
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Using Hybrid Clouds for Secure and Efficient Data Processing

Permalink
https://escholarship.org/uc/item/8jt2h3h3

Author
Oktay, Kerim Yasin

Publication Date
2015

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8jt2h3h3
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Using Hybrid Clouds for Secure and Efficient Data Processing

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Kerim Yasin Oktay

Dissertation Committee:
Professor Sharad Mehrotra, Chair

Professor Michael Carey
Professor Chen Li

2015

Portions of Chapter 1 c© 2015 SIGMOD Endowment [1]
Portions of Chapter 3 c© 2012 IEEE Cloud Endowment [2]

All other materials c© 2015 Kerim Yasin Oktay

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

CURRICULUM VITAE vii

ABSTRACT OF THE DISSERTATION ix

1 Introduction 1

2 Related Work 9
2.1 Encryption Techniques . 10
2.2 Secure Data Processing Systems . 13

3 Security Model 17
3.1 Sensitivity Model . 18
3.2 Adversary Model . 21

4 Secure and Efficient MapReduce over Hybrid Clouds 23
4.1 Introduction . 23
4.2 Preliminaries . 26

4.2.1 MapReduce Framework . 27
4.3 Security Challenges . 29

4.3.1 Exposure Scenarios . 29
4.3.2 Preventing Sensitive Data Leakage 32

4.4 SEMROD . 33
4.4.1 Single-level MR . 34
4.4.2 Multi-level MR . 40
4.4.3 Combiners . 48
4.4.4 Security Analysis of SEMROD . 49

4.5 Implementing SEMROD . 51
4.5.1 Environment Setup . 51
4.5.2 HDFS . 52
4.5.3 Map . 53

ii

4.5.4 Reduce . 54
4.5.5 Fault Tolerance . 55

4.6 Evaluation . 55
4.6.1 Formal Evaluation . 56
4.6.2 Experimental Evaluation . 61
4.6.3 Experimental Settings . 61
4.6.4 Experimental Results . 64

4.7 Conclusions and Extensions . 76

5 Secure and Efficient Query Processing over Hybrid Clouds 78
5.1 Introduction . 78
5.2 Overview of Our Approach . 83
5.3 Our Approach . 87

5.3.1 Splitting SPJ block Qspj . 91
5.3.2 Splitting The Higher Level Operators 93
5.3.3 Creating CPT Column . 96

5.4 Implementation . 102
5.4.1 Join Path Representation . 103
5.4.2 CPT Column Creation . 103
5.4.3 Table Partitioning . 105

5.5 Experimental Evaluation . 106
5.5.1 Experimental Settings . 106
5.5.2 Experimental Results . 108

5.6 Related Work . 111
5.7 Extension . 112

6 Partitioning Workloads for Hybrid Clouds 119
6.1 Introduction . 119
6.2 WDP Definition . 121
6.3 Hybridizer . 123

6.3.1 Hybridizer Architecture . 123
6.4 Statistics Creation and Metric Estimation 124

6.4.1 Statistics Creation . 126
6.4.2 Metric Estimation . 129

6.5 WDP SOLUTION . 131
6.5.1 Solving WDP with Integer Programming 131
6.5.2 Dynamic Programming Solution . 132

6.6 Evaluation . 136
6.6.1 Setup . 137
6.6.2 Evaluation of Our Solution . 139

6.7 Conclusions and Future Work . 142

7 Conclusion and Future Work 144

Bibliography 147

iii

LIST OF FIGURES

Page

1.1 Hybrid Cloud Architecture . 4

4.1 Typical MR Job Execution . 29
4.2 Secure MR Processing Example . 30
4.3 The map phase of Single-level SEMROD . 35
4.4 The reduce phase of Single-level SEMROD 37
4.5 SEMROD Overview . 39
4.6 SEMROD’s Multi-level MR Map Execution 42
4.7 SEMROD’s Multi-level MR Reduce Execution 44
4.8 Single-level Job Results For Different priv

pub
Ratios 66

4.9 Multi-level Job Results For Different priv
pub

Ratios 66
4.10 Single-level Job Results For Different Sensitivity Ratios 67
4.11 Multi-level Job Results For Different Sensitivity Ratios 68
4.12 SEMROD/Sedic/Hadoop vs All-Private per Job 69
4.13 Distributed vs Centralized Key Set (M-Median, W-Wordcount) 70
4.14 Sensitivity Spread for Multi-level Join . 71
4.15 Single-level Job Results with Different ρ Values 73
4.16 Multi-level Job Results with Different ρ Values 74
4.17 SEMROD/Sedic vs All-Private in Real Hybrid Cloud 75

5.1 Example Relations . 83
5.2 Example Relations with CPT Column . 87
5.3 Example Queries . 88
5.4 The Execution Tree for example query, q . 91
5.5 Join Graphs and Path Creation . 98
5.6 TPC-H Dataset Schema Graph . 102
5.7 Workload Running Times For Different # of Public Machines 109
5.8 Workload Running Times For Different Sensitivity Ratios 110
5.9 CPT Creation Times For Different Sensitivity Ratios 111

6.1 Hybridizer Architecture . 125
6.2 Hybridizer Results for WDP in TPC-H Workload 140

iv

LIST OF TABLES

Page

2.1 PHE Techniques and Functionalities . 12

4.1 Notations . 26
4.2 Experimental Jobs . 63
4.3 Job Characteristics . 64
4.4 Hadoop vs SEMROD . 72
4.5 Machine Failure Overheads . 76

6.1 Notations . 122
6.2 Example Query Set . 135

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Prof. Sharad Mehrotra for his un-
derstanding, passion, wisdom and encouragement and for pushing me farther than i thought
i could go at UC Irvine. He has taught me how to identify new research problems and how
to address them. Without his persistent guidance, this thesis would have not been possible.

I would also like to thank Prof. Murat Kantarcioglu and his student Dr. Vaibhav Khadilkar,
for their assistance and suggestions throughout my research projects.

I would like to extend my thanks to my committee members, Prof. Michael Carey and Prof.
Chen Li for their guidance and support over the years and for letting me a member of the
amazing ISG group.

I take this opportunity to record my sincere thanks to the Computer Science Department of
University of California Irvine for letting me pursue my Ph.D. dream in Computer Science.
I also thank to the staff of this department and ICS graduate division for helping me to do
everything according to the procedures.

I would like to thank my parents, Tulay and Ibadi Oktay, and my siblings, Afsin and Esra
Oktay, who have patiently supported me during the last six years. I would like to extend
my thanks to all my family members, especially to my grandmothers, Fikriye Oktay and
Muserref Senocak for praying for me to come up to this point. Without their unconditional
support, it would not be possible for me to succeed any of my academic achievements.

Last of all, i would like to thank my friends for keeping me their company in our countless
meetings. Without their companionship, my life in here apart from my family would have
been very tough.

Above all, Elhamdulillah, all praises are belonging to Allah S.W.T who has given me the
health and necessary skills to finish this dissertation. Without his numerous blessings, this
would not have been possible.

vi

CURRICULUM VITAE

Kerim Yasin Oktay

Education

University of California– Irvine, Irvine, CA, USA 2015
Doctor of Philosophy, Information and Computer Science.

University of California – Irvine, Irvine, CA, USA 2011
Master of Science, Computer Science.

Bilkent University, Ankara, Turkey 2009
Bachelor of Science, Computer Science.

Publications

Kerim Yasin Oktay, Vaibhav Khadilkar, Murat Kantarcioglu, Sharad Mehrotra. SEMROD:
Secure and Efficient MapReduce over Hybrid Clouds. In: SIGMOD, 2015.

Kerim Yasin Oktay, Mahadevan Gomathisankaran, Murat Kantarcioglu, Sharad Mehrotra,
Anoop Singhal. Towards Data Confidentiality and a Vulnerability Analysis Framework for
Cloud Computing. In Secure Cloud Computing, 2014.

Kerim Yasin Oktay, Vaibhav Khadilkar, Murat Kantarcioglu, Sharad Mehrotra. Risk Aware
Approach to Data Confidentiality in Cloud Computing. In: ICISS, 2014.

Ata Turk, Kerim Yasin Oktay, and Cevdet Aykanat. Query-Log Aware Replicated Declus-
tering. In: TPDS, 2013.

Vaibhav Khadilkar, Kerim Yasin Oktay, Murat Kantarcioglu, Sharad Mehrotra. Secure Data
Processing over Hybrid Clouds. In: IEEE DEB, 2012.

Kerim Oktay, Vaibhav Khadilkar, Bijit Hore, Murat Kantarcioglu, Sharad Mehrotra, Bha-
vani Thuraisingham. Risk-Aware Workload Distribution in Hybrid Clouds. In: IEEE Cloud,
2012.

Kerim Yasin Oktay, Ata Turk, Cevdet Aykanat. Selective Replicated Declustering for Arbi-

vii

trary Queries In: Euro-Par, 2009.

Selected Awards

2009-2015: PhD Fellowship, University of California, Irvine.
2015: Travel Award Fellowship, SIGMOD.
2004: Fellowship from TUBITAK (The Scientific and Technological Research Council of
Turkey) 2004: Bachelor Fellowship, Bilkent University.
2004: Silver Medal at 45th International Mathemarical Olympiads
2004: Bronze Medal at 21th International Balkan Mathemarical Olympiads

viii

ABSTRACT OF THE DISSERTATION

Using Hybrid Clouds for Secure and Efficient Data Processing

By

Kerim Yasin Oktay

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2015

Professor Sharad Mehrotra, Chair

Fueled with the advances in virtualization and high-speed networking, cloud computing has

emerged as a dominant computing paradigm. Loss of control over the data due to migra-

tion to the cloud poses numerous concerns about data privacy and confidentiality, e.g.,the

sensitive data could be misused by the attackers, other tenants or service provider itself. A

possible approach to overcome such concerns is to encrypt the data prior to outsourcing it

to the cloud and to perform data processing over encrypted data in the cloud. Although

the database and cryptography communities have made significant progress on developing

systems that allow limited computation over encrypted data, no generic and efficient solution

for practical use has emerged yet.

In this thesis, we explore a radically different approach by using hybrid clouds as a vehicle to

achieve secure and efficient data processing in the cloud. We explore a design of secure and

efficient systems that steers the data and computation through public and private machines

in such a way that no (or user-specified amount of) sensitive data is leaked to public machines.

For this purpose, we first propose a fully secure and efficient MapReduce framework over

hybrid clouds, named as SEMROD. Second, we design a fully secure and efficient execution

strategy, called split-strategy, to partition relational data and SQL style queries across a

hybrid cloud. Third, we propose a principled conceptual framework, called as Hybridizer,

ix

that adjusts the data and workload that will be outsourced to the public cloud based on

maximizing the workload performance while meeting user’s risk and cost constraints. In

Hybridizer, our aim is to provide more performance gain by allowing to expose a user-

bounded amount of sensitive data to the public cloud (risk).

Overall, our experiments demonstrate outstanding results in terms of performance – that is,

organizations can have significant performance gains compared to other secure solutions by

using our secure and risk-aware data processing frameworks over their hybrid clouds.

x

Chapter 1

Introduction

Organizations today collect and store large volumes of data that they would like to analyze

for a multitude of purposes. For instance, an e-commerce company may combine click stream

data with customer information to better understand customer behavior for purposes ranging

from serving appropriate advertisements to deciding on discount offerings or product pricing.

Often the in-house computational capabilities of organizations cannot easily support complex

data analyses. While such limitations were a serious impediment in the past, emerging public

cloud computing platforms (e.g., Amazon’s EC2) offer a viable alternative. Public cloud

provide a cost-effective storage and computational infrastructure.

Despite numerous benefits, many organizations, specially for whom security and data con-

fidentiality is paramount, have significant concerns in embracing the cloud model [3], since

they deal with potentially sensitive data (e.g., business secrets, sensitive client information

such as credit card and social security numbers, medical records, etc.).

Security concerns of clients have led cloud providers to support mechanisms that empower

data owners to encrypt data prior to storage, effectively preventing many of the possible data

vulnerabilities. Encryption, however, raises a new challenge of computing on the encrypted

1

domain if one wishes to use the cloud as a computing infrastructure (not just for storage).

The challenge of data processing over the encrypted data has been addressed extensively

in the cryptography and database literature over the past decade. Numerous encryption

techniques have been developed to support basic computations over encrypted data, includ-

ing searchable encryption [4–10], order-preserving encryption [11–13], deterministic encryp-

tion [14], fully-homomorphic encryption [15], partially-homomorphic encryption [16–19], and

bucketization technique [20]. For instance, an order preserving encryption (OPE) technique

encrypts a set of inputs in such a way that the order of the inputs are preserved within cipher-

texts. Another notable work, fully-homomorphic encryption (FHE) based on lattice-based

cryptography can support both multiplication and addition within the encrypted domain.

Fueled with such advances, a new class of database systems, that enable SQL like queries

to run over the encrypted data have emerged. For instance, early work on database as a

service mode (DAS) [20] explored techniques to execute as many operators as possible in

the given query tree over the encrypted data and when processing could not continue on the

encrypted domain, the data is transferred to the secure client, which could then decrypt the

data and continue with query execution. Another system, Cipherbase [21] explores the role

of secure coprocessors in the cloud environment to quickly decrypt data when its needed

and continue processing. CryptDB [22] introduced onion encryption methods to guarantee

that data is selectively decrypted at the outsourced server (public cloud), just enough to

support the functionality desired. MONOMI [23] presented a split strategy between trusted

client and untrusted server, which can execute arbitrarily complex queries over encrypted

data. Influenced by the success of research prototypes, many similar systems are being

designed by commercial vendors (e.g., SAP, Google) and by government research labs (e.g.,

NIS, Lincoln Labs). Examples would be Google BigQuery [24] and No-SQL D4M Accumulo

engine of Lincoln Labs [25].

Such systems do not strive to ensure complete data confidentiality – instead they are designed

2

to preserve as much confidentiality as possible while still ensuring efficient data processing.

Systems typically explore tradeoffs between level of confidentiality achieved and performance

overheads (as in [20]) or the level of functionality supported (as in CryptDB and other

systems inspired by it). Unfortunately, recent studies [26, 27] have highlighted that when

order preserving and deterministic encryption techniques are used together, as in CryptDB,

on a dataset in which the entropy of the values is not high-enough, an attacker might be able

to construct the entire plaintext by doing a frequency analysis over the encrypted data. So, it

is difficult to precisely characterize the degree of security offered by such systems. Systems

based on encryption that completely prevent leakage of sensitive information remains an

open challenge – while such systems could possibly be designed based on the seminal work

on FHE technique [15], and on the work on oblivious RAM [28], such techniques are too

inefficient1 to date to form the basis of building technology that offers secure data processing.

The quest for secure and efficient data processing in cloud environments, thus, remains, an

illusive goal.

Additionally, the goal of encryption based systems2 is to provide functional completeness [30]

wherein the entire computation is outsourced to untrusted servers (public cloud). The only

task performed at the local machines is to decrypt the results. An organization, however,

might have a considerable size storage and computational power in their own site. But,

such systems will never be able to utilize this in-house computational resources for the data

processing.

Finally, to achieve full security, encrypted database systems end up encrypting all the data

items, regardless of their sensitivity. Whether they are sensitive or not for an organization,

all the records must be encrypted in such systems in order to prevent sensitive information

leakage. For instance, CryptDB pays the huge overhead of encrypted query processing,

1In FHE, each integer is represented using 214 bits. Doing addition/multiplication over the encrypted
data takes cosmic time [29].

2Except for DAS which does allow computation to be split between public and private machines

3

Figure 1.1: Hybrid Cloud Architecture

even though the entire query is executed on a few records that are not sensitive for the

user. Thereby, for an organization whose data is mostly non-sensitive, encrypted databases

systems will not be an efficient option.

In this thesis, we build upon a radically different (but complementary) approach to secure

data processing in the cloud. Instead of exploring encryption as a basis to build secure

data processing systems , we explore a design of secure systems that prevents sensitive data

from leaking to the public domain. In the envisioned approach, the data and computation

is partitioned across machines trusted by the data owner and the untrusted public cloud in

such a way that sensitive information never leaves the trusted machines. The approach is

intended for situations where

• owners/organizations have an existing storage / computational resources of their own,

though the resources may be too limited to process/analyze data in its entirety, and

• sensitive data is only a small part of the overall data over which data owners may need

to compute.

4

A perfect embodiment of a system for which our approach is designed is a mixed compu-

tation environment such as hybrid cloud. A hybrid cloud, as shown in Figure 1.1, enables

composition of two distinct cloud infrastructures, private and public, that remain unique en-

tities, but are bound together by standardized or proprietary technology that enables data

and application portability [31]. In a typical hybrid cloud, the private cloud machines are

connected to the public cloud machines over a public network or a special private network

offered by the public cloud provider. The hybrid cloud paradigm allows end-users to seam-

lessly integrate their trusted on-premise computing resources with the cheap and scalable

public cloud services and construct potent, secure and economical data processing solutions.

the For instance, hybrid clouds can empower organizations to partition data and computa-

tion amongst public and private machines in such a way that they can leverage the power of

the public cloud while ensuring that the sensitive data or computation never leaves private

machines. Indeed, the potential for using hybrid clouds for secure data processing has been

recently recognized in the Beckman Workshop on Data Management [32] as well as, in pop-

ular media [33] that lists 31% of IT managers (projected to reach 74% in the near future)

preferring hybrid clouds rather than public or private deployments both for security and

cost reasons. Indeed, Big cloud enterprises such as Microsoft and VMWare are increasingly

investing in hybrid cloud solutions [33].

Distributing data processing in a secure and efficient way across the hybrid cloud is not an

easy task. The first challenge is to ensure that the execution is secure. This constraints

data processing to be such that no sensitive data migrate to the public cloud. However,

as shown in [1], leakage of sensitive data may occur indirectly, even when no sensitive data

is exposed to the public cloud. The execution must be appropriately distributed to ensure

that no direct or indirect sensitive information leakage possible. To overcome such security

concerns, one can trivially bring the non-sensitive data to the private cloud (or initially store

it at the private cloud) and handle the entire data processing at the private side. Of course,

such an approach would perform poorly in terms of efficiency, since public cloud resources

5

are not exploited for data processing. The challenge is to simultaneously satisfy the security

while providing efficient execution.

Our goal in this thesis is to use hybrid clouds as a vehicle to achieve secure and efficient

data processing in cloud computing. This thesis will explore how partitioning computation

based on data sensitivity by itself; in conjunction with risk-based processing techniques

(that explore trading bounded amount of sensitive data exposure for efficiency) can be used

to support secure yet efficient data processing in hybrid clouds.

First, we present a fully secure and efficient MapReduce (MR) framework over the hybrid

clouds. For large scale data analyses, MR systems have been widely used because of their

high scalability, fault tolerance and easy-to-use features. In the MR paradigm, users specify

a map task that processes an input record to generate a set of intermediate key-value (KV)

pairs, and a reduce task that merges all intermediate values with the same key. The runtime

system executes the map and reduce tasks in parallel over a cluster of machines. Current

MR systems, when deployed over hybrid clouds, do not take into account the sensitivity

of information when storing/processing data. Such MR systems could disclose potentially

sensitive information to other tenants residing on the public cloud or to privileged insiders

having access to the public cloud infrastructure. To overcome these challenges, we propose

a new framework, named as SEMROD, which provides a secure and efficient MR processing

over hybrid clouds.

Second, we explore how to partition SQL-like structured queries across hybrid clouds in a

fully secure and efficient way. Although supporting generic MR jobs is a significant step,

many MR jobs that are executed in practice are generated based on the queries written

in structured query languages such as HiveQL [34] and Pig Latin [35]. One approach to

implementing secure SQL style queries is to transform them into corresponding MR jobs

and use our SEMROD framework. SQL offers much higher level of semantics that can

be exploited to significantly improve performance without sacrificing semantic security. To

6

achieve this, we develop a strategy to partition SQL queries, called split-strategy, which

provides semantically secure and efficient query processing compared to running the same

set of queries on the private cloud.

Third, we explore a cost and risk aware mechanism to partition workloads of SQL-style

queries across a hybrid cloud. Different data and workload partitionings display different

trade-offs in terms of the running time of the workload (performance), the monetary cost

of using resources from a public cloud (cost) and the risk of sensitive data disclosure (risk)

metrics. For instance, storing all the data and executing the given workload only on private

cloud leads to zero risk and zero cost, but will most likely incur low performance due to not

exploiting public cloud resources. Alternatively, shifting the entire data and computation to

the public cloud may have a high performance benefit, but at the same time incurs the max-

imum risk and monetary costs. We propose a conceptual framework, called as Hybridizer,

that adjusts the data and workload that will be outsourced to the public cloud based on

maximizing the workload performance while meeting user’s risk and cost constraints. Note

that our previous approaches focuses on providing efficiency without violating semantic se-

curity (i.e no sensitive data exposed to the public cloud), whereas Hybridizer aims to provide

a performance gain by exposing a user specified amount of sensitive data to the public cloud.

The rest of the thesis is organized as follows: Chapter 2 reviews the related work in the area

of secure data processing. Chapter 3 provides an overview of our security model, namely

the sensitivity and adversarial models deployed in this thesis. In Chapter 4, we present our

secure and efficient MR framework over hybrid clouds. Chapter 5 provides the details about

our algebraic approach to constructing a secure and efficient execution strategy for SQL-like

queries over a hybrid cloud. In Chapter 6, we introduce our general-purpose Hybridizer

framework to automatically partition a workload of tasks (or queries), and in turn, its data,

over a hybrid cloud. Finally, we present our conclusions and future work in Chapter 7.

This thesis is partially supported by the following grants: Air Force Office of Scientific Re-

7

search FA9550-12-1-0082, National Science Foundation (NSF) Grants Career-CNS-0845803,

CCF-1212943, CNS-1118127, CNS-1059436, CNS-1111529, CNS-1228198 and Army Re-

search Office Grant W911NF-12-1-0558.

8

Chapter 2

Related Work

This thesis builds upon a significant body of prior research on MapReduce, distributed data

(query) processing and more importantly secure data processing in the cloud. In here, we

will only present the prior work on secure data processing in the cloud and we will leave

the discussion on the previous work in other areas (e.g. distributed data processing) to the

corresponding chapter.

The secure data processing systems heavily relies upon the data encryption. The challenge of

data processing over the encrypted data has been addressed extensively in the cryptography

and database literature over the past decade. Numerous encryption techniques have been

developed to support basic computations over the encrypted data. Unfortunately, none of

these techniques is alone enough to support all types of computation. We will first review

these techniques and their functionalities, many of which is summarized in [36, 37] and

continue our discussion with the secure data processing tools.

9

2.1 Encryption Techniques

Searchable Encryption (SE): There are numerous searchable encryption techniques avail-

able up to date. [4–10] are only few of them and a recent work [38] provides a survey about

the SE techniques. A searchable encryption schema enables an untrusted server to search in

encrypted data without learning any information about the plaintext data. While some of

the SE techniques directly applies the searching over the ciphertext [7], the other techniques

work by creating a searchable encrypted index [5]. In such approaches, the encrypted docu-

ments and encrypted index is stored on a honest-but-curious server. To search the encrypted

documents on the server, the client first generates a trapdoor using his/her secret key and

then searches the encrypted index using this trapdoor. Without knowledge of trapdoors,

the encrypted index leaks no information about its content [4]. Finally, once the search on

encrypted index is done, the pointers to the appropriate encrypted documents are returned.

The research in SE has three different dimensions: 1) efficiency of the approach 2) the se-

curity of the approach and 3) the search queries supported by the approach. Each different

technique displays a different tradeoff across these three dimensions.

Order Preserving Encryption (OPE) : Introduced by [11], this technique encrypts the

plaintexts in such a way that the order in their ciphertexts is same as the order in original

plaintexts. In other words,

If x ≥ y, then Enc(x) ≥ Enc(y) (2.1)

This technique allows the untrusted server to perform order by, range and sort operations

over the encrypted data. The recent work [12, 13], so called modular OPE, is a promising

extensions of OPE that increases the security of the basic OPE. These new techniques adds

a secret modular offset to each data value before encrypting them, i.e.

10

MOPE(x) = OPE(x+ y) (2.2)

where y is the secret offset. In this new approach, the adversary cannot learn any information

about the locations of data values by looking at the encrypted data; whereas in basic OPE,

half of the most important bits of plaintext locations can be leaked [12].

Deterministic Encryption (DTE) : A DTE technique encrypts a set of plaintexts in

such a way the ciphertexts of two plaintexts will be equal if and only if the plaintexts are

equal. Namely,

x = y ⇐⇒ Enc(x) = Enc(y) (2.3)

This is achieved through using the fixed encryption key. DTE enables the untrusted server

to do equality checks or run point queries over the encrypted data. One of the most notable

DTE techniques is presented in [14].

Fully Homomorphic Encryption (FHE) : Introduced by [15], FHE is a public-key

encryption scheme that allows to evaluate various functions over the encrypted data. The

function that will be evaluated is typically represented as a boolean circuit of polynomial size

in the input size. These circuits often enable to compute both addition and multiplication.

But, with the recent research on FHE, the new techniques are able to run any function over

the encrypted data. FHE guarantees a strong security, that is the adversary who has the

ciphertext and public key cannot learn any information about the underlying text, other

than its length [37].

Even though there has been a huge ongoing research on improving the performance of FHE,

FHE techniques are still too slow and costly in terms of storage. For instance, when an

integer is encrypted using FHE, the ciphertext size is around 214 bits. According to [37],

11

PHE CryptoSystem Functionality

Paillier [17] Addition

ElGamal [16] Multiplication

Goldwasser-Micali [18] XOR

BGN [19] Arbitrary number of addition, 1 multiplication, Arbi-
trary number of addition

Table 2.1: PHE Techniques and Functionalities

running an AES block1 [39] on the data encrypted with FHE takes around 40 minutes on a

machine with a very large memory, which is six orders of magnitude slower than performing

an AES block on the unencrypted data. Due to their efficiency impediments, FHE techniques

are not used by the existing secure data processing tools.

Partially Homomorphic Encryption (PHE) : PHE and FHE are similar in spirit. The

only difference is that PHE only allows to run a specific function over the encrypted data,

such as addition or multiplication. PHE and FHE techniques offers the same strong security.

Various implementations of FHE and their functionalities over the encrypted data are given

in Table 2.1 .

Since the PHE schemes are more efficient and more practical than FHE, the encrypted

databases systems use PHE instead of FHE. For instance, encrypting values takes around

9.5 ms and adding two encrypted values takes around 0.005 ms in Paillier cryptosystem on

a commodity machine [37].

Bucketization : Bucketization technique, introduced in [20], partitions encrypted at-

tributes into buckets by a privacy-aware partitioning function so that the exact information

of which records are requested by a query is never revealed to the untrusted server. The par-

titioning function can be either order-preserving or random (not-order preserving). Such an

1The AES or Advanced Encryption Standard is a symmetric block cipher used by the U.S. government to
protect classified information. It is implemented in software and hardware throughout the world to encrypt
sensitive data.

12

approach effectively makes every record within a bucket indistinguishable from another. [40]

and [41] analyze the loss of privacy due to bucketization. But, one can control its privacy

loss by varying the sizes of the buckets. Pretty much any type of database operation can be

computed over the bucketized data, but the false positives within the answer set must be

filtered out on a secure side (client or private cloud).

Non-deterministic Encryption (NDTE) : Such encryption techniques use a randomness

during encryption, so that when same plaintext is encrypted several times, as opposed to

DTE, different ciphertexts will be yielded. NDTEs provide strong security, however they do

no allow to run any kind of computation over the encrypted data. A typical implementation

of NDET is to use block ciphers such as AES or Blowfish [42] in cipher block chaining mode

with a random initialization vector.

2.2 Secure Data Processing Systems

Fueled with the advances in cryptography and cloud world, a new class of secure data

processing systems that enable to use public clouds have emerged. In here we will give more

details about such systems.

One of the early works in this area was database as a service model (DAS) [20]. DAS model

explored support for SQL style queries with basic operations such as selection, projection,

join etc. over the encrypted data. In DAS, when the execution could not continue on the

encrypted domain, the intermediate data is transferred back to a secure side (client or private

cloud), which could then decrypt the data and continue with the computation. The goal

in DAS is to partition the query execution between the untrusted server and trusted client

in such a way that the computation on the server side is maximized. DAS model enables

users to make a tradeoff between the efficiency and the data confidentiality via bucketization

13

technique. In spirit, DAS model is similar to what we are trying to achieve in this thesis.

Thereby, we can easily say that our research in this thesis has its roots in DAS model.

Another notable system, CryptDB [22], supports a wide-variety of SQL-like queries over

encrypted data. To achieve this, each attribute in the table is encrypted in one or more

onions. That is, each value is encrypted using a layers of increasingly stronger encryption

techniques, where every layer of a onion supports a specific type of operation. Once data is

encrypted using onions, the data is selectively decrypted at the untrusted server, just enough

to support functionality required. Many similar systems to CryptDB are being designed by

commercial vendors (e.g., SAP, Google) and by government research labs (e.g., NIS, Lincoln

Labs). For instance, the design of Google Encrypted BigQuery [24] and No-SQL D4M

Accumulo engine of Lincoln Labs [25] have the design influenced by CryptDB.

