
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Robust Machine Learning for the Control of Real-world Robotic Systems

Permalink
https://escholarship.org/uc/item/8jr0h7dg

Author
Westenbroek, Tyler

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8jr0h7dg
https://escholarship.org
http://www.cdlib.org/

Robust Machine Learning for the Control of Real-world Robotic Systems

By

Tyler Westenbroek

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering — Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor S. Shankar Sastry, Chair
Professor Claire J. Tomlin
Professor Koushil Sreenath

Spring 2023

Robust Machine Learning for the Control of Real-world Robotic Systems

Copyright 2023

by

Tyler Westenbroek

1

Abstract

Robust Machine Learning for the Control of Real-world Robotic Systems

by

Tyler Westenbroek

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Optimal control is a powerful paradigm for controller design as it can be used to implic-
itly encode complex stabilizing behaviors using cost functions which are relatively simple
to specify. On the other hand, the curse of dimensionality and the presence of non-convex
optimization landscapes can make it challenging to reliably obtain stabilizing controllers
for complex high-dimensional systems. Recently, sampling-based reinforcement learning ap-
proaches have enabled roboticists to obtain approximately optimal feedback controllers for
high-dimensional systems even when the dynamics are unknown. However, these methods
remain too unreliable for practical deployment in many application domains.

This dissertation argues that the key to reliable optimization-based controller synthesis is
obtaining a deeper understanding of how the cost functions we write down and the algorithms
we design interact with the underlying feedback geometry of the control system. First, we
next investigate how to accelerate model-free reinforcement learning by embedding control
Lyapunov functions — which are energy like functions for the system— into the objective.
Next we will introduce a novel data-driven policy optimization framework which embeds
structural information from an approximate dynamics model and family of low-level feedback
controllers into the update scheme. We then turn to a dynamic programming perspective,
and investigate how the geometric structure of the system places fundamental limitations
on how much computation is required to compute or learn a stabilizing controller. Finally,
we investigate derivative-based search algorithms and investigate how to design ‘good’ cost
functions for model predictive control schemes, which ensure these methods stabilize the
system even when gradient-based methods are used to search over a non-convex objective.
Throughout an emphasis will be placed on how structural insights gleaned from a simple
analytical model can guide our design decisions, and we will discuss applications to dynamic
walking, flight control, and autonomous driving.

i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Background and Motivation 1

2 Lypunov Design for Robust and E�cient Robotic Reinforcement Learning 8
2.1 Background and Problem Setting . 9
2.2 Lyapunov Design for Infinite Horizon Reinforcement Learning 14
2.3 Examples and Practical Implementations . 19
2.4 Related Work . 28

3 Reinforcement Learning with Simple Dynamics Models and Low-Level
Feedback Controllers 32
3.1 Background on Approximate Gradient Descent 34
3.2 Problem Formulation . 35
3.3 The Benefits of Low-Level Feedback . 39
3.4 Design Examples . 45
3.5 Future Work . 48
3.6 Additional Proofs . 48

4 Computational Bottlenecks for Nonlinear Optimal Control 54
4.1 Infinite Horizon Optimal Control, Receding Horizon Approximations, And

Value Iteration . 60
4.2 The Computational Consequences of Cost Design for Nonlinear Optimal Control 63
4.3 Numerical Experiments with Reinforcement Learning 71
4.4 Future Work . 74
4.5 Missing Proofs . 75
4.6 Performance Bounds . 77
4.7 Proof of Lemma 10 . 86

ii

5 On the Stability of Receding Horizon Control: A Geometric Perspective 89
5.1 Preliminaries . 91
5.2 Su�cient Conditions for Exponentially Decaying First-Order Stationary Points 94
5.3 First-Order Stabilty Guarantees for Receding Horizon Control 103
5.4 Outlook and Future Work . 107

6 Outlook and Future Work 109

Bibliography 112

iii

List of Figures

2.1 We learn precise tracking policy on hardware for the Unitree A1 Quadrupedal
robot [85] using less than 20 seconds of data. A video of our experiments can be
found here https://youtu.be/l7kBfitE5n8 . 21

2.2 (Left) Plot illustrating improved velocity tracking of the learned policy (in dark green)
compared to the nominal locomotion controller (in pink) to track a desired velocity
profile (in dashed black line) using our proposed method on the Unitree A1 robot
hardware. (Right) Plot from the simulated benchmark study illustrating cumulative
velocity tracking error (lower is better) over 10s rollouts at di↵erent stages of the
training. In orange, we show the results of fine-tuning using SAC with a standard
RL cost. In blue, we fine-tune using SAC with our reward reshaping method, with a
candidate CLF designed on a nominal linearized model of the robot. In both cases, we
plot the results using the discount factor that achieved the best performance. 21

2.3 Comparison between nominal controller and learned policy after training on 60s of real-
world data on the A1 robot with an added 10lb weight. The learned policy is able to
significantly reduce the tracking error caused by the added weight. 22

2.4 Cumulative gait tracking error (lower is better) over 10s rollouts at di↵erent stages of
the simulated fine-tuning benchmark comparison of the A1 quadruped with an unknown
load. In orange, we show the results of fine-tuning using SAC with a standard RL cost
which penalizes the distance to the desired gait with a discount factor of � = 0.99. In
blue, we plot the performance of our cost reshaping method with SAC and a discount
factor of � = 0. For both cost formulations, we plot the discount factor that led to the
best performance. 22

2.5 We learn precise stabilizing policies on hardware for the Quanser cartpole [84]
using less than 20 seconds of data. A video of our experiments can be found here
https://youtu.be/l7kBfitE5n8 . 24

iv

2.6 Comparison of the simulation results of fine-tuning a cartpole swing-up policy after
adding model mismatch. A policy trained on a nominal dynamics model of the cartpole
fails when deployed on the new dynamics. In blue, we show the results of continuing
to train the agent with the original costs and discount factor. In orange, we fine-tune
using our reshaping method with the pre-trained value function and a discount factor
of � = 0. For each episode of training on the new dynamics model, we compare the
performance of both methods when running the cartpole from 10 initial conditions:
(on the left) the average original reward without the CLF term, and (on the right) the
cumulative number of successful swing-ups. The plots show the mean and standard
deviation of the results over 10 di↵erent training random seeds. 24

2.7 Experimental plots of the cart position and pendulum angle of the cartpole system.
(left) The policy trained only in simulation fails to bring the real cartpole system to
the upright position; (right) by fine-tuning the learned policy with 20s of real-world
data using our CLF-based reward function, we obtain a successful policy. 25

2.8 (Top) Snapshots of RABBIT [20], a five-link bipedal robot, successfully walking
with our learned controller in the PyBullet simulator [23]. (Bottom-Left) Average
tracking error (lower is better) per episode at di↵erent stages of the training pro-
cess when fine-tuning a model-based walking controller under model mismatch.
In blue, using our CLF-based reward formulation and SAC, the robot learns a
stable walking gait with only 40k steps (40 seconds) of training data. In orange,
with a baseline that uses a typical reward penalizing the tracking error to the
target gait, the training takes longer to converge and does not achieve the same
performance. The results show the best performance for both method across
di↵erent discount factors and training hyper-parameters. (Bottom-Right) Com-
parison of the tracking error of roll-outs of di↵erent learned walking policies. In
blue, a policy learned with 40k steps of the environment using our CLF-based
reward. In dashed green, a policy learned using the baseline reward with 40k
steps of the environment. In orange, a policy learned using the baseline reward
with 620k steps of the environment (best baseline policy). The jumps in tracking
error occur at the swing-leg impact times. The policy learned with our reward
formulation clearly outperforms the baseline, even when the baseline has 15 times
as much data. 27

2.9 Learning curves for an inverted pendulum system under di↵erent input constraints.
The curves plotted correspond to the smallest discount factors that led to stabilizing
policies. On the left, the obtained learning curves use a CLF in the reward. On the
right, the reward does not include the CLF term. The black dots denote the first
stabilizing policy for each training. For each setting we plot the learning curve for the
discount factor that achieved the best performance. 29

v

3.1 Trajectory tracking results for both the car system (a-b) and the A1 quadruped
(c-d). For both systems, we show results of 2 di↵erent tasks, with reference tra-
jectories plotted in blue. The results show that our method (in orange) using a
simple approximate dynamics model learns to track precisely the reference trajec-
tories for both systems, and clearly outperforms the nominal tracking controller
(in purple). The modified reference spline from our neural network is plotted
in (dashed) green, showing that our method accomplishes the original tracking
objective by specifying a deviation on the reference trajectory. 46

4.1 Flexible link manipulator without friction when y = x1. 70
4.2 Flexible link manipulator without friction when y = x3. 71
4.3 Flexible link manipulator with friction with y = x1. 71
4.4 Flexible link manipulator with friction with y = x3. 72
4.5 Inverted pendulum without input constraints and y = x1. 72
4.6 Inverted pendulum with input constraints and y = x1. 73

5.1 (a) Schematic for the simple inverted pendulum (b) schematic for the inverted
pendulum with a flexible joint. 103

vi

List of Tables

vii

Acknowledgments

To my family. Both the family I entered Berkeley with, and the family I pieced together
along the way.

1

Chapter 1

Background and Motivation

As we strive to integrate autonomous robots into our daily lives, it is essential to control how
these systems interact with dynamic, uncertain and di�cult to model environments. Tra-
ditionally, the starting point for the engineering process has been simplified, often reduced-
order dynamics models for the system. While these models do not capture every feature of
the full-order system, they provide an intuitive interface through which engineers can reason
about the real-world. By adopting systematic, analytical and hierarchical design techniques,
engineering teams have been able to build up robust control strategies for complex systems
such as walking robots using traditional model-based design techniques. A key benefit of
these approaches is that they often provide intuitive knobs for engineers to turn, such a feed-
back gains with clear intuitive interpretations, enabling engineers to fine-tune the real-world
behavior these approaches produce.

However, the sheer complexity that arises when shaping the real-world behavior of these
systems presents daunting engineering challenges whose resolution is a prerequisite for real-
world autonomy. Consider as an example the A1 quadruped which is used an example in
Chapters 2 and 3. In order to produce successful real-world locomotion on this platform
engineers must coordinate the motion of 18 underactuated degrees of freedom. Moreover,
the walking controller must leverage intermittent contact with surfaces which are di�cult
to model and, given current perception limitations, di�cult to even localize precisely with
respect to the position of the robot. If an unintended event occurs, such as the slipping of
a foot, the the controller must react within a fraction of a second to produce an entirely
di↵erent sequence of motions. Put plainly, it is intractable for engineering teams to write
down in detail the behavior that complex hardware platforms should display.

Moreover, even if we could write down the desired behavior it is exceedingly di�cult to
actually execute that behavior in the real world. Continuing with the previous example, when
walking on compliant or rigid surfaces the forces the robot must exert on it surroundings
to produce desired accelerations at the joint level can vary wildly. Moreover, the space of
feasible system trajectories may be completely di↵erent, and it may not even be possible
to track a planned reference motion. The rigid body models we typically use to design

CHAPTER 1. BACKGROUND AND MOTIVATION 2

controllers for our robots simply cannot handle this scope of variation, and it is impractical
to model the characteristics of every possible environment our robots will be required to
interact with in the real world. Thus, what use are our models if they fail us in situations
where rapid adaptation is the most crucial?

Recently there has been optimism around using techniques from machine learning, such
as deep reinforcement learning [35, 2, 60, 61], to tackle these grand challenges. These
approaches have shown great promise in automatically generating complex behaviors for
high-dimensional hardware platforms and, at least in principle, can learn to improve per-
formance by learning directly from real-world data, eschewing the need for a structured
representation of the system dynamics. The current state-of-the art in quadrupedal locomo-
tion is dominated by ‘sim-to-real’ reinforcement learning approaches [77, 40, 39] which train
walking controllers under a wide range of perturbations to the nominal dynamics model in
simulation and then train the resulting controller in the real world.

However, despite a number of impressive demonstrations over the last few years, the
real world performance of these methods leaves room for improvement and it is extremely
di�cult to modify the real-world behavior of these black box approaches. As stated above,
one possibility is to learn directly from real world data, using a fine-tuning strategy to
improve a nominal controller that was designed in simulation. However, in current practice
reinforcement learning approaches remain too data-ine�cient, di�cult to tune, and prone to
robustness issues to be seen as a reliable engineering tools.

The goal of this dissertation is to reconcile these black-box techniques with analytical
design principles from control theory, demonstrating how insights gleaned from simplified
approximate dynamics models can be used to design data-driven control strategies which
are scalable, interpretable and robust by design. In particular, this dissertation draws on
tools from geometric control, optimal control and machine learning. Before providing an
overview of the dissertation, we will provide a brief historical overview which highlights the
strengths and weakness of these approaches.

Geometric Control, Optimal Control and Machine Learining

Geometric control is the culmination of classical ‘pen-and-paper’ approaches to controller
synthesis, and loosely refers to a broad suite of analytical techniques [91, 41]. The roots of
these approaches can be traced back to foundational perspectives from mechanics, such as
those of Lagrange, Hamilton and d’Alembert, and are the natural evolution of early systems
approaches based on frequency domain analysis and later the linear state-space approach
of Kalman [51]. These approaches explicitly leverage known structures in the dynamics to
hand-design a controller for a specific system and task.

By using hierarchies of structured feedback patterns to simplify the form of closed loop
dynamics, these approaches make it possible to plan with simplified dynamics models [103].
These techniques are often inherently robust and the analysis needed to implement these
methods means they are often amenable to simple, constructive robustness and safety anal-

CHAPTER 1. BACKGROUND AND MOTIVATION 3

ysis. However, the analytic power of geometric control is also the source of its greatest
limitations, as the analysis required to write a controller down by hand quickly becomes
intractable for high-dimensional systems which are required to perform highly dynamic or
intricate tasks.

Optimal control refers to a broad set of synthesis techniques which automatically generate
a control strategy by optimizing a user specified cost over the space of system trajectories.
This includes methods such as model predictive control [66], dynamic programming [14]
and even modern reinforcement learning approaches [36]. These approaches are attractive
because, at least in principle, they enable the user to encode complex specifications, such as
closed-loop stability or safety with cost functions which are relatively simple to write down.

Optimal control also has a long analytical history that can be traced back to the origins of
functional analysis and the pillars of classical mechanics mentioned above. Before the advent
of digital computers the synthesis of an optimal control also required detailed ‘pen and paper
’calculations which often required understanding the interaction between the structure of the
system and the performance objective that the user wrote down. For example, by studying
variations on the in the famous Brachistochrone problem, engineers have been able to design
counter-intuitive high-performance optimal trajectories for jet fighters [18].

In it’s modern form, optimal control is founded on basic principles, such as Bellman’s
dynamic programming principle [11] and Pontryagins maximum principle [80], which are
used as the basis for computational approaches to controller synthesis. In principle these
approaches can satisfy the attendant optimality conditions automatically by iteratively up-
dating the control strategy. With the ever-growing availability of computational resources
over the last few decades, approaches which can scale with these resources have become the
dominant optimal control paradigm for controlling complex high-dimensional robotic sys-
tems. As this has happened optimal control has moved further and further away from its
analytical roots towards a black-box design philosophy.

This shift in philosophy has come with key advantages and disadvantages. As discussed
above, as the robotics community has driven towards controlling more and more complex
hardware platforms, it has become intractable to analyze every feature of the closed-loop
dynamics by hand. Black-box approaches free engineers from having to design every facet
of the closed loop dynamics by hand as, at least in principle, methods such as nonlinear
model predictive control and reinforcement learning can automatically generate stabilizing
controllers. On the other hand, because we do not have convergence proofs for these ap-
proaches, except in the special case of linear dynamics and convex costs [26], tuning the cost
functions, initializations and hyper parameters for these approaches to induce the desired
behavior remains a time consuming process driven by trial and error, even when working in
simulated environments where the dynamics are assumed to be known.

Recently we have also seen a push towards data-driven controller synthesis techniques
which can bridge the gap between our simulation models and the real world. This has
combined with the trends in optimal control discussed above, naturally culminating in an
intense interest focus on data-driven optimal control methods. For example, there have

CHAPTER 1. BACKGROUND AND MOTIVATION 4

been numerous studies on data-driven model predictive control [86] techniques over the
last decade, which are also sometimes called model-based reinforcement learning methods
in the machine learning literature [72]. The set of techniques which have garnered the
most attention are neural-network based model-free reinforcement learning methods [60, 36],
which e↵ectively learn a controller from sequences of input-output data collected from the
plant. The incorporation of machine learning techniques has pushed the black-box nature of
nonlinear optimal control approaches to an extreme, completely removing the need to reason
about the structure of a dynamics model, but requiring engineers to to tune extra layers of
unintuitive hyperparameters associated to the learning components of the stack. Moreover,
because these approaches do not leverage known structures in the dynamics, the rate at
which they learn from real-world data is significantly slower than approaches like adaptive
control, which is built around a structured representation of the system dynamics [91].

Overview of Dissertation

The central thesis underlying this dissertation is that the analytical roots of optimal control
need to be reworked to make the theory capable of guiding the design and implementation of
scalable computational and data-driven approaches. Through three illustrative vignettes, the
dissertation demonstrates how concepts from geometric control can be used to leverage known
structures in approximate simplified dynamics models to design optimization and learning
problems which are easier to solve and intuitive for engineers to manipulate. In each of these
approaches, concepts from control theory are used to gain insights into the global structure
of optimization-based controller synthesis problems. An emphasis is place on leveraging
invariants which remain valid under reasonable forms of dynamics uncertainty, while leaving
room of the optimization and learning to overcome the complexity of unmodeled, highly
nonlinear dynamics. In short, this dissertation uses optimal control theory as a unifying
framework for ‘pen and paper’ and ‘black-box’ approaches to controller synthesis, enabling
engineers to leverage the strengths of both design philosophies.

The design principles introduced in the dissertation can be summarized with the following
interconnected themes:

1. Embedding Model-based Structures in Reinforcement Learning Objectives: This
leads to learning problems that are interpretable, easier to solve, and have built-in
algorithm-agnostic robustness guarantees. This theme is exemplified by the work in
Chapters 2, 4 and 5.

2. Building up Reinforcement Learning Strategies Around Approximate Models:

Rather than learning to control the system from scratch, this approach enables RL al-
gorithms to leverage structural information contained in approximate dynamics models
and known feedback architectures. This theme is exemplified by the work in Chapter
3.

CHAPTER 1. BACKGROUND AND MOTIVATION 5

3. Towards a Qualitative and Quantitative Theory for Nonlinear Optimal Control:
This work investigates how the inherent geometry of nonlinear systems leads to funda-
mental limitations for optimization-based and data-driven control, laying theoretical
foundations that guide the use of these methods as engineering tools. This theme is
exemplified in Chapters 4 and 5.

The technical content of the thesis in Chapters 2-5 is summarized as follows:

1. Chaper 2 – Lyapunov Design for Robust and E�cient Robotic Reinforce-
ment Learning: A key challenge in robotics is reasoning about the behavior a con-
troller will produce over long time horizons. This is because important system prop-
erties such as stability and safety are defined over infinite intervals of time. Design
techniques from geometric control explicitly leverage known system structures to de-
sign controllers with desirable long-term behaviors, but break down in situations where
there are significant unmodeled dynamics. In principle, RL can handle unmodeled dy-
namics by learning directly from real-world data. However, in current practice learning
desirable long-horizon behavior requires solving a problem with a large discount factor,
a hyperparameter that controls how far into the future the algorithm plans and that
correlates with the amount of data needed to solve the problem.

The work in this chapter demonstrates how to leverage approximate dynamics models
and design techniques from geometric control to design RL objectives that have de-
sirable long-horizon behaviors baked-in. In particular, the introduced approach uses
an approximate control Lyapunov function designed using the approximate model to
‘supervise’ reinforcement learning methods. This approach 1) accelerates the conver-
gence of reinforcement learning methods and provides algorithmic agnostic robustness
guarantees and 2) enables the learning to ‘correct’ the approximate control Lyapunov
function designed by the user using real-world data.

2. Chapter 3 – Reinforcement Learning with Simple Models and Low-Level
Feedback Controllers: Another key challenge in data-driven optimal control is un-
derstanding how changes in the control policy a↵ect the user-specified objective over
long time horizons. Popular RL methods attempt to learn this from scratch by es-
timating the policy gradient, i.e. the gradient of the objective with respect to the
parameters of the control policy. Model-based approaches to calculating the policy
gradient involve 1) using real-world data to fit an unstructured dynamics model and
2) taking derivatives through the model and controller. While these approaches are
very data-e�cient, small inaccuracies in approximate models quickly compound when
calculating the policy gradient over longer time horizons. Moreover, the unstructured
neural network dynamics models typically used for high-dimensional systems often
have poorly behaved derivatives, which leads to erratic policy gradient estimates. In
contrast, model-free approaches to estimating the policy gradient bypass these chal-
lenges completely but are extremely data-ine�cient. Both of these approaches also

CHAPTER 1. BACKGROUND AND MOTIVATION 6

su↵er from the ‘exploding-gradients’ problem, which causes long-horizon policy opti-
mization problems to become ill-conditioned. This makes tuning the hyperparameters
for these methods extremely di�cult and fundamentally limits the rate of convergence
these approaches can achieve.

This chapter demonstrates how to produce precise policy gradient estimates over long
time horizons using a structured, physics-based approximate dynamics model with
known feedback patterns. The first step in the proposed design process is to explicitly
embed a family of low-level tracking controllers into the policy class. For example, in
the hierarchical design examples considered, a neural network outputs the parameters
of a spline which the low-level tracking controller then attempts to track. Next, a policy
gradient estimator is introduced which 1) uses the current policy to collect trajecto-
ries from the real-world system and 2) takes derivatives through the structured model
and overall control architecture (including the low-level controller). This approach has
several key benefits. Taking derivatives through a structured model ensures policy gra-
dient estimates do not fluctuate wildly. Moreover, di↵erentiating through the low-level
controllers a) automatically corrects for errors in the dynamics model to produce policy
gradient estimates with reduced bias and variance, and b) leads to well-conditioned
optimization landscapes.

3. Chapter 4 – Computational Bottlenecks for Global Search Methods: This
chapter investigates how the geometric structure of a control system can make it fun-
damentally di�cult for dynamic programming methods to synthesize a controller that
achieves certain objectives. In particular, this chapter studies a two degree of free-
dom cost design process which captures the main ingredients practitioners consider
when designing cost functions for optimal control problems. A key step in the design
process is choosing what ‘outputs’ of the system, i.e. features, appear in the cost
function. In geometric control, the choice of outputs can lead to what is called either
‘minimum-phase’ or ‘non-minimum-phase’ behavior, depending on how the outputs in-
teract with the inherent geometry of the system. Non-minimum-phase behavior leads
to di�culties for classical geometric control techniques and appears in many appli-
cation domains including flight, driving and bipedal locomotion. It is demonstrated
that non-minimum-phase behavior fundamentally limits the space of design decisions
available to the user and leads to fundamental limitations for dynamic programming
methods and, as a byproduct, model predictive control schemes. In particular, non-
minimum-phase behavior is show to lead to computational bottlenecks for nonlinear
optimal control which lower bound how di�cult it is to obtain a stabilizing controller
using these methods.

4. Chapter 5 – The Stability of Nonlinear Receding Horizon Control with
Local Descent Methods: Model predictive control (MPC) strategies repeatedly
solve finite-horizon trajectory optimization problems to choose what inputs to apply to
the system. Typical stability results require that a (nearly) globally optimal solution

CHAPTER 1. BACKGROUND AND MOTIVATION 7

can be found for each of these optimization problems. However, when the system
dynamics are nonlinear these problems are non-convex, and the local search algorithms
typically used in practice cannot guarantee a globally optimal solution. In particular,
techniques such as gradient descent can only be guaranteed to find (approximate)
stationary points for each planning problem. This chapter provides geometric su�cient
conditions to ensure that the chosen cost function will lead local search algorithms to
stabilize the system. Counterexamples demonstrate that when cost functions are not
designed properly, MPC schemes can fail to be stabilizing. Connections are drawn
to feedback linearization, which is perhaps the most well-studied concept from the
geometric control literature.

Organization: Each of the technical chapters are written in a self-contained fashion,
including notational preliminaries and relevant related work. Directions for immediate follow
up work to each of the vignettes is discussed in the corresponding chapter, while Chapter 6
provides a retrospective on the dissertation and discusses new directions to be addressed in
the future.

8

Chapter 2

Lypunov Design for Robust and
E�cient Robotic Reinforcement
Learning

A key challenge in robotics is reasoning about the long-horizon behavior induced by a control
policy. This is because important system properties such as stability are inherently long-
horizon phenomena. In reinforcement learning (RL), the discount factor implicitly controls
how far into the future policy optimization algorithms plan when optimizing the objective
specified by the user. Standard approaches to designing objective functions for robotic RL,
such as penalizing the distance to a reference trajectory, inherently require a large discount
factor to learn control policies which stabilize the system [81, 30]. Unfortunately, problems
with large discount factors can be extremely di�cult to solve, often requiring vast data sets
and careful tuning of hyper-parameters [28, 14]. As a number of recent success stories have
demonstrated [59, 55, 76, 77, 62, 10], ever-increasing computational resources can be used to
solve these problems in simulation and deploy the resulting controllers directly on the real-
world system. However, because it is impractical to model every detail of complex hardware
platforms, achieving the best performance will require learning from real-world data.

This Chapter introduces a cost-shaping framework which enables users to reliably learn
stabilizing control policies with small amounts of real-world data by solving problems with
small discount factors. Our approach uses Control Lyapunov Functions (CLFs), a standard
design tool from the control theory literature [8, 99, 6, 7]. CLFs are ‘energy-like’ functions for
the system which reduce the search for a stabilizing controller to a myopic one-step criterion.
In particular, any controller which decreases the energy of the CLF at each instance of time
will stabilize the system. Thus, CLFs reduce the long-horizon objective of stabilizing the
system to a simple one-step condition. When a CLF is available and the dynamics are known,
constructive techniques from the control literature can be used to synthesize a stabilizing
controller [99, 6, 7]. However, when there is uncertainty in the dynamics, it is di�cult to
guarantee that a controller will always decrease the value of the CLF, or that we have even

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 9

designed a true CLF for the system.

Our approach is to 1) design an approximate CLF for the real-world system using an ap-
proximate dynamics model and 2) modify the ‘standard’ choice of cost functions mentioned
above by adding a term which incentivizes controllers which decrease the approximate CLF
over time. This technique e↵ectively uses the approximate CLF as supervision for reinforce-
ment learning, enabling the user to embed known system structures into the learning process
while retaining the flexibility of RL to overcome dynamics which are di�cult or impractical
to model. Indeed, as our analysis demonstrates, when our approach is used reinforcement
learning algorithms implicitly learn to ‘correct’ the approximate CLF provided by the user.
When the candidate CLF is close to being a true CLF for the system (in a sense we make
precise below), a stabilizing controller can be e�ciently learned by solving a problem with
a small discount factor. Moreover, the addition of the approximate CLF ‘robustifies’ the
search for a stabilizing controller by ensuring that even highly suboptimal policies will sta-
bilize the system. Finally, in situations where it is too di�cult to design a nominal CLF by
hand, we demonstrate how one can be learned using a simulation model and the standard
style of RL objective discussed above. Specifically, we use the value function learned by
the RL algorithm as an approximate CLF for the real-world system. Altogether, beyond
accelerating and robustifying RL, our approach also expands the applicability of CLF-based
design techniques to situations where is di�cult to write down a true CLF for the real-world
system.

The primary application of our design technique is to develop data-e�cient fine-tuning
strategies, wherein a nominal controller developed using a simulation model is refined with
small amounts of real-world data. We consider a wide range of analytival CLF design tech-
niques, including CLFs which are designed using a linearized reduced-order model for the
system and the hybrid systems approach to designing CLFs for dynamic walking which was
introduced in [7]. We also demonstrate how, in cases where it is too di�cult to write down a
CLF by hand, an approximate CLF can be learned with reinforcement learning in simulation
by using the value function associated to a problem with the typical style of cost described
above and a large discount factor.

2.1 Background and Problem Setting

Throughout the chapter we will consider deterministic discrete-time systems of the form:

xk+1 = F (xk, uk), (2.1)

where xk 2 X ⇢ Rn is the state at time k, uk 2 U ⇢ X is the input applied to the
system at that time, and F : X ⇥ U ! Rn is the transition function for the system. This
general nonlinear model is broad enough to cover many important continuous control tasks
for robotics. We will let ⇧ denote the space of all control polices ⇡ : X ! U for the system.
To ease exposition, for our theoretical analysis we will focus on the case where the goal is

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 10

to stabilize the system to a single point, namely the origin. Through our examples we will
demonstrate how our cost-shaping technique can be leveraged to achieve more complicated
tasks, and in Section 2.4 we outline a path for extending our theoretical results to these
settings in future work. Here, we review basic notions of stability that are required for the
chapter and introduce control Lyapunov functions.

Asymptotic Stability and Lyapunov Theory

Next, we briefly introduce the elements from stability theory and Lyapunov theory which
we use extensively throughout the chapter.

