
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Cooperative CPU-GPU Dynamic Power Management Methodologies for Energy-efficient
Mobile Gaming

Permalink
https://escholarship.org/uc/item/8mq1n6sd

Author
Park, Jurn-Gyu

Publication Date
2017

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8mq1n6sd
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Cooperative CPU-GPU Dynamic Power Management Methodologies
for Energy-efficient Mobile Gaming

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Jurn-Gyu Park

Dissertation Committee:
Professor Nikil Dutt, Chair

Professor Alex Nicolau
Professor Mohammad Al Faruque

2017

Portion of Chapter 2 c© 2014 IEEE
All other materials c© 2017 Jurn-Gyu Park

DEDICATION

To my God

The LORD is my shepherd, I shall not be in want.
He makes me lie down in green pastures, he leads me beside quiet waters,

he restores my soul. He guides me in paths of righteousness for his name’s sake.
Even though I walk through the valley of the shadow of death, I will fear no evil,

for you are with me; your rod and your staff, they comfort me.
You prepare a table before me in the presence of my enemies.

You anoint my head with oil; my cup overflows.
Surely goodness and love will follow me all the days of my life, and

I will dwell in the house of the LORD forever.

- Psalms 23 -

To my Wife

A wife of noble character who can find?
She is worth far more than rubies.

- Proverbs 31:10 -

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Smartphone Systems . 1
1.2 Motivation and Challenges . 4

1.2.1 Existing Approaches . 5
1.3 Thesis Overview . 6

1.3.1 Graphics Workload Characterization (GWC) 6
1.3.2 Cooperative Frequency-Capping Governor (Co-Cap) 7
1.3.3 Hierarchical-FSM based Dynamic Behavior Modeling Governor (HiCAP) 8
1.3.4 Machine Learning enhanced Modeling Governor (ML-Gov) 9

1.4 Thesis Contributions . 9
1.4.1 Design and Implementation of micro-benchmarks 9
1.4.2 Simple but highly effective CPU-GPU Frequency Capping 10
1.4.3 Hierarchical FSM-based Dynamic Behavior Modeling 10
1.4.4 Machine Learning enhanced Simple and Accurate Prediction Models . 11

2 Graphics Workload Characterization for DVFS Design 12
2.1 Introduction . 12

2.1.1 Contributions . 14
2.2 Motivation and Related Work . 15

2.2.1 Motivation . 15
2.2.2 Related Work . 16

2.3 Graphics Workload Characterization . 18
2.3.1 Mobile Graphics Pipeline . 18
2.3.2 Workload Characterization and Micro-benchmarks 21

2.4 Experimental Setup and Results . 23

iii

2.4.1 Experimental Setup and Methodology 23
2.4.2 Experimental Results . 25

2.5 Opportunities for DVFS design . 34
2.5.1 GPU DVFS . 35
2.5.2 CPU DVFS . 36
2.5.3 Integrated DVFS . 37

2.6 Summary . 37

3 Cooperative CPU-GPU Frequency Capping 39
3.1 Introduction . 39
3.2 Related Work . 42
3.3 Motivation . 44
3.4 Co-Cap Methodology . 46

3.4.1 Training Phase . 47
3.4.2 Deployment Phase . 57

3.5 Evaluation of Co-Cap . 58
3.5.1 Experimental Setup . 58
3.5.2 Experimental Results . 63
3.5.3 Analysis and Discussion . 66

3.6 Conclusion . 69

4 Hierarchical FSM-based Integrated CPU-GPU Frequency Capping 70
4.1 Introduction . 70
4.2 Related Work . 73
4.3 Approach . 74

4.3.1 Preliminaries . 74
4.3.2 HFSM-based Dynamic Behavior Model 76
4.3.3 Frequency-Capping . 79

4.4 Experimental Results . 81
4.4.1 Experimental Setup . 81
4.4.2 Automatic Measurement Tool . 82
4.4.3 Results and Analysis . 84

4.5 Conclusion . 88

5 A Machine Learning Enhanced Integrated Governor 89
5.1 Introduction . 89
5.2 Motivation and Related Work . 91

5.2.1 Motivation . 92
5.2.2 Related Work . 94

5.3 ML-Gov Methodology . 96
5.3.1 Learning Phase . 96
5.3.2 Prediction Phase . 104

5.4 Experimental Results . 108
5.4.1 Experimental Setup . 108
5.4.2 Results and Analysis . 111

iv

5.4.3 Discussion . 114
5.5 Conclusion . 115

6 Conclusion and Future Directions 117
6.1 Summary . 117
6.2 Contributions . 118
6.3 Future Directions . 120

Bibliography 121

v

LIST OF FIGURES

Page

1.1 Trends of Smartphone Applications . 1
1.2 Change of High-performance Mobile Integrated GPUs 2
1.3 Change of Apple Smartphone Platforms [29] 2
1.4 Correlation between Performance and Power [7] (The performance metric is

Drystone MIPS and power consumption unit is mW) 3
1.5 Comparison of CPU and GPU power consumption [5]: x-axis: time in second,

y-axis: Power (mW) . 3
1.6 State-of-the-art Approaches . 5
1.7 Thesis Overview . 7

2.1 Mobile GPU Power Consumption [5] . 13
2.2 Motivating Example for GPU Workload Characterization. 15
2.3 Abstract Mobile Graphics Pipeline. 18
2.4 Logical Graphics Rendering Pipeline . 20
2.5 Power Measurement and Adreno Profiler Setup 24
2.6 Results of mb-TexM at Different Frequencies with Workload Variation 26
2.7 Results of mb-VerM at Different Frequencies with Workload Variation 29
2.8 Workload Factor result with Enabled CPU DVFS on mb-VerM 30
2.9 Results of mb-App at Different Frequencies with Workload Variation 31
2.10 FPS of mb-VerSh and mb-FragSh . 32
2.11 Average Power of mb-VerSh and mb-FragSh 33
2.12 Energy per Frame of mb-VerSh and mb-FragSh 33

3.1 System Comparison . 40
3.2 Mobile Platform Trends. 40
3.3 Different types of CPU/GPU Workload. 41
3.4 Motivating Examples . 45
3.5 Co-Cap Overview. 47
3.6 Co-Cap Training Phase. 47
3.7 A Sample of the Training Set. 49
3.8 Effects of CPU (or GPU) maximum frequency capping on FPS and Power. 49
3.9 The Proposed Methodology for Data Collection and LUT Building. 51
3.10 LUTs after the Building Step . 52
3.11 Fine-grained Refinement Step. 53
3.12 The Methodology of Fine-grained Refinement Step. 53

vi

3.13 Detailed Fine-grained Refinement Step. 54
3.14 Final LUTs after the Refinement Steps (∗frequencies are refined during the

refinement step 2) . 56
3.15 The Evaluation of the Fine-grained Refinement Steps 56
3.16 Co-Cap Deployment Phase. 57
3.17 The Training Sets. 59
3.18 The Deployment Sets. 60
3.19 FPS, Power and EpF Results of Different Types of Graphics Workloads. . . 62
3.20 The Average Results of the Training Set (High-variation). 64
3.21 The Detailed Results of the Training Set (High-variation). 64
3.22 Average Results of the Deployment Sets . 65
3.23 The results of the Deployment Set (MB). 66
3.24 The results of the Deployment Set (RG). 66

4.1 CPU-GPU Mobile Governors . 71
4.2 HFSMs in Game Design. 71
4.3 Sample Mobile Game (ShootEmDown) . 72
4.4 A set of benchmarks. 75
4.5 Footprints of Game Dynamism . 77
4.6 Hierarchical Finite State Machine . 78
4.7 Different Capping Policies as Outputs . 80
4.8 Experimental Setup. 82
4.9 Automatic Measurement Tool. 83
4.10 Average Results of the Benchmark Set . 85
4.11 FPS and Energy Savings Comparison of Co-Cap16 [77] vs. our HiCAP . . . 85
4.12 FPS and Energy Savings Comparison of PAT15 [80] vs. our HiCAP 87

5.1 Machine Learning Approach for our System 90
5.2 Comparison of Prediction Errors and Structure of Cost Functions among the

Machine Learning Algorithms (Motivating Example) 93
5.3 ML-Gov Overview . 96
5.4 Learning Phase . 97
5.5 Data Collection Methodology . 97
5.6 Prediction Phase . 104
5.7 HFSM-based Power Management Algorithm 105
5.8 The 20-App Training Set . 109
5.9 The 20-App Test Set . 109
5.10 Average Results of the Test Set . 112
5.11 Results of the Test Set (Detailed) . 113
5.12 Results Comparison between HiCAP and ML-Gov 114

vii

LIST OF TABLES

Page

2.1 State-of-the-art Smartphone GPU . 13
2.2 Micro-benchmarks and their Pipelined Workloads 22
2.3 Platform Configuration . 24
2.4 Workload Variation in mb-TexM . 25
2.5 Percentage of Texture L2 Cache Miss in mb-TexM 25
2.6 Workload Variation in mb-VerM . 29
2.7 Workload Variation in mb-App . 30
2.8 Workload Variation of mb-VerSh and mb-FragSh Analysis 32

3.1 Captured Data . 48
3.2 Platform Configuration . 58

4.1 Platform Configuration . 81

5.1 Compared M.L Algorithms . 93
5.2 Selected Variables after Attribute Selection 99
5.3 Prediction Errors for Model Evaluation . 100
5.4 Platform Configuration . 108
5.5 Governors for Comparison . 110

viii

ACKNOWLEDGMENTS

Above all, I would like to give thanks to my God who has been giving me knowledge,
wisdom, endurance and strength to finish this long journey.

Foremost, I truly would like to thank my advisor, Professor Nikil Dutt for his great
generosity and excellence in his supervision. He gave me huge freedom and infinite encour-
agement to explore my ideas, and taught me how to discover systematic methodologies for
research problems with logical thinking and how to organize and present our work in litera-
ture and talk. The time that I have spent with him itself was blessing and learning for me.

Sincerely, I would also like to thank Professor Alex Nicolau and Mohammad Al Faruque
for their guidance, advice and serving on my thesis committee. Especially, the comments
during the candidacy exam and the topic exam were good guidelines and crucial checkpoints
for my next steps.

I truly give thanks to Professor Sung-soo Lim who gave me a lot of inspiration with
logical and sharp comments for our works. I will forever be grateful for the time and the
efforts he has spent in my studies. I also want to thank KIAT, Ministry of Trade, Industry
and Energy, South Korea for providing Global Research Collaboration Project, UC Irvine’s
graduate division and Melanie Sander and Grace Wu at CECS for their help.

Another blessing during my PhD studies is the people whom I met through Dutt’s research
group from my labmates to visiting scholars. Luis (Danny) Bathen, Kazuyuki Tanimura, Jun
Young Shin, Abbas Banaiyan, Santanu Sarma and Hossein Tajik already became doctors;
and Majid Namaki Shoushtari, Bryan (Donny) Donyanavard, Roger Chen-Ying Hsieh, Tiago
Rogerio Muck, Kasra Moazzemi, Hamid Nejatollahi and Hirak Kashyap are with me now.
In addition, I would like to thank the visiting scholars: Professors Gu-Min Jeong, Hoyoung
Hwang, Yukio Mitsuyama, Alfonso Avila, Hiroyuki Tomiyama, Antonio Augusto Frohlich,
MyungKeun Yoon, Amir Rahmani and Bruno Zatt, and Dr. Janmartin Jahn, Dr. Trent Lo,
Dr. Gustavo Girao, Juan Gonzalez, Amir Mahdi Monazzah, Andre Martins. Especially, Pro-
fessor Kanghee Kim and other Korean professors provided me heartfelt encouragement and
practical advice with refreshments thankfully, and Kookmin I-SURF interns (esp. Hoyeonjiki
Kim and Hyungjun Lee) gave me a lot of help practically in my research.

I give thanks to my friends. Jiman Ok, Junkyu Lee, Taewoo Kim and their families came
together from our home country to UCI in the same year, and we were very supportive
of each other. And, I would like to thank Disciple Community Church, pastor Hyunjong
Ko, my small group leaders (Hyeokseoung Park and Sanghoon Jun), small group members,
discipleship training members, Ohana teachers and my students. They will be my eternal
fellow workers spiritually.

Lastly, this thesis would not have been completed without the support and patience of my
faithful wife, Yeonji Lee. She has been preparing my lunch box for five years with full of her
love, and has been encouraging me always with love and trust. Moreover, my three children,
Heechan and Heeon and Eunchan, are always my joy, strength and power to overcome every
challenging circumstance. This thesis is a fruit of infinite love, sacrifices and prayers from
my family, my parents and my wife’s parents.

ix

CURRICULUM VITAE

Jurn-Gyu Park

EDUCATION

Doctor of Philosophy in Computer Science 2017
University of California, Irvine Irvine, CA, USA

Master of Engineering in Computer Engineering 2012
Yonsei University Seoul, Korea

Bachelor of Science in Mechanical and Automotive Engineering 2001
Kookmin University Seoul, Korea

WORK and RESEARCH EXPERIENCE

Graduate Research Assistant 2012–2017
University of California, Irvine Irvine, CA, USA

Software Engineer/Technical Lecturer 2006–2011
MDS Technology Seoul, Korea

Planning/Marketing/Sales Engineer 2002–2005
MDS Technology Seoul, Korea

TEACHING EXPERIENCE

Teaching Assistant/Reader 2012–2017
University of California, Irvine Irvine, CA, USA

Technical Lecturer 2006–2011
MDS Technology Seoul, Korea

x

REFEREED CONFERENCE PUBLICATIONS

HiCAP: Hierarchical FSM-based Dynamic Integrated
CPU-GPU Frequency Capping Governor for Energy-
Efficient Mobile Gaming

Aug. 2016

International Symposium on Low Power Electronics and Design (ISLPED)

Co-Cap: Energy-efficient Cooperative CPU-GPU Fre-
quency Capping for Mobile Games

Apr. 2016

Symposium on Applied Computing (SAC)

Memory-aware Cooperative CPU-GPU DVFS Gover-
nor for Mobile Games

Oct. 2015

Symposium on Embedded Systems for Real Time Multimedia (ESTIMedia)

Quality-aware Mobile Graphics Workload Characteriza-
tion for Energy-efficient DVFS Design

Oct. 2014

Symposium on Embedded Systems for Real Time Multimedia (ESTIMedia)

TECHNICAL REPORTS

Using HSFMs to Model Mobile Gaming Behavior for
Energy Efficient DVFS Governors

Jun. 2016

UC Irvine, Center for Embedded and Cyber-physical Systems, CECS TR 16-02

Cooperative CPU-GPU Frequency Capping (Co-Cap)
for Energy Efficient Mobile Gaming

Dec. 2015

UC Irvine, Center for Embedded and Cyber-physical Systems, CECS TR 15-05

xi

ABSTRACT OF THE DISSERTATION

Cooperative CPU-GPU Dynamic Power Management Methodologies
for Energy-efficient Mobile Gaming

By

Jurn-Gyu Park

Doctor of Philosophy in Computer Science

University of California, Irvine, 2017

Professor Nikil Dutt, Chair

One of the fundamental challenges to contemporary mobile platforms deploying heteroge-

neous CPU-GPU based architectures that execute mobile games and other graphics-intensive

applications is to design software governors through Dynamic Voltage Frequency Scaling

(DVFS) for achieving high performance with energy-efficiency on battery-based systems.

However, separate CPU and GPU governors miss opportunities for further energy savings

through cooperative/integrated CPU-GPU power management. Contemporary integrated

CPU-GPU governors for diverse and dynamic gaming workloads utilize classical statistical or

heuristic models with a small set of mobile games for both modeling and evaluation resulting

in high prediction errors with lost potential for energy savings. To overcome these limita-

tions, this thesis presents a comprehensive graphics workload characterization by developing

custom micro-benchmarks and then proposes three different cooperative CPU-GPU dynamic

power management methodologies by using large sets of real games and micro-benchmarks.

As a first step, we present a study of mobile GPU graphics workload characterization for

DVFS design considering performance and energy efficiency on a real smart-phone. We de-

velop micro-benchmarks that stress specific stages of the graphics pipeline separately, and

analyze the relationship between varying graphics workloads and resulting energy and per-

formance of different mobile graphics pipeline stages. We then propose a simple yet effective

xii

strategy called Co-Cap (Cooperative Frequency-Capping), a cooperative CPU-GPU DVFS

strategy that orchestrates energy-efficient CPU and GPU DVFS through coordinated CPU

and GPU frequency capping to avoid frequency over-provisioning while maintaining desired

performance. Furthermore, we propose a model-based DVFS design approach, a Hierarchical

Finite State Machine (HFSM) based CPU-GPU governor that models the dynamic behav-

ior of mobile gaming workloads, and applies a cooperative, dynamic CPU-GPU frequency-

capping policy to yield energy efficiency adapting to the games’ inherent dynamism. Finally,

we present a machine learning enhanced integrated CPU-GPU governor that builds tree-

based piecewise linear prediction models resulting in high accuracy and low complexity of

cost functions using practical offline machine learning techniques, and integrate the models

for online estimation into an integrated CPU-GPU DVFS governor applying piecewise poli-

cies based on the models. We demonstrate efficacy of our methodologies across over 100 real

games and a few hundred custom micro-benchmarks, achieving substantial energy efficiency

gains of up to 18% improvement in energy-per-frame over existing governor policies, with

minimal loss in performance.

xiii

Chapter 1

Introduction

1.1 Smartphone Systems

A smartphone system is a mobile personal computer with a mobile operating system de-

signed for typical mobile or handheld usage scenarios [96]. With the emergence of Apple’s

iPhone [11] (2007) (one of the first smartphones to use a multi-touch interface) and the first

phone using Android [32] (2008) (an open-source platform owned by Google), smartphones

started to gain widespread popularity with the help of application stores such as Apple’s
Google Play: number of available apps 2009-2017

Number of available applications in the Google Play Store from December 2009 to June 2017

Source: Android; Google; App Annie; AppBrain ID 266210

Note: Worldwide; December 2009 to June 2017

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

D
e

c
 '
0

9

M
a

r
'1

0

A
p

r
'1

0

J
u

l
'1

0

O
c
t

'1
0

A
p

r
'1

1

J
u

l
'1

1

A
u

g
 '
1
1

D
e

c
 '
1
1

F
e

b
 '
1

2

M
a

y
 '
1

2

J
u

n
 '
1
2

S
e

p
 '
1

2

O
c

t
'1

2

A
p

r
'1

3

J
u

l
'1

3

J
u

l
'1

4

F
e

b
 '
1

5

J
u

l
'1

5

N
o

v
 '
1

5

F
e

b
 '
1

6

S
e

p
 '
1

6

D
e

c
 '
1

6

M
a

r
'1

7

J
u

n
 '
1

7

N
u

m
b

e
r

o
f

a
v
a

il
a

b
le

 a
p

p
s

Further information regarding this statistic can be found on page 8. (a) Number of Apps in the Google Play Store [92]

Other

3.4%

Photography

1.8%

 1 1

Social, 8.0%

Music & Audio,

7.1%

Communication,

6.0%

Tools, 5.6%

Shopping,

4.9%

Entertainment

3.4%

Productivity

2.3%

Personalization

2.0%

(b) US Google Play Top Free
Chart by Category [71]

Figure 1.1: Trends of Smartphone Applications

1

App Store [10] and Google’s Android Market (now Google Play Store [33]). For example,

as shown in Figure 1.1, the number of available applications in these application stores is

increasing dramatically, with games dominating as one of the most popular application cat-

egory.

The increasing use of graphics-intensive mobile games and other applications has necessi-

tated the deployment of high-performance Heterogeneous MultiProcessor Systems-on-Chip

(HMPSoC) with integrated GPUs to deliver desired performance. Figure 1.2.(a) shows the

ARM Mali high-end GPU processor roadmap, highlighting the GPU performance increasing

rapidly. This pattern is almost similar to the roadmap of Qualcomm GPU processor (Fig-

ure 1.2.(b)); tracking changes in the GPU porcessors, we note that the Snapdragon graphics

performance increases dramatically after 2013.

2012 2013 2014 2015

P
e
rf

o
rm

a
n

c
e

Trends

• Increase of graphics-intensive applications (esp. mobile games)

• Deploy High performance mobile HMPSoCs with integrated GPUs

 1 1

Source: arm.com Source: Qualcomm.com

Source: Apple.com

 Jun. 6, 2017 Introduction – Thesis Topic – Work1-2-3 – Work4 [Introduction – Methodology – Results] – Conclusion

(a) ARM GPU Performance [12]

Trends

• Increase of graphics-intensive applications (esp. mobile games)

• Deploy High performance mobile HMPSoCs with integrated GPUs

 1 1

Source: arm.com Source: Qualcomm.com

Source: Apple.com

 Jun. 6, 2017 Introduction – Thesis Topic – Work1-2-3 – Work4 [Introduction – Methodology – Results] – Conclusion

(b) Qualcomm Snapdragon GPU Performance [56]

Figure 1.2: Change of High-performance Mobile Integrated GPUs

2012 2013 2014 2015

P
e
rf

o
rm

a
n

c
e

Trends

• Increase of graphics-intensive applications (esp. mobile games)

• Deploy High performance mobile HMPSoCs with integrated GPUs

 1 1

Source: arm.com Source: Qualcomm.com

Source: Apple.com

2007 2008 2009 2010 2011 2012 2013 2014 2007 2008 2009 2010 2011 2012 2013 2014

CPU PERFORMANCE GPU PERFORMANCE

 Jun. 6, 2017 Introduction – Thesis Topic – Work1-2-3 – Work4 [Introduction – Methodology – Results] – Conclusion

Mobile platforms change rapidly

with high performance CPU and GPU

(a) Apple CPU Performance

2012 2013 2014 2015

P
e
rf

o
rm

a
n

c
e

Trends

• Increase of graphics-intensive applications (esp. mobile games)

• Deploy High performance mobile HMPSoCs with integrated GPUs

 1 1

Source: arm.com Source: Qualcomm.com

Source: Apple.com

2007 2008 2009 2010 2011 2012 2013 2014 2007 2008 2009 2010 2011 2012 2013 2014

CPU PERFORMANCE GPU PERFORMANCE

 Jun. 6, 2017 Introduction – Thesis Topic – Work1-2-3 – Work4 [Introduction – Methodology – Results] – Conclusion

Mobile platforms change rapidly

with high performance CPU and GPU

(b) Apple GPU Performance

Figure 1.3: Change of Apple Smartphone Platforms [29]

A similar trend can be observed with Apple’s smartphone platforms (Figure 1.3): after

2

the first emergence of iPhone in 2007, only 7 years later the iPhone 6 platform shows a 50x

increase in CPU performance and 84x increase in GPU performance.

However, high performance mobile HMPSoCs result in high power consumption in the

CPU and GPU. Figure 1.4 shows the correlation between performance and power in mobile

Trends (cont.)

• High performance results in high power consumption in CPU and

GPU

 1 1

Source: Qualcomm.com Lab Testing Source: Anandtech.com

 Feb 21, 2017 Introduction – Thesis Topic – DoneWork1 – DoneWork2 – DoneWork3 – OnGoingWork - Conclusion

Figure 1.4: Correlation between Performance and Power [7] (The performance metric is
Drystone MIPS and power consumption unit is mW)

SoCs. Even though the performance range and the slope (power-efficiency) are different for

each processor, clearly the correlation between performance and power is proportional across

all processors. Moreover, Figure 1.5 shows the comparison of power consumption between

CPU and GPU using a graphics-intensive gaming benchmark, the GL Egypt benchmark.

Here we note that at the beginning, the average GPU power consumption is much lower

Trends (cont.)

• High performance results in high power consumption in CPU

and GPU

 1 1 Jun. 6, 2017 Introduction – Thesis Topic – Work1-2-3 – Work4 [Introduction – Methodology – Results] – Conclusion

Figure 1.5: Comparison of CPU and GPU power consumption [5]: x-axis: time in second,
y-axis: Power (mW)

than the power consumption of CPUs because the application loading phase comes before

3

the regular rendering phase; then GPU power consumption is overwhelmingly higher than

CPU power because the benchmark is a GPU graphics-intensive application. In addition,

the CPU and GPU power consumptions are also changing dynamically with high variation

between maximum and minimum power.

In summary, the trends of high performance heterogeneous mobile platforms with graphics-

intensive mobile games and other applications result in high CPU and GPU power consump-

tion with high variation (dynamism).

1.2 Motivation and Challenges

Contemporary mobile platforms use software governors that deploy Dynamic Voltage Fre-

quency Scaling (DVFS) techniques to achieve high performance with energy-efficiency for

heterogeneous CPU-GPU based architectures executing mobile games and other graphics-

intensive applications.

After a comprehensive study of CPU and GPU DVFS for gaming workloads on mobile

heterogeneous platforms, we make the following observations: 1) There have been no previ-

ous systematic studies to correlate the performance, power, and energy efficiency of mobile

GPUs based on diverse graphics workloads to enable more efficient mobile platform DVFS

policies for energy savings. 2) Traditionally, separate CPU and GPU governors are deployed

in order to achieve energy efficiency through DVFS, but miss opportunities for further energy

savings through coordinated system-level application of DVFS. 3) Mobile games typically

exhibit inherent behavioral dynamism, which existing governor policies are unable to ex-

ploit effectively to manage CPU/GPU DVFS policies. 4) For dynamic and diverse gaming

workloads, existing governors utilize statistical or heuristic models with a small set of mobile

games for both modeling and evaluation, resulting in high prediction errors in modeling,

and do not exploit practical machine learning approaches for prediction models with high

4

accuracy and low complexity.

We also note the following challenges. First, for battery-based commercial mobile plat-

forms, performance and power issues should be considered simultaneously to enable sys-

tem design for two common optimizations: performance optimization under power/energy

constraints, or power/energy optimization under performance constraints. Second, mobile

graphics workloads (especially gaming workloads) are highly diverse and dynamic, thereby

requiring comprehensive graphics workloads characterization for dynamic power manage-

ment design. Third, mobile platforms are changing rapidly, requiring a simple and easily

portable methodology for porting and implementation of DVFS governor policies. Fourth,

existing governor policies are typically heuristic based, and could benefit from a model-based

methodology to enhance rigor in the design process.

1.2.1 Existing Approaches

Current approaches address these challenges typically in a disjoint manner. The traditional

Introduction: trends (HMPSoCs, power management, and Dynamism)

General HMPSoCs System

Big CPU

GPU

Little CPU

Graphics Apps

CPU Governor

CPU DVFS

Proposed Dynamic Co-Cap System

Characterization and Modeling

GPU Governor

GPU DVFS

Big CPU

GPU

Little CPU

Graphics Apps

CPU Governor

CPU DVFS

GPU Governor

GPU DVFS

(a) Separate Governors

Introduction: trends (HMPSoCs, power management, and Dynamism)

General HMPSoCs System

Big CPU

GPU

Little CPU

Graphics Apps

CPU Governor

CPU DVFS

Proposed Dynamic Co-Cap System

Characterization and Modeling

GPU Governor

GPU DVFS

Big CPU

GPU

Little CPU

Graphics Apps

CPU Governor

CPU DVFS

GPU Governor

GPU DVFS

(b) Cooperative/Integrated Governors

Figure 1.6: State-of-the-art Approaches

approach uses separate CPU and GPU governors (Figure 1.6(a)), that scale voltage and

frequency dynamically, but independently for the CPU and GPU components. The CPU

governor is in charge of CPU part and vice versa for GPU part, but this approach does

not consider any cooperation between CPU and GPU. Some integrated governors [80] [51]

5

(Figure 1.6(b)) were proposed quite recently. However, they used a small set of specific

benchmarks, which result in high prediction errors for unseen workloads that are typical for

most mobile applications. Our approach uses a large set of games (over 100 real games and

a few hundred custom micro-benchmarks [75]) and uses an automatic measurement tool [79]

to generate better experimental data that enables more thorough analysis; and we present

several integrated CPU-GPU governor policies to enable synergistic management of mobile

platform resources.

1.3 Thesis Overview

The thesis proposes cooperative CPU and GPU dynamic power management (DPM) method-

ologies for energy-efficient mobile gaming based on comprehensive graphics workload char-

acterization.

As outlined in Figure 1.7, first we present a comprehensive characterization of graphics

workloads by design and implementation of gaming micro-benchmarks [75]. We then propose

three different cooperative DPM methodologies: 1) A simple but effective lookup-table based

frequency-capping methodology [77], 2) A hierarchical-FSM based dynamic behavior mod-

eling methodology for gaming workloads using the frequency-capping technique [78], and 3)

A machine-learning enhanced prediction modeling methodology based integrated CPU-GPU

DVFS.

1.3.1 Graphics Workload Characterization (GWC)

We observed that graphics workloads exercise different graphics pipeline stages such as the

Geometry and Fragment units that greatly affect the performance and the power consump-

tion of the mobile platform. Unfortunately most real-games have mixed various workloads

6

Large sets of benchmarks

1 1 Jun. 6, 2017 Introduction – Thesis Topic – Work1-2-3 – Work4 [Introduction – Methodology – Results] – Conclusion

Cooperative Frequency-Capping
Governor (Co-Cap)

[Chapter 3]

Cooperative CPU-GPU DPMs for
Energy-efficient Mobile Gaming

Hierarchical-FSM based
Dynamic Behavior Modeling Governor (HiCAP)

[Chapter 4]

Machine Learning enhanced
Modeling Governor (ML-Gov)

[Chapter 5]

Graphics Workload
Characterization (GWC)

[Chapter 2]

Figure 1.7: Thesis Overview

and release only binary files that prevent modification of their workloads to enable experi-

mental evaluation. Therefore, we propose the design and implementation of graphics micro-

benchmarks by stressing different components of the graphics pipeline stages. We focus on

the workloads of the three categories (GPU memory, GPU computation and CPU work-

loads) and design five micro-benchmarks by stressing each specific pipeline stage with fixed

workloads in other pipeline stages. For example, for the vertex memory micro-benchmark,

we mainly changed the number of vertices; and for the texture memory micro-benchmark, we

changed the texture image size. Using these five micro-benchmarks, we studied the impact

of workload components on Frames per Second (FPS), power and energy per frame. These

micro-benchmarks and the profiled data were then used extensively for workload charac-

terization, workload analysis, model building (learning) and evaluations. We describe our

Graphics Workload Characterization (GWC) approach in Chapter 2.

1.3.2 Cooperative Frequency-Capping Governor (Co-Cap)

Recall our motivating observation that commercial platforms (Figure 1.6(a)) have separate

CPU and GPU governors with over-provisioned frequencies. For example, commercial CPU

governors such as ONDEMAND or INTERACTIVE immediately scale up to the maximum

frequency for high performance at a certain threshold; we observe that significant power

7

reduction with negligible performance degradation can be realized using a slightly lower

maximum frequency, called the saturated frequency. However, the challenge is that the sat-

urated frequency depends on different CPU and GPU workloads. Therefore, a large set of

diverse gaming benchmarks using various different types of workloads are needed for building

a model. Furthermore, mobile platforms are changing rapidly with different computing capa-

bility. In order to overcome these challenges, we propose Co-Cap, a cooperative CPU-GPU

saturated frequency Lookup table based governor. Co-Cap’s a simple and easily portable

methodology is applicable for rapidly changing platforms. We describe Co-Cap in Chapter

3.

1.3.3 Hierarchical-FSM based Dynamic Behavior Modeling Gov-

ernor (HiCAP)

Another motivating observation is that FPS and CPU/GPU workloads are changing dynam-

ically at runtime, providing additional opportunities for energy savings. However, this raises

the challenging problem of how to specify dynamic behaviors for gaming workloads. There-

fore, we propose HiCAP, a model-based approach that captures dynamic behavior using a

hierarchical Finite State Machine (HFSM) model. HFSMs exploit hierarchically an intuitive

behavior modeling methodology for complex embedded systems [31] [69]. Furthermore HF-

SMs naturally capture the inherent hierarchical model in typical game design models [61] [87].

Therefore, we specify each state hierarchically using Quality of Service (QoS) and CPU/GPU

workload dominance metrics. First, we specify two super-states: QoS-meet or QoS-loss. If

a current FPS during an epoch of time is higher than a target FPS, the state will be called

QoS-meet. If not, it is QoS-loss. Then, using CPU and GPU cost, we observe if the state

is CPU-dominant (CPU cost > GPU cost) or GPU-dominant (GPU cost > CPU cost). Fi-

nally, according to the hierarchical property, we apply a specific policy in each leaf state (i.e.,

applying different policies for different types of states). We describe HiCAP in Chapter 4.

8

1.3.4 Machine Learning enhanced Modeling Governor (ML-Gov)

We observed that classical statistical models such as simple or multiple linear regression mod-

els suffer from limitations when executing mobile games with dynamic and diverse workloads

on CPU-GPU heterogeneous mobile platforms. For example, simple linear prediction models

using small data sets result in high prediction errors for unseen workloads. To overcome this

limitation, one practical alternative is to use a Machine Learning (M.L) enhanced model

building methodology using large amounts of diverse data. M.L approaches are facilitated

by the ability to collect large amounts of data from mobile systems, and the access to tools

that enable visualization and analysis. Therefore, using this kind of M.L approach, pre-

diction errors and structure of cost functions can be evaluated usefully. Based on these

observations, we propose a tree-structured (piecewise) linear model based integrated gover-

nor, using practical M.L techniques. Like general M.L approaches, our proposal is composed

of a learning phase and a prediction phase. In the learning phase, we use the training data to

build tree-based piecewise linear models with evaluations. Then in the prediction phase, we

set CPU and GPU frequencies using the models to maximize energy savings with minimal

performance degradation. We present our ML-Gov approach in Chapter 5.

1.4 Thesis Contributions

1.4.1 Design and Implementation of micro-benchmarks

For diverse and dynamic gaming workloads, we design and implement our graphics micro-

benchmarks by stressing specific graphics pipeline stages separately for graphics workload

characterization. Comprehensive observations and thorough analyses from the results of

micro-benchmarks provide the correlation between workloads of hardware pipeline stages

9

and performance/power effects. We present opportunities for energy-efficient mobile DVFS

design based on these analyses.

