
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Specifications from Demonstrations: Learning, Teaching, and Control

Permalink
https://escholarship.org/uc/item/8jx69580

Author
Vazquez-Chanlatte, Marcell Jose

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8jx69580
https://escholarship.org
http://www.cdlib.org/

Specifications from Demonstrations: Learning, Teaching, and Control

by

Marcell Jose Vazquez-Chanlatte

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sanjit A. Seshia, Chair
Professor S. Shankar Sastry

Associate Professor Anca Dragan
Assistant Professor Steven Piantadosi

Spring 2022

Specifications from Demonstrations: Learning, Teaching, and Control

Copyright 2022
by

Marcell Jose Vazquez-Chanlatte

1

Abstract

Specifications from Demonstrations: Learning, Teaching, and Control

by

Marcell Jose Vazquez-Chanlatte

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

This dissertation considers the problem of learning and teaching Boolean task specifications,
such as automata, using demonstrations. The resulting framework bridges grammatical
inference and maximum-entropy inverse reinforcement learning with applications in human-
robot interaction, formal synthesis, and multi-task reinforcement learning.

In the context of inverse reinforcement learning, Boolean task specifications are a class of sparse
memory augmented rewards with explicit support for temporal and Boolean composition.
These properties make task specifications immune to certain classes of reward hacking bugs
that emerge from ad-hoc composition or perturbations to the dynamics. Unfortunately, the
discrete nature of task specifications combined with an a-priori ignorance of what historical
features are needed to encode the demonstrated task make existing approaches to learning
rewards from demonstrations inapplicable.

In the context of specification mining and grammatical inference, demonstrations provide an
ergonomic and sample efficient means to communicate formal languages and specifications.
For example, this dissertation enables a user to partially specify the desired behavior of a
system as example demonstrations and then find an automata or program that explains
the user’s behavior. Conversely, by synthesizing pedagogic demonstrations, this dissertation
enables communicating the nuances of a specification that may be hard to intuit from a
formal description.

In either case, this thesis contributes a collection of algorithms and theoretical machinery for
systematically mitigating combinatorial explosions inherent in (1) finding specifications that
explain an agent’s behavior (2) finding pedagogic demonstrations that help humans infer the
specification and (3) robustly predicting the behavior of an agent adhering to a specification.

i

Dedicated with respect and appreciation to all my teachers past, present, and future:
gods, men, and demons; being, animate and inanimate, living and dead, alive and
dying...

Edward Espe Brown (The Tassajara Bread Book, 1970)

...also my parents, siblings, and family. I would particularly like to dedicate this
thesis to my loving and supportive wife, Marissa Ramirez de Chanlatte, without
whom I would have written “who” rather than “whom”.

ii

Contents

Contents ii

1 Introduction 1
1.1 Contributions . 5
1.2 Reader’s Guide . 7
1.3 Bibliographic Notes . 8

2 Concepts and their Representations 10
2.1 Formal Languages and Automata . 11
2.2 Representation Classes . 12
2.3 Learning Concepts from Examples . 16
2.4 Bibliographic Notes . 22

3 Workspaces and Decision Processes 23
3.1 Markov Decision Processes . 24
3.2 Behavior Prediction and Agent Models . 26
3.3 Entropy Regularized Planning and Prediction 27
3.4 Bibliographic Notes . 33

I Learning and Teaching 34

4 Specifications from Demonstrations 35
4.1 Task Specifications . 38
4.2 Task conditioned behavior prediction . 39
4.3 Task Specification Modeling Tricks† . 42
4.4 Maximum Entropy Special Case† . 45
4.5 Bibliographic Notes . 48

5 Finding Explanatory Specifications 50
5.1 Running Example . 52
5.2 Prefix Tree Perspective . 52
5.3 Manipulating Likelihoods and Surprisal . 55

iii

5.4 Specification Search . 58
5.5 Experiments . 62
5.6 Relaxing the Luce axiom† . 67
5.7 Proof of Prop 5.3.2† . 69
5.8 Bibliographic Notes . 70

6 Teaching Tasks using Demonstrations 72
6.1 Pedagogic Demonstrations . 73
6.2 Generating Pedagogic Demonstrations . 74
6.3 Experiments . 78
6.4 Bibliographic Notes . 82

II Prediction and Control 83

7 Improvisation in Stochastic Games 84
7.1 Motivating Example . 85
7.2 Problem Statement . 88
7.3 ERCI as multi-objective optimization . 90
7.4 The Control Improvisation Problem for MDPs 95
7.5 The Control Improvisation Problem for SGs 97
7.6 Implementation and Empirical Evaluation 100
7.7 Proofs . 102
7.8 Bibliographic Notes . 103

8 Stochastic Games as Circuits 107
8.1 Distributions over Finite Sets . 112
8.2 Sequential Circuits . 113
8.3 Bibliographic Notes . 117

9 Stochastic Games as BDDs 119
9.1 Encoding Stochastic Games . 123
9.2 Bibliographic Notes . 129

10 Final Words 131
10.1 Future work . 132
10.2 Bibliographic Notes . 135

Bibliography 136

iv

Acknowledgments

When seeking council on writing a dissertation, I was told to write my acknowledgements
first, as by the end I would be too tired to do it justice. I must confess that I failed to heed
this advice. As such, if you are absent, but feel you made an impact on this dissertation,
know that you were (probably) not left out by malice, but by sleep deprivation.

This dissertation was made possible by the support and encouragement of my collaborators,
mentors, friends and family. In particular, I would like to thank my advisor Sanjit A. Seshia
and my committee members Shankar Sastry, Anca Dragan, and Steven Piantadosi. I can
confidently say that this dissertation would not have taken its present form without each
of their influences. In addition, I would like to acknowledge the various collaborators and
colleagues who directly shaped my research career. For my early work on specification mining,
I acknowledge Jyo Deshmukh, Shromona Ghosh, Jim Kapinski, Oded Maler, Alex Donze,
Xiaoqing Jin, Vasu Raman and Alberto Sangiovanni Vincentelli. For my work on learning and
teaching via demonstrations, I thank Dorsa Sadigh, Ashish Tiwari, Gil Lederman, Mark Ho,
Ameesh Shah, Beyazit Yalcinkaya, Niklas Lauffer, Vint Lee, Ben Caulfield, Dexter Scobee,
Kaylene Stocking, David McPherson, and Susmit Jha. Similarly, the control part of my thesis
- ranging from control improvisation to modeling dynamics a probabilistic circuits, wouldn’t
have been possible without wonderful discussions with Markus Rabe, Daniel Fremont, Eric
Kim, Sebastian Junges, Kuldeep Meel, and Dogan Ulus.

I would also like to thank my lab mates not listed above, e.g., Edward Kim, Hazem Torfah,
Elizabeth Polgreen, Kevin Cheang, Ankush Desai, Rohit Sinha, Yash Pant, Tomasso Dreossi,
Yasser Shoukry, Federico Rocha, Pramod Subramanyan, Victoria Tuck, and Yatin Manerkar.
I would also like to thank my various flatmates: Greg Khan, Michael Kellman, Brian Nemsick,
Brian Kilberg, Grant Ho, and Sally Lape, who helped me weather the dystopian reality of
rental prices in Berkeley. And, I would be remiss if I did not thank my family. Particularly
my wife, daughter, mother, and siblings. Thank you. I know I can be a handful.

Finally, this work was partially supported by NSF grants 1545126 (VeHICaL), 1646208
and 1837132, by the DARPA contracts FA8750–16–C–0043 (BRASS), FA8750-18-C-0101
(Assured Autonomy) and FA8750-20-C-0156 (SDCPS), by Berkeley Deep Drive, by Toyota
under the iCyPhy center, and the US ARL Cooperative Agreement W911NF-17-2-0196.

1

Chapter 1

Introduction

Since I am neither a neurologist nor a psychiatrist, but a mathematician, the work
that follows requires some explanation and justification.

John von Neumann (The Computer and the Brain, 1957)

Consider a car turning at a busy intersection. Ideally, the car should be able to infer the
intent of other agents, such as cars and pedestrians, from past observations, and infer what
assumptions and inferences the other agents are making about the world. For example, is the
pedestrian assuming two vehicles will not enter the intersection at the same time? Similarly,
we would like the car to communicate its own objective, assumptions, and constraints to
other agents, e.g. vehicles and pedestrians.

Such scenarios involving cyber-physical systems (CPS) are becoming increasingly ubiq-
uitous, with applications ranging from driving to manufacturing [93]. This ubiquity brings
an appetite for “auditable” systems whose high-level intent and assumptions can be easily
communicated to other agents, e.g., human collaborators or regulators.

Taking a step back three questions naturally arise:

1. How should intent and assumptions be represented?
2. By what means should the representations be communicated, e.g., natural language,

visual cues, etc?
3. How should the answers to (1) and (2) change when talking to humans versus another

CPS?

For the sake of brevity, let us refer to the intended behavior of an agent (along with any
implicit assumptions about the world) as a task.

Thesis Preview

In this dissertation, we will setup the problems of learning and teaching tasks, represented
as formal specifications, using demonstrations. This will require bringing in theory from

CHAPTER 1. INTRODUCTION 2

many disparate areas ranging from grammatical inference [45] to maximum entropy inverse
reinforcement learning [162]. We shall see that the core technical difficulties in realizing this
vision are the inherent combinatorics of task specification representations, e.g. automata,
logic, and programs. In particular, we shall address the combinatorics in (i) predicting
the behavior of agents trying to perform a task; (ii) searching for task specifications that
explain the demonstrations; and (iii) optimizing trajectories to be more pedagogic. These
problems, referred to as Control, Learning, and Teaching, respectively, naturally build on
each other, and this dependence will be reflected in the exposition. For example, we shall use
the predictions from (i) to define the explanatory power of a given task specifications in (ii).
Similarly, we shall use the task inferences of (ii) to measure how effective a demonstration is at
teaching a task. In the sequel, we provide background, the motivations, and the contributions
of this thesis. We will then outline the structure of the rest of the dissertation.

Representing tasks

Examining the literature, one finds a variety of possible ways to represent tasks, e.g. ([82, 77,
156, 78, 157, 78]). For example, the problem of inferring the intent of agents optimizing some
real valued objective in a dynamical system has a rich and well developed literature - with
roots dating back to the early work on Inverse Optimal Control [82]. Within this paradigm,
the intent and assumptions of the agent are intimately tied into the way that optimizing the
objective interacts with the world model. Note however, that when reasoning about such
systems, either for collaboration or for regulation, this tight coupling between objective and
dynamics proves problematic. Case in point: the particular task encoded by the objective
may dramatically change due to simple changes in the environment.

(a) (b)

Figure 1.1: Illustration of a bug in the learnt quantitative Markovian reward resulting from slight
changes in the environment.

Example 1.0.1. Consider the gridworld shown in Fig 1.1a where the agent can move up,
down, left, or right and the episode ends at any point with probability 0.69. The agent model

CHAPTER 1. INTRODUCTION 3

has the robot optimize the expected sum of state rewards, where the rewards at each state are
shown as numbers in the tiles and the encoded task represents visiting yellow (■) and avoiding
red (■). For a more concrete example, one might consider this to represent a robot needing
to recharge while avoiding lava. The key feature is that removing a recharging station from
a workspace (Fig 1.1b) results in the agent entering the lava to take a shortcut to another
charging station.

Additionally, the nature of assumptions or temporal relationships are left implicit, making
explicit communication with other agents (using potentially different world models) unnec-
essarily brittle. At the risk of over emphasizing, just because two agents share a common
high level description of behaviors, does not mean they agree on the relative ordering on
behaviors! For example, one agent might model time as continuous, another as discrete, and
still another as discrete but at a different resolution. Similarly, one agent might model the
dynamics as deterministic whereas another uses probabilistic dynamics. These modeling
details effectively change the relative weights of behaviors, e.g., a path might seem slightly
shorter in one model than another. Further, there is no general way to associate a set of
“acceptable” behaviors with the relative ordering of the behaviors induced by a Markovian
(state-based) reward [2], i.e., a behavior is acceptable so long as it performs at least as good
as a given set of behaviors in the given world model.

Representing tasks as specifications

An alternative approach championed throughout this thesis is to make the set of desirable
behaviors explicit.1 This set, realized by means of a formal specification, provides a dynamics-
independent classification of behaviors as good or bad. Importantly, the relative preferences
induced by the dynamics now only encode how “risky” a particular behavior is. For example,
the possibility of slipping makes the (good) path that gets close to the ledge worse than the
(good) path that doesn’t.2 Thus, even when two world models disagree on the relative ordering
between behaviors, the set of acceptable behaviors remains stable. This change eliminates
entire classes of so called reward-hacking bugs [94]. Focusing on Boolean specifications has
additional benefits: (1) The ability to naturally express tasks with temporal dependencies; (2)
the ability to take advantage of the compositionality present in many problems; and (3) the
use of formal methods for planning and verification [130].

Unfortunately, formal specifications are by no means a panacea, and expressing intent
using formal specifications is non-trivial even for domain experts. Furthermore, while the
semantics of a formal specification may be invariant to small changes in the world model,
specifying the wrong behavior is still possible - if not inevitable. Adding insult to injury,
many systems lack specifications all together, making any arguments about formal verification
and planning moot. Often, the only hint at intended behavior hides in the way an agent or

1Again, subject to a common vocabulary for describing observations
2Formally, the relative ordering between behaviors is lexicographically ordered. First by a dynamics

independent classification of good and bad, and then by a dynamics dependent preference.

CHAPTER 1. INTRODUCTION 4

the system interacts with the world. These observations lay the foundation for the three
central research problems explored in this dissertation, referred to as Learning, Teaching and
Control.

Modeling Agents

First and foremost, the Control (or Prediction) problem asks: How can one robustly and
efficiently predict the behavior of an agent performing a task in a given workspace? In
particular, we wish to model purposefulness informally defined as follows:

Definition 1 (Purposefulness [142]). There must be, on the part of the behaving
entity, i.e., the agent: (a) a desire, whether actually felt or not, for some object, event,
or state of affairs as yet future; (b) the belief, whether tacit or explicit, that a given
behavioral sequence will be efficacious as a means to the realization of that object,
event, or state of affairs; and (c) the behavior pattern in question. Less precisely, this
means that to say of a given behavior pattern that it is purposeful, is to say that
the entity exhibiting that behavior desires some goal and is behaving in a manner it
believes appropriate to the attainment of it.

Now, as the chapter quote suggests, this dissertation was not written from the perspective of
neither a neurologist nor psychiatrist and make no claims of deep insight into the nature of
complex agents such as humans. Fortunately, unlike the natural sciences where observed differ-
ences between model and theory might be dubbed a catastrophe [49], our goal will only be to
make predictions in a way that minimizes how hard it is to describe the actions of a competent
agent. Technically, this is achieved by leveraging the established theory of maximum causal
entropy for modeling purposeful behavior in sequential decision processes [162]. Operationally,
this theory prescribes forecasting the actions of the agent using an entropy-regularized policy
that trades off performance for randomness (entropy). The key detail is that this theory
provides predictions of a purposeful agent’s behavior that minimize the worst case log-loss
prediction accuracy, i.e., the number of bits needed to describe the behavior. In this way, we
do not care if the agent is human or if the agent is using a slightly different world model for
planning. So long as the dynamics model is expressive enough to capture common behavior,
the enforced guarantees will (hopefully) paper over modeling discrepancies (an observation
formalized in the robust entropy regularized control literature [52]).

CHAPTER 1. INTRODUCTION 5

Communicating tasks

Figure 1.2: Illustration of using demonstrations to communicate a task specification. The human
(left) has a natural language description of the task in mind and the robot (right) maintains a

binary encoding of a task specification.

The learning and teaching problems successively build on the control problem to communicate
formal task specifications using demonstrations (as illustrated in Fig 1.2). The learning
problem asks the question: Given a collection of expert demonstrations, which formal task
specifications explain the behavior of the expert? Importantly, because of the ambiguous
nature of the problem statement, we seek a distribution of specifications that plausibly explain
the agent’s behavior.

Next, because formal task specifications can be difficult to understand, the teaching
problem asks the question: Can one generate a small number of pedagogic demonstrations3

which help a user understand a task? To ground the notion of generating pedagogic examples,
we will lean heavily on the literature on pragmatics [62], legibility [48], and showing vs
doing [73]. The core idea will be for the teacher to simulate the learner in order to provide
demonstrations that make the true task easier to infer.

1.1 Contributions
This thesis contributes a collection of algorithms and theoretical machinery for systematically
mitigating combinatorial explosions inherent in: (1) finding task specifications that explain
an agent’s behavior; (2) finding pedagogic demonstrations that help humans infer the
specification; (3) robustly predicting the behavior of an agent adhering to a specification.
Specific contributions are enumerated below:

Maximum Causal Entropy Specification Learning from Demonstrations ([153],
Ch 4): We propose using the principle of maximum causal entropy to formulate the
problem of learning task specifications from expert demonstrations operating in Markov

3Potentially supplemented with formal or natural language descriptions.

CHAPTER 1. INTRODUCTION 6

Decision Processes. In the context of specification mining [97] and grammatical inference [45],
demonstrations provide an ergonomic and sample-efficient means to communicate formal
languages and specifications. The key contribution of this work was a formulation compatible
with Bayesian pipeline that supported unlabeled and even incomplete demonstrations. Further,
in the context of inverse reinforcement learning [111], Boolean task specifications are a class
of sparse memory augmented rewards with explicit support for temporal and Boolean
composition. This composition enables incremental learning, and the Boolean episode level
semantics eliminate entire classes of so-called “reward hacking bugs”.

Maximum Entropy Specification Learning from Demonstrations ([149], Ch 4): We
study the special case when maximum causal entropy and maximum entropy approximately
coincide, e.g., deterministic dynamics. This yields a generalization of the size principle from
concept learning [143] for stochastic dynamics and an information theoretic interpretation
of this model as quantifying how atypical the demonstrations are under the random action
hypothesis [42].

Demonstration Informed Specification Search ([155], Ch 5): We contribute a family
of approximate algorithms (DISS) that systematically reduce the problem of learning task
specifications from demonstrations into a series of supervised task specification learning
problems. Compared to prior work, DISS can search through very large and unstructured
concept classes, e.g., automata, even without strong syntactic priors. Furthermore, DISS
only requires black-box access to a maximum (causal) entropy planner and a supervised
task specification learner. As such, the algorithms are agnostic to the underlying dynamics
model and task specification representation. This flexibility enables both efficient learning
and teaching (see below) of task specifications. A concrete instance [154] of this algorithm
for specifications in the form of automata provides empirical evidence that this approach can
scale to combinatorially explosive classes of tasks.

Teaching Specifications using Demonstrations (Ch 6): We provide an adaption of the
showing vs doing framework [73] which, given a model of a learner, provides a principled means
to measure how pedagogic a series of expert demonstrations is. This enables a formalization
of the problem of teaching specifications using demonstrations. To handle large spaces of task
specifications, e.g. automata, we provide a counterexample driven algorithm (using DISS as
a surrogate learner) for finding pedagogic demonstrations. Finally, we show the efficacy of
this algorithm at teaching a collection of task specifications. In particular, we ran an online
human study in which we gave participants a series of demonstrations of an unknown task
specification and asked them to label behaviors as good or bad. Some of the participants
were given pedagogic (showing) demonstrations generated using our algorithm. We show
that this improved performance compared to a baseline where one simulates expert behavior
(doing).

Control Improvisation in Stochastic Games ([150], Ch 7): We study Entropic Reactive

CHAPTER 1. INTRODUCTION 7

Control Improvisation (ERCI), a decision variant of maximum causal entropy policy synthesis
specialized for task specifications in stochastic games. ERCI provides an algorithmic way to
trade performance and randomization in stochastic games. Stochastic games combine both
adversarial and probabilistic behavior in an environment, enabling modeling flexibility, which
facilitates model compression and applicability to new domains, e.g., using probability ranges
rather point probabilities to combine similar states/actions or explicitly capture uncertainty
in the dynamics model. Further, we provide algorithms to decide ERCI whose certificates are
policies that maximize the causal entropy subject to the performance constraints.

Stochastic Games as Circuits ([152], Ch 8): In order to succinctly represent stochastic
games with history-dependent task specifications, we study modeling probabilistic transition
systems as circuits. The result is a framework for analyzing queries about stochastic games,
e.g., what is the probability of satisfying the task specification when applying actions uniformly
at random, using tools such as Boolean Satisfiability (SAT) solvers [44, 101] and Binary
Decision Diagrams [22, 23].

Stochastic Games as BDDs ([153], Ch 9): Building on the encoding stochastic games as
circuits, we study the implications of using a Binary Decision Diagram (BDD) to represent
this circuit. The result is a succinct encoding of a timed unrolled stochastic game that is well
suited for entropy regularized planning and ERCI. Furthermore, we show that the worst case
size of these BDDs grows linearly in the horizon and quasi-linearly in the number of actions.
Finally, because BDDs support function composition, we shall show that the horizon of the
time unrolled stochastic game can be incrementally expanded. This enables working with a
compressed representation of the dynamics model throughout the entire planning process.

1.2 Reader’s Guide
Teaching
(Ch 6)

Learning
(Ch 4, 5)

Control
(Ch 7, 8, 9)

Dynamics
(Ch 3, 7)

Tasks
(Ch 2, 4)

Figure 1.3

The structure of this dissertation reflects the three problems and
contributions discussed above: Learning, Teaching, and Control
(see Fig 1.3). Sections that are not necessary to understand
the main contributions are denoted by †. These can be skipped
during a first reading of this dissertation.

Preliminaries

We start with prelude chapters (Ch 2 and 3) which recount
technical machinery necessary for the rest of the dissertation.
In particular, we establish the formal tools by which to encode
concept classes, model stochastic workspaces, and robustly
predict the behavior of purposeful agents.

CHAPTER 1. INTRODUCTION 8

Learning and Teaching

Next, we have Part I which covers the learning and teaching problems. Ch 4 starts the part
by formally introducing task specifications and discussing the necessary changes to existing
theory on entropy regularized planning and learning from demonstrations to incorporate
task specifications. This then leads to a formal statement of the learning problem, modeling
tricks that highlight the expressiveness of stochastic dynamics and task specifications, and
an analysis of the special case of deterministic dynamics. Unfortunately, the discrete and
non-Markovian nature of task specifications makes them ill-suited for standard learning from
demonstration algorithms. To address this, Ch 5 derives a systematic reduction from learning
from demonstrations to a series of supervised learning problems. This results in a family of
approximate algorithms called Demonstration Informed Specification Search (DISS). Ch 6
closes Part I by formalizing the teaching problem and providing a counterexample driven
algorithm (using DISS as a surrogate learner) for finding pedagogic demonstrations.

Prediction and Control

The results in Part I assume access to a maximum causal entropy planner to be used black-box
when predicting the actions of an agent trying to perform a given task. Part II studies
how to efficiently perform maximum causal entropy likelihood estimates in stochastic games.
Ch 7 starts with a discussion of control improvisation - the decision problem corresponding
to entropy regularized planning in Markov Decision Processes, Interval Markov Decision
Processes, and more generally, Stochastic Games. The result will be planning algorithms that
scale in the size of the time-unrolled stochastic game. To keep the size of the time-unrolled
games tractable, we change perspective in Ch 8 and explore modeling probabilistic transition
systems as probabilistic circuits. This sets the stage for Ch 9 in which we discuss storing
compressed representations of probabilistic transition systems using Binary Decision Diagrams
(BDDs). In particular, we shall see that the maximum causal entropy planning can be done
directly on this compressed structure.

1.3 Bibliographic Notes
Each chapter will end with bibliographic notes that highlight connections to other literature
and historical notes. This chapter is slightly different in that it also contains acknowledgements
of the contributions of peers and mentors (in roughly chronological order).

Thesis conceptualization

The idea to learn task specifications from demonstrations was inspired by the VeHICaL NSF
Cyber-Physical Systems (CPS) Frontier project. The formalism in terms of maximum entropy
inverse reinforcement learning spawned from interactions with Anca Dragan and Dorsa Sadigh
- particularly Anca’s class on Algorithmic Human Robot Interaction. This work was then

CHAPTER 1. INTRODUCTION 9

mentored and encouraged by Susmit Jhah and Ashish Tiwari at SRI International. The theory
and motivations were then refined through discussions with Mark Ho, leading to our initial
work [149] on learning task specifications from demonstration. In terms of the contributions
above, this corresponds to the special case of maximum entropy task specification learning.
The connection with the size principle is due to Tom Griffiths.

The road to Maximum Causal Entropy Planning

Generalizing to the more complex setting of causal entropy required developing additional
machinery to efficiently compute maximum causal entropy policies. The first insight came
in modeling Markov Decision Processes as circuits. This required a non-trivial amount of
engineering and would not have been possible without the mentorship of Markus Rabe. The
insights from this work form the basis for Ch 8 and [151]. This circuit encoding then led to
the BDD-based maximum casual entropy planner seen in Ch 9 and [153]. The generalization
to the stochastic game setting [150] was joint work with Sebastian Junges and inspired by
Daniel Fremont’s work on Reactive Control Improvisation [55].

Learning and Teaching

Maximum causal entropy planner in hand, the next question to tackle was how to efficiently
search for tasks given very large concept classes - solved in Ch 5 using the DISS algorithm [155].
The first versions of what would become DISS originate from discussions with Gil Lederman
with later refinements thanks to the mentorship of Steven Piantadosi. The SAT-based DFA
concept sampler used by DISS in Ch 5 was made possible with the help of Ameesh Shah and
Vint Lee.

The main ideas for teaching using demonstrations again originate from interactions with
Anca Dragan, with the ultimate version drawing heavy inspiration from Mark Ho’s work on
showing vs doing [73]. The core of the algorithm shown in Ch 6 was conceived shortly after
our initial work on maximum entropy task specification inference. An initial version of the
ideas appeared in [148] and was joint work with Mark Ho and Tom Griffiths. Unfortunately, a
proper treatment of these ideas required a robust and scalable way to learn task specifications
from demonstrations. DISS provided this missing ingredient with the algorithm discussed in
Ch 6 being the result. The corresponding human study was in no small part due to Mark
Ho, Ameesh Shah, and Tom Griffiths.

Finally, implicit in all the contributions is the influence of Sanjit Seshia. It was due to
his training and mentorship (particularly in formal methods) that many of the problems
that seem combinatorially intractable proved reasonable, and it was his mentorship that
crystallized the motivations for learning formal specifications.

10

Chapter 2

Concepts and their Representations

Knight: The name of the song is called ‘Haddocks Eyes’!
Alice: Oh, that’s the name of the song, is it?
Knight: No, you don’t understand, that’s what the name is called. The name really
is, ‘The Aged Aged Man.’
Alice: Then I ought to have said “That’s what the song is called?”
Knight: No, you oughtn’t: that’s quite another thing! The song is called ‘Ways and
Means’, but that’s only what it is called you know!
Alice: Well, what is the song then?
Knight: I was coming to that. The song really is ‘A-sitting on a Gate’ and the
tune’s my own invention.

Lewis Carroll (1871, Through the Looking Glass)

This thesis lies at the intersection of many sub-disciplines, and as the chapter quote
suggests, the following chapters play the important role of developing a consistent terminology
and mathematical machinery. The later chapters on learning, teaching, and control will
not only rely on models of the dynamics/agent, but on the set of behaviors that constitute
the agent’s task (objective). Furthermore, we shall later find ourselves concerned with the
difficulty (or ease) of describing a given task and the difficulty (or ease) of describing the
agent’s behavior given the task.

We will begin with a brief introduction to the study of formal languages, concept classes,
and representations classes. This will lay the groundwork for encoding the set of behaviors
that constitute an agent completing a task in a dynamical system. We start with the abstract
formalism of a concept class.

Definition 2. Let U denote an arbitrary set, called the universe, whose elements,
x ∈ U , are called atoms. A concept is a set of atoms, φ ⊆ U . A concept class,
Φ ⊆ 2U , is a collection of concepts. When clear from context, we shall abuse notation
and denote by φ : U → {0, 1}, the indicator [x ∈ φ].

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 11

Example 2.0.1. Let U be the natural numbers, N. The sets, φ1 = {1, 2, 3}, φ2 = {x ∈ N |
x is even}, and φ3 = N are all concepts. The collection {φ1, φ2, φ3} is a finite concept class
over N. The family of concepts {xk | x ∈ N} for all k ∈ N is an infinite concept class.

2.1 Formal Languages and Automata
As motivated in the introduction, we will later find ourselves interested with describing what
sequences of states and observations constitute the successful completion a task. The notion
of a sequence is formalized as a string.

Definition 3. Let Σ be a set of symbols, called an alphabet. A string is a finite
sequence of symbols from Σ. We denote by |x| the length of a string x. The empty
string is the unique string of length 0, denoted ϵ. The concatenation of two strings,
x, y, is denoted x � y, where x and y are called the prefix and suffix respectively. The
concatenation of a sequence of strings, x1, . . . , xn is denoted ∏n

i=1 xi. For any natural
number k, we denote by xk the concatenation of x with itself k-times, where x0 def= ϵ.

Concepts over the universe of strings are called formal languages.1

Definition 4. A formal language, L, is a set of strings over alphabet Σ. The
concatenation of two languages L1 and L2, denoted L1 � L2, is the set {x � y | x, y ∈
L1 × L2}. For any natural number k, we denote by Lk the concatenation of L with
itself k times, where L0 def= {ϵ}. The Kleene closure of L is defined as L∗ def= ⋃∞

k=0 L
k.

The residual language (Brzozowski derivative) of language L by string x, denoted
x−1L is {y ∈ Σ∗ | x � y ∈ L}, i.e., the set of suffixes of strings with prefix x in L.

There are many well studied concept classes of formal languages, e.g., the Chomsky Hierarchy
of regular languages, context free grammars, context sensitive grammars, and recursively
enumerable languages. For purposes of this thesis, it suffices to focus just on the class of
regular languages.

Definition 5. Given a finite alphabet, Σ, a language L is regular iff one of the
following holds:

• L ⊆ Σ.
• L = L2

∗, where L2 is regular.
• L = L1 ∪ L2, where L1 and L2 are regular.
• L = L1 � L2, where L1 and L2 are regular.

We shall denote the set of regular languages as Reg.

1For a more developed introduction to formal languages, we point the reader to [133].

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 12

Regular languages have a number of attractive properties such as closure under a number
of operations (e.g., union, intersection, complement, concatenation, Kleene closures, string
reversal) and containing all finite languages (e.g., languages with bounded string lengths).
Furthermore, a language is regular iff the number of residual languages of L is finite. Finally,
Reg is exactly the set of languages recognized by a deterministic finite automaton (see
below).

Definition 6. A Deterministic Finite Automaton (DFA) is a 5-tuple, D =
⟨Q,Σ, δ, q0, F ⟩, where Q is a finite set of states, Σ is a finite alphabet, δ : Q× Σ→ Q
is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q are the accepting
states. The transition function is lifted to strings, δ∗ : Q × Σ∗ → Q, via recursive
application of δ, i.e.,

δ∗(q, x) def=
q if x = ϵ

δ(δ∗(q, y), σ) if x = y � σ
. (2.1)

A string x is an access-string for state q if δ∗(q0, x) = q. D is said to be trimmed if
each state q ∈ Q has at least one access-string. One says D accepts x if δ∗(q0, x) ∈ F .
Denote by L[D] the set of strings accepted by D from q0. Finally, we say that D
recognizes L iff L[D].

Remark 2.1.1. Unless otherwise stated, we shall assume that D is trimmed.
In this thesis, DFAs are visualized as directed multi-graphs. Nodes map to states and edges
map to symbols. An edge connects q to q′ if q ̸= q′ and the corresponding symbol σ ∈ Σ
transitions q to q′, i.e., δ(q, σ) = q′. The initial state is annotated with “start” and the
accepting states are annotated with a concentric circle.

Example 2.1.2. Consider the parity language, Lparity, over Σ = {0, 1} containing the set of
strings whose sum is even, i.e.,

Lparity =
{
x ∈ Σ∗ |

∑
σ

x = 0 (mod 2)
}
. (2.2)

Figure 2.1 illustrates two distinct DFAs that recognize the Lparity. Because Lparity is recognized
by a DFA, it is regular.

2.2 Representation Classes
The last example illustrates that multiple DFAs can represent the same concept. In fact,
concepts can be generally expressed in a variety of ways, with some ways being easier to
describe than others.

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 13

start
1

1
0

0

(a) Minimal DFA encoding of the parity
language, implicit self loops greyed out.

start
1

1

1

(b) DFA encoding of the parity language with a
redundant state.

Figure 2.1: Example of two DFAs that recognize the parity language.

Example 2.2.1. Consider the concept, φ = {1, 2, 3}. One could describe the concept using
a unary encoding of the elements, e.g., { , , }, as the intersection of two other primitive
concepts, e.g., {1, 2, 3, 4, 6}∩{0, 1, 2, 3}, or using an indicator for φ, e.g., x 7→ (x > −1∧x <
4).

Example 2.2.2. Similar to DFAs, non-deterministic finite automata (NFAs) are a represen-
tation of regular languages as labeled transition systems. The two differences are that (i) NFAs
allow a symbol to non-deterministically transition to one of several states. Lifted to strings,
an NFA’s transition function thus maps strings to a subset of its states and (ii) an NFA
accepts a string if any of these non-deterministically accessed states is accepting. Importantly,
this non-determinism allows certain regular languages to be expressed exponentially more
succinctly than DFAs.

We formalize the distinction between a concept and its description by means of a rep-
resentation class which specifies two maps: an encoding map which associates objects with
series of 0’s and 1’s (called a bit-string) and another which associates objects with a concept.
The difficulty of describing a concept is formalized as the minimum length of the bit-string
associated with that concept.

Definition 7. A representation class is a set R equipped with two maps:

encode : R → {0, 1}∗ concept : R → Φ, (2.3)

where encode is injective. A representation class is bijective if concept is a bijection.
The size or description length of a representation is given by the length of its
encoding:

size : R → N size(r) def= |encode(φ)|. (2.4)
Finally, given R, we define the description length of a concept to be minr∈R size(r).

Remark 2.2.3. Note that because the encode map is injective with the countably infinite
set, {0, 1}∗, the representation class must be countably infinite. This does not preclude the

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 14

concept class from being over an uncountably infinite universe. For example, interval concepts
with rational bounds are a valid representation class for intervals over the real numbers.

Example 2.2.4. Consider the concept class, Φ, of all finite ordered sequences of natural
numbers, which can be represented as tally marks, e.g., 5 7→ . Observing that a sequence of
tally marks can be encoded as a sequence of ones delimited by zeros (where the number of
ones denotes the tally) yields:

encode : (, , ,) 7→ 1110100111110,
concept : (, , ,) 7→ (3, 1, 0, 5).

Note that for ordered sequences, the representation of tuples of tally marks is bijective. For
un-ordered sequences (multi-sets), the representation class contains multiple representations
of the same concept, and thus is not bijective.

While seemingly pedantic, this distinction proves immensely valuable when discussing
the learnability of a concept and assigning prior probabilities on concepts, e.g., appealing to
Occam’s razor to order prior probabilities by size. Nevertheless, when clear from context, we
shall often conflate representations and concept classes, particularly in the special case when
concept(•) is bijective.

The DFA Representation Class
We shall find ourselves chiefly concerned with concept classes that model some variety of
formal languages, and in particular regular languages. As such, we turn to constructing a
particular representation class for Reg based on DFAs. We start by picking an arbitrary
DFA for each regular language and relabeling states via a breadth first traversal from q0,
where transitions are taken using an arbitrary (but fixed) order on Σ. Thus, each state and
symbol are associated to an integer and DFAs that are equivalent up to relabeled states are
all represented by the same object. Then, we encode an arbitrary DFA, D = ⟨Q,Σ, δ, q0, F ⟩,
as follows.

Let bQ and bΣ denote the number of bits do encode |Q| and |Σ| respectively2, i.e.,
bQ

def= ⌈log2 |Q|⌉ and bΣ
def= ⌈log2 |Σ|⌉. Define the encoding map:

encode(D) def= encode(Q) � encode(Σ) � encode(F) � encode(δ) (2.5)
2Note that because Q and Σ can’t be empty, no bits are allocated to this case.

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 15

where

encode(Q) def= 1bQ � 0 � encode(|Q| − 1),

encode(Σ) def= 1bΣ � 0 � encode(|Σ| − 1),

encode(δ) def=
∏
q,σ,q′

q′ ̸=δ(q,σ)

encode(q) � encode(σ) � encode(q′),

encode(F) def=
0 � encode(|F | − 1) � ∏q∈F encode(q) if 2|F | < |Q|+ 1

1 � encode(|Q \ F | − 1) � ∏q /∈F encode(q) otherwise
,

(2.6)

for any natural number x, encode(x) is a standard binary encoding, and states, q ∈ Q
and symbols, σ ∈ Σ, are interpreted interpreted as integer indices. The encoding starts by
declaring the number of bits required to encode the states. This is done by a unary encoding
delimited by zeros. The unary declaration is followed by a binary encoding of the number of
states. The number of bits and size of the alphabet is provided in the same manner. The next
bit determines whether the accepting set is provided or its complement. The corresponding
set is encoded by providing the binary encoding of its size followed by the binary encoding
of the elements. Finally, the binary encoding of the state, token, next state tuples of the
non-stuttering transitions is provided.

Letting size(D) def= |encode(D)| and letting m denote the number of labeled transitions s.t.
q ̸= q′, we see that for the DFA representation class:

size(D) = 3 + 2bQ + 2bΣ + (|F |+ 1)bQ +m(bΣ + 2 · bQ). (2.7)

Assuming that Σ is fixed and noting that D being trimmed implies |Q| ≤ m + 1, we then
have:

size(D) ∈ O
(
m log |Q|

)
(2.8)

Example 2.2.5. Using the standard ordering, 0 < 1, the minimal DFA shown in Figure 2.1a
for the parity language, Dparity, has encoding:

encode(Dparity) = 101︸︷︷︸
encode(Q)

� 101︸︷︷︸
encode(Σ)

� 001︸︷︷︸
encode(F)

� 011110︸ ︷︷ ︸
encode(δ)

. (2.9)

The non-minimal DFA, D′
parity shown in Figure 2.1b has encoding:

encode(D′
parity) = 11010︸ ︷︷ ︸

encode(Q)

� 101︸︷︷︸
encode(Σ)

� 0000︸ ︷︷ ︸
encode(F)

� 100010001010111010101︸ ︷︷ ︸
encode(δ)

. (2.10)

The MinDFA Representation Class
Note that within the above DFA representation class, for any regular language, there is an
infinite number of DFAs that recognize the language. A natural question is if it is possible to

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 16

construct a bijective representation class where only a single “canonical” DFA is associated
with each language. Fortunately, up to state relabeling, for each regular language L, there
exists a unique minimal DFA. To see this, the key observations are that (i) each access
string of a state of D maps to a residual language; and (ii) the residual language of a state
is independent of which access string was used. First, this implies that |Q| is at least the
number of residual languages. Second, this provides a “canonical” DFA construction based
on respecting residual languages. Given a minimal DFA, D, one constructs a new DFA,
D′ = ⟨Q′,Σ, δ, q′

0, F ⟩, where Q′ is the set of residual languages of L[D], q′
0 = L[D], and

F ′ = {q′ ∈ Q′ | ϵ ∈ q′}. Next, to make L[D] = L[D′], δ′ must respect the residual language
structure, i.e., δ′(q′, σ) = σ−1q′. Finally, to show the D′ is canonical, one observes that the
bijective mapping f from q ∈ Q to its residual language respects transition functions and set
acceptance, i.e., for all q ∈ Q, q′ ∈ Q′ and σ ∈ Σ:

q ∈ F ⇐⇒ f(q′) ∈ F ′ δ(q, σ) = f−1
(
δ′
(
f(q), σ

))
. (2.11)

Thus, (δ, F) and (δ′, F ′) are the same up to relabeling via f .
Remark 2.2.6. One can interpret the number residual languages of a language to be the
amount of “memory” required to recognize a given language. In this way, the size of canonical
DFA for a regular language, L, explicitly provides the minimum amount of memory needed
to recognize L.