Notation and Terminology

We say that a function W : Rn ! R is positive definite if W (0) = 0 and W (x) > 0 if x 6= 0.
Let ↵ : [0,1) ! [0,1) be a continuous function. We say that ↵ is in class K (denoted
↵ 2 K) if ↵(0) = 0 and ↵ is strictly increasing. If in addition we have ↵(r) ! 1 as r ! 1
when we say that ↵ is in class K1 (denoted ↵ 2 K1). Let � : [0,1)⇥ [0,1) be a continuous
function. We say that � is in class KL if for each fixed t 2 [0,1) the function �(·, t) is in
class K and for each fixed r 2 [0,1) we have �(r, t) ! 0 as t ! 1.

Basic Stability Results

Definition 1. We say that the closed loop system xk+1 = F (xk, ⇡(xk)) is asymptotically
stable on the set D ⇢ Rn if there exists � 2 KL such that for each initial condition x0 2 D
and k 2 N the closed-loop trajectory satisfies:

kxkk2 �(kx0k2, k). (2.2)

Analogously, if the preceding condition holds then we say that ⇡ asymptotically stabilizes
(2.1).

In words, the definition says that ⇡ asymptotically stabilizes (2.1) if all trajectories of
the closed-loop system xk+1 = F (xk, ⇡(xk)) converge to the origin. Asymptotic stability
is a di�cult property to verify directly as it requires reasoning about the infinite-horizon
behavior of trajectories. Lyapunov functions are a powerful analysis tool which can verify
asymptotic stability with a ‘one-step’ criterion:

Definition 2. We say that the positive definite function W : Rn ! R is a Lyapunov function
for the closed-loop system xk+1 = F (xk, ⇡(xk)) if for each x 2 Rn we have:

W (F (x, ⇡(x)))�W (x) < 0. (2.3)

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 11

Intuitively, the Lyapunov function W can be thought of as an energy-like function for
the closed loop system xk+1 = F (xk, ⇡(xk)). In this light, the condition (2.3) ensures that
the ’energy’ of the closed-loop system is decreasing at each point in the state-space. This
condition guarantees that the closed-loop system is asymptotically stable [90], and is a simple
algebraic condition.

Control Lyapunov Functions

Control Lyapunov Functions [8, 99, 6, 7] extend the notion of a Lyapov function to a con-
trolled, open-loop system:

Definition 3. We say that a positive definite function W : Rn ! R is a Control Lyapunov
Function (CLF) for (2.1) if the following condition holds for each x 2 X\{0}:

min
u2U

W (F (x, u))�W (x) < 0. (2.4)

The condition (2.4) ensures that for each x 2 X there exists a choice of input which de-
creases the ‘energy’W (x). Any policy which satisfies the one-step conditionW (F (x, ⇡(x)))�
W (x) < 0 can be guaranteed to asymptotically stabilize the system [52]. Note that while
control Lyapunov functions are defined formally for the open-loop dynamics (2.1), a Lya-
punov function is defined for a particular set of closed-loop dynamics. That is, a control
Lyapunov function W for the open-loop dynamics xk+1 = F (xk, uk) becomes a Lyapunov
function for the closed-loop dynamics xk+1 = F (xk, ⇡(xk)) which can be used to verify the
asymptotic stability of the closed-loop dynamics.

Given a CLF for the system, model-based methods constructively synthesize a controller
which satisfies this property using either closed-form equations [99] or by solving an online
(convex) optimization problem [29, 7] to satisfy (2.4)1.

While there is no general procedure for designing CLFs by hand for general nonlinear sys-
tems, there do exist constructive procedures for designing CLFs for many important classes
of robotic systems, such as manipulator arms [6] and robotic walkers [7] using structural
properties of the system. Moreover, in our examples we will investigate how a CLF can
be learned from a simulation model and how very coarse CLF candidates can be used to
accelerate learning a stabilizing controller.

Stability of Dynamic Programming and Reinforcement Learning

Here we investigate how a common class of cost functions found in the literature can be used
to learn stabilizing controllers. In particular, we consider a running cost ` : X ⇥ U ! R of

1It is worth noting that the majority of model-based approaches actually formulate CLF-based con-
troller in continuous time, and then sample the resulting controller to produce implementable discrete-time
controllers. Here, we have chosen to define CLFs directly in discrete time, as this enables us to be more
consistent with standard terminology and notation in the reinforcement learning literature.

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 12

the form `(x, u) = Q(x) + R(u), where Q : X ! R is the state cost and R : U ! R is the
input cost. Both Q and R are assumed to be positive definite (in practice, both are usually
quadratic).

Given a policy ⇡ 2 ⇧, discount factor � 2 [0, 1], and initial condition x0 2 X , the
associated long-run cost is:

V ⇡
� (x0) =

1X

k=0

�k`(xk, ⇡(xk)) (2.5)

s.t. xk+1 = F (xk, ⇡(xk)),

where V ⇡
� : X ! R [{1} is the value function associated to ⇡.

Small discount factors incentivize policies which greedily optimize a small number of time-
steps into the future, while larger discount factors promote policies which reduce the cost in
the long-run. We say that a policy ⇡⇤

� 2 ⇧ is optimal if it achieves the smallest cost from
each x 2 X :

V
⇡⇤
�

� (x) = V ⇤
� (x) := inf

⇡2⇧
V ⇡
� (x), 8x 2 X ,

where V ⇤
� : X ! R [{1} is the optimal value function. To ease exposition throughout the

chapter, we will make the following standing Assumptions which are understood to hold even
if they are not referenced.

Assumption 1. For each � 2 [0, 1] the optimal value function V ⇤
� is continuous and bounded

on bounded sets.

Assumption 2. For each � 2 [0, 1] there exists at least one optimal policy associated to the
cost (2.5).

These assumptions are standard in the literature, and enable us to avoid certain technical
pathologies which would detract from the main results of the chapter. We refer the reader to
[81] for a discussion on conditions which will ensure these assumptions hold. Note that these
assumptions imply that the there is at least on control policy which stabilizes the system,
as if this were not the case then all control policies would incur an infinite cost from some
bounded initial condition.

Under these conditions, is well-known [14] that the optimal value function will satisfy the
Bellman equation:

V ⇤
� (x) = inf

u2U

⇥
�V ⇤

� (F (x, u)) + `(x, u)
⇤
, 8x 2 X , (2.6)

and an optimal policy ⇡⇤
� will satisfy

⇡⇤
�(x) 2 argmin

u2U

⇥
�V ⇤

� (F (x, u)) + `(x, u)
⇤
, 8x 2 X .

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 13

Unfortunately, it is impractical to directly search over ⇧ to find a policy which meets these
conditions. This necessitates the use of function approximation schemes (e.g. feed-forward
neural networks) to instead represent a subset of policies ⇧̂ ⇢ ⇧ to search over. Indeed,
modern RL approaches for robotics randomly sample the space of trajectories to optimize
problems of the form:

inf
⇡2⇧̂

Ex0⇠X0

⇥
V ⇡
� (x0)

⇤
, (2.7)

where X0 is a distribution over initial conditions. While this approach enables these methods
to optimize high-dimensional policies, they are data-hungry, can display high-variance and
thus frequently return highly sub-optimal policies when data is limited. To better understand
the e↵ect that this has on the stability of learned policies, for each ⇡ 2 ⇧̂ and � 2 [0, 1]
define the optimality gap:

✏⇡�(x) = V ⇡
� (x)� V ⇤

� (x).

The temporal di↵erence equation [14] dictates that for each x 2 X the policy satisfies:

V ⇡
� (x) = �V ⇡

� (F (x, ⇡(x))) + `(x, ⇡(x)). (2.8)

From these equations we can obtain:

V ⇡
� (F (x, ⇡(x)))� V ⇡

� (x) =
1

�

�
� `(x, ⇡(x)) + (1� �)V ⇡

� (x)
�

(2.9)

=
1

�

�
� `(x, ⇡(x)) + (1� �)[V ⇤

� (x) + ✏⇡�(x)]
�

(2.10)

 1

�

�
�Q(x) + (1� �)[V ⇤

� (x) + ✏⇡�(x)]
�
, (2.11)

where we have first rearranged (2.8), then used V ⇡
� (x) = V ⇤

� (x) + ✏⇡�(x), and finally we have
used `(x, ⇡(x)) � Q(x). Inequalities of this sort are the building block for proving the
stability of suboptimal polices in the dynamic programming literature [30, 81].

By inspecting the cost (2.5) we see that V ⇡
� is positive definite (since Q is positive definite).

Thus, if the right-hand side of (2.11) is negative for each x 2 X \ {0}, this inequality shows
that V ⇡

� is a CLF for (2.1), and that ⇡ is an asymptotically stabilizing control policy. In
other words, V ⇡

� is a CLF which is implicitly learned during the training process. Indeed,
many RL algorithms directly learn an estimate of the value function, a fact which we later
exploit to learn a CLF for in cases where it is too di�cult to write one down by hand.

Note that the right hand side of (2.11) will only be negative if

V ⇤
� (x) + ✏⇡�(x) <

1

1� �
Q(x). (2.12)

Since from (2.5) we know that V ⇤
� (x) > Q(x) for each x 2 X , even the optimal policy (which

has no optimality gap) will only be stabilizing if � is large enough. On the other hand,
for a fixed � 2 (0, 1], this inequality also quantifies how sub-optimal a policy can be while
maintaining stability. To make these observations more quantitative we make the following
assumption:

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 14

Assumption 3. For each � 2 [0, 1] there exists C� � 1 such that V ⇤
� (x) C�Q(x) for each

x 2 X .

Growth conditions of this form are standard in the literature on the stability of approx-
imate dynamic programming [64, 81, 30, 31]. Note that, because the running cost ` is
non-negative, we have C�0 C�00 if �0 �00. In particular, the constant C1 upper-bounds
the ratio between the one-step cost and the optimal undiscounted value function. When C1

is smaller, the optimal undiscounted policy is more ‘contractive’ and approximate dynamic
programming methods converge more rapidly to an optimal solution [64]. Thus, intuitively
the constants C� � 1 will be smaller when the system is easier to stabilize. The following
result is essentially a specialization of the main result from [31]:

Proposition 1. Let Assumption 3 hold and let � 2 [0, 1] and ⇡ 2 ⇧ be fixed. Further
assume that there exists � > 0 such that for each x 2 X we have i) ✏⇡�(x) �Q(x) and ii)
C� + � < 1

1�� . Then, ⇡ asymptotically stabilizes (2.1).

Proof. Combining conditions i) and ii) with equation (2.11) yields:

V ⇡
� (F (x, ⇡(x)))� V ⇡

� (x)
1

�

�
� 1 + (1� �)[C� + �]

�
Q(x).

Thus the RHS of the preceding equation will be negative-definite if C� + � < 1
1�� , which

demonstrates the desired result.

Remark 1. (Stability Properties of the Cost Function) In the following section we will derive
an analogous result to Proposition 1 for the novel reshaped cost function we propose below.
When comparing these results we will primarily focus on the e↵ect of the constants C� � 1
(and the equivalent constants for the new setting). The C� constants can be used to bound
how large of a discount factor is need to stabilize the system. In particular, Proposition 1
implies that the optimal policy will stabilize the system for each � which satisfies � > 1� 1

C�
.

The C� constants also characterizes how ‘robust’ the cost function is to suboptimal policies.
In particular, for a fixed discount factor, the policy will stabilize the system if � < 1

1�� �C�.
Thus smaller values of the C� constants permit more suboptimal policies.

2.2 Lyapunov Design for Infinite Horizon
Reinforcement Learning

Our method uses a positive definite candidate Control Lyapunov Function W : Rn ! R for
the nonlinear dynamics (2.1), and reshapes (2.5) to our proposed new long horizon cost

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 15

Ṽ ⇡
� : X ! R [{1}:

Ṽ ⇡
� (x0) =

1X

k=0

�k
✓
[W

�
F (xk, ⇡(xk))

�
�W (xk)] + `(xk, ⇡(xk))

◆
(2.13)

s.t. xk+1 = F (xk, ⇡(xk)).

As we shall see below, our method works best when W is in fact a CLF for the system, but
still provides benefits when it is only an ‘approximate’ CLF for the system (in a sense we
will make precise later). For each � 2 [0, 1] the new optimal value function is given by:

Ṽ ⇤
� (x) = inf

⇡2⇧
Ṽ ⇡
� (x). (2.14)

The new cost (2.13) includes the amount that W changes at each time step, and thus
encourages choices of inputs which decrease W over time. In this case, the Bellman equation
[14] dictates:

Ṽ ⇤
� (x) = inf

u2U

⇥
�Ṽ ⇤

� (F (x, u)) + �W (x, u) + `(x, u)
⇤
, 8x 2 X , (2.15)

where we have adopted the short had

�W (x, u) := W (F (x, u))�W (x) (2.16)

. To gain some intuition for the approach let us consider the two extremes where � = 0 and
� = 1. In the case where � = 1, by inspection we see that Ṽ ⇤

1 = V ⇤
1 �W solves the Bellman

equation. Plugging in this solution demonstrates that any optimal policy ⇡̃⇤
1 must satisfy

⇡̃⇤
1(x) 2 argmin

u2U
[V ⇤

1 (F (x, u)) + `(x, u)].

This is precisely the optimality condition for the original cost (2.5) when � = 1, and thus
the set of optimal policies for the two problems coincide. Thus, in this case, by embedding
the CLF in the cost we are e↵ectively using W as a warm-start initial guess for the optimal
value function.

In the other extreme where � = 0, from (2.15) we see that an optimal policy must satisfy

⇡̃⇤
0(x) 2 argmin

u2U

⇥
�W (x, u) + `(x, u)

⇤
.

Thus, in this extreme the optimal policy myopically decreases the value of the CLF, weighted
against the cost of the the input that is required to do so. Intuitively, when � = 0 our
objective function is similar to an imitation learning objective, while when � = 1 the objective
is more similar to the long horizon objectives typically used in reinforcement learning.

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 16

Stabilty Analysis

Thus, when � = 0 the optimal policy attempts to greedily decrease the value of the candidate
CLF and the one-step cost on the input. As we shall see below, when intermediate discount
factors are used, optimal policies may instead decrease the value of W over the course of
several steps.

Using the new cost function (2.13), each policy must satisfy the new di↵erence equation:

Ṽ ⇡
� (x) = �Ṽ ⇡

�

�
F (x, ⇡(x))

�
+W

�
F (x, ⇡(x))

�
�W (x) + `(x, ⇡(x)). (2.17)

In our stability analysis, we will use the following composite function as a candidate CLF
for (2.1):

Ṽ⇡

�(x) = W (x) + �Ṽ ⇡
� (x). (2.18)

We provide an interpretation of this curious candidate CLF in Remark 2 below, but first
perform an initial analysis similar to the one presented in the previous section. Defining for
each ⇡ 2 ⇧̂, � 2 [0, 1] and x 2 X the new optimality gap:

✏̃⇡�(x) = Ṽ ⇤
� (x)� Ṽ ⇡

� (x), (2.19)

and following steps analogous to those taken in (2.9)-(2.11), we can obtain the following:

Ṽ⇡

�

�
F (x, ⇡(x))

�
� Ṽ⇡

�(x) = �`(x, ⇡(x)) + (1� �)Ṽ ⇡
� (x) (2.20)

= �`(x, ⇡(x)) + (1� �)
⇥
Ṽ ⇤
� (x) + ✏̃⇡�(x)

⇤
(2.21)

 �Q(x) + (1� �)
⇥
Ṽ ⇤
� (x) + ✏̃⇡�(x)]. (2.22)

Similar to the analysis in the previous section, we will aim to understand when the right-hand
side of (2.22) is negative, as this will characterize when ⇡ stabilizes the system. One key
di↵erence between the inequalities (2.11) and (2.22) is that, while the original value function
V ⇤
� is necessarily positive definite, Ṽ ⇤

� can actually take on negative values since the addition
of the CLF term allows the new running cost in (2.13) to be negative. As we shall see, this
forms the basis for the stability and robustness properties our cost formulation enjoys when
W is designed properly. Similar to before, we will make the following standing Assumptions
throughout the rest of the chapter:

Assumption 4. For each � 2 [0, 1] the optimal value function Ṽ ⇤
� is continuous and bounded

on bounded sets.

Assumption 5. For each � 2 [0, 1] there exists at least one optimal policy associated to the
cost (2.13).

Remark 2. (Learning Corrections to W) When the right hand side of (2.22) is negative for
each x 2 X \{0}, inequality (2.22) demonstrates that Ṽ⇡

� is in fact a CLF for (2.1) and that
⇡ stabilizes the system (see Theorem 1). We can think of W as an ‘initial guess’ for a CLF

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 17

for the system, while �Ṽ ⇡
� is a ‘correction’ to W that is implicitly made by a learned policy

⇡. Roughly speaking, the larger the discount factor, the larger this correction. Thus, the user
can trade-o↵ how much the learned policy is able to correct the candidate CLF W against
the additional complexity of solving a problem with a higher discount factor, depending on
how ‘good’ they believe the CLF candidate to be.

We first state a general stability result for suboptimal policies associated to the new cost,
and then discuss how the choice of W a↵ects the stability of suboptimal control policies:

Assumption 6. For each � 2 [0, 1] there exists C̃� 2R such that Ṽ ⇤
� (x) C̃�Q(x) for each

x 2 X .

Because the reshaped one-step cost W (F (x, u)) � W (x) + `(x, u) can take on negative
values, so can the C̃� constants. Moreover, in this case it is possibe to have C̃�0 � C̃�00 when
�0 �00. This is because when larger discount factors are used, the optimal policy can benefit
from decreasing W further into the future, even when W is not a true CLF for the system
that can be decreased at every time-step.

Before stating our main stability result, which uses the function V⇡
� to certify the stabilty

of the closed-loop system, we first need to verify that this function is a valid candidate
Lyapunov function. Namely, we must ensure that it is positive definite:

Lemma 1. The composite function Ṽ⇡

� = W + �Ṽ ⇡
� : X ! R [{1} is positive definite.

Proof. Note that we can re-write the reshaped cost (2.13) as

Ṽ ⇡
� (x0) =

1X

k=0

�k
✓
[W (xk+1)�W (xk) + `(xk, ⇡(xk))]

◆
, (2.23)

where {xk}1k=0 is the state trajectory generated by the policy ⇡ from the initial condition
x0 2 X . By rearranging terms we can rewrite this expression as:

Ṽ ⇡
� (x0) = �W (x0) + (1� �)

1X

k=0

�kW (xk+1) +
1X

k=0

�k`(xk, ⇡(xk)) > �W (x0) +Q(x0) (2.24)

where we have used the fact that W and ` are both non-negative, and that `(x0, ⇡(x0)) >
Q(x0). Thus, using this expression we see that

Ṽ⇡

�(x0) = W (x0) + �Ṽ ⇡
� (x0) > (1� �)W (x0) + �Q(x0), (2.25)

Since Q and W are assumed to be positive definite functions this demonstrates that V⇡
� is

in fact positive definite, since a convex combination of positive definite functions is positive
definite. The proof is concluded by noting that the choice of � and ⇡ is arbitrary, and thus
the conclusion that V⇡

� is positive definite holds for all policies and discount factors.

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 18

With this result established, we can now introduce our main result, which is analogous
to Theorem 1 but for the reshaped cost:

Theorem 1. Let Assumption 6 hold and let � 2 [0, 1] and ⇡ 2 ⇧̂ be fixed. Further assume
that there exists �̃ > 0 such that for each x 2 X we have i) ✏̃⇡�(x) �Q(x) and ii) C̃� + �̃ <
1

1�� . Then, ⇡ asymptotically stabilizes (2.1).

Proof. Combining conditions i) and ii) with equation (2.22) yields:

V⇡
�(F (x, ⇡(x)))� V⇡

�(x)
�
� 1 + (1� �)[C̃� + �̃]

�
Q(x).

Thus the RHS of the preceding equation will be negative-definite if C̃� + �̃ < 1
1�� , which

demonstrates the desired result.

As alluded to in Remark 1, we will primarily focus on comparing how large the constants
C� � 1 and C̃� 2 R are for the two problems, as they control the discount factor required
to learn a stabilizing policy and also the ‘robustness’ of the cost to suboptimal controllers.
We provide two characterizations which ensure that C̃� < C�. The first condition is taken
from the model-predictive control literature [44, 34], where CLFs are used as terminal costs
for finite-horizon prediction problems.

Lemma 2. Suppose that for each x 2 X the following condition holds:

inf
u2U

W (F (x, u))�W (x) + `(x, u) 0. (2.26)

Then Assumption 6 is satisfied with constant C̃� 0.

Proof. Consider a policy ⇡̄ 2 ⇧ defined for each x 2 X by:

⇡̄(x) 2 arg inf
u2U

W (F (x, u))�W (x) + `(x, u) 0, (2.27)

where the preceding inequality follows directly from the assumptions made in the Lemma.
Next, for a given initial condition x0 2 X let {xk}1k=0 be the state trajectory generated by
⇡̄. The corresponding reshaped cost is given by

Ṽ ⇡̄
� (x0) =

1X

k=0

�k
✓
[W

�
F (xk, ⇡̄(xk))

�
�W (xk)] + `(xk, ⇡̄(xk))

◆
(2.28)

1X

k=0

�k(0) (2.29)

 0, (2.30)

which demonstrates the desired result, since the initial condition and discount factor were
chosen arbitrarily.

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 19

The hypothesis of Lemma 2 implies that i) W is a true CLF for the system and ii) W
dominates the running cost `, in the sense that W can be decreased more rapidly than `
accumulates at each time-step. E↵ectively, this condition implies that it is advantageous
for polices to myopically decrease W at each time step. Consequently, when this condition
holds optimal policies associated to the reshaped costs (2.13) will stabilize the system for
any choice of discount factor. Thus, in this case the user has the freedom to either chose a
small discount factor and rapidly learn a controller which decreases the value of the CLF, or
choose a large discount factor to learn better long-horizon behavior.

The following definition generalizes this condition to cases where W may not be a true
CLF for the system but can be decreased over several time-steps:

Definition 4. We say that the candidate CLF W �̄-dominates the running cost ` if for each
discount factor �̄ � 1 and x 2 X we have Ṽ ⇤

� (x) V ⇤
� (x).

The condition in (4) e↵ectively provides a way of characterizing how ‘close’ W is to being
a true CLF for the real-world system. In particular, the larger �̄ the further into the future
RL algorithms must look to see the benefits of decreasing W . Our previous discussion, which
showed that Ṽ ⇤

1 = V ⇤
1 �W , demonstrates that every candidate CLF 1-dominates the cost.

Moreover, clearlyW can only 0-dominate the original cost if it is a CLF for the system. While
this condition is more di�cult to verify for intermediate values of �̄, it provides qualitative
insight into how even approximate CLFs for the system can still make it easier to obtain
stabilizing controllers.

Remark 3. (Robustness of reshaped cost) When the condition of Lemma 2 is satisfied we will
have C̃� 0 < C�, implying the new cost enjoys the desirable robustness properties discussed
above. When W satisfies the ‘approximate CLF’ condition in Definition (4), it will only enjoy
these benefits when the discount factor is large enough. We leave it as a matter for future
work to provide quantitative estimates for the C̃� constants in these regimes, and to provide
su�cient conditions which ensure W �̄-dominates the running cost. This will require making
additional structural assumptions about the di↵erence between the model used to design the
CLF and the real world. We have avoided this issue here, since we have explicitly focused
on cases where the form of unmodeled real-world dynamics is unknown. Indeed, our goal has
been to provide qualitative insights into how to design the fine-tuning strategies we introduce
below.

2.3 Examples and Practical Implementations

We now demonstrate through an extensive series of examples how the proposed methodology
can be used to reduce the sample complexity of obtaining a stabilizing controller. A particular
focus is given to fine-tuning strategies, wherein a CLF designed (or learned) using and
approximate dynamics model is used with our cost formulation to rapidly improve a nominal
controller.

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 20

In each of the following experiments we report, the soft actor-critic algorithm (SAC) [36]
is used as the learning algorithm to optimize the various reward structures we investigate.

Real-World Finetuning with the A1 Quadruped: We apply our approach to train a
neural network controller which augments and improves a nominal model-based controller
[24] for a quadruped robot using real-world data. For both settings, we use the locomotion
controller presented in [24, Section 3.2] as our nominal baseline controller. This controller
uses a linearized rigid-body model to formulate a quadratic-program (QP)-based controller
to track a desired body pose of the robot. Specifically, the following QP is solved to obtain
the ground reaction forces f for the feet in contact with the ground:

min
f

kMf � g̃ � q̈dkQ + kfkR (2.31)

s.t. fz � 0,

� µfz fx µfz,

� µfz fy µfz,

where M is the inverse inertia matrix of the rigid body, g̃ := [0, 0, g, 0, 0, 0] denotes the
acceleration due to gravity and q̈d 2 R6 are the desired pose accelerations of the robot’s
body. In particular, the desired accelerations are obtained using a PD controller,

q̈d = �kp(q � qd)� kd(q̇ � q̇d), (2.32)

with q 2 R6 denoting the robot’s body pose. For each expirement, the action space for
the neural network is the desired accelerations provided to the based; that is, the neural
network provides correction to the target accelerations to induce the desired behavior on the
real-world system. We consider two expiremental set-up: one where the network learns to
track a wide range of forward velocities and one where the controller learns to compensate
for an unknown load that has been attached to the robot.

Velocity Tracking Experiments

As illustrated by the pink curve in Fig. 2.2 (left), the nominal controller fails to accurately
track desired velocities specified by the user. We design a CLF around the desired gait
using a linearized reduced-order model for the system. We then collect rollouts of 10s on
the robot hardware with randomly chosen desired velocity profiles, and solve an RL problem
using our cost and a discount factor � = 0. Our approach is able to learn a policy which
significantly improves the tracking performance of the nominal controller within 5 minutes
(30 episodes) of hardware data, as shown in Fig. 2.2 (left). A video of these results can be
found in https://youtu.be/l7kBfitE5n8. Furthermore, in Fig. 2.2 (right) we benchmark our
approach in simulation against an RL agent trained with a ‘standard’ cost which penalizes the
squared error with respect to the desired velocity. As this figure demonstrates, our method
is able to rapidly decrease the average tracking error in only around 2 thousand steps from
the environment. In contrast, the benchmark approach is only able to reach this level of

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 21

Figure 2.1: We learn precise tracking policy on hardware for the Unitree A1 Quadrupedal robot [85] using
less than 20 seconds of data. A video of our experiments can be found here https://youtu.be/l7kBfitE5n8

Figure 2.2: (Left) Plot illustrating improved velocity tracking of the learned policy (in dark green)
compared to the nominal locomotion controller (in pink) to track a desired velocity profile (in
dashed black line) using our proposed method on the Unitree A1 robot hardware. (Right) Plot
from the simulated benchmark study illustrating cumulative velocity tracking error (lower is better)
over 10s rollouts at di↵erent stages of the training. In orange, we show the results of fine-tuning
using SAC with a standard RL cost. In blue, we fine-tune using SAC with our reward reshaping
method, with a candidate CLF designed on a nominal linearized model of the robot. In both cases,
we plot the results using the discount factor that achieved the best performance.

performance for the first time after around 24 thousand steps, and it takes significantly more
data to reach this level of performance consistently.

A1 Quadruped Walking with an Unknown Load:

We attach an un-modeled load to the A1 quadruped, that is equivalent to one-third the mass
of the robot. Fine-tuning on hardware the same base controller from the previous set-up
where the CLF is designed to stabilize to the target gait, our approach is able to significantly
decrease the tracking error to about one-third its nominal value with only one minute of data
collected on the robot hardware as illustrated in Fig. 2.3.

To verify that our method out-performs the baseline for this task, we run a simulated

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 22

Figure 2.3: Comparison between nominal controller and learned policy after training on 60s of real-
world data on the A1 robot with an added 10lb weight. The learned policy is able to significantly
reduce the tracking error caused by the added weight.

Figure 2.4: Cumulative gait tracking error (lower is better) over 10s rollouts at di↵erent stages of
the simulated fine-tuning benchmark comparison of the A1 quadruped with an unknown load. In
orange, we show the results of fine-tuning using SAC with a standard RL cost which penalizes the
distance to the desired gait with a discount factor of � = 0.99. In blue, we plot the performance of
our cost reshaping method with SAC and a discount factor of � = 0. For both cost formulations,
we plot the discount factor that led to the best performance.

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 23

benchmark comparison similar to the A1 simulation study for velocity tracking that was
presented in Section 3.4 of the chapter. For this case, we reproduce the unknown load
hardware experiment in simulation by adding a 10lb weight to the robot. When testing our
method, we again use SAC with the same reward formulation from the hardware experiments
above. For the baseline reward, we penalize the distance to the target that we want to track.
Figure 2.4 depicts the best results that we have been able to obtain for each cost formulation
across di↵erent discount factors and training hyper-parameters. As Fig. 2.4 depicts, our
approach quickly converges to a stable walking controller which closely tracks the references
after only around 22 thousand steps of the environment. The baseline does not match this
performance until it has had access to around 48 thousand steps, and takes much longer to
consistently approach the performance of our method.

Fine-tuning a Learned Policy for Cartpole Swing-Up:

We fine-tune a swing-up controller for the Quanser cartpole system [84] using real-world data
and an initial policy which was pre-trained in simulation but that does not translate well to
the real system. Due to the underactuated nature of the system, synthesizing a CLF by hand
is challenging. Thus, as alluded to previously, we use a ‘typical’ cost function of the form
(2.5) and a discount factor of � = 0.999 to learn a stabilizing neural network policy ⇡� for a
simulation model of the system. As discussed above, we use the value function V✓ associated
with the simulation-based policy as the candidate CLF (W = V✓) for our reward reshaping
formulation (2.13). When improving the simulation-based policy ⇡� with real-world data,
we keep the parameters of this network fixed and learn an additional smaller policy ⇡ (so
that the overall control action is produced by ⇡� + ⇡) using our proposed CLF-based cost
formulation. We solve the reshaped problem with a discount factor � = 0 and collect rollouts
of 10s on hardware.