Cipherbase [21], developed at Microsoft Research, achieves high performance and high data

confidentiality by storing and processing strongly encrypted data. The data is encrypted

using FHE in such a way that addition, multiplication and comparison can be performed

without decrypting the data. The operations that cannot be computed over the encrypted

data, is handled over a FPGA based secure co-processors in the cloud. This work is in spirit

very similar to the DAS model.

MONOMI [23], whose design is built upon CryptDB, was developed for executing analytical

queries on encrypted data. MONOMI introduces several space and performance optimiza-

tions to speed up the query processing on the encrypted data. For instance, it creates some

new attributes on the rows of the tables by doing some pre-computation in order to support

certain class of operations given in the workload such as multiplication of two different at-

tributes. Additionally, similar to DAS model, it applies conservative pre-filtering over the

encrypted intermediate data before shipping them to the secure client to continue execution

on the client side. Finally, MONOMI uses only the encryption techniques that is enough to

execute given workload.

14

Another related work, namely Relational Cloud [43], uses the graph-based partitioning

scheme described above to split data into private/public sides. The partitions are encrypted

with multiple layers of encryption and stored on a server. A query is executed over encrypted

data with multiple rounds of communication between a client and server without considering

the cost of decrypting intermediate relations.

While encryption based solutions is an interesting solution for executing queries over out-

sourced databases, we provide a more general framework that intelligently partitions data

and queries for hybrid clouds without using any encryption. Also, encryption based solutions

aims to minimize disclosure risk, instead of mitigating it entirely, in order to get performance

benefit. However, our sensitivity-based data and computation partitioning solution enables

the user to obtain a huge performance gain without even exposing any sensitive information.

[44] considered the problem of securely outsourcing relational data using two non-colluding

servers. The goal is to not give either server access to all attributes specified in a policy,

which is defined in terms of subsets of attributes. While the two-server model can be mapped

to our case, where the private cloud is both, a server and the trusted client issuing a query,

their model of sensitivity is completely different from ours. While they do not allow all

attributes specified in a confidentiality policy to be exposed to either server at any time, we

are willing to expose any non-sensitive data to untrusted servers. This relaxation makes our

solution approaches quite distinct from their approach.

Another prototype developed by Microsoft Research, VC3 [45] is the first practical framework

that enables users to run secure MapReduce in the cloud. First, VC3 keeps the MapReduce

code and data secret (data and code confidentiality). Second, it ensures that the MR job

results will be correct and complete (data integrity). VC3 heavily relies on secure SGX

processors to isolate memory regions on commodity machines, and to deploy new protocols

that secure MapReduce tasks.

15

Additionally, there has been recent work related to the problem of securely partitioning

data/computation over the hybrid clouds. [46, 47] explore this problem in the context of

MapReduce. Their aim is to exploit public cloud machines as much as possible with-

out leaking any sensitive information during MapReduce execution. For instance, Sedic,

a privacy-aware MapReduce framework, proposed in [46] can shift the computation to the

public cloud only in the map phase of the first MR job, which is not a very efficient solution.

Our secure and efficient MapReduce framework, SEMROD, is able to utilize public cloud

resources throughout the entire MR execution.

16

Chapter 3

Security Model

Despite numerous benefits, organizations, especially those that deal with potentially sensitive

data (e.g., business secrets, sensitive client information such as credit card and social security

numbers, medical records), hesitate to embrace the cloud model completely. One of the main

impediments is the sense of ”loss of control” over ones data wherein the end-users (clients)

cannot restrict the access to potentially sensitive data by other entities, whether they be

other tenants to the common cloud resources or privileged insiders who have access to the

cloud infrastructure. The key operative issue here is the notion of trust. Loss of control, in

itself, is not as much of an issue if clients/users could fully trust the service provider. In a

world where service providers could be located anywhere, under varying legal jurisdictions;

where privacy and confidentiality of ones data is subject to policies and laws that are at best

(or under some circumstances) ambiguous; where policy compliance is virtually impossible

to check, and the threat of ”insider attacks” is very real. Trust is a difficult property to

achieve. Loss of control over resources by migrating to the cloud coupled with lack of trust

in the service provider poses numerous concerns :

• Data integrity : Service provider may serve the data inaccurately, or attacker may

17

corrupt the data itself.

• Data availability : User may not have access to its data all the time.

• Data privacy or confidentiality : Sensitive data may not remain confidential and would

be vulnerable to misuse by other tenants, attackers or the service provider itself, while

data is at rest or while data is being processed

While the cloud providers have to develop systems which addresses all of these concerns in

order to attract more customers; in the context of this thesis, we only explore the challenge

of data confidentiality in the public cloud environment.

Next, we will first discuss under what kind of sensitivity model we address the data confi-

dentiality challenge. Subsequently, we will describe the adversarial model, against which we

guarantee data confidentiality.

3.1 Sensitivity Model

In the context of this thesis, we will consider a record level sensitivity model wherein records

of relations are classified as either sensitive or non-sensitive. For instance, in a relational

dataset, we consider that each tuple could be either sensitive or non-sensitive. Similarly

in the context of MR, the input key-value pair could be in either of two states: sensitive

or non-sensitive. Note that sensitivity in database literature might be modeled at level

of columns/attributes, if one desire finer grained sensitivity to only selected attributes, we

can still use our sensitivity model by vertically partitioning the records into two relations

collating all the sensitive attributes together. Theoretically, thus, the restriction to record

level sensitivity does not sacrifice the generality of our approaches, though it will likely

require slight modification to our prototypes to deal with the partitioned relation.

18

Our sensitivity model is independent of the exact method used to specify sensitivity e.g.,

users may specify which records are sensitive by defining predicates. The only assumption

we make is that non-sensitive records by themselves do not contain any information about

sensitive records. That is, even if the adversary could gain access to all non-sensitive records,

it would not infer any sensitive information.

Furthermore, regardless of the computation being executed, any data generated in the course

of a data processing is intrinsically considered to be sensitive, if it is generated as a result of

processing at least one sensitive input. To state this formally, for any given data processing

function F and any instance of it, namely F (r1, r2, ...rt) = rout where r1 to rt are the input

records and rout is the output record,

sens(rout) =

 true, ∃ 1 ≤ j ≤ t, rj is sensitive

false, otherwise.
(3.1)

Note that, the sensitivity model we have employed during a data processing is conservative,

since we consider any function’s output to be sensitive if it is sourced from at least one

sensitive input record. For many cases, such an assumption can be relaxed. In general, the

output of a function F may not reveal any sensitive information about its input data. For

such F , a new sensitivity model where all outputs are directly considered to be non-sensitive

can be introduced. While exploring support for sensitivity models that vary based on the

specifics of the given computations is an interesting direction of exploration, we restrict our

attention to only the conservative model for two reasons. First, the conservative model is

more general and works regardless of the specific semantics of the given data processing task.

Second, it suffices to establish the feasibility of the solution. In particular, if we establish an

efficient data processing framework that guarantees that no sensitive data is leaked under a

conservative model, we can further improve the framework to exploit specific semantics of

data processing tasks being executed.

19

Note that our sensitivity model does not explicitly deal with the inference control problem

wherein users may consider some inferences (derivable from non-sensitive data) such as

association rules as sensitive while the data itself is deemed nonsensitive [48]. Inference

control problem has been studied in the security literature in various contexts: statistical

databases [49], multi-level relational database systems [50, 51], data publishing to name

a few [52, 53]. For instance, in [53] the authors discuss a problem of publishing view on

data that does not reveal information about sensitive queries. Likewise, [48] focuses on the

problem of limiting the disclosure of sensitive association rules while minimally affecting the

non-sensitive associations.

Our goal, in this thesis, is limited to preventing loss of sensitive data and we consider inference

control to be a related but complementary problem. We note that many proposed secure

data processing frameworks take a similar view (e.g., SQL databases that support access

control such as Oracle [54]). Such systems prevent exposure of sensitive data but do not

directly address sensitive inferences. One of the reasons is that despite significant research,

inference control, in general, has remained a difficult open problem even in traditional data

processing systems. Of course, our solutions will prevent sensitive inferences, if the user

conservatively marks all the data which could lead to the sensitive inferences as sensitive.

Exploring and incorporating more effective approaches to inference control wherein user’s

can specify sensitive inferences and the system steers data in ways to prevent inferences

remains an interesting future direction of exploration.

Finally, we note that our sensitivity model only deals with sensitivity related to data. Sen-

sitivity may instead be associated with the computation – e.g., if the user wishes to execute

a proprietary analysis in which the SQL code or MapReduce code is sensitive. For such a

case, likely hybrid cloud setting is not appropriate since the adversary will gain knowledge

of the corresponding computation creating a potential vulnerability. In our framework, we

will assume that the computation (e.g. query or MapReduce job) itself is not sensitive.

20

3.2 Adversary Model

There has been significant amount of research in the literature about providing security

against different types of adversaries. Usually, in the context of security as well as cloud

computing, the adversaries are classified based on their capabilities and intentions.

First, an attacker can be either computationally bounded or unbounded in terms of the stor-

age, computation and time resources. In the computationally bounded model, the adversary

is able to perform a reasonable amount of computation within a limited time to learn sen-

sitive information; whereas in computationally unbounded model, the attacker has no such

limits.

Second, an attacker can be classified based on his/her control over the network. The attacker

can passively listen the incoming and outgoing channels of the cloud (eavesdropping). Or

the attacker is able to actively corrupt the messages in the network channels (Byzantine

attacks). Note that both attacker models can be very dangerous for an organization using

the cloud environment, since they are usually connected to their cloud provider via a public

wide area network, rather than a special trusted network.

Third, an attacker might have a fixed behavior (static) or his/her behavior can change based

on the results of the computation on the cloud (adaptive). For instance, in the context

of data processing, the static attacker sitting on the public cloud can only learn sensitive

information from the given input data, whereas in adaptive model, the attacker can change

its strategy, and apply certain statistical/inference attacks based on the intermediate or

output data generated by the computation.

In the scope of this thesis, we will assume that the private cloud is trustworthy and that the

adversary has neither access to private cloud machines nor their communication channels.

Thus, an adversary cannot launch any attack against private cloud machines to acquire sen-

21

sitive information. In contrast, the adversary can have full control of the public cloud and

can easily access any input/intermediate/output file generated on the public cloud and can

design its attacking strategy based on the input as well as the intermediate and output data

(adaptive). In addition, the adversary can view the locations to which the output of public

computations are shipped. Furthermore, the adversary can eavesdrop on the communication

channel between the public and private clouds, but cannot actively corrupt the communica-

tion. Also, the adversary is computationally unbounded, so he/she can launch any type of

statistical/inference attacks to gain knowledge about the sensitive data stored on the pri-

vate nodes. The time or storage is not a concern for him/her to learn sensitive information.

Finally, the adversary is assumed to be honest-but-curious [55]. Thus, while the adversary

correctly computes the tasks assigned to public machines, it exploits the knowledge gained

to try to derive as much information as possible about the sensitive data and computation.

Under such an adversarial model, our goal is to guarantee data confidentiality, that is no

sensitive data or information that can provide inferences about the sensitive data is leaked

to the public cloud during data processing.

22

Chapter 4

Secure and Efficient MapReduce over

Hybrid Clouds

4.1 Introduction

For large scale data analyses, MR-based systems [56, 57] have been widely used because of

their high-scalability, fault tolerance and easy-to-use features. In the MR paradigm, users

specify a map task that processes an input record to generate a set of intermediate key-value

pairs, and a reduce task that merges all intermediate values with the same intermediate key.

The runtime system executes the map and reduce tasks in parallel over a cluster of machines.

To enable parallelization, systems such as Hadoop [57] and Google MR are supported by an

underlying reliable distributed file system. Current MR systems, when deployed over hy-

brid clouds, do not take into account the sensitivity of information when storing/processing

data. Such MR systems could thus disclose potentially sensitive information to other ten-

ants residing on the public cloud or to privileged insiders having access to the public cloud

infrastructure. As a result, organizations for whom security is indispensable are unable to

23

deploy MR jobs over their hybrid cloud environments.

Design Principles: Our goal, in this chapter, is to design an MR framework for hybrid

clouds that follows each of the principles given next.

• Secure: Our new framework must be secure against honest-but-curious public cloud.

We identified two types of sensitive information leakage that can occur in hybrid clouds

in the context of MR jobs; viz. direct exposure, where the sensitive data is directly

transmitted to a public machine for either storage or computation purposes; and key-

inference exposure where an adversary can infer the association of an intermediate

key, generated during MR processing, with sensitive data. Our new framework must

prevent both of these exposure scenarios.

• Enable Public Cloud Usage: To provide security, one option would be to do the entire

computation at the private cloud. However given that private clouds has a limited com-

putational power, this would not be an efficient solution. Thereby, our new framework

needs to move as much computation to the public cloud as possible.

• Easy-to-use The system should not put any extra burden to the user. It should min-

imally change the way end-user interacts with the MR framework. Also, it should

support a convenient migration of existing jobs to the new execution framework.

• Generic This framework should not be focusing primarily on specific type of MR Jobs,

rather it should provide efficiency and security for all types of MR Jobs.

• Efficiency The system should be more efficient then other secure MR solutions, such

as running everything at the private cloud. Also, the overhead incurred by security

assurance should be low compared to a native MR framework.

To address all these design principles, we propose SEMROD, the abbreviation stands for a

secure and efficient MR framework for hybrid clouds. SEMROD uses a modified distributed

24

file system to store data and allows both, mappers and reducers, to execute on public clouds,

while guaranteeing that no sensitive data is exposed. This is achieved by implementing

two additional mechanisms over the original MR framework. First, SEMROD performs an

additional “sensitive key analysis” phase between the map and reduce phases to determine

intermediate keys with which sensitive data may be associated. Such keys must be reduced

on the private side since part of the intermediate data for such keys cannot be shipped to

the public side. Second, SEMROD shuffles key-value pairs generated on the public side to

a public and private reducer. Such an extra shuffling enables reduce computation over non-

sensitive data to be performed over public machines, without incurring any key-inference

exposure.

The main contributions of this chapter are as follows:

• We identify the types of sensitive information leakage that could occur in the course

of MR job execution in the presence of a honest-but-curious adversary on the public

cloud.

• We propose SEMROD, a secure and efficient framework to execute single and multi-

level MR jobs over hybrid clouds. SEMROD ensures full safety against the identified

types of leakage while allowing execution of both, map and reduce operations, on public

machines.

• We show how SEMROD can be easily integrated and implemented in one of the most

popular MR implementations, namely Hadoop.

• We conduct experiments to show the efficacy of our approach vs. other secure alterna-

tives. Our results show that SEMROD dramatically improves the total MR execution

time of relational join, selection and aggregation queries as compared to other solutions

We note that there have been a few attempts in building secure MR frameworks for hybrid

25

Notation Description

J Given sequence of MR jobs, J = {j1, j2, . . . , jn}.
Inpi Set of input records for ji.

Inti and Ki Set of intermediate key-value (KV) pairs and keys generated by the job
ji.

Outi Multi-set of output KV pairs produced by job ji.

M i(r) Map (+ Combiner) function of the job ji where r ⊆ Inpi.

Ri(k) Reduce function of the job ji where k ∈ Ki.

Table 4.1: Notations

clouds in recent literature [46]. Existing techniques limit themselves by either running map

or reduce tasks (but not both) on public machines and focus only on a single level MR job. As

such these techniques exhibit significant limitations specially in the context of multi-level MR

jobs or reduce heavy jobs. We will compare SEMROD to existing state of the art in details in

the rest of the chapter organized as follows: Sections 4.2 and 4.3 provide an overview of the

original MR framework and the exposure models. Next, Section 4.4 introduces our secure and

efficient MR mechanism, namely SEMROD. In Section 4.5, we present the implementation

details of our techniques over Hadoop, a well known open-source MR framework. Then,

Section 4.6 formally and experimentally compares the performance of SEMROD with other

secure solutions and the original Hadoop implementation for a variety of tasks. Finally, we

conclude the chapter and discuss extensions to further improve SEMROD’s performance in

Section 4.7.

4.2 Preliminaries

In this section, we provide a brief overview of MR which forms the basis of our work. To

better state the ideas presented in the remainder of this chapter, we use the notations

described in Table 4.1.

26

4.2.1 MapReduce Framework

MapReduce (MR) is a framework that have been widely used for large scale data analysis,

because of its high-scalability, fault tolerance and easy-to-use features. In the MR paradigm,

users specify a map task that processes an input record to generate a set of intermediate

key-value (KV) pairs, and a reduce task that processes all intermediate values with the same

intermediate key. The runtime system executes the map and reduce tasks in parallel over a

cluster of machines.

MR framework allows storing and processing large volumes of data using a Distributed File

System (DFS) as its underlying storage mechanism. A DFS provides numerous advantages

such as data replication, fault tolerance and reliability. In MR, a master node manages the

entire file system by keeping track of how blocks of files are distributed over all slave nodes.

A process running on every slave node manages the storage infrastructure for that node.

MR jobs process data stored in DFS in a parallelized fashion over a cluster of nodes. In MR

framework, the master is responsible for scheduling an MR job among the slaves while a slave

node is responsible for executing the given sub-task. An MR job consists of the following

operations:

• Map operation takes key-value pairs as input in order to generate a list of intermediate

key-value pairs. Namely,

map : (k1, v1)→ list(k2, v2). (4.1)

Map operations are usually distributed across a cluster by automatically partitioning the

input to possibly equivalent sized splits, which can then be processed in parallel by separate

machines. The assignment of a particular map task to a slave node is done by the master.

Once a map operation gets completed on a slave, the intermediate key-value pairs are stored

27

as partitions in local disks on that slave. Furthermore, the locations of these outputs are

transferred to the master, which in turn will forward them to reduce tasks.

• An intermediate shuffle operation, in which reducers use remote procedure calls to fetch

their inputs from local disks of slaves. Note that, the reducer is provided the locations of

the slaves, from which it needs to read data, by the master.

• An intermediate sort phase, in which reducers upon receiving their input data (as a result

of shuffle) sorts the incoming key-value pairs such that all the key-value pairs, having the

same key, are grouped together.

• A reduce operation, in which a reducer processes all pairs that share a common key. This

operation can be defined as follows:

reduce : (k2, list(v2))→ list(k3, v3). (4.2)

Reduce tasks are distributed across the cluster by partitioning the intermediate key space

into |R| parts by using a partitioning function (the default is: hash(ki) mod |R|), where |R|

denotes the number of reduce tasks. The user is allowed to specify the number of reducers,

and in turn the number of partitions. Furthermore, the user can specify a partitioning

function that achieves a more balanced partitioning of the intermediate key space.

Figure 4.1 illustrates how a single MR job ji is processed by the MR framework using the

notations described in Table 4.1. Note that, input data for job ji, Inp
i, comprises the

previous MR job’s output data, Outi−1 (if there exists any) and some external data Exti.

In certain cases, MR framework allows users to define an optional combiner function that

performs a partial reduction on the map output data before it is delivered to reduce tasks.

This reduces the amount of data transferred over the network. The combiner function is

applied to each map task’s output and its result is stored in local disks of slave nodes.

28

Figure 4.1: Typical MR Job Execution

Another performance enhancement technique applied in MR frameworks is to (partially)

overlap the execution of map and reduce tasks. In particular, a reduce task can begin

shuffling whenever some portion of map tasks have completed. This feature is called slow-

reduce start and it enables parallel execution of map and reduce tasks rather than executing

them sequentially.

4.3 Security Challenges

In this section, we identify all the security related challenges when running MR jobs over a

hybrid cloud. Furthermore we provide all the security and performance motivations behind

the introduction of SEMROD..

4.3.1 Exposure Scenarios

Given our adversarial model, there can mainly two types of exposures : Direct Exposure and

Key-inference Exposure, that could arise while either storing the data or executing MR jobs

29

Figure 4.2: Secure MR Processing Example

on public machines. Let us illustrate these exposure scenarios in the context of an example

shown in Figure 4.2, which is also used later to motivate SEMROD.

Suppose that an analyst, given dataset D about patients, wishes to compute a complete list

of diseases for each patient. The analyst defines an MR job j for this purpose, where the

map task emits a key-value pair consisting of the patient’s name, and the disease they have.

The reduce task will take all the records corresponding to a single patient to compute the

complete list of diseases for the patient. Note that, this example is very similar to creating an

inverted list of words given a set of documents; an example frequently used to illustrate the

MR model. In the dataset, let us assume that the input records associated with the cancer

disease are sensitive. We first note that records such as 〈Chris, cancer, Mar − 13〉 cannot

be stored/mapped on public machines since the attacker will have direct access to such data.

Thus, the last 3 records in Figure 4.2 must be assigned to the DFS partition on private

machines. Given our sensitivity model, after the map phase, intermediate 〈Name, disease〉

KV pairs, whose value contains cancer (e.g., 〈Chris, cancer〉) are sensitive. Shuffling such

intermediate KV pairs to public reduce tasks will again directly disclose the sensitive data

to the attacker. In other words, direct exposure occurs when any public machine either

30

receives a sensitive record as an input for a map task, or gets an intermediate sensitive KV

pair as an input for a reduce task.

To prevent the direct disclosure of sensitive data to an attacker, sensitive input records (i.e.,

records with cancer disease) have to be stored and mapped over private (secure) machines.

In addition, the intermediate keys associated with at least one sensitive map output KV

pair such as Chris, Jane and Zach have to be reduced by private reduce tasks. Simply

preventing sensitive data from being stored or shuffled to public machines does not suffice

to prevent sensitive data leakage, as we show next.

Suppose that all non-sensitive records in D are stored and mapped by public machines. Also,

only intermediate keys belonging to James and Matt are reduced by public reduce tasks.

As a result, the public map outputs, 〈Chris, f lu〉 and 〈Jane, acne〉, will be shuffled to a

private reduce task, whereas the remaining public map outputs such as 〈James, flu〉 and

〈Matt, acne〉 will remain on the public side. In such a case, the attacker can infer that

James and Matt have no associated cancer record. Furthermore, the attacker’s chance of

correctly guessing whether Chris or Jane have cancer will increase compared to his/her

initial knowledge based on the data distribution while storing the data into DFS and during

the map phase. Due to such key-inferences, the MR framework will be more vulnerable to

statistical attacks that aim to reconstruct sensitive input files. We refer to such indirect

loss of sensitive data as key-inference exposure. Key-inference exposures arise when data

is selectively shuffled from public machines to reducers executing on private machines. In

the example above, selectively shuffling Chris and Jane’s records to private machines while

reducing Matt and James’s records on the public side provide insight about the sensitive

data to the adversary.

31

4.3.2 Preventing Sensitive Data Leakage

Preventing both direct as well as key-inference exposure of data during MR execution poses

interesting challenges in designing an MR framework . Since intermediate keys generated

during the execution may dynamically become sensitive (since some sensitive record gen-

erates the same intermediate key), we can no longer statically partition the key space and

assign the resulting reducers to machines prior to execution, as is typically done by the MR

framework. Instead, such a partitioning and assignment must now be done dynamically to

ensure no direct exposure of sensitive data occurs.

Preventing key-inference exposure requires that public machines must not be able to distin-

guish amongst intermediate keys generated by them, since a different treatment of different

keys could lead the adversary to make inferences about the sensitivity of the key. Two

straightforward solutions for preventing key-inference attacks can be as followsL The first

is to perform map operations only on private machines, whereas, reduce tasks (for interme-

diate keys that do not become sensitive) could be submitted to public machines. Another

alternative would be like Sedic, has recently been proposed in [46]. Sedic performs map

operations on the public (and private) side, but shifts all the reducers to private machines1.

Intuitively, both techniques prevent exposure – they never submit any sensitive data to the

public side (thereby preventing direct exposure), and also the treatment of each intermediate

key on the public side is exactly the same. In the first solution, all such keys are reduced,

while in the second, all keys are shifted to the private side. In this way, Sedic prevents the

key-inference attacks. Neither of the two solutions mentioned above are satisfactory, espe-

cially in the context of data management workloads, because of the following reasons: (1)

A MR framework over hybrid clouds is most effective from the perspective of computational

performance when both, map and reduce, can be be assigned to public machines. However,

1Sedic automatically generates combiners, when possible, to reduce the amount of work done during the
Reduce phase so as to best exploit public machines.

32

neither of the two alternatives presented above executes both phases on public machines.

(2) Data management workloads typically comprise of tasks that require multiple MR jobs

(i.e., multi-level MR jobs). However, none of the two techniques presented above provide

support for executing multi-level MR jobs.

In contrast, SEMROD follows a different philosophy. Instead of limiting the entire com-

putation to the private side in one of the phases, it allows work to be done on the public

side throughout the entire execution. The main issue is that the work done at the public

side should not incur any type of sensitive data exposure. SEMROD achieves this at the

expense of allowing some redundant computations to occur on the private side. The details

of SEMROD’s MR model are provided in the next section.

4.4 SEMROD

Standing for secure and efficient MR framework for hybrid clouds, SEMROD is described

separately in the context of single and multi-level MR, as they mandate a special care for

efficiency. We begin by describing modifications required at the storage layer to ensure

security against direct exposure.

At the DFS layer in SEMROD, input files are classified as either sensitive or non-sensitive.

Record-level sensitivity can be completely captured by partitioning the sensitive and non-

sensitive records into separate files. Such a partitioning can be achieved automatically by

SEMROD, unless the files are already created so. However, a metadata file that identifies

the sensitive records in the input files can be prepared and given along with the original

file. Such metadata can be in the form of set of views (predicates) or a list of offsets that

identifies the sensitive records. While uploading the files, a module embedded to master can

iterate over records and split them into two sub-files based on the provided metadata.

33

SEMROD maintains sensitive file blocks only on trusted machines and never replicates them

to the public side. On the other hand, while storing and replicating non-sensitive data, no

constraints are applied and it is handled as in the original MR framework.

4.4.1 Single-level MR

4.4.1.1 Map

In SEMROD, since input files either contain sensitive records, or do not contain any sensitive

records at all, the input splits created during the map phase are also pure - i.e., either all

records in the split are sensitive or none of them are. SEMROD labels the split as sensitive

or non-sensitive based on the input file used to create them. After labeling, each input split

object intrinsically determines if the map task running on that particular split is sensitive or

not. The master strictly runs on a private (secure) machine and schedules the sensitive map

tasks exclusively on the private side (trusted) machines. In contrast, non-sensitive map tasks

are scheduled preferably on public machines. Only when no slot is available on public nodes

and no waiting map tasks remain in the task queue, non-sensitive map tasks are assigned to

private machines.

SEMROD needs to deploy several enhancement techniques at the map stage a priori so that

during the reduce stage the master is able to discern what is sensitive and non-sensitive within

the map’s output, and further, divert the non-sensitive key-value pairs to public reducers

without resulting in any sensitive data leakage or causing a large performance overhead.

Additionally, these modifications enable master to track the incorrect data after the reduce

tasks.

Figure 4.3 illustrates the map phase in SEMROD with 3 map tasks, M1
1 −M1

3 , which are

executed over two non-sensitive and one sensitive data block. In this example, M1
1 and M1

2

34

Figure 4.3: The map phase of Single-level SEMROD

runs on the public cloud, whereas M1
3 is executed on a private machine. The figure also

portrays the concept of sensitive key set collection for an arbitrary partition, Px.

Sub-Partitioning: The sensitive and non-sensitive map (or combine) output KV pairs

should be separated before storing them on local disks. Otherwise, if a map output partition

contains both sensitive and non-sensitive records at the same time, then its sensitive portion

would need to be sanitized before it is shipped to a public reducer. This sanitization operation

is expensive, as one needs to parse and subsequently repack the output partition. Hence,

SEMROD deploys the sub-partitioning concept across all map tasks.

Note that, each partition represents a different key space among the map’s outputs and

SEMROD divides every Pi into 2 sub-partitions (Pi0 and Pi1) for each map task: the first of

which is for sensitive key-value pairs in that key region, whereas the second one is for non-

sensitive ones. Observe that Pi0 and Pi1 belong to the same key space and can have some key-

value pairs that share a common key. Since we use file level sensitivity, for a given map task

Mj ∈M , either all Pi0s or Pi1s are empty depending upon whether the input block given to

Mj belongs to a sensitive or a non-sensitive file. That is, ∀Mj ∈M either Pi0 = ∅ or Pi1 = ∅.

35

Sensitive KeySet Collection: For each partition Px, the map tasks running on sensitive

file blocks dynamically collect the set of intermediate keys that they generate for that par-

tition. Once these map tasks finish, they store the collected sensitive key sets per partition

in a separate local file. In Figure 4.3, M1
3 is the map task processing sensitive input split,

and therefore, it only generates a sensitive key set for partition Px and maintains it locally.