2.3 Learning Concepts from Examples
The ultimate goal of this thesis will be to learn concepts from unlabeled examples. As
we shall elaborate in the next part, a fruitful way to tackle this problem is via a series of
reductions to learning concepts from labeled examples. To facilitate this reduction, we review
relevant definitions and approaches to learning concepts, and in particular DFAs, from labeled
examples.

Definition 8. Given a universe, U , a labeled example is tuple, (x, l) ∈ U ×{0, 1}. A
labeled example is consistent with a concept φ if l = [x ∈ φ]. A collection of labeled
examples, X, is consistent with concept, φ, if all its elements are consistent with X.
Similarly, labeled examples are consistent with a representation r if they are consistent
with concept(r).

Example 2.3.1. Let X = {(0, 0), (1, 1), (01, 1), (10, 1), (11, 0)} be a collection labeled examples
over the universe of bit-strings, U = {0, 1}∗. X is consistent with the parity language and the
universal language, U . X is not consistent with the empty language, ∅, or the complement of
the parity language.

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 17

Given a set of labeled examples and a representation class, a natural question is to find a
subset of representations that are consistent with the labeled examples. This is formalized by
means of an identification map.

Definition 9. Given a representation class, R, an identification map, I, associates a
tuple of labeled examples and a reference representation, ⟨X, r⟩, to a distribution over
consistent representations in R, i.e.,

I : X×
(
R∪ {⊥}

)
→ Distr(R∪ {⊥}),

where ⊥ is adjoined to the representation class to indicate the lack of a representation.

Remark 2.3.2. Because representation classes are generally countably infinite, identification
maps inherit limitations of distributions over natural numbers. In particular, there is no
uniform distribution over countably infinite sets, and thus, unless the representation class is
finite, I is necessarily favors certain representations over others.
Remark 2.3.3. Let X be a set of labeled examples. If for all representations, I can be viewed
as conditioning on sampling a consistent representation, i.e.,

I(r′ | X, r) ∝
I(r′ | ⊥, r) if r is consistent with X,

0 otherwise,

then I can be re-expressed as an exponential bias to representations with small relative
description length given r. Formally, define:

size(r′ | r) def= − log
(
I(r′ | ⊥, r)

)
. (2.12)

Then,
I(r′ | X, r) ∝ e−size(r′|r). (2.13)

For example, when we are later learning DFAs from demonstrations, we will find it useful to
sample a consistent DFA exponentially weighted by how many bits are needed to describe
the new DFA given a reference DFA, i.e., which states, edges, and accepting labels changed.
As the previous remark illustrates, one can construct an identification map from an “exact”
learning algorithm that finds concepts consistent with the examples and weights them
according to their size. Many instances of exact algorithms exist for a wide range of
representation classes, e.g. DFAs, decision trees, half planes, etc. In this thesis, we shall use
identification algorithms black-box. Nevertheless, as an illustrative example, we shall outline
the problem finding DFAs consistent from labeled examples. Through this exposition, we
shall introduce several ideas that are used later in this thesis and in particular, augmented
prefix trees.

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 18

Prefix Trees
When learning formal languages in the form of DFAs, it is useful to model the set of labeled
examples as a single object that encodes the prefix relations between strings. This idea is
formalized by means of a prefix tree.

Definition 10. Let X be a finite set of strings and let X ′ be its prefix-closure. Let
⪯ denote the prefix-relation on X ′, i.e., given strings x, x′, x ⪯ x′ iff x′ = x � y.
A prefix-tree (also called a trie or digit tree), TX is a rooted tree with nodes X ′

whose edges represent the transitive reduction of ⪯, i.e. if x′ is a descendent of x then
x′ = x � y.

An example is provided in Figure 2.2. Prefix trees are used in a number of areas ranging from
predictive text completion [40] to Bioinformatics [102]. Below we observe a few properties of

ϵ

x

xx xxz

xyy

xyz
xy

yzz

yy

yz

yyy
y

Figure 2.2: Prefix tree for the strings: {xx, xyz, xxz, xyy, yzz, yyy}.

prefix trees to be later used in this thesis. Fix a prefix tree TX for a set of strings X. First, the
root of the prefix-tree is always the empty string: ϵ. Second, the number of leaves in a prefix
tree is exactly |X|. Third, the depth of the prefix tree is the maximum length of a string in
X, i.e. maxx∈X |x|. Fourth, the maximum out degree of a node in T , called the branching
factor of TX , is at most the number of visited symbols, i.e., |{σ ∈ Σ : ∃w ∈ X . w = x �σ � y}|.
Fifth, expanding Σ to include additional elements does not change TX .
Remark 2.3.4. Importantly, if |Σ| is much bigger than X and the longest word in X, then the
size of TX will be be much smaller than Σ. We will later use this fact to efficiently represent
the paths through a workspace when learning task specifications. Here the alphabet will
model the set of actions and observations and typically be much larger than the prefix tree of
the demonstrations.

Next, observe that if two sets have the same prefix closure, then they have the same prefix
tree. For example X1 = {xx, xyz, xxz, xyy, yzz, yyy} and X2 = {xyz, xxz, xyy, yzz, yyy}
have the same prefix tree. To make the original (multi-)set of strings, X, recoverable, one

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 19

can augment the nodes of the prefix tree, X ′, with a visitation counter :

: X ′ → N # : x 7→ |{y ∈ X | y = x � z}|. (2.14)

A prefix in x ∈ X is then detected whenever (i) x is a leaf in T ; or (ii) the visitation count of
a node does not add up to the visitation counts of its children. For example, for X1 and X2
we have ⟨#(xx),#(xxz)⟩ = ⟨3, 2⟩ and ⟨2, 2⟩ respectively. Since xxz is the only child of xx in
TX , one recovers that xx ∈ X1 and xx /∈ X2 as desired.

Finally, we remark that by associating prefix tree nodes with a label {0, 1,⊥} one obtains
a representation of a (multi-)set of labeled examples, i.e.,

label : X ′ → {0, 1,⊥} XT =
{(
x, label(x)

)
| x ∈ X ′, label(x) ̸= ⊥

}
, (2.15)

where X ′ is the prefix closure of the strings of the labeled examples. Such a prefix tree is
called an augmented prefix tree and is denoted, TX.

Learning DFAs from labeled examples†

Next, we study how one can identify DFAs from labeled examples. The first point to make
clear is that this problem is fundamentally under constrained. For any finite set, X, of labeled
examples, there exists an infinite number of regular languages consistent with X. Thus, rather
than identifying a single DFA, we shall seek to find a distribution of DFAs. To do so, we first
characterize the collection of DFAs that are consistent with a given example set, X.

Let X be a collection of labeled examples and TX its augmented prefix tree. A k−coloring
of the prefixes, X ′, is a mapping,

color : X ′ → {1, . . . , k},

that induces a partitioning of the nodes (prefixes) of TX, i.e., X ′ = ⋃
q∈Q q and each q, q′ ∈ Q

is disjoint. The partition of prefix x ∈ X ′ is denoted qx.
Remark 2.3.5. The notation for the partitioning, Q, was chosen to highlight that the coloring
partially defines the states of a DFA (expanded on below).

A coloring is consistent with the augmented prefix tree if it respects the labeling function:

∀x, x′ ∈ Q .
(

label(x) ̸= ⊥ ∧ label(x′) ̸= ⊥
)

=⇒ label(x) = label(x′), (2.16)

and it respects the prefix ordering:

∀q ∈ Q . ∀x, x′ ∈ q . ∀y ∈ Σ∗ .
(
x � y, x′ � y ∈ X ′

)
=⇒

(
qx�y = qx′�y

)
. (2.17)

That is, a coloring is consistent if any two nodes with the same color are indistinguishable
given the label and transition constraints imposed by the augmented prefix tree.

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 20

ϵ

x

xx xxz

xyy

xyz
xy

yzz

yy

yz

yyy
y

(a) Consistent 2 state coloring:
q1 = {ϵ, x, xx, xxz, xyz, yzz, yz}

q2 = {y, yy, yyy, xy, xyy}.

ϵ

x

xx xxz

xyy

xyz
xy

yzz

yy

yz

yyy
y

(b) Consistent 3 state coloring.
q1 = {ϵ, x, xx} q2 = {xxz, xyz, yzz, yz}

q3 = {y, yy, yyy, xy, xyy}.

Figure 2.3: Two consistent colorings for the prefix tree for example 2.3.6.

Example 2.3.6. Consider the labeled example set,

X = {(yyy, 1), (xyy, 1), (y, 1), (yzz, 0), (xyz, 0), (xxz, 0)}.

Two consistent colorings for X are provided in Fig 2.3.

Remark 2.3.7. Note that assigning a unique color to each prefix, i.e., qx = {x}, yields a
trivially consistent coloring. Thus, when searching for a single consistent coloring, one can
restrict their attention to |X ′|−colorings.
Remark 2.3.8. Given any consistent k-coloring, one can construct a (k + 1)-coloring by
extending the co-domain of the color map. The result are “unused” colors.

Operationally then, we see that a coloring partially defines a DFA, D = ⟨Q,Σ, δ, q0, F ⟩.
The states Q are the colors, the transition function is partially defined by the prefix relation,
i.e. if there is a path from x to x′ = x � y in the prefix tree, then δ∗(qx, y) = qx′ , the initial
state is the color of the empty string, i.e., q0 = qϵ, and the accepting states are upper and
lower by label constraints, i.e.,

{x ∈ X ′ | label(x) = 1} ⊆ F ⊆ Q \ {x ∈ X ′ | label(x) = 0}. (2.18)

A general DFA extraction algorithm then works as follows:

1. Select a k ∈ N.
2. Select a k−coloring consistent with TX. If none exists, return to step 1.
3. Construct a DFA, by arbitrary completion of the partially defined accepting set and

transition function.

Example 2.3.9. Building on example 2.3.6, Fig 2.4 shows two DFAs that are consistent
with the coloring in Fig 2.3a. These DFAs differ in the completion of the transition function.
In particular, the transitions with symbol x after seeing symbol y are left unconstrained by

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 21

the coloring and augmented prefix tree. There are 12 two state and 2,243 three state DFAs
consistent with X.

start
z

y
start

z
x

y

Figure 2.4: Two consistent DFAs derived from the 2-coloring in Fig 2.3a.

Remark 2.3.10. From our previous observations, we see that there is always a |X ′| state
DFA that is consistent with the augmented prefix tree. Similarly, we see that extending a
k-coloring to a (k + 1)-coloring introduces a state that is not accessed by any of the labeled
examples. Such extensions are necessary for making the set of DFAs that are partially defined
by a coloring complete. Note however that when considering canonical (minimized) DFAs
the augmented state may or may not be equivalent to a visited state, and thus arbitrarily
filling in the rest of the partial DFA’s details may result in a DFA with less than k + 1 states.

Through the lens of coloring, one is able to derive several algorithms for finding DFAs
that are consistent with a labeled example set. Generally, these are characterized by (i) if the
coloring is generated incrementally, e.g., via greedy state merging [92] (ii) if one or several
DFAs is to be found, and (iii) if the found DFAs are ordered by description complexity.
We shall focus on algorithms that enumerate the smallest k-DFAs, as measured by the size
function.
Remark 2.3.11. The problem of deciding if a DFA is a minimally-sized DFA consistent with
a set of labeled examples is known to be NP-hard [59]. As such, there exist a number
of reductions to the canonical NP-complete problem, Boolean satisfiability (SAT) [41, 70,
146]. The high-level approach to the SAT reduction of exact learning of DFAs used in the
experiments of this thesis are as follows: (i) Create a SAT query, i.e., a Boolean predicate
f : {0, 1}n → {0, 1}, which is true iff there exists DFA with a given number of states, m; (ii)
Perform a linear search to determine the minimum number of states, m∗, required; (iii) Create
a SAT query that is true iff there exists a DFA with m∗ states and k edges in its multi-graph;
(iv) Binary search for the minimum number of multi-graph edges required; (v) Until satisfied,
enumerate all solutions3, increasing m and k as necessary. Finally, by enumerating a fixed
number of DFAs (with distinct regular languages), one can create an identification map by
weighting the DFAs according to the size relative to another reference DFA.

3Given a SAT query f and a solution, x∗, one can create a new SAT query: f(x) 7→ f(x) ∧ (x ̸= x∗),
which is either un-satisfiable, or only satisfiable with a new solution. This enables enumerating solutions.

CHAPTER 2. CONCEPTS AND THEIR REPRESENTATIONS 22

2.4 Bibliographic Notes
The perspectives on concept and representation classes reviewed in this chapter derive from
computation learning theory [85] and to a lesser extent Solomonoff’s theory of inductive
inference [136]. Both literatures directly address the (sobering) reality that computers
operate on discrete objects with finite description lengths. The implications of this reality
include the inability to encode arbitrary real numbers or assert uniform priors on infinite
representation classes. While not a large problem when representations are indexed by
parameters, e.g., linear rewards, this becomes a fundamental issue when encoding historical
dependencies, where each bit of memory requires a larger and larger description. Furthermore,
the computational resources used by algorithms for learning concepts from non-trivial concept
classes are invariably sensitive to description length of the target concept in the chosen
representation class.

As a illustrative example, we largely focused on minimized DFAs, an incredibly well
studied representation of regular languages [133]. The focus on regular languages stems from
their ability to support temporal and Boolean composition and their foundational nature
in the Chomsky hierarchy of formal languages [133]. DFAs support a number of inference
algorithms [45] in both the passive learning setting [70] and the active learning setting [12]. In
fact, the notion of a prefix tree as discussed in this chapter derives from the passive learning
of DFAs. Nevertheless, as much as possible, the later material will try to be agnostic to the
particular representation class being considered.

Finally, the key distinction in this thesis from prior work on grammatical inference [45]
will be the treatment of learning from unlabeled and potentially noisy demonstrations, where
demonstrations differ from examples due to the existence of a dynamics model. As we’ll see
in the next chapter, this notion of demonstration derives from the Inverse Reinforcement
Learning literature [111]. In doing so, we shall see that one sometimes only requires a few
positive demonstrations to confidently identify a language. This goes against conventional
wisdom in formal language induction that one cannot identify regular languages using only
positive examples [60]. The loophole of course is that we do not seek to exactly learn the
regular language, but rather a belief distribution over regular languages which will (hopefully)
concentrate on the correct language. This goal mirrors other results on learning from positive
examples on simple distributions [47, 160]. As we shall see though, our results will go further
and not even require positive labels.

23

Chapter 3

Workspaces and Decision Processes

You have brains in your head. You have feet in your shoes. You can steer yourself in
any direction you choose. You’re on your own, and you know what you know. And
you are the guy who’ll decide where to go.

Dr. Seuss (Oh, the Places You’ll Go!, 1990)

In the previous chapter, we reviewed machinery for representing concepts and formal
languages. This chapter reviews additional machinery for predicting the behavior of agents
that are trying to perform tasks in stochastic environments. We start with a brief review a
few useful probability distributions. We shall assume the reader is familiar with elementary
probability theory.

Definition 11. Let X be a discrete set. The uniform distribution on X is denoted
Uniform(X). The distribution with all probability mass on a single element x ∈ X is
called the Dirac distribution, δx. If X is equipped with a map f : X → R, then we
denote the Log Sum of Exponentials (or smooth max) of f by:

LSE(f) def= log
∑
x∈X

ef(x). (3.1)

The softmax (or soft-argmax) is the gradient of LSE(f) interpreted as a distribution
over X:

softmax(f) def= ∇LSE(f) softmax(f)(x) ∝ ef(x). (3.2)
A random variable, X , is a function relating two discrete distributions.

Remark 3.0.1. As the names suggest the smooth max and soft-argmax are differentiable
relaxations of the max and arg max functions respectively. For example, one can easily verify
that 0 ≤ LSE(f)−maxx∈X(f(x)) ≤ ln |X| with the left inequality becoming tighter as the

CHAPTER 3. WORKSPACES AND DECISION PROCESSES 24

difference between the maximum of f and other elements becomes larger. A similar analysis
shows that softmax(f) interpolates between the uniform distribution (when f is a constant)
and the Dirac distribution (when the max of f becomes much larger than all other elements).

3.1 Markov Decision Processes
We model an agent acting in a stochastic domain as a Markov Decision Process.

Definition 12. A probabilistic labeled transition system (PLTS) is a tuple
M = ⟨S, s0, A, P ⟩, where S is a finite set of states, s0 ∈ S is the initial state, A is
a finite set of actions, and P : S × A → Distr(S) ∪ {⊥} is the transition function
of M . Viewing states and actions as random variables, we denote by P (s′ | s, a) the
distribution over next states, s′, induced by P given the current state s and action a.
If M is equipped with a reward function, r : S → R, it is known as a finite Markov
decision process (MDP).

We identify the available actions as: A(s) def= {a | P (s, a) ̸= ⊥}, e.g., a door can only be
opened when close enough to the door. States without available actions, i.e., states with
A(s) = ∅ are called terminal states. Finally, we shall assert the Luce choice axiom, which
requires that each action, a ∈ A(s), be distinct, i.e., no actions are interchangeable or
redundant at a given state [99].
Remark 3.1.1. When learning history-dependent rewards, it is a-priori unclear what state
augmentations are necessary to make the unknown reward function state-based. Nevertheless,
unless the distinction is important, we shall often conflate Markov Decision Processes and
their underlying Probabilistic Labeled Transition Systems.

s1
a1

a2

1
a11/5

4/5

9/10

1/10s0 s2

Figure 3.1: Example MDP in the form of a bi-partite graph.

Example 3.1.2. A PLTS with three states and two actions is illustrated as a directed bi-
partite graph in Fig 3.1. The nodes of the graph are split into ego-nodes and dist-nodes.
Ego-nodes, depicted as circles with black outlines, represent states and the dist-nodes, depicted
as black disks, represent state distributions, e.g. P (• | s, a). The outgoing edges of dist-nodes
are annotated with weights that sum to 1. For example, the PLTS shown in Fig 3.1 has

CHAPTER 3. WORKSPACES AND DECISION PROCESSES 25

P (s0 | s0, a2) = 9/10 and s2 is the unique terminal state of this PLTS. Given a state reward
function, e.g., r : si 7→ i, the PLTS would also be an MDP.

Ultimately, we shall be interested in what behaviors an agent can and does generate in a
workspace. A behavior is formalized by the notion of a path through an MDP.

Definition 13. Given a MDP, M = ⟨S, s0, A, P ⟩, a n−length path ξ is a sequence:

s0
a0−→ s1

a1−→ . . .
an−→ sn, (3.3)

in (S × A)n × S where P (si+1 | si, ai) > 0 for each i. We denote the length of a path
with |ξ| def= n + 1, and denote sn, i.e., the last element of ξ, with last(ξ). A path, ξ,
is said to be complete if last(ξ) is a terminal state. The set of all paths is denoted
PathsM and the set of complete paths is denoted PathsM$. We omit M when it is clear
from the context.

We will often find it convenient to view paths as strings that alternate between states and
actions. So much so that this perspective was already implicitly employed to visualize paths
in (3.3). To this end, we allow paths to inherit string operations such as concatenation
and decomposition into prefix-suffix pairs. Next, we turn to the question of modeling
an agent’s decisions and control strategies. This is captured by the notion of an agent
policy.

Definition 14. A policy, π : Paths→ Distr(A), is a map from paths to distributions
over enabled actions, i.e.,

{a ∈ A | π(s) > 0} ⊆ A(s).

Viewing actions and paths as random variables, for a given path, ξ and a policy π, we
denote by π(a | ξ) the distribution of actions induced by π given the path ξ.

Employing a policy, π, in a given MDP induces a Markov Chain over paths. More precisely,
the probability of a path, Pr(ξ | π,M), is recursively given by:

Pr(ξ | π,M) =
1 if |ξ| = 1,
P (s′ | s, a) · π(a | s) · Pr(ξ′ | π,M) if ξ = s

a−→ s′ � ξ′.
(3.4)

The probability of a prefix-free set X ⊆ Paths of paths, is the sum over the individual path
probabilities,

Pr(X | π) =
∑
ξ∈X

Pr(ξ | π). (3.5)

We denote sampling a complete path, ξ, given policy π and MDP M by ξ ∼ (π,M).

CHAPTER 3. WORKSPACES AND DECISION PROCESSES 26

Example 3.1.3. Consider again the MDP shown in Fig 3.1. Assuming the policy:

π(a | ξ) ∝
1 if a = a1,

|ξ| − 1 otherwise,
(3.6)

the complete path ξ = s0
a1−→ s0

a2−→ s0
a1−→ s1

a1−→ s2 has probability:(
1 · 15

)
·
(1

2 ·
9
10

)
·
(1

3 ·
4
5

)
· (1 · 1) = 3

125 .

Remark 3.1.4. In the standard MDP setting, it is sufficient to only consider state based
policies, π : S → Distr(A). While useful for control, for our application of learning from
behaviors, there is no reason to believe that the demonstrator uses a stationary state-based
policy. In fact, we shall later see that bias minimizing predictions of the agents behavior,
formalized as entropy, necessarily imply forecasting using history dependent policies.

3.2 Behavior Prediction and Agent Models
Next, we turn to the question of how to predict and explain the behavior of an agent acting
in an MDP. Traditionally one models an agent operating in an MDP as using a policy that
(approximately) optimizes the expected sum of rewards1, i.e.,

max
π

E
[∞∑
t=1

r(st) | π,M
]
. (3.7)

A path generated from such an agent is called a demonstration. The inverse problem,
known as inverse reinforcement learning [1] (or inverse optimal control [82]), is informally
defined below.

Definition 15. An inverse reinforcement learning (IRL) problem is a tuple,
⟨M,Ξ, R⟩, where M is an MDP, Ξ is a multi-set of demonstrations, and R is a class of
reward functions.

A solution to an IRL problem is a reward, r ∈ R, that “explains” Ξ given M .

Unfortunately, in the context of IRL, (3.7) simultaneously proves to be a very strong and
under-constrained assumption. At one extreme, any policy optimizes all constant rewards.
At the other extreme, sufficiently expressive reward classes may contain rewards that “overfit”
to the demonstrations. For example, if the transition function is deterministic, then the
membership indicator [ξ ∈ Ξ] makes the demonstrations (and only the demonstrations!) look
optimal. Either way, some other criteria must be used to disambiguate rewards.

1To make the expectation is well defined one often assumes the episode ends with constant probability γ.

CHAPTER 3. WORKSPACES AND DECISION PROCESSES 27

Secondly, when connecting MDPs to physical environments, the policy that optimizes (3.7)
may require super-human precision, planning, and consistency. Thus the policies prescribed
by (3.7) are often ill-suited for reasoning about human generated paths. This problem is
further compounded if there is a gap between the dynamics model used for inference and the
model used by the agent.

Finally, for any reward, one notes that there is often more than one policy that maxi-
mizes (3.7). For example, given a constant reward, both a uniform distribution of the actions
and a deterministic policy are optimal, but the predictions of both are very different. Thus,
again for prediction, some other criteria is necessary.

3.3 Entropy Regularized Planning and Prediction
A popular, and in practice effective, solution to the ambiguity of IRL is to appeal to the
principle of maximum causal entropy. The result is a unique agent model that is no more
biased (formalized as causal entropy) than is required to match various assumed or observed
characteristics of the agent, e.g., keeping an average of 10 feet from a wall. In the sequel, we
review relevant definitions from information theory and directed information theory. Then,
we review maximum causal entropy inverse reinforcment learning.

Definition 16. The surprisal (or information content) of an event with probability
p is log 1/p. Let P and Q denote two distributions over a discrete set X. The cross
entropy of P under Q is the average surprisal w.r.t. Q under distribution P :

HP (Q) def= E
x∼P

[
log 1

Q(x)

]
= −

∑
x∈X

P (x) logQ(x),
(3.8)

where 0 log 0 is taken to be 0. The entropy of distribution P is:

H(P) def= HP (P). (3.9)

Finally, entropy is naturally extended a random variable, X , using the distribution
over the outputs of X , and is denoted H(X).

Remark 3.3.1. Note H is an functional and is invariant under relabelings (bijective transfor-
mations) of X.
Remark 3.3.2. Entropy is defined with respect to a given logarithmic base - with all variants
being equivalent up to multiplicative constants. Common bases are 2 and e with the
corresponding entropy units being bits and nats resp.

CHAPTER 3. WORKSPACES AND DECISION PROCESSES 28

When log is taken to be base 2, entropy H(P) can be interpreted (via the Source Coding
Theorem [42]) as the average number of bits required to record values of X drawn from P . In
this way, entropy informally captures the degree of uncertainty in a distribution. For example
(again assuming base 2 entropy), if P is uniform, then H(P) = log |X|. After rounding up to
the nearest integer) H(P) is exactly the number bits required to index all of the elements of
X. On the other hand, if P is entirely concentrated on a single element of X, then H(P) = 0,
i.e., no bits are required because the result of sampling a value from P is a-priori known.

Similarly, the cross entropy HP (Q) is interpreted to be the expected number of bits
required to record values from X drawn from P - given an encoding optimized for Q. The
excess number of bits used by HP (Q) relative to H(P) is to known as the Kullback-Leibler
divergence (or relative entropy).

Definition 17. Let P and Q denote two distributions over a discrete set X. The
KL-divergence from Q to P is:

DKL(P || Q) def= HP (Q)−HP (P)

= E
x∼P

[
logP (x)
logQ(x)

] (3.10)

Remark 3.3.3. Via Gibb’s inequality, one can show that DKL(P || Q) ≥ 0 with equality iff
P = Q. In terms of encodings, one interprets the result as formalizing the intuition that
designing for distribution Q and evaluating on distribution P is sub-optimal in the number
of bits used unless P = Q.
Remark 3.3.4. In many ways KL-divergence is a more fundamental measure of uncertainty
than entropy. For example, on discrete spaces (as we’ve been discussing), one observes that
the entropy H(P) is the KL-divergence from P to the uniform distribution, i.e., H(P) =
DKL(P || Uniform).
Next, we formalize how uncertainty decreases as observations are made via the joint and
conditional entropy.

Definition 18. Let X and Y be discrete random variables with joint distribution P .
We define the joint entropy of X and Y as:

H(X ,Y) def= H(P) (3.11)

The conditional entropy of Y given X is:

H(X | Y) def= H(X ,Y)−H(Y)
= E

(x,y)∼(X ,Y)
[− log Pr(X = x | Y = y)] (3.12)

CHAPTER 3. WORKSPACES AND DECISION PROCESSES 29

Remark 3.3.5. Consider a sequence of random variables, X1:T
def= X1, . . . ,XT . By manipu-

lating (3.12) one derives a chain rule for constructing joint entropies from increasingly
constrained conditional entropies:

H(X1:T) =
T−1∑
t=1

H(Xt+1 | X1:t). (3.13)

Remark 3.3.6. Noting that Y = y is itself a random variable, one derives that:

H(X | Y) = E
y∼Y

H(X | Y = y). (3.14)

Thus, conditioning by a random variable can be viewed as taking the convex combination
of the entropies of all conditional distribution. Combined with the chain rule, this provides
a straightforward means to recursively compute entropies. Note that this also implies that
conditional entropy is always greater than or equal to zero. Applying Jensen’s inequality, i.e.
f(E[X]) ≤ E[f(X)] whenever f is convex, one derives the desirable property that conditioning
never increases entropy (uncertainty), i.e., for all triples of random variables, X ,Y ,Z,

H(X | Y) ≥ H(X | Y ,Z) ≥ 0. (3.15)

Causal Entropy
When modeling temporally generated sequences of random variables such as paths, it is
useful to introduce the notion of causal conditioning. Intuitively, and contrary to “non-causal”
entropy, causal entropy does not condition on variables that have not been revealed, e.g.,
on events in the future. This makes causal entropy particularly well suited for measuring
predictability in sequential decision making problems, as the agents cannot observe the
future [162].

Definition 19. Let X1:T and Y1:T be two sequences of random variables. The proba-
bility of a sequence X1:T causally conditioned on sequence Y1:T is:

Pr(X1:T | Y1:T) def=
T∏
t=1

Pr(Xt | Y1:t,X1:t−1) (3.16)

The causal entropy of X1:T given Y1:T is defined as,

H(X1:T | Y1:T) def=
T∑
t=1

H(Xt | X1:t−1, Y1:t)

= E
Y1:T ,X1:T

[− log Pr(Y1:T | X1:T)]
(3.17)

CHAPTER 3. WORKSPACES AND DECISION PROCESSES 30

Remark 3.3.7. Causal conditioning is often denoted using ||. We opt to use | to avoid
confusion with relative entropy.
Remark 3.3.8. Recalling that conditioning only decreases uncertainty (3.15) and comparing
the definition of causal entropy (3.17) with the entropy chain rule (3.13), one observes that
causally conditioned entropy is lower bounded by statically conditioned entropy,

H(X1:T | Y1:T) ≥ H(X1:T | Y1:T) ≥ 0. (3.18)

Interpreted as bits, the definition of causal entropy can be viewed as the description complexity
of describing events as they occur. Static entropy is then the description length with hindsight.
For example, when describing a race in real-time, one would describe the position of the
participants given only their past positions. However, with knowledge of future positions,
one would only need to describe when the ordering changes, which constrains the uncertainty
of the time in-between changes.

To study the predictability of a given agent’s policy, recall that a policy induces a Markov
Chain, and thus a distribution over sequences of states and actions. Formally, given an MDP
M and a policy π, let us denote by A1:i and S1:i random variable sequences actions and states
respectively. The causal entropy of a policy for T -length paths is given by:

H(A1:T | S1:T) =
T∑
t=1

H(At | S1:t)

= H(A1:T−1 | S1:T−1) +H(AT | S1:T),
= H(A1:T−1 | S1:T−1) + E

s1:t
[H(AT | S1:T = s1:T)],

(3.19)

where the equalities follow from the Markov property, i.e., state transitions only depend on
the current state and action and the policy only depends on the previous states. Matching
intuition, the measure of uncertainty of the agent’s actions given by (3.19) is bound by:

0 ≤ H(A1:T | S1:T) ≤ T log(|A|),

with the maximum and minimum being realized by uniform policy and deterministic policies
respectively.
Remark 3.3.9. The third equality in (3.19) provides a natural recursive algorithm for computing
H(A1:T | S1:T) backwards in time.
Remark 3.3.10. The causal entropy of a policy can be made to apply to variable length paths
by padding shorter paths with ⊥ for the action and state. For example, a path of length 2
can be padded in to path of length 4 by:(

s0
a0−→ s1

)
7→
(
s0

a0−→ s1
⊥−→ ⊥ ⊥−→ ⊥

)
.

Using this padding, if i > |ξ| then H(Ai | A1:i−1,S1:i−1,Si = ⊥) = 0, which means that the
padding does not increase the uncertainty of the policy. Computationally, this means that

CHAPTER 3. WORKSPACES AND DECISION PROCESSES 31

the recursive algorithm can use the length of the path or being a complete path as the base
case condition.
Remark 3.3.11. Unfortunately, the upper bound being tight (realized by uniform policies)
implies that causal entropy tends to infinity as T does. Thus, in general, one cannot define
causal entropy over all complete paths. Fortunately, for many “practical” dynamical systems,
the first three moments: mean, variance, and skewness, of the path distribution length, for
all policies, are bounded. For example, if there is a constant probability of the episode ending
or if the episode ends when a battery, whose charge decrements with constant probability,
runs out of charge. Using the padding trick, letting T denote the random variable for path
length, and applying Markov’s inequality extended to the third moment yields:

Pr(T ≥ T) ≤ E[T 3]
T 3 . (3.20)

Since the upper bound on the causal entropy only grows linearly in the horizon, the contribu-
tion of the causal entropy of complete paths with lengths greater than E[T] attenuates at
least quadratically. Thus, in such settings:

1. The infinite horizon causal entropy, i.e., the limit when taking T to ∞ is well defined
and bounded. We refer to this limit as the causal entropy of the policy.

2. The causal entropy can be arbitrarily well approximated by using a sufficiently large
planning horizon T .

Maximum Causal Entropy IRL
We are now ready to return to the problem of inverse reinforcement learning (IRL). Recall that
the IRL problem states: given a set of demonstrations, find the reward that best “explains”
the agent’s behavior, where by “explain” one typically means that under the conjectured
reward, the agent’s behavior was approximately optimal. Further, recall that (i) many
undesirable rewards satisfy this property, e.g.,

r : s 7→ 0, (3.21)

and (ii) the set of optimal policies can be infinitely large with individual policies predicting
very different behavior. A popular solution to the lack of unique policy conundrum is to
appeal to the principle of maximum causal entropy [163]. The principle of maximum
causal entropy suggests forecasting using the policy whose action sequence, A1:τ , has the
highest causal entropy, conditioned on the state sequence, S1:τ . That is, find the policy that
maximizes:

H(A1:τ | S1:τ), (3.22)
subject to policy feature, f : S → Rn, constraint, E[f(S)] = f ∗, e.g., maximize entropy
subject to keeping the same average distance to other vehicles as seen in the data. Compared

CHAPTER 3. WORKSPACES AND DECISION PROCESSES 32

to all other distributions, this policy (i) ensures that (by definition) the agent’s predicted
policy does not depend on the future; (ii) is (by definition) consistent with observed feature
statistics; (iii) minimizes the worst case prediction log-loss (see below).

Corollary 3.3.12 (Instance of Theorem 5.10 from [163]). Let n be a natural number,
f : S → Rn be a feature function, and P be a distribution of actions A1:T and states S1:T .
If P maximizes causal entropy subject to feature moments, EP [f(S)] = f ∗ ∈ Rn, then it
minimizes the worst-case prediction log-loss:

sup
P ′

E
(A1:T ,S1:T)∼P ′

log 1
P (A1:T | S1:T) , (3.23)

where (1) P ′ is causal, i.e., P ′(A1:T ,S1:T) = P ′(A1:T | S1:T)P ′(S1:T | A1:T−1), and (2) the
feature moments, EP ′ [f(S)] are f ∗ when S is sequentially revealed from the known causally
condition dynamics distribution, Pr(S1:T | A1:T).

In the language of description complexity and surprisal, one says that the maximum
causal entropy distribution minimizes the worst case number of bits needed to describe the
agent’s behavior. Thus, when applied to Occam’s razor style arguments, the principle of
maximum causal entropy serves as a robust proxy for how hard it is to describe the agent’s
behavior.

Connecting back to reward motivated agents in MDPs, if r(s) is assumed to be a linear
combination of features, rλ(s) = λ · f(s), where λ ∈ Rn, the principle of maximum causal
entropy prescribes the following entropy regularized policy [163]:

log πλ(a | ξ) def= Vλ(ξ � a)− Vλ(ξ) (3.24)
where

Vλ(ξ) def=

rλ(last(ξ)) if ξ ∈ Paths$,

LSEa∈A(last(ξ)) Vλ(ξ � a) if ξ ∈ Paths \ Paths$,

rλ(s) + Es′ [Vλ(ξ � s′) | s, a] if (ξ = x � s � a) ∧ (s, a ∈ S × A),
(3.25)

and λ is such that (3.25) results in a policy which matches feature demonstrations.
Remark 3.3.13. Our exposition of the maximum causal entropy policy is non-standard in
that it is defined in terms of paths. Typically, V is split into two functions, V and Q, called
the state value and action value respectively. As the names suggest, V and Q are defined in
terms of (time-indexed) states and actions. V corresponds to the first two cases of (3.25) and
Q corresponds to the last case. As we shall see, when the reward is unknown and history
dependent, we will often find it useful to refer to the value of arbitrary prefixes of a path.
Thus, to simplify future notation, unless explicitly required, we shall conflate the two value
functions.
Remark 3.3.14. Replacing LSE with max in (3.25) yields the standard Bellman Backup [16]
used to compute the optimal policy in tabular reinforcement learning. For this reason, (3.25)
is called the soft-Bellman backup.

CHAPTER 3. WORKSPACES AND DECISION PROCESSES 33

Remark 3.3.15. It can be shown that maximizing causal entropy corresponds to believing
that the agent is exponentially biased towards high reward policies [163]:

Pr(πλ | M) ∝ exp
(
E
ξ

[
Rλ(ξ) | πλ,M

])
. (3.26)

Remark 3.3.16. In the special case of scalar state features, f : S → R≥0, the maximum
causal entropy policy (3.25) becomes increasingly optimal as λ ∈ R increases (since LSE
monotonically approaches max). In this setting, we shall refer to λ as the agent’s rationality
coefficient. As we will revisit when discussing stochastic games (Ch 7), the rationality
coefficient casts the smooth Bellman backup as a multi-objective optimization:

J(π) = E
[
R(S1:T) | π,M

]
+ λ ·H(A1:T | S1:T , π,M),

where one trades performance for randomness.

3.4 Bibliographic Notes
In this chapter, we considered the problem of predicting the actions of purposeful agents
acting in Markov Decision Processes. The problem of learning objectives by observing an
expert has a rich and well developed literature dating back to early work on Inverse Optimal
Control [82] and more recently via Inverse Reinforcement Learning (IRL) [111]. In IRL,
an expert demonstrator optimizes an unknown reward function by acting in a stochastic
environment, i.e., a Markov Decision Process. The goal of IRL is to find a reward function
that explains the agent’s behavior. A fruitful approach has been to cast IRL as a Bayesian
inference problem to predict the most probable reward function [123]. To make this inference
robust to demonstration/modeling noise, one commonly appeals to the principle of maximum
causal entropy [79, 163]. Intuitively, this results in a forecasting model that is no more
committed to any given action than the data requires (formalized as bounding the worst-case
expected description length of future demonstrations). Furthermore, in the case of linear
rewards, there exist several efficient gradient based algorithms for finding the most likely
objective [163]. In this chapter, we largely ignored these algorithms since they are not
applicable to our ultimate goal of learning discrete concepts.

Finally, the description length being worst-case minimal means that the principle of
maximum causal entropy provides a succinct encoding of the demonstrations. This enables
discussing the total description length of both the objective (drawn from some representation
class) and the path. Viewed this way, our inference problem can be cast as a data compression
problem [3] in which one first describes which encoding to use (by describing the objective)
and then describes the demonstrations using this encoding. This provides a direct way to
discuss the trade-off between how well a given objective explains the behavior of the agent
and how hard the objective is to describe.

34

Part I

Learning and Teaching
Demonstrations are a popular and often ergonomic way to partially specify high-
level tasks. However, most methods for communicating via demonstrations either
(i) do not provide guarantees that the learned artifacts can be safely composed; (ii)
do not explicitly capture temporal properties; or (iii) intimately link the encoding
of the task with details of the workspace.
Motivated by this deficit, Ch 4 advocates for learning Boolean task specifications,
a class of sparse Boolean non-Markovian rewards which admit well-defined compo-
sition, explicitly handle historical dependencies, and are robust to certain classes
of “reward hacking bugs.” As we shall see, the connection with sparse rewards
sketches a path for adapting for leveraging the literature on maximum causal
entropy inverse reinforcement learning techniques to learn task specifications.
Unfortunately, three features make learning temporal task specifications difficult:
(1) the (countably) infinite number of tasks under consideration; (2) an a-priori
ignorance of what memory is needed to encode the task; and (3) the lack of
gradients to guide the search for explanatory tasks. In Ch 5 we explore these
issues and derive a family of approximate algorithms that systematically reduce
the problem of learning from demonstrations into a series of supervised learning
problems.
Finally, in Ch 6, we change perspective from a learner to a teacher. This perspec-
tive has three motivations. First, formal task specifications can be difficult to
understand, even for domain experts. Thus, being able to supplement formal or
natural language descriptions of a task with carefully selected demonstrations can
be invaluable. Second, alternating teaching and learning forms a foundation for
future work on organic team-based collaboration, where team members automati-
cally specialize given inferred assumptions about other agents. Finally, teaching
provides further academic insight into what kind of demonstrations are helpful
for learning.

35

Chapter 4

Specifications from Demonstrations

Words may show a man’s wit, but actions his meaning.

