaluation. ACM SIGPLAN Notices, 33(11):81–91,
1998.

[3] Anant Agarwal and Markus Levy. The kill rule for multicore. In Proceedings
of the 44th annual Design Automation Conference, pages 750–753, 2007.

[4] Charu C Aggarwal and Philip S Yu. A survey of synopsis construction in
data streams. Data streams: models and algorithms, pages 169–207, 2007.

[5] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory R
Ganger, and George Amvrosiadis. File systems unfit as distributed storage
backends: lessons from 10 years of ceph evolution. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, pages 353–369, 2019.

[6] Tanveer Ahmad, Nauman Ahmed, Johan Peltenburg, and Zaid Al-Ars. Ar-
rowsam: In-memory genomics data processing using apache arrow. In 2020
3rd International Conference on Computer Applications & Information Se-
curity (ICCAIS), pages 1–6. IEEE, 2020.

[7] Israr Ahmed and Abdul Aziz. Dynamic approach for data scrubbing process.
International Journal on Computer Science and Engineering, 2(02):416–423,
2010.

[8] J Alexander. A vme interface to an ibm mainframe computer. Technical
report, CERN, 1985.

[9] Mark Allman, Vern Paxson, and Ethan Blanton. Tcp congestion control.
Technical report, 2009.

194

[10] Bob Alverson, Edwin Froese, Larry Kaplan, and Duncan Roweth. Cray XC
series network. Technical Report WP-Aries01-1112, Cray Inc., 2012.

[11] Dario Amodei, Danny Hernandez, Girish Sastry, Jack Clark, Greg Brock-
man, and Ilya Sutskever. AI and compute. https://openai.com/
research/ai-and-compute.

[12] Sabrina Amrouche, Laurent Basara, Paolo Calafiura, Victor Estrade, Steven
Farrell, Diogo R Ferreira, Liam Finnie, Nicole Finnie, Cécile Germain,
Vladimir Vava Gligorov, et al. The tracking machine learning challenge:
accuracy phase. In The NeurIPS’18 Competition, pages 231–264. Springer,
2020.

[13] David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. Fawn: A fast array of wimpy nodes.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 1–14, 2009.

[14] Apache Arrow. The Apache Arrow Dataset Interface. https://arrow.
apache.org/docs/python/api/dataset.html.

[15] TD Arber, Keith Bennett, CS Brady, A Lawrence-Douglas, MG Ramsay,
NJ Sircombe, P Gillies, RG Evans, Holger Schmitz, AR Bell, et al. Contem-
porary particle-in-cell approach to laser-plasma modelling. Plasma Physics
and Controlled Fusion, 57(11):113001, 2015.

[16] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali
Ghodsi, et al. Spark sql: Relational data processing in spark. In Proceed-
ings of the 2015 ACM SIGMOD international conference on management
of data, pages 1383–1394, 2015.

[17] Storage Networking Industry Association. What Is Computational Storage?
https://www.snia.org/education/what-is-computational-storage.

[18] Saurabh Bagchi, Muhammad-Bilal Siddiqui, Paul Wood, and Heng Zhang.
Dependability in edge computing. Commun. ACM, 63(1):58–66, December
2019.

[19] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler,
Michael Wei, and John D Davis. {CORFU}: A shared log design for flash
clusters. In Presented as part of the 9th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 12), pages 1–14, 2012.

195

https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute
https://arrow.apache.org/docs/python/api/dataset.html
https://arrow.apache.org/docs/python/api/dataset.html
https://www.snia.org/education/what-is-computational-storage

[20] Francisco Barahona, Stuart Bermon, Oktay Günlük, and Sarah Hood. Ro-
bust capacity planning in semiconductor manufacturing. Naval Research
Logistics (NRL), 52(5):459–468, 2005.

[21] Mohammadreza Bayatpour, Nick Sarkauskas, Hari Subramoni, Ja-
hanzeb Maqbool Hashmi, and Dhabaleswar Kumar Panda. BluesMPI: Ef-
ficient MPI non-blocking all-to-all offloading designs on modern BlueField
Smart NICs. In Proceedings of High Performance Computing: 36th Inter-
national Conference, ISC High Performance 2021, 2021.

[22] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. {IX}: a protected dataplane operating
system for high throughput and low latency. In 11th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 14), pages 49–
65, 2014.

[23] Matthew Tyler Bettencourt, Richard Michael Jack Kramer, Keith
Cartwright, Edward Geoffrey Phillips, Curtis C. Ober, Roger P. Pawlowski,
Matthew Scot Swan, Irina Kalashnikova Tezaur, Eric T. Phipps, Sidafa
Conde, Eric C Cyr, Craig D. Ulmer, Todd Henry Kordenbrock, Scott
Larson Nicoll Levy, Gary J. Templet, Jonathan J. Hu, Paul Lin, Chris-
tian Alexander Glusa, Christopher Siefert, and Micheal W. Glass. ASC
ATDM level 2 milestone #6358: Assess status of next generation compo-
nents and physics models in EMPIRE. Technical Report SAND2018-10100,
Sandia National Laboratories, 2018.

[24] Wahid Bhimji, Debbie Bard, Melissa Romanus, David Paul, Andrey
Ovsyannikov, Brian Friesen, Matt Bryson, Joaquin Correa, Glenn Lock-
wood, Vakho Tsulăia, Suren Byna, Steven Farrell, Doga Gursoy, Chris Daley,
Vince Beckner, Brian Van Straalen, David Trebotich, Craig Tull, Gunther
Weber, Nicholas Wright, Katie Antypas, and Prabhat. Accelerating science
with the NERSC burst buffer early user program. In Proceedings of the 2016
Cray User Group Conference, 2016.

[25] Jakob Blomer. A quantitative review of data formats for hep analyses.
In Journal of Physics: Conference Series, volume 1085, page 032020. IOP
Publishing, 2018.

[26] Simona Boboila, Youngjae Kim, Sudharshan S Vazhkudai, Peter Desnoy-
ers, and Galen M Shipman. Active flash: Out-of-core data analytics on
flash storage. In 2012 IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–12. IEEE, 2012.

[27] Mark Bohr. A 30 year retrospective on dennard’s mosfet scaling paper.
IEEE Solid-State Circuits Society Newsletter, 12(1):11–13, 2007.

196

[28] Thomas Boutell. Png (portable network graphics) specification version 1.0.
Technical report, 1997.

[29] Daniel P Bovet and Marco Cesati. Understanding the Linux Kernel: from
I/O ports to process management. " O’Reilly Media, Inc.", 2005.

[30] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. Tcp vegas:
New techniques for congestion detection and avoidance. In Proceedings of
the conference on Communications architectures, protocols and applications,
pages 24–35, 1994.

[31] Eric Brewer. Spinning disks and their cloudy future. 14th USENIX Confer-
ence on File and Storage Technologies (FAST ’16), 2016.

[32] Ronald B Brightwell. Challenges and opportunities for hpc interconnects
and mpi. DOE Office of Scientific and Technical Information (OSTI), 2017.

[33] Richard Eric Brown, Shalini Gupta, Richard D Christie, Subrahmanyam S
Venkata, and R Fletcher. Distribution system reliability assessment us-
ing hierarchical markov modeling. IEEE Transactions on power Delivery,
11(4):1929–1934, 1996.

[34] Brad Burres, Dan Daly, Mark Debbage, Eliel Louzoun, Christine Severns-
Williams, Naru Sundar, Nadav Turbovich, Barry Wolford, and Yadong Li.
Intel’s hyperscale-ready infrastructure processing unit (ipu). In 2021 IEEE
Hot Chips 33 Symposium (HCS), pages 1–16. IEEE, 2021.

[35] Idan Burstein. Nvidia data center processing unit (dpu) architecture. In
2021 IEEE Hot Chips 33 Symposium (HCS), pages 1–20. IEEE, 2021.

