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Abstract

Essays in Financial Econometrics, Asset Pricing and Corporate Finance

by

Markus Pelger

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Robert M. Anderson, Chair

My dissertation explores how tail risk and systematic risk affects various aspects of risk
management and asset pricing. My research contributions are in econometric and statistical
theory, in finance theory and empirical data analysis. In Chapter 1 I develop the statistical
inferential theory for high-frequency factor modeling. In Chapter 2 I apply these methods
in an extensive empirical study. In Chapter 3 I analyze the effect of jumps on asset pricing
in arbitrage-free markets. Chapter 4 develops a general structural credit risk model with
endogenous default and tail risk and analyzes the incentive effects of contingent capital.
Chapter 5 derives various evaluation models for contingent capital with tail risk.

Chapter 1 develops a statistical theory to estimate an unknown factor structure based
on financial high-frequency data. I derive a new estimator for the number of factors and
derive consistent and asymptotically mixed-normal estimators of the loadings and factors
under the assumption of a large number of cross-sectional and high-frequency observations.
The estimation approach can separate factors for normal “continuous” and rare jump risk.
The estimators for the loadings and factors are based on the principal component analysis of
the quadratic covariation matrix. The estimator for the number of factors uses a perturbed
eigenvalue ratio statistic. The results are obtained under general conditions, that allow for
a very rich class of stochastic processes and for serial and cross-sectional correlation in the
idiosyncratic components.

Chapter 2 is an empirical application of my high-frequency factor estimation techniques.
Under a large dimensional approximate factor model for asset returns, I use high-frequency
data for the S&P 500 firms to estimate the latent continuous and jump factors. I estimate
four very persistent continuous systematic factors for 2007 to 2012 and three from 2003 to
2006. These four continuous factors can be approximated very well by a market, an oil, a
finance and an electricity portfolio. The value, size and momentum factors play no significant
role in explaining these factors. For the time period 2003 to 2006 the finance factor seems to
disappear. There exists only one persistent jump factor, namely a market jump factor. Using
implied volatilities from option price data, I analyze the systematic factor structure of the
volatilities. There is only one persistent market volatility factor, while during the financial
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crisis an additional temporary banking volatility factor appears. Based on the estimated
factors, I can decompose the leverage effect, i.e. the correlation of the asset return with its
volatility, into a systematic and an idiosyncratic component. The negative leverage effect is
mainly driven by the systematic component, while it can be non-existent for idiosyncratic
risk.

In Chapter 3 I analyze the effect of jumps on asset pricing in arbitrage-free markets and
I show that jumps have to come as a surprise in an arbitrage-free market. I model asset
prices in the most general sensible form as special semimartingales. This approach allows me
to also include jumps in the asset price process. I show that the existence of an equivalent
martingale measure, which is essentially equivalent to no-arbitrage, implies that the asset
prices cannot exhibit predictable jumps. Hence, in arbitrage-free markets the occurrence
and the size of any jump of the asset price cannot be known before it happens. In practical
applications it is basically not possible to distinguish between predictable and unpredictable
discontinuities in the price process. The empirical literature has typically assumed as an
identification condition that there are no predictable jumps. My result shows that this
identification condition follows from the existence of an equivalent martingale measure, and
hence essentially comes for free in arbitrage-free markets.

Chapter 4 is joint work with Behzad Nouri, Nan Chen and Paul Glasserman. Contingent
capital in the form of debt that converts to equity as a bank approaches financial distress
offers a potential solution to the problem of banks that are too big to fail. This chapter
studies the design of contingent convertible bonds and their incentive effects in a structural
model with endogenous default, debt rollover, and tail risk in the form of downward jumps
in asset value. We show that once a firm issues contingent convertibles, the shareholders’
optimal bankruptcy boundary can be at one of two levels: a lower level with a lower default
risk or a higher level at which default precedes conversion. An increase in the firm’s total
debt load can move the firm from the first regime to the second, a phenomenon we call
debt-induced collapse because it is accompanied by a sharp drop in equity value. We show
that setting the contractual trigger for conversion sufficiently high avoids this hazard. With
this condition in place, we investigate the effect of contingent capital and debt maturity on
capital structure, debt overhang, and asset substitution. We also calibrate the model to past
data on the largest U.S. bank holding companies to see what impact contingent convertible
debt might have had under the conditions of the financial crisis.

Chapter 5 develops and compares different modeling approaches for contingent capital
with tail risk, debt rollover and endogenous default. In order to apply contingent convertible
capital in practice it is desirable to base the conversion on observable market prices that
can constantly adjust to new information in contrast to accounting triggers. I show how to
use credit spreads and the risk premium of credit default swaps to construct the conversion
trigger and to evaluate the contracts under this specification.
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Chapter 1

Large-Dimensional Factor Modeling
Based on High-Frequency
Observations

1.1 Introduction

1.1.1 Motivation and Modeling Framework

Financial economists are now in the fortunate situation of having a huge amount of high-
frequency financial data for a large number of assets. Over the past fifteen years the econo-
metric methods to analyze the high-frequency data for a small number of assets has grown
exponentially. At the same time the field of large dimensional data analysis has exploded
providing us with a variety of tools to analyze a large cross-section of financial assets over a
long time horizon. This paper merges these two literatures by developing statistical methods
for estimating the systematic pattern in high frequency data for a large cross-section. One
of the most popular methods for analyzing large cross-sectional data sets is factor analysis.
Some of the most influential economic theories, e.g. the arbitrage pricing theory of Ross
(1976) are based on factor models. While there is a well-developed inferential theory for
factor models of large dimension with long time horizon and for factor models of small di-
mension based on high-frequency observations, the inferential theory for large dimensional
high-frequency factor models is absent.

This chapter develops the statistical inferential theory for factor models of large di-
mensions based on high-frequency observations as illustrated in Figure 1.1. Conventional
factor analysis requires a long time horizon, while this methodology works with short time
horizons, e.g. a week. My approach also allows for non-stationary price processes. If a
large cross-section of firms and sufficiently many high-frequency asset prices are available,
we can estimate the number of systematic factors and derive consistent and asymptotically
mixed-normal estimators of the latent loadings and factors. These results are obtained for
very general stochastic processes, namely Itô semimartingales, and allow for weak serial and
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cross-sectional correlation in the idiosyncratic errors. The estimation approach can separate
factors for systematic large sudden movements, so-called jumps factors, from continuous
factors.

T

N 

∆

N 

∆ T

Figure 1.1: The number of cross-sectional observations N goes to infinity and the observed
time increments ∆ go to zero, while the time horizon T stays constant.

This methodology has many important applications. First, we obtain guidance on how
many factors might explain the systematic movements and see how this number changes
over short time horizons. Second, we can analyze how loadings and factors change over
short time horizons and study their persistence. Third, we can analyze how continuous
systematic risk factors, which capture the variation during “normal” times, are different
from jump factors, which can explain systematic tail events. Fourth, after identifying the
systematic and idiosyncratic components we can apply these two components separately to
previous empirical high-frequency studies to see if there is a different effect for systematic
versus nonsystematic movements. For example we can examine which components drive the
leverage effect. Although most of my motivations are for financial high-frequency data, the
methodology can be applied to any problem where we can observe a large number of cross-
sectional and high-frequency observations. In Chapter 2 I apply my estimation method to a
large high-frequency data set of the S&P500 firms to test these questions empirically.

My estimation approach combines the different fields of high-frequency econometrics and
large-dimensional factor analysis. It allows to estimate an unknown factor structure for
general continuous-time processes based on high-frequency data and provides an inferential
theory. In contrast to conventional factor analysis, which applies principal component anal-
ysis to the covariance matrix of the data, I use a spectral decomposition of the quadratic
covariation process. Using a truncation approach, the continuous and jump components of
the price processes can be separated, and the quadratic covariation matrix for the contin-
uous movements and for the jump movements can be estimated. Then applying principal
component analysis to this “jump covariance” and a “continuous risk covariance” matrix
separately we can estimate the systematic jump and continuous factors. The number of
factors is estimated by analyzing the ratio of perturbed eigenvalues, which is a novel idea to
the literature.

For general continuous-time processes neither conventional long-horizon factor analysis
nor small dimensional high-frequency factor analysis can be used to analyze large dimensional
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high-frequency factor models. We cannot apply the results of conventional long-horizon fac-
tor analysis to our high-frequency setup for the following reasons: (1) Long-horizon factor
analysis is based on the covariance matrix, which cannot be estimated for a fixed short time
horizon. (2) After rescaling the increments, we can interpret the quadratic covariation esti-
mator as a sample covariance estimator. However, in contrast to the covariance estimator,
the limiting object will be a random variable and the asymptotic distribution results have to
be formulated in terms of stable convergence in law, which is stronger than convergence in
distribution. (3) Models with jumps have “heavy-tailed rescaled increments” which cannot
be accommodated in the relevant long-horizon factor models. (4) In stochastic volatility or
stochastic intensity jump models the data is non-stationary. Some of the results in large
dimensional factor analysis do not apply to non-stationary data. (5) In contrast to long-
horizon factor analysis the asymptotic distribution of my estimators have a mixed Gaussian
limit and so will generally have heavier tails than a normal distribution. On the other hand
the high-frequency factor analysis of small cross-sections does not allow us to estimate an
unknown factor structure. Essentially, the existing results in high-frequency factor analysis
extend the framework of classical regression theory to the high-frequency setup, which re-
quires the number of potential factors to be small and to be known. However, our problem
is to estimate the unknown factors for which a large cross-section is necessary.

My approach requires only relatively weak assumptions. First, the individual asset
price dynamics are modeled as Itô-semimartingales, the most general class of stochastic
processes for which the general results of high-frequency econometrics are available. It in-
cludes many processes, for example stochastic volatility processes or jump-diffusion processes
with stochastic intensity rate. Second, the dependence between the assets is modeled by an
approximate factor structure. The idiosyncratic risk can be serially correlated and weakly
cross-sectionally correlated and hence allows for a very general specification. The main iden-
tification criterion for the systematic risk is that the quadratic covariation of the idiosyncratic
risk has bounded eigenvalues, while the quadratic covariation matrix of the systematic factor
part has unbounded eigenvalues. For this reason the principal component analysis can relate
the eigenvectors of the exploding eigenvalues to the loadings of the factors. Third, in order
to separate continuous systematic risk from jump risk, I allow only finite activity jumps, i.e.
there are only finitely many jumps in the asset price processes. Many of my results work
without this restriction and it is only needed for the separation of these two components.
This still allows for a very rich class of models and for example general compound poisson
processes with stochastic intensity rates can be accommodated. Fourth, for the asymptotic
mixed-normality of my estimators we need some restrictions on the tail-behavior of the id-
iosyncratic risk. Last but not least, we work under the simultaneous limit of a growing
number of high-frequency and cross-sectional observations. I do not restrict the path of
how these two parameters go to infinity. However, my results break down if one of the two
parameters stays finite. In this sense the “curse of dimensionality” turns into a “blessing”.

I extend my model into two directions. First, I include microstructure noise and develop
an estimator for the variance of microstructure noise and for the impact of microstructure
noise on the spectrum of the factor estimator, allowing us to test if a frequency is sufficiently
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coarse to neglect the noise. Second, I derive a statistic to determine if the estimated statistical
factors can be explained by a set of observed factors. The challenge is that factor models are
only identified up to invertible transformations. I provide a new measure for the distance
between two sets of factors and develop its asymptotic distribution under the same weak
assumptions as for the estimation of the factors. Based on this I develop a new test to
determine if a set of estimated statistical factors can be written as a linear combination of
observed economic variables.

1.1.2 Related Literature and Contribution

My work builds on the fast growing literatures in the two separate fields of large-dimensional
factor analysis and high-frequency econometrics. Bai and Ng (2008) provide a good overview
of large dimensional factor analysis. The notion of an “approximate factor model” was intro-
duced by Chamberlain and Rothschild (1983), which allowed for a non-diagonal covariance
matrix of the idiosyncratic component. They applied principal component analysis to the
population covariance. Connor and Korajczyk (1986, 1988, 1993) study the use of principal
component analysis in the case of an unknown covariance matrix, which has to be estimated.
The general case of a static large dimensional factor model is treated in Bai (2003). He de-
velops an inferential theory for factor models for a large cross-section and long time horizons
based on a principal component analysis of the sample covariance matrix. His paper is the
closest to mine from this literature. As pointed out before we cannot map the high-frequency
problem into the long horizon model. However, many of my arguments are close to his deriva-
tion. Forni, Hallin, Lippi and Reichlin (2000) introduced the dynamic principal component
method. Fan, Liao and Mincheva (2013) study an approximate factor structure with spar-
sity. High-frequency econometrics is a also a relatively young and very fast growing field.
An excellent and very up-to-date textbook treatment of high-frequency econometrics is Aı̈t-
Sahalia and Jacod (2014). Many of my asymptotic results for the estimation of the quadratic
covariation are based on Jacod (2007), where he develops the asymptotic properties of re-
alized power variations and related functionals of semimartingales. In an influential series
of papers, Barndorff-Nielsen and Shephard (2004, 2006) and Barndorff-Nielsen, Shephard,
and Winkel (2006b) introduce the concept of (bi-) power variation - a simple but effective
technique to identify and measure the variation of jumps from intraday data. Aı̈t-Sahalia
and Jacod (2009) and Mancini (2004, 2009) introduce a threshold estimator for separating
the continuous from the jump variation, which I use in this paper. Todorov and Boller-
slev (2010) develop the theoretical framework for high-frequency factor models for a low
dimension. Their results are applied empirically in Bollerslev, Li and Todorov (2015).

So far there are relatively few papers combing high-frequency analysis with high-dimen-
sional regimes, but this is an active and growing literature. Important recent papers include
Wang and Zou (2010), Tao, Wang and Chen (2013), and Tao, Wang and Zhou (2013) who
establish results for large sparse matrices estimated with high-frequency observations. Fan,
Furger and Xiu (2014) estimate a large-dimensional covariance matrix with high-frequency
data for a given factor structure. My results were derived simultaneously and independently
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to results in the two papers by Aı̈t-Sahalia and Xiu (2015a+b). Their papers and my work
both address the problem of finding structure in high-frequency financial data, but proceed
in somewhat different directions and achieve complementary results. In their first paper
Aı̈t-Sahalia and Xiu (2015a) develop the inferential theory of principal component analysis
applied to a low-dimensional cross-section of high-frequency data. Their work is different
from mine as they consider a low-dimensional regime without any factor structure imposed
on the data, while I work in a large-dimensional setup which requires the additional structure
of a factor model. In addition their analysis focuses on the continuous structure whereas I
analyze both the continuous and jump structures. Their second paper Aı̈t-Sahalia and Xiu
(2015b) considers a large-dimensional high-frequency factor model and they derive consistent
estimators for the factors based on continuous processes. Their second paper essentially
extends Fan, Liao and Mincheva’s (2013) framework to high-frequency data. Their work is
different from mine as their main identification condition is a sparsity assumption on the
idiosyncratic covariance matrix. In my paper I also allow for jumps and derive the asymptotic
distribution theory of the estimators.

This chapter develops a new estimator for the number of factors that can distinguish be-
tween the number of continuous and jump factors and requires only weak assumptions.1 The
most relevant estimators for the number of factors in large-dimensional factor models based
on long-horizons are the Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013)
estimators.2 In simulations the performance of the last two estimators seems to dominate the
first one3, but none of the arguments of these two can be transferred to our high-frequency
problem without imposing unrealistically strong assumptions on the processes. The Bai and
Ng (2002) paper uses an information criterion, while Onatski applies an eigenvalue difference
estimator and Ahn and Horenstein an eigenvalue ratio approach. The estimation approach
of Onatski and Ahn and Horenstein crucially depends on results from random matrix theory.
Hence, they need to make strong assumptions on the underlying stochastic processes for the
residuals. The basic idea in all estimation approaches is that the systematic eigenvalues of the
estimated covariance matrix or estimated quadratic covariation matrix will explode, while
the other eigenvalues of the idiosyncratic part will be bounded. Under additional strong as-
sumptions random matrix theory implies that a certain fraction of the small eigenvalues will
be bounded from below and above and the largest residual eigenvalues will cluster, i.e. will
be almost the same. Onatksi analyses the difference in eigenvalues. As long as the eigenvalue
difference is small, it is likely to be part of the residual spectrum because of the clustering
effect. The first time the eigenvalue difference is above a threshold, it indicates the beginning
of the systematic spectrum. The Ahn and Horenstein method looks for the maximum in the

1Aı̈t-Sahalia and Xiu (2015b) develop simultaneously and independently from me an estimator for the
number of factors which is essentially an extension of the Bai and Ng (2002) estimator to high-frequency
data. Aı̈t-Sahalia and Xiu’s techniques assume continuous processes. I also allow for jumps and my approach
can deal with strong and weak factors.

2There are many alternative methods, e.g. Hallin and Lisak (2007), Aumengual and Watson (2007),
Alessi et al. (2010) or Kapetanious (2010), but in simulations they do not outperform the above methods.

3See for example the numerical simulations in Onatski (2010) and Ahn and Horenstein (2013).
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eigenvalue ratios. As the smallest systematic eigenvalue is unbounded, while up to a certain
index the nonsystematic eigenvalues are bounded from above and below, consistency follows.
However, if the first systematic factor is stronger than the other weak systematic factors the
Ahn and Horenstein method often fails in simulations with realistic values.4 In this sense
the Onatksi estimator is more appealing as it focusses on the residual spectrum and tries to
identify when the spectrum is unlikely to be due to residual terms. I propose a perturbation
method. All the eigenvalues are perturbed by adding a particular value. Then, as long as
the eigenvalue ratio of the perturbed eigenvalues is close to one, the spectrum is due to the
residuals. The perturbation value is chosen such that it dominates the residual eigenvalues
but is of a smaller order than the systematic eigenvalues. The perturbed eigenvalues will
always be bounded from below and hence we do not need the strong assumptions of random
matrix theory. The eigenvalue ratio of perturbed eigenvalues will cluster at 1 due to a rate
argument instead of a random matrix theory argument. As we are focussing on the residual
spectrum we do not run into the problem of strong versus weak factors. The approach is ro-
bust to the choice of the perturbation value. Simulations illustrate the excellent performance
of my new estimator.

While my estimation theory is derived under the assumption of synchronous data with
negligible microstructure noise, I extend the model to estimate the effect of microstructure
noise on the spectrum of the factor estimator. Inference on the volatility of a continuous
semimartingale under noise contamination can be pursued using smoothing techniques. Sev-
eral approaches have been developed, prominent ones by Zhang (2006), Barndorff-Nielsen et
al. (2008) and Jacod et al. (2009) in the one-dimensional setting and generalizations for a
noisy non-synchronous multi-dimensional setting by Aı̈t-Sahalia et al. (2010), Podolskij and
Vetter (2009), Barndorff-Nielsen et al. (2011) and Bibinger and Winkelmann (2014) among
others. However, neither the microstructure robust estimators nor the non-synchronicity ro-
bust estimators can be easily extended to our large dimensional problem. The main results of
my paper assume synchronous data with negligible microstructure noise. Using for example
5-minute sampling frequency as commonly advocated in the literature on realized volatility
estimation, e.g. Andersen et al. (2001) and the survey by Hansen and Lunde (2006), seems
to justify this assumption and still provides enough high-frequency observations to apply
my estimator to a weekly or monthly horizon. In this paper I extend my model to include
microstructure noise and develop an estimator for the variance of microstructure noise and
for the impact of microstructure noise on the spectrum of the factor estimator, allowing us
to test if a frequency is sufficiently coarse to neglect the noise. This novel estimator for the
variance of the microstructure noise is also the first to use the information contained in a
large cross-section of high-frequency data.

The rest of the chapter is organized as follows. Section 2.2 introduces the factor model.
In Section 2.3 I explain my estimators. Section 1.4 summarizes the assumptions and the

4Their proposal to demean the data which is essentially the same as projecting out an equally weighted
market portfolio does not perform well in simulations with a strong factor. The obvious extension to project
out the strong factors does also not really solve the problem as it is unclear how many factors we have to
project out.
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asymptotic consistency results for the estimators of the factors, loadings and common com-
ponents. In Subsection 1.4.3 I also deal with the separation into continuous and jump factors.
In Section 1.5 I show the asymptotic mixed-normal distribution of the estimators and derive
the consistent estimators for the covariance matrices occurring in the limiting distributions.
In Section 1.6 I develop the estimator for the number of factors. The extension to microstruc-
ture noise is treated in Section 1.7. The test for comparing two sets of factors is presented in
Section 1.8. Section 1.9 presents some simulation results. Concluding remarks are provided
in Section 2.6. All the proofs are deferred to the appendices.

1.2 Model Setup

1.2.1 Factor Model

Assume the N -dimensional stochastic process X(t) can be explained by a factor model, i.e.

Xi(t) = Λ>i F (t) + ei(t) i = 1, ..., N and t ∈ [0, T ]

where Λi is a K × 1 dimensional vector and F (t) is a K-dimensional stochastic process.
The loadings Λi describe the exposure to the systematic factors F , while the residuals ei are
stochastic processes that describe the idiosyncratic component. X(t) will typically be the
log-price process. However, we only observe the stochastic process X at M discrete time
observations in the interval [0, T ]. If we use an equidistant grid5, we can define the time
increments as ∆M = tj+1 − tj = T

M
and observe

Xi(tj) = Λ>i F (tj) + ei(tj) i = 1, ..., N and j = 1, ...,M

or in vector notation

X(tj) = ΛF (tj) + e(tj) j = 1, ...,M.

with Λ = (Λ1, ...,ΛN)>. In my setup the number of cross-sectional observations N and the
number of high-frequency observations M is large, while the time horizon T and the number
of systematic factors K is fixed. The loadings Λ, factors F , residuals e and number of factors
K are unknown and have to be estimated.

1.2.2 Differences to Long-Horizon Factor Models

For general continuous-time processes the high-frequency factor model cannot be estimated
using long-horizon estimation techniques. Conventional factor analysis applies principal
component analysis to the covariance matrix of the data. As the sample covariance matrix

5Most of my results would go through under a time grid that is not equidistant as long as the largest
time increment goes to zero with speed O

(
1
M

)
.
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Ĉov(X) = 1
T

∑T
t=1(X(t) − X̄)2 with X̄ = 1

T

∑T
t=1 X(t) can only estimate the population

covariance matrix consistently for T → ∞, it does not work in our case of a fixed time
horizon T . The are two more reasons, why we cannot transform our problem into one that
can be solved by a conventional large-dimensional factor model. First, realistic models for
financial price data have stochastic volatility and also potentially stochastic jump intensity
rates. In both cases the data is non-stationary and a covariance estimator with rescaled
increments converges to a random variable. In addition the asymptotic distribution of a the
rescaled covariance estimator has a mixed Gaussian limit which typically has heavier tails
than a normal distribution. Second, even under the restrictive assumption of independent
and stationary increments, the rescaled increments would not satisfy the basic assumptions
of the Bai (2003) framework if we allow for jumps. Models with jumps have “heavy-tailed
rescaled increments” which violate necessary moment conditions.

A key element of this paper is to replace the covariance matrix with the quadratic co-
variation matrix. The quadratic covariation matrix of a stochastic process can be estimated
consistently for a very general class of stochastic processes with the number of high-frequency
observations M going to infinity for a fixed time horizon T . Similar to the covariance, the
quadratic covariation is a bilinear form, which will allow us to identify the factors under
suitable assumptions.

I denote by ∆jX the jth observed increment of the process X, i.e. ∆jX = X(tj+1)−X(tj)
and write ∆X(t) = X(t)−X(t−) for the jumps of the process X. Of course, ∆X(t) = 0 for
all t ∈ [0, T ] if the process is continuous. For a very general class of stochastic processes, so-
called semimartingales, the sum of squared increments converges to the quadratic covariation
for M →∞:

M∑
j=1

(∆jXi)
2 p→ [Xi, Xi]

M∑
j=1

∆jXi∆jXk
p→ [Xi, Xk].

The predictable quadratic covariation 〈Xi, Xk〉 is the predictable conditional expectation of
[Xi, Xk], i.e. it is the so-called compensator process. It is the same as the realized quadratic
covariation [Xi, Xk] for a continuous process, but differs if the processes have jumps. The
realized quadratic covariation [Xi, Xk]t and the conditional quadratic covariation 〈Xi, Xk〉t
are themselves stochastic processes. If we leave out the time index t, it means that we are
considering the quadratic covariation evaluated at the terminal time T , which is a random
variable. For more details see Rogers (2004) or Jacod and Shiryaev (2002).

The simplest case for my factor model assumes that all stochastic processes are Brownian
motions and is given by

XT =

Λ11 · · · Λ1K
...

. . .
...

Λ1K · · · ΛNK


WF1(t)

...
WFK (t)

+

σ11 · · · 0
...

. . .
...

0 · · · σNN


We1(t)

...
WeN (t)


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where all Brownian motions WFk and Wei are independent of each other. In this case the
quadratic covariation equals

[X,X] = Λ[F, F ]Λ> + [e, e] = ΛΛ>T +

σ
2
11 · · · 0
...

. . .
...

0 · · · σ2
NN

T

Under standard assumptions ΛΛ> is a N ×N matrix of rank K and its eigenvalues will go
to infinity for N → ∞. On the other hand [e, e] has bounded eigenvalues. Using a notion
that is similar to the approximate factor model of Chamberlain and Rothschild (1983) the
systematic factors and loadings can be linked to the exploding eigenvalues of [X,X]. The
approximate factor model does not require a diagonal structure for the residual matrix [e, e]
but only relies on the boundedness of its eigenvalues. Hence, it could accommodate weak
serial and cross-sectional dependence in the error terms and factors.

The problem is the estimation of the unobserved quadratic covariation matrix [X,X]
for large N . Although, we can estimate each entry of the matrix with a high precision,
the estimation errors will sum up to a non negligible quantity if N is large. In the case of
a large-dimensional sample covariance matrix Bai (2003) has solved the problem. I apply
similar ideas to our setup.

This work is different from Bai’s (2003) paper as we combine high-frequency econometrics
with large dimensional matrix theory. In the simple case, where all stochastic processes are
driven by Brownian motions, we could actually map the problem into the framework of the
Bai (2003) paper. If we divide the increments by the square root of the length of the time
increments ∆M = T/M , we end up with a conventional covariance estimator:

M∑
j=1

(∆jXi)
2 =

T

M

M∑
j=1

(
∆jXi√

∆M

)2

with
∆jXi√

∆M

∼ i.i.d. N(0,ΛiΛ
>
i + σ2

ii).

Hence, for this simple, but from a practical perspective irrelevant example, there is no need
for a new statistical theory as it can be mapped into an already existing framework.

However, for general stochastic process we need to develop a new inferential theory for
the large dimensional high-frequency factor model. Assume that the underlying stochastic
processes have stochastic volatility and jumps. Both are features that are necessary to model
asset prices realistically.

F (t) =

∫ t

0

σF (s)dWF (s) +
∑
s≤t

∆F (s) e(t) =

∫ t

0

σe(s)dWe(s) +
∑
s≤t

∆e(s).

The quadratic covariation matrices evaluated at time T will now be random variables given
by

[F, F ] =

∫ T

0

σ>F (s)σF (s)ds+
∑
s≤T

∆F 2(s) [e, e] =

∫ T

0

σ>e (s)σe(s)ds+
∑
s≤T

∆e2(s).
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The quadratic covariation of X is still given by [X,X] = Λ[F, F ]Λ> + [e, e] and under the
assumption of bounded eigenvalues for [e, e] and some weak assumptions on the loadings and
factors, we could still identify the systematic part through the exploding eigenvalues. Under
some weak assumptions the estimator for the quadratic covariation is

√
M consistent with

an asymptotic mixed-Gaussian law:

√
M

(
M∑
j=1

(∆jXi)
2 − [Xi, Xi]

)
L−s→ N

(
0, 2

∫ T

0

σ4
Xi

(s)ds+ 4
∑
s≤T

∆Xi(s)
2σ2

Xi
(s−)

)
.

Here the mode of convergence is stable convergence in law, which is stronger than simple
convergence in distribution. For more details see Aı̈t-Sahalia and Jacod (2014). Note, that
the variance in the normal distribution is a random variable. Stable convergence in law
allows us to replace the random variance by a consistent estimator Γ̂i

p→ 2
∫ T

0
σ4
Xi

(s)ds +
4
∑

s≤T ∆X2
sσ

2
Xi

(s−) and to obtain convergence in distribution for the normalized estimator:

√
M

(∑M
j=1(∆jXi)

2 − [Xi, Xi]
)

√
Γ̂i

D→ N (0, 1) .

It should be not surprising that if the asymptotic distribution for the quadratic covariation
estimator is different from the asymptotic distribution of the sample covariance matrix, then
the estimators for the loadings and factors based on high-frequency observations will be
different from the results in the Bai (2003) paper. In particular, the limiting objects will be
random variables and the asymptotic distribution results use stable convergence in law. The
difference between the long-time horizon factor analysis and high-frequency factor analysis is
not only the asymptotic distribution theory, but also the conditions that have to be satisfied
by the stochastic processes. If Xi is allowed to have jumps, then it is easy to show that
the rescaled increments

∆jXi√
∆M

do not have fourth moments. However, Bai (2003) requires
the random variables to have at least 8 moments, which is another reason why we cannot
simply map the high-frequency problem into the long time horizon framework. Last but
not least, from a conceptional point of view my high-frequency estimator is based on path-
wise arguments for the stochastic processes, while Bai’s estimator is based on population
assumptions.

1.3 Estimation Approach

We have M observations of the N -dimensional stochastic process X in the time interval
[0, T ]. For the time increments ∆M = T

M
= tj+1 − tj we denote the increments of the

stochastic processes by

Xj,i = Xtj+1,i −Xtj ,i Fj = Ftj+1
− Ftj ej,i = etj+1,i − etj ,i.
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In matrix notation we have

X
(M×N)

= F
(M×K)

Λ>
(K×N)

+ e
(M×N)

.

For a given K our goal is to estimate Λ and F . As in any factor model where only X is
observed Λ and F are only identified up to K2 parameters as FΛ> = FAA−1Λ> for any
arbitrary invertible K ×K matrix A. Hence, for my estimator I impose the K2 restrictions

that Λ̂>Λ̂
N

= IK which gives us K(K+1)
2

restrictions and that F̂>F̂ is a diagonal matrix, which

yields another K(K−1)
2

restrictions.

Denote the K largest eigenvalues of 1
N
X>X by VMN . The estimator for the loadings Λ̂

is defined as the K eigenvectors of VMN multiplied by
√
N . The estimator for the factor

increments is F̂ = 1
N
XΛ̂. Note that 1

N
X>X is an estimator for 1

N
[X,X] for a finite N . We

study the asymptotic theory for M,N → ∞. As in Bai (2003) we consider a simultaneous
limit which allows (N,M) to increase along all possible paths.

The systematic component of X(t) is the part that is explained by the factors and defined
as C(t) = ΛF (t). The increments of the systematic component Cj,i = FjΛ

>
i are estimated

by Ĉj,i = F̂jΛ̂
>
i .

We are also interested in estimating the continuous and jump component of the fac-
tors and the volatility of the factors. Denoting by FC the factors that have a continuous
component and by FD the factor processes that have a jump component, we can write

X(t) = ΛCFC(t) + ΛDFD(t) + e(t).

Note, that for factors that have both, a continuous and a jump component, the corresponding
loadings have to coincide. In the following we assume a non-redundant representation of the
KC continuous and KD jump factors. For example if we have K factors which have all
exactly the same jump component but different continuous components, this results in K
different total factors and KC = K different continuous factors, but in only KD = 1 jump
factor.

Intuitively under some assumptions we can identify the jumps of the process Xi(t) as
the big movements that are larger than a specific threshold. Set the threshold identifier
for jumps as α∆ω̄

M for some α > 0 and ω̄ ∈
(
0, 1

2

)
and define X̂C

j,i = Xj,i1{|Xj,i|≤α∆ω̄
M} and

X̂D
j,i = Xj,i1{|Xj,i|>α∆ω̄

M}. The estimators Λ̂C , Λ̂D, F̂C and F̂D are defined analogously to Λ̂

and F̂ , but using X̂C and X̂D instead of X. 6

The quadratic covariation of the factors can be estimated by F̂>F̂ and the volatility
component of the factors by F̂C>F̂C . I show that the estimated increments of the factors
F̂ , F̂C and F̂D can be used to estimate the quadratic covariation with any other process.

The number of factors can be consistently estimated through the perturbed eigenvalue
ratio statistic and hence, we can replace the unknown number K by its estimator K̂. Denote
the ordered eigenvalues of X>X by λ1 ≥ ... ≥ λN . We choose a slowly increasing sequence

6For the jump threshold I recommend the TOD specification of Bollerslev, Li and Todorov (2013).
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g(N,M) such that g(N,M)
N
→ 0 and g(N,M) → ∞. Based on simulations a good choice for

the perturbation term g is the median eigenvalue rescaled by
√
N . Then, we define perturbed

eigenvalues λ̂k = λk + g(N,M) and the perturbed eigenvalue ratio statistic

ERk =
λ̂k

λ̂k+1

for k = 1, ..., N − 1.

The estimator for the number of factors is defined as the first time that the perturbed
eigenvalue ratio statistic does not cluster around 1 any more:

K̂(γ) = max{k ≤ N − 1 : ERk > 1 + γ} for γ > 0.

If ERk < 1+γ for all k, then set K̂(c) = 0. The definition of K̂C(γ) and K̂D(γ) is analogous
but using λCi respectively λDi of the matrices X̂C>X̂C and X̂D>X̂D. Based on extensive
simulations a constant γ between 1.1 and 1.2 seems to be good choice.

1.4 Consistency Results

1.4.1 Assumptions on Stochastic Processes

All the stochastic processes considered in this paper are locally bounded special Itô semi-
martingales as defined in Definition A.1 and explained in more detail in Appendix A.2. These
particular semimartingales are the most general stochastic processes for which we can de-
velop an asymptotic theory for the estimator of the quadratic covariation. A d-dimensional
locally bounded special Itô semimartingale Y can be represented as

Yt = Y0 +

∫ t

0

bsds+

∫ t

0

σsdWs +

∫ t

0

∫
E

δ(s, x)(µ− ν)(ds, dx)

where bs is a locally bounded predictable drift term, σs is an adapted cádlág volatility
process, W is a d-dimensional Brownian motion and

∫ t
0

∫
E
δ(s, x)(µ − ν)(ds, dx) describes

a jump martingale. µ is a Poisson random measure on R+ × E with (E,E) an auxiliary
measurable space on the space (Ω,F, (Ft)t≥0,P). The predictable compensator (or intensity
measure) of µ is ν(ds, dx) = ds × v(dx) for some given finite or sigma-finite measure on
(E,E). These dynamics are very general and completely non-parametric. They allow for
correlation between the volatility and asset price processes. I only impose some week reg-
ularity conditions in Definition A.1. The model includes many well-known continuous-time
models as special cases: for example stochastic volatility models like the CIR or Heston
model, the affine class of models in Duffie, Pan and Singleton (2000), Barndorff-Nielsen and
Shephard’s (2002) Ornstein-Uhlenbeck stochastic volatility model with jumps or Andersen,
Benzoni, and Lund’s (2002) stochastic volatility model with log-normal jumps generated by
a non-homogenous Poisson process.
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1.4.2 Consistency

The key assumption for obtaining a consistent estimator for the loadings and factors is an
approximate factor structure. It requires that the factors are systematic in the sense that they
cannot be diversified away, while the idiosyncratic residuals are nonsystematic and can be
diversified away. The approximate factor structure assumption uses the idea of appropriately
bounded eigenvalues of the residual quadratic covariation matrix, which is analogous to
Chamberlain and Rothschild (1983) and Chamberlain (1988). Let ‖A‖ = (tr(A>A))1/2

denote the norm of a matrix A and λi(A) the i’s largest singular value of the matrix A, i.e.
the square-root of the i’s largest eigenvalue of A>A. If A is a symmetric matrix then λi is
simply the i’s largest eigenvalue of A.

Assumption 1.1. Factor structure assumptions

1. Underlying stochastic processes
F and ei are Itô-semimartingales as defined in Definition A.1

F (t) = F (0) +

∫ t

0

bF (s)ds+

∫ t

0

σF (s)dWs +
∑
s≤t

∆F (s)

ei(t) = e(0) +

∫ t

0

bei(s)ds+

∫ t

0

σei(s)dWs +
∑
s≤t

∆ei(s)

In addition each ei is a square integrable martingale.

2. Factors and factor loadings
The quadratic covariation matrix of the factors ΣF is positive definite a.s.

M∑
j=1

FjF
>
j

p−→ [F, F ]T =: ΣF

and

‖Λ>Λ

N
− ΣΛ‖ → 0.

where the matrix ΣΛ is also positive definite. The loadings are bounded, i.e. ‖Λi‖ <∞
for all i = 1, ..., N .

3. Independence of F and e
The factor process F and the residual processes e are independent.

4. Approximate factor structure
The largest eigenvalue of the residual quadratic covariation matrix is bounded in prob-
ability, i.e.

λ1([e, e]) = Op(1)
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As the predictable quadratic covariation is absolutely continuous, we can define the
instantaneous predictable quadratic covariation as

d〈ei, ek〉t
dt

= σei,k(t) +

∫
δi,k(z)vt(z) =: Gi,k(t)

We assume the largest eigenvalue of the matrix G(t) is almost surely bounded for all t:

λ1(G(t)) < C a.s. for all t for some constant C.

5. Identification condition All Eigenvalues of ΣΛΣF are distinct a.s..

The most important part of Assumption 1.1 is the approximate factor structure in point
4. It implies that the residual risk can be diversified away. Point 1 states that we can use
the very general class of stochastic processes defined in Definition A.1. The assumption
that the residuals are martingales and hence do not have a drift term is only necessary for
the asymptotic distribution results. The consistency results do not require this assumption.
Point 2 implies that the factors affect an infinite number of assets and hence cannot be
diversified away. Point 3 can be relaxed to allow for a weak correlation between the factors
and residuals. This assumption is only used to derive the asymptotic distribution of the
estimators. The approximate factor structure assumption in point 4 puts a restriction on
the correlation of the residual terms. It allows for cross-sectional (and also serial) correlation
in the residual terms as long as it is not too strong. We can relax the approximate factor
structure assumption. Instead of almost sure boundedness of the predictable instantaneous
quadratic covariation matrix of the residuals it is sufficient to assume that

1

N

N∑
i=1

N∑
k 6=i

ΛiGi,k(t)Λ
>
k < C a.s. for all t

Then, all main results except for Theorem 5 and 8 continue to hold. Under this weaker
assumption we do not assume that the diagonal elements of G are almost surely bounded.
By Definition A.1 the diagonal elements of G are already locally bounded which is sufficient
for most of our results.

Note that point 4 puts restrictions on both the realized and the conditional quadratic
covariation matrix. In the case of continuous residual processes, the conditions on the con-
ditional quadratic covariation matrix are obviously sufficient. However, in our more general
setup it is not sufficient to restrict only the conditional quadratic covariation matrix.

Assumption 1.2. Weak dependence of error terms
The row sum of the quadratic covariation of the residuals is bounded in probability:

N∑
i=1

‖[ek, ei]‖ = Op(1) ∀k = 1, ..., N
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Assumption 1.2 is stronger than λ1([e, e]) = Op(1) in Assumption 1.1. As the largest
eigenvector of a matrix can be bounded by the largest absolute row sum, Assumption 1.2
implies λ1([e, e]) = Op(1). If the residuals are cross-sectionally independent it is trivially
satisfied. However it allows for a weak correlation between the residual processes. For
example, if the residual part of each asset is only correlated with a finite number of residuals
of other assets, it will be satisfied.

As pointed out before, the factors F and loadings Λ are not separately identifiable.
However, we can estimate them up to an invertible K ×K matrix H. Hence, my estimator
Λ̂ will estimate ΛH and F̂ will estimate FH>

−1
. Note, that the common component is

well-identified and F̂ Λ̂> = F̂H>
−1
H>Λ>. For almost all purposes knowing ΛH or FH>

−1

is as good as knowing Λ or F as what is usually of interest is the vector space spanned by
the factors. For example testing the significance of F or FH>

−1
in a linear regression yields

the same results.7

In my general approximate factor models we require N and M to go to infinity. The
rates of convergence will usually depend on the smaller of these two values denoted by
δ = min(N,M). As noted before we consider a simultaneous limit for N and M and not a
path-wise or sequential limit. Without further assumptions the asymptotic results do not
hold for a fixed N or M . In this sense the large dimension of our problem, which makes the
analysis more complicated, also helps us to obtain more general results.

Note that Fj is the increment ∆jF and goes to zero for M →∞ for almost all increments.
It can be shown that in a specific sense we can also consistently estimate the factor incre-
ments, but the asymptotic statements will be formulated in terms of the stochastic process F
evaluated at a discrete time point tj. For example FT =

∑M
j=1 Fj denotes the factor process

evaluated at time T . Similarly we can evaluate the process at any other discrete time point
Tm = m ·∆M as long as m ·∆M does not go to zero. Essentially m has to be proportional to
M . For example, we could chose Tm equal to 1

2
T or 1

4
T . The terminal time T can always be

replaced by the time Tm in all the theorems. The same holds for the common component.

Theorem 1.1. Consistency of estimators

Define the rate δ = min(N,M) and the invertible matrix H = 1
N

(
F>F

) (
Λ>Λ̂

)
V −1
MN . Then

the following consistency results hold:

1. Consistency of loadings estimator: Under Assumption 1.1 it follows that

Λ̂i −H>Λi = Op

(
1√
δ

)
.

2. Consistency of factor estimator and common component: Under Assumptions 1.1 and
1.2 it follows that

F̂T −H−1FT = Op

(
1√
δ

)
, ĈT,i − CT,i = Op

(
1√
δ

)
.

7For a more detailed discussion see Bai (2003) and Bai and Ng (2008).
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3. Consistency of quadratic variation: Under Assumptions 1.1 and 1.2 and for any stochas-

tic process Y (t) satisfying Definition A.1 we have for
√
M
N
→ 0 and δ →∞:

M∑
j=1

F̂jF̂
>
j = H−1[F, F ]TH

−1> + op(1) ,
M∑
j=1

F̂jYj = H−1[F, Y ]T + op(1)

M∑
j=1

êj,iêj,k = [ei, ek] + op(1) ,
M∑
j=1

êj,iYj = [ei, Y ] + op(1)

M∑
j=1

Ĉj,iĈj,k = [Ci, Ck] + op(1) ,
M∑
j=1

Ĉj,iYj = [Ci, Y ] + op(1).

for i, k = 1, ..., N .

This statement only provides a pointwise convergence of processes evaluated at specific
times. A stronger statement would be to show weak convergence for the stochastic pro-
cesses. However, weak convergence of stochastic processes requires significantly stronger
assumptions8 and will in general not be satisfied under my assumptions.

1.4.3 Separating Continuous and Jump Factors

Using a thresholding approach we can separate the continuous and jump movements in the
observable process X and estimate the systematic continuous and jump factors. The idea is
that with sufficiently many high-frequency observations, we can identify the jumps in X as
the movements that are above a certain threshold. This allows us to separate the quadratic
covariation matrix of X into its continuous and jump component. Then applying principal
component analysis to each of these two matrices we obtain our separate factors. A crucial
assumption is that the thresholding approach can actually identify the jumps:

Assumption 1.3. Truncation identification
F and ei have only finite activity jumps and factor jumps are not “hidden” by idiosyncratic
jumps:

P
(
∆Xi(t) = 0 if ∆(Λ>i F (t)) 6= 0 and ∆ei(t) 6= 0

)
= 0.

The quadratic covariation matrix of the continuous factors [FC , FC ] and of the jump factors

[FD, FD] are each positive definite a.s. and the matrices ΛC
>

ΛC

N
and ΛD

>
ΛD

N
each converge

in probability to positive definite matrices.

Assumption 1.3 has three important parts. First, we require the processes to have only
finite jump activity. This mean that on every finite time interval there are almost surely only

8See for example Prigent (2003)
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finitely many jumps. With infinite activity jump processes, i.e. each interval can contain
infinitely many small jumps, we cannot separate the continuous and discontinuous part of
a process. Second, we assume that a jump in the factors or the idiosyncratic part implies
a jump in the process Xi. The reverse is trivially satisfied. This second assumption is
important to identify all the times of discontinuities of the unobserved factors and residuals.
This second part is always satisfied as soon as the Lévy measure of Fi and ei have a density,
which holds in most models used in the literature. The third statement is a non-redundancy
condition and requires each systematic jump factor to jump at least once in the data. This
is a straightforward and necessary condition to identify any jump factor. Hence, the main
restriction in Assumption 1.3 is the finite jump activity. For example compound poisson
processes with stochastic intensity rate fall into this category.

Theorem 1.2. Separating continuous and jump factors:
Assume Assumptions 1.1 and 1.3 hold. Set the threshold identifier for jumps as α∆ω̄

M for
some α > 0 and ω̄ ∈

(
0, 1

2

)
and define X̂C

j,i = Xj,i1{|Xj,i|≤α∆ω̄
M} and X̂D

j,i = Xj,i1{|Xj,i|>α∆ω̄
M}.

The estimators Λ̂C, Λ̂D, F̂C and F̂D are defined analogously to Λ̂ and F̂ , but using X̂C and
X̂D instead of X.

Define HC = 1
N

(
FC>FC

)(
ΛC>Λ̂C

)
V C
MN

−1
and HD = 1

N

(
FD>FD

)(
ΛD>Λ̂D

)
V D
MN

−1
.

1. The continuous and jump loadings can be estimated consistently:

Λ̂C
i = HC>ΛC

i + op(1) , Λ̂D
i = HD>ΛD

i + op(1).

2. Assume that additionally Assumption 1.2 holds. The continuous and jump factors can
only be estimated up to a finite variation bias term

F̂C
T = HC−1

FC
T + op(1) + finite variation term

F̂D
T = HD−1

FD
T + op(1) + finite variation term.

3. Under the additional Assumption 1.2 we can estimate consistently the covariation of the
continuous and jump factors with other processes. Let Y (t) be an Itô-semimartingale

satisfying Definition A.1. Then we have for
√
M
N
→ 0 and δ →∞:

M∑
j=1

F̂C
j Yj = HC−1

[FC , Y ]T + op(1) ,
M∑
j=1

F̂D
j Yj = HD−1

[FD, Y ]T + op(1).

The theorem states that we can estimate the factors only up to a finite variation term, i.e.
we can only estimate the martingale part of the process correctly. The intuition behind this
problem is very simple. The truncation estimator can correctly separate the jumps from the
continuous martingale part. However, all the drift terms will be assigned to the continuous
component. If a jump factor also has a drift term, this will now appear in the continuous
part and as this drift term affects infinitely many cross-sectional Xi, it cannot be diversified
away.
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1.5 Asymptotic Distribution

1.5.1 Distribution Results

The assumptions for asymptotic mixed-normality of the estimators are stronger than those
needed for consistency. Asymptotic mixed-normality of the loadings does not require addi-
tional assumptions, while the asymptotic normality of the factors needs substantially stronger
assumptions. This should not be surprising as essentially all central limit theorems impose
restrictions on the tail behavior of the sampled random variables.

In order to obtain a mixed Gaussian limit distribution for the loadings we need to assume
that there are no common jumps in σF and ei and in σei and F . Without this assumption
the estimator for the loadings still converges at the same rate, but it is not mixed-normally
distributed any more. Note that Assumption 1.1 requires the independence of F and e,
which implies the no common jump assumption.

Theorem 1.3. Asymptotic distribution of loadings
Assume Assumptions 1.1 and 1.2 hold and define δ = min(N,M). Then

√
M
(

Λ̂i −H>Λi

)
= V −1

MN

(
Λ̂>Λ

N

)
√
MF>ei +Op

(√
M

δ

)

1. If
√
M
N
→ 0, then

√
M(Λ̂i −H>Λi)

L−s−→ N
(
0, V −1QΓiQ

>V −1
)

where V is the diagonal matrix of eigenvalues of Σ
1
2
ΛΣFΣ

1
2
Λ and plim

N,M→∞

Λ̂>Λ
N

= Q =

V
1
2 Υ>σ

1
2
F with Υ being the eigenvectors of V . The entry {l, g} of the K ×K matrix Γi

is given by

Γi,l,g =

∫ T

0

σF l,F gσ
2
ei
ds+

∑
s≤T

∆F l(s)∆F g(s)σ2
ei

(s) +
∑
s′≤T

∆e2
i (s
′)σF g ,F l(s

′).

F l denotes the l-th component of the the K dimensional process F and σF l,F g are the
entries of its K ×K dimensional volatility matrix.

2. If lim inf
√
M
N
≥ τ > 0, then N(Λ̂i − ΛiH) = Op(1).

The limiting distributions of the loadings is obviously different from the distribution in
conventional factor analysis. Here we can see very clearly how the results from high-frequency
econometrics impact the estimators in our factor model.
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Assumption 1.4. Asymptotically negligible jumps of error terms
Assume Z is some continuous square integrable martingale with quadratic variation 〈Z,Z〉t.
Assume that the jumps of the martingale 1√

N

∑N
i=1 ei(t) are asymptotically negligible in the

sense that

Λ>[e, e]tΛ

N

p→ 〈Z,Z〉t ,
Λ>〈eD, eD〉tΛ

N

p→ 0 ∀t > 0.

Assumption 1.4 is needed to obtain an asymptotic mixed-normal distribution for the fac-
tor estimator. It means that only finitely many residual terms can have a jump component.
Hence, the weighted average of residual terms has a quadratic covariation that depends only
on the continuous quadratic covariation. This assumption is essentially a Lindeberg condi-
tion. If it is not satisfied and under additional assumptions the factor estimator converges
with the same rate to a distribution with the same variance, but with heavier tails than a
mixed-normal distribution.

Assumption 1.5. Weaker dependence of error terms

• Assumption 5.1: Weak serial dependence
The error terms exhibit weak serial dependence if and only if

‖E

[
ejiejr

∑
l 6=j

eli
∑
s 6=j

esr

]
‖ ≤ C‖E[ejiejr]‖‖E

[∑
l 6=j

eli
∑
s 6=j

elr

]
‖

for some finite constant C and for all i, r = 1, ..., N and for all partitions [t1, ..., tM ] of
[0, T ].

• Assumption 5.2: Weak cross-sectional dependence
The error terms exhibit weak cross-sectional dependence if and only if

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
e2
jie

2
jr

]
= O

(
1

δ

)
for all i, r = 1, ..., N and for all partitions [t1, ..., tM ] of [0, T ] for M,N →∞ and

N∑
i=1

|Gk,i(t)| ≤ C a.s. for all k = 1, ..., N and t ∈ (0, T ] and some constant C.

Assumption 1.5 is only needed to obtain the general rate results for the asymptotic dis-
tribution of the factors. If N

M
→ 0, we don’t need it anymore. Lemma 1.1 gives sufficient

conditions for this assumption. Essentially, if the residual terms are independent and “al-
most” continuous then it holds. Assumption 1.5 is not required for any consistency results.
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Lemma 1.1. Sufficient conditions for weaker dependence
Assume Assumptions 1.1 and 1.2 hold and that

1. ei has independent increments.

2. ei has 4th moments.

3. E
[∑N

i=1〈eDi , eDi 〉
]
≤ C for some constant C and for all N .

4.
∑N

i=1 |Gk,i(t)| ≤ C a.s. for all k = 1, ..., N and t ∈ (0, T ] and some constant C.

Then Assumption 1.5 is satisfied.

Theorem 1.4. Asymptotic distribution of the factors:
Assume Assumptions 1.1 and 1.2 hold. Then

√
N
(
F̂T −H−1FT

)
=

1√
N
eTΛH +OP

(√
N√
M

)
+Op

(√
N

δ

)

If Assumptions 1.4 and 1.5 hold and
√
N
M
→ 0 or only Assumption 1.4 holds and N

M
→ 0:

√
N
(
F̂T −H−1FT

)
L−s−→ N

(
0, Q−1>ΦTQ

−1
)

with ΦT = plim
N→∞

Λ>[e]Λ
N

.

The assumptions needed for Theorem 1.4 are stronger than for all the other theorems.
Although they might not always be satisfied in practice, simulations indicate that that the
asymptotic distribution results still seem to provide a very good approximation even if the
conditions are violated. As noted before it is possible to show that under weaker assumptions
the factor estimators have the same rate and variance, but an asymptotic distribution that
is different from a mixed-normal distribution.

The next theorem about the common components essentially combines the previous two
theorems.

Theorem 1.5. Asymptotic distribution of the common components
Define CT,i = Λ>i FT and ĈT,i = Λ̂>i F̂T Assume that Assumptions 1.1 - 1.4 hold.

1. If Assumption 1.5 holds, i.e. weak serial dependence and cross-sectional dependence,
then for any sequence N,M

√
δ
(
ĈT,i − CT,i

)
√

δ
N
WT,i + δ

M
VT,i

D→ N(0, 1)
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2. Assume N
M
→ 0 (but we do not require Assumption 1.5)

√
N
(
CT,i − ĈT,i

)
√
WT,i

D→ N(0, 1)

with

WT,i = Λ>i Σ−1
Λ ΦTΣ−1

Λ Λi

VT,i = F>T Σ−1
F ΓiΣ

−1
F FT .

1.5.2 Estimating Covariance Matrices

The asymptotic covariance matrix for the estimator of the loadings can be estimated con-
sistently under relatively weak assumptions, while the asymptotic covariance of the factor
estimator requires stricter conditions. In order to estimate the asymptotic covariance for the
loadings, we cannot simply apply the truncation approach to the estimated processes. The
asymptotic covariance matrix of the factors runs into a dimensionality problem, which can
only be solved under additional assumptions.

Theorem 1.6. Feasible estimator of covariance matrix of loadings

Assume Assumptions 1.1 and 1.2 hold and
√
M
N
→ 0. Define the asymptotic covariance

matrix of the loadings as ΘΛ,i = V −1QΓiQ
>V −1. Take any sequence of integers k → ∞,

k
M
→ 0. Denote by I(j) a local window of length 2k

M
around j. Define the K ×K matrix Γ̂i

by

Γ̂i =M
M∑
j=1

(
X̂C
j Λ̂

N

)(
X̂C
j Λ̂

N

)>(
X̂C
j,i −

X̂C
j Λ̂

N
Λ̂i

)2

+
M

2k

M−k∑
j=k+1

(
X̂D
j Λ̂

N

)(
X̂D
j Λ̂

N

)>∑
h∈I(j)

(
X̂C
h,i −

X̂C
h Λ̂

N
Λ̂i

)2


+
M

2k

M−k∑
j=k+1

(
X̂D
j,i −

X̂D
j Λ̂

N
Λ̂i

)2
∑
h∈I(j)

(
X̂C
h Λ̂

N

)(
X̂C
h Λ̂

N

)>
Then a feasible estimator for ΘΛ,i is Θ̂Λ,i = V −1

MN Γ̂iV
−1
MN

p→ ΘΛ,i and

√
MΘ̂

−1/2
Λ,i (Λ̂i −H>Λi)

D−→ N (0, IK)

Theorem 1.7. Consistent estimator of covariance matrix of factors

Assume the Assumptions of Theorem 1.4 hold and
√
N
(
F̂T −H−1FT

)
L−s−→ N (0,ΘF )
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with ΘF = plim
N,M→∞

H>Λ>[e]Λ
N

H. Assume that the error terms are cross-sectionally indepen-

dent. Denote the estimator of the residuals by êj,i = Xj,i− Ĉj,i. Then a consistent estimator

is Θ̂F =
∑N
i=1 Λ̂iê

>
i êiΛ̂

>
i

N

p−→ ΘF and

√
NΘ̂

−1/2
F (F̂T −H−1FT )

D−→ N(0, IK).

The assumption of cross-sectional independence here is somewhat at odds with our gen-
eral approximate factor model. The idea behind the approximate factor model is exactly
to allow for weak dependence in the residuals. However, without further assumptions the
quadratic covariation matrix of the residuals cannot be estimated consistently as its dimen-
sion is growing with N . Even if we knew the true residual process e(t) we would still run
into the same problem. Assuming cross-sectional independence is the simplest way to reduce
the number of parameters that have to be estimated. We could extend this theorem to allow
for a parametric model capturing the weak dependence between the residuals or we could
impose a sparsity assumption similar to Fan, Liao and Mincheva (2013). In both cases the
theorem would continue to hold.

Theorem 1.8. Consistent estimator of covariance matrix of common compo-
nents
Assume Assumptions 1.1-1.5 hold and that the residual terms e are cross-sectionally inde-
pendent. Then for any sequence N,M(

1

N
ŴT,i +

1

M
V̂T,i

)−1/2 (
ĈT,i − CT,i

)
D→ N(0, 1)

with ŴT,i = Λ̂>i Θ̂F Λ̂i and V̂T,i = F̂>T

(
F̂>F̂

)−1

Γ̂i

(
F̂>F̂

)−1

F̂T .

1.6 Estimating the Number of Factors

I have developed a consistent estimator for the number of total factors, continuous factors
and jump factors, that does not require stronger assumptions than those needed for consis-
tency. Intuitively the large eigenvalues are associated with the systematic factors and hence
the problem of estimating the number of factors is roughly equivalent to deciding which
eigenvalues are considered to be large with respect to the rest of the spectrum. Under the
assumptions that we need for consistency I can show that the first K “systematic” eigenval-
ues of X>X are Op(N), while the nonsystematic eigenvalues are Op(1). A straightforward
estimator for the number of factors considers the eigenvalue ratio of two successive eigen-
values and associates the number of factors with a large eigenvalue ratio. However, without
very strong assumptions we cannot bound the small eigenvalues from below, which could
lead to exploding eigenvalue ratios in the nonsystematic spectrum. I propose a perturbation
method to avoid this problem. As long as the eigenvalue ratios of the perturbed eigenvalues
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cluster, we are in the nonsystematic spectrum. As soon as we do not observe this clustering
any more, but a large eigenvalue ratio of the perturbed eigenvalues, we are in the systematic
spectrum.

Theorem 1.9. Estimator for number of factors
Assume Assumption 1.1 holds and O

(
N
M

)
≤ O(1). Denote the ordered eigenvalues of X>X

by λ1 ≥ ... ≥ λN . Choose a slowly increasing sequence g(N,M) such that g(N,M)
N
→ 0 and

g(N,M)→∞. Define perturbed eigenvalues

λ̂k = λk + g(N,M)

and the perturbed eigenvalue ratio statistics:

ERk =
λ̂k

λ̂k+1

for k = 1, ..., N − 1

Define

K̂(γ) = max{k ≤ N − 1 : ERk > 1 + γ}

for γ > 0. If ERk < 1 + γ for all k, then set K̂(γ) = 0. Then for any γ > 0

K̂(γ)
p→ K.

Assume in addition that Assumption 1.3 holds. Set the threshold identifier for jumps as
α∆ω̄

M for some α > 0 and ω̄ ∈
(
0, 1

2

)
and define X̂C

j,i = Xj,i1{|Xj,i|≤α∆ω̄
M} and X̂D

j,i =

Xj,i1{|Xj,i|>α∆ω̄
M}. Denote the ordered eigenvalues of X̂C>X̂C by λC1 ≥ ... ≥ λCN and analo-

gously for X̂D>X̂D by λD1 ≥ ...λDN . Define K̂C(γ) and K̂D(γ) as above but using λCi respec-
tively λDi . Then for any γ > 0

K̂C(γ)
p→ KC K̂D(γ)

p→ KD

where KC is the number of continuous factors and KD is the number of jump factors.

My estimator depends on two choice variables: the perturbation g and the cutoff γ. In
contrast to Bai and Ng, Onatski or Ahn and Horenstein we do not need to choose some upper
bound on the number of factors. Although consistency follows for any g or γ satisfying the
necessary conditions, the finite sample properties will obviously depend on them. As a first
step for understanding the factor structure I recommend plotting the perturbed eigenvalue
ratio statistic. In all my simulations the transition from the idiosyncratic spectrum to the
systematic spectrum is very apparent. Based on simulations a good choice for the pertur-
bation is g =

√
N · median({λ1, ..., λN}). Obviously this choice assumes that the median

eigenvalue is bounded from below, which is not guaranteed by our assumptions but almost
always satisfied in practice. In the simulations I also test different specifications for g, e.g.
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log(N) ·median({λ1, ..., λN}). My estimator is very robust to the choice of the perturbation
value. A more delicate issue is the cutoff γ. Simulations suggest that γ between 1.1 and 1.2
performs very well. As we are actually only interested in detecting a deviation from clus-
tering around 1, we can also define γ to be proportional to a moving average of perturbed
eigenvalue ratios.

What happens if we employ my eigenvalue ratio estimator with a constant perturbation
or no perturbation at all? Under stronger assumptions on the idiosyncratic processes, the
eigenvalue ratio estimator is still consistent as Proposition 1.1 shows:

Proposition 1.1. Onatski-type estimator for number of factors
Assume Assumptions 1.1 and 1.3 hold and N

M
→ c > 0. In addition assume that

1. The idiosyncratic terms follow correlated Brownian motions:

e(t) = Aε(t)

where ε(t) is a vector of N independent Brownian motions.

2. The correlation matrix A satisfies:

a) The eigenvalue distribution function FAA> converges to a probability distribution
function FA.

b) The distribution FA has bounded support, u(F) = min(z : F(z) = 1) and
u(FAA>)→ u(FA) > 0.

c) lim infz→0 z
−1
∫ u(FA)

u(FA)−z dFA(λ) = kA > 0.

Denote the ordered eigenvalues of X>X by λ1 ≥ ... ≥ λN . Define

K̂ON(γ) = max

{
k ≤ KON

max :
λk
λk+1

≥ γ

}
for any γ > 0 and slowly increasing sequence KON

max s.t. KON
max

N
→ 0. Then

K̂ON(γ)
p→ K

The estimator in Theorem 1.9 follows a similar logic as the Onatski-type estimator in
Proposition 1.1, but uses different statistical arguments and much weaker assumptions. Un-
der the assumptions of the Onatski estimator the largest eigenvalues of the idiosyncratic
part cluster and are asymptotically very close to each other. Hence, the eigenvalue ratio
for adjacent nonsystematic eigenvalues converges to 1. Under the Onatski assumptions in
Proposition 1.1, we could also set g = C to some constant, which is independent of N and
M . We would get

ERK = Op(N)

ERk =
λk + C

λk+1 + C

p→ 1 k ∈ [K + 1, KON
max]
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However, the Onatski-type estimator in Proposition 1.1 fails if we use the truncated data
X̂C or X̂D.

1.7 Microstructure Noise

Asset prices observed at very high frequencies are contaminated by microstructure noise
and in this section I provide an estimator for the impact of noise on the spectral distribu-
tion. A distinct characteristic of high-frequency financial data is that they are observed with
noise, and that this noise interacts with the sampling frequency in complex ways. So far,
we have assumed that X(t) is the true log asset price, which might be justified in a perfect
market with no trading imperfections, frictions, or informational effects. By contrast, mar-
ket microstructure noise summarizes the discrepancy between the efficient log-price and the
observed log-price, as generated by the mechanics of the trading process. Source of noise
can be a collection of market microstructure effects, either information or non-information
related, such as the presence of a bid-ask spread and the corresponding bounces, the differ-
ences in trade sizes and the corresponding differences in representativeness of the prices, the
different informational content of price changes due to informational asymmetries of traders,
the gradual response of prices to a block trade, the strategic component of the order flow,
inventory control effects, the discreteness of price changes in markets that are subject to
a tick size, etc., all summarized into the noise term. That these phenomena are real and
important is an accepted fact in the market microstructure literature, both theoretical and
empirical.

Here I show how the microstructure noise affects the largest eigenvalue of the residual
matrix. The estimation of the number of factors crucially depends on the size of this largest
eigenvalue. This theorem can be used to show that the estimator for the number of factors
does not change in the presence of micro structure noise. It can also be used to derive an
estimator for the variance of the microstructure noise. If we do not use microstructure noise
robust estimators for the quadratic covariation matrix, the usual strategy is to use a lower
sampling frequency that trades off the noise bias with the estimation variance. This theorem
can provide some guidance if the frequency is sufficiently low to neglect the noise.

In a series of papers Jacod et al (2009) and Barndorff-Nielsen et al. (2011) among others
have developed microstructure noise robust estimators for the quadratic covariation matrix.
However, it is beyond the scope of this paper to develop the asymptotic theory for these
more general estimators in the context of a large dimensional factor model and I leave this
to future research.

Theorem 1.10. Upper bound on impact of noise
Assume we observe the true asset price with noise:

Yi(tj) = Xi(tj) + ε̃j,i

where the noise ε̃j,i is i.i.d. (0, σ2
ε ) and independent of X and has finite fourth moments.

Furthermore assume that Assumption 1.1 holds and that N
M
→ c < 1. Denote increments
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of the noise by εj,i = ε̃j+1,i − ε̃j,i. Then we can bound the impact of noise on the largest
eigenvalue of the idiosyncratic spectrum:

λ1

(
(e+ ε)>(e+ ε)

N

)
− λ1

(
e>e

N

)
≤ min

s∈[K+1,N−K]

(
λs

(
Y >Y

N

)
1

1 + cos
(
s+r+1
N

π
))

· 2
(

1 +
√
c

1−
√
c

)2

+ op(1).

The variance of the microstructure noise is bounded by

σ2
ε ≤

c

2(1−
√
c)2

min
s∈[K+1,N−K]

(
λs

(
Y >Y

N

)
1

1 + cos
(
s+r+1
N

π
))+ op(1)

where λs

(
Y >Y
N

)
denotes the sth largest eigenvalue of a symmetric matrix Y >Y

N
.

Remark 1.1. For s = 1
2
N −K − 1 the inequality simplifies to

λ1

(
(e+ ε)>(e+ ε)

N

)
− λ1

(
e>e

N

)
≤ λ1/2N−K−1

(
Y >Y

N

)
· 2
(

1 +
√
c

1−
√
c

)2

+ op(1)

respectively

σ2
ε ≤

c

2(1−
√
c)2
· λ1/2N−K−1

(
Y >Y

N

)
+ op(1).

Hence, the contribution of the noise on the largest eigenvalue of the idiosyncratic part and
the microstructure noise variance can be bounded by approximately the median eigenvalue of
the observed quadratic covariation matrix multiplied by a constant that depends only on the
ratio of M and N .

1.8 Identifying the Factors

This section develops a new estimator for testing if a set of estimated statistical factors is
the same as a set of observable economic variables. As we have already noted before, factor
models are only identified up to invertible transformations. We need a measure to describe
how close two vector spaces are to each other. I provide a new measure for the distance
between two sets of factors and develop its asymptotic distribution. Based on this I develop
a new test to determine if a set of estimated statistical factors can be written as a linear
combination of observed economic variables.

A natural measure for the closeness of two factors is the correlation. Denote the time
increments of a candidate economic factor G1(t) by the M × 1 vector G1. Then

F>1 G1√
F>1 F1G>1 G1
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is a measure for [F1(t),G1(t)]√
[F1(t),F1(t)][G1(t),G1(t)]

. If the correlation is equal to 1, then the two vectors

are parallel to each other and describe the same factor. If we want to compare two sets
of factors, we need a measure that is invariant to linear transformations. As proposed by
Bai and Ng (2006) the generalized correlation is a natural candidate measure. For a KF -
dimensional sets of factors and a KG-dimensional set of observable variables the generalized
correlations are defined as the square roots of the min(KF , KG) largest eigenvalues of the
matrix [F, F ]−1[F,G][G,G]−1[G,F ]. The estimators for the generalized correlations are the
square roots of the largest eigenvalues of (F>F )−1(F>G)(G>G)−1(G>F ). If the two sets of
factors span the same vector spaces, the generalized correlations are all equal to 1. Otherwise
they denote the highest possible correlations that can be achieved through linear combina-
tions of the subspaces. If for example for KF = KG = 3 the generalized correlations are
{1, 1, 0} it implies that there exists a linear combination of G that can replicate two of the
three factors in F .

Although labeling the measure as a correlation, we do not demean the data. This is be-
cause the drift term essentially describes the mean of a semimartingale and when calculating
or estimating the quadratic covariation it is asymptotically negligible. Hence, my general-
ized correlation measure is based only on inner products and the generalized correlations
correspond to the singular values of the matrix [F,G] if F and G are orthonormalized with
respect to the inner product [., .].

The generalized correlation can also be used to measure the distance between two sets
of loadings. In statistical factor analysis loadings can be interpreted as portfolio weights.
If two sets of loadings span the same vector space, it implies that they represent the same
factors. The distance between two loading matrices Λ and Λ̃ with dimension N × K re-
spectively N × K̃ is estimated as the square root of the min(K, K̃) largest eigenvalues of
(Λ>Λ)−1Λ>Λ̃(Λ̃>Λ̃)−1Λ̃>Λ. It describes to which degree Λ is a linear transformation of Λ̃.

It is well-known that if F and G are observed and i.i.d. normally distributed then√
M(ρ̂2

k−ρ
2
k)

2ρk(1−ρ2
k)

D→ N(0, 1) for k = 1, ...,min(KF , KG) where ρk is the kth generalized correla-

tion.9. The result can also be extended to elliptical distributions. However, the normalized
increments of stochastic processes that can realistically model financial time series are neither
normally nor elliptically distributed. Hence, we cannot directly make use of these results as
for example in Bai and Ng (2006).

I propose a new estimator that can be applied to essentially any stochastic process sat-
isfying Definition 1. The total generalized correlation denoted by ρ̄ is defined as the sum of
the squared generalized correlations ρ̄ =

∑min(KF ,KG)
k=1 ρ2

k. It is equal to

ρ̄ = trace
(
[F, F ]−1[F,G][G,G]−1[G,F ]

)
.

The estimator for the total generalized correlation is defined as

ˆ̄ρ = trace
(

(F̂>F̂ )−1(F̂>G)(G>G)−1(G>F̂ )
)
.

9See for example Anderson (1984)
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As the trace operator is a differentiable function and the quadratic covariation estimator is
asymptotically mixed-normally distributed we can apply a delta method argument to show
that

√
M(ˆ̄ρ− ρ̄) is asymptotically mixed-normally distributed as well.

A test for equality of two sets tests if ρ̄ = min(KF , KG). As an example consider KF =
KG = 3 and the total generalized correlation is equal to 3. In this case F (t) is a linear
transformation of G(t) and both describe the same factor model. Based on the asymptotic
normal distribution of ˆ̄ρ we can construct a test statistic and confidence intervals. The null
hypothesis is ρ̄ < min(KF , KG).

In the simple case of KF = KG = 1 the squared generalized correlation and hence also the
total generalized correlation correspond to a measure of R2, i.e. it measures the amount of
variation that is explained by G1 in a regression of F1 on G1. My measure of total generalized
correlations can be interpreted as a generalization of R2 for a regression of a vector space on
another vector space.

Theorem 1.11. Asymptotic distribution for total generalized correlation
Assume F (t) is a factor process as in Assumption 1.1. Denote by G(t) a KG-dimensional
process satisfying Definition A.1. The process G is either (i) a well-diversified portfolio of
X, i.e. it can be written as G(t) = 1

N

∑N
i=1wiXi(t) with ‖wi‖ bounded for all i or (ii) G is

independent of the residuals e(t). Furthermore assume that
√
M
N
→ 0. The M ×KG matrix

of increments is denoted by G. Assume that10

√
M

((
F>F F>G
G>F G>G

)
−
(

[F, F ] [F,G]
[G,F ] [G,G]

))
L−s→ N(0,Π)

Denote the total generalized correlation by ρ̄ = trace ([F, F ]−1[F,G][G,G]−1[G,F ]) and its

estimator by ˆ̄ρ = trace
(

(F̂>F̂ )−1(F̂>G)(G>G)−1(G>F̂ )
)

. Then

√
M
(

ˆ̄ρ− ρ̄
) L−s→ N(0,Ξ) and

√
M√
Ξ

(
ˆ̄ρ− ρ̄

) D→ N(0, 1)

with Ξ = ξ>Πξ and

ξ = vec

((
− ([F, F ]−1[F,G][G,G]−1[G,F ][F, F ]−1)

>
[F, F ]−1[F,G][G,G]−1

[G,G]−1[G,F ][F, F ]−1 − ([G,G]−1[G,F ][F, F ]−1[F,G][G,G]−1)
>

))
.

Theorem 1.12. A feasible central limit theorem for the generalized continuous
correlation

10As explained in for example Barndorff-Nielsen and Shephard (2004) the statement should be read

as
√
M

(
vec

((
F>F F>G
G>F G>G

))
− vec

((
[F, F ] [F,G]
[G,F ] [G,G]

)))
L−s→ N(0,Π), where vec is the vectorization

operator. Inevitably the matrix Π is singular due to the symmetric nature of the quadratic covariation.
A proper formulation avoiding the singularity uses vech operators and elimination matrices (See Magnus
(1988)).
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Assume Assumptions 1.1 to 1.3 hold. The process G is either (i) a well-diversified portfolio
of X, i.e. it can be written as G(t) = 1

N

∑N
i=1 wiXi(t) with ‖wi‖ bounded for all i or (ii) G is

independent of the residuals e(t). Furthermore assume that
√
M
N
→ 0. Denote the threshold

estimators for the continuous factors as F̂C and for the continuous component of G as ĜC.
The total generalized continuous correlation is

ρ̄C = trace
(
[FC , FC ]−1[FC , GC ][GC , GC ]−1[GC , FC ]

)
and its estimator is

ˆ̄ρC = trace
(

(F̂C
>
F̂C)−1(F̂C

>
ĜC)(ĜC

>
ĜC)−1(ĜC

>
F̂C)

)
.

Then
√
M√
Ξ̂C

(
ˆ̄ρC − ρ̄C

) D→ N(0, 1)

Define the M × (KF + KG) matrix Y =
(
F̂C ĜC

)
. Choose a sequence satisfying k → ∞

and k
M
→ 0 and estimate spot volatilities as

v̂i,rj =
M

k

k−1∑
l=1

Yj+l,iYj+l,r.

The estimator of the (KF +KG)× (KF +KG) quarticity matrix Π̂C has the elements

Π̂C
r+(i−1)(KF+KG),n+(m−1)(KF+KG) =

1

M

(
1− 2

k

)M−k+1∑
j=1

(
vi,rj v

m,n
j + vi,nj vr,mj

)
for i, r,m, n = 1, ..., KF +KG. Estimate ξ̂C = vec(S) for the matrix S with block elements

S1,1 = −
((

F̂C>F̂C
)−1

F̂C>ĜC
(
ĜC>ĜC

)−1

ĜC>F̂C
(
F̂C>F̂C

)−1
)>

S1,2 =
(
F̂C>F̂C

)−1

F̂C>ĜC
(
ĜC>ĜC

)−1

S2,1 =
(
ĜC>ĜC

)−1

ĜC>F̂C
(
F̂C>F̂C

)−1

S2,2 = −
((

ĜC>ĜC
)−1

ĜC>F̂C
(
F̂C>F̂C

)−1

F̂C>ĜC
(
ĜC>ĜC

)−1
)>

.

The estimator for the covariance of the total generalized correlation estimator is Ξ̂C =
ξ̂C>Π̂C ξ̂C.
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The assumption that G has to be a well-diversified portfolio of the underlying asset space
is satisfied by essentially all economic factors considered in practice, e.g. the market factor
or the value, size and momentum factors. Hence, practically it does not impose a restriction
on the testing procedure. This assumption is only needed to obtain the same distribution
theory for the quadratic covariation of G with the the estimated factors as with the true
factors.