Benjamin Franklin (Scientist, Political Philosopher 1706-1790)

When learning from demonstrations, one typically models the demonstrator (e.g., a
human expert) as episodically operating within a Markov Decision Process where the
demonstrator’s goals are expressed as a function of the state. However, even if the dy-
namics are Markovian, many problems are naturally modeled in non-Markovian terms.

Figure 4.1: Example of agent entering the
water and needing to dry off before recharging.

Example 4.0.1. Consider the task illustrated
in Figure 4.1. In this task, the agent moves in a
discrete gridworld and can take actions to move
in the cardinal directions (north, south, east,
west). Further, the agent can sense abstract fea-
tures of the domain represented as colors. The
task is to reach any of the yellow (recharge) tiles
without touching a red (lava) tile. Additionally,
if a blue (water) tile is stepped on, the agent
must step on a brown (drying) tile before going
to a yellow tile. The last constraint requires re-
call of two state bits of history (and is thus not
Markovian): one bit for whether the robot is wet
and another bit encoding if the robot recharged
while wet.

Further, like Ex 4.0.1, many tasks naturally decomposed into several sub-tasks. This work
aims to address the question of how to systematically and separately learn non-Markovian
tasks such that they can be readily and safely recomposed into the larger meta-task.

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 36

A case for Boolean task specifications
Here, we argue that non-Markovian Boolean specifications provide a powerful, flexible, and
easily transferable formalism for task representations when learning from demonstrations.
This stands in contrast to the quantitative scalar reward functions commonly associated
with Markov Decision Processes. Focusing on Boolean specifications has certain benefits: (1)
The ability to naturally express tasks with temporal dependencies; (2) the ability to take
advantage of the compositionality present in many problems; and (3) use of formal methods
for planning and verification [130].

Although standard quantitative scalar reward functions could be used to learn this task
from demonstrations, three issues arise. First, consider the problem of temporal tasks: reward
functions are typically Markovian, so requirements like those in Ex 4.0.1 cannot be directly
expressed in the task representation. One could explicitly encode time into a state and reduce
the problem to learning a Markovian reward on new time-dependent dynamics; however, in
general, such a reduction suffers from an exponential blow up in the state size (commonly
known as the curse of history [117]). When inferring tasks from demonstrations, where
different hypotheses may have different historical dependencies, naïvely encoding the entire
history quickly becomes intractable.

A second limitation relates to the compositionality of task representations. For instance,
Ex 4.0.1 naturally decomposes into three sub-tasks. Ideally, we would want an algorithm
that could learn each sub-task and combine them into the complete task, rather than only
be able to learn single monolithic tasks. However, for many classes of quantitative rewards,
combining rewards remains an ad-hoc procedure. The situation is further exacerbated by
humans being notoriously bad at anticipating or identifying when quantitative rewards will
lead to unintended consequences [72], which poses a serious problem for AI safety [10] and has
led to investigations into reward repair [58]. For instance, we could take a linear combination
of rewards for each of the subtasks in Ex 4.0.1, but depending on the relative scales of the
rewards, and temporal discount rate, wildly different behaviors would result.

In fact, the third limitation - brittleness due to simple changes in the environment -
illustrates that often, the correctness of the agent can change due to a simple change in the
environment. Recall the gridworld example from the introduction. In particular, imagine
learning a reward that encodes the “recharge while avoid lava” task in Ex 4.0.1. Fig 4.2a
illustrates a reward resulting from performing Maximum Entropy Inverse Reinforcement
Learning [164] with binary features: red (lava tile) and yellow (recharge tile). As is easy
to verify, a reward optimizing agent, ∑∞

i=0 γ
iri(s), with a discount factor of γ = 0.69 would

generate the trajectory shown in Fig 4.2a which avoids lava and eventually recharges.
Unfortunately, using the same reward and discount factor on a nearly identical world can

result in the agent entering the lava. For example, Fig 4.2b illustrates the learned reward
being applied to a change in the gridworld where the top left charging tile has been removed.
An acceptable trajectory is indicated via a dashed arrow. Observe that in this new workspace,

0As we shall see later, this discount rate is equivilent to assuming at every timestep that the episode will
end with probability 1 - 0.69.

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 37

(a) (b)

Figure 4.2: Illustration of a bug in the learnt quantitative Markovian reward resulting from slight
changes in the environment.

the discounted sum of rewards is maximized on the solid arrow’s path, resulting in the agent
entering the lava! While it is possible to find new discount factors to avoid this behavior,
such a supervised process would go against the spirit of automatically learning the task.

Finally, we briefly remark that while non-Markovian Boolean rewards cannot encode all
possible rewards, e.g., “run as fast as possible”, often times such objectives emerge from a
Boolean tasks. For example, consider modeling a race. If at each time step there is a non-zero
probability of entering a losing state, the agent will run forward as fast as possible even for
the Boolean task “win the race”.

In summary, quantitative Markovian rewards are limited as a task representation when
learning tasks containing temporal specifications or compositionality from demonstrations [2].
Moreover, the need to fine tune learned tasks with such properties seemingly undercuts
the original purpose of learning task representations that are generalizable and invariant to
irrelevant aspects of a task [98].

Contributions
Before proceeding, we briefly outline the contributions present in this chapter. First and
foremost, this chapter proposes representing tasks as Boolean specifications and then uses the
principle of maximum causal entropy to formulate learning specification from demonstration
as maximum a posteriori (MAP) inference. To facilitate this, we review a number of (folk)
modeling tricks that illustrate the expressiveness of mixing task specifications and MDPs.
We end the chapter with an analysis of the special case in which the entropy of the agent’s
actions causally conditioned on the revealed states coincides with the entropy of the agents
actions conditioned on all states (past and future).

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 38

4.1 Task Specifications
In this chapter, we highlight the various adaptations to the machinery developed in Ch 2
and 3 to handle Boolean task specifications (defined below).

Definition 20. Let M be an MDP and let R be a representation class for sets of
complete paths, Paths$, in M , i.e., for all φ ∈ R,

concept(φ) ⊆ Paths$. (4.1)

A representation φ from R is known as a Boolean task specification.

Remark 4.1.1. When clear from context, we will often shorten Boolean task specification to
simply task specification, specification, or even task.
Remark 4.1.2. We will generally assume that task specifications are closed under Boolean
operations. For example, given two task specifications φ, φ′ we will assume that their exist
specifications denoted (φ ∧ φ′) and ¬φ such that:

concept(¬φ) = Paths$ \ concept(φ) concept(φ ∧ φ′) = concept(φ) ∩ concept(φ′). (4.2)

In this way, we can discuss trying to avoid performing a task and simultaneously performing
multiple tasks. Furthermore, since conjunction and negation are sufficient to realize any
Boolean circuit, one can represent performing at least one task in a list of tasks or even
assume-guarantee tasks, e.g., assuming that the other car will not enter the intersection, cross
the road.

Featurized task specifications

In order to make a task applicable to a wide number of workspaces, and in analogy to
featurized rewards, one often defines a task in terms of features.

Definition 21. Let Σ be an alphabet. A feature function (or observation function)
is a prefix preserving map f : Paths→ Σ∗, i.e., if ξ ∈ Paths is a prefix of ξ′ ∈ Paths
then f(ξ) is a prefix of f(ξ′). The image of f restricted to φ, denoted φ̂, is called an
abstract task specification.

We say then that a (abstract) task specification, φ, is regular if φ (or φ̂) is a regular language,
and thus recognized by a finite state machine.

Example 4.1.3. Let us again return to the MDP shown in Fig 3.1. Let f : Paths→ {0, 1}∗

be the feature map, f : si 7→ i (mod 2). The parity language, ∑σ∈f(ξ) σ (mod 2) = 0, is an
abstract task specification, φ̂. Further, because the parity language recognized by the DFA
shown in Fig 2.1, φ̂ is regular.

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 39

startstart

Figure 4.3: Decomposition of gridworld task into two DFAs.

Example 4.1.4. We formalize the abstract task specification of our gridworld example. Let
Σ = {■,■,■,■,□} denote an alphabet. The task “go to yellow tiles, avoid red tiles, and
visiting a blue tile means you need to visit a brown tile before a yellow tile.” can be represented
by the conjunction of the two DFAs shown in DFA over Σ shown in Fig 4.3.

Remark 4.1.5. Tasks defined on automata admit various temporal compositions such as
performing two tasks in sequence or performing a particular sub-task whenever an event is
trigger. An instance of the latter is shown in our gridworld example where touching a blue
tile triggers a sub-task: Go to a drying tile.

4.2 Task conditioned behavior prediction
The machinery developed in Ch 3 was targeted at predicting the behavior of agents driven to
optimize the sum of state-based rewards. Note that this same machinery can be adapted to
task specifications by abusing notation and interpreting task specifications as sparse binary
rewards, i.e.,

φ : Paths→ {0, 1}, (4.3)
where φ(ξ) = [ξ ∈ φ] if ξ is complete and 0 otherwise. If φ is represented by an automata,
then (4.3) can be made Markovian by augmenting the MDP states with the automata state.

Next, observe that since task specifications only correspond to complete paths, they are
necessarily prefix-free. Thus, given a policy π, and MDP M , the probability Pr(ξ ∈ φ | π,M)
is a well-defined (3.5). This enables defining the competency of an agent.

Definition 22. Given a fixed MDP, M , a policy, π, is (p, φ)-competent if

Pr(ξ ∈ φ | π,M) = p, (4.4)

where p is called the satisfaction probability of π.

Using the above terminology, we can express maximum a posteriori (MAP) inference problem
we wish to study as follows:

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 40

Task Inference from Demonstrations Problem: Let a M , R, and P be a fixed
MDP, task specification representation class, and task prior, respectively. Further, let
π∗ be a (p∗, φ∗)-competent policy, π∗, where p∗, φ∗, and π∗ are all unknown. Given a
multi-set of i.i.d. demonstrations, ξ∗

1 , . . . ξ
∗
m ∼ (π∗,M), find:

φ ∈ arg max
ψ∈R

Pr(ξ∗
1 , . . . ξ

∗
m | ψ,M) · P (ψ |M). (4.5)

Of course, by itself, the above inference is ill-posed as Pr(ξ∗
1 , . . . ξ

∗
m | M,φ) is left undefined.

As we discussed in Ch 3, a popular, and in practice effective, solution to this conundrum is
to appeal to the principle of maximum causal entropy.

Maximum entropy planners

Concretely, since π∗ is unknown, we shall use a proxy for π∗ the maximum causal entropy
policy that is (p∗,M)-competent. Unfortunately, the competency of the agent is also assumed
to be unknown. Here we have two options. Namely, the competency of the agent can be
treated as a hyper-parameter or estimated empirically, e.g.,

p∗ ≈ 1
m

m∑
i=1

φ(ξ).

The former is useful when given only a few demonstrations and the latter is useful when given
a large number of demonstrations. In either case, the main point is that using a competency
estimator and the principle of maximum causal entropy defines a mapping from tasks to
policies (and thus likelihoods).

maxEntPlanner : φ 7→ πφ, (4.6)

where πφ belongs to the family of (entropy regularized) policies πλ(ξ | a) ∝ exp
(
Vλ(ξ � a)

)
defined by the smooth Bellman backup (3.25):

ln π(a | ξ) def= Vλ(ξ � a)− Vλ(ξ)

Vλ(ξ) def=

λ · φ(ξ) if ξ ∈ Paths$,

LSEa∈A(last(ξ)) Vλ(ξ � a) if ξ ∈ Paths \ Paths$,

Es′ [Vλ(ξ � s′) | s, a] if (ξ = x � s � a) ∧ (s, a ∈ S × A).

(4.7)

Note that we have simplifed (3.25) by using fact that φ(ξ) is zero for all but complete paths.
To associate λ with p∗, observe that the satisfaction probability of πλ is monotonic is λ. Thus,
one can find an appropriate λ to match p∗ via a bracketed search, e.g. bisection 1.

1The upper bound of the bracketed range may need to also be discovered by repeated doubling. See Ch 7
for details on realizing such planners.

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 41

When possible, we will use the maximum causal entropy planner black-box and simply
refer to the policy πφ. The corresponding value function will be denoted Vφ.

We shall postpone further discussions of implementing maxEntPlanner until Part II.

Solution Sketch

Maximum causal entropy policy, πφ, in hand, we sketch our high-level strategy for learning
tasks from demonstrations:

1. Select a candidate task, φ.
2. Compute the prior probability, Pr(φ |M).
3. Compute the likelihood of the demonstrations given the task:

Pr(ξ∗
1 , . . . ξ

∗
m | φ,M).

4. Score tasks based on the posterior probability.
5. Return the maximum reward a posteriori.

What remains to realize this scheme is derive a way to select candidates with increasing
posterior probability. Unfortunately, three features make efficent inference using this algorithm
difficult: (1) the (countably) infinite number of tasks under consideration; (2) an a-priori
ignorance of what memory is needed to encode the task; and (3) the lack of gradients to guide
the search for explanatory tasks. We shall postpone addressing these problems until Ch 5.
Instead, for the remainder of the chapter, we shall address the choice of binary co-domain
for φ (Sec 4.2), various useful modeling tricks to make task specifications more expressive
(Sec 4.3), and simplifications for the special case when maximum causal entropy coincides
with maximum entropy (Sec 4.4).

Choice of binary co-domain
One might wonder how sensitive this formulation to changing the co-domain of φ from {0, 1}
to any other real values, i.e.,

φ′ : Paths→ {a, b}.
We briefly remark that, subject to some mild technical assumptions, almost any two real
values could be used for φ’s co-domain. Namely, observe that unless both a and b are zero,
the expected satisfaction probability, p, is in one-to-one correspondence with the expected
value of φ′, i.e.,

E[φ′] = a · p+ b · (1− p).
Thus, if a policy is feature matching for φ, it must be feature matching for φ′ (and vice-versa).
Therefore, the space of consistent policies is invariant under such transformations. Finally,
because the space of policies is unchanged, the maximum causal entropy policies must remain

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 42

unchanged. In practice, we prefer the use of {0, 1} as the co-domain for φ since it often
simplifies many calculations.

4.3 Task Specification Modeling Tricks†

At first, restricting one’s attention to task specifications (which can only take on binary
values) may seem limiting. Note however that the ability to explicitly model history, e.g.,
in DFA states, and the probabilistic nature of the underlying MDPs enable the emergence
of a number of quantitative properties. These include temporal discounting, preferences to
maintain distances to obstacles, and minimizing violations of a specification. Thus, task
specifications offer a rich modeling formalism that inherits many of the strengths (and
problems) of the Markovian reward setting.

Discount Rates and Shortest Paths
In many settings, it is natural to assume that agents have a bias towards performing tasks
efficiently, e.g., taking the shortest path between the current location and a goal. A common
encoding of such preferences assumes the agent optimizes a discounted sum of rewards:

E
ξ

∑
sk∈ξ

γk · r(sk) | π,M
 , (4.8)

where γ ∈ [0, 1). This discounted sum is often transformed into a non-discounted objective
by observing that (4.8) is equivalent to assuming that there is a special terminal state, $,
which receives no reward, i.e., r($) = 0, and that applying an action from any non-terminal
state transitions to $ with probability 1 − γ. Thus, at any time step the expected future
reward attenuates by γ as desired.

The standard interpretation is that the agent operates in a MDP in which the episode
may end with probability 1− γ at any time point. The result is that the agent prefers to
complete its task as quickly as possible, with an emergent preference for shorter paths. This
perspective shows the planning with a discounted reward implies planning assuming the path
lengths follow a geometric distribution with mean 1/γ.

Batteries
There are of course may contexts in which one wishes to encode some form of temporal
discounting, but the path length distribution is decidedly not geometric. One such example
is that of a robot operating with a stochastically depleting battery [69]. Specifically, if sink $
is transitioned to when the battery reaches 0 and the battery level either decreases or stays

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 43

(a) Optimal path in agent model. (b) Model mismatch leads to task failure.

Figure 4.4

the same with constant probability, i.e.,

Pr(battery_level(s′) = Pr(k′ | battery_level(s) = k) =

1 if k = k′ = 0,
γ if k = k′ ̸= 0,
1− γ if 0 ≤ k − k′ ≤ 1,
0 otherwise,

(4.9)

then the path lengths follow a negative binomial distribution. The geometric distribution
above is then a special case when the initial battery level is 1. For larger battery levels,
one sees that the above model differs in that the probability of the episode ending after the
current action is 0, allowing the agent to plan more optimistically.
Remark 4.3.1. One of the benefits of assuming the initial battery level is 1, is that the internal
battery state need not be observed. For larger battery levels, this necessarily imposes a larger
assumption or the need to estimate the battery level from other observations, e.g., if the
agent is taking a short, but risky, path to the goal vs taking a long, but safe, path the goal.

Slipping and Obstacle Padding
The last two modeling tricks concerned modifying the way an agent accounts for time when
planning. For variety, the next trick modifies the way an agent accounts for the distance
between obstacles (or goals) and itself. In particular, there is often a modeling gap between
the workspace, the agent’s model of the workspace, and the model of the workspace used
for predicting the agent’s behavior. A common examples are distances between objects and
transition probabilities. Such disconnects can lead to an agent just barely missing (reaching)
an obstacle (goal) in one model, but not the others! This phenomenon is made worse by
temporal discounting where an agent’s objective often prefers shorter paths!

Example 4.3.2. Consider the agent operating in work space shown in Fig 4.4a. This agent
agent attempts to perform the task: “Visit the circular region and then the star region while
avoiding the rectangular regions.” Assuming temporal discounting, the agent may try to take
the shortest path to achieve the task. This results in path that barely avoids the red region

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 44

and skims the goal regions. Unfortunately, the true workspace contains slightly different
obstacle distances, and thus the agent’s plan would lead to missing the targets and entering
the rectangular region.

The classic (conservative) solution to this problem is to “bloat” (shrink) each obstacle
(goal) by some amount and plan in the new model. While sufficient for the shown example,
and perhaps even a good idea for safe control, in the case of inference this leads to very
little probability mass assigned to the original optimal path. The result is an undesirably
biased prediction of the agent’s behavior. While some of these issues are papered over using
entropy regularized planning, this structural bias remains. For example, if the goal is only
reachable using a narrow corridor, bloating may remove this corridor, leading to a trivially
false specification!

Instead, one might seek a way to encourage the agent to keep its distance from the
obstacle. This can be done by adding in a probability of slipping. Thus, rather than bloating
the size of each obstacle, one induces a distribution over the location a given action may lead
you to. The result is an agent that acts as if obstacles are effectively padding, but is willing
to risk entering narrow corridors if no other options are available.

Stochastic Observations
Unfortunately, while useful for modeling a preference to maintain distance from obstacles,
modeling slipping does not address the incentive for an agent to skim a goal region. Framed
another way, the paths are not robust to uncertainty in the goal regions. A lightweight2trick
to model this uncertainty is to make the observation map stochastic, i.e.,

f : Paths→ Distr(Σ∗), (4.10)

where Σ indicates whether the agent left of entered an region and the probability of observing
a change increases as the agent gets closer to the center of the obstacle and decreases given
the previous observation.

Example 4.3.3. Consider the reach avoid task from Example 4.3.2, but using a noisy
observation function. here the probability of observing a enter region token is weighted by the
relative intensities shown in Fig 4.5a. An optimal path would both keep its distance from the
rectangular obstacles and approach the centers of the goal regions.

Remark 4.3.4. Note that stochastically modeling the entering/leaving of a region as above
does not actually require a stochastic observation function. Namely, augmenting the MDP
state with the previous observation and whether or not it belongs to the region is sufficient to
create an equivalent MDP with a deterministic observation. This is ultimately what makes
this approach tractable compared to the general partially observable MDP setting.

2The “heavyweight” alternative being moving to partial-observed Markov decision processes, which while
expressive are in general intractable (or even undecidable).

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 45

(a) Optimal path using noisy observations. (b) Path robustly performs reach-avoid.

Figure 4.5

Minimizing Violations and Redemption
Stochastic observations as implemented above also offer a resolution to the question of how
to model situations where the goal is to minimize “violations” of a given specification. To
illustrate, consider again the sequential reach avoid task from Example 4.3.2. Now, suppose
we observe the path of agent, but not the set of observations the agent received. For example,
imagine we see the agent very briefly enter the rectangular avoid region, and then continue
on to the two goals. Noting that the task is unsatisfiable after entering the rectangular region,
one is forced to conclude that the agent must not have observed entering the rectangular
region. That is, after marginalizing over the possible outcomes, the agent’s behavior is
still probable given the task specification. The result is an agent model that minimizes the
“violations” to the specification.
Remark 4.3.5. Modeling the reach-avoid task as a DFA, an alternative variant on this modeling
trick is turn the DFA into a MDP. Thus, when the token to be avoided is seen, there can be
some probability that the new transition system does not transition to the failing sink state.
While a useful mental model, for simplicity, we will avoid this perspective in this thesis and
assume the stochastic observations are built into the underlying MDP.

4.4 Maximum Entropy Special Case†

In this section, we study the special case when maximum causal entropy coincides with
maximum entropy, i.e.,

H(A1:T | S1:T) ≈ H(A1:T | S1:T). (4.11)
This occurs whenever the agent’s policy does not (typically) depend on the revealed state
outcome, e.g., deterministic systems where the revealed state is pre-determined by the action.

To begin, let M = ⟨S, s0, A, P ⟩ be a fixed MDP where applying a fixed action sequence
yields the same state sequence with high probability. That is, in M causally conditioning on

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 46

a state sequence is approximately the same static conditioning (4.11). Thus, action sequences
effectively determine their path and thus act as policies.

Next, recall that maximizing causal entropy subject to the expected reward corresponds
to believing that the agent is exponentially biased towards high reward (3.26). Substituting
the satisfaction probability for expected reward and paths for policies (due to effective
determinism), we have:

Pr(ξ |M,φ, λ) ≈ eλ·φ(ξ)

Zφ
, (4.12)

where Zφ is a normalizing coefficient and λ is again tuned to match observed competency p∗.
Perhaps surprisingly, under (4.12) we find that the Boolean nature of φ forces a simple form
for the path likelihoods.

Proposition 4.4.1. Let pφ denote the competency of πφ and let qφ denote the competency
of the policy that selects actions uniformly at random. If maximum causal entropy
coincides with maximum entropy (4.11), then the likelihood of a path ξ under πφ is:

Pr(ξ | πφ,M) ∝
pφ/qφ if ξ ∈ φ

(1− pφ)/(1− qφ) if ξ /∈ φ.
(4.13)

Proof. For brevity, we will find it helpful to define the probability mass of just the state
transitions by defining:

wξ
def=

τ−1∏
i=0

P (si+1 | si, ai) Wφ
def=
∑
ξ∈φ

wξ, (4.14)

where ξ = s0
a0−→ s1

a1−→ . . .
an−→ sn. Further, define c def= eλφ . Next, observe that by assumption

Zφ · pφ = 1 ·
∑
ξ∈φ

c1 · wξ + 0 ·
∑
ξ /∈φ

c0 · wξ = cWφ

Zφ = c1 ∑
ξ∈φ

wξ + c0 ∑
ξ /∈φ

wξ = cWφ +W¬φ
(4.15)

Combining gives Zφ = W¬φ/(1 − pφ). Next, observe that if ξ ̸∈ φ, then eλφφ(ξ) = 1 and
substituting in (4.12) yields,

Pr(ξ | πφ,M, ξ /∈ φ) = wξ ·
1− pφ
W¬φ

.

If ξ ∈ φ (implying Wφ ̸= 0) then eλφ = Zφpφ/Wφ and

Pr(ξ | πφ,M, ξ ∈ φ) = wξ ·
pφ
Wφ

.

Finally, observe that qφ = Wφ/Wtrue. Substituting and factoring yields (4.13).

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 47

Remark 4.4.2. If the dynamics were deterministic, then qφ would be proportional to |concept(φ)|.
In this case, Prop 4.4.1 exactly coincides with the size principle from concept learning [143],
where the likely of drawing an element from a concept is inversely proportional to its
cardinality (size).
Remark 4.4.3. Together, Prop 4.4.1 and (4.12) imply that if (4.11) holds, then:

λ = ln pφ
1− pφ

− ln qφ
1− qφ

= logit(pφ)− logit(qφ), (4.16)

where logit(p) = ln p
1−p . Thus, πφ is entirely determined by the assumed competency pφ and

the random action competency qφ.

Likelihood of multiple demonstrations
If the teacher gives a sequence demonstrations, ξ∗

1 , . . . ξ
∗
m, drawn i.i.d. from (4.13), then the

log likelihood, of ξ∗
1 , . . . ξ

∗
m under (4.13) is:3

ln Pr(ξ∗
1 , . . . ξ

∗
m | πφ,M) = Nφ ln

(
pφ
qφ

)
+ (m−Nφ) ln

(
1− pφ
1− qφ

)
+ C (4.17)

where Nφ
def=

∑
ξ∈ξ∗

1 ,...ξ
∗
m

φ(ξ), we take (0 · ln(. . .) = 0), and C is a constant independent of φ.

Assuming ξ∗
1 , . . . ξ

∗
m is “representative” such that Nφ ≈ pφ · |ξ∗

1 , . . . ξ
∗
m|, we can (up to a φ

independent normalization) approximate (4.17) as:

Pr(ξ∗
1 , . . . ξ

∗
m | πφ,M) ∝∼ exp

(
m ·DKL

(
pφ ∥ qφ

))
, (4.18)

where DKL
(
p || q

) def= p ln p
q

+ (1 − p) ln 1−p
1−q denotes the information gain (KL divergence)

between two Bernoulli distributions with means p and q.
Unfortunately, the approximation |ξ∗

1 , . . . ξ
∗
m| · pφ ≈ Nϕ implies that, p¬φ = 1− pφ which

introduces the undesirable symmetry, Pr(ξ∗
1 , . . . ξ

∗
m | M,πφ) = Pr(ξ∗

1 , . . . ξ
∗
m | M,π¬φ). To

break this symmetry, we assert that the demonstrator must be at least as good as random.
This leads to the approximate path distribution:

Pr(ξ∗
1 , . . . ξ

∗
m | πφ,M) ∝∼ 1[pφ ≥ qφ] · exp

(
m ·DKL

(
pφ ∥ qφ

))
, (4.19)

Remark 4.4.4. Employing Sanov’s Theorem, (4.19) can be interpreted as quantifying the
atypicality of demos over random action hypothesis [42]. Thus, the we seek to find tasks
where the demonstrations seem “typical.”

3We have suppressed the multinomial coefficient required if any two demonstrations are the same. However,
this term will not change as φ varies, and thus cancels when comparing across specifications.

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 48

Remark 4.4.5. This special case illustrates that relying just on the likelihood distribution
will result in overfitting to the data. In particular, consider two task specifications, φ ⊂ φ′

that are consistent with the same demonstrations. Since φ is a subset of φ′, it must be that
qφ < qφ′ . Thus, assuming the same competency for for φ and φ′ the KL-divergence in (4.19)
must decrease when adding the missing paths from φ′ to φ.

This effect can be mitigated in several ways. For example, we shall employ a prior that
exponentially favors tasks with small size. Furthermore, note that moving to domains in
which causal entropy does not coincide with static entropy helps mitigate this overfitting.
Intuitively, for stochastic domains, the MAP must balance making actions of the agent
seem like the only good moves and making the actions not seem risky. The former requires
removing paths from φ where as the latter requires adding paths to φ.

4.5 Bibliographic Notes
In this chapter, we argued that Boolean specifications provide an interesting means to
formalize tasks which address several of the limitations of arbitrary objective functions,
e.g., lack of compositionality, explicit historical dependencies, and the tight coupling with
the dynamics. To address these deficits, recent works have proposed learning Boolean task
specifications, e.g. logic or automata, which admit well defined compositions, explicitly
encode temporal constraints, and have workspace independent semantics. The development
of this literature mirrors the historical path taken in reward based research, with works
adapting optimal control [84, 37], Bayesian [131, 161], and maximum (causal) entropy [149,
153] IRL approaches.

Interestingly, the generalized size principle derived in Prop 4.4.1 provides a connection
between the Bayesian perspective of [131] and this work. In particular, [131] represents
tasks as a conjunction of logical statements. A Bayesian model is then asserted which has
the likelihood odds ratio depend on the relative number of conjunctions in the task. Since
conjunction corresponds to language intersection, increasing conjunctions correlates with
decreasing the concept size. This in turn correlates with decreasing the random action
competency.

The folk modeling tricks for handling violations (Sec 4.3) enables relating this work with
the prior work [84] which seeks to minimize the violations of a temporal logic formula. In
particular, [84] asserts an objective that minimizes the violations (measured as the size of the
path substring one needs to eliminate to make the task satisfied) relative to random actions.
The folk trick for modeling violations works similarly by effectively introducing probabilistic
transitions to the DFA. This results in ignoring subsequences of the string, at the cost of the
additional description complexity to describe not transitioning to the failure sink. Prop 4.4.1
finishes the connection by making the comparison relative to random actions.

Finally, we remark that often, it makes sense to use task specifications to define constraints
rather than objectives, e.g. run as fast as possible while avoiding hurdles. As such, a parallel
literature has emerged for learning constraints (typically with a known reward) that explain

CHAPTER 4. SPECIFICATIONS FROM DEMONSTRATIONS 49

expert demonstrations [128, 36, 103]. The key difference is that rather than changing the
reward function, this literature (implicitly) modifies the underlying MDP. Nevertheless,
conceptually, many of the problems in this literature echo those in the specification learning
described above. That is, the key missing ingredient in all these works is a means by which
to strategically explore a large representation class. The next chapter will attempt to address
this deficiency.

50

Chapter 5

Finding Explanatory Specifications

For every complex problem there is an answer that is clear, simple, and wrong.

H. L. Mencken (Journalist / Satirist, 1880-1956)

As was motivated in the introduction and previous chapter, expert demonstrations provide
an expressive means to informally specify a task. In this chapter, we continue studying the
problem of inferring, from demonstrations, tasks represented by formal task specifications,
e.g., automata and temporal logic. The key difficulty when learning task specifications from

Figure 5.1: Illustration of learning an unknown task specification, represented on the right by an
automaton, from a human demonstration.

demonstrations is how to search an intractably large (often infinite) representation class.
For example, in contrast to the reward setting, the discrete nature of automata and logic,
combined with the assumed a-priori ignorance of the relevant memory required to describe
the task, makes existing gradient based approaches either intractable or inapplicable. Instead,
current literature either (syntactically) enumerates representations [149, 37, 131, 161] or hill
climbs via simple probabilistic (syntactic) mutations [84, 24].

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 51

Contributions
To this end, this chapter introduces a family of approximate algorithms called Demonstration
Informed Specification Search (DISS). DISS is the result of asking the question: Given the
current candidate task, what counter-factuals still require explanation? For example, one
might need to explain why the agent did not take a particular shortcut. This results in a
series of supervised learning problems, where the surprising counter-factuals are addressed,
e.g., the shortcut is not taken because it is a negative example. This process is illustrated in
Fig 5.2 in which DISS cycles between guessing a task, finding a counter-factual that needs
explanation, and selecting which counter-factuals to focus on next.

labeled path
(ξt, ξt /∈ φt)

select
labeled examples

Xt+1

task: φtCandidate
Sampler

Example
Buffer

Surprisal
Guided Sampler

Figure 5.2: Demonstration Informed Specification Search overview.

The result will be an approximate solution to the Task Inference from Demonstrations
Problem from Ch 4. After describing DISS, we perform two experiments validating that
DISS indeed enables efficiently searching for tasks that explain the demonstrations even in
large/unstructured representation classes like DFAs given unlabeled and potentially incomplete
demonstrations. Finally, we end the chapter by discussing how to address violations in the
Luce axiom, i.e., redundant actions.
Remark 5.0.1. The choice of DFAs as the representation class for our experiments is motivated
by three observations. First, DFAs explicitly encode memory, making the contribution of
identifying relevant memory more clear. Next, to our knowledge, all other techniques for
learning finite path properties from demonstrations focus on syntax defined representation
classes. Thus, learning DFAs is understudied in this context. Third, DFAs constitute a very
large and mostly unstructured representation class. Therefore, DFAs facilitate studying the
efficiency of DISS without introducing too much user defined inductive biases. By comparison,
existing techniques for learning task specifications from demonstrations all use syntactically
defined logics each with their own inductive biases. Thus direct comparisons would conflate
search efficiency with the inductive biases of the representation classes.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 52

5.1 Running Example

Figure 5.3

Let us return to the gridworld example from the previous chapter.
In particular, consider an agent operating in the 8x8 grid world as
shown in Fig 5.3.The agent can attempt to move up, down, left,
or right. With probability 1/32, wind will push the agent down,
regardless of the agent’s action. The black path is the prefix
of an episode, in which the agent attempts to move left, slips
into the blue tile (■), visits a brown tile (■), and then proceeds
downward.

Given the black demonstration, call ξb, and the prior knowl-
edge that the agent’s task implies that it will avoid red tiles (■),
what task, as a DFA, explains the agent’s behavior?

Upon inspecting the demonstration, one might hypothesize
that the complete path formed by extending ξb with the grey dashed lined to ■ is a positive
example of the task. Appealing to Occam’s razor, one might conjecture that the task was
just to reach ■ and avoid ■. Note however that under this hypothesis, and assuming a
temporal discount, ξb is quite surprising. For one, the detour to visit ■ seems unjustified.
Furthermore, why would the agent not take the red dashed path directly to ■?

start

Figure 5.4

To remedy these concerns, one might conjecture that the
agent’s true task requires visiting ■ after visiting ■ - thus explain-
ing why the agent does not take the red dashed path. Similarly,
the demonstration seems less surprising if one assumes that the
agent needs to avoid red tiles - thus explaining why the agent
does not take the light blue dotted path. The result is the task
represented by the DFA shown in Fig 5.4. We shall later system-
atize this line of reasoning and provide a learner that recovers an
explanatory DFA given a demonstration.

In the sequel, we will (i) discuss how to find surprising paths given our planner; and
(ii) propose a variant of simulated annealing (implemented through the example buffer) to
approximately solve our task inference from demonstration problem.

5.2 Prefix Tree Perspective
We start by discussing the prefix tree of the demonstrations. As we shall see, the prefix tree
will serve as a mechanism to reason about the various paths not taken.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 53

1 2 3 4 5 6 7

8 9 10

Figure 5.5: Prefix tree with 12 nodes for the paths shown on the left.

Definition 23. Let ξ∗
1 , . . . ξ

∗
m be a multi-set of demonstrations (paths) and denote by

T = (N,E) the prefix tree of the ξ∗
1 , . . . ξ

∗
m, where N and E are the prefixes (nodes)

and edges of T , respectively. A node, ρ, is said to be an ego node if its prefix ends in
a state, i.e. last(ρ) ∈ S. A node that is not an ego node is called an environment
(env) node. A path, ξ, pivots at node ρ if ρ is the longest prefix of ξ in N . The pivot
actions (and pivot states) of a node, ρ, are the set of available actions (states) that
result in pivoting at ρ, i.e.,

Aρ
def= {a | ρ � a ∈ Paths \N} Sρ

def= {s | ρ � s ∈ Paths \N}. (5.1)

Example 5.2.1. Consider the MDP shown in Fig 5.5 with two demonstrations ξ∗
1 and ξ∗

2
shown as a green dashed and black solid line resp. The prefix tree of {ξ∗

1 , ξ
∗
2} is shown on the

right. For convenience an index is associated with each node (prefix). For example, ρ1 is the
root node and ρ7 is a leaf. Node ρ3 has Aρ3 = {↑, ↓}. There is a path that pivots at every node
except node ρ2, since both possibilities (slipping/not slipping) appear in the demonstrations
yielding Sρ2 = ∅. The grey dotted line shows a suffix, y, such that ρ7 � y pivots at ρ7. This
implies that ρ7 is not a complete path, i.e., ρ7 /∈ Paths$.

Next, observe that because weighted averaging and LSE are commutative, one can
aggregate the values of a set of actions or set of states (environment actions). This motivates
defining the pivot value of a node ρ as:

Vφ
ρ

def=
LSEa/∈Aρ Vφ(ρ � a) if i is ego,
Es[Vφ(ρ � s) | ρ,M, s /∈ Sρ] if i is env,

(5.2)

We shall denote by Vφ ∈ RN the node-indexed vector of pivot values associated with task φ
under our maximum entropy agent model. We note two properties of pivot values. First,
they strictly increase as the language of a task specification is made larger:

Proposition 5.2.2 (Pivot values respect subsets). Let ξ be a complete path that pivots at
node i. If φ ⊊ ψ and ξ ∈ ψ \ φ, then Vφ

i < Vψ
i .

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 54

Proof. Follows inductively from the monotonicity of E, ∑, and ln.

Second, using the soft Bellman backup (3.25), one sees that the pivot values entirely
determine (see Fig 5.6) the values, V , of the prefixes of the demonstrations. Namely, let
V̂k(V) denote the derived value at node k in the prefix tree, and let Pr(i⇝ k | V) denote the
probability of transitioning from node i to node k under the (local) policy: eV̂j(V)−V̂i(V).

V1 V2 V3

V8 V9

V4 V5 V6

LSE

LSE AVG

LSE LSEAVG AVG AVGV̂1 V̂4 V̂5 V̂6 V7V̂2 V̂3

V̂9

V̂8

V10

Figure 5.6: Computation tree of V̂ values for each node of prefix tree given by soft Bellman
backup (3.25) and pivot values, V.

Example 5.2.3. Consider again the prefix tree shown in Fig 5.5. Node 3 has A(last(ρ3)) =
{↑, ↓,→} and Aρ3 = {↑, ↓}. Suppose the value of each action is 1, i.e., V (ρ � a) = 1 for
a ∈ {↑, ↓,→}. Since node 3 is an ego node, then

Vρ = ln(eV (ρ � ↑) + eV (ρ � ↓)) = ln(2e) = 1 + ln(2).

Now by definition,

V (ρ) = ln(eV (ρ � →) + eV (ρ � ↑) + eV (ρ � ↓) = ln(e1 + e1 + e1) = 1 + ln(3).

Which due to associativity is the same as:

V (ρ) = ln(eV (ρ � →) + eVρ) = ln(e1 + eln(2·e)) = 1 + ln(3)

And thus, either way, the probability going from node 3 to 4 (applying action right from ρ3) is

Pr(ρ3 ⇝ ρ4 | V) = e1−(1−ln(3)) = 1/3.

Benefits of the local perspective
While strange at first, we argue that working with prefix trees and pivots offers a number of
advantages to working directly with demonstrations. First, pivot values allow defining a local
policy and (thus demonstration likelihood) that is divorced from the underlying dynamics,
and notably, the number of actions and states. More concretely, note that not only is the local
policy entirely determined by the pivot values, V, the pivot values are entirely determined
by the local policy1. Thus, knowing the local policy is sufficient to derive the pivot values.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 55

Further note that, for non-zero temperatures, the maximum causal entropy policy assigns
non-zero probability to every action. Thus, one can determine if a node can be a pivot by
summing the probabilities of the descendants in the prefix tree, e.g.,

Aρ = ∅ ⇐⇒
∑
a/∈Aρ

Pr(ρ⇝ ρ � a | V) = 0. (5.3)

Thus, the underlying planner is free to use a large (perhaps even continuous) workspace
model. So long as the local probabilities do not change, the likelihood of the demonstrations
will also not change.

Independence of pivot values
Second, the pivot actions and states at a node indicate which pivot values can be changed
independently. In particular, note that (i) task specifications are history dependent (ii) each
pivot action (state) necessarily accesses a subtree - each of which disjoint from the others
(iii) in sufficiently expressive representation classes, e.g. minDFA, one can always construct
two tasks, φ, φ′ whose languages only differ only on single path. Since pivot values strictly
increase as a language is expanded (Prop 5.2.2) one observes that Vφ and Vφ′ only differ in a
single coordinate.