[36] Idan Burstein. NVIDIA data center processing unit (DPU) architecture. In
Proceedings of the 2021 IEEE Hot Chips 33 Symposium, 2021.

[37] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Lin-
qiang Ouyang, Peng Wang, Yijing Wang, Ray Kuan, et al. {POLARDB}
meets computational storage: Efficiently support analytical workloads in
{Cloud-Native} relational database. In 18th USENIX Conference on File
and Storage Technologies (FAST 20), pages 29–41, 2020.

[38] Zhichao Cao and Siying Dong. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In 18th USENIX Conference on
File and Storage Technologies (FAST’20), 2020.

[39] Michael J Carey, Nicola Onose, and Michalis Petropoulos. Data services.
Communications of the ACM, 55(6):86–97, 2012.

197

[40] Mark Carlson, Alan Yoder, Leah Schoeb, Don Deel, Carlos Pratt, Chris
Lionetti, and Doug Voigt. Software defined storage. Storage Networking
Industry Assoc. working draft, pages 20–24, 2014.

[41] Adrian M Caulfield, Laura M Grupp, and Steven Swanson. Gordon: us-
ing flash memory to build fast, power-efficient clusters for data-intensive
applications. ACM Sigplan Notices, 44(3):217–228, 2009.

[42] Ivano Cerrato, Mauro Annarumma, and Fulvio Risso. Supporting fine-
grained network functions through intel dpdk. In 2014 Third European
Workshop on Software Defined Networks, pages 1–6. IEEE, 2014.

[43] Jayjeet Chakraborty, Ivo Jimenez, Sebastiaan Alvarez Rodriguez, Alexan-
dru Uta, Jeff LeFevre, and Carlos Maltzahn. Skyhook: Towards an arrow-
native storage system. arXiv preprint arXiv:2204.06074, 2022.

[44] Jayjeet Chakraborty, Ivo Jimenez, Sebastiaan Alvarez Rodriguez, Alexan-
dru Uta, Jeff LeFevre, and Carlos Maltzahn. Skyhook: Towards an Arrow-
native storage system. In Proceedings of the 22nd IEEE International Sym-
posium on Cluster, Cloud and Internet Computing, 2022.

[45] Jayjeet Chakraborty, Carlos Maltzahn, David Li, and Tom Drabas.
Skyhook: Bringing Computation to Storage with Apache Arrow.
https://arrow.apache.org/blog/2022/01/31/skyhook-bringing-
computation-to-storage-with-apache-arrow/, January 2022.

[46] Surajit Chaudhuri, Umeshwar Dayal, and Vivek Narasayya. An overview of
business intelligence technology. Communications of the ACM, 54(8):88–98,
2011.

[47] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, et al.
Tvm: An automated end-to-end optimizing compiler for deep learning.
arXiv preprint arXiv:1802.04799, 2018.

[48] Scott Ciccone and John F. Kim. NVIDIA DOCA: a foundation for zero trust.
https://developer.nvidia.com/blog/nvidia-introduces-bluefield-
dpu-as-a-platform-for-zero-trust-security-with-doca-1-2/,
November 2021.

[49] Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John Ouster-
hout, and Mendel Rosenblum. Copysets: Reducing the frequency of data
loss in cloud storage. In Presented as part of the 2013 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 13), pages 37–48, 2013.

198

https://arrow.apache.org/blog/2022/01/31/skyhook-bringing-computation-to-storage-with-apache-arrow/
https://arrow.apache.org/blog/2022/01/31/skyhook-bringing-computation-to-storage-with-apache-arrow/
https://developer.nvidia.com/blog/nvidia-introduces-bluefield-dpu-as-a-platform-for-zero-trust-security-with-doca-1-2/
https://developer.nvidia.com/blog/nvidia-introduces-bluefield-dpu-as-a-platform-for-zero-trust-security-with-doca-1-2/

[50] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong.
Freenet: A distributed anonymous information storage and retrieval sys-
tem. In Designing privacy enhancing technologies, pages 46–66. Springer,
2001.

[51] Yann Collet. LZ4 Frame Format Description. https://github.com/lz4/
lz4/blob/dev/doc/lz4_Frame_format.md, December 2020.

[52] Yann Collet and Murray Kucherawy. Zstandard compression and the appli-
cation/zstd media type. Technical report, 2018.

[53] Apache Arrow Community. Acero: A C++ streaming execution engine.
https://arrow.apache.org/docs/cpp/streaming_execution.html. [Ac-
cessed 06-Apr-2023].

[54] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceedings
of the 1st ACM symposium on Cloud computing, pages 143–154, 2010.

[55] Peter F Corbett and Dror G Feitelson. The vesta parallel file system. ACM
Transactions on Computer Systems (TOCS), 14(3):225–264, 1996.

[56] Patrick Crowley, Marc E Fiuczynski, Jean-Loup Baer, and Brian Bershad.
Workloads for programmable network interfaces. Workload Characterization
for Computer System Design, pages 135–147, 2000.

[57] Anirban Dasgupta, Kevin Lang, Lee Rhodes, and Justin Thaler. A
framework for estimating stream expression cardinalities. arXiv preprint
arXiv:1510.01455, 2015.

[58] Anthony D’atri, Vaibhav Bhembre, and Karan Singh. Learning Ceph:
Unifed, scalable, and reliable open source storage solution. Packt Publishing
Ltd, 2017.

[59] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. Data center energy con-
sumption modeling: A survey. IEEE Communications Surveys & Tutorials,
18(1):732–794, 2015.

[60] David J De Witt. Direct—a multiprocessor organization for supporting re-
lational database management systems. IEEE Transactions on Computers,
100(6):395–406, 1979.

[61] Ewa Deelman, Tom Peterka, Ilkay Altintas, Christopher D. Carothers, Ker-
stin Kleese van Dam, Kenneth Moreland, M. Parashar, Lavanya Ramakrish-
nan, Michela Taufer, and Jeffrey S. Vetter. The future of scientific workflows.
The International Journal of High Performance Computing Applications,
32:159 – 175, 2018.

199

https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md
https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md
https://arrow.apache.org/docs/cpp/streaming_execution.html

[62] Julien Derouillat, Arnaud Beck, Frédéric Pérez, Tommaso Vinci,
M Chiaramello, Anna Grassi, M Flé, Guillaume Bouchard, I Plotnikov,
Nicolas Aunai, et al. Smilei: A collaborative, open-source, multi-purpose
particle-in-cell code for plasma simulation. Computer Physics Communica-
tions, 222:351–373, 2018.

[63] Amol Deshpande, Zachary Ives, Vijayshankar Raman, et al. Adaptive query
processing. Foundations and Trends® in Databases, 1(1):1–140, 2007.

[64] Peter Deutsch. Deflate compressed data format specification version 1.3.
Technical report, 1996.

[65] Noah Diamond, Scott Graham, and Gilbert Clark. Securing InfiniBand
networks with the Bluefield-2 data processing unit. In Proceedings of the
International Conference on Cyber Warfare and Security, 2022.

[66] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and Ani-
mesh Trivedi. Understanding modern storage apis: A systematic study of
libaio, spdk, and io_uring. In Proceedings of the 15th ACM International
Conference on Systems and Storage, pages 120–127, 2022.

[67] Ciprian Docan, Manish Parashar, and Scott Klasky. DataSpaces: An inter-
action and coordination framework for coupled simulation workflows. In Pro-
ceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, 2010.

[68] Jörg Domaschka, Christopher B Hauser, and Benjamin Erb. Reliability and
availability properties of distributed database systems. In 2014 IEEE 18th
International Enterprise Distributed Object Computing Conference, pages
226–233. IEEE, 2014.