Our CLF-based fine-tuning approach is able to successfully complete the swing-up task
after collecting data from just one rollout. After collecting data from an additional rollout,
the controller is reliable and robust enough to recover from several pushes. A video of these
experiments can be found in https://youtu.be/l7kBfitE5n8, and plots depicting the states of
the system during the successful swing-up motion can be found in 3.1.

Cartpole Fine-tuning Benchmark Comparison

As explained above, previous work has shown that using hardware data to fine-tune a policy
that has been pre-trained in simulation is a powerful approach to tackle the sim-2-real gap
problem (e.g. [98, 50, 49, 65]). These methods typically take the RL agent trained in
simulation and continue its learning process using hardware data, the original cost function
and discount factor (see e.g. [98]). In contrast, our proposed approach stops the simulation
training of u� and learns a smaller o↵set policy u from hardware data using a separate
learning process that has a di↵erent reward function r̂ (with the CLF candidate being the
learned value function in simulation) and a smaller discount factor (in this case � = 0).

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 24

Figure 2.5: We learn precise stabilizing policies on hardware for the Quanser cartpole [84] using less than
20 seconds of data. A video of our experiments can be found here https://youtu.be/l7kBfitE5n8

Figure 2.6: Comparison of the simulation results of fine-tuning a cartpole swing-up policy after
adding model mismatch. A policy trained on a nominal dynamics model of the cartpole fails when
deployed on the new dynamics. In blue, we show the results of continuing to train the agent with
the original costs and discount factor. In orange, we fine-tune using our reshaping method with
the pre-trained value function and a discount factor of � = 0. For each episode of training on the
new dynamics model, we compare the performance of both methods when running the cartpole
from 10 initial conditions: (on the left) the average original reward without the CLF term, and (on
the right) the cumulative number of successful swing-ups. The plots show the mean and standard
deviation of the results over 10 di↵erent training random seeds.

In Figure 2.6, we compare in simulation the results of using this standard fine-tuning
approach with those obtained with our method. For both approaches, we first pre-train a
policy ⇡� and value function V✓ on a nominal set of dynamics using SAC and the reward
r(xk, uk) = �0.1 (5↵2

k+p2k+0.05u2
k)�5 ·103 · (|pk| � 0.3), and then perturb the parameters

of the simulator to introduce model mismatch for the fine-tuning phase. Specifically, we
increase the weight and friction of the cart by 200%; and the mass, inertia and length of the
pendulum by a 25%. After doing this, we randomly sample 10 initial conditions around the

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 25

Figure 2.7: Experimental plots of the cart position and pendulum angle of the cartpole system.
(left) The policy trained only in simulation fails to bring the real cartpole system to the upright
position; (right) by fine-tuning the learned policy with 20s of real-world data using our CLF-based
reward function, we obtain a successful policy.

downright position (�0.05m p0 0.05m, �⇡+0.05rad ↵0 ⇡� 0.05rad, �0.05m/s
ṗ0 0.05m/s, �0.05rad/s ↵̇0 0.05rad/s). We label a trial as success if within 10
seconds of simulation, the pendulum is stabilized in the set �0.12rad < ↵ < 0.12rad,
�0.3rad/s < ↵̇ < 0.3rad/s and the cart never gets out of bounds (|p| < 0.3). The policy u�
trained with data from the nominal dynamics model does not succeed for any of the 10 initial
conditions due to the model mismatch. The baseline in Figure 2.6 is obtained by emptying
the replay bu↵er and using data from the new environment to continue the training process
of u� with the same reward r(xk, uk). On the other hand, as with the hardware experiments,
our method takes the learned value function V✓ from the nominal dynamics model and learns
an o↵set policy u using the modified reward r̂(xk, uk) = �V✓(xk, uk)�0.1·(5↵2

k+p2k+0.05u2
k).

In Figure 2.6, we plot for 10 training random seeds the average original reward r(xk, uk) and
the cumulative number of successes of the validation episodes ran from the initial conditions
mentioned above. The x axis is the number of rollouts of fine-tuning data (each rollout
consists of 10 seconds of data). As this figure clearly demonstrates, our approach is able to
more rapidly learn a reliable swing-up controller than the baseline. Moreover, as the plot on
the left displays, even though we are no longer optimizing for the original reward, by rapidly
converging to a stabilizing controller our method still performs better on the original reward
than the benchmark.

The above results show that our approach e↵ectively serves to fine-tune policies when the
dynamics of the system change. In fact, we have artificially added a severe model mismatch
and shown that we can adapt to the new dynamics with a discount factor of 0. This is because

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 26

the original value function is still a ‘good’ CLF candidate for the new system. However, if the
change in the dynamics is drastic, or if the overall shape of the motion required to complete
the task has to be greatly modified, then the value function from the original dynamics
may not be a good CLF candidate, and our method might fail. We have observed that for
the cartpole example our method is very robust to variations in the parameters of the cart
dynamics (in fact, in the above example we are multiplying both friction and mass of the
cart by a factor of 3), but that if we drastically reduce the length and mass of the pendulum
by a 50%, our method fails. We hypothesize that this might be related to the underactuated
nature of the pendulum dynamics. An interesting direction for future work would therefore
be to study under which conditions the original value function retains the CLF properties
for a new set of dynamics.

Bipedal Walking Results

Fine-tuning a Bipedal Walking Controller in Simulation: We also apply our design
methodology to fine-tune a model-based walking controller [7] for a bipedal robot with large
amounts of dynamics uncertainty. Model uncertainty is introduced by doubling the mass of
each link of the robot. The nominal controller fails to stabilize the gait and falls within a
few steps. To apply our method, we design a CLF around the target gait as in [7] to be used
in our reward formulation. As a benchmark comparison, we also train policies with a reward
which penalizes the distance to the target motion (no CLF term), as is most commonly
done in RL approaches for bipedal locomotion which use target gaits in the reward [62].
Our approach is able to significantly reduce the average tracking error per episode after only
40000 steps of the environment (corresponding to 40 seconds of data), while the baseline
does not reach a similar level of performance even after 1.2 million steps, as illustrated in
Figure 2.8.

Inverted Pendulum with Input Constraints: Our final example demonstrates the util-
ity of our method even when W is a crude guess for a CLF for the system, through the use
of moderate discount factors. We illustrate this for a simple inverted pendulum simulator
by varying the magnitude of the input constraints for the system. We use the procedure
from [7] to design a candidate CLF for the system. Like many CLF design techniques, this
approach assumes there are no input constraints and encourages the pendulum to swing
directly up. As the input constraints are tightened, W becomes a poorer candidate CLF, as
there is not enough actuation authority to decrease W at each time step. Even in this case,
in line with the discussion of Remark 3, if a proper discount factor is used, the addition of
the candidate CLF in the reward enables our method to rapidly learn a stabilizing controller
for each setting of the input bound.

The states of the system are x = (✓, ✓̇) 2 R2, where ✓ is the angle of the arm from the
vertical position, and the input u 2 R is the torque applied to the joint. In each of the
reinforcement learning experiments reported in Section 3.4 for this system we sample initial
conditions over the range �⇡ ✓ ⇡ and �0.1 < ✓̇ < 0.1.

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 27

Figure 2.8: (Top) Snapshots of RABBIT [20], a five-link bipedal robot, successfully walking with our learned
controller in the PyBullet simulator [23]. (Bottom-Left) Average tracking error (lower is better) per episode
at di↵erent stages of the training process when fine-tuning a model-based walking controller under model
mismatch. In blue, using our CLF-based reward formulation and SAC, the robot learns a stable walking
gait with only 40k steps (40 seconds) of training data. In orange, with a baseline that uses a typical reward
penalizing the tracking error to the target gait, the training takes longer to converge and does not achieve the
same performance. The results show the best performance for both method across di↵erent discount factors
and training hyper-parameters. (Bottom-Right) Comparison of the tracking error of roll-outs of di↵erent
learned walking policies. In blue, a policy learned with 40k steps of the environment using our CLF-based
reward. In dashed green, a policy learned using the baseline reward with 40k steps of the environment.
In orange, a policy learned using the baseline reward with 620k steps of the environment (best baseline
policy). The jumps in tracking error occur at the swing-leg impact times. The policy learned with our
reward formulation clearly outperforms the baseline, even when the baseline has 15 times as much data.

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 28

Training epochs consisted of 5 episodes with 100 simulation steps each, where each time
step for the simulator is 0.1 seconds. For both forms of cost function, we sweep across
di↵erent values of discount factors (from � = 0 to � = 0.95 in increments of 0.05 and
also tried � = 0.99) to 1) determine which values of discount factors lead to stabilizing
policies and 2) which discount factor allows the agent to learn a stabilizing controller most
rapidly. To determine whether a given controller stabilizes the system we randomly sample
20 initial conditions and see if each trajectory reaches the set {x 2 Rn : kxk2 < 0.05} within
20 seconds of simulation. For each scenario, the smallest discount factor that lead to a
stabilizing controller was also the discount factor that cause the agent to learn a stabilizing
controller with the least amount of data.

Training curves for each of the critical values of the discount factor are depicted in Figure
2.9 for each of the cost formulations and input constraints. Each curve indicates the average
reward per epoch across 10 di↵erent training runs and reports the best results for each
scenario after an extensive hyper-parameter sweep. We normalize each training curve so
that a reward of 0 indicates the average reward during the first epoch, while a reward of 1
is the largest average reward obtained across all epochs. On each of the training curves the
black dot denotes the first training epoch at which a stabilizing controller was obtained.

As illustrated by the plots in Figure 2.9 (a), the addition of the CLF enables our method
to more rapidly learn a stabilizing controller in each setting and consistently decreases the
amount of data that is needed to learn a stabilizing controller, even when W is not a global
CLF for the system. However, the e↵ects are more pronounced when the input constraints
are less restrictive and W is a better candidate CLF. For example, when |u| < 20 our
approach is able to learn a stabilizing controller in 5 iterations, whereas it takes 92 iterations
with the original cost (our approach takes ⇠ 5.4% as many samples). Meanwhile when
|u| < 4 our approach takes 198 iterations while the original cost takes 389 iterations (our
approach takes ⇠ 51% as many samples).Moreover, we observe that larger discount factors
are required when |u| 7 and |u| 4, as W becomes a poorer candidate CLF for these
cases.

2.4 Related Work

Discount Factors, Sample Complexity and Reward Shaping: It is well-understood
that the discount factor has a significant e↵ect on the size of the data set that RL algorithms
need to achieve a desired level of performance. Specifically, it has been shown in numerous
contexts [14, 93, 71, 82] that smaller discount factors lead to problems which can be solved
more e�ciently. This has led to a number of works which explicitly treat the discount
factor as a parameter which can be used to control the complexity of the problem alongside
reward shaping techniques [48, 78, 28, 100, 19, 74]. Compared to these works, our primary
contribution is to demonstrate how CLFs can be combined with model-free algorithms to
rapidly learn stabilizing controllers for robotic systems.

Fine-tuning with Real World Data: Recently, there has been much interest in using

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 29

Figure 2.9: Learning curves for an inverted pendulum system under di↵erent input constraints. The
curves plotted correspond to the smallest discount factors that led to stabilizing policies. On the
left, the obtained learning curves use a CLF in the reward. On the right, the reward does not
include the CLF term. The black dots denote the first stabilizing policy for each training. For each
setting we plot the learning curve for the discount factor that achieved the best performance.

RL to fine-tune policies which have been pre-trained in simulation [98, 50, 49, 65]. These
methods typically optimize the same cost function with a large discount factor in both
simulation and on the real robot. In contrast, using our cost reshaping techniques, we solve
a di↵erent problem with a smaller discount factor on hardware which can be solved more
e�ciently.

Model Predictive Control Literature: Our use of the CLF to reshape the stanard
form of cost functions has deep connections to the model predictive control literature (MPC).
In their simplest form, MPC control schemes minimize a cost functional of the form

inf
û2UN

JN
MPC(xk, û) =

N�1X

k=0

�
Q(x̂k) +R(ûk)

�
+ Ŵ (x̂N)

s.t. x̂k+1 = F (x̂k, ûk), x̂0 = xk,

where xk is the the current state of the real-world system, N 2 N is the prediction horizon,
{x̂k}Nk=0 and û = {ûk}N�1

k=0 2 UN are a predictive state trajectory and control sequence,
Q and R are as above, and Ŵ : Rn ! R�0 is the terminal cost which is assumed to be a
proper function. The MPC controller then applies the first step of the resulting open loop
control and the process repeats, implicitly defining a control law uMPC(x). The MPC cost
JN
MPC(xk, ·) can be thought of as a finite-horizon approximation of the original cost (2.5)

(except that it is defined over an open-loop sequence of control inputs instead of being a cost
over policies).

Stability results from the MPC literature focus primarily on the e↵ects of the prediction
horizon N and the choice of terminal cost Ŵ . Under mild conditions, for any choice of

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 30

terminal cost (including Ŵ (·) ⌘ 0), the user can guarantee that the MPC scheme stabilizes
the system on any desired operating region by making the prediction horizon N su�ciently
large [42, 34]. Thus, there is a clear connection between the explicit prediction horizon N in
MPC schemes and the discount factor �, as both need to be su�ciently large if a stabilizing
controller is to be obtained (since trajectory optimization problems with longer time horizons
are generally more di�cult to solve). Indeed, in [81] it was pointed out that the implicit
prediction horizon 1

1�� , a factor which shows up in the stability conditions in Proposition
1, plays essentially the same role in stability analysis as N for an MPC scheme with no
terminal cost when the running cost is ` = Q + R. Thus, much like the ‘typical’ policy
optimization problems discussed in Section 2.1, MPC schemes with no terminal cost (or one
which is chosen poorly) may require an excessively long prediction horizon to stabilize the
system.

Fortunately, the MPC literature has a well-established technique for reducing the predic-
tion horizon needed to stabilize the system: use an (approximate) CLF for the terminal cost
Ŵ [45, 42, 34]. Indeed, roughly speaking, these results guarantee that for any prediction
horizon N 2 N the MPC scheme will be stabilizing if Ŵ is a valid CLF for the system. Ex-
tensive empirical evidence [44] and formal analysis [45] has demonstrated that well-designed
CLF terminal costs reduce the prediction horizon needed to stabilize the system on a desired
set and increase the robustness of the overall MPC control scheme [33]. Thus, in many ways
our cost-reshaping approach can be seen as a way to obtain these benefits in the context
of infinite horizon model-free reinforcement learning. On the other hand, the design phi-
losophy underlying our approach, in particular our fine-tuning strategy, is quite di↵erent.
Indeed, the perspective that the learning and optimization is meant to overcome errors in
the approximate CLF using real world data represents a sharp departure from the MPC
literature.

Future Directions

Other Certificate Functions: In this chapter we have focused on learning stabilizing con-
trollers with CLFs. This is simply a reflection of the fact that control Lyapunov functions are
the correct technical object to work with when demonstrating how users can bake in prior
information about stabilizing controllers into a cost function. However, the broader theme
that 1) model-based design principles can be used to accelerate learning and 2) learning can
be used to correct errors in these design pipelines that occur due to unmodeled dynamics
provides a broad conceptual framework for future work. Indeed, control Lyapunov functions
are just one example of ‘certificate’ functions which encode desireable long-horizon behaviors
with a myopic one-step criterion. For example, previous work of the author and his collabo-
rators investigated how to embed control Barrier functions, which encode safety with respect
to state constraint, into costs in an design procedure analogous to the one presented here
[101], even though the perspective on modulating the discount factor to correct for model
mismatch was not fully developed when this chapter was written. Indeed, there are clear

CHAPTER 2. LYPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 31

extension for our approach to any case where a ‘certificate’ function can be formulated to
encode desired behaviors. Moreover, the fine-tuning approach we propose, which is motivate
initially by stability theory here, is clearly applicable throughout robotics. Future work will
focus on pushing the boundary of this design philosophy as discussed in more detail below.

Convergence Analysis for Approximate Dynamic Programming Methods: In this
chapter we have essentially studied the properties of the optimal controllers associated to our
reshaped cost functions, in the sense that we characterize how robust this ideal behavior is to
varying levels of suboptimality. An interesting avenue for future work is to study whether the
CLF term robustifies search algorithms such as approximate policy iteration, approximate
value iteration, and approximate Q-learning – which are the prototypical general, abstract
approaches that cover most modern reinforcment learning appraoches –in the sense that it
corrects for errors made by these algorithms at each step in the training process. Under-
standing how errors accumulate at each iteration of the algorithm is the standard approach
for studying the convergence of these methods [14].

O✏ine Reinforcement Learning: O✏ine reinforcement learning, wherein all training for
the policy uses a fixed data set which is available a priori, has received much interest in
recent years [61]. The appeal of this approach is that it opens the possibility for training on
vast data sets that are potentially collected from a large number of robots performing a wide
range of di↵erent tasks. However, learning from such data sets is usually extremely di�cult,
as a lack of ‘on-policy’ data can make it di�cult to estimate how to improve the current
controller. On the other hand, it is well-known that solving problems with large discount
factor alleviates these concerns to some extent, as it removes the need for understanding
how changes in the control policy will a↵ect the trajectories of the system far into the future
[100]. Thus, the fine-tuning approach here has the potential to make it significantly easier
to learn from o✏ine data and scale up robotic reinforcement learning to new, unprecedented
levels.

32

Chapter 3

Reinforcement Learning with Simple
Dynamics Models and Low-Level
Feedback Controllers

Many robotic and autonomous systems display rich dynamics which are impractical to model
in full detail using first principles. This has recently led to a resurgence of interest in both
‘model-based’ and ‘model-free’ reinforcement learning methods which make use of flexible
neural function approximation schemes. These methods are attractive because they can
optimize general performance criteria and, at least in principle, eschew the need for designing
structured dynamics models and control policies. However, despite achieving impressive
performance in a number of application domains [62, 38], the inability of these methods to
leverage known system structures leaves them with several key shortcomings.

The most popular model-free reinforcement learning methods [94, 35] for continuous con-
trol can be viewed as variations of approximate dynamic programming [14]. These methods
internalize the data collected from the real-world system in either a value function or Q-
function, which is then used for sampling-based policy gradient methods. These approaches
remove the need for an explicit predictive model at the cost of poor sample e�ciency and
high-variance updates. While these methods achieve good asymptotic performance [73],
they require inordinate amounts of real-world data for many applications and may be too
unreliable for many safety-critical scenarios.

In contrast, model-based reinforcement learning makes e�cient use of the collected data
by fitting a predictive model which is used for downstream optimization-based controller syn-
thesis [58, 47, 22]. The key challenge for these approaches is estimating the costs that will be
incurred by di↵erent sequences of inputs over long time-horizons, as small modeling errors
quickly compound and degrade the accuracy of future state estimates [22], especially when
the system is open-loop unstable [57]. Errors in the model derivatives are similarly magni-
fied when estimating the sensitivity of state trajectories (and thus the cost function) with
respect to changes in the input. Due to these limitations, the most successful model-based

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 33

reinforcement learning approaches plan through probabilistic notions of uncertainty to avoid
over-exploiting inaccuracies in the learned model [47, 25, 22], but in doing so limit the preci-
sion and performance of these methods. Early successes used simple function approximation
schemes such as Gaussian processes alongside uncertainty-aware policy derivative algorithms
[25]. More recent approaches aimed at high-dimensional control fit neural network models
[22, 73]. However, experience has shown that these models often have highly chaotic deriva-
tives [75], making it impractical to employ powerful derivative-based optimization schemes,
and leading to the use of conservative sampling-based methods [56, 47].

Both of these paradigms lie in sharp contrast to methods which incorporate structured
models into policy updates, such as model-based Iterative Learning Control [5]. For exam-
ple, ‘norm-optimal’ or ‘optimization-based’ iterative learning control [5, 4, 92] and related
methods [1, 54] optimize a sequence of open-loop controls to achieve a repetitive task by
repeatedly 1) unrolling the current controller on the real system and then 2) using the
well-behaved derivatives of an analytical approximate model to suggest local improvements.
These methods can achieve extremely precise tracking control even when the nominal model
is a coarse approximation [92]. By performing these updates along real-world trajectories,
the nominal model is not required to make accurate state predictions far into the future
[1]. On the other hand, as we discuss in Section 3.3, by optimizing open-loop controls these
methods can still magnify inaccuracies in the model derivatives over long time horizons.

In this chapter, we introduce a data-driven policy optimization approach which is capable
of training general function approximators such as neural networks to achieve a wide range
of tasks with extremely high precision. Our update scheme is built around not only an
approximate analytical model but also a structured class of low-level feedback controllers
which are embedded in the policy class. The approach performs approximate stochastic
gradient descent on the network parameters by 1) collecting a batch of real-world trajectories
from the current policy, then 2) taking derivatives through the approximate model and low-
level controller to approximate the closed-loop sensitivity of the state trajectories and 3) using
these calculations to approximate the gradient of the overall cost. By incorporating low-level
feedback controllers into the updates, our approach enables the user to implicitly leverage
known feedback structures in the model. On the theoretical side, we demonstrate that taking
derivatives through a low-level feedback controller is essential for obtaining accurate gradient
estimates over long horizons and producing a well-conditioned optimization landscape. Our
examples emphasize hierarchical design principles for building up feedback loops around
simple models to achieve complex tasks.

Organization: Section 3.1 briefly reviews the key quantities which a↵ect the convergence
rate of approximate gradient descent schemes to motivate our approach. In Section 3.2,
we introduce our method for approximating the gradients of the cost function. Section 3.3
demonstrates the benefits of optimizing through low-level feedback. Section 3.4 shows how
our approach can be integrated with hierarchical feedback design techniques. Finally, Section
3.5 provides an outlook for future work.

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 34

3.1 Background on Approximate Gradient Descent

In this section, we briefly discuss results on the convergence rates of approximate gradient
descent schemes for non-convex optimization landscapes. A thorough review of this topic
is beyond the scope of this chapter, and we refer the reader to [13, 32] for a complete
treatment. Here we will only discuss the basic ingredients for these results as motivation
for the bounds we provide in Section 3.3, which are to be viewed as the building blocks for
specific convergence results.

Suppose we wish to optimize the following objective:

min
✓2⇥

f(✓), (3.1)

where ✓ 2 ⇥ ⇢ Rp are a set of decision parameters and f : ⇥ ! R is a twice-continuously
di↵erentiable objective. Consider an approximate gradient descent scheme of the form:

✓k+1 = ✓ � ↵kĝ(✓k) (3.2)

where ĝ(✓) ⇡ rf(✓) is a potentially biased, noisy approximation to the gradient and ↵k is
the step-size. The following three assumptions are the starting point for standard analyses
of approximate gradient descent for non-convex landscapes:

Assumption 7. There exists a constant L > 0 such that for each ✓ 2 ⇥ we have: kr2f(✓)k <
L.

Assumption 8. There exists a constant � � 0 such that for each ✓ 2 ⇥ we have:
��E

⇥
ĝ(✓)

⇤
�

rf(✓)
�� �.

Assumption 9. There exists a constant � � 0 such that for each ✓ 2 ⇥ we have: E
⇥
kĝ(✓)�

E[ĝ(✓)]k2
⇤
 �2.

In the preceding assumptions, expectations are understood to be with respect to any ran-
domness in the gradient estimate. Assumption 8 measures the bias of the gradient estimator
while Assumption 9 provides a measure of the variance. Together, Assumptions 8 and 9
characterize how good of an estimator ĝ is. On the other hand, Assumption 7 characterizes
how quickly the gradient of the underlying objective fluctuates, and limits the convergence
rate of gradient descent schemes.

For general non-convex optimization landscapes, convergence results can generally only
bound the number of iterations needed to reach an approximate stationary point, namely, a
point ✓ 2 ⇥ where krf(✓)k ✏ for some desired tolerance ✏ > 0 [13]. Assumption 7 limits
the step-sizes {↵k}1k=0 which can be used while maintaining the stability of the method.
Roughly speaking, the step-size must be on the order of ↵k ⇡ 1

L to ensure the method
does not diverge, which limits the rate of convergence. Broadly speaking, as the parameter
L > 0 increases, the number of steps required to reach an ✏-stationary point also increases.
Meanwhile, the bias parameter � > 0 limits how close the descent scheme can get to an

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 35

exact stationary point of f (namely, how small we can make the parameter ✏ > 0). Finally,
when � > 0, a decreasing sequence of step-sizes (where ↵k ! 0) is required for convergence,
further limiting the rate of convergence. Stronger insights can be obtained if the objective
is (locally or globally) convex or strongly convex. For example, if the objective is strongly
convex, the rate of convergence to the global minimizer is controlled by the condition number
of the Hessian [32].

3.2 Problem Formulation

We will represent the real-world system we aim to control with the deterministic dynamics:

xt+1 = F (xt, ut), (3.3)

while our simplified model for the system is represented with:

xt+1 = F̂ (xt, ut), (3.4)

and in both cases we have xt 2 Rn and ut 2 U ⇢ Rm. Furthermore, we will assume that both
F : Rn ⇥ Rm ! Rn and F̂ : Rn ⇥ Rm ! Rn are twice continuously di↵erentiable. The exact
form of the true dynamics (3.3) is unknown, but we will assume that we can run experiments
which can be used to tune the parameters of a policy. Specifically, our goal will be to tune
the parameters of a class of time-varying policies of the form ⇡✓ = {⇡✓t }T�1

t=0 subject to losses
of the form:

JT (✓; x0,) = Q
T (xT) +

T�1X

t=0

�
Q

t (xt) +R
t (ut)

�
(3.5)

s.t. xt+1 = F (xt, ut)

ut = ⇡✓t (xt; x0,),

where T 2 N is the prediction horizon, ✓ 2 ⇥ ⇢ Rp are the parameters of the policy (e.g.
the parameters of a neural network), 2 ⇢ Rq is a parameter representing an objective
we wish to solve, and Q

t : Rn ! R and R
t : U ! R are objective-dependent penalties. We

consider initial conditions x0 2 D ⇢ Rn, and will refer to each pair (x0,) 2 D⇥ as a task.
Finally, for each task (x0,), ⇡✓t (·; x0,) : Rn ! U is the feedback control we apply at time
t when attempting to achieve this task. In our examples, the space represents di↵erent
trajectories that we wish to track.

Ultimately, we will propose a batch update scheme to optimize more general multi-task
objectives of the form:

JT (✓) = E(x0,)⇠DJT (✓; x0,), (3.6)

where D is a probability distribution over the space of tasks D ⇥ . However, we first
demonstrate in Section 3.2 how to calculate rJT (✓; x0,) for a fixed task (x0,) 2 Rn ⇥

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 36

assuming the dynamics are known. Then in Section 3.2 we demonstrate how to approximate
this term using a trajectory collected from the real-world system and the derivatives of the
approximate model. These approximations are then used in the batch update in Section 3.2.

To ease notation, define for each (x0, , ✓) 2 D ⇥ ⇥ ⇥:

�✓t+1(x0,) = F
�
�✓t (x0,), ⇡

✓
t (�

✓
t (x0,))

�
, �✓0(x0,) = x0,

to represent the state trajectory generated by the control policy for the true system (3.3).

The Policy Gradient for a Single Task

For the rest of the section fix (x0, , ✓) 2 Rn ⇥ ⇥ ⇥, and let {xt}Tt=0 and {ut}T�1
t=0 with

xt = �✓t (x0,) and ut = ⇡✓t (xt; x0,) denote the corresponding sequences of states and
controls for the real-world system. We will suppress dependencies on (x0,) and ut and xt

when our meaning is clear from context. Along this roll-out let us define:

At =
@

@x
F (xt, ut) Bt =

@

@u
F (xt, ut)

Kt =
@

@x
⇡✓t (xt; x0,) qt =

d

dx
Q

t (xt) rt =
d

du
R

t (ut).

By adopting the short-hand:

@xt

@✓
:=

@

@✓
�✓t (x0,),

@ut

@✓
:=

@

@✓
⇡✓t (�

✓
t (x0,); x0,),

and applying the chain rule we can calculate the gradient of the objective for the instance
(x0,) as:

rJT (✓; x0,) = qT · @xT

@✓
+

T�1X

t=1

qt ·
@xt

@✓
+ rt ·

@ut

@✓
, (3.7)

where for each t 2 {0, T � 1} we have:

@ut

@✓
=
@⇡✓t
@✓

+
@⇡✓t
@x

· @xt

@✓
=
@⇡✓t
@✓

+Kt ·
@xt

@✓
.

Noting that @x0
@✓ = 0, because the initial condition is independent of the policy parameters,

we can calculate {@xt
@✓ }

T
t=1 with with the following recursion:

@xt+1

@✓
=

@

@x
F (xt, ut) ·

@xt

@✓
+

@

@u
F (xt, ut) ·

@ut

@✓

= At
@xt

@✓
+Bt

@ut

@✓

= (At +BtKt)
@xt

@✓
+Bt

@⇡✓t
@✓

.