5.3 Manipulating Likelihoods and Surprisal
As stated at the start of the chapter, the question motivating our algorithm design is the
following: Given the current candidate task, what counter-factuals still require explanation?
In this section, we shall formalize this question by (i) measuring how surprising (in nats) the
demonstrations are given the pivot values induced by the current task specification, (ii) seeing
how the description length would change as the pivot values change, and (iii) discussing how
to propagate a suggested change in pivot values to a change in task specification.

To start, we define the surprisal of the local policy induced by the pivot values as
follows:

Definition 24. Let T = (N,E) be a prefix tree of demonstrations, ξ∗
1 , . . . ξ

∗
m. The

pivot surprisal of given T is map, ĥ : Rd → R, where d is the number of nodes that
can be pivots and:

ĥ(V) def= −
∑

(i,j)∈E
#(i,j) · ln Pr(i⇝ j | V). (5.4)

The task surprisal of a task specification, φ, is the pivot surprisal of Vφ, i.e.,

h(φ | ξ∗
1 , . . . ξ

∗
m) def= ĥ(Vφ). (5.5)

1Follows inductively from the strict monotonicity of expectation and LSE.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 56

Remark 5.3.1. Note that the task surprisal induced by a prefix tree is simply the negative log
likelihood of the demonstrations:

Pr(ξ∗
1 , . . . ξ

∗
m | φ,M) = e−h(φ|ξ∗

1 ,...ξ
∗
m).

Working with surprisal rather than likelihood is done for two reasons: (i) Mechanically, the
gradient of ĥ admits a simple form (ii) As we saw in the preliminaries, the surprisal has a
natural interpretation in terms of description length. Thus working with surprisal allows
discussing the “combined” description length of the demonstrations and task as a single
object, e.g., using a size prior on tasks yields:

Pr(φ | ξ∗
1 , . . . ξ

∗
m,M) ∝ exp

(
− (h(φ | ξ∗

1 , . . . ξ
∗
m) + size(φ))

)
.

The interpretation is that one seeks an easy to describe task specification that also explains
the demonstrations.

Pivot surprisal gradients
Again motivated by the question of what counter-factuals still require explanation, we ask
a related question: How could the pivot values change to make the demonstrations more
likely. For example, for ego nodes, one might want to make the value of the observed actions
large and the pivot value small. The result would be an agent with no incentive to pivot.
Unfortunately, changing a pivot value changes the policy in a non-local way, e.g., changing
V9 in Fig 5.6 also changes the policy for nodes 9, 8, 2, and 1. Fortunately, these upstream
effects are easily summarized by the gradient of ĥ.

Proposition 5.3.2 (∇ĥ determined by local policy). Let pxy(V) denote the probability
of starting at node x and pivoting at y, i.e.,

pxy(V) def= Pr(x⇝ y | V) ·
(

1−
∑

(y,z)∈E
Pr(y ⇝ z | V)

)
(5.6)

then,

∂ĥ

∂Vk
=
∑

(i,j)∈E
i is ego

#(i,j) ·
(

pik(V)− pjk(V)
)

(5.7)

The proof of Prop 5.3.2 is fairly mechanical and can be found at the end of the chapter.
Remark 5.3.3. Prop 5.3.2 illustrates that gradients are simple to compute given only access
to the policy on the prefix tree.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 57

Relation to heuristics

Eq (5.7) captures several intuitive heuristics for changing V to make the demonstrations more
likely. Consider ego edge (i, j), which corresponds to an action the agent took. Pivoting at i,
i.e., k = i above, yields, pjk(V) = 0. Thus, edge (i, j) contributes positively to the gradient.
Since we want to minimize surprisal, this suggests that we want a to decrease Vk and thus
make the action the agent took look more valuable by comparison. Similarly, suppose k = j,
implying that:

pik − pjk = Pr(i⇝ j | V) · pjk − pjk ≤ 0,
where equality only holds iff only one action is available. Thus, when k = j, edge (i, j)
typically provides a negative contribution to the surprisal gradient. Again, because we want
to minimize surprisal, the above suggests an increase in Vk, and by extension, an increase in
the value of the action used on (i, j). These two cases can be understood as:

1. Make the actions taken more optimal by decreasing the value of other actions.

2. Make the actions taken less risky by increasing the value of possible outcomes.

Mislabeled counter-factuals

One may view −∇ĥ(Vφ) as a prescription for modifying the pivot values in order to make the
demonstrations less surprising. That said, because of the expressivity of representation classes
like DFAs, there is a real concern that globally optimizing ĥ will overfit to the demonstrations
and ignore the prior distribution. Thus, the goal will not be to simulate gradient descent
under ∇ĥ, but to instead help identify counter-factual paths that require explanation.

More precisely, if ∂ĥ
∂Vρ

> 0 for a given pivot ρ, then one can decrease the surprise by
decreasing Vρ. Recalling Prop 5.2.2, a concrete way to decrease Vρ is to remove a path from
the language of φ. Said another way, ∂ĥ

∂Vρ
being large is evidence that there exists some

counter-factual path, ξ ∈ φ, that pivots at ρ and requires additional explanation e.g., “The
agent did not take the shortcut through the lava because it was avoiding lava.” Similarly,
∂ĥ
∂Vρ

< 0 suggests that there is a counter-factual path pivoting through ρ that should be
added to φ, e.g., “The agent moved near the ledge, because even if it slips, ξ shows a way to
perform the task.” This analysis can be summarized below.

Let ξ be a complete path with pivot ρ such that:

ξ ∈ φ ⇐⇒ ∂ĥ

∂Vρ

> 0, (5.8)

If ξ is a likely path under πφ (and thus has a large effect on V) and the pivot surprisal
gradient ∂ĥ

∂Vρ
is large in absolute value, then ξ may be mislabeled by φ.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 58

5.4 Specification Search
In this section, we take the insights developed in the previous sections and propose the
Demonstration Informed Specification Search (DISS) algorithm. As stated throughout the
chapter, DISS can be viewed as systematizing the following question: Given the current
candidate task, what counter-factuals still require explanation.

More specifically, DISS assumes (i) access to a multi-set of expert demonstrations:
ξ∗

1 , . . . ξ
∗
m; (ii) black box access to an identification algorithm, I, that maps positively/nega-

tively labeled paths to a distribution over tasks; and (iii) black box access to a planner that
estimates the probability of a path given a candidate task (see Part II). DISS operates by
cycling between three components (shown in Fig 5.7):

labeled path
(ξt, ξt /∈ φt)

select
labeled examples

Xt+1

task: φtCandidate
Sampler

Example
Buffer

Surprisal
Guided Sampler

Figure 5.7: Demonstration Informed Specification Search overview.

1. Candidate Sampler: A candidate task, φ, is sampled using I(• | X, φ′), where X is a
collection of labeled examples (initialized to the empty set) and φ′ is the previously
proposed task.

2. Surprisal Guided Sampler: Using the surprisal gradient, the planner is used to find
paths that may be mislabeled by the current task.

3. Example Buffer: Given previously seen data, the example buffer yields a set of positive
and negative example paths (see below). The example buffer plays the critical role of
enabling back tracking and dropping labeled paths that do not end up constraining the
concept identifier in a useful way.

Because the candidate sampler is assumed to be user provided, what remains then is to
discuss the Surprisal Guided Sampler and the Example Buffer.
Remark 5.4.1. DISS is a random walk through labeled example space guided by the surprisal
gradient of sampled concepts. Each new labeled example constrains the next task to

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 59

address various counter-factuals. As we shall see, this accumulation of corrective constraints
systematically focuses the concept sampler on more and more probable (lower energy) task
specifications.
Remark 5.4.2. Note that adapting DISS to a new representation class simply requires changing
the concept identifier used. For example, we have already discussed learning DFAs from
positive examples. Similar algorithms exist for decision diagrams [144], Linear Temporal
Logic [108], and syntactically defined programs [7].
Remark 5.4.3. As we shall see, the surprisal guided sampler discussed above is agnostic to
the particular way that entropy regularized planning is realized, using only predictions along
the demonstration. Thus, DISS is also agnostic to the size of the underling state and action
space. In fact, because there are only ever a finite number of demonstrations - and thus finite
number of state and actions - the workspace can be made continuous with no changes to
DISS.

Surprisal Guided Sampler
The Surprisal Guided Sampler (Alg 1) builds off the insights developed when studying the
gradient of the pivot surprisal gradient and summarized in (5.8).

Algorithm 1 Surprisal Guided Sampler (SGS)
1: Input: φ,X, T ,M, β
2: Compute πφ given M and T .
3: Sample a path ξ ∼ (πφ,M) and a pivot ρ ∼ softmaxi

∣∣∣ 1
β
· ∂ĥ
∂Vi

∣∣∣ s.t.
i ξ pivots at ρ.
ii ξ ∈ φ ⇐⇒ ∂ĥ

∂Vρ
> 0.

iii ∃φ′ ∈ R s.t. φ′ is consistent with: X ∪ {(ξ, ξ /∈ φ)}.
4: return ξ ▷ Conjecture mis-labeled path.

Alg 1 takes as input the current task specification, φ, a set of labeled examples, X, the prefix
tree, T , of the demonstrations, the dynamics, M in the form of a MDP, and a temperature
parameter β. Next, on line 2, a maximum causal entropy planner, πφ, for φ is constructed.
Using πφ and T , a distribution over pivots and paths is created as follows. First, the gradient
of the pivot surprisal is used to define a β annealed softmax distribution over pivots. Second,
a path distribution is defined using πφ. Finally, a pivot, ρ, and path, ξ, are sampled from the
joint distribution over paths and pivots is conditioned on: (i) ξ actually pivoting as ρ; (ii)
the label of ξ under φ being align with the pivot surprisal gradient; and (iii) adding ξ to the
previous examples, X, does not result in all tasks being inconsistent. Conditions (i) and (ii)
are motivated by our previous argument that likely paths with large pivot values are likely
mislabeled. Condition (iii) is a technical requirement needed to restrict attention to tasks
within the representation class, e.g., we know that the agent should not visit red tiles and so

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 60

labeling such as path as positive is inconsistent with the representation class. This process is
summarized in in Fig 5.8.

task φ
MaxEnt
Planner

Pivot & Path
Sampler

psatφ πφ

Demos ξ∗
1 , . . . ξ∗

m
labeled example

(ξ′, ξ′ /∈ φ)

Estimate
Competency

Figure 5.8: Overview of the surprisal guided sampler.

Example 5.4.4. Recall our ad-hoc analysis on Fig 5.3 in Sec 5.1. Under the reach ■ while
avoiding ■ hypothesis, φ, it is surprising that the agent moves up from ■ rather than following
the red dashed suffix. That is, there is a non-trivial probability to deviate at this prefix, call k.
Using a planning horizon of 15 steps, ∂ĥ

∂Vk
is positive and indeed larger in magnitude than all

other pivots. Props 5.2.2 and 5.3.2 suggest sampling (using πφ) a new path, ξ, that pivots
from the demonstration at k and satisfies φ. Note that the illustrated red dashed suffix indeed
fits this description. Finally, (5.8) prescribes marking ξ as a negative path which matches
our ad-hoc analysis at the start of the chapter.

Remark 5.4.5. For some pivots there is no path that satisfies conditions (i), (ii), and (iii).
For example if ρ accesses a fail sink state in a DFA, but (ii) requires sampling a positive
path. This suggests sampling from the SGS distribution by first sampling a pivot and then
sampling an extension. If a condition is impossible to realize at the given pivot, then that
pivot is removed form the pivot distribution since it has 0 probability mass. This form of
rejection sampling is repeated until a (pivot, path) pair is found.
Remark 5.4.6. Alg 1 requires only black-box access to πφ for assigning edge probabilities,
Pr(i⇝ j | V) and sampling suffixes given a pivot. If the satisfaction probability of an action
is also known, i.e., Prξ′(ξ � ξ′ ∈ φ | ξ,M, πφ), then one can more efficiently sample suffixes
using Baye’s rule.

Example Buffer and Backtracking
The final component of DISS to discuss is the Example Buffer. As mentioned above, the
Example Buffer plays the important role of managing the “state” of DISS by determining
which subset of labeled examples seen so far is currently constraining the concept identification
algorithm. To see why this is necessary, imagine greedily accumulating labeled examples.
Since SGS is only an approximate method for determining which counter-factuals need to be
labeled, it is possible to make mistakes and fall in local optimal. To mitigate this issue, the
example buffer implements a variant of Simulated annealing, a well studied technique for
heuristic global optimization.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 61

Simulated Annealing

At a high level, Simulated Annealing (SA) [134] is a probabilistic optimization method that
seeks to minimize an energy function U : Z → R ∪ {∞}. To run SA, one requires three
ingredients: (i) a cooling schedule which determines a monotonically decreasing sequence of
temperatures; (ii) a proposal (neighbor) distribution q(z′ | z); and (iii) a reset schedule, which
periodically sets the current state, zt, to one of the lowest energy candidates seen so far.

A standard simulated annealing algorithm then operates as follows: (i) An initial z0 ∈ Z
is selected; (ii) Tt is selected based on the cooling schedule; (iii) A neighbor z′ is sampled
from q(• | zt); (iv) z′ is accepted (zt+1 ← z′) with probability:

Pr(accept | z′, zt) =

1 if dU > 0
min

{
1, edU/Tt

}
otherwise

, (5.9)

where dU def= U(z)− U(z′); (v) Finally, if a reset set is trigger, zt+1 is sampled from previous
candidates, e.g., uniform on the argmin.

As previously stated, we propose a variant of simulated annealing adapted for our
specification inference problem. We will start by assuming the posterior distribution on tasks
takes the form:

Pr(φ | ξ∗
1 , . . . ξ

∗
m,M) ∝ e−U(φ), (5.10)

where the energy, U , is given by:

U(φ) def= h(φ | ξ∗
1 , . . . ξ

∗
m) + θ · size(φ), (5.11)

and θ ∈ R determines the relative weight of the surprisal. That is, we appeal to Occam’s razor
and assert that the task distribution is exponentially biased towards simpler tasks, where
simplicity is measured by the description length of the task, size(φ), and the description
length (i.e. surprisal) of ξ∗

1 , . . . ξ
∗
m under (πφ,M).

Remark 5.4.7. θ plays two roles: First, it is responsible for making h and size comparable,
e.g., converting from bits to nats. Second, θ, determines which geometric distribution (with
mean 1/θ) over size(r) is used for the prior distribution. Thus, one should set θ such that 1/θ
is larger than description length of a “large” representation. For example, below, we will use
θ = 1/50 to tell DISS that we believe the demonstrated task does not require much more than
50 nats to describe. For reference, the ground truth DFA uses about ≈ 40 nats.

Demonstration Informed Specification Search
At last, using the language of SA, we define DISS as follows (with pseudo code in Alg 2).

1. Z is the set of all a tuple of labeled examples and a task specification - each adjoined
with ⊥. The algorithm starts with the tuple: z0 = (⊥,⊥).

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 62

2. The proposal distribution, q(X′, φ′ | X, φ) is defined to first sample a concept using an
identification map, φ′ ∼ I(• | X, φ), then run SGS on φ′ to conjecture a labeled path ξ,
yielding X′′ = X ∪ {(ξ, ξ /∈ φ′)}. Next, with probability, pdrop, examples are dropped
from X′′, yielding X′.

3. Resets occur every κ ∈ N time steps. If a reset is triggered, Xt+1 is sampled from
softmini≤tU(φi), and φt+1 is sampled from I(• | Xt+1,⊥).

Remark 5.4.8. Again, the main role of simulated annealing is to guide the search through
labeled example space for constraints on the identification algorithm. The examples are
encouraged to be useful via three mechanisms: First, labeled examples whose next proposal
does not decrease the energy are only only sometimes accepted. Next, at each iteration, there
is some probability that an example will be dropped. Thus, the examples that tend to been
seen in X are those that are repeatedly conjectured when missing. Finally, resets help make
global progress after mistakes lead to a local minima.

Algorithm 2 Demonstration Informed Specification Search.
1: input: (ξ1, . . . , ξm),M, θ,N, κ, pdrop
2: Compute T given (ξ1, . . . , ξm). ▷ Create prefix tree.
3: Φ← ∅.
4: for t in 1, . . . , N do
5: if t ≡ 0 (mod κ) then
6: X ∼ arg maxψ∈Φ U(ψ) ▷ Reset periodically.
7: (φ, dX)← (⊥, ∅)
8: X′ ← update(X, dX, pdrop) ▷ Add and drop examples.
9: φ′ ∼ I(• | X′, φ). ▷ Sample candidate task.

10: Φ← Φ ∪ {φ′}. ▷ Update visited specs.
11: T ← cooling_schedule(t) ▷ User defined.
12: dU ← U(φ′)− U(φ)
13: α ∼ Uniform(0, 1)
14: if dU < 0 or exp(−dU/T) ≤ α then
15: (φ,X)← (φ′,X′)
16: dX← {SGS(φ, T,M)} ▷ Conjecture labeled example.
17: else
18: dX← ∅ ▷ Reject proposal.
19: return Φ

5.5 Experiments
In this section, we illustrate the effectiveness of DISS by having it search for a ground
truth specification, represented as a DFA, given the expert demonstrations, ξb, ξg, from our

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 63

motivating example (shown in Fig 5.3). The (dotted) green path, ξg, goes directly ■. The
(solid) black path, ξb, immediately slips into ■, visits ■, then proceeds towards ■. This path
is incomplete, with a possible extension, σb, shown as a dotted line. The ground truth task is
the right DFA in Fig 5.4.

We consider two specification inference problems by varying the representation class and
the provided demonstrations. These variants respectively illustrate that (i) our method can
be used to incrementally learn specifications from unlabeled incomplete demonstrations; and
(ii) the full specification can be learned given unlabeled complete demonstrations.

1. Monolithic: ξg and ξb � σb are provided as (unlabeled) complete demonstrations. The
representation class is MinDFA.

2. Incremental: ξb is provided as an (unlabeled) incomplete demonstration. The represen-
tation class, R, is a variant of MinDFA. Let φ′ denote the three state DFA for avoiding
■ and reaching ■. If a task, φ is in R, then {■,■■} ⊆ concept(φ) ⊆ concept(φ′).
That is, prior knowledge is provided that you must reach ■, you must avoid ■, and
you know two positive examples. The size of φ is given by:

size(φ) = size′(φ)− size′(φ′),

where size′ is the size function for the MinDFA representation class.

The surprisal weight, θ, is set to 1/50 for both variants. Finally, two additional inductive biases,
which empirically proved necessary for optimizing the baselines, are applied: (i) we remove
white tiles, □, from labeled examples (ii) we transform sequences of repeated colors into a
single color thus biasing towards DFA that do not count. For example, □■■□■■ 7→ ■■■.

DISS parameters.
Our implementation of DISS [154] resets every 30 iterations, has pdrop = 1/20, and uses the
following cooling schedule:

Tt = 100 · (1− t/100) + 1. (5.12)
Our experiment will sweep through various of SGS temperatures, β ∈ [2−10,∞).

Maximum Entropy Planner

The maximum entropy planner used will be discussed in detail in Ch 9. The planning
horizon was 15 steps. Because our experiments operate with one or two demonstrations, the
rationality, λ, corresponding to πφ is taken to be 10 for all specifications.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 64

Concept Sampler

Our concept sampler, I(• | X, φ′), was designed to respect the relative size2prior size(φ | φ′),
i.e., I(φ | X, φ′) ∝ exp(−size(φ | φ′)) if φ is consistent with X and 0 otherwise. To
implement, I, we adapted an existing SAT-based DFA identification algorithm [146] to
enumerate the first 20 consistent DFAs, lexicographically ordered by the number of states
and non-self loops they have. Note that lexicographic order is similar, but not exactly the
same as the size defined for the minDFA representation class. In particular, it may be the
case that a DFA with more states has less edges, and thus smaller size. This effect is even
more pronounced if the reference task, φ′ is not ⊥ or the DFA has a sink state, e.g., an
irrecoverable failure state.

To make the concept sampler respect the size prior of minDFA, we first sample a DFA
from the enumerated DFAs, exponentially weighted by −size(φ | φ′). Next, to mitigate the
blind spot the lexicographic order has for sink states, if a subset of symbols, Σ′, contains only
negative examples, a new DFA is created by intersecting the sampled DFA’s language with
the set of strings not containing Σ′.

Example 5.5.1. Suppose X = {(■■, 1), (■■, 0)}. Then Σ′ = {■} and the concept sampler
will return a DFA that is the intersection with a DFA consistent with X and that always
rejects any strings with ■. Similarly, for X = {(■■■, 1), (■■, 0)}, Σ′ = ∅, and so the
initially sampled DFA is returned unchanged.

Baselines.
As mentioned in the introduction, existing techniques for learning specifications from demon-
strations use various syntactic concept classes, each with their own inductive biases. Thus,
we implemented two DFA-adapted baselines that act as proxies for the enumerative and
probabilistic hill climbing style algorithms of existing work:

1. Prior Guided Enumeration. This baseline uses the same SAT-based DFA iden-
tification algorithm to enumerate DFAs in ordered by the size prior. This is done
by finding the N smallest DFAs in lexicographic order (node then edges) as above
and then ordering by size. N = 80 in the monolithic experiment and N = 40 in the
incremental experiment. As an alternative to DISS’s competency assumption, we allow
the enumerative baseline to restrict the search to task specifications that accept the
provided demonstrations.3

2. Random Pivot DISS. As mentioned above, we will evaluate DISS on various SGS
temperatures, one of which has β =∞. This results in a (labeled example) mutation
based search with access to the same class of mutations as DISS, but samples pivots

2The relative size for minDFA, is defined as the number of bits required to described the changes to the
DFA, e.g., the change in states, the change in edges, the change in the accepting set.

3For the incremental experiment, a counterexample loop is used to add labeled examples that bias the
DFAs to imply φ1.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 65

0 20 40 60 80 100
iteration

0.0

0.2

0.4

0.6

0.8

1.0

M
in

(n
or

m
al

ize
d)

en
er

gy
D

FA
fo

un
d

experiment=’Monolithic’

enumerate

(a) Result of monolithic experiment.

0 5 10 15 20 25 30 35 40
iteration

0.0

0.2

0.4

0.6

0.8

1.0

experiment=’Incremental’

enumerate

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

ln
β

(b) Result of incremental experiment.

Figure 5.9: DISS finds explanatory DFAs much faster than baselines.

uniformly at random, i.e., no gradient based bias. Note that this ablation still samples
suffixes conditioned on the sign of the gradient, and thus the mutations are still informed
by the surprisal.

Results and Analysis
To simplify our analysis, we present time in iterations, i.e., number of sampled DFAs, rather
than wall clock time. This is for three reasons. First, for each algorithm, the wall clock-time
was dominated by synthesizing maximum entropy planners for each unique DFA discovered,
but the choice of planner is ultimately an implementation detail4. Second, because many
DISS iterations correspond to the same DFAs (due to resets and rejections) the enumeration
baseline explored significantly more unique DFAs than DISS (a similar effect occurs with
the random pivot baseline, since the different pivots give more diverse example sets). Third,
the enumeration baseline first enumerates DFAs in lexicographic order (without planning)
and then computes the energies in order of increasing size. This incurs a significant (≈15s)
overhead. Thus, using wall clock-time would skew the results below in DISS’s favor.

Search efficiency

Fig 5.9a and Fig 5.9b show the minimum energy DFA for the monolithic and incremental
experiments respectively. To reduce variance, we take the median of 5 runs for each β. We see
that for both experiments, DISS was able to significantly outperform the enumeration baseline
(recall that energy is the negative log of the probability) and tended to degrade in its search
efficiency as β increased. For example for ln β < −5, the monolithic experiment took between

4For reference our planner took around 4-10s per DFA.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 66

10-30 iterations to find a energy minimizing DFA. Similarly, for for incremental, ln β < −5
typically required only 1-2 iterations (compared to the 13 iterations of enumeration)!

The key takeaways are that:

1. DISS was significantly more (cycle) efficient at finding explanatory DFAs than prior
based enumeration.

2. Relying on the surprisal gradient (by decreasing the pivot temperature) enables efficient
exploration in large concept classes.

3. Using a stronger inductive bias such as asserting partial knowledge of the specification
increases the search efficiency of DISS.

4. DISS can be effective even with a few incomplete and unlabeled examples.

Diversity of DFAs

In addition to finding the most probable DFAs much faster than the baselines, DISS also
found more high probability DFAs. The most likely DFAs found by DISS for each experiment
are shown in Fig 5.10. We observe that for both experiments, DISS is able to learn that if
the agent visits ■, it needs to visit ■ before ■!

startstart

Figure 5.10: Most probable DFA found by DISS in the monolithic experiment (left) and the
incremental experiment (right).

Nevertheless, our learned DFAs differ from ground truth, particularly when it comes to
the acceptance of strings after visiting ■. We note that a large reason for this is that our
domain and planning horizon make the left most ■ effectively act as a sink state. That is,
the resulting sequences are effectively indistinguishable, with many even having the exact
same energy. In Fig 5.10, we make such edges lighter, and note that the remainder of the
DFAs show good agreement with the ground truth. Finally, while impressive, this points to a
fundamental limitation of demonstrations. Namely, if two tasks have very correlated policies
in a workspace, then without strong priors or side information, one is unable to distinguish

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 67

the tasks. For example, if a task requires the agent to avoid ■, but no ■ are shown in the
workspace, then one cannot hope to learn this aspect of the task.

5.6 Relaxing the Luce axiom†

Our design and analysis of DISS assumed the Luce axiom and in particular that all actions
accessible by states in the demonstrations are distinct, i.e., if for all non-terminal states s,

∀a1, a2 ∈ A(s) . a1 ̸= a2 =⇒ δ(s, a1) ̸= δ(s, a2).

This assumption is important several reasons. Chiefly, a violation of the Luce axiom along
the demonstrations means that the pivot values are no longer independent. We illustrate
with an example.

Example 5.6.1. Consider the demonstration ξ = s0
a2−→ s1, where A(s0) = {a1, a2}, A(s1) ̸= ∅.

Thus, for prefix ρ = s0, we have a1 ∈ Aρ and a2 /∈ Aρ. Since a1 is the only action that pivots,
we have Vρ = V (ρ � a1). Similarly, since A(s1) ̸= ∅, ξ is not terminal and has its pivot value
determined be the subtree accessed by ρ � a2, i.e., Vξ = Vρ�a2 = V (ρ � a2). But since a2 accesses
the same subtree as a1, then

Vρ = V (ρ � a1) = V (ρ � a2) = Vρ�a2 .

Thus, Vρ = Vρ�a2, implying the that pivot values are not independent.

This of course has serious implications on our use of the surprisal gradient. The most glaring
issue is that two logically equivalent pivots may have opposing signs in the gradient. This can
lead to conjecturing a counter-factual that is exactly counter to your goal. For example, if
the last action in a positive demonstration is redundant with another action, pivoting at that
point will likely result in the demonstration being marked negative! While it is possible for
DISS to correct this conjecture in a future iteration, this can seriously degrade performance
in practice. Furthermore, note that a similar argument can be made for redundant states!

Counter Example Guided Action Refinement
For these reasons, it behooves us to develop a way to handle redundant actions and states.
Luckily there is a simple solution that only requires a minor modification to DISS:

1. Start by assuming that all (time-indexed) states and actions in the demonstrations are
the equivalent. Thus, the prefix tree is initially a chain and no nodes can be pivots.

2. Whenever proof is found that two states (actions) are distinct at a given node in the
prefix tree, create a new prefix tree where the prefix indexed equivalence class of states
(actions) is partitioned accordingly.

To formalize this algorithm, we introduce the idea of value-distinguishability.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 68

Definition 25. Let ξ and ξ′ be two paths such that ξ = ρ � x � y and ξ′ = ρ � x′ � y′,
where |x| = |x′| = 1. Given a subset of the representation class Ψ ⊆ R, we say that
prefixes ρ � x and ρ � x′ are Ψ-value-distinguishable if there exists a task, φ ∈ Ψ,
such that:

Vφ(ρ � x) ̸= Vφ(ρ � x′). (5.13)
When Ψ = Φ, we suppress Ψ and simply say value-distinguishable.

Importantly, if two prefixes are value distinguishable, then they maintain the independence of
pivot values since they must not access the same subtree. Conversely, if two prefixes are not
value distinguishable, then they access must access functionally equivalent sub-trees. Thus,
value-distinguishability fits the needs of proof that two states (actions) are distinct.

The problem of course is that refuting value-distinguishability requires examining the
whole representation class (which may be impossible). Instead, we define a series of equivalence
relations based on an expanding sets of specifications, Ψ1 ⊆ Ψ2 ⊆ . . ., where Ψi is the set of
specifications visited by DISS by iteration i. Thus, at iteration i, prefix ρ and ρ′ are in the
same equivalence class if they are not Ψi-value-distinguishable.

In summary, to account for the possibility of redundant states and actions, maintain an
series equivalence relations. Whenever two actions are deemed to be value-distinguishable,
the equivalence relation is updated, which results in a new prefix tree over representatives of
each equivalence class. Noting that the initial set of visited specifications is empty and that
no prefixes are ∅-value-distinguishable, we have that (i) initial prefix tree is a chain; and (ii)
no nodes can (initially) be pivots.
Remark 5.6.2. This variant of DISS requires knowing the set of states and actions reachable
from each state. This can be further relaxed by dynamically testing states and actions for
value-distinguishability as they observed, e.g., by sampling. While not maintaining pivot
value independence, it does prevent conjecturing conflicting labels to equivalent paths.

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 69

5.7 Proof of Prop 5.3.2†

The proof of Prop 5.3.2 is fairly mechanical and mostly relies on two facts (i) trees only
have a single path between any two nodes; and (ii) the gradient of LSE being the soft max
distribution. The statement of Prop 5.3.2 is repeated below as a reminder.

Let pxy(V) denote the probability of starting at node x and pivoting at y, i.e.,

pxy(V) def= Pr(x⇝ y | V) ·
(

1−
∑

(y,z)∈E
Pr(y ⇝ z | V)

)
(5.14)

then,

∂ĥ

∂Vk
=
∑

(i,j)∈E
i is ego

#(i,j) ·
(

pik(V)− pjk(V)
)

(5.15)

Our proof will be centered on the following lemma.

Lemma 5.7.1. For any two nodes, i, k, in the prefix tree,

∂

∂Vk

V̂i = pik.

Proof. Let us first consider the where only a single action or state that pivots at k, i.e.,
Ak = ∅ or Sk = ∅. For any edge (a, b), observe that if a is an environment node, then
Pr(a⇝ b | V) is a constant, denoted qab. Next, observe that because the nodes are arranged
as a tree either: (1) k is not reachable from i or (2) only a single edge, call (i, j), can reach k
from i. Thus,

∂V̂i
∂Vk

def= ∂

∂Vk

∑
(a,b)∈E
i=a

qib · V̂b(V)

= Pr(i⇝ j | V) ·
0 if Pr(i⇝ k) = 0

∂
∂Vk

V̂j(V) otherwise,

(5.16)

Similarly, note that because the derivative of LSE is the softmax function, for any ego node i,

∂V̂i
∂Vk

def= ∂

∂Vk

log
∑

(a,b)∈E
i=a

V̂b(V)

=
0 if Pr(i⇝ k) = 0
eV̂j(V)−V̂i(V) · ∂

∂Vk
V̂j(V) otherwise,

(5.17)

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 70

where again, j denotes the (potential) unique child of i that can reach k. Next, observe that
by definition eV̂j(V)−V̂i(V) = Pr(i⇝ j | V), using the maximum entropy policy induced by V.
Substituting into (5.17), we see that if k has only a single pivot action (or state) the lemma
follows by induction on the path from i to k, where the base case is

∂V̂k
∂kVk

=
(

1−
∑

(y,z)∈E
Pr(y ⇝ z | V)

)
· ∂

∂kVk

Vk,

since probability of applying one of the pivot actions (leading to the forest of subtrees
summarized by V̂k) as one minus the probability of traversing an edge in the subtree.

Proof of Prop 5.3.2. Recall that the probability of traversing an environment edge is constant
w.r.t V. Thus, inspecting (5.4) we see that it suffices to prove that for any ego edge, (i, j),

∂

∂Vk

ln Pr(i⇝ j | V) = pik − pjk.

Recall that by definition, if i is ego, then ln Pr(i ⇝ j | V) = V̂j(V) − V̂i(V). Thus, the
proposition follows directly from Lemma 5.7.1.

5.8 Bibliographic Notes
The key difficulty for the task specification inference from demonstrations literature is how to
search an intractably large (often infinite) representation class.5 In particular, and in contrast
to the reward setting, the discrete nature of automata and logic, combined with the assumed
a-priori ignorance of the relevant memory required to describe the task, makes existing
gradient based approaches either intractable or inapplicable. Instead, current literature either
(syntactically) enumerates tasks [149, 37, 131, 161] or hill climbs via simple probabilistic
(syntactic) mutations [84, 24].

The major contribution of this chapter was to systematically reduce the problem of
learning from demonstrations into a series of supervised task specification identification
problems, e.g., finding a small DFA that is consistent with a set of example strings [70], a
problem more generally referred to as Grammatical Inference [45].

The structure of the resulting algorithm DISS, is inspired by two more established families
of algorithms: simulated annealing (SA) [134] (for guided hill climbing) and Oracle-guided
inductive synthesis6(OGIS)[129, 81] (for gradually constraining a search based on previous
guesses). While the connection with SA is made explicit in this chapter, the OGIS connection
is largely left unexplored.

5This intractable size is arguably the reason that this space of problems has been underserved until now.
6OGIS being a generalization of the prior work on Counter Example Guided Inductive Synthesis

(CEGIS) [135].

CHAPTER 5. FINDING EXPLANATORY SPECIFICATIONS 71

OGIS operates by alternating communication between a learner and a verifier. The
learner proposes candidates and the verifier checks whether there is something wrong with
the candidate, e.g., violates some specification. If so, the learner is provided with an explicit
counterexample to take into account for its next candidate. At a distance, one observes that
DISS operates in largely the same way. The identification algorithm acts like the learner and
SGS acts like the verifier. The key difference is that the provided examples are not (provably)
counterexamples. Nevertheless, these pseudo counterexamples ostensibly play the same role.
They constrain the next candidate. The role of SA in DISS is to account for the fact that
these are pseudo counterexamples, and thus must not be taken as facts.

OGIS also forms the basis for the relaxation of the Luce axiom violation. One can view
the act of running DISS and checking for value-distinguishability as a form of verification (or
conformance testing) and the process of creating a equivalence class as the learner.

Finally, the energy function minimized by DISS is equivalent to maximizing the data
compression [3]. In this way, we can view DISS as looking for more and more succinct
representations of the demonstrations - taking care to balance the description complexity of
both the encoding and the encoded paths.

72

Chapter 6

Teaching Tasks using Demonstrations

The more I think about language, the more it amazes me that people ever understand
each other at all.

Kurt Gödel, (Logician, 1906-1978)

In the last chapter, we argued that demonstrations offer a rich and ergonomic means for
a teacher to communicate task specifications to a learner. In this chapter, we flip this on its
head and ask how to generate demonstrations that help a learner infer a given task.

Figure 6.1: Illustration of providing pedagogic demonstrations to help a human learn a task.

There are a number of benefits of changing perspective from a learner to a teacher. Firstly,
formal task specifications can be difficult to understand, even for domain experts. Thus,
being able to supplement formal or natural language descriptions of a task with carefully
selected demonstrations can be invaluable. Second, alternating teaching and learning forms
a foundation for future work on organic team-based collaboration, where team members
automatically specialize given inferred assumptions about other agents. Finally, teaching
provides further academic insight into what kind of demonstrations are helpful for learning
models.

A natural question then is how to characterize and algorithmically generate pedagogic
demonstrations. As we’ll discuss at the end of the chapter, the perspectives in this chapter

CHAPTER 6. TEACHING TASKS USING DEMONSTRATIONS 73

are inspired by the literature on pragmatics [62], legibility [48], and showing vs doing [73].
The common idea across these works is for the teacher to simulate the learner in order to
provide demonstrations that make the true reward easier to infer.

Contributions
We will study how to make the demonstrations surprising under tasks we do not wish to
teach and unsurprising under the ground truth task. This is made explicit by providing a
re-writing of the showing model [73] in terms of description lengths. To handle large spaces
of task specifications, e.g. automata, we provide a counterexample driven algorithm (using
DISS as a surrogate learner) for finding pedagogic demonstrations. Using DISS as a proxy
for the learner, offers several benefits:

1. Understanding how to provide pedagogic demonstrations to DISS will offer further
insights into how effective DISS can be in practice.

2. DISS is designed to make minimal assumptions about the teacher, and thus teaching to
DISS requires generating demonstrations that are pedagogic across a variety of learners.

The result will be an algorithm that automatically generates demonstrations that help the
learner understand a task. Finally, we provide the results of a human study that provides
empirical evidence for the efficacy of our teaching algorithm.

6.1 Pedagogic Demonstrations
To begin, we must define what it means for a demonstration to be pedagogic. For inspiration,
we turn to the literature on showing versus doing [73], which offers empirical evidence that
human teachers provide demonstrations, Ξ = ξ∗

1 , . . . ξ
∗
m, proportional to the belief that the

learner assigns to the ground truth task, i.e.,

Pteacher(Ξ | φ) ∝ P (φ | Ξ) = P (Ξ | φ) · P (φ)∑
φ′ P (Ξ | φ′) · P (φ′) (6.1)

where P is the belief the learner assigned to task, φ. Concretely, P will take the form of a
DISS learner from the previous chapter.
Remark 6.1.1. The name “showing vs doing” derives from contrasting (6.1) with the teacher
that is just “doing” the task, e.g., sampling paths using πφ. In our running example, a
“doing” teaching might providing two demonstrations that start near and go directly to the
bottom yellow tile. By contrast, as we shall see “showing” teaching is likely to provide one
demonstration that illustrates that visiting ■ requires visiting ■ and another demonstration
that shows that visiting ■ is optional.

CHAPTER 6. TEACHING TASKS USING DEMONSTRATIONS 74

Remark 6.1.2. The showing vs doing framework is actually defined for arbitrary sets of Marko-
vian reward functions. The technique developed here is biased towards task specifications,
but should in principle work with arbitrary rewards. As with learning, the key difficulty in
the task specification setting is that task specifications are discrete combinatorial objects.
Thus, it is unclear how to teach against the whole set simultaneously.

Description length perspective
Equation (6.1) implies that the teacher is biased towards demonstrations that are unsurprising
under φ, but surprising under φ′. To make this explicit, we re-write (6.1) by taking the
negative log and rearranging:

− lnPteacher(Ξ | φ) = − ln
(
P (Ξ | φ) · P (φ)

)
+ ln

∑
φ′
eln(P (Ξ|φ′)P (φ′))

= − lnP (Ξ | φ)− lnP (φ) + LSE
φ′

(
lnP (Ξ | φ′) + lnP (φ′)

)
def= U(φ,Ξ) + LSE

φ′

(
− U(φ′,Ξ)

)
= LSE

φ′

(
U(φ,Ξ)− U(φ′,Ξ)

)
,

(6.2)

where similar to the previous chapter, we denote by U the description length (or energy):
− lnP (Ξ | φ) − lnP (φ). Recalling that LSE is a smoothed version of the max function,
we see that minimizing (6.2) (maximizing (6.1)) implies making energy of φ small and the
energies of other tasks φ′ large.

6.2 Generating Pedagogic Demonstrations
We now turn to the question of how to find the most probable teaching demonstrations
given (6.1). In particular, we are interested in approximately solving the following optimization
problem:

min
Ξ∈Pathsm

$

LSE
φ′∈R

(
U(φ,Ξ)− U(φ′,Ξ)

)
. (6.3)

There are two obstacles to directly optimizing (6.3). First and foremost, the LSE is taken
over the entire representation class.1Second, the transition system and paths are discrete
objects with no obvious gradient. As we will see, this second obstacle is easily overcome by
optimizers such as simulated annealing. To overcome the first obstacle, observe that if one
fixes the demonstrations Ξ, then (6.3) reduces to:

LSE
φ′∈R

(
− U(φ′,Ξ)

)
≈ min

φ′∈R
U(φ′,Ξ), (6.4)

1This LSE is well defined since the there cannot be a uniform distribution on countably infinite sets.
Thus, the −U(φ, ξ) tends to negative infinity.