Later, the reduce task, which handles partition Px, will first read sensitive key sets from each

sensitive map task output and obtains the overall set of sensitive keys in Px.

4.4.1.2 Reduce

During the reduce phase, SEMROD attempts to shift as much of the non-sensitive load (the

execution of which will not reveal sensitive data) as possible to the public machines, while

at the same time it will be balancing the load amongst the reducers. This requires several

structural changes to how task scheduling is done in the MR model.

The reduce phase in SEMROD is depicted in Figure 4.4. Our model splits an original reduce

task, R1
x ∈ R1, into 2 reduce tasks: R1

xpriv
and R1

xpub
. Suppose that, R1

x is created to reduce

partition Px by the original MR framework. In SEMROD, R1
xpriv

is designed to reduce only

the set of sensitive keys in Px (e.g. Chris and Jane). On the other hand, R1
xpub

is created

to reduce the remaining non-sensitive keys in Px, such as James and Matt. As should be

evident from the notations, R1
xpriv

and R1
xpub

are respectively assigned to a private and public

node.

As shown in Figure 4.4, R1
xpriv

first retrieves the sensitive key sets from only the sensitive

map outputs and creates K1
xs , the overall set of sensitive keys within partition Px. In our

example, K1
xs = {Chris, Jane, Zach}. Next, R1

xpriv
pulls all the map output KV pairs within

Px, eliminates the ones with a key /∈ K1
xs such as (James, flu) and applies the reduce function

over the rest of them. Lastly, R1
xpriv

stores its sensitive output file in DFS.

36

Figure 4.4: The reduce phase of Single-level SEMROD

In case of R1
xpub

, it retrieves the data for partition Px exclusively from the non-sensitive

map task outputs (e.g. M1
1 and M1

2 in our example) and applies the reduce function over

all incoming KV pairs without any filtering. As a result of following this protocol, R1
xpub

may generate some incorrect outputs. To illustrate, in Figure 4.4, reducer R1
xpub

receives

only the pair (Chris, flu) from amongst all intermediate KV pairs with key Chris, and in

turn, outputs (Chris, flu) pair again. However, our MR job aims to find the complete set

of diseases for each person. Unfortunately, (Chris, flu) pair does not include all of Chris’s

diseases such as cancer and thus it must be considered as incorrect. In fact, incorrectness

occurred in R1
xpub

’s outputs due to reducing keys such as Chris and Jane without certain

sensitive KV pairs associated with them.

Therefore, once R1
xpub

produces its final result; a filtering step, called final elimination, is

applied to it on the private cloud in order to remove incorrect outputs. To be able to

differentiate between what is correct or incorrect in R1
xpub

, the source intermediate key of

each reducer output (Prevkey) is appended to the output itself. For instance, (Matt,<

flu, kuru >) is tailed with prevkey Matt because it is generated by reducing the intermediate

key Matt. Once all prevkeys have been appended to the outputs, the master can trivially

37

identify the incorrect KV outputs using their prevkeys. Note that if a prevkey is present

in both R1
xpriv

and R1
xpub

outputs, then any KV pair with that particular prevkey in R1
xpub

would be incorrect. To demonstrate this fact, < Chris, flu > and < Jane, acne > are

the only incorrect pairs amongst R1
xpub

’s outputs, and their prevkeys are Chris and Jane

respectively. Note that Chris and Jane are the only common prevkeys between R1
xpriv

and

R1
xpub

outputs. Finally, the results of both, R1
xpriv

and final elimination, are declared as

sensitive and migrated to DFS. Remember that this reduce protocol is repeated for every

reduce task R1
x.

Another systematic difference of our reduce phase with respect to the traditional reduce stage

is related with the time when reduce tasks are initiated. The master does not start shuffling

and sorting in private reduce tasks (R1
xpriv

’s) until all sensitive input blocks are completely

mapped. Suppose that, M1
3 has not processed (Jane, cancer) record yet and in turn the

key Jane has not been sent to the master. In this case, K1
xs created at the master will not

contain the key Jane and R1
xpriv

, given in Figure 4.4, will be started with the incomplete

K1
xs . Because of this, it will discard all the incoming KV pairs with key Jane. Thus, Jane’s

list of diseases will never emerge in the job outputs. In summary, private reduce tasks are

not started until the end of the map phase.

Observe that, in the course of our reduce phase, no sensitive intermediate KV pair is shuffled

to any public machine, and therefore, it is safe against direct exposure. In addition, all public

map task outputs are steered to both, public and private reduce tasks (i.e., no selective

shuffling to public nodes), which makes our reduce protocol secure against key-inference

exposure as well. A significant detail to note is that we never provide any key set to the

public reducer R1
xpub

. Indeed, asking the public reducer to operate over specific keys will

lead to key-inference exposure. Therefore, R1
xpub

is designed to reduce all incoming KV pairs.

Finally, the outputs of all R1
xpriv

s and the elimination operation are tagged as sensitive. The

reason behind tagging R1
xpriv

’s output as sensitive is straightforward; however, labeling the

38

Figure 4.5: SEMROD Overview

output of the final elimination step as sensitive may seem unreasonable. Recall that, the

adversary has full access to public resources at all times. If the final elimination output is

somehow revealed to public machines in the future (e.g. to be stored or as an input to a

subsequent MR job), then the adversary can identify the missing keys by comparing R1
xpub

’s

output and the elimination output. To eliminate such a leakage, SEMROD labels all job

outputs as sensitive.

39

4.4.2 Multi-level MR

4.4.2.1 Overview

As mentioned earlier, once the single-level SEMROD framework is applied over the input

data, it could generate some incorrect results. In this situation, job j1’s public reduce task

outputs should be refined on the private side to obtain the complete set of correct results,

and furthermore, all outputs now need to be declared as sensitive in order to avoid any

key-inference exposure. Due to this restriction, SEMROD is unable to migrate subsequent

map and reduce tasks working on j1’s output to public machines, which obviously leads to

a highly unbalanced execution for job j2, especially when j2 solely depends on j1’s output.

However, by deferring the final elimination step over j1’s public output, j2’s execution can

still be distributed to both sides of the hybrid cloud in a secure fashion, and yet all the

correct outputs can be accumulated on the private side after completing j2.

The rest of chapter deals with the case in which some incorrect input values are given to

job ji by the previous job’s public reduce tasks. Incorrect input values to ji would result in

incorrect output for ji. In general, incorrectness will spread along the execution path. To

eliminate such incorrect outputs, we first need to formally identify how incorrectness spreads

by a job ji ∈ J .

Incorrectness: While executing ji ∈ J , incorrectness could occur because of the following

three reasons:

• Reducing any kt ∈ Ki partially results in “incorrect” reduce outputs, i.e., all outputs of

Ri(kt), where ∃ (kt, v1) ∈ Inti s.t. (kt, v1) is not given as input to it.

• If r ∈ Inpi is an “incorrect” input record, all outputs of M i(r) are “incorrect”.

• All outputs of Ri(kx) are “incorrect”, if it takes at least 1 incorrect input.

40

Given that an input to a job ji might be incorrect in SEMROD, we define a concept of

sound and complete MR execution for job ji. Intuitively, the execution of ji is sound if all

output that results from incorrect input tuples can be filtered from the results. Likewise,

the system is complete if every output tuple that could result from executing ji on correct

input is present in the output results. We formally define the concept of soundness and

completeness below:

Let Inpic, Inp
i
ic, Out

i
c and Outiic be the set of correct and incorrect input/outputs of job ji

respectively;

Soundness: MR′ is “sound” for ji if the master is able to filter out the Outiic from Outi.

Completeness: MR′ provides a “complete” execution for ji if MR(Inpic) = Outic ⊆

MR′(Inpi) = Outi. In other words, the complete set of results that generated by the

original MR framework, Inpic, are a subset of the results generated by the new framework

MR′, Outi.

Figure 4.5 depicts the execution flow of a multi-level MR job, J , in SEMROD. For the sake

of simplicity, the execution details of jobs j1, j2 and jn are specifically shown. The execution

of the remaining jobs, j3, j4, . . . jn−1, will be exactly similar to j2.

Note that, the first job’s input, Inp1, does not contain any incorrect data. In fact, incorrect-

ness is solely initiated by reducing some intermediate keys in the course of job execution.

A major feature of our multi-level model is that private reduce tasks (except those of the

final job jn) are modified to create an incorrect output replica, Outiic, on private machines.

This replica will later be used to track how incorrect data is dissipated through public side

computations so that the “soundness” feature is still satisfied even when numerous MR jobs

are executed.

41

Figure 4.6: SEMROD’s Multi-level MR Map Execution

4.4.2.2 Details

Suppose that, the health care provider introduced earlier wants to run another MR job, j2,

that aims to find “how much money each patient paid in total for their exact treatment

combinations”. For this purpose, he first runs the job j1 in our previous example, and

subsequently executes job j2 that joins j1’s output with a table containing the exact price

of all treatment combinations. These two tables are denoted as Out1 and Ext2 respectively

in Figure 4.6. In the context of j2, the intermediate keys will be disease combinations, such

as flu or 〈acne, cancer〉, rather than the names of people.

Out1 is split into 3 distinct sets of records: Out1pub, Out
1
ic and Out1priv. Out1pub refers to

the output KV pairs produced by job j1’s public reduce tasks; whereas Out1priv and Out1ic

42

correspond to the correct and incorrect results generated by the private reduce tasks of j1.

Observe that, j1’s reduce tasks outputs, shown in Figure 4.4, only include Out1pub and Out1priv,

but not Out1ic. j1’s private reduce tasks are slightly modified to generate the exact replica

of j1’s incorrect outputs at the private side. To achieve this, after their initial filtering, they

perform an extra reduce operation exclusively over their non-sensitive inputs. For instance,

in Figure 4.4, R1
xpriv

receives two KV pairs with key Jane: non-sensitive (Jane, acne) and

sensitive (Jane, cancer). R1
xpriv

reduces (Jane, acne) without the sensitive (Jane, cancer)

pair and as a result obtains (Jane, acne) as an incorrect output, which is an exact replica of

Jane’s related incorrect output within Out1pub.

Map: As shown in Figure 4.6, SEMROD maps non-sensitive input blocks such as Out1pub

and Ext1pub on the public cloud, whereas sensitive ones (i.e. Out1priv, Ext
1
priv and Out1ic) are

mapped on secure machines. An exception to this is that map results of incorrect replicas

(i.e. Out1ic) are never materialized, unless j2 is a map-only MR job. Similar to single-level MR

model, sensitive map tasks M2
2 , M2

3 and M2
4 maintain their set of sensitive keys per partition

Px locally. In our example, K2
xs consists of the intermediate keys: acne, 〈acne, cancer〉,

cancer, 〈cancer, flu〉 and flu.

Furthermore, incorrect map tasks such as M2
3 create a set of incorrect prevkeys per partition

Px and stores them on the local disk. Later, these sets of prevkeys will be merged to construct

K2
xic

per Px by the corresponding reduce task. In Figure 4.6, K2
xic

contains Jane and Chris.

Finally, we altered the map output structure such that if a given input record r′ has a prevkey

k′ appended to it, the map task again tags all outputs of r′ with prevkey k′. To illustrate,

M2
2 maps (James, flu) − James (triplet) to (flu, James), and in turn, tags this pair with

prevkey James.

Reduce: Similar to a single-level MR’s reduce phase, SEMROD splits any given reduce task

R2
x into R2

xpub
’s and R2

xpriv
’s. Their execution flows are given in Figure 4.7. R2

xpub
reduces

43

Figure 4.7: SEMROD’s Multi-level MR Reduce Execution

all the non-sensitive Pxs from M2
1 and M2

2 , without any filtering and produces Out2xpub . As

a result, the correct outputs for the intermediate Px keys /∈ K2
xs such as 〈flu, kuru〉 are

maintained on public machines along with some incorrect outputs.

R2
xpriv

first retrieves the set of sensitive keys and incorrect prevkeys only from the sensitive

map tasks Px outputs, e.g. M2
2 , M2

3 and M2
4 ; and merges them into single set of sensitive

keys (K2
xs) and incorrect prevkeys K2

xic
separately. In our example, K2

xs consists of the

intermediate keys: acne, 〈acne, cancer〉, cancer, 〈cancer, flu〉 and flu; whereasK2
xic

contains

Jane and Chris.

Later, R2
xpriv

pulls all Pxs from map outputs and eliminates records with a key /∈ K2
xs (Initial

filtering). After this, R2
xpriv

is split into 2 sub-reduce tasks if a subsequent job j3 exists: the

44

actual R2
xpriv

and a supplementary R2
xic

. After initial filtering, R2
xpriv

aims to create correct

reduce results for keys ∈ K2
xs (i.e. {acne, 〈acne, cancer〉, cancer, 〈cancer, flu〉, f lu}), and

therefore, applies another filtering via K2
xic

to remove the remaining incorrect records and

executes the reduce function over the remaining pairs. Note that, the second filtering step

is mandatory, since both incorrect (flu, Chris)−Chris and correct (flu, James)− James

triplets pass the initial filtering via their key flu. To obtain the correct results for key flu,

incorrect triplets must be further eliminated. The reason behind the supplementary R2
xic

is to create an exact incorrect replica of Out2xpub on the private side. To achieve this, after

the initial filtering, R2
xic

discards sensitive inputs like (cancer, Zach)−Zach and applies the

reduce function R2 over the remaining non-sensitive inputs. Note that, R2
xic

is not established

unless j3 exists.

4.4.2.3 Correctness of SEMROD

Observe that, the execution before j2 is sound and complete in our example. The private

side master has full knowledge of what is correct and incorrect within Out1pub. Thus, the

master can intuitively subtract Out1ic from Out1pub and obtain the remaining correct portion

(sound). Moreover, when we merge correct results from Out1pub and Out1priv, we can obtain

the complete set of j1’s correct outputs (complete).

We next show that our map scheme will be sound and complete under two assumptions: (1)

Jobs are record-level correspondent (defined next), and (2) None of the jobs have defined

combiners (except the first one). We first show soundness and completeness under these

assumptions. We then slightly adapt the protocol to ensure correctness when combiners are

defined or when jobs are not record-level correspondent. Nonetheless, the assumption for

record-level correspondence is expected to hold for most of the MR jobs.

Definition 1. ji−1 and ji is record-level correspondent, if ∀(k, v) ∈ Outi−1 ; (k, v) is a

45

single input record r ∈ Inpi. To denote this relation, ji−1 ⇒ ji.

To express this notion informally, the way Out1 is interpreted by j2 is important, j2 could

be such a job that performing a complete j2 map execution would be impossible without

conducting an a priori elimination of the incorrect portion of Out1pub. Record-level corre-

spondency dictates that each KV pair within the previous job’s input (Out1) has to be an

independent input record for the current job (j2). If j1 ⇒ j2 does not hold, then the incorrect

(Chris,∠flu〉) and the correct (James,∠flu〉) records in Out1pub can be merged together to

create a single input record for map task M2
2 . In that case, the correct (flu, James) KV

pair would never appear within M2’s outputs, which is a clear violation of the completeness

condition.

In addition to j1 ⇒ j2,using traditional combiners in the map phase of j2 can violate com-

pleteness condition. Consider that a public map task in an arbitrary j2 takes numerous incor-

rect and correct j1 outputs as input records. Suppose that there exist incorrect record ric and

correct record rc amongst these input records such that the map outputs M2(ric) = (kx, 1)

and M2(rc) = (kx, 1). In other words, when ric and rc are mapped, each generates the same

KV pair, (kx, 1). Given our incorrectness definition, the first (kx, 1) is incorrect and the sec-

ond (kx, 1) is correct. Now, if the combiner function, that sums up the values, are executed

over this public map task’s output; incorrect (kx, 1) and correct (kx, 1) would be combined

to single incorrect (kx, 2) record in the intermediate data. Contrast this to the execution in

Hadoop where all the input records are correct (and, thus, ric does not exist). In such a case,

since the incorrect record (kx, 1) does not exist, the combiner will result in the intermediate

data correct (kx, 1). Since incorrect (kx, 2) shows up on intermediate data instead of correct

(kx, 1) in our example, completeness condition would be violated.

Recall that, the master can differentiate incorrect inputs from correct ones in Out1pub via

their appended prevkeys (Final elimination in single-level MR) and these set of prevkeys

46

are already preserved in private map outputs, Out1priv. Under our assumptions, each non-

sensitive map output KV pair (k, v) would be sourced by a single input record r and thereby

(k, v)’s prevkey would be the same as r’s prevkey. Therefore, the master can first create

its own K2
xic

exactly as R2
xpr does, and later test whether its K2

xic
contains (k, v)’s prevkey

to determine its correctness. Thus, our map phase is sound. Under the assumptions that

j1 ⇒ j2 and j2 has no combiners, j2’s map phase is complete as the outputs of M2
1 , M2

2 , M2
4

and M2
5 cover all the correct map outputs that would have been generated by the original

MR framework.

To track the incorrect data within Out2pub, records are appended with their prevkeys from

K2, e.g. (acne, Jane, $100) is tagged with the prevkey acne. Note that, only Px keys ∈ K2
xs

can be partially reduced by R2
xpub

to subsequently generate incorrect reduce outputs. Thus,

public reduce outputs with prevkey’s ∈ K2
xs can be identified as incorrect by master, if it

creates its own K2
xs exactly as R2

xpr does (Soundness). During j2’s reduce phase, K2
xs exactly

corresponds to the set of Px keys that have been correctly reduced by the actual R2
xpriv

.

On the other hand, the Px keys /∈ K2
xs are correctly reduced by R2

xpub
, because such keys

(i.e. 〈flu, kuru〉) have never been associated with any incorrect or sensitive data. Thus, all

intermediate correct KV pairs with such keys must be within the non-sensitive map output.

Since R2
xpub

retrieves all non-sensitive map outputs and applies the reduction function, its

output Out2pub must contain the correct reduce results for Px keys /∈ K2
xs (Completeness).

Above, we have shown how job execution is sound and complete for a 2-level MR job. Given

the fact that Out2’s characteristics are exactly the same as Out1’s in terms of correctness/in-

correctness, by induction, we can conclude that j2’s processing schema provides a sound and

complete execution for the remaining MR jobs left in the chain as long as the following

condition is satisfied:

Condition 1 : ∀ 1 ≤ i ≤ n, ji ⇒ ji+1 and ji has no combiners.

47

Note that SEMROD will correctly process more complex MR workflows, e.g DAG of MR

jobs where job ji+1 is executed on the outputs of multiple MR jobs; since the incorrect output

replicas of previous jobs would already be stored in the private machines upon starting to

execute ji+1. As long as ’record level correspondence’ is satisfied between the current job

ji+1 and all the jobs whose outputs are given as an input to ji+1; SEMROD’s approach will

continue to use both public and private machines during the execution of ji+1.

We next slightly modify the protocol to ensure sound and complete execution when record-

level correspondence between jobs does not hold. We will subsequently deal with MR jobs

with combiners. In case that, ji 6⇒ ji+1, SEMROD shifts all of ji’s public output to the

private side, refines the incorrect records and continues ji+1’s execution solely on private

machines. If ji+1 has an associated combiner, then SEMROD alters it to a version where

incorrect and correct inputs are never merged into a single output. In summary, as we

intuitively proved in this section, the following theorem can be stated:

Theorem 1. SEMROD always offers a sound and complete execution for all types of MR

jobs.

4.4.3 Combiners

In case of single-level MR, combiners, if they exist, can be used without changing their func-

tionality. SEMROD’s map phase simply collects the necessary key sets based on combiner

outputs rather than raw map outputs. Nevertheless, the way in which combiners work has

to be modified in multi-level MR jobs (except the first one, j1). Combiners can be considered

to be local reducers running over local map output data, thereby they share the same func-

tionality as reducers; this notion can be described as: “Take KV pairs with the same key,

and then reduce them”. In SEMROD, this notion is replaced with: “Take KV pairs with

the same key and prevkey, and then reduce them”, for combiners running over map outputs.

48

In this way, we still ensure that all incorrect/correct public map outputs are respectively

sourced by incorrect/correct public map inputs in the presence of combiners. Also, prevkey

tagging for combiner outputs is feasible, since each public combiner input has to share the

same prevkey. Due to these features, SEMROD’s multi-level map phase will still be sound

and complete.

4.4.4 Security Analysis of SEMROD

In this section, we provide a formal analysis of the security properties of SEMROD’s schedul-

ing scheme on hybrid clouds. In our analysis, we adapt the semantic security definition given

in [4] to our framework. Basically, we specify what an honest-but-curious adversary learns

by observing the public cloud and we prove that our MapReduce execution does not disclose

any additional information.

Definition 2. Let Sch be a MR task scheduling scheme running on a hybrid cloud infras-

tructure. For an adversary running algorithm A and simulator S, we define the experiments

RealSchA (λ, Inp,M,R, side()) and IdealSchA,S(λ, Inp, M,R, side()), where Inp denotes the set

of all inputs and side() corresponds to the function used by SEMROD to distribute input

data, as follows:

RealSchA (λ, Inp,M,R, side()) : A(1λ) is given all map (M) and reduce (R) tasks, and their

outputs after execution on the public side based on the scheduler Sch2. Eventually, A returns

a bit that the game uses as its own output.

IdealSchA,S(λ, Inp,M,R, side()) : S(Inpns,M,R, side()) is again given all M and R tasks, Inp

and side() and creates a transcript of the protocol execution to A(1λ). Note that S is not

given any information about the sensitive data in Inp. In addition, it marks all the outputs

of public M ’s and R’s as transmitted to the private side and gives this information to A(1λ).

2Sch knows Inps.

49

Eventually, A returns a bit that the game uses as its own output.

We say that Sch is secure against attacks if for all adversaries A, for all Inp and for

all M,R, there exists an algorithm S such that Pr[RealSchA (λ, Inp,M,R, side()) = 1] −

Pr[IdealSchA,S(λ, Inp,M,R, side()) = 1] ≤ neg(λ) for security parameter λ and any negligible

function neg(). For consistency with existing literature, we use λ to represent the security

parameter. For protocols that involve encryption, this parameter is used to force Adver-

sary A to run in polynomial time with respect to security parameter (e.g., encryption key

length). Furthermore, the neg() function is used to capture the fact that success probabil-

ity of the attacker is negligibly small with respect to λ. In our setting, since we do not

use any encryption, we do not need λ. Furthermore, Pr[RealSchA (λ, Inp,M,R, side()) =

1]− Pr[IdealSchA,S(λ, Inp,M,R, side()) = 1] will be equal to zero as we discuss below.

Basically, the above definition states that, given a secure task scheduling algorithm Sch,

any adversary running on the public side will only learn information that can be inferred

by running the given MR tasks M and R on all non-sensitive input data. Given the above

definition, we can easily prove that SEMROD’s scheduling is secure.

Theorem 2. SEMROD’s scheduling protocol given in Section 4.4 satisfies Definition 2.

Proof Sketch: In our case, for any adversary A, we can use a fixed simulator S. Basically,

S will divide Inpns into two parts using the given side() function. Recall that, in SEMROD,

some non-sensitive data can be stored and mapped on the private side. For the subset

of Inpns that is kept on the private side, S runs M and gives its output key-value pairs

to A and marks them as transmitted from the private cloud. In addition, S runs M on

the subset of Inpns that is kept on the public side, gives the resulting key-value pairs and

inputs to A. Also, S marks them as being computed on the public side. Finally, all the

map phase outputs are processed using R, the result of which is also given to A. The

output of the reduce tasks are marked as transmitted to the private side. Please note that

50

the transcript created by simulator S is exactly the same as the transcript seen by A in

the real execution for any (Inpns,M,R, side()). Therefore, all the information given to

A in both, the ideal and real experiment, will be exactly the same. This in turn implies

that A will output the same results in both worlds with the same probability. Therefore,

Pr[RealSchA (λ, Inp,M,R, side()) = 1]− Pr[IdealSchA,S(λ, Inp,M,R, side()) = 1] will be equal

to zero.

4.5 Implementing SEMROD

The design goals of SEMROD are to uphold the existing MR programming model and to

not burden developers with extra programming requirements when they implement a secure

MR job. Our new implementation should preserve the way a user interacts with MR and

should also enable an end-user to label the sensitive portion of the data before transferring

it to the DFS. Also, it should be very convenient to set up the SEMROD environment across

the hybrid cloud.

We used the most popular MR implementation, namely Hadoop, to materialize SEMROD.

This section describes the details of our modifications on Hadoop.

4.5.1 Environment Setup

We used Hadoop’s XML-based files to configure node related properties. To declare that a

node is private, a cluster admin is required to add the following properties, mapred. task-

tracker.isPrivate and dfs.datanode.isPrivate with a value true to the private nodes’ MR

(mapred-site.xml) and HDFS [58] (hdfs-site.xml) configuration files respectively. If these

properties are not set or are given as false for a particular node, then SEMROD considers

that node as a public machine.

51

4.5.2 HDFS

Hadoop’s DFS splits each file into data blocks, by default 64MB in size, and stores each block

on multiple machines. All data blocks that belong to a sensitive/incorrect file are labeled as

sensitive/incorrect so that the HDFS can copy or replicate these blocks only to private side

nodes. In other words, file-level sensitivity is materialized by introducing block sensitivity

at the HDFS level.

Partitioning the data to non-sensitive and sensitive files can be automated in SEMROD.

For instance, a user could create a metadata file that identifies the sensitive records in the

input files and upload it with the original files. Such metadata can be in the form of a

predicate or a list of offsets that identifies the sensitive records. While uploading the files, a

module embedded in the master (namenode) can iterate over records and split the files into

two sub-files based on the provided metadata. Since such a module will be dependent upon

the user’s sensitivity model, current SEMROD’s HDFS assumes that input files are either

entirely sensitive or nonsensitive.

SEMROD distinguishes sensitive and incorrect files from others through their file names. If

a file name contains the word “sens”, then it is considered to be sensitive. Likewise, incorrect

files start with the keyword “incorrect”. SEMROD”s modified HDFS copies and replicates

the files that contain sensitive or incorrect output records to only private nodes, whereas the

remaining files are first copied to the public cloud and their replicas are distributed randomly

across the hybrid cloud. All the metadata related with sensitive and incorrect files is only

stored in the private machines.

52

4.5.3 Map

While generating the input splits, SEMROD tags each split as sensitive, incorrect or non-

sensitive, based on the input file from which they are constructed. After labeling each input

split, it creates multiple TaskInProgress objects for the map tasks by providing a single

InputSplit object from the set of input splits. At this stage, the given InputSplit object

helps us to tag the TaskInProgress objects of map tasks as either sensitive, incorrect or

non-sensitive.

Our implementation labels map tasks running on a sensitive and incorrect data block as

“private”, so that during task scheduling, the JobTracker can schedule them only on secure

(private) machines. On the other hand, the remaining map tasks can be scheduled on both,

public and private machines. Note that, when a secure node requests a map task from the

JobTracker, it gives precedence to private map tasks.

For Key Set Collection, we have employed a HashSet data structure per partition in every

private map task to represent the generated sensitive key or incorrect prevkey sets for each

Px. We use a general set structure in order to let the private reduce tasks conveniently

compute the unions of key sets received from private map tasks. However, using a HashSet

representation for key sets could be burdensome, especially for MR jobs emitting a very large

number of unique sensitive keys. An alternative extension could be to deploy an approximate

and compressed representation such as a BloomFilter, which would reduce the amount of

memory used within private TaskTrackers as well as the network traffic overhead between the

slave nodes. Note that, using a data structure with false positives is acceptable, since such

a set would be already containing all the keys-prevkeys that became sensitive or incorrect.

Nevertheless, a structure with false negatives would end up not capturing all sensitive or

incorrect key-prevkeys within the keyset, and thus could lead to an incomplete job output.

SEMROD can also deploy a centralized approach, rather than a distributed one, for key set

53

collection purposes. In this centralized approach, once the sensitive map tasks finish their

work in SEMROD, they send their sensitive key sets per partition to the master. Master

then obtains the overall sensitive key sets per partition Pi by simply computing the union

of incoming sensitive Pi key sets. Finally, SEMROD’s master passes each overall sensitive

key set to the corresponding private reduce task. Note that in this approach, sensitive map

tasks do not need to store the key sets on local disks, and in turn may perform better than

the distributed approach. However, since it is a centralized architecture, it will not scale

well when the number of sensitive keys are high.

4.5.4 Reduce

For each reduce task, Hadoop creates a TaskInProgress object. Instead, SEMROD creates

two such objects and passes partition ids and their side (public or private) to each of them.

Output Tagging for Tasks: This is done through converting Map and Reduce input/out-

put structures from (key, value) format to (key, value, prevkey) format. For map inputs not

in (key, value, prevkey) form (M1
i ’s), their prevkey is assumed to be null. Typically, tasks

append their output to a Context object, which stores the key and value parts of the cur-

rently processed KV pair. We modified this class to additionally store prevkey information.