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 37

The term @xt
@✓ is the closed-loop sensitivity of the state trajectory with respect to ✓, while

@ut
@✓ is closed-loop sensitivity of the input applied by the policy. Let us successively define:

Acl
t := At +BtKt, �t,t0 :=

t�1Y

s=t0+1

Acl
s , (3.8)

where the �t,t0 are the state transition matrices for the linear time varying dynamics (Acl
t , Bt).

Using the solution for this LTV system, we can unroll the recursion for @xt
@✓ to obtain:

@xt

@✓
=

t�1X

t0=0

�t,t0Bt0
@⇡✓t
@✓

(3.9)

@ut

@✓
=
@⇡✓t
@✓

+Kt

t�1X

t0=0

�t,t0Bt0
@⇡✓t0
@✓

.

By plugging these expressions into (3.7) and rearranging the order of summations we obtain
the expression:

rJT (✓; x0,) =
T�1X

t=0

�
pt+1Bt + rt

�
· @⇡

✓
t

@✓
, (3.10)

where the co-state pt 2 R1⇥n is given by:

pt = qT · �T,t +
T�1X

s=t+1

�
qs + rsKs

�
· �s,t, (3.11)

and captures the sensitivity of the closed-loop ‘cost-to-go’ with respect to changes in the
state at time t. Note that {pt}Tt=0 can be e�ciently computed with the ‘backwards pass’:

pt = pt+1A
cl
t + qt + rtKt, pT = qT ,

as we detail in the Appendix.

The representation of the gradient in (3.10) and (5.6) is particularly useful, as it neatly
separates the gradient calculation into quantities which are known and unknown. Because
we designed the policy class {⇡✓}✓2⇥ and the costs Q

t and R
t , the values of the Kt, qt, rt

and @⇡✓
t

@✓ terms are all known, with all of the uncertainty coming from the Bt and �s,t terms
(which contain unknown Acl

t terms). As we shall see, the most di�cult terms to approximate
will be the state transition terms �s,t in pt, as the repeated compositions used to construct
these terms can magnify errors in the individual Acl

t terms.

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 38

Approximate Gradients Using the Nominal Model

We now demonstrate how to approximate the policy gradient using the approximate model
(5.7) and trajectories collected from the real-world system. Letting ✓ 2 ⇥, x0 2 Rn and
 2 remain fixed, and retaining the notation from the previous section, let us define the
following approximations:

Ât :=
@

@x
F̂ (xt, ut) B̂t :=

@

@u
F̂ (xt, ut).

We approximate the gradient rJT (✓; x0,) by replacing At with Ât and Bt with B̂t when
building up the gradient calculation in (3.10). In more detail, we define:

Âcl
t := Ât + B̂tKt, �̂t,t0 :=

t�1Y

s=t0+1

Âcl
s ,

and approximate rJ(✓; x0,) using the estimate:

ĝT (✓; x0,) =
T�1X

t=0

�
p̂t+1B̂t + rt

�
· @⇡

✓
t

@✓
, (3.12)

where the approximate co-state p̂t 2 R1⇥n is given by:

p̂t := qT · �̂T,t +
T�1X

s=t+1

�
qs + rsKs

�
· �̂s,t,

and can be calculated with the backwards pass:

p̂t = p̂t+1Â
cl
t + qt + rtKt, p̂T = qT . (3.13)

We can construct this gradient approximation by 1) running an experiment or ‘forwards
pass’ on the real system (3.3) with the controller ⇡✓ for the chosen task (x0,) and 2) using
the derivatives of the simplified model (5.7) to approximate the gradient of the cost with the
‘backwards pass’ in (3.13).

One may note that this gradient calculation is equivalent to approximating the true
dynamics (3.3) with a time-varying correction of the form:

xt+1 = F̂ (xt, ut) + dt (3.14)

where dt := F (xt, ut)�F̂ (xt, ut), and calculated the gradient of the cost with respect to these
perturbed dynamics. This ‘local disturbance identification’ perspective comes from the ILC
literature [4, 92].

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 39

Algorithm 1 Batch Updates for Multi-task Objective
1: Initialize Time horizon T 2 N, number of samples per update N 2 N, number of

iterations K 2 N, step sizes {↵k}N�1
k=0 and initial policy parameters ✓1 2 ⇥

2: for iterations k = 1, 2, . . . , K do
3: Sample N tasks {(xi

0,
i)Ni=1} ⇠ DN

4: for For task i = 1, 2, . . . , N do
5: Unroll xi = {�✓kt (xi

0,
i)}Tt=0 on (3.3) with ⇡✓kt

6: Estimate ĝNT (✓k) using (3.16) and trajectories {xi}Ni=1

7: Update ✓k+1 = ✓k + ↵kĝNT (✓)

Batch Updates for Multiple Tasks

The gradient of the multi-task loss (3.6) is given by:

rJT (✓) = E(x0,)⇠D
⇥
rJT (✓; x0,)

⇤
. (3.15)

To approximate this quantity we make use of the task-specific gradient estimates introduced
in the previous section, and given a set of N tasks {(xi

0,
i)}Ni=1 drawn i.i.d from D we use

the following biased gradient estimator for rJT (✓):

ĝNT (✓) =
1

N

NX

i=1

bgT (✓;xi0, i), (3.16)

where ĝT (✓; xi
0,

i) approximates rJT (✓; x0,) as in (3.12). As we summarize in Algorithm
1, we can run a batch of N experiments on the real-world system and use this estimator to
perform a noisy version of gradient descent on the overall cost JT (·).

3.3 The Benefits of Low-Level Feedback

This Section introduces our main technical results, which illustrate the benefits of explicitly
embedding low-level feedback controllers into the policy class {⇡✓}✓2⇥. With an eye towards
long-horizon problems, we demonstrate how low-level controllers which stabilize the closed-
loop linearizations along the system trajectories allow for more accurate gradient calculations
and yield better-conditioned optimization landscapes.

As before, we investigate these issues for a single fixed task and then leverage our findings
to characterize the multi-task objective (3.6). In particular, note that:

ḡT (✓) :=E�
(xi

0,
i)Ni=1⇠DN

�⇥ 1
N

NX

i=1

bgT (✓; xi
0,

i)
⇤

(3.17)

=E(x0,)⇠D

⇥
ĝT (✓; x0,)

⇤
,

so that the bias of the estimator is given by:

rJT (✓)� ḡT (✓) = E(x0,)⇠D
⇥
rJ(✓; x0,)� ĝT (✓; x0,)

⇤
. (3.18)

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 40

Moreover, by direct calculation we have:

r2JT (✓) = E(x0,)⇠D
⇥
r2JT (✓; x0,)

⇤
. (3.19)

Thus, we will be able to directly characterize the expected gradient error rJT (✓) � ḡT (✓)
and Hessian r2JT (✓) by first studying the relevant single-task quantities.

Exponential Blow-up of Gradient Errors

In this section we will investigate how small errors between the model derivatives and the
derivatives of the true dynamics can rapidly explode over time and degrade the quality of the
estimate ĝT (✓; x0,) ⇡ rJT (✓; x0) as the length of the prediction horizon T 2 N increases.
As in Sections 3.2 and 3.2 above, let (x0,) 2 D ⇥ again denote our fixed task, retaining
all previous notation. We focus on how the quality of the approximation:

�̂t,t0B̂t0 ⇡ �t,t0Bt0 ,

is a↵ected by point-wise errors in the dynamics:

�Acl
t := Âcl

t � Acl
t , �Bt := B̂t � Bt,

when building up the overall gradient estimate (3.12). Recall terms of the form �t,t0Bt0 are
the only sources of uncertainty in the gradient of the true cost (3.10). By defining:

��t,t0 = �̂t,t0 � �t,t0 ,
we can re-write:

�̂t,t0B̂t0 � �t,t0Bt0 = �t,t0B̂t0 + ��t,t0B̂t0 � �t,t0Bt0 (3.20)

= �t,t0�Bt0 + ��t,t0B̂t0

= �t,t0�Bt0

+
� t�1X

s=t0+1

�t,s�Acl
s �̂s�1,t0

�
B̂t0 ,

where in the last equality we have used the following steps:

��t,t0 = �̂t,t0+1Â
cl
t0+1 � �t,t0+1A

cl
t0+1

= �t,t0+1Â
cl
t0+1 � �t,t0+1A

cl
t0+1 + ��t,t0+1Â

cl
t0+1

= �t,t0+1�Acl
t0+1 + ��t,t0+1Â

cl
t0+1,

which can be applied recursively to yield:

��t,t0 =
t�1X

s=t0

�t,s+1�Acl
s

sY

l=t0+1

Âcl
l

=
t�1X

s=t0

�t,s+1�Acl
s �̂s+1,t0 .

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 41

The last equality in (4.81) provides a clear picture of how inaccuracies in the derivatives of
the model are propagated over time. For example, when approximating �̂t,t0B̂t,t0 ⇡ �t,t0Bt0

the error �Bt0 is magnified by �t,t0 , while the error �Acl
t0+1 is magnified by �t,t0+1. The

extreme case occurs when the linearizations of the closed-loop dynamics for either the real-
world system or the approximate model are unstable. Namely, when there exists M,↵ > 0
such that for each t > t0 we have either k�t,t0k > M↵t�t0 or k�̂t,t0k > M↵t�t0 . In this case the
extent to which the point-wise errors �Bt and �Acl

t are magnified grows exponentially with
the time horizon T 2 N. This demonstrates that in general the quality of the approximation
ĝT (✓; x0,) ⇡ rĴ(✓; x0,) will degrade exponentially with the length of the prediction
horizon, as many systems we wish to control are open-loop unstable. We use the following
simple example to illustrate this point:

Running Example: Consider the scalar case with true and modeled dynamics given
respectively by:

xt+1 = axt + but and xt+1 = âxt + b̂ut, (3.21)

where a, â, b, b̂ > 1 and xt 2 R and u 2 U ⇢ R, where U is a convex set. For simplicity,
suppose we only want to obtain a policy for a single fixed task (x0,) 2 D ⇥ , and that
we use a policy class of the form ⇡✓t (x; x0,) = ūt where ✓ = (ūt, . . . , ūT�1) and ūt 2 U , and
we assume that U is convex. In words, the ‘policy’ in this case is an open-loop sequence of
controls ut = ūt. In this case, we have �t,t0 = at�t0�1 and �̂t,t0 = ât�t0�1. Comparing this
with (4.81) gives a sense for how the modeling errors �Bt = (b̂� b) and �Acl

t = (â� a) will
be magnified by the unstable dynamics. Note that when we use a ‘policy’ of this form we
are e↵ectively using a very basic iterative learning control approach [4, 1].

Ill-conditioned Optimization Landscapes

We next investigate how the Hessianr2JT (✓; x0,) can become ill-conditioned as we increase
the time horizon T 2 N. Again retaining our previous notation for the fixed instance
(x0,) 2 Rn ⇥ from above, we demonstrate in [102] that the Hessian is given by the
following formula:

r2JT (✓; x0,) =
�@xT

@✓

�T ·r2QT (xT) ·
@xT

@✓
(3.22)

+
T�1X

t=0

�@xt

@✓

�T · @
2

@x2
Ht(xt, pt, ✓) ·

@xt

@✓

+ 2
T�1X

t=0

�@xt

@✓

�T · @2

@x@✓
Ht(xt, pt+1, ✓)

+
T�1X

t=0

@2

@✓2
Ht(xt, pt+1, ✓),

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 42

where for each t 2 [0, . . . , T] we define the closed-loop Hamiltonian Ht : Rn⇥R1⇥n⇥⇥ ! R
via:

Ht(x, p, ✓) =
⌦
p, F (x, ⇡✓t (x))

↵
+Q

t (x) +R
t (⇡

✓
t (x)),

suppressing dependence on (x0,) for readability. While this expression is more involved
than the gradient calculation, we highlight the dependence of this expression on the sensitiv-
ities of the state trajectory {@xt

@✓ }
T
t=1, which were calculated explicitly in (3.9). As we show

more formally below, when the linearized dynamics are unstable, and the state trajectories
are highly sensitive to changes in the policy, the Hessian will grow exponentially with the
horizon. Per the discussion in Section 3.3, this will make the optimization landscape more
di�cult to optimize over. We illustrate this point with our example:

Running Example: Consider again the simple scalar example in equation (3.21) with
the previously described policy class and fixed task (x0,). Consider a state tracking cost
of the form Q

t (xt) = (xt � x t)Q(xt � x t) where Q > 0 and {x t }T�1
t=0 represents the desired

trajectory. There is no input cost (R(·) ⌘ 0) for simplicity. For this example one can
calculate: @2

@x2Ht(xt, pt+1, ✓) = Q, @2

@x@✓Ht(xt, pt+1, ✓) = 0 and @2

@✓2Ht(xt, pt+1, ✓) = 0 so that

r2JT (✓; x0,) = diag
�
�1,�2, . . . ,�T�1

�
where �t = J(✓; x0,) = Q

PT
s=t+1 a

s�tb. In this
case the loss J(✓; x0,) is strongly convex, and the condition number of r2J(✓; x0,) is
 = �0

�T�1
, which we observe grows exponentially with the time horizon. Per our discussion

in Section 3.1, when T is large the ill-conditioning of the loss landscape will require small
step-sizes to maintain stability of gradient descent schemes, limiting the rate of convergence.

The Benefits of Low-level Feedback Control

Before formally characterizing the bias of the multi-task gradient estimator ĝNT (✓) and the
Hessians r2JT (✓) we return to our running example to illustrate the benefits of constructing
the policy class around a low-level feedback controller:

Running Example: Let us again consider the example dynamics in (3.21), the task
(x0,) and the tracking costs Q

t , R

t considered above. However, now suppose that we

construct our policy class to be of the form ⇡✓t (xt; x0,) = k(x̄d,t � xt) where the policy
‘parameters’ are now ✓ = (x̄d,t, . . . , x̄d,t) 2 RT . Namely, in this case the policy parameters
specify desired positions at di↵erent times which are plugged into a low-level proportional
tracking controller which penalizes the ‘tracking error’ ✓t � xt. In this case the closed loop
dynamics are xt+1 = axt + bk(x̄d,t � xt) and we have Acl

t = a � bk and Âcl
t = â � b̂k. If

the gain k > 0 is chosen such that |a � bk| < 1 and |â � b̂k| < 1, then the transition
matrices �̂t,t0 = (Âcl

t)
t�t0�1 and �t,t0 = (Acl

t)
t�t0�1 will both decay exponentially with the

di↵erence t�t0. Thus, the point-wise errors will not be magnified exponentially for larger time
horizons. Moreover, one can show that in this case the Hessian is given by r2JT (✓; x0,) =
diag

�
�̄1, �̄2, . . . , �̄T�1

�
, where �̄t = Q

PT
s=t+1(a � bk)s�tb < 1

1�(a�bk)Qb. In this case we

see that the loss J(✓; x0,) is again strongly convex, but now the condition number of the
Hessian = �̄0

�̄T�1
< 1

1�(a�bk) is of constant order for all T 2 N, indicating that the loss

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 43

landscape can be more aggressively optimized over by gradient descent methods, per the
discussion in Section 3.1.

Remark 4. Note that it is not essential for the low-level feedback controller to precisely
track the specified desired trajectory. We only require it to prevent the sensitivity of the state
trajectory (and the approximate sensitivities we obtain from the simple model) from ‘blowing
up’ over longer time horizons. However, because the true dynamics are unknown, we cannot
guarantee that �t,t0 does not grow exponentially without additional structural assumptions.
Nonetheless, in many practical scenarios even coarse low-level controllers can reduce the
sensitivity of the state trajectories of the real system. Thus, the primary goal of the theoretical
results below is to provide qualitative insight into the benefits of optimizing through a family
of ‘relatively good’ feedback controllers, rather than providing specific correctness or safety
guarantees.

Remark 5. It should be noted that certain types of iterative learning control approaches do
incorporate feedback mechanisms into the update scheme [46] . However, these approaches
primarily use the feedback law to provide a good initialization for the feed-forward control
and to prevent the learning process from drifting too far from the desired trajectory during
training. Namely, these methods typically do not di↵erentiate through a structured class of
feedback controllers as we do in our two examples below, where we use a neural network to
tune the tracking controller for a wide range of problems.

We are now ready to formalize the preceding intuition, making use of the following tech-
nical Assumptions:

Assumption 10. There exists a compact subset D̄ ⇢ Rn such that for each instance (x0,) 2
D ⇥ and policy parameter ✓ 2 ⇥ we have �✓t (x0,) 2 D̄ for each t 2 {0, 1, . . . , T}.

Assumption 11. The first and second partial derivatives of Qt, Rt, ⇡✓t , F and F̂ are bounded
on the set D̄ ⇥ ⇥ ⇥.

The next assumption bounds the point-wise errors between the derivatives of the model
(5.7) and the real world system (3.3):

Assumption 12. Let the set D̄ be defined as in Assumption 10. There exist constants
�A,�B > 0 such that for each x 2 D̄, 2 and ✓ 2 ✓ we have for each t 2 {0, 1, . . . , T�1}:

k @
@x

F (x, ⇡✓t (x; x0,))�
@

@x
F̂ (x, ⇡✓t (x; x0,))k < �A

k @
@u

F (x, ⇡✓t (x; x0,))�
@

@u
F̂ (x, ⇡✓t (x; x0,))k < �B

In the statement of the following assumption, for each (x0, , ✓) 2 D ⇥ ⇥ ⇥ we will let

�(✓,x0,)
t,t0 and �̂(✓,x0,)

t,t0 respectively denote the state transition matrices generated by linearizing
the true and approximate dynamics functions along the corresponding state trajectory of the
real-world system.

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 44

Assumption 13. There exists M > 0 and ↵ � 0 such that for each (x0, , ✓) 2 D ⇥ ⇥ ⇥
the following holds for t > t0:

max{k�(✓,x0,)
t,t0 k, k�̂(✓,x0,)

t,t0 k} M↵t�t0�1.

In the following results we will consider the cases where ↵ > 1, ↵ = 1 and ↵ < 1 which
correspond, respectively, to cases where the linearizations of the closed-loop dynamics are
unstable, marginally stable, and exponentially stable in variation. The following results rely
on supportive Lemmas which characterize the gradient estimators and Hessian of the single
task losses, whose poofs can be found below in the Appendix. Our first result characterizes
the quality of the gradient estimator (3.16) on di↵erent time horizons:

Theorem 2. Let Assumptions 10-13 hold. Then there exists C,W > 0 independent of the
parameters T 2 N, M,�A,�B and ↵ 2 R such that for each ✓ 2 ⇥ we have:

krJT (✓)� ḡT (✓)k

8
><

>:

CT 2↵T� if ↵ > 1

CT 2� if ↵ = 1

CT� if ↵ < 1,

E

kĝNT (✓)� ḡT (✓)k2

�

8
><

>:

WT 4↵2T

N if ↵ > 1
WT 4

N if ↵ = 1
WT 2

N if ↵ < 1,

where we have denoted � = max{�A,�B} and the expectation in the preceding formula is
taken with respect to the randomness in the tasks used to generate ĝNT (✓).

Proof. We first bound the bias of the gradient:

krJT (✓)� ḡT (✓)k = kE[rJT (✓; x0,)� ĝT (✓; x0,)]k
 E[krJT (✓; x0,)� ĝT (✓; x0,)k]
 sup krJT (✓; x0,)� ĝT (✓; x0,)k,

where the preceding expectations are over (x0,) ⇠ D⇥ and the supremum is taken over
(x0,) 2 D ⇥ . The desired bound on the bias directly follows by applying the bound
on the task-specific gradient errors from Lemma 4 in the Appendix. Next, to bound the
variance estimate note that:

E[kĝNT (✓)� ḡT (✓)k2] =
1

N2

NX

i=1

E[kĝT (✓; x0,)� ḡT (✓)k2]

 1

N
sup kĝT (✓; x0,)� ḡT (✓)k2

 4

N
sup kĝT (✓; x0,)k2,

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 45

where the first expectation is over (xi
0,

i)Ni=1 ⇠ DN , the second is with respect (x0,) ⇠ D
and the supremums are over (x0,) 2 D⇥ . The desired bound on the variance follows via
a direct application of Lemma 3 in the Appendix which provides a uniform upper-bound on
the gradient estimates.

The proofs for Lemmas 3 and 4 can be found in [102]. The proof of Lemma 4 uses (4.81)
to track how the point-wise errors in the dynamics derivatives are propagated, and reflects
the fact that low-level feedback can squash these errors over long time horizons when ↵ < 1,
and at least does not magnify them in the marginal case where ↵ = 1. The proof of Lemma
3 directly works with the form of the gradient in (3.10). While the method of bounding the
variance in Theorem 2 is quite crude, as a more refined analysis would require additional
structural assumptions, it captures intuition that we should expect the gradient estimate to
be less noisy in cases where the state trajectories are less sensitive to changes in the policy
parameters. In particular, when ↵ > 1 we may require a very large number of samples at
each iteration to avoid unacceptable random fluctuations in the policy parameters.

Next, we provide a bound on the Hessian:

Theorem 3. Let Assumptions 10,11 and 13 hold. Then there exists a constant K > 0
independent of the parameters T 2 N, M and ↵ � 0 such that for each ✓ 2 ⇥ we have:

kr2JT (✓)k2

8
><

>:

KT 4↵3T if ↵ > 1

KT 4 if ↵ = 1

KT if ↵ < 1.

Proof. Similar to before we have:

kr2JT (✓)k E(x0,)⇠D[kr2JT (✓; x0,)k]
 sup

(x0,)2D
kr2JT (✓; x0,)k.

The desired bound follows from Lemma 5 in the Appendix, which uniformly bounds the
task-specific Hessians.

The proof of Lemma 5 works directly with the form of the Hessian in (3.22), and can also
be found in [102]. The bound in Theorem 3 captures the notion that optimizing through
a low-level feedback controller which makes the state trajectories less sensitive to changes
in the policy parameters will lead to a better-behaved optimization landscape. Per the
discussion in Section 3.1 this implies that we can more aggressively optimize the objective
in this case by using large step-sizes.

3.4 Design Examples

In these examples, we show how we can build our learning strategy up around low-level
control schemes, learning controllers which are able to track desired x � y positions in the

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 46

Figure 3.1: Trajectory tracking results for both the car system (a-b) and the A1 quadruped (c-d). For
both systems, we show results of 2 di↵erent tasks, with reference trajectories plotted in blue. The results
show that our method (in orange) using a simple approximate dynamics model learns to track precisely the
reference trajectories for both systems, and clearly outperforms the nominal tracking controller (in purple).
The modified reference spline from our neural network is plotted in (dashed) green, showing that our method
accomplishes the original tracking objective by specifying a deviation on the reference trajectory.

plane for a car and the A1 quadrupedal robot. Even though the low-level dynamics for these
systems are extremely di↵erent, we are able to apply our approach to essentially the same
simple approximate high-level model for both systems.

Derive to Survive – Position Tracking for a Car: We first apply our method to
generate accurate tracking controllers for a car. Our analytical dynamics model is:

2

664

xt+1

yt+1

vt+1

�t+1

3

775 =

2

664

xt + hvt cos(�t)
yt + hvt sin(�t)

vt + hat
�t + h!t

3

775 , (3.23)

where h > 0 is the discrete time-step, (xt, yt,�t) 2 SE(2) are the Cartesian coordinates and
heading of the car, vt 2 R is the forward velocity of the car in its local frame, the inputs
(at,!t) 2 U = [�1, 1]⇥[�1, 1] and !t are respectively the acceleration applied in the forwards
direction and the instantaneous turning angle of the wheels. Let Xt = (xt, yt, vt,�t) collect
the states for the simple model. Our low-level controller first uses a spline Z : Rp ! R2⇥(T+1)

to produce a sequence of desired (x, y)-positions Zd = ((x d,t, y

d,t))

T
t=0 = Z() 2 R2⇥(T+1) for

each spline parameter 2 (so that the spline parameters also represent our space of tasks).
Then a parameterized family of back-stepping based tracking controllers attempts to track
the reference. The tracking controllers are of the form {µt}T�1

t=0 where µt : Rk⇥R4⇥R2⇥T ! U
and produce the control (at, wt) = µt(G,Xt, Zd), which takes in the current state Xt, the
reference trajectory Zd and a set of feedback gains G 2 Rk. To simulate the e↵ects of model
uncertainty, we construct the ‘true’ dynamics by adding drag and errors in how the input
enters the dynamics. As shown in Figure 3.1(a-b), the nominal tracking controller does not
accurately track the trajectory specified by the spline on the real dynamics. To correct for
these deviations, we use a neural network NN✓ : R4 ⇥Rp ! Rk ⇥Rp with parameters ✓ 2 ⇥
to specify corrections (�G,�) = (NN1

✓ (X0,), NN2
✓ (X0,)) = NN✓(X0,) to the spline

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 47

parameters and feedback gains across a wide range of tasks. Namely, our ultimate policy
class {⇡✓}✓2⇥ is of the form ⇡✓t (Xt;X0,) = µt(Ḡ + NN1

✓ (X0,), Xt, Z(+ NN2
✓ (X0,)))

where Ḡ is the nominal set of feedback gains. Thus, we allow the network to optimize both
the feedback gain and the reference to achieve each task. We train the network to track a
wide range of dynamic maneuvers, as exemplified in Figure 3.1. The network is a 32 ⇥ 32
MLP with tanh activations, and was trained with 10 rollouts per update over 200 iterations.

Position Tracking for the A1 Quadruped: The A1 quadruped is a 18-DOF robot
which must repeatedly make and break contact with the ground to move through the world.
Many model-based design approaches for locomotion take a hierarchical approach, building
up a multi-loop feedback controller which uses models with varying degrees of simplicity at
di↵erent layers of abstraction. At the lowest level of abstraction, a Jacobian-based controller
converts desired forces at the feet into motor torques. The next layer of abstraction is
composed of a ‘swing-leg’ controller and ‘base’ controller. This level of abstraction takes
in a gait primitive, which specifies a desired sequence of foot-placements and also desired
accelerations for the base of the robot. The swing-foot controller specifies desired positions
for the feet not currently on the ground using a simple heuristic which is designed to prevent
the robot from falling. The base controller takes in desired accelerations for the base and
solves a quadratic program to convert this command into forces for the feet currently on
the ground. Altogether, these intertwined control loops enable the user to control the robot
from a high-level by specifying desired accelerations for the base of the robot. We interface
with this controller by using a back-stepping based tracking controller similar to the one
proposed for the car to specify desired forward and turning accelerations for the robot base.
The model used by the high-level tracking controller is:

2

66664

xt+1

yt+1

vt+1

�t+1

!t+1

3

77775
=

2

66664

xt + hvt cos(�t)
yt + hvt sin(�t)

vt + havt
�t + h!t

!t + ha!t

3

77775
, (3.24)

where (xt, yt,�t) 2 SE(2) are again the Cartesian positions and yaw orientation of the robot
in the ground plane, vt 2 R is again the forward velocity, !t 2 R the turning velocity, and
(avt , a

w
t) 2 U ⇢ R2 are the desired accelerations for the two velocities. Given the desired

accelerations from the high-level model, the base controller is then asked to implement these
desired accelerations, while using a PD controller to keep the other configuration variables
of the base neglected in the high-level model (body height, roll and pitch) at pre-specified
desired values. We control the high-level simple model in almost exactly the same way as
the car. The only di↵erence is in how the backstepping tracking controller is constructed due
to the extra integrator in the yaw coordinate of the new model, but the learned corrections
to the reference spline and feedback gains are applied in the same fashion. Figure 3.1(c-d)
show that using our proposed method with this simple high-level dynamics model, the A1
robot is able to learn precise tracking policies for across a wide range of desired trajectories,
despite the simplicity of the high-level model and the complexity of the underlying dynamics.

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 48

Indeed, note the slight periodic oscillations in the trajectories generated by the learned and
nominal controller. These come from the complex, periodic contact events that occur in the
PyBullet [23] simulator we use for the full ‘real-world’ dynamics, but do not show up at all
in our simple dynamics model. For training we again used a 32⇥32 MLP network with tanh
activations, running 20 rollouts per update for 200 iterations.

3.5 Future Work

There are a number of important directions for future work. The approach presented here is
an on-policy approach, which does not make use of data from past iterations when performing
updates. Thus, there are many exciting avenues for building more e�cient algorithms around
our gradient estimation approach. It will also be important to further investigate the limits
of our approach by gaining qualitative understanding of when the approximate model and
feedback controller are too inaccurate for our method to learn precise controllers. Finally,
we aim to apply the principles developed here to more complex models and feedback control
loops.

3.6 Additional Proofs

This appendix contains proofs of claims that were omitted in the main document and several
supportive Lemmas which were used in the proofs of the main results. Section 3.6 formally
derives the costate representation of the gradient us the method of multipliers, while Section
3.6 builds on this calculation to derive the desired representation for the hessian. Finally,
Section 3.6 contains the auxiliary Lemmas.

Gradient Calculations

As before, let {xt}Tt=0 and {ut}T�1
t=0 denote the state trajectory that results from applying

the policy ⇡✓ when applied to the task (x0,). We will again omit certain dependencies on
(x0,) throughout the section to simplify notation, especially when referring to the policy.