1.9 Simulations

This section considers the finite sample properties of my estimators through Monte-Carlo
simulations. In the first subsection I use Monte-Carlo simulations to analyze the distribution
of my estimators for the loadings, factors and common components. In the second subsection
I provide a simulation study of the estimator for the number of factors and compare it to
the most popular estimators in the literature.

My benchmark model is a Heston-type stochastic volatility model with jumps. In the
general case I assume that the K factors are modeled as

dFk(t) = (µ− σ2
Fk

(t))dt+ ρFσFk(t)dWFk(t) +
√

1− ρ2
FσFk(t)dW̃Fk(t) + JFkdNFk(t)

dσ2
Fk

(t) = κF
(
αF − σ2

Fk
(t)
)
dt+ γFσFk(t)dW̃Fk(t)

and the N residual processes as

dei(t) = ρeσei(t)dWei(t) +
√

1− ρ2
eσei(t)dW̃ei(t) + JeidNei(t)− E[Jei ]νedt

dσ2
ei

(t) = κe
(
αe − σ2

ei
(t)
)
dt+ γeσei(t)dW̃ei(t)

The Brownian motions WF , W̃F ,We, W̃e are assumed to be independent. I set the parameters
to values typically used in the literature: κF = κe = 5, γF = γe = 0.5, ρF = −0.8,
ρe = −0.3, µ = 0.05, αF = αe = 0.1. The jumps are modeled as a compound Poisson
process with intensity νF = νe = 6 and normally distributed jumps with JFk ∼ N(−0.1, 0.5)
and Jei ∼ N(0, 0.5). The time horizon is normalized to T = 1.

In order to separate continuous from discontinuous movements I use the threshold 3σ̂X(j)·
∆0.48
M . The spot volatility is estimated using Barndorff-Nielsen and Shephard’s (2006) bi-

power volatility estimator on a window of
√
M observations. Under certain assumptions the

bi-power estimator is robust to jumps and estimates the volatility consistently.
In order to capture cross-sectional correlations I formulate the dynamics of X as

X(t) = ΛF (t) + Ae(t)

where the matrix A models the cross-sectional correlation. If A is an identity matrix, then
the residuals are cross-sectionally independent. The empirical results suggest that it is very
important to distinguish between strong and weak factors. Hence the first factor is multiplied
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by the scaling parameter σdominant. If σdominant = 1 then all factors are equally strong. In
practice, the first factor has the interpretation of a market factor and has a significantly
larger variance than the other weaker factors. Hence, a realistic model with several factors
should set σdominant > 1.

The loadings Λ are drawn from independent standard normal distributions. All Monte-
Carlo simulations have 1000 repetitions. I first simulate a discretized model of the continuous
time processes with 2000 time steps representing the true model and then use the data which
is observed on a coarser grid withM = 50, 100, 250 or 500 observations. My results are robust
to changing the number of Monte-Carlo simulations or using a finer time grid for the “true”
process.

1.9.1 Asymptotic Distribution Theory

In this subsection I consider only one factor in order to assess the properties of the limiting
distribution, i.e. K = 1 and σdominant = 1. I consider three different cases:

1. Case 1: Benchmark model with jumps. The correlation matrix A is a Toplitz ma-
trix with parameters (1, 0.2, 0.1), i.e. it is a symmetric matrix with diagonal elements
1 and the first two off-diagonals have elements 0.2 respectively 0.1.

2. Case 2: Benchmark model without jumps. This model is identical to case 1 but
without the jump component in the factors and residuals.

3. Case 3: Toy model. Here all the stochastic processes are standard Brownian motions

X(t) = ΛWF (t) +We(t)

After rescaling the model is identical to the simulation study considered in Bai (2003).

Obviously, we can only estimate the continuous and jump factors in case 1.
In order to assess the accuracy of the estimators I calculate the correlations of the es-

timator for the loadings and factors with the true values. If jumps are included, we have
additionally correlations for the continuous and jump estimators. In addition for t = T and
i = N/2 I calculate the asymptotic distribution of the rescaled and normalized estimators:

CLTC =

(
1

N
V̂T,i +

1

M
ŴT,i

)−1/2 (
ĈT,i − CT,i

)
CLTF =

√
NΘ̂

−1/2
F (F̂T −H−1FT )

CLTΛ =
√
MΘ̂

−1/2
Λ,i (Λ̂i −H>Λi)

Table 1.1 reports the mean and standard deviation of the correlation coefficients between
F̂T and FT and Λ̂i and Λi based on 1000 simulations. In case 1 I also estimate the continuous
and jump part. The correlation coefficient can be considered as a measure of consistency.
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N=200, M=250 N=100, M=100
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Total Cont. Jump Total Cont. Jump
Corr. FT 0.994 0.944 0.972 0.997 0.997 0.986 0.789 0.943 0.994 0.997
SD FT 0.012 0.065 0.130 0.001 0.000 0.037 0.144 0.165 0.002 0.000
Corr. Λ 0.995 0.994 0.975 0.998 0.998 0.986 0.966 0.949 0.994 0.998
SD Λ 0.010 0.008 0.127 0.001 0.000 0.038 0.028 0.157 0.002 0.000

N=500, M=50 N=50, M=500
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Total Cont. Jump Total Cont. Jump
Corr. FT 0.997 0.597 0.926 0.999 0.999 0.973 0.961 0.954 0.988 0.990
SD FT 0.006 0.196 0.151 0.001 0.000 0.067 0.028 0.141 0.005 0.002
Corr. Λ 0.979 0.921 0.906 0.987 0.990 0.991 0.997 0.974 0.999 0.999
SD Λ 0.027 0.051 0.175 0.005 0.002 0.053 0.002 0.128 0.001 0.000

Table 1.1: Mean and standard deviations of estimated correlation coefficients between F̂T
and FT and Λ̂i and Λi based on 1000 simulations.

For the factor processes the correlation is based on the quadratic covariation between the
true and the estimated processes. I run the simulations for four combinations of N and M :
N = 200,M = 250, N = 100,M = 100, N = 500,M = 50 and N = 50,M = 500. The
correlation coefficients in all cases are very close to one, indicating that my estimators are
very precise. Note, that we can only estimate the continuous and jump factor up to a finite
variation part. However, when calculating the correlations, the drift term is negligible. For
a small number of high-frequency observations M the continuous and the jump factors are
estimated with a lower precision as the total factor. This is mainly due to an imprecision
in the estimation of the jumps. In all cases the loadings can be estimated very precisely.
The simpler the processes, the better the estimators work. For sufficiently large N and M ,
increasing N improves the estimator for the loadings, while increasing M leads to a better
estimation of the factors. Overall, the finite sample properties for consistency are excellent.

Table 1.2 and Figures 1.2 to 1.4 summarize the simulation results for the normalized
estimators CLTC , CLTF and CLTΛ. The asymptotic distribution theory suggests that they
should be N(0, 1) distributed. The tables list the means and standard deviations based
on 1000 simulations. For the toy model in case 3 the mean is close to 0 and the stan-
dard deviation almost 1, indicating that the distribution theory works. Figure 1.4 depicts
the histograms overlaid with a normal distribution. The asymptotic theory provides a very
good approximation to the finite sample distributions. Adding stochastic volatility and weak
cross-sectional correlation still provides a good approximation to a normal distribution. The
common component estimator is closer to the asymptotic distribution than the factor or
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N=200, M=250 CLTC CLTF CLTΛ N=100, M=100 CLTC CLTF CLTΛ

Case 1
Mean 0.023 0.015 0.051

Case 1
Mean -0.047 0.025 -0.006

SD 1.029 1.060 1.084 SD 0.992 1.139 1.045

Case 2
Mean 0.004 -0.007 -0.068

Case 2
Mean -0.005 0.030 0.041

SD 1.040 1.006 1.082 SD 1.099 1.046 1.171

Case 3
Mean 0.000 0.002 0.003

Case 3
Mean 0.024 -0.016 -0.068

SD 1.053 1.012 1.049 SD 1.039 1.060 1.091

N=500, M=50 CLTC CLTF CLTΛ N=50, M=500 CLTC CLTF CLTΛ

Case 1
Mean -0.026 -0.012 -0.029

Case 1
Mean -0.005 -0.044 0.125

SD 0.964 1.308 1.002 SD 1.055 4.400 1.434

Case 2
Mean -0.028 -0.009 0.043

Case 2
Mean 0.012 -0.018 -0.020

SD 1.120 1.172 1.178 SD 0.989 1.038 1.178

Case 3
Mean -0.064 0.003 0.018

Case 3
Mean 0.053 0.030 -0.013

SD 1.079 1.159 1.085 SD 1.015 1.042 1.141

Table 1.2: Mean and standard deviation of normalized estimators for the common compo-
nent, factors and loadings based on 1000 simulations
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Figure 1.2: Case 1 with N = 200 and M = 250. Histogram of standardized common compo-
nents CLTC , factors CLTF and loadings CLTΛ. The normal density function is superimposed
on the histograms.

loading estimator. Even in case 1 with the additional jumps the approximation works well.
The common component estimator still performs the best. Without an additional finite sam-
ple correction the loading estimator in case 1 would have some large outliers. In more detail,
the derivations for case 1 assume that the time increments are sufficiently small such that
the two independent processes F (t) and ei(t) do not jump during the same time increment.
Whenever this happens the rescaled loadings statistic explodes. For very few of the 1000
simulations in case 1 we observe this problem and exclude these simulations. I have set the
length of the local window in the covariance estimation of the loadings estimator to k =

√
M .
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Figure 1.3: Case 2 with N = 200 and M = 250. Histogram of standardized common compo-
nents CLTC , factors CLTF and loadings CLTΛ. The normal density function is superimposed
on the histograms.
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Figure 1.4: Case 3 with N = 200 and M = 250. Histogram of standardized common compo-
nents CLTC , factors CLTF and loadings CLTΛ. The normal density function is superimposed
on the histograms.

The estimator for the covariance of the factors assumes cross-sectional independence, which
is violated in the simulation example as well as Assumption 1.5. Nevertheless in the simu-
lations the normalized statistics approximate a normal distribution very well. Overall, the
finite sample properties for the asymptotic distribution work well.

1.9.2 Number of Factors

In this subsection I analyze the finite sample performance of my estimator for the number of
factors and show that it outperforms the most popular estimators in the literature. One of
the main motivations for developing my estimator is that the assumptions needed for the Bai
and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013) estimator cannot be extended
to the general processes that we need to consider. In particular all three estimators assume
essentially that the residuals can be written in the form BEA, where B is a T × T matrix
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capturing serial correlation, A is a N × N matrix modeling the cross-sectional correlation
and E is a T × N matrix of i.i.d. random variables with finite fourth moments. Such a
formulation rules out jumps and a complex stochastic volatility structure.

In the first part of this section we work with a variation of the toy model such that we
can apply all four estimators and compare them:

X(t) = ΛWF (t) + θAWe(t)

where all the Brownian motions are independent and the N ×N matrix A models the cross-
sectional dependence, while θ captures the signal-to-noise ratio. The matrix A is a Toplitz
matrix with parameters (1, a, a, a, a2), i.e. it is a symmetric matrix with diagonal element
1 and the first four off-diagonals having the elements a, a, a and a2. A dominant factor is
modeled with σdominant > 1. Note, that after rescaling this is the same model that is also
considered in Bai and Ng, Onatski and Ahn and Horenstein. Hence, these results obviously
extend to the long horizon framework. In the following simulations we always consider three
factors, i.e. K = 3.

I simulate four scenarios:

1. Scenario 1: Dominant factor, large noise-to signal ratio, cross-sectional correlation
σdominant =

√
10, θ = 6 and a = 0.5.

2. Scenario 2: No dominant factor, large noise-to signal ratio, cross-sectional correlation
σdominant = 1, θ = 6 and a = 0.5.

3. Scenario 3: No dominant factor, small noise-to signal ratio, cross-sectional correlation
σdominant = 1, θ = 1 and a = 0.5.

4. Scenario 4: Toy model
σdominant = 1, θ = 1 and a = 0.

My empirical studies in Chapter 2 suggest that in the data the first systematic factor is
very dominant with a variance that is 10 times larger then the those of the other weaker
factors. Furthermore the idiosyncratic part seems to have a variance that is at least as large
the variance of the common components. Both findings indicate that scenario 1 is the most
realistic case and any estimator of practical relevance must also work in this scenario.

My perturbed eigenvalue ratio statistic has two choice parameters: the perturbation
g(N,M) and the cutoff γ. In the simulations I set the cutoff equal to γ = 1.2. For the
perturbation I consider the two choices g(N,M) =

√
N ·median{λ1, ..., λN} and g(N,M) =

log(N) · median{λ1, ..., λN}. The first estimator is denoted by ERP1, while the second is
ERP2. All our results are robust to these choice variables. The Onatski (2010) estimator is
denoted by Onatski and I use the same parameters as in his paper. The Ahn and Horenstein
(2013) estimator is labeled as Ahn. As suggested in their paper, for their estimator I first
demean the data in the cross-sectional and time dimension before applying principal compo-
nent analysis. Bai denotes the BIC3 estimator of Bai and Ng (2002). The BIC3 estimator
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outperforms the other versions of the Bai and Ng estimators in simulations. For the last
three estimators, we need to define an upper bound on the number of factors, which I set
equal to kmax = 20. The main results are not affected by changing kmax. For ERP1 and
ERP2 we consider the whole spectrum. The figures and plots are based on 1000 simulations.

Obviously there are more estimators in the literature, e.g. Harding (2013), Alessi,
Barigozzi and Capasso (2010) and Hallin and Liska (2007). However, the simulation studies
in their papers indicate that the Onatski and Ahn and Horenstein estimators dominate most
other estimators.

Figures 1.5 to 1.8 plot the root-mean squared error for the different estimators for a
growing number N = M and show that my estimators strongly outperform or are at least as
good as the other estimators. In the most relevant Scenario 1 depicted in Figure 1.5 only the
ERP1, ERP2 and Onatski estimator are reliable. This is because these three estimators
focus on the residual spectrum and are not affected by strong factors. Although we apply the
demeaning as proposed in Ahn and Horenstein, their estimator clearly fails. Table 1.3 shows
the summary statistics for this scenario. Ahn and Bai severely underestimate the number of
factors, while the ERP1 and ERP2 estimators are the best. Note, that the maximal error
for both ERP estimators is smaller than for Onatski. In Figure 1.6 we remove the strong
factor and the performance of Ahn drastically improves. However ERP1 and ERP1 still
show a comparable performance. In the less realistic Scenarios 3 and 4, all estimators are
reliable and perform equally well.
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Figure 1.5: RMSE (root-mean squared er-
ror) for the number of factors in scenario
1 for different estimators with N = M .
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Figure 1.6: RMSE (root-mean squared er-
ror) for the number of factors in scenario
2 for different estimators with N = M .
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ERP1 ERP2 Onatski Ahn Bai

RMSE 0.32 0.18 0.49 4.00 3.74
Mean 2.79 2.88 2.76 1.00 1.09
Median 3 3 3 1 1
SD 0.52 0.41 0.66 0.00 0.28
Min 1 1 1 1 1
Max 3 4 5 1 2

Table 1.3: Scenario 1: N = M = 125, K = 3.

ERP1 ERP2 Onatski Ahn Bai

RMSE 1.48 0.87 1.99 0.73 3.99
Mean 2.39 2.62 2.31 2.56 1.00
Median 3 3 3 3 1
SD 1.05 0.85 1.23 0.73 0.06
Min 0 0 0 1 1
Max 4 4 6 4 2

Table 1.4: Scenario 2: N = M = 125, K = 3.
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Figure 1.7: RMSE (root-mean squared er-
ror) for the number of factors in scenario
3 for different estimators with N = M .
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Figure 1.8: RMSE (root-mean squared er-
ror) for the number of factors in scenario
4 for different estimators with N = M .

ERP1 ERP2 Onatski Ahn Bai

RMSE 0.00 0.01 0.06 0.00 0.00
Mean 3.00 3.01 3.03 3.00 3.00
Median 3 3 3 3 3
SD 0.03 0.08 0.24 0.00 0.00
Min 3 3 3 3 3
Max 4 4 7 3 3

Table 1.5: Scenario 3: N = M = 125, K = 3.

ERP1 ERP2 Onatski Ahn Bai

RMSE 0.00 0.00 0.05 0.00 0.00
Mean 3.00 3.00 3.03 3.00 3.00
Median 3 3 3 3 3
SD 0.00 0.03 0.22 0.00 0.00
Min 3 3 3 3 3
Max 3 4 7 3 3

Table 1.6: Scenario 4: N = M = 125, K = 3.

Figures 1.9 and 1.10 show ERP1 applied to the benchmark model Case 1 from the last
subsection. The first dominant factor has a continuous and a jump component, while the
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Figure 1.9: Perturbed eigenvalue ratios (ERP1) in the benchmark case 1 with K = 3,
KC = 3, KD = 1, σdominant = 3, N = 200 and M = 250 for 100 simulated paths.
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Figure 1.10: Perturbed eigenvalue ratios (ERP1) in the benchmark case 1 with K = 3,
KC = 3, KD = 1, σdominant = 3, N = 100 and M = 100 for 100 simulated paths.

other two weak factors are purely continuous. Hence, we have K = 3, KC = 3, KD = 1 and
σdominant = 3. I simulate 100 paths for the perturbed eigenvalue ratio and try to estimate K,
KC and KD. We can clearly see that ERP1 clusters for k > 3 in the total and continuous
case respectively k > 1 in the jump case and increases drastically at the true number of
factors. How the cutoff threshold γ has to be set, depends very much on the data set. The
choice of γ = 1.2, that worked very well in my previous simulations, would potentially not
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have been the right choice for Figures 1.9 and 1.10. Nevertheless, just by looking at the plots
it is very apparent what the right number of factors should be. Therefore, I think plotting
the perturbed eigenvalue ratios is a very good first step for understanding the potential factor
structure in the data.

1.10 Conclusion

This chapter studies factor models in the new setting of a large cross section and many
high-frequency observations under a fixed time horizon. I propose a principal component
estimator based on the increments of the observed time series, which is a simple and feasible
estimator. For this estimator I develop the asymptotic distribution theory. Using a simple
truncation approach the same methodology allows to estimate continuous and jump factors.
My results are obtained under very general conditions for the stochastic processes and allow
for cross-sectional and serial correlation in the residuals. I also propose a novel estimator
for the number of factors, that can also consistently estimate the number of continuous and
jump factors under the same general conditions.

In an extensive empirical study in Chapter 2 I apply the estimation approaches developed
in this chapter to 5 minutes high-frequency price data of S&P 500 firms from 2003 to 2012. I
can show that the continuous factor structure is highly persistent in some years, but there is
also time variation in the number and structure of factors over longer horizons. For the time
period 2007 to 2012 I estimate four continuous factors which can be approximated very well
by a market, oil, finance and electricity factor. The value, size and momentum factors play
no significant role in explaining these factors. From 2003 to 2006 one continuous systematic
factor disappears. Systematic jump risk also seems to be different from systematic continuous
risk. There seems to exist only one persistent jump factor, namely a market jump factor.

Arbitrage pricing theory links risk premiums to systematic risk. In future projects I
want to analyze the ability of the high-frequency factors to price the cross-section of returns.
Furthermore I would like to explore the possibility to use even higher sampling frequencies
by developing a microstructure noise robust estimation method.
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Chapter 2

Understanding Systematic Risk: A
High-Frequency Approach

2.1 Introduction

One of the most popular methods for modeling and estimating systematic risk are factor
models. This paper employs the new statistical methods developed in Chapter 1 to estimate
and analyze an unknown factor structure in a large cross-section of high-frequency equity
data. Conventional factor analysis requires long time horizons, while this new methodology
works with short time horizons, e.g. a month. The question of how to capture systematic
risk is one of the most fundamental questions in asset pricing. This paper enhances our
understanding about systematic risk by answering the following questions: (1) What is a
good number of factors to explain the systematic movements and how does this number
change over time? (2) What are the factors and how persistent is the factor structure
over time? (3) Are continuous systematic risk factors, which capture the variation during
“normal” times, different from jump factors, which can explain systematic tail events? (4)
How does the leverage effect, i.e. the correlation of asset returns with its volatility, depend
on systematic and nonsystematic risk.

The important contribution of this paper is that it does not use a pre-specified (and
potentially miss-specified) set of factors. Instead I estimate the statistical factors, which can
explain most of the common comovement in a large cross-section of high-frequency data. As
the high-frequency data allows me to analyze different short time horizons independently, I
do not impose restrictions on the potential time-variation in the factors. For a pre-specified
set of factors studies have already shown that time-varying systematic risk factors capture
the data better.1 Empirical evidence also suggests that for a given factor structure systemic

1The idea of time-varying systematic risk factors contains the conditional version of the CAPM as a
special case, which seems to explain systematic risk significantly better than its constant unconditional
version. Contributions to this literature include for example Jagannathan and Wang (1996) and Lettau
and Ludvigson (2001). Bali, Engle, and Tang (2014) have also shown that GARCH-based time-varying
conditional betas help explain the cross-sectional variation in expected stock returns.
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risk associated with discontinuous price movements is different from continuous systematic
risk.2 I confirm and extend these results to a latent factor structure.

The statistical theory underlying my estimations is very general and developed in Chapter
1. It combines the two fields of high-frequency econometrics and large-dimensional factor
analysis. Under the assumption of an approximate factor model it estimates an unknown
factor structure for general continuous-time processes based on high-frequency data. Using
a truncation approach, I can separate the continuous and jump components of the price
processes, which I use to construct a “jump covariance” and a “continuous risk covariance”
matrix. The latent continuous and jump factors can be separately estimated by principal
component analysis. The number of total, continuous and jump factors is estimated by
analyzing the ratio of perturbed eigenvalues, which is a novel idea to the literature and
shows an excellent performance in simulations. A new generalized correlation test allows me
to compare the statistical factors with observed economic factors.

My empirical investigations are based on a novel high-frequency data set of 5-minutes
prices for the S&P 500 firms from 2003 to 2012. My estimation approach indicates that
the number and the factors do change over time. I estimate four very persistent continuous
systematic factors for 2007 to 2012 and three from 2003 to 2006. These continuous factors
can be approximated very well by an equally-weighted market portfolio and three industry
factors, namely an oil, finance and electricity factor.3 The value, size and momentum factors
play no significant role in explaining these factors. For the time period 2003 to 2006 the
finance factor seems to disappear, while the remaining factor structure stays persistent. For
the whole time period there seems to exist only one persistent jump factor, namely a market
jump factor. My results are robust to the sampling frequency and microstructure noise.4

Table 2.1 illustrates these findings, where I try to replicate the statistical factors with
industry portfolios and the Fama-French Carhart factors. The number of generalized cor-
relations close to 1 are a measure of how many factors the two sets have in common. The
industry factors can approximate the persistent continuous factors very well, while size, value
and momentum factors achieve only low correlations. The jump structure is different from
the continuous structure.

2Empirical studies supporting this hypothesis include Bollerslev, Li and Todorov (2015), Pan (2002),
Eraker, Johannes and Polson (2003), Bollerslev and Todorov (2011) and Gabaix (2012).

3The industry factors are constructed as portfolios with equally-weighted returns for firms in the oil and
gas industry, the banking and insurance industry and the electricity and electric utility industry

4I can show that the estimated monthly and yearly factor structures are essentially identical based on
5 minutes data. Changes in the factor structure seem to occur only for different years. Within a year the
estimated factor structure is basically the same if we use 5 minutes, 15 minutes or daily data. Microstructure
noise becomes only relevant for high-frequencies. The fact that my results are robust to different time horizons
indicates that they are robust to microstructure noise.
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Generalized correlations of 4 continuous factors with industry continuous factors
1.00 0.98 0.95 0.80

Generalized correlations of 4 jump factors with industry jump factors
0.99 0.75 0.29 0.05

Generalized correlations of 4 continuous factors with Fama-French Carhart Factors
0.95 0.74 0.60 0.00

Table 2.1: Interpretation of statistical factors. Generalized correlations of first four largest
statistical factors for 2007-2012 with industry factors (market, oil, finance and electricity
factors) and Fama-French Carhart factors. Results are taken from Tables 2.6, 2.8 and 2.11.
Values larger than 0.8 are in bold.

Using short-maturity, at-the-money implied volatilities from option price data, I create a
data set of daily volatilities for the same S&P 500 firms from 2003 to 2012 and analyze the
systematic factor structure of the volatilities. There seems to be only one persistent market
volatility factor, while during the financial crisis an additional temporary banking volatility
factor appears.

This paper contributes to the understanding of the leverage effect by separating this effect
into its systematic and idiosyncratic component based on the estimated latent factors. The
leverage effect, which describes the generally negative correlation between an asset return
and its volatility changes, is one of the most important empirical stylized facts about the
volatility. High-frequency data is particularly suited for analyzing the leverage effect as
it allows to estimate changes in the unobserved volatility. There is no consensus on the
economic explanation for this statistical effect. The magnitude of the effect seems to be too
large to be explained by financial leverage. Alternative economic interpretations use a risk-
premium argument. An anticipated rise in volatility increases the risk premium and hence
requires a higher rate of return from the asset. This leads to a fall in the asset price. The
causality for these two interpretations is different. These different explanations have been
tested by Bekaert and Wu (2000) who use a parametric conditional CAPM model under a
GARCH specification to obtain results consistent with the risk-premium story. I estimate
the leverage effect completely non-parametrically and decompose it into its systematic and
nonsystematic part based on my general statistical factors. I show that the leverage effect
appears predominantly for systematic risk, while it is smaller and can even be non-existent
for idiosyncratic risk. These findings rule out the financial leverage story, as that explanation
does not distinguish between different sources of risk.

As an illustration I plot the cross-sectional distribution for different components of the
leverage effect in Figure 2.1. The continuous returns and the volatilties are first decomposed
into a systematic and idiosyncratic component based on the 4 continuous return factors
and the largest volatility factor. Then I calculate the correlations between the different
components, where for example (syst, idio) denotes the correlation between the systematic
returns and the idiosyncratic volatility. The largest negative leverage effect holds for the
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Figure 2.1: Componentwise leverage effect in 2012: Sorted correlations between total, sys-
tematic and idiosyncratic log-prices with total, systematic and idiosyncratic implied volatil-
ity. 4 asset factors and 1 volatility factor.

systematic components, while the correlation with the idiosyncratic volatility is on average
zero.

My paper contributes to the central question in empirical and theoretical asset pricing
what constitutes systematic risk. There are essentially three common ways of selecting
which factors and how many describe the systematic risk. The first approach is based on
theory and economic intuition. The capital asset pricing model (CAPM) of Sharpe (1964)
and Lintner (1965) with the market as the only common factor falls into this category. The
second approach bases factors on firm characteristics with the three-factor model of Fama and
French (1993) as its most famous example. My approach falls into the third category where
factor selection is statistical. This approach is motivated by the arbitrage pricing theory
(APT) of Ross (1976). Factor analysis can be used to analyze the covariance structure of
returns. This approach yields estimates of factor exposures as well as returns to underlying
factors, which are linear combinations of returns on underlying assets. The notion of an
“approximate factor model” was introduced by Chamberlain and Rothschild (1983), which
allowed for a non-diagonal covariance matrix of the idiosyncratic component. Connor and
Korajczyk (1986, 1988, 1993) study the use of principal component analysis in the case of
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an unknown covariance matrix, which has to be estimated.5 One distinctive feature of the
factor literature described above is that it uses long-horizon data. The advantages of using
high-frequency data are apparent as it provides more information for more precise estimation
and there are sufficiently many data points for estimating a factor structure that varies over
longer time-horizons. For example the factor analysis can be pursued on a monthly basis to
test how the factor structure changes over time.6

So far most of the empirical literature that utilizes the tools of high-frequency economet-
rics to analyze a factor structure is limited to a pre-specified set of factors. For example,
Bollerslev, Li and Todorov (2015) estimate the betas for a continuous and jump market
factor. Fan, Furger and Xiu (2014) estimate a large-dimensional covariance matrix with
high-frequency data for a given factor structure. My work goes further as I estimate the
unknown continuous and jump factor structure in a large cross-section. An exception is
Aı̈t-Sahalia and Xiu (2015a) who apply nonparametric principal component analysis to a
low-dimensional cross-section of high-frequency data.7

My results were derived simultaneously and independently to results by Aı̈t-Sahalia and
Xiu (2015b). Both of our papers consider the estimation of a large-dimensional factor model
based on high-frequency observations. From the theoretical side their work is different from
my work as I also include jumps and provide a distribution theory. My main identification
condition is a bounded eigenvalue condition on the idiosyncratic covariance matrix, while
their identification is based on a sparsity assumption on the idiosyncratic covariance matrix.
In the empirical part they consider a similar data set with 15 minutes data and show that
4 statistical factors are sufficient to obtain a block-diagonal pattern in the idiosyncratic
covariance matrix. Their study focuses on estimating the continuous covariance matrix, while
my work tries to explain the factor structure itself and also considers the factor structures
in jumps and volatilities.

The rest of the paper is organized as follows. Section 2.2 introduces the factor model. In
Section 2.3, I explain the estimation method. Section 2.4 analyzes the systematic pattern in
equity data based on high-frequency data. Section 2.5 is an empirical application to volatility
data and includes the analysis of the leverage effect. Concluding remarks are provided in

5The general case of a static large dimensional factor model is treated in Bai (2003) and Bai and Ng
(2002). Forni, Hallin, Lippi and Reichlin (2000) introduced the dynamic principal component method. Fan,
Liao and Mincheva (2013) study an approximate factor structure with sparsity.

6A disadvantage of working with high-frequency data is the relatively short time horizon for which
appropriate data for a large cross-section is available. Arbitrage pricing theory links risk premiums to
systematic risk. Factors that explain most of the comovements should also explain most of the risk premia.
Unfortunately, the short-time horizon of 10 years puts restrictions on a reliable estimation of the risk premium
and hence for testing this statement. Hence, this paper focusses on interpreting and understanding the
properties of factors that explain most of the common comovements in the data without testing the asset
pricing implications.

7My results were derived simultaneously and independently to results in Aı̈t-Sahalia and Xiu (2015a).
They find that the first three continuous principal components explain a large fraction of the variation
in the S&P100 index. Their work is different from mine as they consider a low-dimensional regime for
continuous processes, whereas I work in a large-dimensional regime and analyze both the continuous and
jump structures.
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Section 2.6. All the mathematical statements and additional empirical results are deferred
to the appendices.

2.2 Factor Model

The theoretical foundation for my empirical results assumes an asymptotic framework in
which the number of cross-sectional and high-frequency observations both go to infinity.
The high number of cross-sectional observations makes the large dimensional covariance
analysis challenging, but under the assumption of a general approximate factor structure
the “curse of dimensionality” turns into a “blessing” as it becomes necessary for estimating
the systematic factors. I argue that my data set with around 20,000 yearly observations for
each of the 500 cross-sectional assets is sufficiently large for invoking asymptotic theory.8

This paper assumes that log asset prices can be modeled by an approximate factor model.
Hence most co-movements in asset prices are due to a systematic factor component. In more
detail assume that we have N assets with log prices denoted by Xi(t).

9 Assume the N -
dimensional stochastic process X(t) can be explained by a factor model, i.e.

Xi(t) = Λ>i F (t) + ei(t) i = 1, ..., N and t ∈ [0, T ]

where Λi is a K × 1 dimensional vector and F (t) is a K-dimensional stochastic process.
The loadings Λi describe the exposure to the systematic factors F , while the residuals ei are
stochastic processes that describe the idiosyncratic component. However, we only observe
the stochastic process X at M discrete time observations in the interval [0, T ]. If we use an
equidistant grid10, we can define the time increments as ∆M = tj+1 − tj = T

M
and observe

X(tj) = ΛF (tj) + e(tj) j = 1, ...,M.

with Λ = (Λ1, ...,ΛN)> and X(t) = (X1(t), ..., XN(t))>. In our setup the number of cross-
sectional observations N and the number of high-frequency observations M is large, while
the time horizon T and the number of systematic factors K is fixed. The loadings Λ, factors
F , residuals e and number of factors K are unknown and have to be estimated.

8I have run many robustness tests where I vary the number of cross-sectional and high-frequency ob-
servations and my general findings are not affected. The availability of reliable intra-day data for a large
cross-section limits my study to the data that I am using in this thesis. I cannot rule out the possibility
that with more data I could find additional factors that are persistent. My estimations indicate that there
are four respectively three strong factors in the equity data and they seem to follow a very strong pattern,
which makes me believe that this is not a pure data-mining but real economic phenomena. It is possible
that other factors, e.g. a value factor, do not explain much of the correlation for my cross-section and hence
are not identified as a systematic factor.

9Later in this paper I will also use volatilities for the process Xi(t).
10My results would go through under a time grid that is not equidistant as long as the largest time

increment goes to zero with speed O
(

1
M

)
.
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We are also interested in estimating the continuous and jump component of the fac-
tors and the volatility of the factors. Denoting by FC the factors that have a continuous
component and by FD the factor processes that have a jump component, we can write

X(t) = ΛCFC(t) + ΛDFD(t) + e(t).

Note, that for factors that have both, a continuous and a jump component, the corresponding
loadings have to coincide. In the following we assume a non-redundant representation of the
KC continuous and KD jump factors. For example if we have K factors which have all
exactly the same jump component but different continuous components, this results in K
different total factors and KC = K different continuous factors, but in only KD = 1 jump
factor.

My approach requires only very weak assumptions which are summarized in Appendix
B.2 First, the individual asset price dynamics are modeled as Itô-semimartingales, which is
the most general class of stochastic processes, for which the general results of high-frequency
econometrics are available. It includes many processes, for example stochastic volatility pro-
cesses or jump-diffusion processes with stochastic intensity rate. Second, the dependence
between the assets is modeled by an approximate factor structure similar to Chamberlain
and Rothschild (1983). The idiosyncratic risk can be serially correlated and weakly cross-
sectionally correlated and hence allows for a very general specification. The main iden-
tification criterion for the systematic risk is that the quadratic covariation matrix of the
idiosyncratic risk has bounded eigenvalues, while the quadratic covariation matrix of the
systematic factor part has unbounded eigenvalues. For this reason the principal component
analysis can relate the eigenvectors of the exploding eigenvalues to the loadings of the factors.
Third, in order to separate continuous systematic risk from jump risk, we allow only finite
activity jumps, i.e. there are only finitely many jumps in the asset price processes. Many
of my results work without this restriction and it is only needed for the separation of these
two components. This still allows for a very rich class of models and for example general
compound poisson processes with stochastic intensity rates can be accommodated. Last but
not least, we work under the simultaneous limit of a growing number of high-frequency and
cross-sectional observations. We do not restrict the path of how these two parameters go to
infinity. However, my results break down if one of the two parameters stays finite. In this
sense the “curse of dimensionality” becomes a “blessing”.

2.3 Estimation

2.3.1 Estimating the Factors

I employ the estimation techniques developed in Chapter 1. We have M observations of
the N -dimensional stochastic process X in the time interval [0, T ]. For the time increments
∆M = T

M
= tj+1 − tj we denote the increments of the stochastic processes by

Xj,i = Xi(tj+1)−Xi(tj) Fj = F (tj+1)− F (tj) ej,i = ei(tj+1)− ei(tj).
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In matrix notation we have

X
(M×N)

= F
(M×K)

Λ>
(K×N)

+ e
(M×N)

.

For a given K our goal is to estimate Λ and F . As in any factor model where only X is
observed Λ and F are only identified up to invertible transformations. I impose the standard

normalization that Λ̂>Λ̂
N

= IK and that F̂>F̂ is a diagonal matrix.

The estimator for the loadings Λ̂ is defined as the eigenvectors associated with the K
largest eigenvalues of 1

N
X>X multiplied by

√
N . The estimator for the factor increments

is F̂ = 1
N
XΛ̂. Note that 1

N
X>X is an estimator for the quadratic covariation 1

N
[X,X] for

a finite N . The asymptotic theory is applied for M,N → ∞. The systematic component
of X(t) is the part that is explained by the factors and defined as C(t) = ΛF (t). The
increments of the systematic component Cj,i = FjΛ

>
i are estimated by Ĉj,i = F̂jΛ̂

>
i .

Intuitively under some assumptions we can identify the jumps of the process Xi(t) as
the big movements that are larger than a specific threshold. I set the threshold identifier
for jumps as α∆ω̄

M for some α > 0 and ω̄ ∈
(
0, 1

2

)
and define X̂C

j,i = Xj,i1{|Xj,i|≤α∆ω̄
M} and

X̂D
j,i = Xj,i1{|Xj,i|>α∆ω̄

M}. The estimators Λ̂C , Λ̂D, F̂C and F̂D are defined analogously to Λ̂

and F̂ , but using X̂C and X̂D instead of X. 11

The quadratic covariation of the factors can be estimated by F̂>F̂ and the volatility
component of the factors by F̂C>F̂C . I show that the estimated increments of the factors
F̂ , F̂C and F̂D can be used to estimate the quadratic covariation with any other process.

As I have already noted before, factor models are only identified up to invertible trans-
formations. Two sets of factors represent the same factor model if the factors span the same
vector space. When trying to interpret estimated factors by comparing them with economic
factors, we need a measure to describe how close two vector spaces are to each other. As
proposed by Bai and Ng (2006) the generalized correlation is a natural candidate measure.
Let F be our K-dimensional set of factor processes and G be a KG-dimensional set of eco-
nomic candidate factor processes. We want to test if a linear combination of the candidate
factors G can replicate some or all of the true factors F . The first generalized correlation
is the highest correlation that can be achieved through a linear combination of the factors
F and the candidate factors G. For the second generalized correlation we first project out
the subspace that spans the linear combination for the first generalized correlation and then
determine the highest possible correlation that can be achieved through linear combinations
of the remaining K − 1 respectively KG − 1 dimensional subspaces. This procedure contin-
ues until we have calculated the min(K,KG) generalized correlation. Mathematically the
generalized correlations are the square root of the min(K,KG)12 largest eigenvalues of the
matrix [F,G]−1[F, F ][G,G]−1[G,F ]. If K = KG = 1 it is simply the correlation as measured
by the quadratic covariation. Similarly the distance between two loading matrices Λ and Λ̃

11For the jump threshold I use the TOD specification of Bollerslev, Li and Todorov (2013).
12Using min(K,KG) instead of max(K,KG) is just a labeling convention. All the generalized correlations

after min(K,KG) are zero and hence usually neglected.
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with dimension N ×K respectively N × K̃ is measured as the square root of the min(K, K̃)
largest eigenvalues of (Λ>Λ)−1Λ>Λ̃(Λ̃>Λ̃)−1Λ̃>Λ. If the two matrices span the same vector
spaces, the generalized correlations are all equal to 1. Otherwise they denote the highest
possible correlations that can be achieved through linear combinations of the subspaces. If
for example for K = KG = 3 the generalized correlations are {1, 1, 0} it implies that there
exists a linear combination of the three factors in G that can replicate two of the three
factors in F .13 I have shown that under general conditions the estimated factors F̂ , F̂C

and F̂D can be used instead of the true unobserved factors for calculating the generalized
correlations. Unfortunately, in this high-frequency setting there does not exist a theory for
confidence intervals for the individual generalized correlations. However, I have developed
an asymptotic distribution theory for the sum of squared generalized correlations, which I
label as total generalized correlation. I use the total generalized correlation test described
in Section 1.8 to test if a set of economic factors represents the same factor model as the
statistical factors.

The theorems and assumptions are collected in Chapter 1.

2.3.2 Estimating the Number of Factors

In Chapter 1 I also develop a new estimator for the number of factors, that can also distin-
guish between the number of continuous and jump factors. This estimator uses only the same
weak assumptions that are needed for the consistency of my factor estimator. It can also
easily be extended to long time horizon factor models and in simulations it outperforms the
existing estimators while maintaining significantly weaker assumptions. Intuitively the large
eigenvalues are associated with the systematic factors and hence the problem of estimating
the number of factors is roughly equivalent to deciding which eigenvalues are considered to
be large with respect to the rest of the spectrum. Under the assumptions that we need for
consistency I can show that the first K “systematic” eigenvalues of X>X are Op(N), while
the nonsystematic eigenvalues are Op(1). A straightforward estimator for the number of fac-
tors considers the eigenvalue ratio of two successive eigenvalues and associates the number of
factors with a large eigenvalue ratio. However, without very strong assumptions we cannot
bound the small eigenvalues from below, which could lead to exploding eigenvalue ratios in
the nonsystematic spectrum. I propose a perturbation method to avoid this problem. As
long as the eigenvalue ratios of the perturbed eigenvalues cluster, we are in the nonsystem-
atic spectrum. As soon as we do not observe this clustering any more, but a large eigenvalue
ratio of the perturbed eigenvalues, we are in the systematic spectrum.

13Although labeling the measure as a correlation, we do not demean the data. This is because the drift
term essentially describes the mean of a semimartingale and when calculating or estimating the quadratic
covariation it is asymptotically negligible. Hence, the generalized correlation measure is based only on inner
products and the generalized correlations correspond to the singular values of the matrix [F,G] if F and G
are orthonormalized with respect to the inner product [., .]. The generalized correlation between two sets of
loadings is a measure of how well we can describe one set as a linear combination of the other set.
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The number of factors can be consistently estimated through the perturbed eigenvalue
ratio statistic and hence, we can replace the unknown number K by its estimator K̂. Denote
the ordered eigenvalues of X>X by λ1 ≥ ... ≥ λN . We choose a slowly increasing sequence
g(N,M) such that g(N,M)

N
→ 0 and g(N,M) → ∞. Based on simulations a good choice

for the perturbation term g is the median eigenvalue rescaled by
√
N , but the results are

very robust to different choices of the perturbation.14 Then, we define perturbed eigenvalues
λ̂k = λk + g(N,M) and the perturbed eigenvalue ratio statistic

ERk =
λ̂k

λ̂k+1

for k = 1, ..., N − 1.

The estimator for the number of factors is defined as the first time that the perturbed
eigenvalue ratio statistic does not cluster around 1 any more:

K̂(γ) = max{k ≤ N − 1 : ERk > 1 + γ} for γ > 0.

The definition of K̂C(γ) and K̂D(γ) is analogous but using λCi respectively λDi of the matrices
X̂C>X̂C and X̂D>X̂D. The results in my empirical analysis are robust to a wide range of
values for the threshold γ.

2.4 High-Frequency Factors in Equity Data

2.4.1 Data

I use intraday log-prices from the Trade and Quote (TAQ) database for the time period
from January 2003 to December 2012 for all the assets included in the S&P 500 index at
any time between January 1993 and December 2012. In order to strike a balance between
the competing interests of utilizing as much data as possible and minimizing the effect of
microstructure noise and asynchronous returns, I choose to use 5-minute prices.15 More
details about the data selection and cleaning procedures are in Appendix B.1. For each
of the 10 years we have on average 250 trading days with 77 log-price increments per day.
Within each year we have a cross-section N between 500 and 600 firms.16 The exact number
for each year is in Table 2.2. After applying the cleaning procedure the intersection of the
firms for the time period 2007 to 2012 is 498, while the intersection of all firms for the 10
years is only 304. The yearly results use all the available firms in that year, while the analysis
over longer horizons uses the cross-sectional intersection.

14I estimate the number of factors using the perturbed eigenvalue ratio estimator with g(N,M) =
√
N ·

median{λ1, ..., λN}. For robustness I also use an unperturbed eigenvalue ratio test and g(N,M) = log(N) ·
median{λ1, ..., λN}. The results are the same.

15I have run robustness tests with 15min and daily data and the main results do not change.
16I do not extend my analysis to the time before 2003 as there are too many missing high-frequency

observations for the large cross-section.
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Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Original 614 620 622 612 609 606 610 603 587 600
Cleaned 446 540 564 577 585 598 608 597 581 593
Dropped 27.36% 12.90% 9.32% 5.72% 3.94% 1.32% 0.33% 1.00% 1.02% 1.17%

Table 2.2: Observations after data cleaning

When identifying jumps, we face the tradeoff of finding all discontinuous movements
against misclassifying high-volatility regimes as jumps. Therefore, the threshold should take
into account changes in volatilities and intra-day volatility patterns. I use the TOD estimator
of Bollerslev, Li and Todorov (2013) for separating the continuous from the jump movements.
Hence the threshold is set as a · 77−0.49σ̂j,i, where σ̂j,i estimates the daily volatility of asset
i at time j by combining an estimated Time-of-Day volatility pattern with a jump robust
bipower variation estimator for that day. Intuitively I classify all increments as jumps that
are beyond a standard deviations of a local estimator of the stochastic volatility. For my
analysis I use a = 3, a = 4 and a = 4.5.

Table 2.3 lists the fraction of increments identified as jumps for different thresholds. De-
pending on the year for a = 3 more than 99% of the observations are classified as continuous,
while less than 1% are jumps. In 2012, 99.2% of the movements are continuous and explain
around 85% of the total quadratic variation, while the 0.8% jumps explain the remaining
15% of the total quadratic covariation. Changing the threshold, we can either classify more
or less movements as jumps.17 All the results for the continuous factors are extremely ro-
bust to this choice. However, the results for the jump factors are sensitive to the threshold.
Therefore, I am very confident about the results for the continuous factors, while the jump
factor results have to be interpreted with caution. If not noted otherwise, the threshold is
set to a = 3 in the following.

As a first step Table 2.3 lists for each year the fraction of the total continuous variation
explained by the first four continuous factors and the fraction of the jump variation explained
by the first jump factor. As expected systematic risk varies over time and is larger during the
financial crisis. The systematic continuous risk with 4 factors accounts for around 40-47%
of the total correlation from 2008 to 2011, but explains only around 20-31% in the other
years.18 A similar pattern holds for the jumps where the first jump factor explains up to 10
times more of the correlation in 2010 than in the years before the financial crisis.

I have applied the factor estimation to the quadratic covariation and the quadratic cor-
relation matrix, which corresponds to using the covariance or the correlation matrix in

17There is no consensus on the number of jumps in the literature. Christensen, Oomen and Podolskij
(2014) use ultra high-frequency data and estimate that the jump variation accounts for about 1% of total
variability. Most studies based on 5 minutes data find that the jump variation should be around 10 - 20%
of the total variation. My analysis considers both cases.

18The percentage of correlation explained by the first four factors is calculated as the sum of the first four
eigenvalues divided by the sum of all eigenvalues of the continuous quadratic correlation matrix.
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2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Percentage of increments identified as jumps
a=3 0.011 0.011 0.011 0.010 0.010 0.009 0.008 0.008 0.007 0.008
a=4 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001
a=4.5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001

Variation explained by jumps
a=3 0.19 0.19 0.19 0.16 0.21 0.16 0.16 0.15 0.12 0.15
a=4 0.07 0.07 0.07 0.05 0.10 0.06 0.06 0.06 0.03 0.05
a=4.5 0.05 0.04 0.05 0.04 0.08 0.04 0.05 0.05 0.02 0.04

Percentage of jump correlation explained by first 1 jump factor
a=3 0.05 0.03 0.03 0.03 0.06 0.07 0.08 0.19 0.12 0.06
a=4 0.03 0.02 0.02 0.04 0.08 0.06 0.08 0.25 0.09 0.08
a=4.5 0.03 0.03 0.02 0.05 0.09 0.06 0.08 0.22 0.12 0.09

Percentage of continuous correlation explained by first 4 continuous factors
0.26 0.20 0.21 0.22 0.29 0.45 0.40 0.40 0.47 0.31

Table 2.3: (1) Fraction of increments identified as jumps for different thresholds. (2) Fraction
of total quadratic variation explained by jumps for different thresholds. (3) Systematic jump
correlation as measured by the fraction of the jump correlation explained by the first jump
factor for different thresholds. (4) Systematic continuous correlation as measured by the
fraction of the continuous correlation explained by the first four continuous factors.

long-horizon factor modeling. For the second estimator I rescale each asset for the time
period under consideration by the square-root of its quadratic covariation. Of course, the
resulting eigenvectors need to be rescaled accordingly in order to obtain estimators for the
loadings and factors. All my results are virtually identical for the covariation and the corre-
lation approach, but the second approach seems to provide slightly more robust estimators
for shorter time horizons. Hence, all results reported in this paper are based on the second
approach.

2.4.2 Continuous Factors

Number of Factors

I estimate four continuous factors for each of the years from 2007 to 2012 and three continuous
factors for the years 2003 to 2006. Figure 2.2 shows the estimation results for the numbers
of continuous factors. Starting from the right we are looking for a visible strong increase
in the perturbed eigenvalue ratio. Asymptotically any critical value larger than 1 should
indicate the beginning of the systematic spectrum. However, for our finite sample we need
to choose a critical value. In the plots I set the critical value γ equal to 1.08. Fortunately
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there are very visible humps at 4 for the years 2007 to 2012 and strong increases at 3 for
the years 2003 to 2006, which can be detected for a wide range of critical values. Therefore,
my estimator strongly indicates that there are 4 continuous factors from 2007 to 2012 and
three continuous factors from 2003 to 2006. As a robustness test in Figure B.1 I also use an
unperturbed eigenvalue ratio statistic. The results are the same.19
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Figure 2.2: Number of continuous factors

In Figure 2.3 I apply the same analysis without separating the data into a continuous
and jump component and obtain the same number of factors as in the continuous case. The
perturbed eigenvalue ratios stop to cluster at the value 4 for 2007 to 2012 and at the value
3 for 2003 to 2006. This implies either that the continuous and jump factors are the same
or that the continuous factors dominate the jump factors.

Persistence of Factors

The first four continuous factors are highly persistent for the time period 2007 to 2012,
while there are three highly persistent factors for the time period 2003 to 2006. When
comparing the systematic factor structures over time, I am interested if two sets of factors
span the same vector space. I call a factor structure persistent if the vector spaces spanned
by the factors stay constant. Persistence does not mean that the betas from a regression
stay constant, which they usually do not do. If the factors estimated over a longer time
horizon (e.g. 10 years) span the same vector space as factors estimated over all shorter

19I have conducted the same analysis for more perturbation functions with the same findings. The results
are available upon request.
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Figure 2.3: Number of total factors

horizons (e.g. 1 year) included in the longer period, persistence follows. The difficulty in
comparing the factor structure over time is that the same set of factors can lead to different
principal components. An economic factor that explains a large fraction of the variation
in one year and hence is associated with a large eigenvalue, might explain less variation
and be linked to a smaller eigenvalue in another year. The generalized correlations allow
us to compare the vector spaces that are spanned by different sets of factors. In Table 2.4
I calculate the generalized correlations for the first four largest statistical factors based on
yearly quadratic correlations matrices and on a six-year quadratic correlation matrix. The
number of generalized correlations that are close to one essentially suggests how many of the
factors in the two sets are the same. The results indicate that it does not matter if we use
a one year or six years horizon for the time period 2007 to 2012 for estimating the factors.
In the same table I also compare the yearly loadings with the six-year loadings, which are
essentially the same and hence represent the same portfolio space. As the loadings could be
interpreted as portfolio weights, the same set of loadings implies the same factors for the
same time period. Hence we have two ways to show the persistence in the factor structure.

In Table 2.5, I show that the first four yearly statistical factors and loadings are essentially
identical to the first four monthly statistical factors and loadings in the year 2011. Identical
results hold for the other years. This is another strong indication for the persistence of the
first four continuous factors.20

However, when doing the same analysis for the longer horizon 2003 to 2012 in Table 2.4,

20I have done the same analysis for all the years and I will provide the results upon request.
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we observe that one factor disappears in 2003 to 2006. The first three generalized correlations
are close to one, indicating that the two sets of factors share at least a three dimensional
subspace, i.e. three of the factors coincide. The fourth generalized correlation for 2003 to
2006 however is significantly smaller implying that one of the four yearly factors cannot be
written as a linear combination of the four factors estimated based on the 10 year horizon.
This result is in line with my estimation results for the number of factors, where one factor
seems to disappear before 2007. We observe exactly the same pattern for the loadings.

Factors, N=498 2007 2008 2009 2010 2011 2012

1. Generalized Correlation 1.00 1.00 1.00 1.00 1.00 1.00
2. Generalized Correlation 1.00 1.00 1.00 1.00 1.00 1.00
3. Generalized Correlation 0.99 0.99 1.00 1.00 1.00 0.98
4. Generalized Correlation 0.97 0.96 0.98 0.99 0.99 0.98

Loadings, N=498 2007 2008 2009 2010 2011 2012

1. Generalized Correlation 0.99 1.00 1.00 1.00 1.00 0.99
2. Generalized Correlation 0.97 0.99 0.99 0.99 0.99 0.97
3. Generalized Correlation 0.94 0.98 0.98 0.98 0.98 0.95
4. Generalized Correlation 0.93 0.97 0.96 0.97 0.95 0.93

Factors, N=302 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1. Generalized Correlation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2. Generalized Correlation 0.97 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99
3. Generalized Correlation 0.95 0.97 0.98 0.99 0.99 0.99 0.97 0.98 0.99 0.98
4. Generalized Correlation 0.47 0.63 0.17 0.67 0.99 0.99 0.94 0.92 0.97 0.96

Loadings, N=302 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1. Generalized Correlation 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.99
2. Generalized Correlation 0.91 0.96 0.97 0.97 0.98 0.99 0.99 0.99 0.98 0.96
3. Generalized Correlation 0.86 0.92 0.93 0.95 0.97 0.97 0.95 0.96 0.96 0.94
4. Generalized Correlation 0.34 0.52 0.16 0.57 0.95 0.96 0.90 0.88 0.93 0.91

Table 2.4: Persistence of continuous factors: Generalized correlations of the first four largest
yearly continuous factors and their loadings with the first four statistical continuous factors
and loadings for 2007-2012 respectively 2003-2012.

Interpretation of Factors

The four persistent continuous factors for 2007 to 2012 can be approximated very well by
industry factors. The loading estimators can essentially be interpreted as portfolio weights
for the factor construction. Simple eyeballing indicates that the first statistical factor seems
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1 2 3 4 5 6 7 8 9 10 11 12

Generalized correlations of monthly with yearly continuous factors
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99 1.00 0.99 0.99
0.98 0.93 0.99 0.97 0.98 0.98 0.98 0.99 0.99 0.96 0.90 0.96

Generalized correlations of monthly with yearly continuous loadings
0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.98 0.97
0.95 0.95 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.96
0.94 0.86 0.94 0.90 0.93 0.94 0.94 0.95 0.96 0.90 0.84 0.91

Table 2.5: Persistence of continuous factors in 2011. Generalized correlation of monthly
continuous factors and loadings with yearly continuous factors and loadings. The yearly
number of factors is K = 4.

to be an equally weighted market portfolio, a result which has already been confirmed in
many studies. The loadings for the second to fourth statistical factors have a very particular
pattern: Banks and insurance companies have very large loadings with the same sign, while
firms related to oil and gas have large loadings with the opposite sign. Firms related to
electricity seem to have their own pattern unrelated to the previous two. Motivated by these
observations I construct four economic factors as

• Market (equally weighted)

• Oil and gas (40 equally weighted assets)

• Banking and Insurance (60 equally weighted assets)

• Electricity (24 equally weighted assets)

The details are in Appendix B.1.1.
The generalized correlations of the market, oil and finance factors with the first four

largest statistical factors for 2007 to 2012 are very high as shown in the first analysis of
Table 2.6. This indicates that three of the four statistical factors can almost perfectly be
replicated by the three economic factors. This relationship is highly persistent over time. In
Table 2.6 the top of the first column uses the factors and generalized correlations based on
a 6 year horizon, while in the last six columns I estimate the yearly statistical factors and
calculate their generalized correlations with the yearly market, oil and finance factors. The
generalized correlations close to one indicates that at least three of the statistical factors do
not change over time and are persistent.
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Identifying the fourth continuous factor is challenging and the closest approximation
seems to be an electricity factor. The second analysis in Table 2.6 shows the generalized
correlations of the four continuous statistical factors for 2007 to 2012 with the four economic
factors. The fourth generalized correlation essentially measures how well the additional
electricity factor can explain the remaining statistical factor. The fourth yearly generalized
correlation takes values between 0.75 and 0.87, which means that the electricity factor can
help substantially to explain the statistical factors, but it is not sufficient to perfectly replicate
them. The first column shows the result for the total six year time horizon while the last
six columns list the yearly results. In conclusion it seems that the relationship between the
four economic and statistical factors is persistent over time.

The results in Subsection 2.4.2 indicate that the factor structure in 2003 to 2006 might
be different compared to the later period. Based on the intersection of all the firms for 2003
to 2012 I analyze the generalized correlations of the first four yearly continuous statistical
factors with the four yearly continuous industry factors. The third analysis in Table 2.6
shows that as expected one factor disappears in the early four years. A fourth generalized
correlation between 0.16 and 0.35 for 2003 to 2006 suggests strongly that the statistical
factors and industry factors have at most three factors in common. The fourth, fifth and
sixth analyses in Table 2.6 try to identify the disappearing factor. Looking at the fifth
analysis it seems that dropping the finance factor for the time period 2003 to 2006 leads to
the smallest reduction in generalized correlations, i.e. the three statistical factors for 2003
to 2006 are not well-explained by a finance factor. On the other hand this finance factor is
crucial for explaining the statistical factors for 2007 to 2012.

As a robustness test I extend the analysis to daily data and also include daily times-series
of the Fama-French-Carhart factors. First I calculate daily continuous returns by adding up
the continuous log-price increments for each day and creating this way the four continuous
daily statistical factors. Then I calculate generalized correlations of the daily continuous
factors with economic daily factors. I always include the daily continuous market, oil and
finance factors in the analysis and in addition include either

1. Case 1: no additional factor

2. Case 2: a daily continuous electricity factor

3. Case 3: size, value and momentum factors

4. Case 4: daily continuous electricity, size, value and momentum factors

The results are summarized in Table 2.7. Obviously, the size, value and momentum factor do
not explain much variation beyond the industry factors. The fourth generalized correlation
in case 2 is with 0.81 almost the same as in case 4. In particular, the fourth factor seems to
be much better explained by an electricity factor than by a size, value or momentum factor,
which only account for a fourth generalized correlation of 0.43 in case 3.
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Gen. corr. of 4 continuous factors with market, oil and finance factors
N=498 2007-2012 2007 2008 2009 2010 2011 2012
1. Gen. Corr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2. Gen. Corr. 0.98 0.98 0.97 0.98 0.97 0.98 0.93
3. Gen. Corr. 0.95 0.91 0.95 0.94 0.93 0.97 0.87

Gen. corr. of 4 continuous factors with market, oil, finance and electricity factors
N=498 2007-2012 2007 2008 2009 2010 2011 2012
1. Gen. Corr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2. Gen. Corr. 0.98 0.98 0.97 0.99 0.97 0.98 0.93
3. Gen. Corr. 0.95 0.91 0.95 0.95 0.93 0.94 0.90
4. Gen. Corr. 0.80 0.87 0.78 0.75 0.75 0.80 0.76

Gen. corr. of 4 continuous factors with market, oil, finance and electricity factors
N=302 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
1. Gen. Corr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2. Gen. Corr. 0.97 0.99 1.00 1.00 0.99 0.97 0.98 0.96 0.98 0.95
3. Gen. Corr. 0.57 0.75 0.77 0.89 0.85 0.92 0.95 0.92 0.93 0.83
4. Gen. Corr. 0.10 0.23 0.16 0.35 0.82 0.74 0.72 0.68 0.78 0.78

Gen. corr. of 4 continuous factors with market, oil and finance factors
N=302 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
1. Gen. Corr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2. Gen. Corr. 0.97 0.99 1.00 1.00 0.99 0.97 0.98 0.96 0.97 0.94
3. Gen. Corr. 0.46 0.49 0.47 0.49 0.84 0.92 0.94 0.89 0.93 0.83

Gen. corr. of 4 continuous factors with market, oil and electricity factors
N=302 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
1. Gen. Corr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2. Gen. Corr. 0.97 0.99 1.00 1.00 0.98 0.97 0.95 0.94 0.96 0.93
3. Gen. Corr. 0.36 0.64 0.97 0.84 0.83 0.76 0.73 0.69 0.78 0.78

Gen. corr. of 4 continuous factors with market, finance and electricity factors
N=302 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
1. Gen. Corr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2. Gen. Corr. 0.57 0.75 0.98 0.89 0.88 0.92 0.98 0.94 0.95 0.85
3. Gen. Corr. 0.19 0.27 0.57 0.45 0.83 0.74 0.73 0.72 0.78 0.78

Table 2.6: Interpretation of statistical continuous factors. Generalized correlation of eco-
nomic factors (market, oil, finance and electricity factors) with first four largest statistical
factors for different time periods.



CHAPTER 2. UNDERSTANDING SYSTEMATIC RISK: A HIGH-FREQUENCY
APPROACH 58

Case 1 Case 2 Case 3 Case 4

1. Generalized Correlation 1.00 1.00 1.00 1.00
2. Generalized Correlation 0.99 0.99 0.98 0.99
3. Generalized Correlation 0.95 0.95 0.95 0.95
4. Generalized Correlation 0.81 0.43 0.83

Table 2.7: Generalized correlations of the 4 daily continuous factors with daily economic
factors for 2007-2012. N=498.

R2 for daily excess returns of portfolios based on continuous loadings

N=498 1. Factor 2. Factor 3. Factor 4. Factor
Short 1.00 0.96 0.95 0.97
Long 1.00 0.97 0.95 0.97

Generalized correlations with 4 economic industry factors
1.00 0.97 0.92 0.79

Generalized correlations with 4 Fama-French Carhart Factors
0.95 0.74 0.60 0.00

Table 2.8: (1) R2 for portfolios of daily CRSP excess returns based on continuous loadings
Λ̂C . (2) Generalized correlations of daily CRSP excess returns based on continuous loadings
with 4 economic factors. (3) Generalized correlations of daily CRSP excess returns based
on continuous loadings with 4 Fama-French Carhart Factors. The time period is 2007-2012
and N=498.

However, the Fama-French-Carhart factors are based on daily excess returns, which also
include jumps and overnight returns. Additionally, daily returns are also mathematically
different from daily increments in log asset prices. Hence the comparison with daily contin-
uous returns might be misleading. Hence, I construct the 4 statistical and four economic
industry factors using daily excess returns from CRSP. The estimated continuous loadings
serve again as the portfolio weights for the statistical factors. Based on the daily excess re-
turns from 2007 to 2012, I run simple OLS regressions in order to explain the four statistical
factors. The short regression uses a market, oil, finance and electricity factor, while the long
regression applies the same regressors and additionally the size, value and momentum fac-
tors. Table 2.8 shows that almost all the variation can be explained by the industry factors,
while adding the Fama-French-Carhart factors does not change the explanatory power. In
the second part of Table 2.8 I repeat a similar analysis as in Table 2.7 but using the daily
excess returns. As before the generalized correlations with the 4 economic factors are very
large indicating that a linear combination of daily excess returns of the industry portfolios
can approximate the excess returns of the statistical factors very well. On the other hand the
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best linear combination of daily excess returns of the Fama-French Carhart Factors provides
only a poor approximation to the statistical factor returns.

4 statistical and 3 economic factors 4 statistical and 4 economic factors
ˆ̄ρ SD 95% CI ˆ̄ρ SD 95% CI

2007-2012 2.72 0.001 (2.71, 2.72) 3.31 0.003 (3.30, 3.31)
2007 2.55 0.06 (2.42, 2.67) 3.21 0.01 (3.19, 3.22)
2008 2.66 0.08 (2.51, 2.81) 3.18 0.29 (2.62, 3.75)
2009 2.86 0.10 (2.67, 3.05) 3.42 0.15 (3.14, 3.71)
2010 2.80 0.04 (2.72, 2.88) 3.38 0.01 (3.37, 3.39)
2011 2.82 0.00 (2.82, 2.82) 3.47 0.06 (3.35, 3.58)
2012 2.62 0.03 (2.56, 2.68) 3.25 0.01 (3.24, 3.26)

Table 2.9: Total generalized correlations (=sum of squared generalized correlations) with
standard deviations and confidence intervals for the four statistical factors with three eco-
nomic factors (market, oil and finance) and four economic factors (additional electricity
factor). Number of assets N = 498.

As a last step I apply the statistical test of Section 1.8 to test if the three respectively four
continuous economic factors can perfectly replicate the statistical factors. So far I have not
provided confidence intervals for the generalized correlations. Unfortunately, in this high-
frequency setting there does not exist a theory for confidence intervals for the individual
generalized correlations. However, I have developed an asymptotic distribution theory for
the sum of squared generalized correlations, which I label as total generalized correlation.
The left part of Table 2.9 lists the total generalized correlation for different time periods for
three economic factors. A total generalized correlation of three indicates that three of the
four statistical factors can be perfectly replicated by the three economic factors. Only in
2009 we cannot reject the null hypothesis of a perfect factor replication. In the right half of
Table 2.9 I apply the same test to four economic factors. Now a total generalized correlation
of four implies that the four statistical factors are identical to the four economic factors.
We reject the null hypothesis of a perfect linear combination. Hence, although my set of
economic factors approximates the statistical factors very well, there seems to be a missing
component.

2.4.3 Jump Factors

There seems to be a lower number of jump factors, which do not coincide with the continuous
factors. Only the jump market factor seems to be persistent, while neither the number nor
the structure of the other jump factors have the same persistence as for the continuous
counterpart. Figures B.2, B.3 and B.4 estimate the number of jump factors for different
thresholds. In most years the estimator indicates only one jump factor. Under almost all
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specifications there seems to be at most four jump factors and hence I will restrict the
following analysis to the first four largest jump factors.

Yearly vs. 6-year jump factors Yearly vs. 6-year jump loadings
2007 2008 2009 2010 2011 2012 2007 2008 2009 2010 2011 2012

a=3 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.99 0.98 0.98 0.97 0.95
0.96 1.00 0.95 0.98 0.76 0.85 0.84 0.97 0.84 0.85 0.49 0.68
0.81 0.88 0.84 0.69 0.59 0.70 0.58 0.74 0.60 0.28 0.40 0.46
0.12 0.81 0.14 0.25 0.05 0.17 0.05 0.63 0.07 0.15 0.03 0.07

a=4 1.00 1.00 0.99 1.00 0.99 0.99 0.88 0.97 0.81 0.95 0.85 0.85
0.66 0.99 0.63 1.00 0.51 0.43 0.30 0.87 0.20 0.93 0.16 0.13
0.34 0.52 0.09 0.97 0.43 0.20 0.10 0.23 0.02 0.66 0.11 0.05
0.14 0.03 0.05 0.17 0.13 0.03 0.05 0.01 0.01 0.04 0.03 0.01

a=4.5 0.99 0.99 0.98 1.00 0.99 0.99 0.85 0.95 0.72 0.95 0.75 0.82
0.79 0.97 0.77 1.00 0.40 0.49 0.30 0.78 0.24 0.93 0.10 0.14
0.28 0.44 0.28 0.96 0.26 0.24 0.08 0.13 0.06 0.67 0.06 0.05
0.05 0.16 0.01 0.53 0.11 0.07 0.01 0.05 0.00 0.12 0.03 0.02

Table 2.10: Generalized correlations of 4 largest yearly jump factors with 4 jump factors for
2007-2012 and generalized correlations of 4 yearly jump loadings with 4 jump loadings for
2007-2012 for different thresholds. Here K = 4 and N = 498. Values larger than 0.8 are in
bold.

In Table 2.10 I analyze the persistence of the jump factors by comparing the estimation
based on 6 years with the estimation based on yearly data. For the smallest threshold there
seems to be two persistent factors as the first two generalized correlations are close to 1, but
the structure is much less persistent than for the continuous data. For the largest threshold
only the first generalized correlation is close to one suggesting only one persistent factor. In
Table B.1 we see that for the shorter time horizon of a month only one factor is persistent
independently of the threshold. This could be explained by the fact that the systematic
jumps do not necessarily happen during every month and hence the systematic structure
measured on a monthly basis can be very different from longer horizons.

My estimator for identifying the jumps might erroneously classify high volatility time
periods as jumps. Increasing the threshold in the estimator reduces this error, while we
might misclassify small jumps as continuous movements. Increasing the threshold, reduces
the persistence in the jump factors up to the point where only a market jump factors remains.
It is unclear if the persistence for small jump thresholds is solely due to misclassified high
volatility movements.

Table 2.11 confirms that the jump factors are different from the continuous factors. Here I
estimate the generalized correlations of the first four statistical jump factors with the market,
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oil, finance and electricity jump factors for 2007 to 2012. I can show that the first statistical
jump factor is essentially the equally weighted market jump factor which is responsible for
the first generalized correlation to be equal to 1. However, the correlations between the other
statistical factors and the industry factors are significantly lower.

Generalized correlations of 4 economic jump factors with 4 statistical jump factors
2007-2012 2007 2008 2009 2010 2011 2012

a=3 1.00 1.00 1.00 0.99 1.00 1.00 1.00
0.85 0.95 0.62 0.86 0.81 0.86 0.83
0.61 0.77 0.40 0.76 0.31 0.61 0.59
0.21 0.10 0.22 0.50 0.10 0.20 0.28

a=4 0.99 0.99 0.95 0.94 1.00 0.99 0.99
0.74 0.53 0.41 0.59 0.90 0.53 0.57
0.31 0.35 0.29 0.44 0.39 0.35 0.42
0.03 0.19 0.20 0.09 0.05 0.14 0.16

a=4.5 0.99 0.99 0.91 0.91 1.00 0.98 0.99
0.75 0.54 0.41 0.56 0.93 0.55 0.75
0.29 0.35 0.30 0.40 0.68 0.38 0.29
0.05 0.18 0.22 0.04 0.08 0.03 0.05

Table 2.11: Generalized correlations of market, oil, finance and electricity jump factors with
first 4 jump factors from 2007-2012 for N=498 and for different thresholds. Values larger
than 0.8 are in bold.

2.4.4 Comparison with Daily Data and Total Factors

The continuous factors dominate the jump factors and daily returns give similar but noisier
estimators than the continuous high-frequency analysis. In this section I compare the esti-
mators based on continuous, jump and total high-frequency data and daily CRSP returns.
As I make the comparisons for each year separately, I can use my largest cross-sectional
sample as listed in Table 2.2. I compare the loadings based on daily, total and jump high-
frequency loadings with the continuous loadings. As the loadings can be interpreted as
portfolio weights, the same set of loadings also implies the same factors. However, some
assets might be close substitutes in which case different portfolios might still describe the
same factors. Thus, I use the loadings estimated from the different data sets to construct
continuous factors and estimate the distance between the different sets of continuous factors.

Figure B.5 shows the yearly estimators for the number of factors based on approximately
250 daily observations. The pattern is similar to the continuous estimators, but much noisier.
This can be either due to the fact that the number of observations is much smaller then the
approximate 20,000 in the high-frequency case, but also because the daily returns include
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the jumps and overnight movements. In Table B.2 we observe that the continuous factors
and loadings are close to but different from those based on daily CRSP returns. This is a
positive finding as it indicates that my results are in some sense robust to the frequency. On
the other hand the high-frequency estimator seems to estimate the pattern in the data more
precisely and there is a gain from moving from daily to intra-day data.

In Table B.2 I also show that the total factors and continuous high-frequency factors are
essentially identical. This result has two consequences. First, it confirms that my findings
about the continuous factors are robust to the jump threshold. Even if all the movements are
classified as continuous, we obtain essentially the same estimators for the loadings. Second,
the systematic continuous pattern dominates the systematic jump pattern. The first jump
factor is a market jump factor and hence is described by the same loadings as the first
continuous factor. Even if there are systematic jump factors that are different from the
second to fourth continuous factors their impact on the spectrum is so small, that it is not
detected when considering only the first four total factors. This is also partly due to the fact
that the jump quadratic covariation is only a small fraction of the total quadratic covariation.

Finally in Table B.3 I confirm that the systematic jump factors are different from the
systematic continuous factors. The higher the jump threshold the less likely it is that the
large increments are due to continuous movements with high volatility. Thus for a larger
jump threshold the correlation between the jump factors and continuous factors decreases
up to the point where only the market factor remains as having a common continuous and
jump component.

2.4.5 Microstructure Noise

Non-synchronicity and microstructure noise are two distinguishing characteristics of high-
frequency financial data. First, the time interval separating successive observations can be
random, or at least time varying. Second, the observations are subject to market microstruc-
ture noise, especially as the sampling frequency increases. The fact that this form of noise
interacts with the sampling frequency distinguishes this from the classical measurement er-
ror problem in statistics. Inference on the volatility of a continuous semimartingale under
noise contamination can be pursued using smoothing techniques.21 However, neither the
microstructure robust estimators nor the non-synchronicity robust estimators can be easily
extended to our large dimensional problem. The main results of my paper assume syn-
chronous data with negligible microstructure noise. Using for example 5-minute sampling
frequency as commonly advocated in the literature on realized volatility estimation, e.g.
Andersen et al. (2001) and the survey by Hansen and Lunde (2006), seems to justify this
assumption.

21Several approaches have been developed, prominent ones by Zhang (2006), Barndorff-Nielsen et al.
(2008) and Jacod et al. (2009) in the one-dimensional setting and generalizations for a noisy non-synchronous
multi-dimensional setting by Aı̈t-Sahalia et al. (2010), Podolskij and Vetter (2009), Barndorff-Nielsen et al.
(2011) and Bibinger and Winkelmann (2014) among others.
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Volatility signature plots as used in Hansen and Lunde (2006) are very useful tools
for identifying frequencies that are contaminated by noise. One common approach in the
literature is to sample at lower frequencies to minimize the contamination by microstructure
noise at the cost of using less data. Clearly when estimating the quadratic covariation
without applying microstructure noise corrections there is a tradeoff between the higher
noise variance and higher precision of using a finer frequency. An important question in this
respect is the variance of the unobservable noise. For example Hansen and Lunde (2006)
have estimated the microstructure noise variance for different assets. In Chapter 1 I propose
an estimator for the microstructure noise that utilizes the information in the cross-section.
Under the assumptions outlined in Theorem 1.10, the increments of microstructure noise
create a very specific spectral pattern. This allows us to derive upper bounds on the variance
of the microstructure noise. These bounds are solely functions of the estimated eigenvalues
and the ratio M

N
. From a practical perspective it is ambiguous how to choose M for a given

time horizon. For example Lee and Mykland (2009) use a year as the reference horizon for
high to low frequencies, i.e. in our case M would be around 250 · 77 = 19, 250. One could
also argue that a month is a better cutoff between high and low frequencies which would set
M to around 21 · 77 = 1, 617. Obviously the results of my estimator for the microstructure
noise variance depend on this choice.

Table 2.12 shows the estimation results for the different years. For a monthly reference
level for high to low frequencies the upper bounds are very similar to the estimates in Hansen
and Lunde (2006). For a yearly reference level they are significantly lower. In either case we
would have microstructure noise contamination that can be neglected when using 5 minute
data. The fact that my results are robust to different time horizons, e.g. 5 minutes, 15
minutes and daily horizons, further confirms that the results are robust to microstructure
noise.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Median eigenvalue 0.048 0.036 0.033 0.034 0.040 0.119 0.070 0.030 0.032 0.025
Var of MN (T=12) 0.029 0.034 0.034 0.037 0.046 0.141 0.088 0.036 0.036 0.030
Var of MN (T=1) 0.001 0.001 0.001 0.001 0.001 0.003 0.002 0.001 0.001 0.001

Table 2.12: Estimation of the upper bound of the variance of microstructure noise for different
years and different reference levels. (1) Median eigenvalue of yearly quadratic covariation
matrix. (2) Upper bound on microstructure noise variance if the reference level for high and
low frequency is a month (i.e. M is around 1,617). (3) Upper bound on microstructure noise
variance if the reference level for high and low frequency is a year (i.e. M is around 19,250).
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2.5 Empirical Application to Volatility Data

Using implied volatilities from option price data, I analyze the systematic factor structure
of the volatilities. There is only one persistent market volatility factor, while during the
financial crisis an additional temporary banking volatility factor appears. Based on the
estimated factors, we can decompose the leverage effect, i.e. the correlation of the asset return
with its volatility, into a systematic and an idiosyncratic component. The negative leverage
effect is mainly driven by the systematic component, while the idiosyncratic component can
be positively correlated with the volatility. These findings are important as they can rule
out popular explanations of the leverage effect, which do not distinguish between systematic
and non-systematic risk.