[69] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony
Savor, and Michael Strum. Optimizing space amplification in rocksdb. In
CIDR, volume 3, page 3, 2017.

[70] Matthieu Dorier. Addressing the challenges of I/O variability in post-
petascale HPC simulations. PhD thesis, Ecole Normale Supérieure de
Rennes, 2014.

[71] Joshua D Drake and John C Worsley. Practical PostgreSQL. " O’Reilly
Media, Inc.", 2002.

[72] Cosmin Dumitru, Ralph Koning, Cees de Laat, et al. Clearstream: Pro-
totyping 40 gbps transparent end-to-end connectivity. Technical reports,
(UVA-SNE-2011-02), 2011.

200

[73] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb,
et al. The design and operation of {CloudLab}. In 2019 USENIX annual
technical conference (USENIX ATC 19), pages 1–14, 2019.

[74] Chris Edwards. Moore’s law: What comes next? Communications of the
ACM, 64(2):12–14, 2021.

[75] H Carter Edwards and Christian R Trott. Kokkos: Enabling performance
portability across manycore architectures. In 2013 Extreme Scaling Work-
shop (xsw 2013), pages 18–24. IEEE, 2013.

[76] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos:
Enabling manycore performance portability through polymorphic memory
access patterns. Journal of Parallel and Distributed Computing, 74:3202–
3216, 2014.

[77] Lieven Eeckhout. Is moore’s law slowing down? what’s next? IEEE Micro,
37(04):4–5, 2017.

[78] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore scaling.
In Proceedings of the 38th annual international symposium on Computer
architecture, pages 365–376, 2011.

[79] Cristian Estan and Jeffrey F Naughton. End-biased samples for join cardi-
nality estimation. In 22nd International Conference on Data Engineering
(ICDE’06), pages 20–20. IEEE, 2006.

[80] Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for
counting active flows on high speed links. In Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, pages 153–166, 2003.

[81] Yuanwei Fang, Chen Zou, and Andrew A Chien. Accelerating raw data
analysis with the accorda software and hardware architecture. Proceedings
of the VLDB Endowment, 12(11):1568–1582, 2019.

[82] Marc E Fiuczynski, Richard P Martin, Tsutomu Owa, and Brian N Ber-
shad. Spine: a safe programmable and integrated network environment. In
Proceedings of the 8th ACM SIGOPS European workshop on Support for
composing distributed applications, pages 7–12, 1998.

[83] Linux Foundation. Data plane development kit (DPDK). http://www.
dpdk.org, 2015.

201

http://www.dpdk.org
http://www.dpdk.org

[84] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Kon-
winski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. Above
the clouds: A berkeley view of cloud computing. Dept. Electrical Eng. and
Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS,
28(13):2009, 2009.

[85] Xinwei Fu, Talha Ghaffar, James C Davis, and Dongyoon Lee. Edgewise: a
better stream processing engine for the edge. In USENIX Annual Technical
Conference (ATC), 2019.

[86] Jiechao Gao, Haoyu Wang, and Haiying Shen. Smartly handling renew-
able energy instability in supporting a cloud datacenter. In 2020 IEEE
international parallel and distributed processing symposium (IPDPS), pages
769–778. IEEE, 2020.

[87] Nishant Garg. Apache kafka. Packt Publishing Birmingham, UK, 2013.

[88] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Querying and
mining data streams: you only get one look a tutorial. In Proceedings of
the 2002 ACM SIGMOD international conference on Management of data,
pages 635–635, 2002.

[89] Sanjay Ghemawat and Jeff Dean. Leveldb, 2011.

[90] Garth A Gibson, David F Nagle, Khalil Amiri, Fay W Chang, Eugene M
Feinberg, Howard Gobioff, Chen Lee, Berend Ozceri, Erik Riedel, David
Rochberg, et al. File server scaling with network-attached secure disks. In
Proceedings of the 1997 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages 272–284, 1997.

[91] GoogleTechTalks and Gordon Deborah. How ant colonies get things done.
https://www.youtube.com/watch?v=R07_JFfnFnY, Apr 2008. [Online; ac-
cessed 25-May-2020].

[92] Deborah M Gordon. Ants at work: how an insect society is organized. Simon
and Schuster, 1999.

[93] Deborah M Gordon. Ant encounters: interaction networks and colony be-
havior, volume 1. Princeton University Press, 2010.

[94] Goetz Graefe. Query evaluation techniques for large databases. ACM Com-
puting Surveys (CSUR), 25(2):73–169, 1993.

[95] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C Snoeren. Smartnic
performance isolation with fairnic: Programmable networking for the cloud.
In Proceedings of the Annual conference of the ACM Special Interest Group

202

https://www.youtube.com/watch?v=R07_JFfnFnY

on Data Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 681–693, 2020.

[96] Kevin M Greenan, James S Plank, Jay J Wylie, et al. Mean time to meaning-
less: Mttdl, markov models, and storage system reliability. In HotStorage,
pages 1–5, 2010.

[97] Brendan Gregg. Computing performance 2022: What’s on the horizon.
USENIX SREcon 2022, 2022.

[98] Junmin Gu, Burlen Loring, Kesheng Wu, and E Wes Bethel. Hdf5 as a
vehicle for in transit data movement. In Proceedings of the Workshop on In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
pages 39–43, 2019.

[99] Ajay Gulati, Ganesha Shanmuganathan, Anne M Holler, and Irfan Ahmad.
Cloud scale resource management: Challenges and techniques. HotCloud,
11:3–3, 2011.

[100] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu
Padhye, and Marina Lipshteyn. RDMA over commodity Ethernet at scale.
In Proceedings of the 2016 ACM SIGCOMM Conference, 2016.

[101] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak,
Stefano Stefani, and Vidhya Srinivasan. Amazon redshift and the case for
simpler data warehouses. In Proceedings of the 2015 ACM SIGMOD inter-
national conference on management of data, pages 1917–1923, 2015.

[102] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee,
Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. Chasing carbon: The
elusive environmental footprint of computing. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
854–867. IEEE, 2021.

[103] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-
speed tcp variant. ACM SIGOPS operating systems review, 42(5):64–74,
2008.

[104] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu Shi,
and Scott Shenker. Network support for resource disaggregation in next-
generation datacenters. In Proceedings of the Twelfth ACM Workshop on
Hot Topics in Networks, pages 1–7, 2013.

[105] Nikos Hardavellas. The rise and fall of dark silicon. The advanced computing
systems association, pages 7–17, 2012.

203

[106] Francis H Harlow. The particle-in-cell computing method for fluid dynamics.
Methods Comput. Phys., 3:319–343, 1964.

[107] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 6th edition, 2017.

[108] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in prac-
tice: Algorithmic engineering of a state of the art cardinality estimation
algorithm. In Proceedings of the 16th International Conference on Extend-
ing Database Technology, pages 683–692, 2013.

[109] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era.
Computer, 41(7):33–38, 2008.

[110] Jonas Höglund. An analysis of a distributed tracing systems effect on per-
formance jaeger and opentracing api, 2020.

[111] Scott Hollenbeck. Transport layer security protocol compression methods.
Technical report, 2004.

[112] Song Huang, Shucai Xiao, and Wu-chun Feng. On the energy efficiency of
graphics processing units for scientific computing. In 2009 IEEE Interna-
tional Symposium on Parallel & Distributed Processing, pages 1–8. IEEE,
2009.

[113] IBM Systems Development Division, Department G24, San Jose, California
95114. Reference Manual for IBM 2835 Storage Control and IBM 2305
Fixed Head Storage Module.

[114] Yannis E Ioannidis. Query optimization. ACM Computing Surveys (CSUR),
28(1):121–123, 1996.

[115] Michael Isard. Autopilot: automatic data center management. ACM
SIGOPS Operating Systems Review, 41(2):60–67, 2007.