Permitting a slight abuse of notation, we can re-write the cost by moving the dynamics
constraints into the cost and weighting them with Lagrange multipliers:

J(✓; x0,) = Q
T (xT) +

T�1X

i=0

Q
t (xt) +Rt(⇡

t
✓(xt)) + pTt+1

�
xt+1 � F (xt, ⇡

t
✓(xt))

�
(3.25)

Define the Hamiltonian

H
t (xt, pt+1, ✓) = pTt+1F (xt, ⇡

t
✓(xt)) +Q

t (xt) +R
t (⇡

t
✓(xt)), (3.26)

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 49

and note that we may then re-write the cost as:

J(✓; x0,) = Q
T (xT) + hpT , xT i+ hp0, x0i+

T�1X

t=0

pTt xt �H
t (xt, pt+1, ✓) (3.27)

To reduce clutter below we will frequently omit the arguments from H
t , since it is clear that

the map is evaluated at (xt, pt+1, ✓). Let �✓ 2 Rp be a variation on the policy parameters

and let �xt =
@�t✓
@✓ �✓ denote the corresponding first variation of the state. To first order, the

change in the cost corresponding to these variations is:

�J |✓(�✓) = hrQT (xT) + pT , �xT i+
T�1X

t=0

hpt �rxHt, �xti � hr✓Ht, �✓i. (3.28)

To simplify the expression, let us make the following choices for the multipliers:

pT = rQT (xT) (3.29)

pTt = rxHt(xt, pt+1, ✓) (3.30)

= pTt+1

@

@x
F (x, ⇡t

✓(x)) +rQ (xt) +rR (⇡T
✓ (xt))

@⇡t
✓

@x
(3.31)

= pTt+1(At +BtKt) + qt + rtKt, (3.32)

where we have applied the short-hand from developed in Section 3.2 for the particular task.
Plugging this choice for the multipliers into (3.28) causes the �xt terms to vanish and yields:

�J |✓(�✓) =
t�1X

t=0

hr✓Ht, �✓i (3.33)

= hpTt+1

@

@u
F (x, ⇡t

✓)
@⇡t

✓

@✓
+rRt(⇡

T
✓)
@⇡t

✓

@✓
, �✓i (3.34)

=
t�1X

t=0

hpTt+1Bt + rt,
@⇡t

✓

@✓
�✓i (3.35)

Since this calculation holds for arbitrary �✓ this demonstrates that the gradient of the ob-
jective is given by:

r✓J(✓, x0) =
t�1X

t=0

hpTt+1Bt + rt,
@⇡t

✓

@✓
i. (3.36)

Calculating the Hessian

To calculate the Hessian of the objective be continue the Lagrange multiplier approach
discussed above. Now let �2xt denote the second order variation in the state with respect to

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 50

the perturbation �✓. By collecting second order terms in (3.27) the the attendant second-
order variation to the cost is given by:

�2J |✓(�✓) = h�xT
t r2Q

T (xT), �xti+ hrQ
T (xT) + pT , �

2xT i (3.37)

+
T�1X

t=0

✓
hpt �rxH

t , �

2xti+ h�xT
t rxxH

t (xt), �xti

+ 2h�xtrx✓H

t , �✓i+ h�✓Tr✓✓H

t , �✓i

◆
(3.38)

By using the choice of costate introduced above, this time the second order state variations
�2xt vanish from this expression so that we arrive at:

�2J |✓(�✓) = h�xT
t r2Q

T (xT), �xti (3.39)

+
T�1X

t=0

h�xT
t rxxH

t (xt), �xti+ 2h�xtrx✓H

t , �✓i+ h�✓Tr✓✓H

t , �✓i,

where we recall that we have

�xt =
@�t

✓

@✓
:=

t�1X

t0=0

�t,t0Bt0
@⇡t0

✓

@✓
. (3.40)

Supportive Lemmas

Lemma 3. Let Assumptions 10-13 hold. Then there exists � > 0 independent of the param-
eters T 2 N, M and ↵ 2 R such that for each x0 2 D, 2 and ✓ 2 ⇥ we have:

kr✓JT (✓; x0,)k

8
><

>:

�T 2↵T if ↵ > 1

�T 2 if ↵ = 1

�T if ↵ < 1.

Proof. Let the constant L > 0 be large enough so that it upper-bounds the norm of the first
and second partial derivatives of Qt, Rt, ⇡✓t , F and F̂ on the set D̄ ⇥ ⇥ ⇥. Note that the
existence of such a constant is stipulated by Assumption 11. Fix a specific task (x0,) and
set of policy parameters ✓ and let At, Bt, Kt, qt and rt be defined along the corresponding
trajectory, as in Section 3.2. Recall from Section 3.2 that

rJT (✓; x0,) =
T�1X

t=0

�
pt+1Bt + rt

�
· @⇡

✓
t

@✓
,

where the co-state pt 2 R1⇥n is given by:

pt = qT · �T,t +
T�1X

s=t+1

�
qs + rsKs

�
· �s,t.

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 51

Thus, we may upper-bound the growth of the co-state as follows:

kptk LM↵T�t +
T�1X

s=t+1

(L+ L2)M↵s�t (3.41)

By carrying out the summation, we observe that there exists C1 > 0 su�ciently large such
that

kptk

8
><

>:

C1T↵T if ↵ > 1

C1T if ↵ = 1

C1 if ↵ < 1,

(3.42)

where we have used the fact that
PT�1

s=t+1 M↵s�t < M 1
1�↵ for the third case. We can bound

the overall gradient as follows:

krJT (✓; x0,)k =
T�1X

t=0

L
�
Lkpt+1k+ L

�
, (3.43)

which when combined with the bound on the costate above demonstrates the desired result
for some constant � > 0 su�ciently large to cover all choices of (x0,).

Lemma 4. Let Assumptions 10-13 hold. Then there exists C > 0 independent of T 2 N,
M,�A,�B > 0 and ↵ 2 R such that for each x0 2 D, 2 and ✓ 2 ⇥ we have:

kr✓JT (✓;x0,)� ĝT (✓;x0,)k

8
><

>:

CT 3↵T� if ↵ > 1

CT 3� if ↵ = 1

CT 2� if ↵ < 1,

where � = min{�A,�B}.

Proof. Let the constant L > 0 be large enough so that it upper-bounds the norm of the first
and second partial derivatives of Qt, Rt, ⇡✓t , F and F̂ on the set D̄ ⇥ ⇥ ⇥. Note that the
existence of such a constant is stipulated by Assumption 11. Fix a specific task (x0,) and
set of policy parameters ✓ and let At, Bt, Kt, qt and rt be defined along the corresponding
trajectory, as in Section 3.2.

Using equations (3.12), (3.10) and (4.81) we obtain:

krJT (✓; x0,)� ĝT (✓, x0,)k = k
TX

t=1

qt ·
tX

t0=0

(�t,t0Bt0 � �̂t,t0B̂t0)k

TX

t=1

kqtk ·
tX

t0=0

k�t,t0�Bt0 +
� t�1X

s=t0+1

�t,s�Acl
s �̂s�1,t0

�
B̂t0k

TX

t=1

L
tX

t0=0

�
M↵t�t0� +

� t�1X

s=t0+1

M↵t�s�M↵s�t0
�
L
�
.

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 52

Note that the preceding analysis holds for any choice of ✓ and (x0,). Thus, noting that

t�1X

s=t0+1

M↵t�s�M↵s�t0 < M2 1

1� ↵
�

in the case where ↵ < 1, leveraging the preceding inequality we can easily conclude that
there exists C > 0 su�ciently large such that for each ✓ and (x0,) we have:

kr✓JT (✓; x0,)� ĝT (✓; x0,)k

8
><

>:

CT 3↵T� if ↵ > 1

CT 3� if ↵ = 1

CT 2� if ↵ < 1,

which demonstrates the desired result.

Lemma 5. Let Assumptions 10-13 hold. Then there exists K > 0 independent of T 2 N,
M and ↵ 2 R such that for each x0 2 D, 2 and ✓ 2 ⇥ we have:

kr2
✓JT (✓; x0,)k

8
><

>:

KT 4↵3T if ↵ > 0

KT 4 if ↵ = 0

KT if ↵ < 0.

Proof. Let the constant L > 0 be large enough so that it upper-bounds the norm of the first
and second partial derivatives of Qt, Rt, ⇡✓t , F and F̂ on the set D̄ ⇥ ⇥ ⇥. Note that the
existence of such a constant is stipulated by Assumption 11. Fix a specific task (x0,) and
set of policy parameters ✓. Recall from (3.22) that the Hessian can be calculated as follows:

r2JT (✓; x0,) =
�@xT

@✓

�T ·r2QT (xT) ·
@xT

@✓

+
T�1X

t=0

�@xt

@✓

�T · @
2

@x2
Ht(xt, pt, ✓) ·

@xt

@✓

+ 2
T�1X

t=0

�@xt

@✓

�T · @2

@x@✓
Ht(xt, pt+1, ✓)

+
T�1X

t=0

@2

@✓2
Ht(xt, pt+1, ✓),

By Assumption 11, and using the form of the Hamiltonian (3.26), we see that there exists a
constant C1 > 0 su�ciently large such that

max{ @
2

@x2
Ht(xt, pt, ✓),

@2

@x@✓
Ht(xt, pt+1, ✓),

@2

@x@✓
Ht(xt, pt+1, ✓)} C1(kpt+1k+ 1) (3.44)

CHAPTER 3. REINFORCEMENT LEARNING WITH SIMPLE DYNAMICS MODELS
AND LOW-LEVEL FEEDBACK CONTROLLERS 53

and

kr2JT (✓; x0,)k = Lk@xT

@✓
k2 +

T�1X

t=0

C1(kpt+1k+ 1)
⇥
k@xT

@✓
k2 + k@xt

@✓
k+ 1

⇤
(3.45)

holds for all choices of (x0,) and ✓.

Using our preceding analysis, we can bound the derivative as the state trajectory as
follows:

k@xt

@✓
k = k

t�1X

t0=0

�t,t0Bt0
@⇡✓t
@✓

k

t�1X

t0=0

L2M↵t�t0

This demonstrates that there exists C2 > 0 su�ciently large such that:

k@xt

@✓
k

8
><

>:

C2T↵T if ↵ > 1

C2T if ↵ = 1

C2 if ↵ < 1,

(3.46)

where in the case where ↵ < 1 we have used the fact that
Pt�1

t0=0 M↵t�t0 < M 1
1�↵ . Combining

the previous bounds (3.44), (3.42) and (3.45) then demonstrates the desired result.

54

Chapter 4

Computational Bottlenecks for
Nonlinear Optimal Control

The primary appeal of optimal control is that it allows the user to implicitly encode po-
tentially complex stabilizing controllers as the feedback solutions to certain infinite horizon
optimal control problems which are relatively simple to specify. In principle, obtaining an
optimal infinite horizon controller requires solving the Hamilton-Jacobi-Bellman partial dif-
ferential equation [9]. However, for general nonlinear problems it is rarely possible to solve
the equation in closed form. This has lead to the development of numerous computational
methods which approximate the optimal infinite horizon controller, such as dynamic pro-
gramming [14], receding horizon control [34] and approximate dynamic programming [14]
(including modern reinforcement learning methods [35]). Each of these methods has algo-
rithmic parameters which trade o↵ the quality of the approximation with the amount of
computation or number of samples from the system that are used to solve the problem.

This chapter asks a basic question: how does the chosen cost function interact with the
inherent geometry of the control system to a↵ect the amount of computation needed to obtain
a stabilizing controller? To make this question tractable, we consider a two-stage cost design
process described below. To concretely characterize the amount of computation needed to
obtain a stabilizing controller with a given cost, our theoretical analysis focuses on receding
horizon control (RHC) and the dynamic programming algorithm known as value iteration
(VI). For these methods we respectively characterize the prediction horizon T > 0 and
number of iterations k 2 N the two methods require to stabilize the system. Prior work has
shown a direct relationship between these two quantities [9], thus we primarily analyze RHC
schemes and then use these results to characterize VI. On the empirical side, we investigate
how the choice of cost function a↵ects the amount of data modern reinforcement learning
algorithms need to stabilize the system.

The first step in the cost design process we consider is to select a set of outputs y = h(x)
to penalize in the objective, where x is the state of the system. We will then consider running
costs of the form `✏(x, u) = kh(x)k22 + ✏kuk22, where u is the system input and the choice of

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 55

weighting parameter ✏ > 0 represents the second design choice. Intuitively, as ✏ > 0 is made
smaller, the running cost encourages controllers which more aggressively drive the outputs
to zero. During our analysis, we will first fix a set of outputs and investigate how the choice
of ✏ > 0 a↵ects the amount of computation needed to obtain a stabilizing controller.

Our theoretical analysis draws on insights from two distinct lines of work. The first insight
comes from the receding horizon literature [33, 30, 63], which relates the optimal infinite
horizon performance for a given cost to the prediction horizon needed by RHC schemes (and
VI) to stabilize the system. Informally, the smaller the infinite horizon cost, the shorter the
prediction horizon T > 0 needed to stabilize the system. The rough intuition here [63] is that
as the optimal infinite horizon cost becomes smaller the optimal controller must necessarily
drive the running cost to zero more rapidly, and this myopic behavior is easier for RHC
schemes to approximate with a short prediction horizon.

The second line of work is the ‘cheap control’ literature [97, 3, 87, 88], which studies the
class of cost functions we consider and draws a separation between minimum-phase (MP)
and non-minimum-phase (NMP) systems. In particular, this work bounds the performance
of the optimal infinite horizon controller as ✏ ! 0. As the limit is taken the optimal
controller drives the outputs to zero as rapidly as possible while ensuring the closed-loop
system is asymptotically stable. For MP systems, under suitable conditions, the infinite
horizon performance can be made arbitrarily small by taking ✏ ! 0, as a high-gain output-
zeroing controller will not destabilize the zeros. However, for NMP systems the unstable
zero dynamics present a fundamental barrier to making the infinite horizon performance
arbitrarily small, as the optimal controller cannot myopically drive the outputs to zero and
must instead ‘steer’ the outputs to stabilize the zeros [97].

We build on these perspectives by demonstrating that when the chosen outputs lead to
MP behavior the prediction horizon T > 0 needed for RHC schemes to stabilize the system
can be made arbitrarily small by making ✏ > 0 su�ciently small. Thus, when the system is
MP, the user can consistently decrease the computational burden of obtaining a stabilizing
controller by using costs which encourage myopically driving the outputs to zero. In sharp
contrast, for NMP systems as we take ✏ ! 0 the prediction horizon needed to stabilize the
system actually increases and becomes unbounded. Thus, ‘high-performance’ infinite horizon
optimal controllers which zero the outputs as rapidly as possible are di�cult to approximate
in the NMP case but not in the MP case (using RHC and VI). Moreover, we identify a class
of passively unstable NMP systems for which there is a minimum prediction horizon T > 0
that is needed to stabilize the system for all choices of ✏ > 0. Taken together, these results
demonstrate that NMP dynamics constitute an obstacle, from a computational perspective,
to constructing a stabilizing controller. Our simulation studies with reinforcement learning
further support this perspective.

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 56

Cost Formulation

For each ✏ > 0 and T > 0 we study the cost functions:

inf
u(·)2U1

J ✏1(u(·); x0) :=

Z 1

0

kh(x(t))k22 + ✏ku(t)k22dt, (4.1)

inf
u(·)2UT

J ✏T (u(·); x0) :=

Z T

0

kh(x(t))k22 + ✏ku(t)k22dt, (4.2)

where h : Rn ! Rp is a map constructed by the user, which is assumed to be twice continu-
ously di↵erentiable and such that h(0) = 0. The map h captures the physical quantities of
the system which are the most important to drive to zero to meet the control objectives of
the designer.

To each of these problems we associate value functions:

V ✏
1(x0) := inf

u2U1
J ✏1(u(·); x0), (4.3)

V ✏
T (x0) := inf

u2UT

J ✏T (u(·); x0). (4.4)

We assume that for each ✏ > 0 V ✏
1 is positive definite, continuous and bounded on bounded

sets so that the infinite horizon controller will stabilize the system [9].

Normal Forms, Zero Dynamics and Structural Assumptions

To better understand how the cost functions introduced in the previous section interact with
the geometry of the state-space model (4.16), let us formally append a set of outputs to the
system and form an input-output model of the form:

ẋ = f(x) + g(x)u (4.5)

y = h(x),

where y 2 Rp. As alluded to above, the perspective here is that the choice of the running
cost implicitly induces this structure, and our goal throughout the chapter is to understand
how this choice impacts the design trade-o↵s available to the user. Thus, in this section we
briefly review basic concepts from nonlinear geometric control which shed light onto how the
choice of cost function interacts with the underlying structure of the dynamics. In particular,
we discuss how to construct a ‘normal form’ associated to the input-output system (4.5),
and also introduce several simplifying assumption we will make throughout the chapter. Our
introduction to these concepts will be brief, as they are covered in many standard references
(e.g. [90, Chapter 9]). We first make the following Assumption:

Assumption 14. The number of inputs is equal to the number of outputs, namely, q = p.

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 57

We make this assumption as the construction of normal forms is more straightforward for
‘square’ systems. We discuss the impact of removing this structural condition, along with
Assumptions 15 and 16 below, in Section 4.2.

To obtain a more direct expression relating the evolution of the outputs to the inputs, one
can repeatedly di↵erentiate each of the outputs along the dynamics (4.16) until an expression
of the following form is obtained:

h
y(r1)1 . . . y(rq)q

iT
= b(x) + A(x)u, (4.6)

where y(k)j denotes the k-th time derivative of yj = hj(x) (the j-th entry of the output) and the
rj are positive integers. If the matrix A(x) is bounded away from singularity for each x 2 Rn

then we say that the system has a well-defined (vector) relative degree r̄ = (r1, r2, . . . , rq).
In this case there exists a valid change of coordinates x ! (⇠, ⌘) such that in the new
coordinates the dynamics are of the form:

⇠̇ = F ⇠ +G

b̄(⇠, ⌘) + Ā(⇠, ⌘)u

�
(4.7)

⌘̇ = q̄(⇠, ⌘) + P̄ (⇠, ⌘)u

y = C⇠,

where (F,G) is controllable, (F,C) is observable and Ā(⇠, ⌘) is bounded away from singularity
for each (⇠, ⌘) 2 Rn. Here the coordinates ⇠ 2 R|r̄| capture the outputs and dervatives up
to the appropriate order and ⌘ 2 Rn�|r̄| completes the change of coordinates. Namely, ⇠
contains entries of the form ⇠j,k = y(k�1)

j for j = 1, . . . , q and k = 1, . . . , rj.

Next we discuss two simplifying assumption we will use, which are in line with the cheap
control literature [17]:

Assumption 15. There exists r 2 N such that the vector relative degree of the system (4.16)
is r̄ = (r, r, . . . , r).

Under assumption 15, we can arrange ⇠ = (⇠1, ⇠2, . . . ⇠r) and the F , G and C matrices in
(4.7) to be of the form:

F =

2

6664

0 I . . . 0
...

. . .
...

0 0 . . . I
0 0 . . . 0

3

7775
G =

2

6664

0
...
0
I

3

7775
, C =

⇥
I 0 . . . 0

⇤
. (4.8)

Namely, ⇠1 = (y1, . . . , yq) represents the outputs and for k = 2, . . . , r the coordinates ⇠k =

(y(k�1)
1 , . . . , y(k�1)

q) capture the (k � 1)� th derivatives of the outputs.

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 58

Next, we will restrict the structure of the interconnection between the ⇠ and ⌘ subsystems.
We say that the input-output system (4.16) can be put into strict feedback form if the ⌘
coordinates can be chosen so that the normal form of the dynamics takes the following form:

⇠̇ = F ⇠ +G[b̄(⇠, ⌘) + Ā(⇠, ⌘)u] (4.9)

⌘̇ = f̄0(⌘) + ḡ0(⌘)⇠1
y = ⇠1 = C⇠,

where f̄0 : Rn�|r̄| ! Rn�|r̄| and ḡ0 : Rn�|r̄| ! R(n�|r̄|)⇥q.

Assumption 16. The input-output system (4.16) can be put into the strict feedback form
(4.9).

This assumption forbids the input and the derivatives of the outputs to appear directly
in the dynamics of the zeros, and prevents the so-called peaking phenomena [96], which we
discuss in more detail in Section 4.2. In the special case of linear dynamics the system can
always be put into strict feedback form when Assumption 15 is satisfied (see e.g. [88]).

For this class of system the zero dynamics are obtained by setting the outputs to zero:

⌘̇ = f̄0(⌘). (4.10)

We say that the input-output system is minimum-phase (MP) if the zero dynamics are
asymptotically stable, and exponentially minimum-phase if they are exponentially stable.
We say that this system is non-minimum-phase (NMP) if it is not minumum-phase, and
exponentially non-minimum-phase if the dynamics ⌘̇ = �f̄0(⌘) are exponentially stable.
Finally, if |r̄| = n then no ⌘ coordinates are needed in the coordinate transformation, and
the system is called full-sate linearizable. By way of convention, systems which are full-state
linearizable are trivially (exponentially) minimum-phase.

The Cheap Control Limit

The focus of the cheap control literature has been to characterize the structure of the optimal
value function V ✏

1 and corresponding optimal controller u✏ for small values of ✏ > 0. In
particular, the limiting value lim✏!0 V ✏

1(x) provides qualitative insight into how di�cult it is
to drive the chosen outputs to zero from the state x 2 Rn while also stabilizing the internal
dynamics. The essential result from the literature is a qualitative separation between the
performance limitations of MP and NMP systems. While the majority of the literature has
focused on the case where the dynamics are linear [87, 88, 27], [97] and [17] extend these
results to nonlinear strict-feedback systems of the form (4.9). An integral part of the analysis
for strict feedback systems is the ‘minimum energy problem’ which is formulated using the
normal form (4.9):

V̂0(⌘0) = inf
⇠1(·)

J0(⇠1(·); ⌘0) =
Z 1

0

k⇠1(t)k22dt (4.11)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 59

where ⌘̇ = f0(⌘)+ g0(⌘)⇠1, the output ⇠1(·) is viewed as an ‘input’ to the zero subsystem and
the infimum in (4.11) is understood to be over ⇠1(·) which drive ⌘(t) ! 0 asymptotically.
Thus, V̂0(⌘) can be interpreted as the minimum ‘energy’ of the outputs (in an L2 sense)
that must be accrued by a feedback controller which stabilizes the internal dynamics. When
V̂0 is continuously di↵erentiable, an ‘optimal controller’ for the zeros subsystem is given by
⇠1(t) = µ0(⌘(t)), where µ0 : Rn�|r̄| ! Rq is obtain from the HJB PDE associated to the
reduced problem (4.11).

Crucially, one may observe that if the system is MP then V̂0(·) ⌘ 0 since no ‘energy’
must be expended to stabilize the zeros. On the other hand, when the system is NMP we
will have V̂0(·) 6⌘ 0 since the outputs must be ‘steered’ to stabilize the zeros. In both cases,
under suitable technical conditions, the performance limitation for the system is given by
lim✏!0 V̂ ✏

1(⇠, ⌘) = V̂0(⌘), where V̂ ✏
1(⇠, ⌘) is the representation of the value function in the

normal coordinates. Thus, for MP systems the infinite horizon cost can be made arbitarily
small by taking ✏ ! 0, while there is a fundamental limitation for NMP systems. For MP
systems as ✏ ! 0 the optimal controller drives the outputs directly to zero more and more
rapidly, while in the NMP case a high-gain feedback controller drives ⇠(t) ! µ0(⌘(t)) to
stabilize the zeros [17].

Fast-Slow Representations

As mentioned above, singular perturbation techniques play a crucial role in obtaining the
aforementioned results and play an essential role in our analysis. Even though most of our
arguments are relegated to the supporting document [102], it is worthwhile to outline the
broad strokes of the analysis here.

In particular, first define the new parameter ✏̃ > 0 such that ✏ = ✏̃2r so that we may
rewrite the running as k⇠1k22 + ✏̃2rkuk22. If we then define the new coordinates

⇠̃ = S(✏̃)⇠ and ũ = ✏̃ru, (4.12)

where
S(✏̃) = diag(1, ✏̃, ..., ✏̃r�1) (4.13)

then the system (4.9) takes on the fast-slow representation:

✏̃ ˙̃⇠ = F ⇠̃ +G
⇥
✏̃rb̃(⇠̃, ⌘) + Ã(⇠̃, ⌘)ũ

⇤
(4.14)

⌘̇ = f̄0(⌘) + ḡ0(⌘)⇠̃1,

where b̃(⇠̃, ⌘) = b̄(S(✏̃)�1⇠̃, ⌘) and Ã(⇠̃, ⌘) = Ā(S(✏̃)�1⇠̃, ⌘) and we have suppressed the de-
pendence of these terms on ✏̃. In the re-scaled coordinates the infinite horizon cost becomes:

inf
ũ(·)2U1

J̃ ✏̃1(ũ(·); ⇠̃0, ⌘0) =
Z 1

0

k⇠̃1(t)k22 + kũ(t)k22dt. (4.15)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 60

We will let Ṽ ✏̃
1 denote the representation of the value function in the new coordinates, and we

define the reparameterized finite horizon cost J̃ ✏̃T and optimal performance Ṽ ✏̃
T in an analogous

way. The form of the re-scaled cost function and dynamics clearly evokes the intuition that
we should expect a fast transient for the outputs for small values of ✏̃ > 0.

4.1 Infinite Horizon Optimal Control, Receding
Horizon Approximations, And Value Iteration

We will consider a system of the form:

ẋ = f(x) + g(x)u, x(0) = x0, (4.16)

where x 2 Rn is the state, x0 2 Rn is the initial condition and u 2 Rq is the input. We will
assume that the maps f : Rn ! R and g : Rn ! Rn⇥q are twice continuously di↵erentiable
and that f(0) = 0. For each T 2 R [{1} we will let UT denote the set of controls of the
form u : [0, T] ! Rq which are measurable and essentially bounded.

Infinite Horizon Optimal Control

In this section we will consider a generic infinite horizon optimal control problem of the form:

inf
u(·)2U1

J1(u(·); x0) :=

Z 1

0

`(x(t), u(t))dt, (4.17)

where (x(·), u(·)) are subject to (4.16) and ` : Rn ⇥Rq ! R is a twice continuously di↵eren-
tiable running cost which is non-negative, strictly convex in u, and satisfies `(0, 0) = 0. To
the infinite horizon cost we associate the value function:

V1(x0) := inf
u(·)2U1

J1(u(·); x0).

We assume that V1 is continuous, positive definite, bounded on bounded sets, and that there
exists a control which achieves the optimal performance, namely, V1(x0) = J1(u⇤(·); x0) for
some u⇤ 2 U1. We will implicitly make these standard assumptions for each of the costs
used later in the chapter.

It is well-known that V1 can be obtained, in principle, as a solution to the Hamilton-
Jacobi-Bellman equation (see e.g. [9, Chapter 3.2]) and used to synthesize an optimal sta-
bilizing feedback controller u1 : Rn ! Rq for the cost. This controller is optimal in the
sense that when applied to the system it achieves the smallest possible cost from each initial
condition.

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 61

Receding Horizon Control

Next, we discuss receding horizon approximations to the optimal infinite horizon controller
u1. These schemes use a finite horizon approximation to (4.17) of the form:

inf
u(·)2UT

JT (u(·); x0) =

Z T

0

`(x(t), u(t))dt, (4.18)

where T > 0 is a finite prediction horizon. The value function associated to the approxima-
tion is:

VT (x0) := inf
u(·)2UT

JT (u(·); x0).

To ease exposition we assume that for each T > 0 and x0 2 Rn there exists a unique
minimizer u⇤

T (·; x0) 2 UT for the optimal control problem, and we will let x⇤
T (·; x0) denote

the corresponding state trajectory. However, we note that in the case where there are
multiple optimal controls for a given initial condition the following discussion goes through
if any of these control signals are used.

For each prediction horizon T > 0 and sampling rate T � �t > 0, receding horizon
schemes approximate the infinite horizon controller u1 with a sampled data control law of
the form uT,�t(t; x0) = u⇤

T (t� tk; xT,�t(tk; x0)) for each t 2 [tk, tk+1), where the tk = k�t are
sampling instances and xT,�t(·; x0) is the state trajectory produced by the receding horizon
scheme from the initial condition x0 2 Rn. In words, at each sampling instant tk the receding
horizon controller solves the finite horizon optimal control problem (4.18) from the current
system state, applies the resulting open loop control for �t seconds, and then repeats the
process at time tk+1.

The Stability of RHC

At their core, stability results from the literature [42, 34] are founded on the notion that as
T > 0 increases the RHC scheme more closely approximates the infinite horizon continuous-
time feedback controller u1. The quality of this approximation is typically characterized
by how the values of VT converge to those of V1. However, increasing T comes at the cost
of additional computational complexity when solving (4.18). We next describe a specific
stability result used in our analysis, which upper-bounds the prediction horizon T > 0
needed to ensure stability. In what follows, we will let � : Rn ! R be a fixed positive definite
function which will be used to measure the distance of the state to the origin.

Assumption 17. There exists ↵̄V > 0 such that:

V1(x) ↵̄V · �(x) 8x 2 Rn.

Assumption 18. There exists a continuously di↵erentiable function W : Rn ! R and
↵̄W ,↵W , KW > 0 such that for each x 2 Rn and u 2 Rq:

↵W · �(x) W (x) ↵̄W · �(x)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 62

d

dx
W (x)[f(x) + g(x)u] �KW · �(x) + `(x, u).

