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ABSTRACT OF THE DISSERTATION

Semantic-guided Visual Analysis and Synthesis with Spatio-temporal Models

by

Yi-Hsuan Tsai

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2017

Professor Ming-Hsuan Yang, Chair

Visual analysis is concerned with problems to identify object status or scene layout in

images or videos. There are numerous concepts that are of great interest for visual anal-

ysis and understanding in the computer vision and machine learning communities. For

instance, researchers have been working on developing algorithms to recognize, detect

and segment objects/scenes in images. To understand such content, numerous challenges

make these problems significantly challenging in the real world scenario, since objects or

scenes usually appear in different conditions such as viewpoints, scales, and background

noise, and even may deform with different shapes, parts or poses.

In addition to images, video understanding has drawn much attention in various re-

search areas due to the ease of obtaining video data and the importance of video applica-

tions, such as virtual reality, autonomous driving and video surveillance. Different from

images, videos contain richer information in the temporal domain, thereby it also produces

difficulties and requires larger computational powers to fully exploit video content. In this

thesis, we propose to construct optimization frameworks for video object tracking and seg-

mentation tasks. First, we utilize a spatial-temporal model to jointly optimize video object

segmentation and optical flow estimation, and show that both results can be improved in

the proposed framework. Second, we introduce a co-segmentation algorithm to further

xiv



understand object semantics by considering relations between objects among a collection

of videos. As a result, our proposed algorithms achieve state-of-the-art performance in

video object segmentation.

With such visual understanding in images and videos, the following question would

be how to use them in real world applications. In this thesis, we focus on the visual

synthesis problem, where it is a task for people to create or edit contents in the original

data. For instance, numerous image editing problems have been studied widely, such

as inpainting, harmonization and colorization. For these tasks, as the human can easily

discover unrealistic artifacts after the original data is edited, one important challenge is

to create realistic contents. To tackle this challenge, we propose to extract semantics by

utilizing visual analysis as the guidance to improve the realism of synthesized outputs.

With such guidance, we show that our visual synthesis systems produce visually pleasing

and realistic results on sky replacement and object/scene composition tasks.
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Chapter 1

Introduction

1.1 Overview

Visual analysis is one of the fundamental problems in computer vision. Given an

image, a human can easily identify and recognize object status or scene layout in a few

seconds. To execute this ability in computers, researchers have been actively working

on this area due to its theoretical and practical interests. My main research also lies in

visual understanding, in which I have developed algorithms to solve the following tasks

in images: 1) Which category does the object or scene belong to (object and scene cate-

gorization [100])? 2) Whether and where do the objects appear (object detection [97])?

3) Which pixels belong to the objects or scenes (object segmentation and scene parsing

[118])? With these abilities to understand visual content, it is a critical step toward other

related problems, such as 3D understanding, sequence analysis and image editing.

Image analysis vs. video analysis. We have discussed the cases for understanding image

content. However, in the real world scenario, objects and scenes usually appear in dynamic

conditions and have intensive interactions with the surrounding environment. For instance,

a person riding a motorcycle may move fast in a dynamic environment, in which it may

disappear several times in a video due to occlusions, causing severe challenges to keep

1
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tracking on this object. In such cases, more complex models are required to consider the

richer information in the temporal domain and handling the dynamic environment.

Another fact is that the amount of video data is significantly larger than the image data,

which may contain lots of noise. Therefore, to fully exploit the information contained in

videos, developing algorithms to extract useful knowledge or discover relations between

videos becomes an important step before further utilizing the video data for other usages.

In this thesis, we will introduce solutions to handle these two challenges in video analysis

as described above.

Visual analysis vs. visual synthesis. Recently, visual synthesis has drawn much attention

due to its intelligent ability to create interesting content. Numerous tasks such as inpaint-

ing [67], image colorization [121] and harmonization [127] achieve impressive results in

real data. However, maintaining the realism of edited results still remains a challenging

problem as humans are really sensitive to generated artifacts.

Another challenge is that usually there is no single solution when creating content in

the original data. For instance, we may insert a dog in an image and adjust the appearance

of this dog in order to fit background colors. In such cases, there could be multiple ways

to produce output results that may look realistic. Thus, how do we know which one looks

more realistic so that the users may prefer more? Before addressing this question, we must

remember that in visual analysis, algorithms are designed to understand image content,

while visual synthesis aims to generate or edit image content. Therefore, is there a link

between these two tasks? If they are related to each other, how can we utilize such relations

and help both tasks? In this thesis, we will provide a few examples to illustrate this concept

and demonstrate the usefulness of using this knowledge.

1.2 Solutions

Visual Analysis. As discussed in Section 1.1, we have introduced the problem of visual

analysis and its challenges. Recently, numerous deep learning frameworks [44, 81, 33]
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have shown significant improvement in object recognition tasks. However, these methods

only explore learning deep networks based on the image data, while the video data may

provide more knowledge to better understand visual content. In this thesis, we still apply

image-based deep networks, but in the meanwhile, we focus more on how to exploit the

video data and achieve improved performance in video object segmentation. Specifically,

we would like to answer two questions as below.

• How to construct models that consider information in the temporal domain?

• What are the relations that can be utilized between different videos?

To address the first question, video object tracking [25, 56, 107], video segmentation [55,

66, 37] and motion estimation [2, 9, 83] have been extensively studied. However, the joint

problem of these tasks has been rarely explored. In this thesis, we propose to formulate

a joint optimization for video object segmentation and optical flow estimation [101], and

show that both tasks can help each other efficiently and effectively.

Once we are able to exploit the information contained in a single video, the ensuing

question is how to deal with multiple videos [123]. Since different videos may share

information that can benefit each other, we develop a video co-segmentation algorithm

to consider semantic relations between videos [102]. With such semantic guidance, we

demonstrate that our segmentation results are better than the one that only considers a

single video.

Visual Synthesis. We have described the problem of visual synthesis in Section 1.1. Based

on the understanding of visual content, we aim to utilize visual analysis and help visual

synthesis tasks, where these problems all share a common knowledge: semantics. In this

thesis, we would like to answer two questions.

• How can semantics help visual synthesis tasks?

• Could we learn a joint model for visual analysis and synthesis?
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We will briefly introduce two of our works in Section 1.3, in which we show that using

semantics can help visual synthesis and produce visually pleasing results [99, 98]. In

addition, a deep neural network is proposed to jointly learn semantic segmentation and

image harmonization [98], where semantics provide rich cues to improve the realism of

edited outputs.

1.3 Organization

In Chapter 3, we propose an algorithm for video object segmentation. To tackle such

problems, optical flow can be used to propagate an object segmentation over time but, un-

fortunately, flow is often inaccurate, particularly around object boundaries. One of our ob-

servations is that, considering the segmentation of the object is known, optical flow within

the same object should be smooth but flow across the boundary needs not be smooth.

Hence, we formulate a principled, multiscale, spatio-temporal objective function [101] for

joint estimation of video object segmentation and optical flow. We call the process object

flow and demonstrate the effectiveness of jointly optimizing optical flow and video seg-

mentation using an iterative scheme. Experiments on several benchmark datasets show

that the proposed algorithm performs favorably against the other state-of-the-art methods.

In Chapter 4, we further consider to segment objects and understand their semantics in

videos. Since each video only contains limited information, we propose to utilize a col-

lection of videos that link to each other, which we refer to as semantic co-segmentation.

Within the proposed co-segmentation framework, we aim to find the common representa-

tion for each semantic category and exploit relations between objects. To achieve this, we

first generate multiple object-like tracklets across the video, where each tracklet maintains

temporally connected segments and is associated with a predicted category. To exploit

rich information from other videos, we co-select tracklets that belong to true objects by

solving a submodular function, where this function accounts for object appearance, shape

and motion, and hence facilitates the co-segmentation process.
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In Chapter 5, we study the first problem of visual synthesis. We propose an automatic

background replacement algorithm that can generate realistic, artifact-free images with

diverse styles of skies. The key idea of our algorithm is to utilize visual semantics to guide

the entire process including sky segmentation, search and replacement. First, we train a

deep convolutional neural network for semantic scene parsing, which is used as visual prior

to segment sky regions in a coarse-to-fine manner. Second, in order to find proper skies for

replacement, we propose a data-driven sky search scheme based on semantic layout of the

input image. Finally, to re-compose the stylized sky with the original foreground naturally,

an appearance transfer method is developed to match statistics locally and semantically.

We show that the proposed algorithm can automatically generate a set of visually pleasing

results.

In Chapter 6, we develop an image harmonization method that adopts semantic scene

parsing. In such tasks, in order to generate realistic results for composite images, the ap-

pearances of foreground and background need to be adjusted to make them compatible.

Previous approaches focus on learning statistical relationships between hand-crafted ap-

pearance features of the foreground and background, which is unreliable especially when

the contents in the two layers are vastly different. In contrast, we propose an end-to-end

deep convolutional neural network that captures both the context and semantic information

of the composite images during harmonization. Experiments on the synthesized dataset

and real composite images show that the proposed network outperforms previous state-of-

the-art methods.

Finally, we conclude this thesis and discuss future work in Chapter 7.



Chapter 2

Literature Review

In this Chapter, we review the literature related to the research work in terms of visual

analysis and synthesis.

2.1 Visual Analysis

For visual analysis, we first discuss problems related to video understanding, including

video object tracking, video segmentation and motion estimation. To further consider the

case that utilizes multiple videos, we introduce the work for object co-segmentation and

co-localization.

Video Segmentation via Graph-based Models. One approach to segment objects in

videos is to propagate foreground labels [1, 37, 96, 104, 110] between frames based on

graphical models. Graphical models for video segmentation typically use unary terms that

are determined by the foreground appearance, motions or locations, and pairwise terms

that encode spatial and temporal smoothnesses. These methods typically use optical flow

to maintain temporal links, but they are likely to fail when the flow is inaccurate. In

addition, graphical models can be used for refining segments [55, 66]. Lee et al. [55]

use ranked object proposals and select key segments for shape matching. However, it is

6



7

computationally expensive to generate proposals and they are likely to contain foreground

and background pixels [56].

Motion Estimation with Layered Models. Video segmentation and motion estimation

are closely related. Layered models [11, 38, 41, 94, 105, 125] jointly optimize for seg-

mentation and optical flow. These models can be extended to the temporal domain with

more than two frames [84]. Early methods focus only on motion information but more

recent formulations combine image and motion information in segmenting the scene into

layers [85, 112]. Most layered methods use complicated and computationally expensive

inference, thereby limiting their applications.

Object Segmentation in Weakly-Supervised Videos. Weakly-supervised methods have

attracted attention due to their effectiveness for facilitating the segmentation process with

known video-level object categories. Several learning-based approaches are proposed to

collect semantic samples for training segment classifiers [30, 90] or performing label trans-

fer [59], and then identify the target object in videos. However, these methods rely on

training instances and may generate inaccurate segmentation results. Zhang et al. [122]

propose to segment semantic objects via detection without the need of training. In this

method, object detections and proposals are integrated within an optimization framework

to refine the final tracklets for segmentation. However, they require additional computa-

tional costs or information such as object proposals and video-level annotations.

Video Object Co-segmentation. Recently, co-segmentation methods are developed to

segment common objects in images [42, 77, 103] and videos [16, 23, 28, 78, 120]. Most

co-segmentation schemes assume that all the input videos contain at least one common

target object [16, 23, 28, 78], which is rarely true in real world scenarios. With a less

strict assumption in [120], objects with unknown number of categories can be segmented

from a collection of videos by tracking and matching object proposals. However, another

assumption underlying the above-mentioned methods is that usually common objects have
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almost identical appearances. Therefore, these methods are not able to segment objects

with large variations in appearances without knowing some priors, e.g., number of object

instances and number of object categories.

Object Discovery and Co-localization. Object discovery and co-localization methods are

developed in a way similar to object co-segmentation, and these methods assume that input

images or videos contain object instances from the same category. Recent image-based ap-

proaches [14, 17, 76, 89] are proposed to overcome the problem of large amounts of intra-

class variations and inter-class diversity. Several video-based methods are extended to

account for temporal information. In [106], superpixel-level labels are propagated across

frames via a boosting algorithm. However, this approach requires supervision from a few

frame-level annotations. Kwak et al. [45] propose a video object discovery method by

matching correspondences across videos and tracking object regions across frames. For

the above-mentioned schemes, mostly they have an assumption on objects appearing in

videos, which may not be true in the real world scenario.

2.2 Visual Synthesis

The focus of synthesis problems in this thesis is to create or edit realistic composites.

This task entails a combination of high-quality semantic matching and appearance trans-

fer. In this section, we discuss existing methods closely related to these modules within

the context of rendering images with composites. In addition, recent learning-based frame-

works for image editing within this scope are discussed.

Appearance Matching for Compositing. Creating realistic composites requires a good

match between both the content and the appearance of the images being merged. When

the images being merged are already specified, existing techniques use color and tone

matching to ensure that the generated results have consistent appearance. Color and tone

matching can be carried out by transferring global statistics [73, 70] or using correspon-



9

dences between local regions [88, 29]. Gradient domain schemes have been developed

to address inconsistencies on boundaries [68, 92]. In addition, the problems with textural

inconsistency between images can be alleviated by matching multi-scale statistics [87] or

patch-level adjustments [21].

While these methods directly match the appearance of images being composited, an-

other class of techniques learns the transformations from external datasets. Xue et al. [116]

learn color and tone transformations such that the appearance of the composited fore-

ground regions is adjusted properly with respect to the background. Color and tone trans-

formations have also been exploited to hallucinate changes in time of day [80] and other

high-level transient attributes [46]. On the other hand, data-driven techniques have been

proposed to restore degraded photographs [20] and improve the realism of computer gen-

erated images [40]. Lalonde and Efros [48] learn color statistics from a set of natural

images to predict the realism of photos, and use them to adjust foregrounds to improve the

chromatic compatibility. Recently, Zhu et al. [127] extend this work with a convolutional

neural network (CNN) to learn a model for predicting and improving the realism of com-

posites. Moreover, a CNN based method [117] that utilizes semantic features is developed

to learn appearance adjustment, in which pairs of input and output styles are required for

training the CNN.

Semantic Search for Compositing. Appearance matching methods perform well when

the content of the images being considered are consistent, and numerous search techniques

have been developed to determine compatible images. Hays et al. [31] present an image

completion method by searching a large database for images with compatible layout mea-

sured by the GIST descriptor [95] and appearance. To composite images, Lalonde et

al. [50] search for objects that are consistent with the input photograph in terms of cam-

era orientation, lighting, resolution, etc. While the above-mentioned techniques consider

generic objects, Bitouk et al. [4] propose a method that specifically replaces faces with

compatible pose, appearance and lighting. Note that all these approaches rely on hand-

crafted features to find compatible images without learning the semantics to enhance the
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discriminative ability of features.

Learning-based Image Editing. Recently, neural network based methods for image edit-

ing tasks such as image colorization [35, 51, 121], inpainting [67] and filtering [58], have

drawn much attention due to their efficiency and impressive results. Similar to autoen-

coders [3], these methods adopt an unsupervised learning scheme that learns feature rep-

resentations of the input image, where raw data is used for supervision. Without using

semantics as the guidance, these image editing pipelines may suffer from missing seman-

tic information in the finer level during reconstruction, and such semantics are important

cues for understanding image contents.



Chapter 3

Video Segmentation via Object Flow

3.1 Introduction

Our goal is to segment video sequences, classifying each pixel as corresponding to

a foreground object or the background in every frame. Critical to solving this task is

the integration of information over time to maintain a consistent segmentation across the

entire video. Numerous methods have been proposed to enforce temporal consistency in

videos by tracking pixels, superpixels or object proposals [8, 18, 25, 56, 74, 96, 107, 110].

Another line of research formulates this problem with a graphical model and propagates

the foreground regions throughout an image sequence [1, 24, 37, 96, 104]. In addition,

several algorithms [55, 56, 63, 66, 119] focus on object-level segmentations that favor

temporal consistency. Such object-level methods, however, may not be accurate on the

pixel level, generating inaccurate object boundaries.