[116] Nayeem Islam and Roy Want. Smartphones: Past, present, and future.
IEEE Pervasive Computing, 13(4):89–92, 2014.

[117] Alekh Jindal, K Venkatesh Emani, Maureen Daum, Olga Poppe, Bran-
don Haynes, Anna Pavlenko, Ayushi Gupta, Karthik Ramachandra, Carlo
Curino, Andreas Mueller, et al. Magpie: Python at speed and scale using
cloud backends. In CIDR, 2021.

204

[118] Insoon Jo, Duck-Ho Bae, Andre S Yoon, Jeong-Uk Kang, Sangyeun Cho,
Daniel DG Lee, and Jaeheon Jeong. Yoursql: a high-performance database
system leveraging in-storage computing. Proceedings of the VLDB Endow-
ment, 9(12):924–935, 2016.

[119] Rick Jones. Netperf benchmark. http://www. netperf. org/, 2012.

[120] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim,
Hanho Jin, and Keith Kim. Hbm (high bandwidth memory) dram tech-
nology and architecture. In 2017 IEEE International Memory Workshop
(IMW), pages 1–4. IEEE, 2017.

[121] Sang-Woo Jun, Ming Liu, and Kermin Elliott Fleming. Scalable multi-access
flash store for big data analytics. In Proceedings of the 2014 ACM/SIGDA
international symposium on Field-programmable gate arrays, pages 55–64,
2014.

[122] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron
King, Shuotao Xu, et al. Bluedbm: An appliance for big data analytics.
In 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), pages 1–13. IEEE, 2015.

[123] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. A
superblock-based flash translation layer for nand flash memory. In Pro-
ceedings of the 6th ACM & IEEE International conference on Embedded
software, pages 161–170, 2006.

[124] Sara Karamati, Clayton Hughes, Karl S. Hemmert, Ryan E. Grant, Whit
Schonbein, Scott Levy, Thomas M. Conte, Jeffrey S. Young, and Richard W.
Vuduc. “Smarter" NICs for faster molecular dynamics: a case study. In Pro-
ceedings of the 2022 IEEE International Parallel and Distributed Processing
Symposium, 2022.

[125] Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal quantile approxi-
mation in streams. In 2016 ieee 57th annual symposium on foundations of
computer science (focs), pages 71–78. IEEE, 2016.

[126] Kimberly Keeton, David A Patterson, and Joseph M Hellerstein. A case for
intelligent disks (idisks). ACM SIGMOD Record, 27(3):42–52, 1998.

[127] Gokcen Kestor, Roberto Gioiosa, Darren J Kerbyson, and Adolfy Hoisie.
Quantifying the energy cost of data movement in scientific applications. In
2013 IEEE international symposium on workload characterization (IISWC),
pages 56–65. IEEE, 2013.

205

[128] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini, Dejan
Kostić, Youngjin Kwon, Simon Peter, and Emmett Witchel. Linefs: Efficient
smartnic offload of a distributed file system with pipeline parallelism. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 756–771, 2021.

[129] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, and Sang-Won
Lee. Fast, energy efficient scan inside flash memory ssds. In Proceeedings
of the International Workshop on Accelerating Data Management Systems
(ADMS), 2011.

[130] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-Won Lee,
and Bongki Moon. In-storage processing of database scans and joins. In-
formation Sciences, 327:183–200, 2016.

[131] Colin King. Stress-ng: A tool to load and stress a computer system. http://
kernel.ubuntu.com/git/cking/stress-ng.git. [Accessed 06-Apr-2023].

[132] Philip Kufeldt, Carlos Maltzahn, Tim Feldman, Christine Green, Grant
Mackey, and Shingo Tanaka. Eusocial storage devices-offloading data man-
agement to storage devices that can act collectively. ; login: The USENIX
Magazine, 43(2):16–22, 2018.

[133] HT Kung. Network-based multicomputers: redefining high performance
computing in the 1990s. In Proceedings of the Decennial Caltech Conference
on VLSI. Carnegie Mellon University, 1989.

[134] Ian Kuon, Russell Tessier, Jonathan Rose, et al. Fpga architecture: Survey
and challenges. Foundations and Trends® in Electronic Design Automation,
2(2):135–253, 2008.

[135] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dan-
dres. Quantifying the carbon emissions of machine learning. arXiv preprint
arXiv:1910.09700, 2019.

[136] Hai Lan, Zhifeng Bao, and Yuwei Peng. A survey on advancing the dbms
query optimizer: Cardinality estimation, cost model, and plan enumeration.
Data Science and Engineering, 6:86–101, 2021.

[137] Minh Le, Zheng Song, Young-Woo Kwon, and Eli Tilevich. Reliable and ef-
ficient mobile edge computing in highly dynamic and volatile environments.
In 2017 Second International Conference on Fog and Mobile Edge Comput-
ing (FMEC), pages 113–120. IEEE, 2017.

206

http://kernel.ubuntu.com/git/cking/stress-ng.git
http://kernel.ubuntu.com/git/cking/stress-ng.git

[138] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya Akella,
Michael M Swift, and TV Lakshman. Uno: Uniflying host and smart nic
offload for flexible packet processing. In Proceedings of the 2017 Symposium
on Cloud Computing, pages 506–519, 2017.

[139] Scott Le Grand, Andreas W Götz, and Ross C Walker. Spfp: Speed with-
out compromise—a mixed precision model for gpu accelerated molecular
dynamics simulations. Computer Physics Communications, 184(2):374–380,
2013.

[140] Doug Lea and Wolfram Gloger. A memory allocator, 1996.

[141] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon
Park, and Ha-Joo Song. A log buffer-based flash translation layer using fully-
associative sector translation. ACM Transactions on Embedded Computing
Systems (TECS), 6(3):18–es, 2007.

[142] Young-Sik Lee, Luis Cavazos Quero, Youngjae Lee, Jin-Soo Kim, and Se-
ungryoul Maeng. Accelerating external sorting via on-the-fly data merge in
active ssds. In 6th {USENIX} Workshop on Hot Topics in Storage and File
Systems (HotStorage 14), 2014.

[143] Jeff LeFevre and Carlos Maltzahn. Skyhookdm: Data processing in ceph
with programmable storage. USENIX login;, 45(2), 2020.

[144] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kem-
per, and Thomas Neumann. How good are query optimizers, really? Pro-
ceedings of the VLDB Endowment, 9(3):204–215, 2015.

[145] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and
Thomas Neumann. Cardinality estimation done right: Index-based join
sampling. In Cidr, 2017.

[146] Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul,
Butler W Lampson, Daniel Sanchez, and Tao B Schardl. There’s plenty of
room at the top: What will drive computer performance after moore’s law?
Science, 368(6495):eaam9744, 2020.

[147] Geoffrey Lentner. Shared memory high throughput computing with Apache
Arrow. In Proceedings of the Practice and Experience in Advanced Research
Computing on Rise of the Machines (learning), 2019.

[148] Eliezer Levy and Abraham Silberschatz. Distributed file systems: Concepts
and examples. ACM Computing Surveys (CSUR), 22(4):321–374, 1990.

207

[149] Weigang Li and Yu Yao. Accelerate data compression in file system. In
2016 Data Compression Conference (DCC), pages 615–615. IEEE Computer
Society, 2016.

[150] Chyuan Shiun Lin, Diane CP Smith, and John Miles Smith. The design
of a rotating associative memory for relational database applications. ACM
Transactions on Database Systems (TODS), 1(1):53–65, 1976.

[151] Jialin Liu, Quincey Koziol, Houjun Tang, François Tessier, Wahid Bhimji,
Brandon Cook, Brian Austin, Suren Byna, Bhupender Thakur, Glenn Lock-
wood, Jack Deslippe, and Prabhat. Understanding the I/O performance gap
between Cori KNL and Haswell. In Proceedings of the 2017 Cray User Group
Conference, 2017.