2.5.1 Volatility Factors

As the volatility of asset price processes is not observed, we cannot directly apply our factor
analysis approach to the data. There are essentially two ways to estimate the volatility.
The first is based on high-frequency asset prices and estimates the spot volatility using the
realized quadratic covariations for a short time window. The second approach infers the
volatility under the risk-neutral measure using option price data. The VIX is the most
prominent example for the second approach. I have pursued both approaches, but most of
the results reported in this chapter are based on the second one.

Using the realized quadratic variation for a short horizon, e.g. a day, we can obtain
estimators for the spot volatilities, which we can use for our large-dimensional factor analysis.
The details for the estimation of the spot volatilities and the construction of volatility of
volatility estimators can be found in chapter 8 of Aı̈t-Sahalia and Jacod (2014). The volatility
of volatility estimator requires a bias correction. These estimators appear to be very noisy
in practice and that is why I prefer an alternative approach.

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Original 408 479 507 525 543 557 565 561 549 565
Cleaned 399 465 479 495 508 528 536 530 523 529
Dropped 2.21% 2.92% 5.52% 5.71% 6.45% 5.21% 5.13% 5.53% 4.74% 6.37%

Table 2.13: Observations after data cleaning.

Medvedev and Scaillet (2007) show that under a jump-diffusion stochastic volatility model
the Black-Scholes implied volatility of an at-the-money option with a small time-to-maturity
is close to the unobserved volatility. Using this insight I use implied volatilities for my factor
estimation approach.22 Under relatively general conditions estimating the factor structure

22A rigorous study would require us to take into account the estimation error for the implied volatility and



CHAPTER 2. UNDERSTANDING SYSTEMATIC RISK: A HIGH-FREQUENCY
APPROACH 65

(and also later the leverage effect) under the risk-neutral measure yields the same results as
under the physical measure.

In some sense I am trying to create a VIX-type times-series for all the assets in the cross-
section. The older version of VIX, the VXO, was actually a measure of implied volatility
calculated using 30-day S&P100 index at-the-money options. The VIX uses the concept of
generalized implied volatility. I have also created a panel of generalized implied volatilities for
my cross-section. However, the theoretical justification of this approach assumes an infinite
number of strike prices for each asset and the quality of the estimator deteriorates for a small
number of available strikes as it is the case for many assets in my sample. Therefore, the
Black-Scholes implied volatility appears to be a much more robust estimator. For the assets
in our sample, where we have a large number of strikes available, the generalized volatility
and simple implied-volatility are very close, while for those with only few strike prices, the
generalized volatility estimators seem to be unreliable.
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Figure 2.4: Number of volatility factors

Using daily implied volatilities from OptionMetrics for the same assets and time period
as in the previous section, I apply my factor analysis approach. OptionMetrics provides
implied volatilities for 30 days at-the-money standard call and put options using a linearly
interpolated volatility surface. I average the implied call and put volatilities for each asset
and each day. More details about the data and some results are in Appendix B.1.5. Unfor-

to derive the simultaneous limit of M , N , the at-the-moneyness and the maturities of the options. As such
an extension is beyond the scope of the paper, I treat the implied volatilities of short-maturity at-the-money
options as the true observed volatilities under the risk-neutral measure.
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tunately, the data is not available to construct intra-day implied volatilities for the whole
cross-section. However, as the previous section has illustrated, the results with daily data
seem to capture similar results as with higher frequency data. Table 2.13 reports the data
after the data cleaning.

Generalized correlations of 4 economic volatility factors with 4 statistical volatility factors
2007 2008 2009 2010 2011 2012

1. Gen. Corr. 1.00 1.00 1.00 1.00 1.00 1.00
2. Gen. Corr. 0.19 0.90 0.92 0.33 0.67 0.28
3. Gen. Corr. 0.07 0.34 0.13 0.06 0.11 0.05
4. Gen. Corr. 0.01 0.05 0.00 0.00 0.01 0.01

Generalized correlations between volatility and continuous loadings
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1. Gen. Corr. 0.95 0.91 0.84 0.92 0.96 0.98 0.97 0.98 0.98 0.97
2. Gen. Corr. 0.59 0.68 0.84 0.34 0.69 0.79 0.57 0.37 0.31 0.21
3. Gen. Corr. 0.46 0.56 0.31 0.34 0.08 0.57 0.52 0.09 0.31 0.10
4. Gen. Corr. 0.14 0.11 0.14 0.03 0.08 0.12 0.02 0.08 0.02 0.05

Generalized correlations between volatility and jump loadings
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1. Gen. Corr. 0.92 0.90 0.88 0.82 0.93 0.94 0.96 0.93 0.93 0.93
2. Gen. Corr. 0.47 0.61 0.72 0.33 0.21 0.20 0.46 0.15 0.38 0.09
3. Gen. Corr. 0.29 0.52 0.27 0.31 0.16 0.19 0.46 0.15 0.11 0.09
4. Gen. Corr. 0.29 0.10 0.04 0.07 0.16 0.19 0.03 0.10 0.03 0.01

Generalized correlations between volatility and daily loadings
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1. Gen. Corr. 0.95 0.93 0.84 0.92 0.96 0.98 0.96 0.98 0.97 0.96
2. Gen. Corr. 0.44 0.64 0.84 0.34 0.61 0.64 0.46 0.29 0.49 0.23
3. Gen. Corr. 0.44 0.64 0.39 0.23 0.29 0.64 0.46 0.19 0.26 0.22
4. Gen. Corr. 0.22 0.06 0.21 0.18 0.02 0.38 0.02 0.07 0.03 0.09

Table 2.14: Generalized correlations between four economic (market, oil, finance and elec-
tricity) and four statistical volatility factors and between the loadings of the volatility factors
and the loadings for continuous, jump and daily data.

Figure 2.4 estimates the number of volatility factors. There seems to be only one strong
persistent factor, which is essentially a market volatility factor and very highly correlated
with the VIX. In 2008 there seems to be a second temporary volatility factor. The volatility
factors seem to be different from the continuous, jump and daily factors. Table 2.14 shows
the generalized correlations of the volatility loadings with the continuous, jump and daily
loadings for each year. The volatility loadings cannot be interpreted as a portfolio of assets,
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but rather as a portfolio of volatilities. There does not seem to be a strong correlation
with the other factors. Table 2.14 also calculates the generalized correlation of the first four
volatility factors with market, oil, finance and electricity volatility factors constructed as
equally weighted portfolios of volatilities for these industries. In 2008 and 2009 there seems
to appear a temporary finance factor as the second generalized correlation jumps up.23 This
finding is in line with the results for the number of factors and not surprising given the
financial crisis.

2.5.2 Leverage Effect

One of the most important empirical stylized facts about the volatility is the leverage effect,
which describes the generally negative correlation between an asset return and its volatil-
ity changes. The term “leverage” originates in one possible economic interpretation of this
phenomenon, developed in Black (1976) and Christie (1982). When asset prices decline,
companies become mechanically more leveraged as equity is a residual claim and the rela-
tive value of their debt rises relative to that of their equity. Therefore, their stock should
become riskier, and as a consequence more volatile. Although this is only a hypothesis, this
explanation has coined the term “leverage effect” to describe the statistical regularity in the
correlation between asset return and volatility.24

There is no consensus on the economic explanation for this statistical effect. The magni-
tude of the effect seems to be too large to be explained by financial leverage.25 Alternative
economic interpretations as suggested for example by French et al. (1987) and Campbell and
Hentschel (1992) use a risk-premium argument. An anticipated rise in volatility increases
the risk premium and hence requires a higher rate of return from the asset. This leads to a
fall in the asset price. The causality for these two interpretations is different: The leverage
hypothesis claims that return shocks lead to changes in volatility, while the risk premium
story implies that return shocks are caused by changes in conditional volatility. Showing
that the leverage effect appears only for systematic priced risk but not for unpriced non-
systematic risk could rule out the leverage story. These different explanations have been
tested by Bekaert and Wu (2000) who use a parametric conditional CAPM model under a
GARCH specification to obtain results consistent with the risk-premium story. I estimate
the leverage effect completely non-parametrically and decompose it into its systematic and

23I have calculated the generalized correlations between the first two statistical volatility factors and
different combinations of the four economic volatility factors. It seems that the finance factor can explain
most of the second statistical volatility factor.

24There are studies (e.g., Nelson (1991) and Engle and Ng (1993)) showing that the effect is generally
asymmetric. Declines in stock prices are usually accompanied by larger increases in volatility than the
declines in volatility with rising stock markets. Yu (2005) has estimated various discrete-time models with
a leverage effect.

25Figlewski and Wang (2000) raise the question whether the effect is linked to financial leverage at all.
They show that there is only an effect on volatility when leverage changes due to changes in stock prices but
not when leverage changes because of a change in debt or number of shares.
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nonsystematic part based on my general statistical factors. I show that the leverage effect
appears predominantly for systematic risk, while it can be non-existent for idiosyncratic risk.

The estimation of the leverage effect is difficult because volatility is unobservable. As
in the previous subsection there are essentially two non-parametric approaches to estimate
the correlation between asset returns and the changes in their volatility. First, the common
approach is to conduct preliminary estimation of the volatility over small windows, then
to compute the correlation between returns and the increments of the estimated volatility.
Wang and Mykland (2012), Aı̈t-Sahalia, Fan and Li (2013) and Aı̈t-Sahalia and Jacod (2014)
are examples of this approach. Such estimators appear to be very noisy in practice. Second,
Kalnina and Xiu (2014) use volatility instruments based on option data, such as the VIX or
Black-Scholes implied volatilities. Their approach seems to provide much better estimates
than the first one.

Based on my factor estimation approach I decompose the leverage effect into a systematic
and idiosyncratic component. The estimated high-frequency factors allow us to separate
the returns and volatilities into a systematic and idiosyncratic component, which we can
then use to calculate the different components of the leverage effect. I use two different
methodologies. First, I employ only the high-frequency equity data and apply Aı̈t-Sahalia
and Jacod’s (2014) approach as described in Theorem B.1. As already noted in Kalnina
and Xiu (2014), this estimator for correlation leads to a downward bias unless a long time
horizon with a huge amount of high-frequency data is used. However, my main findings,
namely that systematic risk drives the leverage effect is still apparent. Second, I estimate
the correlation between daily continuous returns and daily implied volatilities. This approach
follows the same reasoning as Kalnina and Xiu, except that they use intra-day data and and
develop a bias reduction technique for volatility instruments that are unknown functions of
the unobserved volatility. For a limited number of assets we have high-frequency prices of
volatility instruments, for example the VIX. For these assets using simple daily increments
in implied volatilities or the more sophisticated high-frequency bias-reduced estimators with
volatility instruments yield very close results. Thus, I am confident that my main findings
are robust to the estimation approach employed.

In this paper I use an average leverage effect, where we measure the leverage effect with
the continuous quadratic covariation for the time horizon T 26:

LEV =
[σ2
i , Xi]

C
T√

[Xi, Xi]CT
√

[σ2
i , σ

2
i ]
C
T

.

Based on systematic factors, we can decompose this average leverage effect into a sys-
tematic and idiosyncratic part:
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26Aı́t-Sahalia and Jacod (2014) and Kalnina and Xiu (2014) also work with an aggregate leverage effect.
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where Xsyst
i (t) = Λ>i F (t) and X idio

i (t) = ei(t) = Xi(t) − Λ>i F (t) for asset i. My estimator
for this simple decomposition based on implied volatilities is therefore
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where Λ̂C is obtained from the high-frequency data, X̂C , F̂C and êCi are based on the
accumulated daily continuous increments and σ̂2 are the daily increments of an estimator
of the implied volatility. In the following I use our four continuous statistical factors for
estimating the systematic continuous part of X̂C . The decomposition of the leverage effect
based on spot volatilities applies the systematic and non-systematic returns to Theorem B.1.
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Figure 2.5: Decomposition of the leverage effect in 2012 using implied volatilities and high-
frequency volatilities. I use 4 continuous asset factors.

Figure 2.5 plots the sorted decomposition of the leverage effect based on implied and
realized volatility estimators. For each type of leverage I have sorted the values separately.
Hence the different curves should be interpreted as describing the cross-sectional distribution
of the leverage effect for the different components.27 There is clearly a difference between the
systematic leverage and idiosyncratic leverage. The total leverage is close to the systematic

27For the same value on the x-axis different curves usually represent different firms.
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leverage. Note however, that the absolute magnitude of high-frequency estimations of the
leverage effects are significantly below the estimates based on the implied-volatility, which
are more in line with the values usually assumed in the literature. In Appendix B.1.5 the
Figures B.26 to B.35 show the corresponding plots for all the years. We observe the same
pattern: The systematic part of the leverage effect is larger than the idiosyncratic part and
high-frequency based volatilities underestimate the leverage effect while implied volatility
based estimates have the correct size.

The previous results could be driven by the fraction of total risk explained by the sys-
tematic part. Even if the idiosyncratic part of the return has the same correlation with the
volatility, it can lead to a low covariance if it is only a small part of the total variation.
For example from 2003 to 2006 the systematic factors explain only a small fraction of the
total variation as can be seen in Table 2.3. This can explain the downward shift in the
systematic leverage curves in Figures B.32 to B.35. A more meaningful measure is therefore
the componentwise leverage effect. I decompose Xi and σ2

i into a systematic and idiosyn-

cratic part: Xsyst
i , X idio

i , σ2syst
i and σ2idio

i based on the results in Section 2.4 and the previous

subsection. X total
i and σ2

i
total

denote the total asset price respectively total volatility. Then
for y, z = syst, idio and total I calculate the componentwise leverage effect
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and obtain LEV total,total, LEV syst,total, LEV idio,total, LEV syst,syst, LEV syst,idio, LEV idio,syst

and LEV idio,idio. For the componentwise leverage effect I use the implied volatility data, the
four continuous statistical asset factors and the largest volatility factor.

Figure 2.1 depicts the sorted results for 2012. The other years are in Appendix B.1.5 in
Figures B.6 to B.15. There are three main findings:

1. LEV total,total, LEV syst,total and LEV syst,syst yield the highest values and are similar to
each other.

2. LEV idio,total and LEV idio,syst take intermediate values and are also very similar to each
other.

3. LEV syst,idio and LEV idio,idio are on average zero and very close to each other.

In conclusion it seems that the largest leverage effect is due to the systematic asset price
and systematic volatility part. Without the systematic market volatility factor the leverage
effect basically disappears. One interpretation of this finding is that the main contributor to
the leverage effect is non-diversifiable risk. This finding lends support to the risk-premium
explanation of the leverage effect and is a counterargument for the financial leverage story.

The strongest result is the very small correlation of idiosyncratic volatility with any part
of the return. In the years from 2007 to 2012 the correlation of the systematic return with
the total volatility is much larger than the correlation of the idiosyncratic return with the
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total volatility. This particular pattern becomes weaker for 2003 to 2012. The results are
robust to different variations of the leverage effect estimation. In Figure 2.6 and Figures B.16
to B.25 I calculate the componentwise leverage effect based on implied and high-frequency
volatilities. As expected the high-frequency estimator underestimates the leverage effect,
but the pattern is exactly the same and hence robust to the estimation methodology.

0 100 200 300 400 500 600
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Componentwise leverage effect

 

 
LEV(total,total)
LEV(syst,total)
LEV(idio,total)
LEV(total,total) (HF)
LEV(syst,total) (HF)
LEV(idio,total) (HF)

Figure 2.6: Componentwise leverage effect in 2012 based on implied and high-frequency
volatilities. 4 continuous asset factors.

For the implied-volatility based leverage estimator I calculate the correlation between
the daily accumulated continuous log price increments and the increments of daily implied
volatilities. Figure 2.7 and Figures B.36 to B.45 depict the componentwise leverage effect if
we replace the accumulated continuous increments by daily CRSP returns. The results are
essentially the same. In Figure 2.8 and Figures B.46 to B.55 I replace the four statistical
factors based on continuous loadings applied to daily CRSP excess returns by the 4 Fama-
French-Carhart factors. The pattern in the systematic and idiosyncratic leverage effect are
not affected. This seems surprising at first as factors based on the continuous loadings are
different from the Fama-French-Carhart factors except for the market factor. I can show
that the leverage effect results are mainly driven by the market factor. If we replaced the
four factors in our analysis by merely the market factor, the observed pattern would be very
similar.
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Figure 2.7: Componentwise leverage ef-
fect in 2012 with daily continuous log
price increments LEV (cont) and daily re-
turns LEV (day) and 4 asset factors.
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Figure 2.8: Componentwise leverage ef-
fect in 2012 with 4 continuous factors
LEV (stat) or 4 Fama-French-Carhart
factors LEV (FFC).

2.6 Conclusion

This paper studies factor models in the new setting of a large cross section and many high-
frequency observations under a fixed time horizon. In an extensive empirical study I can
show that the continuous factor structure is highly persistent. For the time period 2007 to
2012 I estimate four continuous factors which can be approximated very well by a market, oil,
finance and electricity factor. The value, size and momentum factors play no significant role
in explaining these factors. From 2003 to 2006 one continuous systematic factor disappears.
There seems to exist only one persistent jump factor, namely a market jump factor. Using
implied volatilities from option price data, I analyze the systematic factor structure of the
volatilities. There seems to be only one persistent market volatility factor, while during
the financial crisis an additional temporary banking volatility factor appears. Based on the
estimated factors, I can decompose the leverage effect, i.e. the correlation of the asset return
with its volatility, into a systematic and an idiosyncratic component. The negative leverage
effect is mainly driven by the systematic component, while the idiosyncratic component can
be positively correlated with the volatility.

Arbitrage pricing theory links risk premiums to systematic risk. In future projects I
want to analyze the ability of the high-frequency factors to price the cross-section of returns.
Furthermore I would like to explore the possibility to use even higher sampling frequencies
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by developing a microstructure noise robust estimation method.
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Chapter 3

No Predictable Jumps in
Arbitrage-Free Markets

3.1 Introduction

Semimartingales are the most general processes for which a stochastic integral can be defined.
Thus, semimartingales are the most general stochastic processes used in asset-pricing models.

If an arbitrage existed in an asset-pricing model, then a trader would exploit it, and
as a result the asset price process would change. Hence, all sensible asset-pricing models
assume the absence of arbitrage. Ansel and Stricker (1991) show that a suitable formulation
of absence of arbitrage implies that security gains must be special semimartingales, i.e.
semimartingales that have finite conditional means.

Since the absence of arbitrage effectively implies that asset price processes are special
semimartingales, there is no substantive loss of generality in restricting asset-pricing models
to be special semimartingales. Indeed, Back (1990) and Schweizer (1992) model asset prices
as special semimartingales. They derive a formula for the local risk premium of an asset
which is proportional to its covariance with the state price density process.

A stochastic process is predictable if it is measurable with respect to the σ-field generated
by the left-continuous, adapted processes. Intuitively, the realization of a predictable jump
is known just before it happens. Both Back (1990) and Schweizer (1992) implicitly allow for
asset prices to exhibit predictable jumps. In particular, the predictable finite variation part
of the asset price process, which is usually called the “drift” term, can have discontinuities.

Empirically, it is not possible to distinguish a predictable jump from a non-predictable
jump. However, these two jumps have different properties which can have a huge effect
on econometric estimators. Hence, the econometrics literature for models with disconti-
nuities generally excludes predictable jumps from the asset price processes. For example
Barndorff-Nielsen and Shephard (2004b) have shown, under the assumption that there are
no predictable jumps, that the realized power variation and its extension the realized bipower
variation can be used to separately estimate the integrated volatility of the continuous and
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the jump component of a certain class of stochastic processes. Similarly, Barndorff-Nielsen
and Shephard (2004a), Barndorff-Nielsen and Shephard (2006) and Aı̈t-Sahalia and Jacod
(2009), all assume, directly or indirectly (i.e. as a consequence of other assumptions) the
absence of predictable jumps. In particular, all these financial econometrics papers assume
that the “drift” term has to be continuous, which in the case of a special semimartingale is
equivalent to the absence of predictable jumps.

In this chapter, we show that a suitable formulation of the absence of arbitrage implies
that asset prices, in addition to being special semimartingales, do not have predictable jumps.
Just as Ansel and Stricker (1991) show that there is no substantive economic loss of generality
in restricting asset prices to special semimartingales, our finding shows that there is no
substantive economic loss of generality in restricting asset prices to special semimartingales
without predictable jumps. In particular, the absence of arbitrage implies that the drift term
of an asset price process has to be continuous, so that assumption in the empirical finance
literature involves no substantive loss of generality.

The idea of the proof is based on two facts. First, a local martingale does not have
any predictable jumps. Hence, in particular we need only to show that the predictable finite
variation part of the asset price process cannot have predictable jumps. Second, the existence
of an equivalent martingale measure puts restrictions on the predictable finite variation
part. We obtain a CAPM like representation, where the predictable finite variation part is
proportional to the “covariance” between the state price density and the local martingale
part of the asset price. As these both processes are also local martingales, they cannot have
predictable jumps, which in turn implies that the predictable finite variation part cannot
have any jumps at all.

3.2 The Model

We have essentially the same model as in Back (1990) and Schweizer (1992). We refer to
those papers for the underlying motivation and to Kallenberg (1997) for the probabilistic
concepts. Assume a probability space (Ω,F,P), satisfying the usual conditions, is given.
The discounted gains process is denoted by X(t). We could start by modeling an asset
price process, dividend process and discount-rate process individually, but we do not lose
generality by directly starting with X(t). Under the real-world measure P the discounted
gains process X(t) is assumed to be a special semimartingale

X(t) = X0 + A(t) +MP(t)

where A(t) is the predictable finite variation part and MP(t) is a local martingale. The
predictable σ-field is the σ-field generated by the left-continuous, adapted processes. We
say that the stochastic process A(t) is predictable, if it is measurable with respect to the
predictable σ-field. In particular, if A(t) has a predictable discontinuity, it is known right
before it happens. The decomposition of a special semimartingale into a predictable finite
variation part and a local martingale is unique. In a general semimartingale, A(t) is not
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assumed to be unique. It is the predictability of A(t) that implies the uniqueness of the
decomposition of a semimartingale.

For example consider

X(t) = a(t) +B(t) +

N(t)∑
i=1

Yi

where B(t) is a Brownian motion,
∑N(t)

i=1 Yi a compound Poisson process independent of B
and a(t) is a predictable finite variation process. The Poisson process N(t) has intensity

λ and the jump sizes Yi are i.i.d. with E[Y ] = κ < ∞. As
∑N(t)

i=1 Yi is of finite variation,
X(t) is a semimartingale with B(t) being the local martingale part. The unique special
semimartingale representation takes the form:

X(t) = B(t) +

(
N∑
i=1

(t)Yi − tλκ

)
︸ ︷︷ ︸

MP(t)

+ tλκ+ a(t)︸ ︷︷ ︸
A(t)

The compensated jump process is now part of the local martingale, while the compensator of
the jump process plus a(t) form the predictable finite variation process. The only assumption
that we have made about a(t) is that it is a predictable finite variation process. In particular,
a(t) could be a discontinuous process, i.e. it could have predictable jumps. The main
contribution of this paper is to show that the predictable process a(t) has to be continuous
in arbitrage-free markets.

Following Back’s (1990) heuristic, the predictable finite variation part corresponds to the
the conditional mean:

Et [dX(t)] = Et [dA(t)] + Et
[
dMP] = dA(t)

as the differential of the predictable finite variation part is known just before t. Of course,
this is just an heuristic as any rigorous statement would involve stochastic integrals.

As it is well-known the existence of an equivalent martingale measure is essentially equiv-
alent to the absence of arbitrage opportunities. “Essentially” means that this statement
depends on the precise definition of arbitrage opportunities; see Kreps (1981) and Stricker
(1990) for a discussion. An equivalent martingale measure Q for X is a probability measure
that is equivalent to P (i.e. P and Q have the same null sets) and has the property that X is a
martingale with respect to Q. The equivalence implies the existence of the Radon-Nikodym
derivative ZT = dQ

dP , which defines a strictly positive martingale Z with Z0 = 1:

Zt = EP [ZT |Ft] =
dQ
dP
|Ft

The martingale property of X under Q is equivalent to the statement that XZ is a P−mar-
tingale. A more general concept is a martingale density (introduced by Schweizer (1992)):
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Definition 3.1. A local P-martingale Z with Z0 = 1 is called a martingale density for X
if the process XZ is a local P-martingale. Z is called a strict martingale density, if, in
addition, Z is strictly positive.

All the results that we can derive for a martingale density will of course hold for an
equivalent martingale measure.1

A key concept in working with semimartingales are the predictable covariation process
〈., .〉 and the covariation process [., .]. The conditional covariation process can be interpreted
as a conditional covariance. If M1 and N2 are two local martingales such that the product
MN is a special semimartingale, then the conditional covariation process 〈M,N〉 is the
predictable finite variation part in the canonical decomposition of MN . If X1 = A1 + M1

and X2 = A2 + M2 are special semimartingales, and if X1X2 is a special semimartingale,
then 〈X1, X2〉 is defined as

〈X1, X2〉(t) = 〈M1,M2〉(t) +
∑

0≤s≤t

∆X1(s)∆X2(s)

The jumps are denoted by ∆X(s) = X(s)−X(s−) 6= 0. The jumps in the above represen-
tation are predictable and we will show in the following that the existence of an equivalent
martingale measure implies that such jumps cannot occur. The conditional quadratic co-
variation should not be confused with the quadratic covariation process [., .]. 〈., .〉 is the
P-compensator of [., .]. If M1 and M2 are semimartingales the quadratic covariation process
is defined by

[M1,M2] = M1M2 −
∫
M1(t−)dM2(t)−

∫
M2(t−)dM1(t)

We use the following result from Kallenberg (1997):

Proposition 3.1. A local martingale is predictable iff it is a.s. continuous.

We conclude, that a predictable local martingale cannot have any jumps:

Corollary 3.1. A local martingale does not have predictable jumps.

As we will refer several times to Yoerup’s lemma (Dellacherie and Meyer (1982), VII.36),
we state it here for convenience:

Lemma 3.1. Let M be a local martingale and A a predictable process of finite variation.
Then the quadratic variation process [M,A] is a local martingale.

We can now state our main theorem:

1The martingale density assumption is weaker than the assumption about an equivalent martingale
measure, as XZ does not need to be a real martingale. Hence for a martingale density, Q is in general only
a sub-probability, i.e. Q(Ω) ≤ 1.
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Theorem 3.1. Let Z be a strict martingale density for X. If XZ is a special semimartingale,
then X cannot have predictable jumps.

Proof. By Yoerup’s lemma, [Z,A] is a local P-martingale. Hence, ZA is a special semi-
martingale:

d(ZA) = Z−dA+ A−dZ + d[Z,A]

As ZX is a special semimartingale, ZMP is one as well and thus 〈Z,MP〉 exists. Next, we
apply the product rule to XZ:

d(XZ) = X−dZ + Z−dX + [Z,X]

= X−dZ + Z−dM
P + Z−dA+ d[Z,A] + d[Z,MP]− d〈Z,MP〉+ d〈Z,MP〉

= local P-martingale + Z−dA+ d〈Z,MP〉

In the last line we have used Yoerup’s lemma again. But as XZ is a local martingale by
assumption, the two last terms, which are predictable and of finite variation, must vanish.
Hence, we conclude

dA = − 1

Z−
d〈Z,MP〉.

Hence, for all predictable jumps ∆ in A(t) one must have

∆A(t) = ∆

(
− 1

Z(t−)
d〈Z(t),MP(t)〉

)
=

∆Z(t)

Z(t−)
∆MP(t)

As Z and MP are local P-martingales, they cannot have any predictable jumps, and thus
neither can A. In conclusion, X cannot have any predictable jumps.

Corollary 3.2. Assume that X = X0 + A+MP is a special semimartingale and that there
exists an equivalent martingale measure Q for X with respect to P, which is defined by the
Radon-Nikodym derivative Z. Assume that both X and Z are locally square-integrable. Then
X cannot have any predictable jumps.

Proof. The local square-integrability ensures that 〈MP, Z〉 is well-defined. By definition
dMPZ − d〈MP, Z〉 is a local martingale. Hence, MPZ is a special semimartingale with
decomposition (dMPZ − d〈MP, Z〉) + d〈MP, Z〉. As AZ is a special semimartingale, we
conclude that XZ is a special semimartingale. If Z defines an equivalent martingale measure,
it is also a strict martingale density and hence we can apply Theorem 1.
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3.3 Conclusion

We model asset prices in the most general sensible form as special semimartingales. This ap-
proach allows us to also include jumps in the asset price process. We show that the existence
of an equivalent martingale measure, which is essentially equivalent to no-arbitrage, implies
that the asset prices cannot exhibit predictable jumps. Hence, in arbitrage-free markets the
occurrence and the size of any jump of the asset price cannot be known before it happens.
In practical applications it is basically not possible to distinguish between predictable and
unpredictable discontinuities in the price process. The empirical literature has typically as-
sumed as an identification condition that there are no predictable jumps. Our result shows
that this identification condition follows from the existence of an equivalent martingale mea-
sure, and hence essentially comes for free in arbitrage-free markets.
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Chapter 4

Contingent Capital, Tail Risk, and
Debt-Induced Collapse

4.1 Introduction

The problem of banks that are too big to fail plays out as an unwillingness on the part of
governments to impose losses on bank creditors for fear of the disruptive consequences to
the financial system and the broader economy. Higher capital requirements and restrictions
on business practices may reduce the likelihood of a bank becoming insolvent, but they do
not commit the regulators, managers or investors to a different course of action conditional
on a bank approaching insolvency.

Contingent capital addresses this problem through a contractual commitment to have
bond holders share some of a bank’s downside risk without triggering failure. Contingent
convertibles (CoCos) and bail-in debt are the two main examples of contingent capital. Both
are debt that converts to equity under adverse conditions. CoCos provide “going concern”
contingent capital, meaning that they are designed to convert well before a bank would
otherwise default. Bail-in debt is “gone-concern” contingent capital and converts when the
bank is no longer viable, wiping out the original shareholders and transferring ownership to
the bailed-in creditors.

These instruments are increasingly important elements of reforms to enhance financial
stability. Prominent examples are major issuances by Lloyds Banking Group, Credit Suisse,
and BBVA. Rabobank, UBS, and Barclays have issued alternative structures in which debt
is automatically written down rather than converted. The Swiss banking regulator has in-
creased capital requirements for Swiss banks to 19% of risk-weighted assets, of which 9% can
take the form of CoCos. The European Commission’s proposed resolution framework relies
on bail-in debt as one of its primary tools. In the U.S., bail-in is central to the implemen-
tation of the FDIC’s authority to resolve large complex financial institutions granted by the
Dodd-Frank act.

The logic of contingent capital is compelling. Raising new equity from private investors
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is particularly difficult for a bank nearing financial distress, which strengthens arguments
for government support once a crisis hits; contingent capital solves this problem by com-
mitting creditors to provide equity through conversion of their claims. Nevertheless, the
relative complexity of these instruments has raised some questions about whether they can
be designed to function as expected and whether they might have unintended consequences.

The goal of this chapter is to analyze the design of contingent capital and to investigate
the incentives these instruments create for shareholders. This work makes several contri-
butions. First, our analysis reveals a new phenomenon we call debt-induced collapse. With
CoCos on its balance sheet, a firm operates in one of two regimes: one in which the CoCos
function as intended or another in which the equity holders optimally declare bankruptcy
before conversion, effectively reducing the CoCos to straight debt. A transition from the
first regime to the second is precipitated by an increase in the firm’s debt load, and its con-
sequences include a sharp increase in the firm’s default probability and a drop in the value
of its equity. This is the sense in which debt induces a collapse. We show that this hazard
is avoided by setting the trigger for conversion at a sufficiently high level.

Once debt-induced collapse is precluded, we can investigate the incentive effects of CoCos
— effects that would be lost in the alternative regime in which CoCos degenerate to straight
debt. We investigate how the value of equity responds to various changes in capital structure
and find, perhaps surprisingly, that equity holders often have a positive incentive to issue
CoCos. We also find that CoCos can be effective in mitigating the problem of debt overhang
— the reluctance of equity holders to inject additional capital into an ailing firm when most
of the resulting increase in firm value is captured by debt holders. CoCos can create a
strong positive incentive for shareholders to invest additional equity to stave off conversion.
We also examine how CoCos affect the sensitivity of equity value to the riskiness of the
firm’s assets. This sensitivity is always positive in simple models, creating an incentive for
asset substitution by shareholders once they have issued debt. We will see that this is not
necessarily the case in a richer setting in which new debt is issued as old debt matures.

We develop our analysis in a structural model of the type introduced in Leland (1994)
and Leland and Toft (1996), as extended by Chen and Kou (2009) to include jumps. The
key state variable is the value of the firm’s underlying assets, and equity and debt values are
derived as functions of this state variable. CoCo conversion is triggered by a function of this
state variable, such as a capital ratio. The model has three particularly important features.
First, default is endogeneous and results from the optimal behavior of equity holders. This
feature is essential to the analysis of incentive effects and to the emergence of the two default
regimes described above. Second, the firm’s debt has finite maturity and must be rolled over
as it matures. This, too, is crucial in capturing incentive effects. In a classical single-period
model of the type in Merton (1974), all the benefits of reducing default risk accrue to bond
holders — equity holders always prefer riskier assets and are always deterred from further
investment by the problem of debt overhang. But in a model with debt rollover, reducing
default risk allows the firm to issue debt at a higher market price, and part of this increase in
firm value is captured by equity holders, changing their incentives. This feature also allows
us to investigate how debt maturity interacts with the efficacy of CoCos. Finally, jumps are
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also essential to understanding incentive effects. Downward jumps generate a higher asset
yield (in the form of an increase in the risk-neutral drift) but expose the firm to tail risk.
CoCos can increase equity holders’ incentive to take on tail risk because equity holders would
prefer a dilutive conversion at a low asset value over one at a high asset value. For the same
reason, CoCos are more effective in mitigating debt overhang when asset value is subject to
downward jumps.

After demonstrating these implications through a mix of theoretical and numerical re-
sults, we calibrate the model to data on the largest U.S. bank holding companies for the
period 2004–2011. Some of the comparative statics in our numerical examples depend on
parameter values, so the purpose of the calibration is to investigate the model’s implications
at parameter values representative of the large financial institutions that would be the main
candidates for CoCo issuance. We calculate the model-implied increase in loss absorption
that would have resulted from replacing 10% of each firm’s debt with CoCos, estimate which
firm’s would have triggered conversion and when, and compare the impact on debt overhang
costs at three dates during the financial crisis. Overall, this counterfactual exploration sug-
gests that CoCos would have had a beneficial effect, had they been issued in advance of the
crisis.

Albul, Jaffee, and Tchistyi (2010) also develop a structural model for the analysis of
contingent capital; their model has neither jumps nor debt rollover (they consider only
infinite maturity debt), and their analysis and conclusions are quite different from ours.
Pennacchi’s (2010) model includes jumps and instantaneous maturity debt; he studies the
model through simulation, taking default as exogenous, and thus does not investigate the
structure of shareholders’ optimal default. Hilscher and Raviv (2011), Himmelberg and
Tsyplakov (2012), and Koziol and Lawrenz (2012) investigate other aspects of contingent
capital in rather different models. Glasserman and Nouri (2012) jointly model capital ratios
based on accounting and asset values; they value debt that converts progressively, rather
than all at once, as a capital ratio deteriorates. None of the previous literature combines
the key features of our analysis — endogenous default, debt rollover, jumps, and analytical
tractability — nor does previous work identify the phenomenon of debt-induced collapse.

Much of the current interest in contingent capital stems from Flannery (2005). Flan-
nery(2005) proposed reverse convertible debentures (called contingent capital certificates in
Flannery (2009)) that would convert from debt to equity based on a bank’s stock price rather
than an accounting measure. Sundaresan and Wang (2014b) raise conceptual concerns about
market-based triggers. Several authors have proposed various alternative security designs;
these include Bolton and Samama (2012), Calomiris and Herring (2011), Duffie (2010),
Madan and Schoutens (2010), McDonald (2013), Pennacchi, Vermaelen, and Wolf (2010),
and Squam Lake Working Group (2009); see Pazarbasioglu et al. (2011) for an overview.

The rest of this chapter is organized as follows. Section 4.2 details the structural model
and derives values for the firm’s liabilities. Section 4.3 characterizes the endogenous default
barrier and includes our main theoretical results describing debt-induced collapse. Sec-
tions 4.4–4.6 investigate the impact of debt rollover and incentive effects on debt overhang
and asset substitution. Section 4.7 presents the calibration to bank data. Technical details
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are deferred to an appendix.

4.2 The Model

4.2.1 Firm Asset Value

Much as in Leland (1994), Leland and Toft (1996), and Goldstein, Ju, and Leland (2001),
consider a firm generating cash through its investments and operations continuously at rate
{δt, t ≥ 0}. This income flow is exposed to both diffusive and jump risk, with dynamics
given by

dδt
δt−

= µ̃dt+ σ̃dW̃t + d

 Ñt∑
i=1

(Ỹi − 1)

 . (4.1)

Here, µ̃ and σ̃ are constants, {W̃t, t ≥ 0} is a standard Brownian motion, and we write
δt− to indicate the value of δ just prior to a possible jump at time t. Jumps are driven
by a Poisson process {Ñt, t ≥ 0} with intensity λ̃. The jump sizes {Ỹi, i = 1, 2, . . . }, Ñ ,
and W̃ are all independent of each other. Since we are mainly concerned with the impact
of downside shocks to the firm’s business, we assume that the Ỹi are all less than 1. The
common distribution of the Ỹi is set by positing Z̃ := − log(Ỹ ), for tractability, to have an
exponential distribution, fZ̃(z) = η̃ exp(−η̃z), z ≥ 0, for some η̃ > 0. We assume a constant
risk-free interest rate r.

In a rational expectations framework with a representative agent having HARA utility,
the equilibrium price of any claim on the future income of the firm can be shown to be the
expectation of the discounted payoff of the claim under a “risk-neutral” probability measure
Q; see Naik and Lee (1990) and Kou (2002) for justification of this assertion in the jump-
diffusion setting. The value of the firm’s assets is the present value of the future cash flows
they generate,

Vt = EQ
[∫ ∞

t

e−r(u−t)δudu
∣∣∣δt] ,

for all t ≥ 0. Following Naik and Lee (1990) and Kou (2002) we can easily establish that
δ := Vt/δt is a constant and Vt evolves as a jump-diffusion process

dVt
Vt−

=

(
r − δ +

λ

1 + η

)
dt+ σ dWt + d

(
Nt∑
i=1

(Yi − 1)

)
, (4.2)

Under Q, {Wt} in (4.2) is a standard Brownian motion and {Nt} is a Poisson processes with
intensity λ. The distribution of the jump size Yi has the same form as before, but now with
parameter η. Kou (2002) gives explicit expressions for the parameters in (4.2) in terms of
the parameters in (4.1). We will value pieces of the firm’s capital structure as contingent
claims on the asset value process V , taking expectations under Q and using the dynamics in
(4.2).
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4.2.2 The Capital Structure and Endogenous Default

The firm finances its assets through straight debt, contingent convertible debt (CoCos), and
equity. We detail these in order of seniority.

Straight Debt

We use the approach of Leland and Toft (1996) to model the firm’s senior debt. The firm
continuously issues straight debt with par value p1dt in (t, t + dt). The maturity of newly
issued debt is exponentially distributed with mean 1/m; that is, a portion m exp(−ms)ds of
the total amount p1dt matures during the time interval (t+s, t+s+ds), for each s ≥ 0. The
debt pays a continuous coupon at rate c1 per unit of par value. In the case of bank deposits
with no stated term, the maturity profile reflects the distribution of time until depositors
withdraw their funds.

The exponential maturity profile and the constant issuance rate keep the total par value
of debt outstanding constant at

P1 =

∫ ∞
t

(∫ t

−∞
p1me

−m(s−u) du

)
ds =

p1

m
.

Thus, the firm continuously settles and reissues debt at a fixed rate.1 This debt rollover will
be important to our analysis through its effect on incentives for equity holders.

Tax deductibility of coupon payments lowers the cost of debt service to the firm. Bank
deposits have special features that can generate additional funding benefits.2 Deposit in-
surance creates a funding benefit if the premium charged includes an implicit government
subsidy. Customers value the safety and ready availability of bank deposits and are willing
to pay (or accept a lower interest rate) for this convenience. DeAngelo and Stulz (2013) and
Sundaresan and Wang (2014a) model this effect as a liquidity spread that lowers the net
cost of deposits to the bank. In Allen, Carletti, and Marquez (2013), the funding benefit of
deposits results from market segmentation. We model these funding benefits by introducing
a factor κ1, 0 ≤ κ1 < 1, such that the net cost of coupon payments is (1 − κ1)c1P1. In the
special case of tax benefits, κ1 would be the firm’s marginal tax rate.

Contingent Convertibles

We use the same basic framework to model the issuance and maturity of CoCos as we use
for straight debt. In both cases, we would retain tractability if we replaced the assumption
of an exponential maturity profile with consols, but we would then lose the effect of debt

1Diamond and He (2014, p.750) find this mechanism well suited to modeling banks. One alternative
would be to have a bank shrink its balance sheet after a negative shock to assets. As stressed by Hanson,
Kashyap, and Stein (2011), this would run counter to the macroprudential objective of maintaining the
supply of credit in an economic downturn, which, as they further note, is one of the objectives of contingent
capital.

2See Appendix C.1 for a discussion of the application of Leland (1994) and its extensions to banks.
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rollover. We denote by P2 the par value of CoCos outstanding, which remains constant
prior to conversion or default and pays a continuous coupon at rate c2. The mean maturity
is assumed to be the same as for the straight debt, 1/m, and new debt is issued at rate
p2 = mP2. It is straightforward to generalize the model to different maturities for CoCos
and straight debt, and we use different maturity levels in our numerical examples later in the
paper. As in the case of straight debt, we introduce a factor κ2 that captures any funding
benefit of CoCos. The tax treatment of CoCo coupons varies internationally.

Conversion of CoCos from debt to equity is triggered when a function of the state variable
Vt reaches a threshold. As long as the function is invertible, we can model this as conversion
the first time Vt itself falls below an exogenously specified threshold Vc. Thus, conversion
occurs at

τc = inf{t ≥ 0 : Vt ≤ Vc}. (4.3)

In particular, we can implement a capital ratio trigger by having CoCos convert the first
time

(Vt − P1 − P2)/Vt ≤ ρ,

with ρ ∈ (0, 1) equal to, say, 5%. The numerator on the left is an accounting measure of
equity, and dividing by asset value yields a capital ratio.3 To put this in the form of (4.3),
we set

Vc = (P1 + P2)/(1− ρ). (4.4)

Another choice that fits within our framework would be to base conversion on the level of
earnings δVt, as in Koziol and Lawrenz (2012). For the derivations in this section we will
keep the value of Vc general, except to assume that V0 > Vc so that conversion does not occur
at time zero.

At the instant of conversion, the CoCo liability is erased and CoCo investors receive
∆ shares of the firm’s equity for every dollar of principal, for a total of ∆P2 shares. We
normalize the number of shares to 1 prior to conversion. Thus, following conversion, the
CoCo investors own a fraction ∆P2/(1 + ∆P2) of the firm. In the bail-in case, ∆ = ∞, so
the original shareholders are wiped out and the converted investors take control of the firm.4

Endogenous Default

The firm has two types of cash inflows and two types of cash outflows. The inflows are the
income stream δtdt = δVtdt and the proceeds from new bond issuance btdt, where bt is the
total market value of bonds issued at time t. The cash outflows are the net coupon payments

3This approximates a tangible common equity ratio. If CoCos are treated as Tier 1 capital, we could
define a trigger based on a Tier 1 capital ratio through the condition (Vt−P1)/Vt ≤ ρ and thus Vc = P1/(1−ρ).

4We do not distinguish between contractual and statutory conversion. Under the former, conversion is
an explicit contractual feature of the debt. The statutory case refers to conversion imposed on otherwise
standard debt at the discretion of a regulator granted explicit legal authority to force such a conversion.
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and the principal due (p1 + p2)dt on maturing debt.5 The net coupon payments, factoring in
tax deductibility and any other funding benefits, are given by At = (1−κ1)c1P1+(1−κ2)c2P2.

Let p̄ denote the total rate of issuance (and retirement) of par value of debt, just as bt
denotes the total rate of issuance measured at market value. We have p̄ = p1 + p2 prior to
conversion of any CoCos and p̄ = p1 after conversion. Whenever

bt + δVt > At + p̄, (4.5)

the firm has a net inflow of cash, which is distributed to equity holders as a dividend flow.
When the inequality is reversed, the firm faces a cash shortfall. The equity holders then
face a choice between making further investments in the firm — in which case they invest
just enough to make up the shortfall — or abandoning the firm and declaring bankruptcy.
Bankruptcy then occurs at the first time the asset level is at or below V ∗b , with V ∗b chosen
optimally by the equity holders. In fact, it would be more accurate to say that V ∗b is
determined simultaneously with bt, because the market value of debt depends on the timing
of default, just as the firm’s ability to raise cash through new debt influences the timing of
default.

The equity holders choose a bankruptcy policy to maximize the value of equity. To
be feasible, a policy must be consistent with limited liability, meaning that it ensures that
equity value remains positive prior to default. This formulation is standard and follows
Leland (1994) and Leland and Toft (1996) and, in the jump-diffusion case, Chen and Kou
(2009).

However, the presence of CoCos creates a distinctive new feature, driven by whether
default occurs before or after conversion. Depending on the parameters of the model, the
equity holders may find either choice to be optimal. If they choose to default before conver-
sion, then the CoCos effectively degenerate to junior straight debt. Importantly, we will see
that positive incentive effects from CoCo issuance are lost in this case. Indeed, the behavior
of the model and, in particular, the value of equity, are discontinuous as we move from a
regime in which conversion precedes default to a regime in which the order is reversed. We
will see that this change can result from an increase in debt — either straight debt or CoCos
— so we refer to this phenomenon as debt-induced collapse.

Upon default, we assume that a fraction (1 − α), 0 ≤ α ≤ 1, of the firm’s asset value is
lost to bankruptcy and liquidation costs. Letting τb denote the time at which bankruptcy
is declared and Vτb the value of the firm’s assets at that moment leaves the firm with αVτb
after bankruptcy costs. These remaining assets are used first to repay creditors. If default
occurs after conversion, only the straight debt remains at bankruptcy. If default occurs
before conversion, the CoCos degenerate to junior debt and are repaid from any assets that
remain after the senior debt is repaid.

5Our discussion of cash flows is informal and used to provide additional insight into the model. For a
rigorous formulation of the Leland-Toft model through cash flows, see Décamps and Villeneuve (2014).
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4.2.3 Liability Valuation

Our model yields closed-form expressions for the values of the firm’s liabilities. We proceed
by taking the level of the default boundary Vb as given and valuing each layer of the capital
structure. We then derive the optimal level V ∗b , leading to the concept of debt-induced
collapse.

We begin by limiting attention to the case Vb ≤ Vc, which ensures that the firm does not
default before conversion.6 With Vb fixed, the default time τb is the first time the asset value
Vt is at or below Vb. To value a unit of straight debt at time t that matures at time t + T ,
we discount the coupon stream earned over the interval [t, (t + T ) ∧ τb] and the (partial)
principal received at (t+ T ) ∧ τb to get a market value of

b(Vt;T ;Vb) = EQ
[
e−rT1{τb>T+t}|Vt

]
(principal payment if no default)

+EQ
[
e−rτb1{τb≤T+t} ·

αVτb
P1

∣∣∣Vt] (payment at default)

+EQ

[∫ τb∧(T+t)

0

c1e
−r(u−t)du

∣∣∣Vt] . (coupon payments) (4.6)

To simplify notation, we will henceforth take t = 0 and omit the conditional expectation
given Vt, though it should be understood that the value of each liability is a function of the
current value V of the firm’s assets.

Recall that the debt maturity T is exponentially distributed with density m exp(−mT ),
and the total par value is P1. The total market value of straight debt outstanding is then

B(V ;Vb) = P1

∫ ∞
0

b(Vt;T ;Vb)me
−mTdT

= P1

(
m+ c1

m+ r

)
EQ
[
1− e−(m+r)τb

]
+ EQ

[
e−(m+r)τbαVτb

]
. (4.7)

The market value of a CoCo combines the value of its coupons, its principal, and its
potential conversion to equity. To distinguish the equity value the CoCo investors receive
after conversion from equity value before conversion or without the possibility of conversion,
we adopt the following notation:

• EBC denotes equity value before conversion for the original firm, one with P1 in straight
debt and P2 in CoCos;

• EPC denotes post-conversion equity value and thus refers to a firm with P1 in straight
debt and no CoCos;

6In a model with jumps, the default time τb and conversion time τc may coincide, even if Vb < Vc. We
adopt the convention that events occur in the order implied by the barrier levels, so in this case the CoCos
would be treated as having converted when the firm’s assets are liquidated in bankruptcy. For the case
Vb = Vc, context determines the assumed order of events as follows: when we discuss Vb ≤ Vc, we mean that
conversion precedes bankruptcy, and when we discuss Vb ≥ Vc we mean the opposite.
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• ENC denotes no-conversion equity value, which refers to a firm with P1 in straight debt
and P2 in non-convertible junior debt.

Each of these is a function of the current asset value V and a default barrier Vb. We will use
the same superscripts to differentiate total firm value and other quantities as needed.

With this convention, a CoCo with maturity T and unit face value has market value

d(V ;T ;Vb) = EQ
[
e−rT1{τc>T}

]
+ EQ

[∫ T∧τc

0

c2e
−rsds

]
+

∆

1 + ∆P2

EQ
[
e−rτcEPC(Vτc ;Vb)1{τc<T}

]
. (conversion value)

In writing EPC(Vτc ;Vb), we are taking the value of post-conversion equity when the underlying
asset value is at Vτc and the default barrier remains at Vb. At conversion, the CoCo investors
collectively receive ∆P2 shares of equity, giving them a fraction ∆P2/(1 + ∆P2) of the firm;
dividing this by P2 yields the amount that goes to a CoCo with a face value of 1. The total
market value of CoCos outstanding is then

D(V ;Vb) = P2

∫ ∞
0

d(V ;T ;Vb)me
−mTdT

= P2

(
c2 +m

m+ r

)(
1− EQ

[
e−(r+m)τc

])
+

∆P2

1 + ∆P2

EQ
[
e−(r+m)τcEPC(Vτc ;Vb)

]
. (4.8)

To complete the calculation in (4.8), it remains to determine the post-conversion equity
value EPC(Vτc ;Vb). We derive this value by calculating total firm value and subtracting the
value of debt. After conversion, the firm has only one class of debt, so

EPC(Vτc ;Vb) = F PC(Vτc ;Vb)−B(Vτc ;Vb), (4.9)

where F PC(Vτc ;Vb) is the total firm value after conversion:

F PC(Vτc ;Vb) = Vτc︸︷︷︸
unleveraged firm value

+EQ
[∫ τb

τc

κ1c1P1e
−rsds|Vτc

]
︸ ︷︷ ︸

funding benefits

−EQ
[
e−r(τb−τc)(1− α)Vτb|Vτc

]︸ ︷︷ ︸
bankruptcy costs

= Vτc +
κ1c1P1

r

(
1− EQ

[
e−r(τb−τc)|Vτc

])
− EQ

[
e−r(τb−τc)(1− α)Vτb|Vτc

]
=: Vτc + FB1 −BCOST.

The conversion of the CoCos does not affect the value of the senior debt, so the valuation
expression in (4.7) applies to B(Vτc ;Vb) in (4.9).

To find the value of equity before conversion, we again derive the total firm value and
subtract the debt value. We continue to limit attention to the case Vb ≤ Vc. Any funding
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benefit from CoCos terminates at the conversion time τc. So, the firm value before conversion
is

FBC(V ;Vb) = V +
κ1c1P1

r

(
1− EQ

[
e−rτb

])︸ ︷︷ ︸
funding benefits from straight debt

+
κ2c2P2

r

(
1− EQ

[
e−rτc

])︸ ︷︷ ︸
funding benefits from CoCos

−EQ
[
e−rτb(1− α)Vτb

]
(4.10)

=: V + FB1 + FB2 −BCOST.

The market value of the firm’s equity is given by

EBC(V ;Vb) = FBC(V ;Vb)−B(V ;Vb)−D(V ;Vb). (4.11)

A similar calculation leads to closed-form liability evaluation if conversion does not oc-
cur prior to bankruptcy, i.e., Vb > Vc. In this case, CoCos degenerate to junior debt in
bankruptcy. Upon default, CoCo holders are repaid from whatever assets remain after liqui-
dation and payment of senior debt.7 Before default, the total market value of straight debt
is

B(V ;Vb) = P1

(
m+ c1

m+ r

)
EQ
[
1− e−(m+r)τb

]
+ EQ

[
e−(m+r)τb(αVτb ∧ P1)

]
(4.12)

leaving a CoCo value of

D(V ;Vb) = P2

(
m+ c2

m+ r

)
EQ
[
1− e−(m+r)τb

]
+ EQ

[
e−(m+r)τb(αVτb − P1)+

]
. (4.13)

Total firm value in this case is given by

FBC(V ;Vb) = V +

(
κ1c1P1

r
+
κ2c2P2

r

)(
1− EQ

[
e−rτb

])
− EQ

[
e−rτb(1− α)Vτb

]
.

The only difference between this expression and (4.10) lies in the funding benefit provided
by the CoCo coupon payments, which now terminates at default rather than conversion.
Equity value in the case Vb > Vc now follows from (4.11) using these expressions.

All pieces (4.7)–(4.13) of the capital structure of the firm can be explicitly evaluated
through expressions for the joint transforms of hitting times τb or τc and asset value V given
explicitly by Kou (2002) and Kou and Wang (2003). The appendix contains additional
details.

In (4.7) and (4.13) we have implicitly made a standard assumption that the asset value
recovered in bankruptcy does not exceed the total amount due to bond holders. Indeed,

7One might alternatively suppose that the bankruptcy court or resolution authority would treat the
CoCo investors as shareholders, in which case the last term in (4.13) would be dropped. Our analysis goes
through under either formulation. Because CoCos are ordinarily considered debt instruments, we adopt the
partial recovery assumption in (4.13) to be concrete.
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Chen and Kou (2009) show that this property holds at the endogenous default time chosen
by shareholders. With the addition of CoCos, we make the further assumption that the
conversion ratio satisfies

1/∆ ≥ αVc − P1 − P2. (4.14)

The expression on the left is the price per share applied to the CoCos at conversion; the
expression on the right is the price per share the original equity holders could get by liq-
uidating the firm and paying off all debt at V = Vc. If (4.14) were violated, the original
equity holders might be motivated to liquidate the firm even when it has strictly positive
equity value. Ordinarily, we expect the right side of (4.14) to be negative and the condition
therefore satisfied by any ∆ > 0.

4.2.4 The Bail-In Case

In the bail-in case, conversion of debt to equity occurs when the firm would not otherwise be
viable, rather than at an exogenously specified trigger. We model this by taking Vc = Vb, with
the understanding that conversion occurs just before what would otherwise be bankruptcy.
We set ∆ = ∞ so the original shareholders are wiped out, and the firm is taken over by
the bail-in investors. As bankruptcy is avoided, we assume that no bankruptcy costs are
incurred, so α = 1. Just after conversion, the firm continues to operate, now with just P1 in
debt outstanding.

4.3 Optimal Default and Debt-Induced Collapse

Having valued the firm’s equity at an arbitrary default barrier Vb, we now proceed to derive
the equity holder’s optimal default barrier V ∗b and to investigate its implications.

4.3.1 Endogenous Default Boundary

As in Section 4.2, we denote by EPC(V ;Vb) the post-conversion equity value for a firm with
asset value V and default barrier Vb. After conversion, we are dealing with a conventional
firm, meaning one without CoCos. In such a firm, the equity holders choose the default
barrier Vb to maximize the value of equity subject to the constraint that equity value can
never be negative; that is, they solve

max
Vb

EPC(V ;Vb) (4.15)

subject to the limited liability constraint

EPC(V ′;Vb) ≥ 0, for all V ′ ≥ Vb.

The limited liability constraint ensures that the chosen Vb is feasible. Without this condition,
a choice of Vb that maximizes EPC(V ;Vb) at the current asset level V might entail sustaining
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a negative value of equity at some asset level between Vb and V , which is infeasible. Denote
the solution to this problem by V PC

b .
Before conversion, when the firm’s liabilities include CoCos, equity value is given by

EBC(V ;Vb), and the shareholders would like to choose Vb to maximize this value. If they
choose Vb < Vc, conversion will precede bankruptcy, and following conversion they — and
the new shareholders who were formerly CoCo holders — will face an equity maximization
problem of the type in (4.15). Hence, before conversion the equity holders face a commitment
problem, in the sense that they cannot necessarily commit to holding Vb at the same level
after conversion that they would have chosen before conversion. Anticipating this effect,
they will choose Vb = V PC

b if they choose Vb < Vc. Thus, before conversion, equity holders
will choose Vb to solve

max
Vb

EBC(V ;Vb)

subject to the limited liability constraint

EBC(V ′;Vb) ≥ 0, for all V ′ ≥ Vb

and the commitment condition that Vb = V PC
b if Vb < Vc. Let V ∗b denote the solution to this

problem.
Chen and Kou (2009) have solved the optimal default barrier problem with only straight

debt, and this provides the solution for the post-conversion firm: V PC
b = P1ε1, where ε1

depends on c1, m, κ1 and α but is independent of the capital structure and V . See equation
(C.1) in the appendix for an explicit expression. Recall that ENC(V ;Vb) denotes the value
of equity if the P2 in CoCos is replaced with non-convertible junior debt in the original firm.
Extending Chen and Kou (2009), we can express the optimal default barrier for this firm as
V NC
b = P1ε1 + P2ε2, where ε2 is defined analogously to ε1 using c2 instead of c1; see (C.2).

We always have V PC
b ≤ V NC

b because increasing the amount of non-convertible debt while
holding everything else fixed raises the default barrier. We can now characterize the optimal
default barrier with CoCos.

Theorem 4.1. For a firm with straight debt and with CoCos that convert at Vc, the optimal
default barrier V ∗b has the following property: Either

V ∗b = V PC
b ≤ Vc or V ∗b = V NC

b ≥ Vc. (4.16)

Moreover, V PC
b is optimal whenever it is feasible, meaning that it preserves the limited liability

of equity.

This result reduces the possible default barriers for a firm with CoCos to two candidates,
each of which corresponds to the default barrier for a firm without CoCos. The second case
is a candidate only if, without the conversion feature, it would be optimal to default at an
asset level higher than the trigger Vc. This can occur only if the first case does not yield a
feasible solution.



CHAPTER 4. CONTINGENT CAPITAL, TAIL RISK, AND DEBT-INDUCED
COLLAPSE 92

We will see that a firm can sometimes move from the first case in (4.16) to the second
case by increasing its debt load. The transition is discontinuous, creating a jump up in the
default barrier and a drop in equity value. We refer to this phenomenon as debt-induced
collapse. This phenomenon is not present without CoCos (or with bail-in debt). Moreover,
we will see that the positive incentive effects that result from CoCos under the first case in
(4.16) disappear following the collapse.

To illustrate, we consider an example. The heavy solid line in Figure 4.1 shows equity
value as a function of asset value for the NC firm, in which the CoCos are replaced by junior
debt. The optimal default barrier V NC

b is at 93, and the NC equity value and its derivative are
equal to zero at this point. If the conversion trigger Vc is below 93 (two cases are considered
in the figure), then Vb = V NC

b = 93 is a feasible default level for the original firm because
the resulting equity values are consistent with limited liability. The optimal post-conversion
default barrier is V PC

b = 58. Suppose the conversion trigger is at Vc = 65, and suppose the
original shareholders of the original firm with CoCos attempt to set the default barrier at
Vb = 58. The dashed line shows the resulting equity value. At higher asset values, the dashed
lines is above the solid line, suggesting that equity holders would prefer to set the default
barrier at 58 than at 93. However, the dashed line is not a feasible choice because it creates
negative equity values at lower asset levels; the best the shareholders can do in this case is
to set Vb = 93. If the conversion trigger were at Vc = 75, a default barrier of Vb = V PC

b = 58
would be feasible because the resulting equity values (the dash-dot line) remain positive; in
fact, this choice would then be optimal. If we imagine starting with the conversion trigger at
75 and gradually decreasing it toward 65, at some level of Vc in between the default barrier
jumps up from 58 to 93, and the equity curve collapses down to the heavy solid line showing
the equity curve for the NC firm.

In the bail-in case, the original equity holders are effectively choosing Vc because their
default is a conversion that transfers ownership to the new shareholders. After conversion, the
new shareholders will choose default barrier V PC

b . Before conversion, the original equity value
is given by EBC, evaluated with ∆ =∞. In maximizing the value of their claim, the original
equity holders will choose a level of Vc consistent with limited liability, EBC(V ;V PC

b ) ≥ 0,
for all V ≥ Vc. The value of equity changes continuously with Vc and with the debt levels
P1 and P2 (this can be seen from the expression (C.3) given in the appendix) so there is no
phenomenon of debt-induced collapse.

4.3.2 Constraints on Debt Levels

We now analyze the effect of changing the debt levels P1 and P2 and the limits imposed by
Theorem 5.3. For purposes of illustration, we start with a simple case in which Vc is held
fixed as we vary P1 and P2. This allows us to isolate individual effects of changes in capital
structure.

Theorem 5.3 shows that either of two conditions leads to debt-induced collapse:

• The optimal default barrier for the post-conversion firm is too high: V PC
b > Vc.
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Figure 4.1: Candidate equity value as a function of asset value in three scenarios. The heavy
solid (green) line reflects default at V NC

b = 93, prior to conversion. The other two lines reflect
default at V PC

b = 58 with two different conversion triggers. With Vc = 65, equity becomes
negative so V PC

b is infeasible and default occurs at V NC
b . With Vc = 75, default at V PC

b is
feasible, and it is optimal because it yields higher equity than V NC

b .

• No default barrier lower than Vc is feasible: for any Vb < Vc we can find some V > Vc
such that EBC(V ;Vb) < 0, violating the limited liability of equity.

These two conditions provide guidance in examining when changes in capital structure result
in debt-induced collapse. Theorem 4.2 makes this precise. In the theorem, we establish two
critical amounts P̄1 and P̄2 such that the condition P1 ≤ P̄1 is equivalent to V PC

b ≤ Vc, and,
when this holds, P2 ≤ P̄2 is equivalent to EBC(V ;V PC

b ) ≥ 0 for all V ≥ Vc.

Theorem 4.2. Suppose Vc is fixed. There exist upper bounds on the amount of straight debt
and CoCos above which debt-induced collapse ensues. Formally, there exist P̄1 and P̄2, where
P̄2 depends on P1, such that the following holds:

• If either P1 > P̄1 or P2 > P̄2, then we have debt-induced collapse.

• If 0 ≤ P1 ≤ P̄1 and 0 ≤ P2 ≤ P̄2, then debt-induced collapse does not occur.

The critical levels P̄1 and P̄2 are derived in the appendix.
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We illustrate these debt limits through numerical examples. We fix the parameters in
Table 4.1, which are in line with our calibration results, and vary the average maturity 1/m,
and the amount of straight debt P1.

Parameter Value
initial asset value V0 100
risk free rate r 6%
volatility σ 8%
payout rate δ 1%
funding benefit κ1, κ2 35%
jump intensity λf 0.3
firm specific jump exponent η 4
coupon rates (c1, c2) (r + 3%, r + 3%)
bankruptcy loss (1− α) 50%

Table 4.1: Base case parameters. Asset returns have a total volatility (combining jumps and
diffusion) of 21%. On average every 3 years a jump costs the firm a fifth of its value. The
number of shares ∆ issued at conversion is set such that the market value of shares delivered
is the same as the face value of the converted debt if conversion happens at exactly Vc.

Figure 4.2 shows the maximum amount of CoCos and the maximum leverage ratio that
can be sustained without debt-induced collapse, with a conversion barrier Vc = 75. The
mean maturity ranges from 1/m = 0.1 years to 1/m = 10 years. In the first plot we show P̄2

as a function of P1. The intersection of each curve with the x-axis represents P̄1. For example
a firm with a mean debt maturity of 1/m = 4 years and face value P1 = 90 can only add
P̄2 = 15 CoCos to the capital structure. If the firm adds more CoCos, debt-induced collapse
occurs. The second plot shows the same relationship, but now in terms of leverage. For a
firm that chooses debt levels P1 and P2, we calculate the resulting total value of the firm
F . The ratios P1/F and P2/F are the leverage ratios for straight debt and CoCos. A firm
with debt maturity of 10 years and a straight debt leverage of 80% can increase the CoCo
leverage only up to 5%. Finally, in the third plot we show the total leverage (P1 +P2)/F as
a function of straight debt leverage. A firm with a debt maturity of 1 year cannot lever up
to more than 78% without triggering debt-induced collapse, regardless of how it chooses its
capital structure.

As we have noted before, the optimal default barrier V PC
b = P1ε1 is proportional to the

amount of straight debt. If Vc is far above V PC
b , a large amount of CoCos can be issued. A

short mean maturity 1/m results in a higher default barrier V PC
b and hence also in a lower

critical level P̄2. If the amount of straight debt is high, this also increases V PC
b and the same

effect takes place.
Figure 4.3 shows how the critical values in the top panel of Figure 4.2 change when we

remove any funding benefit for CoCos by setting κ2 = 0. The figure shows that the upper
limit on CoCo issuance to avoid debt-induced collapse decreases. We interpret this effect as
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Figure 4.2: Top: Critical values of CoCos P̄2 as a function of straight debt P1 for different
mean maturities and Vc = 75. Middle: Critical leverage ratios of CoCos P̄2/F as a function
of straight debt leverage P1/F . Bottom: Critical leverage (P1 + P̄2)/F as a function of
straight debt leverage P1/F .

follows. With the funding benefit reduced, shareholders have less incentive to keep the firm
operating and will therefore raise the default barrier; raising the default barrier expands the
scope of debt-induced collapse.
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Figure 4.3: Critical values of CoCos P̄2 as a function of straight debt P1 for different mean
maturities and Vc = 75, when CoCos have no funding benefit (κ2 = 0).

4.3.3 Constraints with a Capital Ratio Trigger

In the analysis of Theorem 4.2, we held Vc fixed while varying P1 and P2 to isolate individual
effects. We now let Vc vary with the debt levels by setting Vc = (P1 + P2)/(1− ρ), following
the conversion rule in (4.4) based on a minimum capital ratio ρ. According to Theorem 5.3,
we have debt-induced collapse if V PC

b > Vc, which now reduces to the condition

(ε1(1− ρ)− 1)P1 > P2. (4.17)

As before, ε1 is given explicitly by equation (C.1) in the appendix. It follows from (4.17)
that a sufficiently large P1 will produce debt-induced collapse if ε(1 − ρ) > 1. We explore
when this condition8 holds and its implications through numerical examples varying the debt
rollover frequency m and coupon c.

For the numerical examples we take the baseline values in Table 4.1 and set the capital
ratio and the amount of CoCos to be ρ = 5% and P2 = 5, respectively. Figure 4.4 plots
the critical levels of P1 that lead to (4.17). For example, a firm with mean maturity of
four months (1/m = 0.3) and coupon of c = 0.11 on its straight debt will experience
debt-induced collapse at any P1 larger than 80. Note that this condition is completely
independent of the parameters of the CoCos other than the amount P2. Figure 4.4 reveals
an important interaction between debt maturity and debt-induced collapse: rolling over debt
more frequently lowers the threshold of P1 for debt-induced collapse. Directly from (4.17),
it is also clear that lowering the required capital ratio ρ also widens the scope of parameters
leading to debt-induced collapse.

The threshold for P1 depicted in Figure 4.4 gives a sufficient condition based on (4.17):
setting P1 above the critical value guarantees debt-induced collapse. It is actually possi-
ble to have debt-induced collapse at an even lower value of P1 if the feasibility condition
minV≥Vc E

BC(V ;V PC
b ) > 0 is violated. This condition is more complicated because the mini-

mum is not necessarily monotonic in P1. However, in numerical experiments we have found

8This condition also yields debt-induced collapse with the Tier 1 trigger in the footnote just before (4.4).
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Figure 4.4: Critical values of straight debt P1, that lead to V PC
b > Vc and hence debt-induced

collapse for a capital ratio trigger. We set ρ = 0.05 and P2 = 5.

that debt-induced collapse typically occurs only when P1 is larger than the threshold deter-
mined by (4.17) and illustrated in Figure 4.4, so (4.17) appears to be the more important of
the two possible conditions leading to debt-induced collapse.

4.3.4 A Too-Big-To-Fail Firm

As a final illustration, we consider a simple model of a firm that is too big to fail (TBTF)
and show that debt-induced collapse becomes even more of a concern in this setting. As in
Albul et al. (2010), we take the key feature of a TBTF firm to be an implicit government
guarantee on senior debt. We assume that at bankruptcy the government steps in and makes
the senior bond holders whole. Bond holders anticipate this guarantee, but the firm does
not pay for it. The net effect is to reduce the firm’s cost of issuing debt: it issues P1 in senior
debt at a market value of P1(c1 + m)/(r + m) rather than (4.7). The rest of our analysis
extends accordingly.

The difference between the market value of riskless and risky debt functions like a govern-
ment subsidy to the firm. With debt rollover, part of this subsidy is captured by sharehold-
ers.9 Shareholders maximize their benefit by raising the default boundary, thus increasing

9This is not case in Albul et al. (2010) because in their model all debt is perpetual so all benefits of
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Figure 4.5: Critical values of straight debt P1

for a TBTF firm, that lead to V PC
b > Vc for a

CET1 conversion trigger. We set ρ = 0.05 and
P2 = 5.
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Figure 4.6: Critical values of straight debt P1
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b > Vc for a

CET1 conversion trigger. We set c1 = r and
P2 = 5.

the value of the subsidy and increasing the propensity for debt-induced collapse.
Figure 4.5 displays the same comparison as Figure 4.4 but for a TBTF firm. Debt-induced

collapse is now almost unavoidable at maturities shorter than one year. As the straight debt
of a TBTF firm is basically risk-free, we set the coupon c1 equal to the risk-free rate r and
plot different capital ratio triggers ρ in Figure 4.6. Given the current leverage ratios of banks,
a TBTF firm with a mean maturity of 2 years for its straight debt needs a trigger ratio ρ
larger than 10% to avoid debt-induced collapse, which would be very high. The main point
of this example is to illustrate a directional effect: an implicit guarantee widens the scope of
parameters at which debt-induced collapse occurs.

4.4 The Impact of Debt Rollover

In this section, we investigate the impact of debt rollover on equity value under various
changes in capital structure.

The process of rolling debt is important to our analysis, so we briefly describe this feature
of our model. Under our exponential maturity assumption, old debt is continuously maturing
and new debt is continuously issued. Within each debt category, the coupon and the total

reduced credit risk accrue to bond holders. This important feature of debt rollover is further explored in the
next section.
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par value outstanding remain constant; but while debt matures at par value, it is issued at
market value. If the par value is greater, the difference is a cash shortfall that needs to be
paid out by the firm; if the market value is greater, the difference generates additional cash
for the firm. We refer to these as rollover costs — a positive cost in the first case, a negative
cost in the second — and treat them the same way we treat coupon payments. Rollover
costs will change as the firm’s asset value changes, becoming larger as asset value declines,
the firm gets closer to default, and the market value of its debt decreases. Rollover costs
thus capture the increased yield demanded of riskier firms.10

The comparisons in this section are based on combinations of qualitative properties and
numerical examples. For the numerical examples, we enrich the base model, expanding the
capital structure through additional layers of straight debt and allowing two types of jumps in
asset value. Details of these extensions and parameter values for the numerical illustrations
are discussed in Appendix C.3. We use the parameters given there in Table C.1. The firm
initially funds 100 in assets with a total par value of 85 in non-convertible debt and 15 in
equity or a combination of equity and CoCos. Under any change in capital structure, we
recompute the optimal default barrier and recompute the value of the firm and its liabilities.
Throughout this section, we limit ourselves to changes that keep the firm within the no-
collapse region so that the CoCos do not degenerate to straight debt.

4.4.1 Replacing Straight Debt with CoCos

We begin by replacing some straight debt with CoCos. The consequences of the substitution
are as follows.

• If coupon payments on CoCos are not tax deductible, then replacing straight debt with
CoCos has the immediate effect of reducing firm value by reducing the value of the tax
shield. Even if CoCo coupons are tax deductible or enjoy other funding benefits, these
benefits end at conversion, so, other things being equal, the substitution still has the
immediate impact of reducing firm value; see (4.10). The reduction in firm value has
the direct effect of lowering the value of equity.

• However after conversion the firm will have less debt outstanding and lower debt service
payments (coupons and rollover costs) than it would without the substitution of CoCos
for straight debt. With lower debt service, more of the cash generated by the firm’s
assets flows to equity holders in dividends. This reduces the default barrier V ∗b , which
extends the life of the firm, reduces the bankruptcy cost and thus increases firm value
in (4.10).

• We thus have two opposite effects on firm value: the reduced funding benefit from
CoCos reduces firm value, but the reduced default probability and bankruptcy cost

10Debt rollover also have important implications for asymmetric information and monitoring, as in
Calomiris and Kahn (1991), and liquidity risk, as in He and Xiong (2012), but these features are outside the
scope of our model.
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increases firm value. In our numerical examples, we find that the second effect domi-
nates over a wide range of parameter values, so that the net effect of replacing straight
debt with CoCos is to increase firm value.

• Part of this increase in firm value is captured by debt holders because the reduced
bankruptcy risk increases the value of the debt. Part of the increase is also captured
by equity holders: the increased debt value reduces rollover costs which increases the
flow of dividends. Thus, equity holders have a positive incentive to issue CoCos.

This conclusion contrasts with that of Albul et al. (2010), who find that equity holders
would never voluntarily replace straight debt with contingent convertibles. In their model,
straight debt has infinite maturity and is never rolled. As a result, all of the benefit of reduced
bankruptcy costs from CoCos is captured by debt holders. This difference highlights the
importance of debt rollover in influencing incentives for equity holders, an effect we return
to at several points.

The line marked with crosses in the left panel of Figure 4.7 shows the increase in equity
value resulting from a substitution of one unit (market value) of CoCos for one unit (market
value) of straight debt, plotted against the value of the firm’s asset value. The conversion
level Vc is 75. Despite the dilutive effect of conversion, the benefit to equity holders of the
substitution is greatest just above the conversion level and decreases as asset level increases.
This follows from the fact that the benefit to equity holders derives from the reduction in
bankruptcy costs, which is greater at lower asset values. We will discuss the other curves in
the left panel shortly.

The right panel of Figure 4.7 incorporates a friction in the conversion of debt to equity.
To this point, we have valued each security as the expected present value of its cash flows.
In practice, the markets for debt and equity are segmented, and some bond investors may
be unwilling (or unable under an investment mandate) to own equity. Such investors would
value CoCos at less than their present value, and this effect could well move the price at
which the market clears, given the comparatively small pool of investors focused on hybrid
securities.