Intuitively, the smaller the constant ↵̄V > 0 in Assumption 17 the more rapidly the infinite
horizon optimal controller must drive the instantaneous performance to zero. The existence
of the map W in Assumption 18 ensures that the state measure �(·) is detectable with
respect to the loss function `, in the sense that if `(x, u) = 0 then we must have d

dtW (x) < 0
if x 6= 0. The following result, which we prove in the supplementary document [102], is
essentially a continuous-time adaptation and specialization of the stability result from [34]
which is stated for discrete-time receding horizon control:

Theorem 4. Let Assumptions 17 and 18 hold. Then the receding horizon controller uT,�t

will asymptotically stabilize (4.16) for each for each T � �t � 0 such that:

T >
↵̄V (↵̄V + ↵̄W)

KW↵W (1�M(�t))
(4.19)

where

M(�t) = exp(�KW
↵W�t

↵̄V + ↵̄W
)] < 1. (4.20)

Note how the bound on the required prediction horizon T > 0 depends on the performance
of the infinite horizon cost. As ↵̄V decreases we can ensure asymptotic stability of the closed-
loop system by using RHC schemes with smaller and smaller prediction horizons. This will
form the basis for our stability results for minimum-phase systems, when combined with the
cheap control results in Section 4.

Connections Between RHC and VI

Again using a sampling interval �t > 0, the value iteration (VI) algorithm constructs a
sequence of approximations V 1, V2, . . . to the infinite horizon value function V1 using the
following recursion with V 1(·) ⌘ 0:

V k+1(x0) = inf
u2U�t

 Z �t

0

`(x(t), u(t))dt+ V k(x(�t))

�
. (4.21)

For each k 2 N let uk(·; x0) 2 U�t be a control which solves the optimization on the right-
hand side of (4.21). Under mild conditions one can show that V k converges to V1 as k ! 1
(see [9, Chapter 3.3] for a more in depth discussion). The algorithm produces a sampled-
data control law of the form uk,�t(t; x0) = uk(t � tk; xk,�t(tk)) for each t 2 [tk, tk+1) where
xk,�t(·; x0) is the state trajectory produced by the control scheme from the given initial
condition x0 2 Rn.

Using the Principle of Optimality (see e.g. [9, Prop 3.2]), one can show that for each k 2 N
VI produces the estimate V k = Vk·�t. Moreover the k-th greedy control is characterized for

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 63

each x0 2 Rn by uk(·; x0) = uT (·; x0)|[0,�t]. Thus, the sampled data controller obtained
after k steps of VI with discretization parameter �t is equivalent to the receding horizon
controller with prediction horizon T = k�t and re-planning interval �t. Thus, the dynamic
programming based controller uk,�t implicitly optimizes over the prediction horizon T = k�t,
and there is a direct correspondence between cases where RHC and VI will stabilize (4.16).

4.2 The Computational Consequences of Cost Design
for Nonlinear Optimal Control

We are now ready to present our theoretical results and draw a qualitative distinction between
what is possible, from a computational perspective, when the outputs y = h(x) correspond
to either minimum-phase or non-minimum-phase behavior. Due to space constraints, proofs
of the following results are relegated to [102] and we only outline the main arguments here.
In Section 4.2 we introduce bounds on V ✏

1 and V ✏
T which are used in the proofs of the main

results and provide qualitative insight into how well receding horizon controllers approximate
u✏1. We then discuss our stability result for minimum-phase systems in Section 4.2 and
instability results for non-minimum-phase system in Section 4.2.

Performance Bounds

Our results require the following growth assumptions:

Assumption 19. There exists C > 0 such that the following conditons hold for each x 2 Rn

and (⇠, ⌘) 2 Rn :

kf(x)k2 Lkxk2, kb̄(⇠, ⌘)k2 L (k⇠k2 + k⌘k2) ,
kg(x)k2 L, kĀ(⇠, ⌘)k2 < L,

kf̄0(⌘)k2 Lk⌘k2, kḡ0(⌘)k2 L.

Under this regularity condition we can obtain the following bound on the infinite horizon
cost for MP systems:

Lemma 6. Let Assumptions 14-19 hold. Further assume that (4.9) is exponentially minimum-
phase (including full-state linearizable). Then there exist K̂ > 0 such that for each 0 < ✏̃ 1
we have for each (⇠̃, ⌘) 2 Rn :

Ṽ ✏̃
1(⇠̃, ⌘) K̂

�
✏̃k⇠̃k22 + ✏̃2rk⌘k22

�
. (4.22)

The proof uses the fast-slow representation of the dynamics (4.14) and bounds the infi-
nite horizon performance of a sub-optimal feedback linearizing controller of the form ũ =
Ã�1(⇠̃, ⌘)[�✏̃rb̃(⇠̃, ⌘) +K ⇠̃] where F +GK is Hurwitz, which drives the ⇠̃ coordinates to zero
exponentially at a rate on the order of 1

✏̃ . Because the zero dynamics are exponentially

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 64

minimum-phase, and we have restricted the interconnection between the two systems with
Assumption 16, this high gain feedback does not destabilize the zeros. As expected, Lemma
6 implies that the infinite horizon optimal controller drives the outputs to zero more and
more rapidly as ✏̃! 0. In contrast, we recall from Section 4 that Ṽ ✏̃

1 can be lower-bounded
uniformly in the case where the system is NMP, since the outputs must be ‘steered’ so as to
stabilize the zeros.

Next, we discuss a bound on the finite-horizon performance which holds for both MP and
NMP systems:

Lemma 7. Let Assumptions 14-19 hold. Then for each T̄ > 0, there exists K̄ > 0 and ✏̄ > 0
such that for each T̄ � T > 0 and ✏ 2 (0, ✏̄] we have for each (⇠̃, ⌘) 2 Rn:

Ṽ ✏̃
T (⇠̃, ⌘) K̄

�
✏̃k⇠̃k22 + ✏̃2rk⌘k22

�
. (4.23)

The result is again obtained by bounding the performance of a linearizing controller which
drives the ⇠̃ coordinates to zero. Unlike in the infinite horizon case, on bounded time horizons
the optimal control does not need to drive the zeros to the origin to achieve a finite cost,
which vanishes as ✏̃ ! 0. Indeed, as the preceding bound indicates, and as we show more
formally in the proof of Theorem 7 in [102], when the prediction horizon T > 0 is bounded
and ✏̃ > 0 is small the optimal control always drives the outputs toward zero in a mypoic
fashion. In the NMP case, this will mean that RHC schemes fails to stabilize the zero
dynamics when ✏̃ is small, unless a very large prediction horizon is used.

We provided the previous bound in terms of the rescaled coordinates (⇠̃, ⌘) and the pa-
rameter ✏̃ = ✏

1
2r , as doing so cleanly separates how the bound depends on the outputs (and

their derivatives) and the zeros. We note that in the original representation the bounds on
V ✏
T (x) and V ✏

1(x) will both be on the order of O(✏
1
2r), providing insight into how the relative

degree a↵ects the growth of the bound. We state our main results below using the original
representation for the problem.

Stability Results for Full-State Linearizable Systems

In this Section we provide our cost-shaping result for cases where the chosen outputs induce
an input-output system which is full-state linearizable. For the following result we are able
to apply the argument from 4. Even though this result is really a corollary to Theorem 6
presented below, as it is instructive to compare the two proof techniques to see how ‘standard’
stability results from the RHC literature are unfit for the more general minimum-phase case
considered later. We will provide commentary on how to interpret this result (as a special
case of the general MP result in 6) after introducing both results.

Lemma 8. Let Assumptions 15, 16 and 19 hold. Further assume that the system is full-state
linearizable. Then for each T � �t > 0 there exists ✏0 > 0 such that for each ✏ 2 (0, ✏0] the
corresponding receding horizon controller renders the closed-loop system globally exponentially
stable.

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 65

Theorem 5. Let Assumptions 14-19 hold. Further assume that (4.9) is full stae linearizable.
Then for every fixed T � �t > 0 there exists ✏̄ > 0 such that for each ✏ 2 (0, ✏̄] the receding
horizon controller u✏T,�t(·; x0) renders the closed-loop system globally exponentially stable.

Proof. The proof will work in the ⇠̃ coordinates and uses the storage function W (⇠̃) = ⇠̃P ⇠̃
where P solves the Lyapunov equation (F + MH)TP + P (F + MH) = �2I where I is
the identity, M is chosen so that (F + MH) is Hurwitz (which is feasible since (F,H) is
detectable), and all matrices are of appropriate dimension. Our choice for W is inspired by
the construction in [34], which instead studies discrete time linear systems. With an eye
towards the satisfaction of Assumption 18, we can compute:

Ẇ ✏(⇠̃, ũ) = ⇠̃T (F TP + PF)⇠ + 2⇠̃TPG✏̃rb̃(⇠̃)

+ 2⇠̃TPGÃ(⇠̃)u

= ⇠̃T ((F +MH)TP + P (F +MH))⇠ � ⇠̃T (MHP + PMH)⇠̃ + 2⇠̃TPG✏̃rb̃(⇠̃)

+ 2⇠̃TPGÃ(⇠̃)u

 �2k⇠̃k22 + 2kPk · kM · kk⇠̃1k22 + 2L · kPk · kGk · ✏̃r · k⇠̃k2

+ 2LkPk · kGk · k⇠̃k · kũk
 �(1� 2L · kPk · kGk · ✏̃r)k⇠̃k2 + 2LkPk · kGk · k⇠̃k(k⇠̃1k2 + kũk2)
 �(1� ↵✏̃r)k⇠̃k2 + ↵k⇠̃k(k⇠̃1k2 + kũk2),

where we have defined:
↵ = 2LkPk · kGk. (4.24)

From here on let us suppose that ✏̃r < 1
2↵. Under this condition we have that:

Ẇ (⇠̃, ũ) �1

2
↵k⇠̃k+ ↵

�
k⇠̃1k+ kũk2

�
. (4.25)

We would like to uses the function W to apply Theorem 4. However, in order to do so we
must have ↵ < 1. Since this may not be the case in general, we instead consider the rescaling
W ! 1

↵W . The preceding inequalities then yields:

1

↵
W (⇠̃, ũ) �1

2
k⇠̃k2 + k⇠̃1k+ kũk2, (4.26)

which demonstrates that 1
↵W satisfies the detectability for the running cost in the ⇠̃, ũ

coordinates, namely, in these coordinates the cost satisfies Assumption 18. In particular,
1
↵W satisfies Assumption 18 with constants ↵w = ✏̃↵�min(P), ↵w = ✏̃↵�max(P) and KW = 1

2 .
Thus, applying Theorem 4

T >
✏̃K(K + ↵�max(P))

1
2↵�min(P)(1�M(�t))

(4.27)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 66

where

M(�t) = exp

✓
� 1

2

↵�min(P)�t

K + ↵�max(P)

◆
< 1. (4.28)

From the preceding inequalities and discussion, we obtain the desired result, as they demon-
strate that the system will be stabilized if

✏̃1/2 < ✏̃min{C(�t)T,
1

2
↵} (4.29)

where

C(�t) =
↵�min(P)�t

K̂(K̂ + ↵�max(P))
(4.30)

and the constant K̂ > 0 is from the upper-bound on the infinite horizon cost in Lemma
7.

Stability Results and Design Trade-o↵s for MP Systems

We are ready to state our main result for MP systems, which applies to the case where the
zero dynamics are stable, and demonstrates that the prediction horizon T > 0 and number
of iterations k 2 N required for RHC methods and VI to stabilize the system can respectively
be made as small as desired. The result is as follows:

Theorem 6. Let Assumptions 14-19 hold. Further assume that (4.9) is exponentially
minimum-phase (including full state-linearizable). Then for every fixed T � �t > 0 there
exists ✏̄ > 0 such that for each ✏ 2 (0, ✏̄] the receding horizon controller u✏T,�t(·; x0) renders
the closed-loop system globally exponentially stable.

The full proof can be found in the Appendix, and we provide some discussion before
outlining how the proof diverges from the the fully-linearizable result presented above in
Theorem 5.

In the general exponentially MP case the designer can consistently decrease the amount
of computation needed to obtain a stabilizing RHC controller (as measured by the prediction
horizon T > 0 or number of of iterations k 2 N) by decreasing ✏ > 0 and encouraging the
controller to rapidly drive the outputs to zero. In some applications a fast transient for the
outputs may be desirable, and there is no tension between meeting the desired performance
objectives and the computational burden of the RHC schemes. In other scenarios the high-
gain RHC controllers corresponding to small values of ✏ > 0 may cause undesirable e↵ects
such as chattering or use too much input to meet design specifications. In either case, when
the chosen outputs are MP, the designer retains the freedom to fully explore these design
trade-o↵s. As we shall see below, design choices become more restricted when the chosen
cost functions implicitly induces NMP behavior.

We leave the full proof to the Appendix, but remark here how it di↵ers significantly
from the proof of Theorem 5. Working in the (⇠̃, ⌘) coordinates, the main idea behind the

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 67

proof is to construct a function W = ✏̃V1(⇠̃) + V2(⌘). Here the first function is for the form
V1(⇠̃) = ⇠̃TP ⇠̃ where P solves the Lyapunov equation (F +MH)TP + P (F +MH) = �2I
where I is the identity, M is chosen so that (F + MH) is Hurwitz (which is feasible since
(F,H) is detectable), and all matrices are of appropriate dimension. This choice of candidate
storage function is inspired by the linear systems example from [34]. The second functions V2

is constructed using a standard converse exponentially stability results [90]. This composite
function W can can be shown to satisfy the detectability condition 18. Thus, one might
hope that in this case we could again directly apply Theorem 4, along with the performance
bound 6 to obtain the desired result. However, the ✏̃ > 0 scaling factor in the definition
of V1(⇠̃) means that at most we may choose the constant ↵W > 0 to be at most on the
order of ✏̃ > 0, which prevents us from using 4 to argue that we can make T > 0 (and
consequently k 2 N) as small as desired by making ✏̃ su�ciently small. This is a reflection
of the fact that Theorem 4, and similar arguments that can be found in the literature, are
ill-suited for the two time-scale structure that is induced form MP systems which are not
full-state linearizable. Thus, the proof of the following results, which can be found in the
Appendix, using direct singular perturbation analysis to 1) argue that when ✏̃ > 0 is small
the ⇠̃ coordinates are driven exponentially to the origin with a rate of convergence which is on
the order of O(1✏) and 2) that the exponential stability of the zeros, under the strict-feedback
interconnection Assumption in 16, is not disturbed too much by this fast transient.

Instability Results, Design Trade-o↵s and Fundamental
Limitations for NMP Systems

Our main result for NMP systems in Theorem 7 below highlights a class of NMP systems
for which there exists a uniform lower-bound on the prediction horizon T > 0 required to
stabilize the system with receding horizon methods which holds for all choices of ✏ > 0. We
first introduce supportive Lemmas which provide some intuition for this result, and highlight
cases when the closed-loop system induced by RHC and VI will be unstable. We note that
these results and proof techniques are fairly distinct from previous analysis for RHC and VI
presented in the literature. This is unsurprising, as the focus of the literature has naturally
been to provide su�cient conditions for stability. n our case the following instability results
allow us to draw a qualitative separation between cases where the cost function induces MP
vs. NMP dynamics Once again, detailed proofs are relegated to the Appendix. The following
result applies to ‘small’ values of ✏̃:

Lemma 9. Let Assumptions 14-19 hold. Further assume that the system (4.5) is globally
exponentially NMP. Then for each T̄ > 0 there exists ✏̄ > 0 such that for each ✏ 2 (0, ✏̄] and
T̄ � T � �t > 0 the receding horizon controller u✏T,�t fails to stabilize (4.16).

Similarly to the MP case above, the first step in the proof is to argue that for small a
fixed T > 0 (or k 2 N) if ✏ > 0 is su�ciently small then the closed-loop system will once
again mypopically drive the outputs and their derivatives to the origin. However in the

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 68

NMP case, when the outputs are zeroed myopically the zeros will remain unstable. In sharp
contrast to the MP case discussed above, Lemma 9 indicates that in the NMP case as we take
✏ ! 0 the time horizon needed for RHC schemes to stabilize the system actually increases
and becomes unbounded. In other words, as ✏ ! 0 and the optimal stabilizing controller
u✏1 pushes up against the inherent performance limitations of the system, it becomes more
di�cult to approximate u✏1 with receding horizon schemes (and thus also the VI method).
In extreme cases, a RHC controller formulated with small ✏ > 0 and insu�ciently large
T > 0 can actually destabilize a passively stable NMP system. To see this, consider the
linear system:

⇠̇
⌘̇

�
=

�2 1
�10 1

�
⇠
⌘

�
+

1
0

�
u, y = ⇠. (4.31)

Although the un-driven dynamics are exponentially stable, Lemma 10 predicts that for any
T � �t > 0 the RHC controller u✏T,�t will destabilize the system if ✏ > 0 is too small.

While Lemma 9 deals with ‘small’ values of ✏ > 0, the following result gives conditions
under which ‘large’ values of ✏ > 0. For passively stable systems such as (4.31), when ✏ > 0
is large the RHC controller will not exert enough control e↵ort to destabilize the system [53]
for any value of T > 0. However, when the dynamics are passively unstable, ‘large’ values of
✏ > 0 prevent the RHC controller from exerting enough control e↵ort to stabilize the system
unless T > 0 is su�ciently large, as the following result demonstrates. In the statement of
the following Lemma we will concatinate the original normal form coordinates as x̄ = (⇠, ⌘)
and conscicely represent the dynamics in these coordniates with:

˙̄x = F̄ (x̄) + Ḡ(x̄)u. (4.32)

Lemma 10. Let Assumptions 14-19 hold. Further assume that the dynamics ˙̄x = �F̄ (x̄)
in the normal coordinates are exponentially stable. Then for each ✏̄ > 0 there exists T̄ > 0
such that for each ✏ > ✏̄ and T̄ � T � �t > 0 the receding horizon controller u✏T,�t fails to
stabilize (4.16).

We combine the preceding results to obtain the following:

Theorem 7. Let Assumptions 14-19 hold. Further assume the additional hypotheses of
Lemmas 9 and 10 hold. Then there exists T̄ > 0 such that for each ✏ > 0 and T̄ � T � �t > 0
the receding horizon controller u✏T,�t fails to stabilize (4.16).

Thus, unlike in the MP case, NMP dynamics can impose a structural obstacle limiting
how small the system designer can make the prediction horizon while ensuring the stability of
the closed-loop system. Taken together, the preceding results demonstrate that the presence
of NMP dynamics (with respect to the outputs chosen when synthesizing the cost function)
limits the capabilities of the designer and restricts the set of design trade-o↵s that can be
exploited. This roughly matches the chief qualitative separation between MP and NMP

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 69

systems highlighted by the cheap control literature, but leads to a philosophically di↵erent
interpretation. In the cheap control literature, the existence of performance limitations for
NMP systems is taken directly as a measure of how fundamentally di�cult it is to drive
both the outputs and zeros to the origin. Our results further this perspective. Not only
are there fundamental limitations to what is achievable in closed-loop, but these limitations
also apply to the synthesis of stabilizing controllers which rely on computation to develop a
strategy which attempts to stabilizing both the output and zero subsystems.

Relaxing Assumptions

Finally we briefly discuss when the technical assumptions made in the chapter can be relaxed
and when there are obstacles to doing so. First, let us discuss the Assumption 16, which
stipulates that the system can be put into strict feedback form. For more general nonlinear
systems of the form (4.7), driving the outputs to zero with high-gain feedback control may
destabilize the zero dynamics, even when the system is exponentially MP, due to the well-
documented peaking phenomena (see.[96] for a comprehensive discussion). Thus, without
additional structural assumptions about the interconnection between the two subsystems we
cannot guarantee that the system does not su↵er from performance limitations.

Next, consider Assumption 14, which stipulates that the number of inputs equals the
number of outputs. As long as our other structural assumptions hold, there is little di�culty
in extending our results to the case where there are fewer inputs than outputs, so long as
the outputs can be decoupled by state feedback. On the other hand, when there are more
outputs than inputs the results from [16] indicate that the input-output system will su↵er
from performance limitations, as the output channels cannot be decoupled by state feedback
and driven to zero at arbitrary rates.

Assumption 15, which stipulates that each of the outputs has the same relative degree,
is made primarily to streamline analysis. When the outputs have di↵erent relative degrees,
instead of inducing a fast-slow system of the form (4.14), the cheap control problem induces
a singular perturbation problem with multiple time-scale which is much more cumbersome
to analyze [89]. Nonetheless, we believe an extension of our results to these cases is possible.

Finally, we discuss the tacit Assumption that has been made throughout the chapter
which assume that there are no constraints on the inputs or states. When either the state
or the input is constrained performance limitations may arise, as there may be a limit to
how quickly the outputs can be driven to zero [16]. Although we leave a more detailed
characterization of these scenarios to future work, the perspective taken in this chapter
forms the basis for explaining why constraints can make it fundamentally di�cult, from a
computational perspective, to obtain a stabilizing controller. The experiments with modern
reinforcement learning methods detailed below corroborate this perspective empirically.

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 70

Figure 4.1: Flexible link manipulator without friction when y = x1.

Value Iteration and Other Computational Considerations

In practice, numerical VI algorithms typically use a very small time-step �t > 0. Using the
correspondence between RHC and VI discussed in Section 4.1, in the MP case Theorem 5
indicates that for a fixed �t we can reduce the number of iterations VI requires to produce
a stabilize controller by decreasing ✏ > 0. In particular, the result demonstrates that there
exists ✏̄ > 0 su�ciently small such that for each ✏ 2 (0, ✏̄] VI will produce a controller which
stabilizes the system after only one iteration, for any fixed �t. On the other hand, Theorem
7 indicates that there may be a lower-bound to how many iterations are required to stabilize
the system in the NMP case.

An important direction for future work is to characterize how issues related to numerical
discretization a↵ect the qualitative results developed here, where we have studied idealized
versions of RHC and VI in which continuous-time optimal control problems are solved as
a subroutine. While this has allowed us to clearly characterize when interactions between
the cost function and the feedback geometry of the system lead to certain fundamental
limitations, the high-gain feedback controllers produced by VI and RHC as we take ✏ ! 0
will lead to numerical stability issues for practical implementations of these methods. For
example, in the face of sti↵ dynamics grid-based VI methods require a very fine mesh to
maintain numerical stability, which increases the computational burden of the method. Thus,
broadly speaking, we should expect the limitations of numerical approximations schemes to
add an additional layer of computational bottlenecks to the ones considered here. The results
presented here are best interpretted as a lower-bound for nonlinear optimal control which
stems solely from the geometry of the underlying di↵erential equations.

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 71

Figure 4.2: Flexible link manipulator without friction when y = x3.

Figure 4.3: Flexible link manipulator with friction with y = x1.

4.3 Numerical Experiments with Reinforcement
Learning

While the preceding theoretical analysis applies only to RHC and VI methods, it is reason-
able to conjecture that the trade-o↵s and fundamental limitations we have identified will
appear in one form or another for other methods which seek to approximate infinite hori-

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 72

Figure 4.4: Flexible link manipulator with friction with y = x3.

Figure 4.5: Inverted pendulum without input constraints and y = x1.

zon optimal controllers. To test this hypothesis, we now investigate how the choice of cost
function impacts the number of samples needed by modern reinforcement learning methods
to learn a stabilizing controller. These methods are best viewed as noisy approximations to
dynamic programming [14]. Specifically, the following experiments use the soft actor-critic
algorithm [37], which can be viewed as an approximation to the policy iteration algorithm
[14]. Inverted Pendulum: We first consider the dynamics of an inverted pendulum. The
states are (x1, x2) = (✓, ✓̇), where ✓ is the angle of the arm from vertical. Units have been

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 73

Figure 4.6: Inverted pendulum with input constraints and y = x1.

normalized so that the model is of the form:

ẋ1

ẋ2

�
=

x2

sin(x2) + u

�
,

Note that the system is fully-state linearizable with the output y = x1.

Flexible Link Manipulator: We consider a model for a flexible link manipulator which
can have both MP and NMP outputs. The state is (x1, x2, x3, x4) = (✓1, ✓̇1, ✓2, ✓̇2), where ✓1
is the angle of the arm from vertical and ✓2 is the internal angle of the motor. The dynamics
are 2

664

ẋ1

ẋ2

ẋ3

ẋ4

3

775 =

2

664

x2

sin(x1) +K(x3 � x1)� �1x2

x4

K(x1 � x3)� �2x4 + u

3

775 ,

where K > 1 is a spring coe�cient used to model the flexibility of the joint and �1, �2 � 0
are friction coe�cients. One may observe that if the output y = x1 is chosen then the system
is full state lineraizable. However when the output y = x3 is chosen the system has a relative
degree of two and the zeros are also two dimensional. In this case a Jacobian linearization
at the origin reveals that when the model is friction-less (�1 = �2 = 0) the system is NMP
but when damping is present (�1, �2 > 0) the system is MP.

Flexible Link Manipulator Without Friction

We run experiments for the output y = x1 in Figure 4.1 and the output y = x3 in Figure 4.2.
In each figure we plot the results obtained by training a controller with the soft actor-critic

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 74

algorithm using di↵erent values of the weighting parameter ✏ > 0. The upper-right plot
in each figure depicts the average cost obtained by the algorithm after obtaining access to
di↵erent numbers of samples. While the left-most plots depict a trajectory generated by
the best-performing controller that was obtained after 300,000 samples of the dynamics. As
the figures clearly show, the reinforcement learning algorithm struggles to learn a stabilizing
controller when y = x3 for all values of ✏ > 0 that were tested. However when y = x1 the
algorithm is able to rapidly learn a stabilizing controller for small values of ✏ > 0 but again
struggles when the parameter is large. Thus, we conclude that the flat output y = x1 is
a ‘better’ choice of output, and observe that in these preliminary investigations the trade-
o↵s and limitations we characterized above appear to hold when reinforcement learning
algorithms are employed.

Flexible Link Manipulator With Friction

Next we consider the flexible link manipulator with friction with y = x1 in Figure 4.3
and y = x3 in Figure 4.4. In both cases the algorithm is able reliably learn a stabilizing
controller as the dynamics are minimumphase. We again observe that the convergence of the
learning algorithm is generally faster for small values of ✏. When compared to the previous
experiments, we observe that the added passivity from the friction terms generally makes it
easier to learn stabilizing controllers for the system, regardless of the output that is chosen
since both choices now yield minimumphase behavior.

Inverted Pendulum With and Without Input Constraints

Next we consider the inverted pendulum without input constraints in Figure 4.5 and with
input constraints in Figure 4.6 (where the di↵erent colors correspond to di↵erent input
bounds of the form |u| k). In both cases we choose y1 = x1. For the unconstrained
case we see that as ✏ decreases the algorithm is able to rapidly learn a stabilizing controller.
For the constrained case, where ✏ = 0.1, we see that as the input constraints are decreased
the algorithm takes longer to learn a stabilizing controller. Interestingly, we observed that
as we increased ✏ and decreased the bounds on the inputs, the learned controllers display
‘swing-up’ behavior where the arm pumps multiple times before swinging up.

4.4 Future Work

Ultimately, the long-term goal for this line of work is to provide the foundation for a geometric
complexity for nonlinear optimal control, using the notion of complexity in foundational
works such as [21]. At the end of the day, an exponential dependence on the input and
state dimensionalities will be unavoidable for nonlinear optimal control methods such as
reinforcement learning. This is because these methods must ‘fill’ the state and input space
to obtain a nearly optimal controller. However, the perspective developed in this chapter has

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 75

the potential to illuminate to what extent design choices made by the user can ameliorate
these challenges by designing objectives which can be optimized more greedily to stabilize
the system. Even if there are unavoidable exponential dependencies, there existence makes
the need to leverage available design decisions to the utmost even more pressing.

4.5 Missing Proofs

Proof of Theorem 4

Let u be such that JT (x0, u) = VT (x0). Denote �(⌧) = �(⌧, x0, u) as the evolution of x(t) for
⌧ time units under control input u starting from x0. Consider j 2 [0, T � �t]. Then

VT (x(�t))� VT (x(0)) = V (�(�t))�
Z T

0

l(⌧) · d⌧

 �
Z T

0

l(⌧) · dt+
Z T�j

�t

l(⌧) · d⌧

+min
ũ

Z T+�t

T�j

l(�(⌧,�(T � j), ũ), ũ(⌧)) · d⌧

 �
Z �t

0

l(⌧) · d⌧ + Vj(�(T � j))

 ↵̄(�(�(T � j)))�
Z �t

0

l(⌧) · d⌧

As VT (�(0)) �
R T

0 l(t)dt:

W (�(T))�W (�(0)) �k

Z T

0

kx(t)k22dt+
Z T

0

l(t)dt

= VT (�(0))� k

Z T

0

kx(t)k22dt

Noting that 0 W (x) ↵̄W (�(x)) and VT (x) ↵̄(�(x)), we can thus rearrange and
bound terms to show the following:

k

Z T

0

kx(t)k22dt (↵̄W + ↵̄) � �(�(0))

Now consider t⇤ 2 [0, T] such that

t⇤ = arg min
t2[0,T]

kx(t)k22

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 76

which exists by continuity of x(t). Then we can note that

kx(t⇤)k22
(↵̄W + ↵̄) � �(�(0))

kT

Taking j = T � t⇤ we have that

kx(T � j)k22
(↵̄W + ↵̄) � �(�(0))

kT

We can combine this with the previous result on VT (x(�t))� VT (x(0)) to get the following:

VT (x(�t))� VT (x(0)) �
Z �t

0

l(⌧) · d⌧

+ ↵̄(
(↵̄W + ↵̄) � �(�(0))

kT
)

where we leverage the fact that ↵̄ is non-decreasing.