1.4.2 Simple but highly effective CPU-GPU Frequency Capping

For rapidly changing mobile platforms, we propose Co-Cap, a cooperative frequency capping

governor to achieve energy efficiency for a diverse set of mobile games by building simple and

easily portable CPU-GPU Lookup Tables. Our Co-Cap capping strategy avoids unnecessar-

ily higher frequency of CPU and GPU considering both FPS and per-frame energy saving on

top of the default CPU and GPU governors; we present characterization of diverse mobile

graphics gaming workloads using combinations of our custom micro-benchmarks to enable

efficient dynamic application of frequency capping. We demonstrate the efficacy of Co-Cap

across over 100 combined micro-benchmarks and 40 real mobile graphics applications, using

multiple training and deployment sets achieving significant improvements in energy efficiency

with minimal loss in performance.

1.4.3 Hierarchical FSM-based Dynamic Behavior Modeling

For effective adaptation of dynamic behavior changes, we propose a Hierarchical FSM

(HFSM) based dynamic behavior modeling strategy for mobile gaming. We present a coop-

erative CPU-GPU governor that deploys a simple maximum frequency-capping methodology

exploiting the HFSM for dynamic DVFS. We present experimental results on a large set of

real mobile games with dynamic behaviors, showing significant energy savings of in Energy-

perFrame (EpF) with minimal loss in FPS performance.

10

1.4.4 Machine Learning enhanced Simple and Accurate Predic-

tion Models

We develop simple and accurate prediction models for diverse and dynamic gaming workloads

on heterogeneous mobile platforms, using machine learning enhanced performance models.

We build tree-based piecewise linear regression models using off-line machine learning algo-

rithms built in an existing data mining tool. We present an integrated CPU-GPU DVFS

governor that applies piecewise policies using analyses of the models. We present experimen-

tal results on training and testing sets of mobile games with various characteristics, showing

significant energy savings in Energy-per-Frame (EpF).

Thesis Organization The rest of this thesis is organized as follows: Chapter 2 de-

scribes graphics workload characterization by design and implementation of graphics micro-

benchmarks in mobile embedded systems. Chapter 3 presents a simple but effective Co-Cap

methodology for rapidly changing mobile platforms. Chapter 4 presents dynamic behavior

modeling based governor by building hierarchical FSM behavior model for effective adapta-

tion of dynamic behavior changes. Chapter 5 presents a machine learning enhanced tree-

based piecewise regression models for simple and accurate prediction models. In Chapter 6,

we conclude this thesis and address future directions for this research.

11

Chapter 2

Graphics Workload Characterization

for DVFS Design

2.1 Introduction

The increasing use of mobile platforms for 3D games and other graphics-intensive applications

has resulted in deployment of high-performance mobile GPUs. Table 2.1 lists sample state-of-

the-art smartphones and their corresponding mobile GPUs, their maximum GPU operation

frequencies, and the number of Dynamic Voltage Frequency Scaling (DVFS) steps to enable

modulation of the mobile GPU energy consumption. This table clearly shows the trend

towards higher mobile GPU frequencies (e.g., 400-578 Mhz) in the face of increased graphics-

intensive mobile workloads.

Of course the use of high-frequency mobile GPUs for higher performance results in dra-

matic increases in mobile power and energy consumption. For instance, Figure 2.1 shows the

power consumption of a real mobile Adreno 225 GPU (shown in the upper dark gray) and

the dual-core Snapdragon processors (shown in the lower light gray and the white for cores

12

Table 2.1: State-of-the-art Smartphone GPU

Devices SoC GPU Max Steps

MSM8960 MDP Snapdragon S4 Adreno 225 400Mhz 4
Nexus 4 Snapdragon S4 Adreno 320 400Mhz 4
Galaxy S4 Exynos 5410 SGX544 480Mhz 4
Nexus 5 Snapdragon 800 Adreno 330 450Mhz 4
Galaxy S5 Exynos 542x Mali-T628 578Mhz 5

0 and 1 respectively) for the MSM8960 Mobile Development Platform (MDP) executing the

GLBenchmark Egypt graphics benchmark [5] on the High setting, to emulate an entirely

GPU compute-bound test. Note the significantly higher mobile GPU power trace in dark

gray (bouncing between 800mW and 1.2W) as compared to the much lower light gray and

white traces representing the CPU core power consumption (bouncing between 100mW and

400mW). This figure clearly motivates the need to characterize mobile GPU workloads and

develop more efficient mobile DVFS policies to save energy for graphics-intensive applica-

tions.

Figure 2.1: Mobile GPU Power Consumption [5]

Mobile platform vendors currently deploy proprietary mobile GPU DVFS techniques im-

plemented in vendor-specific GPU device drivers, often hidden behind hardware security

modules (e.g., the Nexus 4 GPU DVFS governor is hidden behind ARM’s TrustZone). Note

that existing mobile GPU DVFS policies are not workload-aware and furthermore do not

allow for customization in the face of rapidly changing mobile GPU architectures. Further-

13

more, the overall energy efficiency of a mobile platform needs an integrated strategy that

combines mobile GPU DVFS intelligently together with CPU DVFS for graphics rendering

on mobile GPUs [22] [23], as well as memory bandwidth effects [30] [70] for high-performance

graphics rendering applications with acceptance user experience. Such an approach needs

a good understanding of mobile GPU graphics workload characterization for DVFS design,

which to the best of out knowledge has not been addressed before.

In this chapter, we present a measurement study of mobile GPU graphics workload char-

acterization for DVFS design to enable increased energy efficiency. We first introduce an

abstracted mobile GPU pipeline and then correlate the OpenGL ES [53] pipeline on Android

system to characterize performance and power metrics using custom micro-benchmarks that

stress different components of the mobile GPU pipeline to model the effects of different

application workloads on energy efficiency for graphics applications. We then propose op-

portunities for integrated mobile GPU-CPU DVFS design based on our observations and

analyses.

2.1.1 Contributions

• Design and implementation of micro-benchmarks that stress specific graphics pipeline

stages separately for graphics workload characterization.

• Observations and analysis of the micro-benchmark results which states the correlation

between hardware characteristics and performance metrics

• Opportunities of average power and energy per frame for mobile DVFS design.

14

2.2 Motivation and Related Work

2.2.1 Motivation

Two major issues motivate our work: 1) the challenge of providing mobile GPU DVFS

design concepts for better energy efficiency. 2) The need for thorough mobile GPU graphics

workload characterization for mobile GPU DVFS design by analyzing the correlation between

performance, power and energy efficiency for graphics-intensive applications.

Figure 2.2: Motivating Example for GPU Workload Characterization.

Figure 2.2 outlines a motivating example for the mobile GPU pipeline where the X-axis

shows a set of graphics-intensive games (Angrybird, Jetpack, FastRace, RealRace) profiled

on the Nexus4 using the Adreno GPU profiler [85]. The left Y-axis shows the normalized

Vertex/Texture memory read (MB/sec), the number of Vertex/Fragment shader instructions

per second, and Frames-per-second (FPS). The right Y-axis shows the average power con-

sumption for each game. This figure clearly shows that many different graphics workload

factors affect the power consumption of these applications. For instance, Angrybird and

Jetpack consume almost the same average power, but the profiled GPU workload character-

istics are very different: while the most stressed workload factor for Angrybird is the texture

memory read, Jetpack on the other hand is most stressed for executing vertex instructions.

This example clearly shows that mobile GPU workload factors and workload variation sig-

15

nificantly affects the power consumption of different graphics pipeline components of mobile

graphics-intensive applications, and opens up opportunities for better quality-aware DVFS

policies that can exploit energy efficiencies of different GPU components. However as we de-

scribe below, current efforts have not undertaken a thorough study of mobile GPU graphics

workload characterization to enable better quality-aware DVFS policies for energy efficiency.

2.2.2 Related Work

DVFS is an established energy conservation strategy that has been applied for both CPUs

and GPUs in the mobile space as well as the desktop/server space. Before applying DVFS

to graphics-intensive computer games, DVFS algorithms [3] [19] [47] [48] [62] [63] [102] for

video decoding applications in the mobile space have largely been deployed because they are

computationally expensive and its workload exhibits a high degree of variability [39].

With regard to DVFS for gaming workloads, gaming workload characterization for the

performance and power consumption of desktop and mobile 3D games is prior to propos-

ing DVFS policies. Some efforts characterized the performance and power consumption of

desktop 3D games: static and dynamic workload characterization on graphics architecture

features [21] [72] and analyses for a set of modern 3D games at the API call level and at

the microarchitectural level [88], 3D graphics performance modeling [98], and the power

consumption analysis and modeling of 3D graphics architecture [65] [91]. Ge et al. [30] intro-

duced the impacts of DVFS on application performance and energy efficiency for GPGPU

computing and compared them with DVFS for CPU computing; and Mei et al. [70] pre-

sented a measurement study that aims to explore how GPU DVFS affects the system energy

consumption for GPGPU computation on desktop platforms. Our work is different from

this large body of graphics (gaming) and GPGPU workload characterization in that here

we analyze integrated mobile GPUs (which are architecturally different from mobile CPU

graphics rendering and desktop GPUs [66]) by introducing customized micro-benchmarks

16

designed to stress individual mobile GPU components, and perform mobile graphics work-

load characterization in order to study the effects of different workload factors and workload

variation. Using the results of these micro-benchmarks, we observe the correlation between

performance, power, and energy efficiency to enable generation of enhanced mobile DVFS

policies.

Some efforts have begun analyzing graphics-intensive rendering applications (e.g., 3D

games) in mobile devices: Mallik et al. [68] presented power management for games by al-

lowing the user to directly evaluate the current performance and scaling CPU frequency

statically; Gu et al. [39][38] [37] [36] and Dietrich et al. [26] proposed CPU graphics ren-

dering workload characterization and CPU DVFS for 3D Games, under the assumption

that mobile devices such as PDAs and mobile phones do not have integrated mobile GPUs.

Moreover, novel mobile GPU architecture design techniques [45] [14] for performance and

energy-efficiency were proposed and [73] [64] characterized power consumption and perfor-

mance of 3D mobile games, in addition to power analysis in a Smartphone [17]. With the

emergence of high performance mobile GPUs, Dietrich et al. [22] [23] introduced CPU DVFS

for mobile graphics rendering as an extension of [39] [38], but these work didn’t focus on

GPU DVFS, but rather on CPU DVFS for the mobile GPU. And, You et al. [100] explored

to discover the potential of DVFS on embedded GPUs by analyzing workload variations of

game application. Most recently, Pathania et al. [81] proposed an integrated CPU-GPU

DVFS algorithm for power management for mobile games. However, they did not perform a

detailed analysis and correlation between performance, power, and energy efficiency of the

mobile GPU pipeline based on different workload factors and variations that could enable

enhanced mobile DVFS design. In contrast, we present a thorough study of the correlations

between mobile GPU hardware characteristics, workload factor variations, mobile GPU uti-

lization, FPS, and consumed average power and energy per frame. In addition, we introduce

opportunities for improved DVFS design of mobile GPU graphics rendering.

To the best of our knowledge, our work is the first to introduce quality-aware mobile

17

GPU graphics workload characterization considering better energy efficiency for DVFS de-

sign. With the recent emergence of high-performance mobile GPUs (with frequencies higher

than 400Mhz and multiple frequency levels), we address the critical need for a comprehen-

sive study of mobile graphics performance, power and energy efficiency using customized

micro-benchmarks and varying graphics-intensive workload factors.

2.3 Graphics Workload Characterization

Unlike desktop GPUs, mobile GPUs are integrated in application processors with CPUs, and

usually have a different rendering mode like Tile-Based Deferred Rendering (TBDR) [2] with

narrow memory bandwidth and small numbers of processing elements. Since mobile GPUs

are architecturally distinct from desktop GPUs, we begin by describing the mobile GPU

hardware pipeline and illustrate graphic display with OpenGL ES on the Android system.

We then present the design and implementation of our custom micro-benchmarks that are

designed to stress different components of the mobile GPU pipeline.

2.3.1 Mobile Graphics Pipeline

2.3.1.1 Mobile GPU Hardware Pipeline

Figure 2.3: Abstract Mobile Graphics Pipeline.

Figure 2.3 shows a logical, abstracted GPU pipeline used by modern mobile GPUs (Mali,

Adreno, and PowerVR GPUs) to explain the mobile graphics architecture and interaction

18

between GPU shaders and system memory. The three main components in the pipeline are

the Geometry Unit, FIFO/Tiling Engine, and the Fragment Unit, as described below:

• The Geometry Unit is composed of three stages: i) the Vertex Fetcher reads the input

vertices from memory, ii) the Vertex Shader transforms and shades the vertices, and

iii) the Primitive Assembly stage assembles shaded vertices into triangles.

• The FIFO/Tiler Unit can be based on two rendering modes: immediate-mode render-

ing and tile-based rendering. In immediate-mode rendering, once a triangle has been

transformed, it is immediately sent down to the graphics pipeline for further pixel pro-

cessing. On the other hand for tile-based rendering, the Tiler Unit stores the triangles

in memory and sorts them into tiles; since the transformed triangles from Geometry

Unit have to be stored in memory and fetched back for rendering, there is a trade-off

between memory traffic for geometry and memory traffic for pixels [15]. It should be

noted that tile-based rendering is currently dominant in mobile GPUs.

• The Fragment Unit is mainly composed of programmable fragment shaders that process

fragments generated by the rasterizer. Texturing usually happens here with the fetch

of texture memory. The main function of the Fragment Unit is to process fragments,

screen pixels and pixel processing such as reading and writing of color components and

depth, and alpha blending.

2.3.1.2 OpenGL ES and Graphic Display

Figure 2.4 shows a high-level logical view of the integrated mobile CPU-GPU rendering

pipeline model: the CPU produces graphics workload for mobile GPU to perform rendering

operations. In this model, OpenGL ES applications have a temporal relationship with the

execution of the underlying GPU hardware which performs rendering to fulfill application

requirements.

19

(a) GPU Dominant Workload (b) CPU Dominant Workload

Figure 2.4: Logical Graphics Rendering Pipeline

At the highest (application) level, a series of OpenGL ES API calls is made by applica-

tions to indicate what to display according to the current application state. This procedure

corresponds to the CPU stage of the pipeline in Figure 2.4. Then the rendering stages op-

erate on the application graphics data to generate the display in the GPU state.

In Android, the SurfaceFlinger [9] window surface manager produces a frame by compos-

ing graphics data generated by different applications. Surfaceflinger then writes the outcome

to framebuffer to display the composed image on the screen. This frame updating procedure

corresponds to the dotted line in Figure 2.4. The frequency at which SurfaceFlinger updates

displayed frames is labeled Frame Per Second (FPS), which is typically used as a metric to

compare graphics performance (i.e., higher FPS is better graphics performance).

However, FPS is usually limited by the screen refresh rate since we cannot exploit an FPS

larger than the screen refresh rate. In Android platforms, the process to update a frame is

triggered periodically by the vertical synchronization (VSYNC) technique [34]. Generally

the refresh rate is fixed at 60 Hz so that the maximum FPS is 60 and the frame time (recip-

rocal of FPS) is maximally limited to 16.67ms.

In the case of intensive graphics workload, the frame time increases to more than 16.67ms,

so FPS drops below 60. With this observation, we are able to separate intensive mobile

graphics rendering pipeline into two cases: a) GPU Dominant Workload, as illustrated in

Figure 2.4(a) where the dominant frame time is the same with GPU execution time. In this

case, the GPU is the bottleneck (e.g., the rendering is too complex to hit 60 FPS); and b)

CPU Dominant Workload, as shown in Figure 2.4(b) where the dominant frame time is the

same with CPU execution time. In this case, the bottleneck is not the GPU but the CPU

(e.g., the corresponding CPU takes 30ms to produce a frame which the GPU takes 10ms to

20

render.)

2.3.2 Workload Characterization and Micro-benchmarks

We now present the design of our micro-benchmarks that can be used to analyze the cor-

relation between performance, power and energy efficiency of the mobile GPU by stressing

different components of the mobile graphics pipeline stages. Accordingly, we first categorize

our micro-benchmarks from the perspectives of GPU memory-, GPU computation- and CPU

computation-bound workloads.

2.3.2.1 Workload Characterization

GPU memory: Here we target GPU vertex memory fetch and texture memory fetch. Vertex

memory contains vertex attributes such as positions, colors, etc. Vertices are the foundation

of graphics objects hence they are necessary in all graphics rendering. On the other hand,

texture memory is typically used in games/applications that require rich graphic details in

objects and scenes. External memory access is very expensive to GPU performance, both

due to longer memory latencies and also because it can decrease the available parallelism for

GPU cores. Additionally, the GPU consumes significantly more power during the memory

access. Thus, the GPU memory is an important component for characterization.

GPU computation: Vertex shaders and fragment shaders are considered in this category.

Starting from OpenGL ES 2.0, programmable shaders are supported in mobile platforms.

Compared to the fixed function pipeline in OpenGL ES 1.x, shader programs allow developers

to control how the graphics objects are rendered. Since there may be a variety of shaders,

we need to address their influence on performance and power.

CPU computation: Mobile applications can access hardware-accelerated graphics through

21

OpenGL ES commands. These commands are generated by algorithms run within applica-

tions to determine what to display in the next frame. As shown in Figure 2.4, graphics

rendering includes the CPU as a whole. However, a complex programming model or com-

plicated algorithms might reduce the FPS (resulting in quality loss) if excessive CPU time

is spent on computation of OpenGL ES commands. Therefore, we also need to analyze the

workload executed on CPU to understand its effect on graphics rendering.

2.3.2.2 Design and Implementation of Micro-benchmarks

TABLE 2.2 summarizes the Micro-benchmarks, their workload factor (i.e., which aspect of

the mobile GPU pipeline is stressed), and the corresponding effects on the mobile GPU

stages (i.e., Vertex Fetch, Vertex Shaders, Texture Fetch and Fragment Shaders). We briefly

describe each Micro-benchmark below:

Table 2.2: Micro-benchmarks and their Pipelined Workloads

MBs Workload Factor CPU Vertex Fetch Vertex Shaders Texture Fetch Fragment Shaders

mb-VerM Vertex Memory Read Only GL API # of Vertices Minimized None None

mb-TexM Texture Memory Read Only GL API Fixed Minimized Texture Img Size Minimized

mb-VerSh Vertex Instructions Only GL API Fixed Ver. Shader P.G None None

mb-FragSh Fragment Instructions Only GL API Fixed Minimized None Frag. Shader P.G

mb-App CPU Exec. Time GL API + Busy Loop Fixed Minimized None Minimized

mb-VerM : stresses the vertex fetcher (start of the GPU pipeline) by giving different

number of vertices to vary the amount of vertex data read from main memory. The work-

load of following pipeline stages might be affected due to different amounts of vertex data.

Therefore, in order to minimize additional workload in the following stages, a simple vertex

shader program is used into the later pipeline stages where the vertices will be discarded by

the clipping test.

mb-TexM : targets the amount of texture memory read from main memory. Both vertex

and fragment shaders should support texture mapping in order to do texture fetch. The

amount of texture memory read is varied by applying different sizes of texture images. Since

we aim to evaluate only the amount of texture memory fetch, we use only fixed vertex data

22

with fixed texture coordinates (instead of diverse texture mapping techniques).

mb-VerSh : targets vertex shaders that perform coordinate transformation of vertex

data. mb-VerSh stresses vertex shaders by changing the number of vertex instructions with

a vertex shader program. The program computes the lighting effect on vertex color and

repeats itself redundantly with a different number of iterations to increase the workload of

vertex shader. mb-VerSh also adopts the same strategy as mb-VerM to disable the following

pipeline stages.

mb-FragSh : stresses the Fragment shaders that manipulate data in each fragment such

as color and texture. As with Micro-benchmark mb-VerSh, we apply a fragment shader

program that supports lighting effect on fragment color, and increase the number of fragment

instructions by repeated execution of this program to stress the fragment shader.

mb-App: simulates the higher application workload and the OpenGL ES API calls at

the application level. The workload is stressed by modifying the time spent by CPU with a

configurable code stub. In order to overcome varying execution times (due to effects of the

CPU frequency governor and load balancer in Linux), we apply a fixed CPU frequency to

emulate a consistent execution time for the same mb-App configuration.

2.4 Experimental Setup and Results

2.4.1 Experimental Setup and Methodology

TABLE 2.3 summarizes our platform configuration where we use a Nexus 4 device installed

with Android version 4.2.2 and Linux build 3.4.0. As shown in Figure 2.5, we use the Adreno

Profiler [85] to get the profiled data of workload factors such as texture memory read per

second and vertex instructions per second, GPU utilization, and FPS. The Adreno Profiler is

23

Figure 2.5: Power Measurement and Adreno Profiler Setup

a PC based application with mobile graphics optimization and debugging features to identify

performance bottlenecks in each application, and users can dynamically make modifications

to see how they affect performance at runtime. The device runs with 40% of screen bright-

Table 2.3: Platform Configuration

Feature Description

Device Nexus4 [57]
SoC Snapdragon S4 Pro APQ8064 [6]
CPU Cortex-A15 MP (Quad-core), 1.5Ghz
GPU Adreno 320, 400Mhz
System RAM 2GB RAM (533Mhz Dual-ch.)
Mem. Bandwidth up to 8.5GB/sec

OS(Platform) Android 4.2.2
Linux Kernel 3.4.0

Profiler Adreno Profiler Version 3.6 [85]

ness and airplane mode where the power consumption is measured using a Monsoon power

monitor [74]

On the Nexus 4, the Adreno GPU is used with a maximum frequency of 400Mhz, and

supporting four frequency steps (128Mhz, 200Mhz, 325Mhz, and 400Mhz). The Nexus 4

smartphone runs a power and thermal management process in the background that dy-

namically controls the CPU and GPU frequency for thermal throttling when a threshold

temperature is reached. To avoid interference with our experiments, we disabled this pro-

cess to obtain consistent experimental data.

24

We measured and profiled this system using the Micro-benchmarks. For each micro-

benchmark, we repeat the experiments by using different combinations of workload factors

and GPU frequencies. The power measurement is conducted separately from profiling since

the connection between the PC and the phone would lead to imprecise results. Workload

factors are adjusted by the configurations within the benchmark and then installed as a

new application to run on the phone. The GPU frequency is changed through the sysfs

interface [1] provided by GPU device driver.

2.4.2 Experimental Results

We now present the results and analysis of running the five different micro-benchmarks for

workload characterization.

2.4.2.1 Micro-benchmark mb-TexM

Figure 2.6 shows the results of mb-TexM at different frequencies and workload variation.

Based on these results, we analyze and observe the following patterns and trends. As shown

in TABLE 2.4, in order to make workload variation, the amount of texture memory read is

varied by applying five different texture image sizes.

Table 2.4: Workload Variation in mb-TexM

Tex. Image Size 64*64 128*128 256*256 448*448 512*512
Tex. Mem. R.(MB/s) 8 376 1,945 5,032 4,763

Table 2.5: Percentage of Texture L2 Cache Miss in mb-TexM

% Tex. L2 Miss 64 * 64 128 * 128 256 * 256 448*448 512*512
128MHz 0.39 7.39 15.78 23.15 25.18
200MHz 0.39 7.30 14.97 23.50 25.40
325MHz 0.39 7.37 16.00 23.86 25.67
400MHz 0.39 7.36 15.81 24.16 26.01

25

0

1000

2000

3000

4000

5000

6000

64*64 128*128 256*256 448*448 512*512

Te
x

tu
re

 M
e

m
o

ry
 R

e
a

d
(M

B
y

te
s/

S
e

c)

Texture Image Size

128MHz 200MHz 325MHz 400MHz

60.0
(a) Workload Factor

0

20

40

60

80

100

64*64 128*128 256*256 448*448 512*512

G
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Texture Image Size

128MHz 200MHz 325MHz 400MHz

(b) GPU Utilization

0.0

10.0

20.0

30.0

40.0

50.0

60.0

64*64 128*128 256*256 448*448 512*512

F
ra

m
e

 p
e

r
S

e
co

n
d

 (
F

P
S

)

Texture Image Size

128MHz 200MHz 325MHz 400MHz

(c) FPS

1000

1500

2000

2500

3000

3500

64*64 128*128 256*256 448*448 512*512

A
v
e

ra
g

e
 P

o
w

e
r

(m
W

)

Texture Image Size

128MHz 200MHz 325MHz 400MHz

(d) Average Power

10.0

30.0

50.0

70.0

90.0

110.0

64*64 128*128 256*256 448*448 512*512

E
n

e
rg

y
 p

e
r

F
ra

m
e

(m

J/
F

ra
m

e
)

Texture Image Size

128MHz 200MHz 325MHz 400MHz

(e) Energy per Frame

Figure 2.6: Results of mb-TexM at Different Frequencies with Workload Variation

Workload Factor: As shown in Figure 2.6(a), the amount of texture memory read is

directly proportional to the increased size of texture images except the maximum image size.

In this case, the amount of texture memory read is decreased in spite of the increased size.

According to the profiling results, the peak texture memory read is 5.032GB/s in the 448

image size but the peak texture L2 cache miss is highest in the maximum image size as shown

in TABLE 2.5. (Ideally the peak memory bandwidth on Nexus4 is 8.5GB/s, but the highest

memory throughput was 5.032GB/s among the results of our micro-benchmarks.). Based

on these results, we speculate the reason that the maximum image size has worse memory

throughput than the 448 image size. The memory bandwidth is already exhausted(saturated)

in the 448 image size and image size is enlarged additionally, resulting in the increase of the

texture L2 cache miss and subsequent increase in the memory latency. Therefore, memory

throughput is decreased in the maximum image size because memory throughput is propor-

tional to frequency but is inversely proportional to the memory latency.

The amount of texture memory read at different frequencies are the same up to the 256

image while they are proportional to the frequency in the 448 image size and the maximum

26

image size. The main reason is that FPS has substantially reduced by using low GPU fre-

quencies in spite of 100% GPU utilization for all frequencies. In other words, the number of

frames rendered by GPU are reduced accordingly so that the amount texture memory read

are also decreased.

GPU Utilization: Figure 2.6(b) shows that the GPU utilization is proportional to

the increased size of texture images except the maximum image size. In contrast with

the Workload Factor(texture memory read), GPU Utilization is inversely proportional to

frequency below 128 image size and remains the same above 448 image size.

FPS: As shown in Figure 2.6(c), FPS is inversely proportional to the increased size of

texture images. From a frequency, FPS is the same below 128 image size and directly

proportional to GPU frequency (except 400Mhz) above 448 image size. The peak memory

bandwidth limitation in 400Mhz results in more FPS reduction in texture memory fetching

compared to other frequencies.

Average Power: As shown in Figure 2.6(d), the average power is proportional to the

increased size of texture images except for the maximum image size. Below 128 image size,

there is a considerable gap of average power consumption between 325Mhz and 400Mhz

compared with other frequencies. For instance, the average power is reduced from 1573mW

to 1361mW in the 128 image, (i.e., 13.45% of the average power of 400Mhz). Because it’s

already in the maximum FPS, energy efficiency could be improved up to 13.45% without

performance reduction by GPU DVFS. On the other hand, a trade-off between power and

performance exists above 448 image size.

Energy per Frame1: As shown in Figure 2.6(e), in the range below 128 image size,

400Mhz has the highest energy per frame (the worst energy efficiency). However, energy per

frame in the range above 448 image size is very diverse according to different workload. In

1Since the execution time remains the same for FPS at a fixed frequency, we assume in the rest of this
chapter that the energy per frame is proportional to the power consumed.

27

the case of the 448 image size, only energy per frame of the lowest frequency is worse than

other frequencies because the power consumption in 128Mhz is relatively higher compared to

the frequency ratio while FPS is directly proportional to the frequency ratio (i.e., execution

time is inversely proportional to the frequency ratio.). However for the maximum image size,

the trend shows that higher frequency has lower energy per frame (better energy efficiency).

In particular, the difference of energy per frame among lower frequencies in 512*512 is

higher than that of higher frequencies. This is related to the different rate of increase of

FPS and average power according to each frequency because we measured the total system

power instead of the GPU power consumption. (i.e., the rate of increment of FPS is faster

than that of average total power). We will explain the reasons in detail in Chapter 2.4.2.4.

2.4.2.2 Micro-benchmark mb-VerM

Workload Factor: As shown in Figure 2.7(a), the amount of vertex memory read is changed

by the number of rendered vertices in mb-VerM. TABLE 2.6 shows an example of how it

varies. mb-VerM aims to emulate one type of GPU memory-intensive applications. Intu-

itively, the bottleneck of performance would not be the system memory bandwidth. The

results show that the performance is not bounded by the bandwidth as the maximum vertex

memory throughput is 386MB/s, which is far less than system theoretic memory bandwidth

8.5GB/s. Therefore, we speculate that too many vertices (i.e., vertex data per frame) results

in vertex processing bottleneck with the additional needs of internal buffers.

GPU Utilization: Unlike previous results, the utilization shown in Figure 2.7(b) implies

that the amount of vertex memory read does not influence utilization directly. As previously

mentioned, GPU still performs operations in vertex shader. Therefore, GPU computation

workload slightly changes as number of vertices increases. In cases that the number of vertices

are below or equal to 24*8000, the utilization increases along with the number of vertices.

In other cases, we observe that the percentage of clock cycles where the GPU cannot make

28

0

100

200

300

400

500

24*1000 24*4000 24*8000 24*16000 24*64000

V
er

te
x

M
em

o
ry

 R
ea

d

(M
B

yt
es

/S
ec

o
n

d
)

Number of Vertices

128MHz 200MHz 325MHz 400MHz

(a) Workload Factor

0

5

10

15

20

25

30

24*1000 24*4000 24*8000 24*16000 24*64000

G
P

U
 U

ti
liz

at
io

n
 (

%
)

Number of Vertices

128MHz 200MHz 325MHz 400MHz

(b) GPU Utilization

0.0

10.0

20.0

30.0

40.0

50.0

60.0

24*1000 24*4000 24*8000 24*16000 24*64000

F
ra

m
e

 p
e

r
S

e
co

n
d

 (
F

P
S

)

Number of Vertices

128MHz 200MHz 325MHz 400MHz

(c) FPS

0

500

1000

1500

2000

2500

24*1000 24*4000 24*8000 24*16000 24*64000

A
v

e
ra

g
e

 P
o

w
e

r
(m

W
)

Number of Vertices

128MHz 200MHz 325MHz 400MHz

(d) Average Power

0.0

50.0

100.0

150.0

200.0

24*1000 24*4000 24*8000 24*16000 24*64000

E
n

e
rg

y
 p

e
r

F
ra

m
e

 (
m

J/
fr

a
m

e
)

Number of Vertices

128MHz 200MHz 325MHz 400MHz

(e) Energy per Frame

Figure 2.7: Results of mb-VerM at Different Frequencies with Workload Variation

any more requests for vertex data increases while fetching vertex data, leading to a drop in

utilization.

Table 2.6: Workload Variation in mb-VerM

Num. of Vertices 24*1000 24*4000 24*8000 24*16000 24*64000
Ver. Mem.(MB/s) 29 115 230 314 386

f

FPS: From Figure 2.7(c), we see that the number of vertex memory read has not saturated

but FPS starts to drop when the number of vertices are increased to 24*16000. We speculate

that since the geometry stage and fragment stage in GPU pipeline execute sequentially, the

time spent in geometry stage becomes the bottleneck for vertex memory intensive cases,

which leads to low FPS. Though vertex memory read throughput is affected by GPU DVFS

as shown in Figure 2.7(a), FPS does not benefit significantly from high GPU frequency.

Average Power: Unlike the previous results that power consumption reduces largely

along with decreased FPS, it remains a near-linear relationship with the amount of vertex

memory read. The effects of GPU DVFS in vertex memory read throughput is insignificant,

29

0

100

200

300

400

500

24*1000 24*4000 24*8000 24*16000 24*64000

V
er

te
x

M
em

o
ry

 R
ea

d

(M
B

yt
es

/S
ec

o
n

d
)

Number of Vertices

128MHz 200MHz 325MHz 400MHz

Figure 2.8: Workload Factor result with Enabled CPU DVFS on mb-VerM

which results in similar FPS and power usage pattern in different frequencies.

Energy per Frame: Energy per frame shown in Figure 2.7(e) with each frequency in

different workload factors are very similar, which indicates again that GPU DVFS does not

improve energy efficiency evidently in vertex memory-intensive applications.

CPU DVFS effect on mb-VerM : We also observe that CPU DVFS results in unstable

vertex memory throughput. Compared with Figure 2.7(a) (which runs with fixed CPU

frequency), Figure 2.8 shows the results running with the default ondemand CPU frequency

governor. The ondemand governor scales CPU frequency up and down depending on CPU

utilization periodically which results in the unstable vertex memory throughput. In other

words, vertex memory throughput also largely depends on CPU frequency.

2.4.2.3 Micro-benchmark mb-App

Workload Factor: The execution time spent in CPU is controlled by a configurable code

stub. GPU rendering operations for the next frame are executed after CPU has done the

simulated workload. TABLE 2.7 shows the CPU execution time variation in different con-

figurations.

Table 2.7: Workload Variation in mb-App

Workload loop-1 loop-2 loop-3 loop-4 loop-8
Exec. Time 9.39ms 19.11ms 29.31ms 37.22ms 75.17ms

30

1600

1700

1800

1900

2000

2100

loop-1 loop-2 loop-3 loop-4 loop-8

A
v

e
r
a

g
e

 P
o

w
e

r
 (

m
W

)

CPU Busy Loop Count

128MHz 200MHz 325MHz 400MHz

(a) Average Power

0

10

20

30

loop-1 loop-2 loop-3 loop-4 loop-8

G
P

U
 U

t
il

iz
a

t
io

n
 (

%
)

CPU Busy Loop Count

128MHz 200MHz 325MHz 400MHz

(b) GPU Utilization

0.0

10.0

20.0

30.0

40.0

50.0

60.0

loop-1 loop-2 loop-3 loop-4 loop-8

F
r
a

m
e

 p
e

r
 S

e
c
o

n
d

 (
F

P
S

)

CPU Busy Loop Count

128MHz 200MHz 325MHz 400MHz

(c) FPS

20.0

40.0

60.0

80.0

100.0

120.0

140.0

loop-1 loop-2 loop-3 loop-4 loop-8

E
n

e
r
g

y
 p

e
r
 F

r
a

m
e

 (
m

J
/
F

r
a

m
e

)

CPU Busy Loop Count

128MHz 200MHz 325MHz 400MHz

(d) Energy

Figure 2.9: Results of mb-App at Different Frequencies with Workload Variation

GPU Utilization: Figure 2.9(b) shows the GPU utilization of mb-App. Though GPU

utilization of different frequencies have the same pattern with previous results, the utilization

goes low as workload increases. The reason is because when CPU spends more time in

application logic, GPU has more time to be idle which causes low GPU utilization.