Optical flow estimation has been extensively studied [2, 9, 83] and it is widely used

for video segmentation and related problems [12, 27, 65, 113]. For instance, graph-based

video segmentation methods [37, 96] use optical flow in the formulation of pairwise po-

tentials that ensure frame-to-frame segmentation consistency. However, estimated opti-

cal flow may contain significant errors, particularly due to large displacements or occlu-

11
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(a) frame t− 1 (b) frame t

(c) initial optical flow (d) updated optical flow

Figure 3.1: Object flow. (a)-(b) two consecutive frames. (c) optical flow computed by [83]

from frame t−1 to t. (d) optical flow that is updated using the segmentation marked by the

red contour. The motions within the object are more consistent and the motion boundaries

are more precise compared with the initial flow.

sions [9, 15, 82, 109]. To compute accurate optical flow fields, it is common to segment

images or extract edges to preserve motion details around object boundaries [5, 114, 115,

128]. However, most methods do not consider both flow estimation and video segmenta-

tion together. In contrast, we estimate object segmentation and optical flow synergistically

such that the combination improves both. Figure 3.1 summarizes the main ideas of this

work. If the segmentation of the object is known, optical flow within the same object
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should be smooth but flow across the boundary need not be smooth. Similarly if an ob-

ject moves differently from the background, then the motion boundary will correspond

to the object boundary. Hence, accurate optical flow facilitates detecting precise object

boundaries and vice versa.

This notion, of course, is not entirely new, but few methods have tried to integrate video

segmentation and flow estimation. Specifically, in this work, we address the above prob-

lems by considering object segmentation and optical flow simultaneously, and propose an

efficient algorithm, which we refer as object flow. For the segmentation model, we con-

struct a multi-level graphical model that consists of pixels and superpixels, where each

of these play different roles for segmentation. On the superpixel level, each superpixel is

likely to contain pixels from the foreground and background as the object boundary may

not be clear. On the pixel level, each pixel is less informative although it can be used for

more accurate estimation of motion and segmentation. With the combination of these two

levels, the details around the object boundary can be better identified by exploiting both

statistics contained in superpixels and details on the pixel level. Furthermore, we gener-

ate superpixels by utilizing supervoxels [27, 113] between two frames to exploit temporal

information in addition to the use of optical flow. After obtaining the segmentation re-

sults, we apply the foreground and background information to re-estimate optical flow

(Figure 3.1), and then iteratively use the updated optical flow to re-segment the object

region.

We evaluate the proposed object flow algorithm on the SegTrack v2 [56] and Youtube-

Objects [71] datasets. We work in the standard paradigm of tracking that assumes an

initialization of the object segmentation in the first frame, which could come from simple

user input [75] . We quantitatively compare our segmentation accuracy to other state-of-

the-art results and show improvements to the estimated optical flow. With the updated

optical flow using the segmentation, we show that the iterative procedure improves both

segmentation and optical flow results in terms of visual quality and accuracy.

The contributions of this work are as follows. First, we propose a multi-level spatial-
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Figure 3.2: Overview of the proposed model. For segmentation, we consider a multi-

level spatial-temporal model. Red circles denote pixels, which belong to the superpixel

marked by the turquoise circles. The black and the red lines denote the spatial and temporal

relationships, respectively. The relationships between the pixels and the superpixel are

denoted by the turquoise lines. After obtaining the object mask,Mt, we use this mask to

re-estimate the optical flow, and update both models iteratively.

temporal graphical model for video object segmentation and demonstrate that it performs

better than single-level models. Second, we show that the segmentation results can be used

to refine the optical flow, and vice versa, in the proposed object flow algorithm. Third,

we demonstrate that our joint model of segmentation and optical flow can be efficiently

computed by iterative optimization.
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3.2 Video Object Segmentation

In this section, we first explain how we construct the object segmentation model. Given

the initialization in the first frame, we aim to propagate the foreground label throughout the

entire video. Note that, in contrast to unsupervised methods [55, 56], that rely on motion

and object proposals and process the entire video offline in batch mode, the proposed

algorithm is able to track and segment objects for online applications. Before assigning

each pixel a label, we search the possible locations for the object in each frame to reduce

the background noise. A multi-level spatial-temporal graphical model is then applied to

the estimated object regions. In this stage, unary and pairwise terms for superpixels are

introduced by the supervoxel to better ensure temporal consistency. Figure 3.2 shows the

proposed multi-level segmentation model.

Object Location. Instead of using the segmentation model on the entire image, we first

estimate the object location to reduce the computational load and the effect of background

noise. We design a scoring function for each pixel based on color and location:

St(x
t
i) = At(x

t
i) + Lt(x

t
i,Mt−1), (3.1)

where At is the color score on the pixel xti computed by a Gaussian Mixture Model

(GMM), and Lt is the location score measured by the Euclidean distance transform of

the binary object maskMt−1 in the previous frame.

Since we do not know the exact object location or shape in the current frame, we

assume that the object does not move abruptly. Therefore, we generate the rough object

mask in the current frame t using the segmentation mask Mt−1 in the previous frame

translated by the average optical flow vector within the mask. We then use and expand this

coarse mask on a local search region that is s times the size of the object maskMt−1 (s is

from 2 to 3 depending on the object size in this work). This mask ensures that most of the

pixels within the object are covered. After obtaining the local search region, we use the

distance transform on this expanded mask to compute location scores. Similarly, we also
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Figure 3.3: Estimated object location Rt. Given the object maskMt−1 marked as the red

contour, we search for a local region in the current frame t and compute the foreground

scores based on color and location. The estimated foreground region is used for label

assignment.

consider color scores based on this local region. Figure 3.3 illustrates one example of the

combination of two scores. A threshold is then applied to select the object location Rt for

further determining label assignment.

Graphical Model. After the object region for label assignment is selected, we utilize a

spatial-temporal graphical model to assign each pixel with a foreground or background

label. We define an energy function in a Conditional Random Field (CRF) form for the

pixel xti ∈ X with label ∈ {0, 1}:

Epix(X) = Ūt(X,Mt−1) + γs1
∑

(i,j,t)∈Et

V̄t(x
t
i, x

t
j)

+ γt1
∑

(i,j,t)∈Et

W̄t(x
t−1
i , xtj), (3.2)

where Ūt is the unary potential for the cost to be foreground or background, and V̄t and

W̄t are pairwise potentials for spatial and temporal smoothnesses with weights γs1 and γt1,

respectively. Both of the pairwise terms are defined as in [66]. Note that we only consider

Et within the region Rt generated in the object location estimation step.

For the unary term in (3.2), we consider appearance and location energies defined by

Ūt(X,Mt−1)=

α1

∑
(i,t)∈Rt

Φ̄a(x
t
i) + β1

∑
(i,t)∈Rt

Φ̄l(x
t
i,Mt−1), (3.3)
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pixel: 75.8 superpixel: 82.9 multi-level: 85.5

Figure 3.4: Segmentation results at different levels with overlap ratios with respect to the

ground truth mask. On the pixel or superpixel level, both results are not complete. The

results on the pixel level miss part of the leg, while the results on the superpixel level

include part of the bike. The multi-level segmentation approach exploits results from both

levels for higher accuracy.

where Φ̄a is the appearance term, and Φ̄l is the location term defined similar to the one

in (3.1). The difference is that for the nodes in the previous frame, we can simply compute

the distance transform of the object maskMt−1. For the appearance term, we construct

the color GMM in the first frame, and an online SVM model with CNN features [62] is

updated every frame. The weight α1 consists of αcol
1 and αcnn

1 for the color and CNN

features, respectively. By minimizing (3.2), we obtain labels within Rt and thus the object

maskMt, and then continue to propagate to the next frame.

Multi-level Model. Although the model based on pixels can achieve fine-grained segmen-

tation, pixels are usually sensitive to noise when optical flow is not accurately estimated.

On the other hand, an alternative way is to use larger segments such as superpixels that

contain more information by considering every pixel in the neighborhood (i.e., spatial sup-

port). However, superpixels may not contain the entire object or may have imprecise object

boundaries due to occlusion or motion blur (See Figure 3.4). Therefore, we construct a

multi-level graphical model including pixels and superpixels to ensure boundary as well

as temporal consistency.

In this model, the energy terms for both pixels and superpixels have unary and pairwise
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potentials, and a pairwise term is used for the connection where pixels belong to a super-

pixel (See Figure 3.2). In addition, since optical flow may not be estimated correctly due

to large displacement, we use supervoxels [27] between two frames to generate coherent

superpixels and enhance temporal consistency.

The multi-level model is formulated by

Eseg = λ1Epix(X) + λ2Esup(Y ) + λ3Epair(X, Y ), (3.4)

where Epix(X) is the model based on pixels in (3.2); Esup(Y ) is the energy function based

on superpixels ytm ∈ Y ; Epair(X, Y ) is the pairwise term between pixels and superpixels;

and λi is the weight. We define Esup(Y ) as:

Esup(Y ) = Ût(Y ) + γ2
∑

(m,n,t)∈Et

V̂t(y
t
m, y

t
n), (3.5)

where Ût is the unary potential for labeling a superpixel as foreground or background, and

V̂t is the spatial smoothness within the region Rt. Note that it is not necessary to model the

temporal smoothness in (3.5) since we design a term for the supervoxel and optical flow in

the unary term (explained in detail below). The unary term Ût is defined in a way similar

to (3.3):

Ût(Y ) = α2

∑
(m,t)∈Rt

Φ̂a(y
t
m) + β2

∑
(m,t)∈Rt

Φ̂l(y
t
m), (3.6)

where Φ̂a is the color term defined as the mean color likelihood over all pixels within the

superpixel, and a location term Φ̂l measures the consistency between the optical flow and

the supervoxels. The location term is defined as:

Φ̂l(y) = flow(y)× obj(y), (3.7)

where flow(y) is defined by the percentage of pixels in y that are successfully transferred

to the next time instant. A successful transfer means that a pixel xt−1i transfers from a
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superpixel yt−1m to a superpixel ytn via optical flow, and yt−1m and ytn belong to the same

supervoxel. In addition, obj(y) computes the percentage of pixels within the superpixel

belonging to the segmentation maskM.

The value of the first term in (3.7) is high if the supervoxel and optical flow mostly

agree with each other. The second term basically measures the likelihood that a superpixel

is part of the object. Note that, to compute obj(y) for superpixel nodes in the current frame

t, since the object location is unknown, we use the approximate object mask as described

in the step for estimating the object location.

Epair(X, Y ) models the relationship between superpixels and pixels, encouraging pix-

els inside the superpixel to have the same label. This pairwise term is defined by

Epair(x
t
i, y

t
m) =

{
1− |(p(xti)− p(ytm))| if lx 6= ly

0 else,

where p is the foreground color probability computed by a color GMM, and lx and ly are

the labels for the pixel and superpixel. This energy computes the penalty of assigning

different labels to pixel x and superpixel y. The subtraction of probabilities indicates how

similar x and y are, and the absolute value is from 0 to 1. That is, if the color of the pixel

is similar to the mean color of the superpixel, it is likely to have the same label and should

have a higher penalty if assigned to a different label.

Overall, to propagate foreground labels, we estimate the object location guided by the

optical flow, and utilize a multi-level model to assign the label to each pixel. On the pixel

level, optical flow is used to maintain temporal smoothness, whereas for the superpixel,

the model measures the consistency between supervoxels and optical flow, and propagates

the location information to the next frame.

3.3 Object Flow

In the previous section, we address video segmentation by utilizing a multi-level spatial-

temporal graphical model with the use of optical flow and supervoxels. The ensuing ques-
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tion is how to use the segmentation results to help the estimation of optical flow and vice

versa? Since flow vectors within the same object are likely to be similar, we propose to

estimate them on the object level. The updated optical flow can then be used again to

improve object segmentation. The problem is formulated jointly as follows.

Optical Flow with Segmentation. We minimize the classical robust optical flow objective

function [83],

E(u,v;R) =
∑
i,j∈R

{ρD(It−1(i, j)− It(i+ ui,j, j + vi,j))

+λ[ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)

+ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1)]}, (3.8)

where u and v are the horizontal and vertical components of the optical flow from image

It−1 to It, and ρD and ρS are robust data and spatial penalty functions.

We further consider the object maskM obtained from the segmentation step. One can

consider this as a binary assignment of pixels to layers in a layered flow model. Here we

use it to decompose the flow problem into two separate estimations,

Eflow(ufg,vfg,ubg,vbg) =

E(ufg,vfg; fg)+E(ubg,vbg; bg), (3.9)

where fg and bg are local regions that are slightly larger than the foreground and back-

ground regions. This step ensures that the optical flow estimation is less affected by the

background noise but still takes partial background regions into account. The final optical

flow can be merged by applying the segmentation mask. That is, u =M·ufg +(1−M) ·
ubg, which are obtained from E(ufg,vfg; fg) and E(ubg,vbg; bg), respectively.

Joint Formulation. To formulate the joint problem for segmentation and optical flow, we

combine (3.4) and (3.9) as:

min
M,u,v

Etotal = Eseg + Eflow. (3.10)
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Algorithm 1: Object Flow

1 Initialize: u,v by minimizing (3.8);

2 while not converged do

3 up ← u,vp ← v;

4 Segmentation;

5 Compute energy terms for (3.4) using up,vp;

6 minimize (3.4) by graph cuts and obtainM;

7 Mp ←M;

8 Optical Flow;

9 if large displacement then

10 minimize (3.9) usingMp and obtain u,v;

11 up ← u,vp ← v;

12 end

13 M←Mp,u← up,v← vp;

14 end

Note that in Eseg, we use optical flow in (3.2) and (3.5), and the estimated object location.

In Eflow, we use the segmentation mask obtained by Eseg to decide the foreground and

background local regions.

We optimize (3.10) by iteratively updating the two models once the segmentation or

optical flow energy converges. First, we initialize and fix the optical flow to minimize Eseg

using graph cuts [6]. We then optimize the optical flow by fixing the segmentation mask

M, and minimizing Eflow using the Classic+NL method [83].

Optimization Details. The main steps of the optimization procedure for (3.10) are sum-

marized in Algorithm 1. We make a few assumptions to expedite the process. First, we

find that for many frames, optical flow can be obtained accurately without the need to

re-estimate. For instance, this is true when the object is stationary or moves slightly. In
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addition, we observe that if the consistency between supervoxels and optical flow is low,

it is a good indication that the object moves by a large displacement. Thus, we design a

strategy that only re-estimates the optical flow if the value of flow(y) in (3.7) is less than

a threshold. This speeds up the process significantly while maintaining good accuracy.

Second, since our goal is to find a stable object maskM, instead of using the energy

Eseg to decide the convergence status during the update of the segmentation model, we

measure the difference of object mask solutions M. If the overlap ratio of M is larger

than a value (e.g. 95%), it should be a stable solution. In our experiments, the entire opti-

mization process for (3.10) converges within five iterations, and converges in two iterations

for most frames from our experiments.

3.4 Experimental Results

Implementation Details. To evaluate the proposed algorithm, we first construct the fore-

ground and background color GMMs in the RGB space from the first frame, and set K

to 5 for each GMM. For learning the online SVM model, we extract hierarchical CNN

features [62] combining the first 5 convolutional layers from a pre-trained VGG net [81]

into 1472 dimensional vectors. We use the method [27] to generate supervoxels and con-

vert them to superpixels in each frame. For parameters in the graphical model, we use

αcol
1 = 1, αcnn

1 = 3, β1 = 2, γs1 = 3 and γt1 = 0.2 on the pixel level. On the superpixel

level, parameters are set as α2 = 1, β2 = 1 and γ2 = 2. For (3.4), we set λ1 = 1, λ2 = 15

and λ3 = 5. Since one superpixel contains numerous pixels, we use larger weight for λ2
on the superpixel level as otherwise the superpixel energy is easily absorbed to have the

same label as the pixels (a similar issue holds for λ3). All these parameters are fixed in the

experiments.

SegTrack v2 Dataset. We first evaluate the proposed algorithm on the SegTrack v2

dataset [56] which consists of 14 videos with 24 objects and 947 annotated frames. The

dataset includes different challenging sequences with large appearance change, occlusion,
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Table 3.1: Segmentation results on the SegTrack v2 dataset with the overlap ratio. Note

that “-” indicates that the method fails to track an object and is excluded in measuring

accuracy.