[152] Jianshen Liu. ljishen/SmartNIC-WU: relative performance of individual
stressors. https://raw.githubusercontent.com/ljishen/SmartNIC-
WU/main/results/stress-ng/sequential-all_60s.platforms_
summary.svg, 1 2022.

[153] Jianshen Liu. ljishen/SmartNIC-WU: relative performance of stresssor
classes. https://raw.githubusercontent.com/ljishen/SmartNIC-
WU/main/results/stress-ng/sequential-all_60s_Npc3000.
platforms_summary.per_class.svg, 1 2022.

[154] Jianshen Liu. Simplify accessing hardware compression/decompression ac-
celerators. https://github.com/ljishen/bitar, 7 2022.

[155] Jianshen Liu, Philip Kufeldt, and Carlos Maltzahn. Mbwu: Benefit quan-
tification for data access function offloading. In High Performance Com-
puting: ISC High Performance 2019 International Workshops, Frankfurt,
Germany, June 16-20, 2019, Revised Selected Papers 34, pages 198–213.
Springer, 2019.

[156] Jianshen Liu and Matthew Leon. Scale-out edge storage systems with em-
bedded storage nodes to get better availability and cost-efficiency at the
same time. HotEdge’20, 2020.

[157] Jianshen Liu, Carlos Maltzahn, Matthew L Curry, and Craig Ulmer. Pro-
cessing particle data flows with smartnics. In 2022 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–8. IEEE, 2022.

[158] Jianshen Liu, Carlos Maltzahn, Matthew L. Curry, and Craig Ulmer. Pro-
cessing particle data flows with SmartNICs. In Proceedings of the 2022 IEEE
High Performance Extreme Computing Conference, 2022.

208

https://raw.githubusercontent.com/ljishen/SmartNIC-WU/main/results/stress-ng/sequential-all_60s.platforms_summary.svg
https://raw.githubusercontent.com/ljishen/SmartNIC-WU/main/results/stress-ng/sequential-all_60s.platforms_summary.svg
https://raw.githubusercontent.com/ljishen/SmartNIC-WU/main/results/stress-ng/sequential-all_60s.platforms_summary.svg
https://raw.githubusercontent.com/ljishen/SmartNIC-WU/main/results/stress-ng/sequential-all_60s_Npc3000.platforms_summary.per_class.svg
https://raw.githubusercontent.com/ljishen/SmartNIC-WU/main/results/stress-ng/sequential-all_60s_Npc3000.platforms_summary.per_class.svg
https://raw.githubusercontent.com/ljishen/SmartNIC-WU/main/results/stress-ng/sequential-all_60s_Npc3000.platforms_summary.per_class.svg
https://github.com/ljishen/bitar

[159] Jianshen Liu, Carlos Maltzahn, Craig Ulmer, and Matthew Leon Curry.
Performance characteristics of the bluefield-2 smartnic. arXiv preprint
arXiv:2105.06619, 2021.

[160] Jianshen Liu, Carlos Maltzahn, Craig D. Ulmer, and Matthew Leon Curry.
Performance characteristics of the bluefield-2 smartnic. DOE Office of Sci-
entific and Technical Information (OSTI), 5 2021.

[161] Ming Liu, Tianyi Cui, Henry N. Schuh, Arvind Krishnamurthy, Simon Pe-
ter, and Karan Gupta. Offloading distributed applications onto smartnics
using iPipe. Proceedings of the ACM Special Interest Group on Data Com-
munication, 2019.

[162] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. E3: Energy-efficient microservices on smartnic-accelerated
servers. In USENIX annual technical conference, pages 363–378, 2019.

[163] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakr-
ishnan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Wisckey:
Separating keys from values in ssd-conscious storage. ACM Transactions on
Storage (TOS), 13(1):1–28, 2017.

[164] Wenbin Lu, Luis E. Peña, Pavel Shamis, Valentin Churavy, Barbara Mary
Chapman, and Steve Poole. Bring the BitCODE-moving compute and data
in distributed heterogeneous systems. In Proceedings of the 2022 IEEE
International Conference on Cluster Computing, pages 12–22, 2022.

[165] John MacCormick, Nicholas Murphy, Venugopalan Ramasubramanian, Udi
Wieder, Junfeng Yang, and Lidong Zhou. Kinesis: A new approach to
replica placement in distributed storage systems. ACM Transactions On
Storage (TOS), 4(4):1–28, 2009.

[166] Rohan Mahapatra, Soroush Ghodrati, Byung Hoon Ahn, Sean Kinzer, Shu-
ting Wang, Hanyang Xu, Lavanya Karthikeyan, Hardik Sharma, Amir Yaz-
danbakhsh, Mohammad Alian, et al. Domain-specific computational storage
for serverless computing. arXiv preprint arXiv:2303.03483, 2023.

[167] Tanu Malik, Randal C Burns, and Nitesh V Chawla. A black-box approach
to query cardinality estimation. In CIDR, pages 56–67, 2007.

[168] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jef-
frey S Vetter. Nvidia tensor core programmability, performance & precision.
In 2018 IEEE international parallel and distributed processing symposium
workshops (IPDPSW), pages 522–531. IEEE, 2018.

209

[169] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan
Koomey. Recalibrating global data center energy-use estimates. Science,
367(6481):984–986, 2020.

[170] W McKinney. Introducing apache arrow flight: A framework for fast data
transport, 2019.

[171] Wes McKinney et al. pandas: a foundational python library for data anal-
ysis and statistics. Python for high performance and scientific computing,
14(9):1–9, 2011.

[172] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Why go log-
arithmic if we can go linear? towards effective distinct counting of search
traffic. In Proceedings of the 11th international conference on Extending
database technology: Advances in database technology, pages 618–629, 2008.

[173] Jeffrey Mogul, Balachander Krishnamurthy, Fred Douglis, Anja Feldmann,
Yaron Goland, Arthur van Hoff, and D Hellerstein. Delta encoding in http.
Technical report, 2002.

[174] Kenneth Moreland, Christopher Sewell, William Usher, Li-ta Lo, Jeremy
Meredith, David Pugmire, James Kress, Hendrik Schroots, Kwan-Liu Ma,
Hank Childs, et al. Vtk-m: Accelerating the visualization toolkit for mas-
sively threaded architectures. IEEE computer graphics and applications,
36(3):48–58, 2016.

[175] Kenneth Moreland, Christopher M. Sewell, Will Usher, Li-Ta Lo, Jeremy S.
Meredith, David Pugmire, James Kress, Hendrik A. Schroots, Kwan-Liu
Ma, Hank Childs, Matthew Larsen, Chun-Ming Chen, Robert Maynard, and
Berk Geveci. VTK-m: Accelerating the visualization toolkit for massively
threaded architectures. IEEE Computer Graphics and Applications, 36:48–
58, 2016.

[176] Rafael Moreno-Vozmediano, Eduardo Huedo, Rubén S Montero, and Igna-
cio M Llorente. A disaggregated cloud architecture for edge computing.
IEEE Internet Computing, 23(3):31–36, 2019.

[177] Jacques Nadeau. Substrait: Cross-Language Serialization for Relational
Algebra. https://substrait.io/.

[178] Jacques Nadeau. Vectorized Query Processing for CPUs using Apache Ar-
row. https://www.youtube.com/watch?v=hLm_duqB3Y4, December 2019.

[179] National Oceanic and Atmospheric Administration. Vessel Traffic: Ais vessel
tracks. https://coast.noaa.gov/digitalcoast/data/vesseltraffic.
html, 2009-2017.