FPS: In Figure 2.9(c), the result of loop-1 shows both CPU and GPU could complete

the workload in time to maintain highest FPS as the refresh rate. In other cases, frame time

is dominated by CPU execution time, hence FPS reduces as CPU workload increases. Note

that while FPS is low, GPU utilization is also low, indicating that performing GPU DVFS

with only GPU utilization metric might lead to unexpected results in FPS. Therefore, the

CPU utilization should also be considered.

Average Power: From the case of loop-1 to loop-2 in Figure 2.9(a), CPU becomes

fully busy, therefore the average power increases. In other cases, CPU consumes the same

power as it is already fully utilized; and the average power drops along with FPS reduction

because fewer frames are rendered by GPU. Similar to previous micro-benchmarks results,

the power consumption in 400MHz is significantly more than those for other frequencies.

However, GPU DVFS does not affect FPS at all. A general observation is that if CPU

execution time dominates the frame time, it is beneficial to scale down GPU frequency to

the lowest allowable level such that GPU execution time does not dominate the frame time.

Therefore, GPU DVFS governor should include CPU utilization to make decisions for low

31

power consumption.

Energy per Frame: As GPU DVFS has no effect on FPS, the energy per frame increases

with frequency, which leads to the observation that GPU DVFS governor should scale down

frequency to the lowest possible level.

2.4.2.4 Result and Analysis on mbVerSh and mbFragSh

TABLE 2.8 shows the workload variation in the two micro-benchmarks respectively. mb-

VerSh stresses vertex shaders by changing the number of vertex instructions using a vertex

shader program and mb-FragSh uses a similar approach to stress fragment shader.

Table 2.8: Workload Variation of mb-VerSh and mb-FragSh Analysis

Num. of loop loop-1 loop-1000 loop-2000 loop-4000 loop-8000
Ver. Inst.(M/s) 1.3 674 1,348 2,632 2,731

Num. of loop loop-1 loop-4 loop-8 loop-16 loop-32
Frag. Inst.(M/s) 1,555 2,890 4,713 8,349 14,377

FPS: As shown in Figure 2.10(a) and Figure 2.10(b), patterns of the results in both

mb-VerSh and mb-FragSh are very similar to mb-TexM. We observe that FPS is inversely

proportional to the increased workload but is proportional to frequency below the maximum

FPS for all frequencies. Compared with mb-TexM, the main difference here is that the

performance is not limited by memory bandwidth.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

loop-1 loop-1000 loop-2000 loop-4000 loop-8000

Fr
am

e
p

er
 S

ec
o

n
d

 (
FP

S)

Vertex Shaders

128MHz 200MHz 325MHz 400MHz

(a) FPS

0.0

10.0

20.0

30.0

40.0

50.0

60.0

loop-1 loop-4 loop-16 loop-32 loop-64

Fr
am

e
p

er
 S

ec
o

n
d

 (
FP

S)

Fragment Shaders

128MHz 200MHz 325MHz 400MHz

(b) FPS

Figure 2.10: FPS of mb-VerSh and mb-FragSh

32

Average Power: The power consumption in mb-VerSh and mb-FragSh have similar

pattern but the values are different while they perform at the same FPS. For instance,

the average power of 400Mhz of the maximum workload in Figure 2.11, where the FPS is

around 30, the power consumption is 1496mW in mb-VerSh, and 2147mW in mb-FragSh.

Referring to Figure 2.6(d), the power consumption is 2807mW in mb-TexM at the same

situation. Therefore, mb-TexM is most influential in power consumption among the three

micro-benchmarks due to excessive external memory access.

800

1,300

1,800

2,300

loop-1 loop-1000 loop-2000 loop-4000 loop-8000

A
ve

ra
ge

 P
o

w
e

r
(m

W
)

Vertex Shaders

128MHz 200MHz 325MHz 400MHz

(a) Average Power

800

1300

1800

2300

loop-1 loop-4 loop-16 loop-32 loop-64
A

va
rg

e
 p

o
w

e
r

(m
W

)

Fragment Shaders

128MHz 200MHz 325MHz 400MHz

(b) Average Power

Figure 2.11: Average Power of mb-VerSh and mb-FragSh

Energy per Frame: As shown in Figure 2.12(a) and Figure 2.12(b), the patterns of

energy per frame in mb-VerSh and mb-FragSh are also similar to mb-TexM.

0.0

50.0

100.0

150.0

loop-1 loop-1000 loop-2000 loop-4000 loop-8000

En
e

rg
y

p
e

r
Fr

am
e

 (
m

J/
Fr

am
e

)

Vertex Shaders

128MHz 200MHz 325MHz 400MHz

(a) Energy per Frame

0.0

50.0

100.0

150.0

loop-1 loop-4 loop-16 loop-32 loop-64

En
e

rg
y

p
e

r
Fr

am
e

 (
m

J/
Fr

am
e

)

Fragment Shaders

128MHz 200MHz 325MHz 400MHz

(b) Energy per Frame

Figure 2.12: Energy per Frame of mb-VerSh and mb-FragSh

In mb-TexM, mb-VerSh and mb-FragSh, energy per frame has a similar pattern that in

high workloads where FPS is below 60 in all frequencies, we observe the difference of energy

per frame becomes obvious in different GPU frequencies as the workload factor increases.

33

We first explain how the difference comes from. As we measured total system power instead

of GPU power, it doesn’t increase as much as the FPS increases while scaling up the GPU

frequency. It leads to the results that energy per frame is different in each frequency and

higher frequencies have lower energy per frame than lower frequencies.

In addition, we now explain why the difference of energy per frame becomes larger while

increasing workload factors. First, the power consumption remains the same after the GPU is

saturated by increasing workload factors ideally. For example, Fig. 11 shows that the power

consumption in the two right-most configurations are very similar. Hence, we can assume

that the ratio of power consumption in different frequencies is the same under different

workload factors. Second, as we mentioned before, the ratio of FPS is almost the same with

the ratio of GPU frequencies. Suppose we want to compare the energy per frame of two

frequencies f1 and f2. We can assume that the FPS of f1 is x and the FPS of f2 is c*x where

c is a constant. The total system power consumption of f1 is y and that of f2 is k*y where

k is a constant. By the energy per frame equation: Energy per frame = Average Power

/ FPS, we could find out that the difference of energy per frame in the two frequencies is

proportional to y/x. Because y remains the same in high workloads, it turns out that the

difference is proportional to the reciprocal of x, which is the FPS. As the workload factor

increases, the FPS drops in all frequencies. Therefore, the difference becomes large.

2.5 Opportunities for DVFS design

Our experimental results and analysis of micro-benchmarks gives us insights to identify

several opportunities for improved DVFS design for GPU graphics rendering. It becomes

clear that an integrated DVFS strategy addressing the entire graphics pipeline – including

GPU DVFS and CPU DVFS – is necessary to achieve energy efficiency without loss of quality.

In particular, among our five micro-benchmarks, we observe that mb-TexM, mb-VerSh and

34

mb-FragSh are dependent on GPU DVFS. Both mb-VerM and mb-App are less dependent

on GPU DVFS compared with the other micro-benchmarks. For mb-VerM, we observe that

vertex memory read bandwidth is influenced by CPU DVFS.

2.5.1 GPU DVFS

• Hints for GPU frequency settings to save power

Our experimental observations can exploit opportunities for energy-efficient GPU DVFS

when there are variations in power consumption at different frequencies, based on GPU

hardware characteristics and the available GPU frequency configuration steps. For example,

the Adreno 320 GPU using the four frequency steps on Nexus4 has the potential for power

saving mainly between the frequency settings of 325Mhz and 400Mhz.

• Different patterns between FPS and average power

With regard to performance, FPS is directly proportional to the ratio of GPU frequency

if there is no bottleneck (e.g., memory bandwidth limitation). However, the power patterns

at different frequencies are not similar to FPS because the average power consumption is

more dependent on GPU hardware characteristics and workload variation of applications

compared to FPS. From our experiments, we observe that power prediction is more difficult

and irregular than performance prediction for workload variations. Thus a heuristic approach

using semantic information for power management in DVFS design may be more influential

for accurate power prediction.

• Energy efficiency patterns for different workload variations

From the perspective of energy efficiency (i.e., energy per frame) on the Nexus 4, we

observe that the highest frequency is worse than all the other frequencies for low workload.

35

On the other hand, high frequencies have low energy per frame (better energy efficiency) for

high workloads which will have below the maximum FPS for all frequencies. Therefore, the

lowest allowable frequency (without performance degradation) will be the optimal choice for

low workloads, but the highest allowable frequency (with power increase but lower energy

per frame and better performance) would be the optimal choice for intensive workload.

2.5.2 CPU DVFS

• CPU dominant workload (CPU execution time is the frame time)

In the case of CPU intensive workloads, GPU DVFS does not affect the FPS, average

power, and energy per frame at all. For instance, mb-App’s frame time is the same as CPU

computation time, thus GPU frequency should be at the lowest allowable setting. In this

situation, the CPU is the bottleneck and the GPU is idle with the result that graphics

rendering performance and average power is directly affected by CPU DVFS, not GPU

DVFS.

• GPU dominant workload (GPU execution time is the frame time)

Conversely, when the frame time is dominated by GPU execution time, CPU DVFS should

be utilized to improve energy efficiency. For example, the CPU has lots of idle time while

handling the intensive workload cases in mb-VerSh or mb-FragSh. Therefore, a CPU DVFS

which is aware of the graphics rendering pipeline should be able to improve energy efficiency

in GPU-bound cases. In this situation, the GPU is the bottleneck and the CPU is idle.

In order to improve energy efficiency, we have opportunities of CPU maximum frequency

capping or CPU hot-plug techniques besides CPU DVFS.

36

2.5.3 Integrated DVFS

• CPU-GPU integrated DVFS

As mentioned earlier, the entire graphics pipeline spans the range from CPU invocation of

OpenGL ES API calls to GPU execution of the graphics rendering pipeline. While traditional

approaches apply CPU and GPU DVFS separately, we believe that the energy efficiency can

be further improved by integrated CPU and GPU DVFS from the perspective of workload

characteristics. In both GPU dominant workload and CPU dominant workload, CPU-GPU

DVFS or CPU DVFS considering graphics renderings will be beneficial for better energy

efficiency.

• Integrated DVFS considering memory bandwidth

Another important observation is that memory bandwidth depends on the micro-architecture

of CPU which is similar to the results in [90]. The bandwidth varies while performing CPU

DVFS which might lead to unexpected graphics performance in terms of FPS. Therefore,

for intensive graphics applications like 3D games, these applications exhibit various combi-

nations of CPU-, GPU-, and memory-bound workloads. Thus an integrated CPU and GPU

DVFS approach should also consider the memory bandwidth effect concurrently to handle a

wider spectrum of applications.

2.6 Summary

In this chapter, we conducted an experimental study of GPU graphics workload characteri-

zation on a commercial mobile phone (Nexus 4) to study the effects of DVFS from the per-

spective of performance, power and energy efficiency for executing mobile graphics-intensive

applications. We outlined a methodology for creating micro-benchmarks that stress specific

37

stages within the abstracted graphics pipeline, and demonstrated experimental results by

executing these micro benchmarks and profiling various metrics with the goal of opening

up new opportunities for integrated GPU, CPU and memory DVFS for energy efficiency

without loss of quality.

Our experimental results on micro-benchmarks uncovered several observations. From

the perspective of energy per frame (mJ/Frame), the highest frequency is worse than other

frequencies for low workloads; in other words, the lowest frequency that does not incur per-

formance reduction will be the optimal choice. On the other hand for intensive workloads,

higher frequencies result in lower energy per frame (better energy efficiency) in addition to

improved performance. Another observation is that for better energy efficiency using DVFS,

the effects of CPU, GPU and memory on GPU graphics rendering should be considered as

a whole. Memory impact should be specifically addressed because memory DVFS has not

been adopted in mobile systems as well as CPU DVFS might also alter memory bandwidth

according to micro-architectures. Therefore, we believe that there is potential for even better

energy efficiency, especially when the entire mobile graphics pipeline (comprising the CPU,

GPU and memory) is considered holistically.

38

Chapter 3

Cooperative CPU-GPU Frequency

Capping

3.1 Introduction

Mobile platforms are increasingly demanding high performance and longer battery life at

the same time resulting in the move towards Heterogeneous MultiProcessor Systems-on-

Chip (HMPSoC) for high performance, coupled with various software governors to achieve

energy efficiency through DVFS. For instance, the Exynos 5 (5422) [89] HMPSoC integrates

ARM’s big.LITTLE [35] Octa multi-core CPU and ARM’s Mali-T628 MP6 GPU on the same

chip. To achieve energy efficiency, traditionally independent CPU and GPU DVFS power

management techniques are common for commercial platforms, and some recent efforts have

proposed integrated CPU-GPU governors [81] [80] [51] for energy efficiency, but have focused

on a small set of mobile games that have specific workload characteristics. (Figure 4.1(a)).

Traditional DVFS approaches suffer from two drawbacks: 1) they are not able to achieve

energy efficiency across a wide range of mobile games that exhibit varying CPU and GPU

39

Introduction: trends (HMPSoCs, power management, and Dynamism)

General HMPSoCs System

Big CPU

GPU

Little CPU

Graphics Apps

CPU Governor

CPU DVFS

Proposed Dynamic Co-Cap System

CoCap Manager

GPU
Big CPU Little CPU

Graphics Apps

CPU Governor

CPU DVFS

CPU max freq scaling

GPU Governor

GPU DVFS

GPU max freq scaling

Workload Characterization using CPU/GPU Cost
GPU Governor

GPU DVFS

(a) General Mobile System

Introduction: trends (HMPSoCs, power management, and Dynamism)

General HMPSoCs System

Big CPU

GPU

Little CPU

Graphics Apps

CPU Governor

CPU DVFS

Proposed Dynamic Co-Cap System

CoCap Manager

GPU
Big CPU Little CPU

Graphics Apps

CPU Governor

CPU DVFS

CPU max freq scaling

GPU Governor

GPU DVFS

GPU max freq scaling

Workload Characterization using CPU/GPU Cost
GPU Governor

GPU DVFS

(b) Proposed Co-Cap System

Figure 3.1: System Comparison

workloads, and 2) these approaches are customized for specific mobile platforms. To address

both of these issues, in this chapter we present Co-Cap (Figure 4.1.(b)), a methodology

that achieves energy efficient DVFS across a wide range of mobile games, and that is also

easily portable to newer mobile architectural platforms on top of the default CPU and GPU

governors.

Introduction (trends)

 1) Per

Both energy saving and competent performance
are important in fast changing mobile platforms

 Device Model

 Nexus 4
 Galaxy S4 (octa)

 Nexus 5
 Galaxy S5

Galaxy S5 (octa)
 Nexus S6

Galaxy S6 (octa)

SoC

 Snapdragon S4
 Exynos 541x

 Snapdragon 800
 Snapdragon 801

 Exynos 542x
 Snapdragon 805

 Exynos 7420

Max Freq.

 400 Mhz
 480 Mhz
 450 Mhz
 578 Mhz
 543 Mhz
 600 Mhz
 772 Mhz

GPU

 Adreno 320
 PowerVR SGX544

 Adreno 330
 Adreno 330

 ARM Mali-T628
 Adreno 420

ARM Mali-T760MP8

 CPU

4 Krait 200
4/4 Cortex-A7 / A15

 4 Krait 400
 4 Krait 400

 4/4 Cortex-A7 / A15
 4 Krait 450

 4/4 Cortex-A53 / A57

Max Freq.

 1.5 Ghz
 1.2/1.6 Ghz

 2.3 Ghz
 2.5 Ghz

 1.3/1.9 Ghz
 2.7 Ghz

 1.5/2.1 Ghz

Device Release SoC CPU
Max. F.
(Ghz)

GPU
Max. F.
(Mhz)

Nexus 4 Feb. 12 Snapdragon S4 Quad 1.5 Adreno 320 400

Galaxy S4 Mar. 13 Exynos 541x Octa b.L 1.2/1.6 SGX 544 480

Nexus 5 Oct. 13 Snapdragon 800 Quad 2.3 Adreno 330 450

Galaxy S5 Mar. 14 Exynos 542x Octa b.L 1.3/1.9 Mali-T628 543

Nexus 6 Oct. 14 Snapdragon 805 Quad 2.7 Adreno 420 600

Galaxy S6 Mar. 15 Exynos 7420 Octa b.L 1.5/2.1 Mali-T760MP8 772

Figure 3.2: Mobile Platform Trends.

Mobile platforms face the dual challenges of rapidly changing (heterogeneous) architec-

tures, and the continuing emergence of a plethora of mobile games. For instance, Figure 3.2

shows the progression of the Nexus and Samsung Galaxy series platform architecture, demon-

strating the rapid changes in (heterogeneous) processor, and GPU configurations. New en-

ergy efficient DVFS governors have to be developed rapidly for each new architectural family.

On the other hand, at the application level, we are seeing a range of mobile games that ex-

hibit diverse CPU and GPU workloads, that require widely different strategies for achieving

energy efficiency while delivering acceptable game performance. For instance, Figure 3.3

shows that each game application can be located in a specific quadrant of a CPU/GPU

workload intensity matrix. Angry Birds has very low CPU and GPU workloads, while GFX

40

benchmark is GPU-bound and Jetski Race is very CPU-bound; some applications such as

GPUbench are more balanced in terms of CPU and GPU workloads. For these four different

types of graphics workloads, we define them as No CPU-GPU dominant, CPU dominant,

GPU dominant, CPU-GPU dominant workloads respectively.

Introduction (Contribution1)

 3)

 GPU
 workload

 CPU
 workload

low med high

low
Angry
Birds

GFX
bench

med

NO CPU-GPU
Dominant

GPU
Dominant

CPU
Dominant

CPU-GPU
Dominant

GPU
bench

high
Jetski
Race

A policy should be evaluated quantitatively and objectively
for different types of graphics workloads on a platform

max min max-1 min+1 …

… …

. . .

. . .

Figure 3.3: Different types of CPU/GPU Workload.

The traditional approach of separate DVFS governors for CPU and GPU are unable to

achieve good energy efficiency while delivering acceptable performance across this wide range

of mobile game applications. Even recent efforts [82] [80] [51] using integrated CPU-GPU

governors are only targeted towards specific classes of mobile games. Furthermore, these

approaches do not provide a methodology for easily porting their strategies across newer

architectural platforms that appear in rapid succession (e.g., Nexus and Galaxy series in

Figure 3.2).

To address these dual issues, this chapter presents Co-Cap, an energy-efficient cooperative

CPU-GPU frequency capping strategy for mobile games. This work makes the following

specific contributions:

• We present a methodology for cooperative CPU-GPU frequency capping to achieve

energy efficiency for a diverse set of mobile benchmarks and games

• Our capping strategy avoids unnecessarily higher frequency of CPU and GPU con-

sidering both FPS and per-frame energy saving on top of the default CPU and GPU

governors

41

• We present characterization of diverse mobile graphics gaming workloads to enable

efficient dynamic application of frequency capping

• We introduce a systematic methodology with completeness using different types of

benchmark sets and fine-grained refinement steps for configuration of frequency capping

lookup tables

• We demonstrate efficacy of Co-Cap across over 200 micro-benchmarks and 40 real mo-

bile graphics applications, using a representative training and deployment set achieving

significant improvement (up to 27.6%) energy efficiency with minimal loss in perfor-

mance

3.2 Related Work

DVFS is a traditional energy conservation strategy that has been applied for both CPUs and

GPUs, but traditionally in the desktop space [102] [62]. [65] proposed a statistical approach

for power consumption analysis and modeling on desktop GPU and [64] characterized per-

formance and power consumption of 3D mobile games. However, their work did not consider

DVFS design but rather focused on power consumption and performance issues. [30] intro-

duced the impacts of DVFS on application performance and energy efficiency for GPGPU

computing and compared them with DVFS for CPU computing; and [70] presented a mea-

surement study that aims to explore how GPU DVFS affects the system energy consumption

for GPGPU computation on desktop platforms. And, [55] proposed a GPGPU power model

and integrated the power model with the cycle-level simulator GPGPU-Sim and demon-

strated the energy savings by utilizing dynamic voltage and frequency scaling (DVFS) and

clock gating. Our work is different from this large body of desktop GPU/GPGPU workload

characterization in that here we focus on integrated mobile GPUs (which are architecturally

different from desktop GPUs [66]). For graphics-intensive applications such as mobile games,

42

typically frames per second (FPS) and energy per frame (or FPS per watt) are used as per-

formance and energy consumption metrics, respectively.

Some efforts have begun analyzing graphics-intensive rendering applications (e.g., 3D

games) in mobile devices: [39] and [38] proposed CPU graphics rendering workload charac-

terization and CPU DVFS for 3D Games, under the assumption that mobile devices such as

PDAs and mobile phones do not have integrated mobile GPUs; and With the emergence of

high performance mobile GPUs, [22] [23] [25] [24] introduced CPU DVFS for mobile graph-

ics rendering as an extension of [39], [38]; however these efforts didn’t focus on GPU or

cooperative CPU-GPU DVFS schemes, but addressed CPU DVFS for mobile GPU graphics

rendering. Moreover, You et al. [100] and [101] explored to discover the potential of DVFS

on embedded GPUs by analyzing workload variations of game application and proposed a

QoS-aware GPU DVFS policy that ensures a consistent GPU performance under the QoS

constraint; and Kim et al. [54] proposed a GPU power model for smartphones using graphics

rendering applications.

In our previous work [75], we developed micro-benchmarks for mobile graphics workload

characterization, analyzed the results of benchmarks, and introduced several opportunities

for improved DVFS design of mobile GPU graphics rendering, but did not present specific

DVFS strategies. [94] and [83] proposed the power management for CPU-GPU heteroge-

neous SoC architectures, but they focused on the general purpose computing applications,

not gaming applications. [82] proposed an integrated CPU-GPU DVFS algorithm for power

management for mobile games. However, their work didn’t consider quantitative evaluation

for energy saving (e.g., per-frame energy or FPS per watt); [80] also proposed a power-efficient

integrated CPU-GPU DVFS strategy by developing power-performance models predicting

the impact of DVFS on mobile gaming workloads; [51] presented a queuing model to rep-

resent the interaction between CPU, GPU, and Display; [18] proposed a behavior-aware

integrated CPU-GPU power management approach using the system-call and OpenGL API

information for mobile games; [20] proposed an adaptive on-line CPU-GPU governor for

43

games on mobile devices to minimize energy consumption. However, their work was applied

to a specific set of games exhibiting a narrow range of CPU-GPU workloads; and they did

not show applicability across a wide range of games exhibiting diverse CPU-GPU work-

loads (Figure 3.3) in spite of significantly different results from different types of graphics

workloads. [67] presented a perception-aware adaptive scheme that sets the resolution during

game play for power savings, not DVFS techniques; and [84] proposed a control-theory based

dynamic thermal management technique that cooperatively scales CPU and GPU frequen-

cies to meet the thermal constraint while achieving high performance for mobile gaming,

but they mainly focused on a dynamic thermal management (DTM) algorithm rather than

coordinated CPU-GPU DVFS power management.

In this work, we complement shortcomings of previous efforts [75] by proposing Co-Cap.

Our work is fundamentally different from previous integrated CPU-GPU DVFS techniques

in that our approach dynamically scales the maximum frequency of CPU and GPU using

frequency capping lookup tables according to the normalized CPU and GPU cost on top of

the default CPU- and GPU governors. Although frequency capping for energy efficiency was

initially introduced in [58], their approach was restricted to the CPU governor; in contrast

to the best of our knowledge, our work is the first to introduce a coordinated CPU and

GPU maximum frequency capping technique that achieves energy efficiency (lower energy

per frame) across a diverse range of mobile games while delivering acceptable performance

(FPS).

3.3 Motivation

Mobile platforms pose a challenge for simultaneous reduction of energy consumption while

delivering acceptable performance across a wide range of mobile gaming applications. As

motivating examples, Figure 3.4.(a) and 3.4.(b) show the normalized FPS, power consump-

44

tion (Pwr), and energy per frame (EpF) on one CPU dominant (Q3Zombie Map4) and the

other GPU dominant (Action Bike) game benchmarks by changing CPU and GPU maximum

frequencies allowing dynamic frequency changes under standard governors implemented in

Linux. Even though FPS declines little until 1900Mhz in Figure 3.4(a) and until 420Mhz

in Figure 3.4(b), the power consumption is dramatically reduced compared to the FPS

reduction. This shows that limiting the maximum frequencies that can be reached during

dynamic frequency scaling gives significant opportunity for performance and power consump-

tion optimizations in modern CPU/GPUs. In other words, we can exploit this frequency

over-provisioning to achieve energy saving up to 20% in Figure 3.4.(a) and up to 15% in Fig-

ure 3.4.(b) within little FPS (3%) decline comparing with the default governors by scaling

CPU and GPU maximum frequencies. We call the frequency beyond which the FPS degrades

as ”saturated frequency” (Figure 3.4(c)). By identifying these saturated frequencies after

characterization of CPU- and GPU graphics workloads, we can save energy with minimal

performance degradation by eliminating CPU and GPU frequency over-provisioning.
Motivation

 In policy: eliminating CPU or/and GPU frequency

over-provisioning can save energy by reducing

(significant) power consumption within little

performance reduction on Odroix XU3

 Motivating example

CPU f.o.p w/ power reduction (Jetski Race)

GPU f.o.p w/ power reduction (Actionbike)

In policy, by reducing the CPU and GPU f.o.p,
can save energy within little performance decline

Frequency
Over-provisioning

Saturated
Frequency

Unnecessarily
highest frequency

70

80

90

100

Max-freq Max-1 Max-2 Max-3 Max-4 Min-freq

N
o
rm

a
li
ze

d

FPS

Pwr

40

60

80

100

2000 1900 1800 1600 1400 1200

N
o
rm

a
li
ze

d

CPU maximum frequency

EpF

FPS

Pwr
40

60

80

100

543 480 420 350 266 177

N
o
rm

a
li
ze

d

GPU maximum frequency

EpF

FPS

Pwr

(a) Q3Zombie Map4

Motivation

 In policy: eliminating CPU or/and GPU frequency

over-provisioning can save energy by reducing

(significant) power consumption within little

performance reduction on Odroix XU3

 Motivating example

CPU f.o.p w/ power reduction (Jetski Race)

GPU f.o.p w/ power reduction (Actionbike)

In policy, by reducing the CPU and GPU f.o.p,
can save energy within little performance decline

Frequency
Over-provisioning

Saturated
Frequency

Unnecessarily
highest frequency

70

80

90

100

Max-freq Max-1 Max-2 Max-3 Max-4 Min-freq

N
o
rm

a
li
ze

d

FPS

Pwr

40

60

80

100

2000 1900 1800 1600 1400 1200

N
o
rm

a
li
ze

d

CPU maximum frequency

EpF

FPS

Pwr
40

60

80

100

543 480 420 350 266 177

N
o
rm

a
li
ze

d

GPU maximum frequency

EpF

FPS

Pwr

(b) Action Bike

Motivation

 In policy: eliminating CPU or/and GPU frequency

over-provisioning can save energy by reducing

(significant) power consumption within little

performance reduction on Odroix XU3

 Motivating example

CPU f.o.p w/ power reduction (Q3zombie 4)

GPU f.o.p w/ power reduction (Actionbike)

In policy, by reducing the CPU and GPU f.o.p,
can save energy within little performance decline

Frequency
Over-provisioning

Saturated
Frequency

Unnecessarily
highest frequency

70

80

90

100

Max-freq Max-1 Max-2 Max-3 Max-4 Min-freq

N
o
rm

a
li
ze

d

FPS

Pwr

40

60

80

100

543 480 420 350 266 177

N
o
rm

a
li
ze

d

GPU maximum frequency

EpF

FPS

Pwr

40

60

80

100

120

2000 1900 1800 1600 1400

N
o
rm

a
li
ze

d

CPU maximum frequency

FPS

EpF

(c) The Saturated Frequency

Figure 3.4: Motivating Examples

45

Moreover, we adopt a CPU and GPU frequency capping heuristic for the following reasons:

1) Simplicity: adding a capping module on top of the default (or custom) CPU/GPU gover-

nors is easier than complicated integrated CPU/GPU governors. 2) Portability: capping is

easily adaptable to newer platforms. Compared to the proposed integrated CPU-GPU gov-

ernors [80] [51], our CPU-GPU cooperative frequency capping methodology is easily portable

in terms of prospective architectural hardware limitations and governor software complexity.

In our work, we tested two real platforms (from Nexus4 [57] to Odroid-XU3 [43]), which

have totally different chip vendors, CPU and GPU software governors. First, if a governor is

hidden behind in a secure hardware like ARMs TrustZone (e.g., GPU governor on Nexus4),

their approaches may have serious limitations/challenges in implementation even if there is

no problem in the model building. Second, we scale only CPU and GPU maximum frequen-

cies using simple lookup tables on top of the default CPU and GPU governors. If we consider

a total platform change (e.g., Nexus4 to Odroid-XU3), our methodology is easily portable

in terms of design and implementation time of an integrated governor, for rapidly changing

mobile platforms. 3) Elimination of wasteful frequency over-provisioning: commercial CPU

governors typically scale frequency using utilization based thresholds. In other words, if

CPU utilization is greater than or equal to a certain threshold, the governor sets the highest

frequency from the corresponding frequency [58]. This is also similar in GPU governor but

more conservative. However, in both cases these approaches may result in frequency over-

provisioning, since the frequency is set to a higher level even when the target QoS has been

met at maximum utilization. This results in wasted power.

3.4 Co-Cap Methodology

Co-Cap orchestrates cooperative CPU-GPU dynamic maximum frequency capping (scaling)

by avoiding frequency over-provisioning of CPU or GPU considering both performance (FPS)

46

and per-frame energy saving on top of the default CPU- and GPU governors. Co-Cap has

two phases: a training phase and a deployment phase as shown in Figure 3.5.

CoCap overview: Cooperative Capping

 Composed of Training and Test Phase

 Training phase: CPU/GPU saturated frequency tables obtained in offline

 Test phase: Run-time evaluation for any apps (using a 40-test set)

Any games

TRAINING

PHASE

Game training set

CPU and GPU

Sat. Freq. Lookup tables

DEPLOYMENT

PHASE

Energy saving

w/ acceptable performance

Figure 3.5: Co-Cap Overview.

In the training phase, we build CPU and GPU saturated frequency lookup tables offline

using training sets. Then in the deployment phase, Co-Cap uses these saturated frequency

lookup tables at runtime to set the appropriate CPU and GPU frequency caps based on the

characteristics of the executing mobile benchmark.

3.4.1 Training Phase

As shown in Figure 3.6, the training phase is composed of three steps: data capturing step,

saturated frequency lookup table building step, and fine-grained refinement step. The main

objective of the training phase is to build the saturated frequency lookup tables where the

maximum frequency values for both CPU and GPU can be obtained by CPU and GPU

workload cost indices.

CoCap: 1. Training Phase

 Composed of three modules

 1) Data capturing module

 2) Estimation module in offline

 3) Configuration module in offline

 Evaluation using training set

Estimation

FPS, Power

Frequency

Utilization

CPU Governor GPU Governor

Data Capturing

 Configuration of

 CPU /GPU Sat. Freq.

Saturated Frequency
Look-up Table Building

CPU/GPU Cost

FPS, Power, EpF

Analysis

Evaluation

w/ Training set

CPU max

GPU max

 Every Epoch

Refinement

Cost

Index

Figure 3.6: Co-Cap Training Phase.

3.4.1.1 Data Capturing Step

As shown in Table 3.1, all data including frequency and utilization can be captured dynam-

ically from each software component of CPU and GPU governors, and power sensor driver

47

(or using power monitor).

Table 3.1: Captured Data

Category SW component Metrics Data

CPU CPU Governor per-cpu Utilization, Frequency
GPU GPU Governor Utilization, Frequency
Power Power Sensor Driver CPU, GPU, DRAM
Perf. Android and GPU Governor FPS

The sample training set shown in Figure 3.7 includes micro-benchmarks that cover dif-

ferent quadrants of the CPU-GPU workloads shown in Figure 3.3. These workload varia-

tions are typically quantified using a cost metric that is a product of the utilization and

frequency [16]. Accordingly, we deploy normalized CPU- and GPU costs as shown in Equa-

tion(1), where the cost is defined as the product of the processor current average utilization

and its current average frequency divided by the product of the maximum utilization and

its maximum frequency to have the normalized range of 0 to 100. For CPU utilization,

the highest CPU utilization among CPU cores is used according to the assumption that

there is usually one graphics rendering thread mainly affecting the graphics performance for

most mobile graphics applications, and the utilization of the thread is mostly highest among

threads.

Normalized Cost =
Curr Util. × Curr Freq.

Max Util. × Max Freq.
(3.1)

And then, CPU/GPU saturated frequency lookup tables (LUTs) are configured gradually

through the following Building Step and Fine-grained Refinement Step.

3.4.1.2 Frequency Lookup Table Building Step

Using the normalized CPU and GPU costs, we determine the number of CPU/GPU cost

index (N) of a training set, which is ultimately used as the cost index of each entry (0 to

N-1) in the saturated frequency lookup tables. First, a training set covers the four basic

categories by CPU- or/and GPU-dominance (i.e., No, CPU, GPU and CPU-GPU domi-

48

nant workloads); and then, for example, each category has more detailed workload segments

corresponding to low, medium and high workloads as shown in Figure 3.7, the number of

CPU/GPU cost index (N) will be 6 (0 to 5) and the number of the total entries will be 36.