Sequence/Object [110] [56] [55] [27] [25] [107] Ours

Online?
√ √ √ √

Unsupervised?
√ √ √

Girl 83.7 89.2 87.7 31.9 53.6 52.4 87.9
Birdfall 77.5 62.5 49.0 57.4 56.0 32.5 57.4

Parachute 94.4 93.4 96.3 69.1 85.6 69.9 94.5
Cheetah-Deer 63.1 37.3 44.5 18.8 46.1 33.1 33.8

Cheetah-Cheetah 35.3 40.9 11.7 24.4 47.4 14.0 70.4
Monkeydog-Monkey 82.2 71.3 74.3 68.3 61.0 22.1 54.4

Monkeydog-Dog 21.1 18.9 4.9 18.8 18.9 10.2 53.3
Penguin-#1 92.7 51.5 12.6 72.0 54.5 20.8 93.9
Penguin-#2 91.8 76.5 11.3 80.7 67.0 20.8 87.1
Penguin-#3 91.9 75.2 11.3 75.2 7.6 10.3 89.3
Penguin-#4 90.3 57.8 7.7 80.6 54.3 13.0 88.6
Penguin-#5 76.3 66.7 4.2 62.7 29.6 18.9 80.9
Penguin-#6 88.7 50.2 8.5 75.5 2.1 32.3 85.6
Drifting-#1 67.3 74.8 63.7 55.2 62.6 43.5 84.3
Drifting-#2 63.7 60.6 30.1 27.2 21.8 11.6 39.0

Hummingbird-#1 58.3 54.4 46.3 13.7 11.8 28.8 69.0
Hummingbird-#2 50.7 72.3 74.0 25.2 - 45.9 72.9

BMX-Person 88.9 85.4 87.4 39.2 2.0 27.9 88.0
BMX-Bike 5.7 24.9 38.6 32.5 - 6.0 7.0

Frog 61.9 72.3 0.0 67.1 14.5 45.2 81.4
Worm 76.5 82.8 84.4 34.7 36.8 27.4 89.6
Soldier 81.1 83.8 66.6 66.5 70.7 43.0 86.4
Monkey 86.0 84.8 79.0 61.9 73.1 61.7 88.6

Bird of Paradise 93.0 94.0 92.2 86.8 5.1 44.3 95.2

Mean per Object 71.8 65.9 45.3 51.8 40.1 30.7 74.1
Mean per Sequence 72.2 71.2 57.3 50.8 41.0 37.0 75.3
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motion blur, complex deformation and interaction between objects. For videos containing

multiple objects, since instance-level annotations are provided, each object can be seg-

mented in turn, treating each as a problem of segmenting that object from the background.

We first present segmentation results and demonstrate the effectiveness of the multi-level

model.

Table 3.1 shows segmentation accuracy of the proposed algorithm and the state-of-

the-art methods including tracking and graph based approaches [25, 27, 55, 56, 107, 110].

Note that our model can generate labeled results on both pixel and superpixel levels, and

we present the pixel level fine-grained segmentation results. We use the intersection-over-

union (overlap) ratio for evaluation as it has been shown that the pixel error metric used in

the SegTrack dataset is sensitive to object size [56] and is less informative.

Overall, the proposed algorithm achieves favorable results in most sequences espe-

cially for non-rigid objects (Hummingbird, Worm, Soldier). These sequences usually

contain large deformation due to fast motions or complex cluttered backgrounds. The

superpixel-based tracking methods [107, 110] do not perform well on these sequences

since superpixels may not preserve object boundaries well. The Hough-based tracking

method [25] only uses pixels, which may result in noisy temporal links. In the proposed

spatial-temporal multi-level model, we consider both pixels and superpixels in the tracking

and segmentation to maintain object boundaries as well as temporal consistency.

For the Penguin and Frog sequences, the object appearance is similar to the back-

ground with slow motions. The off-line methods [55, 56] that generate object proposals

from all frames, are likely to have large segmentation errors due to wrong association or

incomplete regions that contain foreground and background pixels. In contrast, the pro-

posed algorithm performs well in these sequences with objects surrounded by other objects

or background with similar appearance. In the location term (3.7), our model considers

consistency between supervoxels and optical flow, and this helps maintain temporal con-

sistency. We present qualitative segmentation results in Figure 3.5 and show more results

in the supplementary material.
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Table 3.2: Segmentation results using multi-level and single-level models on the SegTrack

v2 dataset with the overlap ratio. Note that there are results on both pixel and superpixel

levels using the multi-level model.

Methods Pixel Pixel Superpixel Superpixel
multi-level only multi-level only

Mean per Object 74.1 69.6 65.6 50.3

To evaluate the proposed multi-level model that integrates both levels, we compare to

our model using only pixels or superpixels in Table 3.2. The information contained on

these two levels complement each other as the one based on the superpixel level maintains

local region consistency, while the one based on the pixel level refines incomplete object

contours (See Figure 3.4). Specifically, the location term in (3.7) enhances temporal in-

formation such that the model can handle cases including fast movements and background

noise in sequences. In addition, the proposed multi-level model with superpixels performs

better than that using only superpixels, which demonstrates that the refinement with the

pixel level information is critical for obtaining good performance especially in sequences

that contain unclear object boundaries. We also note that our single-level models already

perform comparably to the state-of-the-art methods.

Youtube-Objects Dataset. The Youtube-Objects dataset [71] contains 1407 videos with

10 object categories, and the length of the sequences is up to 400 frames. We evaluate

the proposed algorithm in a subset of 126 videos with more than 20000 frames, where

the pixel-wise annotations in every 10 frames are provided by Jain and Grauman [37].

Table 3.3 shows the segmentation results of the proposed algorithm and other state-of-the-

art methods1. For tracking-based or foreground propagation algorithms [25, 37, 64, 65,

104], ground truth annotations in the first frame are used as initializations to propagate

1We evaluate the code of [110] released by the authors. However, the algorithm requires different pa-
rameter settings for challenging sequences. We discuss and report results in the supplementary material.
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Figure 3.5: Example results for segmentation on the SegTrack v2 (first row) and Youtube-

Objects (second and third rows) datasets. The output on the pixel level of our multi-level

model is indicated as the red contour. The results show that our method is able to track and

segment (multiple) objects under challenges such as occlusions, fast movements, deformed

shapes and cluttered backgrounds. Best viewed in color with enlarged images.

Table 3.3: Segmentation results on the Youtube-Objects dataset with the overlap ratio.

Category [64] [37] [104] [25] [66] [65] Ours

aeroplane 89.0 86.3 79.9 73.6 70.9 13.7 89.9
bird 81.6 81.0 78.4 56.1 70.6 12.2 84.2
boat 74.2 68.6 60.1 57.8 42.5 10.8 74.0
car 70.9 69.4 64.4 33.9 65.2 23.7 80.9
cat 67.7 58.9 50.4 30.5 52.1 18.6 68.3
cow 79.1 68.6 65.7 41.8 44.5 16.3 79.8
dog 70.3 61.8 54.2 36.8 65.3 18.0 76.6

horse 67.8 54.0 50.8 44.3 53.5 11.5 72.6
motorbike 61.5 60.9 58.3 48.9 44.2 10.6 73.7

train 78.2 66.3 62.4 39.2 29.6 19.6 76.3

Mean 74.0 67.6 62.5 46.3 53.8 15.5 77.6

segmentation masks. For multiple objects in videos, the proposed algorithm is able to

propagate multiple object segmentations at the same time. Note that there are no instance-
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level annotations provided.

Overall, the proposed algorithm performs well in terms of overlap ratio, especially in

8 out of 10 categories. Compared to optical flow based methods [64, 104], the proposed

algorithm performs well on fast moving objects such as car and motorbike as the optical

flow errors are reduced. Although the recent method [37] utilizes long-term supervoxels to

enhance the temporal connection, the segmentation results contain noisy object boundaries

as only superpixels are used. In contrast, the proposed algorithm considers visual infor-

mation at multiple levels and delineates boundaries well especially on non-rigid objects

(dog, horse, cow). We show qualitative results in Figure 3.5.

Optical Flow. We demonstrate the effectiveness of iteratively optimizing two models

for updated optical flow and segmentation results (See Algorithm 1) on the SegTrack v2

dataset. Here, we only consider sequences with large displacements in which the flow is

re-estimated. First, we measure the quality of updated optical flow. As the optical flow

ground truth is not available, we warp the object segmentation ground truth from frame t

to frame t− 1 using optical flow with bicubic interpolation. We then compute the overlap

ratio between the warped and ground truth masks. Since we focus on optical flow of the

object, this metric measures consistency for flow directions and whether they connect to

the same objects between two frames.

Table 3.4 shows results compared to two other optical flow methods [9, 83] and the

layered model [85]. The updated results improve the optical flow estimation [83] con-

sistently in all the sequences, especially for fast moving objects (Girl, Drifting, BMX).

This validates our approach since the method [83] is used to compute the initial flow. Fig-

ure 3.6 and 3.7 illustrate the optical flow results. Compared to the other three methods,

the updated optical flow exhibits clearer object boundaries. It shows the importance of

computing optical flow on local object regions. In contrast, the results from [9] are usu-

ally oversmoothed around the object boundaries, and the layered model [85] generates

incomplete flows inside objects.

In addition, we use the normalized interpolation error (NE) as described in [2] for



28

Table 3.4: Intersection-over-union ratio for warped images by interpolation and updated

optical flow on the SegTrack v2 dataset. The last row shows the average of normalized

interpolation error. The performance is evaluated on frames with sigificant motion.

Sequence/Object Ours Sun [83] Brox [9] Sun [85]

Girl 64.6 56.1 63.2 64.6
Parachute 86.8 84.9 83.2 83.3

MonkeyDog-Monkey 70.8 70.0 67.4 69.0
MonkeyDog-Dog 69.0 69.0 68.9 75.0

Drifting-#1 89.5 86.6 91.3 82.5
Drifting-#2 87.3 82.5 87.7 79.8

Hummingbird-#1 55.2 52.2 52.6 51.3
Hummingbird-#2 71.1 70.6 68.7 65.5

Worm 73.3 71.1 69.8 91.1
Monkey 77.4 76.3 80.9 70.5
Soldier 84.5 83.5 80.8 82.7

Bird of Paradise 94.4 87.9 88.3 89.7
BMX-Person 80.0 77.4 75.0 72.2
BMX-Bike 38.4 33.9 37.5 38.3

Mean 74.5 71.6 72.5 72.5

Average NE 0.36 0.38 0.32 0.37

evaluation. Similarly, the ground truth of the colored object is warped by the optical flow

from frame t to t− 1. The average NE of the updated optical flow is better than [83], but

slightly worse than [9]. This can be attributed to the fact that the oversmoothed optical flow

in [9] usually generates more complete warped images after interpolation; this is favored

by the NE metric.

Second, by using the updated optical flow, we re-estimate object segmentations and

measure overlap ratios. and the average overlap ratio is increased from 72.9% to 75.1%

in sequences that rely on the optical flow. The improvement varies in different sequences
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Segmentation Ours Sun [83] Brox [9]

Figure 3.6: Results for updated optical flow on the SegTrack v2 dataset. We present our

updated optical flow compared to the initial flow [83] and Brox [9]. Our results contain

object boundaries guided by the segmented object marked with the red contour. Note that

in the same sequence with multiple objects, the updated optical flow varies depending on

the segmentation. Best viewed in color with enlarged images.

since the segmentation model also takes other cues such as appearance and location into

account. For instance, the improvement of overlap ratio is limited in the Bird of Paradise

and Parachute sequences since the objects move steadily. On the other hand, for objects

with noisy cluttered backgrounds (Drifting-#2) or with similar appearance to the back-

ground regions (Worm), the overlap ratios are improved by 2.4% and 2.9% respectively.

Runtime Performance. Our MATLAB implementation of object flow takes 3 to 20 sec-

onds per frame on the SegTrack v2 dataset depending on the object size, and on average
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Segmentation Ours Sun [83] Sun [85]

Figure 3.7: Results for updated optical flow on the SegTrack v2 dataset. We present our

updated optical flow compared to the initial flow [83] and Sun [85]. Our results contain

object boundaries guided by the segmented object marked with the red contour. Note that

in the same sequence with multiple objects, the updated optical flow varies depending on

the segmentation. Best viewed in color with enlarged images.

it takes 12.2 seconds per frame. In contrast, the state-of-the-art method [110] takes 59.6

seconds per frame on average. Note that all the timings are measured on the same com-

puter with 3.60 GHz Intel i7 CPU and 32 GB memory, and exclude the time to compute

optical flow as each method uses different algorithms. We use the MATLAB implementa-

tion of [83] to generate optical flow fields (around 30 seconds per frame) and it could be

replaced by faster algorithms [86, 112].
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3.5 Summary

In this work, we present a novel algorithm for joint optimization of segmentation and

optical flow in videos, and show that the problem can be efficiently solved. For segmen-

tation, a multi-level model containing pixels and superpixels is utilized to track objects.

We show that both levels complement each other and maintain object boundaries and tem-

poral consistency throughout the video. Using the segmentation, we modify the optical

flow estimation to be performed within local foreground and background regions, result-

ing in more accurate optical flow, particularly around object boundaries. We show that our

method performs favorably against state-of-the-art methods on two datasets, and both the

segmentation and optical flow results are improved by iteratively updating both models.



Chapter 4

Semantic Co-segmentation in Videos

4.1 Introduction

Objects may appear at any location in various shapes and appearances with different

visual semantics across videos. Given a set of videos, localizing and segmenting all the

objects is a challenging task, especially when the visual categories are unknown. In this

work, we propose an algorithm to segment objects and understand visual semantics from

a video collection, which we refer to as semantic co-segmentation. Within the proposed

co-segmentation framework, we aim to find the common representation for each semantic

category and exploit relations between objects. For instance, dogs from different videos

may share more commonalities and have stronger relations between each other than ob-

jects with other semantics (see Figure 4.1).

Numerous algorithms have been proposed for video object co-segmentation [16, 23,

78, 120]. However, most existing methods [16, 23, 78] assume that at least one common

object appears all the time in two or more videos, which limits the applicability in real

world scenarios. In this work, we propose an algorithm to segment semantic objects from

a collection of videos containing various categories despite large variations in appearances,

shapes, poses and sizes.

32



33

We exploit semantic information to facilitate co-segmentation to associate objects of

the same category from different videos. Visual semantics has been used as prior informa-

tion for object segmentation in weakly labeled videos [90, 106, 122]. In semantic video

object segmentation, an object detector or a segmentation algorithm is first applied to lo-

calize objects according to the video label. However, for videos without any semantic

label, an object detector may find noisy segments that do not belong to any semantic ob-

ject (i.e., due to the trade-off between recall and precision). In this work, we propose an

algorithm to associate semantic representations between objects in different videos and

help the object co-segmentation process, where non-object detections can be removed.

Toward this end, we first extract semantic objects in each video. Compared with meth-

ods that use region proposals [120, 122] to localize objects, we develop a proposal-free

tracking-based approach that generates multiple tracklets of regions (segments) across the

video. Each tracklet maintains temporal connections and contains a predicted category

that is initialized by an image-based semantic segmentation algorithm. After collecting

tracklets from all videos, we link the relations between tracklets for each object category

by formulating a submodular optimization problem, which maximizes the similarities be-

tween object regions (segments). With this formulation, prominent objects in each video

can be discovered and segmented based on similarities of regions.

We first conduct experiments on the Youtube-Objects dataset [71] in a weakly-supervised

manner. Then we evaluate the proposed method in a more generalized setting without

knowing any semantic information as a prior. Both results show that our algorithm per-

forms favorably against the state-of-the-art methods. In addition, we compare our method

to the other video object co-segmentation approaches on the MOViCS [16] and Safari

[120] datasets. Experimental results on three datasets show that the proposed algorithm

performs favorably in terms of visual quality and accuracy.