CHAPTER 6. TEACHING TASKS USING DEMONSTRATIONS 75

where the approximation follows from LSE being a smooth approximation of max. Observing
that this is exactly the energy minimization problem solved by DISS in the previous chapter,
we arrive at a simple iterative algorithm for generating pedagogic demonstrations.

Generating Pedagogic Demonstrations:

1. Let n, k, nDISS, and m be natural numbers.
2. Let R̂ = {φ} denote a set only containing the target task, φ.
3. Sample m demonstrations, Ξ0, using πφ.
4. For i = 1 . . . n:

a) Run DISS given Ξi for nDISS iterations yielding a set Ri.
b) Add the k most likely tasks (under Ξi) from Ri to R̂.
c) Find a set of demonstrations Ξi that approximately minimizes:

LSE
φ′∈R̂

(
U(φ,Ξi)− U(φ′,Ξi)

)
5. Return Ξn.

This algorithm operates by alternating between generating pedagogic demonstrations for the
R̂ set and then expanding the R̂ set using DISS. Intuitively, R̂ is made up of specifications
found by DISS that have non-trivial probability mass given a previous Ξi. Thus, it is the set
of task specifications the teacher should try to keep in mind when generating demonstrations.
Remark 6.2.1. This algorithm can be viewed as a form of counter-example guided synthe-
sis [135], where Ri acts “proof” that the current demonstration might imply another set of
tasks.

Trajectory Optimization

The only component missing from the above algorithm is a means to implement step 4c, i.e.,
finding demonstrations that minimize:

U(Ξ) def= LSE
φ′∈R̂

(
U(φ,Ξ)− U(φ′,Ξ)

)
.

Depending on the specific dynamical system under consideration, many techniques ranging
from reinforcement learning [140] to convex programming [95] can be used. Below, we provide
and motivate a simple approach, which like DISS is based on simulated annealing.

Recall that to define an instance of simulated annealing, one requires an energy U to
minimize, a proposal distribution q, a cooling schedule, and a reset trigger. The energy in this
case is U(Ξ) as defined above. For simplicity the reset occurs periodically every 50 iterations
and the cooling schedule linearly decays from temperature Tmax = 100 to 1 just like in DISS.
Finally our proposal distribution, q(Ξ′ | Ξ) operates as follows:

CHAPTER 6. TEACHING TASKS USING DEMONSTRATIONS 76

Proposal Distribution:

1. Sample a path, ξ, uniformly at random from Ξ.
2. Sample a pivot, ρ, uniformly at random from the prefix tree of ξ.
3. Using πφ sample a (positive) complete path, ξ′ ∈ φ, that pivots at ρ.
4. Replace ξ with ξ′, i.e., Ξ′ = (Ξ \ {ξ}) ∪ ξ′.

This proposal distribution was designed with the observation that, ignoring other tasks,
U(φ,Ξ) should be minimized. Thus, we propose demonstrations from πφ which are biased
towards small description lengths (U). We then rely on the hill climbing of simulated annealing
to account for other specifications. The random pivots provide two types of changes. Small
refinements by pivoting near the end of the demonstration and large changes by pivoting near
the start. Note however that because we sample from πφ, even large changes may often take
similar paths, e.g., multiple ways to reach the same bottleneck. Finally, to allow changing
the initial location, we apply the standard transformation on the MDP where a dummy start
state is included and any action from this state uniformly transitions the agent to a location
in the MDP. Thus, pivoting on the first state (environment action) becomes equivalent to
changing starting locations.

Failure Modes
One should naturally wonder what pit-falls await practical implementations of the above
algorithm. Below we briefly discuss two particularly problematic issues, along with potential
remedies.

Competency Estimation

Recall that the showing distribution (6.2) biases towards demonstrations that have short
relative description lengths, i.e., small under φ and large under other specifications. This
decoupling from total description length can yield demonstrations where the teacher’s behavior
seems undirected, even bordering on incompetent. For instance, in our running example, the
teacher could move back and forth within the corridor of blue tiles, ■, to emphasize that
despite multiple opportunities to do so, it does not cross ■. Unfortunately, particularly in
the context of human learners, the teacher’s actions may seem undirected, and it may not be
as obvious that the goal is to eventually reach a yellow tile, ■. This can be mitigated in a
multitude of ways. Below we provide three examples.

1. In the literature on legibility [48], a predictability term is added which penalizes
demonstrations that are unlikely under the expert policy. Under the lens of description
lengths, the result is re-weighting our energy function by the introduction of a hyper-
parameter α > 1 as below:

U(Ξ) def= LSE
φ′∈R̂

(
α · U(φ,Ξ)− U(φ′,Ξ)

)
.

CHAPTER 6. TEACHING TASKS USING DEMONSTRATIONS 77

Recalling the relative entropy (expected relative description length) is the cross-entropy
minus the entropy, we see that α has the effect of interpolating between minimizing
the total and relative number of nats needed to describe Ξ. This means the teacher
is incentivized to produce directed behavior since directed behavior has smaller total
description length.

2. An alternative mitigation is to directly model the learner as simultaneously estimating
the competency (temperature) and the task specification. In this formulation, undirected
behavior is explicitly penalized since the result is a larger inferred temperature. As
the temperature rises, πφ approaches the uniform distribution. Thus, all specifications
approach the same description length which maximizes (rather than minimizes) the
energy!

3. Finally, perhaps the simplest mitigation is to include a sufficiently rich class of task
specifications. For instance, if there is a high a priori weight on a task specification that
is trivially false or true, the teacher needs to distinguish itself against uniformly random
actions. Furthermore, if the concept class is sufficiently expressive, then the learning
algorithm will return many distinct tasks that the previous demonstration failed to
distinguish. Together, the teacher is incentivised to not overly optimize teaching against
any specific task specification, which effectively penalizes “undirected” behavior. Note
that the success of this mitigation relies on multiple alternations between teaching
against R̂ and expanding R̂ with DISS.

In our implementation, we rely on mitigation 3 since minDFA is sufficiently expressive
and has a high prior on the two one state DFAs representing trivially true and false tasks.

Handling Similar Specifications†

An insidious issue arises when the teacher is asked to teach a task that is effectively equivalent
to many of the tasks in the representation class. In such settings, R̂ will contain many
tasks, φ1, . . . , φj, that are similar to φ. Assuming that U(φ,Ξ) ≈ U(φi,Ξ) and observing
that U(φ,Ξ)− U(φi,Ξ) ≤ 0, we see that the LSE over U(φ,Ξ)− U(φi,Ξ) becomes less and
less sensitive to the other tasks in R̂. The result is that the teacher loses its incentive to
provide pedagogic demonstrations. Fortunately, if there is a way to detect that φ and φi are
essentially equivalent, then one can quotient R by this (approximate) equivalence relation.

For example, let φ denote reaching ■ and let φ′ denote reaching ■ at least twice. If
reaching ■ requires visiting at least two such states, e.g., due to a one way door, then the
policies for these two tasks are indistinguishable. One might then combine any states whose
policies have negligible KL-divergence, i.e.,(

∀ξ ∈ Paths$. DKL
(
πφ(• | ξ) || πφ′(• | ξ)

)
≤ ϵ

)
=⇒ (φ ≈ϵ φ′), (6.5)

for some ϵ ≥ 0.

CHAPTER 6. TEACHING TASKS USING DEMONSTRATIONS 78

6.3 Experiments
To get a qualitative sense of how our proposed algorithm works, we instantiated our teaching
algorithm for variants of our running gridworld example.

Teaching Parameters

We took the number of demonstrations, m, and the number of DFAs added to R̂ per iteration,
k, to be 2. The learner used was the same DFA based DISS implementation from Ch 5, with
β = 1/4 and nDISS = 35. This choice of hyperparameters was informed by the learning rates in
Fig 5.9a. The trajectory optimizer (based on simulated annealing) was run for 350 iterations,
and thus experienced 7 resets. Finally, the teaching algorithm was run for 3 iterations, with
early stopping once the correct DFA was inferred or after 15 minutes had elapsed. As a
baseline, we ran the teaching algorithm with n = 0, which results in m samples using πφ. We
refer to these cases as showing and doing respectively.

Tasks to Teach

We ran our teaching algorithm on 5 different gridworld-task pairs (shown in Fig 6.2.) The
top row provides the tasks encoded as DFAs. The middle and bottom rows illustrate the
generated showing and doing demonstrations for the DFA in their respective column. To
avoid clutter, we only annotate the action (with a green arrow indicating intended direction)
when the agent slips downward due to wind. Below we provide natural language descriptions
of each task, enumerated from left to right.

1. Go to ■. But, if you visit ■ or ■, you must visit ■ before ■.
2. Go to ■ and then ■ (in that order) while avoiding ■.
3. Go to ■ and then ■ (in that order) while avoiding ■ and ■.
4. Go to ■. Avoid ■. If you visit ■ you must visit ■ before ■.
5. Go to ■. Avoid ■. If you visit ■ you must visit ■ before ■.

Qualitative Results

Analyzing the generated demonstrations, a number of qualitative differences between the
doing and showing demonstrations become apparent. First and foremost, one observes that
the doing demonstrations are generally able convey which colors must always be visited
and avoided, but do not provide evidence for conditional logic. For example, our running
example (shown in the right most column), the doing demonstrations clearly illustrate the
need to go to ■, but provides little to no evidence that the agent needs to visit ■ after
visiting ■. By contrast, the corresponding showing demonstrations illustrate this behavior.
Moreover the showing demonstrations provide evidence that ■ needs to be avoided since both
demonstrations ignore the shorter path to the top right ■. On the other hand, for tasks that

CHAPTER 6. TEACHING TASKS USING DEMONSTRATIONS 79

start startstart startstart

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 6.2:
Top row: Target tasks to teach encoded as DFAs.

Middle row: Pedagogic demonstrations for the task DFA in the same column.
Bottom row: Demonstrations from expert just performing the task in the same column.

only require visiting a fixed sequence of colors and avoiding other colors, e.g. the second and
third tasks (from the left), the showing and doing demonstrations are qualitatively similar.

The next qualitative difference is that the showing examples actively exploit the slipping
feature of the dynamics to encode additional information. This can be seen in the first, fourth
and fifth tasks, where the conditional visitation behavior is triggered “by accident”. This
accidental triggering enables the action to hint at the intended path to an accepting state
in the DFA. Again returning to our running example (fifth column), slipping is employed
to illustrate that the agent did not intend to visit ■ and simultaneously that it did not
intend to visit ■. A similar effect occurs in the fourth task, where the agent is forced to
visit ■ and after slipping into ■. Slipping here makes it clear that the intention was to
go through the corridor of ■ to reach ■. Finally, we see a similar trick being employed
in the showing demonstrations for the first task to highlight that visiting ■ and ■ trigger
conditional behavior.

CHAPTER 6. TEACHING TASKS USING DEMONSTRATIONS 80

Limitations

The first task also highlights some of the limitations of the approach as formulated. Here the
demonstrations are fairly complex and require a non-trivial amount of thought to recover the
intended task. In fact, one might argue that the fact that visiting ■ triggers visiting ■ is
arguably obscured by the agent visiting ■. To address these concerns, one might consider
adding additional demonstrations, but no principled way to determine the optimal number of
demonstrations is provided in our algorithm. Similarly, one might try to enforce diversity
in the way the demonstrations traverse through the task DFA, but it is unclear how to
enforce this in general. Nevertheless, this experiment highlights that teaching against DISS
enables generating demonstrations the better convey the nuances of target task than our
doing baseline. Importantly, this is the case even when the representation class is too large
to enumerate and only moderately structured.2

Human Study
To further test the efficacy of the above teaching algorithm, we ran an online human study
using the Prolific platform [119]. We recruited 250 participants. The participants were
recruited and told that:

1. They would be making judgments about the rules a robot follows.
2. The robot would be operating in a gridworld with the same dynamics as our running

example.
3. There could be any number of rules.
4. There were three types of rules: (i) Go to color; (ii) Avoid color; (iii) If on color 1, then

go to color 2.
5. The color white was not part of any rule.
6. A path is good if all the rules hold and bad if any of the rules do not hold.

Remark 6.3.1. The described representation class is expressive enough to capture many of
the tasks in minDFA and in particular all DFAs in Fig 6.2. Further, note that this is an
infinite representation class.
Next, each participant was blindly assigned to either be given showing demonstrations or doing
demonstrations. The participants were then asked to perform a series of trials. Each trial
corresponded to one of task specification gridworld pairs shown in Fig 6.2. Within the trial
the participants where shown animations of either the showing demonstrations or the doing
demonstrations - depending on their earlier assignment. After seeing the demonstrations,
the participants were asked to describe the rules of the robot. The trial ended with the
participants being asked to label five color sequences as “good” or “bad” under the inferred
rules. We assigned the trial a score between zero and one denoting the fraction of correct
answers. Finally, the color and order of the tasks were randomized. The colors used were:

2In particular, “similar” DFAs might have remarkably different languages.

CHAPTER 6. TEACHING TASKS USING DEMONSTRATIONS 81

pink, blue, brown, and turquoise, and were selected to avoid a priori associations with colors,
e.g., red is bad/good.

Human Study Results

To study the data generated by our human study, we partitioned the five trials into three
groups: {1}, {2, 3}, {4, 5}. Again, the trial numbers correspond to the column in Fig 6.2,
with the leftmost column being 1 and the rightmost column being 5. This partitioning of
trials derived from our earlier analysis. In particular, recall that (i) trials 2 and 3 correspond
to tasks with no conditional logic; (ii) trials 4 and 5 correspond to tasks with conditional
logic; and (iii) trial 1 has conditional logic, but we argued not enough demonstrations were
provided. In particular, there are two different triggers for visiting ■. Three demonstrations
(or longer demonstrations) would have allowed exercising all three of these paths.

0.0 0.5 1.0
score

0

50

100

Co
un

t

task = 1

0.0 0.5 1.0
score

task = 2,3

0.0 0.5 1.0
score

task = 4,5

showing
False
True

(a) Distribution of scores in human study by trial group and treatment.

False True
showing

0.0

0.1

0.2

sc
or

e
-0

.5

task = 1

False True
showing

task = 2,3

False True
showing

task = 4,5

(b) Average score by trial group and treatment.

Figure 6.3: Results of human study. Here, showing = False means the partipant was in the doing
treatment and showing = True means the participant was in the showing treatment.

The distribution of scores is shown in Fig 6.3a and the average score (with annotated
95% confidence intervals) is shown in 6.3b. In both figures, we see confirmation of our

CHAPTER 6. TEACHING TASKS USING DEMONSTRATIONS 82

earlier analysis. For example, the showing treatment did not significantly change the score
distribution for trials without conditional logic (2 and 3). Conversely, the showing treatment
did affect the distributions for trials with conditional logic, e.g., for trials 4 and 5, the overall
distribution was shifted towards higher scores. For trial 1, we observe a larger variance. We
suspect this variance is due whether or not the participant correctly inferred that visiting
brown triggers a visit to blue as opposed to brown triggers a visit to red (as might be
suggested by the demonstration.)
Remark 6.3.2. The key take away is that our teaching algorithm can indeed help the particpants
learn task specifications; however, care should be taken to provide enough demonstrations.
Further, we note that this was the case even when the representation classes differed.

6.4 Bibliographic Notes
As emphasized throughout the chapter, the teaching algorithm described builds upon previous
work generating pedagogic demonstrations for teaching quantitative reward functions [73].
This and related frameworks such as legibility [48] rely on the ability for the teacher to
simulate the way the learner would respond to a given demonstration. Of course, this process
is naturally recursive, a phenomena codified in the Rational Speech Act (RSA) modeling
framework [61]. In RSA, the teacher and learner recursively model each other. The teacher
discussed in this chapter has two alternations between teacher and learner, i.e., the showing
teacher simulates the learner and the learner simulates the doing teacher. The key novelty in
this work is the ability to teach against a combinatorial representation class such as DFAs.
This is facilitated by the innovations in the DISS algorithm, which simulated a learner that
tries to minimize the description complexity of the demonstrations. Furthermore, like DISS,
the final algorithm provided is again a OGIS [129, 81] style algorithm in which one component
proposes a candidate (here the demonstrations) and the other component (here DISS) returns
potentially problematic inferences made by the simulated learner. Finally, the similarity
failure mode discussed in Sec 6.2 has been observed in the reward setting, with a similar
re-weighting of the LSE being applied to account for similar rewards [18].

83

Part II

Prediction and Control
In Part I, we assumed access to a maximum causal entropy planner. This planner
was used black-box to predict the actions of an agent trying to perform a given
task. Using these predictions, we showed how to learn and teach specifications
using demonstrations. In this part, we open the black-box and investigate how
to efficiently realize such planners when the workspace can be modeled as a
probabilistic sequential circuit.
This part is structured as follows. Ch 7 starts with a discussion of control
improvisation - the decision problem corresponding to entropy regularized planning
in Markov Decision Processes, Interval Markov Decision Processes, and more
generally, Stochastic Games. The result will be planning algorithms that scale
in the size of the time-unrolled stochastic game. To keep the size of the time-
unrolled games tractable, we change perspective in Ch 8 and explore modeling
probabilistic transition systems as probabilistic circuits. This sets the stage for
Ch 9 in which we discuss storing compressed representations of probabilistic
transition systems using Binary Decision Diagrams (BDDs). In particular, we
shall see that the maximum causal entropy planning can be done directly on this
compressed structure!

84

Chapter 7

Improvisation in Stochastic Games

Improvisation is too good to leave to chance.

Paul Simon (Musician, 1941-)

In this chapter, we study how to compute maximum causal entropy policies given a
planning horizon and a task specification. Technically, this will be done by framing the
problem as instance of control improvisation [55, 54] over stochastic games. In the control
improvisation framework, one specifies a controller with three types of declarative constraints.
(i) Hard constraints that, as in the classical setting, must hold on every execution, (ii) soft
constraints that should hold on most executions, and (iii) randomization constraints that
ensure that a synthesized policy does not overcommit to a particular action or behavior. The
key challenge when solving control improvisation is that randomization and performance, in
the form of soft constraints, constitute a natural trade-off.

Control improvisation was originally proposed for nondeterministic domains where uncer-
tainty is resolved adversarially. This assumption is often too restrictive and leads (together
with the soft/hard constraints) to conservative policies or common situations in which the
synthesis algorithm cannot be employed at all. To overcome this weakness, in this chapter,
we develop a theory of control improvisation in stochastic games which admit arbitrary com-
binations of nondeterministic and probabilistic uncertainty, including unknown or imprecise
transition probabilities.

Technically, we formulate our problem on simple stochastic games [39], an extension
of Markov decision processes (MDPs) that divides states between controllable states and
uncontrollable (or adversarially controlled) states. Soft constraints are finite horizon temporal
properties with a threshold on the worst-case probability of the property holding by the
end of the episode. Hard constraints are soft constraints to be satisfied with probability 1.
In contrast to other work on control improvisation, we adopt causal entropy as a natural
means to formalize randomness constraints. In doing so, we are able to realize the entropy
regularized planners required by the learning and teaching algorithms in Part I.

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 85

We refer to this variant of control improvisation as Entropic Reactive Control Improvisation
(ERCI) and show that ERCI conservatively extends reactive control improvisation [55] to
stochastic games. More precisely, entropy can be used in the non-stochastic setting and
yields results analogous to reactive control improvisation. ERCI also extends classical policy
synthesis in stochastic games, i.e. synthesis in absence of randomness constraints as, e.g.,
implemented in PRISM-games [89].

Contributions
In summary, this chapter provides Entropic Reactive Control Improvisation (ERCI), a
decision variant of entropy regularized planning specialized for task specifications in stochastic
games. ERCI provides an algorithmic way to trade performance and randomization in
stochastic games. Stochastic games combine both adversarial and probabilistic behavior
in an environment, enabling modeling flexibility, which facilitates model compression and
applicability to new domains, e.g., using probability ranges rather point probabilities to
combine similar states/actions or explicitly capture uncertainty in the dynamics model. Finally,
this work contributes the necessary technical machinery and a prototype implementation.
Combined, our theoretical and empirical analysis suggest that the ERCI framework contributes
a tractable and flexible modeling formalism.

Overview
This chapter is structured as follows. We begin with a motivating example (Sec. 7.1). This
motivating example will highlight the potential application of ERCI in domains outside
behavior predication, and in particular, the generation of random behavior for testing systems.
Furthermore, this example will demonstrate the modeling flexibility derived from supporting
stochastic games. Next, we provide preliminaries and formalize the ERCI problem statement
in Sec. 7.2, cast ERCI as a multi-objective optimization problem, and study properties of
the solution set in Sec. 7.3. With this technical machinery developed, Sec. 7.4 re-frames
existing literature on maximum causal entropy inference and control to derive an algorithm
for MDPs. Then in Sec. 7.5, we provide an algorithm for the general case of stochastic games.
We conclude with an empirical evaluation (Sec. 7.6) and a comparison with related work,
e.g., other control improvisation formulations (Sec. 7.8). Proofs are provided in Sec. 7.7.

7.1 Motivating Example
We consider a scenario in which a regulatory agency wishes to certify the safety and perfor-
mance of a new delivery drone Dnew. As part of the process, the agency runs Dnew through a
series of tests. For example, given a certain delivery route, the agency investigates whether
Dnew successfully delivers packages while avoiding other delivery drones. To execute this test,

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 86

Figure 7.1: Illustration of delivery drone testing example. The goal is to synthesize a policy for
the bottom left (white circle) drone to test the controller of the top right (black square) drone.

Ideally, the synthesized policy should be as randomized as possible to avoid testing bias.

the agency decides to synthesize a controller for another delivery drone, Dtest, to test if Dnew
can be certified.

Concretely, suppose we command Dnew to continuously visit four houses in some workspace.
We illustrate such a scenario in Fig. 7.1, in which Dnew and Dtest are shown as black square
and white circle drones respectively. For this test scenario, the regulatory agency, wishes to
examine how Dnew responds to delivering packages to the red houses in the presence of Dtest.
In particular, it would like to let Dtest also deliver packages while avoiding Dnew. Importantly,
to properly exercise Dnew, Dtest should show a variety of behaviors meeting the specification,
and the behaviors should not be biased to any behavior beyond the given specification.

With the ERCI framework, the agency may formalize the above scenario with the following
constraints on Dtest:

1. (hard constraint) Ensure that the two drones never collide.

2. (soft constraint) With probability at least .8, visit all four houses within 10 minutes.

3. (randomness constraint) Perform this task as unpredictably as possible.

What remains is to synthesize a controller given the constraints and the world model. At this
point, it is worth examining more closely how one models Dnew’s controller when synthesizing
Dtest. We illustrate by examining three models. In all models, we capture the behaviors of
Dnew and Dtest. We focus on Dnew, but the ideas carry over to modeling the actuation of
Dtest.

Nondeterministic Model
The simplest approach to modeling is not to make any assumptions about Dnew beyond what
already has been established. Here, we model that the houses are visited either in clockwise
or counter-clockwise order but that it may switch direction at any time. Such a model is too

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 87

liberal and our assumptions under which we plan the behavior for Dtest is too pessimistic,
which leads to a bad test set. First, if Dnew is unrestricted, then Dtest’s behavior is severely
limited, as it must behave conservatively to avoid collisions under all possible motions by
Dnew (even very unlikely motions). This limitation restricts the variance of its behavior, and
it will not test Dnew’s true behavior. A purely non-deterministic model for Dnew thus may
not lead to the synthesis of adequate behavior for Dtest.

Stochastic Model
Rather than the pessimistic nondeterministic (or adversarial) assumption, we may collect data
about Dnew and construct a stochastic model, e.g., using inverse reinforcement learning [111].
Concretely (but simplified), after examining the data, one observes that Dnew appears to flip
a biased coin with fixed probability p whenever it reaches a house to decide whether or not
to turn around. This models Dnew much more precisely, and allows for more targeted test by
Dtest.

Nondeterministic and Stochastic Model
However, a natural criticism for stochastic models is the dependence on fixed probabilities.
Obtaining such probabilities with confidence requires many tests which defeat the purpose of
our test setup, and making point-estimates from little data may not create faithful models
of the actual behavior. In absence of enough (or reliable) data, we can arbitrarily combine
nondeterministic choices and stochastic behavior. We may use stochastic abstractions for
parts that we can faithfully model, and nondeterministic behavior in absence of data. In
particular, we support interval-valued transition probabilities. Consider the delivery-drone
Dnew. Rather than inferring a point-estimate from data, we may have inferred that the
probability of turning around is in the interval [p− ε, p+ ε] for adequate values of p and ε.
Furthermore the actual probability may even depend on aspects of the current state.

ERCI as a unifying framework
The strength of the (entropy-guided) control improvisation framework is that we can combine
all these aspects into a single and thus flexible computational model. In particular, the
models above are captured by a 2-player game, a 1.5-player game (MDP) and a 2.5-player
game (stochastic game, SG), respectively. In all cases, the first player controls the behavior
of Dtest and this controller is to be synthesized. We contribute an algorithm that synthesizes
a controller that maximally randomizes in all of the formalisms discussed above. In the
coming sections, we shall formally define the ERCI problem, highlight that there is an implicit
trade-off between performance of the soft constraint and unpredictability, and provide an
algorithm solving ERCI for SGs.

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 88

7.2 Problem Statement
This section formalizes the novel Entropic Reactive Control Improvisation (ERCI) problem.

Stochastic Games
We start with some necessary definitions and notations on stochastic games which generalize
the MDPs defined in Ch 3.

Definition 26. A (2.5-player) stochastic game (SG) is a tuple G = ⟨S, s0, A, P ⟩. The
finite set of states S = Sego∪Senv is partitioned into a set Sego of (controlled) ego-states
and a set Senv of (uncontrolled) env-states. s0 ∈ Sego is the initial state, A is a finite
set of actions, and P : S × A → Distr(S) is the transition function. For simplicity
of exposition, we assume w.l.o.g. that controlled and uncontrolled states alternate.
Thus, P is defined by two partial transition functions: Pego : Sego × A→ Distr(Senv),
Penv : Senv × A → Distr(Sego). We identify the available actionsa as A(s) def= {a |
P (s, a) ̸= ⊥}. States without available actions, i.e., states with A(s) = ∅ are called
terminal states. The successor states of a state s and an (enabled) action a is the set
of states that are reached from s within one step with a positive transition probability,
i.e., Succ(s, a) def= {s′ | P (s, a)(s′) > 0}, and Succ(s) def= ⋃

a∈A(s) Succ(s, a).
aWe use a partial function as we explicitly allow modeling unavailable actions, e.g., we can model

that a door can only be opened when close enough to the door.

Example 7.2.1. We introduce a six-state toy-example (Fig. 7.2) to illustrate the definitions.
Terminal states are drawn with a rectangle, ego-states with a circle and env-states with a
diamond. For every state s and action a, we draw transitions in the form of edges that connect
all successors s′, and label them with the associated probabilities P (s, a)(s′). For conciseness,
we omit labelling probability 1 transitions.

s0 s1

s2 s3

s⊤

s⊥

a

b

a

b

a 1/3

2/3

1/3
2/3a

b

Figure 7.2: A running example.

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 89

Remark 7.2.2. SGs capture a variety of models. For example, if |A(s)| = 1 for all uncontrolled
states, s ∈ Senv, then G is a Markov decision process (MDP). If |A(s)| = 1 for all s ∈ S, then
G is a Markov chain. If P (s, a) is a Dirac distribution for every s ∈ S and a ∈ A, then G is
called deterministic or a 2-player game.
Remark 7.2.3. Paths are defined just like in MDPs, except that that ego states are even
indexed and env states are odd indexed - as we assume alternation. Additionally, it is helpful
to partition paths based on their last state: [Paths]ego = {ξ ∈ Paths | last(ξ) ∈ Sego} and
[Paths]env = Paths \ [Paths]ego.

Example 7.2.4. In Fig. 7.2, there are two paths that end in s3, s0
a−→ s1

b−→ s3 and
s0

b−→ s2
a−→ s3, both of length 2. Both paths are in [Paths]ego, as s3 ∈ Sego.

Policies and Schedules

Whenever some state s is reached, the corresponding player draws an action from A(s). As
standard, we capture this with the notion of a scheduler1. A scheduler is a tuple of player
policies σ = ⟨σego, σenv⟩ with σi : [Paths]i → Distr(A) such that support(σi(ξ)) ⊆ A(last(ξ)) for
each ξ, i.e., for every history, the policy sets a distribution over the enabled successor actions.
For a given path, ξ and a policy σi, we denote by σi(a | ξ) the distribution of actions induced
by σi given the path ξ. To ease notation, we liberally use the notation σ : Paths → Distr(A),
where this function is given dependent on which player owns the last state.

Example 7.2.5. An example for a ego-policy σego is given by,

σego(α | ξ) =

1/2 if α ∈ {a, b}, ξ = s0,

1 if α = a, ξ = s0
b−→ s2

a−→ s3,

1 if α = b, ξ = s0
a−→ s1

b−→ s3.

The probability Pr(ξ | σ) of a finite path ξ in an SG G conditioned on a policy σ is given
by the product of the transition probabilities along a path. More precisely, we define the
probability Pr(ξ | σ) recursively as:

Pr(s | σ) def= 1

Pr(ξ | σ) def= Pr(ξ′ | σ) · σ(a | ξ′) · P (last(ξ′), a)(s′)
(7.1)

where ξ = ξ′ a−→ s′. Furthermore, just like with MDPs, the probability of a prefix-free set X ⊆
Paths of paths is the sum over the individual path probabilities, Pr(X | σ) = ∑

ξ∈X Pr(ξ | σ).
1Also known as strategy or policy.

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 90

Entropic Reactive Control Improvisation

Finally, to simplify our problem statement, we now define causal entropy of a schedule in
a stochastic game. Recall that a path alternates states and actions. The next state after
observing a sequence of state-action pairs is a random variable. Formally, given G and a
scheduler σ, let us denote by Aego

1:i and S1:i random variable sequences for ego-player actions
and states respectively. The causal entropy of controllable actions in τ -length paths under σ
is then,

Hτ (σ) def= H(Aego
1:τ ′ | S1:τ), (7.2)

where τ ′ = ⌈ τ2⌉ is the number of ego-actions due to alternation.

Example 7.2.6. Consider the uniform ego policy on Fig. 7.2. If σenv(a | ξ) = 1. Hτ (σ) =
log(2) + 1/2(log(2)). Note, only ego can add entropy, while env and stochastic transitions
yield convex combinations via expectation.

We now formalize the problem statement.

The Entropic Control Improvisation (ERCI) Problem: Given a SG G, τ -bounded
path properties ψ and φ, and thresholds p ∈ [0, 1] and h ∈ [0,∞), find a ego-policy σego
(or report that none exists) such that for every env-policy σenv,

1. (hard constraint) Pr(ψ | σ) ≥ 1

2. (soft constraint) Pr(φ | σ) ≥ p

3. (randomness constraint) Hτ (σ) ≥ h

where σ = ⟨σego, σenv⟩.

We say that an instance of the ERCI problem is realizable, if an appropriate σego exists and
call such σego an improviser. The problem is unrealizable otherwise.
Remark 7.2.7. The maximum causal entropy planners used in Part I correspond to the
optimization variant of ERCI. As well shall see, our solution to ERCI actually creates
improvisers that maximized causal entropy subject to a performance constraint (as desired).

7.3 ERCI as multi-objective optimization
We investigate the ERCI problem statement. Based on a sequence of observations, we reduce
the ERCI problem to the Core ERCI problem which significantly eases the description (and
implementation) of the algorithm afterwards.

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 91

s0

s⊤

s⊥

a

b

(a) Minimal MDP

σ(a | s0)

Pr(φ | σ)

(b) Probability to reach s⊤

σ(a | s0)

H(σ)

(c) Causal Entropy

Figure 7.3: Minimal ERCI problem with φ = (last(ξ) = s⊤)

Preprocessing
To ease the technical exposition, we make the following assumptions (without loss of gen-
erality): We assume the graph structure underlying the SG is finite and acyclic – and thus
all paths are finite length. When considering τ -bounded path properties (monitorable by
finite automata), this assumption is naturally realized by a τ -step unrolling of a monitor
augmented SG, i.e., augmenting the state space with a counter from 0 to τ and the current
property monitor state.

Next, in order to ensure the hard constraint, ψ, we calculate all states from which the
env-player can enforce violating the hard constraint. Such states are identifiable using a single
topologically ordered pass over G from the terminal states to the initial state. We remove
such states along with their in- and outgoing transitions. Any ego-policy now satisfies the
hard constraint. The remaining terminal states are all merged into two states s⊤ and s⊥,
based on membership in φ, i.e.,

last(ξ) = s⊤ =⇒ ξ ∈ φ
last(ξ) = s⊥ =⇒ ξ /∈ φ

. (7.3)

Example 7.3.1. In Fig. 7.3a we show a (deterministic) MDP and we plot for all schedulers
the induced probability to reach s⊤ and the induced causal entropy, in Fig. 7.3b and 7.3c,
respectively. We see that taking action a with increasing probability yields a larger probability
to reach s⊤, whereas taking action a and b uniformly at random is optimal for the entropy.

Geometric Perspective
There is a natural trade-off between probability of generating paths in φ (from here onwards:
the performance) and causal entropy induced by a policy (the randomization). In particular,
with all other ingredients fixed, we are interested in understanding the combinations of p and
h that yield a solvable instance of the (core) ERCI problem. To this end, we cast ERCI as an
instance of a multi-objective optimization problem, and study its Pareto front. Some ideas
are inspired by variants of multi-objective analysis of MDPs with multiple soft constraints,
e.g. [32, 50, 53].

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 92

h

p

(a) Guaranteed
points Sσego

h

p

(b) Solutions S

h

p

h∗h−

p∗

p−

(c) Iterative
construction

h∗hδh−

p∗

pϵ

p−

(d) Regret-based
ERCI

h∗h−

p∗

p− 0:λ=0

0:λ=∞

1:λ=1

2:λ=2
3:λ=4

5:λ=6
4:λ=8

(e)
Rationality-based

algorithm

Figure 7.4: Geometric interpretation of the ERCI problem for some fixed SG.

It is convenient to consider this front geometrically. To begin, given a fixed ERCI instance,
a scheduler σ induces a point xσ:

xσ
def=
〈

Pr(Xφ | σ), H(σ)
〉
∈ [0, 1]× [0,∞). (7.4)

To ease notation, for xσ = ⟨p, h⟩ we use pσ def= p and hσ
def= h. Next, we partially order these

points via the standard product ordering:

⟨p, h⟩ ⪯ ⟨p′, h′⟩ iff p ≤ p′ ∧ h ≤ h′. (7.5)

We say that σego guarantees a point xego
def= ⟨p, h⟩, if for every policy σenv, using σ =

⟨σego, σenv⟩, we have pσ ≥ p and hσ ≥ h. Thus, a point is guaranteed if no matter what policy
env uses, xσ will induce a point no worse w.r.t. to either randomization or performance than
xego. We define the set of guaranteed points for a scheduler σego:

S[σego] def= {⟨p, h⟩ | σego guarantees ⟨p, h⟩}. (7.6)

We observe that guaranteed points are downward closed, i.e., if σego guarantees x and x′ ⪯ x,
then σego guarantees x′.

Example 7.3.2. Consider Fig. 7.4a. We fix σego and in the blue hatched area draw all points
induced by σ = ⟨σego, σenv⟩ when varying σenv. We take the minimal randomness h and the
minimal performance p. The points in the downward closure of ⟨p, h⟩ (green circle) are the
guaranteed points for σego in the green solid area. We notice the gap between both areas: While
the performance and randomization may be better than the optimum that ego can guarantee, it
cannot guarantee a higher randomization and performance simultaneously, as the env-player
would have a counter-policy violating either the performance or the randomization.

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 93

Points guaranteed by some σego are called achievable. Thus, the achievable points are:
S = ⋃

σego S[σego]. Importantly, the ERCI problem is realizable iff ⟨p,h⟩ is achievable. Thus,
to solve ERCI instances, we start by characterizing S. We start by observing the S is
convex2 (proof in Sec 7.7).

Proposition 7.3.3. The set of achievable points, S, is convex.

Next, because S is downward closed, it suffices to study the “maximal” or non-dominated
points. Precisely, we say that a point x is dominated by x′ if x ≺ x′, i.e., if x ⪯ x′ ∧ x ̸= x′.
The Pareto front FS of S is then the set of non-dominated achievable points,

FS
def= {x ∈ S | ∀x′ ∈ S, x ̸≺ x′}. (7.7)

Importantly, it holds that the ERCI problem is satisfiable iff there exists a x ∈ FS such
that ⟨p,h⟩ ⪯ x.

Example 7.3.4. The set S illustrated in Fig. 7.4b is obtained by taking the union of guaranteed
points, and can be characterized by the set of points on the Pareto front: This is the curved
border between the green and white area, in particular the three green dots are on the Pareto
front. Any ERCI instance with ⟨p,h⟩ in the green area is realizable.

Approximating the Pareto front gives a natural approximation scheme for ERCI instances:
For any subset F ⊆ FS,

1. If there exists an x ∈ F such that ⟨p,h⟩ ⪯ x, then the ERCI problem must be realizable
and x is a witness to realizability.

2. If there exists an x ∈ F such that x ≺ ⟨p,h⟩, then the ERCI problem is not realizable
and x is a witness to unrealizability.

Due to convexity, we may speed up the search for realizability: If there exist x1, x2 ∈ F such
that ⟨p,h⟩ ≺

(
w · x1 + (1− w) · x2

)
, we call x1, x2 a witness-pair.

Remark 7.3.5. Given a witness (pair) to realizability, it is easy to extract the corresponding
improviser. Let x1, x2 be a witness-pair to realizability, induced by σλ1 and σλ2 such that
⟨p,h⟩ ⪯ w · x1 + (1− w) · x2, then the policy described by

σ∗
ego(a | s)

def= w · σλ1(a | s) + (1− w) · σλ2(a | s) (7.8)

is an improviser solving the ERCI problem.
2That is, x, x′ ∈ S implies for every w ∈ [0, 1] that w · x + (1− w) · x ∈ S

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 94

Example 7.3.6. Consider Fig. 7.4c. We have found three points on the Pareto front, and
already have a good impression of the trade-off between randomization and performance. In
particular, the green area is definitively a subset of S: It exploits the downward closure and
the convexity of S. The red (dotted) parts contain the points on the Pareto front in their
downward closure, thus they cannot be part of the Pareto front themselves. Furthermore, the
topmost point on the Pareto front was obtained by maximizing performance (and optimizing
randomization only as a secondary objective). Thus, by construction, the bricked area at
the top is not realizable. Analogously, the bricked area at the right reflects non-achievable
randomization.

Remark 7.3.7. We notice that the multi-objective optimization perspective allows us to extend
the set of witnesses for unrealizability. In particular, every point of the Pareto-curve can be
described as optimizing some scalarization of the objectives. Geometrically, it optimizes along
a particular direction. Whenever we know that a Pareto-optimal point x = ⟨p, h⟩ optimizes
a weighted objective with weights w = ⟨w1, w2⟩, then x and w together are a witness for
unrealizability for ⟨p,h⟩ whenever w1 · p+ w2 · h < w1 · p + w2 · h.

Thus a key algorithmic question in ERCI is how to efficiently explore the Pareto front FS.

Regret-Based ERCI
To algorithmically explore the Pareto-curve, we re-parameterize the ERCI problem. First, we
find the two special points induced by (1) optimizing performance and only then randomization
(the topmost green point in the figures) and (2) optimizing randomization and only then
performance (the rightmost green point). As we have seen, these restrict the domain in which
we can actually trade performance for randomness. We define h∗ def= max{h | ∃p s.t. ⟨p, h⟩ ∈
S}, i.e., the largest randomness that can be guaranteed by any ego-policy. Likewise, we define
p∗ def= max{p | ∃h s.t. ⟨p, h⟩ ∈ S}, i.e., the largest performance that can be guaranteed by
any ego-policy. Then, we define p− def= max{p | ⟨p, h∗⟩ ∈ S}, the best performance that ego
can guarantee while guaranteeing optimal randomness. Likewise, we define the analogous
h− def= max{h | ⟨p∗, h⟩ ∈ S}. We thus obtain two points on the Pareto front: ⟨p−, h∗⟩ and
⟨p∗, h−⟩, and intuitively, we can trade between these two points following the Pareto front.