An example of the training set

 3)

CPU\GPU
Cost Index

0
(Low)

1
(Med)

2
(High)

3
(Low)

4
(Med)

5
(High)

0
(Low)

NO-mb1 NO-mb2 NO-mb3 GPU-mb1 GPU-mb2 GPU-mb3

1
(Med)

NO-mb4 NO-mb5 NO-mb6 GPU-mb4 GPU-mb5 GPU-mb6

2
(High)

NO-mb7 NO-mb8 NO-mb9 GPU-mb7 GPU-mb8 GPU-mb9

3
(Low)

CPU-mb1 CPU-mb2 CPU-mb3 CGU-mb1 CGU-mb2 CGU-mb3

4
(Med)

CPU-mb4 CPU-mb5 CPU-mb6 CGU-mb4 CGU-mb5 CGU-mb6

5
(High)

CPU-mb7 CPU-mb8 CPU-mb9 CGU-mb7 CGU-mb8 CGU-mb9

A policy should be evaluated quantitatively and objectively
for different types of graphics workloads on a platform

max min max-1 min+1 …

Figure 3.7: A Sample of the Training Set.

2) Estimation of Graphics workloads
CPU-bc freq GPU freq

1

2

3

4

Th1

Th2

FPS

 Power

CPU maximum frequency

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(a) NO-domi. workload

2) Estimation of Graphics workloads
CPU-bc freq GPU freq

1

2

3

4

Th1

Th2

FPS

EpF

CPU maximum frequency

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(b) NO-domi. workload

2) Estimation of Graphics workloads
CPU-bc freq GPU freq

1

2

3

4

Th1

Th2

FPS

 Power

CPU maximum frequency

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(c) GPU-domi. work-
load

2) Estimation of Graphics workloads
CPU-bc freq GPU freq

1

2

3

4

Th1

Th2

FPS

EpF

CPU maximum frequency

min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 …

min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 …

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(d) GPU-domi. work-
load

2) Estimation of Graphics workloads
CPU-bc freq GPU freq

1

2

3

4

Th1

Th2

FPS

EpF

CPU maximum frequency

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(e) CPU-domi. work-
load

2) Estimation of Graphics workloads
CPU-bc freq GPU freq

1

2

3

4

Th1

Th2

FPS

 Power

CPU maximum frequency

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(f) CPU-domi. work-
load

2) Estimation of Graphics workloads
CPU-bc freq GPU freq

1

2

3

4

Th1

Th2

FPS

EpF

CPU maximum frequency

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max max-1 min+1…

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(g) CGU-domi. work-
load

2) Estimation of Graphics workloads
CPU-bc freq GPU freq

1

2

3

4

Th1

Th2

FPS

EpF

CPU maximum frequency

min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 …

min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 … max min max-1 min+1 …

GPU maximum frequency CPU maximum frequency GPU maximum frequency

CPU maximum frequency GPU maximum frequency CPU maximum frequency GPU maximum frequency

(h) CGU-domi. work-
load

Figure 3.8: Effects of CPU (or GPU) maximum frequency capping on FPS and Power.

Now, let’s assume that we use a new game on a new platform. By observing the CPU and

GPU utilization and frequency for a specific amount of time, the game will be located in a

specific entry having the corresponding CPU and GPU cost index, which has energy-efficient

CPU and GPU saturated frequencies.

Before describing how to configure the saturated frequency look-up tables, we need to

explain the general trend of maximum frequency set-up for the four different application

49

quadrant categories shown in Figure 3.3: No CPU-GPU (No) dominant, CPU dominant,

GPU dominant, and CPU-GPU (CGU) dominant. Figure 3.8.(a) and (b) show the per-

formance/power consumption graph trends of No-dominant workloads. FPS remains the

same (i.e., the 60 maximum FPS) for all CPU and GPU frequencies, which means that

the saturated frequencies of CPU and GPU are available up to the minimum frequency of

CPU and GPU for energy saving without FPS reduction. Figure 3.8.(c) and (d) show the

performance/power consumption pattern of GPU dominant workloads. For GPU frequency,

FPS is flat until max-1 frequency and power consumption reduces gradually until min+1 fre-

quency. Therefore, in order to achieve energy saving with little FPS degradation, the GPU

saturated frequency can be reduced to max-1 frequency. For CPU capping frequencies, FPS

and power consumption are almost similar except the minimum capping frequency, which

means that the CPU saturated frequency should be higher than the minimum frequency in

order to prevent FPS reduction. Figure 3.8.(e) and (f) show the performance/power con-

sumption of CPU dominant workloads. Here FPS is almost similar until max-1 frequency

and power consumption gradually decreases with CPU capping frequency drop, which means

that the CPU saturated frequency could be available up to the max-1 frequency. For GPU

capping frequencies, FPS and power consumption are almost similar except the minimum

capping frequency, which means that the GPU saturated frequency should be higher than

the minimum frequency in order to prevent FPS reduction. Finally in Figure 3.8.(g) and (h),

CGU-dominant workload is the combination of CPU dominant workload and GPU dominant

workload. Therefore, in CPU and GPU, max-1 frequency can be configured to the saturated

frequency.

Using this characterization process, the saturated frequency of each application in the

50

training set can be configured appropriately as shown in Equation (2):

Saturated Frequency = max(Ffps, Flp)

where Ffps = lowest maximum frequency

with minimal (< 3%)FPSdegradation

Flp = frequency for lowest power consumption

(3.2)

In other words, from the captured data of each application, we choose the higher frequency

among the lowest maximum frequency having little FPS (up to 3%) decline and the lowest

maximum frequency having lowest power consumption.

LUTs after the Building Step: In this stage the LUTs are generated automatically

with the help of our automatic measurement tool (AMT) through the LUT Building Step

with the ability to capture data automatically.

1

Training Phase Overview

 Composed of Three Steps.

Automatic
LUTs Generation

Establishing Completeness with Systematic manner

2000
1900
1800
1700
1600
1500
1400
1300
1200

543
480
420
350
266
177

Workload Complexities (n w)

 CPU levels w/ max GPU freq (n c)

Changeable FPS-target Threshold

 GPU levels w/ max CPU freq (n g)

n w x (n c + n g) x n r

 Repeat for all configurations (n r)

Figure 3.9: The Proposed Methodology for Data Collection and LUT Building.

As shown in Figure 3.9, we first use a basic 36-benchmark training set for various work-

load complexities covering all LUT entries (at least one benchmark per entry). Then, we

sweep the CPU frequency across the set of frequencies supported by the target system (9

frequencies in CPU) at the maximum GPU frequency of 543 Mhz and the GPU frequency

(6 frequencies in GPU) at the maximum CPU frequency of 2.0 Ghz. (In our experiments,

51

we collect data for 36 x (9 + 6) = 540 different configurations at least 3 times.) Finally,

using the data of each corresponding benchmark (complexity), the CPU/GPU saturated

frequencies in each entry are configured by using the Equation (2) with a FPS-target (in

this study a FPS-target of 97% is used for minimal FPS degradation among user-definable

FPS-targets).

1

Building Step: Output

 CPU and GPU LUTs

CPU \ GPU
Cost Index 0 1 2 3 4 5

0 1200 1200 1200 1200 1200 1200

1 1200 1200 1200 1200 1200 1200

2 1200 1200 1200 1200 1200 1200

3 1200 1200 1200 1200 1200 1500

4 1700 1700 1700 1600 - -

5 1900 1900 1900 - - -

CPU \ GPU
Cost Index 0 1 2 3 4 5

0 177 266 350 420 480 480

1 177 266 350 420 480 480

2 177 266 350 420 480 480

3 177 266 350 420 480 480

4 177 266 350 420 - -

5 177 266 350 - - -

(a) CPU LUT
1

Building Step: Output

 CPU and GPU LUTs

CPU \ GPU
Cost Index 0 1 2 3 4 5

0 1200 1200 1200 1200 1200 1200

1 1200 1200 1200 1200 1200 1200

2 1200 1200 1200 1200 1200 1200

3 1200 1200 1200 1200 1200 1500

4 1700 1700 1700 1600 - -

5 1900 1900 1900 - - -

CPU \ GPU
Cost Index 0 1 2 3 4 5

0 177 266 350 420 480 480

1 177 266 350 420 480 480

2 177 266 350 420 480 480

3 177 266 350 420 480 480

4 177 266 350 420 - -

5 177 266 350 - - -

(b) GPU LUT

Figure 3.10: LUTs after the Building Step

Figure 3.10 shows the results of the LUTs after the building step. However, these pre-

liminary LUTs should be refined because it is hard to use directly offline-built LUTs for

all possible (diverse and dynamic) applications without evaluation. Therefore, we refine

the LUTs through the fine-grained refined step using evaluation results of diverse types of

benchmarks.

3.4.1.3 Fine-grained Refinement Step

The lookup tables generated statically in the building step need to be refined using the results

of runtime evaluations because it is hard to use directly the offline-built lookup tables for all

possible (diverse and dynamic) applications without evaluation. Moreover, the refinement

step is composed of two steps as shown in Figure 3.11: 1) from using low-variation workload

benchmarks. 2) to using high-variation workload benchmarks.

Through these two steps, we use a greedy heuristic to configure the best of lookup tables.

This is the assumption that the global best configuration can be reached by a series of locally

best choices (i.e., in the refinement of lookup tables, the locally best saturated frequency

52

1

Refinement Step Overview

 Using MBs and RGs

Refinement Step 2 Refinement Step 1

Low-variation Workload

Benchmarks

High-variation Workload

Benchmarks

Heuristic Threshold refinement
using a subset,
in terms of FPS and EpF

Figure 3.11: Fine-grained Refinement Step.

configuration at each entry with the hope of finding the global best of lookup tables). For the

cases when there are two or more saturated frequencies in a entry, the maximum saturated

frequency is chosen using the upper-bound approach.

Methodology of Fine-grained Refinement Step: Our fine-grained refinement step

strategy is outlined in Figure 3.12. In Step1, we start the refinement using the 36-benchmark
Structure

1

FPSt is FPS-target in the refinement step
S is a Training Set of benchmarks
Each benchmark i has a FPSi (average FPS during the evaluation time),
CI_Defi (average cost index in the default) and
CI_CCi (average cost index in Co-Cap) after using the LUTs

Step 1. FOR each benchmark i in S DO
 if FPSi is less than FPSt
 Add benchmark i to A

Step 2. While A is not yet empty DO
 select a benchmark i with highest FPS drop {greedy choice}

Step 3. FOR every related cost index entry, from CI_CCi to CI_Defi DO
 Step 3.1. Increase the frequency step by step
 Step 3.2. IF the cost entry moves THEN set the last frequency before the entry move
 Step 3.3. ELIF FPS increase gradually THEN set the last frequency and stop
 Step 3.4. ELSE stop

action loop
during measuring

Figure 3.12: The Methodology of Fine-grained Refinement Step.

set (a set of low-variation benchmarks) that covers all cost index entries; if the average FPS

of each benchmark (FPSi) after using the LUTs in the building step is less than a predefined

FPS-target (FPSt), we set apart the benchmarks as a new set A based on the assumption that

if the FPS-drop of the benchmark is within the FPS-target, the current saturated frequency

in the entry is appropriate for the corresponding benchmark. In Step2, among the new set

A we select a benchmark that has the highest FPS-drop using a greedy heuristic for the

reduction of the total refinement time. Note that each benchmark of the new set A should

have this step iteratively according to the descending order of FPS-drop using the repeatedly

refined LUTs; if the highest FPS-drop entry is refined as early as possible with appropriate

saturated frequencies, sequentially the refinement time of the remaining benchmarks will be

53

reduced. In Step3, we refine the related cost index entries (from CI CCi to CI Defi) using

the each selected benchmark and the order of CPU or GPU LUT refinement is determined

by the cost dominance of the related entries. From the Co-Cap cost entry (CI CCi), we

increase the frequency step by step (Step 3.1). As the frequency goes up, if there is a cost

entry change, the last frequency in the previous entry is set to a new saturated frequency of

that entry (Step 3.2). In the case of no entry change, there are two more conditions: if there

are gradual FPS increases due to the frequency increases, we set the last frequency as a new

saturated frequency and stop the refinement of the benchmark (Step 3.3); otherwise (i.e,

no FPS increases) we stop the refinement of the benchmark without additional saturated

frequency updates (Step 3.4). And gradually, we refine the LUTs after changing a benchmark

set from low-variation to high-variation benchmarks using the same procedure (from Step 1

to Step3).

2

1300

1700

1900

1900

CPU \ GPU
Cost Index

2

0

1

2 1200

3 1200

4 1700

5 1900

1

Refinement Step Overview

 Using MBs and RG

Refinement Step 1

Low-variation Workload

Benchmarks

GPU
/CPU

2
(40-60)

0
(0-20)

1
(20-40)

2
(40-60) 1300

3
(60-80) 1700

4
(80-90) 1800

5
(90-100) 1900

(a) Example (mb530)
1

CPU Refinement 1

Refinement Cost Index C / GPU Cost FPS (vs. Def)

Def - (5,2) 96,57 44.18 (100)

CC - (2,2) 57,40 31.94 (72.3)

1 1200 -> 1300 2,2 3,2 60,40 32.34 (72.3)

2 1200 -> 1300 3,2 65,41 32.81 (73.2)

3 1300 -> 1400 3,2 66,41 33.21 (74.3)

4 1400 -> 1500 3,2 71,49 36.66 (75.2)

5 1500 -> 1600 3,2 76,51 38.29 (83.0)

6 1600 -> 1700 3,2 4,2 80,49 39.25 (86.7)

7 1700 -> 1800 4,2 86,49 38.9 (88.0)

8 1800 -> 1900 4,2 5,2 90,53 42.7 (96.7)

9 1900 (max in LUT) 5,2

MB530

GPU
/CPU

0
(0-20)

1
(20-

2
(40-

3
(60-

4
(80-

5
(90-100)

(b) Detailed Refinement for the Related Cost Index
Entries

Figure 3.13: Detailed Fine-grained Refinement Step.

To illustrate further, we describe the third step with a specific example in Figure 3.13.

The benchmark is mb530 which has CI Defi of (5,2) and CI CCi of (2.2) with 72.3% FPS

of the default; the related entries of this benchmark are (2,2), (3,2), (4,2) and (5,2) which

are mostly CPU-dominant (i.e., CPU cost index is bigger than GPU cost index) entries.

Therefore, we first start the CPU LUT refinement from the (2,2) entry. As the frequency

goes up (from 1200 to 1300), the last frequency (1300) is set to a new saturated frequency in

(2,2) entry because the cost entry changes from (2,2) to (3,2). And then the last frequency

54

1700 (from 1200 to 1700) for the changed (3,2) entry and the last frequency 1900 (from 1700

to 1900) for the changed (4,2) entry are set successively. (For the mb530 benchmark, Steps

3.3 and 3.4 were not exercised, but some benchmarks such as mb450 and mb550 do use Steps

3.3 or 3.4).

In addition, if there is continuous maximum utilization during a certain amount of time,

the saturated frequency should be scaled up dynamically in order to prevent FPS reduction.

We deploy a heuristic where, if there is successive (e.g., for 2 or 3 epochs) extreme CPU

or GPU utilization (e.g., 100%), the saturated frequency is dynamically scaled up to the

one-level higher CPU and/or the two-level higher GPU frequency. In order to determine the

thresholding values, we used empirical observations. For the number of successive epochs,

we compare the results of FPS and EpF of one of training sets. Based on the observations,

the interval of 2 epochs is better than that of 3 epochs in terms of FPS and EpF and two-

level higher GPU frequency is more appropriate than one-level higher frequency in terms of

preventing sudden FPS reduction.

LUTs after Fine-grained Refinement Step: Figure 3.14 shows the final saturated

frequency LUTs configured as output of the training phase. For the No-dominant work-

load, available lowest frequencies were configured. For the CPU-dominant workload, CPU

saturated frequency is almost near to the maximum CPU frequency (i.e., 1700 - 1900Mhz),

and GPU saturated frequency is similar to or higher than the minimum frequency (i.e., 177

- 325Mhz). For the GPU-dominant workload, GPU saturated frequency is almost near to

the maximum frequency (i.e., 420 - 480Mhz), and CPU saturated frequency is similar to or

higher than the minimum frequency (i.e., 1200 - 1300Mhz). Finally, for the CGU-dominant

workload, lower frequencies than those of CPU-dominant workloads were configured.

Evaluation of Fine-grained Refinement Step: The main objective of this step is

to refine the lookup tables generated statically in the building step (Figure 3.10) using

benchmark sets with evaluations. This is because it is hard to use directly the offline-

55

1

Look up table (MBs) + final (Fixed)

 CPU and GPU LUTs

CPU \ GPU
Cost Index 0 1 2 3 4 5

0 1200 1200 1200 1200 1200 1200

1 1200 1200 1200 1200 1200 1300

2 1300 1300 1300 1300 1300 1300

3 1700 1700 1700
1500

*1600
1500

*1600
1500

*1600

4 1900
1800

*1900
1900 1600 - -

5 1900 1900 1900 - - -

CPU \ GPU
Cost Index 0 1 2 3 4 5

0 177 266 350 420 480 480

1 177 266 350 420 480 480

2 177 266 350 420 480 480

3 177 266 350 420 480 480

4 177 266 350 420 - -

5 177 266 350 - - -

(a) CPU LUT 1

Look up table (MBs) + final (Fixed)

 CPU and GPU LUTs

CPU \ GPU
Cost Index 0 1 2 3 4 5

0 1200 1200 1200 1200 1200 1200

1 1200 1200 1200 1200 1200 1300

2 1300 1300 1300 1300 1300 1300

3 1700 1700 1700
*1500
1600

*1500
1600

*1500
1600

4 1900
*1800
1900

1900 1600 - -

5 1900 1900 1900 - - -

CPU \ GPU
Cost Index 0 1 2 3 4 5

0 177 266 350 420 480 480

1 177 266 350 420 480 480

2 177 266 350 420 480 480

3 177 266 350 420 480 480

4 177 266 350 420 - -

5 177 266 350 - - -

(b) GPU LUT

Figure 3.14: Final LUTs after the Refinement Steps (∗frequencies are refined during the
refinement step 2)

built lookup tables for all possible applications. We use two evaluation sets–one set of

low-variation (composed of mixed workloads of adjacent 3-4 entries) and the other set of

high-variation (composed of mixed workloads of several entries) workload benchmarks–using

the same methodology described in Figure 3.12. (More detailed explanations for low- and

high-variation benchmarks will be described on the benchmark sets in Chapter 3.5.1).

72

96

40

50

60

70

80

90

100

110

N
o

rm
al

iz
e

d
 F

P
S

Before_Refinement 1 After_Refinement 1

(a) Evaluation of the Refinement Step 1

93
97

40

50

60

70

80

90

100

110

N
o

rm
al

iz
e

d
 F

P
S

Before_Refinement 2 After_Refinement 2

(b) Evaluation of the Refinement Step 2

Figure 3.15: The Evaluation of the Fine-grained Refinement Steps

First, Figure 3.15 shows the evaluation results after the refinement step 1 using the set

of low-variation benchmarks. When we use the offline-built LUTs (Figure 3.10), the results

show that 13 benchmarks out of 36 benchmarks do not achieve a FPS target (97% FPS of

the baseline) having 84% FPS on average and that the highest FPS drop is 28% in mb 500

benchmark. With the LUTs after the refinement step 1 (Figure 3.14), the results show that

56

34 benchmarks achieve the FPS target having 98% FPS on average and that the highest

FPS drop is only 4% in mb 540 benchmark. Second, when we evaluate the LUTs after the

refinement 1 using another set of high-variation workload benchmarks, the results show that

8 benchmarks out of 60 benchmarks still do not achieve a FPS target (97% FPS of the

baseline) having 95% FPS on average and that the highest FPS drop is 8%. Using the LUTs

after the refinement step 2 (∗frequencies in Figure 3.14), the results show that all benchmarks

achieve the FPS target having 98.6% FPS on average.

In summary, to configure the best of LUTs, we used a greedy heuristic based on the

assumption that the global best configuration can be reached by a series of locally best

choices at each entry. Using our systematic methodology of the fine-grained refinement step

with two different types of benchmark sets, we evaluated that our final LUTs can achieve a

target FPS with more reduced maximum frequency (i.e., lower power consumption) compared

to the baseline for high-variation as well as low-variation workload benchmarks.

3.4.2 Deployment Phase

In the deployment phase (Figure 3.16), data capturing, maximum frequency setting, and

evaluation steps can be executed at runtime using the CPU and GPU saturated frequency

lookup tables. This ensures evaluation of applications across a wide range of games exhibiting

diverse CPU and GPU workloads.

CoCap: 1. Test Phase (for SAC)

 Composed of three modules

 1) Data capturing module

 2) Estimation module in offline

 3) Configuration module in offline

 Evaluation using training set

Estimation

Frequency

Utilization

CPU Governor GPU Governor

Data Capturing

 Sat. Freq.

 Lookup Tables

Maximum Frequency
Setting

CPU/GPU Cost

FPS, Power, EpF

Analysis

CPU max

GPU max

 Every Epoch

Evaluation

w/ Deployment set

Evaluation

Cost

Index

Figure 3.16: Co-Cap Deployment Phase.

Data Capturing Step: This step is exactly the same as the training phase (all data

except power consumption as shown in Table 3.1 can be captured dynamically in every

57

epoch).

Maximum Frequency Setting Step: In this step, the corresponding CPU and GPU

maximum frequencies for next epoch dynamically chosen from the CPU and GPU saturated

frequency lookup tables (configured offline in the training phase) after calculation of CPU

and GPU cost index at the end of the current epoch using the results of data capturing step.

Evaluation Step: We evaluate applications of the deployment set, using the detailed

evaluation methods as described in the experimental setup of the next chapter.

3.5 Evaluation of Co-Cap

3.5.1 Experimental Setup

We evaluate Co-Cap on the ODROID-XU3 development board installed with Android 4.4.2

and Linux 3.10.9; Table 3.2 summarizes our platform configurations.

Table 3.2: Platform Configuration

Feature Description

Device ODROID-XU3 [43]
SoC Samsung Exynos5422 [89]
CPU Cortex-A15 2.0Ghz and Cortex-A7 Octa-core CPUs
GPU Mali-T628 MP6, 543Mhz
System RAM 2Gbyte LPDDR3 RAM at 933MHz
Mem. Bandwidth up to 14.9GB/s

OS(Platform) Android 4.4.2
Linux Kernel 3.10.9

The ODROID platform is equipped with four TI INA231 power sensors [93] measuring

the power consumption of high-performance big CPU cluster (CPU-bc), energy-saving little

CPU cluster (CPU-lc), high-performance MP6 GPU and memory respectively. The CPU

supports cluster-based DVFS at nine frequency levels (from 1.2Ghz to 2.0Ghz) in CPU-bc

and at seven frequency levels (from 1.0Ghz to 1.6Ghz) in CPU-lc, and GPU supports six

58

frequency levels (from 177Mhz to 543Mhz); the default governors are interactive CPU gov-

ernor [13] and ARM’s Mali Midgard GPU governor [60].

Benchmark Sets: We deployed an extensive set of benchmarks for our experiments

composed of over 200 micro-benchmark variations as well as 40 real mobile game applica-

tions. For training sets we use the basic 36-benchmark training set (Figure 3.17.(a)) and

combinations of the 36-benchmark set (Figure 3.17.(b)); for deployment sets we use another

combinations of micro-benchmarks not used in the training sets (Figure 3.18.(a)) and the 40

real game set (Figure 3.18.(b)).

The 36-benchmark set (Figure 3.17.(a)) is derived from the micro-benchmarks described

in Chapter 2: mb-verM, mb-TexM, mb-VerSh, mb-FragSh and mb-App. We use two ob-

servations to select the combinations of these parameters: 1) The effects of vertex memory

(mb-VerM) on FPS, power and energy per frame were similar to those of vertex shader (mb-

VerSh) and fragment shader (mb-FragSh). 2) The effects of vertex memory (mb-VerM) on

the same metrics were also similar to those of texture memory (mb-TexM) except cases for

extreme texture memory usage. Therefore we swept the workloads (from 0 to 5 by increas-

ing the corresponding workload) of mb-VerM (for GPU workloads) and mb-App (for CPU

workloads) respectively with fixed values for mb-TexM, mb-VerSh, and mbFragSh.1) Data Capturing: the 30-Training set

 30 apps in different CPU/GPU cost

 In order to gather various workloads of graphics apps

CPU \ GPU
Cost Index

0 1 2 3 4 5

0 mb000 mb010 mb020 mb030 mb040
mb050/150/

250

1 mb100 mb110 mb120 mb130 mb140/240 mb350

2 mb200 mb210 mb220 mb230/330 mb340 mb450

3 mb300 mb310 mb320 mb430 mb440 mb550

4 mb400 mb410 mb420 mb540

5 mb500 mb510/520 mb530

(a) The Basic 36-benchmark Training Set

1) Data Capturing: the 30-Training set

 30 apps in different CPU/GPU cost

 In order to gather various workloads of graphics apps

CPU \ GPU
Cost Index

0 1 2 3 4 5

0 mb000 mb010 mb020 mb030 mb040
mb050/150/

250

1 mb100 mb110 mb120 mb130 mb140/240 mb350

2 mb200 mb210 mb220 mb230/330 mb340 mb450

3 mb300 mb310 mb320 mb430 mb440 mb550

4 mb400 mb410 mb420 mb540

5 mb500 mb510/520 mb530

(b) The Micro-benchmark Training Set

Figure 3.17: The Training Sets.

Moreover, the 36-benchmark set (Figure 3.17.(a)) is based on 4 categories of workloads

(No, GPU, CPU, CGU dominant) as shown in Figure 3.3. We used cost indices of 2 and 3

59

1) Data Capturing: the 30-Training set

 30 apps in different CPU/GPU cost

 In order to gather various workloads of graphics apps

CPU \ GPU
Cost Index

0 1 2 3 4 5

0 mb000 mb010 mb020 mb030 mb040
mb050/150/

250

1 mb100 mb110 mb120 mb130 mb140/240 mb350

2 mb200 mb210 mb220 mb230/330 mb340 mb450

3 mb300 mb310 mb320 mb430 mb440 mb550

4 mb400 mb410 mb420 mb540

5 mb500 mb510/520 Mb530

(a) The Micro-benchmark Deployment Set
1

RG Deployment Set3 (30EA)

CPU \ GPU
Cost Index

0 1 2 3 4 5

0 AngryBirds
Csr racing
skycastle

Bonsai bench
MobileGPU mark

Frozen highway seascape
Actionbike
baseMark

1 Armored car
Deerhunter
Farmville2

Anomaly2-nor.
Dream bike
Epiccitadel
Hercules

Anomaly2 high 3dmark_extream

2 hobbit
Terminate
RealSteel
Speedorz

300
Frontline Dday
Shootemdown

3dmark_normal
Dinosaur hunter

Frontline 2

3 Dinogun ship
Robocob

Train Simulator
GPU bench

4
EdgeofTomorrow

3D rating

5 Assassin creed
Q3zomb 2/4

Mission berlin
Truck Simulator

Real driving 40 App

(b) The Real-Game Deployment Set

Figure 3.18: The Deployment Sets.

to categorize the four different types of graphics workloads in this platform. However, each

dominance area also could have different workloads, which will require different CPU and

GPU frequency settings. Therefore, as shown in the sample of the training set (Figure 3.7),

we further categorized each dominance area into nine additional workloads (benchmarks),

corresponding to Low, Medium, and High workloads in terms of the normalized CPU and

GPU cost. This basically requires 36 applications (4 categories x 9 benchmarks) for the

training set. However, our observations show that benchmarks having a normalized CPU

and GPU cost over 80 rarely exist and these entries are shaded in dark gray in Figure 3.17

and Figure 3.18. Note that each benchmark of the 36-benchmark training set has almost

constant CPU and GPU workloads with low workload variation during runtime, allowing

us to generate combined training sets (such as Figure 3.17.(b) and Figure 3.18.(a)) that are

composed of a few or several workloads out of the 36-benchmark workloads to generate more

dynamic workloads, which in turn can simulate various types of graphics workloads similar

to real games. For example, as shown in Figure 3.17.(b), the low-variation benchmarks for

the refinement step are simulated like the small rectangles (covering 3-4 entries) and the

high-variation benchmarks are simulated like the long diagonal arrows or the big rectangles

(covering several entries).

The deployment sets are composed of the combinations of the 36-benchmark set (Fig-

ure 3.18.(a)) and 40 real-game applications (Figure 3.18.(b)) derived from: previously pub-

lished papers, traditional graphics benchmarks for performance comparison of commercial

60

products such as Anomaly2 or 3D mark, popular Android games like Angry Birds and Far-

mville, and games of popular game engine companies such as Unity or Gameloft’s unreal

engine. Of course any other games can be tested additionally; we also note that the No-

dominant area has more games compared to other areas because many popular games were

located in this area on ODROID-XU3 which is deploying high-performance CPUs and GPUs

as we described in the start of this chapter.

For measurements and comparison: after capturing all data of Table 3.1 in every

epoch, we compared power consumption of CPU-bc, CPU-lc, GPU, and memory. The aver-

age power consumption of CPU-lc in the training set was only 8.6% of the CPU-bc, CPU-lc,

and GPU power and has no significant difference for CPU-bc and GPU frequency capping.

Therefore, in this work we only consider CPU-bc and GPU frequency capping with the de-

fault maximum frequency(i.e., 1600Mhz) as the saturated frequency for CPU-lc; and we use

the summation of CPU-bc, CPU-lc and GPU power consumption for a total power consump-

tion.

In order to achieve a fair comparison with the baseline, we designed non-random micro-

benchmarks and made efforts to find games that have very similar graphics workloads in

every execution. In particular, the traditional benchmarks for graphics performance com-

parison had exactly same workloads in each execution. Moreover, to measure large sets of

combined benchmarks and mobile games automatically and quantitatively, there is a need

for an automated framework to run benchmarks, capture data and ensure repeatability of

experiments. Towards this end, we developed an automatic measurement tool (AMT) for

micro-benchmarks and mobile games using Linux shell scripts, Python modules, and XML

files.

We then compare our proposed Co-Cap manager, which is implemented within the Linux

kernel layer, with the default CPU and GPU governors (i.e., Interactive CPU governor and

ARM’s Mali Midgard GPU governor) using FPS, power (CPU-bc, CPU-lc, and GPU) and

61

40

60

80

100

120

2000 1800 1600 1400 1200

N
o

m
al

iz
e

d

CPU maximum frequency

FPS

Pwr

EpF

(a) NO domi. (mb 110)

40

60

80

100

120

543 480 420 350 266 177

N
o

m
al

iz
e

d

GPU maximum frequency

(b) NO domi. (mb 110)

40

60

80

100

120

2000 1800 1600 1400 1200

N
o

m
al

iz
e

d

CPU maximum frequency

(c) GPU domi.
(mb 140)

40

60

80

100

120

543 480 420 350 266 177

N
o

m
al

iz
e

d

GPU maximum frequency

(d) GPU domi.
(mb 140)

40

60

80

100

120

2000 1800 1600 1400 1200

N
o

m
al

iz
e

d

CPU maximum frequency

FPS
Pwr
EpF

(e) CPU domi.
(mb 410)

40

60

80

100

120

543 480 420 350 266 177

N
o

m
al

iz
e

d

GPU maximum frequency

(f) CPU domi.
(mb 410)

40

60

80

100

120

2000 1800 1600 1400 1200

N
o

m
al

iz
e

d

CPU maximum frequency

(g) CGU domi.
(mb 440)

40

60

80

100

120

543 480 420 350 266 177

N
o

m
al

iz
e

d

GPU maximum frequency

(h) CGU domi.
(mb 440)

Figure 3.19: FPS, Power and EpF Results of Different Types of Graphics Workloads.

EpF. To minimize variance across measurements, we perform repeated executions per appli-

cation to get the average results.

Overhead and Epoch of our Manager: In order to evaluate performance and power

consumption overhead of our manager, we measured the execution time of data capturing

(3-4us) and Co-Cap management (1-3us) source codes. The total overhead (4-7us) time can

be totally negligible compared to the default CPU governor epoch (50 ms) and GPU governor

epoch (100 ms) in terms of performance (FPS degradation). Moreover, any noticeable power

increase was not observed in terms of average power consumption when we add the data

capturing and the Co-Cap management functions. In addition to the negligible overhead in

terms of execution time and power consumption, we use the same epoch (i.e., 100 ms) with

that of GPU governor because of two reasons: 1) We can easily solve the synchronization

problem with the underlying CPU and GPU governors 2) A longer epoch compared to the

default may affect performance degradation because of delayed frequency adaptation.

62

3.5.2 Experimental Results

3.5.2.1 Different types of graphics workloads

Figure 3.19 shows the effects of CPU (or GPU) maximum frequency capping on FPS, power,

and EpF for some examples of the 36-benchmark training set. For illustration, we show a

typical example benchmark from each different graphics workload (i.e., No-domi, GPU-domi,

CPU-domi and CGU-domi) that provides specific examples for the general schemes of graph

pattern analysis shown in Figure 3.8. (To clarify further, the average FPS and the power

of the baseline are like these: mb110 (FPS: 60, Power: 864mW), mb140 (FPS: 58, Power:

1542mW), mb410 (FPS: 60, Power: 1765mW), mb440 (FPS: 58, Power: 1992mW).

3.5.2.2 Results of the Training Set

Figure 3.20 shows CPU-bc (CPU) and GPU energy savings per frame and FPS degradation

compared to the default (i.e., Interactive CPU governor and ARM’s Mali Midgard GPU

governor) using the high-variation training set. Our results using Co-Cap show a significant

combined CPU and GPU average energy savings of 8.9% (up to 18.3%) with insignificant FPS

degradation of 0.9% across all the benchmarks. (For each characterized graphics workload,

EpF improvement of 4.1%, 3.5%, 16.6%, 9.2% and FPS decline by 0.0%, 0.8%, 1.3%, 1.5%

in No-, GPU-, CPU-, CGU-dominant benchmarks respectively). On average, the CPU’s

contribution to the energy savings is 7.8%, while the GPU’s energy savings contribution is

1.1%. However, the results are totally different for GPU-dominant benchmarks (the second

category in Figure 3.20 and 3.21); the GPU’s contribution to the energy saving is 2.3%

while the CPU’s contribution is 1.1% of the 3.5% total energy savings. For CPU-dominant

benchmarks (the third category in Figure 3.20 and 3.21), we observe 16.6% CPU and 0.3%

GPU contributions. Based on our comprehensive experiments and analyses, we observe that

the energy savings for mobile gaming benchmarks are mainly dependent on characteristics

of the benchmarks (i.e., GPU energy savings from GPU-dominant and CPU energy savings

from CPU-dominant benchmarks).