The contributions of this work are summarized as follows. First, we propose a se-

mantic co-segmentation method that considers relations between objects from a collection

of videos, where object categories can be unknown. Second, a proposal-free tracking-
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Figure 4.1: Overview of the proposed algorithm. Given a collection of videos without

providing category labels, we aim to segment semantic objects. First, a set of tracklets is

generated for each video, and each tracklet is associated with a predicted category illus-

trated in different colors (e.g., blue represents the dog and red represents the cow). Then

a graph that connects tracklets as nodes from all videos is constructed for each object cat-

egory. We formulate it as the submodular optimization problem to co-select tracklets that

belong to true objects (depicted as glowing nodes), and produce final semantic segmenta-

tion results.

based method is developed to segment object-like tracklets while maintaining temporal

consistency in videos. Third, a submodular function is formulated to carry out semantic

co-segmentation from tracklets in all videos.
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4.2 Proposed Algorithm

4.2.1 Overview

Given a set of videos with unknown object categories, our goal is to discover and

segment prominent objects, as well as assign each object a semantic label. To achieve this,

we first utilize a fully convolutional network (FCN) [61] trained on the PASCAL VOC

2011 dataset [22] to segment objects in each frame, where each segment has a predicted

category. To reduce noisy segments in each video, we cluster segments and eliminate

clusters containing noisy segments through the video. Among the selected clusters with

object segments, we randomly choose a few of them as initializations and apply a spatial-

temporal graph-based tracking algorithm to generate tracklets. Each tracklet maintains

coherent appearances of an object region (segment) in the spatial and temporal domains.

However, tracklets may still contain only object parts or noisy background clutters,

and the available visual information is limited within each video. We construct a graph

that connects tracklets within the same category from all videos as nodes, and utilize a

submodular function to define the corresponding relations based on their appearances,

shapes and motions. After maximizing this submodular function, tracklets are ranked

according to their mutual similarities, and hence prominent objects can be discovered in

each video. Figure 4.1 shows the overview of the proposed algorithm.

4.2.2 Semantic Tracklet Generation

Video object segmentation methods usually utilize object proposals in each frame to

detect where instances may appear [23, 55, 56, 120]. One challenge is to associate thou-

sands of proposals from different objects while maintaining temporal connections for each

of them across all sequences. Here, we propose to utilize a semantic segmentation al-

gorithm (e.g., FCN) to generate object segments as initializations, and then construct a

spatial-temporal graphical model to track each object segment and form tracklets. The
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Figure 4.2: Illustration of the proposed method for semantic tracklet generation. Given

an input video, we first utilize the FCN algorithm to produce semantic segments in each

frame. We then cluster all segments within each object category into different groups,

where each color denotes one category (e.g., two green groups for birds and one blue group

for dogs). Within each group, we randomly select a few segments as multiple initializa-

tions (depicted as rectangular boxes with solid color lines) and utilize a tracking-based

approach to generate semantic tracklets Ti. Note that we only show the forward tracklets

in this figure (similar process when generating backward tracklets).

procedure to generate tracklets is illustrated in Figure 4.2.

Selecting Objects Segments via Clustering. We first apply the FCN algorithm to extract

object segments in each frame of one video. To reduce noisy segments that are not likely

to be any object, a simple yet effective clustering method is utilized to select object-like

segments through each video. Since the number of object instances is unknown, we apply

the mean shift clustering method on all the segments within each object category based on

color histograms in the RGB space. Then we select the N largest clusters (i.e., top 80% of

the largest ones) while removing the others.

The object segments in selected clusters are considered as initializations for tracking.

We randomly choose a few segments from each cluster, while ensuring the selected seg-
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Initial: frame 98 Frame 103 Frame 115 Initial: frame 119Frame 107

Figure 4.3: An example to track the object under heavy occlusions based on the pro-

posed bi-directional approach with multiple initializations, where initialized segments are

denoted as colored rectangular boxes.

ments are within a certain time frame (e.g., at least 20 frames apart between two selected

segments) to increase the diversity. However, these initializations may not contain the en-

tire object region or include background clutters. To refine each initialized segment, we

learn an online SVM model based on color histograms (as used in the clustering stage), and

re-estimate the foreground region using an iterative scheme (e.g., one iteration is sufficient

in this work) as in the GrabCut method [75].

Tracking Object Segments. Based on multiple initializations from the previous step, we

aim to track segments and generate consistent tracklets (as illustrated in Figure 4.2). The

tracking scheme can better localize objects that may be missed by detection algorithms in

a single frame, while maintaining temporal connections between object segments. Since

selected segments within the same cluster share similar appearances, we track multiple

segments in both forward and backward directions, and group them into two tracklets.

Hence, we obtain 2N tracklets for each cluster. We note that the bi-directional approach

facilitates tracking segments under heavy occlusions (see Figure 4.3 for an example). Fur-

ther note that each initialized segment only tracks a small number of frames until reaching

the next initialization, as most tracking methods perform well within a number of frames.

Considering the case of forward tracking from frame t − 1 to t, the goal is to assign

each pixel xti ∈ X with a foreground or background label ∈ {0, 1}. We define an energy
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function in a Conditional Random Field (CRF):

E(X) = Ut(X) + γs
∑

(i,j,t)∈Nt

Vt(x
t
i, x

t
j) + γt

∑
(i,j,t)∈Nt

Wt(x
t−1
i , xtj), (4.1)

where Ut is the unary potential to be foreground or background, and Vt andWt are pairwise

potentials for spatial and temporal smoothnesses with weights γs and γt, respectively. The

pairwise terms are defined in a way similar to those in [66]. To reduce the computational

load and the effect of background noise, we only segment the object within an estimated

object location Rt, obtained as in [101]. Note that we also define Nt as the neighboring

set within this region. For the unary term in (4.1), we compute appearance and location

energies defined by:

Ut(X) = α
∑

(i,t)∈Rt

Φa(x
t
i) + β

∑
(i,t)∈Rt

Φl(x
t
i), (4.2)

where Φa is the appearance term, and Φl is the location term. For the appearance term,

we learn a SVM model based on color histograms (as used in the clustering stage) from

the first frame, and an online SVM model with CNN features [62] updated every frame.

The weight α consists of αcol and αcnn for the color and CNN features, respectively. By

minimizing (4.1) using the graph cut method [6], we obtain labels and thus the object mask

within Rt, and continue to track segments in the next frame.

4.2.3 Semantic Tracklet Co-selection via Submodular Function

For each video, we generate a set of tracklets where each one is assigned to an object

category from the FCN method. However, these tracklets are usually noisy (false nega-

tives) and may not belong to any true object (false positives). In addition, objects within

the same category usually share more similarities. To better select object-like tracklets,

we collect all those within the same category from all videos to help each other. That is

achieved by constructing a graph where the tracklets are nodes, and formulating it as a
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submodular optimization problem which aims to find a subset that shares more similari-

ties. Once tracklets are selected in each video, we rank different semantic objects based

on the submodular energies and find prominent objects.

Graph Construction on Tracklets. We first collect tracklets from all videos where each

one is associated with an object category from a set of M categories L = {1, 2, · · · ,M}.
For each category l ∈ L, we can find a tracklet set O, and construct a graph G = (V , E)

containing tracklets from all videos (with the same category l), where each node v ∈ V is a

tracklet and the edges e ∈ E model the pairwise relations. For each G, we aim to discover

an object-like tracklet set A of O by iteratively selecting elements of O into A.

Submodular Function. Our submodular objective function is designed to find tracklets

that meet two criteria: 1) sharing more similarities, 2) maintaining high quality object-like

segments. To achieve this, we model the submodular function with a facility location term

[53, 126] to compute similarities, and a unary term that measures how likely the tracklet

belongs to the true object. We first introduce the facility location term defined as:

F(A) =
∑
i∈A

∑
j∈V

wij −
∑
i∈A

φi, (4.3)

where wij is the pairwise relation between a potential facility vi and a node vj , and φi is

the cost to open a facility fixed to a constant ε. In (4.3), we define wij as the similarity

S(vi, vj) to encourage the model to find a similar facility vi to vj such that the final selected

tracklets share more similarities.

To compute the similarity between two tracklets, we represent each tracklet by a feature

vector Fi, and compute their inner product, S(vi, vj) = 〈Fi, Fj〉, as the similarity. For each

tracklet, we extract CNN features (same as mentioned in (4.2)) in each frame and utilize

an average pooling method to compute a feature vector that represents each object. Then

Fi is computed by averaging feature vectors from all the frames to represent each tracklet.

Note that Fi represents appearance of the tracklet in semantics that is learned from CNN,

and hence tracklets within the same category are likely to have higher mutual similarities.
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However, with only the facility location term, it is not effective in removing all the

noisy tracklets in the selected subset A. Hence we propose to include a unary term in

the submodular function that can measure the quality of tracklets while preserving the

submodularity. The proposed unary term is defined as:

U(A) = λo
∑
i∈A

Φo(i) + λm
∑
i∈A

Φm(i) + λs
∑
i∈A

Φs(i), (4.4)

where Φo(i) measures how likely vi belongs to the true object (objectness score), and

Φm(i) and Φs(i) evaluate the quality of vi based on the consistency of motions and shapes.

First, we compute Φo(i) = po(i) by utilizing probabilities from the FCN output layer

according to its category, where po(i) is the average probability on all the pixels in vi. For

motion consistency, we use a method similar to [119] and compute motion scores around

segment boundaries based on the average gradient magnitude of optical flow estimations

[112]. Then we compute Φm(i) by averaging all the motion scores obtained for every

two frames. The shape consistency is also considered by computing the intersection-over-

union (overlap) ratio between two object segments in adjacent frames. We then compute

the variance νs(i) of these overlap ratios, and define Φs(i) = 1− νs(i), which reflects that

larger variance has lower consistency.

Optimization for Tracklet Co-selection. We aim to formulate a submodular function

such that tracklets in the selected set A share more similarities and maintain object-like

as well as consistent segments. We combine the facility location term (4.3) and the unary

term (4.4) with a weight δ into an objective function, and the submodularity is preserved

by linearly combining two non-negative terms:

max
A
C(A) = max

A
F(A) + δ U(A),

s.t. A ⊆ O ⊆ V , NA ≤ N ,

H(Ai) ≥ 0,

H(Ai) ≥ ρ · H(Ai−1), (4.5)
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energy gain: 120.3 

similarity = 81, unary term = 42.3

. . . 

energy gain: 128.6 

similarity = 84.4, unary term = 47.2

. . . 

energy gain: 108 

similarity = 81.3, unary term = 29.7

Figure 4.4: Illustration of the proposed submodular function for tracklet co-selection. We

show three tracklets within the dog category, where the left two tracklets are selected as

true objects (denoted as glowing nodes). For each tracklet, we show energy gain, unary

term and summed pairwise energy (similarity) in the facility location term. While all three

tracklets have high similarity scores, the right tracklet (false positive) has lower energy

gain due to low unary term resulting from inconsistent motions and shapes, and hence it is

not selected as the object.

where NA is the number of open facilities, and H(Ai) is the energy gain at iterations i

during iterative optimization, which is defined as: C(Ai) − C(Ai−1). We adopt a greedy

algorithm to optimize (4.5) in a way similar to [126]. We start from an empty set of

A and iteratively add an element a ∈ V\A to A that provides the largest energy gain.

The iterative process stops when one of the following conditions is satisfied. First, the

number of selected nodes is reached, i.e., NA > N . Second, the energy gain is negative,

i.e., H(Ai) < 0. Third, the ratio of increased energy gain is below a threshold, i.e.,

H(Ai) < ρ · H(Ai−1), when i ≥ 2. We show the main steps of the tracklet co-selection

algorithm for each category l in Algorithm 2 and Figure 4.4 illustrates the effectiveness of

the proposed submodular function.

After optimizing (4.5) for each graph G within one category, we select a set of track-

lets Tl for each category l. Considering each video, we can obtain a few tracklets from

different sets of Tl, where l can be any category among L. In each video, we then compute
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Algorithm 2: Tracklet Co-selection for Each Category

1 Input: G = (V , E),N , ρ;

2 Initialization: A0 ← ∅, O0 ← V , i← 1;

3 repeat

4 a∗ = arg max
{Ai∈V}

H(Ai), where Ai = Ai−1 ∪ a;

5 Ai ← Ai−1 ∪ a∗, Oi ← Oi−1 − a∗, i = i+ 1;

6 until NA > N orH(Ai) < 0 orH(Ai) < ρ · H(Ai−1) when i ≥ 2;

7 Output: A ← Ai, O ← Oi;

the normalized energy gain for each obtained tracklet and re-rank all of them. This is, a

normalized gain for a tracklet with category l added at iteration i during optimization is

computed as Gil = H(Ai)
C(A1)

, where C(A1) is the energy as the normalization term after adding

the first tracklet. Based on the re-ranked results, a threshold (i.e., 0.85 in this work) is ap-

plied to all Gil for selecting a set of semantic tracklets that represent prominent objects. To

obtain final semantic segmentation results, since object segments from different tracklets

may overlap with each other, we choose the one with larger Gil in overlapped regions.

4.3 Experimental Results

We evaluate the proposed co-segmentation algorithm against the state-of-the-art meth-

ods on numerous benchmark datasets.

4.3.1 Experimental Settings

For tracklet generation, we learn an online SVM model with CNN features combining

the first three convolutional layers [61] (i.e., 448 dimensional vectors). For parameters in

the graphical model (4.1) and (4.2), we use αcol = 1, αcnn = 1, β = 0.5, γs = 3.5 and

γt = 1. In the submodular function, we set ε as 3 in the facility location term of (4.3), and



43

use λo = λm = λs = 1 in the unary term of (4.4). During submodular optimization, we

use δ = 20 in (4.5), and set N = 10 and ρ = 0.8 to determine stopping conditions. All

these parameters are fixed in the experiments for fair evaluation.

4.3.2 Youtube-Objects Dataset

The Youtube-Objects dataset [71] contains 10 object categories, and the length of each

sequence is up to 400 frames. We evaluate the proposed algorithm in a subset of 126

videos with more than 20000 frames, where the pixel-wise annotations in every 10 frames

are provided by [37]. Note that, different from previous video co-segmentation datasets

[16, 120], appearances and shapes of objects from the same category in this dataset are

significantly different.

We first conduct experiments in a weakly supervised manner, where a semantic label

is given for each video. Next, we evaluate our algorithm in a way that object categories

are unknown in videos. Table 4.1 shows segmentation results of the proposed method

and other state-of-the-art approaches. We use the intersection-over-union (overlap) ratio

to evaluate all the methods.

Weakly Labeled Videos. For the video labeled with a semantic category, we use FCN

segments belonging to its video-level category as initializations, such that tracklets gener-

ated in each video (as described in Section 4.2.2) are all associated with the same category.

We compare our approach with other supervised tracking-based [25, 65] or weakly super-

vised [122]1 methods. Table 4.1 shows that the proposed method with weak supervision

performs favorably in terms of overlap ratio, especially in 7 out of 10 categories.

In general, our method performs well on non-rigid objects (bird, cat, dog, horse) and

fast moving objects (car, train). As the appearances and shapes of these objects vary sig-

nificantly, it is challenging to segment these objects from all videos accurately. Although

1[122] evaluates the method on their annotated images, and we obtain their results on the same annotation
set [37] directly from the authors.
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Table 4.1: Segmentation results on the Youtube-Objects dataset with the overlap ratio.

Category [25] [122] Ours [65] [66] Baseline (FCN) Ours
Supervised? Y weakly weakly N N N N

aeroplane 73.6 72.4 69.3 13.7 70.9 60.8 69.3
bird 56.1 66.6 76.1 12.2 70.6 69.7 76.0
boat 57.8 43.0 57.2 10.8 42.5 44.7 53.5
car 33.9 58.9 70.4 23.7 65.2 60.3 70.4
cat 30.5 36.4 67.7 18.6 52.1 53.9 66.8
cow 41.8 58.2 59.7 16.3 44.5 52.8 49.0
dog 36.8 48.7 64.2 18.0 65.3 52.8 47.5

horse 44.3 49.6 57.1 11.5 53.5 42.4 55.7
motorbike 48.9 41.4 44.1 10.6 44.2 47.3 39.5

train 39.2 49.3 57.9 19.6 29.6 54.7 53.4
Mean 46.3 52.4 62.3 15.5 53.8 53.9 58.1

the recent method [122] utilizes object detectors and generates proposals to localize ob-

jects in each frame, it is less effective for videos with large appearance and shape variations

as the generated proposals are usually noisy and less consistent across videos. In contrast,

the proposed tracking-based algorithm is able to capture detailed appearance and shape

changes, and hence generate tracklets consistently for segmentation.