Thus, when a map task writes a KV pair to its Context, our TaskInputOutputContext class

appends the current prevkey to it. For reduces, the class appends the current key instead of

the current prevkey.

Finally, to ensure that SEMROD stores all HDFS sensitive output on secure nodes, the word

“sens” or “incorrect” is appended to the output filenames accordingly. In case of multi-level

MR, SEMROD tags the public reducer’s output files as “public” and stores them on public

machines.

54

4.5.5 Fault Tolerance

When a map or reduce task fails due to a bad record or TaskTracker/node failure or takes a

much longer time than its siblings, Hadoop reschedules such a task on a different TaskTracker.

During this rescheduling, SEMROD’s JobTracker follows the same policy as it does for initial

scheduling. That is, the JobTracker always reschedules private maps and reducers on private

TaskTrackers; whereas public ones can be remigrated to any slave. However, the performance

overheads of a private machine/task failure may be higher in SEMROD compared to Hadoop.

First, in our architecture, private map and reduce tasks can only run in the private machines

and it may take a while to find an available private machine to reschedule the tasks. Second,

private reduce tasks shuffle and process more data in SEMROD compared to Hadoop. We

will explore these overheads in the experimental section.

4.6 Evaluation

SEMROD so far achieved most of the desired design principles. First, SEMROD is secure,

since it prevents both direct and key-inference exposure during storage and MR execution.

Second, SEMROD uses public clouds as much as possible during the MR execution. Third,

it is very easy-to-use, since it only requires the users to store sensitive and non-sensitive

records in separate files and name them appropriately. Finally, it supports any type of

MR execution, so it is generic. In this section, we will evaluate whether it satisfies the

final design principle, practicality. For this purpose, we will provide a formal analysis to

compare SEMROD’s performance with all other secure solutions. Next, we will compare

their performance by conducting extensive experiments.

55

4.6.1 Formal Evaluation

Before we conduct the experiments to compare SEMROD with other possibly secure solutions

(viz. Sedic and All-Private in which all computation is handled on private side only), we

provide a formal analysis of the computational and network costs of these schemes. We

note that this analysis is simplified using several assumptions and its purpose is primarily

to provide an intuition to interpret the experimental results discussed next.

Our first assumption is that machines on which MR jobs run are perfectly load balanced.

Furthermore, we will assume that shuffling data between the machines within public or

private cloud is fully overlapped. Also, we assume that when the reduce tasks shuffles data

between the clouds, the entire data shuffling is done over a single link. Such an assumption

is rarely true in practice, though it is conservative from the perspective of SEMROD since

it favors All-Private (our main competitor) the most. Additionally, we assume that there

is no overlap between map/shuffle/reduce phases throughout any job execution. Finally, we

will assume that all the machines in the hybrid cloud are homogeneous – roughly have the

same CPU (and hence computing speeds) and disks (and hence I/O bandwidth) and same

LAN speeds.

Let us consider an MR job ji which consists of a map function M i and a reduce function

Ri. Let D be the size of the input data to the function M i and, furthermore, let D∗ be the

size of the intermediate data generated by function M i and shuffled to the reduce function

Ri. D and D∗ is usually linearly proportional to each other, since the map functions often

output a constant number of KV pairs for each input record.

Now, consider that running the map function on the input data in a single machine takes t

amount of time. Then, the map speed of a single machine per unit time, β will be equal to D
t

for job ji. Likewise, suppose that running the entire reduce function on the ji’s intermediate

time takes t∗ amount of time. Then, β∗, the amount of data that can be reduced by a

56

single machine per unit time for job ji will be D∗

t∗
. Note that slower the machine is or more

complicated the given map and reduce functions (e.g. quadratic function) are, lower the β

and β∗ is. Now given these notations, ji’s execution time on a single machine would be

D

β
+
D∗

β∗
. (4.3)

Now let us consider running the same job ji on our hybrid cloud, in which we have npriv

number of private machines and npub number of public machines. Also, suppose that the

network speed between our private and public clouds would be WAN and the network speed

between the machines in the same cloud would be LAN . Note that, in a typical hybrid cloud

setup, WAN << LAN .

If all the load/data is uniformly distributed to each node and map/shuffle/reduce phases are

not overlapped with each other; the amount of time that it would take to execute ji only on

the private side of our hybrid cloud (All-Private) will be

1

npriv

(
D

β
+
D∗

β∗

)
+

D∗

npriv × LAN
. (4.4)

The first term represents the map/reduce time taken by each machine and the second term

represents the shuffling time between machines on the private cloud. Note that the equation

above considers the shuffling between machines to be fully overlapped – that is, the total

shuffling time is equal to a single private machine’s shuffling time. The reason behind this is

that in LAN networks, in the best case, multiple fast connections can be established at the

same time, e.g. while Node A is shuffle data from Node B with LAN speeds, Node C can

read data from Node D by again the same LAN speed.

Given that the ratio of sensitive input records are α and the same assumptions, load/data

57

is uniformly distributed and no overlap between map/shuffle/reduce phases, the same job

in Sedic framework, in which the map phase is distributed across the hybrid cloud, but the

reduce computation is entirely performed in the private cloud, would take

max

(
D × α
npriv

,
D × (1− α)

npub

)
1

β
+(

D∗

npriv × β∗

)
+

max

(
D∗ × (1− α)

WAN
,

D∗ × α
npriv × LAN

)
.

(4.5)

Again, the first line in the equation above represents the map time taken by each either

private or public machine and the second line represents the reduce time spent by each

private machine. The third line corresponds to the shuffling time between the clouds, which

is assumed to dominate the overall shuffling cost due to WAN being much slower compared

to LAN. Note that in Sedic’s equation, ji’s shuffling time is computed by dividing the total

amount of public intermediate data (D∗× (1−α)) with speed of inter-cloud network, WAN .

This is a extreme assumption (that favors All-Private) but, in the worst case, such a shuffling

might be over a single link with WAN speed. Note that we are not trying to be unnecessarily

be more conservative to Sedic – which as we explained earlier (and the results will confirm)

is not a true competitor to SEMROD, but are trying to favor All-Private which we believe

is the true alternative to beat when inter-cloud network speeds are very slow.

Now, assuming that no incorrect data will appear during ji’s execution in SEMROD and all

the assumptions that we made for Sedic holds, then executing ji in SEMROD will take

max

(
D × α
npriv

,
D × (1− α)

npub

)
1

β
+

max

(
D∗ × (2α− α2)

npriv
,
D∗ × (1− α)

npub

)
1

β∗
+

max

(
D∗ × (1− α)

WAN
,

D∗ × α
npriv × LAN

) (4.6)

58

amount of time. As before, the first and second line represents the map/reduce time taken

by each machine and the third term represents the shuffling time between clouds as in Sedic.

Notice that the shuffling time above does not include the public-to-public and private-to-

private shuffling time. The reason is that, as we mentioned before, public-to-private data

transfer will be the bottleneck during the shuffle phase given that WAN is slow compared

to LAN . All other data shufflings (public-to-public and private-to-private), therefore, can

be done simultaneously with this slow chain in the execution.

Given the above analysis of performance, the value in Equation 4.6 is always less than the

value in Equation 4.5. In other words, given our assumptions, the running time of ji in

SEMROD will always be less than the one in Sedic. However, we cannot say the same thing

between Equation 4.4 and Equation 4.6. So, now let us compare these two equations and

find out in which cases the SEMROD will perform better than All-private. So the condition

turns in to

1

npriv

(
D

β
+
D∗

β∗

)
+

D∗

npriv × LAN
>

max

(
D × α
npriv

,
D × (1− α)

npub

)
1

β
+ max

(
D∗ × (2α− α2)

npriv
,
D∗ × (1− α)

npub

)
1

β∗
+

max

(
D∗ × (1− α)

WAN
,

D∗ × α
npriv × LAN

)
.

(4.7)

After bringing similar terms to the same side, replacing WAN with LAN
ρ

and npub with

λ× npriv , then the same condition will look like

D

β

(
1− max(λα, 1− α)

λ

)
+
D∗

β∗

(
1− max(λ(2α− α2), 1− α)

λ

)
>

D∗
(
npriv(1− α)ρ− 1

LAN

)
.

(4.8)

59

Now let us investigate the factors which will make the above condition easier to satisfy. First,

making β or β∗ lower will increase the first line of the condition. So, when the machines are

slow or the given map/reduce functions are complex, then SEMROD will have more chance

to beat All-private in terms of the performance. Second, decreasing the ρ value will reduce

the value on the condition’s second line. In other words, faster WAN compared to LAN is

better for SEMROD. Third, increasing the number of private machines without changing

the λ value will make the second line larger, so works better forAll-Private. To investigate

the impact of λ and α, we split the Equation 4.8 to three cases based on the max function

outputs:

1st Case: If λ(2α− α2) > λα > 1− α, (i.e. for larger α values) then the Equation 4.8 will

become

D

β
+
D∗

β∗
(1− α) > D∗

(
nprivρ− 1

LAN

)
. (4.9)

So, in this case, increasing λ does not affect the comparison, whereas increasing α make the

first line smaller, so favors the All-Private.

2nd Case: If λ(2α− α2) > 1− α > λα, then the Equation 4.8 will turn into

D

β

(
1− 1− α

λ

)
+
D∗

β∗
(1− α)2 > D∗

(
npriv(1− α)ρ− 1

LAN

)
. (4.10)

In this case, increasing the λ makes the first line larger, so favors the SEMROD. However

increasing α makes the both lines smaller and in turn, it is not possible to tell whether it is

useful or not for SEMROD without knowing the other variables.

3rd Case: If 1 − α > λ(2α − α2) > λα, (i.e. for smaller α values) then the Equation 4.8

will become

60

D

β

(
1− 1− α

λ

)
+
D∗

β∗

(
1− 1− α

λ

)
> D∗

(
npriv(1− α)ρ− 1

LAN

)
. (4.11)

In the 3rd case, larger the α or larger the λ means larger the first line and smaller the second

line in the condition above, in other words better performance for SEMROD.

In general, when the sensitive data ratio is small, increasing the number of public machines

would favor SEMROD compared to All-Private. However, if the sensitive data ratio is high,

changing λ will not impact the comparison between SEMROD and All-Private.

4.6.2 Experimental Evaluation

To the best of our knowledge, Sedic is the only approach that addresses secure data processing

using MR in the context of hybrid clouds. By conducting extensive experiments in this

section, we compared the performance of our proposed solution against Sedic and All-Private:

in which all computation is handled on private side only. We run the same experiments on

a standard Hadoop setup as well to understand the overhead of SEMROD, Sedic and All-

Private bring due to additional security constraints.

4.6.3 Experimental Settings

In this section, we detail our experimental setup, Sedic implementation as well as the various

datasets and MR computing jobs we have used in our experiments.

Experimental Setup: We conducted our experiments on a cluster containing 18 nodes,

where each node comprises of a Dual-Core AMD Opteron processor with ≈ 631GB disk

space and 8GB of main memory. These 18 machines are connected to each other with a

1Gbps ethernet network. The average data transfer rate that we measured between any two

61

machines is approximately 100MB/s. Additionally, each node was configured with at most 2

mappers and reducers. Depending on the private/public node ratio, we simulated a hybrid

cloud by labeling some of the nodes as private and the remaining as public. Finally, we

modified Hadoop v0.20.2’s new mapreduce api to implement SEMROD. If a node is in the

private cloud, we appropriately changed the configuration files of the SEMROD installation

on that node. Similarly, we did these changes in each public node as well.

Sedic: Sedic’s privacy-aware scheduling techniques is simulated as follows. In the HDFS

layer, Given that each input file can be either sensitive or non-sensitive, we store the sensitive

files only in private machines, while maintaining the non-sensitive files at both public and

private cloud. In the MapReduce layer, we schedule the map tasks running on sensitive files as

well as the reduce tasks to the private machines. We have not implemented Sedic’s automatic

combiner finding feature. To be fair in our comparison, we have deployed the combiner-free

jobs in our experiments. Since Sedic does not provide any technique to separate sensitive job

outputs from the non-sensitive outputs, all the job outputs must be declared as sensitive in

order to guarantee security. Therefore, in our Sedic implementation. we labeled each job’s

output as sensitive.

Datasets and MR Computing jobs: In our experimental evaluation, we implemented

MR jobs based on TPC-H and HiBench [59] benchmark shown in Table 4.2. Join query

names are represented with the uppercase letters of their table names, such as Part ./

PartSupp = P.PS. Note that our join, median and selection jobs were executed on

TPC-H data, whereas the remaining ones are operated on the data generated by HiBench

benchmark. The IO characteristics of each job are given in Table 4.3.

The reason we selected these jobs is that they are mostly combiner-free MR jobs; moreover,

they cover the typical type of jobs that can be run over an MR framework. Also, they enable

us to comprehensively test various performance characteristics of SEMROD vs. Sedic vs.

Hadoop. Therefore, we deployed all sorts of MR jobs, e.g. map/reduce-heavy or single/multi-

62

level MR jobs.

Single-level Jobs

Median: SELECT l orderkey, MEDIAN(l extendedprice) FROM lineitem GROUP BY
l orderkey

Selection: SELECT * FROM lineitem WHERE l quantity ≥ 45

P.PS: SELECT * FROM part JOIN partsupp ON (p partkey = ps partkey)

C.O: SELECT * FROM customer JOIN orders ON (c custkey = o custkey)

Wordcount, Sort, Terasort

Multi-level Jobs

P.PS.S: SELECT * FROM part JOIN partsupp ON (p partkey = ps partkey) JOIN
supplier ON (ps suppkey = s suppkey)

C.O.L: SELECT * FROM customer JOIN orders ON (c custkey = o custkey) JOIN
lineitem ON (l orderkey = o orderkey)

C.O.L.S: SELECT * FROM customer JOIN orders ON (c custkey = o custkey) JOIN
lineitem ON (l orderkey = o orderkey) JOIN supplier ON (l suppkey = s suppkey)

Pagerank (3 Iteration), K-Means (3 Iteration)

Table 4.2: Experimental Jobs

In the context of these experiments, we determined the number of reducers in SEMROD

by multiplying the number of nodes by 2, which is in fact equivalent to the number of

TaskTrackers. For example, in our hybrid cloud, since all 36 TaskTrackers across the cluster

could be exploited during Reduce execution in SEMROD, so the number of Reduce tasks

are set as 36 in SEMROD. Conversely in Sedic as well as All-Private, the number of reduce

tasks are set to the number of tasktrackers in the private cloud. For instance, if there are

3 private nodes in our hybrid cloud, there will be 6 private tasktrackers. So, the number of

reduce tasks are set to 6 and we ensured that those 6 reduce tasks are only placed on the

private machines.

63

Job Input Size Intermediate Size Output Size
Median 7416 MB 1118 MB 267 MB
Selection 7416 MB 981 MB 967 MB
P.PS.S 1381/2091 MB 1459/2141 MB 2077/3159 MB
C.O.L.S 1902/11419/23451 2040/12363/24144 4003/23436/31546
Wordcount 3329 MB 4596 MB 125 MB
Pagerank Iter. 4438 MB 7611 MB 85 MB
K-means Iter. 3676 MB 3863 MB 0.0084 MB
Sort 19972 MB 19624 MB 19971 MB
TeraSort 95380 MB 97230 MB 95367 MB

Table 4.3: Job Characteristics

4.6.4 Experimental Results

In this section, we outline the experiments that compare the performance (speed-up) of SEM-

ROD and Sedic vs. All-Private. We identified three factors that can impact the performance

of SEMROD compared to other secure solutions. Those factors are: private/public node

ratio, the amount of sensitive data within the input data and finally the inter-cloud/intra-

cloud network speed ratio. To demonstrate the impact of each of these parameters, we

comprehensively evaluated SEMROD and Sedic by varying each one of these three criterion,

while fixing the other two. Note that each line represents the average speed-up of all the jobs

compared to All-private in a specific category, such as single or multi-level. Also in most of

our experiments, the network speed between the clouds (inter-cloud network) is assumed to

be equivalent the network speed within the clouds (intra-cloud network). So, unless stated

otherwise, assume that they are equivalent.

Additionally, we plotted the performance results of SEMROD and Sedic vs. All-Private

equations (given in Section 4.6.1) in single-level MR jobs for each parameter in order to give

a sense of what the expected result would look like. D, D∗, β and β∗ values of a single level

jobs are computed separately by running that job on a single node of our cluster. In general,

the eqaution results of both SEMROD and Sedic is worse compared to actual experimental

64

results. Speed-up of both SEMROD and Sedic in Equation results is worse than the ones

in actual experimental results. Because, our assumption in equations, ’all the intermediate

data is shuffled from public to private cloud through a single link’, is too conservative and

was violated in our experiments.

For each job in our workload, we changed the ratio between sensitive data and input data

from 1% to 50%. In TPC-H becnhmark, the sensitive records are randomly selected from the

first input table in order to keep the ratio of sensitive keys through out the execution more

than the specified sensitivity ratio. In HiBench benchmark, we randomly selected some of

the files (varying from 1% to 50%) and labeled them as sensitive.

4.6.4.1 Private/Public Node Ratio (priv
pub

)

We deployed 4 distinct hybrid cloud scenarios in which priv
pub

varied between 1:1 (9 private -

9 public) and 1:17 (1 private - 17 public). We set the input sensitive data ratio to 5% for

these experiments. In line with the equation result, the actual results (Figures 4.8 and 4.9)

indicate that a lower private/public ratio incurs a longer job execution time in all secure

settings. However, SEMROD’s performance gain with respect to other approaches increases

at a lower priv
pub

ratio. For instance, when priv
pub

= 1
17

, SEMROD finishes all multi-level jobs on

an average 3.7× faster than Sedic and 4.6× faster than All-Private, since SEMROD was able

to exploit public machines throughout the entire MR execution. In particular, for single-level

jobs these numbers become 1.9 and 5.1. Note that, when priv
pub

= 1
17

, the expected speed-up of

SEMROD compared to All-Private is 10, whereas in actual experiments this number is equal

to 5.1. Because, we assumed that the tasks are uniformly distributed across the hybrid cloud

in SEMROD equation, however in actual single-level experiments, the reduce load were not

able to distributed evenly to those 17 public machines.

65

 0
 1
 2

 4

 6

 8

 10

1:1 1:5 1:8 1:17

S
p

e
e

d
-u

p
 v

s
 A

ll
-P

ri
v
a

te

Private/Public

Equation Results

 0

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

1:1 1:5 1:8 1:17

S
p

e
e

d
-u

p
 v

s
 A

ll
-P

ri
v
a

te

Private/Public

Experiment Results

SEMROD
Sedic

Figure 4.8: Single-level Job Results For Different priv
pub Ratios

 0

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

1:1 1:5 1:8 1:17

S
p

e
e

d
-u

p
 v

s
 A

ll
-P

ri
v
a

te

Private/Public

SEMROD
Sedic

Figure 4.9: Multi-level Job Results For Different priv
pub Ratios

4.6.4.2 Sensitive Data Ratio

For these experiments, we varied the amount of sensitive data (1, 5, 10, 25, 40, 50%) in the

first table of each query. Also, we set priv
pub

to 1
5
. As is expected, Figures 4.10 and 4.11 show

66

that a larger percentage of sensitive data within the input leads to a longer job execution

time in both, Sedic and SEMROD, but it does not affect All-Private running time. The

reason behind this is that a higher ratio of sensitive data results in more computations being

performed on the private side. For instance, when the sensitive data ratio is 1%, SEMROD

is 2.2× faster than Sedic for multi-level jobs. This number drops to 1.6× for single level MR

jobs. Nevertheless, when the ratio of sensitive data ratio is 50%, SEMROD gives the same

performance as Sedic in single-level jobs. This is because, at such high ratios, SEMROD’s

overheads such as key set collection, over-shuffling and final elimination tend to overshadow

all its efficiency advantages against Sedic.

 0

 1

 1.5

 2

 2.5

 3

 3.5

1 5 10 25 40 50

S
p

e
e

d
-u

p
 v

s
 A

ll
-P

ri
v
a

te

Sensitive Data Ratio (%)

Equation Results

 0

 1

 1.5

 2

 2.5

 3

 3.5

1 5 10 25 40 50

S
p

e
e

d
-u

p
 v

s
 A

ll
-P

ri
v
a

te

Sensitive Data Ratio (%)

Experiment Results

SEMROD
Sedic

Figure 4.10: Single-level Job Results For Different Sensitivity Ratios

67

 0

 1

 1.5

 2

 2.5

 3

 3.5

1 5 10 25 40 50

S
p

e
e

d
-u

p
 v

s
 A

ll
-P

ri
v
a

te

Sensitive Data Ratio (%)

SEMROD
Sedic

Figure 4.11: Multi-level Job Results For Different Sensitivity Ratios

4.6.4.3 Comparison per Job

In our second experiments, we fixed the priv
pub

to 1:5 and the sensitive data ratio to 5% to

compare SEMROD, Sedic and Hadoop with All-Private for each job. The results are shown

in Figure 4.12. In these experiments, SEMROD finished each job by at least 1.3x and at most

4.5x faster than All-Private, and at least 1.1x and at most 3x faster than Sedic. SEMROD’s

performance gain in reduce-heavy single-level MR jobs, such as Median, P.PS and C.O, is

higher than the ones in map-heavy jobs like Selection, Sort and Wordcount. Also, note that

SEMROD’s speed-up ratios for multi-level jobs (except K-Means) are higher than the ones

in single-level MR jobs.

The K-means implementation (borrowed from Mahout [60]) is a map heavy multi-level

MR job and does not satisfy record-level correspondency condition between the iterations.

Thereby, after the first iteration, SEMROD executes the remaining K-means iterations en-

tirely on the private side. In turn, SEMROD’s speed up compared to All-Private drops to

1.27× from 2.85×, which is the speed up in the K-means’ first iteration.

68

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

C
.O

C
.O

.L

C
.O

.L.S

P.PS
P.PS.S

Pagerank

K
M

eans

W
ordcount

TeraSort

Sort
M

edian

Selection

R
e

la
ti

v
e

 s
p

e
e

d
 u

p
 v

s
.

A
ll

-P
ri

v
a

te

Jobs

Sedic

SEMROD

Hadoop

Figure 4.12: SEMROD/Sedic/Hadoop vs All-Private per Job

4.6.4.4 Distributed vs. Centralized KeySet Collection

In this set of experiments, we fixed the priv
pub

to 1:5. We first re-run Wordcount and Median

jobs by varying the sensitive data ratio on the SEMROD customized with centralized key

set collection. The results are provided in Figure 4.13. In most cases, distributed approach

results in better execution times. In fact, centralized strategy gives better performance in

Wordcount job only when the sensitive files ratio is ≤ 5%. Because, after 5%, most of the

intermediate keys become sensitive and storing/transmitting such a huge key set becomes a

bottleneck within SEMROD’s master.

69

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

1 5 10 25 40 50

J
o
b
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Sensitive Data Ratio (%)

Distributed vs. Centralized Key Set

W-Centralized
W-Distributed
M-Centralized
M-Distributed

Figure 4.13: Distributed vs Centralized Key Set (M-Median, W-Wordcount)

4.6.4.5 Sensitivity Spread

In this set of experiments, we fixed the sensitive data ratio o 5% and priv
pub

to 1:5. We selected

C.O.L.S join query to show how the sensitive input data ratio changes in a multi-level MR

execution. Figure 4.14 indicates how the ratio of sensitive input records varies along the join

query execution. The ratio of sensitive records at the beginning is 5%. As we projected, it

is increasing after each job and reaches to 50% before starting to execute the last MR job in

the C.O.L.S sequence.

70

 0

 10

 20

 30

 40

 50

 60

 70

 80

C.O C.O.L C.O.L.S

S
e
n
s
it
iv

e
 D

a
ta

 R
a
ti
o
 (

%
)

Job

Sensitive Data Spread

Sensitive Data

Figure 4.14: Sensitivity Spread for Multi-level Join

4.6.4.6 Non-Secure Hadoop Comparison

When priv
pub

is as low as 1:5 and the sensitive data ratio is 1%, SEMROD’s overhead in terms

of job running time (given at Table 4.4) for single-level queries is at most 48%. For multi-

level queries, this number, however, becomes 164%. Also, Table 4.4 displays the SEMROD’s

overheads on shuffled intermediate and generated output data (before final elimination)

compared to Hadoop. In most cases, SEMROD shuffles 100% or more data than Hadoop

due to the over-shuffling and prevkey tagging. Another observation is that even though the

output overhead is low for single level jobs, it increases up to 100% in multi-level jobs. The

reason behind this sudden increase is that, in the final jobs of P.PS.S and C.O.L.S, the

ratio between sensitive keys and all keys (K
i
s

Ki) is as high as ≈ 90%. The more Ki
s

Ki is, the

more incorrect data is generated in both public and private reducers. Thus, shifting all the

output and running the entire subsequent computation on the private side would be a more

efficient option. Under this scenario, SEMROD will exactly follow this strategy, since the

subsequent job’s input would be violating the Condition 2.

71

Running Times (sec) Overheads (%)
Job Hadoop SEMROD Time Shuffle Size Output Size
Median 81 108 33% 140% 47%
Selection 64 83 30% 105% 8%
P.PS 48 56 17% 111% 3%
P.PS.S 97 167 72% 107% 82%
C.O 56 78 39% 109% 3%
C.O.L 259 354 37% 108% 2%
C.O.L.S 568 1499 164% 105% 100%
Wordcount 131 329 151% 177% 97%
Pagerank Iter. 285 406 42% 66% 44%
K-means Iter. 112 160 43% 114% 40%
Sort 176 258 47% 102% 98%
TeraSort 1074 1588 48% 107% 97%

Table 4.4: Hadoop vs SEMROD

4.6.4.7 Slow Inter-Cloud Network

In this experiment, we study the impact of inter-cloud network speeds on the performance of

Sedic and SEMROD. Since they shuffle data between public and private machines, possibly

over wide area network (WAN), their performance will be negatively impacted due to the

slow inter-cloud network speed3. At some stage, if WAN speeds are significantly slow, the

improvements due to using public resources may be mitigated by the slow networks

The inter-cloud traffic speed is slowed by a factor of ρ compared to speeds between machines

within the same cluster. This is achieved by stopping a thread shuffling data from the other

cloud for a period of time (ρ− 1) ∗X where X is the actual time taken to shuffle the data.

This effect simulates a slowdown of inter-cloud network speed by a factor of ρ compared to

the intra-cloud network speed.

Varying ρ from 1 to 100 simulates a wide range of situation where inter-cloud network speeds

3Amazon offers Amazon Direct Connect, where customers can establish a dedicated network between
their private data center and the closest AWS region. It offers speeds up to 10Gbps and enables customers
to have multiple connections.

72

are the same as that between local machines to a situation where such speeds are 100 times

slower compared to intra-cloud network speeds. Our experiments are conducted under the

sensitive data ratio of 5% and two different priv
pub

ratios: 1
17

and 1
5
. Finally, we measured the

average speed-up ratios of SEMROD and Sedic vs All-Private for single-level and multi-level

MR jobs separately.

The results, given in Figures 4.15 and 4.16, clearly indicate that SEMROD performs better

than Sedic and All-Private for both single-level and multi-level MR jobs, even though the

inter-cloud network is 100 times slower (1MBps) than the existing one and the priv
pub

is as high

as 1
5
. Note that, Sedic’s execution time for multi-level MR jobs is longer than All-Private

when ρ = 100 and priv
pub

= 1
5
. But under the same conditions, SEMROD is still 1.5x faster than

both Sedic and All-private. Also, when ρ >= 5, both SEMROD’s and Sedic’s actual speed-

up for single-level MR jobs is much more than the expected speed-ups. The reason behind

this is that our conservative assumption in the Equations (’everything is shuffled through a

single link between the clouds’) is not applied within our slowed network simulations.

 0
 1
 2

 4

 6

 8

 10

1 510 50 100

S
p

e
e

d
-u

p
 v

s
 A

ll
-P

ri
v
a

te

Delay Ratio (ρ)

Equation Results

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 510 50 100

S
p

e
e

d
-u

p
 v

s
 A

ll
-P

ri
v
a

te

Delay Ratio (ρ)

Experiment Results

SEMROD-1::17
Sedic-1::17

SEMROD-1::5
Sedic-1::5

Figure 4.15: Single-level Job Results with Different ρ Values

73

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 510 50 100

S
p

e
e

d
-u

p
 v

s
 A

ll
-P

ri
v
a

te

Delay Ratio (ρ)

Multi-level MR Jobs

SEMROD-1::17
Sedic-1::17

SEMROD-1::5
Sedic-1::5

Figure 4.16: Multi-level Job Results with Different ρ Values

4.6.4.8 Experiments with Real Hybrid Cloud

For this set of experiments, we reserved 17 nodes from a remote computing center and merged

it with a single machine from our cluster in order to create a geographically distributed

hybrid cluster over the wide area network. Each node we reserved has Intel EM64T Xeon

E5 2.6GHz 16 core cpu, 64GB Memory and 280GB disk. We installed SEMROD, Sedic and

All-Private systems on this new 18 node hybrid cluster. We labeled these nodes as public

and the single machine from our cluster as private. Note that, in this hybrid cluster, priv
pub

as

1
17

. We measured the average data transfer speed over the inter-cloud network as 30MBps

and we ensured that the connection between the public and private machines is established

over the wide-area network, not over a dedicated network.