Now, rather that fixing p and h a priori, we seek to guarantee some percentage of the
independently achievable soft constraint and causal entropy measure. We re-parameterize
ERCI as follows:

pϵ
def= ϵ · (p∗ − p−) + p− hδ

def= δ · (h∗ − h−) + h− (7.9)
where ϵ, δ ∈ [0, 1]. We call this version of ERCI regret-based. We remark that the repa-
rameterization is not only beneficial from a usability point-of-view, but it also eases our
exposition. Geometrically, after computing p∗ and h∗, we know that the left triangle in
Fig. 7.4d is definitively realizable, and the regret-based ERCI asks whether the white circle is
also realizable (where the point of the white point is given by ϵ and δ). Together, we obtain
the following (core) ERCI problem.

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 95

The Core ERCI Problem: Given an finite acyclic SG G, with terminal states, s⊤ and
s⊥, and thresholds ϵ, δ ∈ [0, 1], find a ego-policy σego s.t. for every env-policy σenv:

1. (soft constraint) Pr(last(ξ) = s⊤ | σ) ≥ pϵ

2. (randomness constraint) H(σ) ≥ hδ

where σ = ⟨σego, σenv⟩.

Finally, it is helpful to think about the Pareto front as a function of randomization in this
reparameterization. We define a characteristic function which given a target performance
ratio, ϵ, yields the optimal randomness ratio, δ:

fS : [0, 1]→ [0, 1]
fS(δ) = max

ϵ
{hδ | ⟨pϵ,hδ⟩ ∈ S} (7.10)

Proposition 7.3.8. fS is continuous and (strictly) decreasing.

We shall temporarily postpone the proof of Prop. 5.2.2. For now, one can observe that
(non-strict) monotone decreasing follows directly from convexity and using the adequate
domains. Finally, the set S is (in general) not a finite polytope – the MDP in Fig. 7.3a serves
as an example. Nevertheless, S can be well approximated with finitely many vertices, see
Ex. 7.3.6. With these facts, we are now well-equipped to develop the algorithms in Sec. 7.4
for MDPs and Sec. 7.5 for SGs.

7.4 The Control Improvisation Problem for MDPs
We present an algorithm for the control improvisation problem for MDPs, which in the next
section, will serve as a subroutine for an algorithm on SGs. Our goal shall be to instantiate
the approximation scheme from the previous section. In particular, we seek to find points on
the Pareto curve FS and incrementally build up F ⊆ FS.

Rationality
To start, recall that an MDP is a stochastic game with no action choices for the environment,
i.e., the environment is purely stochastic and the only degree of freedom is ego’s policy.
The key idea for finding points on the Pareto-curve is to rephrase the trade-off between
randomization and performance as a degree in rationality λ of the policy. Formally, the
rationality corresponds to the following scalarization of our multi-objective problem [96],

Jλ(σ) def=
〈

1, λ
〉
·
〈
hσ, pσ

〉
. (7.11)

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 96

As we discussed in Ch 3, for MDPs, the unique (ego-)policy that optimizes (7.11) is given
by a smooth variant of the Bellman equations [162], i.e., for each rationality λ ∈ [0,∞), we
define a policy σλ – using s = last(ξ) – as follows:

σλ(a | s) def= exp(Qλ(s, a)− Vλ(s)) (7.12)

Vλ(s) def=
λ · [s = s⊤] if s ∈ {s⊤, s⊥},

smaxa∈A(s) Qλ(s, a) otherwise.
(7.13)

Qλ(s, a) def=
∑
s′
P (s, a, s′) · Vλ(s′). (7.14)

Remark 7.4.1. As opposed to (3.25), here we have written the smooth Bellman backup (3.25)
in its more traditional Q and V decomposition. This is to emphasize that the value is a
function of the state (or state distribution) indexed by the prefix, ξ.

To ease notation, we denote xλ def= xσλ
, pλ

def= pσλ
, hλ

def= hσλ
. Intuitively, as λ → 0, σλ

approaches the uniform distribution over all available actions. Note that this policy maximizes
(causal) entropy, and thus h∗ = h0. As λ→∞, this variant of the Bellman equations coincides
with the standard Bellman equations [120], where σλ selects (uniformly) from actions that
maximize performance. Furthermore, the monotonicity and smoothness of the above Bellman
equations yields the following proposition.

Proposition 7.4.2. pλ is continuously (and strictly) increasing in λ and hλ is smoothly (and
strictly) decreasing in λ.

In terms of fS, we can define:

ϵλ
def= pλ − p0

p∞
+ p0 and δλ

def= hλ − h∞

h0
+ h∞. (7.15)

Then, because σλ maximizes randomness given a target performance, one derives:

fS (δλ) = ϵλ. (7.16)

What remains is to instantiate the approximation scheme for the Pareto front by varying
the optimization direction ⟨λ, 1⟩.3 In particular, we construct F = {xλ | λ ∈ {λ1, λ2, . . .}}
until F contains a witness to either realizability or unrealizability of the ERCI instance. We
notice that the scalarization in (7.11) means that we may additionally exploit witnesses to
unrealizability as outlined in Remark 7.3.7. In the remainder of this section, we improve
upon randomly selecting values for λ.

3Assuming p∗, h∗ ̸= 0 (which would otherwise yield trivial S and FS)

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 97

Targeted Pareto-exploration
The key ingredient to improve upon arbitrarily selecting λ1, . . . λi is to exploit additional
structure of the rationality. We propose a three staged sequence: (i) Compute xλ for the end
points λ ∈ {0,∞}. (ii) Double λ (starting at λ = 1) until hλ ≤ h, yielding λ1 . . . λj. (iii)
Binary search for λ ∈ [λj−1, λj]. We illustrate the idea in Fig. 7.4e.

The algorithm terminates almost surely, that is: the algorithm halts if ⟨p,h⟩ is not on
FS (or if we happen to exactly hit ⟨p,h⟩ by selecting some rationality λ). As the Pareto
front has measure 0, we argue that not halting is thus merely a technical concern, as a small
perturbation to the ERCI instance (i.e. a smoothed analysis [138]) on G admits decidability.

Our approximation scheme yields a semi-decision process which halts iff either (a) ⟨p,h⟩
is bounded away from FS or (b) ⟨p,h⟩ is dominated by xλi

.

Next, observe that if we terminate the binary search when the search region is smaller than
∆, this approximation scheme becomes linear in the MDP size and logarithmic in the final
rationality, λ∗, and the resolution, ∆, i.e., the run-time is,

O
(
|G|︸︷︷︸

Evaluate xλ

·
Doubling Phase︷ ︸︸ ︷

log(λ∗) · log(1/∆)︸ ︷︷ ︸
Binary Search

)
(7.17)

Finally, before generalizing to stochastic games, we observe that in practice, λ = 100 yields a
nearly optimal policy, and thus one can often assume λ∗ ≤ 100 in our run-time analysis.

7.5 The Control Improvisation Problem for SGs
MDP algorithm in hand, we are now ready to provide an algorithm for stochastic games.

Environment Policies
We begin with three observations about the env-policies. First, for ERCI, we can assume an
adversary for env that aims to foil ego achieving both the performance and randomization
requirement. We call such a env-policy violating. For a policy to be violating, it suffices
to violate, against every ego-policy independently, either performance or randomization.
Second, if there is a violating env-policy, there is a deterministic env-policy that proves this.
In particular, at every state, σenv may choose to violate either constraint via the appropriate
action with no incentive to randomize. Third, fixing an environment policy reduces G to a
MDP G[σenv].

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 98

s0 λ

s1s2

s3 s4

a b

a b

λ λ′ ≥ λ

λ

λ 7→ h3 λ 7→ h4 ≥ h3

λ 7→ h1λ 7→ h3

MDP MDP

MDP

Figure 7.5: SG to illustrate entropy matching policies.

A Sufficient Class of Policies
For MDPs, we have seen that varying rationality is sufficient to explore the Pareto curve. We
show that we can adapt that idea to a class we call entropy matching policies, which may be
indexed by the (initial) rationality. In the initial state, we start by assuming that env selects
a (deterministic) policy, σλenv, that lexicographically minimizes the guaranteed randomness,
followed by performance. On the sub-graph, G[σλenv], ego employs the corresponding entropy
maximizing policy for the MDP G[σλenv]. Whenever env diverges from the entropy minimizing
policy (to decrease the induced performance), we let ego increase its rationality such that it
still induces the same guaranteed randomness. We refer to this idea as entropy matching. The
idea is that the rationality at the initial state induces a worst-case entropy, and whatever env
chooses to do, throughout the SG, we ensure that we indeed obtain this entropy. The policy
thus tracks this entropy and if necessary adapts the rationality (which we call replanning).
Replanning ensures we obtain the optimal performance from a particular point while still
ensuring the required randomness.

Example 7.5.1. We sketch an entropy matching policy in Fig. 7.5. In particular, we show
part of a SG. For some fixed rationality λ, we annotate in red, on the left of the SG states,
the entropy obtained when assuming that env plays an entropy-minimizing policy as outlined
above. In particular, this means that in s2, env selects action a. Now, our entropy-matching
policy (in blue, on the right) will play with rationality λ, unless state s4 is reached. As this
ensures a higher entropy, we may now select a higher rationality, λ′.

Soundness and Completeness
Importantly, observe that because fixing a policy for ego yields a verifiable point in S, any
witness for realizability we find is trivially sound. For completeness, we can restrict ourselves
to the case in which our algorithm claims the ERCI instance unrealizable. Surprisingly, the
class of policies we consider suffices, and the algorithm is thus sound and (whenever halting)
complete (proof provided in Sec 7.7). That is, all guaranteed points are witnessed by an
entropy matching policy!

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 99

Further, observe that as a corollary of the entropy matching family being complete, it
must be the case that fS(hλ) inherits continuity and (strict) monotonicity from the MDP
case. Namely, at each env state, the achievable points S are necessarily the intersection of
the achievable points of the sub-graphs. By induction, (with the MDP base case), we obtain
continuity and strict monotonicity.

Algorithm: Memoizing Pareto Fronts
We propose approximating the Pareto front using the same three staged sequence of exploring
rationality coefficients (at the initial state) as the MDP case: (1) endpoints, (2) doubling,
(3) binary search. To perform the these computations efficiently, we adopt a geometric
perspective. Observe that each node of G indexes a sub-graph, which has a corresponding
Pareto front for trading performance for randomness. Further, note that the Pareto front
at an env node is the intersection of the Pareto fronts of its child nodes. Entropy matching
corresponds to “switching” between Pareto fronts and adjusting the optimization direction
by increasing the rationality. Thus, by traversing the graph from the terminal states to
the initial state, approximating Pareto fronts along the way, one can memoize how to trade
performance for randomness at any given node. This preprocessing enables determining the
minimum entropy response for any optimization direction and quickly replanning via a convex
combination of Pareto optimal policies.

Approximate Pareto Fronts
Of course, by varying λ, one can only construct approximate Pareto fronts F̂ ⊆ FS. We
propose the following high-level algorithm to adapt the above algorithm to the case where
each Pareto front approximation introduces at most κ error along the performance axis.

1. Let τ denote the length of the longest path in G.

2. Let 0 < κ < 1 be some arbitrary initial tolerance.

3. Recursively compute κ-close Pareto fronts for each successor state using replanning.

4. If the any minimum entropy action cannot be determined or p is within κ · τ
distance to (but outside of) F̂, halve κ and repeat.

5. Otherwise, perform the entropy matching algorithm (with initial entropy h) using
these Pareto fronts and return the resulting policy (if on exists).

The soundness of this algorithm relies on the following critical facts: (1) Given sufficient
resolution, the minimum entropy env-actions can be determined. (2) The resulting entropy
depends solely on the resulting sub-graph (and is independent of the current Pareto approxi-
mation). (3) Thus, when querying points on FS, error can only accumulate for p. (4) Next,

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 100

observe that p is computed using convex combinations of entropy matched points on Pareto
approximations. (5) Convex combinations of an error interval cannot increase the error, i.e.,

q · [x, x+ κ] + q̄ · [y, y + κ] = [z, z + κ], (7.18)

where z = q · x + q̄ · y. Thus, so long as κ · τ is enough resolution to answer pλ < p, one
obtains a semi-decision procedure as in the MDP case.

Termination and Run Time
First, as in the MDP case, the algorithm terminates almost surely, with the exception
occurring only for a subset of the Pareto front. Below, we give an output-sensitive analysis
of the run time (assuming it does halt). If κ∗ tolerance is required to terminate, then the κ
search introduces O(log(1/κ∗)) iterations. Next, observe that each node need process a given
rationality coefficient at most once. Further, looking up which pair of rationalities are need to
upper and lower bound the performance for a given randomness can be done in logarithmic
time via binary search on rationality coefficients. As the corresponding bounds and convex
combinations can be computed in constant time, this means this algorithm runs in time:

O
(

log(1/κ∗) ·Nλ · log(Nλ) · |G|
)
, (7.19)

where, Nλ is the number of unique rationality coefficients processed. If, as in the MDP case,
one assumes a maximum rationality coefficient λ∗ and a minimum rationality resolution ∆,
one obtains:

O
(

log(1/κ∗)︸ ︷︷ ︸
κ search

· λ∗/∆ ·
Replanning︷ ︸︸ ︷
log(λ∗/∆) ·|G|︸ ︷︷ ︸

Evaluate λ

)
. (7.20)

The above however is very conservative and empirically we observe Nλ bounded far away
from λ∗/∆.

7.6 Implementation and Empirical Evaluation
To experimentally validate the feasibility of our ERCI algorithm for SGs, we implemented [147]
our algorithm in Python. The domain considered was the same as our motivating example.
Specifically, our experiments used a k × k grid discretization of the workspace (cf. Fig. 7.1),
for k ∈ {4, 5, 6, 7} where the four target houses lie in {⌊k/3⌋, ⌊2k/3⌋}2, and the drones Dtest
and Dnew are initially at in the bottom left corner and top right house resp. Furthermore,
for simplicity, we embedded the avoid crash condition as part of the soft constraint, rather
than a hard constraint4. We took ego’s dynamics to be deterministic and modeled env as
visiting each house in either clock-wise or counter-wise order, where the orientation can switch
with (a potentially state dependent) probability p ∈ [1/100, 1/50] whenever a house is visited.
Next, we considered an alternation between ego and env to be a single logical time step, and

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 101

2000 4000 6000 8000
BDD Nodes (≈ 2 · |G|)

0

50

100

150

200

250

300

350

Ti
m

e
to

sy
nt

he
siz

e
po

lic
y

(s
ec

)

Linear growth in game size

(a) Experimental times for computing Pareto front
of a variety delivery drone problems.

10 20 30
horizon (τ)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

BD
D

siz
e

×105 BDD sizes track horizon

dim
4
5
6
7
8

(b) BDD graph size as a function of horizon for the
problems in our benchmark suite. Distribution of
problems, non-uniform in horizon to avoid small

horizon artifacts.

Figure 7.6: Plots to illustrate scalability

(non-uniformly) instantiate problem instances with horizons ranging from 6 to 18, i.e., paths
ranged from length 12 to 36. Finally, as we shall expand on in the next two chapters, each
SG was represented in a compressed form as a Binary Decision Diagram (BDD) [23].

Results
First and foremost, we succeed in synthesizing controllers in the mentioned setup. The
controller randomizes its behavior while meeting the specification, which is not surprising as
the algorithm yields a correct-by-construction policy.

Next, we consider the practical run time of our algorithm. As Fig 7.6a demonstrates, the
empirical time to estimate the Pareto front seemed to increase linearly with our SG encoding
– which is consistent with our complexity analysis. Moreover, our encoding seems to linearly
track with the horizon for all k (Fig. 7.6b), suggesting that the overall run time grows linearly
in the horizon within our parameterization. When combined with the potential to parallelize
across the rationality coefficients, these results suggest that practical optimizations to our
ERCI algorithm may admit usage on other more complicated benchmarks. Finally, we remark
that the use of a decision diagram encoding did indeed dramatically decrease the size of the
SG (with negligible overhead).5

4Note that counter-intuitively, only using soft constraints generally results in harder instances as the
compressed SGs are larger.

5For example, the (k = 8, horizon = 18) case is encoded using a 505,100 node BDD (|G| = 6, 861 nodes).

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 102

7.7 Proofs

Convexity of ERCI solution set
Proof Sketch Prop 7.3.3. Recall that a set is convex, if it is closed under convex-combinations6.
Consider two points ⟨p, h⟩, ⟨p′, h′⟩ ∈ S achieved by σego and σ′

ego respectively. Consider the
new policy, π, defined by employing σego with probability q and σ′

ego with probability q̄ def= 1−q.
Because each policy guarantees its corresponding performance, this new policy has performance
at least q · p+ q̄ · p′. Similarly, by viewing π as a random variable and applying chain rule
yields,

Hτ (σ) ≥ q ·H(Aego
1:τ ′ | S1:τ | π = σego) +

q̄ ·H(Aego
1:τ ′ | S1:τ | π = σ′

ego)
= q · h+ q̄ · h′.

(7.21)

Thus, any convex combination of guaranteed points is guaranteed by a convex combination
of the corresponding ego policies.

Completeness of Entropy Matching for SGs
Proof Sketch of SG Completeness. We prove the statement by induction over the (acyclic)
SG. First, observe that on games with only terminal nodes, completeness follows directly.
Next, suppose the entropy matching family is complete on all sub-graphs of G. To simplify
our proof, observe that w.l.o.g., we can restrict our attention to ERCI instances on the Pareto
front, ⟨p,h⟩ ∈ FS. Next, for the sake of contradiction, we shall assume that no entropy
matching policy achieves ⟨p,h⟩, but σ∗

ego does:

∀σego ∈ {σλego}λ . xσego ≺ ⟨p,h⟩ (7.22)
∃σ∗

ego /∈ {σλego}λ . ⟨p,h⟩ ⪯ xσ∗
ego . (7.23)

Indeed, we may reformulate (7.23) to

∃σ∗
ego /∈ {σλego}λ . ⟨p,h⟩ = xσ∗

ego (7.24)

as we assumed that ⟨p,h⟩ is Pareto-optimal.
Note that because the entropy matching family contains the maximizers and minimizers of

entropy (λ =∞ and λ = 0 resp.), and because increasing rationality monotonically decreases
entropy, there must exist some rationality, λ, such that σλego induces entropy h:

hσλ
ego

= h = hσ∗
ego , (7.25)

Compare with the direct encoding |G| = |S| · τ · |monitor state| = (8× 8)2 · (2 · 18) · (24 · 2) ≈ 37, 000.

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 103

where the second equality follows from (7.24). Next, let σλenv denote the min-entropy env-policy
given σλego, i.e., the policy that minimizes entropy in G[σλego]. Because σ∗

ego witnesses ⟨p,h⟩, it
must be the case that:

h⟨σ∗
ego,σ

λ
env⟩ ≥ h and p⟨σ∗

ego,σ
λ
env⟩ ≥ p (7.26)

Recalling that for MDPs, the maximum entropy policies as defined in (7.12)–(7.14) are the
unique maximizers of entropy (given p), it must be the case that:

h = h⟨σλ
egoσ

λ
env⟩ ≥ h⟨σ∗

ego,σ
λ
env⟩ ≥ h, (7.27)

and thus,
h⟨σλ

egoσ
λ
env⟩ = h⟨σ∗

ego,σ
λ
env⟩. (7.28)

Thus, from uniqueness on MDPs, σλego and σ∗
ego must exactly match on G[σλenv] and must

differ on some other subgraph. Applying the inductive hypothesis, we know that the entropy
matching family is complete on these subgraphs, and thus if σ∗

ego achieves a given ⟨p,h⟩ on
this subgraph, there must be an entropy matching that does so as well. Thus,

xσ∗
ego ⪯ xσλ∗ , (7.29)

contradicting assumptions (7.22) and (7.23). Thus, entropy matching must be complete.

7.8 Bibliographic Notes

Control Improvisation in the Literature
In this section, we briefly compare ERCI with other forms of control improvisation. Firstly,
we observe that general Control Improvisation has been proposed in stochastic environments
for lane changing [56] and imitating power usage in households [5]. However, in those both
settings, the randomness constraint is phrased as an upper-bound on the probability of
indefinitely-long paths. Consequently, those randomness constraints are trivially satisfied. In
comparison, we consider the synthesis of policies that necessarily randomize in presence of
stochastic behavior in the environment. The closest prior work is to ours is Reactive Control
Improvisation (RCI) for (deterministic) 2-player games [55]. As in ERCI, RCI features three
kinds of constraints; hard, soft, and randomness. As in ERCI, RCI can be preprocessed
resulting in the following core problem.

The Core RCI Problem: Given a finite acyclic (deterministic) SG G, with terminal
states, s⊤ and s⊥, and thresholds p ∈ (0, 1) and h ∈ [0,∞), find a ego-policy σego such
that for every env-policy σenv

1. (soft constraint) Pr(last(ξ) = s⊤ | σ) ≥ p,

2. (randomness) maxξ Pr(ξ | σ) ≤ d,

where σ = ⟨σego, σenv⟩.

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 104

s0

s2

s1

...
sn

t1 . . . tm

u
v1

v2

. . .

. . .

1 1

1/n

1/n

1/n

1

1

1

a 1

b 1

Figure 7.7: Example Illustrating the problem with RCI in stochastic environments.

While RCI is only applied to deterministic SGs in [55], there is nothing in the definition
that prevents its application to the general class of SGs.7 We observe that then, the only
difference between ERCI and RCI is that we use causal entropy rather than an upper bound
on the probability of a path to enforce randomness. Below we address two problems with
bounding the maximum probability of a trace.

First, RCI fails to account for causality when measuring randomness. In deterministic
systems, for which RCI was conceived, this distinction is unnecessary, but stochastic systems
must deal with counter-factuals. In practice, RCI encodes an agent model that is systematically
overly optimistic regarding the outcomes of dynamics transitions [96]. This results in
policies with worse performance given a fixed randomness target. In the context of our
motivating drone example, applying RCI thus results in a policy that is both quantitatively
and qualitatively less random than the ERCI.

Second, RCI fails to enforce randomization if there exists any path with sufficiently high
probability. The next (pathological) example illustrates.

Example 7.8.1. Consider the SG (actually, an MDP where we omit the env-states) in
Fig. 7.7. First consider that under each scheduler, the path from s0 to tm has probability 1/n.
In particular, this means that a feasible RCI instance (applied to an SG) must have d ≥ 1/n.
At the same time, every path in the SG already has probability at most 1/n, and thus, every
scheduler that satisfies the randomness constraint for δ = 1 satisfies it for any d ≥ 1/n. Thus,
for this MDP, the RCI formulation fails to enforce any randomization in the ego-policy. By
contrast, a causal entropy constraint from ERCI will continuously trade-off randomness for
performance.

On the other hand, one can observe that in reality, proposed algorithms for solving
RCI equally distribute probability mass across the maximum number of paths that ego can
guarantee [55]. We remark that because (1) causal entropy reduces to non-causal entropy
in deterministic dynamics and (2) uniform distributions maximize entropy, our proposed
entropy matching family exactly agrees with existing RCI algorithms on deterministic SGs.
Thus, we observe the following proposition.

7However, this does not mean that the algorithm to compute a solution carries over to the general case

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 105

Proposition 7.8.2. There exists a computable function,

f : (d,G) 7→ h,

such that, for any deterministic SG, G, and performance threshold p, there exists an ego-policy
solving the RCI problem with threshold d iff there exists a ego-policy solving the ERCI
problem with threshold h = f(d,G).

Additional Related Work
Synthesis in MDPs with multiple hard and soft constraints (often over indefinite horizons) is
a well-studied problem [32, 50, 53, 124]. In this setting, one generates deterministic policies
and their convex combinations. Put differently, some degree of randomization is not an
objective, but rather a consequence. Interestingly, in [46] the optimal policies in absence of
randomization are investigated. Along similar lines, [20] trades average performance for less
variance, thereby implicitly trading off the average and the worst-case performance. The
original results sparked interest in different extension to MDPs and the type of soft constraints,
such as continuous MDPs [65] and continuous-time MDPs [121], cost-bounded reachability [66],
or mean-payoff properties [19]. The algorithms have also been extended towards stochastic
games [34, 89]. Finally, notions of lexicographic multi-objective synthesis [31] – in which
one optimizes a secondary criterion among all policies that are optimal with respect to a
first criterion bare some resemblance with the algorithm we consider. The aforementioned
algorithms have been put in a robotics context in [91]. Finding policies that optimize reward
objectives is well-studied in the field of reinforcement learning, and has been extended to
generate Pareto fronts for multiple objectives [106, 114].

Next, our core ERCI instance can be seen as a multi-objective path problem [9, 107, 159].
The literature on multi-object path finding differs prominently from ERCI in two aspects:
they do not trade-off randomization and performance, and they do not trade-off declarative
and formal constraints with the accompanying formal guarantees, but are more search-based.

Another related domain is the problem of (randomly) patrolling a perimeters and points
of interest [4, 8, 118]. Closest to our work are formalisms rooted in game-theory, such
as Stackelberg games [132, 115]. Stackelberg games have been extending to Stackelberg
planning [137] in which a trade-off between the cost for the defender and the attacker can be
investigated. Most related are the zero-sum patrolling games introduced in [6], which has
led to numerous practical solutions [141]. Patrolling games are explicitly games between an
intruder and a defender, and there is no stochastic environment. Adding additional objectives
makes solving these problems harder [86] and in general, the obtained policies are no longer
applicable. To overcome this, a specific set of fixed objectives has been added to these games
recently [86]. The large common aspect in all of this work is that optimal strategies do
randomize. As in the synthesis work above, this is a consequence of the objectives rather
than an objective in itself. In comparison, we provide a general framework and in particular
support stochastic environments.

CHAPTER 7. IMPROVISATION IN STOCHASTIC GAMES 106

Finally, entropy as an optimization objective for MDPs with fixed rewards has been
well studied [127], particularly in the context of regularizing (robustifying) inverse and
reinforcement learning [162, 57]. The primary distinction from our work (in the MDP setting)
is the unspecified (performance/entropy) trade-off. Nevertheless, as previously discussed,
the specification variant of this literature served as the basis for our MDP subroutine [153].
Beyond Markov models, the (uniform) randomization over languages in finite automata [71,
83] or over propositional formulae [80, 15, 29] has received quite some attention, however
neither of those approaches support the notion of soft constraints or the related trade-offs.

107

Chapter 8

Stochastic Games as Circuits

We demand rigidly defined areas of doubt and uncertainty!

Douglas Adams (The Hitchhiker’s Guide to the Galaxy, 1979)

The previous chapter developed algorithms for control improvisation (maximum causal
entropy planning) in simple stochastic games. As the experiments and theoretical discussion
showed, the performance of these algorithms depends linearly on the size of the game graphs.
In the next two chapters, we will develop a systematic approach for representing compressed
representations of these game graphs.

Contributions
In order to succinctly represent stochastic game for history dependent task specifications,
we study modeling probabilistic transition systems as circuits. The result is a framework
for analyzing queries about stochastic games, e.g., what is the probability of satisfying the
task specification when applying actions uniformly at random, using tool such as Boolean
Satisfiability (SAT) solvers [44] and Binary Decision Diagrams [23]. The first step of this
approach will be to represent probabilistic systems as sequential circuits. We begin by defining
bit-vector predicates.

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 108

Definition 27. A bit-vector is a string with alphabet {0, 1}. A n-ary bit-vector
predicate maps n-bit vectors to {0, 1} ⊆ R, e.g,

φ : {0, 1}n → {0, 1}. (8.1)

If φ(x) = 1, we additionally call x a model of φ. We define the model count of φ,
denoted #(φ), as the number of models of φ, i.e,

#(φ) def=
∑

x∈{0,1}n

φ(x). (8.2)

An illustration of such a predicate is shown in Fig 8.1. When the number of inputs of a
predicate φ is unambiguous (or not important), we shall write φ(x) as a logical sentence over
x, where True is mapped to 1 and False is mapped to 0.

φ

n

Figure 8.1: A n-ary bit-vector predicate as a circuit with n inputs.

Example 8.0.1. Let φ : {0, 1}10 → {0, 1} denote the 10 input map,

φ(x) = x1 ∧ x7
def=
1 if x1 ∧ x7

0 otherwise
. (8.3)

Thus φ(x) = 1 iff x1 and x7 are True (i.e., 1). Further observing that there are 8 other “don’t
care” inputs, each with two possible values, yields #(φ) = 28.

Example 8.0.2. Given n ∈ N, let k be an integer between 0 and 2n− 1 and let φ : {0, 1}n →
{0, 1} be given by,

φ(x) = x < k, (8.4)
where x is interpreted as an integer between 0 and 2n − 1. Observe that #(φ) = k since there
are only k unsigned integers less than k.

Observe that a circuit can be made probabilistic by feeding the results of random coin
flips as inputs. To this end, we introduce notation for the process of generating a bit-vector
using n unbiased coin flips.

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 109

Definition 8.0.3. Denote by x1x2 . . . xn ∼ {0, 1}n the act of creating an n−bit-vector
by flipping n independent unbiased coins with:

Pr
x∼{0,1}n

(xi = 0) = Pr
x∼{0,1}n

(xi = 1) = 1
2 , (8.5)

and thus, the probability of drawing any particular bit-vector, x∗ is:

Pr
x∼{0,1}n

(x = x∗) = 1
2n . (8.6)

To study probabilistic statements, we make the following elementary observation.

Observation 1. Given an n-ary bit-vector predicate, φ, if one flips n independent
unbiased coins, x ∼ {0, 1}n, the probability that φ(x) = 1 is equal to the fraction of
n-bit-vectors that are models of φ, i.e,

Pr
x∼{0,1}n

(φ(x) = 1) =
∑

x∈{0,1}n

1
2nφ(x) = #(φ)

2n . (8.7)

Therefore, if one wishes to compute Pr
x∼{0,1}n

(φ(x) = 1) for some complicated φ, it suffices to

use a model counter to compute (or approximate) #(φ). While straightforward, the power of
this observation is only truly realized when one starts composing bit-vector predicates and
reusing inputs. We illustrate this through two more observations.

Observation 2. Using (8.7), φ can be reinterpreted as a process to turn n unbiased
coins into a biased coin.

To emphasize Observation 2, we shall denote by x ∼ φ the process of drawing a biased coin,
x ∈ {0, 1}, using the distribution given in (8.7).

Observation 3. If the results of some coin flips are shared, F : x 7→ (φ(x), φ′(x)), then
F : {0, 1}n → {0, 1}2 models correlated coin flips.

Inspired by Observation 3 and letting F be a map between bit-vectors, F : {0, 1}n →
{0, 1}m, we denote by x ∼ F the process of drawing m correlated biased coin flips. In
particular, if φi(x) = F (x)i, then x is the concatenation of m bit-vectors such that, xi ∼ φi.
Together, Observations 2 and 3 enable studying complex distributions via model counting.

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 110

φ φ′

(a) By sharing inputs, two bit-vector predicates,
which model biased coins, can be used to model

a pair of correlated coin flips.

φ′′

F

(b) Feeding correlated biased coin flips into a
bit-vector predicate yields a new bit-vector

predicate, and thus models a biased coin flip.

Figure 8.2: Illustrations of Observations 2 and 3.

000 001 001 011 100 101 110 111

00 01 10 11

Figure 8.3: Visualization of [φ× φ′](x). The bit sequences have the most significant bit on the
left and the least significant bit on the right, e.g., 011 = 3.

Example 8.0.4. Let φ and φ′ denote the following 3-bit bit-vector predicates,

φ : {0, 1}3 → {0, 1}

φ(x) def= x = 3

φ′ : {0, 1}3 → {0, 1}

φ′(x) def= x > 3
, (8.8)

where x is interpreted as an unsigned integer. Next, define φ× φ′ as the product of φ and φ′,
i.e., [φ × φ′] : x 7→

(
φ(x), φ′(x)

)
. The resulting map is illustrated in Fig. 8.3. Note that

because φ and φ′ share inputs, then the biased coins they model are correlated (Observation 3).
In particular, using Fig. 8.3, we see that φ × φ′ induces the following distribution over
2-bit-vectors:

Pr
y∼φ×φ′

(
y = k

)
=

3/8 if k = 0
1/8 if k = 1
1/2 if k = 2
0 otherwise.

(8.9)

Now suppose one wishes to compute the probability that k > 0 under (8.9). By (8.7), it
suffices to compute the model count of [x > 0] composed with φ× φ′,

Pr
y∼φ×φ′

(
y > 0

)
=

#
(

[x > 0] ◦ [φ× φ′]
)

23 = 5/8. (8.10)

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 111

Of course, in this case, it is easy to look at Fig. 8.3 to determine that #
(

[x > 0]◦[φ×φ′]
)

= 5.
However, in general, with bigger circuits and more complicated properties, this explicit
reduction to model counting proves incredibly useful.

Biased Coins and Bayes’ Rule
So far we have focused on modeling probability distributions where the probability masses are
(integer) multiples of 1

2n . Of course, many examples violate this assumption, e.g, a coin with
a 1

3 bias towards heads. We shall post-pone an explicit handling of biased coins until Ch 9
and instead note that probabilistic queries over unbiased coins can be answered by two model
counting queries.

Proposition 8.0.5. Let φ : {0, 1}n → {0, 1} and ψ : {0, 1}n → {0, 1} denote any two
bit-vector predicates. Then,

Pr
x∼{0,1}n

(φ(x) = 1 | ψ(x) = 1) = #(φ ∧ ψ)
#(ψ) . (8.11)

Proof. By the chain rule,

Pr
x∼{0,1}n

(φ(x) = 1 | ψ(x) = 1) · Pr
x∼{0,1}n

(ψ(x) = 1) = Pr
x∼{0,1}n

([φ ∧ ψ](x) = 1). (8.12)

Replacing the unconditioned probabilities using (8.7) gives,

Pr
x∼{0,1}n

(φ(x) = 1 | ψ(x) = 1) · #(ψ)
2n = #(φ ∧ ψ)

2n . (8.13)

Multiplying both sides by 2n and rearranging yields (8.11).

To avoid notational clutter, we shall frequently write (8.11) using the sampling notation,
y ∼ φ, previously introduced, but additionally condition on ψ,

Pr
y∼φ

(y | ψ) def= Pr
x∼{0,1}n

(
φ(x) = 1 | ψ(x) = 1

)
(8.14)

Example 8.0.6. Again, suppose we seek to find a pair φ, ψ that encodes a biased coin with
probability 1/3 of coming up 1. Observe that this can be accomplished by letting φ(x) def= (x =
0), ψ(x) def= (x < 3), such that,

Pr
y∼φ

(yi | ψ) = #(x = 0 ∧ x < 3)
#(x < 3) = 1

3 , (8.15)

where x ∈ {0, 1}2 is encoded as an unsigned integer.

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 112

Remark 8.0.7. In many contexts, #(ψ) can be precomputed, sometimes even without the use
of a model counting algorithm.
Remark 8.0.8. Computing the model count of a circuit is known to be #P -complete [13].
Nevertheless, in practice, moderately efficient methods for computing or approximating #(•)
exist including Monte Carlo simulation [104] and weighted model counting [33] via Binary
Decision Diagrams (BDDs) [21] or repeated SAT queries [28].

Encoding Rational Coins

Prop 8.0.5 provides guidance on how Ex 8.0.6 can be generalized to encode an arbitrary coin
with a rational bias. Consider a coin, y, such that Pr(y = 1) = k

m
, for some k,m ∈ N. Letting

n be the smallest integer such that m ≤ 2n, and recalling that x < k has exactly k models
(Ex. 8.0.2), observe that y corresponds to feeding n unbiased coins into φ(x) def= x < k and
conditioning on ψ(x) def= x < m. Finally, observing that x < k implies that x < m yields,

Pr
y∼φ

(y = 1 | ψ) = #(x < k)
#(x < m) = k

m
. (8.16)

Finally, since Pry∼F (φ(y) | ψ, ψ′) = Pry∼F (φ(y) = 1 | ψ ∧ ψ′) then (8.16) naturally extends
to modeling multiple input conditioned coin flips. Of course, biased coins are not very
interesting by themselves. Nevertheless, as illustrated in Ex. 8.0.4, feeding multiple correlated
coin flips into another circuit enables studying more sophisticated objects. Further, we will
later incorporate a notion of state which will enable answering non-trivial queries about
probabilistic systems via model counting.

8.1 Distributions over Finite Sets
We now return to the topic of modeling distributions over finite sets Formally, we first seek
to systematically solve the following problem:

Problem 8.1.1. Let Y be a finite set whose elements, ŷi, are numbered from 1 to |Y |, and
associate to Y the following rational valued probability distribution:

Pr(ŷi) = ai/m, (8.17)

where ai,m ∈ N such that
|Y |∑
i=1

ai = m > 0. Further, denote by y ∈ {0, 1}|Y | the 1-hot

encoding of elements of Y , e.g. yi = 1 iff y corresponds to ŷi. Find an n ∈ N, an
n-bit-vector function F : {0, 1}n → {0, 1}|Y |, and a n-bit-vector predicate ψ, such that:

Pr(ŷi) = Pr
y∼F

(yi = 1 | ψ) (8.18)

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 113

Note that the use of a 1-hot encoding is without loss of generality, since one can always feed
this encoding into a circuit that transforms it into another encoding.

Common Denominator Method
Many techniques can be used to solve Prob 8.1.1. Here we outline a straightforward general-
ization of encoding a biased coin (8.16). The key idea is to encode |Y | mutually exclusive
biased coins, which together, form a 1-hot encoding of ŷi. To begin, let n be the smallest
integer such that m ≤ 2n. For convenience, define

b0
def= 0 bi+1

def= bi + ai. (8.19)

Now, let φi : {0, 1}n → {0, 1} denote the circuit,

φi(x) def= bi ≤ x < bi + ai (8.20)

where x is interpreted as an unsigned integer. Further, note that by construction, #(φi) = ai
and the φi are mutually exclusive. Thus, the product of all φi results in a 1-hot encoding.
Namely, letting F : {0, 1}n → {0, 1}|Y | denote φ1 × . . .× φ|Y | and ψ(x) def= x < m yields,

Pr
y∼F

(yi = 1 | ψ) = ai/m, (8.21)

as desired.

8.2 Sequential Circuits
Ultimately, we want study sequential probabilistic systems, e.g., Stochastic Games. We begin
by formalizing sequential circuits.

np

mp

(a) A sequential circuit where the first p bits of
input and output are marked with black

rectangles to indicate that they represent the
previous and next state, respectively.

x historically x
∧

1

(b) Sequential circuit testing if x is currently 1
and (∧) if x has historically been 1. In this

illustration, the latch (s0 = 1) is shown cutting
the cyclic dependency of the circuit.

Figure 8.4: Sequential circuit illustration and example.

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 114

Definition 28. Let n,m, and p denote natural numbers. A sequential circuit is
a tuple, C = (s0, F), where F : {0, 1}p+n → {0, 1}p+m is the transition function, and
s0 ∈ {0, 1}p is the initial state. To every sequence of inputs a1,a2, . . . ∈ {0, 1}n,
associate a sequence of states s1, s2, . . . ∈ {0, 1}p and outputs y1,y2, . . . ∈ {0, 1}m by:

si � yi = F (si−1,ai) (8.22)

Finally, if m = 1, we refer to C as a monitor.

Example 8.2.1. Figure 8.4b illustrates a sequential circuit that checks if x has been constantly
1. Formally if φ(x) def= x0 ∧ x1, then F (x) def= φ(x).φ(x) and s0 = 1. Note that as circuits can
reuse outputs, in Fig. 8.4b φ(x) is only computed once.