63

0.0

0.8 1.3 1.5 0.9

4.1
3.5

16.6

9.2 8.9

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

No-Domi GPU-Domi CPU-Domi CGU-Domi Total_Avg

FP
S

D
e

gr
ad

at
io

n
 (

%
)

En
e

rg
y

Sa
vi

n
gs

 (
%

)

CPU Energy Savings GPU Energy Savings FPS_deg

only
for

Figure 3.20: The Average Results of the Training Set (High-variation).

Figure 3.21 shows each result of the 60-benchmark training set. It is observed that the

EpF is improved in most benchmarks except a few No-dominant benchmarks and the FPS

is successfully maintained at almost similar to the baseline for all benchmarks. (Some No-

dominant benchmarks are so lightweight that they could not have additional power reduction

in spite of the minimum CPU and GPU frequency).

-10

0

10

20

30

40

M
B

-T
2

_1
_0

0
0

M
B

-T
2

_1
_0

1
0

M
B

-T
2

_1
_3

0
0

M
B

-T
2

_1
_3

1
0

M
B

-T
2

_3
_2

0
0

M
B

-T
2

_4
_2

2
0

M
B

-T
2

_5
_0

0
0

M
B

-T
2

_5
_0

1
0

M
B

-T
2

_5
_1

2
0

M
B

-T
2

_5
_2

0
0

M
B

-T
2

_5
_2

1
0

M
B

-T
2

_5
_2

2
0

M
B

-T
2

_1
_0

2
0

M
B

-T
2

_1
_0

3
0

M
B

-T
2

_1
_1

2
0

M
B

-T
2

_1
_1

3
0

M
B

-T
2

_1
_1

4
0

M
B

-T
2

_1
_2

3
0

M
B

-T
2

_1
_2

4
0

M
B

-T
2

_1
_3

2
0

M
B

-T
2

_1
_3

3
0

M
B

-T
2

_1
_3

4
0

M
B

-T
2

_1
_4

4
0

M
B

-T
2

_2
_4

3
0

M
B

-T
2

_2
_4

4
0

M
B

-T
2

_4
_4

5
0

M
B

-T
2

_5
_0

4
0

M
B

-T
2

_5
_1

5
0

M
B

-T
2

_5
_2

3
0

M
B

-T
2

_5
_2

4
0

M
B

-T
2

_1
_4

0
0

M
B

-T
2

_1
_4

1
0

M
B

-T
2

_1
_5

0
0

M
B

-T
2

_1
_5

1
0

M
B

-T
2

_1
_5

2
0

M
B

-T
2

_2
_5

0
0

M
B

-T
2

_2
_5

1
0

M
B

-T
2

_3
_5

0
0

M
B

-T
2

_4
_5

3
0

M
B

-T
2

_5
_3

0
0

M
B

-T
2

_5
_3

1
0

M
B

-T
2

_5
_3

2
0

M
B

-T
2

_5
_4

0
0

M
B

-T
2

_5
_4

1
0

M
B

-T
2

_5
_4

2
0

M
B

-T
2

_5
_4

3
0

M
B

-T
2

_5
_5

0
0

M
B

-T
2

_5
_5

1
0

M
B

-T
2

_5
_5

2
0

M
B

-T
2

_5
_5

3
0

M
B

-T
2

_1
_4

2
0

M
B

-T
2

_1
_4

3
0

M
B

-T
2

_1
_5

3
0

M
B

-T
2

_1
_5

4
0

M
B

-T
2

_5
_3

3
0

M
B

-T
2

_5
_3

4
0

M
B

-T
2

_5
_4

4
0

M
B

-T
2

_5
_4

5
0

M
B

-T
2

_5
_5

4
0

M
B

-T
2

_5
_5

5
0

FP
S

D
e

gr
ad

at
io

n
 (

%
)

En
e

rg
y

Sa
vi

n
gs

 (
%

)

CPU-bc

GPU

FPS-deg.

NO-domi GPU-domi CPU-domi CGU-domi

Figure 3.21: The Detailed Results of the Training Set (High-variation).

3.5.2.3 Results of the Deployment Sets

Figure 3.22 shows CPU-bc (CPU) and GPU energy savings per frame and FPS degradation

compared to the default using the deployment sets: one high-variation benchmark set (not

used in the training sets) and the other real-game application set respectively. (Because the

general result patterns between micro-benchmark and real-game set are almost similar, we

summarize the real-game set results within parentheses in the ensuing results). Our deploy-

64

ment set results also show a significant combined CPU and GPU average energy savings

of 8.4% (7.4%) on average and up to 21.4% (27.6%) with insignificant FPS degradation of

0.9% (0.8%) across all the benchmarks. (For each characterized graphics workload, EpF im-

provement of 3.6% (4.8%), 4.7% (3.7%), 15.4% (16.0%), 9.1% (12.7%) and FPS decline by

0.0% (0.3%), 0.5% (0.1%), 1.4% (1.9%), 1.8% (2.7%) in No-, GPU-, CPU-, CGU-dominant

benchmarks respectively). Especially, overall result patterns (and also even values) in the

deployment sets are similar to those of the training set. These results clearly show that

Co-Cap is able to achieve significant improvement in EpF with little FPS decline for all

types of graphics workloads in the training and the deployment sets including real-game

applications; especially combinations of micro-benchmarks can be utilized as training sets in

mobile gaming workloads to resolve the challenges of finding various types of real-games and

modification of source codes in real-game applications to fix or change graphics workloads.

0.0 0.5 1.4 1.8 0.9

3.6 4.7

15.4

9.1 8.2

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

No-Domi GPU-Domi CPU-Domi CGU-Domi Total_Avg

FP
S

D
e

gr
ad

at
io

n
 (

%
)

En
e

rg
y

Sa
vi

n
gs

 (
%

)

CPU Energy Savings GPU Energy Savings FPS_deg

(a) A 60 Micro-benchmark Set

99.7 99.9 98.1 97.3 99.2
100.0

120.0

0.3 0.1
1.9 2.7

0.8

4.8 3.7

16.0

12.7

7.4

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

No-Domi GPU-Domi CPU-Domi CGU-Domi Total_Avg

FP
S

D
e

gr
ad

at
io

n
 (

%
)

En
e

rg
y

Sa
vi

n
gs

 (
%

)

CPU Energy Savings GPU Energy Savings FPS_deg

20.0

(b) A 40 Real-Game Set

Figure 3.22: Average Results of the Deployment Sets

Additionally, Figure 3.23 and 3.24 show the results of each application in the deployment

sets. Overall result patterns in each characterized graphics workload (i.e., No-, GPU-, CPU-

, CGU-dominant workloads) are similar between benchmark and real-game applications.

However, the variation of real-game applications in the same category is higher than that of

the micro-benchmark set.

65

-10

0

10

20

30

40

D
ep

2
_1

_0
0

0

D
ep

2
_1

_1
0

0

D
ep

2
_1

_1
1

0

D
ep

2
_2

_0
0

0

D
ep

2
_2

_0
1

0

D
ep

2
_2

_0
3

0

D
ep

2
_2

_1
0

0

D
ep

2
_2

_1
1

0

D
ep

2
_2

_1
2

0

D
ep

2
_2

_1
3

0

D
ep

2
_3

_0
0

0

D
ep

2
_1

_0
1

0

D
ep

2
_4

_2
1

0

D
ep

2
_4

_3
0

0

D
ep

2
_5

_3
3

0

D
ep

2
_1

_1
2

0

D
ep

2
_1

_1
4

0

D
ep

2
_1

_1
5

0

D
ep

2
_1

_2
2

0

D
ep

2
_1

_2
3

0

D
ep

2
_1

_2
4

0

D
ep

2
_1

_2
5

0

D
ep

2
_2

_0
4

0

D
ep

2
_2

_1
4

0

D
ep

2
_2

_2
4

0

D
ep

2
_2

_2
5

0

D
ep

2
_4

_2
2

0

D
ep

2
_4

_3
2

0

D
ep

2
_5

_3
4

0

D
ep

2
_5

_4
4

0

D
ep

2
_1

_2
0

0

D
ep

2
_1

_3
0

0

D
ep

2
_1

_3
1

0

D
ep

2
_1

_5
0

0

D
ep

2
_2

_2
3

0

D
ep

2
_2

_3
0

0

D
ep

2
_2

_3
1

0

D
ep

2
_2

_3
2

0

D
ep

2
_2

_4
1

0

D
ep

2
_2

_5
0

0

D
ep

2
_2

_5
2

0

D
ep

2
_6

_4
0

0

D
ep

2
_6

_5
0

0

D
ep

2
_4

_4
0

0

D
ep

2
_5

_4
2

0

D
ep

2
_1

_3
2

0

D
ep

2
_1

_3
3

0

D
ep

2
_1

_3
4

0

D
ep

2
_1

_4
2

0

D
ep

2
_1

_4
3

0

D
ep

2
_1

_4
4

0

D
ep

2
_1

_4
5

0

D
ep

2
_2

_3
4

0

D
ep

2
_2

_4
4

0

D
ep

2
_2

_4
5

0

D
ep

2
_2

_5
5

0

D
ep

2
_4

_5
2

0

D
ep

2
_4

_5
3

0

D
ep

2
_4

_5
4

0

D
ep

2
_5

_5
4

0

FP
S

D
e

gr
ad

at
io

n
 (

%
)

En
e

rg
y

Sa
vi

n
gs

 (
%

) CPU-bc

GPU

FPS-deg.

NO-domi GPU-domi CPU-domi CGU-domi

Figure 3.23: The results of the Deployment Set (MB).

-10

0

10

20

30

40

an
gr

yb
ir

d
s

3
0

0

R
ea

lS
te

el

an
o

m
al

y2
_n

o
rm

al

ar
m

o
re

d
ca

r

d
ee

rh
u

n
te

r

fr
o

n
tl

in
e_

D
d

ay

sh
o

o
te

m
d

o
w

n

te
rm

in
at

e

b
o

n
sa

ib
en

ch

cs
rr

ac
in

g

fa
rm

vi
lle

2

h
o

b
b

it

m
o

b
ile

G
P

U
m

ar
k

sk
yc

as
tl

e

sp
ee

d
o

rz

3
d

m
ar

k_
ex

tr
em

e

3
d

m
ar

k_
n

o
rm

al

ac
ti

o
n

b
ik

e

an
o

m
al

y2
_h

ig
h

d
in

o
sa

u
rh

u
n

te
r

d
re

am
b

ik
e

ep
ic

ci
ta

d
el

fr
o

n
tl

in
e2

fr
o

ze
n

h
er

cu
le

s

b
as

eM
ar

k

se
as

ca
p

e

as
sa

ss
in

sc
re

ed

q
3

zo
m

b
_2

q
3

zo
m

b
_4

re
al

d
ri

vi
n

g

d
in

o
gu

n
sh

ip

m
is

si
o

n
B

er
lin

tr
u

ck
Si

m
u

la
to

r

ed
ge

o
ft

o
m

o
rr

o
w

gp
u

b
en

ro
b

o
co

b

3
d

ra
ti

n
g

tr
ai

n
Si

m
u

la
to

r

FP
S

D
eg

ra
d

at
io

n
 (

%
)

En
e

rg
y

Sa
vi

n
gs

 (
%

)

CPU-bc

GPU

FPS-deg.

NO-domi GPU-domi CPU-domi CGU-domi

Figure 3.24: The results of the Deployment Set (RG).

3.5.3 Analysis and Discussion

Systematic Methodology for Completeness: Compared to the real-game based earlier

work [77], we systematically establish completeness using the micro-benchmark training sets

and the fine-grained refinement steps. First, with the help of our custom micro-benchmarks,

now it is possible to generate appropriate CPU-GPU workloads for each entry, while it was

very difficult to find games for some specific entries that are vacant. Therefore, while the

saturated frequencies for the vacant entries were empirically speculated by using interpolated

values of adjacent entries in our earlier work, now we can configure each saturated frequency

systematically at each entry using the benchmark sets covering all entries. Second, while the

refinement step in our earlier work was established empirically through just repeated over-

all Co-Cap evaluation for applications in the training set, the procedure of our fine-grained

refinement steps (Figure 3.12) provides a systematic methodology using a greedy heuristic

66

with two different types of complete training sets based on the custom micro-benchmarks.

CPU and GPU Energy Savings: Through the results and analyses of the multiple

training and deployment sets, EpF improvements differ based on the types of graphics work-

loads. We do observe that the energy savings for mobile gaming benchmarks are mainly de-

pendent on characteristics of the benchmarks (i.e., GPU energy savings from GPU-dominant

and CPU energy savings from CPU-dominant benchmarks) and that CPU dominant work-

load applications have better EpF improvement compared to GPU dominant workloads.

Note that the default CPU governor supports cluster-based DVFS. We speculate that the

main rendering process of graphics applications on Android system is executed on one single

core even though there are four big CPU cores and four little CPU cores; moreover, the de-

fault interactive CPU governor scale up immediately to the maximum frequency at a certain

state for performance improvements. Therefore, if we use a slightly lower maximum fre-

quency removing frequency over-provisioning compared to the default maximum frequency,

we can easily get significant power reduction with little FPS loss for CPU dominant applica-

tions. However, for GPU dominant workloads, we observe that an accelerator-based GPU is

especially dedicated for rendering tasks and that the default GPU governor is conservative

compared to the CPU governor in order to escape prospective rendering glitches. Therefore,

the power reduction rate of GPU dominant workload (Figure 3.19.(d)) is less than that of

the CPU dominant workload (Figure 3.19.(e)) for the same amount of FPS degradation. For

No-dominant workloads, the minimum frequency of CPU-bc or GPU is still quite high for

lightweight graphics application like Angrybirds as shown in Figure 3.24. For these kinds of

ultra lightweight graphics workloads, we speculate that CPU-lc frequency capping in addi-

tion to CPU-bc and/or CPU power gating are potentials for additional energy savings within

minimal FPS degradation on high performance HMPSoCs.

Consideration for Memory Intensive Workloads: The impacts of memory max-

imum frequency capping on FPS, Power and EpF are described in the Co-Cap Technical

Report [76]. However, according to our observations, opportunities for energy savings from

67

the memory frequency capping do not exist. Therefore, an alternative considering memory

intensive workloads is to use CPU or GPU governor. To do this, there could be two possible

approaches: 1) One is to train/evaluate our LUTs including memory intensive applications

and 2) the other is to build an additional model considering memory workloads in CPU or

GPU governor with extra memory workload characterization. In this work, we choose the

former approach because one of the main objectives is to provide a simple and easily portable

methodology for rapidly changing platforms; moreover, we evaluate our manager including

memory intensive applications which use the memory utilization (MU) from 17% to 98% in

the deployment set, and achieved significant energy savings for the memory intensive ap-

plications: For example, 26% for edgeoftomorrow (MU = 70), 16% for robocop (MU = 83)

and 9% energy savings for baseMark (MU = 76). And, our another work presents the latter

approach and summarize as follows.

Memory-aware Cooperative CPU-GPU DVFS Governor for Mobile Games [46]:

While DVFS techniques have been exploited previously for dynamic power management, con-

temporary techniques do not fully exploit the memory access footprint [59] [28] [49] [52] for

graphics-intensive gaming applications, missing opportunities for energy efficiency. In this

work, we for the first time propose a memory-aware cooperative CPU-GPU DVFS gover-

nor that considers both the memory access footprint as well as the CPU/GPU frequency

to improve energy efficiency of high-end mobile game workloads. Our experimental results

show that our proposed game governor achieves on average 13% and 5% improvement of

energy efficiency with minor degradation of performance compared to default governors and

state-of-the-art game governors.

Our proposed Co-Cap methodology shows promise for improving energy efficiency across

a wide range of micro-benchmarks and mobile games, and also in being rapidly applicable

for newer platforms as they emerge. However, our initial efforts still need to address a few

open issues, such as: Can we use more sophisticated methods (e.g., statistical models or

offline/online machine learning algorithms) to augment our existing heuristics for saturated

68

frequencies? How do we incorporate the effects of user inputs, which vary dynamically during

game execution? These and other extensions will be our future work.

3.6 Conclusion

In this chapter, we proposed Co-Cap, an energy-efficient CPU-GPU dynamic maximum fre-

quency capping technique. In the training phase, we first dynamically captured data such as

utilization and frequency, estimated graphics workloads using the normalized CPU and GPU

cost, and then configured the saturated frequency of CPU and GPU in each cost window.

We then evaluated the efficacy of Co-Cap using new sets of micro-benchmarks and games.

Our experimental results using more than 200 micro-benchmarks and 40 real games on the

ODROID platform show that Co-Cap improves energy per frame by 8.9% and 7.8% (16.6%

and 15.7% in CPU dominant applications) on average and achieves little FPS decline by 0.9%

and 0.85% (1.3% and 1.5% in CPU dominant applications) on average for the training- and

deployment sets respectively, compared to the default CPU- and GPU governors, with neg-

ligible overhead in execution time and power consumption on ODROID-XU3. Our ongoing

and future work includes proposing a smart CPU-GPU synergistic governor using more so-

phisticated methodology such as statistical models or machine learning algorithms. Finally,

while this methodology was targeted mainly for mobile games, it can also be applicable for

various types of CPU-GPU integrated graphics applications.

69

Chapter 4

Hierarchical FSM-based Integrated

CPU-GPU Frequency Capping

4.1 Introduction

Mobile games are an increasingly important application workload for mobile devices. These

games often demand high performance while rapidly depleting precious mobile battery re-

sources, resulting in low energy efficiency. The recent trend towards Heterogeneous MultiPro-

cessor Systems-on-Chip (HMPSoC) architectures (e.g., ARM’s big.LITTLE with integrated

GPU) attempt to meet the performance needs of mobile devices, and rely on software gov-

ernors for power management in the face of high performance. Contemporary commercial

mobile platforms (e.g., SAMSUNG Galaxy S6 and NEXUS 6) deploy separate governors

for CPU and GPU DVFS power management (Figure 4.1(a)), but miss opportunities to

coordinate power management between the CPU and GPU domains for improved energy

efficiency. Some recent research efforts have proposed integrated CPU-GPU DVFS poli-

cies [80] [51] for a small set of mobile games, assuming a fairly static workload behavior

70

(dotted box in Figure 4.1(a)). However, mobile games generally exhibit highly dynamic

behaviors through a varying mix of CPU and GPU workloads; existing software governors

are unable to exploit this behavioral dynamism to further improve energy efficiency while

delivering acceptable user experience for mobile gaming. To address these issues, we present

HiCAP (Figure 4.1(b)): a hierarchical FSM (HFSM) based integrated CPU-GPU DVFS gov-

ernor that: 1) naturally models the application’s dynamic behavior using the HFSM model,

and 2) uses a simple, cooperative CPU and GPU frequency capping technique to achieve

improved energy efficiency.

Introduction: trends (HMPSoCs, power management, and Dynamism)

General HMPSoCs System

Big CPU

GPU

Little CPU

Graphics Apps

CPU Governor

CPU DVFS

Proposed Dynamic Co-Cap System

GPU
Big CPU Little CPU

Graphics Apps

CPU Governor

CPU DVFS

CPU capping

GPU Governor

GPU DVFS

GPU Capping

Dynamic Behavior Modeling

GPU Governor

GPU DVFS

(a) Contemporary Governors

Introduction: trends (HMPSoCs, power management, and Dynamism)

General HMPSoCs System

Big CPU

GPU

Little CPU

Graphics Apps

CPU Governor

CPU DVFS

Proposed Dynamic Co-Cap System

GPU
Big CPU Little CPU

Graphics Apps

CPU Governor

CPU DVFS

CPU capping

GPU Governor

GPU DVFS

GPU Capping

Dynamic Behavior Modeling

GPU Governor

GPU DVFS

(b) HiCAP Governor

Figure 4.1: CPU-GPU Mobile Governors

Many mobile games have multiple levels of play with complex stages, and thus the games

themselves are typically designed hierarchically [61] [87]. Furthermore, the class of hier-

archical FSMs provide an excellent abstraction for behavioral modeling of many complex

embedded systems [31] [69]. Therefore we believe HFSMs offer a natural and intuitive mod-

eling abstraction for capturing the behavioral dynamism of a game, for applying effecting

DVFS policies.

Figure 4.2: HFSMs in Game Design.

For instance, Figure 4.2 shows the top-level HFSM of a typical game that proceeds from

the game set-up (Static superstate) to game execution (Dynamic superstate); of course dur-

71

ing execution the Dynamic superstate will contain a complex hierarchy of game levels, stages

and conditions to support various features of individual games. This motivates the use of

HFSMs in our HiCAP governor model.

Now consider Figure 4.3, where use a sample game ShootEmDown to motivate HiCAP’s

need for HFSM modeling, and HiCAP’s opportunity to improve energy efficiency by exploit-

ing game dynamism. Figure 4.3(a) captures the dynamism for different game scenes/actions,

showing the delivered Fram-es-per-Second (FPS) (dotted orange) 1, and the CPU (black)

and GPU (gray) workloads, normalized to their respective maximums. This figure clearly

shows the need for HFSMs to capture the game’s behavior hierarchically: Game Scene 1 is

fairly static, whereas Game Scenes 2 and 3 are highly dynamic, but with varying FPS, CPU

and GPU workloads.

C1: Dynamic Behaviors of mobile gaming (Game dynamism)

 Observations

 A game is composed of loading scenes and gaming scenes

• Loading scenes are very short and monotonous, compared to gaming scenes

• Gaming scenes run long and have various dynamism in terms of CPU/GPU workloads and FPS

 Focus on Game Scene dynamism

10

30

50

0

20

40

60

80

100

0
.0

4
.0

8
.0

1
2
.0

1
6
.0

2
0
.0

2
4
.0

2
8
.0

3
2
.0

3
6
.0

4
0
.0

4
4
.0

4
8
.5

5
2
.5

5
6
.5

6
3
.2

6
7
.2

7
1
.2

7
5
.2

7
9
.2

8
3
.2

8
7
.2

9
1
.2

9
5
.2

9
9
.2

1
0
3
.2

1
0
7
.2

1
1
1
.2

1
1
5
.2

1
2
0
.0

1
2
4
.1

1
3
8
.0

1
4
2
.0

1
4
6
.0

1
5
0
.0

1
5
4
.0

1
5
8
.0

1
6
2
.0

1
6
6
.0

1
7
0
.0

1
7
4
.0

1
7
8
.0

1
8
2
.0

1
8
6
.9

F
P
S
 (
Fr

a
m

e
s

p
e
r
S
e
co

n
d
)

C
P
U

/G
P
U

W

o
rk

lo
a
d

CPU GPU FPS

Game Scene 1 Game Scene 2 Game Scene 3

(Sec.)
App: Shoot Em Down

(a) Different Types of Game Dynamism

Motivation

No Dynamic Behavior

40

60

80

100

120

FPS EpF Pwr

N
o
rm

a
li
ze

d

Default Co-Cap

6% Energy Saving

FPS and Workload
Dynamic Behavior Awareness

40

60

80

100

120

FPS EpF Pwr

N
o
rm

a
li
ze

d

Defalut D. Co-Cap

Up to 20% Energy Saving

(b) No Dynamic Behavior

Motivation

No Dynamic Behavior

40

60

80

100

120

FPS EpF Pwr

N
o
rm

a
li
ze

d

Default Co-Cap

6% Energy Saving

FPS and Workload
Dynamic Behavior Awareness

40

60

80

100

120

FPS EpF Pwr

N
o
rm

a
li
ze

d

Default D. Co-Cap

Up to 18% Energy Saving

HiCAP

(c) Dynamic Behavior

Figure 4.3: Sample Mobile Game (ShootEmDown)
1Note that the delivered Frames-per-Second (FPS) is a typical metric for gaming user experience, with a

maximum FPS of 60 in the Android system.

72

Figures 4.3(b) and (c) highlight HiCAP’s opportunity for energy savings by exploiting

this game’s dynamic behaviors. When the game’s FPS and CPU/GPU workload dynamism

are not captured (Figure 4.3(b)), our previous Co-Cap technique [77] achieves a modest (up

to 6%) improvement. However, the game’s execution exhibits various levels of dynamism,

and our HiCAP governor is able to achieve significant (up to 18%) improvement in energy

efficiency over state-of-the-art static modeling governors by exploiting the dynamism in the

game’s FPS and the CPU/GPU workload, clearly demonstrating the potential for improved

energy efficiency.

This work makes the following specific contributions:

• We propose a Hierarchical FSM (HFSM) based dynamic behavior modeling strategy

for mobile gaming

• We present HiCAP: a cooperative CPU-GPU governor that deploys a simple maximum

frequency-capping methodology exploiting the HFSM for dynamic DVFS

• We present experimental results on a large set of 37 real mobile games with dynamic

behaviors, showing significant energy savings of up to 18% in Energy-per-Frame (EpF)

with minimal loss in FPS performance.

4.2 Related Work

With the emergence of high performance integrated mobile GPUs, several research efforts

have proposed integrated CPU-GPU DVFS governors: Pathania et al.’s [82] integrated CPU-

GPU DVFS algorithm didn’t consider quantitative evaluation for energy savings (e.g., per-

frame energy or FPS per watt); their next effort [80] further developed power-performance

models to predict the impact of DVFS on mobile gaming workloads, but did not model the

73

games’ dynamic behaviors; and Kadjo et al. [51] used a queuing model to capture CPU-

GPU-Display interactions across a narrow range of games exhibiting limited diversity in

CPU-GPU workloads.

In another direction, frequency capping techniques have been proposed as a simple yet

effective strategy for DVFS. Li et al. [58] initially introduced frequency capping for energy ef-

ficiency, but their approach is restricted to only CPU governor. Most recently, we proposed

a coordinated CPU-GPU maximum frequency capping technique [77] and applied it to a

range of mobile graphics workloads, but assumed static characterization of each application,

and did not consider dynamic behaviors for different CPU/GPU graphics workloads and the

Quality of Service (QoS) requirement.

Hierarchical FSMs [31] were proposed as an effective semantic model to capture complex

system behavior, with many variants such as Statecharts [44] providing modeling support

for complex embedded systems [69]. Many embedded systems – particularly for streaming

multimedia – have combined dataflow with HFSM models to enable tasks such as runtime

resource allocation and dynamic task mapping (e.g., [50]).

To the best of our knowledge, our HiCAP approach is the first to introduce a hierar-

chical FSM-based dynamic behavior modeling strategy for mobile gaming considering QoS

requirements; and the first to exploit the dynamics of CPU/GPU graphics workload varia-

tion through a simple maximum frequency capping strategy for energy efficiency on modern

HMPSoC platforms by avoiding frequency over-provisioning while delivering acceptable user

QoS.

4.3 Approach

4.3.1 Preliminaries

We begin by defining terminology used in this work.

74

CPU/GPU Workload: Mobile workload variations are typically quantified using a cost

metric that is a product of the utilization and frequency [16] [82]. Accordingly, as shown in

Equation(1), we deploy the normalized CPU and GPU costs [77].

Normalized Cost =
Curr Util. × Curr Freq.

Max Util. × Max Freq.
(4.1)

CPU/GPU Cost Matrix and Quadrants: To model the dynamics of game behavior

across the CPU and GPU domains, we develop a CPU/GPU Cost Matrix using the normal-

ized CPU (y-axis) and GPU (x-axis) costs, where the dominance of that component (CPU-

or GPU-) increases along each axis. Figure 4.4 shows our set of 37 gaming applications that

populate different entries in this matrix, corresponding to the CPU/GPU intensity of its

workload. This matrix has 4 major quadrants: No CPU-GPU dominant, CPU dominant,

GPU dominant and CPU-GPU dominant workloads [77].

1

A Sub Set (37 apps)

CPU \ GPU

Cost
0-20 20-40 40-60 60-80 80-90 90-100

0-20
Dream Bike
Sky Castle 2

Bonsai Bench Extreme Motorbike

20-40 Armored Car Anomaly2 Low
Hercules

Anomaly2 Normal
Epic Citadel

Anomaly2 High
Implosion

40-60 Fast and Furious 7
Madden NFL 15
Micro-bench 102

Frontline Dday
Godus

ShootEm Down S
Micro-bench 110
Micro-bench 111

3D Mark - Normal

60-80

Q3 Zombie Map 1
Terminator Genisys
Micro-bench 100
Micro-bench 101

Micro-bench 112
Dino Gunship

ShootEmDown A

ShootEmDown D
Train Simulator

80-90 Micro-bench 103 Micro-bench 113
RoboCop

Edge of Tomorrow

90-100 Assassin Creed : P
Turbo FAST (Net)
Q3 Zombie Map 2
Q3 Zombie Map 4

A Total Set : 37

Figure 4.4: A set of benchmarks.

Frequency Over-Provisioning and Frequency Capping: Existing software gover-

nors often over-provision frequency, which provides energy-saving opportunities by simply

capping the maximum operating frequency without loss of quality [77].

Saturated Frequency Look-up Tables: We can enter saturated (capped) frequencies

(determined statically [77] or dynamically) in each entry of the CPU-GPU cost matrix, re-

75

sulting in a CPU/GPU saturated frequency look-up table that covers the entire cost matrix.

This saturated frequency look-up table can then be used for determining the new CPU and

GPU maximum frequency settings by the runtime governor.

Having discussed preliminaries, we now describe HiCAP’s approach for using HFSMs to

model dynamic behavior for mobile gaming (Chapter 4.1.2), and HiCAP’s heuristics for con-

figuring CPU/GPU saturated frequencies through a runtime frequency-capping methodology

(Chapter 4.1.3).

4.3.2 HFSM-based Dynamic Behavior Model

4.3.2.1 Game Dynamism Analysis

Although each game may be situated in a specific quadrant of the CPU/GPU cost matrix

(Figure 4.4), during runtime the game will exhibit dynamic behavior that covers a dynamic

footprint of the CPU/GPU cost matrix. For instance Figure 4.5 shows the dynamic footprints

of two benchmarks (3DMark-Normal and Dino-Gunship) during a 500ms execution snapshot,

with the blue dots representing states that satisfy QoS (labeled as QoS-meet) while the black

dots represent states that are unable to meet the QoS requirement (labeled as QoS-loss).

Furthermore, we also note that the CPU-GPU workload dynamism can be characterized

as being CPU-dominant (CPU-D) or GPU-dominant (GPU-D), if the CPU/GPU workload

can be characterized quantitatively. For the specific examples in Figure 4.5, we note that

the footprint of the 3DMark-Normal game (Figure 4.5(a)) is mainly located in the right-

side of the diagonal line, which implies that GPU cost is higher than CPU cost (i.e., this

is a GPU-dominant workload). Similarly, the game Dino-Gunship (Figure 4.5(b)) has the

footprint of a CPU-dominant workload. In summary, using this strategy we can characterize

each game’s dynamic behavior.

76

0

20

40

60

80

100

0 20 40 60 80 100

C
P
U

 C
o
st

GPU cost

QoS- meet QoS- loss

0

20

40

60

80

100

0 20 40 60 80 100

C
P
U

 C
o
st

GPU cost

QoS- meet QoS- loss

Dynamic Co-Cap Overview
compared to Co-Cap policy

(a) 3DMark-Normal

0

20

40

60

80

100

0 20 40 60 80 100

C
P
U

 C
o
st

GPU cost

QoS- meet QoS- loss

0

20

40

60

80

100

0 20 40 60 80 100

C
P
U

 C
o
st

GPU cost

QoS- meet QoS- loss

Dynamic Co-Cap Overview
compared to Co-Cap policy

(b) Dino-Gunship

Figure 4.5: Footprints of Game Dynamism

4.3.2.2 HFSM-based Modeling

We use hierarchical FSMs (HFSMs) to model each game’s dynamic behavior, as shown in

Figure 4.6. We use a formalism similar to StateCharts, where each state represents a specific

dynamic behavioral state of a game application, and the state may be further refined into

another lower-level FSM. We call the inside FSM the sub-state and the outside FSM the

super-state in the StateCharts language [69].

Our HFSM model starts with two super-states at the highest level labeled QoS-meet and

QoS-loss, and each super-state has two sub-states labeled CPU-D and GPU-D as shown

in Figure 4.6. During design optimization, new states can be added heuristically to this

model. For example, while meeting a QoS requirement, let’s assume that two states are

fluctuating continuously (e.g., repeated QoS-meet and QoS-loss) for a certain amount of

time. In this situation, the output of each state also fluctuates continuously, resulting in

performance or power overheads. To improve this situation, a new QoS-transient (QoS-tr)

state can be designed, that generates a new output. Furthermore, in terms of CPU/GPU

workload (cost) – i.e., multiplication of frequency and utilization – a continuous maximum

utilization (Cont-UMax) may result in FPS degradation in the QoS-loss state. Because

this may further degrade performance, we can design a new state to deal with this specific

situation. Also note that due to the hierarchical structure of the HFSM, sub-states such

77

as CPU-D, GPU-D, or Cont-UMax are in turn also super-states at a lower level, consisting

of sub-states themselves. Due to space limitations, detailed additional sub-states are not

described here, but can be found in our Technical Report [79].

HFSM & Cooperative Capping Simplified version

QoS-meet

CPU-D

GPU-D

QoS-loss

CPU-D

GPU-D

Cont.
UMax

meet_cnt = 0 Λ loss_cnt = 1

meet_cnt >= 2

loss_cnt = 0 Λ meet_cnt = 1

loss_cnt >= 2

cpu_cost > gpu_cost

cpu_cost <= gpu_cost

cpu_cost > gpu_cost

cpu_umax_cnt > 2

gpu_umax_cnt > 2

QoS-tr

cpu_cost <= gpu_cost

QoS-meet
QoS-meet

gpu_ umax_cnt <= 2

cpu_umax_cnt <= 2

Figure 4.6: Hierarchical Finite State Machine

The HFSM in Figure 4.6 has switching conditions shown as annotations on the HFSM

edges. We partition the execution time of applications into 500ms epochs [79]. At the

start of each epoch, using FPS and workload data captured during the previous epoch, our

HFSM determines whether to make the transition or not, and takes the appropriate action.

The QoS-target is changeable by users, but for this study we use the maximum FPS (60 in

Android system) to compare directly the default and related governors. We now provide a

detailed description of our switching heuristic using Figure 4.6 and Algo. 1.