We executed all the jobs in our testbed using SEMROD, Sedic and All-Private over this

new hybrid cloud. The speed-up ratios of SEMROD and Sedic vs. All-Private per job is

given at Figure 4.17. As it is seen in Figure 4.17, SEMROD performs at least 2x faster than

Sedic and All-Private for most of the jobs. Note that Sedic’s performance for MR jobs that

74

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

C
.O

C
.O

.L

C
.O

.L.S

P.PS
P.PS.S

Pagerank

K
M

eans

W
ordcount

TeraSort

Sort
M

edian

Selection

R
e

la
ti

v
e

 s
p

e
e

d
 u

p
 v

s
.

A
ll

-P
ri

v
a

te

Jobs

Sedic

SEMROD

Figure 4.17: SEMROD/Sedic vs All-Private in Real Hybrid Cloud

shuffles a lot of data over the inter-cloud network (e.g. Sort and Terasort) is almost 2x worse

than All-Private. In contrast to Sedic, SEMROD is approximately 2x faster than All-Private

for the Sort and Terasort jobs. To sum up, the results in Figure 4.17 clearly demonstrate

that SEMROD is practical to use in a hybrid cloud, even when the inter-cloud connection is

established over wide area networks.

4.6.4.9 Fault-tolerance

This set of experiments are conducted to investigate the impact of a machine failure to

SEMROD, Sedic and Hadoop’s performance. We intentionally killed 1 private tasktracker or

3 public tasktrackers in the middle of map and reduce phases. We only executed single-level

MR jobs and measured the average time overheads of these failures on job running times. In

75

these experiments, sensitive data ratio, priv
pub

, ρ is set to 5%, 1
5

and 10 respectively. The first

3 columns in Table 4.5 show the results for 1 private machine failure case, whereas the last

3 columns indicate the overheads when we killed 3 public machines. Observe that private

machine failures generally harm Sedic the most and Hadoop the least in terms of performance.

On the other hand, in case of public machine failures, SEMROD’s and Hadoop’s overheads

are usually highest, and Sedic’s overheads are lowest. This is because, Sedic uses the private

machines heavily during an MR job execution in contrast to Hadoop and SEMROD, in which

public machines are the ones doing the more computation.

1 Private Overhead (sec) 3 Public Overhead (sec)
Job SEMROD Sedic Hadoop SEMROD Sedic Hadoop
C.O 45 65 34 49 120 95
P.PS 53 72 24 96 77 94
Median 43 60 16 170 0 199
Selection 49 29 9 166 71 107
Wordcount 311 167 55 196 0 197
Sort 101 395 48 255 163 128

Table 4.5: Machine Failure Overheads

4.7 Conclusions and Extensions

In this chapter, we presented SEMROD framework to efficiently address security challenges

in building an MR framework over hybrid clouds. SEMROD minimally modifies the Hadoop

MR implementation by shuffling all public map outputs to both, public and private reducers.

These modifications allow exploitation of public resources for both, map and reduce phases,

of an MR job without compromising security. Our results show that SEMROD achieves

security by paying small performance overhead as compared to Hadoop.

Furthermore, when inter-cloud networks are as fast as intra-cloud networks, SEMROD dra-

matically improves the average job execution time by as much as 3.5× as compared to

76

alternate secure MR frameworks.

While SEMROD provides an effective framework for secure MR execution that ensures no

sensitive information is leaked to public clouds, several extensions are possible to make it

more efficient.

An extension would be to explore a (possibly cost-based) approach to decide when the extra

shuffling and filtering cost of SEMROD are compensated by the advantage of using additional

computation power of the public machines. In SEMROD, the ratio of sensitive/incorrect keys

increases across each phase of the multi-level MR pipeline. It is conceivable that at some

stage in the execution of a SEMROD pipeline, shifting the entire computation to the private

side might be a better plan compared to paying the overheads. While we did not observe

such a phenomena in our experiments, at the level of sensitive data and the type of jobs we

tested, such an issue can arise. This is specially the case when record-level correspondence

for multi-level MR jobs does not hold as in Mahout’s K-means implementation where the

entire output of each iteration is input to each map task in subsequent iteration.

Finally, developing secure and effective approaches to deal with multi-level jobs when record-

level correspondence may not hold would be an interesting extension.

77

Chapter 5

Secure and Efficient Query Processing

over Hybrid Clouds

5.1 Introduction

Our goal in this chapter is to develop an efficient approach to executing SQL style queries

securely by appropriately partitioning computation and data between the private and public

machines. Our prior work, SEMROD, has explored secure map-reduce (MR) implemen-

tation in hybrid clouds using portioning of data and computation that supports semantic

security. One approach to implementing secure SQL style queries is to transform them into

corresponding MR jobs and use SEMROD. Such an approach result in significant overhead.

SQL offers much higher levels of semantics that can be exploited to significantly improve

performance without sacrificing semantic security.

Distributing query execution in a secure and efficient way consists of two interrelated prob-

lems:

78

• Data distribution problem: How should data be distributed between private and public

clouds?

• Query execution problem: Given the sensitive data can only be stored on the private

cloud, how do we execute the query securely and efficiently across the hybrid cloud?

The solutions to these problems will differ based on how the data is placed across the hybrid

cloud at the beginning, which in turn depends upon the usage scenario of the hybrid clouds.

Hybrid clouds are an emerging technology with a large amount of commercial interest, [61],

and they are being used for variety of purposes. While running actual business applications in

the private cloud, organization uses public clouds for archiving, testing or providing standard

applications, such as mail or calendar, to their customers or employees. None of these

scenarios necessitates utilizing both clouds to do heavy data processing. An example of

a use case requiring data processing at both private and public cloud is cloudbursting.

Recently, organizations, such as Web/e-commerce, typically have dynamic and unpredictable

requirements, which can be difficult to plan for when hosting in their on-premise data center.

In order to meet unpredictable demand, they rent resources from a public cloud and merge it

with their existing resources (cloudbursting). As another use case, companies are exploring

to outsource their data center functionalities in order to avoid building a new data center

and all of the associated costs and compliance requirements. So, they use public clouds as a

cost efficient option to meet the needs for more capacity without incurring additional capital

costs (outsourcing) . In the cloud bursting scenario, typically the data is first flows into the

private cloud through some higher level applications and then stored in there. Whenever

a need arise for the public cloud, certain portion of the data is replicated to the public

cloud. In such scenario, private cloud has enough resources to store the entire dataset, but

is limited in terms computational power. In outsourcing scenario, usually the private cloud

is limited in terms of both storage and computation. Therefore, the data is mostly initiated

and stored in the public cloud and whenever a mission critical task need to be run on the

79

private cloud, the corresponding portion of the public cloud data is migrated to the private

cloud. In the context of this chapter, we will assume that the entire data is initially stored

in the private cloud as in the cloud bursting scenario, though our technical development

does not fully require that the entire data must stored on the private cloud. For instance,

non-sensitive data could reside on the public cloud initially and it could be shifted to private

cloud whenever the need arises.

Given our initial data placement assumption, we solved the data distribution problem in-

tuitively. To ensure security, the sensitive data is only stored on the private cloud. Non-

sensitive data migrates to the public cloud, though we let a copy of it remain on the private

cloud since part of non-sensitive data may be needed to efficiently partition queries between

the private and public nodes. For instance, a join query may necessitate that non-sensitive

data be available at the private node in case sensitive records from one relation may join with

non-sensitive records in another. Since we cannot migrate sensitive data to public cloud, if

we do not store non-sensitive data on the private machines, we will need to transfer such data

during query execution, which would incur high transfer costs. Moreover, as will become

clear, our approach is designed to support an expected class of queries (i.e., a workload)

very efficiently by exploiting both public and private machines. If a query deviates from the

expected class, it must run on private machines requiring all data to be locally present (or

transferred dynamically during query execution which will incur significant overhead).

Given such a initial data distribution, our focus in this chapter is to minimize the running

time of a given query, Q, subject to the security constraint that sensitive records / informa-

tion are never leaked to the public cloud. The strategy we use is to split the given query Q

running on dataset D as

Q(D) = Qmerge

(
Qpriv(Dpriv), Qpub(Dpub)

)
, (5.1)

80

where Qpriv and Qpub are private and public cloud sub-queries respectively. Qpriv is executed

on the private subset of D, Dpriv; whereas Qpub is performed over the public subset of D,

Dpub. Qmerge is a private cloud merge sub-query that reads the outputs of former two sub-

queries as input and creates the outputs equivalent to the that of original Q. We call such

an execution strategy as split-strategy. Two aspects of split-strategy are noteworthy:

• Split-strategy offers semantic security. To see this, note that the public machines only

have access to Dpub that does not contain any sensitive data. Moreover, no information

is exchanged between private and public machines during the execution of Qpub and,

as a result, the execution at the public machines is observationally equivalent to the

situation where Dpriv could be any random data.

• Split-strategy gains efficiency by executing Qpriv and Qpub in parallel at the private and

public cloud respectively and, furthermore, by performing inter-cloud data transfer at

most once throughout the query execution. Note that the networks between private

and public clouds can be significantly slower compared to the networks used within

clouds. Thus, minimizing the amount of data shuffling between the clouds will have a

huge performance impact.

Suppose that Dpriv is equivalent to the original dataset D and, but Dpub is equal to the

non-sensitive records in D. Creating an efficient split-strategy for queries doing linear trans-

formations such as selection or projection only queries is straightforward. That is, Qpriv

will be equivalent to the original Q, but will be performed only over the sensitive records

in Dpriv. Likewise, Qpub = Q, but Dpub is equal to the non-sensitive records in D. Finally,

Qmerge = ∪. In the context of a join query, R ./
C
S where C is the join condition between

relation R and S, an efficient split-strategy is however not trivial. Assume that only very

small portions of R and S are sensitive, denoted as Rs and Ss, and remaining large fraction

of them are non-sensitive, denoted as Rns and Sns. The naive split-strategy for R ./
C
S would

81

be (1) Qpub = Rns ./
C
Sns, (2) Qpriv = Rs ./

C
Ss ∪Rs ./

C
Sns ∪Rns ./

C
Ss. The scan/join cost of

Qpriv in this split-strategy is close to the scan/join cost of the original query R ./
C
S.

To be able to run join queries, or in general, complex SPJ queries efficiently, a split-strategy

requires us to identify the non-sensitive records that joins with the sensitive records from

another relation. We can then limit the scan and join to those subset of records. If the size

of that subset is small, one can have a much more efficient split-strategy.

Our primary contributions in this chapter are summarized below:

• We propose a fully secure and efficient approach to do query processing using the

hybrid clouds.

• We present a set of formal split rules in order to create a secure and efficient split-

strategy for SQL queries in the hybrid cloud model.

• We create a special attribute on the private cloud data in order to obtain an efficient

split-strategy for queries involving join operations. Additionally, we physically partition

the private cloud data based on this index to further reduce the query execution times

in split-strategy.

• We design an efficient algorithm to construct our new attribute either based on the

dataset schema or based on an expected workload, which is provided by the user.

• We carry out extensive evaluation and testing on realistic datasets using Hadoop and

Spark [62] in order to validate the benefits of split-strategy using our new column.

The rest of the chapter is organized as follows: Section 5.2 provides an overview of our

approach. In Section 5.3, we present our algebraic approach to construct an secure and

efficient split-strategy for single block queries. Section 5.4 presents the implementation details

of our techniques over Spark, Hadoop and Hive [63]. Section 5.5 provides the results of the

82

experimental evaluation of our strategies using the TPC-H benchmark. Section 5.6 reviews

the related work in the area of distributed data processing. In Section 5.7, we discuss how

to create a split-strategy for more complicated queries, such as cyclic or nested queries.

5.2 Overview of Our Approach

In this section, we will explain the challenges that we face in splitting queries across hybrid

clouds and then provide the overview of our approach to address these challenges. For this

purpose, we will use the example join query discussed in Section 6.1, i.e. R ./
C
S. Let R and

S be as shown in Figure 5.1 and let C be equal to R.Region = S.Region. Recall that, the

entire R and S is stored on the private cloud and only non-sensitive partition of them, Rns

and Sns are stored on the public cloud. Given such a data distribution,the scan and join

cost of running the entire R ./
C
S on the private cloud is equal to 6. However, when R ./

C
S

is split using our naive split-strategy, the scan and join cost of the private side query will be

equal to 8. In fact, when this naive approach is used to split a query that joins more than

two tables. For instance when R ./
C
S ./

C′
T , where C

′
is S.Region = T.Region, is split, the

scan/join cost of the private side computation may be much higher compared to running the

original query on private machines.

Figure 5.1: Example Relations

The cost of R ./
C
S on the private machines can be significantly reduce by doing pre-filtering

83

relations R and S based on the sensitive records of the other relation. To perform such a

pre-filtering operation, the records in Rns and Sns have to be co-partitioned based on whether

they join with a sensitive records from the other table under condition C.

Let RS
ns be the set of non-sensitive R records that joins with any sensitive record in S (i.e

a record from Ss). In our case, RS
ns = (apple, 1). Similarly, let SRns be the non-sensitive S

records that joins with any record from Rs, i.e. (Chris, 1). In that case, the new private side

computation can be rewritten as

(Rs ∪RS
ns) ./

C
(Ss ∪ SRns). (5.2)

Since the number of sensitive records are low (equal to 1) in both R and S, the sizes of SRns

and RS
ns are expected to be low as well 1 Thus, the scan and join cost of this new private

plan will be equal to 4 and will be less than the earlier version, which was 6. This strategy,

nonetheless, introduces a new challenge. Since RS
ns ./

C
SRns is both repeated at public and

private cloud, the output of RS
ns ./

C
SRns, (apple, Chris, 1), will be computed on both private

and public machines. To prevent this, we do a guarded join (./
′
) on the private side, which

discards the output, if it is generated via joining two non-sensitive tuples. This feature can

easily be implemented by adding a column to R and S that marks the sensitivity status of a

tuple, whether it is sensitive or non-sensitive, and then by adding a appropriate selection after

the join operation. In other words, the complete representation of private side computation

for R ./
C
S would be

σR.sens∨S.sens=true((Rs ∪RS
ns) ./

C
(Ss ∪ SRns)) (5.3)

1For instance, let R be Customer table and S be Orders table in the TPC-H dataset. If 1% of the R
(Customer) records is sensitive, then the ratio between SR

ns and S (Orders) will be at most 1%.

84

where sens is a boolean column (or partition id) appended to relations R and S on the

private cloud. Assume that it is set to true for sensitive records and false for non-sensitive

records.

There exist multiple implementation challenges in this new approach. First challenge is

about the cost of creating RS
ns and SRns beforehand. Extracting these partitions for a query

might take as much time as executing the original query. However, if it’s prepared once,

whenever R relation join with S based on condition C, the new efficient private plan can be

deployed.

The second challenge is about co-partitioning tables for more complex queries. For instance,

in case of a query R ./
C
S ./

C′
T , the plan would be to first compute the results of R ./

C
S,

and then to join them with T . However, if we do the private side computation of R ./
C
S,

based on Equation 5.2 (no duplicate filtering) and join the results with T , then we will not

be able to obtain the complete set of sensitive R ./
C
S ./

C′
T results. To see this, consider the

sensitive record (Japan, 2) in T that joins with non-sensitive (grape, 2) tuple in R−RS
ns or

join with non-sensitive (James,2) tuple from S − SRns. Thus, the non-sensitive records of R

and S has to be co-partitioned based on the sensitive record of T via their join paths from

T . In R ./
C
S ./

C′
T , the join path from T to R is T ./

C′
S ./

C
R and from T to S is T ./

C′
S.

Similarly, the non-sensitive T records has to be co-partitioned based on the sensitive R and

S records via join paths specified in the query.

Final challenge is about maintaining these co-partitions and feeding the right one when

an arbitrary query arrives. Given a workload of queries and multiple possible join paths

between any two relations, each relation R in the dataset may need to be co-partitioned

multiple times. This implies that any non-sensitive record r of R might appear in more than

one co-partition of R. So, maintaining each co-partition separately might be unfeasible in

terms of storage. However, the identifiers of each co-partition that record r belongs to can

be embedded into r as a new column. We call such a column as the co-partition column or

85

the CPT column.

Note that this column will be set to null for sensitive tuples stored in the private side, since

the co-partitions are only for non-sensitive tuples. Thus, it can further be used to serve

another purpose, indicating the sensitivity status of a tuple r by setting it to ”sens” only

for sensitive tuples. Note that foreign key columns in the tables does not serve our purpose,

because such columns never reveals the information of whether a record joins with a sensitive

or non-sensitive tuple from the other table.

To formalize the concept of co-partitioning, we first need to define the notion of join path.

let Ri be a relation in our dataset D and let Q be a query containing relation Ri. We say

a join path exists from relation Rj to Ri, if either Ri is joined with Rj directly based on a

condition C, i.e. Rj ./
C
Ri, or else indirectly using other relations in Q. A join path p can

be represented as a sequence of relations and conditions laying between Rj and Ri relations.

Let PathSet be the set of all join paths that is extracted either from the expected workload

or dataset schema a given and let

PathSeti = {∀p ∈ PathSet : path p ends at relation Ri}. (5.4)

Let CP (Ri, p) be the set of non-sensitive Ri records that will be joined with at least one

sensitive record from any other relation Rj via the join path p. Note that p starts from Rj

and ends at Ri and can be given as an id to CP (Ri, p). Any CP (Ri, p) is called as ”co-

partition” of Ri. Given these definitions, the CPT column of a Ri record, r can be defined

as :

r.CPT =

sens if r is sensitive

{∀p ∈ PathSeti : r ∈ CP (Ri, p)} otherwise

(5.5)

86

Figure 5.2: Example Relations with CPT Column

Figure 5.2 shows our example R, S and T relations with their CPT column. For instance, the

join path R ./ S will be appended to the CPT column of all the tuples ∈ SRns. Additionally,

the CPT column of all tuples in Rs will be set to sens.

Next, we will provide an algebraic framework to split queries assuming such a CPT column

exists. We will later present the details of CPT column creation for a given workload of

queries.

5.3 Our Approach

In developing our approach, we first make an assumption that the given query Q is a single-

block query, i.e., it contains a single SELECT-FROM-WHERE clause. Note that Q may

contain aggregations (min, max, avg, etc.), group by, order by and having clause. A large

class of SQL queries are either single block (and/or can be transformed into single block

queries using rewrite rules [64, 65]. Our algorithmic development in this chapter will be

limited to single block queries, though we will discuss ideas/approaches of extending the

work to a more general class of SQL which may contain nested SQL queries with multiple

blocks.

We will illustrate our splitting techniques using the following workload W , that consists

87

of three single-block queries Q1, Q2, Q3 (given next) on relations R(A,C,D), S(A,B,D),

T (B,C,E) and U(E,F), where only R has sensitive records.

Q1: R ./
R.A=S.A

S ./
S.B=T.B

T

Q2: R ./
R.D=S.D

S ./
S.A=R.A

R

Q3: R ./
R.C=T.C

T ./
T.E=U.E

U

Figure 5.3: Example Queries

We will make an assumption that the queries are acyclic or tree queries. Acyclic queries are

defined based on the join graphs of queries.

Assume graph(Q) be the function that returns a labeled undirected graph of a single block

query q,

graph(Q) = G(VQ, EQ, LQ) (5.6)

where VQ, EQ and LQ refers to the vertices, edges and labels in the graph. Each vertex in

the graph(Q) corresponds to a relation used in q. Two vertices corresponding to Ri and

Rj are connected by an edge if there is a join condition C between these two relations in

q. The label of such an edge will be C. The join graphs of the example queries, Q1, Q2

and Q3, given at Figure 5.3, are provided at Figure 5.5.a, b and c respectively. As shown in

Figure 5.5.a, R and S vertices are connected via edge S.A = R.A (c1) and R and T vertices

are connected via edge R.C = T.C (c3).

If a relation Rx occurs more than once in a query q, each occurrence of Rx corresponds to a

different vertex in the join graph. The first occurrence of Rx corresponds to a vertex labeled

by the original relation name, Rx; whereas the vertex corresponding to the ith occurrence of

88

Rx (i > 1) is denoted as Ri
x. For instance, since relation R is used twice in Q2, there are two

vertices related with R in Figure5.5.a. The vertex that corresponds to the second occurrence

of R is labeled as R1.

A query is referred to as a acyclic (or tree) query iff its join graph corresponds to a tree,

otherwise it is referred to as cyclic query. For instance, all the queries in our example are a

acyclic query.

We focus our development for the case when queries are acyclic (or tree queries). In an

acyclic query, the conditions associated with adjacent relations Ri and Rj in a join chain

refer to only the attributes of Ri and Rj (not to the attributes of relations that appear either

prior to or later in the query).

While restricting the algorithmic approach to only acyclic queries may seem limiting at first.

We note that frequently, specially when dealing with foreign key joins, queries are often

acyclic. For instance, 10 of 11 single-block TPC-H queries are acyclic. We further note

that, even though our technique is developed in the context of acyclic queries, it can be used

in the context of queries with cyclic conditions by simply postponing the check for some

join conditions and applying them as a selection condition after the acyclic join processing.

We will explain such extensions in further detail, after discussing how we deal with acyclic

queries. Thus, for the remainder of this section, we will assume queries are acyclic.

The execution tree of a typical single block acyclic query Q consists of a single selection,

projection, join (QSPJ) block at the bottom followed by some aggregation, sorting or dupli-

cate elimination operators. We first explain how an SPJ block is split and then provide rules

to split other possible operators in the execution tree.

Before going into the details, recall that each relation Ri in our dataset is placed across the

hybrid cloud as follows:

89

1. All the Ri records are stored entirely on the private cloud with appropriate CPT

columns,

2. All the non-sensitive Ri records, Rins are stored on the public cloud without any CPT

column.

Our goal in this section is to develop rules to rewrite a query Q to generate split execution

plan for Q. Our split rules will generate three queries – Qpriv, Qpub and Qmerge such that

• Qpub is executed over the data stored in public machines, that is, on non-sensitive parts

of the relations

• Qpriv is executed over the data stored in private machines. In particular, for efficiency

Qpriv will only access the data in relations that is either sensitive or for which the CPT

column is sensitive

• The partitioning will guarantee correct execution - that is, the results produced by

applying Qmerge to the outputs of Qpub and Qpriv equals to the answers of Q, when

applied to the full database.

We will illustrate how a single block query query can be split using a modified version of

Query Q3 in TPC-H workload.

SELECT l_orderkey , sum(l_extendedprice) as revenue

FROM C, O, L WHERE c_custkey = o_custkey AND

l_orderkey = o_orderkey AND c_mktsegment = ’BUILDING ’ AND

o_orderdate < ’1995-03-15’ AND l_shipdate > ’1995-03-15’

GROUP_BY l_orderkey ORDER BY revenue

where C, O, L stands for Customer, Orders and Lineitem tables respectively.

The query execution trees of our example query, q is given at Figure 5.4.a, where

90

p1 : c mktsegment = BUILDING, p2 : o orderdate < 1995− 03− 15,

p3 : l shipdate > 1995− 03− 15, cx : c custkey = o custkey,

cy : o orderkey = l orderkey,

(G, A) : (l orderkey, sum(l extendedprice)→ revenue)

Figure 5.4: The Execution Tree for example query, q

5.3.1 Splitting SPJ block Qspj

The rule to split Qspj varies based on the existence of join operation. Assume that Q is

a single relation query and so QSPJ does not involve any join operation, i.e. , QSPJ =

91

∏
A

(σP (R)). We can split such a Qspj as

Qspj
priv =

∏
A

(σP∨Contains(CPT,sens)(R)),

Qspj
pub =

∏
A

(σP (Rns)).

(5.7)

If Q is a multi-relational query, its Qspj block can be expressed as

∏
A1

(σp1(R1)) ./
C1

∏
A2

(σp2(R2))/
Cn−1

∏
An

(σpn(Rn)) (5.8)

, where Ri for 1 ≤ i ≤ n is a relation in the given input dataset. Each relation Ri has

corresponding sensitive and non-sensitive partitions Ris and Rinss. Rule to split Qspj into

public Qspj
priv and private Qspj

pub sub-blocks is as

Qspj
priv = σ

Cond

(∏
A1+CPT

(σp1∧Cond1(R1)) ./
C1

. . . ./
Ci−1∏

Ai+CPT

(σpi∧Condi(Ri))/
Cn−1∏

An+CPT

(σPn∧Condn(Rn))
) (5.9)

and

Qspj
pub =

∏
A1

(σp1(R1ns)) ./
C1

∏
A2

(σp2(R2ns))/
Cn−1

∏
An

(σpn(Rnns)) (5.10)

, where Cond is equal to

Contains(R1.CPT, sens) ∨ Contains(R2.CPT, sens) ∨ . . . ∨ Contains(Rn.CPT, sens)

(5.11)

92

and Condi checks whether the Ri’s CPT column contains any of the values required to obtain

complete set of sensitive Qspj answers. The set of required CPT values consists of sens and

set of join paths Pi. sens value is required to fetch sensitive Ri records, whereas the Pi is

required to obtain minimum set of non-sensitive Ri records to answer Qspj
priv. Pi can be stated

formally as,

∀1 ≤ i ≤ n, Pi =
{i−1⋃
j=1

(Rj ./
Cj

... ./
Ci−1

Ri),
n⋃

j=i+1

(Ri ./
Ci

... ./
Cj−1

Rj)
}

(5.12)

Using Pi’s definition, Condi can be defined as

Condi = Contains(Ri.CPT, sens | Any Path p ∈ Pi) (5.13)

To illustrate, the spj block of our example query is also indicated as qspj in Figure 5.4.a. In

our query splitting strategy, we first split the qspj using our spj block split rule. The outcome

of splitting qspj is depicted at Figure 5.4.b where

Cond : Contains(C.CPT, sens) ∨ Contains(O.CPT, sens) ∨ Contains(L.CPT, sens)

Cond1 : Contains(C.CPT, sens | O ./
cx
C | L ./

cy
O ./

cx
C)

Cond2 : Contains(O.CPT, sens | C ./
cx
O | L ./

cy
O)

Cond3 : Contains(L.CPT, sens | O ./
cy
L | C ./

cx
O ./

cy
L)

5.3.2 Splitting The Higher Level Operators

The way the higher level operators are executed is common: (1) Partially execute them on

both private and public cloud, (2) Transfer the partial public results to the private cloud

and merge it with partial private results, (3) Do another post-processing over the merged

93

data at the private cloud to obtain the complete set of results. Such a post-processing will

be in fact a part of Qmerge in our split-strategy.

Duplicate Elimination (δ(R)): To eliminate duplicates, we rewrite δ operator as

δ(R) = δ(δ(Rs) � δ(Rns)) (5.14)

, where δ(Rs) and δ(Rns) are executed on private and public cloud independently. The

outputs of such a split, however, may contain more tuples than the original δ(R). To remove

the duplicates between Rs and Rns securely, we transfer the results of δ(Rns) from public to

private cloud (�) and perform another duplicate elimination operation between the results

of δ(Rs) and δ(Rns). This final elimination will be a part of Qmerge. At the end, again all

the outputs would be present at the private cloud.

Grouping and Aggregation (ϕα(R)): We denote a grouping and aggregation operator by

ϕα(R), where α = αG∪αA, αG corresponds to a list of grouping attributes, and αA to a set of

aggregation operations. For instance, ϕA1,MAX(A2)→B(R) means that R records are grouped

using attribute A1 and for each group created, maximum of A2 attribute is computed and

renamed as attribute B. In this example, αG = A1 and αA = MAX(A2)→ B. Note that if

αA = ∅, only grouping is performed. Conversely, if αG = ∅, then the aggregation function is

carried on the entire relation.

The split rule of the grouping and aggregation operator is as

ϕα(R) = ϕα1(ϕα2(Rs) � ϕα2(Rns)) (5.15)

, where αG = α1
G = α2

G. That is, the original α operator is split into three parts: 1) partial

private side grouping and aggregation Opriv = ϕα2(Rs); 2) partial public side grouping

94

and aggregation Opub = ϕα2(Rns); 3) Merging the results ϕα1(Opriv ∪ Opub). While the

same grouping operation is performed in α, α1 and α2, their aggregation function might be

different.

Let f be a function performed over attribute X and the result is reported as column Y ,

f(X) → Y . If f is a transitive aggregation function, such as SUM, COUNT, MAX, MIN

or TOP ; then f(X) → Y will be replaced with f(X) → Y
′

in α2
A and f(Y

′
) → Y in α1

A.