To capture this effect, we suppose that the equity received by CoCo investors at conversion
is valued at 80% of market value. For example, we can think of CoCo investors as dumping
their shares at a discount, with the discount reflecting a market impact that is only temporary
and therefore does not affect the original equity holders. CoCo investors anticipate that they
will not receive the full value of equity at conversion and thus discount the price of CoCos up
front. This makes CoCos more expensive for the firm as a source of funding. The line marked
with crosses in the right panel shows the benefit to equity holders of the same substitution
examined in the left panel. As one would expect, the benefit is substantially reduced near
the conversion trigger of 75 (comparing the two panels); at higher asset values, the difference
between the cases vanishes, with the crossed lines in both panels near 0.3 at an asset level
of 100. To summarize: Segmentation between debt and equity investors creates a friction in
conversion that reduces the benefit of issuing CoCos; this effect is especially pronounced near
the conversion trigger.
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Figure 4.7: Change in equity value resulting from various changes in capital structure. In the
right hand figure the CoCo holders dump their shares in the market following the conversion
and as a result lose 20% value of their shares due price impact and transaction fees.

4.4.2 Increasing the Balance Sheet with CoCos

We now consider the effects of issuing CoCos without an offsetting reduction in any other
liabilities. The proceeds from issuing CoCos are used to scale up the firm’s investments. The
consequences of this change are as follows:

• Because the post-conversion debt outstanding is unchanged, the endogenous default
barrier V ∗b is unchanged, so long as the firm stay within the no-collapse region of debt
levels.

• In this case, the risk of default decreases because an increase in assets moves the
firm farther from the default barrier. The reduction in bankruptcy costs increases firm
value and the value of straight debt. The additional funding benefit from issuing CoCos
(assuming, for example, that their coupons are tax-deductible) further increases firm
value.

• Shareholders benefit from the increase in firm value combined with the decrease in
rollover costs for straight debt and the increase in cash generated from the larger asset
base. These benefits work in the opposite direction of the increase in coupon payments
required for the new CoCos.

• With a sufficiently large CoCo issue, the firm faces debt-induced collapse: the value of
equity drops, the firm’s default probability and bankruptcy costs jump up.
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The dashed line in each panel of Figure 4.7 shows the benefit to shareholders of issuing
a unit of new CoCos within the no-collapse region of debt levels. The benefit is lower on the
right in the presence of a conversion friction. Whereas the incentive for debt substitution
decreases with asset value, the incentive for issuing new CoCos increases with asset value.
For completeness the figures also include the impact of replacing some equity with CoCos,
which is roughly parallel to the effect of issuing new CoCos.

4.4.3 The Bail-In Case

Figure 4.8 illustrates the same comparisons made in the left panel of Figure 4.7, but now
for the bail-in case. The main observation is that the incentive (for shareholders) to issue
convertible debt is greater in Figure 4.8 than in Figure 4.7. This is primarily due to the
lowering of the conversion threshold — the trigger is 75 in Figure 4.7 whereas the bail-in
point is a bit below 70 in Figure 4.8. As long as conversion occurs before bankruptcy, the
level of the conversion threshold has no effect on firm value or the value of straight debt. It
does affect how value is apportioned between equity holders and CoCo investors.

4.5 Debt Overhang and Investment Incentives

In most capital structure models, equity holders are least motivated to invest in a firm
precisely when the firm most needs additional equity. For a firm near bankruptcy, much of
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Figure 4.8: Change in equity value resulting from changes in capital structure with bail-in
debt.
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the value of an additional equity investment is captured by debt holders as the additional
equity increases the market value of the debt by reducing the chances of bankruptcy. This
is a problem of debt overhang (Myers (1977)), and it presents a significant obstacle to
recapitalizing ailing banks. Duffie (2010) has proposed mandatory rights offerings as a
mechanism to compel investment. Here we examine the effect of CoCos on investment
incentives.

The phenomenon of debt overhang is easiest to see in a static model, viewing equity as
a call option on the assets of a firm with a strike price equal to the face value of debt, as in
Merton (1974). At a low asset value, where the option is deep out-of-the-money, the option
delta is close to zero: a unit increase in asset value produces much less than a unit increase
in option value, so equity holders have no incentive to invest. Indeed, in this static model,
the net benefit of investment is always negative.

At least three features distinguish our setting from the simple static model. First, the
reduction in rollover costs that follows from safer debt means that equity holders have the
potential to derive some benefit from an increase in their investment. Second, the dilutive
effects of CoCo conversion creates an incentive for shareholders to invest to prevent conver-
sion. Third, if CoCo coupons are tax deductible, shareholders have an added incentive to
invest in the firm near the conversion trigger to avoid the loss of this tax benefit.

Figure 4.9 shows the cost to equity holders of an additional investment of 1 in various
scenarios. Negative costs are benefits. For this example, we use the longer maturities for
debt in Table C.1, as the overhang problem is more acute in this case. This is illustrated by
the solid black line in the left panel, which shows the overhang cost is positive throughout
the range of asset values displayed.

The solid blue line and the dashed line show the overhang cost after the firm has issued
CoCos. The blue line corresponds to replacing equity with CoCos, and the dashed line
corresponds to replacing straight debt with CoCos. As we move from right to left, tracing
a decline in asset value toward the conversion threshold Vc = 75, we see a dramatic increase
in the benefit (negative cost) to equity holders of an additional investment. In other words,
the presence of CoCos creates a strong incentive for equity holders to invest in the firm to
avoid conversion. After conversion (below an asset level of 75), the overhang cost reverts to
its level in a firm without CoCos.

The right panel of Figure 4.9 provides further insight into the investment incentive illus-
trated in the left panel. If we lower the conversion trigger from 75 to 70, we see from the
solid black line that the investment incentive becomes greatest at 70, as expected, where it
is a bit greater than the greatest value in the left figure. Removing the tax-deductibility
(and any other funding benefit) of CoCo coupons yields the dashed black line, which shows
that the investment incentive is reduced but not eliminated. In the solid red line, we have
returned the conversion trigger to 75 but removed the jumps from the asset process. This
eliminates close to half the incentive for investment, compared to the left panel. Removing
both the tax shield on CoCos and jumps in asset value eliminates almost all the investment
incentive, as indicated by the dashed red line.

The tax effect is evident: the tax shield increases the value to shareholders of avoiding
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Figure 4.9: Net cost to shareholders of increasing the firm’s asset by 1. Negative costs are
gains. The figures show that CoCos and tail risk create a strong incentive for additional
investment by equity holders near the conversion trigger.

the conversion of CoCos and thus creates a greater incentive for investment. The jump effect
requires some explanation. Recall that the conversion ratio ∆ is set so that the market value
of the shares into which the CoCos convert would equal the face value of the converted debt
if conversion were to occur at an asset level of Vc. If a downward jump takes Vt from a level
above the trigger Vc to a level below it, then conversion occurs at an asset level lower than
Vc, and the market value of the equity granted to CoCo investors is less than the face value
of the debt. Equity holders thus prefer conversion following a jump to conversion at the
trigger; indeed, conversion right at the trigger is the worst conversion outcome for equity
holders, and this creates an incentive for investment as asset value approaches the trigger.
The equity holders would prefer to delay conversion and, in effect, bet on converting at a
jump rather than right at the trigger. This suggests that CoCos may create an incentive for
equity investors to take on further tail risk, an issue we investigate in the next section.

4.6 Asset Substitution and Risk Sensitivity

We reviewed the problem of debt overhang in the previous section in Merton’s (1974) model,
which views equity as a call option on the firm’s assets. The same model predicts that equity
value increases with the volatility of the firm’s assets, giving equity holders an incentive to
increase the riskiness of the firm’s investments after they have secured funding from creditors.
In this section, we examine this phenomenon in our dynamic model, focusing on how CoCos
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change the incentives.11

We can summarize our main observations as follows. Because of the need to roll maturing
debt, equity holders do not necessarily prefer more volatile assets in a dynamic model; longer
debt maturity makes riskier assets more attractive to equity holders. Even when equity value
does increase with asset volatility, CoCos can mitigate or entirely offset this effect, in part
because equity holders are motivated to avoid conversion. In some cases, CoCos can make
tail risk more attractive to equity holders even while making diffusive risk less attractive.

To illustrate these points, we start with the lower panel of Figure 4.10, which shows the
sensitivity of equity to diffusive volatility as a function of asset value. The solid black line
corresponds to a firm with no contingent capital — the sensitivity of equity to σ is positive
throughout the range and peaks just above the default barrier. As the firm nears bankruptcy,
the equity holders are motivated to take on extra risk in a last-ditch effort at recovery.

We see a very different pattern in the two blue lines, corresponding to a firm in which
some straight debt has been replaced with CoCos, and the two red lines, based on replacing
some equity with CoCos. In both cases, the solid line is based on a conversion trigger of 85,
and the dashed line uses a trigger of 70. This gives us four combinations of capital structure
and trigger level. In all four, the sensitivity is negative at high asset values and turns
sharply negative as asset value decreases toward the conversion boundary before becoming
slightly positive just above the trigger, where equity holders would prefer to gamble to avoid
conversion. After conversion, the pattern naturally follows that of a firm without CoCos.
The key implication of the figure is that CoCos decrease, and even reverse, the incentive for
the shareholders to increase the riskiness of the firm’s assets.

The top half of Figure 4.10 illustrates the effect of debt maturity and bankruptcy costs
on the risk-shifting incentive. In each pair of lines, the dashed line has the same level of
straight debt as the solid line but it also has CoCos. Considering first the solid lines, we see
that with long-maturity debt, the risk-shifting incentive is positive, even at a rather high
recovery rate of α = 90%. In contrast, with shorter maturity debt, the sensitivity is nearly
always negative, even with a recovery rate of 100% — i.e., with no bankruptcy costs. Thus,
debt maturity and not bankruptcy cost is the main driver of the sign of the risk-sensitivity.
CoCos therefore have a greater effect on the risk-shifting incentive when the rest of the firm’s
debt has longer average maturity. The impact of CoCos is not very sensitive to the recovery
rate α.

Figures 4.11 and 4.12 illustrate similar comparisons but with the sensitivity at each asset
level normalized by the value of equity at that asset level; we interpret this as measuring
the risk-shifting incentive per dollar of equity. Also, the figures compare sensitivities to
diffusive volatility on the left with sensitivity to tail risk, as measured by 1/ηf , on the right.
Figure 4.12 uses a longer average maturity of debt than Figure 4.11.

The left panels of Figures 4.11 and 4.12 are consistent with what we saw in Figure 4.10 for

11Related questions of risk-shifting incentives are studied in Albul et al. (2010), Hilscher and Raviv
(2011), Koziol and Lawrenz (2012), and Pennacchi (2010) with contingent capital and in Bhanot and Mello
(2006) for debt with rating triggers.
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Figure 4.10: Sensitivity of equity value to diffusive volatility σ. With longer maturity debt,
equity holders have a positive risk-shifting incentive. CoCos tend to reverse this incentive.

the unnormalized sensitivities: with longer maturity debt, CoCos reverse the risk-shifting
incentive; with shorter maturity debt, equity holders already have an incentive to reduce
risk, particularly at low asset values, and CoCos make the risk sensitivity more negative.

The right panels add new information by showing sensitivity to tail risk. In both Fig-
ures 4.11 and 4.12, equity holders have a positive incentive to add tail risk, particularly
with long maturity debt, but also with short maturity debt at low asset levels. Indeed, the
incentive becomes very large in both cases as asset value falls. Increasing the size of the
firm’s balance sheet by adding CoCos leads to a modest increase in this incentive above
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Figure 4.11: Sensitivity of equity value to diffusive volatility and jump risk in assets.

the conversion trigger. Replacing some straight debt with CoCos reduces the incentive to
take on tail risk but does not reverse it. Related comparisons are examined in Albul et
al. (2010) and Pennacchi (2010). Pennacchi’s (2010) conclusions appear to be consistent
with ours, though modeling differences make a direct comparison difficult; the conclusions
in Albul et al. (2010) are quite different, given the absence of jumps and debt rollover in
their framework.

The patterns in our results can be understood, in part, from the asset dynamics in
(4.2); in particular, whereas the diffusive volatility σ plays no role in the (risk-neutral) drift,
increasing the mean jump size increases the drift. In effect, the firm earns a higher continuous
yield on its assets by taking on greater tail risk. This has the potential to generate additional
dividends for shareholders, though the additional yield needs to be balanced against increased
rollover costs resulting from increased default risk. In addition to generating a higher yield,
jump risk is attractive to shareholders because the cost of conversion is lower if it takes place
at a lower asset value than at the conversion trigger. Moreover, shareholders are indifferent
between bankruptcy at an asset value below their default barrier or right at their barrier, so
they are motivated to earn the higher yield from tail risk without bearing all of the downside
consequences.
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Figure 4.12: Same comparisons as Figure 4.11 but with longer average maturity. In all plots,
at the same asset level the dashed line corresponds to a larger distance to default due to less
outstanding regular debt.

4.7 Calibration to Bank Data Through the Crisis

In this section, we calibrate our model to specific banks. We focus on the years leading up
to and during the financial crisis, with the objective of gauging what impact CoCos might
have had, had they been issued in advance of the crisis. We examine the increase in the
banks’ ability to absorb losses, relative to the amount of straight debt replaced with CoCos,
and we calculate the reduction in debt overhang costs as an indication of whether CoCos
would have created greater incentives for equity holders to inject private capital at various
points in time.

As candidates for our calibration, we chose the 19 bank holding companies (the largest 19
at the time) that underwent the Supervisory Capital Assessment Program (SCAP) in 2009.
From this list, we removed MetLife because banking is a small part of its overall business,
and we removed GMAC (now Ally) because it is privately held. The banks are listed in
Table 4.2, in order of asset value in 2009.

We obtain quarterly balance sheet information from each bank holding company’s quar-
terly 10-Q/10-K S.E.C. filings from 2004 through the third quarter of 2011, except in the
case of American Express, for which we begin in 2006 because of a large spin-off in 2005.
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Several of the firms became bank holding companies late in our time window, so Y-9 reports
would not be available throughout the period. Also, the Y-9 reports contain less information
about debt maturities and interest expenses than the quarterly reports. We group all debt
into three categories — deposits, short-term debt, and long-term debt — in this order of
seniority. We do not separate subordinated debt from other long-term debt because of diffi-
culties in doing so consistently and reliably. The distinction would not have much effect on
our calculations. We calculate average debt maturity within each category using information
provided in annual reports. We calculate total dividends and interest payments to get a total
payout rate.

We linearly interpolate values within each quarter, using values from the beginning of
the quarter and the beginning of the subsequent quarter; this gives us values at a weekly
frequency and avoids abrupt changes at the end of each quarter. For debt maturities, we
interpolate between annual reports.

Our model is driven by asset value, but asset value is not observable. So, we fit our
model using balance sheet and market information and then use the model to infer asset
value or a model-defined proxy for asset value. In more detail, at each week we use the
linearly interpolated values to determine the bank’s debt profile, dividends, and interest. As
the risk-free rate, we use the Treasury yield corresponding to the weighted average maturity
of each bank’s debt.

Jump parameters are difficult to estimate, particularly for rare jumps as contemplated
by our model. For the calibrations, we limit the model to a single type of jump and choose
from a finite set of values for the jump rate λ and the mean jump size 1/η. For each (λ, η),
we calibrate a value for the diffusive volatility σ iteratively as follows. Given a starting value
for σ, we can numerically invert our model’s formula for equity at each point in time (using
the market value of equity at each point in time) to get an implied market value for the
assets. We then calculate the annualized sample standard deviation of the implied asset log
returns, excluding returns of magnitude greater than 3.3σ, which we treat as jumps, and
compare it with σ. We adjust σ up or down depending on whether the standard deviation
is larger or smaller than σ, proceeding iteratively until the values match. At that point, we
have found a path of underlying assets that reproduces the market value of equity with an
internally consistent level of asset volatility, for a fixed (λ, η).

We repeat this procedure over a grid of (λ, η) values. We limit λ to 0.1 or 0.3; for η, we
consider integer values between 5 and 10, but if the best fit occurs at the boundary we extend
the range to ensure that does not improve the fit. We choose from the set of (λ, η, σ) values
by comparing model implied debt prices with market data of traded debt from the Fixed
Income Securities Database and TRACE databases. We add up the total principal of traded
debt and total market price paid in those transactions. Their ratio gives an average discount
rate that the market applies to the debt. We calculate the corresponding model implied
average discount for each (λ, η, σ) using quarterly balance sheet data for the principal of
debt outstanding and the model implied prices. The interest payments are already matched
through our choice of coupon rates, so we choose the (λ, η, σ) that comes closest to matching
the discount on the principal as our calibrated parameters. The parameters for the 17 banks
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Parameters Conversion Date
Bank Holding Company λ η σ 50% 75%
Bank of America Corp 0.1 5 4.1% Jan-09
JPMorgan Chase & Co. 0.1 8 4.4%
Citigroup Inc. 0.1 9 3.9% Nov-08
Wells Fargo & Company 0.1 5 4.7%
Goldman Sachs Group, Inc. 0.1 5 3.8% Nov-08
Morgan Stanley 0.1 8 4.2% Sep-08 Dec-08
PNC Financial Services 0.3 8 7.0% Nov-08 Jan-09
U.S. Bancorp 0.3 5 5.5% Jan-09
Bank of New York Mellon Corp. 0.3 6 7.3% Oct-08
SunTrust Banks, Inc. 0.3 9 4.1% Apr-08 Jan-09
Capital One Financial Corp. 0.3 7 7.9% Jun-08 Jan-09
BB&T Corporation 0.3 6 5.3% Jun-08
Regions Financial Corporation 0.3 8 4.7% Jun-08 Jan-09
State Street Corporation 0.3 5 7.4% Oct-08
American Express Company 0.3 8 8.6%
Fifth Third Bancorp 0.3 5 6.3% Jan-08 Jun-08
KeyCorp 0.3 8 4.2% Nov-07 Nov-08

Table 4.2: The table shows the calibrated parameter values (λ, η, σ) for each bank holding
company. The last two columns show the months in which CoCo conversion would have
been triggered, according to the calibration, assuming CoCos made up 10% of debt. The
50% and 75% dilution ratios correspond to higher and lower triggers, respectively.

are reported in Table 4.2.
Given the path of asset value and all the other model parameters, we can calculate model-

implied quantities. As a first step, we calculate the endogenous bankruptcy level V ∗b based
on the bank’s debt profile at each point in time. We can also undertake a counterfactual
experiment in which part of the debt is replaced with CoCos and recalculate the default
boundary. We take CoCos to be 10% of total debt, keeping the relative proportions of other
types of debt unchanged. Recall that the default boundary does not depend on the CoCo
conversion trigger or conversion ratio, as long as the trigger is above the default boundary,
so we do not need to specify values for these features to determine V ∗b . In other words, we
assume that the conversion trigger is set to prevent debt-induced collapse.

Table 4.3 provides more detailed information at four points in time. Under each date, the
value on the left is the ratio of increased loss absorption to the market value of CoCos, where
the increased loss absorption is the change in the default barrier resulting from the CoCos. A
ratio of 1 indicates that a dollar of CoCos absorbs a dollar of additional losses; a ratio greater
or smaller than 1 indicates a greater or smaller degree of loss absorption. The second entry
under each date is the distance to default as a percentage of asset value. Comparing a single
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Jan-2006 Jan-2007 Jan-2008 Jan-2009
Bank of America Corp 1.47 7% 1.43 8% 1.63 5% 1.54 3%
JPMorgan Chase & Co. 1.29 6% 1.29 6% 1.49 5% 1.50 5%
Citigroup Inc. 1.34 7% 1.32 6% 1.42 4% - 2%
Wells Fargo & Company 1.11 19% 1.06 22% 1.44 9% 1.60 5%
Goldman Sachs Group, Inc. 1.35 4% 1.41 5% 1.52 4% - 4%
Morgan Stanley 1.43 4% 1.38 4% 1.50 5% - 5%
PNC Financial Services 1.17 19% 1.11 21% 1.29 14% - 8%
U.S. Bancorp 0.95 32% 0.98 32% 1.11 24% 1.17 18%
Bank of New York Mellon 1.15 24% 1.06 28% 1.04 28% 0.80 17%
SunTrust Banks, Inc. 0.91 21% 0.87 22% 0.91 16% - 8%
Capital One Financial Corp. 0.93 29% 0.92 26% 0.97 16% - 12%
BB&T Corporation 1.03 25% 1.03 23% 0.97 14% - 9%
Regions Financial Corp. 0.90 24% 0.89 19% 0.87 12% - 4%
State Street Corporation 1.33 18% 1.25 20% 1.07 24% - 11%
American Express Company 1.15 38% 1.13 36% 1.26 28% 1.50 18%
Fifth Third Bancorp 0.89 26% 0.77 31% - 17% - 6%
KeyCorp 1.11 17% 1.01 20% - 10% - 5%

mean 1.15 18.81% 1.11 19.23% 1.23 13.73% 1.35 8.15%
median 1.15 19.32% 1.06 20.52% 1.26 13.80% 1.50 5.81%

Table 4.3: Under each date the left column shows the ratio of the increase in loss absorption
(the change in the default boundary after CoCo issuance) to CoCo size (as measured by
market value). The right column is the distance to default (without CoCos) as a percentage
of asset level. The dilution ratio is 50%.

institution at different points in time, the pattern that emerges is that the loss absorption
ratio tends to be greater when the firm is closer to default. The pattern does not hold across
institutions because there are too many other differences in their balance sheets besides the
distance to default.

The design and market value of the CoCos depends on two contractual features, the
trigger Vc and the conversion price ∆. By the definition of ∆, the fraction of total equity
held by CoCo investors just after conversion is ∆P2/(1 + ∆P2), where P2 is the face value
of CoCos issued. We choose ∆ so that this ratio is either 50% or 75%, and we refer to
this as the dilution ratio. We then set the conversion level Vc so that if conversion were to
occur exactly at Vt = Vc, the market value of the equity CoCo investors would receive would
equal the face value P2 of the CoCos: conversion at Vt = Vc implies neither a premium nor
a discount. In order that the equity value received be equal to P2 at both 50% and 75%
dilution ratios, the higher dilution ratio must coincide with a lower conversion trigger. The
results in Table 4.3 are based on a 50% dilution ratio, but the corresponding results with
75% dilution are virtually identical.
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The last two columns of Table 4.2 report the month in which the model calibrations
predict each of the banks would have triggered conversion of CoCos with a high trigger (50%
dilution ratio) and a low trigger (75% dilution ratio). In each case, the CoCo size is equal to
10% of the bank’s total debt. The calibrations predict that all the banks except JPMorgan
Chase, Wells Fargo, and American Express would have crossed the high conversion trigger
sometime between November 2007 and January 2009; seven of the banks would have crossed
the lower conversion trigger as well.

Next, we consider debt overhang costs. For each bank in each week, we calculate the
size of the equity investment required to increase assets by 1%. From this we subtract the
net increase in equity value, which we calculate by taking the value of equity just after the
investment (as calculated by the model) and subtracting the value of equity just before the
investment (as observed in the data). This is our measure of debt overhang cost: if it is
positive, it measures how much less equity holders get from their investment than they put
in. A negative cost indicates a net benefit to investment.

Table 4.4 presents more detailed information at three dates prior to key points in the
financial crisis: one month before the announcement of JP Morgan’s acquisition of Bear
Stearns; one month before final approval of the acquisition; and one month before the Lehman
bankruptcy. For each date, the table shows the debt overhang cost without CoCos and with
high-trigger CoCos; the third column under each date shows the distance to the conversion
boundary as a percentage of asset value. Interestingly, several of the largest banks show
significantly negative debt overhang costs even without CoCos. Recall from Section 4.5 that
this is possible in a model with debt rollover, though not with a single (finite or infinite) debt
maturity. Greater asset value implies greater bankruptcy costs and reducing these costs may
partly explain the motivation for shareholders to increase their investments in the largest
firms. Also, if the market perceives a too-big-to-fail guarantee for the largest banks that is
absent from our model, then the model’s shareholders may see the largest banks as overly
leveraged relative to the market’s perception.

We focus on comparisons between columns of the table — a single firm under different
conditions — rather than comparisons across rows. With few exceptions, the effect of the
CoCos is to lower the debt overhang cost, and the impact is often substantial. The effect
depends on the interaction of several factors, including leverage, debt maturity, and the risk-
free rate, which enters into the risk-neutral drift. The largest reductions in debt overhang
cost generally coincide with a small distance to conversion, and, in most cases in which a
bank draws closer to the conversion boundary over time, the resulting reduction in debt
overhang cost becomes greater. The values in the table are for 50% dilution. The pattern
with 75% is similar, but the decrease in the debt overhang cost is smaller in that case because
the distance from the conversion trigger is greater.

The magnitudes of the quantities reported in these tables and figures are subject to the
many limitations and simplifications of our model and calibration. We see these results as
providing a useful additional perspective on the comparative statics of earlier sections of
the paper; the directional effects and the comparisons over time should be more informative
than the precise numerical values. These calibrations and our exploration of counterfactual
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Feb-2008 Apr-2008 Aug-2008
Bank of America Corp -29% -32% 6% -26% -30% 5% -28% -42% 3%
JPMorgan Chase & Co. -75% -51% 5% -43% -41% 5% -93% -60% 3%
Citigroup Inc. -42% -53% 3% -24% -45% 2% -54% -65% 2%
Wells Fargo & Company -35% -23% 8% -33% -20% 8% -33% -21% 7%
Goldman Sachs Group -51% -45% 2% -33% -42% 2% -53% -54% 2%
Morgan Stanley 21% -42% 1% 21% -36% 1% -20% -58% 2%
PNC Financial Services -11% -16% 7% -7% -12% 8% -10% -12% 8%
U.S. Bancorp 4% 4% 13% 5% 5% 13% 5% 5% 11%
Bank of New York Mellon -3% -2% 17% -1% 0% 14% 6% 4% 8%
SunTrust Banks, Inc. -2% -20% 2% 5% - - 9% - -
Capital One Financial -4% -28% 3% 4% -34% 2% 6% - -
BB&T Corporation 2% -11% 4% 4% -12% 4% 6% -60% 1%
Regions Financial Corp. -7% -24% 3% -8% -42% 2% -9% - -
State Street Corporation 2% 2% 11% 5% -1% 6% 0% -11% 5%
American Express Co. -12% -13% 20% -7% -10% 20% -10% -12% 17%
Fifth Third Bancorp 12% -79% 0% 17% - - 19% - -
KeyCorp -6% -137% 0% -1% - - 5% - -

Table 4.4: Under each date, the first column is the debt overhang cost as a percentage of
the increase in assets with no CoCos. The second column quotes the same value when 10%
of debt is replaced with CoCos and CoCo investors receive 50% of equity at conversion. The
third column is the distance to conversion as the percentage of assets. The dates correspond
to one month before announcement and final approval of acquisition of Bear Stearns by
JPMorgan and one month before the Lehman bankruptcy. A table entry is blank if the
corresponding date is later than the CoCo conversion date for the corresponding bank.

scenarios, though hypothetical, shed light on how CoCo issuance in advance of the financial
crisis might have affected loss absorption capacity, incentives for additional equity invest-
ment, and how the choice of conversion trigger and dilution ratio might have determined the
timing of conversion.

4.8 Concluding Remarks

The key contribution of this paper lies in combining endogenous default, debt rollover, and
jumps and diffusion in income and asset value to analyze the incentive effects of contingent
convertibles and bail-in debt. Through debt rollover, shareholders capture some of the
benefits (in the form of lower bankruptcy costs) from reduced asset riskiness and lower
leverage — benefits that would otherwise accrue solely to creditors. These features shape
many of the incentives we consider, as do the tax treatment of CoCos and tail risk. The
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phenomenon of debt-induced collapse, which is observable only when CoCos are combined
with endogenous default, points to the need to set the conversion trigger sufficiently high so
that conversion unambiguously precedes bankruptcy. Our calibrations suggest that CoCos
could have had a significant impact on the largest U.S. bank holding companies in the lead
up to the financial crisis.

Our analysis does not include asymmetric information, nor does it directly incorporate
agency issues; both considerations are potentially relevant to the incentives questions we
investigate. Some important practical considerations, such as the size of the investor base
for CoCos, the behavior of stock and bond prices near the trigger, and the complexity of these
instruments are also outside the model. The analysis provided here should nevertheless help
inform the discussion of the merits and potential shortcomings of CoCos and other hybrid
capital instruments.
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Chapter 5

Contingent Convertible Bonds:
Modeling and Evaluation

5.1 Introduction

This chapter presents a formal model for a new regulatory hybrid security for financial firms,
so-called contingent convertible bonds. This instrument has the features of normal debt in
normal times, but converts to equity when the issuing firms are under financial stress. I
develop and compare different modeling approaches for contingent capital with tail risk, debt
rollover and endogenous default. In order to apply contingent convertible capital in practice
it is desirable to base the conversion on observable market prices that can constantly adjust
to new information in contrast to accounting triggers. I show how to use credit spreads and
the risk premium of credit default swaps to construct the conversion trigger and to evaluate
the contracts under this specification.

Although contingent bonds could in principle be used by any firm, the focus here is
to analyze their potential as a regulatory instrument for banks. As the ongoing financial
crisis has illustrated, banks play an important role in the economy. When they are healthy,
banks channel savings into productive assets. But when they are distressed, this role is
compromised and banks lend less with adverse effects on investment, output and employment.
In this situation governments often intervene, but as we could see during the past crisis, the
measures are costly to taxpayers and may be limited in effectiveness. There are several
reasons why banks may inadequately recapitalize on their own in the first place.

First, there is the so-called debt overhang problem. If a bank suffers substantial losses,
the managers, who should act in the interest of the shareholders, may prefer not to issue
new equity. If a distressed bank issues new equity, the bank’s bondholders profit from this
as the new capital increases the likelihood that they will get repaid. On the other hand,
existing shareholders bear costs as their claims on the firm are diluted. In this sense issuing
new equity creates a transfer from existing shareholders to bondholders. Hence, in order
to satisfy capital requirements shareholders may prefer the bank to sell risky assets or to
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reduce new lending instead of issuing new equity. If during a financial crisis other banks are
in trouble, too, they will also cut lending and thus the economy as a whole suffers.

Second, there is the moral hazard problem of a government bailout. A government
bailout represents an implicit guarantee for the bondholders that their debt will be repaid.
If bondholders believe that the government will not allow a bank to fail, the bondholders
may be more willing to lend money to a bank that pursues more risky strategies and have less
incentives to control the bank. This problem is particularly severe for the most important
financial institutes, that are “too big to fail”.

Furthermore, bankruptcy reorganization for banks is different than default restructuring
for other firms. Banking business relies on confidence. If a bank is in trouble, there is the
danger of a bank run as clients and short-term creditors may withdraw their capital. As in
the case of Lehman Brothers, distress for a financial firm often leads to partial or complete
liquidation in contrast to a restructuring according to Chapter 11 which can help a “normal”
company to return to economic viability.

In summary, the debt overhang problem can make banks reduce lending or sell assets
instead of recapitalizing themselves and maintaining their lending capacity. If restructuring
takes place, it is usually ineffective and disruptive and can affect other institutions. The
possibility of a government bailout can increase the riskiness of the strategies of a bank. For
this reason the discussion in the aftermath of the financial crisis has focussed on a resolution
mechanism that can allow quick and less disruptive recapitalization of distressed banks, but
does not shift the costs of risky activities to the government. A possible solution is contingent
convertible bonds.

Contingent convertible bonds (CCB) are instruments that convert into equity if the bank
is financially distressed. The bank would issue these bonds before a crisis and if a certain
trigger is reached, conversion takes place automatically. The automatic conversion of debt
into equity would transform an undercapitalized bank into a well capitalized bank at no cost
to the taxpayer.

The key issues for specifying CCBs are: When does conversion take place and how many
shares are given to the bondholders at conversion? The automatic conversion should be
triggered by the same mechanism that triggers default. From our understanding bankruptcy
is caused if the value of the firm’s assets is below a default barrier. Hence, conversion should
take place if the value of the firm’s assets reaches another barrier, namely the conversion
barrier. In view of the application as a regulation instrument it is sensible to require this
conversion barrier to be higher than the default barrier. In addition to the trigger, the rate
at which the debt converts into equity has to be specified. There are basically two different
approaches. In the first approach each dollar of debt converts into a fixed quantity of equity
shares. In this case the total value of the portfolio of shares granted at conversion depends on
the stock price at conversion. In the second approach the conversion is specified in terms of
the market value of equity. In this case the number of shares granted at conversion depends
on the stock price at the time of conversion. This work considers both types of converting
debt into equity.

CBBs have been traded only very recently. In 2009 Lloyd’s bank issued the first £7
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billion CCBs. The first and only time so far that contingent convertible bonds were used
as a regulatory instrument was in Switzerland, when the Credit Suisse Group AG issued $2
billion of these new bonds on February 14th, 2011. The coupon payments of the contingent
convertible bonds were substantially higher than for normal debt: 7.875% vs. 4% on average.

The idea of contingent convertible bonds has been a very vivid area of research in the
last years. However, the literature on formal models of contingent convertible bonds is
still limited. Qualitative discussions can be found in Flannery (2009a+b), Squam Lake
Working Group on Financial Regulation (2009), McDonald (2010) and Calomiris and Herring
(2011). The first structural formal model is presented in Albul, Jaffee and Tchistyi (2010).
Their model is based on Leland’s (1994b) structural credit risk model with optimal default
barrier. The firm’s value process follows a geometric Brownian motion and the bonds are of
infinite maturity. Conversion is triggered when the firm’s value process reaches an exogenous
conversion barrier and the conversion value is expressed in terms of the market value of
equity. Their paper provides many very interesting insights concerning regulation and capital
structure decisions. Our paper is closely related to Albul, Jaffee and Tchistyi’s (2010) work,
but our model is based on Hilberink and Rogers’ (2002) and Chen and Kou (2009)’s jump
process framework. As in Albul, Jaffee and Tchistyi we work with a structural credit risk
model, in which the optimal default barrier is chosen endogenously by the shareholders by
trading off tax benefits and bankruptcy costs. However, the bonds in our model have finite
maturity and are issued such that we obtain a stationary debt structure. The firm’s value in
our model follows a specific jump diffusion process, namely a Kou process. This particular
choice of process allows us to obtain a non-zero credit spread limit for a maturity approaching
zero. The valuation of CCBs becomes considerable more challenging under a jump diffusion
process. A jump that triggers conversion can be sufficiently large to trigger bankruptcy as
well. Hence, the conversion value of CCBs explicitly depends on the features of the straight
debt. In Albul, Jaffee and Tchistyi the valuation of straight debt and contingent convertible
debt could be separated. In our framework we can show that the valuation of the two
different debt instruments is interlinked. Furthermore, we do not only treat the conversion
barrier as exogenously given, but we also consider the case of it being chosen optimally by
the shareholders or the firm.

Specifying the conversion trigger in terms of the firm’s value process is conceptionally
appealing and allows us to derive analytical solutions for all prices. However, the firm’s
value process is unobservable and it would be desirable to base the conversion event on
observable prices. Some literature, e.g. De Spiegeleer and Schoutens (2011), propose to
trigger conversion when the stock price process first crosses a barrier level. As we will show
the stock price is in general not a sufficient statistic for the firm’s value process. Therefore,
conversion based on the stock price cannot be incorporated into our modeling framework.
Moreover, it is possible that more than one stock price and CCB price are consistent with
our equilibrium conditions if conversion is based on the stock price. These shortcomings are
not appealing. However, we can show that the unobservability of the firm’s value process
can be circumvented by using credit spreads or the risk premiums of credit default swaps
(CDS). Credit spreads and CDS risk premiums have the same advantages as stock prices as
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they constantly adjust to new information in contrast to accounting triggers. We will prove
that they are a sufficient statistic for the firm’s value process. Thus, defining the conversion
event in terms of credit spreads or CDS risk premiums is equivalent to using the firm’s value
process. In summary, our evaluation formulas can be applied in practice with a trigger event
based on observable market prices.

We extend our model into several directions. First, we introduce a general approach
which allows all parameters of the firm’s value process to change after the conversion. In
particular we can model the special case, that the drift of the firm’s value process increases
after conversion as interest payments decrease. Second, we introduce exogenous noise trading
into the stock price process and can show that under certain conditions our pricing formulas
are not affected. Third, we show that contracts, for which the number of shares granted
at conversion is fixed a priori, are more robust against manipulation by the contingent
convertible bondholders than contracts with a fixed value at conversion. It is possible to
design a contract that is robust against manipulation by the equity holders and contingent
convertible bondholders.

In the last part of the chapter we analyze whether contingent convertible bonds can be
used as a regulation instrument. We can show that under a technical assumption, the no-
early-default condition, a regulation that combines a restriction on the maximal leverage
ratio and the requirement of issuing a certain fraction of contingent convertible bonds as
part of the whole debt, can efficiently lower the default probability without reducing the
total value of the firm. However, if the no-early-default condition is violated, a regulation
based on contingent convertible debt can actually increase the risk. Therefore, it is crucial
to make sure that this condition is satisfied. If the contingent convertible bonds are issued
in a smaller amount than the straight debt, have a long maturity and the conversion barrier
is sufficiently high, the no-early-default condition is generally satisfied.

The chapter is organized as follows. In Section 5.2 we present the formal model of Chen
and Kou. In Section 5.3 we add the contingent convertible bonds to the model. In Section
5.4 we derive closed-form prices for CCBs. Section 5.5 discusses the choice of the default
and conversion barrier. In Section 5.6 we consider the case where conversion is based on
observable market prices instead of the unobservable firm’s value process. In Section 5.7
we present some numerical simulations. Section 5.8 discusses the optimal design of CCBs.
In Section 5.9 we consider extensions to our model. Section 5.10 focusses on contingent
convertible bonds as a regulation instrument. Section 5.11 concludes. Most of the proofs
and the special case of a pure diffusion process are collected in the Appendix.

5.2 Model for Normal Debt

In this section we review Chen and Kou’s (2009) model, in which the firm’s value process
follows a particular jump-diffusion process. It is based on Leland’s (1994a) diffusion and
Hilberink and Rogers’ (2002) jump diffusion structural credit risk models with optimal de-
fault barrier. As the model presented here applies to any firm and as we will only consider
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the special case of banks in the section about regulation, we use the generic terminology
“firm” instead of “bank”.

The value of the firm’s assets at time t is denoted by Vt and under the risk-neutral
measure P 1 it evolves as

dVt = Vt(dZt + (r − δ)dt) (5.1)

where Z is some martingale, r is the constant riskless interest rate and δ represents the
proportional rate at which a part of the assets is disbursed to investors.2

We will follow Chen and Kou (2009) and specify Z as a jump diffusion process with double
exponentially distributed jumps. Note that as the firm has bondholders and shareholders,
δ cannot be seen as a dividend rate. First the coupons and principal repayments have to
be paid before the residual can be paid out as dividends. By assuming a constant riskless
interest rate we neglect the interest rate risk.

The firm is partly financed by debt which has two features: Its time structure and its
riskiness. In order to obtain a stationary debt structure, debt is constantly retired and
reissued. Assume that at every point in time the firm issues new debt in the amount of pD,
i.e. in the time interval (t, t+dt) new bonds with face value pDdt are issued. The debt has the
maturity profile ϕ, where ϕ can be any non-negative function with

∫∞
0
ϕ(s)ds = 1 and can be

interpreted as a density function. We will choose the maturity profile as ϕ(t) = me−mt, i.e.
the maturity of a specific bond is chosen randomly according to an exponentially distributed
random variable. Of all the debt issued in (t, t + dt) the debt with face value pDϕ(s)dtds
will mature in the time interval (t+ s, t+ s+ ds). If we also consider all the debt that was
issued before t = 0 the face value of debt maturing in (s, s+ ds) is∫ 0

−∞
pDϕ(s− x)dxds =

∫ ∞
s

pDϕ(y)dyds = pDΨ(s)ds , Ψ(s) ≡
∫ ∞
s

ϕ(y)dy.

For our maturity profile this equals∫ 0

−∞
pDme

−m(s−x)dxds = pDds.

The face value of all the newly issued debt is pDds. Hence, the face value of all the debt
maturing in (s, s + ds) is equal to the face value of the newly issued debt. Thus, the face
value of debt stays constant and at every point in time equals

PD = pD

∫ ∞
0

Ψ(s)ds =
pD
m
.

Note, that for our maturity profile ϕ(t) = me−mt the parameter m is a measure of
maturity. As m increases a higher fraction of the debt matures earlier. If default never

1As we consider only one martingale measure in this section, E will denote the expected value with
respect to P.

2We use the drift r−δ because we work under the risk-neutral measure P. Under the real world probability
measure the drift would be µ− δ, where µ is some constant.
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occurs, the average maturity of debt is:∫ ∞
0

tϕ(t)dt =

∫ ∞
0

t(me−mt)dt =
1

m
.

For m = 0 only consol bonds are issued as in Leland (1994b). The choice of the exponential
maturity is needed in our model to express the debt in terms of some Laplace transform.
This enables us to derive an explicit solution for double exponential jump diffusion processes.

We assume that all debt is of equal seniority and is paid by coupons at the fixed rate
cDdt for the time interval (t, t + dt) until either maturity or default occurs. The first time
the value of the firm falls to some level VB or lower and thus default happens is denoted
by τ . The default barrier VB will be chosen optimally by the shareholders. In the case of
default, we assume that a fraction α of the value of the firm’s assets is lost. The value of a
bond issued at time 0 with face value 1 and maturity t is therefore

dD(V, VB, t) = E
[∫ t∧τ

0

cDe
−rsds

]
+ E

[
e−rt1{t<τ}

]
+

1

PD
(1− α)E

[
V (τ)e−rτ1{τ≤t}

]
.

The first term represents the net present value of all coupons up to the minimum of t and τ .
The second term can be interpreted as the net present value of the firm’s repayment when
default does not happen. The last term is the net present value of the assets if bankruptcy
occurs. We assume that the face value of all debt is PD and thus a bondholder with a
bond with face value 1 gets the fraction 1/PD of the value (1 − α)V (τ) that remains after
bankruptcy. Note that if V were continuous, V (τ) would simply be VB, but for a process
with jumps this need not be the case.

The total value of all debt outstanding given our assumptions about the maturity profile
was derived by Chen and Kou (2009) and is given in the next proposition.

Proposition 5.1. The total value of all outstanding debt for the maturity profile ϕ(t) =
me−mt is

D(V, VB) =

∫ ∞
0

pDΨ(t)dD(V, VB, t)dt

=
cDPD +mPD

m+ r
E
[
1− e−(m+r)τ

]
+ (1− α)E

[
V (τ)e−(m+r)τ

1{τ<∞}
]
.

The main problem now is to compute the two expectations. For V following a geo-
metric Brownian motion an explicit solution is easily available. Note that the expectation
E
[
V (τ)e−(r+m)τ

1{τ<∞}
]

is bounded from above by VB and below by 0. In the two extreme
cases for the maturity rate m, Lebesgue’s dominated convergence theorem yields the follow-
ing corollary:

Corollary 5.1. The value of the debt for m→∞ and m→ 0 is given by

lim
m→0

D(V, VB) =
cDPD
r

E
[
1− e−rτ

]
+ (1− α)E

[
V (τ)e−rτ1{τ<∞}

]
lim
m→∞

D(V, VB) = PD.
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The limit for m→ 0 corresponds to the case of consol bonds as in Leland’s (1994b) paper.

The total coupon rate of all the debt equals CD = cDPD. As by the choice of our maturity
profile, PD is constant over time and cD is assumed to be fixed, we get a stationary debt
structure: A unit of bonds issued one year ago will look exactly the same as a unit of bonds
issued today. If the value of the firm’s assets does not change they will also have the same
price.

According to Modigliani and Miller the total value of the firm is expressed as the sum
of the asset value plus tax benefits minus bankruptcy costs. We assume that there is a
proportional corporate tax rate c̄ and coupon payments can be offset against tax. Thus, for
the total coupon rate CD = cDPD the firm receives an additional income stream of c̄CDdt.

Definition 5.1. The tax benefits associated to the debt are denoted by TBD and the bankruptcy
costs by BC. The total value of the firm is defined as

Gdebt(V, VB) = V + TBD(V, VB)−BC(V, VB).

Proposition 5.2. The total value of the firm equals

Gdebt(V, VB) = V +
c̄CD
r

E
[
1− e−rτ

]
− αE

[
V (τ)e−rτ1{τ<∞}

]
. (5.2)

The value of the firm consists of the value of its assets plus the net present value of the
tax rebates minus the net present value of the losses on default. Now, we can express the
value of the firm’s equity as

EQdebt(V, VB) = Gdebt(V, VB)−D(V, VB).

Optimal capital structure and optimal endogenous default are two interlinked problems. The
optimal debt level PD and the optimal bankruptcy trigger VB have to be chosen simulta-
neously. When a firm chooses PD in order to maximize the total value of the firm at time
0, the decision depends on VB. Vice versa, the optimal default trigger VB is a function of
the amount of debt PD. Leland (1994a+b) and Leland and Toft (1996) have shown how to
choose PD and VB according to a two-stage optimization problem. In the first stage, for a
fixed PD, equity holders choose the optimal default barrier by maximizing the equity value
subject to the limited liability constraint. In a second stage, the firm determines the amount
of debt PD that maximizes the total value of the firm. More precisely, the first stage problem
is

max
VB

EQdebt(V, VB) such that EQdebt(V
′, VB) > 0 for all V ′ > VB

The “smooth pasting” condition as derived in Leland and Toft (1996) delivers an optimality
criterion:

∂EQdebt

∂V
(V, VB)|V=VB = 0.
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In the case of two-sided jumps Chen and Kou prove that the solution to the smooth pasting
condition indeed maximizes the equity, respecting the constraint that the value of equity
must remain non-negative at all times. The optimal default barrier will be denoted by V ∗B
and is clearly a function of PD. The second stage optimization is formulated as

max
PD

Gdebt(V, V
∗
B(PD)).

In our model bankruptcy occurs at an endogenously determined asset value VB. For all
asset values larger than VB equity has a positive value. Note, that this does not mean that
bankruptcy occurs when debt service payments exceed the cash flow δV . At any point in
time the firm issues bonds which are worth D, but has to make a debt service of PD and
after-tax coupon payment of(1− c̄)CD. Hence, (δV − (1− c̄)CD−PD +D) is the payout rate
to the shareholders. As V falls, the cash flow δV declines and the price of the debt D(V, V B)
will fall as well, which can result in a negative payout rate to the shareholders. As long as the
equity value is positive, new stock can be issued to meet debt service requirements. Hence,
bankruptcy can only occur when the equity value becomes zero.

The initial total coupon rate CD will be chosen, such that debt sells at par, i.e. the price
of the debt equals its face value. Therefore, if the value of the firm’s assets does not change,
the firm can use the newly issued debt to repay the face value of the old debt. As we will see
later the optimal value of VB depends on the coupon rate CD. Hence, for a fixed amount of
debt PD, the initial coupon payment CD is computed by solving the following two equations
simultaneously. First, debt has to sell at par:

PD = D(V0, VB, PD, CD). (5.3)

Second, the optimality criterion is to maximize the equity value:(
∂EQdebt(V0, VB, PD, CD)

∂V0

)
V0=VB

= 0. (5.4)

5.3 A Model for Contingent Convertible Debt

5.3.1 Modeling Conversion

The special property of contingent convertible bonds is that the debt automatically converts
to equity if the firm or bank reaches a specified level of financial distress. We will model this
by introducing a barrier VC . The first time the value of the firm falls to or below this level,
the convertible bond fully converts into equity. Hence, the conversion time is defined as

τC = inf(t ∈ (0,∞) : V (t) ≤ VC).

The challenge of modeling convertible debt lies in the specification of the conversion
value. First, we present a model where the conversion value is based on a fixed number of



CHAPTER 5. CONTINGENT CONVERTIBLE BONDS: MODELING AND
EVALUATION 123

shares. In this case the stock price processes has to be modeled as well. We label them fixed
share contingent convertible bonds (FSC). Second, we consider a model where the conversion
value is based on the market value of equity, i.e. the number of equity shares depends on
the stock price at conversion. We label them as fixed value convertibles (FVC):

1. FSC (Fixed share convertibles): Conversion value in terms of a fixed number of
shares.

Here, the number of shares granted in exchange for a contingent convertible bond
are fixed in the contract. Therefore, the conversion value depends on the stock market
price at the time of conversion. We will model the stock price endogenously as a frac-
tion of the equity. There are basically two ways to choose the fixed number of shares
granted at conversion. Either this number is fixed at time zero without any reference
to other prices; in this case we obtain a unique price for the FSCs. The alternative is
to express this number in terms of the stock price S(t) at time t = 0. The number of
shares granted at conversion for a single CCB will then equal `

S(0)
. The coefficient `

is a contract term. The value of the corresponding shares at time τC is S(τC). Hence,

at the time of conversion bondholders receive equity valued at its market price `S(τC)
S(0)

.
However, the stock price at time 0 depends on the features of the CCBs, while the
price of the CCBs also depends on the stock price S(0). Hence, the stock price S(0)
and the price of CCBs have to be determined in an equilibrium. We will show that for
this case there exist in general two equilibrium prices for FSCs.

2. FVC (Fixed value convertibles): Conversion value in terms of the market value of
equity.

Bondholders receive equity valued at its market price in the amount of ` at the time of
conversion τC . The coefficient ` is a contract term that determines the fraction of the
conversion value to the face value of the convertible bond at the time of conversion. In
the following we will assume that the value of equity for Vt = VC is sufficient to pay the
conversion value. This makes sense as the bondholders would only agree on a contract,
where it is known a priori that it is possible to fulfill the contractual obligations. There
are basically two ways of how the payments at conversion can be specified. In a model
without jumps both approaches coincide. Suppose that conversion is triggered by a
jump in Vt that crosses the conversion barrier VC . In the first approach, we assume that
the number of shares granted to the contingent convertible bondholders is determined
as if the firm’s value process first touches VC , conversion takes place at this time and
then the firm’s value process jumps to the value VτC . This means the number of shares
granted at conversion for a single bond with face value 1 is n′ = `

S(VC)
, where S(VC)

denotes the stock price given the firm’s value process is equal to VC . The value of the
payment is then n′ · S(τC). We can think of S(VC) as a hypothetical stock price and
show that it is known at time zero when the contract is written. Hence, the number n′
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is a constant and this kind of FVC contract is actually a FSC contract. We will label
it FVC1.

In the second approach the number of shares granted is determined based on the stock
price S(τC) = S(VτC ), i.e. n′ = `

S(VτC )
. In this case conversion takes place after the

firm’s value process has crossed the conversion barrier. If the crossing happens by a
jump, S(VτC ) is smaller than S(VC). This implies that the number n′ is a random
variable, which makes the contract different from the above FSCs. We use the name
FVC2 for this second specification. In this paper we have solved the model for both
cases. The first approach has the advantage that FVCs and FSCs can be incorporated
into the same framework. Hence, in the main part of the text we focus on this contract
specification. In the Appendix we present the detailed solution to the second approach.

In analogy to the normal debt case we denote by PC the total value of the convertible
debt. The fixed coupon paid by a unit contingent convertible debt is cC and the total amount
of the coupon payments equals CC . The maturity profile of the contingent convertible and
the normal debt is the same, but it is straightforward to relax this assumption. In summary
we have the following equations for a bond dD with face value 1 and a contingent convertible
bond dC with face value 1:

τ = inf(t ∈ (0,∞) : Vt ≤ VB) τC = inf(t ∈ (0,∞) : Vt ≤ VC)

PD = pD

∫ ∞
0

Ψ(s)ds =
pD
m

PC = pc

∫ ∞
0

Ψ(s)ds =
pC
m

CD = cDPD CC = cCPC .

Implicitly, we make the following assumption:

Assumption 5.1. The conversion level is always equal or larger than the bankruptcy level:

VC ≥ VB.

If contingent convertible debt is to be used as a regulation instrument, it is sensible to
make the even stronger assumption that VC > VB. In the case where VC ≤ VB the contingent
convertible debt degenerates to straight debt without any recovery payment.

The pricing structure of contingent convertible bonds is similar to that of straight debt
bonds: The price consists of the net present value of the coupon payments until conversion,
the net present value of the firm’s repayment if conversion does not occur and finally the
conversion value if conversion happens before maturity. The two different types of CCBs
considered in this paper distinguish themselves only in the conversion value. The value of a
single contingent convertible bond with face value 1 and maturity t equals

dC(V, VB, VC , t) = E
[∫ t∧τC

0

cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+ conv(V, VB, VC , t)

where conv(V, VB, VC , t) is the conversion value of the respective bond. Following the same
argument as for straight debt we obtain the following proposition:
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Proposition 5.3. The total value of all outstanding convertible debt equals

CB(V, VB, VC) =

∫ ∞
0

pCΨ(t)dC(V, VB, VC , t)dt

=

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ CONV (V, VB, VC)

where CONV is the total conversion value

CONV (V, VB, VC) =

∫ ∞
0

pC ·Ψ(t) · conv(V, VB, VC , t)dt

We have decided to use the terminology “conversion value” instead of “conversion pay-
ment” for CONV . The reason is that CONV is not an actual cash payment like the coupon
payments or the repayment of the principal value if conversion does not take place. The
conversion value represents a redistribution of the equity value among shareholders in the
event of conversion. This perspective is important when evaluating the value of the equity.
A more appropriate but less practicable name for CONV would be “the total value of the
shares granted to contingent convertible bondholders at conversion”.

5.3.2 Consistency and Equilibrium Requirements

The total tax benefits are the sum of the tax benefits of the straight debt and the tax benefits
of the contingent convertible debt:

TB(Vt, VB, VC) = TBD(Vt, VB, VC) + TBC(Vt, VB, VC)

=
c̄CD
r

E
[
1− e−rτ

]
+
c̄CC
r

E
[
1− e−rτC

]
where CD = cDP and CC = cCPC denote the total values of the coupon payments and c̄ is
the tax rate. As before coupon payments are tax deductible. The bankruptcy cost are

BC(Vt, VB) = αE
[
V (τ)e−rτ1{τ<∞}

]
.

The total value of the firm equals

G = Vt + TB −BC.

The value of the equity consists of the total value of the firm minus the payments which the
equity holders have to make to the bondholders. The payments to the holders of straight
debt have a different structure than the payments to contingent convertible bondholders.
The value of a contingent convertible bond could be split into two parts: First, the value
of the coupon payments and the repayment of the principal value if conversion does not
take place. These are actual cash payments. Second, the value of the shares granted at
conversion. The conversion shares given to the contingent convertible bondholders are not a
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cash payment but represent a redistribution among shareholders. The value of the conversion
shares depends on the value of the equity as a whole. For the old shareholders it represents
an actual cost, but it does not change the value of the equity as a whole. The total equity
will be only affected by the value of actual cash payments. Hence, the conversion value
for the various contingent convertible bonds CONV (V, VB, VC) does not directly enter the
valuation formula for the total equity. The term CB − CONV equals the principal value
paid in the case of no conversion and the value of the coupon payments of the contingent
convertible bonds. We define the total equity as

EQ(Vt, VB, VC)

=Vt + TB(Vt, VB, VC)−D(Vt, VB)− (CB(Vt, VB, VC)− CONV (Vt, VB, VC))−BC(Vt, VB).

Note that at any time t the following budget equation has to hold:

Vt + TB = EQ+D + CB − CONV +BC.

In Section 5.3.3 we introduce dilution costs DC(Vt, VB, VC). These are the costs that the
old shareholders have to bear because the claim on equity will be distributed among more
shareholders after the conversion. At the time of conversion there is only one value transfer:
The contingent convertible bondholders receive the conversion value CONV and the old
equity holders suffer from a loss in value equal to the dilution costs DC. As there is no
other value created or destroyed the budget equation requires the dilution costs to equal the
conversion value.

Lemma 5.1. The dilution costs DC coincide with the conversion value CONV .

After having specified the concrete form of the dilution costs and the conversion value,
we will verify in Section 5.3.3 that the above lemma holds in our model. In this sense our
model is consistent. Denote by

EQold(Vt, VB, VC) = EQ(Vt, VB, VC)−DC(Vt, VB, VC)

the value of the equity for the old shareholders.3 By Lemma 5.1 this can be written as

EQold(Vt, VB, VC) = Vt + TB(Vt, VB, VC)−BC(Vt, VB)−D(Vt, VB)− CB(Vt, VB, VC)

In a model without contingent convertible debt the equity holders choose the conversion
barrier VB such that it maximizes the value of the equity subject to the constraint that the
value of the equity is strictly positive for a firm’s value process larger than VB. In a model
including contingent convertible debt the default decision before conversion is made by the
old shareholders. However, if default does not happen before conversion, the contingent
convertible bondholders become equity holders as well. The optimal default barrier for the

3The labeling “total equity” for EQ and “equity for the old shareholders” for EQold is our own notation.
In other papers, e.g. Albul, Jaffee, Tchistyi (2010), the equity for the old shareholders is just called equity.
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old and new equity holders after conversion can be different than for the old shareholders
before conversion. The fact, that the old shareholders cannot commit to their optimal choice
before conversion, will be called the commitment problem. Hence, for a given amount of
debt PD and PC the old shareholders will choose a default barrier that maximizes the value
of their equity subject to the limited liability constraint and the commitment problem:

max
VB

EQold(Vt, VB)

s.t. EQold(V
′, VB) > 0 for all V ′ > VB and s.t. the commitment problem.

In Section 5.5 we will formulate the problem formally and derive a general solution to it.
For a given level of debt PD and PC , the coupon values will be determined at time t = 0
such that all the debt sells at par:

P = D(V0, VB, PD, PC , CD, CC) (5.5)

PC = CB(V0, VB, VC , PD, PC , CD, CC). (5.6)

As the variables VB, CD and CC are determined endogenously, the remaining choice variables
are VC , PD, PC ,m, `, c̄, V0 and r. In the following we will usually suppress the dependence of
the functions on all the parameters and use a short-hand notation where we only implicitly
write the dependence on the variables of interest.

5.3.3 Modeling the Stock Price Process

Stock Price Process without CCBs

A single stock is a claim on a fixed portion of the equity of a firm. Hence, we can define the
stock price process as the value of the equity for the old shareholders divided by the number
of shares.

Definition 5.2. If the capital structure of a firm includes only straight debt, but no contin-
gent convertible debt, the stock price is defined as

St = S(Vt) =
EQdebt(Vt)

n

where n is the number of shares n = EQ(V0)debt/S(0).

Dilution Costs

Shareholders do not only profit from the additional tax benefits from issuing contingent
convertible bonds, but also face the risk of dilution. This creates a tradeoff. In more detail,
at the time of conversion all the cash payments of the contingent convertible bonds, i.e. the
coupon payments and the repayment of the face value, fall to zero. Hence, the total value of
the equity of a firm at conversion is the same as the total value of the equity of an identical
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firm that did not issue any CCBs. At the time of conversion holders of contingent convertible
bonds become equity holders. As this implies that new shares are issued, the value of the
shares of the old shareholders decreases: “The size of the cake stays the same, but is divided
among more people.” Here we want to model the dilution costs for the old shareholders.
Denote by n the number of shares of the old shareholders and by n′ the number of shares of
all the new shareholders after conversion. Hence the costs of dilution DC are defined as

DC(Vt, VB, VC) = E
[

n′

n+ n′
EQ(VτC )e−(r+m)(τC−t)1{τC<∞}1{τC<τ}|Ft

]
.

DC corresponds to the value of the shares of the new shareholders. It is calculated as the
present value of their fraction of the total equity weighted by the maturity profile. Hence,
the value of the equity for the old shareholders equals

EQold(Vt, VB, VC) = EQ(Vt, VB, VC)−DC(Vt, VB, VC).

The main difference between our two different contingent convertible bonds is the number
of shares granted to the bondholders.

Stock Price Process with CCBs

If the capital structure of a firm includes debt and CCBs we define the stock price in the
following way:

Definition 5.3. If Assumption 1 is satisfied, the endogenous stock price process is defined
as

St = S(Vt) =


EQ(Vt)−DC(Vt)

n
if t < τC

EQ(Vt)
n+n′

if τC ≤ t < τ

0 if t ≥ τ

where n is the number of “old” shares

n =
EQ(V0)−DC(V0)

S0

and n′ is the number of “new” shares issued at conversion.4

Note that EQold(Vt) = EQ(Vt) − DC(Vt) is just the value of the equity for the old
shareholders.

4The definition of the stock price implicitly assumes that no new shares can be issued before conversion,
i.e. the number of old shares n at time t = 0 is the same as the number of old shares n at conversion t = τC .
This restrictive assumption is only needed for the evaluation of FSCs. For the evaluation of FVC1 and FVC2
contracts and all the other results in this paper, this assumption is not necessary and can be relaxed.
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5.3.4 Pricing CCBs

Pricing FSCs

The old shareholders own a number of shares that is equal to the value of equity to them
divided by the price of the stock at time t = 0:

n =
EQ(V0)−DC(V0)

S0

.

The number n is fixed at time zero. Note, that the stock price S0 has to be determined
endogenously and will depend on the features of the CCBs. Assume first, that n′ is fixed
and does not depend on S0. The contingent convertible bondholders receive a fixed number
of shares at conversion if and only if conversion and bankruptcy do not happen at the same
time. This condition is captured by τC < τ or equivalently VτC > VB.

Proposition 5.4. If the value of the shares, that holders of a single contingent convertible
bond with face value 1 receive at conversion, is n′S(τ)/PC, then the value of the individual
bond satisfies

dC(V, VB, VC , t) = E

[∫ t∧τC

0

cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+

n′

PC
E
[
S(τC)e−rτC1{τC≤t}1{VτC>VB}

]
.

Under the assumption of an exponential maturity profile ϕ(t) = me−mt the total value of the
convertible debt CB is given by:

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ n′E

[
S(τC)e−(m+r)τC1{τC<∞}1{VτC>VB}

]
.

In Lemma 5.1 we have already noted that CONV (V0) = DC(V0). Hence, instead of
evaluating the conversion value, we will focus on the dilution costs, which are equal to

DC(Vt) =
n′

n+ n′
E
[
EQ(VτC )e−(r+m)(τC−t)1{τC<∞}1{τC<τ}|Ft

]
(5.7)

We will evaluate this expression analytically in Section 5.4.3.
The value of the equity EQ(VτC ) is independent of the contingent convertible bonds as

conversion has already taken place. We confirm that the consistency result in Lemma 5.1 is
satisfied for our choice of the stock price process.

Corollary 5.2. The conversion value equals the dilution costs:

CONV (Vt) = DC(Vt)

Proof. Plugging in the definition of S(t) yields

CONV (V0) =n′E
[
S(τC)e−(m+r)τC1{τC<∞}1{τC<τ}

]
=

n′

n+ n′
E
[
EQ(VτC )e−(m+r)τC1{τC<τ}1{τC<∞}

]
= DC(V0)
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Assume that the number n′ of total shares granted at conversion is expressed in terms of
the stock price. If a single FSCs gives a bondholder `/S0 shares, then the total number of
shares equals

n′ =
PC`

S0

=
n`PC

EQ(V0)−DC(V0)
.

This is an intuitive way of specifying the contract as it just says how much of the face
value of debt are convertible bondholders going to get in terms of the current stock price if
conversion takes place. However, introducing CCBs into the capital structure changes the
stock price. As soon as the agents in the economy anticipate that contingent convertible
capital will be issued they will discount the current stock price by the dilution costs. As
the dilution costs and the stock price at time 0 are interlinked variables, specifying n′ in
terms of S0 will in general lead to two possible equilibrium prices for FSCs. Therefore, it is
undesirable to specify the conversion value of FSCs in terms of the stock price S0, and one
should avoid such a contract design.

Proposition 5.5. If n′ = PC`
S0

, then there exist two different combinations of prices for
{S0, DC(0)}, which satisfy the consistency and equilibrium conditions for FSCs. The dilution
costs DC(V0) at time t = 0 for a contingent convertible bond with such a fixed number of
shares equal:

DC(V0) =
EQ(V0) + n′S0

2

±

√(
EQ(V0) + n′S0

2

)2

− E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
n′S0.

In order to rule out multiple equilibrium prices, the FSC contract has to be specified
such that n and n′ are fixed a priori and chosen independently of S0. After the equilibrium
stock price is realized, we can determine a posteriori for which contract parameter ` the
condition n′ = `PC

S0
is satisfied. In our numerical analysis we will refer to n′ as a fraction of

the face value of debt in terms of the current market value of equity, because it is easier to
interpret. However, this will not be the contract definition but an a posteriori consequence
of the contract specification.

Pricing FVCs

The conversion value of FSCs depends on the stock market price at conversion. FVCs are
designed to avoid this uncertainty and the conversion value is defined as a fraction ` of
the face value of convertible debt. There are basically two ways of how to conceptualize
the conversion value for FVCs. In the first case, which we will label FVC1, we introduce
the hypothetical stock price S(VC), which would be realized if the firm’s value process only
touches but does not jump over the conversion barrier VC . The total number of shares granted
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to the bondholders equals n′ = `PC
S(VC)

. Given certain assumptions about the dynamics of the

firm’s value process the value S(VC) is uniquely defined and known a priori at time 0. Hence,
FVC1s are actually a specific version of FSC contracts. Although the stock price appears
in the definition of n′ we will show that there exists a unique equilibrium price. FVC1 have
the advantage that they are relatively easy to implement.

In the second approach, labeled as FVC2, we try to take into consideration the fact that
if conversion is triggered by a jump in the firm’s value process, the stock price at conversion
S(VτC ) = SτC is lower than the hypothetical stock price S(VC). In particular, it can be so low
that the value of the equity is not sufficient to make the promised payment. If the value of
the equity after conversion is sufficiently large, the bondholder get n′ = `PC

SτC
shares, otherwise

they take possession of the whole firm. Note, that n′ is a random variable in this case, which
makes FVC2 different from FSC contracts. Because of the possibility of complete dilution
at conversion the stock price process has to be modeled differently for FVC2s than for the
other contracts. Most of the derivations for FVC2s are explained in Appendix D.1.

FVC1: In the case of FVC1s we make the assumption that the value of the equity at
conversion is sufficient to make the promised payment. Relaxing this assumption is straight-
forward as the agents would just price in the additional risk. However, it seems sensible
that the agents would usually only agree on a contract where it is known a priori that the
contractual obligations can be fulfilled.

Assumption 5.2. The parameters of the FVC1 contract are chosen such that

EQ(VC) ≥ `PC ,

i.e. the equity value at conversion is sufficient to give shares to the bondholders with a value
equal to the promised payment.

Proposition 5.6. If the value of the shares given to holders of contingent convertible bonds
at conversion is `, the values of the individual bonds of FVC1 under Assumption 5.2 satisfy

dC(V, VB, VC , t) = E

[∫ t∧τC

0

cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+ `E

[
S(τC)

S(VC)
e−rτC1{τC≤t}1{VτC>VB}

]
.

The total value of the convertible debt FVC1 for an exponential maturity profile ϕ(t) = me−mt

under Assumption 5.2 is given by:

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ `PCE

[
EQ(VτC )

EQ(VC)
e−(m+r)τC1{τC<∞}1{VτC>VB}

]
.

Note, that the value of the equity after conversion is independent of any features of the
contingent convertible debt. Hence, we obtain a unique equilibrium price for FVC1 contracts
although the number of new shares n′ is defined with respect to some stock price.
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FVC2: For FVC2s we do not require Assumption 5.2. The conversion value for FVC2s
requires us to distinguish several cases. If τC < τ , i.e. the downward movement of VτC is not
sufficient to trigger bankruptcy, the contingent convertible bondholders receive a payment.
If on the one hand the value of the equity is sufficiently large, they get a number of stocks
such that the value of the total payment equals `PC . If on the other hand the value of
the equity is insufficient to make the promised payment to the contingent convertible bond
holders, they take possession of the whole equity and the old shareholders are completely
diluted out. We assume that the face value of all contingent convertible debt is PC and thus
a bondholder with a bond with face value 1 gets a fraction 1/PC of the value of the equity
EQ(VτC ) after conversion in this case.

Proposition 5.7. If the payment to holders of contingent convertible bonds at conversion is
`, the values of the individual bonds of FVC2 satisfy

dC(V, VB, VC , t) =E

[∫ t∧τC

0

cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+ `E

[
e−rτC1{τC≤t}1{`PC≤EQ(VτC )}1{τC<τ}

]
+

1

PC
E
[
e−rτCEQ(VτC )1{τC≤t}1{τC<τ}1{`PC>EQ(VτC )}

]
.

For an exponential maturity profile ϕ(t) = me−mt the total value of the convertible debt
FVC2 is given by:

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ `PCE

[
e−(m+r)τC1{τC<τ}1{`PC≤EQ(VτC )}

]
+ E

[
EQ(VτC )e−(m+r)τC1{V (τC)>VB}1{`PC>EQ(VτC )}1{τC<∞}

]
.

A detailed treatment of FVC2s is provided in Appendix D.1. In Appendix D.3 we show
that the two contracts FVC1 and FVC2 are identical if no jumps are included in the firm’s
value process. The idea is that without jumps the firm’s value process has to touch the
conversion barrier at the time of conversion, i.e. VτC = VC . As a consequence EQ(VτC ) =
EQ(VC) and thus S(VτC ) = S(VC). Under Assumption 5.2 the number of shares granted
at conversion is `PC

S(VτC )
for FVC2s and `PC

S(VC)
for FVC1s. As both numbers coincide, the two

contracts are the same.
In Appendix D.2 we compare FVC and FSC contracts in terms of the number of shares

n′ granted at conversion for different conversion parameters `.

5.4 Evaluating the Model

5.4.1 Dynamics of the Firm’s Value Process

Now we make some explicit assumptions about the martingale in (5.1) and assume that it
is a Lévy process. Thus V can be expressed as

Vt = V0 exp(Xt) (5.8)
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where X is a Lévy process. The key tool for our analysis will be the Laplace exponent of X.
The moment generating function of a Lévy process is of the form

E[exp(zXt)] = exp(tψ(z)) (5.9)

for some function ψ being analytic in the interior of its domain of definition. The Lévy-
Khintchine representation theorem characterizes a Lévy process, identifying a drift term, a
Brownian motion component and a jump component:

ψ(z) = bz +
1

2
σ2z2 +

∫
R
(ezy − 1− zy1{|y|<1})ν(dy)

where b is the drift, σ corresponds to the Brownian motion component and ν is the Lévy
measure identifying the jumps. The roots of ψ(z) = λ will be of importance in the following.
We can now define the first passage times in terms of X: τ is the first hitting time defined as
τ = τx = inf(t ≥ 0 : X(t) ≤ x) with x = log(VB/V ) and τC = τxC = inf(t ≥ 0 : X(t) ≤ xC)
with xC = log(VC/V ).

For a general Lévy process it is very difficult to characterize the distribution of the
first passage times. Following Chen and Kou (2009) we propose a two-sided jump model
for the evolution of the firm’s assets with a double exponential jump diffusion process.
The main advantage of the double exponential distribution is that it leads to an analytical
solution for various Laplace transforms of the first passage times. Due to the conditional
memoryless property of the exponential distribution we can also analytically evaluate the
Laplace transform of the conversion time for jumps that are too small to trigger default. We
assume that under the risk-neutral measure the value of the firm’s assets V follows

dVt = Vt

(
(r − δ)dt+ σdWt + d

(
Nt∑
i=1

(Zi − 1)

)
− λξdt

)

where N is a Poisson process with constant intensity rate λ. Zi are i.i.d. random variables
and the Yi = log(Zi) possess a double exponential density:

fY (y) = pη1e
−η1y1{y≥0} + qη2e

η2y1{y<0}

where η1, η2, p and q are positive numbers and p+q = 1. The parameters p and η1 correspond
to the upward jumps and q and η2 to the downward jumps respectively. The mean percentage
jump size ξ is given by

ξ = E[Z − 1] = E[eY − 1] =
pη1

η1 − 1
+

qη2

η2 + 1
− 1.

The sources of randomness N , W and Y are assumed to be independent. In order to ensure
that ξ < ∞, we assume that η1 > 1. This condition implies that the average upward jump
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cannot exceed 100%, which is reasonable in reality. Applying Itô’s lemma for jump diffusions
yields

Vt = V0 exp(Xt) = V0 exp

(
bt+ σWt +

Nt∑
i=1

Yi

)
.

where b = r − δ − 1
2
σ2 − λξ and for z ∈ (−η2, η1) the Lévy-Khintchine formula is given by

ψ(z) = bz +
1

2
σ2z2 +

∫
R
(ezy − 1)λfY (y)dy

= bz +
1

2
σ2z2 + λ

(
pη1

η1 − z
+

qη2

η2 + z
− 1

)
.

Note that under the above risk-neutral measure Vt is a martingale after proper discounting,
i.e.

Vt = E
[
e−(r−δ)(T−t)VT |Ft

]
where Ft is the information up to time t. Kou and Wang (2003) prove the following results:

Lemma 5.2. For any ρ > 0 it holds that

E
[
e−ρτ

]
=
η2 − β3,ρ

η2

β4,ρ

β4,ρ − β3,ρ

exβ3,ρ +
β4,ρ − η2

η2

β3,ρ

β4,ρ − β3,ρ

exβ4,ρ

where τ denotes the first passage time of Xt to x and −β3,ρ > −β4,ρ are the two negative
roots of the equation ψ(β) = ρ.

Lemma 5.3. For any ρ > 0 and θ > −η2 it holds that

E
[
e−ρτ+θXτ1{τx<∞}

]
= eθ

(
β4,ρ + θ

η2 + θ

η2 − β3,ρ

β4,ρ − β3,ρ

exβ3,ρ +
β3,ρ + θ

η2 + θ

β4,ρ − η2

β4,ρ − β3,ρ

exβ4,ρ

)
where τ denotes the first passage time of Xt to x and −β3,ρ > −β4,ρ are the two negative
roots of the equation ψ(β) = ρ.

For the evaluation of contingent convertible bonds we need to consider the case where
conversion occurs but the jumps are not large enough to trigger bankruptcy. For this reason
we show the following proposition.
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Proposition 5.8. Assume that Xt follows a Kou process and τ denotes the first passage
time to x < 0, i.e. τ = inf(0 ≤ t : Xt ≤ x). It holds that for y > 0, θ > −η2 and ρ > 0:

E
[
e−ρτ+θXτ1{τ<∞,−(Xτ−x)<y}

]
=

(
η2 − β3,ρ

β4,ρ − β3,ρ

exβ3,ρ +
β4,ρ − η2

β4,ρ − β3,ρ

exβ4,ρ

)
eθx + eθx

η2

θ + η2

(
1− e−(θ+η2)y

)
(1− e−η2y)

·

(
exβ3,ρ

β4,ρ − β3ρ

(
η2 − β3,ρ

η2

β4,ρ − (η2 − β3,ρ)− e−η2y
(η2 − β3,ρ)(β4,ρ − η2)

η2

)

+
exβ4,ρ

β4,ρ − β3,ρ

(
β4,ρ − η2

η2

β3,ρ − (β4,ρ − η2) + e−η2y
η2 − β3,ρ

η2

(β4,ρ − η2)

))

where −β3,ρ > −β4,ρ are the two negative roots of the equation ψ(β) = ρ.