Semantic Co-segmentation. In addition to weakly supervised settings, the proposed al-

gorithm can segment objects and discover the corresponding object categories without any

supervision. Table 4.1 shows our segmentation results compared with the state-of-the-art

unsupervised method [66]. The proposed algorithm generates more accurate segmentation

results in most categories with significant improvement (e.g., more than 10% gain in boat,

cat and train). It demonstrates the effectiveness of our co-segmentation scheme that links

relations between semantic objects from all videos, which is not addressed in [66].

To evaluate the effectiveness of the proposed tracking-based algorithm for tracklet

generation, we establish a baseline method which directly groups FCN segments from

every frame into a tracklet for each category (i.e., without using tracking). We then use

the same submodular function for tracklet co-selection (Section 4.2.3). Compared to this
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Figure 4.5: Example results for semantic co-segmentation on the Youtube-Objects dataset

(without knowing object categories). The colors overlapping on the objects indicate dif-

ferent semantic labels. The results show that our method is able to track and segment

(multiple) objects under challenges such as occlusions, fast movements, deformed shapes,

scale changes and cluttered backgrounds. Best viewed in color with enlarged images.

baseline method, the proposed algorithm performs well on most categories, especially for

deformable objects such as bird, cat and horse, as consistent tracklets can be extracted.

However, the proposed algorithm does not perform well in some videos (cow, motorbike)

as some segments are not initialized well, which causes inaccurate tracking results in these

videos.

Compared to the proposed algorithm with weakly supervised setting, the results on

categories such as aeroplane, bird and car have identical and high overlap ratios. It shows

that without providing video-level labels, our co-segmentation approach can reduce noisy

segments that are generated from other false categories, and hence retain high accuracies as

with weakly supervised setting. Moreover, it is worth noticing that the proposed algorithm

without supervision, already performs favorably against the state-of-the-art method that

requires weak supervision [122].
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Different from other methods [66, 122], the proposed algorithm can segment objects

as well as discover object categories (labels). We evaluate the classification accuracy for

predicting object categories based on ranked tracklets, and the average precision (AP) is

85.3 on average over all categories. The results show that with the proposed submodular

function and re-ranking in each video, false positives can be reduced, and hence prominent

objects are discovered. We show qualitative results in Figure 4.5.

4.3.3 MOViCS Dataset

The MOViCS dataset [16], which contains 4 sets with 11 sequences, is used for evalu-

ation on multi-class video co-segmentation. For each set, at least one common object ap-

pears in all videos, while the number of object categories is unknown. The proposed algo-

rithm is evaluated against three state-of-the-art methods including image co-segmentation

(ICS) [42], video co-segmentation (VCS) [16] and RMWC [120]. We use the unsuper-

vised method [66] as a baseline and produce segments in each frame as initializations for

tracklet generation (Section 4.2.2). In addition, since categories are not known for differ-

ent segments at this stage, one graph including tracklets from all videos is constructed for

co-selecting tracklets in each video.

Based on the evaluation metric in [16], Table 4.2 shows that the proposed algorithm

performs well in all the video sets, especially in the tiger set. As the variations of objects

in some videos are large, other approaches are less effective in segmenting objects in these

Table 4.2: Segmentation results on the MOViCS dataset with the overlap ratio.

Video Set ICS [42] RMWC [120] VCS [16] Baseline [66] Ours
chicken & turtle 8.0 86.0 65.0 73.6 87.7

zebra & lion 23.0 58.8 48.0 45.9 71.3
giraffe & elephant 7.0 52.8 52.0 36.5 59.0

tiger 30.0 33.6 30.0 44.1 70.9
Mean 17.0 57.8 48.8 50.0 72.2
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Input RMWC [120] Baseline [66] Our results

Figure 4.6: Example results for object co-segmentation on the MOViCS dataset. Segmen-

tation outputs are indicated as colored contours, where each color represents an instance.

Compared to the state-of-the-art approach [120] and the baseline method [66] that often

produce noisy segments or missing objects, our method obtains better segmentation re-

sults. Best viewed in color.

videos. In contrast, our method works for objects with various appearances in different

videos by utilizing the submodular optimization that accounts for appearances, shapes and

motions together to co-select tracklets containing common objects. We show qualitative

comparisons to other methods in Figure 4.6.

4.3.4 Safari Dataset

In addition to co-segmentation in videos where each set contains at least one common

object, our method is able to segment objects given a collection of sequences without

any prior knowledge. The Safari dataset [120] contains 9 videos with 5 object categories,

where each video may contain one or two object categories. To evaluate the proposed
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Table 4.3: Segmentation results on the Safari dataset with the overlap ratio.

Object RMWC [120] VCS [16] Baseline [66] Ours
buffalo 86.9 68.6 90.0 91.3

elephant 35.3 26.6 73.8 74.9
giraffe 2.4 2.4 9.8 15.8

lion 31.7 30.2 19.0 21.9
sheep 36.3 4.8 32.3 65.8
Mean 38.5 26.5 45.0 54.0

algorithm, we input these 9 videos together and segment common objects. Note that, we

use [66] as the baseline method for single video object segmentation. Then we initialize

these segments to generate tracklets and construct a graph for tracklet co-selection.

Table 4.3 shows the results by the proposed algorithm and two state-of-the-art meth-

ods. In 4 out of 5 categories, our method achieves better results over the other methods.

The VCS [16] method is not effective for the general setting when videos contain unknown

types of object categories, and hence generates less accurate results. The RMWC method

[120] relies on object proposals and does not generate consistent tracklets across videos

when more than one object category is involved. In our proposed algorithm, we utilize a

tracking-based method to generate consistent tracklets, and segment objects via submodu-

lar optimization in multiple videos without any assumption on the commonality of objects

in the videos. We show some example results in Figure 4.7.

4.4 Summary

In this work, we present a novel algorithm to segment objects and understand their vi-

sual semantics from a collection of videos. To exploit semantic information, we first assign

a category for each discovered segment in videos via the FCN method. A tracking-based

approach is presented to generate consistent tracklets across videos. We then link the rela-

tions between videos by constructing graphs which contain tracklets from different videos.
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Figure 4.7: Example results for object co-segmentation on the Safari dataset. Segmenta-

tion outputs are indicated as colored contours, where each color represents an instance.

Compared to the state-of-the-art approach [120] (second row) and the baseline method

[66] (first row) that often produce noisy segments, false positives or missing objects, our

method obtains better segmentation results. Best viewed in color.

Without any assumption of objects appearing in videos, we formulate a submodular op-

timization problem and co-select tracklets, which accounts for their appearances, shapes

and motions. This step considers other sequences and reduces noisy tracklets that can not

be filtered out within a single video. As a result, prominent objects are discovered and

segmented in videos. Extensive experimental results on the Youtube-Objects, MOViCS

and Safari datasets show that our method performs favorably against the state-of-the-art

approaches in terms of visual quality and accuracy.



Chapter 5

Automatic Semantic-aware Sky

Replacement

5.1 Introduction

Skies are one of the most common backgrounds in photos. However, we have no con-

trol over the weather or lighting conditions at the moment of photography. As a result,

numerous interesting and valuable photos have uninteresting or poorly exposed sky re-

gions. Professional photographers fix this problem using sophisticated tools by manually

delineating the sky regions precisely, testing different skies for compatibility, and finally

adjusting the foreground to match the new composited sky. This requires time and exper-

tise that is beyond the abilities of novice users. In this work, we propose a fully automatic

sky replacement tool that can take an input image and generate a diverse set of realistically

edited photos with interesting skies and different styles (see Figure 5.1). This can expe-

dite the editing process for professionals, and allow casual users with minimal expertise to

explore interesting results.

To achieve this goal, we address three challenging questions in this work. Can we

accurately segment the sky region from the image? How do we find interesting sky images

50
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Input photograph Automatic sky replacement results with different styles

Figure 5.1: Given an input photograph, the proposed algorithm automatically generates a

set of images with stylized skies. The proposed algorithm exploits visual semantics for sky

editing, in which scene parsing is first performed on the input image, and such semantic

information is utilized for the subsequent steps including sky segmentation, search and

replacement.

that are compatible with the input image? Finally, can we match the appearance of the

input and new sky images to create realistic composites? In this work, we show that a

deep semantic understanding of images is critical to all these tasks. For example, sky

appearance varies widely among images, and without an understanding of scene layout, it

can be indistinguishable from non-sky regions (e.g., reflections in water). Similarly, it is

important that we search photos whose semantic layout and content match the input image.

This ensures that the perspective of the composited sky is consistent with the input image.

It also allows us to adjust the foreground appearance after sky replacement and improve

the realism of the result. For instance, when adjusting the color of water under a new sky,

it is better to transfer appearance from a water region appearing with that sky than from an

arbitrary region with other content.

In this work, we propose a semantic-aware approach for sky editing, in which visual

semantics are extracted from an input image, and instilled into the subsequent steps: sky

segmentation, search and replacement. The overall framework of our approach is illus-

trated in Figure 5.2. We first learn a deep Fully Convolutional Neural Network (FCN) [61]

to parse an input image and generate a dense pixel-wise prediction of semantic labels such

as sky, tree, building, mountain and water. By understanding the global layout of the scene,
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the proposed algorithm can robustly localize the sky regions in spite of different colors,

shapes, sizes and attributes. The proposed online classifier is then trained to model the sky

appearance and used to generate a refined sky segmentation mask with clean boundaries

across the sky and non-sky regions. Experiments show that the generated sky segmen-

tation results by the proposed algorithm achieve high intersection-over-union (IOU) ratio

against the ground truth masks, thereby making it effective at identifying background re-

gions without manual refinement.

To select interesting and stylized sky exemplars for replacement, we construct a database

with 415 high aesthetic quality images covering a wide range of sky appearance and scene

categories. We use the FCN trained for scene parsing to construct feature vectors that

represent the semantic content and layout of those exemplars, which enables us to retrieve

images that are semantically similar to an input photo yet have diverse styles of sky re-

gions. Once the sky images are selected, the new sky regions are automatically aligned and

composited into the input photo. The color, saturation and luminance of the non-sky re-

gion are then adaptively adjusted to ensure that the composite photos are visually realistic.

Since the content of the reference images are similar to the input image, and the semantic

regions have already been segmented on both the input and reference images, we leverage

this information and propose a novel semantic-aware approach to transfer the appearance

of the reference exemplars to the input and create results with stylized sky backgrounds.

We demonstrate that the proposed algorithm is able to render photorealistic and pleas-

ing images through extensive user studies. In particular, we show that our approach per-

forms favorably against existing methods for scene compositing in terms of realism, di-

versity, and interestingness. The contributions of this work for automatic semantic-aware

sky replacement are summarized as follows:

1. We propose a fully automatic sky replacement algorithm that is driven by scene

semantics.

2. We develop an accurate coarse-to-fine sky segmentation method using a deep neural
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Figure 5.2: Overview of the proposed algorithm. Given an input image, we first utilize the

FCN to obtain scene parsing results and semantic response for each category. A coarse-

to-fine strategy is adopted to segment sky regions (illustrated as the red mask). To find

reference images for sky replacement, we develop a method to search images with similar

semantic layout. After re-composing images with the found skies, we transfer visual se-

mantics to match foreground statistics between the input image and the reference image.

Finally, a set of composite images with different stylized skies are generated automatically.

network and online classifier learning (Section 5.3).

3. We show a semantic search scheme to determine a set of high-quality images with

diverse sky appearance and similar semantic content for replacement (Section 5.4).

4. We present a semantic-aware appearance transfer approach for replacing sky back-

grounds to render images that are aesthetically pleasing and photorealistic (Sec-

tion 5.5).
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5.2 Algorithmic Overview

Given an input image I , we aim to automatically generate a set of results with the

same foreground as in I but different sky backgrounds. To achieve this, we decompose the

task into three sub-tasks: (1) sky segmentation for separating the sky region Isky and the

foreground region Ifg in image I; (2) sky search for retrieving a set of reference images

matching the input image semantics; (3) sky replacement for replacing the original sky

region Isky with a new skyRsky, given a reference imageR. Meanwhile, the color statistics

of the foreground region Ifg are automatically adjusted to ensure the composed images are

visually consistent and realistic.

The main idea of our work is to exploit visual semantics to help improve the image

quality in all three tasks. Toward this, we train a Fully Convolutional Neural Network

(FCN) [61] for scene parsing, which is a state-of-the-art end-to-end model for semantic

segmentation (see Figure 5.2 for an example). To learn an accurate FCN for scene pars-

ing, we randomly select 15000 outdoor images form the LMSun dataset [93] as training

samples. As the labels in the LMSun dataset include many small objects or labels that do

not appear often in our daily photos, we manually choose the common labels that cover

most scene categories, and merge other object labels to one category as the foreground

object. Figure 5.3 shows the list of 11 pre-defined labels for the image editing task con-

sidered in this work. In this work, the semantic deep neural network is trained in a way

similar to [61]. We quantitatively evaluate on 1045 randomly selected images form the

LMSun dataset, and compute the pixel accuracy and intersection-over-union (IOU) ratio.

Figure 5.3 shows that semantic segmentation with the defined labels can be accurately

computed by the trained neural network. This model can robustly localize arbitrary skies

and effectively distinguish the true sky from those most confusing regions such as reflec-

tions in the water and mountains in the hazy background. Based on the coarse scene pars-

ing results, we delineate more accurate sky regions with clear segmentation boundaries by

online refinement (Section 5.3).
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Figure 5.3: Pixel accuracy and intersection over union ratio of the scene parsing results

for each category on the LMSun dataset.

The FCN output provides visual presentations describing the scene layout, which fa-

cilitates the subsequent sky search and replacement steps. In particular, we normalize the

semantic response maps generated by the FCN forward propagation over all the categories

to obtain a probability map Fi = {f 1
i , f

2
i , . . . , f

n
i }, where fn

i indicates the likelihood of

pixel i belonging to category n. We construct a semantic layout descriptor based on the

probability map for the input image as well as for all the images in the sky database, which

is used to retrieve a set of images from the database that have similar content and layout to

the input image. The skies in those images are therefore likely compatible with the input

foreground region, and are proper for replacement. Moreover, since we are only using

semantic information for retrieval instead of traditional appearance features, we can find

images with different sky appearance to ensure the diversity of our results. The algorithmic

details of the proposed semantic search scheme are described in Section 5.4.

Once a reference image is selected, its sky region will be used to replace the original

one. As the appearance of the sky is dramatically changed, the color statistics of the

foreground need to be adjusted accordingly to make the image visually realistic. However,
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global transfer techniques are susceptible to differences in the foreground and can create

non-realistic results. In contrast, we have semantic segmentation of the scene that we use

to drive a local transfer technique that produces more realistic results. The results show

that our transfer method can generate realistic and visually pleasing results compared to

other methods (Section 5.5). Figure 5.2 shows the main steps of our method for replacing

sky backgrounds based on image semantics.

5.3 Sky Segmentation

Based on the scene parsing results by the trained FCN, we first introduce an accurate

sky segmentation algorithm to facilitate sky replacement and reduce visual artifacts. As

discussed in Section 5.2, the scene parsing model trained by FCN can robustly localize the

sky regions with various appearance and scene layout. In particular, it can achieve 94%

pixel accuracy on our evaluation set. Nevertheless, since the image resolution of the FCN

output is low, the resulting segmentation masks are coarse with missing details around the

boundaries, which cannot be directly used for replacement (see Figure 5.5).