210

https://substrait.io/
https://www.youtube.com/watch?v=hLm_duqB3Y4
https://coast.noaa.gov/digitalcoast/data/vesseltraffic.html
https://coast.noaa.gov/digitalcoast/data/vesseltraffic.html

[180] Tatjana R. Nikolić, Goran S. Nikolić, Bojan R. Dimitrijević, and Mile K.
Stojcev. From single cpu to multicore systems. In 2022 57th International
Scientific Conference on Information, Communication and Energy Systems
and Technologies (ICEST), pages 1–8, 2022.

[181] Philipp Moritz and Robert Nishihara. Plasma In-Memory Ob-
ject Store. https://arrow.apache.org/blog/2017/08/08/plasma-in-
memory-object-store/, August 2017.

[182] Esen A. Ozkarahan, Stewart A. Schuster, and Kenneth C Sevcik. Perfor-
mance evaluation of a relational associative processor. ACM Transactions
on Database Systems (TODS), 2(2):175–195, 1977.

[183] Esen A Ozkarahan, Stewart A Schuster, and Kenneth C Smith. Rap: an
associative processor for data base management. In Proceedings of the May
19-22, 1975, national computer conference and exposition, pages 379–387,
1975.

[184] Zaifeng Pan, Feng Zhang, Yanliang Zhou, Jidong Zhai, Xipeng Shen, Onur
Mutlu, and Xiaoyong Du. Exploring data analytics without decompression
on embedded gpu systems. IEEE Transactions on Parallel and Distributed
Systems, 33(7):1553–1568, 2021.

[185] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean.
Carbon emissions and large neural network training. arXiv preprint
arXiv:2104.10350, 2021.

[186] David A Patterson and Carlo H Sequin. Risc i: A reduced instruction
set vlsi computer. In 25 years of the international symposia on Computer
architecture (selected papers), pages 216–230, 1998.

[187] Johan Peltenburg, Jeroen van Straten, Matthijs Brobbel, H Peter Hofstee,
and Zaid Al-Ars. Supporting columnar in-memory formats on fpga: The
hardware design of fletcher for apache arrow. In International Symposium
on Applied Reconfigurable Computing, pages 32–47. Springer, 2019.

[188] Johan Peltenburg, Jeroen Van Straten, Lars Wijtemans, Lars Van Leeuwen,
Zaid Al-Ars, and Peter Hofstee. Fletcher: A framework to efficiently in-
tegrate fpga accelerators with apache arrow. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), pages
270–277. IEEE, 2019.

[189] G.F. Pfister. An introduction to the InfiniBand architecture. High Perfor-
mance Mass Storage and Parallel I/O, pages 617–632, 2001.

211

https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/
https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/

[190] Ivan Luiz Picoli, Philippe Bonnet, and Pinar Tözün. Lsm management on
computational storage. In Proceedings of the 15th International Workshop
on Data Management on New Hardware, pages 1–3, 2019.

[191] Ravindra Pindikura. Introducing the Gandiva Initiative for Apache Ar-
row. https://www.dremio.com/blog/announcing-gandiva-initiative-
for-apache-arrow/, June 2018.

[192] PINE64. ROCKPro64 4GB Single Board Computer. https://pine64.com/
product/rockpro64-4gb-single-board-computer/, April 2023.

[193] Jim Pivarski, Peter Elmer, and David Lange. Awkward arrays in python,
c++, and numba. In EPJ Web of Conferences, volume 245, page 05023.
EDP Sciences, 2020.

[194] Nicola Plowes. An introduction to eusociality. Nature Education Knowledge,
3(10):7, 2010.

[195] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achieving
low tail latency for microsecond-scale networked tasks. In Proceedings of
the 26th Symposium on Operating Systems Principles, pages 325–341, 2017.

[196] Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang, Ming Liu, Srinivas
Narayana, and Ang Chen. Automated smartnic offloading insights for net-
work functions. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 772–787, 2021.

[197] Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine learning in
python: Main developments and technology trends in data science, machine
learning, and artificial intelligence. Information, 11(4):193, 2020.

[198] David Reinsel, John Gantz, and John Rydning. The digitization of the
world: from edge to core. Framingham: International Data Corporation,
2018.

[199] Lee Rhodes, Kevin Lang, Alexander Saydakov, Justin Thaler, Edo Liberty,
and Jon Malkin. Apache DataSketches: A software library of stochastic
streaming algorithms. https://datasketches.apache.org/.

[200] Robert Ricci, Eric Eide, and CloudLab Team. Introducing cloudlab: Sci-
entific infrastructure for advancing cloud architectures and applications. ;
login:: the magazine of USENIX & SAGE, 39(6):36–38, 2014.

[201] James Richardson, Rita Sallam, Kurt Schlegel, Austin Kronz, and Julian
Sun. Magic quadrant for analytics and business intelligence platforms. Gart-
ner ID G00386610, 2020.

212

https://www.dremio.com/blog/announcing-gandiva-initiative-for-apache-arrow/
https://www.dremio.com/blog/announcing-gandiva-initiative-for-apache-arrow/
https://pine64.com/product/rockpro64-4gb-single-board-computer/
https://pine64.com/product/rockpro64-4gb-single-board-computer/
https://datasketches.apache.org/

[202] Erik Riedel, Christos Faloutsos, Garth A Gibson, and David Nagle. Active
disks for large-scale data processing. Computer, 34(6):68–74, 2001.

[203] Erik Riedel and Garth Gibson. Active disks-remote execution for network-
attached storage. Technical report, CARNEGIE-MELLON UNIV PITTS-
BURGH PA SCHOOL OF COMPUTER SCIENCE, 1997.

[204] Erik Riedel, Garth Gibson, and Christos Faloutsos. Active storage for large-
scale data mining and multimedia applications. In Proceedings of 24th Con-
ference on Very Large Databases, pages 62–73. Citeseer, 1998.

[205] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. In
Proceedings first international conference on peer-to-peer computing, pages
99–100. IEEE, 2001.

[206] Matthew Rocklin. Dask: Parallel computation with blocked algorithms and
task scheduling. In Proceedings of 14th Python in Science Conference, 2015.

[207] Rodrigo Rodrigues and Peter Druschel. Peer-to-peer systems. Commun.
ACM, 53(10):72–82, October 2010.

[208] Huigui Rong, Haomin Zhang, Sheng Xiao, Canbing Li, and Chunhua Hu.
Optimizing energy consumption for data centers. Renewable and Sustainable
Energy Reviews, 58:674–691, 2016.

[209] Amir Roozbeh, Joao Soares, Gerald Q Maguire, Fetahi Wuhib, Chakri
Padala, Mozhgan Mahloo, Daniel Turull, Vinay Yadhav, and Dejan Kostić.
Software-defined “hardware” infrastructures: A survey on enabling tech-
nologies and open research directions. IEEE Communications Surveys &
Tutorials, 20(3):2454–2485, 2018.

[210] Robert Ross, George Amvrosiadis, Philip Carns, Charles Cranor, Matthieu
Dorier, Kevin Harms, Greg Ganger, Garth Gibson, Samuel Gutierrez, Rob
Latham, Bob Robey, Dana Robinson, Bradley Settlemyer, Galen Shipman,
Shane Snyder, Jerome Soumagne, and Qing Zheng. Mochi: Composing
data services for high-performance computing environments. Journal of
Computer Science and Technology, 35:121–144, 01 2020.

[211] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems Platforms and Open Dis-
tributed Processing, pages 329–350. Springer, 2001.

[212] Zhenyuan Ruan, Tong He, and Jason Cong. {INSIDER}: Designing in-
storage computing system for emerging high-performance drive. In 2019

213

{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), pages
379–394, 2019.

[213] Gerald Sabin and Mohammad Rashti. Security offload using the smartnic,
a programmable 10 gbps ethernet nic. In 2015 National Aerospace and
Electronics Conference (NAECON), pages 273–276. IEEE, 2015.