Definition 5.4. The function J is defined as

J(x, θ, y, ρ) =E
[
e−ρτ+θXτ1{τ<∞,−(Xτ−x)<y}

]
,

where x < 0, θ > −η2, y > 0, ρ > 0 and τ = inf(t ≥ 0 : Xt ≤ x). The explicit form of
J(x, θ, y, ρ) is given in Proposition 5.8.

Corollary 5.3. Assume that Xt follows a Kou process and τ denotes the first passage time
to x < 0, i.e. τ = inf(t ≥ 0 : Xt ≤ x). It holds that for y > 0 and ρ > 0

E
[
e−ρτ1{−(Xτ−x)<y}

]
=

exβ3,ρ

β4,ρ − β3ρ

(
η2 − β3,ρ

η2

β4,ρ − e−η2y
(η2 − β3,ρ)(β4,ρ − η2)

η2

)
+

exβ4,ρ

β4,ρ − β3,ρ

(
β4,ρ − η2

η2

β3,ρ + e−η2y
η2 − β3,ρ

η2

(β4,ρ − η2)

)
.

Definition 5.5. The function G is defined as

G(x, y, ρ) =E
[
e−ρτ1{−(Xτ−x)<y}

]
,

where x < 0, y > 0, ρ > 0 and τ = inf(t ≥ 0 : Xt ≤ x). The explicit form of G(x, y, ρ) is
given in Corollary 5.3.

5.4.2 Evaluation of the Debt

Now it is straightforward to derive an expression for the firm’s debt D. The following three
propositions are shown in Chen and Kou (2009).
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Proposition 5.9. The value of the firm’s debt equals

D =
CD +mPD
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VB
V

)β3,r+m

− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VB
V

)β4,r+m
)

+ (1− α)VB

(
β4,r+m + 1

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

(
VB
V

)β3,r+m

+
β3,r+m + 1

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

(
VB
V

)β4,r+m
)

where −β3,ρ > −β4,ρ are the only two negative roots of ψ(β) = ρ and the value is independent
of the specification of the contingent convertible bonds.

Proposition 5.10. If the capital structure does not include any contingent convertible debt
the total value of the firm Gdebt equals

Gdebt = V +
c̄C

r

(
1− β4,r

η2

η2 − β3,r

β4,r − β3,r

(
VB
V

)β3,r

− β3,r

η2

β4,r − η2

β4,r − β3,r

(
VB
V

)β4,r
)

−αVB
(
β4,r + 1

η2 + 1

η2 − β3,r

β4,r − β3,r

(
VB
V

)β3,r

+
β3,r + 1

η2 + 1

β4,r − η2

β4,r − β3,r

(
VB
V

)β4,r
)
.

Recall that if the capital structure does not include any contingent convertible debt the
value of the equity of the firm EQdebt is the difference between the total value of the firm
and the value of its debt:

EQdebt(V, VB) = Gdebt(V, VB)−D(V, VB).

Proposition 5.11. For all V > VB and VB > V ∗B the function EQdebt(V, VB) is a strictly
increasing function in V

∂EQdebt(V, VB)

∂V
> 0

where V ∗B is the optimal default barrier as defined in Section 5.5.

As we will show in Section 5.5 later, the smallest possible default barrier, that we need to
take into consideration is V ∗B. Therefore, Proposition 5.11 is general enough for our purposes.
In order to evaluate the conversion value, we need to calculate the value of the equity at the
time of conversion EQ(VτC ).

Lemma 5.4. The value of the equity at conversion EQ(VτC ) satisfies

EQ(VτC ) = EQdebt(VτC ) =
∑
i

αiV
θi
τC

=
∑
i

V θi
0 αie

X(τC)θi

The coefficients αi and θi are defined in Lemma D.5.

Definition 5.6. The function T : (VB,∞)→ (0,∞) is defined as

T (Vt) = EQdebt(Vt, VB)

Corollary 5.4. The condition EQ(VτC ) ≥ `PC is equivalent to VτC ≥ T−1(`PC).
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5.4.3 Evaluation of the CCBs

Evaluation of FSCs

The only difficulty is to evaluate the dilution costs given by equation 5.7.

Lemma 5.5.

E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
=
∑
i

αiV
θi

0 J

(
log

(
VC
V0

)
, θi, log

(
VC
VB

)
, r +m

)
where αi and θi are as in Lemma 5.4.

Proof. The total equity value is the difference between the total value of the firm and the
value of actual debt payments: In Lemma 5.4 we have shown that EQ(VτC ) has a structure
of the form

EQ(VτC ) =
∑
i

αiV
θi
τC
.

Therefore, calculating E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
boils down to∑

i

E
[
αiV

θi
τC
e−(r+m)τC1{τC<∞}1{τC<τ}

]
=
∑
i

αiV
θi

0 E
[
eθiXτC−(r+m)τC1{τC<∞}1{−(XτC−xC)<log(VC/VB)}

]
.

As a consequence the price of FSCs is given by the following theorem:

Theorem 5.1. The price of FSCs for t < τC equals

CB(Vt) =
CC +mPC
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VC
Vt

)β3,r+m

− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VC
Vt

)β4,r+m
)

+
n′

n+ n′

(∑
i

αiV
θi
t J

(
log

(
VC
Vt

)
, θi, log

(
VC
VB

)
, r +m

))
.

where αi and θi are as in Lemma 5.4.

Proof. By Proposition 5.4, Lemma 5.1 and equation 5.7 the price of the FSC is given by

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+

n′

n+ n′
E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
.
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The first summand corresponds to the value of the coupon payments and the repayment of
the face value if conversion does not take place. The second summand is the value of the
dilution costs. Applying Lemma 5.2, we can explicitly calculate the Laplace transformation
of the conversion time appearing in the first summand. Lemma 5.5 gives us an explicit
expression for the expectation in the second summand.

Evaluation of FVCs

We start with FVC1:

Proposition 5.12. The price of FVC1s for t < τC equals

CB(Vt) =
CC +mPC
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VC
Vt

)β3,r+m

− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VC
Vt

)β4,r+m
)

+
`PC∑
i αiV

θi
C

(∑
i

αiV
θi
t J

(
log

(
VC
Vt

)
, θi, log

(
VC
VB

)
, r +m

))
.

where αi and θi are as in Lemma 5.4.

Proof. By Proposition 5.6 the price of FVC1s is given by

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ `PCE

[
EQ(VτC )

EQ(VC)
e−(m+r)τC1{τC<∞}1{VτC>VB}

]
.

The first summand is the value of the coupon payments and the repayment of the face
value if conversion does not happen. The second term corresponds to the conversion value.
Lemma 5.2 allows us to calculate the expectation in the first term. We combine Lemma
5.4 and Lemma 5.5 to derive an expression for the second summand. Note, that EQ(VC) is
nonrandom and thus can be taken out of the expectation.

Next, we deal with FVC2:

Theorem 5.2. The price of FVC2s for t < τC equals

CB =
CC +mPC
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VC
Vt

)β3,r+m

− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VC
Vt

)β4,r+m
)

+ `PC ·G
(

log

(
VC
Vt

)
, log

(
VC

max(T−1(`PC), VB)

)
,m+ r

)
1{VC>T−1(`PC)}

+
∑

αiV
θi
t

(
J

(
log

(
VC
Vt

)
, θi, log

(
VC
VB

)
,m+ r

)
− J

(
log

(
VC
Vt

)
, θi, log

(
VC

T−1(`PC)

)
,m+ r

)
1{VC>T−1(`PC)}

)
1{VB<T−1(`PC)}
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5.5 Optimal Default Barrier

Only Straight Debt without Contingent Convertible Debt

Choosing the optimal debt level PD and the optimal bankruptcy trigger VB are two entangled
problems. When a firm chooses P in order to maximize the total value of the firm at time
0, the decision depends on VB. Vice versa, the optimal default trigger VB is a function of
the amount of debt PD. Following Leland (1994a+b) PD and VB are chosen according to
a two-stage optimization problem. In the first stage, for a fixed PD, equity holders choose
the optimal default barrier by maximizing the equity value subject to the limited liability
constraint. In a second stage, the firm determines the amount of debt PD that maximizes
the total value of the firm. In this section, we will focus on the first stage problem. The
solution to the whole problem is presented in Section 5.10. First, we summarize how the
first stage problem is solved in the case with only straight debt and in the next subsection
we extend the analysis to a firm that issues contingent convertible debt and straight debt.
The maximization problem is

max
VB

EQdebt(Vt, VB) such that EQdebt(V
′, VB) > 0 ∀V ′ > VB.

The case of only straight debt was already considered in Chen and Kou (2009):

Proposition 5.13. The optimal default barrier without CCBs solves the smooth pasting
condition (

∂(V + TBD(V, VB) +BC(V, VB)−D(V, VB))

∂V
|V=VB

)
= 0

and equals:

V ∗B =
CD+mPD
r+m

β3,r+mβ4,r+m − c̄CD
r
β3,rβ4,r

α(β3,r + 1)(β4,r + 1) + (1− α)(β3,r+m + 1)(β4,r+m + 1)

η2 + 1

η2

.

In the following we want to outline the arguments presented in Chen and Kou (2009).

Proof. Denote by V ∗B the solution to

∂EQdebt(V, VB)

∂V
|V=VB= 0.

By the formula for the equity without contingent convertible debt we can easily verify that

V ∗B =
CD+mPD
r+m

β3,r+mβ4,r+m − c̄CD
r
β3,rβ4,r

α(β3,r + 1)(β4,r + 1) + (1− α)(β3,r+m + 1)(β4,r+m + 1)

η2 + 1

η2

.

Define H(V, VB) by

H(V, VB) =
∂

∂VB
EQ(V, VB).

The proof consists of the following steps:
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1. The optimal VB satisfies VB ≥ V ∗B.

2. It holds that ∂EQdebt(V,VB)
∂V

≥ 0 for all V ≥ VB ≥ V ∗B, i.e. the equity value is increasing
in the firm’s value.

3. It holds that H(V, VB) ≤ 0 for all V ≥ VB ≥ V ∗B. Hence

EQdebt(V, y1) ≥ EQ(V, y2) for all V ∗B ≤ y1 ≤ y2 ≤ V ,

i.e. the firm will choose the lowest default barrier that satisfies the non-negativity
constraint

First, by definition EQdebt(V
∗
B, V

∗
B) = 0 and by step 2 EQdebt(V, V

∗
B) is nondecreasing in V .

Thus V ∗B satisfies the non-negativity constraint EQdebt(V
′, V ∗B) ≥ 0 for all V ′ ≥ V ∗B. Second,

any VB ∈ (V ∗B, V ] cannot yield a higher equity value because of step 3.

Case 1: Optimal default barrier VB for exogenous conversion
barrier VC

The optimization problem for the old shareholders changes, when contingent convertible
bonds are included in the capital structure. We have to consider two different “notions of
equity” here: The value of the equity for the old shareholders equals

EQold(V, VB, VC) = V + TBD + TBC −BC −D − CCB.

The value of the debt excluding any features of the contingent convertible bonds is

EQdebt(V, VB) = V + TBD −BC −D.

The old shareholders will choose the default barrier VB such the value of their equity EQold is
maximized subject to the constraint, that EQold has to be nonnegative. There are basically
two different solutions to this optimization problem. Either the resulting default barrier VB is
larger than the conversion barrier VC or smaller. After conversion, the contingent convertible
bondholders will become equity holders and the optimization problem of the equity holders
is the same as in the case of only straight debt. If the old shareholders decide on a default
barrier VB that is smaller than VC , they will not be able to commit to it as after conversion
V ∗B (see last subsection) will be chosen. However, it is possible that the value of the equity for
the old shareholders EQold(V, V

∗
B, VC) becomes negative for V > VC . As the old shareholders

anticipate this, they will choose a default barrier larger than VC in this case.
More formally, the optimization problem is formulated as follows:

Definition 5.7. If the capital structure includes straight debt and contingent convertible
bonds, the old shareholders choose VB to maximize

max
VB

EQold(V, VB, VC) such that EQold(V
′, VB, VC) > 0 for all V ′ > VB.

subject to the commitment problem that VB = V ∗B if VB < VC.
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We need to clarify what happens in the case where the default and conversion barrier
are crossed at the same time for VB < VC . Passing both barriers simultaneously can occur
because a jump that crosses the conversion barrier is large enough to cross the default barrier
as well. We treat the crossing as if it happened sequentially. First the conversion barrier is
passed and the contingent convertible bondholders become equity holders. For the equity
holders, consisting of the old and new shareholders, the optimal default barrier will be V ∗B,
but not the former barrier VB. Therefore the crossing of VB will not trigger default. Default
happens only, if the new barrier V ∗B is passed.

Next, we need to clarify how to treat the case VB ≥ VC . If default happens before
conversion, all the payments linked to the contingent convertible bonds are nil as well.
Hence, we will assume that value of the payments of a contingent convertible bond are the
same as if VB = VC :

CCB(V, VB, VC) = CCB(V, VB, VB) for VB > VC

How does the commitment problem affect the optimal choice of VB in this case? If VB ≥ VC
and a jump crosses both barriers at the same time, we treat this case as if the crossing had
happened sequentially. First, the default barrier is passed and the firm defaults. Second, the
conversion barrier is passed. But as default has already taken place, the value of the equity
is zero and the contingent convertible bondholders cannot be compensated with stocks. In
particular, the contingent convertible bondholders cannot change the default barrier to V ∗B
as in the previous case. If the default barrier and conversion barrier coincide, i.e. VB = VC ,
we can either assume that default happens first or that conversion takes place first. We have
decided, that first default should take place and after that we deal with the conversion. This
is a purely technical convention, which does not affect any of our main results qualitatively,
but simplifies the exposition.

We will now show, that there are only two possible solutions to the optimization problem.

Theorem 5.3. There are only two possible solutions for the optimal default barrier. Either
the optimal default barrier coincides with the optimal default barrier with only straight debt
or it equals the maximum of the conversion barrier and V∗∗B :VB = V ∗B or VB = max(VC , V

∗∗
B ),

where

V ∗∗B =

CD+CC+m(PD+PC)
r+m

β3,r+mβ4,r+m − c̄(CD+CC)
r

β3,rβ4,r

α(β3,r + 1)(β4,r + 1) + (1− α)(β3,r+m + 1)(β4,r+m + 1)

η2 + 1

η2

.

V ∗∗B equals the optimal default barrier of a firm with only straight debt with face value PD+PC
and coupon CD + CC. If

EQold(V, V
∗
B, VC) ≥ EQdebt(V, V

∗∗
B , PD + PC , CD + CC) for all V ≥ VC

for V ∗∗B > VC > V ∗B or

EQold(V, V
∗
B, VC) ≥ 0 for all V ≥ VC.
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for V ∗B < V ∗∗B ≤ VC then

VB = V ∗B

otherwise

VB = max(VC , V
∗∗
B ).

The intuition behind the proof is the following. V ∗B can only be the optimal default barrier,
when it is feasible, i.e. the equity value of the old shareholders is always positive before
conversion EQold(V, V

∗
B, VC) > 0 for all V > VC . Even, when it is feasible to choose V ∗B, it

may be optimal for the old shareholders to default before conversion. We show that the equity
value of the old shareholders for VB > VC is the same as for a firm that issues only straight
debt in the amount PD + PC with coupon CD + CC : EQold(V, VB, VC , PD, PC , CD, CC) =
EQdebt(V, VB, PD + PC , CD + CC). The optimal default barrier for this amount of straight
debt is V ∗∗B . If V ∗∗B > VC and EQdebt(V, V

∗∗
B , PD + PC , CD + CC) > EQold(V, V

∗
B, VC), then

the old shareholders will prefer to default before conversion. However, if V ∗∗B < VC , the old
shareholder can get at most EQdebt(V, VC , PD +PC , CD +CC) if they decide to default before
conversion, i.e. the optimal default barrier before conversion is VC itself. However, we can
show that in this case the old shareholders will always prefer to default after conversion, i.e.
take VB = V ∗B if it is feasible.

We are particularly interested in the case, where the default and conversion barrier are
not the same. Hence, we assume

Assumption 5.3. The default barrier V ∗B < VC satisfies the no-early-default condition: For
V ∗∗B ≤ VC

EQold(V, V
∗
B, VC) ≥ 0 for all V ≥ VC

and for V ∗∗B > VC

EQold(V, V
∗
B, VC) ≥ EQdebt(V, V

∗∗
B , PD + PC , CD + CC) for all V ≥ VC.

The no-early-default condition is composed of two statements: First, V ∗B is a feasible
default barrier, i.e. it satisfies the limited liability constraint. Second, it is never profitable
for the old shareholders to default before conversion, i.e. the value of the equity for the old
shareholders for V ∗B is always larger than the corresponding value for the optimal default
barrier larger than the conversion barrier. Assumption 5.3 is easily testable for a given
amount of debt.

Proposition 5.14. If Assumption 5.3 is satisfied, then the firm chooses the same default
barrier as in the case without contingent convertible capital:

VB = V ∗B.

Lemma 5.6. For a fixed amount of debt PD and PC and fixed coupon values CD and CC the
default barrier V ∗∗B is always larger than V ∗B.
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Case 2: VB and VC chosen optimally

In the previous subsection we assumed that VC is exogenously given. In this subsection we
treat VC as a choice variable. From a decision theoretical point of view, VB and VC are
different. VB is not agreed on explicitly, when the debt is issued. By the very nature of
debt, default happens when the cash payments cannot be made anymore. As long as the
equity value is positive (EQold > 0), shareholders can (and will) always issue more equity to
avoid default. When EQold < 0, the firm defaults. Hence, VB is agreed on only implicitly as
all agents anticipate the shareholders’ actions. If the parameters change, e.g. more debt is
issued, the default barrier VB changes as well, as it is not a contract term. In contrast, VC
is specified in the contract a priori and cannot be changed a posteriori.

We will analyze two cases: In the first case the shareholders choose VC to maximize the
value of their equity and in the second case VC is determined to maximize the total value of
the firm. The main result of this section is that contingent convertible debt can degenerate
to straight debt without recovery payment. In this case the conversion barrier will coincide
with the default barrier V ∗∗B . If conversion takes place before default, the optimal conversion
barrier of the shareholders is strictly higher than the optimal conversion barrier for the firm
as a whole.

First, we consider the two-dimensional optimization problem of the shareholders. We will
simplify it to a two-stage optimization problem. The first stage is to choose VB optimally
for a given VC subject to the commitment problem, i.e. we have the same problem as in
the previous subsection. The second stage is to choose a VC , that maximizes the equity
value for the old shareholders. However, the solution may not be unique. We adopt the
convention that the smallest possible conversion barrier is chosen by the old shareholders if
the solution is not unique. This is motivated by the fact, that the shareholders have also
additional costs from dilution which are not explicitly modeled here, e.g. less control over
the company. Hence, a lower conversion barrier should be preferred. In summary, the second
stage optimization problem is

VC = inf{arg max
VC

EQold(V, VB(VC), VC) s.t. V ≥ VC ≥ VB(VC)}

Define V̄C as the smallest conversion barrier, such that the limited liability constraint for V ∗B
is satisfied:

V̄C = inf{VC ≥ V ∗B : EQold(V, V
∗
B, VC) ≥ 0 for all V ≥ VC}.

This infimum exists as the above set is non-empty (e.g. VC = V is included in the set).
Next, we define V ∗C ≥ V̄C as the smallest conversion barrier that maximizes the value of the
equity of the old shareholders for the default barrier V ∗B:

V ∗C = inf{arg max
VC :V≥VC≥V̄C

EQold(V, V
∗
B, VC)}.

Note, that EQold(V, V
∗
B, VC) is a continuous function in VC and the set over which we are

maximizing is compact. Hence, a maximum exists. The infimum of the nonempty set is
well-defined and unique.
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Proposition 5.15. Assume that the shareholders choose {VB, VC} according to the two stage
optimization problem in order to maximize EQold. If

EQold(V, V
∗
B, V

∗
C) ≥ EQdebt(V, V

∗∗
B , V ∗∗B ) for all V > V ∗∗B

then the optimal solution is

VB = V ∗B and VC = V ∗C ,

otherwise

VB = V ∗∗B and VC = V ∗∗B

Now we change the optimization problem and consider the case where VC is chosen to
maximize the total value of the firm. This affects only the second stage, while the first stage
remains unaffected:

VC = inf{arg max
VC

G(V, VB, VC) s.t. V ≥ VC ≥ VB(VC)}

Proposition 5.16. Assume that VC is chosen to maximize the total value of the firm in a
second stage. If G(V, V ∗B, V̄C) > G(V, V ∗∗B , V ∗∗B ) for all V > V ∗∗B , then the optimal solution is

VB = V ∗B and VC = V̄C ,

otherwise

VB = V ∗∗B and VC = V ∗∗B

Note, that in the case where VB = V ∗B, the optimal conversion barrier for the old equity
holders is higher than the conversion barrier that is optimal for the firm as a whole. The
reason is that the firm and the old shareholders face different tradeoffs. The total value of
the firm is strictly increasing in a lower conversion barrier as a late conversion means more
tax benefits. The old shareholders also profit from a late conversion as it implies more tax
benefits and a lower conversion value. However, there is also a cost to the old shareholders
if conversion takes place later, as the coupon and face value payments for the contingent
convertible bonds increase. Therefore, it is in general not optimal for the old shareholders
to choose the lowest possible conversion barrier.

The key result of this section is the following: If the conversion barrier is chosen en-
dogenously by the firm, the contingent convertible bonds could degenerate to straight debt
without recovery payment. In this case the optimal default barrier V ∗∗B will be larger than
V ∗B for the same face value of debt and the same coupon payments. As we will discuss in
Section 5.10, a higher default barrier implies a higher default risk. Thus, a regulator prefers
a lower default barrier. Therefore, this section gives a strong argument for VC being fixed
exogenously by the regulator such that the contingent convertible debt does not degenerate
to debt without any conversion payment. Hence, in the following we focus on an exogenously
given VC which satisfies the no-early-default condition from Assumption 5.3.
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5.6 Conversion Triggered by Observable Market

Prices

5.6.1 Stock Price as a Sufficient Condition for Conversion

The firm’s value process is in general not observable. Our model so far has specified the
event of conversion in terms of the firm’s value process. In this subsection we want to
analyze whether conversion could also be specified in terms of the observable stock price.

The stock price process St can be expressed as a function of Vt. Recall that in the case
of a firm that has not issued any contingent convertible bonds, but only straight debt, the
relationship is very simple:

St =
EQ(Vt)

n
.

As ∂EQ(Vt)/∂Vt > 0 (see Proposition 5.11), the stock price is a strictly increasing function
in the value of the firm’s assets. If the firm also issues contingent convertible bonds, the
situation becomes more complicated. In Section 5.3.3 we have defined the stock price St =
S(Vt) as a function of Vt:

St = S(Vt) =

{
EQold(Vt)

n
= EQ(Vt)−DC(Vt)

n
if t < τC

EQ(Vt)
n+n′

if τC ≤ t < τ

We have shown that the dilution costs equal the conversion value for all specifications of
CCBs. Hence, it follows for all types of CCBs that

EQ(VτC )−DC(VτC ) =
n

n+ n′
EQ(τC).

Hence, the stock price is a continuous function in Vt, even when we include contingent
convertible bonds. Given our closed form solutions for the conversion value and the dilution
costs we can give an explicit formula for the stock price as a function of Vt. However, if we
include contingent convertible debt, EQold(Vt) and therefore also S(Vt) are not necessarily
strictly increasing functions in Vt any more. First, we consider the special case, where S(.)
is still a strictly increasing function.

Assumption 5.4. Assume that the mapping between St and Vt is strictly increasing for
Vt > VB. This implies that the mapping S(.) is invertible for V > VB and its inverse S(.)−1

is strictly increasing as well.

Proposition 5.17. Under Assumption 5.4 the stock price is a sufficient statistic for con-
version, i.e.

τC = inf{t ≥ 0 : Vt ≤ VC} = inf{t ≥ 0 : St ≤ SC} with probability 1

with SC = S(VC).
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Proof. Obviously, Vt ≤ VC implies St ≤ SC . As S(.) is invertible with a strictly increasing
inverse, St ≤ SC also implies Vt ≤ VC .

Corollary 5.5. If Assumption 5.4 is satisfied, we can base the conversion event on the stock
price and obtain a unique pricing equilibrium. The prices for the different CCBs, which are
presented in Section 5.4.3, are still valid.
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Figure 5.1: Stock price as a function of the firm’s value process.

The situation changes if Assumption 5.4 is violated.5 In Figure 5.1 we plot the stock price
as a function of the firm’s value process for two different FVC1 contracts. In the right plot
Assumption 5.4 is satisfied. However, as we can see from the left plot, there exists parameter
values such that S−1(St) = {V L

t , V
M
t , V H

t } contains three elements, i.e. the stock price St is
the equilibrium price for the firm’s values V L

t < V M
t < V H

t . Particularly problematic is that
V L
t < VC < V H

t , i.e. the event of conversion and not conversion are consistent under a certain
stock price. If conversion is based on the stock price and the stock price is a nonmonotonic
function of the firm’s value process, then the prices cannot be evaluated within our modeling
framework.

More formally, define a conversion triggering stock price SC . Next, we define the conver-
sion time based on observables as

τ̃C = inf{t ≥ 0 : S̃t ≤ SC}

5Sundaresan and Wang (2010) present a structural model for CoCo Bonds, in which conversion is based
on the stock price process. They claim that, in order to obtain a unique equilibrium, mandatory conversion
must not result in any value transfer between equity and CoCo holders (Theorem 1). However, their claim
is wrong. A pricing equilibrium can exist and be unique if the trigger price and conversion ratio are chosen
independently. The only crucial assumption is that the mapping between the stock price and the firm’s assets
is strictly monotonic. Sundaresan and Wang also illustrate their argument in a two period model. However,
they are just stating, that we need a monotonic relationship between the stock price and the firm’s value
to obtain a unique pricing equilibrium. In a two period model this condition coincides with their stronger
condition that there is no value transfer between shareholders and CoCo holders.
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where S̃t is the stock price process. This can be used to define a new CCB contract C̃B,
which is identical to the former one except for the conversion time. Hence, the equity ẼQ
and stock price function S̃(V ) under this new conversion time change as well. Note, that as
the CCB price now explicitly depends on the stock price process (through τ̃), an equilibrium
stock price has to be the solution to the equation S̃t = S̃(Vt). In more detail, an equilibrium
stock price is a function S̃(.) : (VB,∞) → R+

0 , that solves the following equation for all
Vt ∈ (VB,∞):

n · S̃(Vt) =EQdebt + T̃BC(VT )− C̃B ⇔

n · S̃(Vt) =EQdebt +
c̄CC
r

E
[
1− e−rτ̃C

]
−
(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τ̃C

]
− E

[
n′S̃(Vτ̃C )e−(m+r)τ̃C1{τ̃C<τ<∞}

]
This is a fix point problem. However, the fix point in this case is a function. In order
to prove existence and uniqueness of a solution we need to apply fix point theorems for
infinitely dimensional Banach spaces. We can show, that if we restrict the set of possible
solutions to functions S̃(Vt) for which the conversion time can be expressed in the form
inf{t ≥ 0 : Vt ≤ VC} for some VC , then it is possible that no equilibrium exists. If we
simplify the model to discrete time, we can show that multiple solutions can exist. It seems
to be a nontrivial problem to make a general statement about the existence and uniqueness
of a solution. For this reason we will propose different observable prices as conversion triggers
in the next subsection, which do not suffer from this shortcoming.

5.6.2 Conversion based on credit spreads and credit default
swaps

In this paper we have developed a consistent and complete model for CCBs where the event
of conversion is based on the unobserved firm’s value. For practical purposes we need to
specify conversion in terms of an observable variable. As we have seen in the last subsection,
defining the event of conversion in terms of the stock price will only lead under Assumption
5.4 to the same pricing formulas as a model where conversion is based on the firm’s value
process. The reason is that the stock price implicitly depends on the features of the CCBs.
As a consequence it is possible that a particular stock price is consistent with two different
firm’s values. Hence, the stock price is in general not a sufficient statistic for the firm’s value
process. Our goal is it to find an observable variable that could fully reveal the firm’s value
process. We propose the credit spread and the risk premium of a portfolio of credit default
swaps (CDS). As we will show, both, the credit spread and the risk premium for CDSs, are
not affected by the features of CCBs and this will allow us to use them as a sufficient statistic
for the firm’s value process.

First, we prove that the credit spread fully reveals the stock price. The credit spread is
defined as the risk premium between a risky and an identical risk-free bond.
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Definition 5.8. The price of a unit default-free coupon bond with face value 1, maturity t
and coupon c is denoted by

b(c, t) =

∫ t

0

ce−rsds+ e−rt.

Lemma 5.7. The aggregated total value of default-free bonds for a firm that issues p default-
free unit bonds with maturity profile ϕ(t) = me−mt equals

B(C) =
C + Pm

m+ r

with C = Pc and P = p/m.

Proof.

B(C) =

∫ −∞
0

pΨ(t)b(c, t)dt =

∫ −∞
0

pc

(
1− e−rt

r

)
e−mtdt+

∫ ∞
0

pe−rte−mtdt

= pc

(
1

mr
− 1

r(m+ r)

)
+

p

m+ r
= pc

1

m(m+ r)
+

Pm

m+ r
.

The credit spread π is defined as the difference in the coupon payments of a risky and
an identical risk-free unit bond, that trade at the same price:

b(c, t) = dD(V, VB, c+ π, t)

We will first look at an aggregated credit spread Π, i.e.

B(C) = D(V, VB, C + Π)

where we assume that the portfolio of risky and risk-free bonds have the same face value PD
and maturity profile.

Lemma 5.8. The aggregated credit spread Π equals

Π = CD − C̃

where CD is the total coupon value of the risky debt and

C̃ = D(V, VB, CD)(m+ r)− PD ·m

Proof. The result follows from

D(V, VB, CD) = B(C̃) =
C̃ + PDm

m+ r
.
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Recall that CD = PD · cD. We conclude: The credit spread of a single bond equals

π = cD −D(V, VB, CD)
m+ r

PD
+m

Economically, it only makes sense to consider positive spreads. A necessary condition is
that the recovery payment in the case of default has a lower present value than the repayment
of the face value.

Assumption 5.5. In the following we assume that the value of the total straight debt, if it
was risk-free, is larger than total value of the risky debt:

B(CD) > D(V, VB).

Assumption 5.5 has an important implication:

Lemma 5.9. Assumption 5.5 implies that the value of the total straight debt, if it was risk-
free, is larger than the value of the largest possible recovery payment:

B(CD) > D(V, VB) ⇒ CD +mPD
r +m

> (1− α)VB.

If we want to make a statement about the relationship between the credit spread π and
the firm’s value process, we need to analyze the dependency of D(V, VB) on V .

Lemma 5.10. If the condition CD+mPD
r+m

≥ η2

η2+1

β3,r+m+1

β3,r+m
(1− α)VB is satisfied, then the value

of the straight debt is an increasing function in the firm’s value:

∂D(V )

∂V
> 0 for all V ≥ VB.

Note that η2

η2+1

β3,r+m+1

β3,r+m
> 1. This means, that the condition in the above lemma is

stronger than Assumption 5.5. However, as the next lemma shows, it will always be satisfied
in our case.

Lemma 5.11. If the default barrier is chosen optimally as VB = V ∗B (i.e. VB is chosen
optimally by the shareholders as in the case with only straight debt), then the condition

CD +mPD
r +m

≥ η2

η2 + 1

β3,r+m + 1

β3,r+m

(1− α)VB

is always satisfied.

Now we can completely characterize the relationship between π and V .
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Corollary 5.6. If the default barrier is chosen as VB = V ∗B, the credit spread π(V ) as a
function of the firm’s value process is strictly decreasing:

∂π

∂V
< 0 for all V ≥ VB.

Our goal was it to express the conversion trigger in terms of an observable process. The
next theorem shows that the credit spread is a suitable candidate.

Theorem 5.4. Assume that VB = V ∗B. There exists a unique value πC such that π(VC) = πC.
If the conversion time is defined as

τ ∗C = inf(t ∈ [0,∞) : π(Vt) ≥ πC)

we get exactly the same evaluation formulas for CCBs as in the case where the conversion
time is defined as

τC = inf(t ∈ [0,∞) : Vt ≤ VC).

Proof. As π(V ) is strictly decreasing on [VB,∞) and VC > VB, existence and uniqueness of
πC follow. Furthermore, the strict monotonicity implies that with probability 1

{t ∈ [0,∞) : Vt ≤ VC} = {t ∈ [0,∞) : π(Vt) ≥ π(VC)} = {t ∈ [0,∞) : π(Vt) ≥ πC}

holds.

Another sufficient statistic for the firm’s value process is the risk premium of CDSs. A
credit default swap is an agreement that the seller of the CDS will compensate the buyer in
the event of a loan default. The buyer of the CDS makes a series of payments to the seller
and, in exchange, receives a payoff if the loan defaults. We define the CDS fee as π̃. For
a unit straight debt bond with face value 1 and maturity t the CDS risk premium has to
satisfy ∫ t

0

π̃e−rsds = b(t, cD)− dD(V, VB, t).

This means that a CDS together with a defaultable bond has the same value as an otherwise
identical default-free bond.

In the following analysis we construct an index, which is a strictly monotonic function in
the firm’s value process. Our index is a portfolio of CDS contracts such that the whole debt
is “insured”. For this purpose, we have to make the weak assumption that a CDS for a risky
bond with every possible maturity is issued. It is important to note that this portfolio, that
fully insures the aggregated debt, does not need to actually exist. As long as we observe
market prices for CDS contracts for every possible maturity, we can calculate the price of
our artificial index. The price of the portfolio is a weighted average of the CDS prices, where
the different maturities have the same weights as in the debt portfolio.
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Proposition 5.18. The risk premium for credit default swaps on the aggregated debt satisfies
the following equation:

π̃
PD
m+ r

= (B(CD)−D(V, VB)) .

Proof. Aggregation yields:∫ ∞
0

pD

∫ t

0

π̃e−rsdsΨ(t)dt =

∫ ∞
0

pD(b(t, cD)− dD(V, VB, t))Ψ(t)dt.

We only need to show the statement for the LHS.∫ ∞
0

pD
π̃

r

(
1− e−rt

)
e−mtdt = π̃pD

1

m(m+ r)
= π̃

PD
m+ r

.

This allows us to completely characterize the relationship between π̃ and V :

Proposition 5.19. If the default barrier is chosen as VB = V ∗B, the CDS risk premium π̃(V )
as a function of the firm’s value process is strictly decreasing:

∂π̃

∂V
< 0 for all V ≥ VB.

By the same argument as in Theorem 5.4 we conclude that conversion can be based on
the CDS risk premium.

One of the arguments of critics of CoCo-Bonds was that the conversion event cannot be
based on the observable stock price process. Indeed, there exist parameter values, for which
our evaluation formulas based on the firm’s value process and a model where conversion
is triggered by movements in the stock price, differ. However, we have shown that the
unobservability of the firm’s value process can be circumvented by using credit spreads or
the CDS risk premium. Credit spreads have the same advantages as stock prices as they
constantly adjust to new information in contrast to accounting triggers. As credit spreads
are not affected by the features of CCBs, they are a sufficient statistic for the firm’s value
process. Thus, defining the conversion event in terms of credit spreads is equivalent to using
the firm’s value process. The same holds for CDS risk premiums.6

6A special case are firms that are “too big to fail” (TBTF). As debt of these firms is implicitly protected
by a government guarantee, the credit spread should be zero, i.e. the debt should be considered to be risk
free. However, even the big banks, that enjoyed this government guarantee, had to pay a risk premium on
their debt during the past crisis. This implies that the debt of TBTF firms is not completely insured. Either
there is some uncertainty about the government bail-out taking place or debt holders fear a hair cut after a
bail-out. In either case, the credit spread as a sufficient statistic for the firm’s value process works. Assume
for example that the loss after default for unprotected debt is α = 0.5. If the probability of a bail-out is 80%,
then the expected bankruptcy loss of the debt is α̃ = 0.8 · 0 + 0.2 · 0.5 = 0.1. If on the other hand a bailout is
certain, but a hair cut of 10% is to be expected, the expected bankruptcy loss of the debt is α̃ = 0.1. Either
way, we could apply the methods of this section, where we replace α with α̃ in the formula for the debt.
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5.7 Numerical Examples

In this subsection we will calculate several scenarios numerically and discuss their interpre-
tations. For the computations the values of the following parameters are fixed:

V0 = 100, r = 7.5%, δ = 7%, α = 50%, c̄ = 35%.

These parameter values are similar to those used by Leland (1994a), Leland and Toft (1996)
and Hilberink and Rogers (2002) and are chosen to be consistent with the U.S. environment.

We display the spread of normal debt and contingent convertible bonds as a function of
log-maturity. By letting log(m−1) vary between -4 to 10 we receive mean maturity profiles
from about a week to 1000 years. For example a log-maturity log(m−1) of 1 corresponds to
an average maturity of 1

m
= 2.7 years. The spread here is defined as an aggregate spread,

i.e.

spread =
CD
PD
− r

for traditional debt and respectively

spreadC =
CC
PC
− r

for contingent convertible debt.
We consider three different firms. The parameters of the firm’s value process are chosen

such that the amount of “uncertainty” for all three firms is the same, i.e. the quadratic

variation is kept constant: 〈log
(
Vt
V0

)
〉 = σ2 + 2λ

(
p
η2

1
+ 1−p

η2
2

)
= 0.25

1. “No jumps”: σ = 0.25

2. “Infrequent large jumps”: σ = 0.15, η1 = 2, η2 = 2, p = 0.5, λ = 0.2.
On average every five years the firm’s value jumps. With 50% probability the firm
losses one third of its value, while with 50 % probability it gains one third.

3. “Frequent moderate jumps”: σ = 0.15, η1 = 10, η2 = 10, p = 0.25, λ = 0.5.
On average every two years the firm’s value jumps. With 75% probability the firm
losses 1/11 of its value, while with 25% probability it gains 1/11.

We analyze the aggregate credit spreads and the dilution costs for different choices of the
conversion value parameter `, the conversion barrier VC and the amount of straight debt and
contingent convertible debt. For the straight debt we consider three different levels of debt
PD = 10, 30 and 40 and for the contingent convertible debt we vary PC = 10 and PC = 40.
The value of the firm’s assets is hold constant, which means that we swap debt respectively
CCBs for equity. For Figure 5.2 to 5.10 we assume that for every maturity the coupon values
are determined such that the debt sells at par. This can be interpreted as the case of a firm
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that creates a new capital structure. In Figure 5.11 to 5.16 we fix the coupon payments such
that the debt sells at par at time 0 for V0 = 100. Here we think of a firm that has set up
its capital structure at time t = 0 and we follow the dynamics of the value of its assets over
time.

5.7.1 Comparing FVC and FSC contracts

In Figure 5.2 we plot the spread and the default and conversion barrier for a firm without
jumps. The conversion ratio ` of the FVC1 contract is set to 1, i.e. the Coco bondholders
receive equity at conversion which has the same market value as the face value of the CCBs.
The most striking result is that the spread of the CCBs is completely independent of the
capital structure and equal to zero. This result illustrates that a model without jumps
produces unrealistic results.
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Figure 5.2: “No jumps”:
FVC1 spread as a function of maturity
for different levels of debt and different
conversion barriers. The parameters are
` = 1, PC = 10, PD = 10, 30, 40 and
VC = 20, 60, 80.
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Figure 5.3: “Frequent, moderate jumps”:
FVC1 spread as a function of maturity
for different levels of debt and different
conversion barriers. The parameters are
` = 1, PC = 10, PD = 10, 30, 40 and
VC = 20, 60, 80.

The humped-shaped form for normal debt was already found by Leland and Toft. A
higher curve corresponds to a higher leverage in terms of normal debt. This makes sense as
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for a larger leverage the default barrier is higher which in turn implies a higher default risk.
Therefore the spread as a risk premium is also higher. Firms with low levels of debt have a
small spread, which increases with maturity. These firms are far away from the bankruptcy
level VB and thus the credit spread as a measurement of risk is low. As maturity is growing
the firm has more time to approach the critical level VB and thus the spread increases. As the
leverage increases the spread curve becomes more humped. Why is the spread of the highly
levered firm falling for a certain level of maturity. This can be explained by the argument
that if a firm has survived for a long period of time it is very likely that its value has gone
up. Thus conditioning on survival for a long time the firm’s value has to be on average far
away from VB and hence the lower spread indicates the decrease in riskiness. Note, that the
credit spreads for normal debt are equal to zero for short maturity.
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Figure 5.4: “Infrequent, large jumps”:
FVC1 spread as a function of maturity
for different levels of debt and different
conversion barriers. The parameters are
` = 1, PC = 10, PD = 10, 30, 40 and
VC = 20, 60, 80.
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Figure 5.5: “Infrequent, large jumps”:
FVC2 spread as a function of maturity
for different levels of debt and different
conversion barriers. The parameters are
` = 1, PC = 10, PD = 10, 30, 40 and
VC = 20, 60, 80.

In Figure 5.3 and 5.4 we consider the two firms with jumps. In both cases we observe
substantial credit spreads which depend strongly on the amount of straight debt. Figure
5.2 has shown, that if no jumps are included in the firm’s value process, if ` is equal to
1 and if the equity value at conversion is sufficiently high, then FVCs are risk-free. The
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contingent convertible debt holders will always receive their full payments, but the time
when this happens may be random. In the case of FVC1 contracts with jumps the expected
value of the equity at the conversion time τC is in general lower than the value of the equity
for Vt = VC . Hence, the conversion value is lower than the face value of the CCBs, which
results in the positive credit spreads. The larger the jumps, the smaller is the expected value
of the equity at conversion and therefore the higher the spread. The curves of contingent
convertible bonds have a similar shape as the curves for the straight debt. Note that the
limiting credit spreads are nonzero for both bonds. The spreads for the contingent convertible
bonds are higher than for straight debt in Figures 5.3 and 5.4. This is mainly due to the fact
that conversion happens substantially earlier than default for most maturities. For short
maturities, where the default and conversion barrier are relatively close, conversion is most
likely to occur by a jump. If the conversion barrier is crossed by a jump the equity value
after conversion is lower than if it is passed by a continuous movement, which results in a
higher credit spread for the contingent convertible bonds.
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Figure 5.6: “Infrequent, large jumps”:
FSC spread as a function of maturity for
different levels of debt and different con-
version barriers. The parameters are ` =
1, PC = 10, PD = 10, 30, 40 and VC =
20, 60, 80.
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Figure 5.7: “Infrequent, large jumps”:
FSC spread as a function of maturity for
different levels of debt and different con-
version barriers. The parameters are ` =
1.5, PC = 10, PD = 10, 30, 40 and VC =
20, 60, 80.

In Figure 5.5 we consider a firm with infrequent, moderate jumps for FVC2 contracts.
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As we can see the magnitude of the spreads is very similar to the corresponding FVC1
contract, however the spreads for long maturities for FVC2 contracts are lower than for
FVC1 contracts. If the value of the equity at conversion is sufficient to make the promised
payment, than the face value of FVC2s equals the conversion value for ` = 1. For long
maturities the default barrier is relatively low, which makes it more likely that the equity
value at conversion is high. Hence, for long maturities FVC2s are almost risk-free.
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Figure 5.8: “Infrequent, large jumps”:
Comparing FVC1s with FSCs. We
plot `FV C1/`FSC such that the two con-
tracts are equal. The parameters are
PC = 10, PD = 10, 30, 40 and VC = 20, 60, 80.
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Figure 5.9: “Infrequent, large jumps”: Com-
parison of the total equity value at conver-
sion for FVC1 and FVC2 for different con-
stant conversion barriers. The parameters
are ` = 1, PC = 10, PD = 10, 30, 40 and
VC = 20, 60, 80.

In Figure 5.6 we plot the spread and the default and conversion barrier for FSCs. The
conversion barrier is ` = 1 which means that for a contingent convertible bond with face
value 1, the debt holders will get 1

S0
shares at conversion. Without loss of generality we can

normalize S0 = 1 and hence think of ` as the number of shares granted at conversion. Of
course, one share at time t = 0 has a substantially higher value than a share at time t = τC .
Hence, we expect the conversion value to be relatively low. This is exactly, what we observe:
The spreads for FSCs are substantially higher than for FVCs, due to the lower conversion
value. In Figure 5.7 we increase ` to 1.5. The higher conversion value dramatically lowers the
spread. As we have discussed before, the specification of the number of shares at conversion
in terms of the stock price S0 at time 0 is problematic as it leads to multiple equilibria. Here,
we have focussed on the equilibrium with the lower conversion value.
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Figure 5.10: “Infrequent, large jumps”: Ratio of dilution costs between FVC1 and FVC2.
The parameters are PC = 10, PD = 10, 30, 40 and VC = 20, 60, 80.

We already know, that a FVC1 is a special version of a FSC contract. How do we have
to choose the parameter `FV C1 such that the contract coincides with a given FSC contract
with parameter `FSC? Simple calculations show that

`FV C1

`FSC
=
S(VC)

S(0)
.

In Figure 5.8 we plot the corresponding ratio. For long-term maturities with PD = 30 a
FSC contract that promises three times the face value of debt in terms of the current market
value of equity is equivalent to an FVC1 contract that pays the exact face value of debt in
terms of shares with value S(VC).

In Figures 5.4 and 5.5 we have seen that the spreads for FVC1 and FVC2 contracts
are very similar. However, the number of shares granted at conversion differs. The main
difference between the two contracts is that the conversion value of FVC1s is based on
EQ(VC), while the conversion value of FVC2s is primarily based on EQ(VτC ). If these two
values coincide, there is no difference between the two FVC contracts. In Figure 5.9 we plot
the ratio

E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
/EQ(VC)E

[
e−(r+m)τC1{τC<∞}1{τC<τ}

]
.

For long-term contracts the ratio takes values from 0.8 to 0.9, i.e. if all other parameters of
the contract stay the same, the number of shares granted under FVC2s should be 10% to
20% higher than under FVC1s. Figure 5.10 plots the ratio of the dilution costs for FVC2s
and FVC1s. We observe that the dilution costs for FVC2s are actually around 5% to 12 %
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higher than for FVC1s in the long run, i.e. less than the expected 10% to 20%. This can
be explained by the argument that for a low value of the firm’s assets VτC at conversion it
is likely that the old shareholders lose (almost) any claim on the company and in this case
the dilution costs for FVC1 and FVC2 contracts are the (almost) same.

5.7.2 Assumption 5.3
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Figure 5.11: Testing Assumption 5.3 for
FVC1s. The parameters are ` = 1,m =
1, PC = 10, PD = 10, 30, 40 and VC =
20, 50, 70.
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Figure 5.12: Testing Assumption 5.3 for
FVC1s. The parameters are ` = 1,m =
1, PC = 40, PD = 10, 30, 40 and VC =
20, 50, 70.

If Assumption 5.3 is satisfied, the optimal default barrier is V ∗B < VC and we can apply
the solution formulas developed in this paper. If the assumption is violated, the contingent
convertible debt degenerates to straight debt without any recovery payment. From the
perspective of a regulator, the contingent convertible bonds become unattractive. Hence, it
is important to know under which parameter constellations Assumption 5.3 holds. It requires
that V ∗B satisfies the limited liability constraint and that no default barrier larger than VC
yields a higher value for the old shareholders. We define a “critical” equity value:

EQcritical(V ) = max(0, EQdebt(V,max(V ∗∗B , VC), PD + PC , CD + CC)).

As long as EQold(V, V
∗
B, VC) > EQcritical(V ) for V > VC , Assumption 5.3 is satisfied. In

Figure 5.11 we see that for an average maturity of 1 year and an amount of contingent con-
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vertible debt (FVC1) that does not exceed the straight debt, the assumption holds. However,
if the amount of contingent convertible debt is large as in Figure 5.12, the assumption is
violated. Having very short maturity debt can also create problems. In Figure 5.13 we set
the average maturity to 1/10 year and the equity value of the old shareholders crosses the
critical barrier. On the other hand, long term debt seems to elevate the chances of satisfying
the condition. In Figure 5.14 we combine a large amount of contingent convertible debt
(PC = 40) with a long maturity (10 years) and the assumption holds.
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Figure 5.13: Testing Assumption 5.3 for
FVC1s. The parameters are ` = 1,m =
10, PC = 10, PD = 10, 30, 40 and VC =
20, 50, 70.
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Figure 5.14: Testing Assumption 5.3 for
FVC1s. The parameters are ` = 1,m =
0.1, PC = 40, PD = 10, 30, 40 and VC =
20, 50, 70.

Why can EQold(V, V
∗
B, VC) be negative and why does it eventually become positive again?

The equity value for the old shareholders can only be negative if the cash payments related
to the contingent convertible debt (i.e. coupon payments CC and face value PC) are very
high. If conversion takes place, the old shareholders are freed from all the cash payments
of the convertible debt. The total value of the equity that remains after conversion has by
definition a non-negative value. Thus, independently of how small the share of the old equity
holders is after conversion, it will have a non-negative value. Therefore, if the firm’s value
process falls sufficiently low and the cash payments for the contingent convertible bonds are
high, the equity value EQold can become negative. However, the prospect of conversion will
eventually lead to a positive price, if Vt falls further.
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Figure 5.15: Testing Assumption 5.3 for
FSCs. The parameters are ` = 1,m =
1, PC = 10, PD = 10, 30, 40 and VC =
20, 50, 70.
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Figure 5.16: Testing Assumption 5.3 for
FVC2s. The parameters are ` = 1,m =
1, PC = 10, PD = 10, 30, 40 and VC =
20, 50, 70.

In the case of FVC2s and FSCs the findings are similar as depicted in Figures 5.15 and
5.16. The key results from these simulations are that as long as the conversion ratio is
sufficiently high (e.g. ` = 1 for FVCs), the amount of contingent convertible debt is smaller
than the amount of straight debt (PC < PD) and the maturity of the debt is sufficiently long
(e.g. 1

m
> 1), Assumption 5.3 holds.

5.7.3 Agency Costs

In the basic Merton (1974) model, equity can be regarded as a Call option on the firm’s assets.
Therefore, equity holders always want to increase the risk (volatility), while debt holders
would like to decrease the risk. By including a rolling debt structure and tax benefits, the
risk incentives of equity holders and debt holders are in general not opposing any more. As
Leland (1994b) has pointed out, for short maturity debt, equity holders and debt holders do
both prefer not to scale up the risk. In our model with jumps and CCBs, the risk incentives
are more complex.

We consider three different firms, that have the same amount of total risk as measured
by the quadratic variation. The default barrier VB is chosen optimally and the conversion
barrier is set 20% higher than the default barrier. Following the second stage optimization
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Figure 5.17: Risk incentives for FVC1 contracts with optimal debt. The parameters are
` = 1, PC = 10, cD = cC = 0.8, VC = 1.2 · VB. We plot the relative change in equity and debt
values for a relative change in total risk (quadratic variation).

as described in Section 5.10, the amount of straight debt PD is chosen to maximize the total
value of the firm for a fixed amount of contingent convertible bonds PC = 10. Keeping
the amount of debt constant, we want to analyze which agents will profit or suffer from
increasing the risk. In our model we have two types of risk: continuous risk (measured by
the volatility σ) and jump risk (measured by the jump intensity λ). We will change the
total amount of risk (the quadratic variation) by either increasing the volatility or the jump
intensity. Figure 5.17 shows by how many percentage points the equity value, debt value
or CCB value changes, if we increase the total risk by 1 percentage point. There are three
main observations:

1. Contingent convertible bonds have very similar risk incentives as straight debt. The
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agency costs between equity holders and CCB holders are slightly larger than for debt
holders.

2. For short-term debt, the incentives of equity holders have the same sign as the incen-
tives for debt and CCB holders. This can be interpreted as lower agency costs for short
maturities.

3. The agency costs related to jump risk for a firm that is mainly exposed to continuous
risk are very small. Vice versa, the agency costs for continuous risk for a firm with
higher jump risk are also much less pronounced than for a firm with mainly continuous
risk.

5.8 How should CCBs be designed?

We have presented and completely characterized two different CCB contracts: FSCs and
FVC2s. The contract FVC1 is a special case of FSC. The important question is which should
be used in practice. We will analyze the different contracts with respect to manipulation,
noise trading and multiple equilibria.

5.8.1 Manipulation

We think of manipulation as spreading “good” or “bad” news that will influence the stock
price and the credit spread. Furthermore, we assume that conversion is based on the credit
spread as described in Section 5.6. Spreading “good” news will temporarily increase the
stock price St and lower the credit spread πt. Spreading “bad” news results in the opposite
movements. However, after the manipulation the prices will return to their former level.
Equivalently, we can think of manipulation as directly affecting the firm’s value process Vt.
The only interesting case is when the firm’s value process Vt is lowered to a level Vmanip < VC
which triggers conversion and then returns to the former level Vt.

First we consider manipulation by contingent convertible bondholders. In the case of
FVC2 contracts spreading “bad” news can trigger conversion and lead to a temporary un-
derevaluation of the stock price St. As the number of shares granted to contingent convertible
bondholders depends on the stock price at conversion, the temporary underevaluation has a
permanent effect. The lower the bondholders can press down the price, the more shares they
receive. After the price correction, the contingent convertible bondholders make a profit.
More formally, if the contingent convertible bondholders can temporarily manipulate the
firm’s value process to any arbitrary level Vmanip with VC ≥ Vmanip > VB and the tax bene-
fits are sufficiently low, the will always do so independently of the parameters of the FVC2
contract:

Proposition 5.20. Assume that a firm issues FVC2s and contingent convertible bondholders
can temporarily lower the firm’s value to an arbitrary Vmanip with VC ≥ Vmanip > VB. If the
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equity value without CoCo bonds is sufficiently high, i.e. EQdebt(Vt) > CCB(Vt), they will
always manipulate the market for any ` ∈ (0,∞).

We show in the proof, that EQdebt(Vt) + TBC(Vt) > CCB(Vt) is always satisfied. Hence,
if the tax benefits are sufficiently low, EQdebt(Vt) > CCB(Vt) will also hold.

The same mechanism does not work with FSC (and hence FVC1) contracts. Here the
interests of the contingent convertible bondholders are more aligned with those of the share-
holders. Spreading “bad” news can trigger conversion, but will not affect the number of
shares granted to the bondholders. Spreading “good” news can increase the value of the
stocks, but cannot trigger conversion. Hence, FSC contracts offer less incentives for ma-
nipulation to the contingent convertible bondholders. More formally, there exists always
a conversion parameter ` such that the contingent convertible bondholders do not want to
manipulate the market:

Lemma 5.12. Assume that a firm issues FVC1s and contingent convertible bondholders can
temporarily lower the firm’s value to an arbitrary Vmanip > VB. If ` is small enough such
that

CCB(Vt)− `PC
EQdebt(Vt)

EQdebt(VC)
≥ 0

they will not manipulate the market at time t.

Proof. If contingent convertible bondholders do not manipulate the market, they get CCB(Vt).

If the manipulate the market, they obtain shares that have a value of `PC
EQdebt(Vt)
EQdebt(VC)

after the
price correction.

Hence, FVC1 contracts can always be designed such that the bondholders do not want
to manipulate the market at time t.

Second, we consider manipulation by the equity holders. We start with a FVC1 contract.
Equity holders will not manipulate the market at time t if

EQold(Vt, VB, VC)−
(
EQdebt(Vt)− `PC

EQdebt(Vt)

EQdebt(VC)

)
≥ 0

The first term is the value of their equity if they do not manipulate the market. The second
term is the value of their equity in the case of manipulation after conversion and after the
price correction. Plugging in the definitions, the inequality is equivalent to

TBC(Vt)− CCB(Vt, VB, VC) + `PC
EQdebt(Vt)

EQdebt(VC)
≥ 0

If ` = 1, i.e. the contingent convertible bondholders receive equity at conversion that has
the same market value as the face value of the CCBs, then the inequality will always be
satisfied.
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Proposition 5.21. Assume that a firm has issued straight debt and FVC1s. For Vt ≤ V0

and ` = 1, equity holders will never manipulate the market to trigger conversion.

As a result, if the conversion value is sufficiently high, the equity holders will not ma-
nipulate the market to enforce conversion. A similar reasoning applies to FVC2 contracts.
Intuitively, the less likely manipulation by contingent convertible bondholders, the more
likely manipulation by the equity holders and vice versa. However, there exist parameters,
such that neither of them wants to trigger conversion. After conversion, the tax benefits
of the contingent convertible bonds are lost. If these benefits are sufficiently high and the
conversion parameter ` is chosen accordingly, neither of them will manipulate the market.

Lemma 5.13. Assume a firm issues FVC1s. If the conversion parameter ` is chosen such
that

TBC(Vt) ≥ CCV (Vt)− `PC
EQdebt(Vt)

EQdebt(VC)
≥ 0

then neither equity holders nor contingent convertible bondholder will manipulate the market.

We have seen that FVC1 contracts are more robust against manipulation than FVC2
contracts. We favor FVC1 contracts with ` = 1. Equity holders will never manipulate
such a contract and for sufficiently high coupon payments cC the contingent convertible
bondholders will not do it neither.

5.8.2 Noise trading

So far we have defined the stock price process as a function of Vt, i.e.

St =
1

n
(EQ(Vt)−DC(Vt))

for t < τC and the only source of risk was the process Vt. We will now suppose that St is
driven by the firm’s value process Vt and an additional independent process. This makes
economically sense as changes in the stock price do not necessarily solely reflect changes in
the fundamental value. Additional factors, e.g. noise trading, can be captured by including
a noise process.

Definition 5.9. The endogenous stock price process with noise trading before the time of
conversion (t < τC) is defined as

St = S(Vt) =
EQ(Vt)−DC(Vt)

n

(
1 + X̃t

)
where n is the number of ”old” shares and X̃t is an arbitrary martingale process, which has
expectation zero, i.e. E[X̃t − X̃s|X̃s] = 0 for s ≤ t and X̃0 = 0, and is independent of Xt,
which is driving Vt.
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The intuition behind this modeling approach is that the stock price should reflect the
value of the shareholders’ claim on the firm’s productive assets. As it is shown empirically
stock prices can be more volatile than the fundamental value of the underlying assets. Hence,
the noise process X̃t should capture this additional source of uncertainty.

Proposition 5.22. The conversion value for FSCs and FVC1s under a stock price with
noise trading equals the corresponding payment without exogenous shocks.

Proof. The conversion value equals

n′E
[
S(τC)e−(m+r)τC1{τC<∞}1{τC<τ}

]
=
n′

n
E
[
(EQ(VτC )−DC(VτC )e−(m+r)τC1{τC<∞}1{τC<τ}

]
E
[(

1 + X̃τC

)]
=

n′

n+ n′
E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
by the assumption that E[X̃t] = 0 and the independenc of X̃ and X.

The situation is different for FVC2s. In this case fluctuations in the stock price affect
the number of shares granted to the contingent convertible bondholders at conversion. If
for example the stock price falls due to a downward shock in X̃, the bondholders get a
higher number of shares although the fundamental value did not change. In more detail,
the value of the equity used for the redistribution at the time of conversion is n · S(τC) =
EQdebt(τC) · (1 + X̃τC ). The condition if the equity is sufficient to fully pay the promised

conversion value changes to VτC > T−1

(
`PC

(
1 + X̃τC

)−1
)

.

Proposition 5.23. The conversion value for FVC2s under a stock price with noise trading
does in general not equal the corresponding payment without exogenous shocks.

Proof.

CONV =`PCE
[
e−(m+r)τC1{τC<τ}1{VτC>T−1

(
`PC(1+X̃τC )

−1
)
}

]
+ E

[
EQdebt(VτC )

(
1 + X̃τC

)
e−(m+r)τC1{V (τC)>VB}1{VτC≤T−1

(
`PC(1+X̃τC )

−1
)
}1{τC<∞}

]
The problem is that X̃(τC) appears in a nonlinear way in the above formula and a closed-
form solution is not available. However, it is obvious to see that in general the expected value
above does not coincide with the corresponding expectation without exogenous shocks.

This is an argument in favor of FSCs and FVC1s over FVC2s.
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5.8.3 Multiple equilibria

In Section 5.3.4 we have shown for FSCs, that defining the number of shares n′ granted to
the contingent convertible bondholders at conversion in terms of S(0) will lead to multiple
equilibria. This result can be extended to show, that if n′ is a function of any St with t < τC ,
there can be multiple equilibria. One way to circumvent this problem is simply to avoid
linking n′ to any stock price. However, when writing a contract it is natural to relate n′

to some market price. A very appealing alternative are FVC1s. Here, the number n′ is
calculated using the model to predict S(VC). In this setup, all prices are unique. Similarly,
for FVC2 contracts, we also obtain unique prices. This can be seen as an argument for FVC1
and FVC2 contracts.

5.8.4 Optimal design of CCBs

In a perfect market environment, the different CCBs should be equivalent as all information
is correctly priced. However, if we take into account manipulation and noise trading, FVC1
contracts with ` = 1 are more robust against this market imperfections than the other
contracts. In addition, FVC1 will always have a unique equilibrium price. In order to avoid
that CCBs degenerate to a straight debt contract without recovery payment, we have to
ensure that Assumption 5.3 holds. CCB contracts with a high maturity are more likely to
satisfy this assumption. For this reason we propose FVC1 with ` = 1 and a high average
maturity as the “best” contract.

5.9 Extensions

5.9.1 Time-Varying Firm’s Value Process

So far we have assumed that the firm’s value process does not change after conversion.
In particular, the proportional rate at which profit is disbursed to investors δ is constant
before and after conversion. Remember, that as the firm has bondholders and shareholders,
δ cannot be seen as a dividend rate. First, the coupons and principal payments have to
be paid before the residual is paid out as dividends. However, one of the arguments of
introducing contingent convertible debt was that after the conversion the coupon payments
are lower than before, allowing the firm to recover from financial distress. A constant δ
implies that after conversion the total dividend payments equal the former dividend payments
plus the payments for the contingent convertible debt. This high dividend payment could
be justified economically by the argument, that after conversion the number of shareholders
is larger than before. Nonetheless, it seems that a high dividend payment during times
of financial distress is not very common. Hence, a more realistic model should take into
account that the payout rate δ decreases after conversion. In this section, we will introduce
a general approach which allows all parameters of the firm’s value process to change after
the conversion. Notwithstanding, the focus will be on different δs.
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Assume two different payout ratios:

δ1 for [0, τC ] δ2 for (τc, τ ]

and

dVt = Vt

(
(r − δ1)dt+ σdW ∗

t + d

(
Nt∑
i=1

(Zi − 1)

)
− λξdt

)
for t ≤ τC

dVt = Vt

(
(r − δ2)dt+ σdW ∗

t + d

(
Nt∑
i=1

(Zi − 1)

)
− λξdt

)
for t > τC .

By assumption we have VC ≥ VB, which implies

τ ≥ τC .

Note, that the probability law of τC does not change. However, the probability law of τ is
not the same anymore. As the value of the coupon payments and the principal repayment of
contingent convertible bonds depends only on certain Laplace transforms of τC , introducing
the time-varying firm’s value process does not affect these values. But the prices of straight
debt coupons and the conversion values will change. In order to calculate the price of normal
debt coupons we need to calculate E [e−ρτ ] and E

[
eX(τ)−ρτ

1{τ<∞}
]
, where Xt relates to Vt

by Vt = V0 exp(Xt).

Theorem 5.5. The Laplace transform of the default time for a firm, whose payout ratio
changes at conversion, is given by

E
[
e−τρ

]
=c̄1

(
VB
V0

)β̄3,ρ

J(log(VC/V0), β̄3,ρ, log(VC/VB), ρ)

+ c̄2

(
VB
V0

)β̄4,ρ

J(log(VC/V0), β̄4,ρ, log(VC/VB), ρ)

+

(
VB
VC

)η2 η2 − β3,ρ

η2

β4,ρ − η2

β4,ρ − β3,ρ

((
VC
V0

)β3,ρ

−
(
VC
VB

)β4,ρ
)

with

c̄1 =
η2 − β̄3,ρ

η2

β̄4,ρ

β̄4,ρ − β̄3,ρ

c̄2 =
β̄4,ρ − η2

η2

β̄3,ρ

β̄4,ρ − β̄3,ρ

and −β̄3,ρ > −β̄4,ρ are the two negative roots of the equation

ψ̄(β) = ρ
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with ψ̄ being the Lévy exponent of X̄t = (r − δ2)t + σW ∗
t +

∑Nt
i=1 Yi. The functions −β3,ρ >

−β4,ρ are the two negative roots of the equation ψ(β) = ρ, where ψ is the Lévy exponent of

Xt = (r − δ1)t+ σW ∗
t +

∑Nt
i=1 Yi The function J is defined as

J(x, θ, y, ρ) =E
[
e−ρτ+θXτ1{τ<∞,−(Xτ−x)<y}

]
The explicit form of J(x, θ, y, ρ) is given in Proposition 5.8.

Theorem 5.6. The default time for a firm, whose payout ratio changes at conversion, sat-
isfies the following equality for θ > −η2:

E
[
e−τρ+θXτ1{τ<∞}

]
=d̄1

(
VB
V0

)−θ−β̄3,ρ

J(log(VC/V0),−β̄3,ρ, log(VC/VB), ρ)

+ d̄2

(
VB
V0

)−θ−β̄4,ρ

J(log(VC/V0),−β̄4,ρ, log(VC/VB), ρ)

+
η2 − β3,ρ

β4,ρ − β3,ρ

β4,ρ + θ

η2 + θ

(
VC
V0

)θ+β3,ρ

+
β4,ρ − η2

β4,ρ − β3,ρ

β3,ρ + θ

η2 + θ

(
VC
V0

)θ+β4,ρ

− J(log(VC/V0), θ, log(VC/VB), ρ)

where

d̄1 =
η2 − β̄3,ρ

β̄4,ρ − β̄3,ρ

β̄4,ρ + θ

η2 + θ

d̄2 =
β̄4,ρ − η2

β̄4,ρ − β̄3,ρ

β̄3,ρ + θ

η2 + θ

and with the same notation as in Theorem 5.5 for the rest.

This allows us to calculate the price of straight debt. For the conversion value we need
to make only a small change in the evaluation formulas. The value of equity after conversion
EQ(VτC ) has to be determined using the second process, i.e. we replace all β3,ρ and β4,ρ

with β̄3,ρ and β̄4,ρ in the corresponding formula. The choice of the optimal default barrier is
analogous to the case of a constant δ.

5.10 Finding an Optimal Regulation Scheme

The main question is if contingent convertible bonds can be used as a regulation instrument
for banks. A “good” regulation instrument would reduce the default probability of a bank
without imposing to high costs on the bank. Intuitively, the higher the amount of debt of a
firm, the higher the default probability. A simple way to limit the default probability is to
limit the amount of debt that a firm is allowed to have. This is equivalent to requiring the
firm to hold a minimum amount of equity. However, there are a cost to this regulation, as
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the firm would lose tax benefits. Instead of limiting the amount of debt, the regulator could
require the bank to replace part of its debt with contingent convertible bonds. For example,
Flannery (2009a) proposes a scenario, in which banks can choose between holding equity
equal to 6% of an asset aggregate, or holding equity equal to 4% of the asset aggregate and
CCBs equal to 4% of the asset aggregate.

In the following we will first analyze the optimal capital structure of a firm without regu-
lation. Then we show that, if Assumption 5.3 is satisfied, a regulation schemes that restricts
the amount of straight debt and requires mandatory issuing of CCBs, strictly dominates a
regulation that only limits the amount of straight debt. The CCB regulation scheme will
achieve the same upper bound on the level of risk, but the total value of the firm will be the
same as under no regulation. In addition, under the CCB regulation scheme the costs to the
government in terms of tax benefits are lower than if no regulation is imposed. However, if
Assumption 5.3 is violated, these results do not hold any more .

Throughout the section we make the following two assumptions. First, the conversion
barrier VC is exogenously given. Second:

Assumption 5.6. The coupon payments of the contingent convertible bonds are positive:

cC > 0.

Note, that as long as there are bankruptcy costs the coupon of straight debt is always
positive, when debt is issued at par at time 0. Assumption 5.6 is satisfied in all practically
relevant situations. For example, for all FVC1 and FVC2 with ` ≤ 1, which are issued at
par at time 0, the assumption is satisfied.

5.10.1 Optimal Capital Structure without Regulation

First we consider a firm that issues only normal debt bonds. The parameter VB is deter-
mined endogenously while the parameters m,λ, θ, V0, cD and r can be assumed to be given
exogenously. Hence, the only remaining choice parameter is the amount of debt PD. This
will be chosen to maximize the total value of the firm, i.e.

max
PD

Gdebt = max
PD

(V + TBD −BC).

Chen and Kou (2009) show that Gdebt(PD) is a strictly concave function in PD. Hence, for
any given V , there exists a unique PD that maximizes Gdebt(PD). As the initial value of
the firm V is given, the optimal choice of PD is a tradeoff between tax benefits TBD and
bankruptcy costs BC. Based on our endogenously determined parameters we solve

∂TBD

∂PD
=
∂BC

∂PD
.
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If we allow the firm to issue CCBs in addition to normal debt, the optimization problem
changes to

max
PD,PC

(V + TBD + TBC −BC).

We consider two cases: Either Assumption 5.3 is satisfied or not. The tricky part is, that this
assumption depends on the amount of debt issued by a firm. Hence, we will first analyze the
optimal capital structure conditioned on satisfying this constraint. Second, we determine
the optimal amount of debt under the restriction that the assumption is violated. Finally,
the firm picks the one of the two combinations {PD, PC}, which yields a higher total value
of the firm.

Case 1: Assumption 5.3 satisfied:

Under Assumption 5.3, the optimal barrier level VB equals V ∗B which is independent of any
features of CCBs. The optimization problem becomes

max
PD,PC

(V + TBD(PD) + TBC(PC)−BC(PD)).

The FOC for PD is then

∂TBD(V, V ∗B)

∂PD
=
∂BC(V, V ∗B)

∂PD
,

which coincides with the case without CCBs. The optimal level of straight debt does not
depend on any characteristics of the CCBs. The next lemma implies, that there exists a
unique value of PD that maximizes the total value of the firm.

Lemma 5.14. The total value of the firm G(PD) is a strictly concave function in PD, if
VB = V ∗B.

Proof. The only difference between G(PD) and Gdebt(PD) are the tax benefits TC(PC), which
do not depend on PD. Chen and Kou (2009) have proven the strict concavity of Gdebt(PD).

The total value of the firm depends on PC only through the tax benefits TBC , which are
monotonically increasing in PC .

Corollary 5.7. If the coupon payments cC are positive, then the total value of the firm
G(PC) is increasing in the value of contingent convertible debt PC.

Proof. The total value of the firm is defined as

G = V + TBD + TBC −BC.

As the amount of contingent convertible bonds only affects the tax benefits TBC which are
defined by c̄cCPC

r
E[1−e−rτC ] and the coupons cC are not negative, the statement follows.
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As a consequence of Corollary 5.7, equity will be crowded out by CCBs one-to-one as
long as Assumption 5.3 is satisfied. As we have seen the firm as a whole will always profit
from issuing CCBs, while the taxpayer pays the cost of the additional tax shield. We will in
the following assume that a firm can only issue CCBs as certain fraction of its debt. This
assumption is implicit or explicit in various proposals to use CBBs for banking regulation.
Hence, there will be only tax benefits for CBBs issued as part of a regulation requirement.

Case 2: Assumption 5.3 violated:

If Assumption 5.3 is violated, the optimal default barrier is the maximum of V ∗∗B and VC .
First, we will focus on the case VB = V ∗∗B , which depends on PD and PC . The optimization
problem becomes

max
PD,PC

(V + TBD(PD, PC) + TBC(PD, PC)−BC(PD, PC)).

The FOC for PD and PC are then

∂TBD(V, V ∗∗B ) + TBC(V, V ∗∗B )

∂PD
=
∂BC(V, V ∗∗B )

∂PD
∂TBD(V, V ∗∗B ) + TBC(V, V ∗∗B )

∂PC
=
∂BC(V, V ∗∗B )

∂PC
.

We start with the special case cD = cC , i.e. the coupon payments for straight debt and
contingent convertible debt are the same. In this case, PD and PC are perfect “substitutes”
for the firm as the total value of the firm will only be influenced by PD +PC . The total value
of the firm is the same as for a firm that issues only straight debt in the amount of PD +PC .

Corollary 5.8. If cD = cC, then the firm would like to choose an amount of debt such the
default barrier is the same as in case 1.

Proof. Define P̃ = PD + PC and c̃ = cD = cC . Obviously it holds C̃ = c̃P̃ = cDPD +
cCPC = CD+CC which implies that EQdebt(V, VB, PD+PC , CD+CC) = EQ(V, VB, P̃ , C̃) and
Gdebt(P̃ , C̃) = Gdebt(PD + PC , CD +CC), i.e. the total value of the firm and the equity value
of the old shareholders is only influenced by the sum PD + PC . Hence, the optimal default
barrier V ∗∗B (P̃ , C̃) will be the same as in the case where only straight debt is issued.

The hypothetically optimal V ∗∗B is not feasible, as it would be smaller than VC . This
leads to the following conclusion:

Corollary 5.9. Assume that cD = cC. The optimal debt choice {PD, PC} is any combination
of PD and PC such that V ∗B(PD + PC) = VC.

If cD 6= cC , straight debt and the degenerated contingent convertible debt are not perfect
substitutes any more. We assume that at time zero all the debt is issued at par. At
conversion, which coincides with default, the contingent convertible bondholders receive
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nothing, while the straight debt bondholders get the recovery payment. Thus, a higher
coupon cC > cD is needed to compensate the contingent convertible bondholders. Hence,
we will assume that the coupon cC for the contingent convertible debt has to be higher than
cD. The optimization problem of the firm is then

max
PD,PC

Gdebt(P̃ , C̃) subject to P̃ = PD + PC and C̃ = cDPD + cCPC .

This problem is equivalent to

max
P̃ ,c̃

Gdebt(P̃ , c̃P̃ ) subject to c̃ ∈ [cD, cC ].

We split this two-dimensional problem into a two-stage optimization problem. In the first
stage, for any c̃ ∈ [cD, cC ] we solve the problem and obtain a unique optimal amount of debt
P̃ (c̃) and optimal default barrier V ∗B(c̃) (for simplicity we express the optimal default barrier
only in terms of the remaining choice variable c̃). In a second stage, the coupon c̃ is chosen
that maximizes the total value of the firm. We denote the optimal coupon by c∗:

c∗ = arg max
c̃∈[cD,cC ]

Gdebt(P̃ (c̃))

Proposition 5.24. Assume that cD < cC. If V ∗B(c∗) ≥ VC, then the optimal debt choice
{PD, PC} is the combination of PD and PC that satisfies

PD + PC = P̃ (c∗) and c∗(PD + PC) = PDcD + PCcC

If V ∗B(c∗) < VC, then the optimal debt choice {PD, PC} is the highest amount of PC such that
two conditions are satisfied: 1. V ∗∗B (PD, PC) = VC and 2. Assumption 5.3 is violated.

The key result of this section is the following. If Assumption 5.3 is satisfied, the default
barrier will be strictly smaller, than in the other case. In addition, if Assumption 5.3 is
violated, the default barrier is to some extent unresponsive to restrictions in the maximal
amount of straight debt, as straight debt and the degenerated contingent convertible debt
become (perfect or imperfect) substitutes. In the next section we will discuss regulation.
Intuitively speaking, a regulator wants to enforce a small default barrier, because this will
imply a lower default probability. Based on this section we will conclude that the regulator
wants to require that only contingent convertible bonds satisfying Assumption 5.3 are issued.