Sky Segment Refinement via Online Models. In order to generate accurate sky seg-

mentation masks, we use the FCN results to bootstrap online classifiers that learn image-

specific color and texture models. We formulate a two-class CRF problem for refinement

by considering neighboring pixels xi and xj with the energy E(X),

E(X) = λ1
∑
i

Uc(xi) + λ2
∑
i

Ut(xi)

+ λ3
∑
i

Uf (xi) + λ4
∑

(i,j)∈E

V (xi, xj), (5.1)

where Uc and Ut are color and texture unary potentials for the cost to be the sky or non-sky

labels, which are obtained from the learned online classifier, and Uf is a location term that

accounts for the FCN output. In addition, V is the pairwise potential for smoothness in a
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set E of adjacent pixels, and λ′s are the weights for each term. Here we use equal weights

for three unary terms (λ1 = λ2 = λ3 = 1), and a higher weight (λ4 = 100) for the pairwise

term to ensure the boundary smoothness.

To learn online sky/non-sky classifiers and model unary potentials, we first use the sky

response map generated by the FCN output layer as sky/non-sky priors. More specifically,

if a pixel has higher response (e.g., larger than a threshold) on the sky label, we use this

pixel as the positive training sample to learn the sky classifier, and vice versa. We consider

two cues for learning online models. First, we use the Gaussian Mixture Models (GMMs)

on RGB channels to model the appearance of sky regions, and obtain Uc by computing the

negative logarithm of GMM probability outputs.

However, when the color of sky regions are similar to foreground ones, the CRF model

with only the chromatic cues may generate noisy segmentation results. Hence, we also

model the texture of sky regions by computing histogram of gradients on superpixels, and

learn a Support Vector Machine (SVM) classifier. Similarly, Ut is obtained by calculating

the negative logarithm of the SVM outputs that are converted to probabilities through a

sigmoid mapping function. Note that the texture model is based on superpixels, and we

assign the energy to each pixel according to its parent region and then perform pixel-wise

energy minimization.

In addition, we use the sky response map from the FCN to guide the sky location

for each pixel xi, where Uf (xi) is equal to the negative logarithm of response f sky
i . For

the pairwise term V , we use the magnitude of gradient between two adjacent pixels to

ensure the boundary smoothness. In order to minimize (5.1), we use the efficient graph cut

algorithm [6] to obtain the final pixel-wise sky/non-sky label assignments. However, the

sky segments often contain fine details (e.g., small sky patches among tree regions) for the

problem considered in this work. As such, we assign soft labels around the boundary with

alpha mattes [79], and obtain final composition results that are visually appealing after

replacing the sky.

Sky Segmentation Results. We quantitatively evaluate the sky segmentation results on
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Figure 5.4: Distribution of images in terms of IOU ratio compared to the DeepLab

method [13]. Most sky segmentation results by the proposed algorithm have over 90%

IOU.

the LMSun dataset. We use the same training and test sets as for scene parsing and model

learning. The average IOU is improved from 87.6% to 88.7% after refining the sky seg-

mentation. In addition, we compute the boundary precision-recall (BPR) [24] to measure

the quality of boundaries. For refined sky segmentation results, we obtain the BPR as

0.839 with online models, which significantly outperform the FCN with the BPR of 0.639.

These refinements are important since inaccurate boundaries will result in obvious artifacts

during the sky replacement step. We also compare our refined results to those generated

by the state-of-the-art segmentation method with dense CRF [13], whose 87.9% average

IOU is lower than that of our method. Figure 5.4 further presents the distribution of results

in terms of IOU ratio and shows that we have more results over 90% IOU, which is usu-

ally considered visually pleasing without much need of manual refinements. Figure 5.5

shows two examples in which the proposed coarse-to-fine method generates accurate sky

segmentations, thereby facilitating better composition around the boundaries.
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(a) Input image (b) FCN result (c) Fine segmentation

Figure 5.5: Sample sky segmentation results. Given an input image, the FCN generates re-

sults that localize the sky well but contain inaccurate boundaries and noisy segments. The

proposed online model refines segmentations that are complete and accurate, especially

around the boundaries (best viewed in color with enlarged images).

5.4 Sky Search

In this section, we introduce the proposed algorithm that searches exemplar images for

sky replacement, which is of critical importance for generating visually pleasing results.

As discussed in Section 5.2, a sky region from a reference image with similar content to

the input image is more suitable for replacement. Existing methods use global descriptors

such as GIST features to search for similar images [31, 60]. However, the GIST descriptors

only describe the global scene layout without important semantic information, and are

more effective when the reference images are holistically similar to the inputs, thereby

limiting its use for generating composite images with diverse styles. We propose a novel

semantic search approach to find a reference image R that is similar to the input image I

in both the semantic content and spatial layout, yet with diverse sky appearance. In the
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following, we first illustrate how we compute the semantic scene layout descriptors, and

then introduce a sky selection scheme.

Semantic Layout Descriptors. As described in Section 5.2, we can obtain a response

map from the FCN output layer for each category. We first normalize all the response

maps to the range from 0 to 1. Given the response Fi = {f 1
i , f

2
i , . . . , f

n
i } for each pixel

i with n categories (i.e., n = 11 in this work), its label histogram can be computed as

an average pooling process: H = [h1;h2; . . . ;hn], where hj = 1
m

∑m
i=1 f

j
i and m is the

number of pixels. This label histogram indicates the semantic distribution of the region

of interest. To obtain a structural version of this descriptor, we use the spatial pyramid

pooling method as described in [52]. First, we divide the image into three by three grids,

and extract histograms Hs for grid s (i.e., s = 9 here). Second, a global histogram from

the entire image is extracted. After concatenating all the histograms, a final descriptor

is constructed as: H = [H1;H2; . . . ;Hs+1], where the dimension of H to describe each

image is n ∗ (s+ 1).

These descriptors capture both spatial information and semantic cues. Note that [117]

develops a contextual feature descriptor based on a semantic label map generated by tra-

ditional scene parsing [93] and object detection [108] approaches. Their descriptors adopt

a fine-grained pooling scheme at multiple scales around each pixel, due to the need of

enabling CNN training for local photo adjustment. In contrast, we aim to better capture

the overall semantic layout of the image and allow certain degree of layout variations dur-

ing image search. Therefore, our semantic layout descriptor is designed to be a flexible

feature representation with spatial pyramid pooling over the entire response maps, and is

constructed on the semantic distribution of all the possible labels, instead of on the final

semantic label map as in [117]. As demonstrated in Section 5.6, these descriptors are

effective for finding relevant reference sky images for both replacement and appearance

transfer. Figure 5.8 shows the composite results based on retrieved reference sky images

by the proposed semantic search method and descriptors, the GIST based approach and

random selection. The results indicate that our method can generate more realistic images
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with diverse styles.

Selection of Sky Images. In addition to semantic matching, the retrieved images need to

be further pruned by a few properties, including aspect ratio and resolution, to ensure that

the replaced sky can align well in the target image.

Although the sky regions are less sensitive to scale changes, we consider the aspect

ratio and resolution to ensure that the reference images are not significantly deformed

or distorted for alignment. We compute the aspect ratio Pa = width
height and resolution Ps =

width∗height for each sky region. Then a metric [97] comparing Isky andRsky is computed

asQ = min(P I ,PR)
max(P I ,PR)

, where P I and PR are properties for original and reference skies, andQ

can be defined for aspect ratio or resolution (i.e., Qa or Qs). Note that each measurement

is between 0 and 1 and a threshold (i.e., 0.5) is applied to determine whether the sky can

be used for replacement or not. If any of the above conditions is not satisfied, we evaluate

the next retrieved sky image for replacement.

Diversity of Sky Images. One of our goals is to automatically replace the skies with

diverse stylized backgrounds. In order to ensure diversity in the retrieved images, we select

sky images based on the inner product of color histograms between reference skies. In

addition, this step also enables the flexibility of our system. For instance, if a user prefers

strong diversity, the system rejects sky images with a high color similarity in comparison

to the ones already selected. On the other hand, if the user prefers a certain sky style, we

set a color similarity close to the preferred sky.

5.5 Sky Replacement

Given a selected sky region Rsky, we align and place it in the input image I for re-

placement. We first extract the maximum rectangular sky region within Rsky, and re-scale

this extracted sky rectangle to the size of the minimum rectangle that covers all the sky

regions of the input image. Since the necessary scale and aspect ratio changes have been
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addressed in the search step as described in Section 5.4, the selected new sky region would

not have significant distortion and its main interesting region would be retained.

After compositing the new sky Rsky into the input image, color adjustment of the

foreground region Ifg is required to make it compatible with Rsky. As a reference im-

age shares similar semantic content with the input image, we propose a semantic-aware

transfer method to adjust foreground appearance.

5.5.1 Semantic-aware Transfer

Transferring color statistics from one image to another is a common technique in im-

age editing. Existing approaches usually perform transfer over the entire region without

taking visual semantics into account [73, 91] and generate less realistic results when the

image content is not well matched. If we take an image pair with beach and sea images

for example, without knowing the content, the color from the blue sea may be transferred

to a white sand beach, thereby rendering unnatural bluish sand regions. A few local trans-

fer approaches have been developed to directly transfer one region to another [111, 46].

However, due to large appearance variation between different local regions, the resulting

images usually contain artifacts around boundaries, which are difficult to be removed by

post-processing (e.g., bilateral filtering).

In this work, we exploit visual semantics based on our scene parsing results for trans-

ferring color tones. More importantly, we propose a simple yet effective method that uses

soft mapping between semantic regions to generate results with smooth boundaries (see

Figure 5.6 for comparison). Suppose the total number of semantic labels existing in the

scene parsing map of the input image is nr, we formulate the transfer process for each

pixel x as:

T (x) =
nr∑
n=1

Wn(x) · Tn(x), (5.2)

where Wn(x) is the likelihood value in the normalized FCN response map on pixel x for

semantic category n, and
∑

nWn(x) = 1. For each semantic label n in the scene parsing
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(a) Input (b) Direct local transfer (c) Our soft mapping

Figure 5.6: (a) Input image (before replacing the sky) and its scene parsing result. (b)

After applying the local transfer functions and filtering [46], there are artifacts around

boundaries. (c) The proposed method generates smooth result before applying any filter.

results of the input image, we compute a category-specific color/luminance transfer func-

tion Tn (defined in Section 5.5.2) using the regions associated with this label in the input

and reference image. Intuitively, local transferring on a pixel x can be interpreted as a soft

interpolation according to its semantic responses. The more likely pixel x belongs to label

n, the more it would rely on transfer function Tn. This soft mapping based method can

largely mitigate the errors in scene parsing (Figure 5.6), and generate realistic results with

smooth boundary transitions, as shown in Figure 5.10.

Implementation Details. In practice, there may be some small noisy responses from

irrelevant labels for each pixel x. As such, we only retain the labels with the top few

responses for interpolation, and re-normalize the weights with unity sum. We also remove
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the foreground object label when generating Wn, as we have merged objects of different

categories into this label during the scene parsing, and the appearance variation within

this label is too large to have any semantic consistency. After applying transfer functions,

we use the original image as guidance, and apply the guided filter [32] to make it better

aligned with image edges.

5.5.2 Transfer Functions

In this section we describe the details of the category-specific transfer function Tn in

(5.2) for each semantic label in the input image. For a semantic label n, even though

the reference and input images are semantically similar, it is still possible that there are

no regions assigned with label n in the reference image. Thus, we compute Tn based on

whether there are regions associated with label n in both input and reference images or

not.

Matched region. In the first case, suppose In and Rn are the regions associated with the

label n in the input and reference images respectively, we then compute both luminance

and chrominance transfer functions from Rn to In. For luminance, we shift the mean

of luminance (L channel of the LAB color space) in In to the one in Rn. In addition,

we observe that the foreground appearance should not change much when the new sky is

similar to the original one, while the appearance may change drastically with a differently

stylized sky image. Hence, we compute color differences between the original sky and

the new one, and use it to regularize the shift of luminance mean. Specifically, suppose

c(Isky) and c(Rsky) are the means of color in Isky and Rsky respectively, we have β =

tanh(
∣∣c(Isky)− c(Rsky)

∣∣). Then we compute the new desired mean of luminance as: L̂ =

L(In) +β(L(Rn)−L(In)), where L(Rn) and L(In) denote the means of luminance in Rn

and In. It indicates that when the original and reference skies are significantly different,

we aggressively adjust more luminance to match Rn, and when the skies are similar, we

retain the luminance of In.
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For chrominance transfer, we edit the channels in the LAB color space by matching

the mean and covariance of In toRn using the regularized matching method of [54], which

performs robustly in practice.

Non-matched region. In the second case, when there is no matched region found in

the reference image for label n, we resort to the entire foreground region. That is, we

compute a transfer function from the entire reference foreground to the entire original

foreground, and use it to represent Tn. We use the same method described in the first case

for transferring luminance. For color adjustment, the visual results are more sensitive since

no semantic matching is enforced between two foreground regions. Therefore, we transfer

the color temperature (CCT) in the XYZ color space [116] rather than the chrominance,

which is more conservative but robust to semantic inconsistencies.

To further prevent generating artifacts due to inconsistent matching, we use a contin-

uous transfer function for histogram matching in a way similar to the regularization used

in [54].

5.6 Results and Analysis

We evaluate the proposed algorithm for rendering composite images with stylized sky

regions using a large set from our own collection and Flickr. Figure 5.7 shows a subset

of the generated composite images, and more results and comparisons are provided in the

supplementary material. Experimental results demonstrate that our algorithm can handle

input images with a variety of scenes and generate a diverse set of visually pleasing sky

backgrounds. To quantitatively evaluate the quality of the proposed method, we randomly

select 30 test images for user studies. We design three different tasks to evaluate different

components of the proposed algorithm. These tasks include comparisons of the proposed

sky search and transfer methods to baseline and existing approaches, as well as the com-

parison of realism of rendered images by the proposed method with respect to the input

photographs.
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(a) Input image

(b) Composite images by the proposed algorithm

Figure 5.7: Composite images with stylized sky backgrounds generated by the proposed

algorithm. Given an input image (a), we show the top five results (b) with a set of com-

posite images with diverse sky backgrounds.
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(b) Random selection

(a) Input image (c) GIST based method

(d) Our search method

Figure 5.8: An example of the comparison for different sky searching method. For each

method, we search the top four skies to replace the input image (a), and use the same

technique to transfer appearance. In (b), random selection may find arbitrary skies that

are not proper to match statistics. The GIST based method (c) is able to find a diverse set

of skies, but it may produce non-realistic results with artifacts due to the poor matching

between images (e.g., the third and fourth results). Our semantic search approach (d) can

handle the both issues, and produces a set of results with diverse skies that are visually

pleasing.

Comparison of sky search methods. We first compare our semantic search method with

random selection and the GIST based retrieval approach [31, 60]. Note that the same

semantic-aware transfer method is used for appearance adjustment for all three methods.

Qualitatively, the sky examples retrieved by random selection usually do not match the

input images well. On the other hand, the method based on the GIST descriptors does not

always find images with similar layout and foreground regions as visual semantics are not

exploited. In contrast, the proposed method retrieves reference images with diverse styles.
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Figure 5.9: Average scores of three different methods for each image with x-axis sorted

by our score. The proposed technique outperforms random selection in 80% and GIST in

63% of cases. Even in a few cases that our method does not perform well, the results are

close to those by the other two schemes.

Figure 5.8 shows an example comparing those methods.

To better understand the performance of these methods, we perform user studies for

quantitative evaluations. Participants were shown an input image and the top five results

generated by the three methods. Each subject is asked to rate each set based on how

interesting and realistic the images are, using 5-point Likert scale (1 being worst and 5

best). A set of 1028 scores from 39 subjects is tallied. The proposed method obtains the

best average score of 3.42, while the average scores are 3.17 for the GIST based method

and 3.18 for random selection. The scores of individual images in the evaluation set are

shown in Figure 5.9, and our method almost always achieves scores larger than 3 while

the other two often fail with low scores.