[214] Seref Sagiroglu and Duygu Sinanc. Big data: A review. In 2013 international
conference on collaboration technologies and systems (CTS), pages 42–47.
IEEE, 2013.

[215] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng,
and Joshua Zhexue Huang. Big data analytics on Apache Spark. Interna-
tional Journal of Data Science and Analytics, 1:145–164, 2016.

[216] Allen Samuels. The consequences of infinite storage bandwidth. https:
//www.youtube.com/watch?v=-X9BuepxGko.

[217] Matthias Schäfer, Martin Strohmeier, Vincent Lenders, Ivan Martinovic,
and Matthias Wilhelm. Bringing up opensky: A large-scale ads-b sensor
network for research. In IPSN-14 Proceedings of the 13th International Sym-
posium on Information Processing in Sensor Networks, pages 83–94. IEEE,
2014.

[218] John Shalf. The future of computing beyond moore’s law. Philosophical
Transactions of the Royal Society A, 378(2166):20190061, 2020.

[219] Madhavapeddi Shreedhar and George Varghese. Efficient fair queueing using
deficit round robin. In Proceedings of the conference on Applications, tech-
nologies, architectures, and protocols for computer communication, pages
231–242, 1995.

[220] Raj K Singh, Stephen G Tell, and Shaun J Bharrat. A programmable
network interface for a message-based multicomputer. ACM SIGCOMM
Computer Communication Review, 24(3):8–17, 1994.

[221] Ing Wilhelm G Spruth. The future of the mainframe. New York Times,
1989.

[222] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet ap-
plications. ACM SIGCOMM Computer Communication Review, 31(4):149–
160, 2001.

[223] RAPIDS Development Team. RAPIDS: Collection of Libraries for End to
End GPU Data Science, 2018.

214

https://www.youtube.com/watch?v=-X9BuepxGko
https://www.youtube.com/watch?v=-X9BuepxGko

[224] Gary J. Templet, Matthew R. Glickman, Todd Kordenbrock, Scott Levy,
Gerald Fredrick Lofstead, Jeff Mauldin, Thomas J. Otahal, Craig D. Ulmer,
Patrick M. Widener, and Ron A. Oldfield. Data services for visualization
and analysis ASC level II milestone (7186). Technical Report SAND-2020-
9451, Sandia National Laboratories, 2020.

[225] Jonathan Thatcher, Eden Kim, Dave Landsman, Marilyn Fausset, and
Arnold Jones. Solid state storage performance test specification v2.0.1.
Technical report, SNIA, February 2018.

[226] Thomas N Theis and H-S Philip Wong. The end of moore’s law: A new
beginning for information technology. Computing in Science & Engineering,
19(2):41–50, 2017.

[227] Brain Tierney. Experiences with 40g/100g applications, 2014.

[228] Ajay Tirumala. Iperf: The tcp/udp bandwidth measurement tool.
http://dast. nlanr. net/Projects/Iperf/, 1999.

[229] Hoo-min D Toong and Amar Gupta. Personal computers. Scientific Amer-
ican, 247(6):86–107, 1982.

[230] Mahdi Torabzadehkashi, Siavash Rezaei, Ali HeydariGorji, Hosein Bobar-
shad, Vladimir Alves, and Nader Bagherzadeh. Computational storage: an
efficient and scalable platform for big data and hpc applications. Journal of
Big Data, 6:1–29, 2019.

[231] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and Steven
Swanson. Morpheus: Creating application objects efficiently for heteroge-
neous computing. ACM SIGARCH Computer Architecture News, 44(3):53–
65, 2016.

[232] Daniel Turull. Open source traffic analyzer. Master’s Thesis, KTH Infor-
mation and Communication Technology, 2010.

[233] Craig Ulmer, Jianshen Liu, Carlos Maltzahn, and Matthew L. Curry. Ex-
tending composable data services into smartnics. In 2nd Workshop on Com-
posable Systems (COMPSYS ‘23), Co-located with IPDPS 2023, Florida
USA, 5 2023. IEEE. Best Paper Award.

[234] Craig Ulmer, Shyamali Mukherjee, Gary Templet, Scott Levy, Jay Lofstead,
Patrick Widener, Todd Kordenbrock, and Margaret Lawson. Faodel: Data
management for next-generation application workflows. In Proceedings of
the 9th Workshop on Scientific Cloud Computing, 2018.

215

[235] Balaswamy Vaddeman. Data formats. In Beginning Apache Pig, pages 201–
208. Springer, 2016.

[236] Athena Vakali and George Pallis. Content delivery networks: Status and
trends. IEEE Internet Computing, 7(6):68–74, 2003.

[237] Rob van der Meulen. What edge computing means for infrastructure and
operations leaders. Gartner, online, available, www. gartner. com, 2017.

[238] Lars van Leeuwen. High-throughput big data analytics through accelerated
parquet to arrow conversion. 2019.

[239] Marek Vašut. Writing drivers for the linux crypto subsystem. Presentation
at LinuxCon Japan, 2014.

[240] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing
cloud computing hardware reliability. In Proceedings of the 1st ACM sym-
posium on Cloud computing, pages 193–204, 2010.

[241] Deepak Vohra. Apache avro. In Practical Hadoop Ecosystem, pages 303–323.
Springer, 2016.

[242] Deepak Vohra. Apache parquet. In Practical Hadoop Ecosystem, pages
325–335. Springer, 2016.

[243] Mehul Nalin Vora. Hadoop-hbase for large-scale data. In Proceedings of 2011
International Conference on Computer Science and Network Technology,
volume 1, pages 601–605. IEEE, 2011.

[244] Jarred Walton. First PCIe 5.0 M.2 SSDs Are Now Available, Pre-
dictably Expensive. https://www.tomshardware.com/news/first-pcie-
gen5-ssds-are-now-available, March 2023.

[245] Jianguo Wang, Dongchul Park, Yang-Suk Kee, Yannis Papakonstantinou,
and Steven Swanson. Ssd in-storage computing for list intersection. In
Proceedings of the 12th International Workshop on Data Management on
New Hardware, page 4. ACM, 2016.

[246] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu,
gpu, and cpu platforms for deep learning. arXiv preprint arXiv:1907.10701,
2019.

[247] Michael Wei, John D Davis, Ted Wobber, Mahesh Balakrishnan, and Dahlia
Malkhi. Beyond block i/o: implementing a distributed shared log in hard-
ware. In Proceedings of the 6th International Systems and Storage Confer-
ence, pages 1–11, 2013.

216

https://www.tomshardware.com/news/first-pcie-gen5-ssds-are-now-available
https://www.tomshardware.com/news/first-pcie-gen5-ssds-are-now-available

[248] Wikipedia. 10 Gigabit Ethernet — Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=10_Gigabit_
Ethernet&oldid=1145824511, 2023. [Online; accessed 21-April-2023].

[249] Wikipedia. 100 Gigabit Ethernet — Wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=100_Gigabit_
Ethernet&oldid=1145168172, 2023. [Online; accessed 21-April-2023].

[250] Wikipedia contributors. Java remote method invocation — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.php?title=
Java_remote_method_invocation&oldid=859953202, 2018. [Online; ac-
cessed 5-June-2019].

[251] Wikipedia contributors. Count key data — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Count_key_data&
oldid=916249253, 2019. [Online; accessed 29-October-2019].

[252] Wikipedia contributors. List of interface bit rates — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.phptitle=List_
of_interface_bit_rates&oldid=921990189, 2019. [Online; accessed 19-
October-2019].

[253] Wikipedia contributors. Direct memory access — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Direct_
memory_access&oldid=947273540, 2020. [Online; accessed 6-April-2020].

[254] Wikipedia contributors. Poisson distribution — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Poisson_
distribution&oldid=941164666, 2020. [Online; accessed 19-February-
2020].