5.10.2 Optimal capital structure with regulation

In this section we discuss different regulation schemes. The regulator will impose restrictions
on the capital structure of a bank, such that the “risk” does not exceed a pre-specified level.
We will formalize the concept of “risk” from the perspective of a regulator, but intuitively
the regulator wants to enforce a low default barrier. The lower the default barrier, the lower
the probability of default.
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Definition 5.10. The probability that default happens before t as a function of PD is defined
as

Υ(t, PD) = P(τ ≤ t).

We assume that the regulator uses a specific risk measure:

Definition 5.11. Denote the parameter space of the choice variables as Θ. We are only
interested in Θ = {(PD, PC) ∈ [0,∞)2}. A risk measure χi(PD, PC) is a mapping from Θ to
[0,∞). A regulation scheme is defined as a restriction of the parameters of our model to the
set Θ̃ such that χi(PD, PC) ≤ ω for all (PD, PC) ∈ Θ̃ and a fixed risk level ω. If we consider
only one choice variable we suppress the other in the notation of χi.

We make the additional assumption that the risk measure has the property that if the
default probability P(τ ≤ t) is higher under (PD, PC) than under (P̃D, P̃C) for all t, then
χi(PD, PC) ≥ χi(P̃D, P̃C).

Definition 5.12. A capital requirement ρi is defined as the maximum amount of debt PD
that a firm is allowed to include in its capital structure such that risk measure χi(PD) is
always smaller than some critical value ω:

ρi = sup{PD ∈ [0,∞) : χi(P̃D) ≤ ω ∀P̃D ≤ PD}.

Example 5.1. We define

ρ1(ω) = sup {PD ∈ [0,∞) : Υ(1, PD) ≤ ω}

The measure ρ2 is not restricted to the time period 1:

ρ2(ω) = sup

{
PD ∈ [0,∞) :

∫ ∞
0

s(t)Υ(t, PD)dt ≤ ω

}
where s(t) is a weighting function satisfying

∫∞
0
s(t)dt = 1.

The intuition behind the two capital requirements ρi is that by setting ω sufficiently
low, the default probability is restricted from above in a certain sense. Our model allows
us to calculate the Laplace transform of the default time in closed form. Applying Laplace
inversion we can numerically calculate the two capital requirement regulation schemes.

If we want to compare different regulation schemes, we have to specify what a ”good“
regulation means. Regulation can be costly to the firm and the taxpayer. The taxpayers
are affected by the amount of tax benefits that they are granting to the firm, while a not
”optimal“ amount of debt can lower the total value of the firm G.

Definition 5.13. If two regulation schemes have the same maximum amount of risk ω as
specified by the risk measure χi, the first regulation scheme is said to be more efficient if the
total value of the firm is strictly higher than under the second scheme.
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We want to show that requiring a firm to replace a certain amount of its straight debt
by contingent convertible debt can be a more efficient regulation scheme than using only
maximal capital requirements.

Throughout this section we assume that Assumption 5.3 is satisfied. This has the fol-
lowing consequences:

1. G(PD) is strictly concave and there exists a unique optimal amount of debt, which we
will denote by P ∗D.

2. The optimal default barrier is V ∗B.

We can conclude the following:

Corollary 5.10. 1. The optimal default barrier V ∗B is a function of PD but not PC.

2. The optimal amount of debt PD is independent of any features of CCBs.

3. The default probability Υ(t, PD) is strictly increasing in PD.

4. The default probability Υ(t, PD) is independent of PC.

5. Any risk measure χi is increasing in PD.

6. The risk measures χ1 and χ2 are independent of PC.

Now we want to compare a capital requirement regulation scheme ρi with a regulation
scheme that requires the mandatory issuing of CCBs.

Definition 5.14. A CCB regulation scheme is a tuple φi = (φDi , φ
C
i ) of an upper bound on

the amount of straight debt φDi and a fixed amount of CCBs φCi such that

χi(P̃D, P̃C) ≤ ω ∀P̃D ≤ φDi , P̃C = φCi .

In order to prove rigorously that a CCB regulation scheme is more efficient than a capital
requirement regulation scheme, we have required Assumption 5.3, which can be tested. The
economic intuition behind our regulation approach is straightforward. First, we assume
that there exists an optimal level of leverage of straight debt. This makes sense as a firm
issuing straight debt faces the tradeoff between tax benefits and bankruptcy costs and the
optimal leverage should set the marginal gains of tax benefits equal to the marginal costs
of bankruptcy costs. Next, it is also intuitive to assume that a higher amount of straight
debt increases the default probability. Hence, if the optimal leverage of a firm implies a too
high default probability from the point of view of the regulator, one way to reduce it is to
require the firm to lower its level of debt. This would also lower the tax benefits associated
with the straight debt. As the new level of leverage is not optimal for the firm any more the
total value of the firm will be lower under such a regulation. However, the firm as a whole
would benefit from issuing CCBs as it profits from the tax benefits. The amount of CCBs
can be chosen such that its tax benefits exactly compensate for the loss due to the capital
requirement.
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Proposition 5.25. Consider first a firm without any regulation. Its optimal amount of
debt is P ∗D and the maximal total value of the firm is G(P ∗D). Second consider a capital
requirement ρi. The risk measured by χi for i = 1, 2 under this scheme is limited to ω and
the loss in total value to the firm is G(P ∗D) − G(ρi). Third, we define a CCB regulation
scheme as (φDi , φ

C
i ), where φDi = ρi and φCi is such that TB(φCi ) = G(P ∗D)−G(ρi). The risk

under the CCB regulation scheme is bounded by ω and the total value of the firm is equal to
the value under no regulation, i.e. it is efficient compared to the capital requirement and the
firm is indifferent between the CCB regulation and no regulation.

Note that the above regulation scheme is in a certain sense equivalent to a regulation
where existing straight debt is partly replaced by CCBs. Hence, if the optimal amount of
debt P ∗D without regulation is known, requiring the firm to replace a certain fraction of the
optimal debt amount by CCBs and hence ending up with a lower level of straight debt, will
yield exactly the same outcome.

We make an additional assumption:

Assumption 5.7. The value of the contingent convertible debt is larger than the related tax
benefits: CB > TBC.

For a realistic tax rebate rate, this assumption will always be satisfied.

Lemma 5.15. The maximal total tax benefits under the CCB regulation scheme are lower
than the maximal tax benefits under no regulation.

Definition 5.15. The total leverage is defined as

TL =
PD + PC

G
.

Lemma 5.16. The maximal possible total leverage under the CCB regulation scheme is
higher than the maximal possible total leverage under a pure capital requirement regulation
scheme, if Assumption 5.7 is satisfied.

The above CCB regulation scheme yields the same total value for the firm as the case
where no regulation is imposed. Hence, the firm as a whole does not suffer. Next, the
tax deduction costs for the taxpayer are lower compared to the case without regulation.
Therefore, the taxpayer is better off. Most importantly, the default probability is lower than
in the case without regulation.

The above results hold only if Assumption 5.3 is satisfied. If this assumption is violated,
the optimal default barrier is at least VC , which is by definition larger than V ∗B. Furthermore,
if Assumption 5.3 is violated, the default barrier can increase in the amount of contingent
convertible bonds PC . Hence, requiring a bank to issue CoCo bonds can actually increase
its risk. Next, as in this case straight debt and degenerated contingent convertible bonds
become (perfect or imperfect) substitutes, any capital requirement on the straight debt can
be circumvented by issuing more CoCos. The traditional capital requirement regulation
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would become ineffective. Hence, a regulator would always impose restrictions such that
Assumption 5.3 holds.

5.10.3 TBTF Firms

In this section we analyze firms that are “too big to fail” (TBTF). As bankruptcy of such
firms might result in a crisis of the overall financial system, the government will not let them
fail. At the time of default of a TBTF firm the government will take over its assets and its
obligations to make payments to debt holders. Hence, the debt holders of TBTF firms have
an implicit government guarantee on their debt contract, which makes their debt basically
risk-free.

We will first model formally a TBTF firm, that issues only straight debt. As its debt is
risk-free, the value equals:

DTBTF
debt =

CD +mPD
m+ r

.

This comes at a cost to the government. At the time of default, the government steps in and
obtains assets worth V (τ). In return, the government takes over the obligation to make the
coupon payments and repayments of the face value of debt forever. Therefore, the value of
the government subsidy for the firm is

SUBTBTF (V, VB) =
CD +mPD
m+ r

E
[
e−(m+r)τ

]
− E

[
V (τ)e−rτ

]
.

The total value of the firm equals the value of the firm’s assets plus the tax benefits and the
government subsidy. Because of the potential government bailout, the bankruptcy costs do
not appear in total value of the firm.

GTBTF
debt (V, VB) = V + TBD(V, VB) + SUBTBTF (V, VB)

= V +
c̄CD
r

E
[
1− e−rτ

]
+
CD +mPD
m+ r

E
[
e−(m+r)τ

]
− E

[
V (τ)e−rτ

]
The equity value is the residual claim of the total value of the firm after the value of the
debt is subtracted:

EQTBTF
debt (V, VB) = GTBTF

debt (V, VB)−DTBTF
debt

Albul, Jaffee and Tchistyi (2010) consider TBTF firms in their model with infinite maturity
bonds. They show, that if only consol bonds are issued, the value of the equity and the
optimal default barrier are the same as for a normal firm. However, in our model with a
rolling debt structure this result does not hold any more.

Proposition 5.26. The optimal default barrier of a TBTF firm equals

V ∗∗∗B =
CD+mPD
r+m

β3,r+mβ4,r+m − c̄CD
r
β3,rβ4,r

(β3,r + 1)(β4,r + 1)

η2 + 1

η2

.
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Proof. V ∗∗∗B is simply the solution to the smooth pasting condition:(
∂(EQTBTF

debt )(V, VB)

∂V
|V=VB

)
= 0

A TBTF firm does not face the tradeoff between tax benefits and bankruptcy costs. As
long as VB = V ∗∗∗B the firm will issue as much debt as possible.

Proposition 5.27. Assume that VB = V ∗∗∗B . The total value of a TBTF firm is strictly
increasing in the amount of straight debt:

∂GTBTF
debt

∂PD
> 0

Hence, the regulator should restrict the total amount of debt, that a TBTF firm is
allowed to issue. Assume that the regulator wants to limit the risk of all banks to specific
level. According to our definition of risk, this is equivalent to imposing an upper bound on
the default barrier VB. Let’s denote this target default barrier by V̄B. Assume, that we have
two firms that are identical, but one is considered TBTF, while the other does not profit
from an implicit government guarantee. What is the upper bound on the amount of straight
debt for these two firms, that ensures that the default barrier is below V̄B? Proposition 5.13
and Proposition 5.26 imply that the optimal default barriers are proportional to PD:

Proposition 5.28. The optimal default barriers for a normal firm and a TBTF firm can be
written as

V ∗B = κ∗PD V ∗∗∗B = κ∗∗∗PD.

It holds κ∗ ≤ κ∗∗∗. Therefore, in order to enforce that the default barrier is below the
critical level V̄B, the regulator has to use a stricter capital requirement for TBTF firms
(PD ≤ V̄B/κ

∗∗∗), than for a normal firm (PD ≤ V̄B/κ
∗).

This proposition says that the default risk is increasing faster in the amount of straight
debt PD for a TBTF firm than for a normal firm. Extending the evaluation formulas for
CCBs to a TBTF firm is straightforward. We just need to replace EQdebt by EQTBTF

debt and
V ∗B by V ∗∗∗B . The regulator can apply a similar CCB regulation scheme to a TBTF firm as
described in the last subsection. The CCBs can be used to compensate the firm for its loss
in the total value due to the capital requirement. As the TBTF already profits from the
government subsidy SUBTBTF , it will usually need less tax benefits from the CCBs to obtain
the same total value as a firm without this subsidy. The main takeaway of this subsection
is that a TBTF firm will always have a lower amount of straight debt than a comparable
normal firm under regulation.
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5.11 Conclusion

In the aftermath of the financial crisis of 2008 contingent convertible bonds were discussed as
regulation instruments for banks. CCBs are new debt instruments that automatically convert
to equity when the issuing firm or bank reaches a specified level of financial distress. We
conceptualize the modeling of CCBs and present a formal model for this new hybrid security,
which incorporates jumps in the firm’s value process and allows for a rolling debt structure.
We extend Chen and Kou’s model to incorporate contingent convertible debt by introducing
a second barrier which triggers conversion. We are able to completely characterize two
different types of CCBs: In the first case the number of shares granted at conversion is fixed
a priori. In the second specification the number of shares granted at conversion is chosen
a posteriori such that the value of the shares equals a specified value. We determine the
dilution costs to the old shareholders for the two types of CCBs. Our analysis shows that
CCBs behave similarly to straight debt in many ways: The credit spread as a function of
maturity is humped-shaped and the limiting credit spread for a maturity approaching zero
is generally non-zero.

However, the specification of the conversion payment has huge effects on the features
of CCBs. In order to obtain a unique equilibrium price for FSCs, certain restrictions have
to be imposed on the design of this debt contract. There are two different conceptional
approaches to modeling FVCs. In one approach FVCs and FSCs can be incorporated into
the same unified framework. In the other approach, FSCs and FVCs have very distinct
properties. We also explain how to evaluate the model if the parameters of the firm’s value
process change after conversion.

We discuss whether conversion can be based on observable market prices. We show that
the conversion event can be specified in terms of credit spreads or risk premiums for CDSs,
leading to the same pricing formulas that we have obtained when conversion was triggered
by movements in the firm’s value process. Hence, our evaluation formulas can be applied in
practice with a trigger event based on observable market prices.

An important question concerns the optimal design of CCBs. We show that FSCs and
FVC1s are not affected by noise in the stock price process. Furthermore, FSC and FVC1
contracts are more robust against manipulation by the contingent convertible bondholders.
If in the case of conversion bond holders of FVC1s get shares that have the same value as
the face value of debt (i.e. the conversion parameter ` is equal to 1), then equity holders will
never manipulate the market. Therefore, we favor FVC1 contracts with ` = 1.

Last but not least we analyze the potential of CCBs as a regulation instrument. If the
no-early-default condition is satisfied a regulation combining leverage restrictions and the
requirement of issuing a certain fraction of CCBs can efficiently lower the default probability
without reducing the total value of the firm. However, if the no-early-default condition
is violated, a CCB regulation can actually increase the risk. In order to ensure that this
condition holds, only CCBs with a long maturity should be issued.
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Schweizer, Preprint, Universitè de Franche-Comtè, Besancon .
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Appendix A

Appendix to Chapter 1

A.1 Structure of Appendix

The appendix of Chapter 1 is structured as follows. Appendix A.2 specifies the class of
stochastic processes used in this paper. In Appendix A.3 I collect some intermediate asymp-
totic results, which will be used in the subsequent proofs. Appendix A.4 proves the results
for the loading estimator. Appendix A.5 treats the estimation of the factors. In Appendix
A.6 I show the results for the common components. In Appendix A.7 I derive consistent
estimators for the covariance matrices of the estimators. Appendix A.8 deals with separating
the continuous and jump factors. The estimation of the number of factors is in Appendix
A.9. Appendix A.10 proves the test for identifying the factors. Last but not least I discuss
the proofs for microstructure noise in Appendix A.11. Finally, for convenience Appendix
A.12 contains a collection of limit theorems. In the proofs C is a generic constant that may
vary from line to line.

A.2 Assumptions on Stochastic Processes

Definition A.1. Locally bounded special Itô semimartingales
The stochastic process Y is a locally bounded special Itô semimartingale if it satisfies the
following conditions. Y is a d-dimensional special Itô semimartingale on some filtered space
(Ω,F, (Ft)t≥0,P), which means it can be written as

Yt = Y0 +

∫ t

0

bsds+

∫ t

0

σsdWs +

∫ t

0

∫
E

δ(s, x)(µ− ν)(ds, dx)

where W is a d-dimensional Brownian motion and µ is a Poisson random measure on R+×E
with (E,E) an auxiliary measurable space on the space (Ω,F, (Ft)t≥0,P). The predictable
compensator (or intensity measure) of µ is ν(ds, dx) = ds × v(dx) for some given finite or
sigma-finite measure on (E,E). This definition is the same as for an Itô semimartingale
with the additional assumption that ‖

∫ t
0

∫
E
‖δ(s, x)‖1{‖δ‖>1}ν(ds, dx)‖ <∞ for all t. Special
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semimartingales have a unique decomposition into a predictable finite variation part and a
local martingale part.

The coefficients bt(ω), σt(ω) and δ(ω, t, x) are such that the various integrals make sense
(see Jacod and Protter (2012) for a precise definition) and in particular bt and σt are optional
processes and δ is a predictable function.

The volatility σt is also a d-dimensional Itô semimartingale of the form

σt =σ0 +

∫ t

0

b̃sds+

∫ t

0

σ̃sdWs +

∫ t

0

σ̃′sdW
′
s +

∫ t

0

∫
E

1{‖δ̃‖≤1}δ̃(s, x)(µ− ν)(ds, dx)

+

∫ t

0

∫
E

1{‖δ̃‖>1}δ̃(s, x)µ(ds, dx)

where W ′ is another Wiener process independent of (W,µ). Denote the predictable quadratic
covariation process of the martingale part by

∫ t
0
asds and the compensator of∫ t

0

∫
E
1{‖δ̃‖>1}δ̃(s, x)µ(ds, dx) by

∫ t
0
ãsds.

1. I assume a local boundedness condition holds for Y :

• The process b is locally bounded and càdlàg.

• The process σ is càdlàg.

• There is a localizing sequence τn of stopping times and, for each n, a determin-
istic nonnegative function Γn on E satisfying

∫
Γn(z)2v(dz) < ∞ and such that

‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω).

2. The volatility process also satisfy a local boundedness condition:

• The processes b̃ a and ã are locally bounded and progressively measurable

• The processes σ̃ and b̃ are càdlàg or càglàd

3. Furthermore both processes σσ> and σt−σ
>
t− take their values in the set of all symmetric

positive definite d× d matrices.

Remark A.1. Interpretation of Definition A.1:
Definition A.1 accommodates almost all models for stochastic volatility, including those with
jumps and allows for correlation between the volatility and asset price processes. Condition
(1) is very mild and for example

Xt = X0 +

∫ t

0

HsdZs

where Z is a multidimensional Lévy process and H is a predictable and locally bounded process
automatically satisfies condition (1). Condition (2) is stronger, but nevertheless very often
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satisfied. For example when X is the solution (weak or strong, when it exists) of a stochastic
differential equation of the form

Xt = X0 +

∫ t

0

f(s,Xs−)dZs

with Z again a Lévy process and f is a C1,2 function on R+ × RN .
The nondegeneracy condition (3) says that almost surely the continuous martingale part

of X is not identically 0 on any interval [0, t]. Most results will hold without (3), but for
almost any application this condition is satisfied.

The assumption of a special semimartingale essentially requires that the process has a
finite first moment. For any practical purpose in finance this assumption is satisfied.

The local boundedness assumptions allow us to apply a localization procedure. There exist
stopping times such that the stopped processes are bounded. The derivation of most of my
results requires the processes to be bounded. However all relevant results hold under stopping,
which means a local boundedness condition is sufficient to treat the processes as bounded in
the proofs. For more details see Theorem A.1.

Examples of processes satisfying Definition A.1

1. CIR model: It can be shown that the Cox-Ingersoll-Ross model satisfies the assump-
tion. It is defined as

dXt = a(b−Xt)dt+ σ
√
XtdWt

with 2ab > σ2 and X0 > 0.

2. Heston model: Also the Heston model satisfies Definition A.1:

dXt = cXtdt+
√
σ2
tXtdWt

dσ2
t = a(b− σ2

t )dt+ σ̃
√
σ2
t dW̃t

dWtdW̃t = ρdt

with 2ab > σ̃2.

3. Barndorff-Nielsen and Shephard Ornstein-Uhlenbeck stochastic volatility
model:
In the Barndorff-Nielsen and Shephard (2002) model the stochastic volatility follows a
positive Ornstein-Uhlenbeck process:

Xt = X0 exp(Yt)

dYt = (a+ βσ2
t )dt+ σtdWt + ρdZt

dσ2
t = −bσ2

t dt+ dZt , σ2
0 > 0

where ρ ≤ 0, b > 0 and Z is a Lévy process.
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4. Itô semimartingale models for price data: Assume that Y satisfies Definition
A.1. Then we can model asset prices as:

Xt = X0 exp (Yt)

5. Andersen, Benzoni and Lund (2002): Stochastic volatility with log-normal jumps
generated by a non-homogeneous Poisson process.

6. Affine models as defined in Duffie, Pan and Singleton (2000).

A.3 Some Intermediate Asymptotic Results

A.3.1 Convergence Rate Results

Proposition A.1. Assume Y is a d-dimensional Itô-semimartingale satisfying Definition
A.1:

Yt = Y0 +

∫ t

0

bY (s)ds+

∫ t

0

σY (s)dWY (s) +

∫ t

0

δY ? (µ− ν)t

Assume further that Y is square integrable. Assume Z̄N = 1√
N

∑N
i=1 Zi, where each Zi is a

local Itô-martingale satisfying Definition A.1:

Zi(t) =

∫ t

0

σZi(s)dWi(s) + δZi ? (µZi − νZi)t

and each Zi is square integrable. Assume that [Z̄N , Z̄N ]T and 〈Z̄N , Z̄N〉T are bounded for
all N . Divide the interval [0, T ] into M subintervals. Assume further that Y is either
independent of ZN or a square integrable martingale.

Then, it holds that

√
M

(
M∑
j=1

∆jY∆jZN − [Y, ZN ]T

)
= Op (1)

Proof. Step 1: Localization
Using Theorem A.1 and following the same reasoning as in Section 4.4.1 of Jacod (2012), we
can replace the local boundedness conditions with a bound on the whole time interval. I.e.
without loss of generality, we can assume that there exists a constant C and a non-negative
function Γ such that

‖σZi‖ ≤ C, ‖Zi(t)‖ ≤ C, ‖δZi‖2 ≤ Γ,

∫
Γ(z)νZi(dz) ≤ C

‖σY ‖ ≤ C, ‖Y (t)‖ ≤ C, ‖δY ‖2 ≤ Γ,

∫
Γ(z)νY (dz) ≤ C

‖bY ‖ ≤ C
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σZN , δZ̄N and νZ̄N are defined by

〈Z̄N〉t =

∫ t

0

(
σ2
Z̄N

(s) +

∫
δ2
Z̄N

(z, s)νZ̄N (dz)

)
ds

Given our assumptions, we can use wlog that

‖σZ̄N‖ ≤ C, ‖Z̄N(t)‖ ≤ C, ‖δ2
Z̄N
‖ ≤ Γ,

∫
Γ(z)νZ̄N (dz) ≤ C

Step 2: Bounds on increments
Denote the time increments by ∆M = T/M . Lemmas A.32, A.33 and A.34 together with
the bounds on the characteristics of Y and ZN imply that

E
[

sup
0≤s≤∆M

‖Yt+s − Yt‖2

]
≤C∆ME

[∫ t+∆M

t

‖bY (s)‖2ds

]
+ CE

[∫ t+∆M

t

‖σY (s)‖2ds

]
+ CE

[∫ t+∆M

t

∫
‖δY (s, z)‖2νY (dz)ds

]
≤ C

M

and similarly

E
[

sup
0≤s≤∆M

‖Z̄N(s+ t)− Z̄N(t)‖2

]
≤ C
M

Step 3: Joint convergence

Define GMN =
√
M
(∑M

j=1 ∆jY∆jZ̄N − [Y, Z̄N ]T

)
. We need to show, that ∀ε > 0 there

exists an n and a finite constant C such that

P (‖GMN‖ > C) ≤ ε ∀M,N > n

By Markov’ s inequality, if E [‖GMN‖2] <∞

P (‖GMN‖ > C) ≤ 1

C2
E
[
‖GMN‖2

]
Hence it remains to show that E [‖GMN‖2] <∞ for M,N →∞.

Step 4: Bounds on sum of squared increments
By Itô’s lemma, we have on each subinterval

∆jY∆jZ̄N −∆j[Y, Z̄N ] =

∫ tj+1

tj

(Y (s)− Y (tj))dZ̄N(s) +

∫ tj+1

tj

(Z̄N(s)− Z̄N(tj))dY (s)

As Z̄N is square integrable and a local martingale, it is a martingale. By assumption Y is
either independent of Z̄N or a martingale as well. In the first case it holds that

E
[
∆jY∆jZ̄N −∆j[Y, Z̄N ]|Ftj

]
= E

[
∆jY |Ftj

]
E
[
∆jZ̄N |Ftj

]
= 0
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In the second case both stochastic integrals
∫ t

0
Y (s)dZ̄N(s) and

∫ t
0
Z̄N(s)dY (s) are martin-

gales. Hence in either case, ∆jY∆jZ̄N−∆j[Y, ZN ] forms a sequence of martingale differences
and we can apply Burkholder’s inequality for discrete time martingales (Lemma A.30):

E
[
‖GMN‖2

]
≤M

M∑
j=1

E
[
‖∆jY∆jZ̄N −∆j[Y, Z̄N ]‖2

]
≤M

M∑
j=1

E

[
‖
∫ tj+1

tj

(Y (s)− Y (tj))dZ̄N(s) +

∫ tj+1

tj

(Z̄N(s)− Z̄N(tj))dY (s)‖2

]

≤M
M∑
j=1

E

[
‖
∫ tj+1

tj

(Y (s)− Y (tj))dZ̄N(s)‖2

]

+M
M∑
j=1

E

[
‖
∫ tj+1

tj

(Z̄N(s)− Z̄N(tj))dY (s)‖2

]

It is sufficient to show that E
[
‖
∫ tj+1

tj
(Y (s)− Y (tj))dZ̄N‖2

]
= C

M2 and

E
[
‖
∫ tj+1

tj
(Z̄N(s)− Z̄N(tj))dY ‖2

]
= C

M2 . By Lemma A.31 and step 1 and 2:

E

[
‖
∫ tj+1

tj

(Y (t)− Y (tj))dZ̄N‖2

]
≤ E

[∫ tj+1

tj

‖Y (t)− Y (tj)‖2d〈Z̄N〉

]

≤ E
[∫ T

0

‖Y (t)− Y (tj)‖2

(
σ2
Z̄N

(t) +

∫
δ2
Z̄N

(z, t)νZ̄N (z)

)
dt

]
≤ CE

[∫ tj+1

tj

‖Y (t)− Y (tj)‖2dt

]

≤ CE

[
sup

tj≤t≤tj+1

‖Y (t)− Y (tj)‖2

]
1

M

≤ C

M2
.

Similarly using Lemma A.32 for the drift of Y and A.31 for the martingale part, we can
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bound the second integral:

E

[
‖
∫ tj+1

tj

(Z̄N(t)− Z̄N(tj))dY ‖2

]
≤E

[
‖
∫ tj+1

tj

(Z̄N(t)− Z̄N(tj))bY dt‖2

]

+ E

[
‖
∫ tj+1

tj

(Z̄N(t)− ZN(tj)) (σY dWY + δY d(µ− ν)) ‖2

]

≤ 1

M
CE

[∫ tj+1

tj

(Z̄N(t)− Z̄N(tj))
2‖bY (t)‖2dt

]

+ CE

[∫ tj+1

tj

(Z̄N(t)− Z̄N(tj))
2

·
(
‖σY (t)‖2 +

∫
‖δY ‖2(z, t)νY (z)

)
dt

]

≤ 1

M
CE

[∫ tj+1

tj

(Z̄N(t)− Z̄N(tj))
2dt

]

+ CE

[∫ tj+1

tj

(Z̄N(t)− Z̄N(tj))
2(t)dt

]

≤CE

[
sup

tj≤t≤tj+1

(Z̄N(t)− Z̄N(tj))
2

]
1

M

≤ C

M2

Putting things together, we obtain:

E
[
‖GMN‖2

]
≤M

M∑
j=1

C

M2
≤ C

which proves the statement.

Lemma A.1. Assumption 1.1 holds. Then

1

N
FeΛ = Op

(
1√
MN

)
Proof. Apply Proposition A.1 with Y = F and Z̄N = 1√

N

∑N
k=1 Λkek.

Lemma A.2. Assumption 1.1 holds. Then

1

N

N∑
k=1

(
M∑
j=1

ejiejk − [ei, ek]

)
Λk = Op

(
1√
MN

)
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Proof. Apply Proposition A.1 with Y = ei and Z̄N = 1√
N

∑N
k=1 Λkek.

Lemma A.3. Assume Assumption 1.1 holds. Then

1

N

N∑
i=1

Λiei(T ) = Op

(
1√
N

)
Proof. By Burkholder’s inequality in Lemma A.31 we can bound

E

( 1

N

N∑
i=1

Λiei(T )

)2
 ≤ E

[
1

N2
Λ>〈e, e〉Λ

]
≤ C

N

based on Assumption 1.1.

Lemma A.4. Assume Assumption 1.1 holds. Then

M∑
j=1

ejiejk − [ei, ek]T = Op

(
1√
M

)
Proof. Apply Theorem A.2.

Proof of Lemma 1.1:

Proof. If ei has independent increments it trivially satisfies weak serial dependence. The
harder part is to show that the second and third condition imply weak cross-sectional de-
pendence. We need to show

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
e2
j,ie

2
j,r

]
= O

(
1

δ

)
Step 1: Decompose the residuals into their continuous and jump component respectively:

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[(
eCj,i + eDj,i

)2 (
eCj,r + eDj,r

)2
]

≤C
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

(
E
[
eCj,i

2
eCj,r

2
]

+ E
[
eDj,i

2
eDj,r

2
]

+ E
[
eCj,i

2
eDj,r

2
]

+ E
[
eCj,ie

D
j,ie

C
j,r

2
]

+ E
[
eCj,ie

D
j,ie

D
j,i

2
]

+ E
[
eCj,ie

D
j,ie

C
j,re

D
j,r

])
.



APPENDIX A. APPENDIX TO CHAPTER 1 199

Step 2: To show:
∑M

j=1
1
N2

∑N
i=1

∑N
r=1 E

[
eCj,i

2
eCj,r

2
]

= Op

(
1
δ

)
This is a a consequence the Cauchy-Schwartz inequality and Burkholder’s inequality in
Lemma A.31:

E
[
eCj,i

2
eCj,r

2
]
≤ CE

[
eCj,i

4
]1/2

E
[
eCj,r

4
]1/2

≤ C

M2

Step 3: To show:
∑M

j=1
1
N2

∑N
i=1

∑N
r=1 E

[
eDj,i

2
eDj,r

2
]

= Op

(
1
δ

)
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
eDj,i

2
eDj,r

2
]
≤ max

j,r
|eDj,r

2| · 1

N

N∑
i=1

M∑
j=1

E
[
eDj,i

2
]

≤C 1

N

N∑
i=1

M∑
j=1

E
[
∆j〈eDi , eDi 〉

]
≤ C

N
E

[
N∑
i=1

〈eDi , eDi 〉

]
≤ O

(
1

δ

)
where we have used the second and third condition.
Step 4: To show:

∑M
j=1

1
N2

∑N
i=1

∑N
r=1 E

[
eCj,ie

D
j,ie

C
j,re

D
j,r

]
= Op

(
1
δ

)
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
eCj,ie

D
j,ie

C
j,re

D
j,r

]
≤ 1

N2

N∑
i=1

N∑
r=1

E

[
M∑
j=1

|eDj,i||eDj,r| sup
j,i,r

(
|eCj,i||eCj,r|

)]

≤ C
1

N2

N∑
i=1

N∑
r=1

E

( M∑
j=1

eDj,i
2

)1/2( M∑
j=1

eDj,r
2

)1/2

sup
j,i

(eCj,i
2
)


≤ CE

[
sup
j,i

(eCj,i
2
)

]
≤ C

M
.

Step 5: The other moments can be treated similarly as in step 2 to 4.

Proposition A.2. Consequence of weak dependence
Assume Assumption 1.1 holds. If additionally Assumption 1.5, i.e. weak serial dependence
and weak cross-sectional dependence, holds then we have:

1

N

N∑
i=1

M∑
j=1

Fjeji

M∑
l=1

eli = Op

(
1

δ

)
Proof. By the localization procedure in Theorem A.1, we can assume without loss of gener-
ality that there exists a constant C such that

‖bF (t)‖ ≤ C ‖σF (t)‖ ≤ C ‖F (t)‖ ≤ C ‖δF (t, z)‖2 ≤ Γ(z)

∫
Γ(z)vF (dz) ≤ C

‖σei(t)‖ ≤ C ‖ei(t)‖ ≤ C ‖δei(t, z)‖2 ≤ Γ(z)

∫
Γ(z)vei(dz) ≤ C
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We want to show

1

N

N∑
i=1

M∑
j=1

Fjejiei(T ) = Op

(
1

δ

)

where ei(T ) =
∑M

l=1 eli. I proceed in several steps: First, I define

Z̃ =
1

N

N∑
i=1

M∑
j=1

(
Fjejiei(T )− Ej

[
bFj ∆j〈ei, ei〉

])
with the notation Ej[.] = E[.|Ftj ] as the conditional expectation and bFj =

∫ tj+1

tj
bF (s)ds as the

increment of the drift term of F . The proof relies on the repeated use of different Burkholder

inequalities, in particular that bFj = Op

(
1
M

)
,∆j〈ei, ei〉 = Op

(
1
M

)
and E[Fj] = Op

(
1√
M

)
.

Step 1: To show 1
N

∑N
i=1

∑M
j=1 Ej

[
bFj ∆j〈ei, ei〉

]
= Op

(
1
δ

)
∣∣∣∣∣ 1

N

N∑
i=1

M∑
j=1

Ej
[
bFj ∆j〈ei, ei〉

]∣∣∣∣∣ ≤ sup |Ej[bFj ]| 1
N

N∑
i=1

M∑
j=1

|Ej [∆j〈ei, ei〉] | ≤ Op

(
1

M

)
Op(1)

Step 2: To show: Z̃ = Op

(
1
δ

)
Note that by the independence assumption between F and e, the summands in Z̃ follow a
martingale difference sequence. Thus, by Burkholder’s inequality for discrete time martin-
gales:

E
[
Z̃2
]
≤CE

 M∑
j=1

(
1

N

N∑
i=1

(
Fjejiei(T )− Ej[bFj ∆j〈ei, ei〉]

))2


≤CE

[
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

F 2
j ejiejrei(T )er(T ) +

1

N2

N∑
i=1

N∑
r=1

(
Ej[bFj ]2Ej[∆j〈ei, ei〉]Ej[∆j〈er, er〉]

)
− 1

N2

N∑
i=1

N∑
r=1

(
Fjejiei(T )Ej[bFj ]Ej[∆j〈er, er〉] + Fjejrer(T )Ej[bFj ]Ej[∆j〈ei, ei〉]

) ]

The first term can be written as

E

[
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

F 2
j ejiejrei(T )er(T )

]

=E

[
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

F 2
j ejiejr

∑
l 6=j

eli
∑
s 6=j

esr

]
+ E

[
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

F 2
j e

2
jie

2
jr

]
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Under the assumption of weak serial dependence in Assumption 1.5 the first sum is bounded
by

E

[
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

F 2
j ejiejr

∑
l 6=j

eli
∑
s 6=j

esr

]

≤C

(
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E[F 2
j ]|E[ejiejr]|

∣∣∣∣∣E
[∑
l 6=j

eli
∑
s 6=j

esr

]∣∣∣∣∣
)

≤C

(
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E[F 2
j ]|E[ejiejr]|

∣∣∣∣∣E
[∑
l 6=j

elielr

]∣∣∣∣∣
)

≤C 1

M

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

|E[∆j〈ei, er〉]|

≤C 1

M

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

|E

[∫ tj+1

tj

Gi,r(s)ds

]
|

≤C 1

M

M∑
j=1

1

N2

N∑
r=1

E

[∫ tj+1

tj

N∑
i=1

|Gi,r(s)|ds

]

≤C 1

MN

Next, we turn to the second sum of the first term:

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
F 2
j

]
E
[
e2
jie

2
jr

]
≤ C
M

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
e2
jie

2
jr

]
≤ C

Mδ

In the last line, we have used weak cross-sectional dependence in Assumption 1.5. The third
term can be bounded as follows

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
Ej[bFj ]2Ej[∆j〈ei, ei〉]Ej[∆j〈er, er〉]

]
≤ C

M2

1

N2

N∑
i=1

N∑
r=1

M∑
j=1

C

M2
≤ C

M3
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The final two terms can be treated the same way:

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
Fjejiei(T )Ej

[
bFj ∆j〈ei, ei〉

]]
≤

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
FjEj[bFj ]

]
E [ejiei(T )Ej [∆j〈er, er〉]]

≤
M∑
j=1

E
[
FjEj[bFj ]

]
E

[∣∣∣∣∣ 1

N

N∑
i=1

ejiei(T )

∣∣∣∣∣Ej
[

1

N

N∑
r=1

∆j〈er, er〉

]]

≤ C

M3/2

M∑
j=1

E

[∣∣∣∣∣ 1

N

N∑
i=1

ejiei(T )

∣∣∣∣∣
]
C

M

≤ C

M3/2

1

N

N∑
i=1

E [|eji|] ≤
C

M2

Lemma A.5. Convergence rate of sum of residual increments: Under Assumptions
1.1 and 1.2 it follows that

1

N

N∑
i=1

Λiej,i = Op

(
1

δ

)
Proof. We apply Burkholder’s inequality from Lemma A.31 together with Theorem A.1:

E

( 1

N

N∑
i=1

Λiej,i

)2
 ≤ CE

[
1

N2
Λ>∆j〈e, e〉Λ

]
≤ CE

[
1

N2
Λ>
∫ tj+1

tj

G(s)dsΛ

]
≤ C

NM

which implies

1

N

N∑
i=1

Λiej,i = Op

(
1√
NM

)
.

A.3.2 Central Limit Theorems

Lemma A.6. Central limit theorem for covariation between F and ei
Assume that Assumptions 1.1 and 1.2 hold. Then

√
M

M∑
j=1

Fjeji
L−s→ N(0,Γi)
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where the entry {l, g} of the K ×K matrix Γi is given by

Γi,l,g =

∫ T

0

σF l,F gσ
2
ei
ds+

∑
s≤T

∆F l(s)∆F g(s)σ2
ei

(s) +
∑
s′≤T

∆e2
i (s
′)σF g ,F l(s

′)

F l denotes the l-th component of the the K dimensional process F and σF l,F g are the entries
of its K ×K dimensional volatility matrix.

Proof. Apply Theorem A.2 using that independence of F and ei implies [F, ei] = 0.

Lemma A.7. Martingale central limit theorem with stable convergence to Gaus-
sian martingale
Assume Zn(t) is a sequence of local square integrable martingales and Z is a Gaussian mar-
tingale with quadratic characteristic 〈Z,Z〉. Assume that for any t > 0

1.
∫ t

0

∫
|z|>ε z

2νn(ds, dx)
p→ 0 ∀ε ∈ (0, 1]

2. [Zn, Zn]t
p→ [Z,Z]t

Then Zn L−s→ Z.

Proof. The convergence in distribution follows immediately from Lemma A.29. In order
to show the stable weak convergence in Theorem A.4, we need to show that the nesting
condition for the filtration holds. We construct a triangular array sequence Xn(t) = Zn([tkn])
for 0 ≤ t ≤ 1 and some kn → ∞. The sequence of histories is Fnt = Hn

[tkn]; 0 ≤ t ≤ 1, where

Hn is the history of Zn. Now, tn = 1√
kn

is a sequence that satisfies the nesting condition.

Lemma A.8. Martingale central limit theorem for sum or residuals
Assume that Assumption 1.1 is satisfied and hence, in particular ei(t) are square integrable
martingales. Define ZN = 1√

N

∑N
i=1 Λie(t). Assume that for any t > 0

1. 1
N

Λ>〈e, e〉Dt Λ
p→ 0

2. 1
N

Λ>[e, e]Dt Λ
p→ 0

3. 1
N

Λ>[e, e]tΛ
p→ Φt

Then, conditioned on its quadratic covariation ZN converges stably in law to a normal dis-
tribution.

ZN
L−s→ N(0,Φt).

Proof. By Lemma A.7 ZN
L−s→ Z, where Z is a Gaussian process with 〈Z,Z〉t = Φt. Con-

ditioned on its quadratic variation, the stochastic process evaluated at time t has a normal
distribution.
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A.4 Estimation of the Loadings

Lemma A.9. A decomposition of the loadings estimator
Let VMN be the K × K matrix of the first K largest eigenvalues of 1

N
X>X. Define H =

1
N

(
F>F

)
Λ>Λ̂V −1

MN . Then we have the decomposition

VMN

(
Λ̂i −H>Λi

)
=

1

N

N∑
k=1

Λ̂k[ei, ek]T +
1

N

N∑
k=1

Λ̂kφki +
1

N

N∑
k=1

Λ̂kηki +
1

N

N∑
k=1

Λ̂kξki

with

φki =
M∑
j=1

ejiejk − [ei, ek]T

ηki = Λ>k

M∑
j=1

Fjeji

ξki = Λ>i

M∑
j=1

Fjejk

Proof. This is essentially the identity in the proof of Theorem 1 in Bai and Ng (2002). From(
1

N
X>X

)
Λ̂ = Λ̂VMN

it follws that 1
N
X>XΛ̂V −1

MN = Λ̂. Substituting the definition of X, we obtain(
Λ̂− ΛH

)
VMN =

1

N
e>eΛ̂ +

1

N
ΛF>FΛ>Λ̂ +

1

N
e>FΛ>Λ̂ +

1

N
ΛF>eΛ̂− ΛHVMN

H is chosen to set

1

N
ΛF>FΛ>Λ̂− ΛHVMN = 0.

Lemma A.10. Mean square convergence of loadings estimator Assume Assumption
1.1 holds. Then

1

N

N∑
i=1

‖Λ̂i −H>Λi‖2 = Op

(
1

δ

)
.
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Proof. This is essentially Theorem 1 in Bai and Ng (2002) reformulated for the quadratic
variation and the proof is very similar. In Lemma A.12 it is shown that ‖VMN‖ = Op(1). As

(a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2), we have ‖Λ̂i−ΛiH‖2 ≤ (ai + bi + ci + di) ·Op(1) with

ai =
1

N2
‖

N∑
k=1

Λ̂k[ek, ei]‖2

bi =
1

N2
‖

N∑
k=1

Λ̂kφki‖2

ci =
1

N2
‖

N∑
k=1

Λ̂kηki‖2

di =
1

N2
‖

N∑
k=1

Λ̂kξkI‖2

Step 1: To show: 1
N

∑N
i=1 ai = Op

(
1
N

)
1

N

N∑
i=1

ai ≤
1

N

N∑
i=1

(
1

N2
‖

N∑
k=1

Λ̂k[ek, ei]‖2

)

≤ 1

N

(
1

N

N∑
k=1

‖Λ̂k‖2

)(
1

N

N∑
i=1

N∑
k=1

[ek, ei]
2
T

)

= Op

(
1

N

)
The first term is 1

N

∑N
i=1 ‖Λ̂k‖2 = Op(1). The second term can be bounded by using the norm

equivalence between the Frobenius and the spectral norm. Note that
∑N

i=1

∑N
k=1[ek, ei]

2
T is

simply the squared Frobenius norm of the matrix [e, e]. It is well-known that any N × N
matrix A with rank N satisfies ‖A‖F ≤

√
N‖A‖2. Therefore

1

N

N∑
i=1

N∑
k=1

[ek, ei]
2
T ≤ ‖[e, e]‖2

2 = Op(1).

Step 2: To show: 1
N

∑N
i=1 bi = Op

(
1
M

)
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1

N

N∑
i=1

bi ≤
1

N

N∑
i=1

(
1

N2
‖

N∑
k=1

Λ̂kφki‖2

)

≤ 1

N

1

N2

N∑
i=1

N∑
k=1

N∑
l=1

Λ̂>k Λ̂lφkiφli

≤ 1

N

(
1

N2

N∑
k=1

N∑
l=1

(
Λ̂>k Λ̂l

)2
)1/2

 1

N2

N∑
k=1

N∑
l=1

(
N∑
i=1

φkiφli

)2
1/2

≤ 1

N

(
1

N2

N∑
k=1

N∑
l=1

Λ̂>k Λ̂l

)1/2
 1

N2

N∑
k=1

N∑
l=1

(
N∑
i=1

φkiφli

)2
1/2

The second term is bounded by(
N∑
i=1

φkiφli

)2

≤ N2 max
k,l

φ4
kl

As φ4
kl =

(∑M
j=1 ejkejl − [ek, el]

)4

= Op

(
1
M2

)
, we conclude

1

N

N∑
i=1

bi ≤
1

N
Op

(
N

M

)
= Op

(
1

M

)
Step 3: To show: 1

N

∑N
i=1 ci = Op

(
1
M

)
1

N3

N∑
i=1

‖
N∑
k=1

Λ̂kηki‖2 ≤ 1

N

N∑
i=1

‖F>ei‖2

(
1

N

N∑
k=1

‖Λ̂k‖2

)(
1

N

N∑
k=1

‖Λk‖2

)

≤ 1

N

(
N∑
i=1

‖F>ei‖2

)
Op(1) ≤ Op

(
1

M

)
The statement is a consequence of Lemma A.6.
Step 4: To show: 1

N

∑N
i=1 di = Op

(
1
M

)
1

N2
‖

N∑
k=1

Λ̂kξki‖2 =
1

N2
‖

N∑
k=1

M∑
j=1

Λ̂kΛ
>
i Fjejk‖2

≤ ‖Λi‖2

(
1

N

N∑
k=1

‖Λ̂k‖2

)(
1

N

N∑
k=1

‖
M∑
j=1

Fjejk‖2

)
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The statement follows again from Lemma A.6.
Step 5: From the previous four steps we conclude

1

N

N∑
i=1

(ai + bi + ci + di) = Op

(
1

δ

)

Lemma A.11. Convergence rates for components of loadings estimator
Under Assumptions 1.1 and 1.2, it follows that

1. 1
N

∑N
k=1 Λ̂k[ek, ei]T = Op

(
1√
Nδ

)
2. 1

N

∑N
k=1 Λ̂kφki = Op

(
1√
Mδ

)
3. 1

N

∑N
k=1 Λ̂kηki = Op

(
1√
δ

)
4. 1

N

∑N
k=1 Λ̂kξki = Op

(
1√
Mδ

)
Proof. This is essentially Lemma A.2 in Bai (2003). The proof follows a similar logic to
derive a set of inequalities. The main difference is that we use Lemmas A.1, A.2, A.4 and
A.6 for determining the rates.
Proof of (1.):

1

N

N∑
k=1

Λ̂k[ek, ei] =
1

N

N∑
k=1

(
Λ̂k −H>Λk

)
[ek, ei] +

1

N

N∑
k=1

H>Λk[ek, ei]

The second term can be bounded using Assumption 1.2

1

N

N∑
k=1

H>Λk[ek, ei] ≤ max
k
‖Λk‖‖H‖

1

N

N∑
k=1

‖[ek, ei]‖ = Op

(
1

N

)
For the first term we use Lemma A.10:∥∥∥∥∥ 1

N

N∑
k=1

(
Λ̂k −H>Λk

)
[ek, ei]

∥∥∥∥∥ ≤
(

1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2

1√
N

(
N∑
k=1

[ek, ei]
2

)1/2

= Op

(
1√
δ

)
Op

(
1√
N

)
= Op

(
1√
Nδ

)
The local boundedness of every entry of [e, e] and Assumption 1.2 imply that

N∑
k=1

‖[ek, ei]‖2 ≤ maxl=1,...N‖[el, ei]‖
N∑
k=1

‖[ek, ei]‖ = Op(1)
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Proof of (2.):

1

N

N∑
k=1

Λ̂kφki =
1

N

N∑
k=1

φki

(
Λ̂k −H>Λk

)
+

1

N

N∑
k=1

H>Λkφki

Using Lemma A.4 we conclude that the first term is bounded by(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2(
1

N

N∑
k=1

‖
M∑
j=1

ejiejk − [ei, ek]T‖2

)1/2

= Op

(
1√
δ

)
Op

(
1√
M

)
The second term is Op

(
1√
Mδ

)
by Lemma A.4.

Proof of (3.):

1

N

N∑
k=1

Λ̂kηki =
1

N

N∑
k=1

(
Λ̂k −H>Λk

)
Λk
>F>ei +

1

N

N∑
k=1

H>ΛkΛk
>F>ei

Applying the Cauchy-Schwartz inequality to the first term yields

1

N

N∑
k=1

(
Λ̂k −H>Λk

)
ηki ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2(
1

N

N∑
k=1

η2
ki

)1/2

≤ Op

(
1√
δ

)(
1

N

N∑
k=1

‖Λk‖2‖F>ei‖2

)1/2

≤ Op

(
1√
δ

)(
‖F>ei‖2

)1/2 ≤ Op

(
1√
δM

)
.

For the second term we obtain the following bound based on Lemma A.6:

1

N

N∑
k=1

H>ΛkΛk
>F>ei = H>

(
1

N

N∑
k=1

ΛkΛk
>

)(
F>ei

)
≤ Op

(
1√
M

)
Proof of (4.): We start with the familiar decomposition

1

N

N∑
k=1

Λ̂kξki =
1

N

N∑
k=1

(
Λ̂k −H>Λk

)
ξki +

1

N

N∑
k=1

H>Λkξki

The first term is bounded by

‖ 1

N

N∑
k=1

(
Λ̂k −H>Λk

)
Λi
>F>ek‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2(
1

N

N∑
k=1

‖F>ek‖2

)1/2

‖Λi‖

≤ Op

(
1√
δ

)(
1

N

N∑
k=1

‖F>ek‖2

)1/2

≤ Op

(
1√
δM

)



APPENDIX A. APPENDIX TO CHAPTER 1 209

The rate of the second term is a direct consequence of Proposition A.1:

1

N

N∑
k=1

H>Λke
>
k FΛi = Op

(
1√
MN

)
This very last step is also different from the Bai (2003) paper. They essentially impose this
last conversion rate as an assumption (Assumption F.2), while I derive explicit conditions
for the stochastic processes in Proposition A.1.

Lemma A.12. Limit of VMN

Assume Assumptions 1.1 and 1.2 hold. For M,N →∞, we have

1

N
Λ̂>
(

1

N
X>X

)
Λ̂ = VMN

p→ V

and

Λ̂>Λ

N

(
F>F

) Λ>Λ̂

N

p→ V

where V is the diagonal matrix of the eigenvalues of Σ
1/2
Λ

>
ΣFΣ

1/2
Λ

Proof. See Lemma A.3 in Bai’s (2003) and the paper by Stock and Watson (2002).

Lemma A.13. The matrix Q
Under Assumptions 1.1 and 1.2

plimM,N→∞
Λ̂>Λ

N
= Q

where the invertible matrix Q is given by V 1/2Υ>Σ
−1/2
F with Υ being the eigenvector of

Σ
1/2
F ΣΛΣ

1/2
F

Proof. The statement is essentially Proposition 1 in Bai (2003) and the proof follows the same
logic. Starting with the equality 1

N
X>XΛ̂ = Λ̂VMN , we multiply both sides by 1

N
(F>F )1/2Λ>

to obtain

(F>F )1/2 1

N
Λ>
(
X>X

N

)
Λ̂ = (F>F )1/2

(
Λ>Λ̂

N

)
VMN

Plugging in X = FΛ> + e, we get

(F>F )1/2

(
Λ>Λ

N

)
(F>F )

(
Λ>Λ̂

N

)
+ dNM = (F>F )1/2

(
Λ>Λ̂

N

)
VMN
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with

dNM = (F>F )1/2

(
Λ>e>F

N

Λ>Λ̂

N
+

Λ>Λ

N

F>eΛ̂

N
+

Λ>e>eΛ̂

N2

)
Applying Lemmas A.1 and A.2, we conclude dNM = op(1). The rest of the proof is essentially
identical to Bai’s proof.

Lemma A.14. Properties of Q and H
Under Assumptions 1.1 and 1.2

1. plimM,N→∞H = Q−1

2. Q>Q = ΣΛ

3. plimM,N→∞HH
> = Σ−1

Λ

Proof. Lemma A.13 yields H = (F>F )
(

Λ>Λ̂
N

)
V −1 p→ ΣFQ

>V −1 and the definition of V is

ΥVΥ> = Σ
1/2
F

>
ΣΛΣ

1/2
F . Hence, the first statement follows from

H>Q = V −1QΣFQ
> + op(1)

= V −1V 1/2Υ>Σ
−1/2
F ΣFΣ

−1/2
F

>
ΥV 1/2 + op(1)

= V −1V + op(1) = I + op(1)

The second statement follows from the definitions:

Q>Q = Σ
−1/2
F

>
ΥV 1/2V 1/2Υ>Σ

1/2
F

= Σ
−1/2
F

>
Σ

1/2
F

>
ΣΛΣ

1/2
F Σ

−1/2
F

= ΣΛ

The third statement is a simple combination of the first two statements.

Proof of Theorem 1.3:

Proof. Except for the asymptotic distribution of
√
MF>ei, the proof is the same as for

Theorem 1 in Bai (2003). By Lemma A.11(
Λ̂i −H>Λi

)
VMN = Op

(
1√
Mδ

)
+Op

(
1√
Nδ

)
+Op

(
1√
M

)
+Op

(
1√
Mδ

)
The dominant term is 1

N

∑N
k=1 Λ̂kηki. Hence, we get the expansion

√
M
(

Λ̂i −H>Λi

)
= V −1

MN

1

N

N∑
k=1

Λ̂kΛ
>
k

√
MF>ei +Op

(√
M

δ

)
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If
√
M
N
→ 0, then using Lemmas A.6 and A.13, we obtain

√
M(Λ̂i −H>Λi)

L−s−→ N
(
0, V −1QΓiQ

>V −1
)

If lim inf
√
M
N
≥ τ > 0, then

N(Λ̂i − ΛiH) = Op

(
N√
Mδ

)
+Op

(√
N√
δ

)
+Op

(
N√
M

)
+Op

(
N√
Mδ

)
= Op(1)

Lemma A.15. Consistency of loadings
Assume Assumption 1.1 holds. Then

Λ̂i −H>Λi = Op

(
1√
δ

)
.

Proof. If we impose additionally the Assumption 1.2, then this lemma is a trivial consequence
of Theorem 1.3. However, even without Assumption 1.2, Lemma A.11 can be modified to
show that

VMN

(
Λ̂i −H>Λi

)
= Op

(
1√
δ

)
+Op

(
1√
Nδ

)
+Op

(
1√
M

)
+Op

(
1√
Mδ

)
.

A.5 Estimation of the Factors

Lemma A.16. Assume that Assumptions 1.1 and 1.2 hold. Then

M∑
j=1

1

N
Fj(Λ− Λ̂H−1)>Λ̂ = Op

(
1

δ

)
Proof. The overall logic of the proof is similar to Lemma B.1 in Bai (2003), but the underlying
conditions and derivations of the final bounds are different. It is sufficient to show that

1

N
(Λ̂− ΛH)>Λ = Op

(
1

δ

)
.

First using Lemma A.9 we decompose this term into

1

N
(Λ̂− ΛH)>Λ =

1

N

N∑
i=1

(
1

N

N∑
k=1

Λ̂kφik +
1

N

N∑
k=1

Λ̂k[ei, ek] +
1

N

N∑
k=1

Λ̂kηki +
1

N

N∑
k=1

Λ̂kξki

)
Λi
>

= I + II + III + IV
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We will tackle all four terms one-by-one.
Term I: The first term can again be decomposed into

1

N2

N∑
i=1

N∑
k=1

Λ̂kφikΛi
> =

1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)φikΛi
> +

1

N2

N∑
i=1

N∑
k=1

H>ΛkφikΛi
>

Due to Lemmas A.2 and A.10 the first term of I is bounded by

1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)φikΛi
> ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

φikΛi
>‖2

)1/2

≤ Op

(
1√
δ

)(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

M∑
j=1

(ejiejk − [ei, ek])Λi
>‖2

)1/2

= Op

(
1√
δ

)
Op

(
1√
MN

)
Now we turn to the second term, which we can bound using Lemma A.2 again:

‖ 1

N2

N∑
i=1

N∑
k=1

H>ΛkφikΛi
>‖ ≤ ‖H‖‖ 1

N

N∑
k=1

Λk
1

N

N∑
i=1

φikΛi
>‖

≤ Op(1)

(
1

N

N∑
k=1

‖Λk‖2

)1/2(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

φikΛi
>‖2

)1/2

≤ Op

(
1√
MN

)
Hence, I is bounded by the rate Op

(
1√
MN

)
.

Term II: Next we deal with II:

1

N2

N∑
i=1

N∑
k=1

Λ̂k[ei, ek]Λi
> =

1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)[ei, ek]Λi
> +

1

N2

N∑
i=1

N∑
k=1

H>Λk[ei, ek]Λi
>

Cauchy-Schwartz applied to the first term yields

1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)[ei, ek]Λi
> ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

[ei, ek]Λi
>‖2

)1/2

= Op

(
1√
δN

)
We used Lemma A.10 for the first factor and Assumption 1.2 in addition with the bounded-
ness of ‖Λi ‖ for the second factor. By the same argument the second term of II converges
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at the following rate

1

N2

N∑
i=1

N∑
k=1

H>Λk[ei, ek]Λi
> ≤

(
1

N

N∑
k=1

‖Λk‖2

)1/2(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

[ei, ek]Λi
>‖2

)1/2

≤ Op

(
1

N

)
Thus, the rate of II is Op

(
1
N

)
. Next, we address III.

Term III: We start with the familiar decomposition

1

N2

N∑
i=1

N∑
k=1

Λ̂kηkiΛi
> =

1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ηkiΛi

> +
1

N2

N∑
k=1

N∑
i=1

H>ΛkηkiΛi
>

We use Lemmas A.1 and A.10 and the boundedness of ‖Λk‖. The first term is bounded by

1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ηkiΛi

> ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2

·

(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

M∑
j=1

Λk
>FjejiΛi‖2

)1/2

≤Op

(
1√
δNM

)
The second term is bounded by

1

N2

N∑
k=1

N∑
i=1

H>ΛkηkiΛi
> ≤

(
1

N

N∑
k=1

‖H>Λk‖2

)1/2(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

M∑
j=1

Λk
>FjejiΛi‖2

)1/2

≤ Op

(
1√
NM

)
This implies that III is bounded by Op

(
1√
MN

)
.

Term IV: Finally, we deal with IV :

1

N2

N∑
i=1

N∑
k=1

Λ̂kξkiΛi
> =

1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ξkiΛi

> +
1

N2

N∑
i=1

N∑
k=1

H>ΛkξkiΛi
>.
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The first term can be bounded using Lemmas A.10 and Lemma A.6:

‖ 1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ξkiΛi

>‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2

·

(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

Λi
>F>eiΛi

>‖2

)1/2

≤Op

(
1√
δM

)
For the second term we need the boundedness of Λi and a modification of Proposition A.1:

‖ 1

N2

N∑
i=1

N∑
k=1

H>ΛkξkiΛi
>‖ = ‖ 1

N

N∑
k=1

M∑
j=1

H>ΛkejkF
>
j

(
1

N

N∑
i=1

ΛiΛi
>

)
‖

≤ ‖

(
1

N

N∑
i=1

Λi
>Λi

)
‖‖ 1

N

N∑
k=1

M∑
j=1

FjejkΛ
>
kH‖

≤ Op

(
1√
MN

)
.

In conclusion, IV is bounded by Op

(
1√
MN

)
. Putting things together, we get

1

N
(Λ̂− ΛH)>Λ = Op

(
1√
MN

)
+Op

(
1

N

)
+Op

(
1√
MN

)
+Op

(
1√
MN

)
= Op

(
1

δ

)
.

Lemma A.17. Assume that Assumptions 1.1 and 1.2 hold. Then

M∑
j=1

N∑
k=1

1

N

(
Λ̂k −H>Λk

)
ejk = Op

(
1

δ

)
+Op(1)

(
1

N

N∑
i=1

M∑
j=1

Fjeji

M∑
l=1

eli

)

Without further assumptions the RHS is Op

(
1
δ

)
+Op

(
1√
M

)
.

Proof. The general approach is similar to Lemma B.2 in Bai (2003), but the result is different,
which has important implications for Theorem 1.4.

Note that ei(T ) =
∑M

j=1 eji. We want to show:

1

N

N∑
i=1

(
Λ̂i −H>Λi

)
ei(T ) = Op

(
1

δ

)
+Op(1)

(
1

N

N∑
i=1

M∑
j=1

Fjeji

M∑
l=1

eli

)
.
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We substitute the expression from Lemma A.9:

1

N

N∑
i=1

(
Λ̂i −H>Λi

)
ei(T ) =

1

N2

N∑
i=1

N∑
k=1

Λ̂k[ei, ek]ei(T ) +
1

N2

N∑
i=1

N∑
k=1

Λ̂kφikei(T )

+
1

N2

N∑
i=1

N∑
k=1

Λ̂kηikei(T ) +
1

N2

N∑
i=1

N∑
k=1

Λ̂kξikei(T )

= I + II + III + IV

Term I: We first decompose I into two parts:

1

N2

N∑
i=1

N∑
k=1

Λ̂k[ei, ek]ei(T ) =
1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)[ei, ek]ei(T ) +
1

N2

N∑
i=1

N∑
k=1

H>Λk[ei, ek]ei(T ).

Lemma A.10, Assumption 1.2 and the boundedness of ei(T ) yield for the first term of I:

‖ 1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)[ei, ek]ei(T )‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2

·

(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

ei(T )[ei, ek]‖2

)1/2

≤Op

(
1√
δ

)
Op

(
1

N

)
.

Using Assumption 1.2 , we bound the second term

1

N2

N∑
i=1

N∑
k=1

H>Λk[ei, ek]ei(T ) = Op

(
1

N

)
.

Hence, I is Op

(
1
N

)
.

Term II: We split II into two parts:

1

N2

N∑
i=1

N∑
k=1

Λ̂kφikei(T ) =
1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)φikei(T ) +
1

N2

N∑
i=1

N∑
k=1

H>Λkφikei(T )

As before we apply the Cauchy-Schwartz inequality to the first term and then we use Lemma
A.4:

‖ 1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)φikei(T )‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2

·

(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

ei(T )

(
M∑
j=1

ejiejk − [ei, ek]

)
‖2

)1/2

≤Op

(
1√
δ

)
Op

(
1√
M

)
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The second term can be bounded by using a modification of Lemma A.2 and the boundedness
of ei(T ):

1

N2

N∑
i=1

N∑
k=1

H>Λk

(
M∑
j=1

ejiejk − [ei, ek]

)
ei(T ) ≤ Op

(
1√
MN

)
.

Thus, II is Op

(
1√
δM

)
.

Term III: This term yields a convergence rate different from the rest and is responsible for
the extra summand in the statement:

1

N2

N∑
i=1

N∑
k=1

Λ̂kηikei(T ) =
1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ηikei(T ) +

1

N2

N∑
i=1

N∑
k=1

H>Λkηikei(T )

The first term can be controlled using Lemma A.10 and Lemma A.6:

‖ 1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ηikei(T )‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2

·

(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

ei(T )Λk
>

M∑
j=1

Fjeji‖2

)1/2

≤Op

(
1√
δ

)
Op

(
1√
M

)
Without further assumptions, the rate of the second term is slower than of all the other
summands and can be calculated using Lemma A.6:

1

N2

N∑
i=1

N∑
k=1

H>ΛkΛk
>

M∑
j=1

Fjejiei(T ) = Op(1)

(
1

N

N∑
i=1

M∑
j=1

Fjeji

M∑
l=1

eli

)
= Op

(
1√
M

)
Term IV : We start with the usual decomposition for the last term:

1

N2

N∑
i=1

N∑
k=1

Λ̂kξikei(T ) =
1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)ξikei(T ) +
1

N2

N∑
i=1

N∑
k=1

H>Λkξikei(T )

For the first term we use Lemma A.10 and Lemmas A.6 and A.8:

‖ 1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)ξikei(T )‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2

)1/2

·

(
1

N

N∑
k=1

‖ 1

N

N∑
i=1

ei(T )Λi
>

M∑
j=1

Fjejk‖2

)1/2

≤Op

(
1√
δMN

)
.
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Similarly for the second term:

1

N2

N∑
i=1

N∑
k=1

H>Λkξikei(T ) =
1

N

N∑
k=1

H>Λk

(
1

N

N∑
i=1

ei(T )Λi
>

)(
M∑
j=1

Fjejk

)

= Op

(
1√
MN

)
In conclusion, IV is Op

(
1√
MN

)
. Putting the results together, we obtain

I + II + III + IV = Op

(
1

N

)
+Op

(
1√
δM

)
+Op

(
1√
M

)
+Op

(
1√
MN

)
= Op

(
1

δ

)
+Op

(
1√
M

)
.

Term III is responsible for the low rate of convergence.

Proof of Theorem 1.4:

Proof.

F̂ − FH−1> =
1

N
XΛ̂− FH−1>

= (F (Λ− Λ̂H−1 + Λ̂H−1)> + e)
1

N
Λ̂− FH−1>

= FΛ>Λ̂
1

N
− FH−1>Λ̂>Λ̂

1

N
+ FH−1> + eΛ̂

1

N
− FH−1>

=
1

N
F (Λ− Λ̂H−1)>Λ̂ +

1

N
eΛ̂

=
1

N
F (Λ− Λ̂H−1)>Λ̂ +

1

N
e(Λ̂− ΛH) +

1

N
eΛH.

By Lemmas A.16 and A.17, only the last term is of interest

M∑
j=1

(
F̂j −H−1Fj

)
=

1

N

M∑
j=1

N∑
k=1

Λ̂k

(
Λk −H−1>Λ̂k

)>
Fj +

1

N

M∑
j=1

N∑
k=1

(
Λ̂k −H>Λk

)
ejk

+
1

N

M∑
j=1

N∑
k=1

H>Λkejk

=Op

(
1

δ

)
+Op(1)

(
1

N

N∑
i=1

M∑
j=1

Fjeji

M∑
l=1

eli

)
+

1

N
e(T )ΛH.
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Under Assumption 1.5 Proposition A.2 implies
(

1
N

∑N
i=1

∑M
j=1 Fjeji

∑M
l=1 eli

)
= Op

(
1
δ

)
. If

√
N
M
→ 0 then

√
N

M∑
j=1

(
F̂j −H−1Fj

)
= op(1) +

1√
N

N∑
i=1

H>Λiei(T )

By Lemma A.8, we can apply the martingale central limit theorem and the desired result

about the asymptotic mixed normality follows. In the case
(

1
N

∑N
i=1

∑M
j=1 Fjeji

∑M
l=1 eli

)
=

Op

(
1√
M

)
, the arguments are analogous.

Lemma A.18. Consistency of factors

Assumptions 1.1 and 1.2 hold. Then F̂T −H−1FT = Op

(
1√
δ

)
.

Proof. The Burkholder-Davis-Gundy inequality in Lemma A.31 implies 1
N
eTΛH = Op

(
1√
N

)
.

In the proof of Theorem 1.4, we have shown that Assumptions 1.1 and 1.2 are sufficient for

M∑
j=1

(
F̂j −H−1Fj

)
= Op

(
1

δ

)
+Op

(
1√
M

)
+

1

N
eTΛH.

Lemma A.19. Consistency of factor increments
Under Assumptions 1.1 and 1.2 we have

F̂j = H−1Fj +Op

(
1

δ

)
Proof. Using the same arguments as in the proof of Theorem 1.4 we obtain the decomposition

F̂j −H−1Fj =
1

N

N∑
k=1

Λ̂k

(
Λk −H−1>Λ̂k

)>
Fj +

1

N

N∑
k=1

ejk

(
Λ̂k −H>Λk

)
+

1

N

N∑
k=1

H>Λkejk.

Lemma A.16 can easily be modified to show that

1

N

N∑
k=1

Λ̂k

(
Λk −H−1>Λ̂k

)>
Fj = Op

(
1

δ

)
.

Lemma A.17 however requires some additional care. All the arguments go through for el,i

instead of
∑M

l=1 el,i except for the term
(

1
N

∑N
i=1

∑M
j=1 Fjejieli

)
. Based on our previous

results we have
∑M

j=1 Fjej,i = Op

(
1√
M

)
and el,i = Op

(
1√
M

)
. This yields(

1

N

N∑
i=1

M∑
j=1

Fjejieli

)
= Op

(
1

M

)
= Op

(
1

δ

)
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Therefore

1

N

N∑
k=1

ejk

(
Λ̂k −H>Λk

)
= Op

(
1

δ

)
.

Lemma A.5 provides the desired rate for the last term 1
N

∑N
k=1H

>Λkejk = Op

(
1
δ

)
.

Lemma A.20. Consistent estimation of factor covariation
Under Assumptions 1.1 and 1.2 we can consistently estimate the quadratic covariation of the

factors if
√
M
N
→ 0. Assume Y (t) is a stochastic process satisfying Definition A.1. Then

‖F̂>F̂ −H−1[F, F ]TH
−1>‖ = op(1) ‖

M∑
j=1

F̂jYj −H−1[F, Y ]‖ = op(1)

Proof. This is a simple application of Lemma A.19:

M∑
j=1

F̂jF̂
>
j = H−1

(
M∑
j=1

FjF
>
j

)
H−1> +Op

(
1

δ

) M∑
j=1

|Fj|+
M∑
j=1

Op

(
1

δ2

)

= H−1

(
M∑
j=1

FjF
>
j

)
H−1> +Op

(√
M

δ

)
+Op

(
M

δ2

)
By Theorem A.2 (

M∑
j=1

FjF
>
j

)
− [F, F ]T = Op

(
1√
δ

)
The desired result follows for

√
M
N
→ 0. The proof for [F, Y ] is analogous.

A.6 Estimation of Common Components

Proof of Theorem 1.5:

Proof. The proof is very similar to Theorem 3 in Bai (2003). For completeness I present it
here:

ĈT,i − CT,i =
(

Λ̂i −H>Λi

)>
H−1FT + Λ̂>i

(
F̂T −H−1FT

)
.

From Theorems 1.3 and 1.4 we have

√
δ
(

Λ̂i −H>Λi

)
=

√
δ

M
V −1
MN

1

N

N∑
k=1

Λ̂kΛ
>
k

√
MF>ei +Op

(
1√
δ

)
√
δ
(
F̂T −H−1Ft

)
=

√
δ

M

N∑
i=1

H>ΛieT,i +Op

(√
δ

M

)
+Op

(
1√
δ

)
.
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If Assumption 1.5 holds, the last equation changes to

√
δ
(
F̂T −H−1Ft

)
=

√
δ

M

N∑
i=1

H>ΛieT,i +Op

(
1√
δ

)
.

In the following, we will assume that weak serial dependence and cross-sectional dependence
holds. The modification to the case without it is obvious. Putting the limit theorems for
the loadings and the factors together yields:

ĈT,i − CT,i =

√
δ

M
F>H−1>V −1

MN

(
1

N
Λ>Λ̂

)√
MF>ei

+

√
δ

N
Λ>i HH

>

(
1√
N

N∑
i=1

Λie
T,i

)
+Op

(
1√
δ

)
.

We have used

Λ̂>i

(
F̂T −H−1FT

)
= Λ>i H(F̂T −H−1FT ) +

(
Λ̂>i − Λ>i H

)(
F̂T −H−1FT

)
= Λ>i H(F̂T −H−1FT ) +Op

(
1

δ

)
.

By the definition of H it holds that

H−1>V −1
MN

(
Λ̂>Λ

N

)
=
(
F>F

)−1
.

Using the reasoning behind Lemma A.14, it can easily be shown that

HH> =

(
1

N
Λ>Λ

)−1

+Op

(
1

δ

)
.

Define

ξNM = F>T
(
F>F

)−1√
MF>ei

φNM = Λ>i

(
1

N
Λ>Λ

)−1
1√
N

Λ>eT

By Lemmas A.6 and A.8, we know that these terms converge stably in law to a conditional
normal distribution:

ξNM
s−L→ N(0, VT,i) , φNM

s−L→ N(0,WT,i)

Therefore,

√
δ
(
ĈT,i − CT,i

)
=

√
δ

M
ξNM +

√
δ

N
φNM +Op

(
1√
δ

)
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ξNM and φNM are asymptotically independent, because one is the sum of cross-sectional
random variables, while the other is the sum of a particular time series of increments. If
δ
M

and δ
N

converge, then asymptotic normality follows immediately from Slutzky’s theorem.
δ
M

and δ
N

are not restricted to be convergent sequences. We can apply an almost sure
representation theory argument on the extension of the probability space similar to Bai
(2003).

Lemma A.21. Consistency of increments of common component estimator
Under Assumptions 1.1 and 1.2 it follows that

Ĉj,i = Cj,i +Op

(
1

δ

)
êj,i = ej,i +Op

(
1

δ

)
with êj,i = Xj,i − Ĉj,i.

Proof. As in the proof for Theorem 1.5 we can separate the error into a component due to
the loading estimation and one due to the factor estimation.

Ĉj,i − Cj,i =
(

Λ̂i −H>Λi

)>
H−1Fj + Λ̂>i

(
F̂j −H−1Fj

)
.

By Lemmas A.15 and A.19 we can bound the error by Op

(
1
δ

)
.

Lemma A.22. Consistent estimation of residual covariation Assume Assumptions

1.1 and 1.2 hold. Then if
√
M
δ
→ 0 we have for i, k = 1, ..., N and any stochastic process

Y (t) satisfying Definition A.1:

M∑
j=1

êj,iêj,k = [ei, ek] + op(1),
M∑
j=1

Ĉj,iĈj,k = [Ci, Ck] + op(1).

M∑
j=1

êj,iYj = [ei, Y ] + op(1),
M∑
j=1

Ĉj,iYj = [Ci, Y ] + op(1).

Proof. Using Lemma A.21 we obtain

M∑
j=1

êj,iêj,k =
M∑
j=1

ej,iej,k +
M∑
j=1

Op

(
1

δ2

)
+

M∑
j=1

|ej,i|Op

(
1

δ

)
=

M∑
j=1

ej,iej,k + op(1) = [ei, ek] + op(1).

The rest of the proof follows the same logic.

Proof of Theorem 1.1:

Proof. This is a collection of the results in Lemmas A.15, A.18, A.20, A.21 and A.22.
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A.7 Estimating Covariance Matrices

Proposition A.3. Consistent unfeasible estimator of covariance matrix of load-
ings

Assume Assumptions 1.1, 1.2 and 1.3 hold and
√
M
N
→ 0. By Theorem 1

√
M(Λ̂i −H>Λi)

L−s−→ N (0,ΘΛ)

with

ΘΛ,i = V −1QΓiQ
>V −1

where the entry {l, g} of the K ×K matrix Γi is given by

Γi,l,g =

∫ T

0

σF l,F gσ
2
ei
ds+

∑
s≤T

∆F l(s)∆F g(s)σ2
ei

(s) +
∑
s′≤T

∆e2
i (s
′)σF g ,F l(s

′).

F l denotes the l-th component of the the K dimensional process F and σF l,F g are the entries
of its K ×K dimensional volatility matrix. Take any sequence of integers k →∞, k

M
→ 0.

Denote by I(j) a local window of length 2k
M

around j with some α > 0 and ω ∈
(
0, 1

2

)
.