Now note that

VT (x(0)) =

Z �t

0

l(t)dt+ VT��t(x(�t))

Hence 9T̄ � 0 s.t 8T � T̄

VT (x(�t))� VT��t(x(�t)) = VT (x(�t))� VT (x0)

+

Z �t

0

l(⌧)d⌧

 ↵̄(
(↵̄W + ↵̄) � �(�(0))

kT
)

Also note that by assumption there exists k1, k2 s.t

W (x) + VT��t(x) W (x) + V1(x)

 (k1 + k2)kxk2

Hence we can show the following

d

dt
(W (x) + VT�t(x)) �kkxk2

=) d

dt
(W (x) + VT�t(x)) �k̄(W (x) + VT�t(x))

=) W (x) + VT�t(x) e�k̄t(W (x(0)) + VT (x(0)))

where k̄ = k
k1+k2

. Thus we have the following: Defining Y = W + VT and ↵ = (↵̄w + ↵̄)
completes the proof. Then, use the bound ↵W · �(x) W (x) YT (x) we have

YT (�(�t))
✓
e�k̄�t + ↵̄(

(↵̄W + ↵̄)

↵WkT
)

◆
YT (�(0)) (4.33)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 77

4.6 Performance Bounds

The following performance bounds are crucial for the proofs of our main results, and are
state in the (⇠̃, ⌘) coordinates for the state and the ũ coordinates for the input.

Proof of Lemma 6

We restate the Lemma for convenience. We recall that the system is trivially exponentially
stable if it is full-state linearizable, in which case the ⌘ terms in the statement of the result
and proof can simply be ignored.

Lemma 6. Let Assumptions 14-19 hold. Further assume that (4.9) is exponentially minimum-
phase (including full-state linearizable). Then there exist K̂ > 0 such that for each 0 < ✏̃ 1
we have for each (⇠̃, ⌘) 2 Rn :

Ṽ ✏̃
1(⇠̃, ⌘) K̂

�
✏̃k⇠̃k22 + ✏̃2rk⌘k22

�
. (4.22)

Proof. To provide the performance guarantee we will apply a sub-optimal feedback lin-
earizaing controller of the the form:

ũ = Ã�1(⇠̃, ⌘)[�✏̃rb̃(⇠̃, ⌘) +K ⇠̃],

to the fast-slow representation of the dynamics (4.14), where K is chosen such that for some
M > 0, k⇠̃(t)k2 Me�

t
✏k⇠̃(0)k2 for all t � 0. We will prove the result for the case where

the system is not full-state linearizable; the proof for the full-state linearizable case follows
by simply ignoring terms related to the zeros in the proof. First, we seek to upper-bound
the rate of decay of the zero coordinates. Recall that, by our assumption that ⌘̇ = f0(⌘)
is exponentially stable, by the converse Lyapunov theorem 9c1, c2, c3, c4 > 0 and V (⌘) a
Lyapunov function s.t. 8⌘:

c1k⌘k22 V (⌘) c2k⌘k22,
dV (⌘)

d⌘
f0(⌘) �c3k⌘k22,

kdV (⌘)

d⌘
k2 c4k⌘k2

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 78

Now consider the time derivative of V (⌘) along the full system dynamics:

V̇ (⌘) =
dV (⌘)

d⌘
(f0(⌘) + g0(⌘)⇠̃1)

 �c3k⌘k22 + kdV (⌘)

d⌘
k2kg0(⌘)k2k⇠̃1k2

 �c3k⌘k22 + c4Lk⌘k2k⇠̃k2

� c3
2
k⌘k22 +

2c24L
2

c3
k⇠̃k22

 � c3
2c2

V (⌘) +
2c24L

c2c3
k⇠̃k22

= � c3
2c2

V (⌘) +
2c24L

2

c2c3
k⇠̃k2,

where we have used the AM-GM inequality and the growth conditions in 19 If we choose ✏̃ > 0
to be small enough so that 1

✏̃ >
1
2 ·

c3
2c2

, applying the comparison principle and k⇠̃(t)k22 Me�
1
✏̃t

yields:

V (⌘(t)) exp

✓
� c3

2c2
t

◆
V (⌘(0)) +

2c24L
2

c2c3

Z t

0

exp

✓
� c3

2c2
(t� ⌧)

◆
k⇠̃(⌧)k · d⌧

 exp

✓
� c3

2c2
t

◆✓
V (⌘(0)) +

2M2c24L
2

c2c3

Z t

0

exp

✓
c3
2c2

� 1

✏̃

�
⌧

◆
k⇠̃(0)k22d⌧

◆

 exp

✓
� c3

2c2
t

◆✓
V (⌘(0)) +

2M2c24L
2

c2c3

Z t

0

exp

✓
� 1

2

c3
2c2

⌧

◆
k⇠̃(0)k22d⌧

◆

 exp

✓
� c3

2c2
t

◆✓
V (⌘(0)) +

4M2c24L
2

c23
k⇠̃(0)k22

◆

Using c1k⌘(t)k V (⌘(t)) c2k⌘(t)k22 this implies:

k⌘(t)k22 exp

✓
� c3

2c2
t

◆✓
c3
c2
k⌘(0)k22 +

4M2c24L
2

c2c23
k⇠̃(0)k22

◆

Next, we seek an upper bound on kũ(t)k22. Recall from Assumption 19 that i) for each
(⇠̃, ⌘) 2 Rn we have �min(Ã�1(⇠̃, ⌘)) � 1

� and ii) in the original (⇠, ⌘) normal coordinates we

have b(⇠, ⌘) L(k⇠k+ k⌘k) for each (⇠, ⌘) 2 Rn. Further noting that k⇠̃1(t)k2 k⇠̃(t)k2 for
all t � 0, we can bound:

✏̃2rkb̃(⇠̃, ⌘)k22 = ✏̃2rkb(S�1(✏̃)⇠̃, ⌘)k22

 3

2
L✏̃2r(kS�1(✏̃)⇠̃k22 + k⌘k22)

 3

2
L✏̃2r(

1

✏̃2(r�1)
k⇠̃k22 + k⌘k22)

=
3

2
L(✏2k⇠̃k22 + ✏̃2rk⌘k22),

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 79

where we have used Assumption 19 and (kS�1(✏̃)⇠̃k2 + k⌘k2)2 3
2(k⇠̃k

2
2 + k⌘k22). Thus, we

have:

kũ(t)k22 kÃ�1(⇠̃(t), ⌘(t))k22 ·
✓
3

2
L2(✏2k⇠̃(t)k22 + ✏̃2rk⌘(t)k22) + kKk22k⇠̃(t)k22

◆
.

 1

�

✓
(L2 + kKk)k⇠̃(t)k22 ++✏̃2rL2k⌘(t)k22

◆
.

Putting these bounds together gives yields:

Ṽ ✏̃
1(x)

Z 1

0

k⇠̃1(t)k22 + kũ(t)k22dt

Z 1

0

k⇠̃1(t)k22dt+
Z 1

0

 1

�

✓
(L2 + kKk)k⇠̃(t)k22 ++✏̃2rL2k⌘(t)k22

◆
dt

 ✏̃⇠̃(0)P ⇠̃(0) +

Z 1

0

1

�

✓
(L2 + kKk)k⇠̃(t)k22 ++✏̃2rL2k⌘(t)k22

◆
dt

 ✏̃kPkk⇠̃(0)k22 +
1

�

✓
✏M2(L2 + kKk)k⇠̃(0)k22 + ✏̃2r

8(L)2M2c24L
2

c22c
3
3

k⌘(0)k22
◆
,

which demonstrates the desired result.

Proof of Lemma 7

We restate the Lemma for convienience:

Lemma 7. Let Assumptions 14-19 hold. Then for each T̄ > 0, there exists K̄ > 0 and ✏̄ > 0
such that for each T̄ � T > 0 and ✏ 2 (0, ✏̄] we have for each (⇠̃, ⌘) 2 Rn:

Ṽ ✏̃
T (⇠̃, ⌘) K̄

�
✏̃k⇠̃k22 + ✏̃2rk⌘k22

�
. (4.23)

Proof. We again apply a control of the form:

ũ = Ã�1(⇠̃(t), ⌘(t))[�b̃(⇠̃(t), ⌘(t)) +K ⇠̃(t)]

whereK is chosen such athat F+GK is Hurwitz. Again let the matrix P solve the Lyapunov
equation (F +GK)TP + P (F +GK) = �I. By the construction of K we know that there
exists M > 0 such that ⇠̃(t) Me�

t
✏k⇠̃(t)k for each t � 0. Next we seek to bound the growth

of the zeros under the application of this control law:

d

dt
(k⌘(t)k22) = 2⌘(t)T [f0(⌘) + g(⌘)⇠̃] (4.34)

 2Lk⌘(t)k22 + 2Lk⌘(t)k2k⇠̃(t)k2 (4.35)

 3Lk⌘(t)k22 + 2Lk⇠̃(t)k22 (4.36)

(4.37)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 80

, where we have used the AM-GM a ·b 1
2(a

2+b2) and the growth conditions in Assumption
19 where we have used Assumption 19 the inequality a · b 1

2(a
2 + b2). By the comparison

principle the preceding inequality yields:

k⌘(t)k22 e3Ltk⌘(0)k+
Z t

0

e3L(t�⌧)k⇠̃(⌧)k22d⌧ (4.38)

 e3Lt
✓
k⌘(0)k+ ✏TM2Lk⇠̃(0)k

◆
(4.39)

As was done in the proof of Theorem 6, we can obtain a bound for the linearizing controller
of the form:

kũ(t)k22
1

�

✓
(L2 + kKk)k⇠̃(t)k22 ++✏̃2rL2k⌘(t)k22

◆
(4.40)

Thus, we have:

Ṽ ✏̃
T (⇠̃(0), ⌘(0))

Z T

0

k⇠̃1(t)k22 + kũ(t)k22dt

Z T

0

k⇠̃1(t)k22dt+
Z t

0

kũ(t)k22dt

 ✏̃⇠̃(0)P ⇠̃(0) +

Z T

0

1

�

✓
(L2 + kKk)k⇠̃(t)k22 ++✏̃2rk⌘(t)k22

◆
dt

 ✏̃kPkk⇠̃(0)k+ 1

�

✓
✏M2T 2eLtL(L2 + kKk)k⇠̃(0)k22 + L2TeLtk⌘(0)k

◆
.

This demonstrates the desired result.

Bounds on Small Time Horizons

The following result upperbounds the cost that can be accumulated in short time horizons.
Note that the following bound is independent of the control weighting parameter ✏ > 0.
Recall that x̄ = (⇠, ⌘) succinctly represents the original (unscaled) coordinates in the normal
form.

Lemma 11. Let Assumptions 14-19 hold. Then for each T̄ > 0 and each T̄ > T and ✏ > 0
for each (⇠, ⌘) 2 Rn we have:

VT (x̄0) eL
2TTkx̄(0)k22 (4.41)

Proof. We can upper-bound the growth of the state in the x̄ = (⇠, ⌘) 2 Rn coordinates by
chosing ũ(·) = 0 and noting that in this case we have:

d

dt
kx̄(t)k22 = 2x̄(t)T F̄ (x̄) (4.42)

 Lkx̄(t)k22 (4.43)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 81

where we have used the fact that kF̄ (x̄)k < L from Assumption 19. From the preceding
bound and the comparison principle we obtain by the comparison principle:

kx̄(t)k22 eL
2tkx̄(t)k22 (4.44)

We can now upperbound the value ṼT as a function of the prediction horizon T > 0 using
the preceding inequality. In particular, suppose we apply the control ū1(·) ⌘ 0. Using the
preceding bound on kx̄(t)k22 We may bound the value function as follows:

ṼT (x̄(0)) J̃T (ũ(·), x̄(0))

Z T

0

eL
2Tkx̄(0)kdt

 TeL
2Tkx̄(0)k22dt

Proof of Theorem 5

To simplify notation, throughot the proof we will let (⇠̃(·), ⌘(·)) denote the optimal process
associated to solving the finite horizon problem from some fixed initial condition (⇠̃0, ⌘). We
we will first study the properties of this trajectory, and then use the results to bound the
decay of the overall receding horizon proccess to the origin.

Our proof will make use of the functions V ✏
1 (⇠̃) = ⇠̃TP ⇠̃ where P is chosen so that (F +

MC)TP + P (F + LC) = �2I where F + MC is Hurwitz, and the function V2(·) comes
from a standard exponential stability converse theorem (see e.g. [90]) for the zero dynamics
⌘̇ = f0(⌘). Namely, V2 satisfies the following:

c1k⌘k22 V2(⌘) c2k⌘k22
d

d⌘
V (⌘)f0(⌘) �c3k⌘k22

k d

d⌘
V2(⌘)k2 c4k⌘k2,

for some positive constant c1, c2, c3, c4 > 0. The storage function for the ⇠̃ coordinates
satisfies:

V̇ ✏̃
1 (⇠̃) = ⇠̃T2P

⇥
F +G[✏̃rb̃(⇠̃, ⌘)] + Ã(⇠̃, ⌘)ũ

⇤

= ⇠̃

✓
(F +NC)P + P (F +NC)

◆
⇠̃ + 2⇠̃P [✏̃rb̃(⇠̃, ⌘) + Ã(⇠̃, ⌘)ũ] + 2⇠̃TPNC ⇠̃

 �2k⇠̃k22 + kPk2k⇠̃kC
�
✏̃(k⇠̃k2 + k⌘k) + kuk

�
+ kMkkPkk⇠̃1k22

 �(2� ✏̃
3

2
LkPk � 1

2
)k⇠̃k22 + ✏̃

1

2
LkPkk⌘k22 +

1

2
L2kPk2kuk22 + kNkkPkk⇠̃1k22,

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 82

here L > 0 is as in Assumption 19 and in the last step we have made repeated use of the
inequality a · b < (a2 + b2)/2. Henceforth choosing ✏̃ to be small enough so that ✏̃32kPk < 1

2 ,
the preceding inequality can be reduced to

V̇ ✏(⇠̃) �k⇠k22 + C̃1

�
k⇠̃1k22 + ✏k⌘k22 + kuk22

�
(4.45)

for some C̃1 > 1 su�ciently large.

Now, consider the composite function:

V✏(⇠̃, ⌘, t) = 1

C̃1

V ✏
1 (⇠̃) + V ✏

T�t(⇠̃, ⌘), (4.46)

whose time derivative is bounded by:

V̇(⇠̃, ⌘, t) � 1

C̃1

k⇠k+ ✏k⌘k (4.47)

 � 1

C̃1

(k⇠k+ ✏k⌘k) + 2✏k⌘k22. (4.48)

Next, note that
c̃1✏k⇠̃k22 V(⇠̃) c̃2(✏k⇠̃k22 + ✏2k⌘k22) (4.49)

where

c̃1 =
1

C̃1

�min(P), c̃2 = K̂ +
1

C̃1

�max(P), (4.50)

where the constant K1 > 0 is from the bound on V ✏
1 in Lemma 6. Thus, we have:

V̇(⇠̃, ⌘, t) = � 1

✏c̃1C̃1

V(⇠̃, ⌘, t) + 2✏k⌘k22, (4.51)

which, by the comparison principle, yields:

V(⇠̃, ⌘, t) e
� 1

✏c̃2C̃1
tV(⇠̃(0), ⌘(0), 0) + 2✏

Z t

0

e
� 1

✏̃c̃2C̃1
tk⌘(t)k22dt. (4.52)

Next let us consider:

V̇2(⌘) =
d

d⌘
V2(⌘)[f0(⌘) + g0(⌘)⇠̃1] (4.53)

 �c3k⌘k22 + Lc4k⌘k22k⇠̃1k22 (4.54)

 �(c3 �
1

2
)k⌘k22 + L2c24k⇠̃1k22 (4.55)

 � 1

c2
V2(⌘) + L2c24k⇠̃1k22 (4.56)

 �C̃2V2(⌘) + C̃3k⇠̃1k2. (4.57)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 83

where L > 0 is as in Assumption 19, and we have used in the second inequality a · b
(a2 + b2)/2, and in the final inequality we have used c3 > 2 and chosen C̃2 > 0 to be a
su�ciently small constant, and C̃3 > 0 to be su�ciently large. By applying the comparison
principle and integrating the preceding inequality we can obtain:

V2(⌘(t)) e
� 1

C̃2
t
V2(⌘(0)) + C̃3

Z t

0

e
� 1

C̃2
tk⇠̃(t)k22dt (4.58)

 e
� 1

C̃2
t
V2(⌘(0)) + ✏C̃3K̂

�
k⇠̃(0)k22 + k⌘(0)k22

�
, (4.59)

=
�
e�

1
c3

t +
✏C̃3K̂

c1

�
V2(⌘(0)) + ✏C̃3K̂k⇠(0)k22 (4.60)

where the constant K̂ > 0 is as in Lemma 6 bounding the growth of the infinite horizon value
function, and we have used the fact that

R T

0 k⇠̃(t)kdt < J̃ ✏T (⇠̃(0), ⌘(0)) < Ṽ ✏
1(⇠̃(0), ⌘(0)).

Note that the preceding equation demonstrates that for each t 2 [0,�t]:

k⌘(t)k22
3

2c1

⇣
k⇠̃(0)k22 + k⌘(0)k22

⌘
(4.61)

, if we choose ✏ to be small enough so that ✏C̃3K̂ < 1
2 henceforth.

Combining the preceding inequality, the preceding bound with (4.52) gives us:

V(⇠̃, ⌘, t) e
� 1

2c̃1C̃1✏
tV(⇠̃, ⌘, 0) (4.62)

+ ✏
3

c1

⇣
k⇠̃(0)k22 + k⌘(0)k22

⌘Z t

0

e
� 1

C̃1✏c̃2
t
dt (4.63)

 e�
↵

2c̃2✏
tV(⇠̃, ⌘, 0) + 3✏2

2↵c2

⇣
k⇠̃(0)k22 + k⌘(0)k22

⌘
. (4.64)

Next, if we choose ✏ to be small enough so that �✏2c̃2↵ ln ✏ < �t then from the preceding
bound and (4.49) we can obtain:

k⇠(�t)k22 ✏C̃4

⇣
k⇠̃(0)k22 + k⌘(0)k22

⌘
, (4.65)

where C̃4 > 0 is chosen to be su�ciently large. We can then transform this into abound of
the form:

V ✏
1 (⇠̃(�t)) ✏C̃5

⇣
V ✏
1 (⇠̃(0)) + V2(⌘(0))

⌘
(4.66)

where C̃5 > 0 is once again a su�ciently large constant.

Moreover, if we choose ✏ to be small enough so that ✏C̃1K1
c1

< 1�e�
1
c3

�t then using equation
(4.60) and the bounds on V2 in (4.58) we can bound:

V2(⌘(�t)) ⇢V2(⌘(0)) + C̃6V
✏
1 (⇠̃(0)) (4.67)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 84

for some C̃6 > 0 su�ciently large and 0 < ⇢ < 1.

Next, let (⇠̃k, ⌘k) denote the k-th iterates of the receding horizon process. By telescoping
the bounds in (4.67) and (4.66) we observe that for each k we will have V ✏̃

1 (⇠̃k) x̂2
k and

V2(⌘k) x̂2
k where x̂1

k and x̂2
k are the positive solutions to the following linear discrete time

system:

x̂2
k+1

x̂2
k+1

�
=

✏̃C̃5 ✏̃C̃5

C̃6 ⇢

�

| {z }
A(✏̃)

x̂1
k

x̂2
k

�
x̂1
0

x̂2
0

�
=

V ✏̃
1 (⇠̃0)

V2(⌘0)

�
. (4.68)

The solutions (x̂2
k, x̂

2
k), and consequently the discrete iterate of the RHC proccess (⇠̃k, ⌘k) will

tend to zero exponentially if the matrix A(✏̃) has both eigen values strictly inside the unit

disk. The eigenvalues of the matrix are given by
⇥
(✏̃C̃5 + ⇢) ±

q
(✏̃C̃5 + ⇢)� 4✏̃C̃6

⇤
/2. By

inspection one can easily deduce that the eigenvaules will have a magnitude less than 1 for
✏̃ su�ciently small. This concludes the proof.

Proof of Lemma 9.

Let T � �t � 0 be fixe as in the statement of the theorem. Since the zero dynamics ⌘̇ = f0(⌘)
are exponentially unstable, the time reversed dynamics ⌘̇ = �f0(⌘) must be exponentially
stable and thus there must exist a Lyapunov function V2 which satisfies:

ĉ1k⌘k22 V2(⌘) ĉ2k⌘k22

� d

d⌘
V (⌘)f0(⌘) �ĉ3k⌘k22

k d

d⌘
V2(⌘)k2 ĉ4k⌘k2,

Calculating the time derivative of the Lyapunov function along the dynamics yields:

V̇2(⌘) =
d

d⌘
V2(⌘)[f0(⌘) + g0(⌘)⇠̃] (4.69)

� ĉ3k⌘k22 + Cĉ4k⌘k2k⇠̃1k2 (4.70)

� C̄5V2(⌘)� C6k⇠̃(t)k22 (4.71)

for appropriately chosen constants C̄5, C̄6 > 0. Applying the comparison principle yields:

V2(⌘(�T)) � eC̄5TkV2(⌘(0))k22 � C̄6

Z T

0

eC̄5(T�t)k⇠̃(t)k22dt (4.72)

� eC̄5TV2(⌘(0))� C̄7

⇣
✏̃k⇠̃(0)k22 + ✏̃2k⌘(0)k22

⌘
(4.73)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 85

where the constant C̄7 > 0 is once again chosen to be su�ciently large and we have used
the second upper-bound for the non-minimum-phase case in 7. Thus, there exists a constant
C̄8 > 1 su�ciently such that for each ✏̃ > 0 su�ciently small we have:

V2(⌘(�T)) � C̄8V2(⌘(0))� C̄7V
✏̃
1 (⇠̃(0)), (4.74)

where V ✏̃
1 is as in the proof of Theorem 7 above and of the form V ✏̃

1 (⇠̃) = ⇠̃TP ⇠̃ for an
appropriate positive definite matrix P . Note, that if C̄7V ✏̃

1 (⇠̃(0)) C̄8V2(⌘(0)) then we will
have V̂2(⌘(T)) > V̂2(⌘(0)). This will be our basis for demonstrating that the closed-loop
system is unstable for ✏ su�ciently small.

Next, we claim that there exists C̄8 > 0 su�ciently large such that for each ✏̃ > 0
su�ciently small we have:

V ✏̃
1 (⇠̃(T)) ✏̃C̄9

�
V ✏̃
1 (⇠̃(0)) + V̂2(⌘(0))

�
. (4.75)

In particular, a bound of this form can be derived by following the steps used to derive the
bound (4.66), except the upper-bound on V ✏

T in 7 is used in place of the upper-bound use
for the minimum-phase case. The details are omitted for brevity.

Next, let {(⇠̃k, ⌘k)}1k=0 be the sequence of iterates generated at the sampling instances of
the RHC scheme with ⇠̃0 = 0 and ⌘0 > 0. Note that in this case we have the condition

V2(⌘1) > C̄8V̂2(⌘
0) (4.76)

will hold in this case by (4.74). Furthermore, by (4.75) we have:

C̄7V
✏̃
1 (⇠̃1) ✏C̄9C̄7V̂2(⌘

0) ✏C̄7
C̄9

C̄8
V (⌘1). (4.77)

More generally, if we assume that

V ✏
1 (⇠̃

k) <
C8

C̄9
V̂2(⌘

k) (4.78)

then we will have
V̂2(⌘

k+1) > V̂2(⌘
k). (4.79)

Moreover, under this hypothesis, for ✏ > 0 su�ciently small we will have

V ✏
1 (⇠̃

k+1) C̄8

C̄9
V̂2(⌘

k+1). (4.80)

Since (4.78) for k = 0, it will also hold for all iterates k > 0 for ✏ su�ciently small. Thus,
for ✏ su�ciently small (4.79) will hold for each k, indicating that the zeros escape to infinity
and that the RHC process fails to stabilize the system.

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 86

4.7 Proof of Lemma 10

Unlike the previous proofs, we will work with the representation x̄ = (⇠, ⌘) of the original
normal form. To simplify notation, we will simply let x̄(·) and ū(·) denote the optimal
state trajectory and input for the planning problem the chosen initial condition. Since
we are interested in small values of T > 0 for the purposes of this proof, we will assume
throughout that T̂ > T , where T̂ > 0 is some constant. Since the natural dynamics ˙̄x = F̄ (x̄)
are exponentially unstable by assumption, there must exist a function V and constants
ĉ1, ĉ2, ĉ3, ĉ4 such that:

ĉ1k⌘k22 V (⌘) ĉ2k⌘k22

� d

d⌘
V (⌘)f0(⌘) �ĉ3k⌘k22

k d

d⌘
V (⌘)k2 ĉ4k⌘k2,

Calculating the time derivative along the dynamics yields:

V̇ (x̄) � d

dx̄
V (x̄)[F̄ (x̄) + Ḡ(x̄)u] (4.81)

� ĉ3kx̄k22 � ĉ4Kkx̄kkuk (4.82)

� ĉ3
2
kx̄k22 �

2ĉ4K

c̄3
u (4.83)

� Ĉ1kx̄k22 � Ĉ2kuk22 (4.84)

, for some su�ciently large constants Ĉ1, Ĉ2 > 0.

The preceding equation demonstrates that if Ĉ2ku(t)k22 < C̄1kx̄(t)k22 for each t 2 [0, T],
then V̄ will be strictly increasing when x̄ 6= 0, which will immediately demonstrates that
the RHC process does not stabilize the system, as the value of V will be strictly increasing
along trajectories generated by the process. Thus, we will demonstrate how to pick T > 0
to be small enough, for the given ✏̄ > 0, such that this condition will hold for all ✏ > ✏̄.

Towards this end, for each ✏ > ✏̄ we can upper-bound:

Z T

0

ku(t)k22
1

✏̄2
V̄ ✏
T (x̄(0))

1

✏̄2
TeL

2Tkx̄(0)k22
1

✏̄2
T̂ eL

2T̂kx̄(0)k22 Ĉ3kx̄(0)k22, (4.85)

where we have used Lemma9 and chosen the constant Ĉ3 > 0 to be su�ciently large.

Next, we employ the Minimum Principle, which in this case dictates that the the optimal
input will satisfy:

u(t) = �1

2
Ḡ(x̄(t))Tp(t), (4.86)

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 87

where the costate p : [0, T] ! Rn satisfies the terminal boundary value problem:

ṗ(t) = � d

dx
F ⇤(x̄(t), p(t))Tp(t)� [⇠(t), ⌘(t)]

| {z }
M(t,p(t))

p(t) = 0 (4.87)

where
F ⇤(x̄(t), p(t)) = F̄ (x̄(t))� Ḡ(x̄(t))Ḡ(x̄(t))Tp(t).

Henceforth, we will restrict our attention to the following set:

{x̄ 2 Rn : kx̄k �}, (4.88)

where the constant � > 0 is arbitrary, and we will attempt to argue that the storage function
V defined above is strictly increasing along optimal trajectories in this set (except those that
originate at x̄ = 0).

We bound the growth of the cos-state as follows:

d

dt
kp(t)k22 = p(t)TM(t, (t)) (4.89)

 Ĉ5

✓
(kp(t)k2)2 + kp(t)k22 + kx̄(t)k22

◆
, (4.90)

where we have used the fact that d
dx F̄ will be bounded uniformly on our chosen set, the

constant C̄5 > 0 is chosen to be su�ciently large and depends on � > 0, and we have
repeatedly used the AM-GM inequality. Thus, we may upper-bound the growth of the
costate using the Ricatti-type equation:

ȧ(t) = Ĉ5

✓
a(t)2 + a(t)2 + q(t)

◆
, a(0) = 0 (4.91)

where q(t) = kx̄(t)k22 and we have kp(t)k22 a(t). In general, the preceding Ricatti-type ode
may not exist for all t 2 [0, T], but we can henceforth choose T > 0 to be small enough
so that this is the case for each initial condition within the chosen ball. Moreover, we can
further chose T > 0 to be small enough so that we have ka(t)k < 1 for each t 2 [0, T]. In
this case we will have that:

ȧ(t) 2a(t) + q(t), (4.92)

and thus we can apply the comparison principle to yield the following bound:

a(t) e2T
Z T

0

q(⌧)d⌧. (4.93)

Thus, on short time intervals, we can upperbound the growth of the costate (and thus the
input via equation (4.86)) if we can upper bound the growth of the state. Towards this end,

CHAPTER 4. COMPUTATIONAL BOTTLENECKS FOR NONLINEAR OPTIMAL
CONTROL 88

by a standard application of the Bellman-Gronwall inequality we can obtain a bound of the
form:

kx̄(t)k eLTkx̄(0)k+ eLT
Z T

0

ku(t)k2dt. (4.94)

Combining this with (4.85) easily yields a bound of the form:

kx̄(t)k2 Ĉ6kx̄(0)k2 8t 2 [0, T] , (4.95)

where we recall that we have chosen T̂ > T throughout the proof. Combining the preceding
inequality with (4.93), the inequality kp(t)k2 a(t) and the equality (4.86) readily yields a
bound of the form:

ku(t)k22 Ĉ7Tkx̄(0)k22 (4.96)

for some Ĉ7 > 0 su�ciently large. Thus, if we choose T > 0 to be small enough so that
Ĉ1 > Ĉ2Ĉ7T then (4.86) demonstrates that the value of V will be increasing along the
optimal trajectory (and thus also the receding horizon process) at every point in our chosen
ball (excluding the origin). This demonstrates that the receding horizon process fails to
stabilizing the system when the time horizon is su�ciently small.