Now observe that we can reduce the execution of a fixed number of steps of a sequential
circuit, C = (s0, F), back to a bit-vector function simply by composing F with itself, akin to
bounded model checking [17].

=

(n + p) · ττ

p + n

Figure 8.5: The sequential circuit of Fig. 8.4a unrolled for 3 steps. As in Fig. 8.4a, the first two
inputs and outputs of each copy of F denote the state. Note that the first copy of F has its state

inputs grounded to denote that s0 = (0, 0).

Definition 29. Let C = (s0, F) denote a sequential circuit with n inputs, p states,
and m outputs and let lastm : {0, 1}p+m → {0, 1}m denote the bit-vector function that
returns the last m bits of input. For all times τ ∈ N, define the τ-unrolling of C, to
be the map:

U τ
C : {0, 1}τ ·n → {0, 1}m

U τ
C(a1.a2.aτ) def= lastm ◦ F (. . . F (F (F (x0, a1), a2), a3), . . . , aτ)

(8.23)

where each ai denotes a bit-vector in {0, 1}n.

Since unrolling a monitor results in a Boolean predicate, Observations 1, 2, and 3 naturally
extend to the sequential circuits. This suggests extending our notation for sampling a coin to

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 115

Assumption
Monitor

Task
Monitor

accept?
∧

valid?

Coin flips

DynamicsAction

State

Figure 8.6: Recipe for modeling dynamical systems as sequential circuits.

sequential circuits. Given a sequential circuit C and a monitor ψ to condition on, we define
x

τ∼ C so that:
Pr

x
τ∼C

(x | ψ) def= Pr
x∼Uτ

C

(x | U τ
ψ) (8.24)

Encoding Stochastic Games
The key utility of Eq. (8.24), is that it enables studying stochastic games via tools like
SAT solvers and Binary Decision Diagrams (Ch 9). For example, as shown in Fig 8.6, the
combination of a task φ and a stochastic game, M = ⟨S, s0, A, P ⟩, can be modeled as three
sequential circuits: the dynamics (P), a task monitor, and an assumption monitor. The
dynamics circuit corresponds models the distribution P . As such, the actions inputs are
partitioned into ego and env inputs. The task monitor takes as input the current state and
outputs 1 iff sequence of states seen would be accepting if the episode ended. Similarly, the
assumption monitor checks if the sequence of states would satisfy the assumption ψ if the
episode ended. If the dynamics circuit is independent of the current action inputs, then the
circuit corresponds to a Markov chain. Similarly, if the dynamics circuit is independent of
the env inputs, then the circuit corresponds to a MDP.
Remark 8.2.2. Recall that when maximum causal entropy coincides with maximum en-
tropy (4.11), the forecasting policy πφ and likelihood of the demonstrations depend entirely
(Prop 4.4.1, (4.16)) on the estimated competency of the agent, pφ, and the competency of
an agent applying actions uniformly at random, qφ. Using a circuit representation of the
dynamics, computing qφ reduces to a model counting query.

Example 8.2.3. Consider the 1-d variant of the classic drunken sailor random walk. A
sailor walks along a pier, where with each step, the sailor either stumbles forward by one
plank, backward by one plank, or remains on the same plank. Further, suppose the pier is 11
planks long and that if the sailor visits the central plank more than 3 times, the plank will
break and the sailor will fall into the water. If the sailor starts on the middle plank and the

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 116

probability of moving forward is 2/6, moving backward is 1/6, and not moving is 3/6, what is
the probability the sailor breaks a plank after 10 steps?

0001000

00001000010000

0100000

1000000

0000010

0000001

(a) Illustration of “1-hot” encoding of a chain graph.
The right and left arrows represent arithmetic right
(≫ 1) and left (≪ 1) shifts of the state respectively.

≪ 1

≫ 1
MUX

MUX

previous position

position

direction

enable

(b) “1-hot” encoding of a chain graph as a
sequential circuit. The MUX gates use their top
input to select which of their two other inputs to

output.

Within the above framework, the dynamics corresponds the a 1-d finite chain (see Fig. 8.7a).
An example encoding of such a chain as a sequential circuit is given in Fig. 8.7b. Similarly, the
monitor is a sequential circuit for the regular language (.∗s0.

∗s0.
∗s0.

∗) which can be efficiently
compiled into a sequential circuit [145]. Finally, the policy corresponds to some circuit
that models the probability distribution over actions which, using the inputs in Fig. 8.7b),
corresponds to modeling two independent biased coin flips, namely, Pr(enable = 0) = 1

2 and
Pr(direction = 0) = 2

3 . As shown in the previous section, namely (8.16), we can model the
direction coin by feeding the output of φdirection(x) = x < 2 into the direction input shown in
Fig. 8.7b, and conditioning on x < 3, where x ∈ {0, 1}2. Similarly, using a disjoint set of
inputs, on can encode the enable coin by feeding the output of φenable(x′) = x′ < 1 into the
enable input of Fig. 8.7b. The resulting sequential circuit, Cds is summarized in Fig. 8.8a.

Letting Cvalid denote the monitor that for all time steps, x < 3, then the probability of the
sailor falling into the water within the first 50 steps is given via:

Pr (sailor falls into water) = Pr
x
50∼Cds

(x = 1 | Cvalid) = 25398396
610 ≈ 0.42 (8.25)

< 2

< 1
(.∗s0.∗s0.∗s0.∗)See

Fig 8
enable

direction
position

(a) Drunken Sailor policy circuit, Cds.

(b) Running example gridworld.

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 117

Example 8.2.4. Consider modeling the dynamics of the 8 × 8 gridworld of our running
example. As with the previous example, we use a 1-hot encoding of position. In particular let
states s ∈ S be represented as a bit-vector s = x � y where x, y ∈ {0, 1}8. Next, we represent
the action input as bit-vector, a = a1 �a2 ∈ {0, 1]2 where a1 determines along which coordinate,
x or y, the agent moves and a2 determines the direction, forward or backwards. Finally, let c
denote a coin flip inputs c ∈ {0, 1} with probability 1/32 to being 1. This will encode that there
is a 1/32 chance of slipping and moving down in the gridworld. The dynamics circuit can then
be modeled as the following function:

P̂ (x � y, a, c) =

P̂ (x � y, 1 � 0, 0) if c = 1
(x≪ 1) � y else if a = 0 � 0
(x≫ 1) � y else if a = 0 � 1
x � (y ≪ 1) else if a = 1 � 0
x � (y ≫ 1) else if a = 1 � 1

. (8.26)

To enforce the Luce axiom and keep the agent from leaving the grid, one can introduce an
assumption circuit that monitors that x and y never become 0. Asserting that the left-shift
(≪) and right-shift (≫) logical shift implies that 1 � 0≪ 1 = 0 and 0 � 1≫ 1 = 0, we have
that the this condition enforces that A(s) only contains actions that will not leave the grid.

8.3 Bibliographic Notes
With an eye towards realizing a maximum entropy planner, we systematically developed a
framework for modeling probabilistic systems as model counting problems. Starting from
unbiased coins, we constructed biased coins, correlated coins, and conditional probabilities.
We discussed how to model arbitrary distributions over finite sets and how to combine our
building blocks into sequential systems. While the building blocks discussed in this work
have been used in previous works (e.g. [149, 122]), we believe that the explicit discussion of
the modeling techniques in this work will enable future case studies on probabilistic systems
with SAT-based model counting algorithms.

This work connects with literature in two primary ways. First and foremost, we provide
an encoding of probabilistic systems as sequential circuits, which when unrolled, are suited to
be analyzed with model counting algorithms. Numerous encodings of probabilistic systems as
weighted model counting problems have been proposed [126, 33, 43], which has then spurred
the adaptation of a number of unweighted model counting algorithms to solve weighted model
counting problems [126, 35, 26]. Unfortunately, such adaptations require expert knowledge of
the inner workings of model counters, making the transfer of advancements from unweighted
model counting to weighted model counting difficult. Hence, techniques for efficient and
automated reductions from weighted model counting to unweighted model counting have
been proposed [27]. In many ways, this chapter continues in this direction, by providing a
framework for encoding probabilistic systems and inferences on said systems directly into

CHAPTER 8. STOCHASTIC GAMES AS CIRCUITS 118

unweighted model counting problems. Such reductions are particularly appealing given that,
to our knowledge, there is no major algorithmic advantage in using weighted over unweighted
model counting algorithms.

Further, this work is intimately related to the work on simulating discrete distributions
using a stream of random bits. This framework, called the random bit model and first
introduced by von Neumann [110], has gone on to spawn numerous techniques (for a more
detailed survey, we point the reader to [100]). One of the goals in this chapter has been
to illustrate how to draw from this vast literature to create new encodings of probabilistic
circuits.

119

Chapter 9

Stochastic Games as BDDs

BDDs are somehow special in the “Art of Computer Programming” because they
weren’t any where near on the scene in 1962. It’s really one of the only really
fundamental data structures that came out in the last 25 years.

Donald Knuth (Computer Scientist, June 5 2008)

In the previous chapter, we studied modeling probabilistic systems, and particularly
Stochastic Games, as abstract circuits. In this chapter, we study using Binary Decision
Diagrams (BDDs) [22, 23] to represent the directed acyclic game graphs encoded in these
circuits. The structure of this chapter then is to first introduce BDDs, their relevant properties,
and operations.1

Contributions
With this machinery in hand, we study how BDDs realize compressed representations of the
directed acyclic graphics used when constructing improvisers (Ch 7). This serves as the final
piece in the description of the maxEntPlanner (4.6). Furthermore, as we saw in the previous
chapter, model counting provides a means to compute qφ, even for very small values. Here
we shall see how BDDs admit transforming model counting to probabilistic reachability, and
support computing qφ directly.

Next, given these BDDs, the natural question is how large they can be? To this end, we
provide conservative size bounds that shows these BDDs grow at most linearly in the horizon.
Furthermore, this compressed encoding of time-unrolled stochastic games can be repeated
expansion of the time horizon. This keeps the dynamics model compressed throughout the
entire planning process. Finally, we conclude with the observation that BDDs provide a
natural means to detect and enforce of the Luce axiom as per Sec 5.6. Without further ado!

1For a more thorough introduction to BDDs, we point the reader to [87].

CHAPTER 9. STOCHASTIC GAMES AS BDDS 120

Let n be a natural number. A Binary Decision Diagram (BDD) over n variables is a
finite rooted directed acyclic graph, G = (V,E) satisfying four conditions:

1. Nodes and edges are labeled with a natural number between 0 and n+ 1, i.e.,

label : V ∪ E → [0 . . . n+ 1].

2. A path, ξ, in G never visits a label twice, i.e.,

v, v′ ∈ ξ =⇒ label(v) ̸= label(v′).

3. Non-sink nodes have exactly two edges, one labeled 0 and the other labeled 1.
4. A node is a sink iff its label is 0 or 1.

A BDD is said to be ordered if along any path, v1 → . . . → vm, nodes have strictly
decreasing labels, i.e., label(v1) > . . . > label(vm). A BDD is said to be reduced if
it contains no isomorphic subgraphs. Unless otherwise stated, we shall assume BDDs
are ordered and reduced. Finally, let f be a n-bit bit-vector predicate. A BDD is said
to recognize f if for all xn, . . . , x2 ∈ {0, 1}, f(xn, . . . , x2) = 1 iff there exists a path
v1 → . . .→ vm from the root to a sink such that:(

label(vi) = j > 1
)

=⇒
(
label(vi, vi+1) = xj

)
.

Example 9.0.1. The BDDs for the predicates 0 : x 7→ 0 and 1 : x 7→ 1 have exactly one node
labeled 0 and 1 resp. These are denoted B0 and B1.

0

1

10

4 3

34

Figure 9.1: The BDD for the predicate x10 + x4 + x3 ≡ 1 mod 2. Nodes are annotated with their
label. Edges are solid and dotted if they have label 1 or 0 resp.

Example 9.0.2. An example 9 variable BDD for the predicate, x10 + x4 + x3 ≡ 1 mod 2,
is shown in Fig 9.1. Nodes are explicitly labeled and edges labeled 1 are represented as solid
lines and edges labeled 0 are represented by dotted lines. Observe that any path to 1 traverses
an even number of solid lines.

CHAPTER 9. STOCHASTIC GAMES AS BDDS 121

Properties of BDDs
BDDs have a number of useful properties which make them a popular and powerful represen-
tation of Boolean predicates.

Connection to automata and formal languages

In many ways, the structure of a BDD mirrors that of a DFA. This connection can be
made precise by another related structure called a Quasi Reduced Binary Decision Diagram
(QDD) [87]. QDDs are equivalent to BDDs except that variables cannot be skipped, i.e.,
every variable must appear on paths from the root to a sink. Logically, this is the same as
the traversal of edges to consuming inputs for decision variables that are skipped over. Thus,
a QDD is a DFA, where the node labeled 1 is the only accepting state! The language of this
DFA is exactly {x � y ∈ {0, 1}n � {0, 1}∗ | f(x) = 1}. Hence why we say that a BDD recognizes
f . Furthermore, note that since the BDD is assumed reduced, each state in this DFA must
access a unique residual language. Thus the DFA corresponding to a given BDD (QDD) is
also minimal. Finally, most of the subsequent properties of BDDs follow directly from this
connection. As such, we shall often use terminology from DFA when discussing BDDs, e.g.,
access strings.

Operations on BDDs

BDDs support a number of operations such as conjunction, disjunction, exclusive or, negation
and function composition. These operations can all be implemented by simple graph manipu-
lations - each of which has polynomial time complexity (approximately linear or quadratic) in
the size of the BDDs. Thus, for many Boolean predicates, BDDs offer a succinct and efficient
form for analysis.

Reduced Ordered BDDs are canonical

Following from correspondence with minimal DFAs, reduced ordered BDDs are canonical, i.e.,
given predicate f(xn, . . . , x2), there is exactly one BDD that recognizes f . We shall denote
this BDD by Bf . A useful consequence is that the Boolean Satisfaction query :

∃x . f(x) = 1,

is equivalent to checking if Bf = B0. Recalling that B0 has exactly one node, we see that this
check takes constant time (after constructing the BDD!) Similarly, checking if two predicates
f and g are equivalent becomes the same as checking if Bf⊕g = B0, where ⊕ denotes exclusive
or. Since ⊕ can be realized by graph manipulation, we see that equivalence checks are also
simple graph manipulations.

CHAPTER 9. STOCHASTIC GAMES AS BDDS 122

BDDs depend on variable ordering

Note that BDD uniqueness is only true given the ordering of variables in f . For example, let
f be the predicate for (x2 ∧ x3) ∨ x4 and g be the predicate for (x2 ∧ x4) ∨ x3. As Fig 9.2
illustrates the f and g have different BDDs. Of note is that the size of the BDD depends on
the variable ordering.

0

1

4

3

2

(a) BDD for (x2 ∧ x3) ∨ x4.

0

1

4

3

3 2

(b) BDD for (x2 ∧ x4) ∨ x3.

Figure 9.2

Model Counting, Probabilistic Reachability, and BDDs

In the previous chapter, model counting served as a central primitive for analyzing probabilistic
circuits. Below, we show how model counting of a predicate f : {0, 1}n → {0, 1} can be
efficiently performed by probabilistic reachability in Bf . While slightly non-standard, this
perspective will also make clear that the random action competency, qφ, can be directly
computed using the same algorithm.

To start, interpret Bf as a MDP, M , where actions are selected by flipping biased coins
associated with each input. That is, the states of M are the nodes of Bf , the actions of M
have A(s) = {0, 1} if s is not a sink node. The transition probabilities follow: P (s′ | s, a)
is 0 if s and s′ are not connected and bi ∈ [0, 1] if label(s) = i and a = 1. Observe that
the probability of reaching the state s∗ with label 1 in M can be expressed as the following
dynamic programming scheme [90],

Pr(reach(s∗) | s) =

1 if label(s) = 1
0 if label(s) = 0
bss

′
1 + (1− bs)s′

0 otherwise,
(9.1)

where bs denotes blabel(s) and s′
0, s

′
1 denote the child of s accessed by 0 and 1 resp. Next,

noting that the probability of reaching label 1 from the root corresponds to that satisfaction
probability. Thus if bs = 1/2 for all interior states, then:

Pr(reach(s∗) | s) = Pr
x∼{0,1}n

(f(x) = 1) = #(f)
2n . (9.2)

CHAPTER 9. STOCHASTIC GAMES AS BDDS 123

Thus, if bi = 1/2 then #(f) = 2n Pr(reach(s∗) | s), as desired. Further, note that if the f
encoded the unrolled probabilistic circuit testing satisfying the task in a workspace MDP,
then

Pr(reach(s∗) | s) = qφ,

enabling efficient maximum entropy planning when (4.11) holds.

Multi-Terminal BDDs

So far we have focused on the view of BDDs modeling Boolean predicates,

f : {0, 1}n → {0, 1}.

Now suppose one wants to model a multi-valued function, e.g.,

g : {0, 1}n → {0, 1, . . . ,m}.

There exist several variants of BDDs to directly encode such functions. Observe however
that multi-terminal BDDs can also encoded as BDDs [139]. In particular, introduce auxiliary
variables, y1, . . . , ym, and create a function f = h(g(x), y1, . . . , ym) where:

h(z, y1, . . . , ym) =
1 if z = i ∧ yi = 1 ∧ ∀j ̸= i . yi = 0

0 otherwise.
(9.3)

Note that in Bh, the new auxiliary effectively act as new terminals. In particular, if g(x) = i,
then the final non-terminal node in the BDD must be yi since the other output variables
have no effect.
Remark 9.0.3. Several other encodings of the same idea exist, e.g., using a base 2 encoding of
g(x) instead of the 1-hot encoding implicit above. For our purposes, the important property is
that the BDD accessed by setting the input variables accesses a sub-BDD that maps directly
to one of the outputs.

9.1 Encoding Stochastic Games
As mentioned at the start of the chapter, our goal will be to represent game graphs of SGs
using BDDs. In this section, we describe the encoding and construction of such BDDs (with
an overview provided in Fig 9.3). To start, assume that our planning horizon is τ and all
complete paths are of lengths τ ∈ N (using the padding trick from Ch 3). Next, recall from
the previous chapter that any finite SG can be expressed as a sequential circuit, C, with
n inputs and m. Let the first q inputs of C correspond to coins with bias (b1, . . . bq) and
the remaining n− q inputs encode the action. Similarly, the first output bit will denote the
output of the assumption monitor and the remaining m− 1 bits encode the state S. Next,
observe that because the planning horizon is finite, any task restricted to this horizon must

CHAPTER 9. STOCHASTIC GAMES AS BDDS 124

Compose
&

Compress

Encode
Traces

Fit
Max Causal

Entropy Policy

Estimate
Demonstration

Likelihoods

Dynamics

Specification
BDD

Demonstrations
Bit-Vectors

Policy over

BDD

Likelihood
Estimate

Figure 9.3: High-level likelihood estimation procedure described in this chapter.

be regular - and thus monitorable by a sequential circuit2. Unrolling the composition of C
and the task monitor circuit τ -steps, yields a Boolean predicate:

φ̂ : {0, 1}τ ·n → {0, 1}. (9.4)

Causal Orderings

When building the BDD for φ̂, denoted Bφ̂, we assert that the order of inputs of φ̂ satisfies
three conditions to reflect the decision process being modeled. First, the inputs should be
temporally ordered, i.e., inputs corresponding to earlier time steps have larger labels. Second,
within a given time step, the ego-action bits appear before the env-action bits. Third, within
a given time step, the action bits appear before the coin flip decisions. We refer to such
an orderings as causal since they respect the way in which information is revealed to the
ego-agent operating the SG represented by Bφ̂.

Paths to bits

Viewing the BDDs as automata, the causal orderings take the form:(
{0, 1}n1 � {0, 1}n2 � {0, 1}q

)τ
, (9.5)

i.e., repeatedly process the first n1 ego-decision variables, then the n2 env-decision variables,
and then q-coin flips. This defines map then from paths to bit-vectors:

encode : Paths$ →
(
{0, 1}n1 � {0, 1}n2 � {0, 1}q

)τ
. (9.6)

This implies that Bφ̂ is a compression of an SG where a single action now corresponds to
n− q actions and a probabilistic transition corresponds to flipping q coins.

2In particular, the DFA of a regular language is easily converted into a sequential circuit since both the
transition function and accepting set can be realized as lookup tables.

CHAPTER 9. STOCHASTIC GAMES AS BDDS 125

Enforcing hard constraints

At this point, we have described how to encode a SG and a task specification as a BDD.
Recall, however, that the ERCI problem required handling both a hard constraint, ψ, and
soft constraint, φ. To do this, the pre-processing step on stochastic game graphs in Ch 7
removed all ego-actions where it was impossible for ego to avoid the possibility of violating
the hard constraint. Importantly, this requires summarizing which paths violate the hard
constraint. Observe then that three terminal BDDs offer a direct means to encode whether a
particular (i) satisfies φ, (ii) does not satisfy φ, or (iii) violates an assumption (ψ) monitored
by the assumption circuit. Thus, the BDD can be post-processed to enforce satisfying ψ by a
single pass starting at terminal (iii) and removing ego decisions where there is a set of ego
and coin flip decisions that lead to (iii).

Smooth Bellman Backups

Finally, before discussing the construction and size of Bφ̂, we address the question of how to
adjust the smooth Bellman backup for the fact that:

1. The BDD game graph skips over certain decisions.

2. Selected actions and states outcomes are revealed over multiple decisions.

To this end, recall that in the variable ordering, nodes alternate between ego, env, and
coin flip decisions. Viewed as a computation graph, the nodes of the (uncompressed)
stochastic game would alternate between taking a LSE, min, and expectation of child
values resp. To address point two above, recall that these operations are all associative
(and commutative) in their arguments, i.e., max(max(x, y), z) = max(x,max(y, z)) and
LSE(LSE(x, y), z) = LSE(x,LSE(y, z)). Thus, the smooth value is well defined when split
over consecutive decisions.

Similarly, to address the first point, observe that, by definition, if a node is skipped in
Bφ̂, then it must have been inconsequential, i.e., the state or state-distribution indexed is
the same either way. Thus the path’s reward must have been independent of the decision
made at that node. Therefore, the eliminated LSE,min, and expectations must have been
over a constant value - otherwise the eliminated sequences would be distinguishable w.r.t φ
(or ψ). The result is summarized in the following identities, where α denotes the value of an
eliminated node’s children.

softmax(
|A|︷ ︸︸ ︷

α, . . . , α) = log(eα + . . .+ eα) = ln(|A|) + α, (9.7)

E
x
[α] =

∑
x

p(x)α = α, (9.8)

and
min(α, . . . , α) = α. (9.9)

CHAPTER 9. STOCHASTIC GAMES AS BDDS 126

Of course, it could also be the case that a sequence of nodes is skipped in Bφ̂. Using (9.7),
one can compute the change in value, ∆, that the eliminated sequence of k ego-nodes and
any number of env and coin flip nodes would have contributed:

∆(k, α) = ln(2k) + α = k ln(2) + α (9.10)

Crucially, evaluation of this compressed computation graph is linear in |Bφ̂|.
Remark 9.1.1. One might wonder if skipped decisions point to a violation of the Luce axiom
since the action makes no difference. Note that this is not necessarily the case as there
need only be a single task, φ′ that distinguishes the decisions. A related question then
might be if this correction is necessary for the results from Part I. Empirically, running the
experiments from Part I, with or without this correction made no qualitative difference in
the results. Thus, in practice, it may make sense to not include the correction if it makes the
implementation simpler.

Size of causal BDDs
Next, we return to the question of how big the compressed decision diagram can actually
be. To this aim, we cite the following (conservative) bound on the size of an BDD given an
encoding of the corresponding Boolean predicate in the linear model computation illustrated
in Fig 9.4 (for more details, we refer the reader to [87]).

f1 f2 fn

ak

bk

x1 x2 xn

f

Figure 9.4: Generic network of Boolean modules for which Theorem 1 holds.

In particular, consider an arbitrary Boolean predicate

f : {0, 1}n → {0, 1} (9.11)

and a sequential arrangement of n Boolean modules, f1, f2, . . . , fn where each fi has shape:

fi : {0, 1} × {0, 1}ai−1 × {0, 1}bi → {0, 1}ai × {0, 1}bi−1 , (9.12)

and takes as input xi as well as ai−1 outputs of its left neighbor and bi outputs of the right
neighbor (b0 = 0, an = 1). Further, assume that this arrangement is well defined, e.g. for
each assignment to x1, . . . , xn there exists a unique way to set each of the inter-module wires.
We say these modules compute f if the final output is equal to f(x1, . . . , xn).

CHAPTER 9. STOCHASTIC GAMES AS BDDS 127

f2
log2(2q|A× S × Sφ|)

action or coin flip

Current State +
Partial Action +
Partial Coin Flip

Figure 9.5: Generic module in linear model of computation for Bf .
Note that backward edges are not required.

Theorem 1. If f can be computed by a linear arrangement of such modules, ordered
x1, x2, . . . , xn, then the size, S ∈ N, of Bf (in the same order), is upper bounded [21] by:

S ≤
n∑
k=1

2ak·(2bk). (9.13)

To apply this bound to our problem, recall that Bf computes a Boolean function where the
decisions are temporally ordered and alternate between sequences of agent and environment
decisions. Next, observe that because the traces are bounded (and all finite sets are regular),
there exists a finite state machine which can monitor the satisfaction of the specification.
Remark 9.1.2. Ultimately, BDDs are a compression of the truth table of a Boolean predicate,
which itself is simply a string of 2n bits. As one might then expect, randomly selected
predicates, i.e., a random sequence of 0’s and 1’s, typically have intractably large BDDs.
From the theorem, we can view this as a consequence of modules necessarily needing back
edges. Even without this theorem though, this result is inevitable since the set of small
BDDs is much smaller than the number of all n-bit Boolean predicates (22n). Furthermore,
observe that decision problems and their negation (tautology detection) take constant time
given a BDD, i.e., check if BDD has a single node and that node’s label. Since these are
NP-complete and co-NP-complete problems respectively, one sees that constructing the BDD
can potentially take exponential time, even for predicates with small formula.

Specializing to SGs

Further, note that because this composed system is causal, no backward wires are needed,
e.g., ∀k . bk = 0. In particular, observe that because the composition of the dynamics
and the monitor is Markovian, the entire system can be uniquely described using the
monitor/dynamics state and agent/environment action (see Fig. 9.5). This description can
be encoded in log2(2q|A × S × Sφ|) bits, where q denotes the number of coin flips tossed
by the environment and Sφ denotes the monitor state. Therefore, ak is upper bounded by
log2(2q|A× S × Sφ|). Combined with (9.13) this results in the following bound on the size of
Bf .

CHAPTER 9. STOCHASTIC GAMES AS BDDS 128

Corollary 1. Let M = (S, s0, A, P) be a stochastic game whose probabilistic transitions
can be approximated using q coin flips and let φ be a specification defined for horizon τ
and monitored by a finite automaton with states Sφ. The corresponding BDD, Bφ̂, has
size bounded by:

|Bφ̂| ≤

inputs︷ ︸︸ ︷
τ ·
(

log(|A|) + q
)
·

bound on 2ak︷ ︸︸ ︷(
2q|A× S × Sφ|

)
(9.14)

Notice that the above argument implies that as the episode length grows, |Bφ̂| grows
linearly in the horizon/states and quasi-linearly in the agent/environment actions!
Remark 9.1.3. Note that this bound actually holds for the minimal representation of the
composed dynamics/monitor (even if it’s unknown a-priori!). For example, if the property
is true, the BDD requires only one state (always evaluate true). This also illustrates that
the above bound is often very conservative. In particular, note that for φ = true, |Bφ̂| = 1 ,
independent of the horizon or dynamics. However, the above bound will always be linear in
τ . In general, the size of the BDD will depend on the particular symmetries compressed.
Remark 9.1.4. With hindsight, corollary 1 is not too surprising. In particular, if the monitor
is known, then one could explicitly compose the dynamics MDP with the monitor, with the
resulting MDP having at most |S×Sφ| states. If one then includes the time step in the state,
one could perform the soft-Bellman Backup directly on this automaton. In this composed
automaton each (action, state) pair would need to be recorded. Thus, one would expect
O(|S×Sφ×A|) space to be used. In practice, this explicit representation is much bigger than
Bφ̂ due to the BDDs ability to skip over time steps and automatically compress symmetries.
Remark 9.1.5. In the worst case, the monitor could be the unrolled decision tree. This monitor
would have exponential number of states. In practice, the composition of the dynamics and
the monitor is expected to be much smaller.

Constructing causal BDDs
One of the biggest benefits of the BDD representation of a Boolean function is the ability
to build BDDs from a Boolean combinations of other BDDs. Namely, given two BDDs
with n and m nodes respectively, it is well known that the conjunction or disjunction of the
BDDs has at most n ·m nodes. Thus, in practice, if the combined BDD’s remain relatively
small, Boolean combinations remain efficient to compute and one does not construct the full
binary decision tree! Further, note that BDDs support function composition. Namely, given
predicates f(x1, . . . , xn) and n predicates gi(y1, . . . , yk) the function

f

(
g1(y1, . . . , yk), . . . , gn(y1, . . . , yk)

)
(9.15)

can be computed in time [87]:
O(n · |Bf |2 ·max

i
|Bgi
|), (9.16)

CHAPTER 9. STOCHASTIC GAMES AS BDDS 129

where Bf is the BDD for f and Bgi
are the BDDs for gi. Now, suppose δ̂1, . . . δ̂log(|S|) are

Boolean predicates such that:

δ̂(s, a, c) = (δ̂1(s, a, c), . . . , δ̂log(|S|)(s, a, c)). (9.17)

Thm 1 and an argument similar to that for Corr 1 imply then that constructing Bφ̂, using
repeated composition, takes time bounded by a low degree polynomial in |A× S × Sφ| and
the horizon. Moreover, the space complexity before and after composition are bounded by
Corr 1.

Evaluating Demonstrations:
Next let us return to the question of how to evaluate the likelihood of a concrete demonstration
in our compressed BDD. The key problem is that the BDD can only evaluate (binary) sequences
of actions/coin flips, where as demonstrations are given as sequences of action/state pairs.
That is, we need to algorithmically perform the following transformation.

s0 � a0 � s1 � . . . � an � sn+1 7→ a1 � c1 � . . . � an � cn (9.18)

Given the random bit model assumption, this transformation can be rewritten as a series of
Boolean Satisfiability problems:

∃ ci . δ̂(si, ai, ci) = si+1 (9.19)

While potentially intimidating, in practice such problems are quite simple for modern SAT
solvers, particularly if the number of coin flips used is small. Furthermore, many systems are
translation invariant. In such systems, the results of a single query (9.19), can be reused on
other queries, e.g., in our gridworld example slipping can always be detected by examining if
the agent moved in the direction they intended. Nevertheless, in general, if q coin flips are
used, encoding all m demonstrations takes at most O(m · τ · 2q), in the worst case.

Luce axiom relaxation with BDDs†

We close this section with a brief discussion on realizing the Luce axiom relaxation (Sec 5.6)
using BDDs. The key observation is that if two actions (or states) are equivalent, then they
must access the same nodes in a BDD. Thus, when the maximum causal entropy planner (4.6)
is represented as a BDD, two actions are distinguished when the visit different nodes of
the BDD. This has the (slight) advantage of being independent of the particular rationality
coefficient used when planning.

9.2 Bibliographic Notes
Binary Decision Diagrams served as a key tool in the early days of model checking [38]
and are frequently used in symbolic value iteration for Markov Decision Processes [74] and

CHAPTER 9. STOCHASTIC GAMES AS BDDS 130

reachability analysis for probabilistic systems[88]. However, the literature has largely relied
on Multi-Terminal BDDs to encode the transition probabilities for a single time step. In
contrast, this work introduces a two-terminal (or three-terminal) encoding based on the
finite unrolling of a probabilistic circuit. The key difference is the focus on symbolically
representing paths rather than the set of reachable states. Historically, this latter perspective
was taken within the model checking community - presumably due to being a simple extension
of non-deterministic state reachability. The key difference with non-deterministic model
checking is that state must be associated with the probability of reaching them. Representing
all of these probabilities effectively shatters symmetries and reduces the efficacy of state-based
perspective (compared to the non-deterministic setting).

Thus, in many settings, despite being a much larger set, it is often more compact the
factorized representation of the set of paths. For example, after appearing in [153] (and
independently in [75]), this encoding was later utilized to perform finite horizon model
checking on Markov Chains, providing noticeable improvements compared to state-of-the-art
model checkers on a number of standard benchmarks [76].

Finally, many of the results from this chapter can easily be adapted to the zoo of variations
of Binary Decision Diagrams, e.g., Zero Suppressed Decision Diagrams [105], which employ
different rules for compressing the truth table of a Boolean predicate. For an overview on
these variants, we point the reader to [158].

131

Chapter 10

Final Words

I have discovered a truly remarkable proof of this theorem which this margin is too
small to contain.

Pierre de Fermat (Mathematician, 1607-1665)

Motivated by the problem of learning and teaching tasks from demonstrations, this thesis
contributed a collection of algorithms and theoretical machinery for systematically mitigating
combinatorial explosions inherent in (1) finding specifications that explain an agent’s behavior
(2) finding pedagogic demonstrations that help humans infer the specification (3) robustly
predicting the behavior of an agent adhering to a specification.

In the context of concept learning, specification mining, and grammatical inference, we
saw that demonstrations provide an ergonomic and sample-efficient means to communicate
formal languages and specifications. This dissertation enables a user to partially specify
the desired behavior of a system as example demonstrations and then find an automata or
program that explains the user’s behavior.

In the context of inverse reinforcement learning, Boolean task specifications are a class
of sparse memory augmented rewards with explicit support for temporal and Boolean
composition. We argued that these properties make task specifications immune to certain
classes of reward hacking bugs that emerge from ad-hoc composition or perturbations to
the dynamics. Unfortunately, the discrete nature of task specifications combined with an
a-priori ignorance of what historical features are needed to encode the demonstrated task
make existing approaches to learning rewards from demonstrations inapplicable.

In either case, after adapting the theory of maximum causal entropy inverse reinforcement
learning to address task specifications, the fundamental hurdle remaining was a way to
efficiently search through countably infinite representation classes to find task specifications
that explain (compress) a multi-set of demonstrations. To address this, Ch 5 provided
the Demonstrations Informed Specification Search (DISS) algorithm. Leveraging DISS, we
were able to efficiently learn tasks from demonstrations and adapt many of the ideas from
the algorithmic teaching literature. For example, we showed in Ch 6 that synthesizing

CHAPTER 10. FINAL WORDS 132

pedagogic demonstrations enabled communicating the nuances of a specification through
demonstrations.

10.1 Future work
With an eye towards the future, we enumerate a number of directions that this dissertation
left unexplored.

Hybrid and Continous Dynamics

The work on learning and teaching only assumed black-box access to the MaxEntPlanner. A
natural question then is if DISS would work well in more complex domains, e.g. continuous
dynamics and hybrid systems. This was indeed one of the main motivations for developing
the local prefix-tree perspective in Ch 5. The key observation is that so long as a form of the
Luce axiom can be made to hold (at least in the visited state / actions of the prefix-tree),
then any entropy regularized planner [109] could be used for the Surprisal Guided Sampler.
In particular, one might consider adapting the counterexample driven algorithm in Sec 5.6 to
maintain approximate value distinguishability. That is actions (and states) are considered
equivalent if their values never deviate by more than δ ∈ R for any task. This would enable
automatically adapting any (black-box) entropy regularized planner to work with DISS - even
if the actions (and state space is continuous).

Approximate and Model-Free MaxEntPlanners

In many settings, one might not have a world model and may wish to approximate (or learn)
the MaxEntPlanner, e.g. using a Neural Network [64] or with a variant of Monte Carlo Tree
Search [63]. In either case, Ch 5 provides a good deal of evidence that DISS is not particularly
sensitive to these changes. First and foremost, focusing on the prefix tree and pivoting made
the algorithm agonistic to the size of the action and state space. Second, empirical evidence
points that one should set SGS temperature, β, much smaller than one. The result is that
one only needs to identify the pivot with the largest gradient (in absolute value). Empirically,
we also saw that the (absolute value) in the pivot gradient was concentrated only on a few
points. Since this gradient is a function of the difference in transition probabilities, this
implies that, so long as the most surprising actions don’t change, the pivot decision will
remain unchanged when using approximate planners.

Hindsight Experience Replay

A natural follow up question then is how to create such approximate planners. At the time
of this dissertation, a promising direction seems to be to leverage the extensive literature on
model-free reinforcement learning (RL) with neural network policies [64, 57, 67]. Unfortu-
nately, when learning from sparse rewards like task specifications, one is presented with a

CHAPTER 10. FINAL WORDS 133

bootstrapping problem. It is difficult to receive any feedback since applying actions uniformly
at random typically yields reward 0. To address this, recent works have proposed instead
focusing on multi-task RL. Multi-task RL aims to learn a universal policy that takes as
input the current task and state and yields a distribution over actions. The key insight,
called Hindsight Experience Replay (HER) [11], is that even if a episode fails to perform
the target task, it may perform a related task. Thus, by counter-factually relabeling the
episode with an alternative task, one can receive non-zero reward. This enables learning
how to perform common motion and state estimation primitives and has been shown to even
outperform hand-crafted rewards. Furthermore, in the case of entropy regularized control, it
has been shown that the optimal way to relabel tasks is through maximum entropy inverse
reinforcement learning [51]. Thus the DISS algorithm presents an opportunity to realize HER
on very large concept classes, e.g. DFAs.

Beyond DFAs

This leads us to the next unexplored direction: How do DISS and related algorithms
empirically perform on different representation classes? For example, one might consider
learning conjunctions of DFAs to capture the compositional nature of many tasks. One could
try syntactic concept classes such as temporal logic fragments. One could move beyond regular
languages and consider context free grammars or register automata. Or perhaps, one could try
to learn over a large alphabet by learning invariants as decision trees or symbolic automata.
Importantly, while DISS is formulated to be agnostic to the underlying representation class,
increasing the expressiveness of the representation class necessarily increases the sample
complexity [85] of the concept identifiers. As such, one may need stronger inductive biases
(say from data derived priors or the structure of the concept class) or more iterations of DISS
to achieve similar results. Nevertheless, such extensions would open the door to many more
applications of this thesis.

Fixed Rewards and Learning Constraints

One of the main academic exercises of this dissertation was to see how far one could go
without assuming the existence of a Markovian reward. That said, something not discussed
in Ch 5 is that the Prop 5.3.2 holds even in the presence of a fixed Markovian reward. In
particular, since the reward is fixed, it is independent of the pivot values. Thus, the gradient
makes this term 0.

It may then be worth exploring applying the machinery from Part I to settings where the
agent trades off satisfying the task specification and optimizing some objective. Furthermore,
as alluded to in the bibliographic notes of Ch 4, a parallel literature [36, 128, 103] has
emerged to study the limiting case where the agent is constrained to always satisfy the task
specification while optimizing some objective, e.g., run as fast as possible while avoiding
obstacles. Again, the key conceptual difference is that rather than changing the reward induced
by the task specification, this literature (implicitly) changes the MDP to make violating the

CHAPTER 10. FINAL WORDS 134

task specification impossible. Nevertheless, the monotonicity in the change in pivot value
remains, e.g., removing a high-value path using a constraint lowers the corresponding pivot
value. Using the above observations, one might consider using DISS as a means to explore
combinatorially large constraint spaces.