The HFSM is initialized to the QoS-tr super-state (the default state among the super-

states). If the average-FPS of the previous epoch meets the QoS-target for the past two

states (meet cnt >= 2), then the FSM transitions to the QoS-meet state (line 2). In this

state, if the average-FPS loses the FPS-target for the first time, then the FSM transitions

to the QoS-tr state (line 17), not directly to QoS-loss state. However, if the average-FPS

loses FPS-target two times consecutively (loss cnt >=2), then the FSM transitions to the

QoS-loss state (line 8). We use two counters (meet cnt and loss cnt) to detect the QoS-tr

state.

For sub-state transitions, the QoS-loss super-state can be further refined into CPU-D,

GPU-D, and Cont-UMax sub-states according to various conditions: if CPU cost is larger

than GPU cost, the CPU-D sub-state will be the new active state (line 9); if GPU cost is

78

bigger than or equal to GPU cost, the GPU-D sub-state will be the new active state (line

11); and if CPU/GPU maximum utilization counters (cpu umax cnt or gpu umax cnt) are

bigger than specific thresholds, the Cont-UMax sub-state will be the new active state (line

14). In a hierarchical FSM model, same sub-states such as CPU-D and GPU-D can be

located in different super-states (line 3 and 5).

Until now, we have not considered outputs (reactions) generated by our hierarchical FSM.

Once the two transitions in super- and sub-state are triggered, possible reactions include the

generation of events and/or assignments to variables. Using the HFSM model, we assign

new appropriate CPU/GPU saturated frequencies as HFSM outputs, which are then applied

in the next epoch.

4.3.3 Frequency-Capping

We adopt a CPU and GPU frequency capping heuristic for the following reasons: 1) Sim-

plicity: adding a capping module on top of the default (or custom) CPU/GPU governors is

easier than complicated integrated CPU/GPU governors. 2) Portability: capping is easily

adaptable to newer platforms. 3) Efficacy: our previous work [77] has shown overall improve-

ments for different types of graphics workloads. 4) Elimination of wasteful frequency over-

provisioning: commercial CPU governors typically scale frequency using utilization based

thresholds. In other words, if CPU utilization is greater than or equal to a certain threshold,

the governor sets the highest frequency from the corresponding frequency [58]. This is also

similar in GPU governor but more conservative. However, in both cases these approaches

may result in frequency over-provisioning, since the frequency is set to a higher level even

when the target QoS has been met at maximum utilization. This results in wasted power.

To configure appropriate saturated frequencies, we design dynamically changing CPU

and GPU HiCAP (HiC) look-up tables (LUTs), which determine the new CPU and GPU

maximum frequencies of cost quadrants for the next epoch. We label the upper-bounded

79

Dynamic Co-Cap Overview
compared to Co-Cap policy

QoS-loss

CPU-
Domi.

GPU-
Domi.

QoS-meet

CPU-
Domi.

GPU-
Domi.

Scheme
A

Scheme
B

Scheme
C

Scheme
D

 Mobile Gaming

Super-states QoS-meet QoS-tr QoS-loss

Sub-states CPU-D GPU-D CPU-D/GPU-D CPU-D GPU-D Umax

CPU capping
HiC=down
from CC

-
same w/ the
prev. state

HiC =
upto CC

-
HiC =

over CC

GPU capping -
HiC=down
from CC

-
HiC =

upto CC
HiC =

over CC

Figure 4.7: Different Capping Policies as Outputs

Algorithm 1 The HFSM Heuristic Pseudo-code

Every epoch
1: Calculate average FPS, CPU and GPU Costs per epoch

2: if meet cnt ≥ 2 then . QoS-meet
3: if cpu cost > gpu cost then . CPU-D
4: HiC = CPU Freq-Cap down from CC
5: else . GPU-D
6: HiC = GPU Freq-Cap down from CC
7: end if
8: else if loss cnt ≥ 2 then . QoS-loss
9: if cpu cost > gpu cost then . CPU-D

10: HiC = CPU Freq-Cap up to CC
11: else . GPU-D
12: HiC = GPU Freq-Cap up to CC
13: end if
14: if cpu (or gpu) umax cnt > 2 then . UMax
15: HiC = CPU or GPU Freq-Cap over CC
16: endif
17: else . QoS-tr
18: Same Frequency-Cap with the previous state
19: end if
20: Newely updated CPU and GPU HiC LUTs for next epoch

frequencies from Co-Cap [77] as CC. By exploiting the hierarchical property of HFSMs (Fig-

ure 4.7), we apply different capping policies in each sub-state. For example, the capping

policies between QoS-meet QoS-tr, and QoS-loss state are fundamentally different. In the

QoS-meet state, lower saturated frequencies than CC are set because QoS-target is already

met (line 4 and 6). However, in the QoS-loss state, almost similar frequencies to CC are

required to have competitive performance (line 10 and 12). In particular, for continuous

maximum utilization in QoS-loss state, temporarily higher frequency than CC is used to

prevent FPS reduction (line 15). In the QoS-tr state, the same saturated frequencies of the

previous state (line 18) are used to reduce fluctuation of outputs (i.e., overheads). Accord-

ing to the characterization of different types of graphics workloads (i.e., for CPU (GPU)

80

dominant workloads, energy saving within minimal FPS decline mainly results from CPU

(GPU) capping), we mainly scale CPU (GPU) saturated frequency for CPU-D (GPU-D)

sub-states.

4.4 Experimental Results

4.4.1 Experimental Setup

We evaluated our HiCAP governor on the ODROID-XU3 development board installed with

Android 4.4.2 and Linux 3.10.9; Table 4.1 summarizes our platform configuration. The plat-

form is equipped with four TI INA231 power sensors measuring the power consumption of

big CPU cluster (CPU-bc), little CPU cluster (CPU-lc), GPU and memory respectively.

The CPU supports cluster-based DVFS at nine frequency levels (from 1.2Ghz to 2.0Ghz)

in CPU-bc and at seven frequency levels (from 1.0Ghz to 1.6Ghz) in CPU-lc, and GPU

supports six frequency levels (from 177Mhz to 543Mhz).

Table 4.1: Platform Configuration

Feature Description

Device ODROID-XU3
SoC Samsung Exynos5422
CPU Cortex-A15 2.0Ghz and Cortex-A7 Octa-core CPUs
GPU Mali-T628 MP6, 543Mhz
System RAM 2Gbyte LPDDR3 RAM at 933MHz
Mem. Bandwidth up to 14.9GB/s

OS(Platform) Android 4.4.2
Linux Kernel 3.10.9

Benchmark Set: As shown in Figure 4.4, we use 37 gaming applications covering dif-

ferent types of graphics workloads; many are derived from previously published papers

([75] [82] [80] [51] [77]).

For comparison: We compare our HiCAP governor against the default and two state-of-

the-art related governors ([80] and [77]). The default corresponds to the independent CPU

and GPU governors in Linux (Interactive CPU governor and ARM’s Mali Midgard GPU

governor). The first state-of-the-art governor [80] (represented as PAT15) proposed an in-

81

tegrated CPU-GPU DVFS strategy by developing predictive regression power-performance

models. The second state-of-the-art governor [77] (represented as Co-Cap16) presented a

coordinated CPU and GPU maximum frequency capping technique using upper-bounded

saturated frequencies configured in a static training phase.

Overhead: Our power manager was implemented in kernel layer on top of CPU and

GPU governors. The execution time of our manager per epoch is within 10us, which is

totally negligible compared to the epoch period (500ms). Moreover, we did not observe any

noticeable increase in average power consumption due to the power manager.

4.4.2 Automatic Measurement Tool

To measure a large set of mobile games automatically and quantitatively, there is a need

for an automated framework to run games, capture key execution characteristics and ensure

repeatability of experiments. Towards this end, we developed an automatic measurement

tool for mobile games (AMTG) using Linux shell scripts, Python modules, and XML files.

Figure 4.8 shows the hardware experimental setup, and all AMTG modules (Figure 4.9) are

executed on the Linux-host with USB connection to the device (ODROID-XU3).

 Odroid-XU3 with Android 4.4.2

 ARM big-LITTLE architecture (Cortex A15 and A7)

 Mali-T628 MP6

 Power sensors for big CPU, little CPU, GPU and memory

 Power sensor configuration

 On-board power sensor ina231 with sampling rate 8.244 ms

 software collects data every 125 ms

 Benchmarks

 One 30-app training set and one 40-app test set covering different CPU and

GPU cost

1

Experimental Setup

Odroid-XU3

USB

Odroid-XU3

USB
USB

HDMI

Touch Screen Linux-Host

Figure 4.8: Experimental Setup.

Using this tool, we can capture the average values of FPS, total power (CPU-bc, CPU-lc,

and GPU) and energy per frame (EpF) with repeated runs of each benchmark from the

mobile device for a certain amount of time, and average their measurements.

The AMTG is based on the monkeyrunner tool [8] and composed of four major com-

ponents: 1) Measurement Setup and Execution of monkeyrunner (Linux shell-scripts). 2)

Game Manifestation (XML). 3) Execution of AMT Python Module. 4) Output files, as

82

Structure

1

Measurement Setup and Execution of monkeyrunner

#!/bin/bash
games_dir = ($(ls games_dir/))
policy_list = (Policy_1 ...)

while [...]; do
 policy setting on device using ‘adb shell’

done

Output Files

Results: TXT

monkeyrunner AMT.py ${game_list$[]} ${policy_list$[]}

Game Manifestation (XML)

<?xml version=“1.0”?>
<game name=...>
 package="com.example.game_name“
 activity=“Activity_name”
 ...
 <wait time=“10”/>
 <touch x=“640” y=“336”/>
 ...
 <measure time=“120”>
 ...
 </measure>
</game>

preparation

action loop
during measuring

Execution of AMT Python Module (AMT.py)

device = MonkeyRunner.waitForConnection()
...

...
file = open(“outputs_dir/”+game_name+“.txt”, ‘w’)
...
for exec in range (num_of_executions)
 device.startActivity(game.package + game.activity)
 runEvents(game)
 file.write(results)
...
for event in events :
 eventCase = {
 “wait” : eventWait,
 “touch” : eventTouch
 “measure” : eventMeasure
 ...
 }
snapshot = device.takeSnapshot()
snapshot.writeToFile(“name.png”)

game = Etree.parse(xml).getroot()

Snapshot: PNG

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6
7
8
9
10
11
12

In eventMeasure()

In runEvents()

In main()

Figure 4.9: Automatic Measurement Tool.

shown in Figure 4.9. The monkeyrunner tool provides an API (MonkeyRunner.waitForCo-

nnection()) for writing programs that control an Android device or emulator from outside

of Android code. With monkeyrunner, we write a Python program that runs an installed

Android application, sends input values to it, takes screenshots of its user interface, and

stores screenshots on the host. Pseudo-codes in each module will describe main functions

for each component.

Measurement Setup and Execution of monkeyrunner: In order to decide a direc-

tory which has games for measurements and candidate policies, a measurement setup process

is required. Therefore, a specific directory and policies for comparison should be defined in

this stage. For example, as shown in the pseudo code of Figure 4.9 (top-left), games dir (Line

2) and policy list (Line 3) were defined. After setting each candidate policy (Line 6), the

monkeyrunner program is repeatedly executed with the three arguments (a Python module

name, a game to measure and the corresponding policy) (Line 8).

Game Manifestation: Before describing the Python module to run each game on a

device, the manifestation of package name, activity name, and events should be defined in

83

advance. This information is specified in an XML file (one XML file per game). The XML

file (down-left) is composed of two parts: a preparation part and an action part. In the

preparation part, the names of package and activity (Line 3 and 4), all positions for menu

settings after loading times (Line 6 and 7) should be defined manually because each applica-

tion has different package and activity names, settings and loading times. In the action part,

we define the measuring time (e.g., 120 seconds in this work) (Line 9) and can optionally

add additional workloads periodically using touch, press or/and drag events in Line 10.

Execution of AMT Python Module: The Python module (AMT.py, top-right) con-

nects the current device (ODROID-XU3) and returns a MonkeyDevice object (Line 1). After

parsing the corresponding XML file (Line 3), it runs the package and activity of the game

(Line 8) and executes the input events (Line 9), which are defined in the game manifesta-

tion file and are implemented for each event in this Python module (Line 12-18). Finally

according to change of the num of executions, the number of measurements for each policy

in each game will be defined.

Output Files: Output files are defined in the AMT Python module (Line 5 and 20). We

generate two different types of output files: txt-based result files, png-based snapshot files.

Each opened TXT file (Line 5) will be written by results (Line 10). The result files include

the average FPS and power data during the measuring time in addition to all captured data

such as CPU/GPU utilization, frequency and cost function etc; they can be obtained using

’adb shell dmesg ’ and ’grep’ commands. The snapshot files have the start- and the finish-

screenshot of the measuring time of each application, and can be used to evaluate correctness

of each execution.

4.4.3 Results and Analysis

Figure 4.10 summarizes the average results of the benchmark in FPS and EpF. Our HiCAP

manager improves energy per frame by 18%, 14% and 8% on average compared to the default,

84

PAT15, and Co-Cap16 respectively, with negligible FPS decline of 1.5% and 1.2% on average

compared to the default and Co-Cap16 respectively, and 2.9% better FPS than PAT15.

90
98.5

82

95.6 96

0

20

40

60

80

100

120

FPS EpF

N
o

rm
al

iz
e

d

Default PAT15 Co-Cap16 Proposed

Figure 4.10: Average Results of the Benchmark Set

Comparison to Co-Cap16 [77]: Figure 4.11 shows CPU-bc (CPU) and GPU energy

savings per frame and FPS degradation compared to Co-Cap16. (Comparisons to the default

are detailed in our Technical Report [79] and omitted here due to lack of space; but we sum-

marize these results within parentheses in the ensuing analysis). Our results using HiCAP

show a significant combined CPU and GPU average energy savings of 8% (18% compared to

the default) with insignificant FPS degradation of 1.2% (1.5%) across all the benchmarks.

On average, the CPU’s contribution to the energy savings is 6.5% (15%), while the GPU’s

energy savings contribution is 1.5% (3%).

8

1.2

-60

-50

-40

-30

-20

-10

0

10

-10

0

10

20

30

40

50

60

b
o
n
sa

ib
e
n
ch

g
o
d
u
s

a
n
o
m

a
ly

2
_l
o
w

sk
yc

a
st

le
2

fr
o
n
tl
in

e
_d

d
a
y

sh
o
o
t.
e
.d

_s
ta

ti
o
n

m
b
_1

1
0

m
b
_1

1
1

m
b
_1

1
2

m
b
_1

0
2

m
a
d
d
e
n
_n

fl
1
5

fa
st

a
n
d
fu

ri
o
u
s7

a
rm

o
re

d
ca

r

3
d
m

a
rk

_n
o
rm

a
l

a
n
o
m

a
ly

2
_h

ig
h

a
n
o
m

a
ly

2
_n

o
rm

a
l

d
re

a
m

b
ik

e

h
e
rc

u
le

s

e
p
ic

ci
ta

d
e
l

e
xt

re
m

e
_m

o
to

r.
b

im
p
lo

si
o
n

m
b
_1

0
0

m
b
_1

0
1

te
rm

in
a
to

r_
g
e
n
is
ys

q
3
zo

m
b
ie

_m
a
p
1

q
3
zo

m
b
ie

_m
a
p
2

q
3
zo

m
b
ie

_m
a
p
4

tu
rb

o
fa

st
_n

e
tw

o
rk

a
ss

a
ss

in
C

d
in

o
g
u
n
sh

ip

sh
o
o
t.
e
.d

_a
re

n
a

m
b
_1

0
3

m
b
_1

1
3

sh
o
o
t.
e
.d

_d
e
se

rt

tr
a
in

_s
im

u
la

to
r

e
d
g
e
o
ft
o
m

o
rr
o
w

ro
b
o
co

p

N
o
-D

o
m

i

G
P
U
-D

o
m

i

C
P
U
-D

o
m

i

C
G
U
-D

o
m

i

T
o
ta

l_
A
vg

F
P
S
 D

e
g
ra

d
a
ti
o
n
 (

%
)

E
n
e
rg

y
 S

a
v
in

g
s

(%
) GPU

CPU-bc

FPS-deg.

Results: A Sub Set vs CC

No-domi GPU-domi CGU-domi CPU-domi Average

Figure 4.11: FPS and Energy Savings Comparison of Co-Cap16 [77] vs. our HiCAP

However, the results are totally different for GPU-dominant benchmarks (the second cat-

egory in Figure 4.11); the GPU’s contribution to the energy saving is 3% (7%) while the

85

CPU’s contribution is 1% (1%) of the 4% (8%) total energy savings. For CPU-dominant

benchmarks (the third category in Figure 4.11), we observe 15% (29%) CPU and 1% (1%)

GPU contributions.

Our results clearly show that HiCAP achieves significant improvements in energy effi-

ciency over the default governor and Co-Cap16 [77]; and that these are fair comparisons,

since we used the same ODROID-XU3 platform and similar games in our experiments. We

also note that the results shown in [51] (using the Intel Baytrail SoC platform and execut-

ing a small set of No- and GPU-dominant benchmarks) are very different from ours: their

work showed a larger savings from the GPU (13.3%) than the CPU (4.1%), because the

GPU typically consumes more energy than the CPU during graphics applications. However

unlike our HiCAP work, their experiments did not comprehensively cover a wide range of

mobile games exhibiting dynamism. Indeed based on our comprehensive experiments and

analyses, we observe that the energy savings for mobile gaming benchmarks are mainly de-

pendent on characteristics of the benchmarks (i.e., GPU energy savings from GPU-dominant

and CPU energy savings from CPU-dominant benchmarks) and platform characters such as

CPU/GPU minimum/maximum frequency and the number of CPU/GPU frequency levels,

in addition to the governor algorithm itself.

Comparison to PAT15 [80]: As shown in Figure 4.12, our HiCAP governor shows a sig-

nificant average energy savings of 14%, with a concomitant FPS improvement of 2.9% across

all the benchmarks compared to PAT15. Note that their work proposed linear regression-

based prediction models and evaluated a small set of mobile games that have specific work-

load characteristics (mainly using CPU-dominant benchmarks).

When we compared their approach on a larger set of varying graphics benchmarks, the

performance (FPS) prediction was up to 20% worse than the default for some GPU-dominant

benchmarks such as Anomaly2 high and Ano- maly2 normal (the second category in Fig-

ure 4.12). In addition to the CPU-GPU frequency under-provisioning for some benchmarks

with FPS degradation, their governor also allocates over-provisioned CPU/GPU frequencies

86

Results: A Sub Set vs pat15

No-domi GPU-domi CGU-domi CPU-domi Average

80

14

-2.9

-80

-70

-60

-50

-40

-30

-20

-10

0

10

-10

0

10

20

30

40

50

60

70

80

b
o
n
sa

ib
e
n
ch

g
o
d
u
s

fr
o
n
tl
in

e
_d

d
a
y

sk
yc

a
st

le
2

a
n
o
m

a
ly

2
_l
o
w

sh
o
o
t.
e
.d

_s
ta

ti
o
n

m
b
_1

1
0

m
b
_1

1
1

m
b
_1

1
2

m
b
_1

0
2

m
a
d
d
e
n
_n

fl
1
5

fa
st

a
n
d
fu

ri
o
u
s7

a
rm

o
re

d
ca

r

3
d
m

a
rk

_n
o
rm

a
l

a
n
o
m

a
ly

2
_h

ig
h

a
n
o
m

a
ly

2
_n

o
rm

a
l

d
re

a
m

b
ik

e

h
e
rc

u
le

s

e
p
ic

ci
ta

d
e
l

e
xt

re
m

e
_m

o
to

r.
b

im
p
lo

si
o
n

m
b
_1

0
0

m
b
_1

0
1

te
rm

in
a
to

r_
g
e
n
is
ys

q
3
zo

m
b
ie

_m
a
p
1

q
3
zo

m
b
ie

_m
a
p
2

q
3
zo

m
b
ie

_m
a
p
4

tu
rb

o
fa

st
_n

e
tw

o
rk

a
ss

a
ss

in
C

d
in

o
g
u
n
sh

ip

sh
o
o
t.
e
.d

_a
re

n
a

m
b
_1

0
3

m
b
_1

1
3

sh
o
o
t.
e
.d

_d
e
se

rt

tr
a
in

_s
im

u
la

to
r

e
d
g
e
o
ft
o
m

o
rr

o
w

ro
b
o
co

p

N
o
-D

o
m

i

G
P
U

-D
o
m

i

C
P
U

-D
o
m

i

C
G

U
-D

o
m

i

T
o
ta

l_
A
vg

F
P
S
 D

e
g
ra

d
a
ti
o
n
 (
%

)

E
n
e
rg

y
 S

a
v
in

g
s

(%
)

GPU

CPU-bc

FPS-deg.

Figure 4.12: FPS and Energy Savings Comparison of PAT15 [80] vs. our HiCAP

for several benchmarks such as Anomaly2 low and dreambike which have no FPS degrada-

tion but worse energy savings than our HiCAP governor. Note that their approach also had

average energy savings of 16% with FPS degradation of 3% across CPU-dominant bench-

marks compared to the default, but had 2% and 8% worse average energy savings with FPS

degradation of 3% and 7% for No- and GPU-dominant benchmarks respectively. Based on

these results analysis, we observe that characteristics of gaming benchmarks (CPU- or/and

GPU-dominant and Low/High workloads on the evaluated platform) are very important fac-

tors and results of each proposal also are dependent on the characteristics of benchmarks.

In summary, our HiCAP HFSM-based dynamic behavior model for mobile gaming is able

to detect a specific state in terms of FPS-target and CPU/GPU workload; thus HiCAP is

clearly able to eliminate CPU/GPU frequency over-provisioning using a simple frequency

capping technique. Therefore, our HiCAP manager was able to achieve better results in

energy saving, with minimal FPS degradation (and sometimes better FPS) compared to the

default governor, as well as the most recent research efforts [80] [77].

87

4.5 Conclusion

In this chapter, we proposed HiCAP: a Hierarchical FSM-based Dynamic Integrated CPU-

GPU Frequency Capping Governor for Energy-Efficient Mobile Gaming. HiCAP exploits the

inherent hierarchical behavior of mobile games through an HFSM modeling approach; and

uses a simple-yet-highly-effective capping technique to eliminate wasteful frequency over

provisioning present in previous governors. We analyzed a large set of 37 mobile games

exhibiting dynamic behaviors and developed a hierarchical FSM model that captures the

games’ dynamism. We then configured the CPU/GPU saturated frequency at run-time using

a simple frequency-capping methodology as outputs of the HFSM state transitions. Our

experimental results on the ODROID-XU3 platform across these 37 mobile games show that

our HiCAP governor improves energy per frame by 18%, 14% and 8% on average compared to

the default, PAT15 [80], and Co-Cap16 [77] governors respectively, with little FPS decline of

1.5% on average compared to the best performance (the default), and negligible overhead in

execution time and power consumption. We believe HiCAP presents an intuitively natural

way to model and exploit the dynamic behavior of mobile games, and is easily portable

across newer mobile platforms. The work presented here is our first step, with ongoing and

future work addressing: 1) proposing a scientific methodology for dynamic behaviors such

as classification and regression machine learning algorithms, and 2) integration of dynamic

thermal management in addition to cooperative CPU/GPU power management techniques.

Finally, while our HiCAP methodology was targeted mainly for mobile games, we believe it

can also be applicable for various other classes of CPU-GPU integrated graphics applications.

88

Chapter 5

A Machine Learning Enhanced

Integrated Governor

5.1 Introduction

Mobile games are an increasingly important application workload for mobile devices in terms

of increasing number of game applications and dynamism of gaming workloads. The re-

cent trend towards Heterogeneous MultiProcessor Systems-on-Chip (HMPSoC) architectures

(e.g., ARM’s big.LITTLE with integrated GPU) attempt to meet the performance needs of

mobile devices, and rely on software governors for dynamic power management in the face of

high performance. Besides separate governors for contemporary commercial CPU and GPU

DVFS power management, some recent research efforts have proposed integrated CPU-GPU

DVFS policies [80] [51] for a small set of mobile games, assuming fairly static gaming work-

loads. However, gaming applications exhibit inherent dynamism in their workloads, and

recent research on software governors typically use classical statistical methods (e.g., sim-

ple linear regression models [80] with a small amount of specific training data), resulting

89

in high prediction errors for unseen workloads. These classical linear regression based ap-

proaches are not effective for capturing the non-linear dynamism of gaming applications,

since they impose a linear relationship on the data [95]. In order to overcome the limitations

of classical statistical models (e.g., assumption of linear relationship or considering a large

number of variables), some recent approaches for GPGPUs [99] and High-Performance Com-

puting (HPC) [27] have developed performance prediction models using machine learning

techniques. But – to the best of our knowledge – machine learning enhanced approaches

have not been investigated for CPU-GPU integrated governors managing gaming workloads

on mobile heterogeneous MPSoCs.

Overall Flow: Prediction-based CPU-GPU Integrated DVFS

Training Data Pre-processing
Learning

(ML Algorithms)

Model(s) Test Data Prediction(s)

Learning Phase

Prediction Phase

Model(s)

Actuation of
CPU/GPU DVFS

Training Data Pre-processing
Learning

(ML Algorithms)

Model(s) Test Data Predictions

Learning Phase

Prediction Phase

Model(s)

An integrated DVFS Governor

Figure 5.1: Machine Learning Approach for our System

To address these issues we propose ML-Gov: a machine learning enhanced integrated

CPU-GPU DVFS governor (Figure 5.1) that proceeds in two phases: 1) in the learning phase,

we build tree-based piecewise linear models with high accuracy and a simple cost function

structure using practical offline machine learning techniques, and 2) we deploy these models

into an integrated DVFS governor that achieves online runtime estimation using the models.

This work makes the following specific contributions:

• We propose a practical machine learning enhanced tree-based piecewise regression

model building methodology for diverse and dynamic gaming workloads on hetero-

geneous mobile platforms

• We present an integrated CPU-GPU DVFS governor that applies piecewise policies

90

with analyses of the models.

• We present experimental results on a set of 20 mobile games with various charac-

teristics, showing significant energy savings of over 10% in Energy-per-Frame (EpF)

with a surprisingly concomitant 3% improvement in FPS performance, compared to a

state-of-the-art governor.

The rest of the work is organized as follows: Chapter 5.2 gives motivation and related

work. Chapter 5.3 distinguishes our methodology using the learning and prediction phases.

Chapter 5.4 shows and analyzes our results. Finally Chapter 5.5 concludes with a summary

and future work.

5.2 Motivation and Related Work

Unlike general machine learning based approaches, embedded systems pose two crucial chal-

lenges for machine learning: 1) model building considering system specific characteristics

or constraints such as heterogeneous architectures (i.e., not just higher accuracy), and 2)

a simple structure of cost functions for model integration and evaluation of the integrated

system, within a resource-constrained platform.

With regard to the first challenge, a specific characteristic of our integrated governor is

that our prediction models should be integrated into a CPU-GPU governor, and the models

must estimate the appropriate CPU and GPU frequencies for each state while achieving

the system goal of maximizing energy savings with minimal performance degradation. The

second challenge requires that the cost functions of the models should be easily integrated

into the governor algorithm, with negligible computational overhead within the time interval

epochs of the CPU or GPU governors.

While there are many powerful machine learning techniques such as instanced-based learn-

91

ing (e.g., k-Nearest Neighbor) or neural networks that provide high accuracy, they also suffer

from high opacity (not revealing anything about the structure of cost functions). On the

other hand, the class of regression models provides simple cost functions but low accuracy.

To solve the challenge of predicting real values for non-linear type datasets, we deploy

a tree-based piecewise linear model (i.e., model trees [95]), which combines a conventional

decision tree with the possibility of linear regression functions at the leaves, that provides

high accuracy with a simple cost function structure that allows for ease of integration into

the governors. We note that the integrated governor using these prediction models may

sometimes lead to unexpected results such as sudden performance drops (e.g., due to over-

/under-fitting of the models, unseen dynamic workloads, or heuristic thresholds in a governor

algorithm).

Therefore we found it important to deploy a simple and analyzable cost function structure

that allows us to investigate and resolve the problems in the integrated system. Note that

our approach is a combination of a decision tree with regression models at leaf nodes; the

representation of our models is perspicuous because the decision structure is simple due to a

small number (3-5) of leaf nodes in a tree and the regression functions do not involve many

attributes due to feature selection.

5.2.1 Motivation

Now consider Figure 5.2, where we compare model accuracy (prediction errors) and complex-

ity of model cost functions among the machine learning algorithms (Table 5.1) to motivate

need of tree-based piecewise regression models. (For the motivating example in Figure 5.2,

we use two datasets, which are collected from a real platform using a training set of 20 diverse

games; and the characteristics of the dataset and platform configurations will be described

in detail in Chapter 5.3.1 and 5.4.1).

The machine learning algorithms described in Table 5.1 are already built in a data-mining

92

2.28

1.56

0.50
0.44

0.29 0.28 0.31

5.58

2.89

1.74

0.94

0.38 0.31 0.30

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

S.L.R M.L.R M.Ts
(3-5)

M.Ts
(10-12)

M.Ts
(max)

REPTree IBK

St
ru

ct
u

re
 o

f
C

o
st

 F
u

n
ct

io
n

s

P
re

d
ic

ti
o

n
 E

rr
o

rs
 (

M
A

E)

ΔFPS by ΔCPU-Freq ΔFPS by ΔGPU-Freq Structure of Cost Functions

Sim
ple

Med

Com
plex

Figure 5.2: Comparison of Prediction Errors and Structure of Cost Functions among the
Machine Learning Algorithms (Motivating Example)

tool called Weka [41]. ∆FPS by ∆CPU-Freq (∆GPU-Freq) is FPS sensitivity to CPU (GPU)

frequency change after feature selection. As a metric for prediction errors (the left y axis),

we use Mean Absolute Error (MAE), which is a good indicator of average model perfor-

mance [97]. The structure of cost functions (the right y axis) is compared relatively us-

ing simple, medium and complex levels among the algorithms. In other words, while an

instance-based learning does not reveal anything about the structure of the function (high-

est complexity) because of the non-parametric property, a simple linear regression provides

the simplest structure. For the model trees, if the decision tree is simple (i.e., a small number

of leaf nodes) and the regression functions do not normally involve many variables after a

feature selection, the representation is simple and analyzable. However, as the number of

leaf nodes in a tree increases, the complexity will also increase as shown in the middle of

Figure 5.2.

Table 5.1: Compared M.L Algorithms

Algorithms in Weka [41] Descriptions

S.L.R Simple Linear Regression

M.L.R Multivariate Linear Regression

M5P [86] [95] Model Trees (M.Ts)

REPTree Decision (Classification/Regression) Trees

IBk [4] k-Nearest Neighbor (k-NN)

For instance, while the average MAE of S.L.R and M.L.R for ∆FPS by ∆CPU-Freq (i.e.,

93

FPS sensitivity to CPU frequency change) is 2.28 and 1.56 respectively, that of M.T using

3-5 leaf nodes is 0.5 (i.e., the MAE of the M.T was reduced by 78% and 68% compared

to S.L.R and M.L.R respectively). From the perspective of cost function complexity, M.Ts

(3-5) after a feature selection have almost similar complexity with the multivariate linear

models. This comparison clearly shows the need for the model trees in terms of simple and

analyzable structure of cost functions with high accuracy.

5.2.2 Related Work

With the emergence of high performance integrated mobile GPUs, several research efforts

have proposed integrated CPU-GPU DVFS governors: Pathania et al.’s [82] integrated CPU-

GPU DVFS algorithm didn’t consider quantitative evaluation for energy savings (e.g., per-

frame energy or FPS per watt); their next effort [80] further developed power-performance

models to predict the impact of DVFS on mobile gaming workloads, but used simple linear

regression models using a small amount of specific data resulting in high prediction errors

for various unseen workloads. Kadjo et al. [51] used a queuing model to capture CPU-GPU-

Display interactions across a narrow range of games exhibiting limited diversity in CPU-GPU

workloads; Park et al. [77] proposed a coordinated CPU-GPU maximum frequency capping

technique and applied it to a diverse range of mobile graphics workloads, but assumed static

characterization of each application; their next effort [78] further developed a hierarchical

FSM-based dynamic behavior modeling strategy for mobile gaming considering QoS and

CPU/GPU workload dynamism, but used an adaptive frequency-capping technique on top

of the default CPU and GPU governors instead of proposing a prediction model based inte-

grated frequency scaling technique.

Recently, CPU/GPU performance or power estimation models that use machine learn-

ing techniques are emerging in order to overcome these challenges: model building from

training data at numerous different hardware configurations for diverse and dynamic appli-

94

cations (workloads) on high-performance cluster (HPC) or general purpose GPU (GPGPU)

platforms. Dwyer et al. [27] proposed a method for estimating performance degradation on

multicore processors and applied into HPC workloads; Wu et al. [99] presented a GPGPU

power and performance estimation model that uses machine learning techniques on measure-

ments from real hardware performance counters. However, both do not consider a simple

cost function structure for easy integration of the models into a system and also do not an-

alyze the effects of the models during runtime prediction; instead these efforts focus purely

on high accuracy.

Gupta et al. [40] introduced a need for online performance models that can adapt to

varying workloads since the impact of the GPU frequency on performance varies rapidly

over time and presented a light-weight adaptive runtime performance model that predicts

the frame processing time; they did not present an integrated CPU-GPU governor but only

introduced potential impacts for GPU dynamic power management using the model. Chuan

et al. [20] proposed an adaptive on-line CPU-GPU governor for games on mobile devices to

minimize energy consumption. However, their work was applied to a set of only three games

exhibiting a narrow range of CPU-GPU workloads; and they did not show applicability

across a wide range of games exhibiting diverse CPU-GPU workloads in spite of significantly

different results from different types of graphics workloads.

To the best of our knowledge, our work – unlike previous efforts focused purely on perfor-

mance without regard to generality for mobile systems – is the first to introduce a practical

machine-learning enhanced piecewise linear model building methodology that achieves high

accuracy while using a simple cost function, allowing for ease of integration into CPU-GPU

integrated governors for mobile platforms. We therefore aim to achieve a target FPS with

minimal total power consumption using an integrated CPU-GPU DVFS. Furthermore, we

present experimental results for an integrated CPU-GPU governor applied on mobile gaming

workloads using a test set of 20 mobile games exhibiting diverse characteristics executing on

a mobile HMPSoC platform.