If f is partially transitive, namely AVG ; AV G(X) → Y is replaced with two statements in

α2
A: SUM(X) → Y1 and COUNT (∗) → Y2; and replaced with a single statement in α1

A,

SUM(Y1)/SUM(Y2) → Y . Finally, if f is not a transitive function, then the no operation

is done over X attribute in α2
A and all the f computation is carried on α1

A.

To illustrate, the example above, ϕA1,MAX(A2)→B(R), is split as

ϕA1,MAX(B′)→B(ϕA1,MAX(A2)→B′ (Rs) ∪ ϕA1,MAX(A2)→B′ (Rns)). (5.16)

Note that α1 = A1,MAX(B
′
)→ B and α2 = A1,MAX(A2)→ B

′
in this example.

Using the split rule above (Equation 5.15), ϕα2(Rs) will be executed on the private cloud,

while ϕα2(Rns) is performed over the public cloud. All the ϕα2(Rns) results will be transferred

to the private cloud. Once the transfer is done, ϕα1 operation will be performed on the private

cloud. ϕα1 ’s output will be labeled as sensitive, since it mixes non-sensitive inputs with some

sensitive ones.

Sorting (τL(R)): The operation to sort relation R based on the attributes in list L can be

implemented similar to the duplicate elimination operator. That is, we first sort the sensitive

records of R in the private cloud and the non-sensitive ones in the public cloud. Then, we

transfer the public results to the private cloud and apply a final merge-sort operation among

the private sensitive results and public non-sensitive results. So, τL(R) operator can be split

95

as:

τL(R) = τ 2L
(
τ 1L(Rs) � τ 1L(Rns)

)
(5.17)

where τ 2L is a single-pass merge-sort operation. After applying this split rule, the private

cloud will have all the sorted results.

The higher level operator in our example query is a ’grouping and aggregation’ operator,

ϕG,A. Thus, we split this operator in the execution tree using our grouping and aggregation

split rule. The result is depicted at Figure 5.4.b where

A1 : sum(l extendedprice)→ revenue
′
, A2 : sum(revenue

′
)→ revenue

Once we split the spj block and next higher level operator, all the operators on the left hand

side of � operator becomes qpriv, as shown at Figure 5.4.b and all the operators lying on the

right hand side of �, again as shown at Figure 5.4.b will be qpub and the operators staying

above � will be qmerge.

Next, we discuss how to efficiently create this CPT column on each relation for a given query

workload W .

5.3.3 Creating CPT Column

Let D be a user given dataset, where D = R1, R2, . . . , Rn and W be the single-block acyclic

query workload2 that will be executed over D (i.e. W = Q1, Q2, . . . , Qn). Our objective

is to create CPT column based on the given expected workload. However, it has to be

done efficiently over the private cloud data, specially since CPT column is generated on the

2We discuss the CPT column creation for the case when the expected workload of queries is known. We
will discuss the case when the workload is not available separately, later

96

private cloud with limited computational capability. We will illustrate our CPT creation

technique using our example workload W , that consists of three single-block queries Q1, Q2,

Q3 (given earlier) on relations R(A,C,D), S(A,B,D), T (B,C,E) and U(E,F), where only

R has sensitive records.

CPT column is mainly created through 2 steps: 1) We analyze the expected workload of

queries and extract the necessary join paths from them. 2) Based on these join paths, we

set the CPT columns of the records in our dataset.

Extracting Required Join Paths : We implemented a CPT creation module that analyzes

each query in the workload once to extract the set of required join paths (the technique for

which is described in Algorithm 1) in order to execute the queries in the workload using

split-strategy. In developing our approach to extract required join paths, we will use the

notion of join graph for a query, described at the beginning of the section.

Iterating over the each query in W , Algorithm 1 first constructs the join graph of each Qi,

Vi (Line 3). Then, we do a pass over the join graph Vi to extract the set of required join

paths so as to efficiently execute Qi in split-strategy. For instance, in Figure 5.5, the join

graph of each query in our example workload is given.

Note that we only need to extract the join paths whose first relation have some sensitive

data. For instance, in Q1’s join graph, there is a join path p between S and T , i.e p = S ./
c2
T .

Since S does not have any sensitive record, CP (T, p) should not be computed. 3 In order

to guarantee that such ’co-partitionings’ are never computed in our next step, we need to

eliminate such paths. Therefore in Algorithm 1, we first iterate over any pairs of vertices,

Rm
x and Rn

y in the join graph (Line 4) and eliminate the ones whose first relation does not

have any sensitive records (Line 5). The join paths extracted from Q1, Q2 and Q3 is given

below their join graphs in Figure 5.5. For instance, the query paths extracted from Q3 are

3Because, there is no non-sensitive T record that can join with a sensitive record from S.

97

Figure 5.5: Join Graphs and Path Creation

R ./
c4
T and R ./

c4
T ./

c5
U . Due to the limited space in Figure 5.5, we represented every p and

the path that is reverse of p (p.reverse) as a single path using ⊗ instead of ./.

Finally, we store all the required join paths in a data structure, denoted as π in such a way

that if the length of extracted join path p is l, then we store p in π[l] (line 6-7). Figure 5.5.d

provides the set of all required join paths extracted from our example workload and illustrates

how these join paths are stored within the data structure π. Note that R ./
c1
S and R ./

c2
S

are two different join paths extracted from our workload, and therefore stored separately in

π[1].

Creating CPT Column : Upon creating π, our Algorithm 2 takes it as an input and forms

the CPT column in every relation.

98

Input: W
Output: π

1 π ← ∅;
2 foreach Qi ∈ W do
3 Vi ← graph(Qi);
4 foreach (Rm

x , R
n
y) vertex pair in Vi do

5 if Rxs 6= ∅ then
6 p← Vi.Path(Rm

x , R
n
y) ;

7 π[p.length].add(p) ;
8 if π.maximumLength < p.length then
9 π.maximumLength = p.length ;

10 end

11 end

12 end

13 end
14 return π

Algorithm 1: Path Statistics Creation

Algorithm 2 first creates the initial private versions of each relation by appending a new

column CPT (Line 2). To illustrate, based on our example dataset, we alter the tables R, S,

T and U on the private cloud by appending a CPT column to them. Algorithm 2 initializes

the value of this column to sens for sensitive records and null for non-sensitive records (Line

3-9). In our example dataset, CPT columns of all S, T ,U records as well as all non-sensitive

R records are initially set to null. Only, the CPT columns of sensitive R tuples is set to sens.

Subsequently, Algorithm 2 iterates over the set of required paths based on their lengths (line

10-21), but first handles the base case, the paths with length 1, e.g. the paths : R ./
c1
S,

R ./
c3
T and R ./

c4
S etc. If a non-sensitive record t in Ri joins with a sensitive record from

another relation Rj via existing 1-length path p, then our algorithm appends p to t’s CPT

column (Line 15-16). For instance, if a non-sensitive S tuple, s in our example semi-joins

with any sensitive record from relation R based on condition c1 and c4, then the join paths

R ./
c1
S and R ./

c4
S are appended to such s’s CPT column.

After handling the base case, our algorithm continues to compute CPT column for all other

remaining join paths in π using induction. Assume that p is a path such that its length

99

Input: π
Output: Dpriv

1 foreach Ri in D do
2 [Ripriv]← [Ri]||CPT ;
3 foreach Tuple t in Ri do
4 if t ∈ Ris then
5 Ripriv .t← t||sens
6 else
7 Ripriv .t← t||null
8 end

9 end
10 for 1 ≤ length ≤ π.maximumLength do
11 foreach Tuple t ∈ σ!Contains(CPT,sens)(Ri) do
12 foreach Path p ∈ π[length] where Rn

i = p.lastRelation do
13 p

′ ← p− p.lastRelation ;

14 Rj ← p
′
.lastRelation ;

15 if length = 1 & tn
c
σContains(CPT,sens)(Rj) 6= ∅ then

16 t.CPT ← t.CPT + p;
17 else if length > 1 & tn

c
σContains(CPT,p′)(Rj) 6= ∅ then

18 t.CPT ← t.CPT + p;

19 end

20 end

21 end

22 end
23 Dpriv ← {R1, R2...Rn} ;
24 return Dpriv

Algorithm 2: CPT Column Creation

100

equal to k, |p| = k and it is formed as p
′
./
c
Rn
i where |p′| = k − 1. To illustrate, let

p be equal to the join path R ./
c1
S ./

c2
T as in our example, then p

′
= R ./

c1
S. Also,

suppose that the last relation appeared in path p
′

is Rm
j . In our example, the last relation

appeared in p
′

is S. Then, the tuples in CP (Rj, p
′
), in our example CP (S,R ./

c1
S), is

already computed at the previous step. Note that CP (Rj, p
′
) can be extracted from Rj

via σContains(Rj .CPT,p
′) operation. Namely, the records in CP (S,R ./

c1
S) can be obtained

by running σContains(S.CPT,R./
c1
S) operation on S. So, Algorithm 2 takes each non-sensitive Ri

tuple t and semi-joins with CP (Rj, p
′
) based on condition c. If the result is not an empty set,

then inserts p to t’s CPT column (line 17-18). To illustrate, we test for each non-sensitive

T tuple, t whether it semi-joins with a tuple from CP (S,R ./
c1
S) based on condition c2. If

it does, then we append path p, R ./
c1
S ./

c2
T to the CPT column of t. Finally, Algorithm 2

returns Dpriv, which is the set of final versions of all relations, to be stored on the private

cloud (line 23-24).

Note that we retrieve the set of required paths, π from a given workload of query templates.

But, a user/organization may not know what kind of workload will be executed in the

future. Under such a scenario, one can estimate the join paths by considering the primary

key/ foreign key (p.k/f.k) constraints at the dataset schema as a join condition between

tables. Given this schema graph where the tables are vertices and p.k/f.k constraints are

edges , one can obtain all the l − length join paths starting from any table that contains

some sensitive data. Nevertheless, the join conditions in all these paths would be established

based on p.k/f.k equality. To illustrate, Figure 5.6 depicts the schema graph for the TPC-H

dataset. The tables having p.k/f.k constraints between them are connected with an edge

labeled with the name of key. So, if a user wants to support the queries whose join graph

contains at most 1 − length paths, then he/she can extract all the 1 − length join paths

from Figure 5.6 (e.g. C ./
c custkey=o custkey

O and O ./
c custkey=o custkey

L) and construct its CPT

column based on these extracted paths. For instance, in TPC-H benchmark, all single level

queries can be supported by allowing the maximum length to be as low as 3.

101

Figure 5.6: TPC-H Dataset Schema Graph

5.4 Implementation

We have so far discussed how we can derive a split-strategy for a given single block acyclic

query Q. We furthermore described the algorithm for generating the CPT column. We have

implemented the CPT computation algorithm as a MR job in Hadoop and as a Spark Job

in Spark. Spark is a fast and general engine for large-scale data processing. In contrast to

Hadoop’s two-stage disk-based MapReduce paradigm, Spark’s multi-stage in-memory primi-

tives provides performance up to 100 times faster for certain applications [66]. Both Hadoop

and Spark are designed to read and write data from and to HDFS, a distributed file system

designed to run on commodity hardware. We used HDFS to store our data both at the

private and public cloud. For querying relational data and storing metadata related with

it, Hive has been used. Hive is an open source data warehouse software facilitates querying

and managing large datasets residing in distributed storage like HDFS. It provides a mech-

anism to project structure onto this data and query the data using a SQL-like language,

HiveQL [63]. We only discuss the details of Spark implementation, since both implementa-

102

tions are similar.

5.4.1 Join Path Representation

In our implementation, each join path extracted from the workload or given database schema

is represented as a sequence of table ids and join condition ids in the string format. For

instance, if the join path is Customer ./
cx
Orders ./

cy
Lineitem, then it is represented as

”CcxOcyL” and if cx and cy are primary key / foreign key equality checks, then the represen-

tation is abbreviated as ”COL”. If a non-sensitive record r is a part of multiple co-partitions,

then the path ids of these co-partitions are concatenated using ”,” character and stored in

r’s CPT column in lexicographical order.

The containment check for paths on the record’s CPT column is done via RLIKE4 operator.

For instance, assume that we want to run R ./
c1
S query and c1 is a primary key/ foreign key

equality condition. To run this query, we need non-sensitive S records that includes RS value

within its CPT column. So we check this property by running RLIKE(S.CPT, ”.∗, RS, .∗”)

expression on table S.

5.4.2 CPT Column Creation

After extracting the set of required join paths either from the given workload or from the

dataset schema, our CPT column construction algorithm is implemented by deploying a

Spark job over the given dataset on the private cloud. To handle the operations between

Line 3-9 in Algorithm 2, we deploy a map transformation such that its function reads the

record r from any table R and outputs
∏

A(r), where A is the set of all necessary R attributes.

The set of necessary attributes are determined based on join conditions in all the join paths

4RLIKE operator performs a pattern match of a string expression against a pattern. The pattern is
supplied as argument.

103

involving table R. If all join conditions are primary key foreign key equality checks, then A

will be equal to at most all primary and foreign key attributes in table R, and thereby the

size of
∏

A(R) will be substantially less than the size of R. As a result of this transformation

on table R, two different RDDs5 are created RRDD
sens and RRDD

null based on the sensitivity of T ’s

records.

All the operations that are done within the loop in Algorithm 2 (Line 13-22) is implemented

as a sequence of complex transformations on temporarily created RDDs. We iterate over the

set of extracted join paths (π) based on their lengths on ascending order. Suppose that the

currently iterated path p is equivalent to ...SR
c
. We apply the following map transformation

(M1) on temporary SRDD
p′

and RRDD
null , where p

′
= sens if |p| = 1 or p

′
= ...S otherwise. M1

can be formalized as

M1(r) =

Out(r.joinAttr(c), null) if r ∈ SRDD

p′

Out(r.joinAttr(c), r) if r ∈ RRDD
null

(5.18)

where r.joinAttr(c) returns the values of the r’s join attributes based on condition c. Then,

we join outputs of these two transformations and create a new temporary RDD, called as

RRDD
p .

Once all the paths are covered, we deploy another sequence of Spark transformations on the

original dataset and temporary RDDs in order to obtain the final value of CPT column.

For instance, to construct the table R’s CPT column, we first apply the following map

transformation (M2) over R and set of temporary RRDDs

5An RDD is a read-only, partitioned collection of records. RDDs can only be created through deterministic
operations on either (1) data in stable storage or (2) other RDDs.

104

M2(r) =

Out(r.primaryKey, p) if r ∈ RRDD

p

Out(r.primaryKey, r) if r ∈ R
(5.19)

to get the outcome (K,V) pairs, where Ks are primary key values and V s are either equiva-

lent to the record itself (r) or a path p. At final stage , we first group by these (K,V) pairs

based on their key (groupByKey) to return a dataset of (K,List < V >) pairs. Then, we

apply the map function M3, whose code is given next, over the list of V s for each key K

(primary keys of R records) in order to construct the final version of each R tuple.

String tuple = ""

for (V : List<V>) {V is a path : tuple += V ? tuple = V + tuple}

return tuple

5.4.3 Table Partitioning

In our current approach, all the records of a table R in our dataset is stored together

on the private side along with their CPT column. Since no index can be created on R’s

CPT column in Hadoop, Spark or Hive, when a single block query Q is executed on R,

R must be scanned entirely to find appropriate tuples for Qpriv. Due to this, the initial

scan cost of original Q would be equal to the scan cost of Qpriv. But, this scan cost can

be significantly reduced by partitioning records based on their CPT column value and by

physically storing each partition as a separate file. In this approach, we scan each table R

file one more time and put the records to the corresponding file based on their CPT values.

Finally, we name the output files as Rx where x stands for a possible CPT value in R. For

instance, assume that in Lineitem table, the possible CPT values are sens,OL,COL and

COL,OL; so we create a a separate Lineitem file for each of these possible values (e.g.

105

Lineitem sens, Lineitem OL,Lineitem COL and Lineitem COL,OL).

In Hive, we add these files as a separate partition of table R where partition ids are equal

to the CPT values of table files. For instance, in Lineitem table, the partition ids would be

sens,OL,COL and COL,OL. During the query processing, instead of running our selection

operators on a CPT column, we execute them over the partition ids of tables. For instance,

Cond1 at Figure 5.4.b will be replace with :

Cond1 : Contains(C.pid, sens | O ./
cx
C | L ./

cy
O ./

cx
C)

in this new approach, where pid stands for the partition id. For any table T , the number of

partitions could be as much as 2l, where l is the number of required join paths ends at relation

T . In our experiments with TPC-H benchmark, however, we have not encountered with such

a partition blow-up for any table. The maximum value of l was 3 in our experiments.

5.5 Experimental Evaluation

To the best of our knowledge, our approach is the first one that partitions queries across hy-

brid clouds in order to achieve secure query processing. By conducting extensive experiments

in this section, we compared the performance of our proposed solutions against All-Private

and All-Public, in which all computation is handled on the private side or public side only.

Notice that All-Private is a secure solution, whereas All-Public is not.

5.5.1 Experimental Settings

Experimental Setup: We conducted our experiments using two clusters, one at SDSC [67]

and the other at UC Irvine. The first cluster comprised of 72 nodes and is used as public

cloud, while the second comprised 9 machines and is used as private cloud. While a node

106

in our public cloud has Intel EM64T Xeon E5 2.6GHz 4 core cpu, 128GB Memory and

320GB SDD disk, a private cloud node consists of a Dual-Core AMD Opteron processor

with ≈ 631GB disk space and 8GB of main memory. The machines on our private cloud

are connected to each other with a 1Gbps ethernet network. The average data transfer rate

that we measured between any two machines is approximately 100MB/s. Depending on the

private/public node ratio, we excluded some of the public cloud nodes from the hybrid cloud.

Finally, the clusters were set up using Spark v1.4.1 and Hadoop v2.6.0 as our distributed

query execution engines. Additionally, we used Hadoop v2.6.0’s HDFS as our storage engine.

Finally, Hive v1.2.1 is deployed on the clusters for storing relational database metadata and

querying.

Dataset and Sensitivity In our experimental evaluation, we used the TPC-H benchmark.

We generated the dataset with scale factor 200 (i.e. 200GB). We declared the some of records

in customer and supplier tables as sensitive. We varied the ratio of sensitive records in each

table from 1% to 50%.

Workload: Original TPC-H benchmark consists of 22 queries and 11 of 22 TPC-H queries

were single block queries. Of these 11 queries, 5 were doing a computation entirely on non-

sensitive data, namely using neither customer nor supplier table. Therefore, we used the

remaining 6 queries as of our workload for our approach: Q3, Q5, Q7, Q8, Q9 and Q10.

Query Execution : We manually split each query Q in our workload to Qpriv, Qpub and

Qmerge by applying our split rules. We then manually sent Qpriv (Qpub) to the Hive server

running on private (public) cloud. Once Qpub is completed, we immediately transferred

its results from public HDFS to the private HDFS and added the transferred results as a

temporary relation to the private cloud Hive. Once this operation and Qpriv gets completed,

we sent Qmerge to private cloud Hive server. Depending upon the experiment, Hive servers

pushed the queries to Hadoop or Spark for execution, Since all the operations are done

manually, the running time of query Q in split-strategy is computed as :

107

max(time(Qpriv), time(Qpub) + transfer(output(Qpub))) + time(Qmerge) (5.20)

where time(X) and transfer(Y) denotes the running time X and transfer time of Y from

public to private cloud. Note that the Qpub results are brought to the private cloud, even

though Qmerge is a void query. Thereby, the transfer time for Qpub’s results are always

included to calculate the running time of split-strategy.

5.5.2 Experimental Results

In this section, we outline the experiments that compare the performance of our two split-

strategy techniques with All-Private. Recall that in our first technique (CPT-C) every record

in a table at the private cloud contains a CPT column and they are physically stored together;

whereas in our second approach, CPT-P, the tables are partitioned based on their record’s

CPT column and each partition is stored separately. Each partition file then appended to

the corresponding Hive table as a separate partition, so in querying stage, Hive filters out

the unnecessary partitions for that particular query.

Given that private cloud has a fixed computational power, then there are two factors that

can impact the running time of queries when their execution is split across the hybrid cloud.

First one is the public cloud’s computational power. Smaller a public cloud implies a higher

public side query execution time in the split-plan and thereby could increase the overall

running time of the given workload in our CPT-C and CPT-P solutions. Alternatively, the

amount of sensitive data within the input data directly impacts the execution time of private

side queries in split-plans and thereby, can again increase the overall completion time of the

given workload in our solutions . To demonstrate the impact of each of these parameters,

we first comprehensively evaluated our solutions by varying one of these two criterion, while

108

fixing the other one. Note that, figures on the left indicate the results for Hadoop, while

figures on the right display the outcomes for Spark.

Public Cloud Size: We deployed 4 distinct hybrid cloud scenarios in which number of

public machines is varied from 9 to 72 by doubling the amount in each scenario. We set the

input sensitive data ratio to 5% for these experiments. The results presented in Figure 5.7

indicate that larger the public cloud incurs a smaller workload execution time for both of

our solutions in Hadoop. But in Spark, the workload execution time does not change when

more machines are added to the public cloud. Note that Spark stores the intermediate data

in the memory during query processing. Since our public machines have significantly larger

memory than the private cloud machines (128GB vs 16GB), the execution of public side

queries Qpubs takes less time than the private side queries, Qprivs, even when the number

of public machines are as low as 9. Therefore, adding more public machines speeds the

up Qpubs in Spark, but does not change the overall execution time of the queries. Finally,

when number of public machines are equal to 72, our CPT-P solution is 10.2x faster than

All-Private in Hadoop and it is 5.3x faster than All-Private in Spark.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

9 18 36 72W
o

rk
lo

a
d

 R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

of Public Machines

Hadoop 200GB

CPT-P

CPT-C

All-Private

All-Public

 0

 2000

 4000

 6000

 8000

 10000

9 18 36 72W
o

rk
lo

a
d

 R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

of Public Machines

Spark 200GB

Figure 5.7: Workload Running Times For Different # of Public Machines

Sensitive Data Ratio: For these experiments, we varied the amount of sensitive records

(1, 5, 10, 25, 50%) in customer and supplier tables. Also, we set number of public machines to

109

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

1 5 10 25 50W
o

rk
lo

a
d

 R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

Sensitive Data Ratio (%)

Hadoop 200GB

CPT-P

CPT-C

All-Private

All-Public

 0

 2000

 4000

 6000

 8000

 10000

1 5 10 25 50W
o

rk
lo

a
d

 R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

Sensitive Data Ratio (%)

Spark 200GB

Figure 5.8: Workload Running Times For Different Sensitivity Ratios

36. As expected, Figure 5.8 shows that a larger percentage of sensitive data within the input

leads to a longer workload execution time for both, CPT-C and CPT-P in Hadoop and Spark.

The reason behind this is that a higher sensitive data ratio results in more computations

being performed on the private side and implies a longer query execution times in split-

strategy. When the sensitivity ratio increases, CPT-P’s scan cost increases dramatically.

Since the scan cost of queries is the dominant one compared to the their computation cost

(join, filtering etc.), when Spark is used for query processing, CPT-C provides a very low

performance gain in Spark compared to All-Private. Because, the scan cost of these two

approaches are same. Overall, when sensitivity ratio is as low as 1%, our CPT-P solution

provides 8.7x speed-up in Hadoop and 5x speed-up in Spark compared to All-Private.

Recall that we created the CPT column using a Spark job for CPT-C solution. We then

physically partitioned tables for CPT-P solution. Figure 5.9 shows how much time we spent

in preparing private cloud data for both CPT-C and CPT-P. It also indicates the gains of

these approaches compared to All-Private in terms of the overall workload execution time .

As indicated in Figure 5.9, until 25% sensitivity, the data preparation time is less than the

performance gain of CPT-P in Hadoop; whereas in Spark, data preparation times is always

higher than the performance gain for both CPT-P and CPT-C. Note that, we prepare the

110

 0

 4000

 8000

 12000

 16000

 20000

 24000

 28000

 32000

1 5 10 25 50

T
im

e
 (

s
e

c
)

Sensitive Data Ratio (%)

Hadoop 200GB

CPT-C Create

CPT-P Create

CPT-C Gain

CPT-P Gain

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

1 5 10 25 50

T
im

e
 (

s
e

c
)

Sensitive Data Ratio (%)

Spark 200GB

Figure 5.9: CPT Creation Times For Different Sensitivity Ratios

CPT column only once on a static data for an expected workload that will more likely be

executed more than once with different selection and projection conditions. So, in Spark, if

the sensitivity ratio is as high as 10%, executing the expected workload more than once will

be enough for the performance gain of CPT-P solution to be higher than the overhead of

data preparation time.

5.6 Related Work

Our work builds upon a significant body of prior work on data partitioning (e.g., [68–71]),

distributed query processing (e.g., from systems such as SDD-1 [72] to DISCO [73] that

operates on heterogeneous data sources, to internet scale systems such as Astrolabe [74],

and cloud systems [75]. We limit the discussion to only a few that are most relevant.

A more recent paper [71] looks at the partitioning problem in distributed databases for

supporting OLTP queries efficiently. The objective is to improve throughput by reducing the

transaction time, which is dependent on whether it accesses data on a single or multiple nodes

and therefore, reducing the number of multi-node transactions can significantly increase

111

throughput. Their notion of limiting the computation to only single site in order to gain

efficiency is in spirit similar to our approach of splitting each query to three independent

sub-queries, each of which runs on a single site, public or private cloud. split-strategyThey

propose a graph based data partitioning approach based on a well known class of algorithms

called METIS [76], which are known to generate balanced partitions in practice. However,

a graph partitioning approach may not be suitable to partition relational workloads and

datasets, since graph size is proportional to the number of records in tables.

One of the many works that is related to ours is [77]. Their aim is to efficiently process

data warehousing queries in a split execution environment. Their approach push the parts

of the query to a higher performing database layer, and the rest of query is processed in a

more generic MapReduce framework. In order to execute as many joins as possible locally

in the database layer, they perform aggressive hash-partitioning. They co-partitions the

tables via many steps of foreign key/primary key references in order to keep join local to

each node (referential partitioning). Our idea to co-partition non-sensitive records based on

the sensitive records via possible join paths is in spirit similar to the referential partitioning

approach.

5.7 Extension

We presented a strategy that partitions the execution of single-block acylic queries execution

over a hybrid cloud, while ensuring that the sensitive data/information is never leaked to the

private cloud. The main challenge is to provide efficiency by partitioning queries compared to

executing everything over the private cloud. To overcome this challenge, we create a special

column over the private cloud data. Using our additional column, our query partitioning

approach dramatically improved the overall execution time of the given queries by as much

as 10× as compared to private cloud only solutions.

112

SQL enables users to write more complex queries such as cyclic queries, nested queries or

queries involving more complex operators (outer joins, union, set difference etc.). Now,

in this section, we discuss our solution ideas about how to create a split-strategy for such

complex queries.

Cyclic Queries : Consider the following cyclic query Q4, which is a modified version of Q1

given at Figure 5.5.a.

Q4 = (R ./
c1
S) ./

c2∧c3
T (5.21)

where c3 : R.C = T.C. Also, let us assume that T also has some sensitive data. Once we

split Q4 using our approach explained in Section 5.3, the selection condition over relation S,

Cond2 will be as

Cond2 : Contains(S.CPT, sens | R ./
c1
S | T ./

c2∧c3
S).

Note that since c3 does not involve the relation S, T ./
c2∧c3

S is not a valid join path. Therefore,

SPJ block of cyclic queries cannot be split using our SPJ block split rule.

Strategy 1 : One way to address this concern is to convert cyclic SPJ block to an acyclic

one by pulling up some of the conditions from the join stage and apply them as a separate

selection operator after the join processing. For instance, Q4 can be converted into the

following query,

Q
′

4 = σc3(R ./
c1
S ./

c2
T). (5.22)

Since Q
′
4 is a single block acyclic query, we can create an efficient split-strategy for it using

our previous split rules. Note that the execution of Q
′
4 is already less efficient than the

execution of original Q4, since, in this new approach c3 condition check is done after the join

processing, rather than during the join processing.

113

Strategy 2 : A new SPJ block split rule, nonetheless, can be developed to split the original

Qspj
4 by deriving it from the join graph corresponding to Q4. Once the SPJ block of Q4

is split using this new SPJ block split rule, which extracts the all join paths from the join

graph between any two relations, Qspj
4priv

would be as

Qspj
4priv

= σ
Cond

(σCond1(R) ./
c1
σCond2(S) ./

c2∧c3
σCond3(T)) (5.23)

where

Cond : Contains(R.CPT, sens) ∨ Contains(S.CPT, sens) ∨ Contains(T.CPT, sens)

Cond1 : Contains(R.CPT, sens | {S ./
c1
R, S ./

c2
T ./

c3
R} | {T ./

c3
R, T ./

c2
S ./

c1
R})

Cond2 : Contains(S.CPT, sens | {R ./
c1
S,R ./

c3
T ./

c2
S} | {T ./

c2
S, T ./

c3
R ./

c1
S})

Cond3 : Contains(T.CPT, sens | {R ./
c3
T,R ./

c1
S ./

c2
T} | {S ./

c2
T, S ./

c1
R ./

c3
T})

Note that this new split rule modifies the conditions on the CPT column in such a way that

all the join paths from a relation R to S, such as R ./
c1
S and R ./

c3
T ./

c2
S are checked in S’s

CPT column. The reason behind this is that, suppose that we have a non-sensitive S record,

s1 such that s1 joins with a sensitive R record via only path R ./
c1
S. Then, when such a

cyclic query is split using split-strategy, s1 will have no impact on the answer set of Q4priv .