Comparison of sky transfer methods. Next, we compare the proposed semantic-aware
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(a) Input image (b) Reference (c) [91] (d) w/o semantic (e) Ours

Figure 5.10: Rendered results by different sky transfer methods. Given the input image

(a) and reference image (b), we show the results using the transfer method proposed in

the SkyFinder method [91] (c), our method without using semantic matching (d) and our

semantic transfer approach (e). For the global methods (c) and (d), the results are likely to

contain clear artifacts (top row), over-colorized and unnatural foreground regions (middle

and bottom row) due to transfer methods and reference images. In contrast, our method is

robust to the reference images and can generate photorealistic results.

sky transfer method to the SkyFinder approach [91] which matches the mean and standard

deviation in the LAB space, and a baseline transfer method without using semantic cues

(i.e., directly match from Rfg to Ifg). The first two methods compute the transfer func-

tions based on the entire foreground regions, which usually generate results with obvious

artifacts or over-colorized and unrealistic foregrounds. In contrast, our method takes se-

mantic cues into account and matches regions locally, while using a soft mapping strategy

to reduce artifacts around boundaries. Figure 5.10 shows sample results generated by these

three methods.

We conduct user studies to evaluate these methods using similar setups as the previous
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Figure 5.11: Average evaluation scores for each image, sorted by our score. Overall, the

proposed technique performs better than other two methods in most cases.

experiments. Each subject is asked to rate each set based on how realistic the images are.

From 27 subjects, we obtain 627 scores for evaluation on transfer methods. On average,

the proposed semantic transfer approach achieves the best score of 3.73, while the average

score is 3.11 for the baseline transfer method without using semantic information. In

contrast, the users give an average score of 2.93 for the SkyFinder method. Average scores

of individual test images are shown in Figure 5.11 where most of our results are rated

above 3.5 and are significantly higher than the other two methods.

Comparison to real photographs. Our third user study is designed to evaluate the visual

realism and interestingness of the rendered results compared to original (real) photographs.

In this study, each participant evaluates a set of image pairs, where each one contains an

original image and one of our rendered results that has the same foreground and a stylized

sky background. We randomly choose one of our five results for comparisons to ensure

that each user only sees an example test image at a time. Specifically, each user is shown

the input and one rendered result side by side in randomized order, and is asked to select
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the more realistic image.

A total of 40 subjects participate in this study and a total of 1054 results are tallied.

Overall, 61.9% of the real images are favored over the rendered results by the proposed

algorithm, 21.2% are rated equally realistic between the two, and interestingly in 16.9% of

the test cases our results are considered more realistic than the original images. Since the

image pairs are presented side by side, it is easy to find small artifacts in the edited results

by directly comparing with the original images, yet still in 38.1% of cases, our results are

rated no worse than the real photographs. It indicates the proposed algorithm is able to

generate visually pleasing images despite the challenging test set.

In addition, we also ask the subjects to select the image that is more interesting. Among

all the evaluated images, 51.2% prefer our results, and 16.1% consider both are equally

interesting, while only 32.7% of the cases are in favor of the original images. These results

indicate that our algorithm is able to generate more appealing images with interesting

styles than the original ones in most cases. For all user studies, the p values are smaller

than 0.001, showing the results are statistically significant.

Sky Replacement with Relevance Feedback. In addition to generating images with styl-

ized backgrounds automatically, our system can also be used to guide a user to find pre-

ferred sky styles by combining semantic and visual search. Once a user selects a preferred

style from our initial results, our system can generate more similar images for users to

further explore in a fine-grained manner.

To achieve this, similar to the sky search method described in Section 5.4, we use our

semantic search approach to first rank images in the database to ensure the consistency in

image content. We then compute the color similarity between the preferred sky by a user

and ranked database images, where this similarity can be set flexibly to control the diver-

sity of retrieved sky backgrounds. Figure 5.12 illustrates two examples that similar skies

are retrieved when a user preferred reference sky image is given. This relevance-feedback

scheme facilitates users to find preferred stylized sky backgrounds, while ensuring the

quality and realism of rendered images.



72

(a) Input image

(b) Preferred sky (c) Results

Figure 5.12: Results of appearance-guided sky replacement. Given the input image (a) and

one preferred sky style (b), our system is able to find other similar skies (c) in the database.

We show two sets of sky replacement results in each row, where each set includes the result

of preferred sky style and the other three results that have the similar sky appearance to

the preferred one.

Runtime Performance. We measure the runtime of the proposed algorithm on a desktop

computer with 3.4GHz Core Xeon CPU, and normalize all the images with the maximum

width or height equal to 800 pixels. Implemented in MATLAB, it takes 12 seconds (0.1

seconds with a Titan X GPU and 12GB memory) for scene parsing and generating the

FCN semantic responses, and 4 seconds to refine the segmentation results. In addition, it

takes 0.5 seconds to retrieve a sky image, and 4 seconds to match a region (where there

are usually 2 to 5 regions in an input image) with the C++ implementation. The runtime

performance can be improved with high-performance programming languages and code

optimization.

Limitation. While the proposed algorithm considers scene semantics in the sky replace-

ment process, it does not take lighting conditions into account. As a result, it is less

effective for images with strong directional lighting or high-level cues like shadow direc-

tions and reflections. Figure 5.13 shows one example where the proposed method does
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(a) Input image (b) Our result

Figure 5.13: An example showing the limitation of our method. Without knowing the

strong light source, our method is not able to remove the reflection area.

not perform well. One solution to address these issues is to estimate the sunlight direction

and perform shadow detection [49]. Such information can be used as prior during the sky

search step to ensure that images with similar sunlight directions are retrieved, which will

be addressed in our future work.

5.7 Summary

In this work, we propose an automatic method that utilizes semantic information for

rendering images with stylized sky backgrounds. We present an accurate sky segmentation

algorithm that is effective in delineating boundaries between foreground and background
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regions. To find proper images for replacement, we construct a new database that contains

various scenes and skies, and search images with similar semantic content. During the sky

replacement step, we show that our semantic-aware transfer method can generate realistic

results compared to existing approaches. We exploit semantic information through each

component of this work, and show that it facilitates the rendering process. For future work,

it is of great interest to explore how to utilize semantic cues for image editing problems

such as scene completion or photo re-coloring.



Chapter 6

Deep Semantic-guided Image

Harmonization

6.1 Introduction

Compositing is one of the most common operations in image editing. To generate

a composite image, a foreground region in one image is extracted and combined with

the background of another image. However, the appearances of the extracted foreground

region may not be consistent with the new background, making the composite image un-

realistic. Therefore, it is essential to adjust the appearances of the foreground region to

make it compatible with the new background (Figure 6.1). Previous techniques improve

the realism of composite images by transferring statistics of hand-crafted features, includ-

ing color [48, 116] and texture [87], between the foreground and background regions.

However, these techniques do not take the contents of the composite images into account,

leading to unreliable results when appearances of the foreground and background regions

are vastly different.

In this work, we propose a learning-based method by training an end-to-end deep con-

volutional neural network (CNN) for image harmonization, which can capture both the

75
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Composite image Xue [116]

Zhu [127] Our harmonization result

Figure 6.1: Our method can adjust the appearances of the composite foreground to make

it compatible with the background region. Given a composite image, we show the harmo-

nized images generated by [116], [127] and our deep harmonization network.

context and semantic information of the composite images during harmonization. Given a

composite image and a foreground mask as the input, our model directly outputs a harmo-

nized image, where the contents are the same as the input but with adjusted appearances

on the foreground region. Context information has been utilized in several image editing

tasks, such as image enhancement [34, 117], image editing [99] and image inpainting [67].

For image harmonization, it is critical to understand what it looks like in the surrounding

background region near the foreground region. Hence foreground appearances can be ad-
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justed accordingly to generate a realistic composite image. Toward this end, we train a

deep CNN model that consists of an encoder to capture the context of the input image and

a decoder to reconstruct the harmonized image using the learned representations from the

encoder.

In addition, semantic information is of great importance to improve image harmoniza-

tion. For instance, if we know the foreground region to be harmonized is a sky, it is natural

to adjust the appearance and color to be blended with the surrounding contents, instead

of making the sky green or yellow. However, the above-mentioned encoder-decoder does

not explicitly model semantic information without the supervision of high-level semantic

labels. Hence, we incorporate another decoder to provide scene parsing of the input im-

age, while sharing the same encoder for learning feature representations. A joint training

scheme is adopted to propagate the semantic information to the harmonization decoder.

With such semantic guidance, the harmonization process not only captures the image con-

text but also understands semantic cues to better adjust the foreground region.

Training an end-to-end deep CNN requires a large-scale training set including various

and high-quality samples. However, unlike other image editing tasks such as image col-

orization [121] and inpainting [67] where unlimited amount of training data can be easily

generated, it is relatively difficult to collect a large-scale training set for image harmo-

nization, as generating composite images and ground truth harmonized output requires

professional editing skills and a considerable amount of time. To solve this problem, we

develop a training data generation method that can synthesize large-scale and high-quality

training pairs, which facilitates the learning process.

To evaluate the proposed algorithm, we conduct extensive experiments on synthesized

and real composite images. We first quantitatively compare our method with different

settings to other existing approaches for image harmonization on our synthesized dataset,

where the ground truth images are provided. We then perform a user study on real compos-

ite images and show that our model trained on the synthesized dataset performs favorably

in real cases.
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The contributions of this work are as follows. First, to the best of our knowledge,

this is the first attempt to have an end-to-end learning approach for image harmonization.

Second, we demonstrate that our joint CNN model can effectively capture context and

semantic information, and can be efficiently trained for both the harmonization and scene

parsing tasks. Third, an efficient method to collect large-scale and high-quality training

images is developed to facilitate the learning process for image harmonization.

6.2 Deep Image Harmonization

In this section, we describe the details of our proposed end-to-end CNN model for

image harmonization. Given a composite image and a foreground mask as the input, our

model outputs a harmonized image by adjusting foreground appearances while retaining

the background region. Furthermore, we design a joint training process with scene parsing

to understand image semantics and thus improve harmonization results. Figure 6.3 shows

an overview of the proposed CNN architecture. Before describing this network, we first

introduce a data collection method that allows us to obtain large-scale and high-quality

training pairs.

6.2.1 Data Acquisition

Data acquisition is an essential step to successfully train a CNN. As described above,

an image pair containing the composite and harmonized images is required as the input

and ground truth for the network. Unlike other unsupervised learning tasks such as [121,

67] that can easily obtain training pairs, image harmonization task requires expertise to

generate a high-quality harmonized image from a composite image, which is not feasible

to collect large-scale training data.

To address this issue, we start from a real image which we treat as the output ground

truth of our network. We then select a region (e.g., an object or a scene) and edit its



79

(a) Miscrosoft COCO & Flickr

(b) MIT-Adobe FiveK

Figure 6.2: Data acquisition methods. We illustrate the approaches for collecting training

pairs for the datasets (a) Miscrosoft COCO and Flickr via color transfer, and (b) MIT-

Adobe FiveK with different styles.

appearances to generate an edited image which we use as the input composite image to

the network. The overall process is described in Figure 6.2. This data acquisition method

ensures that the ground truth images are always realistic so that the goal of the proposed

CNN is to directly reconstruct a realistic output from a composite image. In the following,

we introduce the details of how we generate our synthesized dataset.

Images with Segmentation Masks. We first use the Microsoft COCO dataset [57], where

the object segmentation masks are provided for each image. To generate synthesized com-

posite images, we randomly select an object and edit its appearances via a color transfer

method. In order to ensure that the edited images are neither arbitrary nor unrealistic in

color and tone, we construct the color transfer functions by searching for proper reference

objects.
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Figure 6.3: The overview of the proposed joint network architecture. Given a composite

image and a provided foreground mask, we first pass the input through an encoder for

learning feature representations. The encoder is then connected to two decoders, includ-

ing a harmonization decoder for reconstructing the harmonized output and a scene parsing

decoder to predict pixel-wise semantic labels. In order to use the learned semantics and

improve harmonization results, we concatenate the feature maps from the scene parsing

decoder to the harmonization decoder (denoted as dot-orange lines). In addition, we add

skip links (denoted as blue-dot lines) between the encoder and decoders for retaining im-

age details and textures. Note that, to keep the figure clean, we only depict the links for the

harmonization decoder, while the scene parsing decoder has the same skip links connected

to the encoder.

Specifically, given a target image and its corresponding object mask, we search a ref-

erence image which contains the object with the same semantics. We then transfer the

appearance from the reference object to the target object. As such, we ensure that the

edited object still looks plausible but does not match the background context. For color

transfer, we compute statistics of the luminance and color temperature, and use the his-

togram matching method [54].

To generate a larger variety of transferred results, we apply different transfer param-

eters for both the luminance and color temperature on one image, so that our learned
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Table 6.1: Number of training and test images on three synthesized datasets.

MSCOCO MIT-Adobe Flickr

Training set 51187 4086 4720

Test set 3842 68 96

network can adapt to different scenarios in real cases. In addition, we apply an aesthetics

prediction model [43] to filter out low-quality images. An example of generated synthe-

sized input and output pairs are shown in Figure 6.2(a).

Images with Different Styles. Although the Microsoft COCO dataset provides us with

rich object categories, it is still limited to certain objects. To cover more object categories,

we augment it with the MIT-Adobe FiveK dataset [10]. In this dataset, each original

image has another 5 different styles that are re-touched by professional photographers

using Adobe Lightroom, resulting in 6 editions of the same image. To edit the original

image, we begin with one randomly selected style and manually segment a region. We

then crop this segmented region and overlay on the image with another style to generate

the synthesized composite image. An example set is presented in Figure 6.2(b).

Flickr Images with Diversity. Since images in the MIT-Adobe FiveK and Microsoft

COCO datasets only contain certain scenes and styles, we collect a dataset from Flickr with

larger diversity such as images containing different scenes or stylized images. To generate

input and ground truth pairs, we apply the same color transfer technique described for the

Microsoft COCO dataset. However, since there is no semantic information provided in this

dataset to search proper reference objects for transfer, we use a pre-trained scene parsing

model [124] to predict semantic pixel-wise labels. We then compute a spatial-pyramid

label histogram [52] of the target image and retrieve reference images from the ADE20K

dataset [124] with similar histograms computed from the ground truth annotations.

Next, we manually segment a region (e.g., an object or a scene) in the target image.
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Based on the predicted scene parsing labels within the segmented target region, we find a

region in the reference image that shares the same labels as the target region. The compos-

ite image is then generated by the color transfer method mentioned above (Figure 6.2(a)).

Discussions. With the above-mentioned data acquisition methods on three datasets, we

are able to collect large-scale and high-quality training and test pairs (see Table 6.1 for a

summarization). This enables us to train an end-to-end CNN for image harmonization with

several benefits. First, our data collection method ensures that the ground truth images are

realistic, so the network can really capture the image realism and adjust the input image

according to the learned representations.

Another merit of our method is to enable quantitative evaluations. This is, we can

use the synthesized composite image to measure errors by comparing to the ground truth

images. Although there should be no single best solution for the image harmonization

task, this quantitative measurement can give us a sense of how closer the images generated

by different methods are, to a truly realistic image (discussed in Section 6.3), which is not

addressed by previous approaches.

6.2.2 Context-aware Encoder-decoder

Motivated by the potential of the Context Encoders [67], our CNN learns feature rep-

resentations of input images via an encoder and reconstruct the harmonized output results

through a decoder. While the proposed deep network bears some resemblance, we add

novel components for image harmonization. In the following, we present the objective

function and proposed network architecture with discussion of novel components.

Objective Function. Given a RGB image I ∈ RH×W×3 and a provided binary mask

M ∈ RH×W×1 of the composite foreground region, we form the input X ∈ RH×W×4 by

concatenating I andM , whereH andW are image dimensions. Our objective is to predict

an output image Ŷ = F(X) that optimizes the reconstruction (L2) loss with respect to the



83

ground truth image Y :

Lrec(X) =
1

2

∑
h,w

‖ Yh,w − Ŷh,w ‖22 . (6.1)

Since the L2 loss is optimized with the mean of the data distribution, the results are often

blurry and thus miss important details and textures from the input image. To overcome

these problems, we show that adding skip links from the encoder to the decoder can recover

those image details in the proposed network.

Network Architecture. Figure 6.3 shows basic components of our network architecture

with an encoder and a harmonization decoder. The encoder is a series of convolutional lay-

ers and a fully connected layer to learn feature representations from low-level image details

to high-level context information. Note that as we do not have any pooling layers, fine de-

tails are preserved in the encoder [67]. The decoder is a series of deconvolutional layers

which aim to reconstruct the image via up-sampling from the representations learned in

the encoder and simultaneously adjust the appearances of the foreground region.