From DISS to Markov Chain Monte Carlo (MCMC)

The learning problem (and the DISS algorithm) considered in this thesis were formulated as
maximum a-posteriori (MAP) inference. However, MAP inferences fail to capture the entire
distributional structure [14] - a problem exacerbated in our setting due to the discrete nature
of representation classes. For example, it may be the case that two conflicting hypotheses
explain the demonstrations locally, but differ in a unvisited parts of the workspace. To get a
more global perspective, one may wish to marginalize over the entire belief distribution to
answer queries such as: “Do the demonstrations imply that the agent should avoid red tiles?”
Importantly, by itself this sub-task may not have much explanatory power, but answering
this query may be safety critical, e.g. the red tiles are lava. To answer such queries, it may
be interesting to investigate transforming DISS into a Monte Carlo Markov Chain (MCMC)
method [104]. Such methods are related to simulated annealing, but provide a popular
means to sample from the belief distribution - as opposed to finding the most probable
elements. Several obstacles must be overcome to perform MCMC however. For example, in
the Metropolis-Hastings algorithm [68], the canonical MCMC algorithm, requires the proposal
distribution that has a non-zero (known) probability of undoing the previous proposal. This
is decidedly not the case in DISS as aggregating constraints often makes the previous task
candidate impossible to sample. Further, the SAT-based DFA identification algorithms make
computing the transition probabilities of the proposal distribution non-trivial. As such, more
investigation is required to adapt DISS to the MCMC setting.

Assume-Guarantee and Multi-Agent Planning

Finally, we close this dissertation with the observation that the Boolean nature of task
specifications allows them to encode assume-guarantee contracts [30]. An interesting future
application of DISS then would be to learn the implicit assumption of black-box components
with known “guarantees”, e.g., through the spec sheet.

An alternative direction is to use such contracts as a means to enable organic collaboration
with other systems (and humans) on complex tasks. Viewed as a multi-player game, one
might hope to automatically infer the assumptions each agent is making about the other
agent’s future behavior, as well as what guarantees each agent aims to provide under these
assumptions.

Consider for example the collaborative cooking game Overcook, a benchmark for human-
robot collaboration [25]. In Overcook, players work together to prepare meals. To meet
deadlines, the players specialize, e.g., one player preps onions while another player cooks and
serves them. For successful collaboration, it is imperative that that each player’s specialization

CHAPTER 10. FINAL WORDS 135

be compatible and complementary with other player’s specializations. Particularly in high
stakes domains such as industrial manufacturing, failure to operate properly in human-robot
teams raises serious fiscal and safety concerns. Within this context, formal specifications,
and particularly the well developed theory of contracts [112, 116, 125], seem to be promising
means to represent such interactions. A key question then is how to adapt DISS and its agent
model to the multi-agent setting.

10.2 Bibliographic Notes
Mirroring the introduction, below I would like to provide historical notes and attributions for
the future directions discussed. I would like to thank Markus Rabe and Christian Szegedy
for introducing me to the idea of hindsight experience replay. The potential connection of
hindsight experience replay and maximum entropy inverse reinforcement learning is thanks to
discussions with Benjamin Eysenbach. The problem of learning constraints was introduced to
me by Dexter Scobee. The observation that DISS should apply to learning constraints derives
from discussions with Kaylene Stocking and David McPherson. Regarding the adaptation
of DISS for MCMC, this was the initial plan for DISS. Various directions and variants
were discussed with Gil Lederman and Mark Ho before ultimately deciding to focus on
simulated annealing. Finally, the ideas behind collaborative assume guarantee reasoning
derive from working on the NSF VeHICaL project’s hand-off challenge problem [113] and from
conversations with Niklas Lauffer, Ameesh Shah, Yash Pant, Dexter Scobee, Bala Thoravi,
and Inigo Incer. More generally this thesis can be seen as contributing to the VeHICal
project’s mission of “developing the foundations of verified co-design of interfaces and control
for human cyber-physical systems (h-CPS) — cyber-physical systems that operate in concert
with human operators.” The theory and algorithms developed in this dissertation were steps
towards providing a principled means for human and autonomous systems to communicate
and interact in a manner that is auditable, formally verifiable, and ergonomic to the human.

136

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings of the twenty-first international conference on Machine
learning. ACM. 2004, p. 1.

[2] David Abel, Will Dabney, Anna Harutyunyan, Mark K. Ho, Michael L. Littman,
Doina Precup, and Satinder Singh. “On the Expressivity of Markov Reward”. In:
NeurIPS. 2021.

[3] Pieter W. Adriaans. “Learning as Data Compression”. In: CiE. Vol. 4497. Lecture
Notes in Computer Science. Springer, 2007, pp. 11–24.

[4] Noa Agmon, Sarit Kraus, and Gal A. Kaminka. “Multi-robot perimeter patrol in
adversarial settings”. In: ICRA. IEEE, 2008, pp. 2339–2345.

[5] Ilge Akkaya, Daniel J. Fremont, Rafael Valle, Alexandre Donzé, Edward A. Lee, and
Sanjit A. Seshia. “Control Improvisation with Probabilistic Temporal Specifications”.
In: IoTDI. IEEE Computer Society, 2016, pp. 187–198.

[6] Steve Alpern, Alec Morton, and Katerina Papadaki. “Patrolling Games”. In: Oper.
Res. 59.5 (2011), pp. 1246–1257.

[7] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. “Syntax-guided synthesis”. In: FMCAD. IEEE, 2013, pp. 1–8.

[8] Francesco Amigoni, Nicola Basilico, and Nicola Gatti. “Finding the optimal strategies
for robotic patrolling with adversaries in topologically-represented environments”. In:
ICRA. IEEE, 2009, pp. 819–824.

[9] Francesco Amigoni and Alessandro Gallo. “A Multi-Objective Exploration Strategy
for Mobile Robots”. In: ICRA. IEEE, 2005, pp. 3850–3855.

[10] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. “Concrete problems in AI safety”. In: arXiv preprint arXiv:1606.06565
(2016).

[11] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.
“Hindsight experience replay”. In: Advances in neural information processing systems.
2017, pp. 5048–5058.

BIBLIOGRAPHY 137

[12] Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”. In: Inf.
Comput. 75.2 (1987), pp. 87–106. doi: 10.1016/0890- 5401(87)90052- 6. url:
https://doi.org/10.1016/0890-5401(87)90052-6.

[13] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. “Algorithms and complexity
results for #SAT and Bayesian inference”. In: Foundations of computer science, 2003.
proceedings. 44th annual ieee symposium on. IEEE. 2003, pp. 340–351.

[14] Robert Bassett and Julio Deride. “Maximum a posteriori estimators as a limit of
Bayes estimators”. In: Math. Program. 174.1-2 (2019), pp. 129–144.

[15] Mihir Bellare, Oded Goldreich, and Erez Petrank. “Uniform Generation of NP-
Witnesses Using an NP-Oracle”. In: Inf. Comput. 163.2 (2000), pp. 510–526.

[16] Richard E Bellman et al. “Dynamic Programming, ser”. In: Rand Corporation research
study. Princeton University Press, 1957.

[17] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan Zhu,
et al. “Bounded model checking.” In: Advances in computers 58.11 (2003), pp. 117–148.

[18] Andreea Bobu, Dexter RR Scobee, Jaime F Fisac, S Shankar Sastry, and Anca D Dra-
gan. “Less is more: Rethinking probabilistic models of human behavior”. In: Proceedings
of the 2020 ACM/IEEE International Conference on Human-Robot Interaction. 2020,
pp. 429–437.

[19] Tomás Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and Antonín
Kucera. “Two Views on Multiple Mean-Payoff Objectives in Markov Decision Pro-
cesses”. In: Log. Methods Comput. Sci. 10.1 (2014).

[20] Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. “Trading
performance for stability in Markov decision processes”. In: J. Comput. Syst. Sci. 84
(2017), pp. 144–170.

[21] Randal E Bryant. “Symbolic Boolean manipulation with ordered binary-decision
diagrams”. In: ACM Computing Surveys (CSUR) 24.3 (1992), pp. 293–318.

[22] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”. In:
IEEE Trans. Computers 35.8 (1986), pp. 677–691.

[23] Randal E. Bryant. “Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams”. In: ACM Comput. Surv. 24.3 (1992), pp. 293–318.

[24] Estefany Carrillo. “Controller synthesis and Formal Behavior Inference in Autonomous
Systems”. PhD thesis. University of Maryland, College Park, MD, USA, 2021.

[25] Micah Carroll, Rohin Shah, Mark K. Ho, Tom Griffiths, Sanjit A. Seshia, Pieter
Abbeel, and Anca D. Dragan. “On the Utility of Learning about Humans for Human-
AI Coordination”. In: NeurIPS. 2019, pp. 5175–5186.

[26] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, Sanjit A Seshia, and
Moshe Y Vardi. “Distribution-aware sampling and weighted model counting for SAT”.
In: Twenty-Eighth AAAI Conference on Artificial Intelligence. 2014.

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6

BIBLIOGRAPHY 138

[27] Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y Vardi. “From
Weighted to Unweighted Model Counting”. In: Proceedings of IJCAI. 2015, pp. 689–
695.

[28] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. “Algorithmic improve-
ments in approximate counting for probabilistic inference: From linear to logarithmic
SAT calls”. In: Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI-16) (2016).

[29] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. “Balancing Scalability
and Uniformity in SAT Witness Generator”. In: DAC. ACM, 2014, 60:1–60:6.

[30] Krishnendu Chatterjee and Thomas A. Henzinger. “Assume-Guarantee Synthesis”. In:
TACAS. Vol. 4424. Lecture Notes in Computer Science. Springer, 2007, pp. 261–275.

[31] Krishnendu Chatterjee, Joost-Pieter Katoen, Maximilian Weininger, and Tobias
Winkler. “Stochastic Games with Lexicographic Reachability-Safety Objectives”. In:
CAV (2). Vol. 12225. LNCS. Springer, 2020, pp. 398–420.

[32] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger. “Markov De-
cision Processes with Multiple Objectives”. In: STACS. Vol. 3884. LNCS. Springer,
2006, pp. 325–336.

[33] Mark Chavira and Adnan Darwiche. “On probabilistic inference by weighted model
counting”. In: Artificial Intelligence 172.6-7 (2008), pp. 772–799.

[34] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis, and Clemens
Wiltsche. “On Stochastic Games with Multiple Objectives”. In: MFCS. Vol. 8087.
LNCS. Springer, 2013, pp. 266–277.

[35] Arthur Choi and Adnan Darwiche. “Dynamic minimization of sentential decision
diagrams”. In: Twenty-Seventh AAAI Conference on Artificial Intelligence. 2013.

[36] Glen Chou, Dmitry Berenson, and Necmiye Ozay. “Learning Constraints from Demon-
strations”. In: WAFR. Vol. 14. Springer Proceedings in Advanced Robotics. Springer,
2018, pp. 228–245.

[37] Glen Chou, Necmiye Ozay, and Dmitry Berenson. “Explaining Multi-stage Tasks by
Learning Temporal Logic Formulas from Suboptimal Demonstrations”. In: Robotics:
Science and Systems. 2020.

[38] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled, and Helmut
Veith. Model checking, 2nd Edition. MIT Press, 2018.

[39] Anne Condon. “On Algorithms for Simple Stochastic Games”. In: Advances In Com-
putational Complexity Theory. Vol. 13. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. DIMACS/AMS, 1990, pp. 51–71.

[40] Richard H. Connelly and F. Lockwood Morris. “A Generalization of the Trie Data
Structure”. In: Math. Struct. Comput. Sci. 5.3 (1995), pp. 381–418.

BIBLIOGRAPHY 139

[41] François Coste and Jacques Nicolas. “Regular inference as a graph coloring problem”.
In: In Workshop on Grammatical Inference, Automata Induction, and Language
Acquisition (ICML’97. Citeseer. 1997.

[42] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &
Sons, 2012.

[43] Nilesh Dalvi and Dan Suciu. “Efficient query evaluation on probabilistic databases”.
In: The VLDB Journal—The International Journal on Very Large Data Bases 16.4
(2007), pp. 523–544.

[44] Martin Davis and Hilary Putnam. “A Computing Procedure for Quantification Theory”.
In: J. ACM 7.3 (1960), pp. 201–215.

[45] Colin De la Higuera. Grammatical inference: learning automata and grammars. Cam-
bridge University Press, 2010.

[46] Florent Delgrange, Joost-Pieter Katoen, Tim Quatmann, and Mickael Randour. “Sim-
ple Strategies in Multi-Objective MDPs”. In: TACAS (1). Vol. 12078. LNCS. Springer,
2020, pp. 346–364.

[47] François Denis. “Learning Regular Languages from Simple Positive Examples”. In:
Mach. Learn. 44.1/2 (2001), pp. 37–66.

[48] Anca D. Dragan, Kenton C. T. Lee, and Siddhartha S. Srinivasa. “Legibility and
predictability of robot motion”. In: HRI. IEEE/ACM, 2013, pp. 301–308.

[49] Paul Ehrenfest. “Welche Züge der Lichtquantenhypothese spielen in der Theorie der
Wärmestrahlung eine wesentliche Rolle?” In: Annalen der Physik (1911).

[50] Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis.
“Multi-objective Model Checking of Markov Decision Processes”. In: TACAS. Vol. 4424.
LNCS. Springer, 2007, pp. 50–65.

[51] Ben Eysenbach, Xinyang Geng, Sergey Levine, and Ruslan Salakhutdinov. “Rewriting
History with Inverse RL: Hindsight Inference for Policy Improvement”. In: NeurIPS.
2020.

[52] Benjamin Eysenbach and Sergey Levine. “Maximum Entropy RL (Provably) Solves
Some Robust RL Problems”. In: CoRR abs/2103.06257 (2021).

[53] Vojtech Forejt, Marta Z. Kwiatkowska, and David Parker. “Pareto Curves for Prob-
abilistic Model Checking”. In: ATVA. Vol. 7561. LNCS. Springer, 2012, pp. 317–
332.

[54] Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, and David Wessel. “Control
Improvisation”. In: FSTTCS. Vol. 45. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015, pp. 463–474.

[55] Daniel J. Fremont and Sanjit A. Seshia. “Reactive Control Improvisation”. In: CAV
(1). Vol. 10981. LNCS. Springer, 2018, pp. 307–326.

BIBLIOGRAPHY 140

[56] Jin I. Ge and Richard M. Murray. “Voluntary lane-change policy synthesis with control
improvisation”. In: CDC. IEEE, 2018, pp. 3640–3647.

[57] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. “A Theory of Regularized
Markov Decision Processes”. In: ICML. Vol. 97. PMLR. PMLR, 2019, pp. 2160–2169.

[58] Shalini Ghosh, Susmit Jha, Ashish Tiwari, Patrick Lincoln, and Xiaojin Zhu. “Model,
Data and Reward Repair: Trusted Machine Learning for Markov Decision Processes”.
In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W). IEEE. 2018, pp. 194–199.

[59] E. Mark Gold. “Complexity of Automaton Identification from Given Data”. In: Inf.
Control. 37.3 (1978), pp. 302–320.

[60] E. Mark Gold. “Language Identification in the Limit”. In: Inf. Control. 10.5 (1967),
pp. 447–474.

[61] Noah D Goodman and Michael C Frank. “Pragmatic language interpretation as
probabilistic inference”. In: Trends in cognitive sciences 20.11 (2016), pp. 818–829.

[62] Herbert P Grice. “Logic and conversation”. In: Speech acts. Brill, 1975, pp. 41–58.
[63] Jean-Bastien Grill, Omar Darwiche Domingues, Pierre Ménard, Rémi Munos, and

Michal Valko. “Planning in entropy-regularized Markov decision processes and games”.
In: NeurIPS. 2019, pp. 12383–12392.

[64] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor”.
In: ICML. Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018, pp. 1856–
1865.

[65] Sofie Haesaert, Petter Nilsson, and Sadegh Soudjani. “Formal Multi-Objective Synthesis
of Continuous-State MDPs”. In: IEEE Control. Syst. Lett. 5.5 (2021), pp. 1765–1770.

[66] Arnd Hartmanns, Sebastian Junges, Joost-Pieter Katoen, and Tim Quatmann. “Multi-
cost Bounded Tradeoff Analysis in MDP”. In: J. Autom. Reason. 64.7 (2020), pp. 1483–
1522.

[67] Hado van Hasselt. “Double Q-learning”. In: NIPS. Curran Associates, Inc., 2010,
pp. 2613–2621.

[68] W Keith Hastings. “Monte Carlo sampling methods using Markov chains and their
applications”. In: (1970).

[69] Holger Hermanns, Jan Krcál, and Gilles Nies. “Recharging Probably Keeps Batteries
Alive”. In: CyPhy. Vol. 9361. LNCS. Springer, 2015, pp. 83–98.

[70] Marijn Heule and Sicco Verwer. “Exact DFA Identification Using SAT Solvers”. In:
ICGI. Vol. 6339. Lecture Notes in Computer Science. Springer, 2010, pp. 66–79.

[71] Timothy J. Hickey and Jacques Cohen. “Uniform Random Generation of Strings in a
Context-Free Language”. In: SIAM J. Comput. 12.4 (1983), pp. 645–655.

BIBLIOGRAPHY 141

[72] Mark K. Ho, Michael L. Littman, Fiery Cushman, and Joseph L. Austerweil. “Teaching
with Rewards and Punishments: Reinforcement or Communication?” In: Proceedings
of the 37th Annual Conference of the Cognitive Science Society. Ed. by D.C. Noelle,
R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, and P. P. Maglio.
Austin, TX: Cognitive Science Society, 2015, pp. 920–925.

[73] Mark K. Ho, Michael L. Littman, James MacGlashan, Fiery Cushman, and Joseph L.
Austerweil. “Showing versus doing: Teaching by demonstration”. In: NIPS. 2016,
pp. 3027–3035.

[74] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. “SPUDD: Stochastic
planning using decision diagrams”. In: Proceedings of the Fifteenth conference on
Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc. 1999, pp. 279–
288.

[75] Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. “Scaling exact inference
for discrete probabilistic programs”. In: Proc. ACM Program. Lang. 4.OOPSLA (2020),
140:1–140:31.

[76] Steven Holtzen, Sebastian Junges, Marcell Vazquez-Chanlatte, Todd D. Millstein,
Sanjit A. Seshia, and Guy Van den Broeck. “Model Checking Finite-Horizon Markov
Chains with Probabilistic Inference”. In: CAV (2). Vol. 12760. Lecture Notes in
Computer Science. Springer, 2021, pp. 577–601.

[77] Matanya B. Horowitz, Eric M. Wolff, and Richard M. Murray. “A compositional
approach to stochastic optimal control with co-safe temporal logic specifications”. In:
IROS. IEEE, 2014, pp. 1466–1473.

[78] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A.
McIlraith. “Using Reward Machines for High-Level Task Specification and Decomposi-
tion in Reinforcement Learning”. In: ICML. Vol. 80. Proceedings of Machine Learning
Research. PMLR, 2018, pp. 2112–2121.

[79] Edwin T Jaynes. “Information theory and statistical mechanics”. In: Physical review
106.4 (1957), p. 620.

[80] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. “Random Generation of
Combinatorial Structures from a Uniform Distribution”. In: Theor. Comput. Sci. 43
(1986), pp. 169–188.

[81] Susmit Jha and Sanjit A. Seshia. “A theory of formal synthesis via inductive learning”.
In: Acta Informatica 54.7 (2017), pp. 693–726.

[82] Rudolf Emil Kalman. “When is a linear control system optimal”. In: (1964).
[83] Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. “Counting and Random

Generation of Strings in Regular Languages”. In: SODA. ACM/SIAM, 1995, pp. 551–
557.

BIBLIOGRAPHY 142

[84] Daniel Kasenberg and Matthias Scheutz. “Interpretable apprenticeship learning with
temporal logic specifications”. In: CDC. IEEE, 2017, pp. 4914–4921.

[85] Michael J Kearns and Umesh Virkumar Vazirani. An Introduction to Computational
Learning Theory. MIT press, 1994.

[86] David Klaska, Antonín Kucera, and Vojtech Rehák. “Adversarial Patrolling with
Drones”. In: AAMAS. IFAAMAS, 2020, pp. 629–637.

[87] Donald Ervin Knuth. The Art of Computer Programming: Vol. 4, No. 1: Bitwise
Tricks and Techniques-Binary Decision Diagrams. Addison Wesley Professional, 2009.

[88] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of Probabilistic
Real-time Systems”. In: Proc. 23rd International Conference on Computer Aided
Verification (CAV’11). Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806. LNCS.
Springer, 2011, pp. 585–591.

[89] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. “PRISM-games: verification
and strategy synthesis for stochastic multi-player games with multiple objectives”. In:
Int. J. Softw. Tools Technol. Transf. 20.2 (2018), pp. 195–210.

[90] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “Probabilistic Symbolic
Model Checking with PRISM: A Hybrid Approach”. In: TACAS. Vol. 2280. Lecture
Notes in Computer Science. Springer, 2002, pp. 52–66.

[91] Bruno Lacerda, Fatma Faruq, David Parker, and Nick Hawes. “Probabilistic planning
with formal performance guarantees for mobile service robots”. In: Int. J. Robotics
Res. 38.9 (2019).

[92] Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. “Results of the Abbadingo
One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm”.
In: ICGI. Vol. 1433. Lecture Notes in Computer Science. Springer, 1998, pp. 1–12.

[93] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to embedded systems:
A cyber-physical systems approach. Mit Press, 2016.

[94] Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A. Ortega, Tom Everitt, An-
drew Lefrancq, Laurent Orseau, and Shane Legg. “AI Safety Gridworlds”. In: CoRR
abs/1711.09883 (2017).

[95] Claude Lemaréchal. “S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004 hardback, ISBN 0 521 83378 7”. In: Eur. J. Oper. Res. 170.1
(2006), pp. 326–327.

[96] Sergey Levine. “Reinforcement Learning and Control as Probabilistic Inference: Tu-
torial and Review”. In: CoRR abs/1805.00909 (2018). arXiv: 1805 . 00909. url:
http://arxiv.org/abs/1805.00909.

[97] Wenchao Li. “Specification Mining: New Formalisms, Algorithms and Applications”.
PhD thesis. EECS Department, University of California, Berkeley, Mar. 2014. url:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-20.html.

https://arxiv.org/abs/1805.00909
http://arxiv.org/abs/1805.00909
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-20.html

BIBLIOGRAPHY 143

[98] Michael L. Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min Wen, and James Mac-
Glashan. “Environment-Independent Task Specifications via GLTL”. In: arXiv:1704.04341
[cs] (Apr. 2017). arXiv: 1704.04341. url: http://arxiv.org/abs/1704.04341.

[99] R Duncan Luce. “Individual choice behavior.” In: (1959).
[100] J Lumbroso. Optimal discrete uniform generation from coin flips, and applications.

CoRR abs/1304.1916 (2013). 2013.
[101] Sharad Malik and Lintao Zhang. “Boolean satisfiability from theoretical hardness to

practical success”. In: Commun. ACM 52.8 (2009), pp. 76–82.
[102] Miguel A. Martínez-Prieto, Nieves R. Brisaboa, Rodrigo Cánovas, Francisco Claude,

and Gonzalo Navarro. “Practical compressed string dictionaries”. In: Inf. Syst. 56
(2016), pp. 73–108.

[103] David Livingston McPherson, Kaylene C. Stocking, and S. Shankar Sastry. “Maximum
Likelihood Constraint Inference from Stochastic Demonstrations”. In: CCTA. IEEE,
2021, pp. 1208–1213.

[104] Nicholas Metropolis and Stanislaw Ulam. “The monte carlo method”. In: Journal of
the American statistical association (1949).

[105] Alan Mishchenko. “An introduction to zero-suppressed binary decision diagrams”. In:
Proceedings of the 12th Symposium on the Integration of Symbolic Computation and
Mechanized Reasoning. Vol. 8. Citeseer. 2001, pp. 1–15.

[106] Sriraam Natarajan and Prasad Tadepalli. “Dynamic preferences in multi-criteria
reinforcement learning”. In: ICML. Vol. 119. ACM International Conference Proceeding
Series. ACM, 2005, pp. 601–608.

[107] Milad Nazarahari, Esmaeel Khanmirza, and Samira Doostie. “Multi-objective multi-
robot path planning in continuous environment using an enhanced genetic algorithm”.
In: Expert Syst. Appl. 115 (2019), pp. 106–120.

[108] Daniel Neider and Ivan Gavran. “Learning Linear Temporal Properties”. In: FMCAD.
IEEE, 2018, pp. 1–10.

[109] Gergely Neu, Anders Jonsson, and Vicenç Gómez. “A unified view of entropy-
regularized Markov decision processes”. In: CoRR abs/1705.07798 (2017).

[110] John von Neumann. “Various techniques used in connection with random digits”. In:
John von Neumann, Collected Works 5 (1963), pp. 768–770.

[111] Andrew Y. Ng and Stuart J. Russell. “Algorithms for Inverse Reinforcement Learning”.
In: ICML. Morgan Kaufmann, 2000, pp. 663–670.

[112] Pierluigi Nuzzo, Antonio Iannopollo, Stavros Tripakis, and Alberto L. Sangiovanni-
Vincentelli. “Are interface theories equivalent to contract theories?” In: MEMOCODE.
IEEE, 2014, pp. 104–113.

http://arxiv.org/abs/1704.04341

BIBLIOGRAPHY 144

[113] Yash Vardhan Pant, Balasaravanan Thoravi Kumaravel, Ameesh Shah, Erin Kraemer,
Marcell Vazquez-Chanlatte, K Kulkarni, Bjoern Hartmann, and Sanjit A Seshia.
Model-based Formalization of the Autonomy-to-Human Perception Hand-off. Tech. rep.
Technical Report UCB/EECS-2021-8, EECS Department, UC Berkeley, 2021.

[114] Simone Parisi, Matteo Pirotta, Nicola Smacchia, Luca Bascetta, and Marcello Restelli.
“Policy gradient approaches for multi-objective sequential decision making: A compari-
son”. In: ADPRL. IEEE, 2014, pp. 1–8.

[115] Praveen Paruchuri, Jonathan P. Pearce, Milind Tambe, Fernando Ordóñez, and Sarit
Kraus. “An efficient heuristic approach for security against multiple adversaries”. In:
AAMAS. IFAAMAS, 2007, p. 181.

[116] Roberto Passerone, Íñigo Íncer Romeo, and Alberto L. Sangiovanni-Vincentelli. “Co-
herent Extension, Composition, and Merging Operators in Contract Models for System
Design”. In: ACM Trans. Embed. Comput. Syst. 18.5s (2019), 86:1–86:23.

[117] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. “Point-based value iteration: An
anytime algorithm for POMDPs”. In: IJCAI. Vol. 3. 2003, pp. 1025–1032.

[118] David Portugal, Charles Pippin, Rui P. Rocha, and Henrik I. Christensen. “Finding
optimal routes for multi-robot patrolling in generic graphs”. In: IROS. IEEE, 2014,
pp. 363–369.

[119] Prolific. Prolific. https://www.prolific.co. 2022.
[120] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley Series in Probability and Statistics. Wiley, 1994.
[121] Tim Quatmann, Sebastian Junges, and Joost-Pieter Katoen. “Markov Automata with

Multiple Objectives”. In: CAV (1). Vol. 10426. LNCS. Springer, 2017, pp. 140–159.
[122] Markus N Rabe, Christoph M Wintersteiger, Hillel Kugler, Boyan Yordanov, and

Youssef Hamadi. “Symbolic approximation of the bounded reachability probability in
large Markov chains”. In: Proceedings of QEST. Springer. 2014, pp. 388–403.

[123] Deepak Ramachandran and Eyal Amir. “Bayesian inverse reinforcement learning”. In:
IJCAI (2007).

[124] Mickael Randour, Jean-François Raskin, and Ocan Sankur. “Percentile queries in
multi-dimensional Markov decision processes”. In: Formal Methods Syst. Des. 50.2-3
(2017), pp. 207–248.

[125] Íñigo Íncer Romeo, Alberto L. Sangiovanni-Vincentelli, Chung-Wei Lin, and Eunsuk
Kang. “Quotient for Assume-Guarantee Contracts”. In: MEMOCODE. IEEE, 2018,
pp. 67–77.

[126] Tian Sang, Paul Beame, and Henry A Kautz. “Performing Bayesian inference by
weighted model counting”. In: AAAI. Vol. 5. 2005, pp. 475–481.

https://www.prolific.co

BIBLIOGRAPHY 145

[127] Yagiz Savas, Melkior Ornik, Murat Cubuktepe, Mustafa O. Karabag, and Ufuk
Topcu. “Entropy Maximization for Markov Decision Processes Under Temporal Logic
Constraints”. In: IEEE Trans. Autom. Control. 65.4 (2020), pp. 1552–1567.

[128] Dexter R. R. Scobee and S. Shankar Sastry. “Maximum Likelihood Constraint Inference
for Inverse Reinforcement Learning”. In: ICLR. OpenReview.net, 2020.

[129] Sanjit A. Seshia. “Combining Induction, Deduction, and Structure for Verification
and Synthesis”. In: Proc. IEEE 103.11 (2015), pp. 2036–2051.

[130] Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. “Towards Verified Artificial
Intelligence”. In: ArXiv e-prints (2016). arXiv: 1606.08514.

[131] Ankit Shah, Pritish Kamath, Julie A. Shah, and Shen Li. “Bayesian Inference of
Temporal Task Specifications from Demonstrations”. In: NeurIPS. 2018, pp. 3808–
3817.

[132] Marwaan Simaan and Jose B Cruz. “On the Stackelberg strategy in nonzero-sum
games”. In: Journal of Optimization Theory and Applications 11.5 (1973), pp. 533–555.

[133] Michael Sipser. “Introduction to the Theory of Computation”. In: SIGACT News 27.1
(1996), pp. 27–29.

[134] Christopher C. Skiscim and Bruce L. Golden. “Optimization by simulated annealing:
A preliminary computational study for the TSP”. In: WSC. ACM, 1983, pp. 523–535.

[135] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A.
Saraswat. “Combinatorial sketching for finite programs”. In: ASPLOS. ACM, 2006,
pp. 404–415.

[136] Ray J. Solomonoff. “A Formal Theory of Inductive Inference. Part I”. In: Inf. Control.
7.1 (1964), pp. 1–22.

[137] Patrick Speicher, Marcel Steinmetz, Michael Backes, Jörg Hoffmann, and Robert
Künnemann. “Stackelberg Planning: Towards Effective Leader-Follower State Space
Search”. In: AAAI. AAAI Press, 2018, pp. 6286–6293.

[138] Daniel A. Spielman and Shang-Hua Teng. “Smoothed analysis: an attempt to explain
the behavior of algorithms in practice”. In: Commun. ACM 52.10 (2009), pp. 76–84.

[139] Arvind Srinivasan, Timothy Kam, Sharad Malik, and Robert K. Brayton. “Algorithms
for Discrete Function Manipulation”. In: ICCAD. IEEE Computer Society, 1990,
pp. 92–95.

[140] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction.
Adaptive computation and machine learning. MIT Press, 1998.

[141] Milind Tambe. Security and Game Theory - Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press, 2012.

[142] Richard Taylor. “Purposeful and non-purposeful behavior: A rejoinder”. In: Philosophy
of Science (1950).

https://arxiv.org/abs/1606.08514

BIBLIOGRAPHY 146

[143] Joshua Brett Tenenbaum. “A Bayesian framework for concept learning”. PhD thesis.
Massachusetts Institute of Technology, 1999.

[144] Hazem Torfah, Shetal Shah, Supratik Chakraborty, S. Akshay, and Sanjit A. Seshia.
“Synthesizing Pareto-Optimal Interpretations for Black-Box Models”. In: FMCAD.
IEEE, 2021, pp. 153–162.

[145] Dogan Ulus. “Sequential Circuits from Regular Expressions Revisited”. In: CoRR
abs/1801.08979 (2018).

[146] Vladimir Ulyantsev, Ilya Zakirzyanov, and Anatoly Shalyto. “BFS-Based Symmetry
Breaking Predicates for DFA Identification”. In: LATA. Vol. 8977. Lecture Notes in
Computer Science. Springer, 2015, pp. 611–622.

[147] Marcell Vazquez-Chanlatte. Improvisers: A Python library for synthesizing Entropic
Reactive Control Improvisers for stochastic games. 2021. url: https://github.com/
mvcisback/improvisers.

[148] Marcell Vazquez-Chanlatte, Mark K Ho, Thomas L Griffiths, and Sanjit A Seshia.
“Communicating Compositional and Temporal Specifications by Demonstrations, Ex-
tended Abstract”. In: Symposium on Cyber-Physical Human Systems (CPHS). 2018.

[149] Marcell Vazquez-Chanlatte, Susmit Jha, Ashish Tiwari, Mark K. Ho, and Sanjit
A. Seshia. “Learning Task Specifications from Demonstrations”. In: NeurIPS. 2018,
pp. 5372–5382.

[150] Marcell Vazquez-Chanlatte, Sebastian Junges, Daniel J. Fremont, and Sanjit Seshia.
“Entropy-Guided Control Improvisation”. In: Robotics: Science and Systems. 2021.

[151] Marcell Vazquez-Chanlatte, Markus N Rabe, and Sanjit A Seshia. “A Model Counter’s
Guide to Probabilistic Systems”. In: arXiv preprint arXiv:1903.09354 (2019).

[152] Marcell Vazquez-Chanlatte, Markus N. Rabe, and Sanjit A. Seshia. “A Model Counter’s
Guide to Probabilistic Systems”. In: CoRR abs/1903.09354 (2019).

[153] Marcell Vazquez-Chanlatte and Sanjit A. Seshia. “Maximum Causal Entropy Speci-
fication Inference from Demonstrations”. In: CAV (2). Vol. 12225. LNCS. Springer,
2020, pp. 255–278.

[154] Marcell Vazquez-Chanlatte and Ameesh Shah. Demonstration Informed Specification
Search. Version 0.2.10. url: https://github.com/mvcisback/DISS.

[155] Marcell Vazquez-Chanlatte, Ameesh Shah, Gil Lederman, and Sanjit A. Seshia.
“Demonstration Informed Specification Search”. In: CoRR abs/2112.10807 (2021).

[156] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat
Chaudhuri. “Programmatically Interpretable Reinforcement Learning”. In: ICML.
Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018, pp. 5052–5061.

https://github.com/mvcisback/improvisers
https://github.com/mvcisback/improvisers
https://github.com/mvcisback/DISS

BIBLIOGRAPHY 147

[157] Kandai Watanabe, Nicholas Renninger, Sriram Sankaranarayanan, and Morteza Lahi-
janian. “Probabilistic Specification Learning for Planning with Safety Constraints”. In:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2021, pp. 6558–6565.

[158] Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.
[159] Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech

Matusik. “Prediction-Guided Multi-Objective Reinforcement Learning for Continuous
Robot Control”. In: ICML. Vol. 119. PMLR. PMLR, 2020, pp. 10607–10616.

[160] Yuan Yang and Steven T Piantadosi. “One model for the learning of language”. In:
Proceedings of the National Academy of Sciences 119.5 (2022).

[161] Hansol Yoon and Sriram Sankaranarayanan. “Predictive Runtime Monitoring for
Mobile Robots using Logic-Based Bayesian Intent Inference”. In: ICRA. IEEE, 2021,
pp. 8565–8571.

[162] Brian D Ziebart. “Modeling purposeful adaptive behavior with the principle of maxi-
mum causal entropy”. PhD thesis. CMU, 2010.

[163] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. “Modeling interaction via the
principle of maximum causal entropy”. In: (2010).

[164] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. “Maximum
Entropy Inverse Reinforcement Learning.” In: AAAI. Vol. 8. Chicago, IL, USA. 2008,
pp. 1433–1438.

	Contents
	Introduction
	Thesis Preview
	Representing tasks
	Representing tasks as specifications
	Modeling Agents
	Communicating tasks
	Contributions
	Reader's Guide
	Preliminaries
	Learning and Teaching
	Prediction and Control

	Bibliographic Notes
	Thesis conceptualization
	The road to Maximum Causal Entropy Planning
	Learning and Teaching

	Concepts and their Representations
	Formal Languages and Automata
	Representation Classes
	The DFA Representation Class
	The MinDFA Representation Class

	Learning Concepts from Examples
	Prefix Trees
	Learning DFAs from labeled examples

	Bibliographic Notes

	Workspaces and Decision Processes
	Markov Decision Processes
	Behavior Prediction and Agent Models
	Entropy Regularized Planning and Prediction
	Causal Entropy
	Maximum Causal Entropy IRL

	Bibliographic Notes

	Learning and Teaching
	Specifications from Demonstrations
	A case for Boolean task specifications
	Contributions
	Task Specifications
	Featurized task specifications

	Task conditioned behavior prediction
	Maximum entropy planners
	Solution Sketch
	Choice of binary co-domain

	Task Specification Modeling Tricks
	Discount Rates and Shortest Paths
	Batteries
	Slipping and Obstacle Padding
	Stochastic Observations
	Minimizing Violations and Redemption

	Maximum Entropy Special Case
	Likelihood of multiple demonstrations

	Bibliographic Notes

	Finding Explanatory Specifications
	Contributions
	Running Example
	Prefix Tree Perspective
	Benefits of the local perspective
	Independence of pivot values

	Manipulating Likelihoods and Surprisal
	Pivot surprisal gradients
	Relation to heuristics
	Mislabeled counter-factuals

	Specification Search
	Surprisal Guided Sampler
	Example Buffer and Backtracking
	Simulated Annealing

	Demonstration Informed Specification Search

	Experiments
	DISS parameters.
	Maximum Entropy Planner
	Concept Sampler

	Baselines.
	Results and Analysis
	Search efficiency
	Diversity of DFAs

	Relaxing the Luce axiom
	Counter Example Guided Action Refinement

	Proof of Prop 5.3.2
	Bibliographic Notes

	Teaching Tasks using Demonstrations
	Contributions
	Pedagogic Demonstrations
	Description length perspective

	Generating Pedagogic Demonstrations
	Trajectory Optimization
	Failure Modes
	Competency Estimation
	Handling Similar Specifications

	Experiments
	Teaching Parameters
	Tasks to Teach
	Qualitative Results
	Limitations
	Human Study
	Human Study Results

	Bibliographic Notes

	Prediction and Control
	Improvisation in Stochastic Games
	Contributions
	Overview
	Motivating Example
	Nondeterministic Model
	Stochastic Model
	Nondeterministic and Stochastic Model
	ERCI as a unifying framework

	Problem Statement
	Stochastic Games
	Policies and Schedules
	Entropic Reactive Control Improvisation

	ERCI as multi-objective optimization
	Preprocessing
	Geometric Perspective
	Regret-Based ERCI

	The Control Improvisation Problem for MDPs
	Rationality
	Targeted Pareto-exploration

	The Control Improvisation Problem for SGs
	Environment Policies
	A Sufficient Class of Policies
	Soundness and Completeness
	Algorithm: Memoizing Pareto Fronts
	Approximate Pareto Fronts
	Termination and Run Time

	Implementation and Empirical Evaluation
	Results

	Proofs
	Convexity of ERCI solution set
	Completeness of Entropy Matching for SGs

	Bibliographic Notes
	Control Improvisation in the Literature
	Additional Related Work

	Stochastic Games as Circuits
	Contributions
	Biased Coins and Bayes' Rule
	Encoding Rational Coins

	Distributions over Finite Sets
	Common Denominator Method

	Sequential Circuits
	Encoding Stochastic Games

	Bibliographic Notes

	Stochastic Games as BDDs
	Contributions
	Properties of BDDs
	Connection to automata and formal languages
	Operations on BDDs
	Reduced Ordered BDDs are canonical
	BDDs depend on variable ordering
	Model Counting, Probabilistic Reachability, and BDDs
	Multi-Terminal BDDs

	Encoding Stochastic Games
	Causal Orderings
	Paths to bits
	Enforcing hard constraints
	Smooth Bellman Backups
	Size of causal BDDs
	Specializing to SGs

	Constructing causal BDDs
	Evaluating Demonstrations:
	Luce axiom relaxation with BDDs

	Bibliographic Notes

	Final Words
	Future work
	Hybrid and Continous Dynamics
	Approximate and Model-Free MaxEntPlanners
	Hindsight Experience Replay
	Beyond DFAs
	Fixed Rewards and Learning Constraints
	From DISS to Markov Chain Monte Carlo (MCMC)
	Assume-Guarantee and Multi-Agent Planning

	Bibliographic Notes

	Bibliography