Only the non-sensitive S tuples that can join with a sensitive R tuple via all the possible

join paths from S to R will impact the Q4priv results. Therefore, this new split rule checks

whether S’s CPT column contains both paths, instead of one of them, i.e. Cond2 checks

where S.CPT contains R ./
c1
S and R ./

c3
T ./

c2
S together.

While Strategy 2 guarantees that the computation done at the private side Qspj
4priv

is minimal

– that is, only those non-sensitive tuples that can contribute to the answer set at the private

side is included. Note that there could be exponential number of join paths between any

two relations in a cyclic join graph. Under such a scenario, the resulting selection conditions

114

associated with the relations on the private side will be significantly complex. Furthermore,

the algorithm to generate the corresponding CPT column for all these paths will be very

inefficient.

Strategy 3 : One could simplify both the CPT column generation, as well as the SPJ block

split rule significantly by considering only the fixed subset (instead of all) of join paths

between any two relations in the corresponding join graph. For instance, in the example

above, to identify the value of CPT column for R, we may consider only the tuples that

match some sensitive records of T through one of the two possible join paths from T to R –

viz, p1 = T ./
c3
R , p2 = T ./

c2
S ./

c1
R, but not both. The CPT column for a non-sensitive tuple

in R that joins with a sensitive tuple of T is thus marked with the CPT value of the chosen

join path. We likewise chose a single join path from T to S to identify non-sensitive tuples

of S and mark those as that potentially join with some sensitive tuple of T . Note that the

set of non-sensitive R tuples whose CPT contains p1 is larger than the set of non-sensitive

R tuples whose CPT contains both p1 and p2.

Now given a cyclic query, one can convert it into the corresponding join graph. A strategy

that only selects the minimum length path (instead of all) between any two relations during

both CPT column generation and query splitting would be a viable option. For instance,

when Q4 is split using this new strategy, the Cond1, Cond2 and Cond3 will be as

Cond1 : Contains(R.CPT, sens | S ./
c1
R | T ./

c3
R)

Cond2 : Contains(S.CPT, sens | R ./
c1
S | T ./

c2
S)

Cond3 : Contains(T.CPT, sens | R ./
c3
T | S ./

c2
T).

In Strategy 3, the long join paths, such as T ./
c2
S ./

c1
R, will not appear in the required set of

join paths during CPT column generation, and, in turn, CPT column creation will take less

time compared to the Strategy 2.

115

Note that Strategy 3 ensures that the private side query joins all non-sensitive tuples in

any relation that potentially join with at least one sensitive tuple of a different relation in

the query. Of course, this strategy may scan other additional tuples as well that may be

eliminated (since they do not produce a join result with other tuples from other relations

where one of those tuples is sensitive). Nonetheless, Strategy 3 is simple and does not result

in a predicate blowup as is the case with Strategy 2.

Nested Queries : Nested queries can be considered as a nested single block queries with

an arbitrary depth, where the blocks might be correlated or uncorrelated with each other.

To give an example, let t

Q1 = SELECT A.id FROM A WHERE A.name IN

(SELECT B.name FROM B)

Q2 = SELECT A.id FROM A WHERE A.name IN

(SELECT B.name FROM B WHERE A.id = B.id) .

The blocks in Q1 are uncorrelated, whereas the blocks in Q2 are correlated with condition

A.id = B.id.

First, if the blocks are uncorrelated with each other in a nested query, one can always split

the first (or inner block) in that query using our single-block split-strategy, explained in the

previous section, and then compute the subsequent (or outer blocks) as a part of the merge

query. Note that this might be a viable solution for Hive queries, since HiveQL does not

support correlated nested queries as of now.

Additionally, some types of nested queries can be converted to a more efficient single-block

queries using the techniques in [64, 65]. So, one can transform such nested queries in the

workload to a single-block one and again apply our single block split-strategy.

For the nested multi-block queries which cannot be converted to a single-block query, if the

116

blocks are correlated with each other, then we unfortunately end up running the entire query

on the private cloud.

Outer Joins : Outer joins requires a special attention, since they cannot be expressed as

a regular join operator. Suppose that we have a query, Q = R 1
C
S. Given the notation in

Section 5.2, one can split this left outer join query similar to R ./
C
S :

Qpriv = σR.sens∨S.sens=true((Rs ∪RS
ns) 1

C
(Ss ∪ SRns)) (5.24)

Qpub = Rns 1
C
Sns (5.25)

In this strategy, if a non-sensitive record r ∈ R only joins with a sensitive record s from S,

then (r, s) and (r, null) tuples will appear within Qpriv and Qpub outputs respectively. Note

that, (r, null) is an incorrect output and needs to be eliminated. To achieve this elimination,

the database system can tag the primary key (pk) of R tuple to each Qpriv and Qpub output.

In other words, if a left-outer join output is generated by joining r1 ∈ R with s1 ∈ S tuple

(or none), the output will become like (r1.pk, r1, s1)(or (r1.pk, r1, null)). Once the primary

keys of R tuples are appended to the outputs of Qpriv and Qpub, the incorrect (r, null) tuple

in our example would be eliminated in Qmerge by matching its pk with the primary key of

(r, s). Note that such a matching operation cannot be implemented using existing relational

operators. So, implementing such an operator would be an interesting extension as a future

work.

Union : If there exists a union operator inside the query tree, the operators remaining on

the left and right hand side of this operator can be considered as independent query blocks.

So, our single block splitting strategy can be applied to each of these blocks, if they are in

the form of single block acyclic query. Note that each of these single blocks have to be added

117

to the input workload (W) as an individual query before applying Algorithm 1. Finally, the

operators lying on top of union operator will be a part of Qmerge

Intersection : Intersection operator can be represented as a combination of join and pro-

jection. i.e

R ∩ S =
∏

R columns

(R ./
C
S) (5.26)

where C is an equality check between corresponding R and S columns. The intersection

operator in the query tree can be replaced by join and projection operator, as it is shown in

Equation 5.26. Inside this new query tree, the bottom single-block can be split using again

our single block split-strategy. The remaining portion will be considered as the merge query.

Set Difference : Similar to intersections, set difference operator can be replaced by the left

outer join, selection and projection operator as

R− S =
∏

R columns

(σS.tuple=null(R 1
C
S)). (5.27)

So, − operator can be replaced by an outer-join, selection and projection operators given

in Equation 5.27. In this new query tree, the bottom single-block can be split using again

our single block split-strategy. Again, the remaining operators in the query tree will be

equivalent to Qmerge.

118

Chapter 6

Partitioning Workloads for Hybrid

Clouds

6.1 Introduction

Our work, so far, has shown that hybrid clouds can be used to improve data processing

performance while ensuring full-security (no leakage about sensitive data) in the context of

MR jobs (SEMROD) and SQL-like query processing (split-strategy). Our results indicated

clear performance improvements compared to all private implementations. However, our

results also has shown that our frameworks had to pay certain overhead in order to provide

security. One important question is that ”can these overheads be further reduced?”. This

would likely to require a framework to push further computation to the public cloud and

it is difficult to achieve without willing to sacrifice full security. Organizations might be

willing to expose a bounded amount of sensitive data (risk) to the public cloud in order to

further reduce their query/workload execution times. Neither our previous approaches nor

the existing frameworks allow one to do such a tradeoff between the performance, risk and

119

cost of using public cloud resources.

In this chapter, we designed a risk and cost aware conceptual framework, called as Hy-

bridizer, whose goal is to partition an application’s query workload, and in turn, its data,

over a hybrid cloud in order to maximize the workload performance while meeting user’s cost

and risk requirements. Hybridizer primarily addresses the Workload Distribution Problem

(WDP) over a hybrid cloud based on the end-user performance, risk and cost requirements.

Hybridizer is essentially designed as a proof of that risk can help to gain further performance.

Different data and workload partitionings display different trade offs in terms of the work-

load’s running time (performance), the monetary cost of acquiring resources as a public

cloud (cost) and sensitive data disclosure risk (risk) metrics. For instance, storing all the

data and executing the given workload only on private machines leads to high-security, no

sensitive data disclosure risks, and no outsourcing costs, but may incur low performance due

to limited private resources. Alternatively, shifting the entire data and computation to the

public cloud may have a high performance benefit, but at the same time incurs the maximum

risk and monetary costs. Hybridizer’s goal is to adjust the data and workload that will be

outsourced to the public cloud based on :

• minimizing the workload execution time,

• user’s risk and cost requirements.

We demonstrate the power of Hybridizer by showing how it can be used to achieve the

data and workload partitioning in a scenario, wherein security-conscious organizations use

private clouds to support mission-critical tasks, and use public clouds to deploy routine,

analysis-oriented tasks.

We begin this chapter by formalizing the workload and data distribution problem (WDP) in

Section 6.2. Then we describe the Hybridizer’s architecture in Section 6.3, Next, Section 6.4

120

explains how the statistics computation and the metric estimation can conceptually be done

in Hybridizer in order to solve WDP . In Section 6.5, we discuss our dynamic programming

based approach to solve WDP 1. Then, we evaluate our solution approach over a variety

of WDP parameter settings in Section 6.6. Finally, we conclude the chapter and discuss

extensions to further improve Hybridizer framework in Section 6.7.

6.2 WDP Definition

In this section, we present the formal definition of WDP . Before we formalize WDP , we

introduce some notations in Table 6.1 that are used throughout this chapter. We denote by

W , the given workload and by R, the dataset used by the workload.

In general, the workload distribution problem aims to find Wpub ⊆ W and Rpub ⊆ R such

that the workload execution time, i.e. performance, is minimized while constraining the

monetary cost and sensitive data disclosure risk. WDP can be reduced to finding only the

optimal value for Wpub. Since with given Wpub, the corresponding subset Rpub ⊆ R can be

computed as
⋃

q∈Wpub

data(q), where data(q) is the minimum data needed to evaluate query q.

Thus, Rpub corresponds to the minimum data required to execute the set of queries in Wpub.

Additionally, shifting more data to the public cloud than needed will incur higher monetary

cost as well as higher data disclosure risk if the extra part, Rpub −
⋃

q∈Wpub

data(q), contains

some sensitive data. Due to this higher service expense and data exposure risk, the solution

(
⋃

q∈Wpub

data(q),Wpub) is always a better solution than (Rpub,Wpub) for WDP . To summarize,

finding the optimal (Rpub,Wpub) is equivalent to finding only the optimal Wpub.

WDP Definition: Given dataset R and workload W , WDP could be formulated as:

1We develop a dynamic programming solution since, as discussed in Section 6.5, a solution based on
mathematical programming optimizers such as CPLEX is not suitable for solving the resulting optimization
problem

121

Notation Description

R Dataset to be partitioned over a hybrid cloud.

W The set of queries (workload) to be split over a hybrid
cloud. (i.e. W = {q1, q2, . . . , qn} where qi is a query in
the workload).

OverallT ime(W,W
′
) Overall running time of processing W over a hybrid

cloud, given that only W
′ ⊆ W is processed by a public

cloud.

Risk(R
′
) Risk associated with storing data items from R

′ ⊆ R on
a public cloud.

Cost(R
′
,W

′
) The monetary cost of using public cloud services for stor-

ing R
′

and processing W
′

on the public cloud.

data(q) The minimum set of data items for executing a query
q ∈ W .

timex(q) The estimated running time of query q ∈ W on either
public (x = pub) or private (x = priv) clouds.

Table 6.1: Notations

minimize OverallT ime(W,Wpub)

subject to Cost(
⋃

t∈Wpub

data(t),Wpub) ≤ ∆cost (1)

Risk(
⋃

t∈Wpub

data(t)) ≤ ∆risk (2)

(6.1)

where ∆cost and ∆risk denote the maximum permissible public cloud monetary cost and

sensitive data disclosure risk. Additionally, constraints (1) and (2) set an upper limit for the

monetary cost and disclosure risk respectively.

122

6.3 Hybridizer

In this section, we describe our conceptual Hybridizer framework, that, automatically dis-

tributes data and workload of queries based on the user provided cost and risk limits.

Before going into the details, we assume that the entire dataset is initially placed on the

private cloud (as in previous chapter) and the dataset is given to the Hybridizer to partition.

6.3.1 Hybridizer Architecture

Figure 6.1 presents an architectural overview of Hybridizer which consists of the following

core conceptual modules:

Statistics Creator accumulates two ”statistics” about the given dataset R and workload

W :

• timex(q): The estimated running times of each query q ∈ W on either side of the cloud

(x = priv or x = pub),

• data(q): The estimated minimum set of data items to process query q ∈ W .

These statistics must be efficiently represented and maintained by statistics creator so that

metric estimator component can efficiently use them to be able to measure performance,

data disclosure risk and service expense metrics for any given candidate WDP solution.

Metric Estimator can compute the performance, risk and cost metric values by using the

created statistics for a given data and workload partitioning. The details of how metric

estimation can be done using the existing statistics will be given in next section.

WDP Solver can automatically determine which parts of R will be stored in private and

123

public sides (i.e. Rpriv and Rpub) and which set of queries in W will be processed over private

and public sides of the hybrid cloud (i.e. Wpriv and Wpub). In solving WDP , it interacts with

the metrics estimator to check whether the candidate Rpub and Wpub solutions are optimal

and whether they violate the user-defined constraints ∆.

Physical Distributor can distribute R and W across a hybrid cloud, based on the solution

produced by WDP solver. It might push the data partitions, Rpub and Rpriv, accordingly

and then forwards the corresponding set of queries to the workload executor in private and

public cloud. This workload executor might be any parallel database management tool.

Hybridizer architecture that we introduced in Figure 6.1 is a conceptual framework. To in-

stantiate Hybridizer, we need to specify the techniques to create data() and timex(). Statis-

tics creation directly depends upon two key factors, viz. what kind of workload is going

to be executed (workload model) and what is the format of the data that is used by the

workload format (data model). The way the data is represented (relational, RDF, XML

or textual etc.) directly impacts the data() estimation for the workload’s queries. Namely,

for each different data model, an appropriate strategy has to be designed to determine and

maintain data statistics. Additionally, the workload model (such as SQL queries, MR jobs,

XML queries etc.) has a direct impact on the technique that will be used to measure timex

for each query. For each workload model, estimation of the query running times would be

quite different. In this chapter, we will give details about how the statistics and metrics can

be calculated in the context of relational data and SQL-like workload model.

6.4 Statistics Creation and Metric Estimation

Estimating performance, disclosure risk and cost metrics as accurately as possible is a funda-

mental challenge towards solving WDP . This section elaborates how Hybridizer can create

124

Figure 6.1: Hybridizer Architecture

125

its basic statistics and how the metric values can be measured based on these basic statistics.

6.4.1 Statistics Creation

As mentioned earlier, to accurately estimate the performance, risk and cost metrics, Hy-

bridizer’s statistics creator component needs to create two basic statistics for all the queries

in the workload W , data(q) and timex(q). However, these statistics need to be calculated

differently for each data/workload model variant. Moreover, data(q) has to be stored in

a memory efficient format since maintaining data(q) as a complete set of individual data

items will not be scalable, in particular when the number of data items is large. Therefore,

different dataset representation strategies must be explored to efficiently represent data(q).

6.4.1.1 data(q)

As we mentioned before, identifying the minimum set of required data items and maintaining

them in an efficient format is a challenging task. Moreover, the technique to achieve this

task will be unique for each data/workload model.

When the data is relational and the query q is a SQL query, data(q) would be a set of single

table views each of which represents the minimum set of attributes and rows that is touched

by query q in that particular table.

To compute these views for SQL queries, statistics creator module can create an operator

tree for each query in the workload by pushing the selection and projection operators as far

down in the original operators trees as possible using the relational algebra rules. After this

push down, the union of projection and selection operators on top of any single table T in

this new operator tree represents the smallest set of data items coming from T to answer

that particular query. For instance, suppose that the query q is represented as

126

SELECT l_orderkey, o_orderdate FROM customer, orders, lineitem

WHERE c_mktsegment = ’[SEGMENT]’ and c_custkey = o_custkey

and l_orderkey = o_orderkey and l_shipdate > ’01/01/1996’

and o_orderdate < ’01/01/1996’

GROUP BY l_orderkey, o_orderdate

ORDER BY o_orderdate.

The data items referred by the following single relation (table) view definitions (V 1, V 2, V 3)

are extracted from q by pushing down the selections and projections as much as possible:

V1: SELECT c_custkey

FROM customer WHERE c_mktsegment = ’[SEGMENT]’

V2: SELECT o_orderdate, o_custkey, o_orderkey

FROM orders WHERE o_orderdate < ’01/01/1996’

V3: SELECT l_orderkey

FROM lineitem WHERE l_shipdate > ’01/01/1996’

After extracting these view definitions from the workload queries, they can be efficiently

maintained in the memory using an array in which the i-th bucket stores to the set of views

generated from the i-th query in the given SQL workload. The set of views in each array

bucket can be ordered by the table name and each view object has the following fields: table

name, list of the projected attribute names and a predicate object. Each predicate object p

can be represented as the disjunction of conjunctive predicates, i.e. p = p1 ∨ p2 ∨ . . . ∨ pn,

where each pi is a conjunction of simple predicates, pi = pi1 ∧ pi2 ∧ . . . ∧ pin . Finally, each

simple predicate comprises of a single attribute and a simple condition on it, such as > 45

or =′ jack′.

127

6.4.1.2 timex(q)

For a given query q, timex(q) can be calculated by estimating the amount of I/O incurred by

q. For instance, such an I/O based approach has been used to evaluate the running times of

queries and to assess the performance of MapReduce jobs [78]. The time required to process

a query q can be estimated as:

timex(q) =

∑
∀ operator ρ∈q

inpSize(ρ) + outSize(ρ)

wx
(6.2)

where inpSize(ρ) and outSize(ρ) are the estimated input and output sizes of an operator

ρ ∈ q. Additionally, wx denotes the processing speed of private or public cloud, namely the

no. of I/O operations that can be performed per unit time at site x. For an operator ρ,

inpSize(ρ) and outSize(ρ) can be computed using certain histograms over R.

If the data is relational and the workload is a set of SQL queries, then an operator ρ would

be either join, selection, aggregation or projection, and the histograms can be constructed

as equi-width statistics on each attribute of the relations.

Once these histograms are created, input/output sizes for each operator in the query tree

can be estimated by applying the well-known techniques used in standard databases. For

example, the output size of a simple selection operator, ρ
′

can be computed by multiplying

the selectivity of the predicate in ρ
′

with its input size inpSize(ρ). Note that the selectivity

of a predicate can be easily obtained by iterating over overlapping equi-width histogram

intervals.

128

6.4.2 Metric Estimation

In this subsection, we describe the metrics used in the formalization of WDP . In particular,

each metric is defined in a way that captures high-level aspects of the metric relevant to hy-

brid clouds. This definition needs to be further refined based on a specified Data/Workload-

/Sensitivity model. As an example, we present metric definitions when the Data/Workload

models are based on a relational model/Hive queries.

Performance: The performance metric can be expressed as the overall running time of the

entire workload in Hive across the hybrid cloud (i.e. (OverallT ime(W,Wpub))). In general for

any given arbitrary Wx and Wy set of Hive queries, OverallT ime function can be calculated

as

OverallT ime(Wx,Wy) = max

∑
q∈Wy

timepub(q)∑
q∈Wx−Wy

timepriv(q)
(6.3)

. Note that, in our scenario, Wx = W and Wy = Wpub.

Monetary Cost: Since public cloud services are continually used, they are included in

the operational expenditure, which could be curtailed by restricting the data/processing

outsourced to public clouds. In our approach, we followed an elastic cost model, viz. the

user pays to the cloud provider as they use their resource. Thereby, the cost metric can be

estimated as follows:

Cost(Rpub,Wpub) = store(Rpub) +
∑

q∈Wpub

proc(q) (6.4)

where store(Rpub) and proc(q) denote the cost of storing Rpub(i.e
⋃

q∈Wpub

data(q)) and pro-

cessing query q ∈ Wpub on the public cloud. Note that, proc(q) will be directly proportional

129

to the running time of query q at public side (timepub(q)), since the cloud provider charges

its customers based on pay-as-you-use pricing model. In such case, the cost of processing a

query q can be estimated as

proc(q) = α× timepub(q) (6.5)

where α is the average amount of money that cloud provider charges per unit time.

Sensitive Data Disclosure Risk: Disclosure risk of outsourcing Rpub =
⋃

q∈Wpub

data(q) can

be proportional to the amount of sensitive data included in Rpub. The risk of Rpub can be

measured as follows:

Risk(Rpub) =
∑

ri∈Rpub

risk(ri) (6.6)

where ri is an atomic data item. For instance, ri is a tuple/record in relational dataset.

The risk of exposure associated with the data item ri itself depends upon various factors

including the degree of sensitivity associated with the data, the underlying representation

of ri on public machines (e.g. encrypted / plain text and if encrypted, the encryption

mechanism used).

While Hybridizer framework can allow any risk function to be associated with the data items

(table tuples), we will use a simple model in the remainder of the chapter wherein exposure

of a sensitive record incurs a risk of a single unit. Thus, the risk of Rpub is the count of the

sensitive records in Rpub.

130

6.5 WDP SOLUTION

The goal of any solution to WDP should be to find an optimum division of dataset R and

workload W , (Rpub,Wpub). As we explained in Section 6.2, any WDP solver is in fact only

required to find a subset Wpub ⊆ W , since the corresponding subset Rpub ⊆ R can be directly

obtained by taking the union of data(q) where q ∈ Wpub (i.e.
⋃

q∈Wpub

data(q)).

In this section, we first describe why traditional integer programming optimizers such as

IBM’s CPLEX optimizer are unable to model the WDP accurately. Then, we will subse-

quently present our efficient dynamic programming algorithm to solve WDP .

6.5.1 Solving WDP with Integer Programming

In WDP , our goal is to minimize overall running time while meeting given risk and cost

requirements. In fact, associated time, risk and cost integer values can be computed for

each query q in the workload, as if the query q is the only query moved to the public cloud.

After obtaining these set of integer values for each query, one can formulate the WDP as

an integer programming problem (a mathematical optimization program in which some or

all the variables are restricted to be integer type) and, in turn, one can use efficient integer

programming solutions such as IBM’s CPLEX optimizer to solve WDP .

However, integer programming falls short in situations where one needs to compute exact

storage costs associated with public cloud queries, viz. store(
⋃

q∈Wpub

data(q)) as well as the

data disclosure risk, viz. Risk(
⋃

q∈Wpub

data(q)). The reason for this shortcoming is that

integer programming is simply unable to accurately model the problem in this situation. For

example, suppose that the queries q1 and q2 use the same subset of dataset R, that is R1. To

shift either of q1 or q2 to the public side, R1 must be stored in the public cloud. Therefore,

shifting both queries will not bring any extra storage cost for the same subset of R1.

131

When there is a large number of queries in the workload, formulating such conditions in

integer programming can be a time consuming job, especially when each data item is com-

monly used by many queries in the workload. One could create a conditional integer (0 or

1) for each record r in R, indicating whether any of the queries that uses this particular

r is assigned to the public cloud, and multiply it with the r’s storage cost. The actual

storage cost after workload distribution can then be computed by taking the sum of each

multiplication. However, the complexity of such a formula cannot be managed by any integer

programming solution when the dataset, R, has billions of data items (or tuples). A practical

demonstration of this phenomenon can be seen in the experiments given in Section 6.6.

6.5.2 Dynamic Programming Solution

Given the exponential number of workload subsets, WDP in general is NP-Hard as the

0-1 Knapsack Problem can be reduced to the WDP . Therefore, we developed a dynamic

programming heuristic to find the best Wpub for WDP . We now present our dynamic pro-

gramming algorithm that produces the Wpub as a solution to the WDP . To represent WDP

along with its inputs and constraints, we use the following notation: WDP (W,∆cost,∆risk)

where, ∆cost and ∆risk are the corresponding sensitive monetary cost and data disclosure

risk constraints in that WDP . Each of these constraints denotes an upper limit for one of

the metrics.

To make it accessible for readers, we first provide the intuition behind our dynamic pro-

gramming heuristic for WDP . While creating a dynamic programming solution, usually

the first thing to do is to define how the given large problem can be split into several small

sub-problems. Intuitively, this is a simple query in our case. Because, to distribute W across

the hybrid cloud, we have to individually decide where to send each query. Now, there are

two possible assignments for the last query qn in W . The query qn can run on either the

132

private cloud (private case) or public cloud (public case). Therefore, both cases should be

investigated carefully while solving each WDP . Such a dividing technique comprises the

basis of our all dynamic programming solutions.

In WDP , private case will not bring any risk or cost to the workload distributer. Thereby,

the given ∆cost cost and ∆risk risk limits can be completely used to distribute W − qn. If qn

runs on the public side (public case), then there will be more than one WDP sub-problems

that need to be investigated. This is due to the fact that the possible execution of qn on

the public side will cost at least proc(qn) and at most Cost(qn) amount of money, depending

on how the remaining queries are distributed. In terms of disclosure risk, these numbers

will be between 0 and Risk(data(qn)). Again, each solution that has been generated by a

WDP sub-problem has to be tested to ensure that it does satisfy all the constraints and it

is the best solution in terms of the overall workload time amongst the others. Consequently,

WDP (W,∆cost,∆risk) will be equal to:

min time

WDP (W − qn,∆cost,∆risk) (private case)

WDP (W − qn,∆cost − x,∆risk − y) ∪ qn

proc(qn) ≤ x ≤ Cost(qn) and where 0 ≤ y ≤ Risk(data(qn))(public case).

6.5.2.1 Algorithm

Here we give the details of our dynamic programming algorithm.

Algorithm 1 uses a data structure pubW and frequently calls a method labeled as checkConstr.

The purpose of these constructs is as follows:

133

Input: W , ∆cost, ∆risk

Output: Wpub

1 Initialize pubW [][][]
2 for i = 1→ W.size do
3 procCost← proc(qi) ;
4 totCost← procCost+ store(data(qi)) ;
5 disc← sens(data(qi)) ;
6 for j = 0→ ∆cost do
7 for k = 0→ ∆risk do
8 if i = 1 then
9 if checkConstr({t1}, j, k) & OverallT ime(W 1,W 1) <

OverallT ime(W 1, ∅) then
10 pubW [i][j][k]← {t1}
11 else
12 pubW [i][j][k]← ∅
13 else
14 pubCaseT ime←∞
15 (j

′
, k
′
)← (NaN,NaN)

16 if checkConstr({qi}, j, k) then
17 foreach j − totCost ≤ iC ≤ j − procCost do
18 foreach k − disc ≤ iD ≤ k do
19 tmpSet← pubW [i][iC][iD] ∪ qi
20 if

checkConst(tmpSet, iC, iD) & OverallT ime(W i, tmpSet) <
pubCaseT ime then

21 pubCaseT ime← OverallT ime(Qi, tmpSet)

22 (j
′
, k
′
)← (iC, iD)

23 end

24 end

25 privCaseT ime← Overalltime(W i, pub[i− 1][j][k])
26 if privCaseT ime ≤ pubCaseT ime then
27 pubW [i][j][k]← pubW [i− 1][j][k]
28 else
29 pubW [i][j][k]← pubW [i− 1][j

′
][k
′
] ∪ {qi}

30 end

31 end

32 end
33 return pubW [W.size][∆cost][∆risk]

Algorithm 3: Dynamic Programming Algorithm for WDP

134

Query proc(q) store(data(q)) sens(data(q))
q1 $10 $15 20
q2 $20 $10 10
q3 $15 $10 20

Table 6.2: Example Query Set

• pubW[i][j][k]: This data structure maintains the solution set forWDP (W i, j, k) where

W i = {q1, t2, . . . , qi}. Given that the maximum admissible monetary cost and the

maximum disclosure risk are equal to j and k respectively, this data structure stores

the ones from amongst the first i queries that are selected to be processed over the

public cloud so as to minimize the overall response time of the first i queries. Notice

that pubW [i][j][k] ⊆ W i.

• checkConstr(W
′
, j
′
,k
′
): This method returns whether monetary cost bound j

′
and

disclosure risk limit k
′

are satisfied when the queries in W
′

are executed on the public

side. In particular, the method checks if store(
⋃

t∈W ′
data(t))+

∑
t∈W ′

(freq(t)×proc(t)) ≤

j
′

and sens(
⋃

t∈W ′
data(t)) ≤ k

′
.