[255] Wikipedia contributors. Posix — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=POSIX&oldid=
949039157, 2020. [Online; accessed 11-April-2020].

[256] Wikipedia contributors. Printed circuit board — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Printed_
circuit_board&oldid=955370206, 2020. [Online; accessed 9-May-2020].

[257] Wikipedia contributors. Scsi — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=SCSI&oldid=936426925, 2020.
[Online; accessed 8-April-2020].

[258] Wikipedia contributors. Futex — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Futex&oldid=
1057491809, 2021. [Online; accessed 19-January-2022].

217

http://en.wikipedia.org/w/index.php?title=10_Gigabit_Ethernet&oldid=1145824511
http://en.wikipedia.org/w/index.php?title=10_Gigabit_Ethernet&oldid=1145824511
http://en.wikipedia.org/w/index.php?title=100_Gigabit_Ethernet&oldid=1145168172
http://en.wikipedia.org/w/index.php?title=100_Gigabit_Ethernet&oldid=1145168172
https://en.wikipedia.org/w/index.php?title=Java_remote_method_invocation&oldid=859953202
https://en.wikipedia.org/w/index.php?title=Java_remote_method_invocation&oldid=859953202
https://en.wikipedia.org/w/index.php?title=Count_key_data&oldid=916249253
https://en.wikipedia.org/w/index.php?title=Count_key_data&oldid=916249253
https://en.wikipedia.org/w/index.php title=List_of_interface_bit_rates&oldid=921990189
https://en.wikipedia.org/w/index.php title=List_of_interface_bit_rates&oldid=921990189
https://en.wikipedia.org/w/index.php?title=Direct_memory_access&oldid=947273540
https://en.wikipedia.org/w/index.php?title=Direct_memory_access&oldid=947273540
https://en.wikipedia.org/w/index.php?title=Poisson_distribution&oldid=941164666
https://en.wikipedia.org/w/index.php?title=Poisson_distribution&oldid=941164666
https://en.wikipedia.org/w/index.php?title=POSIX&oldid=949039157
https://en.wikipedia.org/w/index.php?title=POSIX&oldid=949039157
https://en.wikipedia.org/w/index.php?title=Printed_circuit_board&oldid=955370206
https://en.wikipedia.org/w/index.php?title=Printed_circuit_board&oldid=955370206
https://en.wikipedia.org/w/index.php?title=SCSI&oldid=936426925
https://en.wikipedia.org/w/index.php?title=SCSI&oldid=936426925
https://en.wikipedia.org/w/index.php?title=Futex&oldid=1057491809
https://en.wikipedia.org/w/index.php?title=Futex&oldid=1057491809

[259] Gwyn Wischmeyer. Soaring Field Service Costs Demand Invest-
ments in Process, Technology. https://www.tsia.com/press-
releases/2012/soaring-field-service-costs-demand-investments-
in-process-technology, February 2012. publisher: Technology Services
Industry Association.

[260] Zhongzhe Xiong. Computational Storage: Data Compression and
Database Computing Pushdown. https://alibabatech.medium.
com/computational-storage-data-compression-and-database-
computing-pushdown-d72ff1c7dd74, April 2021.

[261] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. Lessons
and actions: What we learned from 10k ssd-related storage system failures.
In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19),
pages 961–976, 2019.

[262] Herbert Xu. RFC: Crypto API User-interface [LWN.net]. https://lwn.
net/Articles/410848/, September 2010.

[263] Jinfeng Yang, Bingzhe Li, and David J Lilja. Exploring performance charac-
teristics of the optane 3d xpoint storage technology. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS),
5(1):1–28, 2020.

[264] Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He, and
Jiwu Shu. λ-io: a unified io stack for computational storage. In Proceedings
of the 21st USENIX Conference on File and Storage Technologies, pages
347–362, 2023.

[265] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan,
Xi Chen, and Ion Stoica. Neurocard: One cardinality estimator for all
tables. arXiv preprint arXiv:2006.08109, 2020.

[266] Jieming Yin, Zhifeng Lin, Onur Kayiran, Matthew Poremba, Muhammad
Shoaib Bin Altaf, Natalie Enright Jerger, and Gabriel H Loh. Modular
routing design for chiplet-based systems. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pages 726–738.
IEEE, 2018.

[267] Tatu Ylonen and Chris Lonvick. The secure shell (ssh) transport layer
protocol. Technical report, 2006.

[268] Karel Youssefi and Eugene Wong. Query processing in a relational database
management system. In Fifth International Conference on Very Large Data
Bases, 1979., pages 409–410. IEEE Computer Society, 1979.

218

https://www.tsia.com/press-releases/2012/soaring-field-service-costs-demand-investments-in-process-technology
https://www.tsia.com/press-releases/2012/soaring-field-service-costs-demand-investments-in-process-technology
https://www.tsia.com/press-releases/2012/soaring-field-service-costs-demand-investments-in-process-technology
https://alibabatech.medium.com/computational-storage-data-compression-and-database-computing-pushdown-d72ff1c7dd74
https://alibabatech.medium.com/computational-storage-data-compression-and-database-computing-pushdown-d72ff1c7dd74
https://alibabatech.medium.com/computational-storage-data-compression-and-database-computing-pushdown-d72ff1c7dd74
https://lwn.net/Articles/410848/
https://lwn.net/Articles/410848/

[269] Zirak Zaheer, Hyunseok Chang, Sarit Mukherjee, and Jacobus Van der
Merwe. eztrust: Network-independent zero-trust perimeterization for mi-
croservices. In Proceedings of the 2019 ACM Symposium on SDN Research,
pages 49–61, 2019.

219

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Background
	General-purpose Computing
	Emerging Trends in Hardware Design Paradigms
	Data Services
	Summary

	Contributions
	Outline

	Related Work
	Specialized Data Processing Hardware
	Channel I/O
	Specialized Hardware for Database Systems

	Active Storage Devices
	Active Disks
	Active Solid-state Drives

	Programmable Network Interface Cards
	Peer-to-Peer Systems
	Collectively Acting Specialized Devices
	Network-connected Smart SSDs
	Eusocial Storage Devices

	Workload Orchestration
	Scope

	Offloading Metrics
	MBWU: Data Access Function Efficiency
	Metrics for Efficiency Evaluation
	Cost-benefit Quantification for Key-value Offloading
	Offloading Landscapes
	Summary

	Data Availability
	Cost-effective Failure Domains
	Model Assumptions
	Mathematical Model
	Data Availability Evaluation
	Observations and Insights
	Summary

	Conclusion

	Offloading Potential
	Prototyping Platform
	General Micro-operations
	Benchmark Considerations
	Normalization
	Performance Characterization
	Summary

	Network Processing
	Benchmark Considerations
	Methodology
	Network Processing Headroom Evaluation
	Summary

	Data Partitioning
	Particle Data Flows
	Software Infrastructure for In-transit Processing
	Performance of Partitioning Particle Data
	Summary

	Parallel Data Processing
	Scientific Computing Workflows
	Composable Data Service Libraries
	Service Placement
	Performance of Multi-threaded Data Services
	Summary

	Conclusion

	Offloading Strategies
	Requirements
	Communication
	Computation

	Bitar: Optimizing Data Compression for Serialization
	Hardware Compression for In-transit Data
	Compression Interfaces
	Performance Advantages
	Summary

	Embedded Processing Pipeline
	SmartNIC Software Stack for Data Services
	Distributed Particle Sifting
	Summary

	Dynamic Offloading
	Push-back Strategies
	Additional Requirements
	Query Representations
	Decision Engine Scheduling
	The Decision Engine
	Summary

	Conclusion

	Conclusion
	Ongoing and Future Work
	Query Performance with Dynamic Offloading
	Cost-benefit Quantification for East-West Data Services
	Security and Performance Isolation

	Summary

	Bibliography