Define a consistent, but unfeasible, estimator for Γi by

Γ̄i,l,g =M
M∑
j=1

F l
jF

g
j e

2
j,i1{|F lj |≤α∆ω

M ,|F
g
j |≤α∆ω

M ,|ej,i|≤α∆ω
M}

+
M

2k

M−k∑
j=k+1

F l
jF

g
j 1{|F lj |≥α∆ω

M ,|F
g
j |≥α∆ω

M}

∑
h∈I(j)

e2
h,i1{|eh,i|≤α∆ω

M}


+
M

2k

M−k∑
j=k+1

e2
j,i1{|ej,i|≥α∆ω

M}

∑
h∈I(j)

F l
hF

g
h1{|F lh|≤α∆ω

M ,|F
g
h |≤α∆ω

M}


Then

V −1
MN

(
Λ̂>Λ

N

)
Γ̄i

(
Λ>Λ̂

N

)
V −1
MN

p→ ΘΛ,i

Proof. The Estimator for Γi is an application of Theorem A.3. Note that we could generalize
the statement to include infinite activity jumps as long as their activity index is smaller than
1. Finite activity jumps trivially satisfy this condition. The rest follows from Lemmas A.12
and A.13.

Proof of Theorem 1.6:
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Proof. By abuse of notation the matrix e1{|X|≤α∆ω̄
M} has elements ej,i1{|Xj,i|≤α∆ω̄

M} and the

matrix F1{|X|≤α∆ω̄
M}Λ

> has elements Fj1{|Xj,i|≤α∆ω̄
M}Λ

>
i . A similar notation is applied for

other combinations of vectors with a truncation indicator function.
Step 1: To show: 1

N
X̂C
j Λ̂−

∑N
i=1 1{|Xj,i|≤α∆ω̄

M}
Λ̂iΛ̂

>
i

N
H−1Fj = Op

(
1
δ

)
We start with a similar decomposition as in Theorem 1.4:

X̂CΛ̂

N
− F1{|X|≤α∆ω̄

M}H
−1> Λ̂>Λ̂

N
=

1

N
F1{|X|≤α∆ω̄

M}

(
Λ− Λ̂H−1

)>
Λ̂ +

1

N
e1{|X|≤α∆ω̄

M}

(
Λ̂− ΛH

)
+

1

N
e1{|X|≤α∆ω̄

M}ΛH.

It can be shown that

1

N
Fj1{|X|≤α∆ω̄

M}

(
Λ− Λ̂H−1

)>
Λ̂ = Op

(
1

δ

)
1

N
ej1{|X|≤α∆ω̄

M}

(
Λ̂− ΛH

)
= Op

(
1

δ

)
1

N
ej1{|X|≤α∆ω̄

M}ΛH =
1

N
eCj ΛH +

1

N

(
ej1{|X|≤α∆ω̄

M} − e
C
j

)
ΛH = Op

(
1

δ

)
.

The first statement follows from Lemma A.16. The second one can be shown as in Lemma
A.19. The first term of the third statement can be bounded using Lemma A.5. The
rate for the second term of the third equality follows from the fact that the difference
ej,i1{|Xj,i|≤α∆ω̄

M} − e
C
j,i is equal to some drift term which is of order Op

(
1
M

)
and to − 1

N
eCj,i if

there is a jump in Xj,i.

Step 2: To show: 1
N
X̂D
j Λ̂−

∑N
i=1 1{|Xj,i|>α∆ω̄

M}
Λ̂iΛ̂

>
i

N
H−1Fj = Op

(
1
δ

)
As in step 1 we start with a decomposition

X̂DΛ̂

N
− F1{|X|>α∆ω̄

M}H
−1> Λ̂>Λ̂

N
=

1

N
F1{|X|>α∆ω̄

M}

(
Λ− Λ̂H−1

)>
Λ̂ +

1

N
e1{|X|>α∆ω̄

M}

(
Λ̂− ΛH

)
+

1

N
e1{|X|>α∆ω̄

M}ΛH.

It follows

1

N
Fj1{|X|>α∆ω̄

M}

(
Λ− Λ̂H−1

)>
Λ̂ = Op

(
1

δ

)
1

N
ej1{|X|>α∆ω̄

M}

(
Λ̂− ΛH

)
= Op

(
1

δ

)
1

N
ej1{|X|>α∆ω̄

M}ΛH =
1

N
eDj ΛH +

1

N

(
ej1{|X|>α∆ω̄

M} − e
D
j

)
ΛH = Op

(
1

δ

)
.

The first rate is a consequence of Lemma A.16, the second rate follows from Lemma A.15
and the third rate can be derived using similar arguments as in step 1.
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Step 3: To show: X̂C
j,i −

X̂C
j Λ̂

N
Λ̂i − ej,i1{|Xj,i|≤α∆ω̄

M} = Op

(
1
δ

)
By a similar decomposition as in Lemma A.21 we obtain

X̂C
j,i −

X̂C
j Λ̂

N
Λ̂i − ej,i1{|Xj,i|≤α∆ω̄

M} =
(

Λ̂i −H>Λi

)>
H−1Fj1{|Xj,i|≤α∆ω̄

M}

+ Λ̂>i

(
Λ̂>X̂C

j
>

N
−H−1Fj1{|Xj,i|≤α∆ω̄

M}

)

=Op

(
1√
δ

)
‖Fj1{|Xj,i|≤α∆ω̄

M}‖+Op

(
1

δ

)
=Op

(
1√
δM

)
+Op

(
1

δ

)
The first rate follows from Lemma A.15 and the second rate can be deduced from step 1.

Step 4: To show X̂D
j,i −

X̂D
j Λ̂

N
Λ̂i − ej,i1{|Xj,i|>α∆ω̄

M} = Op

(
1
δ

)
+Op

(
1√
δ

)
‖Fj1{|Xj,i|>α∆ω̄

M}‖
A similar decomposition as in the previous step yields

X̂D
j,i −

X̂D
j Λ̂

N
Λ̂i − ej,i1{|Xj,i|>α∆ω̄

M} =
(

Λ̂i −H>Λi

)>
H−1Fj1{|Xj,i|>α∆ω̄

M}

+ Λ̂>i

(
Λ̂>X̂D

j
>

N
−H−1Fj1{|Xj,i|>α∆ω̄

M}

)

≤ Op

(
1√
δ

)
‖Fj1{|Xj,i|>α∆ω̄

M}‖+Op

(
1

δ

)
where the first rate follows from Lemma A.15 and the second from step 2.

Step 5: To show: M
∑M

j=1

(
X̂C
j Λ̂

N

)(
X̂C
j Λ̂

N

)>(
X̂C
j,i −

X̂C
j Λ̂

N
Λ̂i

)2

= M
∑M

j=1

(
H−1Fj1{|Fj |≤α∆ω̄

M}
)> (

H−1Fj1{|Fj |≤α∆ω̄
M}
) (
e2
j,i1{|ej,i|≤α∆ω̄

M}
)

+ op(1)
Step 1 and 3 yield

M

M∑
j=1

(
X̂C
j Λ̂

N

)(
X̂C
j Λ̂

N

)>(
X̂C
j,i −

X̂C
j Λ̂

N
Λ̂i

)2

=M
M∑
j=1

(
N∑
i=1

1{|Xj,i|≤α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj

)>( N∑
i=1

1{|Xj,i|≤α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj

)(
e2
j,i1{|Xj,i|≤α∆ω̄

M}
)

+ op(1)

We need to show

N∑
i=1

1{|Xj,i|≤α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj −H−1Fj1{{|Fj |≤α∆ω̄

M} = op

(
1√
δ

)
.
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By Mancini (2009) the threshold estimator correctly identifies the jumps for sufficiently large
M . By Assumption 1.3 a jump in Xj,i is equivalent to a jump in Λ>i Fj or/and a jump in ej,i.
Hence, it is sufficient to show that

N∑
i=1

1{FDj Λi=0,eDi =0,|FDj |6=0}
Λ̂iΛ̂

>
i

N
+

N∑
i=1

1{eDi 6=0}
Λ̂iΛ̂

>
i

N
− IK

N∑
i=1

1{eDj,i 6=0,|FDj |=0} = op(1)

Note that

P
(
eDj,i 6= 0

)
= E

[
1{eDj,i 6=0}

]
= E

[∫ tj+1

tj

∫
R−0

dµei(ds, dx)

]

= E

[∫ tj+1

tj

∫
R−0

dνei(ds, dx)

]
≤ C

∫ tj+1

tj

ds = O

(
1

M

)
.

It follows that
∑N

i=1 1{eDi 6=0}
Λ̂iΛ̂

>
i

N
= op(1) as

E

[
N∑
i=1

1{eDi 6=0}
Λ̂iΛ̂

>
i

N

]
=

N∑
i=1

P
(
eDi 6= 0

) Λ̂iΛ̂i

N
= Op

(
1

M

)
and

E

( N∑
i=1

1{eDi 6=0}
Λ̂iΛ̂

>
i

N

)2
 =E

[
1

N2

N∑
i=1

N∑
k=1

Λ̂iΛ̂
>
i Λ̂kΛ̂

>
k 1{eDi 6=0}1{eDk 6=0}

]

≤

(
E

[
1

N2

N∑
i=1

N∑
k=1

‖Λ̂iΛ̂
>
i Λ̂kΛ̂

>
k ‖2

])1/2

·

(
E

[
1

N2

N∑
i=1

N∑
k=1

1
2
{eDi 6=0}1

2
{eDk 6=0}

])1/2

≤C

E

tj+1∑
tj

1

N2

N∑
i=1

N∑
k=1

Gi,kdt

1/2

≤ C√
NM

By the same logic it follows that
∑N

i=1 1{eDj,i 6=0,|FDj |=0} = op(1). Last but not least

‖
N∑
i=1

1{FDj Λi=0,eDi =0,|FDj |6=0}
Λ̂iΛ̂

>
i

N
‖ ≤ ‖

N∑
i=1

1{|FDj |6=0}
Λ̂iΛ̂

>
i

N
‖

≤ 1{|FDj |6=0}‖
N∑
i=1

Λ̂iΛ̂
>
i

N
‖ ≤ Op

(
1√
M

)
.
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On the other hand there are only finitely many j for which ej,i1{|Xj,i|≤α∆ω̄
M} 6= ej,i1{|ej,i|≤α∆ω̄

M}

and the difference is Op

(
1√
M

)
, which does not matter asymptotically for calculating the

multipower variation.

Step 6: To show: M
2k

∑M−k
j=k+1

(
X̂D
j Λ̂

N

)(
X̂D
j Λ̂

N

)>(∑
h∈I(j)

(
X̂C
h,i −

X̂C
h Λ̂

N
Λ̂i

)2
)

=M
2k

∑M−k
j=k+1

(
H−1Fj1{|Fj |>α∆ω̄

M}
)> (

H−1Fj1{|Fj |>α∆ω̄
M}
) (∑

h∈I(j)
(
e2
h,i1{|eh,i|≤α∆ω̄

M}
))

+ op(1)

We start by plugging in our results from Steps 2 and 3:

M

2k

M−k∑
j=k+1

(
X̂D
j Λ̂

N

)(
X̂D
j Λ̂

N

)>∑
h∈I(j)

(
X̂C
h,i −

X̂C
h Λ̂

N
Λ̂i

)2


=
M

2k

M−k∑
j=k+1

(
N∑
i=1

1{|Xj,i|>α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj

)>( N∑
i=1

1{|Xj,i|>α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj

)

·

∑
h∈I(j)

(
e2
h,i1{|Xh,i|≤α∆ω̄

M}
)+ op(1).

We need to show that
∑N

i=1 1{|Xj,i|>α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj = H−1Fj1{|Fj |>α∆ω̄

M} + op

(
1√
δ

)
. This

follows from

N∑
i=1

(
1{|FDj Λi|>0}

Λ̂iΛ̂
>
i

N
− IK1{|FDj |6=0}

)
−

N∑
i=1

1{|FDj Λi|>0,|FDj |>0,eDj,i=0}IK +
N∑
i=1

1{eDj,i 6=0}
Λ̂iΛ̂

>
i

N

=op(1)

which can be shown by the same logic as in step 5.

Step 7: To show: M
2k

∑M−k
j=k+1

(
X̂D
j,i −

X̂D
j Λ̂

N
Λ̂i

)2(∑
h∈I(j)

(
X̂C
h Λ̂

N

)(
X̂C
h Λ̂

N

)>)
=M

2k

∑M−k
j=k+1

(
e2
j,i1{|ej,i|>α∆ω̄

M}
) (∑

h∈I(j)
(
H−1Fh1{|Fh|≤α∆ω̄

M}
)> (

H−1Fh1{|Fh|≤α∆ω̄
M}
))

+ op(1)

In light of the previous steps we only need to show how to deal with the first term. By step
4 we have

M

2k

M−k∑
j=k+1

(
X̂D
j,i −

X̂D
j Λ̂

N
Λ̂i

)2
∑
h∈I(j)

(
X̂C
h Λ̂

N

)(
X̂C
h Λ̂

N

)>
=
M

2k

∑
j∈J

(
ej,i1{|Xj,i|>α∆ω̄

M} +Op

(
1

δ

)
+OP

(
1√
δ

)
‖Fj1{|Xj,i|>α∆ω̄

M}‖
)2

·

∑
h∈I(j)

(
H−1Fh1{|Fh|≤α∆ω̄

M}
)> (

H−1Fh1{|Fh|≤α∆ω̄
M}
)+ op(1)
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where J denotes the set of jumps of the processXi(t). Note that J contains only finitely many

elements. The difference between ej,i1{|Xj,i|>α∆ω̄
M} and ej,i1{|ej,i|>α∆ω̄

M} is of order Op

(
1√
M

)
as there might be increments j where there is a jump in the factors but not in the residuals.
As we consider only finitely many increments j the result follows.

Proof of Theorem 1.7:

Proof. Under cross-sectional independence of the error terms the asymptotic variance equals

ΘF = plim
N,M→∞

H>
∑N

i=1 Λi[ei, ei]Λ
>
i

N
H

By Lemmas A.15 and A.22 we know that
∑M

j=1 êj,iêj,k = [ei, ek] + op(1) and Λ̂i = H>Λi +

Op

(
1√
δ

)
and the result follows immediately.

A.8 Separating Continuous and Jump Factors

Lemma A.23. Convergence rates for truncated covariations
Under Assumptions 1.1 and 1.3 and for some α > 0 and ω̄ ∈

(
0, 1

2

)
it follows that

1

N

N∑
i=1

‖
M∑
j=1

Fjej,i1{|Xj,i|≤α∆ω̄
M}‖ = Op

(
1√
M

)
+Op

(
1

N

)
1

N

N∑
i=1

‖
M∑
j=1

Fjej,i1{|Xj,i|>α∆ω̄
M}‖ = Op

(
1√
M

)
1

N

N∑
i=1

‖
M∑
j=1

(
ej,iej,k1{|Xj,i|≤α∆ω̄

M}1{|Xj,k|≤α∆ω̄
M} − [eCi , e

C
k ]
)
‖ = Op

(
1√
M

)
+Op

(
1

N

)
1

N

N∑
i=1

‖
M∑
j=1

(
ej,iej,k1{|Xj,i|>α∆ω̄

M}1{|Xj,k|>α∆ω̄
M} − [eDi , e

D
k ]
)
‖ = Op

(
1√
M

)
.

Proof. I will only prove the first statement as the other three statements can be shown
analogously. By Theorem A.6

M∑
j=1

Fjej,i1{‖Fj‖≤α∆ω̄
M , ej,i≤α∆ω̄

M} = Op

(
1√
M

)
.

However, as F and ei are not observed our truncation is based on X. Hence we need to
characterize

M∑
j=1

Fjej,i
(
1{‖Fj‖≤α∆ω̄

M ,| ej,i|≤α∆ω̄
M} − 1{|Xj,i|≤α∆ω̄

M}
)
.
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If there is a jump in X, there has to be also a jump in ei or F . By Assumption 1.3 if there is
a jump in ei or Λ>i F , there has to be a jump in X. However, it is possible that two factors
Fk and Fl jump at the same time but their weighted average Λ>i F is equal to zero. Hence,
we could not identify these jumps by observing only Xi. This can only happen for a finite
number of indices i as limN→∞

Λ>Λ
N

= ΣΛ has full rank. Hence

1

N

N∑
i=1

‖
M∑
j=1

Fjej,i
(
1{‖Fj‖≤α∆ω̄

M , ej,i≤α∆ω̄
M} − 1{|Xj,i|≤α∆ω̄

M}
)
‖ = Op

(
1

N

)
.

In the reverse case where we want to consider only the jump part, |Xj,i| > α∆ω̄
M implies that

either Λ>i Fj or ej,i has jumped. If we wrongly classify an increment ej,i as a jump although
the jump happened in Λ>i Fj, it has an asymptotically vanishing effect as we have only a
finite number of jumps in total and the increment of a continuous process goes to zero with

the rate Op

(
1√
M

)
.

Proof of Theorem 1.2:

Proof. I only prove the statement for the continuous part. The proof for the discontinuous
part is completely analogous.
Step 1: Decomposition of the loading estimator:
First we start with the decomposition in Lemma A.9 that we get from substituting the

definition of X into 1
N
X̂C>X̂CΛ̂CV C

MN
−1

= Λ̂C . We choose HC to set 1
N

ΛCFC>FCΛC>Λ̂C =
ΛCHV C

MN .

V C
MN

(
Λ̂C
i −HC>ΛC

i

)
=

1

N

M∑
j=1

N∑
k=1

Λ̂C
k ej,kej,i1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}

+
1

N

M∑
j=1

N∑
k=1

Λ̂C
k ΛC

k

>
FC
j ej,i1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}

+
1

N

M∑
j=1

N∑
k=1

Λ̂C
k ej,kF

C
j

>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

C
i +RC
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with

RC = +
1

N

M∑
j=1

N∑
k=1

ΛD
k ej,kF

D
j

>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

C
i

+
1

N

M∑
j=1

N∑
k=1

Λ̂C
k ΛD

k

>
FD
j ej,i1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}

+
1

N

M∑
j=1

N∑
k=1

Λ̂C
k ΛD

k

>
FD
j F

D
j

>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

D
i

+
1

N

M∑
j=1

N∑
k=1

Λ̂C
k ΛC

k

>
FC
j F

D
j

>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

D
i

+
1

N

M∑
j=1

N∑
k=1

Λ̂C
k ΛD

k

>
FC
j F

D
j

>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

C
i

+
1

N

M∑
j=1

N∑
k=1

Λ̂C
k ΛC

k

>
FC
j F

C
j

>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

C
i

− 1

N

M∑
j=1

N∑
k=1

Λ̂C
k ΛC

k

>
FC
j F

C
j

>
ΛC
i

=op(1)

The convergence rate of RC would be straightforward if the truncations were in terms of
F and ei instead of X. However using the same argument as in Lemma A.23, we can
conclude that under Assumption 1.3 at most for a finite number of indices i it holds that

Fj1{|Xj,i|≤α∆ω̄
M}−Fj1{‖Fj‖≤α∆ω̄

M} = Op

(
1√
δ

)
for M sufficiently large and otherwise the differ-

ence is equal to 0. Likewise if there is no jump in F ej,i1{|Xj,i|≤α∆ω̄
M} = ej,i1{|ej,i|≤α∆ω̄

M} except

for a finite number of indices. Hence, we have a similar decomposition for
(

Λ̂C
i −HC>ΛC

i

)
as in Lemma A.9 using only truncated observations.

Step 2: Λ̂C
i −HC>ΛC

i = Op

(
1√
δ

)
:

We need to show Lemmas A.10 and A.11 for the truncated observations. Note that Propo-
sition A.1 does not hold any more because the truncated residuals are not necessarily local

martingales any more. For this reason we obtain a lower convergence rate of Op

(
1√
δ

)
instead

of Op

(
1
δ

)
. The statement follows from a repeated use of Lemma A.23.

Step 3: Convergence of F̂C
T −HC−1

FC
T :

We try to extend Theorem 1.4 to the truncated variables. By abuse of notation I denote
by Λ>F1{|X|≤α∆ω̄

M} the matrix with elements Λ>i Fj1{|Xj,i|≤α∆ω̄
M} and similarly e1{|X|≤α∆ω̄

M} is
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the matrix with elements ej,i1{|Xj,i|≤α∆ω̄
M}.

F̂C − FCHC−1>
=

1

N
X̂CΛ̂C − FCHC−1>

=
1

N

(
FC

1{|X|≤α∆ω̄
M}Λ

C> + FD
1{|X|≤α∆ω̄

M}Λ
D> + e1{|X|≤α∆ω̄

M}

)
Λ̂C − FCHC−1>

=
1

N
FC

1{|X|≤α∆ω̄
M}Λ

C>Λ̂C − FC
1{|X|≤α∆ω̄

M}H
C−1>

+ FC
1{|X|≤α∆ω̄

M}H
C−1>

+
1

N
FD

1{|X|≤α∆ω̄
M}Λ

D>Λ̂C +
1

N
e1{|X|≤α∆ω̄

M}Λ̂
C − FCHC−1>

=
1

N
FC

1{|X|≤α∆ω̄
M}

(
ΛC> −HC−1>

Λ̂C>
)

Λ̂C +
(
FC

1{|X|≤α∆ω̄
M} − F

C
)
HC−1>

+ FD
1{|X|≤α∆ω̄

M}

(
1

N
ΛD>ΛCHC

)
+ FD

1{|X|≤α∆ω̄
M}

1

N
ΛD>

(
Λ̂C − ΛCHC

)
+

1

N
e1{|X|≤α∆ω̄

M}

(
Λ̂C − ΛCHC

)
+

1

N
e1{|X|≤α∆ω̄

M}Λ
CHC .

Using the result Λ̂C
i − HC>ΛC

i = Op

(
1√
δ

)
and a similar reasoning as in Lemma A.23, we

conclude that

F̂C
T −HC−1

FC
T =op(1) +

(
1

N
ΛD>ΛCHC

)>
FD
T 1{|X|≤α∆ω̄

M} +
1

N
HC>ΛC>e>T 1{|X|≤α∆ω̄

M}

The term FD
T 1{|X|≤α∆ω̄

M}

(
1
N

ΛD>ΛCHC
)

goes to zero only if FD has no drift term or ΛD is

orthogonal to ΛC . Note that in general FD can be written as a pure jump martingale and a
finite variation part. Even when FD does not jump its value does not equal zero because of
the finite variation part. Hence in the limit FD

T 1{|X|≤α∆ω̄
M} estimates the drift term of FD.

A similar argument applies to 1
N
eT1{|X|≤α∆ω̄

M}Λ
CHC . By definition ei are local martingales.

If the residuals also have a jump component, then this component can be written as a
pure jump process minus its compensator, which is a predictable finite variation process.
The truncation estimates the continuous part of ei which is the continuous martingale plus
the compensator process of the jump martingale. Hence, in the limit ei1{|X|≤α∆ω̄

M} is not
martingale any more. In particular the weighted average of the compensator drift process
does not vanish. In conclusion, if the jump factor process has a predictable finite variation
part or more than finitely many residual terms have a jump component, there will be a
predictable finite variation process as bias for the continuous factor estimator.

Step 4: Convergence of quadratic covariation:
The quadratic covariation estimator of the estimator F̂C with another arbitrary process Y
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is
M∑
j=1

F̂C
jYj =HC−1

M∑
j=1

FC
j Yj + op(1) +

1

N

N∑
i=1

M∑
j=1

HC>ΛC
i

>
ej,iYj1{|Xj,i|≤α∆ω̄

M}

+
1

N

N∑
i=1

M∑
j=1

HC>ΛC
i ΛD

i

>
FD
j Yj1{|Xj,i|≤α∆ω̄

M}.

The first term converges to the desired quantity. Hence, we need to show that the other two
terms go to zero.

1

N

N∑
i=1

M∑
j=1

HC>ΛC
i

>
ej,iYj1{|Xj,i|≤α∆ω̄

M} =
1

N

N∑
i=1

HC>ΛC
i

>
[eCi , Y ]T

+
1

N

N∑
i=1

M∑
j=1

HC>ΛC
i

>
ej,iYj

(
1{|Xj,i|≤α∆ω̄

M} − 1{|ej,i|≤α∆ω̄
M}
)

+
1

N

N∑
i=1

HC>ΛC
i

>
(

M∑
j=1

ej,iYj1{|ej,i|≤α∆ω̄
M} − [eCi , Y ]T

)
The last two term are op(1) by a similar argument as in Lemma A.23. Applying the Cauchy
Schwartz inequality and Assumption 1.1 to the first term yields

‖ 1

N

N∑
i=1

HC>ΛC
i

>
[eCi , Y ]T‖2 ≤ ‖ 1

N2
HC>ΛC>[eC , eC ]TΛCHC‖ · ‖[Y, Y ]T‖ = Op

(
1

N

)
Thus Assumption 1.1 implies that 1

N

∑N
i=1

∑M
j=1H

C>ΛC
i
>

[eCi , Y ]T = Op

(
1√
N

)
. The last

result follows from that fact that the quadratic covariation of a predictable finite variation
process with a semimartingale is zero and FD

j 1{‖FDj ‖≤α∆ω̄
M}

converges to a predictable finite

variation term:

1

N

N∑
i=1

M∑
j=1

HC>ΛC
i ΛD

i

>
FD
j Yj1{|Xj,i|≤α∆ω̄

M} =
1

N

N∑
i=1

M∑
j=1

HC>ΛC
i ΛD

i

>
FD
j Yj1{‖FDj ‖≤α∆ω̄

M}
+ op(1)

= op(1)

A.9 Estimation of the Number of Factors

Lemma A.24. Weyl’s eigenvalue inequality
For any M ×N matrices Qi we have

λi1+...+iK−(K−1)

(
K∑
k=1

Qk

)
≤ λi1 (Q1) + ...+ λiK (QK)
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where 1 ≤ i1, ..., iK ≤ min(N,M)), 1 ≤ i1 + ... + iK − (K − 1) ≤ min(N,M) and λi(Q)
denotes the ith largest singular value of matrix Q, which is another name for the square root
of the ith largest eigenvalue of matrix QQ>.

Proof. See Theorem 3.3.16 in Horn and Johnson (1991).

Lemma A.25. Bound on non-systematic eigenvalues
Assume Assumption 1.1 holds and O

(
N
M

)
≤ O(1). Then

λk(X
>X) ≤ Op(1) for k ≥ K + 1.

Proof. Note that the singular values of a symmetric matrix are equal to the eigenvalues of
this matrix. By Weyl’s inequality for singular values in Lemma A.24 we obtain

λk(X) ≤ λk(FΛ>) + λ1(e).

As λk(FΛ>) = 0 for k ≥ K + 1, we conclude

λk(X
>X) ≤ λ1(e>e) for k ≥ K + 1

Now we need to show that λk(e
>e) ≤ Op(1) ∀k ∈ [1, N ]. We start with a decomposition

λk(e
>e) = λk(e

>e− [e, e] + [e, e])

≤ λ1(e>e− [e, e]) + λk([e, e]).

By Assumption 1.1 [e, e] has bounded eigenvalues, which implies λk([e, e]) = Op(1).
Denote by V the eigenvector of the largest eigenvalue of (e>e− [e, e]).

λ1

(
e>e− [e, e]

)
= V >

(
e>e− [e, e]

)
V

=
N∑
i=1

N∑
l=1

Vi
(
e>i el − [ei, el]

)
Vl

≤

 N∑
i=1

(
N∑
l=1

(e>i el − [ei, el])Vl

)2
 1

2 ( N∑
i=1

V 2
i

) 1
2

≤

 N∑
i=1

(
N∑
l=1

(e>i el − [ei, el])Vl

)2
 1

2

as V is an orthonormal vector. Apply Proposition A.1 with Y = ei and Z̄ =
∑N

l=1 elVl. Note
that [Z̄] = V >[e, e]V is bounded. Hence

N∑
l=1

(
e>i el − [ei, el]

)
Vl = Op

(
1√
M

)
.
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Therefore

λ1

(
e>e− [e, e]

)
=

(
N∑
i=1

Op

(
1

M

)) 1
2

≤ Op

(√
N√
M

)
≤ Op(1).

Lemma A.26. Bound on systematic eigenvalues
Assume Assumption 1.1 holds and O

(
N
M

)
≤ O(1). Then

λk(X
>X) = Op(N) for k = 1, ..., K

Proof. By Weyl’s inequality for singular values in Lemma A.24:

λk(FΛ>) ≤ λk(X) + λ1(−e)

By Lemma A.25 the last term is λ1(−e) = −λN(e) = Op(1). Therefore

λk(X) ≥ λk(FΛ>) +Op(1)

which implies λk(X
>X) ≥ Op(N) as

(
F>F Λ>Λ

N

)
has bounded eigenvalues for k = 1, ..., K.

On the other hand

λk(X) ≤ λk(FΛ>) + λ1(e)

and λ1(e) = Op(1) implies λk(X
>X) ≤ Op(N) for k = 1, ..., K.

Lemma A.27. Bounds on truncated eigenvalues
Assume Assumptions 1.1 and 1.3 hold and O

(
N
M

)
≤ O(1). Set the threshold identifier for

jumps as α∆ω̄
M for some α > 0 and ω̄ ∈

(
0, 1

2

)
and define X̂C

j,i = Xj,i1{|Xj,i|≤α∆ω̄
M} and

X̂D
j,i = Xj,i1{|Xj,i|>α∆ω̄

M}. Then

λk

(
X̂C>X̂C

)
= Op(N) k = 1, ..., KC

λk

(
X̂C>X̂C

)
≤ Op(1) k = KC + 1, ..., N

λk

(
X̂D>X̂D

)
= Op(N) k = 1, ..., KD

λk

(
X̂D>X̂D

)
≤ Op(1) k = KD + 1, ..., N

where KC is the number of factors that contain a continuous part and KD is the number of
factors that have a jump component.
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Proof. By abuse of notation the vector 1{|e|≤α∆ω̄
M}e has the elements 1{|ej,i|≤α∆ω̄

M}ej,i. e
C is

the continuous martingale part of e and eD denotes the jump martingale part.

Step 1: To show: λk

((
1{|e|≤α∆ω̄

M}e
)> (

1{|e|≤α∆ω̄
M}e
))
≤ Op(1) for k = 1, ..., N .

By Lemma A.24 it holds that

λk(1{|e|≤α∆ω̄
M}e) ≤ λ1(1{|e|≤α∆ω̄

M}e− e
C) + λk(e

C)

Lemma A.25 applied to eC implies λk(e
C) ≤ Op(1). The difference between the continuous

martingale part of e and the truncation estimator 1{|e|≤α∆ω̄
M}e− e

C equals a drift term from
the jump martingale part plus a vector with finitely many elements that are of a small order:

1{|ei|≤α∆ω̄
M}ei − e

C
i = bei + dei

where bei is a vector that contains the finite variation part of the jump martingales which
is classified as continuous and dei is a vector that contains the negative continuous part
−eCj,i for the increments j that are correctly classified as jumps and hence are set to zero in
1{|ej,i|≤α∆ω̄

M}ej,i. Using the results of Mancini (2009) we have 1{eDj,i=0} = 1{|ej,i|≤α∆ω̄} almost

surely for sufficiently large M and hence we can identify all the increments that contain
jumps. Note, that by Assumption 1.3 we have only finitely many jumps for each time
interval and therefore deihas only finitely many elements not equal to zero. By Lemma A.24
we have

λ1(1{|e|≤α∆ω̄
M}e− e

C) ≤ λ1(be) + λ1(de)

It is well-known that the spectral norm of a symmetric N × N matrix A is bounded by N
times its largest element: ‖A‖2 ≤ N maxi,k |Ai,k|. Hence

λ1(b>e be) ≤ N ·max
k,i
|b>eibek | ≤ N ·Op

(
1

M

)
≤ Op

(
N

M

)
≤ Op(1)

where we have use the fact that the increments of a finite variation term are of order Op

(
1
M

)
.

Similarly

λ1

(
d>e de

)
≤ N ·max

k,i
|d>eidek | ≤ N ·Op

(
1

M

)
≤ Op

(
N

M

)
≤ Op(1)

as dei has only finitely many elements that are not zero and those are of order Op

(
1√
M

)
.

Step 2: To show: λk

((
1{|X|≤α∆ω̄

M}e
)> (

1{|X|≤α∆ω̄
M}e
))
≤ Op(1) for k = 1, ..., N .

Here we need to show that the result of step 1 still holds, when we replace 1{|ej,i|≤α∆ω̄
M} with

1{|Xj,i|≤α∆ω̄
M}. It is sufficient to show that

λ1

(
e1{|e|≤α∆ω̄} − e1{|X|≤α∆ω̄}

)
:= λ1(h) = Op(1)
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As by Assumption 1.3 only finitely many elements of h are non-zero and those are of order

Op

(
1√
M

)
, it follows that

λ1(h) ≤ N max
k,i
|h>i hk| ≤ Op

(
N

M

)
≤ Op(1).

Step 3: To show: λk(X̂
C>X̂C) ≤ Op(1) for k ≥ KC + 1.

By definition the estimated continuous movements are

X̂C = FC
1{|X|≤α∆ω̄

M}Λ
C + F pure jump

1{|X|≤α∆ω̄
M}Λ

pure jump> + e1{|X|≤α∆ω̄
M}

where F pure jump denotes the pure jump factors that do not have a continuous component
and Λpure jump are the corresponding loadings. By Weyl’s inequality for singular values in
Lemma A.24 we have

λ1

(
X̂C
)
≤ λ1

(
FC

1{|X|≤α∆ω̄
M}Λ

C
)

+ λ1

(
F pure jump

1{|X|≤α∆ω̄
M}Λ

pure jump>
)

+ λ1

(
e1{|X|≤α∆ω̄

M}
)

For k ≥ K + 1 the first term vanishes λ1

(
FC

1{|X|≤α∆ω̄
M}Λ

C
)

= 0 and by step 2 the last term

is λ1

(
e1{|X|≤α∆ω̄

M}
)

= Op(1). The second term can be bounded by

λ1

(
F pure jump

1{|X|≤α∆ω̄
M}Λ

pure jump>
)2

≤‖Λpure jump>Λpure jump‖2
2·

‖
(
F pure jump

1{|X|≤α∆ω̄
M}
)>
F pure jump

1{|X|≤α∆ω̄
M}‖

2
2

The first factor is ‖Λpure jump>Λpure jump‖2
2 = O(N), while the truncated quadratic covariation

in the second factor only contains the drift terms of the factors denoted by bFD which are of
order Op

(
1
M

)
:∥∥∥(F pure jump

1{|X|≤α∆ω̄
M}
)>
F pure jump

1{|X|≤α∆ω̄
M}

∥∥∥2

2
≤ ‖bFD>bFD‖2

2 ≤ Op

(
1

M

)
Step 4: To show: λk

((
1{|X|>α∆ω̄

M}e
)> (

1{|X|>α∆ω̄
M}e
))
≤ Op(1) for k = 1, ..., N .

We decompose the truncated error terms into two components.

λk(1{|e|>α∆ω̄
M}e) > λ1(1{|e|>α∆ω̄

M}e− e
D) + λk(e

D).

By Proposition A.1 the second term is Op(1). For the first term we can apply a similar logic
as in step 1. Then we use the same arguments as in step 2.

Step 5: To show: λk

(
X̂C>X̂C

)
= Op(N) for k = 1, ..., KC .

By Lemma A.24 the first KC singular values satisfy the inequality

λk

(
FC

1{|X|≤α∆ω̄
M}Λ

C>
)

≤λk
(
X̂C
)

+ λ1

(
−F pure jump

1{|X|≤α∆ω̄
M}Λ

pure jump>
)

+ λ1

(
−e1{|X|≤α∆ω̄

M}
)
.
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Hence by the previous steps

λk

(
X̂C
)
≥ λk

(
FC

1{|X|≤α∆ω̄
M}Λ

C>
)

+Op(1).

By Assumption 1.1 for k = 1, ..., KC

λ2
k

(
FCΛC>

)
= λk

(
FC>FC ΛC>ΛC

N

)
N = Op(N).

On the other hand

λk

(
FC

1{|X|≤α∆ω̄}Λ
C> − FCΛC>

)2

≤ Op

(
N

M

)
≤ Op(1)

where we have used the fact that the difference between a continuous factor and the trun-
cation estimator applied to the continuous part is just a finite number of terms of order

Op

(
1√
M

)
. Hence

λ2
k

(
FC

1{|X|≤α∆ω̄}Λ
C>
)

= Op(N)

Similarly we get the reverse inequality for X̂C :

λk

(
X̂C
)
≤ λk

(
FC

1{|X|≤α∆ω̄}Λ
C>
)

+ λ1

(
F pure jump

1{|X|≤α∆ω̄}Λ
pure jump>

)
+ λ1

(
e1{|X|≤α∆ω̄}

)
which yields

Op(N) ≤ λk

(
X̂C>X̂C

)
≤ Op(N)

Step 6: To show: λk

(
X̂D>X̂D

)
= Op(N) for k = 1, ..., KD.

Analogous to step 5.

Proof of Theorem 1.9:

Proof. I only prove the result for K̂(γ). The results for K̂C(γ) and K̂D(γ) follow exactly
the same logic.
Step 1: ERk for k = K
By Lemmas A.25 and A.26 the eigenvalue ratio statistic for k = K is asymptotically

ERk =
λK + g

λK+1 + g
=

Op(N)

g
+ 1

λK+1

g
+ 1

=

Op(N)

g
+ 1

op(1) + 1
= Op

(
N

g

)
→∞
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Step 2: ERk for k ≥ K + 1

ERk =
λk + g

λk+1 + g
=

λk
g

+ 1
λk+1

g
+ 1

=
op(1) + 1

op(1) + 1
= 1 + op(1).

Step 3: To show: K̂(γ)
p→ K

As ERk goes in probability to 1 for k ≥ K + 1 and grows without bounds for k = K, the
probability for ERk > 1 goes to zero for k ≥ K + 1 and to 1 for k = K.
Remark: Although it is not needed for this proof, note that for k = 1, ..., K − 1

ERk =
λk + g

λk+1 + g
=
Op(N) + g

Op(N) + g
=
Op(1) + g

N

Op(1) + g
N

= Op(1).

Proof of Proposition 1.1:

Proof. Apply Theorem A.7 to 1√
M
Xj,i = 1√

M
FjΛ

>
i + 1√

M
ej,i. Note that 1√

M
e can be written

as 1√
M
e = Aε with εj,i being i.i.d. (0, 1) random variables with finite fourth moments.

A.10 Identifying the Factors

Proof of Theorem 1.11:

Proof. Define

B =

(
F>F F>G
G>F G>G

)
B̂ =

(
F̂>F̂ F̂>G

G>F̂ G>G

)
B∗ =

(
H−1F>FH−1> H−1F>G

G>FH−1> G>G

)
.

As the trace is a linear function it follows that
√
M
(
trace(B)− trace(B̂)

)
p→ 0 if

√
M(B−

B̂)
p→ 0. By assumption H is full rank and the trace of B is equal to the trace of B∗. Thus

it is sufficient to show that
√
M(B̂ −B∗) p→ 0. This follows from

(i)
√
M
(

(F̂>F̂ )−1 − (H−1F>FH−1>)−1
)

p→ 0

(ii)
√
M
(
F̂>G−H−1F>G

)
p→ 0.

We start with (i). As

(F̂>F̂ )−1 − (H−1F>FH−1>)−1 = (F̂>F̂ )−1
(
H−1F>FH−1> − F̂>F̂

)(
H−1F>FH−1>

)−1
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it is sufficient to show

√
M
(
H−1F>FH−1> − F̂>F̂

)
=
√
MH−1F>(FH−1> − F̂ ) +

√
M(H−1F> − F̂>)F̂

p→ 0

It is shown in the proof of Theorem 1.4 that

F̂ − FH−1> =
1

N
F (Λ− Λ̂H−1)>Λ̂ +

1

N
e(Λ̂− ΛH) +

1

N
eΛH.

Hence the first term equals

−H−1F>(F̂ − FH−1>) =
1

N
H−1F>F (Λ− Λ̂H−1)>Λ̂ +

1

N
H−1F>e(Λ̂− ΛH) +

1

N
H−1F>eΛH

Lemmas A.10 and A.16 applied to the first summand yield 1
N
H−1F>F (Λ − Λ̂H−1)>Λ̂ =

Op

(
1
δ

)
. Lemmas A.1 and A.10 provide the rate for the second summand as 1

N
H−1F>e(Λ̂−

ΛH) = Op

(
1
δ

)
. Lemma A.1 bounds the third summand: 1

N
H−1F>eΛH = Op

(
1√
NM

)
.

For the second term note that(
H−1F> − F̂>

)
F̂ =

(
H−1F> − F̂>

)(
FH−1> − F̂

)
+
(
H−1F> − F̂>

)
FH−1>

Based on Lemmas A.10 and A.16 it is easy to show that
(
H−1F> − F̂>

)(
FH−1> − F̂

)
=

Op

(
1
δ

)
.

Term (ii) requires the additional assumptions on G:(
F̂> −H−1F>

)
G =

(
1

N
Λ̂>
(

Λ− Λ̂H−1
)
F>G+

1

N

(
Λ̂− ΛH

)>
e>G+

1

N
H>Λ>e>G.

By Lemma A.16 it follows that
(

1
N

Λ̂>
(

Λ− Λ̂H−1
))

F>G = Op

(
1
δ

)
. Now let’s first assume

that G is independent of e. Then Proposition A.1 applies and 1
N
H>Λe>G = Op

(
1√
NM

)
.

Otherwise assume that G = 1
N

∑N
i=1Xiw

>
i = F 1

N

∑N
i=1 Λiw

>
i + 1

N

∑N
i=1 eiw

>
i . Proposition

A.1 applies to

1

N
H>Λe>F

(
1

N

N∑
i=1

Λiw
>
i

)
= Op

(
1√
NM

)
and

1

N

N∑
i=1

(
1

N
H>Λ>

(
e>ei − [e, ei]

))
w>i = Op

(
1√
NM

)
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separately. As by Assumption 1.2

N∑
i=1

1

N2
H>Λ>[e, ei]w

>
i =

1

N2

(
N∑
i=1

N∑
k=1

H>Λk[ek, ei]w
>
i

)
= Op

(
1

N

)
the statement in (ii) follows. The distribution result is a consequence of the delta method
for the function

f




[F, F ]
[F,G]
[G,F ]
[G,G]


 = trace

(
[F, F ]−1[F,G][G,G]−1[G,F ]

)

which has the partial derivates

∂f

∂[F, F ]
= −

(
[F, F ]−1[F,G][G,G]−1[G,F ][F, F ]−1

)>
∂f

∂[F,G]
= [F, F ]−1[F,G][G,G]−1

∂f

∂[G,F ]
= [G,G]−1[G,F ][F, F ]−1

∂f

∂[G,G]
= −

(
[G,G]−1[G,F ][F, F ]−1[F,G][G,G]−1

)>

Hence

√
M
(

ˆ̄ρ− ρ̄
)

= ξ>
√
M

(
vec

((
[F, F ] [F,G]
[G,F ] [G,G]

)
−B

))
+
√
M · trace

(
B∗ − B̂

)
The last term is Op

(√
M
δ

)
which goes to zero by assumption.

Proof of Theorem 1.12:

Proof. The theorem is a consequence of Theorem 1.11 and Section 6.1.3 in Aı̈t-Sahalia and
Jacod (2014).

A.11 Microstructure Noise

Lemma A.28. Limits of extreme eigenvalues
Let Z be a M ×N double array of independent and identically distributed random variables
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with zero mean and unit variance. Let S = 1
M
Z>Z. Then if E[|Z11|4] < ∞, as M → ∞,

N →∞, N
M
→ c ∈ (0, 1), we have

limλmin(S) =
(
1−
√
c
)2

a.s.

limλmax(S) =
(
1 +
√
c
)2

a.s.

where λi(S) denotes the ith eigenvalue of S.

Proof. See Bai and Yin (1993)

Proof of Theorem 1.10:

Proof. Step 1: To show: λ1

(
(e+ε)>(e+ε)

N

)
− λ1

(
e>e
N

)
≤ λ1

(
ε>ε
N

)
+ λ1

(
e>ε
N

+ ε>e
N

)
This is an immediate consequence of Weyl’s eigenvalue inequality Lemma A.24 applied to
the matrix

(e+ ε)>(e+ ε)

N
=
e>e

N
+
ε>ε

N
+
e>ε

N
+
ε>e

N
.

Step 2: To show: λ1

(
e>ε
N

+ ε>e
N

)
= Op

(
1
N

)
Let V be the eigenvector for the largest eigenvalue of e>ε

N
+ ε>e

N
. Then

λ1

(
e>ε

N
+
ε>e

N

)
= V >

e>ε

N
V + V >

ε>e

N
V

= 2
1

N

M∑
j=1

N∑
i=1

N∑
k=1

Viεj,iej,iVk.

Define ε̄j =
∑N

i=1 Viεj,i and ēj =
∑N

k=1 Vkej,k. As can be easily checked ε̄j ēj form a martingale
difference sequence and hence we can apply Burkholder’s inequality in Lemma A.30:

E

( M∑
j=1

ε̄j ēj

)2
 ≤ C

M∑
j=1

E
[
ε̄2j ē

2
j

]
≤ C

M∑
j=1

E
[
ε̄2j
]
E
[
ē2
j

]
≤ C

M

M∑
j=1

E
[
ε̄2j
]

≤ C

M
E

( N∑
i=1

Viεj,i

)2
 ≤ C

M

N∑
i=1

V 2
i E
[
ε2j,i
]
≤ C.

We have used the Burkholder inequality to conclude E
[
ē2
j

]
≤ CV >E[∆j〈e, e〉]V ≤ C

M
. This

shows that V > e
>ε
N
V = Op

(
1
N

)
.
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Step 3: To show: λ1

(
ε>ε
N

)
≤ 1

c
(1 +

√
c)

2
λ1(B>B)σ2

ε + op(1)

Here we define B as

B =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . . . . .
...

0 · · · 0 1 −1
0 0 · · · 0 1


and note that ε = Bε̃ (up to the boundaries which do not matter asymptotically). Now we
can split the spectrum into two components:

λ1

(
ε>ε

N

)
= λ1

(
ε̃>B>Bε̃

N

)
≤ λ1

(
ε̃>ε̃

N

)
λ1

(
B>B

)
.

By Lemma A.28 it follows that

λ1

(
ε̃>ε̃

N

)
=

1

c

(
(1 +

√
c)2σ2

ε

)
+ op(1).

Step 4: To show: σ2
ε ≤ c

(1−
√
c)

2

λs
(
Y>Y
N

)
λs+K(B>B)

+ op(1)

Weyl’s inequality for singular values Lemma A.24 implies

λs+K(e+ ε) ≤ λK+1(FΛ>) + λs(Y ) ≤ λs(Y )

as λK+1(FΛ>) = 0. Lemma A.6 in Ahn and Horenstein (2013) says that if A and B are
N × N positive semidefinite matrices, then λi(A) ≤ λi(A + B) for i = 1, ..., N . Combining
this lemma with step 2 of this proof, we get

λs+K

(
ε>ε

N

)
≤ λs

(
Y >Y

N

)
Lemma A.4 in Ahn and Horenstein (2013) yields

λN(ε̃>ε̃)λs+K(B>B) ≤ λs+K(ε>ε)

Combining this with lemma A.28 gives us

1

c

(
(1−

√
c)2σ2

ε

)
λs+K(B>B) + op(1) ≤ λs

(
Y >Y

N

)
Solving for σ2

ε yields the statement.
Step 5: To show: λs(B

>B) = 2
(
1 + cos

(
s+1
N+1

π
))

B>B is a symmetric tridiagonal Toeplitz matrix with 2 on the diagonal and -1 on the off-
diagonal. Its eigenvalues are well-known and equal 2− 2 cos

(
N−s
N+1

π
)

= 2
(
1 + cos

(
s+1
N+1

π
))

.
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Step 6: Combining the previous steps.

λ1

(
(e+ ε)>(e+ ε)

N

)
− λ1

(
e>e

N

)
≤
(

1 +
√
c

1−
√
c

)2 2
(
1 + cos

(
2

N+1
π
))

2
(
1 + cos

(
s+1+K
N

π
))λs(Y >Y

N

)
+ op(1)

≤
(

1 +
√
c

1−
√
c

)2
2

1 + cos
(
s+K+1
N

π
)λs(Y >Y

N

)
+ op(1)

for all s ∈ [K + 1, NK ]. Here we have used the continuity of the cosinus function.

A.12 Collection of Limit Theorems

Theorem A.1. Localization procedure
Assume X is a d-dimensional Itô semimartingale on (Ω,F, (Ft)t≥0,P) defined as

Xt =X0 +

∫ t

0

bsds+

∫ t

0

σsdWs +

∫ t

0

∫
E

1{‖δ̃‖≤1}δ(s, x)(µ− ν)(ds, dx)

+

∫ t

0

∫
E

1{‖δ̃‖>1}δ(s, x)µ(ds, dx)

where W is a d-dimensional Brownian motion and µ is a Poisson random measure on R+×E
with (E,E) an auxiliary measurable space on the space (Ω,F, (Ft)t≥0,P) and the predictable
compensator (or intensity measure) of µ is ν(ds, dx) = ds× v(dx).

The volatility σt is also a d-dimensional Itô semimartingale of the form

σt =σ0 +

∫ t

0

b̃sds+

∫ t

0

σ̃sdWs +

∫ t

0

σ̃′sdW
′
s +

∫ t

0

∫
E

1{‖δ̃‖≤1}δ̃(s, x)(µ− ν)(ds, dx)

+

∫ t

0

∫
E

1{‖δ̃‖>1}δ̃(s, x)µ(ds, dx)

where W ′ is another Wiener process independent of (W,µ). Denote the predictable quadratic
covariation process of the martingale part by

∫ t
0
asds and the compensator of∫ t

0

∫
E
1{‖δ̃‖>1}δ̃(s, x)µ(ds, dx) by

∫ t
0
ãsds.

Assume local boundedness denoted by Assumption H holds for X:

1. The process b is locally bounded and cádlág.

2. The process σ is càdlàg.

3. There is a localizing sequence τn of stopping times and, for each n, a deterministic
nonnegative function Γn on E satisfying

∫
Γn(z)2v(dz) <∞ and such that ‖δ(ω, t, z)‖∧

1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω).
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The volatility process also satisfies a local boundedness condition denoted by Assumption K:

1. The processes b̃, a and ã are locally bounded and progressively measurable

2. The process σ̃ is càdlàg or càglàd and adapted

We introduce a global boundedness condition for X denoted by Assumption SH: Assump-
tion H holds and there are a constant C and a nonnegative function Γ on E such that

‖bt(ω)‖ ≤ C ‖σt(ω)‖ ≤ C ‖Xt(ω)‖ ≤ C ‖δ(ω, t, z)‖ ≤ Γ(z)

Γ(z) ≤ C

∫
Γ(z)2v(dz) ≤ C.

Similarly a global boundedness condition on σ is imposed and denoted by Assumption SK:
We have Assumption K and there are a constant and a nonnegative function Γ on E, such
that Assumption SH holds and also

‖b̃t(ω)‖ ≤ C ‖σ̃t(ω)‖ ≤ C ‖at(ω)‖ ≤ C ‖ãt(ω)‖ ≤ C.

The processes Un(X) and U(X) are subject to the following conditions, where X and X ′

are any two semimartingales that satisfy the same assumptions and S is any (Ft)-stopping
time:
Xt = X ′t a.s. ∀t < S ⇒

• t < S ⇒ Un(X)t = Un(X ′)t a.s.

• the F-conditional laws of (U(X)t)t<S and (U(X ′)t)t<S are a.s. equal.

The properties of interest for us are either one of the following properties:

• The processes Un(X) converge in probability to U(X)

• The variables Un(X)t converge in probability to U(X)t

• The processes Un(X) converge stably in law to U(X)

• The variables Un(X)t converge stably in law to U(X)t.

If the properties of interest hold for Assumption SH, then they also hold for Assumption H.
Likewise, if the properties of interest hold for Assumption SK, they also hold for Assumption
K.

Proof. See Lemma 4.4.9 in Jacod and Protter (2012).
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Theorem A.2. Central limit theorem for quadratic variation
Let X be an Itô semimartingale satisfying Definition A.1. Then the d × d-dimensional
processes Z̄n defined as

Z̄n
t =

1√
∆

(
[X,X]nt − [X,X]∆[t/∆]

)
converges stably in law to a process Z̄ =

(
Z̄ij
)

1≤i,j≤d defined on a very good filtered ex-

tension (Ω̃, F̃, (F̃t)t≥0, P̃) of (Ω,F, (Ft)t≥0,P) and which, conditionally on F, is centered with
independent increments and finite second moments given by

E
[
Z̄ij
t Z̄

kl
t |F

]
=

1

2

∑
s≤t

(
∆X i

s∆X
k
s (cjls− + cjls ) + ∆X i

s∆X
l
s(c

jk
s− + cjks )

+ ∆Xj
s∆X

k
s (cils− + cils ) + ∆Xj

s∆X
l
s(c

ik
s− + ciks )

)
+

∫ t

0

(
ciks c

jl
s + cils c

jk
s

)
ds

with ct = σ>t σt. This process Z̄ is F-conditionally Gaussian, if the process X and σ have no
common jumps.

Moreover, the same is true of the process 1√
∆

([X,X]n − [X,X]), when X is continuous,
and otherwise for each t we have the following stable convergence of variables

1√
∆

([X,X]nt − [X,X]t)
L−s→ Z̄t.

Proof. See Jacod and Protter (2013) Theorem 5.4.2.

Theorem A.3. Consistent Estimation of Covariance in Theorem A.2
We want to estimate

Dt =
∑
s≤t

|∆X|2(σs− + σs)

Let X be an Itô semimartingale satisfying Definition A.1. In addition for some 0 ≤ r < 1 it
satisfies the stronger assumption that there is a localizing sequence τn of stopping times and
for each n a deterministic nonnegative function Γn on E satisfying

∫
Γn(z)λ(dz) < ∞ and

such that ‖δ(ω, t, z)‖r ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω).
Assume that 1

2(2−r) ≤ ω̄ < 1
2

and let uM be proportional to 1
M ω̄ . Choose a sequence kn of

integers with the following property:

k →∞, k

M
→ 0

We set

σ̂(ω̄)j =
M

k

k−1∑
m=0

(∆j+mX)2
1{|∆j+mX|≤uM}
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Define D̂ =
∑[t·M ]−k

j=k+1 |∆jX|21{|∆jX|>uM} · (σ̂j−k + σ̂j+1) Then

D̂
p→ D

Proof. See Theorem A.7 in Aı̈t-Sahalia and Jacod (2014).

Lemma A.29. Martingale central limit theorem
Assume Zn(t) is a sequence of local square integrable martingales and Z is a Gaussian mar-
tingale with quadratic characteristic 〈Z,Z〉. Assume that for any t ∈ (t, T ]

1.
∫ t

0

∫
|z|>ε z

2νn(ds, dx)
p→ 0 ∀ε ∈ (0, 1]

2. [Zn, Zn]t
p→ [Z,Z]t

Then Zn
D→ Z for t ∈ (0, T ].

Proof. See Lipster and Shiryayev (1980)

Theorem A.4. Martingale central limit theorem with stable convergence
Assume Xn = {(Xn

t ,F
n
t ; 0 ≤ t ≤ 1} are cádlág semimartingales with Xn

0 = 0 and histories
Fn = {Fnt ; 0 ≤ t ≤ 1}.

Xn
t =Xn

0 +

∫ t

0

bX
n

s ds+

∫ t

0

σX
n

s dWs +

∫ t

0

∫
E

1{‖x‖≤1}(µ
Xn − νXn

)(ds, dx)

+

∫ t

0

∫
E

1{‖x‖>1}µ
Xn

(ds, dx)

We require the nesting condition of the Fn: There exists a sequence tn ↓ 0 such that

1. Fntn ⊆ Fn+1
tn+1

2.
∨
n F

n
tn =

∨
n F

n
1

Define C = { g: continuous real functions, zero in a neighborhood of zero, with limits at ∞
} Suppose

1. D is dense in [0, 1] and 1 ∈ D.

2. X is a quasi-left continuous semimartingale.

3. a) ∀t ∈ D sups≤t |bX
n

s − bXs |
p→ 0.

b) ∀t ∈ D 〈Xnc〉t+
∫ t

0

∫
|x|<1

x2dνX
n−
∑

s≤t |∆bX
n

s |2
p→ 〈Xc〉t+

∫ t
0

∫
|x|<1

x2νX(ds, dx).

c) ∀t ∈ D ∀g ∈ C
∫ t

0

∫
R g(x)νX

n
(ds, dx)

p→
∫ t

0

∫
R g(x)νX(ds, dx).
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Then

Xn L−s→ X

in the sense of stable weak convergence in the Skorohod topology.

Proof. See Theorem 1 in Feigin (1984).

Lemma A.30. Burkholder’s inequality for discrete martingales
Consider a discrete time martingale {Sj,Fj, 1 ≤ j ≤M}. Define X1 = S1 and Xj = Sj−Sj−1

for 2 ≤ j ≤ M . Then, for 1 < p <∞, there exist constants C1 and C2 depending only on p
such that

C1E

[
M∑
j=1

X2
i

]p/2
≤ E|SM |p ≤ C2E

[
M∑
j=1

X2
j

]p/2
.

Proof. See Theorem 2.10 in Hall and Heyde (1980).

Lemma A.31. Burkholder-Davis-Gundy inequality
For each real p ≥ 1 there is a constant C such that for any local martingale M starting at
M0 = 0 and any two stopping times S ≤ T , we have

E

[
sup

t∈R+:S≤t≤T
|Mt −MS|p|FS

]
≤ CE

[
([M,M ]T − [M,M ]S)p/2 |FS

]
.

Proof. See Section 2.1.5 in Jacod and Protter (2012).

Lemma A.32. Hölder’s inequality applied to drift term
Consider the finite variation part of the Itô semimartingale defined in Definition A.1. We
have

sup
0≤u≤s

‖
∫ T+u

T

brdr‖2 ≤ s

∫ T+s

T

‖bu‖2du.

Proof. See Section 2.1.5 in Jacod and Protter (2012).

Lemma A.33. Burkholder-Davis-Gundy inequality for continuous martingales
Consider the continuous martingale part of the Itô semimartingale defined in Definition A.1.
There exists a constant C such that

E

[
sup

0≤u≤s
‖
∫ T+u

T

σrdWr‖2|FT
]
≤ CE

[∫ T+s

T

‖σu‖2du|FT
]

Proof. See Section 2.1.5 in Jacod and Protter (2012).
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Lemma A.34. Burkholder-Davis-Gundy inequality for purely discontinuous mar-
tingales
Suppose that

∫ t
0

∫
‖δ(s, z)‖2v(dz)ds <∞ for all t, i.e. the process Y = δ ? (µ− ν) is a locally

square integrable martingale. There exists a constant C such that for all finite stopping times
T and s > 0 we have

E

[
sup

0≤u≤s
‖YT+u − YT‖2|FT

]
≤ CE

[∫ T+s

T

∫
‖δ(u, z)‖2v(dz)du|FT

]
.

Proof. See Section 2.1.5 in Jacod and Protter (2012).

Theorem A.5. Detecting Jumps
Assume X is an Itô-semimartingale as in Definition A.1 and in addition has only finite jump
activity, i.e. on each finite time interval there are almost surely only finitely many bounded
jumps. Denote ∆M = T

M
and take a sequence vM such that

vM = α∆ω̄
M for some ω̄ ∈

(
0,

1

2

)
and a constant α > 0.

Our estimator classifies an increment as containing a jump if

∆jX > vM .

Denote by IM(1) < ... < IM(R̂) the indices j in 1, ...,M such that ∆jX > vM . Set T̂jump(q) =

IM(q) · ∆M for q = 1, ..., R̂. Let R = sup(q : Tjump(q) ≤ T ) be the number of jumps of X
within [0, T ]. Then we have

P
(
R̂ = R, Tjump(q) ∈ (T̂jump(q)−∆M , T̂jump(q)] ∀q ∈ {1, ..., R}

)
→ 1

Proof. See Theorem 10.26 in Aı̈t-Sahalia and Jacod (2014).

Theorem A.6. Estimation of continuous and discontinuous quadratic covaria-
tion
Assume X is an Itô-semimartingale as in Definition A.1 and in addition has only finite
jump activity, i.e. on each finite time interval there are almost surely only finitely many
bounded jumps. Denote ∆M = T

M
and take some ω̄ ∈

(
0, 1

2

)
and a constant α > 0. Define

the continuous component of X by XC and the discontinuous part by XD. Then

M∑
j=1

X2
j 1{|Xj |≤α∆ω̄

M} = [XC , XC ] +Op

(
1√
M

)
M∑
j=1

X2
j 1{|Xj |>α∆ω̄

M} = [XD, XD] +Op

(
1√
M

)
.
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Proof. See Theorem A.16 in Aı̈t-Sahalia and Jacod (2014). Actually they make a much
stronger statement and characterize the limiting distribution of the truncation estimators.

Theorem A.7. Onatski estimator for the number of factors
Assume a factor model holds with

X = FΛ> + e

where X is a M ×N matrix of N cross-sectional units observed over M time periods. Λ is
a N ×K matrix of loadings and the factor matrix F is a M ×K matrix. The idiosyncratic
component e is a M ×N matrix and can be decomposed as

e = AεB

with a M ×M matrix A, a N ×N matrix B and a M ×N matrix ε.
Define the eigenvalue distribution function of a symmetric N ×N matrix S as

FS(x) = 1− 1

N
#{i ≤ N : λi(S) > x}

where λ1(S) ≥ ... ≥ λN(S) are the ordered eigenvalues of S. For a generic probability
distribution having bounded support and cdf F(x), let u(F) be the upper bound of the support,
i.e. u(F) = min{x : (x) = 1}. The following assumptions hold:

1. For any constant C > 0 and δ > 0 there exist positive integers N0 and M0 such that
for any N > N0 and M > M0 the probability that the smallest eigenvalue of Λ>Λ

N
F>F
M

is below C is smaller than δ.

2. For any positive integers N and M , the decomposition e = AεB holds where

a) εt,i, 1 ≤ i ≤ N , 1 ≤ t ≤ M are i.i.d. and satisfy moment conditions E[εt,i] = 0,
E[ε2t,i] = 1 and E[ε4t,i] <∞.

b) FAA> and FBB> weakly converge to probability distribution functions FA and FB
respectively as N and M go to infinity.

c) Distributions FA and FB have bounded support, u(FAA>) → u(FA) > 0 and
u(FBB>)→ u(FB) > 0 almost surely as N and M go to infinity.

lim infδ→0 δ
−1
∫ u(FA)

u(FA)−δ dFA(λ) = kA > 0 and lim infδ→0 δ
−1
∫ u(FB)

u(FB)−δ dFB(λ) =

kB > 0.

3. Let M(N) be a sequence of positive integers such that N
M(N)

→ c > 0 as N →∞.

4. Let ε either have Gaussian entries or either A or B are a diagonal matrix

Then as N →∞, we have
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1. For any sequence of positive integers r(N) such that r(N)
N
→ 0 as N → ∞ and

r(N) > K for large enough N the r(N)th eigennvalue of X>X
NM

converges almost surely
to u(F c,A,B) where F c,A,B is the distribution function defined in Onatski (2010).

2. The K-th eigenvalue of X>X
NM

tends to infinity in probability.

3. Let {KN
max, N ∈ N} be a slowly increasing sequence of real numbers such that KN

max/N →
0 as N →∞. Define

K̂δ = max{i ≤ KN
max : λi − λi+1 ≥ δ}

For any fixed δ > 0 K̂(δ)→ K in probability as N →∞.

Proof. See Onatski (2010).
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Appendix B

Appendix to Chapter 2

B.1 Empirical Appendix

B.1.1 Equity Data

I collect the price data from the TAQ database for the time period 2003 to 2012. I construct
the log-prices for 5 minutes sampling, which gives us on average 250 days per year with 77
daily increments. Overnight returns are removed so that there is no concern of price changes
due to dividend distributions or stock splits. For each year I take the intersection of stocks
traded each day with the stocks that have been in the S&P500 index at any point during
1993-2012. This gives us a cross-section N of around 500 to 600 firms for each year. I apply
standard data cleaning procedures:

• Delete all entries with a time stamp outside 9:30am-4pm

• Delete entries with a transaction price equal to zero

• Retain entries originating from a single exchange

• Delete entries with corrected trades and abnormal sale condition.

• Aggregate data with identical time stamp using volume-weighted average prices

In each year I eliminate stocks from our data set if any of the following conditions is true:

• All first 10 5-min observations are missing in any of the day of this year

• There are in total more than 50 missing values before the first trade of each day for
this year

• There are in total more than 500 missing values in the year
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Table 2.2 in the main text shows the number of observations after the data cleaning.
Missing observations are replaced by interpolated values. For each day if the first n ob-

servations are missing, I interpolate the first values with the (n+1)th observation. Otherwise
I take the previous observation. As my estimators are based on increments, the interpolated
values will result in increments of zeros, which do not contribute to the quadratic covariation.

Daily returns and industry classifications (SIC codes) for the above stocks are from CRSP.
I rely on Kenneth R. French’s website for daily returns on the Fama-French-Carhart four-
factor portfolios. I define three different industry factors as equally weighted portfolios of
assets with the following SIC codes

1. Oil and gas: 1200; 1221; 1311; 1381; 1382; 1389; 2870; 2911; 3533; 4922; 4923

2. Banking and finance: 6020; 6021; 6029; 6035; 6036; 6099; 6111; 6141; 6159; 6162; 6189;
6199; 6282; 6311; 6331; 6351; 6798

3. Energy: 4911; 4931; 4991

B.1.2 Factor Analysis
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Figure B.1: Number of continuous factors using unperturbed eigenvalue ratios
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B.1.3 Jump Factors
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Figure B.2: Number of jump factors with truncation level a = 3.
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Figure B.3: Number of jump factors with truncation level a = 4.
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Figure B.4: Number of jump factors with truncation level a = 4.5.
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1 2 3 4 5 6 7 8 9 10 11 12

Generalized correlations of monthly with yearly jump factors (a=3)
0.98 0.96 0.99 0.98 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00
0.62 0.68 0.87 0.74 0.88 0.76 0.95 0.95 0.96 0.87 0.95 0.80
0.22 0.49 0.41 0.45 0.39 0.58 0.60 0.93 0.58 0.81 0.73 0.42
0.08 0.18 0.20 0.16 0.18 0.14 0.11 0.76 0.42 0.73 0.18 0.11

Generalized correlations of monthly with yearly jump loadings (a=3)
0.85 0.82 0.90 0.85 0.89 0.96 0.94 0.97 0.97 0.90 0.96 0.94
0.29 0.32 0.42 0.38 0.48 0.43 0.66 0.77 0.56 0.52 0.64 0.44
0.11 0.22 0.16 0.26 0.17 0.30 0.22 0.71 0.30 0.42 0.33 0.19
0.03 0.08 0.09 0.06 0.07 0.05 0.05 0.40 0.19 0.32 0.08 0.04

Generalized correlations of monthly with yearly jump factors (a=4)
0.73 0.75 0.80 0.77 0.90 1.00 0.99 0.88 1.00 0.89 1.00 0.97
0.35 0.20 0.63 0.44 0.82 0.89 0.93 0.73 0.97 0.71 1.00 0.80
0.06 0.11 0.56 0.21 0.37 0.21 0.76 0.42 0.50 0.47 0.98 0.45
0.02 0.01 0.28 0.03 0.03 0.08 0.32 0.11 0.14 0.08 0.76 0.30

Generalized correlations of monthly with yearly jump loadings (a=4)
0.35 0.29 0.31 0.32 0.42 0.95 0.60 0.24 0.96 0.30 0.95 0.53
0.10 0.06 0.23 0.12 0.19 0.25 0.29 0.17 0.41 0.11 0.89 0.15
0.02 0.03 0.15 0.05 0.06 0.03 0.17 0.08 0.06 0.08 0.69 0.09
0.01 0.00 0.07 0.01 0.00 0.02 0.05 0.01 0.02 0.01 0.11 0.05

Generalized correlations of monthly with yearly jump factors (a=4.5)
0.67 0.72 0.69 0.66 0.91 1.00 0.97 0.72 0.99 0.53 1.00 0.95
0.31 0.36 0.63 0.31 0.66 0.64 0.73 0.69 0.90 0.32 1.00 0.66
0.28 0.30 0.32 0.11 0.45 0.26 0.51 0.29 0.25 0.14 0.85 0.44
0.05 0.05 0.20 0.04 0.18 0.04 0.13 0.21 0.02 0.03 0.04 0.13

Generalized correlations of monthly with yearly jump loadings (a=4.5)
0.22 0.19 0.20 0.18 0.31 0.93 0.40 0.11 0.31 0.09 0.96 0.32
0.09 0.11 0.15 0.08 0.12 0.10 0.11 0.09 0.12 0.05 0.94 0.09
0.08 0.08 0.06 0.03 0.08 0.04 0.06 0.04 0.04 0.02 0.77 0.07
0.01 0.01 0.04 0.01 0.03 0.01 0.01 0.03 0.00 0.01 0.01 0.02

Table B.1: Persistence of jump factors in 2011. Generalized correlation of monthly jump
factors and loadings with yearly jump factors and loadings. The yearly number of factors is
K = 4.
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B.1.4 Comparison with Daily Data and Total Factors
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Figure B.5: Number of daily factors
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2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Generalized correlations between continuous and total factors
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9999 0.9999 1.0000 1.0000 0.9999 1.0000 0.9999 0.9997 1.0000 0.9999
0.9997 0.9996 0.9998 0.9998 0.9997 0.9999 0.9999 0.9993 0.9999 0.9999
0.9979 0.9982 0.9983 0.9748 0.9995 0.9989 0.9998 0.9855 0.9997 0.9997

Generalized correlations between continuous and total loadings
0.9992 0.9982 0.9998 0.9997 0.9988 0.9994 0.9991 0.9993 0.9997 0.9992
0.9977 0.9982 0.9995 0.9994 0.9976 0.9988 0.9991 0.9720 0.9993 0.9991
0.9967 0.9974 0.9972 0.9982 0.9965 0.9988 0.9988 0.9720 0.9993 0.9991
0.9967 0.9974 0.9972 0.9708 0.9965 0.9950 0.9988 0.9698 0.9987 0.9988

Generalized correlations between continuous and daily factors
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.99 0.97 0.99 0.99 0.99 1.00 0.99 0.98 0.99 0.99
0.98 0.94 0.94 0.97 0.95 0.98 0.98 0.98 0.98 0.97
0.55 0.65 0.83 0.17 0.47 0.76 0.98 0.96 0.93 0.93

Generalized correlations between continuous and daily loadings
0.99 0.96 0.98 0.98 0.99 0.98 0.99 0.99 0.96 0.98
0.82 0.86 0.83 0.89 0.76 0.95 0.91 0.89 0.96 0.92
0.82 0.86 0.83 0.86 0.56 0.83 0.91 0.86 0.83 0.86
0.51 0.48 0.73 0.13 0.41 0.61 0.91 0.86 0.83 0.82

Table B.2: Generalized correlations between continuous factors and loadings based on con-
tinuous data and on total HF and daily data for K = 4 factors and for each year. I use the
loadings estimated from the different data sets to construct continuous factors and estimate
the distance between the different sets of continuous factors.
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2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Generalized correlations between continuous and jump factors (a=3)
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.99 0.99 1.00 1.00 0.98 0.98 0.99 0.96 0.98 0.99
0.98 0.97 0.98 0.64 0.98 0.77 0.97 0.56 0.93 0.87
0.82 0.58 0.87 0.29 0.18 0.38 0.93 0.39 0.67 0.38

Generalized correlations between continuous and jump loadings (a=3)
0.94 0.98 0.97 0.95 0.96 0.93 0.97 0.95 0.92 0.96
0.94 0.90 0.86 0.72 0.50 0.32 0.83 0.32 0.77 0.79
0.84 0.90 0.84 0.34 0.30 0.31 0.80 0.32 0.63 0.44
0.68 0.31 0.84 0.14 0.30 0.31 0.80 0.26 0.48 0.15

Generalized correlations between continuous and jump factors (a=4)
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.97 0.66 0.85 0.81 0.92 0.95 0.88 0.89 0.89 0.88
0.88 0.17 0.29 0.58 0.65 0.65 0.45 0.41 0.60 0.69
0.10 0.11 0.21 0.21 0.08 0.07 0.22 0.30 0.25 0.54

Generalized correlations between continuous and jump loadings (a=4)
0.86 0.73 0.82 0.83 0.88 0.79 0.78 0.76 0.87 0.81
0.31 0.13 0.34 0.20 0.50 0.26 0.28 0.33 0.31 0.32
0.25 0.08 0.09 0.17 0.08 0.26 0.14 0.24 0.19 0.32
0.25 0.08 0.09 0.17 0.08 0.03 0.08 0.10 0.09 0.22

Generalized correlations between continuous and jump factors (a=4.5)
1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.84 0.66 0.79 0.81 0.92 0.94 0.83 0.87 0.79 0.81
0.55 0.23 0.37 0.52 0.49 0.60 0.47 0.59 0.52 0.66
0.04 0.10 0.27 0.16 0.03 0.03 0.13 0.25 0.18 0.43

Generalized correlations between continuous and jump loadings (a=4.5)
0.73 0.60 0.75 0.79 0.82 0.58 0.54 0.54 0.75 0.72
0.27 0.14 0.25 0.19 0.38 0.45 0.25 0.43 0.21 0.26
0.08 0.14 0.12 0.14 0.08 0.32 0.15 0.24 0.10 0.22
0.08 0.04 0.12 0.14 0.02 0.01 0.04 0.11 0.10 0.22

Table B.3: Generalized correlations between continuous factors and loadings based on con-
tinuous data and on jump data for K = 4 factors and for each year. I use the loadings
estimated from the different data sets to construct continuous factors and estimate the dis-
tance between the different sets of continuous factors.



APPENDIX B. APPENDIX TO CHAPTER 2 258

B.1.5 Implied Volatility Data

I use daily prices for standard call and put options from OptionMetrics for the same firms
and time periods as for the high-frequency data. OptionMetrics provides implied volatilities
for 30 days at the money options using a linearly interpolated volatility surface. I average
the implied call and put volatilities for each asset and each day. Then I apply the following
data cleaning procedure in order to identify outliers. For each year I remove a stock if

• for days 1-15 any of the volatilities is greater than 200% of the average volatility of the
first 31 days

• for the last 15 days any of the volatilities is greater than 200% of the average volatility
of the last 31 days

• for all the other days any of the volatilities is greater than 200% of the average of a 31
days moving window centered at that day.

The observations after the data cleaning are reported in Table 2.13 in the main text.

B.1.6 Componentwise Leverage Effect

The following plots depict the sorted correlations between total, systematic and idiosyncratic
log-prices with total, systematic and idiosyncratic implied volatility. I use 4 asset factors
and 1 volatility factor.
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Figure B.6: Componentwise leverage ef-
fect in 2012
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Figure B.7: Componentwise leverage ef-
fect in 2011
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Figure B.8: Componentwise leverage ef-
fect in 2010

0 100 200 300 400 500 600
−1

−0.5

0

0.5
Componentwise leverage effect

 

 
LEV(total,total)
LEV(syst,total)
LEV(idio,total)
LEV(syst,syst)
LEV(syst,idio)
LEV(idio,syst)
LEV(idio,idio)

Figure B.9: Componentwise leverage ef-
fect in 2009
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Figure B.10: Componentwise leverage ef-
fect in 2008
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Figure B.11: Componentwise leverage ef-
fect in 2007
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Figure B.12: Componentwise leverage ef-
fect in 2006
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Figure B.13: Componentwise leverage ef-
fect in 2005
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Figure B.14: Componentwise leverage ef-
fect in 2004
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Figure B.15: Componentwise leverage ef-
fect in 2003
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B.1.7 Comparison of Componentwise Leverage Effect based on
Implied Volatilities and High-Frequency Volatilities

The following plots compare the componentwise leverage effect based on implied volatilities
and high-frequency volatilities. I use the four continuous factors for separating the return
into a systematic and idiosyncratic component.
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Figure B.16: Componentwise leverage ef-
fect in 2012 based on implied and high-
frequency volatilities.
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Figure B.17: Componentwise leverage ef-
fect in 2011 based on implied and high-
frequency volatilities.
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Figure B.18: Componentwise leverage ef-
fect in 2010 based on implied and high-
frequency volatilities.
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Figure B.19: Componentwise leverage ef-
fect in 2009 based on implied and high-
frequency volatilities.
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Figure B.20: Componentwise leverage ef-
fect in 2008 based on implied and high-
frequency volatilities.
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Figure B.21: Componentwise leverage ef-
fect in 2007 based on implied and high-
frequency volatilities.
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Figure B.22: Componentwise leverage ef-
fect in 2006 based on implied and high-
frequency volatilities.
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Figure B.23: Componentwise leverage ef-
fect in 2005 based on implied and high-
frequency volatilities.
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Figure B.24: Componentwise leverage ef-
fect in 2004 based on implied and high-
frequency volatilities.