To make it easily understandable for readers, let us illustrate how our algorithm works with

an example. Assume that our workload W consists of 3 queries (i.e. W = q1, q2, q3) and

WDP (W 3, j, k) needs to be solved. The detailed information about these 3 queries is given

below.

Before investigating the two different cases in further details, we need to check whether

assigning q3 to the public side violates any constraints (line 16). If we ship q3 to the public

side, then the overall monetary cost and the overall disclosure risk will be at least $25 and

20 sensitive records respectively (assume that ∀1 ≤ i ≤ 3 freq(i) = 1). If j < 25 or k < 20,

then any solution considering q3 as a public side query will not be a feasible one, and in

turn WDP (W 3, j, k) = WDP (W 2, j, k) (line 25-27). Note that, since executing any query

on the private side does not cause a violation of any constraint, this case essentially does not

135

require a feasibility analysis. Now, we can go into the details of each case.

Public Case: If q3 runs on the public side, then there will be more than 1 WDP sub-problems

that need to be investigated. This is due to the fact that the possible execution of q3 on

the public side will bring at least $15 and at most $25 into the overall monetary cost value.

In terms of disclosure risk, the numbers will be between 0 and 20 sensitive records. The

reason is that a portion of (or the entire) data(q3) could already be included in the solution

of WDP (W 2, j
′
, k
′
), W 2

pub and in turn storing data(q3) in addition to
⋃

q∈W 2
pub

data(q) may

not bring as much monetary cost and disclosure risk as is represented in the table above.

Consequently, WDP (W 2, j
′
, k
′
) where j − 25 ≤ j

′ ≤ j − 15 and k − 20 ≤ k
′ ≤ k should be

investigated in order to solve WDP (W 3, j, k) optimally (lines 17-24). However, every can-

didate set of queries formed by taking the union of q3 with the solution of WDP (W 2, j
′
, k
′
)

should be tested to ensure that it does not violate any constraint and it is the best solution

in terms of performance among the all solutions obtained in public case(line 20-22).

Private Case: In case query q3 runs on the private side, thenWDP (W 3, i, j) = WDP (W 2, i, j)

(line 25).

After computing the best solution candidate for both cases, our algorithm compares the

overall expected running times of both solutions and picks the minimum one as the solution

to WDP (Q3, j, k) (lines 26-29).

6.6 Evaluation

This section presents the results to validate the effectiveness of our algorithmic solutions

to WDP . We first create the statistics about a certain dataset and workload, and then

we executed our dynamic programming approach based on our statistics. We estimated

the workload execution times of the partitionings generated by our dynamic programming

136

solution and presented these estimated workload execution times.

6.6.1 Setup

Dataset: We identified our dataset as the TPC-H dataset with scale factor 100 (≈ 100GB)

[79]. We gathered statistics by analyzing this 100GB TPC-H dataset and generated equi-

width histograms for every attribute in TPC-H.

While creating equi-width histogram in TPC-H dataset, we used the data types, int, double

and string in SQL to represent TPC-H data. We also created a data type ‘date’ that allows

us to represent various dates from the TPC-H schema. The number of partitions used in

a histogram is dependent on the data type; this number is fixed for a given data type: (i)

For integers and doubles, the number of partitions = log2(max − min), where min and

max represent the min and max domain values mandated by TPC-H for that particular

attribute. (ii) For dates, since TPC-H only allows dates between ‘1992-01-01’ and ‘1998-

12-31’, we created one partition for each year from 1992 through 1998. (iii) For strings, we

created 95 partitions that cover alphabets (a− z and A− Z), digits (0− 9) and all special

characters (!, @, #, etc.). Additionally, these histograms maintain a set of numbers such as

the average length of an attribute value and the number of unique attribute values within

each equi-width intervals.

After constructing required histograms, we estimated data() and timex() statistics for each

query in our workload, as we explained in Section 6.3.

Workload: We defined our workload as a workload of 40 queries containing modified versions

of queries Q1, Q3, Q6 and Q11 in TPC-H benchmark. In particular, we modified these queries

as no grouping and aggregate operations were performed in them, due to the high complexity

of estimating I/O sizes for such operators in Hive. Recall that, query time statistics differs

137

for the private and public cloud, since each cloud can perform different amount of I/O

operations per unit time, wpub or wpriv .

wx is calculated as the number of I/O operations performed per second on the public and

private clouds. To compute wpriv and wpub, we created a private and public cloud. Our

private cloud consists of 14 nodes, while our public cloud consists of 38 nodes. A private

cloud node had a Pentium IV processor with ≈ 290GB-320GB disk space and 4GB of main

memory, while a public cloud node have an AMD Dual-Core processor with ≈ 631GB disk

space and 8GB of main memory. We set up Hadoop v1.0.4 and Hive v0.7.1 [80] on both

clouds. We estimated benchmark-specific weights wpub and wpriv by running all the TPC-

H benchmark using Hive and Hadoop both on our private and public cloud. wpub (resp.

wpriv) was computed as the average ratio of I/O operations required by public queries (resp.

private) to the total time required to run all queries on the public side (resp. private side).

We executed all TPC-H queries on a 300GB dataset and estimated wpub/wpriv to be ≈

40MB/sec and ≈ 8MB/sec. A larger wpub value indicates that the public cloud has a higher

I/O throughput than the private cloud.

Sensitive Data Definition: In our 100GB test dataset, the sensitive data is distributed

in two different ways: (1) Random sensitivity implies that all the sensitive data is uniformly

distributed inside the dataset (2) Fixed sensitivity distribution uses a view-based model

[81,82] to declare the sensitive portion of the dataset.

In random sensitivity distribution, if sensitivity level is 1%, then we first assume that 1%

of the records in the entire dataset is sensitive. Additionally, we assume that 1% of each

query’s records are sensitive, since the sensitivity is uniformly distributed.

In fixed sensitivity distribution, we declare that all the records of the customer table are

sensitive while fractions of tuples in the lineitem table are sensitive (≈ 1% or 10% of the

table is marked as sensitive). As a result, we used two different sensitivity levels for each

138

distribution models in our experiments: 1% and 10%.

Cost Limit: The cost of storing data and executing a workload was estimated using unit

prices from Amazon Web Services. We used S3 pricing to determine storage ($0.140/GB +

PUT) and communication ($0.120/GB + GET) costs, where the price for PUT and GET

operations is $0.01/1000 requests and $0.01/10000 requests respectively. We used EC2 and

EMR pricing to calculate the processing cost ($0.085 + $0.015 = $0.1/hour). Finally, we

estimated the maximum public cloud cost, MAX COST , by assuming that our entire test

dataset/workload is migrated to the public side. We estimated that maximum cost that one

can pay to run our workload is equal tio ≈ 25K .While evaluating our dynamic programming

approach, we defined ∆cost as a fraction of MAX COST , viz. 25%, 50%, 75% and 100%.

So, when the cost limit = 50% means that the actual ∆cost is set to ≈ $12250 in our dynamic

programming.

Risk Limit: We defined the risk limits as a fraction of the exposed sensitive records to

overall sensitive records. To illustrate, when the sensitivity distribution is fixed and the

sensitivity level is 1%, we estimated that there exists 63 million sensitive records within our

dataset. ∆risk = 10% means that our dynamic programming approach is allowed to only

expose 10% of 63 million sensitive records to public cloud. So, in that case our dynamic

approach can at most expose 6.3 million sensitive records to the public cloud.

6.6.2 Evaluation of Our Solution

In this subsection, we present the estimated running time of the workload when it is split

using our dynamic programming approach under various cost and risk limits and different

sensitivity settings.

Since we aim to minimize overall workload execution time, we first estimated the workload

139

25K

50K

75K

100K

125K

150K

0 510 25 50 75 100O
v
e

ra
ll
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Risk Limit, ∆risk (%)

Cost Limit, ∆cost (25%)

25K

50K

75K

100K

125K

150K

0 510 25 50 75 100O
v
e

ra
ll
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

∆risk (%)

∆cost (50%)

25K

50K

75K

100K

125K

150K

0 510 25 50 75 100O
v
e

ra
ll
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

∆risk (%)

∆cost (75%)

25K

50K

75K

100K

125K

150K

0 510 25 50 75 100O
v
e

ra
ll
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

∆risk (%)

∆cost (100%)

Private

1%-Fixed

1%-Random

10%-Fixed

10%-Random

Figure 6.2: Hybridizer Results for WDP in TPC-H Workload

140

running time when all the computation is performed on the private cloud (Private). This

case was marked as a baseline to compare the estimated performance of our solution in

different sensitivity distributions and levels. We also varied the parameters as follows: First,

the monetary expense limit (∆cost) was varied between 25-100% of MAX COST . For each

different ∆cost, we set seven risk levels as 0%, 5%, 10%, 25%, 50%, 75% and 100%.

We then estimated the overall performance of the query workload for different combinations

of these three parameters based on the estimated query running times, the results of which

are presented in Figure 6.2. One of the first observations that can be made from Figure 6.2

is that when a user is willing to take additional risks by storing more sensitive data on

the public side, they may gain a considerable speed-up in overall execution time based on

our estimations (even greater than 50%). On the other hand, Figure 6.2 also shows that

the monetary expenditure on public side resources is substantially low even when a user

takes additional risks by storing increasing amounts of sensitive data on the public cloud

(graphs for ∆cost = 50%, 75% and 100% show that, even when more money is allowed to be

spent on public side resources, the overall performance is relatively the same for these cases

suggesting that a budget of only about 50% of the maximum possible cost is sufficient to

boost the performance savings up to 50%).

Figure 6.2 also shows that when a user invests more capital towards resource allocation, a

considerable gain in overall workload performance (even greater than 50%) can be achieved

based on our estimations. This is expected since when more resources are allocated on the

public side, we are better able to exploit the parallelism that is afforded by a hybrid cloud.

Thus, the intuition that a hybrid cloud improves performance due to greater use of inherent

parallelism is justified based on our estimation. Finally, from Figure 6.2, we also notice that

we can achieve a considerable improvement in workload performance (≈ 50%) for a relatively

low risk (≈ 40%) and cost (≈ 50%) limits.

Moreover, our approach is estimated to finish our experimental workload in ≈ 90000 seconds

141

at smaller cost limits (close to 25%). On the other hand, when ∆cost reaches to 75%, our

solution is expected to execute our workload in almost optimal times ≈ 25000 second. To

sum up, the intuition that a hybrid cloud improves performance due to greater use of inherent

parallelism by means of increasing ∆cost is justified based on our estimations.

6.7 Conclusions and Future Work

Our frameworks, SEMROD and split-strategy, have shown that hybrid clouds can be used

to improve data processing performance while ensuring full-security. However, enterprises

might be willing to expose a bounded amount of sensitive data (risk) to the public cloud in

order to further reduce their query/workload execution times. In this chapter, we designed

a risk and cost aware conceptual framework, called as Hybridizer, whose goal is to partition

an application’s query workload, and in turn, its data, over a hybrid cloud in order to

maximize the workload performance while meeting user’s cost and risk requirements. We

proposed a dynamic programming approach to partition given data and workload across the

hybrid cloud based on user’s requirements. Our results indicated that allowing bounded

amount of sensitive data to be leaked to the public cloud may provide further performance

improvements while executing the given workload.

We are primarily exploring the following ideas for future research amongst the various areas

that we outlined throughout the chapter: 1) In this chapter, we tried to solve the workload

partitioning problem for the case where the entire query workload and the input dataset

is given to us a-priori. This work can be enhanced to support distribution for dynamically

changing (or arriving) workloads. 2) We proposed techniques to create statistics and estimate

metrics. One can improve this work by actually implementing these modules. 3) We focused

on simple risk models based on number of sensitive cells outsourced to the public cloud.

Clearly, one may consider different type of risk models suitable for different scenarios. For

142

instance, in some cases, the sensitivity of the records might be different and organization may

not allow to move some sensitive records to the public cloud, if they are not encrypted. In

other cases, the association between different columns might be considered as an important

dimension of the risk model. We plan to solve the same problem under a different risk

models.

143

Chapter 7

Conclusion and Future Work

Today, large volumes of data are collected and stored by organizations for analysis purposes.

Often the in-house computational capabilities of organizations cannot easily support these

complex data analytical needs. While such limitations were a serious impediment in the

past, emerging public cloud computing platforms (e.g., Amazon’s EC2) offer a viable alter-

native. However, public clouds pose a significant challenge from the perspective of security.

According to a survey of IT executives; security, compliance and loss of control are the top

3 concerns for enterprises adopting public clouds [3]. A possible approach to overcome the

security challenge is to encrypt the data prior to outsourcing it to the cloud and to perform

data analysis over encrypted the data in the cloud. Although past decades of research have

made significant progress on developing cryptographic schemes that allow limited computa-

tion over encrypted data, no generic and cost-efficient solution for practical use has emerged

yet.

An alternate efficient approach to secure data processing is to partition the data and compu-

tation across trusted private and untrusted public machines in such a way that the sensitive

information is never leaked to the public ones. A hybrid cloud is a perfect instantiation of

144

such a mixed security computation environment. The hybrid cloud paradigm allows end-

users to seamlessly integrate their in-house computing resources with public cloud services

and construct potent, secure and economical data processing solutions. For instance, hybrid

clouds can empower organizations to partition data and computation amongst public and

private machines in such a way that they can leverage the power of the public cloud while

ensuring that the sensitive data or computation never leaves private machines.

This thesis explores how partitioning data and computation based on data sensitivity can

be used to support secure (or risk-aware) yet efficient data processing in hybrid clouds.

Under the assumption that the data starts and initially stored at the private cloud, our

frameworks steer data and computation through public and private machines in such a way

that no (or bounded) knowledge about sensitive data is leaked to public machines in order

to process data. For this purpose, we first presented our secure and efficient MapReduce

framework for hybrid clouds, SEMROD. Next, we presented a formal strategy, split-strategy

to process SQL-like structured queries across hybrid clouds in a secure and efficient way.

Finally, we focused on data and computation partitioning problem in the level of workloads.

We proposed a conceptual framework, Hybridizer, that outsource the data and workload to

the public cloud in order to maximize the workload performance without violating user’s risk

and cost constraints. Instead of only supporting fully secure computation, Hybridizer gives

the users a chance to receive a better performance at the expense of exposing some sensitive

data to the public cloud. Using our strategies and frameworks, computation that may involve

sensitive data can exploit public machines, thereby bringing significant performance benefits,

which otherwise would be restricted to only private clouds. Our experiments demonstrate

performance advantages of using our approaches as compared to other secure alternatives,

even when the percentage of sensitive data is as high as 50%. We envision extending our

research in this thesis in following directions:

To our knowledge, none of the existing works including ours tried to leverage encryption as

145

a part of the hybrid cloud. For cases where we cannot push any sensitive data to public,

encryption could be an option. Distributing computation across the hybrid cloud based on

both clear text and encrypted data would be an interesting direction of future work.

Additionally, we took the conservative assumption that output of a function on sensitive

data is itself sensitive. In many scenarios, application aware sensitivity model may decide

that output of a function on sensitive data is non-sensitive. Incorporating such application

level sensitivity models into our frameworks and strategies would be an exciting extension.

In this thesis, we focused on hybrid cloud as a secure cloud-computing platform for scal-

able data processing using MR framework and higher level languages such as Hive. In our

scenario, the data originated at the private machines and is selectively replicated to the

public cloud. Another common cloud computing use case for organizations is to offload their

dynamic transactional workload to the cloud. The usage context where organization use

cloud resources to offload their dynamic workloads provide new challenges from the security

perspective. Because under such scenarios, it is infeasible to require data to first land on

the private cloud. Such a requirement may effectively defeat the purpose of using the cloud

to scale to a large number of transactions. Designing new frameworks in hybrid clouds that

provide secure and efficient processing for dynamic transactional workloads is a promising

extension.

146

Bibliography

[1] Kerim Yasin Oktay, Sharad Mehrotra, Vaibhav Khadilkar, and Murat Kantarcioglu.
Semrod: Secure and efficient mapreduce over hybrid clouds. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pages
153–166, New York, NY, USA, 2015. ACM.

[2] Kerim Y. Oktay, Vaibhav Khadilkar, Bijit Hore, Murat Kantarcioglu, Sharad Mehrotra,
and Bhavani Thuraisingham. Risk-aware workload distribution in hybrid clouds. In
Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, pages 229–
236, June 2012.

[3] Cloud Survey. http://cloudtweaks.com/2012/12/

cloud-infographic-security-and-the-cloud-2012/.

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. In 13th ACM Conference on Computer
and Communications Security (CCS ’06), pages 79–88. Association for Computing Ma-
chinery, Inc., October 2006.

[5] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http:
//eprint.iacr.org/2003/216/.

[6] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable sym-
metric encryption. In Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security, CCS ’12, pages 965–976, New York, NY, USA, 2012. ACM.

[7] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In Proceedings of the 2000 IEEE Symposium on Security
and Privacy, SP ’00, pages 44–, Washington, DC, USA, 2000. IEEE Computer Society.

[8] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic search-
able encryption with small leakage. IACR Cryptology ePrint Archive, 2013:832, 2013.

[9] Peter Van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker.
Computationally efficient searchable symmetric encryption. In Proceedings of the 7th
VLDB Conference on Secure Data Management, SDM’10, pages 87–100, Berlin, Hei-
delberg, 2010. Springer-Verlag.

147

[10] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Perrig.
Multi-dimensional range query over encrypted data. In Proceedings of the 2007 IEEE
Symposium on Security and Privacy, SP ’07, pages 350–364, Washington, DC, USA,
2007. IEEE Computer Society.

[11] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order preserv-
ing encryption for numeric data. In Proceedings of the 2004 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’04, pages 563–574, New York,
NY, USA, 2004. ACM.

[12] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions. In Proceedings of
the 31st Annual Conference on Advances in Cryptology, CRYPTO’11, pages 578–595,
Berlin, Heidelberg, 2011. Springer-Verlag.

[13] Charalampos Mavroforakis, Nathan Chenette, Adam O’Neill, George Kollios, and Ran
Canetti. Modular order-preserving encryption, revisited. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pages
763–777, New York, NY, USA, 2015. ACM.

[14] Alexandra Boldyreva, Serge Fehr, and Adam ONeill. On notions of security for de-
terministic encryption, and efficient constructions without random oracles. In David
Wagner, editor, Advances in Cryptology CRYPTO 2008, volume 5157 of Lecture Notes
in Computer Science, pages 335–359. Springer Berlin Heidelberg, 2008.

[15] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

[16] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In GeorgeRobert Blakley and David Chaum, editors, Advances in Cryptol-
ogy, volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer Berlin
Heidelberg, 1985.

[17] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In IN ADVANCES IN CRYPTOLOGY EUROCRYPT 1999, pages 223–238. Springer-
Verlag, 1999.

[18] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, pages 365–377, New York, NY,
USA, 1982. ACM.

[19] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts.
In Joe Kilian, editor, Theory of Cryptography, volume 3378 of Lecture Notes in Computer
Science, pages 325–341. Springer Berlin Heidelberg, 2005.

[20] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing sql over en-
crypted data in the database-service-provider model. In Proceedings of the 2002 ACM

148

SIGMOD International Conference on Management of Data, SIGMOD ’02, pages 216–
227, New York, NY, USA, 2002. ACM.

[21] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann, Ravi
Ramamurthy, and Ramaratnam Venkatesan. Orthogonal security with cipherbase. In
6th Biennial Conference on Innovative Data Systems Research (CIDR’13), January
2013.

[22] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: Processing queries on an encrypted database. Commun. ACM, 55(9):103–111,
September 2012.

[23] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. Process-
ing analytical queries over encrypted data. In Proceedings of the 39th international
conference on Very Large Data Bases, PVLDB’13, pages 289–300. VLDB Endowment,
2013.

[24] Google BigQuery. https://cloud.google.com/bigquery/.

[25] Jeremy Kepner, Vijay Gadepally, Peter Michaleas, Nabil Schear, Mayank Varia, Arkady
Yerukhimovich, and Robert K. Cunningham. Computing on masked data: a high
performance method for improving big data veracity. CoRR, abs/1406.5751, 2014.

[26] MS researchers claim to crack encrypted database with old
simple trick. http://arstechnica.com/security/2015/09/

ms-researchers-claim-to-crack-encrypted-database-with-old-simple-trick/.

[27] Muhammed Naveed, Seny Kamara, and Charles Wright. Inference attacks on property-
preserving encrypted databases. CCS ’15. ACM, 2015.

[28] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 43(3):431–473, May 1996.

[29] Arvind Arasu, Ken Eguro, Raghav Kaushik, and Ravi Ramamurthy. In 29th Interna-
tional Conference on Data Engineering (ICDE), April. Tutorial presentation.

[30] Arvind Arasu, Ken Eguro, Raghav Kaushik, and Ravi Ramamurthy. When is an en-
crypted database secure? Technical Report MSR-TR-2014-133, September 2014.

[31] Hybrid Cloud. The NIST Definition of Cloud Computing. NIST, Special Publication,
800-145, 2011.

[32] The Beckman Report on Database Research, The Beckman Database Research Self-
Assessment Meeting, 2013.

[33] Hybrid Cloud Usage. http://venturebeat.com/2013/10/09/hybrid-cloud-year/.

[34] Hive query language, hiveql,. https://cwiki.apache.org/confluence/display/

Hive/LanguageManual.

149

[35] Pig query language, pig latin. http://pig.apache.org/docs/r0.7.0/piglatin_

ref1.html.

[36] Bijit Hore, Sharad Mehrotra, and Hakan Hacigumus. Managing and querying encrypted
data. In Michael Gertz and Sushil Jajodia, editors, Handbook of Database Security, pages
163–190. Springer US, 2008.

[37] C. Gentry. Building Practical Systems That Compute on Encrypted Data. PhD the-
sis, Massachusetts Institute of Technology, 2014. http://www.eecs.berkeley.edu/

~raluca/Thesis.pdf.

[38] Christoph Bosch, Pieter Hartel, Willem Jonker, and Andreas Peter. A survey of provably
secure searchable encryption. ACM Comput. Surv., 47(2):18:1–18:51, August 2014.

[39] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael, 1998.

[40] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index for range
queries. In Proceedings of the Thirtieth International Conference on Very Large Data
Bases - Volume 30, VLDB ’04, pages 720–731. VLDB Endowment, 2004.

[41] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani Di Vimercati, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. Modeling and assessing inference expo-
sure in encrypted databases. ACM Trans. Inf. Syst. Secur., 8(1):119–152, February
2005.

[42] Bruce Schneier. Description of a new variable-length key, 64-bit block cipher (blowfish).
In Fast Software Encryption, pages 191–204. Springer, 1994.

[43] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H. Balakrishnan,
and N. Zeldovich. Relational Cloud: A Database-as-a-Service for the Cloud. In CIDR,
pages 235–241, 2011.

[44] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-molina, K. Kenthapadi, R. Motwani,
U. Srivastava, D. Thomas, and Y. Xu. Two can keep a secret: A distributed architecture
for secure database services. In In Proc. CIDR, 2005.

[45] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus Peinado,
Gloria Mainar-Ruiz, and Mark Russinovich. Vc3: Trustworthy data analytics in the
cloud. Technical Report MSR-TR-2014-39, February 2014.

[46] Kehuan Zhang, Xiaoyong Zhou, Yangyi Chen, XiaoFeng Wang, and Yaoping Ruan.
Sedic: Privacy-aware data intensive computing on hybrid clouds. In Proceedings of
the 18th ACM Conference on Computer and Communications Security, CCS ’11, pages
515–526, New York, NY, USA, 2011. ACM.

[47] Chunwang Zhang, Ee-Chien Chang, and R.H.C. Yap. Tagged-mapreduce: A general
framework for secure computing with mixed-sensitivity data on hybrid clouds. In Clus-
ter, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Sym-
posium on, pages 31–40, May 2014.

150

[48] M. Atallah, A. Elmagarmid, M. Ibrahim, E. Bertino, and V. Verykios. Disclosure
limitation of sensitive rules. In Proceedings of the 1999 Workshop on Knowledge and
Data Engineering Exchange, KDEX ’99, pages 45–, Washington, DC, USA, 1999. IEEE
Computer Society.

[49] Josep Domingo-Ferrer, editor. Inference Control in Statistical Databases, From Theory
to Practice. Springer-Verlag, 2002.

[50] Alban Gabillon. Multilevel databases. In Encyclopedia of Database Technologies and
Applications, pages 386–389. 2005.

[51] Bhavani Thuraisingham, William Ford, Marie Collins, and Jonathan O’Keeffe. Design
and implementation of a database inference controller. Data Knowl. Eng., 11(3):271–
297, December 1993.

[52] Privacy Integrated Queries: An Extensible Platform for Privacy-preserving Data Anal-
ysis, SIGMOD, 2009.

[53] Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in data
exchange. J. Comput. Syst. Sci., 73(3):507–534, 2007.

[54] Access Control in Oracle. http://docs.oracle.com/cd/B19306_01/network.102/

b14266/accessre.htm#CHDDGEJG.

[55] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA, 2004.

[56] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
In OSDI, pages 137–150, 2004.

[57] Apache Hadoop. http://hadoop.apache.org/.

[58] HDFS. http://hadoop.apache.org/docs/stable/hadoop-project-dist/

hadoop-hdfs/HdfsUserGuide.html.

[59] HiBench. https://github.com/intel-hadoop/HiBench.

[60] Mahout. https://mahout.apache.org/.

[61] Top 5 Use Cases for Moving to a Hybrid Cloud Solution. http://www.infoq.

com/zones/assets/downloads/WhitePaper_Top_5_Use_Cases_for_Moving_to_a_

Hybrid_Cloud.pdf.

[62] Apache Spark. http://spark.apache.org/.

[63] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu,
and R. Murthy. Hive - a petabyte scale data warehouse using Hadoop. In ICDE, pages
996–1005, 2010.

151

[64] Won Kim. On optimizing an sql-like nested query. ACM Trans. Database Syst.,
7(3):443–469, September 1982.

[65] Chittaranjan Pradhan, Sushree Sangita Jena, and Prasanta Kumar Mahapatra. Opti-
mized query plan algorithm for the nested query. International Journal on Computer
Science and Engineering, 2:726, 2010.

[66] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Shark: Sql and rich analytics at scale. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’13, pages 13–
24, New York, NY, USA, 2013. ACM.

[67] San Diego Supercomputer Center. http://www.sdsc.edu/.

[68] S. Agrawal, V. R. Narasayya, and B. Yang. Integrating Vertical and Horizontal Par-
titioning Into Automated Physical Database Design. In SIGMOD Conference, pages
359–370, 2004.

[69] J. Rao, C. Zhang, N. Megiddo, and G. M. Lohman. Automating physical database
design in a parallel database. In SIGMOD Conference, pages 558–569, 2002.

[70] S. Ghandeharizadeh and D. J. DeWitt. Hybrid-Range Partitioning Strategy: A New
Declustering Strategy for Multiprocessor Database Machines. In VLDB, pages 481–492,
1990.

[71] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: A Workload-Driven Approach
to Database Replication and Partitioning. In VLDB, 2010.

[72] J. B. Rothnie, Jr., P. A. Bernstein, S. Fox, N. Goodman, M. Hammer, T. A. Landers,
C. Reeve, D. W. Shipman, and E. Wong. Introduction to a system for distributed
databases (sdd-1). ACM Trans. Database Syst., 5(1):1–17, March 1980.

[73] A. Tomasic, L. Raschid, and P. Valduriez. Scaling Heterogeneous Databases and the
Design of Disco. In ICDCS, 1996.

[74] R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and scalable
technology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst., 21(2):164–206, 2003.

[75] D. Logothetis and K. Yocum. Ad-hoc data processing in the cloud. PVLDB, 1(2):1472–
1475, 2008.

[76] G. Karypis and V. Kumar. Metis - unstructured graph partitioning and sparse matrix
ordering system, version 2.0. Technical report, University of Minnesota, 1995.

[77] Kamil Bajda-Pawlikowski, Daniel J. Abadi, Avi Silberschatz, and Erik Paulson. Ef-
ficient processing of data warehousing queries in a split execution environment. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’11, pages 1165–1176, New York, NY, USA, 2011. ACM.

152

[78] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query Optimization for Massively Parallel
Data Processing. In SoCC, pages 12:1–12:13, 2011.

[79] TPC BENCHMARK H. http://www.tpc.org/tpch/spec/tpch2.11.0.pdf.

[80] Vaibhav Khadilkar, Murat Kantarcioglu, Bhavani M. Thuraisingham, and Paolo
Castagna. Jena-hbase: A distributed, scalable and effcient RDF triple store. In Pro-
ceedings of the ISWC 2012 Posters & Demonstrations Track, Boston, USA, November
11-15, 2012, 2012.

[81] S. Chaudhuri, T. Dutta, and S. Sudarshan. Fine Grained Authorization Through Pred-
icated Grants. In ICDE, 2007.

[82] G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange.
J. Comput. Syst. Sci., 73(3):507–534, 2007.

153