However, image details and textures may be lost during the compression process in the

encoder, and thus there is less information to reconstruct the contents of the input image.

To retain those details, it is crucial that we add a skip link from each convolutional layer

in the encoder to each corresponding deconvolutional layer in the decoder. We show this

method is effectively useful without adding additional burdens for training the network.

Furthermore, it can alleviate the problem of theL2 loss that prefers a blurry image solution.

Implementation Details. We implement the proposed network in Caffe [39] and use

the stochastic gradient descent solver for optimization with a fixed learning rate 10−8.

In addition, we compute the loss on the entire image rather than the foreground mask

to account for the reconstruction differences in the background region. We also try a

weighted loss that considers the foreground region more important, but the results are

similar and thus we use a simple loss function. Since the entire network is trained from
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scratch, we use the batch normalization [36] followed by a scaling layer and an ELU layer

[19] after each convolutional and deconvolutional layers to facilitate the training process.

Discussions. We conduct experiments using the proposed network architecture with dif-

ferent input sizes. Interestingly, we find that the one with larger input size performs better

in practice, and thus we use input resolution of 512× 512. This observation also matches

our intuition when designing the encoder-decoder architecture with skip links, where the

network can learn more context information and details from a larger input image. To

generate higher resolution results, we can up-sample the output of the network with joint

bilateral filtering [69], in which the input composite image is used as the guidance to keep

clear details and sharp textures.

6.2.3 Joint Training with Semantics

In the previous section, we propose an encoder-decoder network architecture for image

harmonization. In order to further improve harmonization results, it is natural to consider

the semantics of the composite foreground region. The ensuing question is how to incor-

porate such semantics in our CNN, so that the entire network is still end-to-end trainable.

In this section, we propose a modified network that can jointly train the image harmo-

nization and scene parsing tasks simultaneously, while propagating semantics to improve

harmonization results. The overall architecture is depicted in Figure 6.3, which adds the

scene parsing decoder branch.

Joint Loss. In addition to the reconstruction loss described for image harmonization in

(6.1), we introduce a pixel-wise cross-entropy loss with the standard softmax function E
for scene parsing:

Lcro(X) = −
∑
h,w

log(E(Xh,w; θ)). (6.2)

We then define a combined loss for both tasks and optimize it jointly:

L = λ1Lrec + λ2Lcro, (6.3)
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where λi is the weight to control the balance between losses for image harmonization and

scene parsing.

Network Architecture. We design the joint network by inheriting the encoder-decoder

architecture described in the previous section. Specifically, we add a decoder to predict

scene parsing results, while the encoder is to learn feature representations and is shared

for both decoders. To extract semantic knowledge from the scene parsing model and help

harmonization process, we concatenate feature maps from each deconvolutional layer of

the scene parsing decoder to the harmonization decoder, except for the last layer which

focuses on image reconstruction. In addition, skips links [61] are also connected to the

scene parsing decoder to gain more information from the encoder.

Implementation Details. To enable the training process for the proposed joint network,

both the ground truth images for harmonization and scene parsing are required. We then

use a subset of the ADE20K dataset [124], which contains 12080 training images with the

top 25 frequent labels. Similarly, training pairs for harmonization are obtained in a way

described in the data acquisition section via color transfer.

To train the joint network, we start with the training data from the ADE20K dataset

to obtain an initial solution for both the harmonization and scene parsing by optimizing

(6.3). We set λ1 = 1 and λ2 = 100 with a fixed learning rate 10−8. Next, we fix the scene

parsing decoder with λ2 = 0 and finetune the rest of the network using all the training data

introduced in Section 6.2.1 to achieve the optimal solution for image harmonization. Note

that, during this finetuning step, the scene parsing decoder is able to propagate learned

semantic information through the links between two decoders.

Discussions. With the incorporated scene parsing model, our network can learn the color

distribution of certain semantic categories, e.g., the skin color on human or the sky-like

colors. In addition, the learned background semantics can help identify which region to

match for better foreground adjustment. During harmonization, it essentially uses these
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Table 6.2: Comparisons of methods with mean-squared errors (MSE) on three synthesized

datasets.

MSCOCO MIT-Adobe Flickr

cut-and-paste 400.5 552.5 701.6
Lalonde [48] 667.0 1207.8 2371.0

Xue [116] 351.6 568.3 785.1
Zhu [127] 322.2 360.3 475.9

Ours (w/o semantics) 80.5 168.8 491.7
Ours 76.1 142.8 406.8

learned semantic priors to improve the realism of output results. Moreover, the incorpora-

tion of semantic information through joint training not only helps our image harmonization

task, but also can be adopted to benefit other image editing tasks [121, 67].

To validate our scene parsing model, we compare the proposed joint network to a

deeplab model [13], MSc-COCO-LargeFOV, that has a similar model capacity and size to

our model but is initialized from a pre-trained model for semantic segmentation. We eval-

uate the scene parsing results on the validation set of the ADE20K dataset with the top 25

frequent labels. The mean intersection-over-union (IoU) accuracy of our joint network is

32.2, while the MSc-COCO-LargeFOV model achieves IoU as 36.0. Although our model

is not specifically designed for scene parsing and is learned from scratch, it shows that our

method performs competitively against a state-of-the-art model for semantic segmentation.

6.3 Experimental Results

We present the main results on image harmonization with comparisons to the state-of-

the-art methods in this section. More results and analysis can be found in the supplemen-

tary material.
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Table 6.3: Comparisons of methods with PSNR scores on three synthesized datasets.

MSCOCO MIT-Adobe Flickr

cut-and-paste 26.3 23.9 25.9
Lalonde [48] 22.7 21.1 18.9

Xue [116] 26.9 24.6 25.0
Zhu [127] 26.9 25.8 25.4

Ours (w/o semantics) 32.2 27.5 27.2
Ours 32.9 28.7 27.4

Synthesized Data. We first evaluate the proposed method on our synthesized dataset

for quantitative comparisons. Table 6.2 and 6.3 show the results of mean-squared errors

(MSE) and PSNR scores between the ground truth and harmonized image. Note that it is

the first quantitative evaluation on image harmonization, which reflects how close different

results are to realistic images. We show that our joint network consistently achieves better

performance compared to the single network without combining scene parsing decoder

and other state-of-the-art algorithms [48, 116, 127] on all three synthesized datasets in

terms of MSE and PSNR. In addition, it is also worth noticing that our baseline network

without semantics already outperforms other existing methods.

In Figure 6.4, we show visual comparisons with respect to PSNR of the harmonization

results generated from different methods. Overall, the harmonized images by the proposed

methods are more realistic and closer to the ground truth images, with higher PSNR val-

ues. In addition, Figure 6.5 presents one comparison of our networks with and without

incorporating the scene parsing decoder. With semantic understandings, our joint network

is able to harmonize foreground regions according to their semantics and produce realis-

tic appearance adjustments, while the one without semantics may generate unsatisfactory

results in some cases.

Real Composite Images. To evaluate the effectiveness of the proposed joint network in

real scenarios, we create a test set of 52 real composite images and combine 48 examples
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Ground truth Input Lalonde [48] Xue [116] Zhu [127] Ours

23.68 14.01 24.19 23.89 31.96

17.59 19.26 18.26 17.85 24.40

15.97 14.71 16.13 16.97 24.48

Figure 6.4: Example results on synthesized datasets for the input, ground truth, three state-

of-the-art methods and our proposed network. From the first row to the third one, we show

one example for the MSCOCO, MIT-Adobe and Flickr datasets. Each result is associated

with a PSNR score. Among all the methods, our harmonization results obtain the highest

score.

from Xue et al. [116], resulting in a total of 100 high-quality composite images. To cover a

variety of real examples, we create composite images including various scenes and stylized

images, where the composite foreground region can be an object or a scene.

We follow the same procedure as [116, 127] to set up a user study on Amazon Mechan-

ical Turk, in which each user sees two randomly selected results at a time and is asked to

choose the one that looks more realistic. For sanity checks, we use ground truth images

from the synthesized dataset and heavily edited images to create easily distinguishable
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Input No semantics With semantics

18.86 28.15 33.32

Figure 6.5: Example results to show the comparison of our network with or without incor-

porating semantic information. With semantics, our result can recover the skin color and

obtain higher PSNR score.

Table 6.4: Comparisons of methods with B-T scores on real composite datasets.

Dataset [116] Our test set Overall

cut-and-paste 1.080 1.168 1.139
Lalonde [48] 0.557 0.067 0.297

Xue [116] 1.130 0.885 1.002
Zhu [127] 0.875 0.867 0.876

Ours 1.237 1.568 1.424

pairs that are used to filter out bad users. As a result, a total of 225 subjects participate

in this study with a total of 10773 pairwise results (10.8 results for each pair of different

methods on average). After obtaining all the pairwise results, we use the Bradley-Terry

model (B-T model) [7, 47] to calculate the global ranking score for each method.
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Input Lalonde [48] Xue [116] Zhu [127] Ours

Figure 6.6: Example results on real composite images for the input, three state-of-the-art

methods and our proposed network. We show that our method produces realistic har-

monized images by adjusting composite foreground regions containing various scenes or

objects.

Table 6.4 shows that our method achieves the highest B-T score in terms of realism

compared to state-of-the-art approaches on both our created test set and examples from

[116]. Interestingly, our method is the only one that can improve the harmonization result

with a significant margin from the input image (by cut-and-paste).

Figure 6.6 shows sample harmonized images by the evaluated methods. Overall, our
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(a) Input

(b) Mask (c) Output

Figure 6.7: Given an input image (a), our network can adjust the foreground region ac-

cording to the provided mask (b) and produce the output (c). In this example, we invert the

mask from the one in the first row to the one in the second row, and generate harmonization

results that account for different context and semantic information.

joint network produces realistic output images, which validates the effectiveness of us-

ing synthesized data to directly learn how to harmonize composite images from realistic

ground truth images. The results from [116] may be easily affected by the large appear-

ance difference between the background and foreground regions during matching. For the

method [127], it may generate unsatisfactory results due to the errors introduced during

realism prediction, which may affect the color optimization step. In contrast, our network

adopts a single feed-forward scheme learned from a well-constructed training set, and uti-

lizes semantic information to improve harmonization results. The complete results on the

real composite test set are presented in the supplementary material.

Generalization to Background Masks. With the provided foreground mask, our network
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can learn context and semantic information while transforming the composite image to a

realistic output image. Therefore, our method can be applied to any foreground masks

containing arbitrary objects, scenes or clutter backgrounds. Figure 6.7 illustrates one ex-

ample, where originally the adjusted foreground region is the child. Instead, we can invert

the mask and focus on harmonizing the region of inverted child. The result shows that our

network can produce realistic outputs from different foreground masks.

Runtime Performance. Previous harmonization methods rely on matching statistics [48,

116] or optimizing an adjustment function [127], which usually require longer processing

time (more than 10 seconds with a 3.4GHz Core Xeon CPU) on a 512 × 512 test image.

In contrast, our proposed CNN is able to harmonize an image in 0.05 seconds with a Titan

X GPU and 12GB memory, or 3 seconds with a CPU.

6.4 Summary

In this work, we present a novel network that can capture both the context and seman-

tic information for image harmonization. We demonstrate that our joint network can be

trained in an end-to-end manner, where the semantic decoder branch can effectively pro-

vide semantics to help harmonization. In addition, to facilitate the training process, we

develop an efficient method to collect large-scale and high-quality training pairs. Experi-

mental results show that our method performs favorably on both the synthesized datasets

and real composite images against other state-of-the-art algorithms.



Chapter 7

Conclusion and Future Work

7.1 Summary

This thesis investigates problems related to visual analysis and synthesis, specifically

in video object segmentation and image editing tasks. To address these challenging prob-

lems, we incorporate the temporal information and semantics to better understand visual

contents in images and videos. Chapter 3 introduces a video object segmentation method

that utilizes a joint model for both the segmentation and flow estimation. Flow connects

segments temporally and provides motion cues of objects, while segmentation can ben-

efit flow estimations with the guidance of accurate object boundaries. Toward this end,

we formulate a principal and spatial-temporal model that iteratively updates segmenta-

tion and flow results. The optimized objective can thus predict temporally-smooth object

segmentation and complete optical flow, especially around boundaries.

In Chapter 4, we take a further step by considering a collection of videos simultane-

ously, and segment the objects while understanding their visual semantics. The proposed

co-segmentation framework first generates semantic tracklets with temporally consistent

segments, and then discovers true objects within these tracklets. We construct a submodu-

lar function that takes semantics into account and model relations between all the tracklets.
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By optimizing this function, we exploit semantic cues from the video collection, and hence

true objects with higher mutual similarities can be discovered.

Starting from Chapter 5, we show two examples of image editing tasks guided by

semantics. We first present a work of sky replacement method that can automatically

generate a set of realistic and diverse results. The key component is to learn a scene parsing

model that can predict pixel-wise semantic categories, and utilize such contents to guide

the entire process including sky segmentation, search and replacement. We demonstrate

that our algorithm can adjust the foreground appearance to fit the statistics of the new sky,

and hence produce visually pleasing results.

In Chapter 6, we present an image harmonization algorithm for generic objects and

scenes. Again, we utilize semantic cues by jointly learning an end-to-end deep network

for scene parsing and harmonization. In order to train the model, we design a method to

synthesize input and ground truth pairs efficiently. With the success of learning the model,

we show that our network can handle real composite images with a significant improve-

ment over the other state-of-the-art methods in terms of visual quality and accuracy. It

proves that our models for visual analysis and synthesis tasks can be jointly learned and

benefit each other.

7.2 Future work

Along the research direction of visual analysis and synthesis problems, we present

three interesting topics for future development.

7.2.1 Learning-based Video Object Segmentation

To further improve the efficiency and accuracy for video object segmentation, one po-

tential solution is to utilize learning-based deep networks that take advantage of a large

scale data and annotations. For instance, following the idea in Chapter 3, either segmen-
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tation or optical flow can be predicted using a single deep network. Since both networks

contain similar object feature representations, where the ones from segmentation focus

on objectness and the ones from optical flow exploit motions, it is reasonable to design a

joint model that can communicate to each other, e.g., feature propagations between two

networks.

Another interesting direction is to learn a segmentation network that can exploit tem-

poral information in videos. Recently, most developed models only take a single image

as the input at a time without learning temporal representations. However, such tempo-

ral cues are important to maintain smooth results in videos. Therefore, the problem of

learning temporal representations would be critical for future applications in videos.

7.2.2 Semi-supervised Semantic Segmentation

Based on the discussion above for feature learning in the temporal domain, it would

require a huge amount of annotations in videos. However, collecting such pixel-wise an-

notations is usually labor-intensive and may result in low-quality outcomes. Hence, one

interesting research topic is to adopt semi-supervised learning for segmentation. Without

annotations in every image, the designed system would need to self-explore useful infor-

mation contained in unlabeled images. One can imagine that it would be challenging due

to noise, but on the other hand, the model would not be limited to certain image spaces,

and can exploit diverse data and evolve itself.

One idea to achieve this is to utilize an adversarial learning scheme [26], where a

discriminator can be learned to distinguish ground truth and predicted segmentations using

annotated images. Next, when feeding unlabeled images, this discriminator can recognize

trust-worthy predicted regions and extract useful cues from these regions to improve the

model.
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7.2.3 Video-based Editing and Applications

In addition to image editing tasks shown in this thesis, video-based applications are

more challenging. For instance, either replacing the background or harmonizing images

needs to consider temporal consistency for generating realistic results. Another example is

the generative task [72], where image generation has been studied widely, but video gen-

eration still remains a difficult problem. Therefore, understanding spatial-temporal cues is

critical for these video-based tasks. Borrowing the ideas presented in this thesis, it would

be interesting to utilize semantic and motion information in videos for creating/editing

content and generating realistic results. In future work, developing such systems that in-

corporate visual analysis and synthesis would be interesting, where semantic cues can be

utilized to jointly improve both tasks in videos.
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