0 50 100 150 200 250 300 350 400
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Componentwise leverage effect

 

 
LEV(total,total)
LEV(syst,total)
LEV(idio,total)
LEV(total,total) (HF)
LEV(syst,total) (HF)
LEV(idio,total) (HF)

Figure B.25: Componentwise leverage ef-
fect in 2004 based on implied and high-
frequency volatilities.
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B.1.8 Decomposition of the Leverage Effect

The following figures show the decomposition of the leverage effect into a systematic and
idiosyncratic part based on implied volatilities and high-frequency volatilities. I use 4 con-
tinuous asset factors.
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Figure B.26: Decomposition of LEV in
2012
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Figure B.27: Decomposition of LEV in
2011
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Figure B.28: Decomposition of LEV in
2010
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Figure B.29: Decomposition of LEV in
2009
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Figure B.30: Decomposition of LEV in
2008
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Figure B.31: Decomposition of LEV in
2007
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Figure B.32: Decomposition of LEV in
2006
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Figure B.33: Decomposition of LEV in
2005
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Figure B.34: Decomposition of LEV in
2004
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Figure B.35: Decomposition of LEV in
2003
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B.1.9 Componentwise Leverage Effect Using Daily Return Data

The following figures compare the componentwise leverage based on implied volatilities calcu-
lated either with the daily accumulated continuous log price increments or with daily CRSP
returns. I use 4 continuous factors for separating the systematic from the idiosyncratic part.
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Figure B.36: Componentwise leverage ef-
fect in 2012 with daily continuous log
price increments and daily returns.

0 100 200 300 400 500 600
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Componentwise leverage effect

 

 
LEV(total,total) (cont)
LEV(syst,total) (cont)
LEV(idio,total) (cont)
LEV(total,total) (day)
LEV(syst,total) (day)
LEV(idio,total) (day)

Figure B.37: Componentwise leverage ef-
fect in 2011 with daily continuous log
price increments and daily returns.
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Figure B.38: Componentwise leverage ef-
fect in 2010 with daily continuous log
price increments and daily returns.
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Figure B.39: Componentwise leverage ef-
fect in 2009 with daily continuous log
price increments and daily returns.
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Figure B.40: Componentwise leverage ef-
fect in 2008 with daily continuous log
price increments and daily returns.
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Figure B.41: Componentwise leverage ef-
fect in 2007 with daily continuous log
price increments and daily returns.
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Figure B.42: Componentwise leverage ef-
fect in 2006 with daily continuous log
price increments and daily returns.
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Figure B.43: Componentwise leverage ef-
fect in 2006 with daily continuous log
price increments and daily returns.
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Figure B.44: Componentwise leverage ef-
fect in 2004 with daily continuous log
price increments and daily returns.
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Figure B.45: Componentwise leverage ef-
fect in 2003 with daily continuous log
price increments and daily returns.
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B.1.10 Componentwise Leverage Effect with Systematic Risk
Based on Fama-French-Carhart Factors

The following figures show the componentwise leverage effect based on implied volatilities
and daily CRSP returns. The systematic part is either calculated with the 4 continuous
factors or with the 4 Fama-French-Carhart factors (market, size, value and momentum).
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Figure B.46: Componentwise leverage ef-
fect in 2012 with 4 continuous or 4 Fama-
French-Carhart factors.
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Figure B.47: Componentwise leverage ef-
fect in 2011 with 4 continuous or 4 Fama-
French-Carhart factors.
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Figure B.48: Componentwise leverage ef-
fect in 2010 with 4 continuous or 4 Fama-
French-Carhart factors.

0 100 200 300 400 500 600
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Componentwise leverage effect

 

 
LEV(total,total)
LEV(syst,total) (stat)
LEV(idio,total) (stat)
LEV(syst,total) (FFC)
LEV(idio,total) (FFC)

Figure B.49: Componentwise leverage ef-
fect in 2009 with 4 continuous or 4 Fama-
French-Carhart factors.
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Figure B.50: Componentwise leverage ef-
fect in 2008 with 4 continuous or 4 Fama-
French-Carhart factors.
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Figure B.51: Componentwise leverage ef-
fect in 2007 with 4 continuous or 4 Fama-
French-Carhart factors.
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Figure B.52: Componentwise leverage ef-
fect in 2006 with 4 continuous or 4 Fama-
French-Carhart factors.
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Figure B.53: Componentwise leverage ef-
fect in 2005 with 4 continuous or 4 Fama-
French-Carhart factors.
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Figure B.54: Componentwise leverage ef-
fect in 2004 with 4 continuous or 4 Fama-
French-Carhart factors.
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Figure B.55: Componentwise leverage ef-
fect in 2003 with 4 continuous or 4 Fama-
French-Carhart factors.
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B.2 Theoretical Appendix

Theorem B.1. Estimation of the leverage effect with high-frequency data
Assume Y is a 1-dimensional Itô-semimartingale as in Definition A.1 and in addition has
only finite jump activity and its volatility process σ2

Y is continuous. We want to estimate the
leverage effect defined as

LEV =
[σ2
Y , Y ]CT√

[Y, Y ]CT ]
√

[σ2
Y , σ

2
Y ]CT

.

Denote the M increments of Y as Yj = Ytj+1
− Ytj . A consistent estimator of the leverage

effect is

L̂EV =
̂[σ2
Y , Y ]CT√

̂[Y, Y ]CT ]

√
̂[σ2
Y , σ

2
Y ]CT

.

with

Ŷ C
j = Yj1{|Yj |≤α∆ω̄

M}

σ̂2
l =

1

k∆M

k∑
j=1

Ŷ C
l+j

2

̂[σ2
Y , Y ]CT =

2

k

M−2k∑
l=0

(
σ̂2

(l+k)∆M
− σ̂2

l∆M

) (
Ŷ C

(l+k)∆M
− Ŷ C

l∆M

)
̂[Y, Y ]CT =

M∑
j=1

Ŷ C
j

2

̂[σ2
Y , σ

2
Y ]T =

3

2k

M−2k∑
l=1

(
σ̂2

(l+k)∆M
− σ̂2

l∆M

)2 −
M−2k∑
j=0

6

k2

(
1− 2

k

)
σ̂4
l∆M

.

Let ∆M = T
M

, k ∼ ∆
−1/2
M , α > 0 and ω̄ ∈

(
0, 1

2

)
. Then for any fixed T and as M →∞

L̂EV
p→ LEV

Proof. See Theorem 8.14 in Aı̈t-Sahalia and Jacod (2014) and Theorem 3 in Kalnina and
Xiu (2014).
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Appendix C

Appendix to Chapter 4

C.1 Dynamic Structural Models and Bank Capital

Structure

Our analysis builds on the capital structure model of Leland (1994) and Leland and Toft
(1996), as extended by Chen and Kou (2009) to include jumps. These models were developed
for general firms and not specifically for financial firms, so here we discuss their application
to banks. Recent work applying the Leland (1994) framework and its extensions to financial
firms includes Auh and Sundaresan (2014), Diamond and He (2014), Harding, Liang, and
Ross (2013), He and Xiong (2012), and Sundaresan and Wang (2014a). Albul et al. (2010)
use the Leland (1994) model in their analysis of contingent convertible debt, as does the Bank
of England in its analysis (Murphy, Walsh, and Willison (2012)). The models of Hilscher and
Raviv (2011), Koziol and Lawrenz (2012), and Pennacchi (2010) may be viewed as extensions
of Merton (1974) rather than Leland (1994) in the sense that they treat default exogenously.
In the remainder of this section, we discuss special features of the banking context and how
they are addressed within our framework.

Deposit insurance. Deposit insurance differentiates one of the most important sources of
bank funding from funding available to nonfinancial firms. In our model, we can interpret
P1 as the face value of deposits when deposit insurance is fairly priced, as follows. Suppose
for simplicity that c1 = r in (4.7). When it issues P1 in debt, the bank collects only B(V ;Vb)
in cash. We have interpreted the difference as the compensation for default risk demanded
by bond holders, given that they may not receive full repayment. But we could just as well
assume that the bank issues debt at par, collecting P1 in cash, and then pays P1 −B(V ;Vb)
for deposit insurance that guarantees full repayment to depositors. The net effect for the
bank (and our analysis) is the same; see also Section 4.3.4. We can approximate the demand
feature of bank deposits by taking their average maturity 1/m to be small.

In an earlier version of this paper (Chen et al. (2012)), we modeled deposits as a separate
category of debt, and we included an explicit insurance premium proportional to the par value
of deposits issued. This allows us to capture a possible subsidy through mispriced deposit
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insurance. Here, we take the simpler approach introduced in Section 4.2.2 and include any
such subsidy as a funding benefit.

Liquidity value of deposits. Deposits are not simply a source of funding for a bank —
they are also an important service to its customers. Customers value the safety and ready
availability of bank deposits and are willing to pay (or accept a lower interest rate) for this
convenience. As discussed in Section 4.2.2, we model this effect as a funding benefit. Similar
approaches are used in DeAngelo and Stulz (2013) and Sundaresan and Wang (2014a).

Capital structure tradeoffs. In the Leland (1994) model, a firm’s optimal debt level
is driven by the tradeoff between the tax benefit of debt and bankruptcy costs. Tax de-
ductibility takes on added importance with the inclusion of CoCos, which have tax-deductible
coupons in some jurisdictions but not others. The difference appears to be an important
factor in explaining the widespread issuance of CoCos by banks in Europe and Japan but
not the United States. Our model captures this distinction through different values of κi,
i = 1, 2, for straight debt and CoCos.

As explained above, the mechanism we use for the tax benefit also captures subsidized
deposit insurance and the liquidity value of deposits, leading to a richer set of features that
makes Leland’s tradeoff more interesting for banks, not less. In a very different setting,
Allen, Carletti, and Marquez (2013) develop a model of bank capital structure in which
equity reduces bankruptcy costs but is more costly because of market segmentation: equity
investors have outside options but depositors do not. This effect is once again reflected in
our setting through κ1, which reflects the benefits of deposit financing.

Default endogeneity. We view this element of the Leland (1994) model as the most impor-
tant feature for our analysis: we cannot hope to study the incentive effects of CoCos without
first modeling the optimal decision of shareholders to keep the firm operating. Endogenous
default captures the shareholders’ option to close the firm or keep it running. In applying the
model to a large bank, we interpret this decision as reflecting the bank’s continued access to
equity financing, given its debt load and its investment opportunities. The most important
aspect of endogenous default is that it determines the value of equity at all asset levels, not
just at the default boundary. The bank’s anticipated ability to operate following a decline
in assets determines the value of its equity at higher asset levels.

Regulatory capital requirements. Banks face regulatory capital requirements that influ-
ence their capital structure in ways that do not affect nonfinancial firms. These constraints
would be important in analyzing optimal capital structure, an issue we do not address. Our
analysis compares changes in the levels of different debt levels, but these debt levels could
be the result of capital requirements.

Asset dynamics. Geometric Brownian motion is a rough approximation to asset value
for any firm. But it is a more plausible approximation for the assets of a bank than a
nonfinancial firm. The main deficiency of the model in studying bank risk is the absence of
jumps, and this deficiency is resolved by the Chen-Kou (2009) model.
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Stationary capital structure. The framework of continuous debt rollover we use, extending
Leland and Toft (1996), is particularly well suited for a financial firm rather than a nonfinan-
cial firm. It leads to qualitatively different results than a model with a single debt maturity,
whether finite or infinite: the costs of debt rollover allow shareholders to benefit from re-
ducing default risk and thus mitigate debt overhang. The stationarity of the model — the
debt outstanding remains constant — provides tractability. Diamond and He (2014, p.736,
p.747, p.750) argue that this type of model, with a constant refinancing rate, is particularly
appropriate for financial firms. A drawback of the stationary capital structure is that it leads
to shrinking leverage as the firm’s assets grow. In the setting of Theorem 5.3, increasing
the level of debt at a higher asset level would only add to the possibility of debt-induced
collapse.

Secured debt. Many types of firms issue secured debt; for financial firms, it often takes
the form of repurchase agreements. Auh and Sundaresan (2014) and Sundaresan and Wang
(2014a) develop extensions of Leland (1994) to combine secured and unsecured debt, with
particular focus on banks. Interestingly, they show that a bank will optimally set its level
of secured debt in such a way that the endogenous default boundary is unaffected. This
suggests that for purposes of determining the default boundary, one may omit secured debt.
Holding fixed the default boundary and the total amount of senior debt, CoCo valuation is
unaffected by the composition of the types of senior debt.

C.2 Proofs for Section 4.2

C.2.1 Optimal Default Barrier Without CoCos

Chen and Kou (2009) have shown that for a firm with only straight debt P1, the optimal
default barrier is V PC

b = P1ε1, with with

ε1 =
c1+m
r+m

γ1,r+mγ2,r+m − κ1c1
r
γ1,rγ2,r

(1− α)(γ1,r + 1)(γ2,r + 1) + α(γ1,r+m + 1)(γ2,r+m + 1)

η + 1

η
. (C.1)

where −γ1,ρ > −η > −γ2,ρ are the two negative roots of the equation

G(x) =

(
r − δ − 1

2
σ2 − λ(

η

η + 1
− 1)

)
+

1

2
σ2x2 + λ

(
η

η + x
− 1

)
= ρ.

A similar argument shows that the constant ε2 that we need for V NC
b is given by

ε2 =
c2+m
r+m

γ1,r+mγ2,r+m − κ2c2
r
γ1,rγ2,r

(1− α)(γ1,r + 1)(γ2,r + 1) + α(γ1,r+m + 1)(γ2,r+m + 1)

η + 1

η
. (C.2)

C.2.2 Proof of Theorem 5.3

We will use the following lemma:
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Lemma C.1. If V PC
b ≤ Vc ≤ V NC

b and EBC(V ;V PC
b ) ≥ 0 for all V ∈ (Vc, V

NC
b ), then

EBC(V ;V PC
b ) ≥ ENC(V ;V NC

b ) ≥ 0 for all V .

Proof of Lemma C.1. For V ≤ Vc, we have EBC(V ;V PC
b ) = EPC(V ;V PC

b ), by definition,
and EPC(V ;V PC

b ) ≥ 0 because V PC
b is the optimal default barrier for the post-conversion

firm and thus preserves limited liability for the post-conversion firm. Combining this with
the hypothesis in the lemma yields EBC(V ;V PC

b ) ≥ 0 for all V ≤ V NC
b . But for V ≤ V NC

b ,
ENC(V ;V NC

b ) = 0, so the conclusion of the lemma holds for all V ≤ V NC
b .

Now consider V > V NC
b . The value of equity before conversion is the difference between

firm value and debt value and is given explicitly by

EBC(V ;V PC
b ) = V − (1− α)EQ[Vτbe

−rτb ]

+
P1κ1c1

r
EQ[1− e−rτb ] +

P2κ2c2

r
EQ[1− e−rτc ]

−P1

(
c1 +m

r +m

)
EQ[1− e−(r+m)τb ]− P2

(
c2 +m

r +m

)
EQ[1− e−(r+m)τc ]

−αEQ[Vτbe
−(r+m)τb ]− ∆P2

1 + ∆P2

EQ[e−(r+m)τcEPC(Vτc ;V
PC
b )]. (C.3)

Similarly, if we let τNCb denote the first time V is at or below V NC
b , we have

ENC(V ;V NC
b ) = V − (1− α)EQ[VτNCb e

−rτNC
b ]

+
(κ1c1P1 + κ2c2P2)

r
EQ[1− e−rτNC

b ]

−
{
P1

(
c1 +m

r +m

)
+ P2

(
c2 +m

r +m

)}
EQ[1− e−(r+m)τNC

b ]

−αEQ[VτNC
b
e−(r+m)τNC

b ]. (C.4)

Note the fact that that e−rτb ≤ e−rτ
NC
b and Vτb ≤ VτNC

b
. We then have

E[(VτNCb e
−rτNC

b − Vτbe−rτb)(1− e−mτ
NC
b )] ≥ 0.

Using this inequality and taking the difference between (C.3) and (C.4), we get

EBC(V ;V PC
b )− ENC(V ;V NC

b )

≥ EBC(V ;V PC
b )− ENC(V ;V NC

b )− (1− α)E[(VτNCb e
−rτNC

b − Vτbe−rτb)(1− e−mτ
NC
b )]

= −(1− α)EQ[Vτbe
−rτb−mτNCb ] + EQ[VτNC

b
e−(r+m)τNCb ]

+
P1κ1c1

r
EQ[e−rτ

NC
b − e−rτb ] +

P2κ2c2

r
EQ[e−rτ

NC
b − e−rτc ]

−P1

(
c1 +m

r +m

)
EQ[e−(r+m)τNCb − e−(r+m)τb ]− P2

(
c2 +m

r +m

)
EQ[e−(r+m)τNC

b − e−(r+m)τc ]

−αEQ[Vτbe
−(r+m)τb ]− ∆P2

1 + ∆P2

EQ[e−(r+m)τcEPC(Vτc ;V
PC
b )]. (C.5)
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On the other hand, we know that EBC(V ;V PC
b ) ≥ 0 for all V ≤ V NC

b , so it follows that

EQ
[
e−(r+m)τNC

b EBC(VτNCb ;V PC
b )
]
≥ 0.

Recall that the expectations here and in (C.3) and (C.4) are conditional expectations given
the current time t and value Vt = V , though we have suppressed the conditioning to sim-
plify the notation. To make the conditioning explicit, let EQ[·|VτNCb ] denote the expectation

conditioned on V = VτNCb . Substituting (C.3) for EBC, evaluated at V = VτNCb and t = τNC
b

yields

0 ≤EQ
[
e−(r+m)τNCb VτNCb − e

−(r+m)τNCb (1− α)EQ
[
Vτbe

−r(τb−τNCb )|VτNCb
]

+ e−(r+m)τNCb
P1κ1c1

r
EQ
[
1− e−r(τb−τNCb )|VτNCb

]
+ e−(r+m)τNCb

P2κ2c2

r
EQ
[
1− e−r(τc−τNC

b )|VτNC
b

]
− e−(r+m)τNCb P1

(
c1 +m

r +m

)
EQ
[
1− e−(r+m)(τb−τNC

b )|VτNCb
]

− e−(r+m)τNCb P2

(
c2 +m

r +m

)
EQ
[
1− e−(r+m)(τc−τNCb )|VτNCb

]
− e−(r+m)τNCb αEQ

[
Vτbe

−(r+m)(τb−τNCb )|VτNCb
]

− e−(r+m)τNCb
∆P2

1 + ∆P2

EQ
[
e−(r+m)(τc−τNC

b )EPC(Vτc ;V
PC
b )|VτNC

b

] ]
. (C.6)

The right side of (C.6) simplifies to

− (1− α)EQ[Vτbe
−rτb−mτNCb ] + EQ[VτNCb e

−(r+m)τNC
b ]

+
P1κ1c1

r
EQ[e−mτ

NC
b (e−rτ

NC
b − e−rτb)] +

P2κ2c2

r
EQ[e−mτ

NC
b (e−rτ

NC
b − e−rτc)]

− P1

(
c1 +m

r +m

)
EQ[e−(r+m)τNCb − e−(r+m)τb ]− P2

(
c2 +m

r +m

)
EQ[e−(r+m)τNC

b − e−(r+m)τc ]

− αEQ[Vτbe
−(r+m)τb ]− ∆P2

1 + ∆P2

EQ[e−(r+m)τcEPC(Vτc ;V
PC
b )],

which is less than or equal to the right side of (C.5) because e−mτ
NC
b ≤ 1. We have thus

shown that EBC(V ;V PC
b ) ≥ ENC(V ;V NC

b ) ≥ 0 for V > V NC
b and thus for all V . 2

We now turn to the proof of the theorem. The post-conversion (PC) firm and the no-
conversion (NC) firm have only straight debt, but the NC firm has more debt, so V PC

b ≤ V NC
b ,

and the inequality is strict if P2 > 0. (If P2 = 0, the result holds trivially.) We distinguish
three cases based on the position of the conversion trigger relative to these default barriers.
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Case 1: V PC
b ≤ Vc ≤ V NC

b . For all barrier choices Vb with Vb ≤ Vc, conversion precedes de-
fault,1 and the only choice among those that satisfies the commitment condition is V PC

b . For
all feasible barrier choices Vb ≥ Vc, default precedes conversion, so EBC(V ;Vb) = ENC(V ;Vb),
and the optimal choice among such barriers is V NC

b . Thus, these are the only two candidates
for the optimal barrier level. If V PC

b is consistent with limited liability for the BC firm, then
Lemma C.1 implies that EBC(V ;V PC

b ) ≥ ENC(V ;V NC
b ) ≡ EBC(V ;V NC

b ), for all V . Thus,
V ∗b = V PC

b if V PC
b is feasible, and otherwise V ∗b = V NC

b .

Case 2: Vc < V PC
b . For Vb < V PC

b , it follows from Chen and Kou (2009) that the equity
valuation V 7→ EPC(V ;Vb) violates limited liability, so no Vb ≤ Vc is feasible in this case. For
all Vb > Vc, we have EBC(V ;Vb) ≡ ENC(V ;Vb), so the optimal choice is V NC

b .

Case 3: V NC
b < Vc. If default precedes conversion, equity value is given by ENC(V ;Vb).

For each V , this is a decreasing function of Vb for Vb ≥ V NC
b ; thus, no Vb > Vc can be

optimal. Among barriers Vb ≤ Vc for which conversion precedes default, only V PC
b satisfies

the commitment condition. Thus, we need to compare the default barriers V PC
b and Vc, with

default preceding conversion in the latter case. The argument in Lemma C.1 now applies
directly, replacing τNCb with τc, and shows that EBC(V ;V PC

b ) ≥ ENC(V ;Vc), for all V > Vc.
The inequality is strict at V = Vc, so the optimal barrier is V PC

b . 2

C.2.3 Proof of Theorem 4.2

Set P̄1 = Vc/ε1. If P2 = 0 (so that the firm has only straight debt), then the optimal default
barrier is V ∗b = P1ε1. Thus, V ∗b ≤ Vc if P1 ≤ P̄1, and V ∗b > Vc if P1 > P̄1, which confirms
that P̄1 is indeed the critical debt level in the absence of CoCos.

Now suppose P1 < P̄1 and P2 > 0. From Theorem 5.3, we know that debt-induced
collapse occurs when setting the default barrier at V PC

b is infeasible because it violates limited
liability; that is, when EBC(V ;V PC

b ) < 0 for some V > Vc. For any V > Vc, we have

EBC(V ;V PC
b ) = EPC(V ;V PC

b ) + P2A− P2B −
∆P2

1 + ∆P2

M, (C.7)

where

A = κ2
c2

r
EQ
[
1− e−rτc

]
, B =

(
c2 +m

m+ r

)
EQ
[
1− e−(r+m)τc

]
and

M = EQ
[
e−(r+m)τcEPC(Vτc ;V

PC
b )
]
≥ 0.

Here, A gives the normalized value of the funding benefits from CoCos, and B is the normal-
ized value of the coupons and principal for the CoCos. Each of these (and M) is a function
of the current asset level V , though we suppress this dependence in the notation.

1Recall our convention that when we write Vb ≤ Vc, the order of events at Vb = Vc is taken to be
consistent with Vb < Vc, and when we write Vb ≥ Vc the opposite order of events is assumed.



APPENDIX C. APPENDIX TO CHAPTER 4 280

Suppose A < B. This means that the funding benefit received is less than the value of
the payments made on the debt, as we would expect in practice. In this case, the right side
of (C.7) is decreasing continuously and without bound as P2 increases. We may therefore
define P̄ V

2 to be the smallest P2 at which (C.7) equals zero and then set

P̄2 = inf{P̄ V
2 : V > Vc}.

If P2 > P̄2, then P2 > P̄ V
2 for some V > Vc, and then EBC(V ;V PC

b ) < 0 for some V > Vc, so
limited liability fails, V PC

b is infeasible, and we have debt-induced collapse. If P2 ≤ P̄2, then
P2 ≤ P̄ V

2 for all V > Vc and EBC(V ;V PC
b ) ≥ 0, so V PC

b is feasible and then optimal.
For the alternative case A ≤ B, it is not hard to see that EPC(V ;V PC

b ) ≥ M , so (C.7)
remains positive at all P2 ≥ 0, and the result holds with P̄2 =∞. 2

C.3 The Extended Model

The extended model used in the numerical illustrations of Sections 4.4-4.7 extends (4.1)
and (4.2) to allow two types of jumps — firm-specific jumps and market-wide jumps, with
respective arrival rates λf and λm, and mean jump sizes ηf and ηm. In both cases, the jump
sizes are exponentially distributed and decrease asset value. The extended model also allows
more layers of debt: deposits (with or without insurance), ordinary debt, subordinated debt,
and CoCos, in decreasing seniority. The multiple layers can be valued using the approach in
Section 4.2.3. All parts of the capital structure can be valued in terms of transforms of τb
and τc, and these transforms can be expressed in terms of roots of an equation; see Chen et
al. (2012) for details. Table C.1 shows parameter values for the numerical examples. The
subscripts 1a, 1b, and 1c distinguish the three layers of non-convertible debt.
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Parameter Value
initial asset value V0 100
debt principal (P1a, P1b, P1c) (40, 30, 15)
risk free rate r 6%
volatility σ 8%
payout rate δ 1%
funding benefit κ 35%
firm specific jump intensity λf .2
market jump intensity λm .05
firm specific jump exponent ηf 4
market jump exponent ηm 3
coupon rates (c1a, c1b, c1c, c2) (r, r + 3%, r + 3%, r)
deposits insurance premium rate ϕ 1%
contingent capital principal P2 1 or 5
maturity profile exponent – base case (m1a,m1b,m1c,m2) (1, 1/4, 1/4, 1/4)
maturity profile exponent – long maturity (m1a,m1b,m1c,m2) (1, 1/16, 1/16, 1/16)

or (1, 1/25, 1/25, 1/25)
conversion trigger Vc 75 (in most cases)
conversion loss (if applied) 20% of value of shares

Table C.1: Parameters for extended model. Asset returns have a total volatility (combining
jumps and diffusion) of 20.6% and overall drift rate of 3.3%. In the base case, the number
of shares ∆ issued at conversion is set such that if conversion happens at exactly Vc, the
market value of shares delivered is the same as the face value of the converted debt.
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Appendix D

Appendix to Chapter 5

D.1 Alternative Contract Formulation

In this section we present the details for modeling FVC2s. The number of shares granted
at conversion is determined based on the stock price S(VτC ), i.e. the contingent convertible
bondholders receive n′ = `PC

S(VτC )
shares. We do not require Assumption 5.2 to be satisfied.

Assume that the value of equity for VτC = VC is sufficient to pay the conversion value.
Then, in a model without jumps and ` = 1 the contingent convertible bond with face value
1 has the same features as a riskless bond with face value 1. If we include jumps the
contingent convertible bondholders face the additional risks that conversion and bankruptcy
happen simultaneously or that the value of the equity after conversion is not sufficient to
pay the promised conversion value. Hence, jumps introduce two additional sources of risk.

D.1.1 Evaluation of FVC2s

The conversion value for FVC2s requires us to distinguish several cases. If τC < τ , i.e. the
downward movement of VτC is not sufficient to trigger bankruptcy, the contingent convertible
bondholders receive a payment. If on the one hand the value of the equity is sufficiently large,
they get a number of stocks such that the value of the total payment equals `PC . If on the
other hand the value of the equity is insufficient to make the promised payment to the
contingent convertible bond holders, they take possession of the whole equity and the old
shareholders are completely diluted out. We assume that the face value of all contingent
convertible debt is PC and thus a bondholder with a bond with face value 1 gets a fraction
1/PC of the value of the equity EQ(VτC ) after conversion in this case. We start by proving
proposition 5.7.
Proof of Proposition 5.7:



APPENDIX D. APPENDIX TO CHAPTER 5 283

Proof. We only need to do the calculations for the conversion value:

CONV =

∫ ∞
0

pCΨ(t)dC(V, VB, VC , t)dt

=`pCE
[
e−rτC

∫ ∞
τC

e−mtdt1{`PC≤EQ(VτC )}1{τC<τ}

]
+
pC
PC

E
[
e−rτCEQ(VτC )

∫ ∞
τC

e−mtdt1{τC<τ}1{`PC>EQ(VτC )}

]
=`
pC
m

E
[
e−(r+m)τC1{`PC≤EQ(VτC )}1{τC<τ}

]
+

pC
mPC

E
[
e−(r+m)τCEQ(VτC )1{τC<τ}1{`PC>EQ(VτC )}1{τC<∞}

]

Equipped with the results of Section 5.4, we can derive the price of FVC2s.

Theorem D.1. The price of the FVC2s equals

CB =
CC +mPC
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VC
V

)β3,r+m

− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VC
V

)β4,r+m
)

+ `PC ·G
(

log

(
VC
V0

)
, log

(
VC

max(T−1(`PC), VB)

)
,m+ r

)
1{VC>T−1(`PC)}

+
∑

αiV
θi

0

(
J

(
log

(
VC
V0

)
, θi, log

(
VC
VB

)
,m+ r

)
− J

(
log

(
VC
V0

)
, θi, log

(
VC

T−1(`PC)

)
,m+ r

)
1{VC>T−1(`PC)}

)
1{VB<T−1(`PC)}
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Proof. We only need to prove the formula for the conversion value.

CONV =`PCE
[
e−(m+r)τC1{τC<τ}1{`PC≤EQ(VτC )}

]
+ E

[
EQ(VτC )e−(m+r)τC1{τC<τ}1{`PC>EQ(VτC )}1{τC<∞}

]
=`PCE

[
e−(m+r)τC1{VτC>max(T−1(`PC),VB)}

]
+ E

[
EQ(VτC )e−(m+r)τC1{VB<VτC≤T−1(`PC)}1{τC<∞}

]
1{VB<T−1(`PC)}

=`PCE

[
e−(m+r)τC1{

−(X(τC)−xC)<− log

(
max(T−1(`PC ),VB)

VC

)}
]

+
∑

αiV
θi

0 E
[
e−(m+r)τC+θiX(τC)

1{VB<VτC≤T−1(`PC)}1{τC<∞}

]
1{VB<T−1(`PC)}

=`PCE

[
e−(m+r)τC1{

−(X(τC)−xC)<− log

(
max(T−1(`PC ),VB)

VC

)}
]

+
∑

αiV
θi

0 E

[
e−(m+r)τC+θiX(τC)

(
1{−(XτC−xC)<log(VC/VB)} − 1{−(XτC−xC)<log(VC/T−1(`PC))}

)
1{τC<∞}

]
1{VB<T−1(`PC)}

D.1.2 Costs of Dilution for FVC2s

For contingent convertible bonds with a flexible number of shares at conversion, the dilution
costs are much more complicated. Here, the number of shares depends on the stock price
value S(τC) at the time of conversion. In more detail, the number of shares of the old
shareholders are

n =
EQ(V0)−DC(V0)

S(0)

while the number of new shares of the bondholders equal

n′ =
`PC
S(τC)

if the equity value EQ(VτC ) is sufficiently high. Otherwise, contingent convertible bond-
holders own the whole remaining equity. Note, that n′ is a random variable at time t = 0.
Therefore the dilution costs DC at time t = 0 are

DC(V0) = E
[
EQ(VτC )e−(r+m)τC

`PC
(EQ(V0)−DC(V0))S(τC)/S(0) + `PC

1{τC<∞}1{EQ(VτC )≥`PC}

]
+ E

[
EQ(VτC )e−(m+r)τC1{τC<∞}1{EQ(VτC )<`PC}

]
.

Under certain assumptions on the stock price process this equation boils down to CONV (V0).
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D.1.3 Modeling the Stock Price Process for FVC2s

If FVC2s are included in the capital structure, there is the possibility that old shareholders
are completely diluted out before bankruptcy. Hence, the stock price of the “old” shares can
be zero, although the company has not defaulted. However, there will be the “new” shares
of the former contingent convertible bondholders with a positive value. Hence, we need to
distinguish between “old” and “new” shares:

Definition D.1. The endogenous stock price for the old shares is defined as

Sold(t) = Sold(Vt) =


EQ(Vt)−DC(Vt)

n
if t > τC

EQ(Vt)
n+n′

if τC ≤ t < τ and EQ(τC) ≥ `PC
0 if τC ≥ t and EQ(τC) < `PC or if τ ≤ t

and the price for the new shares is

Snew(t) = Snew(Vt) =


Sold(t) if t < τC
Sold(t) if τC ≤ t < τ and EQ(τC) ≥ `PC
EQ(Vt) if τC ≤ t < τ and EQ(τC) < `PC (we have normalized n′ = 1)

where n is the number of “old” shares

n =
EQ(V0)−DC(V0)

Sold(0)

and n′ is the number of “new” shares issued at conversion

n′ =
`PC

Sold(τC)
.

In the case of FVC2s the conversion value and dilution costs must also coincide:

Proposition D.1. The conversion value for FVC2s equals the dilution costs:

CONV (Vt) = DC(Vt)

Proof. Recall that n and n′ are set as

n =
EQ(V0)−DC(V0)

Sold(0)

and

n′ =
`PC

Sold(τC)
.
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At the time of conversion the stock price Sold(τC) equals the equity value divided by the
number of old and new shares:

Sold(τC)1{EQ(VτC )≥`PC} =
EQ(VτC )

n+ n′
1{EQ(VτC )≥`PC}

=
EQ(VτC )

n+ `PC
Sold(τC)

1{EQ(VτC )≥`PC}

which is equivalent to

(Sold(τC)n+ `PC)1{EQ(VτC≥`PC} = EQ(VτC )1{EQ(VτC≥`PC} ⇔

Sold(τC)1{EQ(VτC≥`PC} =
EQ(VτC )− `PC

n
1{EQ(VτC≥`PC} ⇔

Sold(τC)

Sold(0)
1{EQ(VτC≥`PC} =

EQ(VτC )− `PC
EQ(V0)−DC(V0)

1{EQ(VτC≥`PC}.

Hence, the dilution costs simplify to

DC(V0)

=E
[
EQ(VτC )e−(r+m)τC

`PC
(EQ(V0)−DC(V0))S(τC)/S(0) + `PC

1{τC<∞}1{EQ(VτC≥`PC}1{τC<τ}

]
+ E

[
EQ(VτC )e−(m+r)τC1{τC<∞}1{EQ(VτC )<`PC}1{τC<τ}

]
=`PCE

[
e−(r+m)τC1{`PC≤EQ(VτC )}1{τC<τ}

]
+ E

[
e−(r+m)τCEQ(VτC )1{τC<τ}1{`PC>EQ(VτC )}1{τC<∞}

]
=CONV (Vt).

D.2 Comparing Contract Specifications

The two contracts FVC and FSC differ in the specification of the number of shares n′

granted to the contingent convertible shareholders in the event of conversion. We have seen
that FVC1s are actually a particular version of FSCs. Here, we want to analyze whether we
can make any statement about n′ in the both cases.

The old shareholders own a number of shares n that is fixed at time t = 0 and that is
equal to the value of equity to them divided by the price of the stock at time t = 0:

n =
EQ(V0)−DC(V0)

S(0)
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Assume that in the case of FSCs the new shareholders (i.e. the holders of contingent
convertible bonds) receive a fixed number of shares n′ that satisfies a posteriori the following
condition:

n′FSC =
PC`

S0

=
n`PC

EQ(V0)−DC(V0)
.

In the case of FVC1s the corresponding number is

n′FV C1 =
`PC
S(VC)

=
n`PC

EQ(VC)− `PC
.

Note that the last equality follows from the assumption that

`PC = n′FV C1S(VC) =
n′FV C1

n+ n′FV C1

EQ(VC).

How do the two numbers n′FSC and n′FV C1 relate to each other? Denote the contract
parameters for the two specifications by `FSC respectively `FV C1. Assume that `FV C1 ≥ `FSC .
By the definition of n we can conclude

n′FV C1 =
n`FV C1PC

EQ(VC)− `PC

=
EQ(V0)−DC(V0)

EQ(VC)− `FV C1PC

`FSCPC
S0

`FV C1

`FSC

=
EQ(V0)−DC(V0)

EQ(VC)− `FV C1PC
n′FSC

`FV C1

`FSC
.

Hence

n′FV C1

n′FSC
=

EQ(V0)−DC(V0)

EQ(VC)− `FV C1PC︸ ︷︷ ︸
>1

`FV C1

`FSC
.

The inequality EQ(V0)−DC(V0)
EQ(VC)−`FV C1PC

> 1 holds in our model because we will show later that EQ(.)

is a strictly increasing function and that DC(V0) < `FSCPC .

Lemma D.1. If `FV C1 ≥ `FSC then n′FV C1 > n′FSC.

It is important to note, that the numbers n′FV C1 and n′FSC are both constants indepen-
dently of future realizations of Vt.
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D.3 Pure Diffusion Case

In the pure diffusion case the value of the firm’s assets which follows a geometric Brownian
motion is given by

dVt = Vt((r − δ)dt+ σdWt).

Thus the process X is simply

Xt =

(
r − δ − 1

2
σ2

)
t+ σWt.

and its Laplace exponent is given by

ψ(z) =
1

2
σ2z2 +

(
r − δ − 1

2
σ2

)
z.

The default time τ is defined as τ = τx = inf(t ≥ 0 : X(t) ≤ x) with x = log(VB/V ) and
τC = τxC = inf(t ≥ 0 : X(t) ≤ xC) with xC = log(VC/V ). The Laplace exponent of τ is
calculated for example in Duffie (2001):

Lemma D.2. The Laplace exponent of τx for the pure diffusion process X equals

E
[
e−λτx

]
= eβλx

where βλ =
γ+
√
γ2+2σ2λ

σ2 and γ = r − δ − 1
2
σ2. Note that −βλ is the negative root of the

equation ψ(z) = λ.

The evaluation of the straight debt is presented in Leland (1994b):

Proposition D.2. The value of the debt equals

D = D(V, VB) =
CD +mPD
r +m

(
1−

(
VB
V

)βr+m)
+ (1− α)VB

(
VB
V

)βr+m
while the total value of the firm is

Gdebt(V, VB) = V +
c̄CD
r

(
1−

(
VB
V

)βr)
− αVB

(
VB
V

)βr
.

The law of the first passage time equals:

P(τ ≤ t) = Φ(h1) + exp

(
2µx

σ2

)
Φ(h2),

where h1 = x−γt
σ
√
t

, h2 = x+γt

σ
√
t

and x = log(VB
V0

). Finally, the optimal barrier level is:

V ∗B =
CD+mPD
r+m

βr+m − c̄CD
r
βr

1 + αβr + (1− α)βr+m
.
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D.3.1 FVCs in a Pure Diffusion Model

The distinction between FVC1s and FVC2s was due to the possibility of jumps. In a pure
diffusion model both contracts coincide. Here we require that Assumption 5.2 is satisfied,
i.e. we consider only contracts where the value of the equity after conversion is sufficient to
make the promised payment.

Proposition D.3. In a pure diffusion model the two contracts FVC1 and FVC2 are identical.
The price of the CCBs is given by

CB(V, VC) =

(
cCPC +mPC

m+ r

)
+ PC

(
(m+ r)`− cC −m

m+ r

)(
VC
V

)βm+r

.

The price of FVCs is completely independent of any features of the straight debt.

Proof. First note that VτC = VC and hence EQ(VτC ) = EQ(VC).

CB(V, VC) =
cPC +mPC
m+ r

E
[
1− e−(m+r)τC

]
+ `PCE

[
e−(m+r)τC

]
=
cPC +mPC
m+ r

+ PC

(
(m+ r)`− c−m

m+ r

)
E
[
e−(m+r)τC

]
.

Lemma D.3. The limit for m → 0 corresponds to the case where only consol bonds are
issued. The price of FVCs simplifies to

CB(V, VC) =
cCPC
r

+ PC

(
r`− cC

r

)(
VC
V

)βr
.

Remark D.1. Albul, Jaffee and Tchistyi’s (2010) model is the special case for m→ 0.

D.3.2 FSCs in a Pure Diffusion Model

Proposition D.4. The price of FSCs in a pure diffusion model equals

CB(V, VB, VC) =
cCPC +mPC

m+ r

(
1−

(
VC
V

)βm+r
)

+
n′

n+ n′
EQdebt(VC)

(
VC
V

)βm+r

where

EQdebt(VC) =VC +
c̄CD
r

(
1−

(
VB
VC

)βr)
− αVB

(
VB
VC

)βr
− CD +mPD

r +m

(
1−

(
VB
VC

)βr+m)
+ (1− α)VB

(
VB
VC

)βr+m
.
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Proof. First note that VτC = VC and hence EQ(VτC ) = EQ(VC).

CB(V, VB, VC) =
cCPC +mPC

m+ r

(
1− E

[
e−(m+r)τC

])
+

n′

n+ n′
EQdebt(VC)E

[
e−(m+r)τC

]
.

In contrast to FVCs the price of FSCs explicitly depends on VB and thus on the features
of the straight debt.

Lemma D.4. For m → 0 we obtain the special case of consol bonds. The pricing formula
simplifies to

CB(V, VB, VC) =
cCPC
r

(
1−

(
VC
V

)βr)
+

n′

n+ n′
EQdebt(VC)

(
VC
V

)βr
where

EQdebt(V, VB, VC) = V +
c̄CD
r

+
c̄CD
r
− c̄CD + c̄CC + r`PC − cCPC

r

(
VC
V

)βr
.

D.4 Proofs

D.4.1 Proofs for Section 5.2

Proof of Proposition 5.2:

Proof. By definition, the total value of the firm equals

Gdebt(V, VB) = V + TBD(V, VB)−BC(V, VB)

= V + c̄CDE
[∫ τ

0

e−rtdt

]
− αE

[
V (τ)e−rτ1{τ<∞}

]
= V +

c̄CD
r

E
[
1− e−rτ

]
− αE

[
V (τ)e−rτ1{τ<∞}

]
.

D.4.2 Proofs for Section 5.3

Proof of Proposition 5.3:

Proof. First note that

Ψ(s) =

∫ ∞
s

ϕ(y)dy =

∫ ∞
s

me−mydy = e−sm
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Hence, it follows that PC = pC
∫∞

0
Ψ(s)ds = pC

∫∞
0
e−msds = pC

m
. Therefore, we get

CB(V, VB, VC) =

∫ ∞
0

pΨ(t)dC(V, VB, VC , t)dt

=pCcCE
[∫ τC

0

e−rt
∫ ∞
t

Ψ(s)dsdt

]
+ pCE

[∫ τC

0

e−rsΨ(t)dt

]
+

∫ ∞
0

pC ·Ψ(t) · conv(V, VB, VC , t)dt

=pCcCE
[∫ τC

0

e−rt
1

m
e−mtdt

]
+ pCE

[∫ τC

0

e−rte−mtdt

]
+ CONV (V, VB, VC)

=
(pCcC

m
+ pC

)
E
[

1

−(r +m)

(
e−(r+m)τC − 1

)]
+ CONV (V, VB, VC)

=
cCPC +mPC

m+ r
E
[
1− e−(m+r)τC

]
+ CONV (V, VB, VC).

Proof of Proposition 5.4:

Proof. We only need to calculate the total conversion value:

CONV =

∫ ∞
0

pCΨ(t)dC(V, VB, VC , t)dt

=
n′

PC

∫ ∞
0

pCe
−mtE

[
S(τC)e−rτC1{τC≤t}1{VτC>VB}

]
dt

=
n′

PC
pCE

[
S(τC)e−rτC

∫ ∞
τC

e−msds1{VτC>VB}1{τC<∞}

]
=

n′

PC
pCE

[
S(τC)e−rτC

1

m
e−mτC1{VτC>VB}1{τC<∞}

]
=

n′

PC

pC
m

E
[
S(τC)e−(m+r)τC1{τC<∞}1{VτC>VB}

]
.

Proof of Proposition 5.5:

Proof. Equation 5.7 has to be satified for V0, which implies

DC(V0) =
n′S0

EQ(V0)−DC(V0) + n′S0

E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
Solving for DC(V0) yields

DC(V0) =
EQ(V0) + n′S0

2
±

√(
EQ(V0) + n′S0

2

)2

− E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
n′S0.
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As the price of FSCs at time zero is a function of DC(0), multiplicity of the market value
of the dilution costs results in multiple equilibrium prices.

Proof of Proposition 5.6:

Proof. Recall that under Assumption 5.2 n and n′ are set as

n =
EQ(V0)−DC(V0)

S0

and n′ =
`PC
S(VC)

.

At the time of conversion the stock price S(VC) equals the equity value divided by the number
of old and new shares:

S(VC) =
EQ(VC)

n+ n′
=

EQ(VC)

n+ `PC
S(VC)

which is equivalent to

S(VC)n+ `PC = EQ(VC) ⇔

S(VC) =
EQ(VC)− `PC

n
⇔

S(VC)

S0

=
EQ(VC)− `PC

EQ(V0)−DC(V0)
.

Hence, the dilution costs simplify to

DC(V0) =
`PC

(EQ(V0)−DC(V0))S(VC)/S(0) + `PC
E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
=`PCE

[
EQ(VτC )

EQ(VC)
e−(r+m)τC1{τC<∞}1{τC<τ}

]
. (D.1)

By Lemma 5.1 it follows

CONV (V0) = DC(V0).

Note, that the value of the equity after conversion is independent of any features of the
contingent convertible debt. In particular, the dilution costs do not appear on the RHS of
equation D.1.

D.4.3 Proofs for Section 5.4

Proof of Proposition 5.8:
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Proof.

E
[
e−ρτ+θXτ1{τ<∞,−(Xτ−x)<y}

]
=E

[
eρτ+θXτ1{τ<∞,Xτ=x}

]
+ eθxE

[
e−ρτ+θ(Xτ−x)

1{τ<∞,0<−(Xτ−x)<y}
]

=eθxE
[
e−ρτ1{τ<∞,Xτ=x}

]
+ eθxE

[
eρτ1{τ<∞,0<−(Xτ−x)<y}

] ∫ 0

−y e
θY η2e

η2Y dY∫ 0

−y η2eη2Y dY

=eθxE
[
e−ρτ1{τ<∞,Xτ=x}

]
+ eθxE

[
e−ρτ1{τ<∞,0<−(Xτ−x)<y}

] η2

θ + η2

(
1− e−(θ+η2)y

)
(1− e−η2y)

Note that

E
[
e−ρτ1{τ<∞,0<−(Xτ−x)<y}

]
= E

[
e−ρτ

]
− E

[
e−ρτ1{Xτ=x}

]
− E

[
e−ρτ1{−(Xτ−x)>y}

]
Using the following results from Kou and Wang (2003) we can finish the proof:

E
[
e−ρτ1{Xτ=x}

]
=

η2 − β3,ρ

β4,ρ − β3,ρ

exβ3,ρ +
β4,ρ − η2

β4,ρ − β3,ρ

exβ4,ρ (D.2)

E
[
e−ρτ1{−(Xτ−x)≥y}

]
= e−η2y

η2 − β3,ρ

η2

β4,ρ − η2

β4,ρ − β3,ρ

(
exβ3,ρ − exβ4,ρ

)
y > 0 (D.3)

Lemma D.5. The total value of the equity at conversion EQ(VτC ) satisfies

EQ(VτC ) = EQdebt(VτC ) =
∑
i

αiV
θi
τC

=
∑
i

V θi
0 αie

X(τC)θi
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with

α1 = 1 θ1 = 1

α2 = − c̄CD
r

β4,r

η2

η2 − β3,r

β4,r − β3,r

(VB)β3,r θ2 = −β3,r

α3 = − c̄CD
r

β3,r

η2

β4,r − η2

β4,r − β3,r

(VB)β4,r θ3 = −β4,r

α4 = −αVB
β4,r + 1

η2 + 1

η2 − β3,r

β4,r − β3,r

(VB)β3,r θ4 = −β3,r

α5 = −αVB
β3,r + 1

η2 + 1

β4,r − η2

β4,r − β3,r

(VB)β4,r θ5 = −β4,r

α6 =
CD +mP

r +m

β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(VB)β3,r+m θ6 = −β3,r+m

α7 =
CD +mP

r +m

β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(VB)β4,r+m θ7 = −β4,r+m

α8 = −(1− α)VB
β4,r+m + 1

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

(VB)β3,r+m θ8 = −β3,r+m

α9 = −(1− α)VB
β3,r+m + 1

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

(VB)β4,r+m θ9 = −β4,r+m

α10 =
c̄CD
r
− CD +mP

r +m
θ10 = 0.

Proof. The total equity value is the difference between the total value of the firm and the
value of actual debt payments:

EQ(Vt) = G(Vt)−D(Vt)− CB(Vt) + CONV (Vt)
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Hence, we conclude that

EQ(V ) =

V +
c̄CD
r

(
1− β4,r

η2

η2 − β3,r

β4,r − β3,r

(
VB
V

)β3,r

− β3,r

η2

β4,r − η2

β4,r − β3,r

(
VB
V

)β4,r
)

+
c̄CC
r

(
1− β4,r

η2

η2 − β3,r

β4,r − β3,r

(
VC
V

)β3,r

− β3,r

η2

β4,r − η2

β4,r − β3,r

(
VC
V

)β4,r
)

− αVB
(
β4,r + 1

η2 + 1

η2 − β3,r

β4,r − β3,r

(
VB
V

)β3,r

+
β3,r + 1

η2 + 1

β4,r − η2

β4,r − β3,r

(
VB
V

)β4,r
)

− CD +mP

r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VB
V

)β3,r+m

− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VB
V

)β4,r+m
)

− (1− α)VB

(
β4,r+m + 1

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

(
VB
V

)β3,r+m

+
β3,r+m + 1

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

(
VB
V

)β4,r+m
)

− CC +mPC
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VC
V

)β3,r+m

− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VC
V

)β4,r+m
)

This has a structure of the form

EQ(Vt) =
∑
i

αiV
θi
t

where Vt is the only time dependent variable. Note that at the time of conversion τC the
value of the tax benefits of the contingent convertible bonds and the value of CB −CONV
are zero. Hence, the corresponding terms in EQ(VτC ) disappear.

D.4.4 Proofs for Section 5.5

Proof of Theorem 5.3:

Proof. We will first show when V ∗B is optimal. Assume the following five conditions are all
satisfied:

1. Assume that first

EQold(V, V
∗
B, VC) ≥ 0 for all V ≥ VC

i.e. the default barrier V ∗B satisfies the limited liability constraint.

2. Second, the equity of the old shareholders for VB > VC is given by

EQold(V, VB, VC , PD, PC , CD, CC) = EQdebt(V, VB, PD + PC , CD + CC),

i.e. the equity value of the older shareholders for VB > VC is the same as for a firm
that issues only straight debt in the amount PD + PC with coupon CD + CC .
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3. Third, if the shareholders want to default before conversion the optimal default barrier
is V ∗∗B if V ∗∗B > VC and VC otherwise.

4. Fourth, it should hold that

EQold(V, V
∗
B, VC) ≥ EQold(V, V

∗∗
B , V ∗∗B ) for V ∗∗B > VC and for all V ≥ VC

i.e. the older shareholders do not want to default before conversion for V ∗∗B > VC .

5. Fifth,

EQold(V, V
∗
B, VC) ≥ EQold(V, VC , VC) for all V > VC ,

i.e. the old shareholders prefer the default barrier V ∗B to the default barrier VC .

The fourth and the fifth condition imply that the shareholders will never choose a default
barrier higher than or equal to VC , because this would result in a lower equity value. By the
commitment condition, the optimal default barrier after conversion is V ∗B. This is a valid
solution to our optimization problem, if and only if the limited liability constraint is satisfied.
The first condition ensures that the limited liability constraint is satisfied for V ≥ VC . After
conversion V ∗B trivially satisfies the limited liability constraint.

The first and fourth condition are stated as assumptions in our theorem. Now we need
to show that the second, third and fifth condition are always satisfied. We start with the
second statement. Recall that if the conversion barrier is smaller than the default barrier,
we can treat this case as if the default and conversion barrier are the same. Hence, for all
VB = y ≥ VC

EQold(V, y, VC , PD, CD, PC , CC)

=EQdebt(V, y, PD, CD) + TBC(V, y)− CCB(V, y, y, PC , CC)

=V +
c̄CD
r

E
[
1− e−rτ

]
+ αE

[
V (τ)e−rτ1{τ<∞}

]
−
(
cPD +mPD
m+ r

E
[
1− e−(m+r)τ

]
+ (1− α)E

[
V (τ)e−(m+r)τ

1{τ<∞}
])

+
c̄CC
r
E
[
1− e−rτ

]
−
((

cPC +mPC
m+ r

)
E
[
1− e−(m+r)τ

]
+ 0

)
=EQdebt(V, y, PD + PC , CD + CC)

This means that the equity value of the old shareholders is the same as in the case with only
straight debt, but with a higher face and coupon value. Chen and Kou (2009) have shown
the EQdebt(V, VB) is strictly decreasing in VB for V ≥ VB and VB ≥ V ∗∗B . Hence,

EQdebt(V, V
∗∗
B ) ≥ EQdebt(V, y) for all y ≥ V ∗∗B , for all V ≥ V ∗∗B .

We have already shown, that in the case of only straight debt V ∗∗B is the optimal default
barrier for an amount of debt PD+PC and a coupon value of CD+CC . However, if V ∗∗B < VC ,
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the commitment problem rules out V ∗∗B as a solution. The old shareholders would maximize
their equity value by choosing VB = VC . This proves the third statement. In order to show
the fifth statement, we have to reformulate it:

EQold(V, V
∗
B, VC)− EQold(V, VC , VC)

=EQdebt(V, V
∗
B) + TBC(V, VC)− CCB(V, V ∗B, VC)− EQdebt(V, VC)− TBC(V, VC)

+ CCB(V, VC , VC)

=EQdebt(V, V
∗
B)− EQdebt(V, VC)− CONV (V, V ∗B, VC)

The equality holds as the conversion value for VB = VC is equal to zero: CONV (V, VC , VC) =
0. Assume first, that at conversion the old shareholders are completely diluted out, i.e. all
the equity is given to the new shareholders. In this case, the event of conversion is like the
default event for the old shareholders and they are indifferent between V ∗B and VC :

EQold(V, V
∗
B, VC) = EQold(V, VC , VC)

which is equivalent to

EQdebt(V, V
∗
B)− EQdebt(V, VC) = CONV (V, V ∗B, VC)

i.e. the conversion value equals exactly the gain in the equity value due to a lower default
barrier. Obviously, complete dilution gives the highest possible conversion value and hence
establishes an upper bound on CONV (V, V ∗B, VC). Therefore, for an arbitrary amount of
shares granted at conversion the following inequality has to hold:

EQdebt(V, V
∗
B)− EQdebt(V, VC) ≥ CONV (V, V ∗B, VC)

which is equivalent to

EQold(V, V
∗
B, VC) ≥ EQold(V, VC , VC)

and thus proves the statement.
What happens, if the first condition (limited liability for V ∗B) is violated? The value of

the equity will be zero before conversion and hence, default will be triggered for a value of
the firm’s assets that is larger than VC . Anticipating this, the old shareholders will choose a
default barrier VB > VC such that the value of their equity is maximized. As we have shown
before, this problem is equivalent to maximizing

max
VB≥VC

EQdebt(V, VB, PD + PC , CD, CC)

s.t. EQdebt(V
′, VB, PD + PC , CD + CC) > 0 ∀ V ′ > VB

A firm with only straight debt, that has face value PD + PC and coupons CD + CC , would
ideally choose V ∗∗B . However, if V ∗∗B < VC , the commitment problem does not allow it to
take V ∗∗B . As EQdebt is strictly decreasing in the default barrier, the firm would choose the
smallest possible default barrier such that VB > VC , which is obviously VC . The limited
liability constraint is trivially satisfied as EQdebt is strictly increasing in the firm’s value. A
similar reasoning applies to the case where the fourth condition is violated.
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Proof of Proposition 5.15:

Proof. From Theorem 5.3 we already know, that the optimal default barrier is either V ∗B or
max{V ∗∗B , VC}. In the case, where VB = V ∗B, the old shareholders’ equity can be at most
EQold(V, V

∗
B, V

∗
C), as V ∗C is chosen such that is maximizes their equity value. In the other

case the old shareholders will choose a conversion and default barrier, such that default
happens before conversion, i.e. VB ≥ VC . As we have seen in the proof of Theorem 5.3 in
this case EQold(V, VB, VC , PD, CD, PC , CC) = EQdebt(V, VB, PD +PC , CD +CC). The optimal
default barrier is then V ∗∗B . In order to ensure, that default happens before conversion the
conversion barrier must be smaller than V ∗∗B , i.e VC ≤ V ∗∗B . As VC is a choice variable, the
old shareholders can always ensure that this condition holds by setting VC = V ∗∗B . Hence,
the old shareholders can get at most EQdebt(V, V

∗∗
B , V ∗∗B ) in this case. Comparing the two

maximal values yields the optimal choice.

Proof of Proposition 5.16:

Proof. For V ≥ VC ≥ VB the total value of the firm is a strictly decreasing function in the
conversion barrier:

∂G(V, VB, VC)

∂VC
< 0

This is due to the fact that

G(V, VB, VC) = V + TBD(V, VB) + TBC(V, VC)−BC(V, VB)

and hence the total value of the firm is only affected by VC through the tax benefits. It is
easy to verify that

∂TBC(V, VC)

∂VC
=
∂ c̄CC

r
E [1− e−rτC ]

∂VC
< 0

for any Markov process V . Therefore, the firm would always choose the lowest possible
conversion barrier for a given VB in the first stage, which is VC = VB. However, by choosing
VC = VB the default barrier does not stay fixed, but can change as well. As we have seen in
the proof of Theorem 5.3 in this case EQold(V, VB, VC , PD, CD, PC , CC) = EQdebt(V, VB, PD+
PC , CD+CC). The optimal default barrier is then V ∗∗B and the resulting total value of the firm
is G(V, V ∗∗B , V ∗∗B ). If the firm chooses the lowest possible value of V̄C , such that V ∗B satisfies the
limited liability constraint, then the total value of the firm equals G(V, V ∗B, V̄C). Comparing
the optimal total values of the firm for the two cases yields the optimal solution.

D.4.5 Proofs for Section 5.6

Proof of Lemma 5.9:
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Proof.

B(CD) ≥ D(V, VB) ⇔
CD +mPD
r +m

≥ CD +mPD
r +m

(
1− Ã− B̃

)
+ (1− α)VB

(
C̃ + D̃

)
⇔

CD +mPD
r +m

≥ (1− α)VB
C̃ + D̃

Ã+ B̃

with

Ã =
β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

B̃ =
β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

C̃ =
β4,r+m + 1

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

D̃ =
β3,r+m + 1

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

All we need to show is that

C̃ + D̃

Ã+ B̃
< 1

C̃ + D̃

Ã+ B̃
=

η2

η2 + 1

(β4,r+m + 1)(η2 − β3,r+m) + (β3,r+m + 1)(β4,r+m − η2)

β4,r+m(η2 − β3,r+m) + β3,r+m(β4,r+m − η2)

=
η2

η2 + 1

(
1 +

η2 − β3,r+m + β3,r+m − η2

β4,r+m(η2 − β3,r+m) + β3,r+m(β4,r+m − η2)

)
=

η2

η2 + 1

< 1

Proof of Lemma 5.10:

Proof. Define x = VB/V . Obviously, it holds

∂D(V )

∂V
=
∂D(V )

∂x

∂x

∂V
=
∂D(V )

∂x

−VB
V 2

.

Hence, we need to show ∂D(V )
∂x

< 0.
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We will use Lemma B.1 from the Appendix of Chen and Kou (2009) which states the
following: Consider the function g(x) = Axα1 +Bxβ1 −Cxα2 −Dxβ2 , 0 ≤ x ≤ 1. In the case
of 0 ≤ α1 ≤ α2 ≤ β1 ≤ β2, A+B ≥ C +D and A > C, then g(x) ≥ 0 for all 0 ≤ x ≤ 1.

In our case the debt as a function of x is given by

D(x) =
CD +mPD
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

xβ3,r+m − β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

xβ4,r+m

)
+ (1− α)VB

(
β4,r+m + 1

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

xβ3,r+m +
β3,r+m + 1

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

xβ4,r+m

)
Therefore,

D′(x) =− CD +mPD
r +m

(
β3,r+mβ4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

xβ3,r+m−1

+
β4,r+mβ3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

xβ4,r+m−1

)
+ (1− α)VB

(
β3,r+m(β4,r+m + 1)

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

xβ3,r+m−1

+
β4,r+m(β3,r+m + 1)

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

xβ4,r+m−1

)
=−

(
Axα1 +Bxβ1 − Cxα2 −Dxβ2

)
with

A =
CD +mPD
r +m

β3,r+mβ4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

B =
CD +mPD
r +m

β4,r+mβ3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

C = (1− α)VB
β3,r+m(β4,r+m + 1)

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

D = (1− α)VB
β4,r+m(β3,r+m + 1)

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

and

α1 = α2 = β3,r+m − 1

β1 = β2 = β4,r+m − 1

From Kou and Wang (2003) we know that β4,r+m > η2 > β3,r+m > 0. Hence 0 ≤ α1 ≤ α2 ≤
β1 ≤ β2. Next,

A+B =
CD +mPD
r +m

(
β3,r+mβ4,r+m

η2

)
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and

C +D = (1− α)VB

(
β3,r+mβ4,r+m

η2 + 1
+
β3,r+m(η2 − β3,r+m) + β4,r+m(β4,r+m − η2)

(η2 + 1)(β4,r+m − β3,r+m)

)
We need to show that A+B ≥ C +D. Note, that

A+B

C +D
≥ 1 ⇔

CD+mPD
r+m

(1− α)VB
≥

β3,r+mβ4,r+m

η2+1
+ β3,r+m(η2−β3,r+m)+β4,r+m(β4,r+m−η2)

(η2+1)(β4,r+m−β3,r+m)

β3,r+mβ4,r+m

η2

⇔

CD+mPD
r+m

(1− α)VB
≥ η2

η2 + 1
+

η2

η2 + 1

(
η2 − β3,r+m

β4,r+m(β4,r+m − β3,r+m)
+

β4,r+m − η2

β3,r+m(β4,r+m − β3,r+m)

)
⇔

CD+mPD
r+m

(1− α)VB
≥ η2

η2 + 1

(
1 +

β3,r+m(η2 − β3,r+m) + β4,r+m(β4,r+m − η2)

β3,r+mβ4,r+m(β4,r+m − β3,r+m)

)
We know that 0 < β3,r+m < η2 < β4,r+m. Hence, it holds that

β3,r+m(η2 − β3,r+m) + β4,r+m(β4,r+m − η2)

β3,r+mβ4,r+m(β4,r+m − β3,r+m)
<

1

β3,r+m

By assumption we have

CD+mPD
r+m

(1− α)VB
≥ η2

η2 + 1

β3,r+m + 1

β3,r+m

=
η2

η2 + 1

(
1 +

1

β3,r+m

)
Thus, we conclude

CD+mPD
r+m

(1− α)VB
≥ η2

η2 + 1

(
1 +

1

β3,r+m

)
≥ η2

η2 + 1

(
1 +

β3,r+m(η2 − β3,r+m) + β4,r+m(β4,r+m − η2)

β3,r+mβ4,r+m(β4,r+m − β3,r+m)

)
.

Last but not least, we need to show A > C.

A− C =
CD +mPD
r +m

β3,r+mβ4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

− (1− α)VB
β3,r+m(β4,r+m + 1)

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

By assumption CD+mPD
r+m

> (1− α)VB as η2

η2+1

β3,r+m+1

β3,r+m
> 1. Hence, it is sufficient to show the
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following:

β3,r+mβ4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

− β3,r+m(β4,r+m + 1)

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

=
β3,r+mβ4,r+m(η2 + 1)(η2 − β3,r+m)− η2β3,r+m(β4,r+m + 1)(η2 − β3,r+m)

η2(η2 + 1)(β4,r+m − β3,r+m)

=
β3,r+m(η2 − β3,r+m)(β4,r+m − η2)

η2(η2 + 1)(β4,r+m − β3,r+m)

>0

The last step follows from the fact that 0 < β3,r+m < η2 < β4,r+m.
Therefore, all the conditions for Lemma B.1 from Chen and Kou (2009) are satisfied and

thus D′(x) < 0.

Proof of Lemma 5.11:

Proof. Plugging in the expression for V ∗B yields

CD +mPD
r +m

≥ η2

η2 + 1

β3,r+m + 1

β3,r+m

(1− α)VB ⇔

CD +mPD
r +m

≥ β3,r+m + 1

β3,r+m

(1− α)
CD+mPD
r+m

β3,r+mβ4,r+m − c̄CD
r
β3,rβ4,r

α(β3,r + 1)(β4,r + 1) + (1− α)(β3,r+m + 1)(β4,r+m + 1)

This expression is equivalen to

CD +mPD
r +m

(
β3,r+m

β3,r+m + 1
α(β3,r + 1)(β4,r + 1) + (1− α)β3,r+m

)
︸ ︷︷ ︸

>0

≥ − c̄CD
r

(1− α)β3,rβ4,r︸ ︷︷ ︸
>0

As long as CD > 0, i.e. the firm has to make positive coupon payments, the above expression
will always hold. However, Assumption 5.5 implies that CD > 0.

D.4.6 Proofs for Section 5.8

Proof of Proposition 5.20:

Proof. By lowering the firm’s value process to Vmanip the contingent convertible bondholder
enforce conversion and will receive equity with the market value min{`PC , EQ(Vmanip)}.
The total equity EQ(V ) = EQdebt(V ) is a continuous and strictly monotonic function for
V ∈ (VB, VC). Hence for any given ` there exists a Vmanip such that `PC > EQ(Vmanip).
Hence, by manipulating the market the contingent convertible bondholders can always com-
pletely dilute out the old shareholders and take control over the firm. We know that before
conversion EQold(Vt) > 0. This is equivalent to EQdebt(Vt)+TBC(Vt) > CCB(Vt). If the tax
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benefits are sufficiently low, the equity value after manipulation EQ(Vt) = EQdebt(Vt), which
is then owned only by the contingent convertible bondholders, is larger than the bondholder’s
value without manipulation CCB(Vt). In this case, manipulation is profitable.

Proof of Proposition 5.21:

Proof. At time 0, the contingent convertible bonds sell at par:

CCB(V0, VC) = PC

Hence, the inequality is satisfied

TBC(V0)︸ ︷︷ ︸
≥0

+PC
EQdebt(V0)

EQdebt(VC)︸ ︷︷ ︸
≥1

≥ PC

As the conversion value is less than the face value, i.e. CONV (Vt, VB, VC) ≤ PC for V0 ≥
Vt ≥ VC , it holds that

CCB(Vt, VB, VC) ≤ PC for V0 ≥ Vt ≥ VC .

Therefore

TBC(Vt) + PC
EQdebt(Vt)

EQdebt(VC)
≥ CCB(Vt, VB, VC).

D.4.7 Proofs for Section 5.9

Proof of Theorem 5.5:

Proof.

E
[
e−τρ

]
= E

[
e−τCρe−(τ−τC)ρ

1{τ>τC} + e−τCρ1{τ=τC}
]

= E
[
e−τCρE

[
e−(τ−τC)ρ

1{τ>τC}|XτC , τC
]

+ e−τCρ1{τ=τC}
]

(D.4)

We will first consider the conditional expectation:

E
[
e−(τ−τC)ρ

1{τ>τC}|XτC , τC
]

= E
[
e−τ̄ρ

]
where X̄t is defined as

X̄t = (r − δ2)t+ σW ∗
t +

Nt∑
i=1

Yi
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and τ̄ = inf
(
t ∈ [0,∞) : X̄t ≤ log(VB/V (τC))

)
. The above equality is true on account of the

Markov property of Xt. Hence,

E
[
e−(τ−τC)ρ|XτC , τC

]
= c̄1

(
VB

V (τC)

)β̄3,ρ

+ c̄2

(
VB

V (τC)

)β̄4,ρ

= c̄1

(
VB
V0

)β̄3,ρ

e−X(τC)β̄3,ρ + c̄2

(
VB
V0

)β̄4,ρ

e−X(τC)β̄4,ρ

where

c̄1 =
η2 − β̄3,ρ

η2

β̄4,ρ

β̄4,ρ − β̄3,ρ

c̄2 =
β̄4,ρ − η2

η2

β̄3,ρ

β̄4,ρ − β̄3,ρ

and −β̄3,ρ > −β̄4,ρ are the two negative roots of the equation

ψ̄(β) = ρ

with ψ̄ being the Lévy exponent of X̄t. The first expectation in D.4 equals

E

[
e−τCρ

(
c̄1

(
VB
V0

)β̄3,ρ

e−X(τC)β̄3,ρ + c̄2

(
VB
V0

)β̄4,ρ

e−X(τC)β̄4,ρ

)
1{τ>τC}

]

=E
[
e−τCρ−β̄3,ρX(τC)

1{xC−X(τC)<xC−xB}

]
c̄1

(
VB
V0

)β̄3,ρ

+ E
[
e−τCρ−β̄4,ρX(τC)

1{xC−X(τC)<xC−xB}

]
c̄2

(
VB
V0

)β̄4,ρ

where xC = log(VC/V0) and xB = log(VB/V0). The condition 1{xC−X(τC)<xC−xB} ensures
that the downward jumps are not large enough to trigger conversion and bankruptcy. Now
we can apply Proposition 5.8 to the two expectations. The second expectation in equation
D.4 equals

E
[
e−τCρ1{τ=τC}

]
= E

[
eτCρ1{xC−X(τC)>xC−xB}

]
= e−η2(xC−xB)η2 − β3,ρ

η2

β4,ρ − η2

β4,ρ − β3,ρ

(
exCβ3,ρ − exCβ4,ρ

)
=

(
VB
VC

)η2 η2 − β3,ρ

η2

β4,ρ − η2

β4,ρ − β3,ρ

((
VC
V0

)β3,ρ

−
(
VC
V0

)β4,ρ
)

where we have applied equation D.3 in the second line.

Proof of Theorem 5.6:
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Proof.

E
[
e−τρ+θXτ1{τ<∞}

]
=E

[
e−ρτC+θXτCE

[
e−ρ(τ−τC)+θ(Xτ−XτC )|X(τC), τC

]
1{τ>τC} + e−ρτC+θX(τC)

1{τ=τC}
]

=E

[
e−ρτC+θXτC

(
d̄1

(
VB

V (τC)

)θ+β̄3,ρ

+ d̄2

(
VB

V (τC)

)θ+β̄4,ρ
)
1{τ<∞,τ>τC} + e−ρτC+θX(τC)

1{τ<∞,τ=τC}

]

=E

[(
e−ρτC−β̄3,ρX(τC)d̄1

(
VB
V0

)−θ−β̄3,ρ

+ e−ρτC−β̄4,ρX(τC)d̄2

(
VB
V0

)−θ−β̄4,ρ
)
1{τ<∞,τ>τC}

]
+ E

[
e−ρτC+θX(τC)

1{τ<∞,τ=τC}
]

The first expectation can be calculated using Proposition 5.8. The second expectation equals

E
[
e−ρτC+θX(τC)

1{τC<∞,τ=τC}
]

= E
[
e−ρτC+θX(τC)

1{τC<∞,−(X(τC)−xC)≥xC−xB}
]

= E
[
e−ρτC+θX(τC)

1{τC<∞}
]
− E

[
e−ρτC+θX(τC)

1{−(X(τC)−xC)<xC−xB}
]

which can also be calculated using Proposition 5.8.

D.4.8 Proofs for Section 5.10

Proof of Proposition 5.24:

Proof. If V ∗B(c∗) ≥ VC , then V ∗B(c∗) is feasible. Hence, the firm will choose a combination of
PD and PC which leads to c∗(PD+PC) = PDcD+PCcC . However, because of the commitment
problem, VB = V ∗B(c∗) < VC is not a feasible solution. By the strict concavity of Gdebt(P̃ )
we conclude, that the optimal default barrier will be VB = VC . Hence, the firm will choose
{PD, PC} such that V ∗∗B = VC . As long as VB = VC the total value of the firm is a strictly
increasing function in PD and PC . The firm solves the following problem:

max
PD,PC

V + TBD(VC) + TBC(VC)−BC(VC)

Therefore, the firm choses the highest values for PD and PC such that V ∗∗B (PD, PC) = VC .
As cD < cC the marginal increase in tax benefits for contingent convertible debt is higher
than for straight debt. Hence, the optimal debt choice {PD, PC} is the highest amount of PC
such that V ∗∗B (PD, PC) = VC under the constraint that Assumption 5.3 is not satisfied.

Proof of Lemma 5.15:

Proof. The total value of the firm for debt PD and no CCBs is Gdebt(PD). By assumption

Gdebt(P
∗
D) = V + TBD(P ∗D)−BC(P ∗D)

= Gdebt(ρi) + TBC(φCi )
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which is equivalent to

BC(P ∗D)−BC(ρi) = TBD(P ∗D)− TBD(ρi)− TBC(φCi ).

As P ∗D ≥ ρi, and the default barrier is strictly increasing in the amount of debt, it holds that
BC(P ∗D) > BC(ρi), which yields

TBD(P ∗D) > TBD(ρi) + TBC(φCi ).

Proof of Lemma 5.16:

Proof. The total leverage with the CCB regulation scheme is

TL1 =
ρi + φCi

GD(ρi) + TBC(φCi )
.

The total leverage for the regulation without contingent convertible bonds equals

TL2 =
ρi

GD(ρi)
.

Obviously, we have ρi
GD(ρi)

< 1. By Assumption 5.7 it holds
φCi

TBC(φCi )
> 1. Hence, we conclude

φCi
TBC(φCi )

> ρi
GD(ρi)

. This is equivalent to TL1 > TL2 as the following chain of equivalent

statements shows.

ρi + φCi
GD(ρi) + TBC(φCi )

>
ρi

GD(ρi)
⇔

ρi
GD(ρi)

GD(ρi)

GD(ρi) + TBC(φCi )
+

φCi
GD(ρi) + TBC(φCi )

>
ρi

GD(ρi)
⇔

ρi
GD(ρi)

(
GD(ρi)

GD(ρi) + TBC(φCi )
− 1

)
+

φCi
GD(ρi) + TBC(φCi )

> 0 ⇔

φCi
GD(ρi) + TBC(φCi )

GD(ρi) + TBC(φCi )

TBC(φCi )
>

ρi
GD(ρi)

⇔

φCi
TBC(φCi )

>
ρi

GD(ρi)
.
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