95

5.3 ML-Gov Methodology

Our ML-Gov methodology has two phases: a learning phase and a prediction phase as shown

in Figure 5.3.

CoCap overview: Cooperative Capping

 Composed of Training and Test Phase

 Training phase: CPU/GPU saturated frequency tables obtained in offline

 Test phase: Run-time evaluation for any apps (using a 40-test set)

Test Data

(Any Games)

LEARNING

PHASE

Training Data

(Selected Games)

Tree-based

Piecewise Linear Models

PREDICTION

PHASE

Energy saving

w/ acceptable performance

Figure 5.3: ML-Gov Overview

In the learning phase, we build tree-based piecewise linear regression models as well as

comparable statistical models using offline machine learning techniques built in a data mining

tool called Weka [41]. Then in the prediction phase, ML-Gov uses the built models at runtime

to estimate appropriate CPU and GPU frequencies (as much as possible maximizing energy

savings with minimal FPS degradation).

The main goal of this work is to present a new practical model-building approach using

offline machine learning techniques evaluating model accuracy and structure of cost functions

in the learning phase; and then we evaluate the real effects of the prediction models in terms

of energy saving and performance (FPS) in the prediction phase. Therefore, for an integrated

CPU-GPU governor framework, we deploy a simple but already qualified integrated governor

framework using a hierarchical-FSM based representation based on thorough observations of

state-of-the-art power management techniques [80] [78].

5.3.1 Learning Phase

As shown in Figure 5.4, the learning phase is composed of three steps: 1) collection of

training data, 2) attribute selection and 3) model training. The main objective of this phase

96

is to build prediction models with simple complexity of cost functions and high accuracy to

integrate the models easily into an integrated CPU-GPU DVFS governor.

CoCap: 1. Training Phase

 Composed of three modules

 1) Data capturing module

 2) Estimation module in offline

 3) Configuration module in o

Estimation

Freq, ΔFreq,

Util, ΔUtil,

FPS, ΔFPS

CPU Governor GPU Governor

Training Data Collection Pre-processing

Tree-based

Piecewise Linear Models

Model Training
with Evaluation

Attribute Selection

Techniques

Reduced attributes

Machine Learning

Algorithms

Figure 5.4: Learning Phase

5.3.1.1 Collection of Training Data

For training data, we use a training set of 20 mobile games that has various characteristics in

terms of CPU- and GPU-workloads using a workload metric (Cost) that is a product of the

utilization and frequency [16] [82] [77] [78]; and we collect data at numerous different CPU

and GPU frequency configurations using the diverse applications (workloads) on a mobile

HMPSoC platform.

Data Collection

 CPU and GPU Frequency effects

 Using various types of graphics workloads

 in terms of CPU and GPU Costs

offline

run-time

Data
Collection

Feature
Selection

Model
Training

Run Prediction
in Algorithm

Model
Evaluation

Set
CPU/GPU DVFS

Algorithm Evaluation
w/ Benchmarks

2000
1900
1800
1700
1600
1500
1400
1300
1200

CPU Freq
levels (Nc)

K 1 = Ng x { (Nc - 1) + (Nc - 1) + …. + 1}

by CPU Δfreq Configurations

543
480
420
350
266
177

 GPU Freq
levels (Ng)

K 2 = Nc x { (Ng - 1) + (Ng - 1) + …. + 1}

by GPU Δfreq Configurations

DataSet 1

DataSet 2

(a) Frequency Configurations

Conf. No Δfreq ΔFPS ΔUtilC ΔUtilG ΔCostC ΔCostG FPS UtilC UtilG CostC CostG

Conf. 1

…..

Conf. K

Data Collection
offline

run-time

Data
Collection

Feature
Selection

Model
Training

Run Prediction
in Algorithm

Model
Evaluation

Set
CPU/GPU DVFS

Algorithm Evaluation
w/ Benchmarks

2000
1900
1800
1700
1600
1500
1400
1300
1200

CPU Freq
levels (Nc)

Ng x { (Nc - 1) + (Nc - 1) + …. + 1}

by CPU Δfreq Configurations

543
480
420
350
266
177

 GPU Freq
levels (Ng)

Nc x { (Ng - 1) + (Ng - 1) + …. + 1}

by GPU Δfreq Configurations

Conf. No Δfreq ΔFPS ΔUtilC ΔUtilG ΔCostC ΔCostG FPS UtilC UtilG CostC CostG

Conf. 1

…..

Conf. K

Conf. No Δfreq ΔFPS ΔUtilC ΔUtilG ΔCostC ΔCostG FPS UtilC UtilG CostC CostG

Conf. 1

…..

Conf. K

 App 1 …..
 App 20

(b) DataSet

Figure 5.5: Data Collection Methodology

As shown in Figure 5.5.(a), we need two datasets because our system design has two actu-

97

ators, CPU and GPU DVFS. Therefore, first we measure a raw dataset of FPS, CPU-GPU

frequencies and utilizations across a range of frequency configurations by sweeping the CPU

frequency across the set of frequencies supported by the target system (9 frequency levels in

CPU) at each GPU frequency of 6 frequency levels in GPU; and we measure another raw

dataset by sweeping the GPU frequency with the same methodology. And then we collect

two datasets using the values of two different CPU/GPU frequency configurations from the

raw datasets assuming one is a current and the other is a new frequency. Specifically, we

choose 11 crucial variables (the first row in Figure 5.5.(b)) based on comprehensive observa-

tions of related work [82] [80] [51] [77] [78] for mobile gaming characteristics to CPU/GPU

frequency: 1) Relationship between FPS and CPU/GPU frequency. 2) Relationship between

a component’s utilization and its frequency. 3) The impact of cross-component frequency

variations on utilizations. 4) The impacts of CPU-GPU Cost functions. 5) The impacts of

current FPS, CPU-GPU utilizations and Cost functions.

As a result, in the training phase, we collect two datasets of 7020 = 20 x (36x6 + 15x9) in-

stances with 351 different frequency configurations (216 for CPU and 135 for GPU frequency

effects).

5.3.1.2 Attribute Selection

Before training the models, we reduce the number of attributes in the datasets for two

reasons: 1) to remove the attributes that are redundant or unrelated to an output, and 2) to

reduce the complexity of cost functions and computation overhead, while maintaining a good

prediction accuracy. Choosing a specific technique for attribute selection can be dependent

on the data and application area. For our model (i.e., FPS and Utilization prediction by

CPU and GPU frequency changes), the most important factor to consider is the correlation

between one response attribute and the other attributes. We tested several attribute selection

techniques by constructing models using the two datasets (Figure 5.5) and comparing their

98

accuracy; the technique that achieved the lowest error rate was correlation based feature

subset attribute selection (CfsSubset) [42] which sorts the attributes by their correlation to

a class attribute (response variable) and to the other attributes (predictor variables) in the

dataset. Note that the number of selected predictor variables may be different from each

response variable by the property of CfsSubset algorithm; Table 5.2 shows the results of

attribute selection.

Table 5.2: Selected Variables after Attribute Selection

Response Variable Selected Predictor Variables

∆Q by ∆FC ∆FC , Q, UC and CG

∆UC by ∆FC ∆FC , Q, UG, CC and CG

∆UG by ∆QFC
∆Q

∆Q by ∆FG FG (∆FG), Q, UC and UG

∆UG by ∆FG ∆FG and CC

∆UC by ∆QFG
∆Q and CG

5.3.1.3 Model Training

Next, we build and evaluate models for the qualified algorithms introduced in Table 5.1.

Here we detail the analyses and choices made for model evaluation and training.

First, to build models for the six responsive variables in Table 5.2, we mainly train the

first three algorithms among the algorithms described in the motivating example: S.L.R,

M.L.R and M.Ts (3-5). We note that instance-based learning does not reveal anything about

the structure of cost functions due to the property of a non-parametric method; and that

regression trees approximating a non-linear function by discretizing hundreds of leaves also

are not adequate for our integrated governor. Furthermore, M.Ts (max) are evaluated for

comparing model accuracy (but not for using the built models), since it is almost impossible

to integrate dozens of model trees into the CPU-GPU governor and analyze the effects of

the models.

We then build models of M.Ts (3-5) by changing minNumInstances (the minimum number

of instances allowed at a leaf node) in the M5P algorithm. We empirically choose a model

tree that has the smallest number among 3-5 leaf nodes, because it has a simple (analyzable)

99

cost function structure while its prediction errors are significantly lower than those of M.L.R

or the model trees having only 2 leaf nodes.

Table 5.3: Prediction Errors for Model Evaluation

Response Var. S.L.R M.L.R C-M.T F-M.T Chosen

∆Q by ∆FC 3.79% 2.58% 0.83% (3) 0.48% M.T 1

∆UC by ∆FC 15.55% 12.73% 11.15% (5) 6.33% M.T 2

∆UG by ∆QFC
4.49% 4.49% 4.44% (5) 4.46% S.L.R 1

∆Q by ∆FG 9.96% 5.15% 3.10% (4) 0.68% M.T 3

∆UG by ∆FG 19.82% 15.24% 14.04% (4) 8.42% M.T 4

∆UC by ∆QFG
22.78% 22.71% 22.55% (5) 16.59% S.L.R 2

Table 5.3 summarizes the results of our model evaluation. The last column of this table

shows our final selection, comprising four M.Ts (1-4) and two S.L.Rs (1-2) for the six respon-

sive variables. These selections were made based on their lower prediction errors and simple

cost function structures: Model prediction errors for ∆UG by ∆QFC
and ∆UC by ∆QFG

are

almost similar for all algorithms so that we use the simplest S.L.R models However, for the

other response variables, we use the M.Ts (1-4) because of high accuracy and analyzable

cost functions.

We illustrate the structure of the Model Trees using M.T 1 as an example. Model Tree

M.T 1 is a tree-based piecewise linear regression model to predict ∆Q by ∆FC . Lines 1-4

Model Tree M.T 1: ∆Q by ∆FC

1: UC ≤ 82 : LM1 (2774/16.283%)

2: UC > 82 :
3: — Q ≤ 54 : LM2 (1160/57.601%)

4: — Q > 54 : LM3 (386/20.231%)

. Smoothed Mode

5: LM1: ∆Q = - 0.0007 * Q + 0.0003 * UC - 0.001 * CG + 0.0603
6: LM2: ∆Q = 0.016 * ∆FC - 0.0042 * Q + 0.0005 * UC + 0.4079
7: LM3: ∆Q = 0.0004 * ∆FC - 0.0098 * Q + 0.0005 * UC + 0.8146

. Un-smoothed Mode
8: LM1: ∆Q = -0.001 * CG + 0.0407

(we set -0.001=αMT1
1 , 0.0407=αMT1

2)
9: LM2: ∆Q = 0.0162 * ∆FC + 0.2358

(we set 0.0162=βMT1
1 , 0.2358=βMT1

2)
10: LM3: ∆Q = + 0.3811

(we set 0.3811=γMT1
1)

reveal a tree structure with the thresholds of UC and Q, and Lines 5-7 and 8-10 correspond to

each regression model in each leaf node with the parameters in smoothed and un-smoothed

100

modes. In our model, we use un-smoothed mode instead of smoothed mode because the

structure of the un-smoothed mode is simpler while the prediction errors between the two

modes are exactly the same in our datasets.

Model Tree 2: ∆UC by ∆FC

1: CC ≤ 61.152
2: — ∆FC ≤ 250 : LM1 (1293/54.063%)

3: — ∆FC > 250 :

4: — — CC ≤ 54.416 : LM2 (1549/52.608%)
5: — — CC > 54.416 :

6: — — — CG ≤ 29.714 : LM3 (162/9.39%)
7: — — — CG > 29.714 : LM4 (243/198.57%)

8: CC > 61.152 : LM5 (1073/22.061%)

9: LM1: ∆UC = -0.018 * ∆Fc - 0.0585 * Q - 0.0294 * CC + 4.1886

(we set -0.018=αMT2
1 , - 0.0585=αMT2

2

- 0.0294=αMT2
3 , 4.1886=αMT2

4)
10: LM2: ∆UC = -0.0186 * ∆Fc - 0.1521 * CC - 0.0415 * CG + 7.4911

(we set -0.0186=βMT2
1 , - 0.1521=βMT2

2

- 0.0415=βMT2
3 , 7.4911=βMT2

4)
11: LM3: ∆UC = -0.1934

(we set -0.1934=γMT2
1)

12: LM4: ∆UC = -14.7754
(we set -14.7754=θMT2

1)

13: LM5: ∆UC = -0.0078 * UG - 0.0534 * CG + 1.5904

(we set -0.0078=λMT2
1 , - 0.0534=λMT2

2 , 1.5904=λMT2
3)

The Model Tree 2 is a tree-based piecewise linear regression model to predict ∆UC by

∆FC . Line 1-8 reveals a tree structure with 5 leaf nodes by the thresholds of CC , CG and

∆FC , (if ∆FC or ∆FG is included in the thresholds, we estimate it using another multivariate

linear regression model); and Line 9-13 corresponds to each regression model in each leaf

node with the parameters in the un-smoothed mode.

Model Tree 3: ∆Q by ∆FG

1: UG ≤ 96.86 :
2: — UG ≤ 39.608 : LM1 (171/3.352%)

3: — UG > 39.608 :

4: — — UC ≤ 96.032 : LM2 (395/12.61%)
5: — — UC > 96.032 : LM3 (212/12.486%)

6: UG > 96.86 : LM4 (933/60.453%)

7: LM1: ∆Q = + 0.0282

(we set 0.0282=αMT3
1)

8: LM2: ∆Q = + 0.7848
(we set 0.7848=βMT3

1)

9: LM3: ∆Q = - 0.4865
(we set -0.4865=γMT3

1)

10: LM4: ∆Q = 0.031 * ∆FG - 0.55 * Q + 29.9607

(we set 0.031=θMT3
1 , - 0.55=θMT3

2 , 29.9607=θMT3
3)

The Model Tree 3 is a tree-based piecewise linear regression model to predict ∆Q by

101

∆FG.

The Model Tree 4 is a tree-based piecewise linear regression model to predict ∆UG by

∆FG.

Model Tree 4: ∆UG by ∆FG

1: ∆FG ≤ 142 :

2: — ∆FG ≤ 66.5 : LM1 (360/13.196%)

3: — ∆FG > 66.5 :
4: — — UG ≤ 99.148 : LM2 (704/42.046%)

5: — — UG > 99.148 : LM3 (196/25.485%)
6: ∆FG > 142 : LM4 (1440/88.951%)

7: LM1: ∆UG = - 3.8548
(we set - 3.8548=αMT4

1)

8: LM2: ∆UG = - 10.8804

(we set - 10.8804=βMT4
1)

9: LM3: ∆UG = - 2.429

(we set - 2.429=γMT4
1)

10: LM4: ∆UG = -0.0896 * ∆FG - 1.7533
(we set -0.0896=θMT4

1 , - 1.7533=θMT4
2)

And, the S.L.Rs for the two responsive variables (∆UG by ∆QFC
and ∆UC by ∆QFG

) are

as follows.

S.L.R 1: ∆UG by ∆QFC

∆UG = 0.8704 * ∆Q (we set 0.8704 = αSLR1
1)

S.L.R 2: ∆UC by ∆QFG

∆UC = 1.4575 * ∆Q (we set 1.4575 = αSLR2
1)

Model Equations: We derive model euquations from the four model trees and the two

S.L.Rs. We denote the current CPU-GPU frequency combination with (FC , FG), the uti-

lization values with U
(FC ,FG)
C , U

(FC ,FG)
G , the FPS at the frequency combination with Q(FC ,FG)

and the current CPU-GPU Cost with CC , CG.

To estimate the FPS at a higher CPU (GPU) frequency level F ′C (F ′G), the relationship

between FPS and CPU (GPU) frequency can be derived by using Model Tree 1 (Model Tree

3) as follows (∆FC is same with F ′C - FC , vice versa for ∆FG).

Q(F ′
C ,FG) −Q(FC ,FG) =

αMT1

1 CG + αMT1
2 if LM1.

βMT1
1 ∆FC + βMT1

2 if LM2.

γMT1
1 if LM3.

(5.1)

102

Q(FC ,F
′
G) −Q(FC ,FG) =

αMT3
1 if LM1.

βMT3
1 if LM2.

γMT3
1 if LM3.

θMT3
1 ∆FG + θMT3

2 Q+ θMT3
3

if LM4.

(5.2)

To estimate the utilization of a component at a higher CPU (GPU) frequency level F ′C

(F ′G), the relationship between a component’s utilization and its frequency can be derived

as follows, by using the Model Tree 2 (Model Tree 4).

U
(F ′

C ,FG)

C − U
(FC ,FG)
C =

αMT2
1 ∆FC + αMT2

2 Q+ αMT2
3 CC + αMT2

4

if LM1.

βMT2
1 ∆FC + βMT2

2 CC + βMT2
3 CG + βMT2

4

if LM2.

γMT2
1 if LM3.

θMT2
1 if LM4.

λMT2
1 UG + λMT2

2 CG + λMT2
3 if LM5.

(5.3)

U
(FC ,F

′
G)

G − U
(FC ,FG)
G =

αMT4
1 if LM1.

βMT4
1 if LM2.

γMT4
1 if LM3.

θMT4
1 ∆FG + θ2 if LM4.

(5.4)

Finally, we estimate the impact of cross-component frequency variations on utilizations,

which occurs as long as there is parallel increase in FPS [80]. Therefore, the corresponding

equations can be derived as follows, by using the S.L.R2 (∆UC by ∆QFG
) and S.L.R1 (∆UG

103

by ∆QFC
).

U
(FC ,F

′
G)

C − U
(FC ,FG)
C =

{
αS.L.R1

1 (Q(FC ,F
′
G) −Q(FC ,FG)) (5.5)

U
(F ′

C ,FG)

G − U
(FC ,FG)
G =

{
αS.L.R1

1 (Q(F ′
C ,FG) −Q(FC ,FG)) (5.6)

5.3.2 Prediction Phase

As shown in Figure 5.6, the prediction phase comprises two steps: 1) merging the models

into an integrated CPU-GPU DVFS governor framework, and 2) setting CPU and GPU

frequencies by exeuting these predictors at runtime.

An Integrated Governor

Framework

CoCap: 1. Test Phase

 Composed of three modules

 1) Data capturing module

 2) Estimation module in offline

 3) Configuration module in offline

 Evaluation using training set

Estimation

Models
Into Integrated Governor

Tree-based

Piecewise Linear Models

CPU/GPU Cost

FPS, Power, EpF

Analysis

CPU-GPU DVFS

Setting

Prediction

Prediction and
Frequency Setting

Figure 5.6: Prediction Phase

5.3.2.1 An Integrated Governor Framework

The objective of our manager is to achieve a target FPS as much as possible with minimal

total power consumption using an integrated CPU-GPU DVFS. We build on the non-trivial

observations gleaned from the related work [80] [77] [78]: it is more power/energy efficient to

run at higher utilization and lower frequency than lower utilization and higher frequency if

a current FPS achieves a target FPS (or a current FPS is already quantitatively competitive

performance). However, for a target-FPS based manager, the challenge is how to get the

information of a target maximum FPS or reference values such as maximum CPU and GPU

104

utilizations for quantitative comparison with other governors. To solve this issue (similar to

the previous work [80]), we take three samples (one second duration for each) to obtain the

game specific reference constants (Q̂, Ûc, Ûg) when a new scene starts with the assumption

that start of a scene can be detected by changes in rendered textures [25] or CPU-GPU

utilization patterns [82]. This kind of sampling method enables us to avoid prior compre-

hensive offline profiling [80], especially to compare with the default separate CPU and GPU

governors (i.e., performance-driven policy without CPU-GPU cooperation).

Figure 5.7 illustrates our power management algorithm using the Hierarchical FSM-based

representation [78], since it provides a natural and intuitive design abstraction. Our algo-

DPM details
offline

run-time

Data
Collection

Feature
Selection

Model
Training

Run Prediction
in Algorithm

Model
Evaluation

Set
CPU/GPU DVFS

Algorithm Evaluation
w/ Benchmarks

QoS-meet

QoS-loss

CPU-bottle

GPU-bottle

CPU-only

CGU-both

GPU-only

GCU-both

MT2

MT1 MT3 MT4 MT2 MT1 MT3

F C

Down
F G

Down

MT4

F C

Up
F C

Up
F G

Up
F G

Up
F C

Up
F G

Up

SLR1 SLR2

Figure 5.7: HFSM-based Power Management Algorithm

rithm detects two possible super-states at current frequency combination (FC , FG): if Q is

within Q̂, QoS-meet or if Q is less than Q̂, QoS-loss. For QoS-meet super-state, CPU and

GPU frequencies will be scaled down to the estimated frequencies using the tree-based linear

models to achieve the maximum utilizations (using M.T 2 and 4). For QoS-loss super-state,

there are two sub-states: if CPU is the bottleneck, CPU-bottle or if GPU is the bottleneck,

GPU-bottle. CPU-bottle sub-state has two leaf states: CPU-only and CGU-both. For CPU-

only leaf state, only CPU frequency will be scaled up to the estimated frequency to achieve

the maximum target-FPS (using M.T 1); for CGU-both leaf state, GPU frequency will be

scaled up to the estimated frequency (using M.T 4) in addition to the CPU frequency scale

up. (Vice versa for GPU-bottle sub-state: For GPU-only leaf state, only GPU frequency will

be scaled up to the estimated frequency to achieve the maximum target-FPS (using M.T 3);

for GCU-both leaf state, CPU frequency will be scaled up to the estimated frequency (using

105

M.T 2) in addition to the GPU frequency scale up.)

5.3.2.2 CPU/GPU Frequency Setting with Prediction

Performance Demand State: For the QoS-loss super-state, the sub-state is CPU-bottle

or GPU-bottle, which reuire an increase in the frequency of the bottlenecked component for

FPS improvement. Let the needed frequency combination be (F ′C , F
′
G), where F ′C ≥ FC

and F ′G ≥ FG. For the CPU-only leaf-state, we choose F ′C using Equation (7), derived from

Equation (1): For LM 2, the equation predicts a next CPU frequency achieving the maximum

target-FPS. However, if ∆FC is not critical variable to the FPS sensitivity, we apply an

adaptive heuristic policy (i.e., one step higher frequency) for LM1 and LM3. According

to our observations, when we apply the same CPU frequency instead of one step higher

frequency, some intensive applications result in significant performance degradation.

F ′C =

(Q̂−Q(FC,FG))−βMT1

2

βMT1
1

+ FC if LM = 2.

FC + + otherwise.
(7)

This increase in FPS may force the cross-component (GPU) to do more work increasing its

utilization; and even after increasing CPU frequency, it may fail to achieve Q̂ because of an

intermediate GPU bottleneck. The estimated UG at Q̂ would be given by the Equation (8),

based on Equation (5).

U
(F ′

C ,FG)

G = U
(FC ,FG)
G + αSLR1

1 (Q̂−Q(FC ,FG)) (8)

If U
(F ′

C ,FG)

G is greater than ÛG, GPU will also become a bottleneck and the state will change

to CGU-both leaf-state; and the GPU frequency should be increased to F ′G given by Equation

106

(9), derived from Equation (4) (the Model Tree 4).

F ′G =

(U

(FC,FG)

G −ÛG)−θMT4
2

θMT4
1

+ FG if LM = 4.

FG + + otherwise.
(9)

For GPU-bottle sub-state, first we estimate F ′G using Equation (2) (the Model Tree 3) for

GPU-only. Second, we can detect the condition to GCU-both leaf-state using Equation (6)

in S.L.R 2. And then, F ′C can be estimated using Equation (3) (the Model Tree 2) for GCU-

both leaf-state.

Power Saving State: For the QoS-meet super-state, already the maximum target-FPS

is achieved with over-provisioned CPU and GPU frequencies wasting power consumption.

Therefore, we can save power without quality loss by reducing CPU and GPU frequencies

to F ′′C and F ′′G achieving the maximum CPU and GPU utilizations: Equation (10) is derived

from Equation (3) (the Model Tree 2), and Equation (11) is derived from Equation (4) (the

Model Tree 4).

F ′′C =

(ÛC−U
(FC,FG)

C)−(αMT2
2 ∗Q+αMT2

3 ∗CC+αMT2
4)

αMT2
1

+ FC

if LM = 1.

(ÛC−U
(FC,FG)

C)−(αMT2
2 ∗CC+αMT2

3 ∗CG+αMT2
4)

αMT2
1

+ FC

if LM = 2.

FG + + otherwise.

(10)

F ′′G =

(ÛG−U

(FC,FG)

G)−θMT4
2

θMT4
1

+ FG if LM = 4.

FG + + otherwise.
(11)

107

5.4 Experimental Results

5.4.1 Experimental Setup

We evaluated our ML-Gov manager on the ODROID-XU3 development board installed with

Android 4.4.2 and Linux 3.10.9; Table 5.4 summarizes our platform configuration. The

platform is equipped with four TI INA231 power sensors measuring the power consumption

of big CPU cluster (CPU-bc), little CPU cluster (CPU-lc), GPU and memory respectively.

The CPU supports cluster-based DVFS at nine frequency levels (from 1.2Ghz to 2.0Ghz)

in CPU-bc and at seven frequency levels (from 1.0Ghz to 1.6Ghz) in CPU-lc, and GPU

supports six frequency levels (from 177Mhz to 543Mhz).

Table 5.4: Platform Configuration

Feature Description

Device ODROID-XU3

SoC Samsung Exynos5422

CPU Cortex-A15 2.0Ghz and Cortex-A7 Octa-core CPUs

GPU Mali-T628 MP6, 543Mhz

System RAM 2Gbyte LPDDR3 RAM at 933MHz

Mem. Bandwidth up to 14.9GB/s

OS(Platform) Android 4.4.2

Linux Kernel 3.10.9

Benchmark Set: We use a training set of 20 games and a test set of 20 games including

several micro-benchmarks, covering different types of graphics workloads.

Figures 5.8 and 5.9 summarize the 20 training games and the 20 test set games used

in our experiments. Note that these games were selected specifically to exercise different

combinations of CPU- and GPU- intensive workloads, and included not only a large number

of real games, but also some custom micro-benchmarks in order to cover the entire space of

different graphics workloads.

The CPU-GPU graphics workload varation and their relative intensity is quantified using

a CPU-GPU cost metric that is a product of the utilization and frequency [16] [82] [77], as

shown by the rows and columns of the tables in Figures 5.8 and 5.9.

108

Training Set :

 Modeling: using 20 Real Games – changed to mb

Normalized Cost

CPU \ GPU
0-20
(0)

20-40
(1)

40-60
(2)

60-80
(3)

80-90
(4)

90-100
(5)

0-20
(0)

Mb_m01

20-40
(1)

Dhoom 3
AVP Evolution

Bike Rider,
Godzilla
Mb_m12

Mb_m13 Mb_m24
3dmark
Extream

40-60
(2)

Mb_m21
Modern Comb

D - day
3dmark
normal

60-80
(3)

Call of Duty Jet Ski 2013 Mb_m44

80-90
(4)

Edge of
 Tomorrow

90-100
(5)

Turbo FAST
Mb_m52

Q3zombie-M4

20 Apps
(TrainingSet)

Figure 5.8: The 20-App Training Set

Test Set :

 Modeling: using 20 Real Games

Normalized Cost

CPU \ GPU
0-20
(0)

20-40
(1)

40-60
(2)

60-80
(3)

80-90
(4)

90-100
(5)

0-20
(0)

Anomaly2
low

Dream
Bike

Action
Bike

20-40
(1)

Deerhunter14,
Citadel

Herculous
Anomaly2

normal
Anomaly2

high

40-60
(2)

Q3zombie-
M1

300, Mb102

Mb111,
Mb112

60-80
(3)

Mb101
Mb103

Mb113 GPU Bench

80-90
(4)

Real
Driving

Robocop

90-100
(5)

Q3zombie-M2
20 Apps
(TestSet)

Figure 5.9: The 20-App Test Set

We note that the gaming applications located on the right-side of the diagonal line repre-

sent a GPU-dominant workload (since GPU cost is higher than CPU cost); similarly, games

on the left of the diagonal line are CPU-dominant.

Furthermore, higher values of the cost ratio represent more intensive CPU or GPU work-

loads, with the highest (e.g., 90-100 (level 5)) representing the most CPU- or GPU- intensive

gaming applications or benchmarks.

In this context, the 20 test set gaming applications analyzed in Figure 5.11 can be inter-

preted using the cost matrix model in Figure 5.9; we attempted to test games exhibiting a

variety of CPU- and GPU- intensity, as summarized below:

• CPU-Domi + GPU-Mix applications such as mb111, mb112 and Robocop have higher

109

GPU cost values compared to CPU-intensive workloads such as mb101, mb103 and

Q3zombie-M2.

• For Mem-Mix applications, the CPU-GPU cost matrix model does not include the

memory cost values. Therefore, we additionally present the memory cost values of

Mem-Mix applications such as mb103 (62%), mb113 (72%) and Robocop (77%), com-

pared to non-memory intensive applications such as mb101 (37%) and mb111 (39%).

Automatic Measurement Tool: To automatically measure a large set of mobile games

quantitatively, we developed an automatic measurement tool implemented using python

modules, xml files, and Linux shell scripts. Using this tool, we captured the average values

of FPS, total power (CPU-bc, CPU-lc and GPU) and energy per frame (EpF) for three runs

(120 seconds for each run) of each benchmark, and averaged their measurements.

For comparison: We compare our M.L-gov manager against the default, a state-of-the-art

governor [80], adaptive only and model-tree only policies as shown in Table 5.5.

Table 5.5: Governors for Comparison

Governor Description

Default Interactive CPU and proprietary GPU governor

PAT15 Simple Linear Regression-based Governor

ML-Gov Our Tree-based piecewise Linear Regression

Naive-Adap. Naive one step higher/lower Adaptive policy

Naive-M.T Only Tree-based Linear Models w.o Adaptation

The default corresponds to the independent CPU and GPU governors in Linux (Interac-

tive CPU governor and ARM’s Mali Midgard GPU governor). The state-of-the-art governor

[80] (represented as PAT15) proposed an integrated CPU-GPU DVFS strategy by developing

predictive simple linear regression power-performance models. The naive adaptive governor

is represented as Naive-Adap in the figures which does not use the built model-trees but

adaptively scale up to one step higher (or down to one step lower) frequency for correspond-

ing component according to each leaf state. The naive model-tree governor is represented as

Naive-M.T, which does not use the heuristic adaptation (i.e., one step higher or lower) but

110

utilizes the built model-trees based on the assumption that offline learning models generalize

all possible workloads that would be executed by the system. In other words, if ∆FC or

∆FG is not related to a response variable in the models, we set the next frequency same with

the current frequency (i.e., F ′C = FC or F ′G = FG) for any states without using the heuristic

adaptation.

Overhead and Epoch of our Manager: Our power manager was implemented in the

Linux kernel layer. The execution time of our manager per epoch is within 20us, which

is totally negligible compared to the epoch period (200ms) in terms of performance (FPS

degradation). Moreover, we did not observe any noticeable increase in average power con-

sumption due to our power manager. And, the reason we use the epoch of 200ms (double of

the GPU governor epoch) is that a longer epoch may affect performance degradation because

of delayed frequency settings while it can provide more accurate FPS information (for below

60 FPS) per epoch.

5.4.2 Results and Analysis

Figure 5.10 summarizes the average results of the test set in FPS and EpF. Our ML-Gov

manager improves energy per frame by 9.5% and 10.6% on average compared to the default

and PAT15 respectively, with minimal FPS decline of 3.5% compared to the default and

2.7% better FPS than PAT15 on average. The two naive governors have 7.8% better EpF

on average compared to our governor, but it results from the high FPS degradation of 7%

(up to 32%) compared to the Default.

Figure 5.11 shows the results of each application and summary of CPU- and GPU-

dominant applications. Especially, compared to PAT15, Figure 5.10 and 5.11 clearly show

that tree-based piecewise linear regression model has significant impacts on energy savings

with FPS improvement in the prediction phase, in addition to the improvements of the model

111

20

40

60

80

100

C
P

U
 C

o
st

96.5
90.5

93.8
101.1

40.0

60.0

80.0

100.0

120.0

FPS EpF

N
o

rm
al

iz
e

d

PAT15 Naïve-Adap Naive-M.T ML-Gov Default

Figure 5.10: Average Results of the Test Set

accuracy (Table 5.3) in the learning phase. On the other hand, PAT15 using simple linear

regression models has worse energy efficiency than the default governor as well as our gov-

ernor; we observe that mainly GPU-dominant applications such as Dreambike, Epicitadel

and Anomaly2 series (the first category in Figure 5.11) result in substantially worse EpF

than the default because the prediction errors of S.L.R by ∆FG (Table 5.3) are significantly

higher than those of S.L.R by ∆FC .

Unlike GPU-dominant applications, most CPU-dominant applications for PAT15 achieved

better EpF compared to the default (the second category in Figure 5.11). According to our

observations, energy efficiency for mobile gaming benchmarks are mainly dependent on char-

acteristics of benchmarks and platform characters such as CPU/GPU frequency levels and

min/max frequency. (Note that the default CPU governor supports cluster-based interactive

DVFS policy with nine frequency levels (from 1.2 to 2.0Ghz) in CPU-bc while the GPU gov-

ernor supports six frequency levels from very low to high frequency (from 177 to 543Mhz)).

From the observation that prediction errors of models to GPU frequency are higher than

those to CPU frequency (Table 5.3), we speculate the reasons that all GPU cores are only

dedicated for rendering tasks while CPU runs a lot of background tasks as well as the graph-

ics rendering task running one of four cores and that response variables change sharply for

GPU-dominant applications because the ODROID-XU3 integrated GPU has small number

112

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

N
o

rm
al

iz
e

d

PAT15 Naïve-Adap Naive-M.T ML-Gov Default

CPU-Domi

Mem-Mix

Sum. GPU-Mix GPU-Domi

(a) Energy per Frame

98.0

85.4
90.5

40.0

60.0

80.0

100.0

120.0

GPU-Domi CPU-Domi Total

Default PAT15 Naïve-Adap Pure-M.T ML-Gov

40.0

60.0

80.0

100.0

120.0

0.0

20.0

40.0

60.0

80.0

100.0

N
o

rm
al

iz
e

d

PAT15 Naïve-Adap Naive-M.T ML-Gov Default

Mem-Mix

GPU-Domi Sum. CPU-Domi GPU-Mix

(b) FPS

Figure 5.11: Results of the Test Set (Detailed)

of GPU frequency levels between min and max frequency (e.g., Intel MinnowBoard MAX

integrated GPU has nine frequencies ranging from 200 to 511Mhz [40], compared to our six

levels ranging from 177 to 543Mhz).

When GPU-workloads are mixed additionally onto CPU-dominant applications using our

gaming micro-benchmarks (e.g., mb-101 and mb102 vs. mb111 and mb112: each num-

ber stands for CPU, GPU and Memory workloads respectively), overall energy savings are

reduced as GPU-workloads add on. Moreover, when memory-workloads are mixed onto

CPU-dominant applications (e.g., mb102 and mb112 vs. mb103, mb113 and robocop game),

all governors have EpF improvements without FPS degradation. This is because all com-

113

pared governors except the default (only utilization-based policy) are using target-FPS based

policy. In other words, without a specific model that is aware of memory-workloads, a

target-FPS based policy can improve energy savings for memory intensive CPU-dominant

applications because QoS-based governors can repeatedly reduce the CPU frequency within

the target-FPS.

5.4.3 Discussion

In this chapter, we compared the results of two methodologies: HiCAP (a heuristic modeling

based methodology described in Ch.4) and ML-Gov (a machine learning enhanced prediction

model based methodology described in Ch.5). Here, we discuss the lessons learned from

using offline M.L approaches targeting embedded systems in terms of strength, weakness,

opportunity and threat (SWOT), compared to heuristic or traditional statistical approaches.

40.0

60.0

80.0

100.0

FPS EpF

HiC16

ML-Gov

Default

Experimental Results: ML-Gov

 • Comparison

• Vs. HiC16

2.6% EpF increase

1.1% FPS degradation

 1 1

96.5
90.5 97.6 87.9

compared to CPU, GPU has

high prediction errors

3.1% vs. 0.8% (ΔQ by ΔF)

 Jun. 6, 2017 Introduction – Thesis Topic – Work1-2-3 – Work4 [Introduction – Methodology – Results] – Conclusion

Vs. HiC16: ML-Gov has a little bit worse energy saving
HiCAP: well-defined heuristic HFSM-model and polices

On top of effective S.F LUTs using a large amount of benchmarks

ML-gov framework still has non-trivial reference values (e.g.,)

Figure 5.12: Results Comparison between HiCAP and ML-Gov

Compared to HiCAP, on average ML-Gov has almost similar FPS but a little bit worse

EpF as shown in Figure 5.12. We observe that ML-Gov has high prediction errors in the

GPU models compared to the CPU models (e.g., 3.1% vs. 0.8% in the prediction errors

for ∆Q by ∆FG and ∆FC respectively) and that ML-Gov framework still has non-trivial

reference values such as Q̂, ÛC and ÛG, while HiCAP uses a well-defined heuristic HFSM-

114

model and different policy in each leaf state on top of effective reference tables (i.e., the

CPU-GPU saturated frequency LUTs) using a large amount of benchmarks.

Strengths: Compared to classical statistical models such as simple or multivariate linear

models, M.L approaches can build prediction models with high accuracy and simple struc-

ture of cost functions using a data mining tool. Furthermore, many non-trivial variables or

numeric thresholds can be chosen effectively by already qualified M.L algorithms.

Weaknesses: The model building methodology/process could be complicated because we

need to consider characteristics or constraints of a target system from the learning phase;

and model building techniques are dependent on algorithms or options built in a data mining

tool.

Opportunities: In addition to the Weka [41] data mining tool, many usable and practical

machine learning tools are emerging and providing already qualified useful algorithms and

visualizations with powerful analysis capability. M.L approaches are facilitated by the ability

to collect large amounts of data from mobile systems, allowing the exploitation of the diverse

and dynamic workload characteristics of emerging heterogeneous embedded systems.

Threats: Design concepts using M.L approaches for multi-input, multi-output and multi-

objective optimizations on HMPSoCs are still very challenging. Even if we build perfect

models in terms of accuracy and structure of cost functions in the learning phase, the pre-

diction phase may have non-trivial values (e.g., thresholds or reference values) related to a

system; sometimes, these kinds of values are more significant than the predicted values by

the built models in terms of overall performance improvements of the system.

5.5 Conclusion

In this chapter, we proposed ML-Gov: A Machine Learning Enhanced Integrated CPU-GPU

DVFS Governor for Mobile Gaming. ML-Gov exploits model building through offline ma-

115

chine learning techniques; and uses an integrated CPU-GPU DVFS methodology estimating

energy-efficient frequencies with the models during runtime. For the learning phase, we col-

lected training data using a set of 20 mobile games exhibiting diverse and dynamic character-

istics; we performed attribute selection to remove unrelated variables to a response variable

and reduce the complexity of structure of cost functions; and we built tree-based piecewise

regression models using machine learning techniques built in the data mining tool. For the

prediction phase, we developed a heuristic Hierarchical FSM-based governor framework con-

sidering QoS and CPU/GPU bottlenecks; we then set the CPU and GPU frequencies at

run-time using the built models as outputs of the HFSM state transitions. Our experimental

results on the ODROID-XU3 platform across a test set of 20 mobile games show that our

governor achieved significant energy efficiency gains of over 10% improvement in energy-per-

frame over a state-of-the-art governor which built simple linear regression models, with a

surprising 3% improvement in FPS performance. We believe ML-Gov presents a practical

machine learning enhanced method to build models from dynamic data at numerous dif-

ferent hardware configurations on dynamic applications (workloads) of HMPSoC platforms.

The work presented here uses offline machine learning techniques for online estimation, with

future work addressing: online machine learning methodology and implementation for inte-

grated CPU-GPU DVFS governor. While our ML-Gov methodology was targeted mainly for

mobile games, we believe it can also be applicable for various other classes of CPU-GPU inte-

grated graphics applications. Finally, we compared the results of HiCAP and ML-Gov, and

discussed advantages and disadvantages of machine learning approaches targeting embedded

systems.

116

Chapter 6

Conclusion and Future Directions

6.1 Summary

The increasing use of mobile platforms for 3D games and other graphics-intensive applications

has resulted in deployment of high-performance Heterogeneous MultiProcessor Systems-on-

Chip (HMPSoC) with integrated GPUs. However, high performance mobile HMPSoCs result

in high power consumption in CPU and GPU with more dynamism. In order to achieve high

performance with energy-efficiency for heterogeneous CPU-GPU based architectures that

execute mobile games and other graphics-intensive applications, contemporary mobile plat-

forms use software governors which employ Dynamic Voltage Frequency Scaling (DVFS)

techniques.

Through comprehensive observations from CPU and GPU DVFS studies for gaming work-

loads on mobile heterogeneous platforms, we list our motivation as follows: 1) There have

been no previous systematic studies to correlate the performance, power, and energy effi-

ciency of mobile GPUs based on diverse graphics workloads to enable more efficient mobile

platform DVFS policies for energy savings. 2) Traditionally, separate CPU and GPU gov-

117

ernors are deployed in order to achieve energy efficiency with high performance through

DVFS, but miss opportunities for further energy savings through coordinated system-level

application of DVFS (i.e., frequency capping). 3) Mobile games typically exhibit inherent

behavioral dynamism, which existing governor policies are unable to exploit effectively to

manage CPU/GPU DVFS policies. 4) For dynamic and diverse gaming workloads, existing

governors utilize statistical or heuristic models with a small set of mobile games for both

modeling and evaluation resulting in high prediction errors in modeling, and do not exploit

practical machine learning approaches for prediction models with high accuracy and low

complexity using a large amount of various training data.

However, in terms of cooperative design concepts of CPU-GPU dynamic power man-

agement (DPM) for battery-based commercial mobile platforms, a challenging goal is that

power and performance issues should be considered simultaneously. In addition to this chal-

lenging goal, there are a few more specific challenging issues: 1) mobile graphics workloads

(especially gaming workloads) are highly dynamic and diverse, requiring graphics workloads

characterization for dynamic power management design. 2) mobile platforms are changing

rapidly, therefore a simple and easily portable methodology should be developed. 3) coop-

erative design concepts for CPU-GPU DPM are very complicated, requiring more effective

and practical modeling techniques.

6.2 Contributions

To address the challenges outlined earlier, the key contributions of this thesis are listed as

follows:

• Graphics Workload Characterization: Comprehensive observations and thorough anal-

yses from the results of micro-benchmarks provide the correlation between workloads of

hardware pipeline stages and performance/power effects which provide us opportunities

118

for energy-efficient mobile DVFS design based on the analyses. Unlike other related

work, for comprehensiveness and completeness, this work uses large sets of games (over

100 real games and a few hundred custom micro-benchmarks) and uses an automatic

measurement tool. Then, combinations of the custom micro-benchmarks and the re-

sult data are extensively used for workload characterization, workload analysis, model

building (learning) and evaluations

• Simple but highly effective CPU-GPU Frequency Capping: For rapidly changing mobile

platforms, a cooperative frequency capping governor is proposed to achieve energy

efficiency for a diverse set of mobile games by building simple and easily portable

CPU-GPU Lookup Tables.

• Hierarchical FSM-based Dynamic Behavior Modeling: For effective adaptation of dy-

namic behavior changes, we propose a Hierarchical FSM (HFSM) based dynamic be-

havior modeling strategy for mobile gaming and present a cooperative CPU-GPU gov-

ernor that deploys a simple maximum frequency-capping methodology exploiting the

HFSM for dynamic DVFS.

• Machine Learning enhanced Simple and Accurate Prediction Models: To build simple

and accurate prediction models for diverse and dynamic gaming workloads on hetero-

geneous mobile platforms, we propose machine learning enhanced performance models

by building tree-based piecewise linear regression models using off-line machine learn-

ing algorithms built in a data mining tool. We then present an integrated CPU-GPU

DVFS governor that applies piecewise policies with analyses of the models for energy-

efficiency with minimal performance degradation.

119

6.3 Future Directions

As future directions, there could be two big branches in M.L approaches for embedded sys-

tems: 1) Offline M.L approach with more M.L-suitable design and 2) Practical and effective

online (or hybrid) M.L approach for Embedded Systems.

• Offline M.L approach with more M.L-suitable design: For example, a new governor

framework design for direct CPU-GPU frequency settings by building regression tree

based LUTs reducing/removing non-trivial values of the prediction phase could be

available. The challenging issue of design concepts using M.L approaches on HMP-

SoCs is that a model should consider multi-input, multi-output and multi-objective

optimizations. If we can reduce non-trivial values of the prediction phase by designing

one objective function satisfying the multi-objectives, it is possible to build regres-

sion tree based LUTs for multi-outputs satisfying (as much as possible) the objective

function by using offline M.L techniques.

• Practical and effective online (or hybrid) M.L approach: Even though online M.L ap-

proach is an attractive methodology, according to our observations, the effectiveness for

online learning should be considered very carefully for diverse and dynamic workloads

due to high variations (fluctuations) of non-trivial coefficients (e.g., online learning

based parameter update). Therefore, a practical and effective online (or hybrid) M.L

approach is needed for diverse and dynamic mobile gaming workloads. For example, a

hybrid (offline + online) methodology could be an alternative for diverse and dynamic

mobile gaming. In other words, first using offline M.L techniques, characterization of

practical clustering or classification can be developed using collected datasets. Then,

by using an online M.L methodology (e.g., parameter update, incremental decision tree

generation or single layer neural network), we can build online models piecewisely with

a small number of clustering or classification.

120

Bibliography

[1] Sysfs - the filesystem for exporting kernel objects. https://www.kernel.org/doc/

Documentation/filesystems/sysfs.txt.

[2] Tiled rendering. https://en.wikipedia.org/wiki/Tiled_rendering.

[3] A. Acquaviva, L. Benini, and B. Ricco. An adaptive algorithm for low-power streaming
multimedia processing. In Design, Automation and Test in Europe (DATE), 2001.

[4] D. Aha and D. Kibler. Instance-based learning algorithms. In Machine Learning, 1991.

[5] Anandtech. Qualcomm Snapdragon S4 Performance Preview - MSM8960 MDP
and Adreno 225 Benchmarks. http://www.anandtech.com/show/5559/qualcomm-

snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks/

4, 2012.

[6] Anandtech. Qualcomm’s quad-core snapdragon s4 (apq8064/adreno 320) per-
formance preview. http://www.anandtech.com/show/6112/qualcomms-quadcore-

snapdragon-s4-apq8064adreno-320-performance-preview, July 2012.

[7] Anandtech. Snapdragon 800 (MSM8974) Performance Preview. http:

//www.anandtech.com/show/7082/snapdragon-800-msm8974-performance-

preview-qualcomm-mobile-development-tablet, 2014.

[8] Android. monkeyrunner. http://developer.android.com/tools/help/

monkeyrunner_concepts.html.

[9] Android. SurfaceFlinger and Hardware Composer. https://source.android.com/

devices/graphics/arch-sf-hwc#surfaceflinger.

[10] Apple. App Store. https://www.apple.com/ios/app-store/.

[11] Apple. iPhone. https://www.apple.com/iphone/.

[12] ARM. ARM’s GPU roadmap; the WHY. https://community.arm.com/graphics/

b/blog/posts/arm-s-gpu-roadmap-the-why, 2013.

[13] ARM. Open source mali midgard gpu kernel drivers. https://developer.arm.com/

products/software/mali-drivers/midgard-kernel, Apr. 2014.

121

https://www.kernel.org/doc/Documentation/ filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/ filesystems/sysfs.txt
https://en.wikipedia.org/wiki/Tiled_rendering
http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks/4
http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks/4
http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks/4
http://www.anandtech.com/show/6112/qualcomms-quadcore-snapdragon-s4-apq8064adreno-320-performance-preview
http://www.anandtech.com/show/6112/qualcomms-quadcore-snapdragon-s4-apq8064adreno-320-performance-preview
http://www.anandtech.com/show/7082/snapdragon-800-msm8974-performance-preview-qualcomm-mobile-development-tablet
http://www.anandtech.com/show/7082/snapdragon-800-msm8974-performance-preview-qualcomm-mobile-development-tablet
http://www.anandtech.com/show/7082/snapdragon-800-msm8974-performance-preview-qualcomm-mobile-development-tablet
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
https://source.android.com/devices/graphics/arch-sf-hwc#surfaceflinger
https://source.android.com/devices/graphics/arch-sf-hwc#surfaceflinger
https://www.apple.com/ios/app-store/
https://www.apple.com/iphone/
https://community.arm.com/graphics/b/blog/posts/arm-s-gpu-roadmap-the-why
https://community.arm.com/graphics/b/blog/posts/arm-s-gpu-roadmap-the-why
https://developer.arm.com/products/software/mali-drivers/midgard-kernel
https://developer.arm.com/products/software/mali-drivers/midgard-kernel

[14] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. Parallel frame rendering: trading
responsiveness for energy on a mobile gpu. In PACT ’13 Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques, pages
83–92, Oct. 2013.

[15] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. Teapot: a toolset for evaluating perfor-
mance, power and image quality on mobile graphics systems. In ICS ’13 Proceedings of
the 27th international ACM conference on International conference on supercomputing,
pages 37–46, June 2013.

[16] Y. Bai and P. Vaidya. Memory characterization to analyze and predict multimedia
performance and power in embedded systems. In ICASSP, 2009.

[17] A. Carroll and G. Heiser. An analysis of power consumption in a smartphone. In Proc.
Usenix Ann. Tech. Conf. (UsenixATC), pages 21–34, 2010.

[18] Z. Cheng, X. Li, B. Sun, J. Song, C. Wang, and X. Zhou. Behavior-aware integrated
cpu-gpu power management for mobile games. In Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), Sept. 2016.

[19] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram. Frame-based dynamic voltage and
frequency scaling for a mpeg decoder. In IEEE/ACM International Conference on
Computer-aided Design (ICCAD), 2002.

[20] P.-K. Chuan, Y.-S. Chen, and P.-H. Huang. An adaptive on-line cpu-gpu governor for
games on mobile devices. In Design Automation Conference (ASP-DAC), Jan. 2017.

[21] T. cker Chiueh and W. jen Lin. Characterization of static 3d graphics workloads. In
Proceedings of the 1997 SIGGRAPH/Eurographics workshop on Graphics hardware,
pages 17–24, 1997.

[22] B. Dietrich and S. Chakraborty. Managing power for closed-source android os games
by lightweight graphics instrumentation. In Network and Systems Support for Games
(NetGames), 2012 11th Annual Workshop, pages 1–3, Nov. 2012.

[23] B. Dietrich and S. Chakraborty. Power management using game state detection on
android smartphones. In MobiSys ’13 Proceeding of the 11th annual international
conference on Mobile systems, applications, and services, pages 493–494, June 2013.

[24] B. Dietrich and S. Chakraborty. Forget the battery, lets play games! In ESTIMedia,
2014.

[25] B. Dietrich and S. Chakraborty. Lightweight graphics instrumentation for game state-
specific power management in android. In Multimedia Systems, 2014.

[26] B. Dietrich, D. Goswami, S. Chakraborty, A. Guha, and M. Gries. Lms-based low-
complexity game workload prediction for dvfs. In ICCD, pages 417–424, 2010.

122

[27] T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth, F. Gaud, and J. Pei. A practi-
cal method for estimating performance degradation on multicore processors, and its
application to hpc workloads. In the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2012.

[28] F. Ercan, N. A. Gazala, and H. David. An integrated approach to system-level cpu
and memory energy efficiency on computing systems. In Energy Aware Computing,
pages 1–6, 2012.

[29] Extremetech. Apples A8 SoC analyzed. https://www.extremetech.com/

computing/189787-apples-a8-soc-analyzed-the-iphone-6-chip-is-a-2-

billion-transistor-20nm-monster, 2014.

[30] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong. Effects of dynamic
voltage and frequency scaling on a k20 gpu. In Parallel Processing (ICPP), 2013 42nd
International Conference, pages 826 – 833, Oct. 2013.

[31] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state machines with multiple
concurrency models. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 18(6):742–
760, 1999.

[32] Google. Android. https://www.android.com/.

[33] Google. Google Play Store. https://play.google.com/store.

[34] Google. Butter project. https://developers.google.com/events/io/2012/

sessions/gooio2012/109/, 2012.

[35] P. Greenhalgh. Big.little processing with arm cortex-a15 and cortex-a7. In An ARM
White paper, 2011.

[36] Y. Gu and S. Chakraborty. Control theory-based dvs for interactive 3d games. In
DAC, pages 740–745, 2008.

[37] Y. Gu and S. Chakraborty. A hybrid dvs scheme for interactive 3d games. In IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 3–12, 2008.

[38] Y. Gu and S. Chakraborty. Power management of interactive 3d games using frame
structure information. In VLSI Design, 2008. VLSID 2008. 21st International Con-
ference, pages 679 – 684, Jan. 2008.

[39] Y. Gu, S. Chakraborty, and W. T. Ooi. Games are up for dvfs. In DAC ’06 Proceedings
of the 43rd annual Design Automation Conference, pages 598–603, July 2006.

[40] U. Gupta, J. Campbell, R. Ayoub, M. Kishinevsky, and S. Gumussoy. Adaptive per-
formance prediction for integrated gpus. In ICCAD, 2016.

[41] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
weka data mining software: an update. ACM SIGKDD Explorations Newsletter,
11(1):10–18, June 2009.

123

https://www.extremetech.com/computing/189787-apples-a8-soc-analyzed-the-iphone-6-chip-is-a-2-billion-transistor-20nm-monster
https://www.extremetech.com/computing/189787-apples-a8-soc-analyzed-the-iphone-6-chip-is-a-2-billion-transistor-20nm-monster
https://www.extremetech.com/computing/189787-apples-a8-soc-analyzed-the-iphone-6-chip-is-a-2-billion-transistor-20nm-monster
https://www.android.com/
https://play.google.com/store
https://developers.google.com/events/io/2012/sessions/gooio2012/109/
https://developers.google.com/events/io/2012/sessions/gooio2012/109/

[42] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learning. PhD
thesis, University of Waikato, Hamilton, New Zealand, 1998.

[43] Hardkernel. Odroid-xu3. http://odroid.com/dokuwiki/doku.php?id=en:odroid-

xu3, Aug. 2015.

[44] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program,
8:231–274, 1987.

[45] J. Hasselgren and T. Akenine-Moller. An efficient multi-view rasterization architec-
ture. In Proceedings of the 17th Eurographics conference on Rendering Techniques, ser.
(EGSR), pages 61–72, 2006.

[46] C.-Y. Hsieh, J.-G. Park, N. Dutt, and S.-S. Lim. Memory-aware cooperative cpu-
gpu dvfs governor for mobile games. In Embedded Systems For Real-time Multimedia
(ESTIMedia), 2015.

[47] C. J. Hughes and S. V. Adve. A formal approach to frequent energy adaptations
for multimedia applications. In International Symposium on Computer Architecture
(ISCA), pages 138–149, 2004.

[48] C. Im, S. Ha, and H. Kim. Dynamic voltage scheduling with buffers in low-power mul-
timedia applications. In ACM Transactions in Embedded Computing Systems, pages
686–705, 2004.

[49] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver. A qos-aware memory controller for
dynamically balancing gpu and cpu bandwidth use in an mpsoc. In Proceedings of the
49th Annual Design Automation Conference (DAC), pages 850–855, 2012.

[50] H. Jung, C. Lee, S. haeng Kang, S. Kim, H. Oh, and S. Ha. Dynamic behavior
specification and dynamic mapping for real-time embedded systems: Hopes approach.
ACM Trans. Embedd. Comput. Syst., 13(4):135–161, March 2014.

[51] D. Kadjo, R. Ayoub, M. Kishinevsky, and P. V. Gratz. A control-theoretic approach
for energy efficient cpu-gpu subsystem in mobile systems. In DAC, 2015.

[52] D. Kadjo, U. Ogras, R. Ayoub, M. Kishinevsky, and P. Gratz. Towards platform level
power management in mobile systems. In System-on-Chip Conference (SOCC), pages
146–151, 2014.

[53] Khronos Group. Opengl es. https://www.khronos.org/opengles/.

[54] Y. G. Kim, M. Kim, J. M. Kim, M. Sung, and S. W. Chung. A novel gpu power model
for accurate smartphone power breakdown. In ETRI Journal, pages 157–164, 2015.

[55] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and
V. J. Reddi. Gpuwattch: Enabling energy optimizations in gpgpus. In Proc of the 40th
Annual International Symposium on Computer Architecture (ISCA), pages 487–498,
2013.

124

http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu3
http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu3
https://www.khronos.org/opengles/

[56] Letustweak. Snapdragon 820 Features and Performance. http://www.letustweak.

com/tweaks/qualcomm-snapdragon-820-features-performa, 2016.

[57] LG. Nexus 4 e960. http://www.lg.com/uk/mobile-phones/lg-E960-nexus-4-by-

lg, Jan. 2013.

[58] X. Li, G. Yan, Y. Han, and X. Li. Smartcap: User experience-oriented power adapta-
tion for smartphone’s application processor. In DATE, 2013.

[59] W.-Y. Liang, Y.-L. Chen, and M.-F. Chang. A memory-aware energy saving algorithm
with performance consideration for battery-enabled embedded systems. In Interna-
tional Symposium on Consumer Electronics (ISCE), pages 547–551, 2011.

[60] Linux(TM). Linux cpufreq governors (new ’interactive’ governor). https://

android.googlesource.com/kernel/common/+/android-4.4/Documentation/cpu-

freq/governors.txt, June 2010.

[61] M. L. Loper. Modeling and Simulation in the Systems Engineering Life Cycle. Springer-
Verlag, London, pp. 75-81, 2015.

[62] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron. Control-theoretic
dynamic frequency and voltage scaling for multimedia workloads. In Proceedings of the
2002 International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, pages 156–163, New York, NY, USA, 2002.

[63] Z. Lu, J. Lach, M. Stan, and K. Skadron. Reducing multimedia decode power using
feedback control. In International Conference on Computer Design (ICCD), pages
489–497, 2003.

[64] X. Ma, Z. Deng, M. Dong, and L. Zhong. Characterizing the performance and power
consumption of 3d mobile games. In Computer (Volume:46 , Issue: 4), pages 76 – 82,
2013.

[65] X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical power consumption analysis and
modeling for gpu-based computing. In HotPower ’09 Proceedings of the Workshop on
Power-Aware Computing and Systems, Nov. 2009.

[66] A. Maghazeh, U. D. Bordoloi, P. Eles, and Z. Peng. General purpose computing on
low-power embedded gpus: Has it come of age? In Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), 2013.

[67] A. Maghazeh, U. D. Bordoloi, M. Villani, P. Eles, and Z. Peng. Perception-aware power
management for mobile games via dynamic resolution scaling arian. In International
Conference on Computer-Aided Design (ICCAD), 2015.

[68] A. Mallik, B. Lin, G. Memik, P. Dinda, and R. P. Dick. User-driven frequency scaling.
In IEEE Computer Architecture Letters, page 5(2):16, 2006.

[69] P. Marwedel. Embedded System Design. Springer, B.V, pp. 42-52, 2011.

125

http://www.letustweak.com/tweaks/qualcomm-snapdragon-820-features-performa
http://www.letustweak.com/tweaks/qualcomm-snapdragon-820-features-performa
http://www.lg.com/uk/mobile-phones/lg-E960-nexus-4-by-lg
http://www.lg.com/uk/mobile-phones/lg-E960-nexus-4-by-lg
https://android.googlesource.com/kernel/common/+/android-4.4/Documentation/cpu-freq/governors.txt
https://android.googlesource.com/kernel/common/+/android-4.4/Documentation/cpu-freq/governors.txt
https://android.googlesource.com/kernel/common/+/android-4.4/Documentation/cpu-freq/governors.txt

[70] X. Mei, L. S. Yung, K. Zhao, and X. Chu. A measurement study of gpu dvfs on
energy conservation. In HotPower ’13 Proceedings of the Workshop on Power-Aware
Computing and Systems, page Article No. 10, Nov. 2013.

[71] Metaps. US 2014 Analysis. http://www.metaps.com/press/en/blog/161-

ustrends1209, 2014.

[72] T. Mitra and T. Chiueh. Dynamic 3d graphics workload characterization and the
architectural implications. In Proc. Int’l Symp. Microarchitectures (Micro-32), pages
62–71, 1999.

[73] B. Mochocki, K. Lahiri, and S. Cadambi. Power analysis of mobile 3d graphics. In
Proc. Conf. Design, Automation and Test in Europe (DATE), pages 502–507, 2006.

[74] Monsoon Solutions Inc. Monsoon Power Monitor. http://www.msoon.com/

LabEquipment/PowerMonitor/, 2008.

[75] J.-G. Park, C.-Y. Hsieh, N. Dutt, and S.-S. Lim. Quality-aware mobile graphics work-
load characterization for energy-efficient DVFS design. In IEEE 12th Symposium on
Embedded Systems for Real-time Multimedia (ESTIMedia), Oct. 2014.

[76] J.-G. Park, C.-Y. Hsieh, N. Dutt, and S.-S. Lim. Cooperative CPU-GPU frequency
capping (Co-Cap) for energy efficient mobile gaming. In UCI Center for Embedded
and Cyber-physical Systems TR, 2015.

[77] J.-G. Park, C.-Y. Hsieh, N. Dutt, and S.-S. Lim. Co-cap: Energy-efficient cooperative
cpu-gpu frequency capping for mobile games. In SAC, 2016.

[78] J.-G. Park, H. Kim, N. Dutt, and S.-S. Lim. Hicap: Hierarchical fsm-based dynamic
integrated cpu-gpu frequency capping governor for energy-efficient mobile gaming. In
ISLPED, Aug. 2016.

[79] J.-G. Park, H. Kim, N. Dutt, and S.-S. Lim. Using hsfms to model mobile gaming
behavior for energy efficient dvfs governors. In UCI Center for Embedded and Cyber-
physical Systems TR, 2016.

[80] A. Pathania, A. E. Irimiea, A. Prakash, and T. Mitra. Power-performance modelling
of mobile gaming workloads on heterogeneous MPSoCs. In DAC, 2015.

[81] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra. Integrated cpu-gpu power manage-
ment for 3d mobile games. In DAC ’14 Proceedings of the The 51st Annual Design
Automation Conference on Design Automation Conference, pages 1–6, June 2014.

[82] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra. Integrated CPU-GPU power man-
agement for 3D mobile games. In DAC, June 2014.

[83] I. Paul, V. Ravi, S. Manne, M. Arora, and S. Yalamanchili. Coordinated energy
management in heterogeneous processors. In Scientific Programming, pages 22: 93–
108, 2014.

126

http://www.metaps.com/press/en/blog/161-ustrends1209
http://www.metaps.com/press/en/blog/161-ustrends1209
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/

[84] A. Prakash, H. Amrouch, M. Shafique, T. Mitra, and J. Henkel. Improving mobile
gaming performance through cooperative cpu-gpu thermal management. In Design
Automation Conference (DAC), June 2016.

[85] Qualcomm. Adreno Profiler. https://developer.qualcomm.com/blog/adreno-

profiler-gets-close-and-personal-gpu, 2011.

[86] R. J. Quinlan. Learning with continuous classes. In Australian Joint Conference on
Artificial Intelligence, 1992.

[87] S. Rabin. GAME AI PRO. CRC Press, LLC, pp. 47-52, 2014.

[88] J. Roca, V. M. D. Barrio, C. Gonzalez, and C. Solis. Workload characterization of 3d
games. In IISWC, pages 17–26, 2006.

[89] Samsung. Exynos 5 octa (5422). http://www.samsung.com/semiconductor/

minisite/Exynos/w/solution/mobile_ap/5422/.

[90] R. Schone, D. Hackenberg, and D. Molka. Memory performance at reduced cpu clock
speeds: an analysis of current x86 64 processors. In HotPower’12 Proceedings of the
2012 USENIX conference on Power-Aware, pages 5–9, Oct. 2012.

[91] J. Sheaffer, D. Luebke, and K. Skadron. A flexible simulation framework for graph-
ics architectures. In Proc. ACM SIGGRAPH/Eurographics Conf. Graphics Hardware
(GH), pages 85–94, 2004.

[92] Statista. Number of available applications in the Google Play Store from December
2009 to June 2017. https://www.statista.com/statistics/266210/number-of-

available-applications-in-the-google-play-store/, 2017.

[93] Texas Instruments. Ina231. http://www.ti.com/product/INA231.

[94] H. Wang, V. Sathish, R. Singh, M. J. Schulte, , and N. S. Kim. Workload and power
budget partitioning for singlechip heterogeneous processors. In arallel architectures
and compilation techniques (PACT), pages 401–410, 2012.

[95] Y. Wang and I. H. Witten. Induction of model trees for predicting continuous classes.
In European Conference on Machine Learning, 1997.

[96] Wikipedia. Smartphone. https://en.wikipedia.org/wiki/Smartphone, 2017.

[97] C. Willmott and K. Matsuura. Advantages of the mean absolute error (mae) over the
root mean square error (rmse) in assessing average model performance. Clim. Res.,
30:79–82, Dec. 2005.

[98] M. Wimmer and P. Wonka. Rendering time estimation for real-time rendering. In
Proc. Eurographics Workshop Rendering (EGWR), pages 118–129, 2003.

[99] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou. Gpgpu perfor-
mance and power estimation using machine learning. In HPCA, 2015.

127

https://developer.qualcomm.com/blog/adreno-profiler-gets-close-and-personal-gpu
https://developer.qualcomm.com/blog/adreno-profiler-gets-close-and-personal-gpu
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mobile_ap/5422/
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mobile_ap/5422/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.ti.com/product/INA231
https://en.wikipedia.org/wiki/Smartphone

[100] D. You and K.-S. Chung. Dynamic voltage and frequency scaling framework for low-
power embedded gpus. In Electronics Letters, pages 48(21):1333–1334, 2012.

[101] D. You and K.-S. Chung. Quality of service-aware dynamic voltage and frequency
scaling for embedded gpus. In IEEE Computer Architecture Letter, pages 14(1):66–69,
2014.

[102] W. Yuan and K. Nahrstedt. Practical voltage scaling for mobile multimedia devices. In
Proceedings of the 12th Annual ACM International Conference on Multimedia, pages
924–931, New York, NY, USA, 2004.

128

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Smartphone Systems
	Motivation and Challenges
	Existing Approaches

	Thesis Overview
	Graphics Workload Characterization (GWC)
	Cooperative Frequency-Capping Governor (Co-Cap)
	Hierarchical-FSM based Dynamic Behavior Modeling Governor (HiCAP)
	Machine Learning enhanced Modeling Governor (ML-Gov)

	Thesis Contributions
	Design and Implementation of micro-benchmarks
	Simple but highly effective CPU-GPU Frequency Capping
	Hierarchical FSM-based Dynamic Behavior Modeling
	Machine Learning enhanced Simple and Accurate Prediction Models

	Graphics Workload Characterization for DVFS Design
	Introduction
	Contributions

	Motivation and Related Work
	Motivation
	Related Work

	Graphics Workload Characterization
	Mobile Graphics Pipeline
	Workload Characterization and Micro-benchmarks

	Experimental Setup and Results
	Experimental Setup and Methodology
	Experimental Results

	Opportunities for DVFS design
	GPU DVFS
	CPU DVFS
	Integrated DVFS

	Summary

	Cooperative CPU-GPU Frequency Capping
	Introduction
	Related Work
	Motivation
	Co-Cap Methodology
	Training Phase
	Deployment Phase

	Evaluation of Co-Cap
	Experimental Setup
	Experimental Results
	Analysis and Discussion

	Conclusion

	Hierarchical FSM-based Integrated CPU-GPU Frequency Capping
	Introduction
	Related Work
	Approach
	Preliminaries
	HFSM-based Dynamic Behavior Model
	Frequency-Capping

	Experimental Results
	Experimental Setup
	Automatic Measurement Tool
	Results and Analysis

	Conclusion

	A Machine Learning Enhanced Integrated Governor
	Introduction
	Motivation and Related Work
	Motivation
	Related Work

	ML-Gov Methodology
	Learning Phase
	Prediction Phase

	Experimental Results
	Experimental Setup
	Results and Analysis
	Discussion

	Conclusion

	Conclusion and Future Directions
	Summary
	Contributions
	Future Directions

	Bibliography