89

Chapter 5

On the Stability of Receding Horizon
Control: A Geometric Perspective

Throughout Chapters 2 and 4 there was an implicit assumption that an (approximately)
global solution to each optimal control problem that was formulated could be found. The
assumption is reasonable if ‘brute force’ methods such as grid-based (i.e. dense sampling)
dynamic programming-based approaches [21] are applied. However, practical implementa-
tions of reinforcement learning approaches leverage neural network architectures and policy
gradient updates, while practical implementations of receding horizon methods use local de-
scent methods to obtain an open loop control. In both cases, the nonlinear dynamics lead to
nonvonvexities in the underlying search space, which prelude guarantees of finding a (nearly)
optimal solution where needed. This bottleneck is the primary obstacle preventing the devel-
opment of practical, scalable convergence guarantees for nonlinear optimal control, in both
data-driven scenarios and also instances where the dynamics are assumed to be known.

The goal of this chapter is to link perspectives from geometric control and modern opti-
mization theory, demonstrating how such a link provides new insights into the stability of
derivative-based nonlinear RHC implementations. Specifically, by studying how the RHC
cost functions interact with both the local and global geometry of the control system, we
illustrate how the choice of cost function can lead either to provably stable behavior, or
to failure modes where practical RHC control schemes get ‘stuck’ at undesirable station-
ary points. Here the term ‘practical’ refers to the derivative-based search methods favored
by practitioners, such as gradient descent or I-LQR, which can only be guaranteed to find
approximate stationary points of the underlying objective.

Our negative results are related through two counter-examples while our positive results
are given in Theorem 1, which provides su�cient conditions which ensure that all (approxi-
mate) first-order stationary points of the RHC cost functional correspond to open-loop state
trajectories which decay exponentially to the origin. We use this result to provide stability
guarantees for nonlinear RHC when the implementation relies on derivative-based descent
methods (Theorem 9), provided that the RHC planning horizon is of su�cient (though

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 90

modest) length and a standard ‘warm-starting’ strategy is employed.

Our su�cient conditions for exponential stability informally require (1) the state and
input costs are strongly convex, (2) the Jacobian linearization of the dynamics along every
trajectory is uniformly stabilizable, (3) the control cost is su�ciently small when compared
to the state cost, (4) the first-order expansion of the system dynamics along each trajectory
satisfies a local ‘matching condition’, meaning that the a�ne term can be cancelled out by
an appropriate choice of input, and (5) the nonlinearity in the input is su�ciently small. We
note that assumption (1) is natural in practical implementations of RHC, and some (possibly
weaker) stabilizability condition as in (2) is clearly necessary to ensure exponential stability.
It is unclear whether (5) is necessary, and we leave its study to future work. We note that
conditions (1) � (2) and (4) may be satisfied in some coordinate systems for the state but
not others. Thus applying our su�cient conditions (or using them to design a ‘good’ RHC
cost functional) may require finding an appropriate coordinate system for the system.

To shed light on conditions (3) and (4), and to establish their necessity, we examine a class
of feedback linearizable systems which satisfy conditions (2), (4) and (5) in an appropriate
choice of coordinates. For this class of systems conditions (1) and (4) require that the state
costs are strongly convex in the linearizing coordinates. To demonstrate the necessity of
this strong geometric condition, we examine a model for a flexible-joint manipulator which
is full-state linearizable. A natural state cost is designed which is convex in the ‘original’
non-linearizing coordinates (where condition (4) is violated), but analysis reveals that the
cost is non-convex in the linearizing coordinates (where condition (4) is satisfied). Thus,
the chosen cost function is in some sense ‘incompatible’ with the geometry of the system as
we are forced to pick a coordinate system in which either (1) or (4) are violated. Due to
this mismatch, we are able to identify initial conditions from which derivative-based RHC
schemes will fail to stabilize the system and get stuck at undesirable stationary points. To
address condition (3) we also investigate a model for the simple inverted pendulum, which
is in the class of linearizable systems discussed above. We demonstrate that even when the
other four conditions are satisfied RHC may again fail to stabilize the system if the penalty
on the input is too large.

Unlike prior works [43] which require global optimality for each RHC planning problem,
the stability issues for derivative-based RHC implementations discussed above cannot be
overcome by simply increasing the prediction horizon. Indeed, our counterexamples show
that conditions (3) and (4) are necessary even when arbitrarily long planning horizons are
used. The key di↵erence here is that derivative-based planners can converge to overly-myopic
sequences of control inputs, even with long planning horizons, due to the myopic nature of
the optimization landscape (i.e., the presence of local minima).

In sum, the results of this chapter indicate that the stability of derivative-based nonlinear
RHC schemes may be fragile unless the interaction between the geometry of the control
system and cost functions are carefully considered. Fortunately, our positive results indicate
that concepts from the geometric control literature may provide constructive techniques
for designing RHC cost functionals which provably guide local search algorithms towards

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 91

stabilizing solutions.

Further Background on RHC For basic background on RHC, we refer the reader
to any of a number of comprehensive reviews on RHC (see, e.g., [68, 70]). Simplifying
considerably, previous theoretical nonlinear RHC formulations fall into either constrained
approaches and unconstrained approaches. Constrained RHC formulations directly enforce
stability by either constraining the terminal predictive state to lie at the origin [67], or using
inequality constraints to force the system into a neighborhood containing the origin, and then
stabilizing the system using a local controller [69]. The usual critique of these methods [45] is
that the satisfaction of the relevant constraints may be overly demanding computationally in
an online implementation. In contrast, unconstrained approaches implicitly enforce stability
by either using an appropriate CLF as the terminal cost [45] or a su�ciently long prediction
horizon [43]. As alluded to above, most of these stability guarantees require that a globally
optimal solution can be found for each prediction problem. Several approaches provide
stability guarantees using sub-optimal solutions, but generally require that an initial feasible
solution is available [95], which may be restrictive in high-performance real-time scenarios,
or require the availability of a CLF [83, 45], which implies that the stabilization problem has
already been solved. Thus, in this chapter we study unconstrained RHC formulations which
use general terminal costs, and aim to provide stability guarantees which only require that
a stationary point of each optimization problem can be found. We feel that this accurately
reflects the spirit of optimization-based control—to stabilize the system with minimal system-
specific knowledge—as well as the practical computational constraints facing practitioners.

5.1 Preliminaries

This chapter studies control systems of the form

ẋ(t) = F (x(t), u(t)), (5.1)

where x 2 Rn is the state and u 2 Rm the input, and ẋ(t) = d
dtx(t) denotes time derivatives.

We make the following assumptions about the vector field F : Rn ⇥ Rm ! Rn:

Assumption 20. The origin is an equilibrium point of (5.1), namely, F (0, 0) = 0.

Assumption 21. The vector field F is continuously di↵erentiable. Furthermore, there exist
constants LF > 0 such that for each x1, x2 2 Rn and u1, u2 2 Rm we have:

kF (x1, u1)� F (x2, u2)k2 LF (kx1 � x2k2 + ku1 � u2k2) .

Taken together, these standard assumptions support the global existence and uniqueness
of solutions to (5.1) on compact intervals of time [79, Proposition 5.6.5].

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 92

The primary object of study in is chapter will be finite horizon cost functionals JT (·; x0)
of the form

JT (ũ; x0) =

Z T

0

Q(x̃(⌧)) +R(ũ(⌧))dt+ V (x̃(T))

s.t. ˙̃x(t) = F (x̃(t), ũ(t)), x̃(0) = x0, (5.2)

where T > 0 is a finite prediction horizon, x0 2 Rn is the initial condition for (5.1), and
the space of admissible inputs is given by UT : = L2 ([0, T] ,Rm) \ L1 ([0, T] ,Rm). Here,
Q : Rn ! R is the running cost applied to the state, R : Rm ! R is the running cost applied
to the input, and V : Rn ! R a penalty for the terminal state. For now we assume that each
of these maps is continuously di↵erentiable.

Linearizations and (Approximate) Stationary Points

Next, we briefly review a few basic facts from the calculus of variations which are essential
for understanding out results. We endow L2 ([0, T] ,Rm) with the usual inner product and
norm, denoted h·, ·i : L2([0, T] ,Rm) ⇥ L2([0, T] ,Rm) ! R and k · k2 : L2([0, T] ,Rm) ! R.
Under Assumptions 21 and and the assumption that Q and R are continuously di↵erentiable,
directional (Fréchet) derivatives of JT (·, x0) are guaranteed to exist [79, Theorem 5.6.8] as
there is a well-defined gradient at each point in the optimization space. We denote the
directional Fréchet derivative of JT (·, x0) at the point ũ 2 UT in the direction �u 2 UT by
DJT (ũ; x0; �u). The gradient rJT (ũ; x0) 2 L2([0, T] ,Rm) is the unique object satisfying, for
each �u 2 UT ,

DJT (ũ; x0; �u) =

Z T

0

hrJT (ũ; x0)(t), �u(t)idt, (5.3)

or more compactly, DJT (ũ; x0; �u) = hrJT (ũ; x0), �ui. The following notions from the opti-
mization literature are crucial for understanding our technical results:

Definition 5. We say that an input ũ is a first-order stationary point (FOS) if rJT (ũ; x0) =
0. We say that ũ is an ✏-FOS if krJT (ũ; x0)k2 ✏.

In practice, derivative-based descent algorithms take an infinite number of iterations to
converge to exact stationary points, thus our analysis will primarily focus on the approximate
stationary points of JT (·, x0), as these can be reached in a finite number of iterations.

Finally, we discuss how to calculate the gradient rJT (ũ; x0) using first-order expansions
of the system dynamics and cost functions. Let (x̃(·), ũ(·)) denote the state-input pair of
(5.1) defined on the interval [0, T] such that x̃(0) = x0 and define for each t 2 [0, T]

Ã(t) =
@

@x
F (x̃(t), ũ(t)), B̃(t) =

@

@u
F (x̃(t), ũ(t)).

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 93

Definition 6. Let (x̃(·),ũ(·)), Ã(·) and B̃(·) be defined as above. We refer to the time-
varying linear system (Ã(·), B̃(·)) as the Jacobian linearization of the vector field F along
the trajectory (x̃(·), ũ(·)).

The Jacobian linearization (Ã(·), B̃(·)) can be used to construct a first-order approxima-
tions to trajectories near (x̃(·), ũ(·)) as follows. Let �u 2 UT be a small admissible pertur-
bation to the input and let (x̂(·), û(·)) satisfy (5.1) and û = ũ + �u and x̂(0) = x̃(0) = x0.
Then a first-order approximation to x̂(·) is given by

x̂(·) ⇡ x̄(·) := x̃(·) + �x(·) (5.4)

where �x : [0, T] ! Rn solves �̇x(t) = Ã(t)�x(t) + B̃(t)�u(t) with �x(0) = 0, and the
approximation in (5.4) suppresses higher-order terms involving �u. Regarding gradients as
row vectors, by [79, Theorem 5.6.3] we have

rJT (ũ; x0)(t) = p(t)B̃(t) +rR(ũ(t)) (5.5)

where the co-state p : [0, T] ! R1⇥n satisfies

�ṗ(t) = p(t)Ã(t) +rQ(x̃(t)) p(t) = rV (x̃(T)). (5.6)

Thus, equations (5.5) and (5.6) reveal that the gradient of the objective can be e�ciently
computed using a ‘backwards pass’ along the nominal trajectory (x̃(·), ũ(·)) and the lin-
earizations of the vector field and costs along this curve.

Convex Time-Varying Approximations to JT (·, x0)
Our primary goal throughout the chapter is study the properties of (approximate) stationary
points of JT (·; x0), and our primary analytical tool will be a family of convex approximations
constructed using the Jacobian linearization around particular trajectories of the system. To
begin constructing these approximations, observe that the evolution of the estimate x̄(·) in
(5.4) is given by

˙̄x(t) = ˙̃x(t) + �ẋ(t)

= F (x̃(t), ũ(t)) + Ã(t)�x(t) + B̃(t)�u(t)

= Ã(t)x̄(t) + B̃(t)ū(t) + d̃(t), where (5.7)

d̃(t) := F (x̃(t), ũ(t))� Ã(t)x̃(t)� B̃(t)ũ(t). (5.8)

We use these time-varying dynamics to approximate JT (·; x0) near the point ũ with the cost
functional Jjac

T (·; x0, ũ) : UT ! R defined as follows:

Jjac
T (ū; x0, ũ) =

R T

0 Q(x̄(⌧)) +R(ū(⌧))dt+ V (x̄(T))

s.t. ˙̄x(t) = Ã(t)x̄(t) + B̃(t)ū(t) + d̃(t), x̄(0) = x0. (5.9)

The following result, which follows from a direct comparison of the formulas for the gradients
of JT (·; x0) and Jjac

T (·; x0, ũ) at the point ũ, motives this construction:

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 94

Lemma 12. For any input ũ(·) 2 UT we have

JT (ũ; x0) = Jjac
T (ũ; x0, ũ), and rJT (ũ; x0) = rJjac

T (ũ; x0, ũ).

5.2 Su�cient Conditions for Exponentially Decaying
First-Order Stationary Points

We begin our analysis by providing su�cient conditions which ensure that all (approximate)
stationary points of JT (·; x0) decay exponentially to the origin at a rate that is independent
of T � 0 and x0 2 Rn. This is a strong condition which will enable us to provide global
exponential stability guarantees for RHC schemes which use derivative-based iterative opti-
mization schemes in Section 5.3. After stating the main result and its proof, we draw the
connection to feedback linearization and investigate examples which highlight the necessity
of some of our stronger assumptions.

Su�cient Conditions for Exponentially Decaying (Approximate)
First-Order Stationary Points

We begin by introducing the Assumptions required for the proof of Theorem 8. We emphasize
some of these assumptions are highly dependent on the particular set of coordinates chosen
for the state, and may be satisfied in certain coordinate systems but not others. Thus,
applying our su�cient conditions requires finding a coordinate system in which the following
conditions hold. Later we relate these conditions to the coordinate systems that arise when
performing feedback linearization, which succinctly capture the underlying geometry of the
control system.

Our first assumption is strong convexity and smoothness of the running and terminal cost
functions:

Assumption 22. We assume that Q(·), R(·), V (·) are twice-continuously di↵erentiable func-
tions, with Q(0) = R(0) = V (0) = 0, whose Hessians satisfy the pointwise bounds ↵QI �
r 2Q � �QI, ↵RI � r 2R � �RI, and ↵V I � r 2V � �V I for constants 0 < ↵Q �Q,
0 < ↵R �R, and 0 ↵V �V .

Note that when Assumption 22 is satisfied the optimization in (5.9) is strongly convex.
Thus, by Lemma 12, ũ is a stationary point of JT (·, x0) if and only if it is the global minimizer
of Jjac

T (·; x0, ũ). Due to the convexity of the approximation, it is much easier to study
the properties of stationary points of JT (·, x0) using Jjac

T (·; x0, ũ) rather than the original
functional. This observation is a key insight in our poof technique. The following result
extends the above discussion to approximate stationary points of JT (·, x0):

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 95

Lemma 13. (Approximate FOS) Suppose Assumption 22 holds, and that ũ is an ✏-FOS of
JT (·; x0). Then,

JT (ũ; x0) min
u

Jjac
T (u; x0, ũ) +

✏2

2↵R
.

Proof. Assumption 22 implies that Jjac
T (ū; x0, ũ) � ↵Rkūk2 is convex, and thus the Polyak-

 Lojasiewicz inequality holds: Jjac
T (ū; x0, ũ) minu J

jac
T (u; x0, ũ) + krJjac

T (ū; x0, ũ)k22/2↵R .
Since ũ is an ✏-FOS of JT (·; x0) andrJT (ũ; x0) = rJjac

T (ũ; x0, ũ), it follows that J
jac
T (ũ; x0, ũ)

minu J
jac
T (u; x0, ũ) + ✏2/2↵R. Using JT (ũ; x0) = Jjac

T (ũ; x0, ũ) concludes.

Next we place restrictions on the local structure of the control system along each of its
trajectories:

Assumption 23. Along each system trajectory (x̃(·), ũ(·)) the drift term in (5.8) satisfies
d̃(t) 2 range(B̃(t)).

Assumption 24. There exists � > 0 such that for each time horizon T � 0, x0 2 Rn and
system trajectory (x̃(·), ũ(·)) of length T with x̃(0) = x0 we have

inf
û(·)

Z T

0

kx̂(t)k22 + kû(t)k22dt+ kx̂(T)k22 �kx0k22, (5.10)

where ˙̂x(t) = Ã(t)x̂(t)+ B̃(t)û(t) and x̂(s) = x0 and (Ã(·), B̃(·)) is the Jacobian linearization
along (x̃(·), ũ(·)).

In the language of nonlinear control theory, Assumption 23 is known as a matching con-
dition [90, Chapter 9.4]. The assumption implies that the drift term d̃(t) can be ‘cancelled
out’ by choosing the input ū(t) = B̃†d̃(t). Meanwhile, the parameter � > 0 in Assump-
tion 24 measures the di�culty (in terms of a simple L2 cost) of stabilizing the Jacobian
Linearizations along system trajectories.

Roughly speaking, our first three conditions ensure that the state costs are in a certain
sense ‘compatible’ with the local (first-order) geometry of the control system, meaning that
at each point in the optimization space they guide local search algorithms to find an input ũ
which drives the corresponding predictive trajectory x̃ towards the origin. Indeed, by Lemma
13, when Assumptions 22, 23 and 24 all hold, at each point ũ 2 UT the functional JT (·; x0) has
the same local structure (up to first-order approximations) as an optimal control problem
with convex costs and stabilizable time-varying dynamics, namely, Jjac(·; x0, ũ). For this
local convex approximation it is much clearer to see how the state costs yield state trajectories
which decay to the origin. Our second counter-example investigates a situation where there
does not exist a coordinate system in which both Assumption 22 and Assumption 23 can be
satisfied simultaneous and local search algorithms can produce predictive trajectories which
get ‘stuck’ at undesirable equilibria.

Our last technical condition, which is made Assuming 23 already holds, e↵ectively bounds
how costly it is to ‘cancel out’ the a�ne drift term d̃(t) along each trajectory:

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 96

Assumption 25. There exists Lx, Lu > 0 such that for each system trajectory (x̃(·), ũ(·))
defined on [0, T] we have kB̃†(t)d̃(t)k Lxkx̃(t)k + Lukũ(t)k for each t 2 [0, T]. Moreover,
these constants satisfy

L2
u ↵R

8�R
and L2

x ↵Q

8�R
(5.11)

In particular, Assumption 25 sates that the cost of rejecting d̃(t) can only grow linearly
with x̃(t) and ũ(t). The constant Lx can be made arbitrarily large by re-scaling the relative
magnitudes of the state and input costs (so that ↵Q � �R). However, since ↵R �R, the
condition implies that Lu can be at most 1p

8
, which e↵ectively limits how nonlinear the

control system is with respect to the input.1 As our first counter example demonstrates,
when Assumption 25 is violated local search algorithm may again get ‘stuck’ at undesirable
stationary points. The intuition for this failure mode is that even when Assumptions 23 and
24 are satisfied if d̃(t) grows too quickly it may appear ‘too costly’ (from the perspective of
optimization algorithms which only have access to first-order information) to reject d̃(t) and
drive the system to the origin.

Under these assumptions we obtain our main result:

Theorem 8. Suppose Assumptions 20 to 25 hold. Then for each T � 0, x0 2 Rn and every
ũ 2 UT which is an ✏-FOS of JT (·; x0) the following hold. If ↵V > 0 , then 8s 2 [0, T],

kx̃(s)k2 C0 · (C1e�
s
C1 · kx0k2 + C2✏2),

where C0 = 6LF+
2LF↵Q

↵R
+ 2↵Q

↵V
, C1 = 4�max{�V , �R, �Q} and C2 = 1

2↵R
(1+8�R max{ L2

x
↵Q

, L2
u

↵R
}).

More generally, for any ↵V � 0, it holds that for all s 2 [0, T] and � > 0,

kx̃(s)k2 C�0 · (C�1e
� s

C1 · kx0k2 + C2✏2)

where C�0 := 6LF + 2LF↵Q

↵R
+min{2

� ,
2↵Q

↵R
}, C�1 := e

�
C1 C1.

Note that when ✏ = 0 taking the square root of both sides of either bound in the state-
ment of the theorem demonstrates that the stationary point is exponentially decaying. We
emphasize that the rate of decay is uniform across all stationary points corresponding to
di↵erent initial conditions x0 2 Rn and prediction horizons T > 0. This uniformity is essen-
tial for our RHC stability results in Section 5.3. There we stipulate how long the prediction
horizon T > 0 and how small the optimality parameter ✏ > 0 must be each time a planning
problem is solved to ensure stability.

1 We remark that the factors of 1
8 in (5.11) can be replaced by any constant in the interval (0, 1) and the

proof of Theorem 8 will go through with minor modifications. However fixing a specific constant simplifies
the statement of the main result.

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 97

Proof of Theorem 8

Let (x̃(·), ũ(·)) be as in the statement of the theorem, and let Ṽ(s) := JT�s(ũ[s,T]; x̃(s)) for
s 2 [0, T]. Then the following bounds hold (under the assumptions of Theorem 8):

Lemma 14. If ↵V > 0 then for each 0 s0 s T we have kx̃(s)k2 1
↵Q

C0 · Ṽ(s0).
Alternatively, if ↵V � 0 then for each 0 � T , s0 T � � and s0 s T we have
kx̃(s)k2 1

↵Q
C�0 · Ṽ(s0).

Proof. Under Assumptions 20 and 21, we have that k d
dt x̃(t)k = kF (x̃(t), ũ(t))k LF (kx̃(t)k+

kũ(t)k). Hence, | ddtkx̃(t)k
2| = |hx̃(t), d

dt x̃(t)i| LFkx̃(t)k2 + LFkũ(t)kkx̃(t)k, which at most
3LF
2 kx̃(t)k2 + LF

2 kũ(t)k2 by the AM-GM inequality. Assumption 22 then implies this is at
most c1

2↵Q
(Q(x̃(t)) + R(ũ(t)), where we define c1 := LF (3 + ↵Q

↵R
). Thus, given any times

s1 s2 2 [0, T], we have

��kx̃(s1)k2 � kx̃(s2)k2
��

Z s2

t=s1

�� d
dtkx̃(t)k

2
�� dt

 c1
2↵Q

Z s2

t=s1

(Q(x̃(t)) +R(ũ(t))dt c1
2↵Q

Ṽ(s1). (5.12)

To conclude, fix a time s 2 [0, T]. We consider two cases: Case 1: There is a time
⌧ 2 [s, T] such that kx̃(⌧)k2 1

2kx̃(s)k
2. Invoking (5.12),

1
2kx̃(s)k

2 �
��kx̃(s)k2 � kx̃(⌧)k2

��

�
��kx̃(s)k2 � kx̃(s⌧)k2

�� � c1
2↵Q

Ṽ(s).

Case 2: There is no such time ⌧ , so kx̃(t)k2 � 1
2kx̃(s)k

2 for all t 2 [s, T]. In this case,

Ṽ(s) � ↵Q

R T

t=s kx̃(t)k
2dt + ↵V kx̃(T)2k � (↵Q(T � s) + ↵V) · kx̃(s)k2/2. Inverting, and

combining both cases,

kx̃(s)k2 1

↵Q
max{c1, 2

T�s+↵V /↵Q
}Ṽ(s) (5.13)

Finally, for any s0 2 [0, s], arguing as in (5.12), and applying (5.13) and some simplifications
(incuding Ṽ(s0) � Ṽ(s)),

kx̃(s)k2 kx̃(s0)k2 + |
Z s

t=s0
(d
dtkx̃(t)k

2)dt|

 kx̃(s0)k2 + c1
2↵Q

Ṽ(s0)

 1

↵Q
(2c1 + 2 1

T�(s0)+
↵V
↵Q

)

| {z }
:=C0(s0)

Ṽ(s0),

which can be specialized to the desired cases.

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 98

Lemma 15. If ũ(t) is an ✏-FOS of JT (·, x0), then for each s 2 [0, T] we have Ṽ(s)
↵Q(C1kx̃(s)k2 + C2

2 ✏
2).

Proof. In view of Lemma 13, to obtain a bound on Ṽ(s) it su�ces to bound Vjac,?(s) :=
inf ū[s,T]

Jjac
T�s(·, x̃(s), ũ[s,T]). Moreover, we can bound Vjac,?(s) by bounding for any (possibly

suboptimal) control ū[s,T]; for simplicity, let us drop the [s, T]-subscript going forward. We

select ū(t) = ū1(t) + ū2(t), where ū1(t) satisfies B̃(t)ū1(t) = �d̃(t), and where ū2 witnesses
�-stabilizability at time s as in Assumption 24.

With this choice of ū(t) the dynamics of x̄(t) in Jjac
T�s are

d
dt x̄(t) = Ã(t)x̄(t) + B̃(t)ū(t) +

d̃(t) = Ã(t)x̄(t) + B̃ū2(t), and, writing out Jjac
T�s explicitly, we obtain

Vjac,?(s)
Z T

t=s

(Q(x̄(t)) +R(ū(t))dt+ V (x̄(T)). (5.14)

By the elementary bound kū(t)k2 2kū1(t)k2 + 2kū2(t)k2, the following holds for constant
c = max{�V , 2�R, �Q},

Vjac,?(s) 2�R

Z T

t=s

kū1(t)k2dt (5.15)

+ c

✓Z T

t=s

(kx̄(t)k2 + kū(t)k2)dt+ kx̄(T)k2
◆
. (5.16)

To bound (5.16), we observe that d
dt x̄(t) = Ã(t)x̄(t)+ B̃(t)ū(t)+ d̃(t) = Ã(t)x̄(t)+ B̃(t)ū2(t),

which corresponds to the x̂(t) dynamics in the definion of �-stabilizability; thus, (5.16) is at
most c · �kx̃(s)k2.

To bound (5.15), we use (25) to bound kū1(t)k2 2L2
xkx̃(t)k2+2L2

ukũ(t)k2 2c0(Q(x̃(t))+

R(ũ(t))/�R, where c0 = �R max{ L2
x

↵Q
, L2

u
↵R

). Hence, in view of Lemma 13, and the principle of

optimality:

2�R
R T

t=s kū1(t)k2dt 4c0�R
R T

t=s(Q(x̃(t)) +R(ũ(t))dt

 4c0�RṼ(s) 4c0�R(Vjac,?(s) + ✏2

2↵R
)

Putting the bounds together and rearranging:

(1� 4�Rc
0)Vjac,?(s) c · �kx̃(s)k2 + 2c0�R

↵R
✏2

Under Assumption 25, we have 4�Rc0 1/2, so that

Vjac,?(s) 2c · �kx̃(s)k2 + 4c0�R
↵R

✏2. (5.17)

We recognize 2c� C1, and 4c0�R
↵R

= C2 � 1
2↵R

, and invoke Lemma 13 to obtain the desired
bound.

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 99

By the Fundamental Theorem of Calculus,

� d
ds Ṽ(s) = Q(x̃(s)) +R(ũ(s)) � ↵Qkx̃(s)k2

� 1
C1 Ṽ(s)�

↵QC2✏2
2C1 ,

where the last line uses Lemma 15. Integrating the bound and again invoking Lemma 15,

Ṽ(s) exp(� s
C1)Ṽ(0) +

↵QC2✏2
2C1

Z s

t=0

exp(� t
C1)dt (5.18)

 exp(� s
C1)Ṽ(0) +

↵Q

2 C2✏2

 ↵Q · (C1e�
s
C1 · kx̃(0)k2 + C2✏2).

Finally, in the case where ↵V > 0, Lemma 14 lets us convert the above bound to one on
kx̃(s)k2, replacing ↵Q with C0, as desired. In the case where ↵V = 0, for each � 2 [0, T]
application of Lemma 14 yields the desired result for each s 2 [0, T � �]. For each s 2
[T � �, T] Lemma 14 yields

kx̃(s)k22 C�0 · (C1e
�T��

C1 · kx̃(0)k2 + C2✏2)

 C�0 · (e
�
C1 C1e�

s
C1 · kx̃(0)k2 + C2✏2).

Connection to Feedback Linearization

We begin by applying our su�cient conditions to feedback linearizable systems, perhaps
the most widely studied and well-characterized class of systems in the nonlinear geometric
control literature [90, Chapter 9]. Roughly speaking, a system is feedback linearizable if it
can be transformed into a linear system using state feedback and a coordinate transformation.
Formally, we say that (2.1) is feedback linearizable if it is both control-a�ne, namely, of the
form

F (x, u) = f(x) + g(x)u,

where f : Rn ! Rn and g : Rn ! Rn⇥m, and if there exists a change of coordinates ⇠ = �(x),
where � : Rn ! Rn is a di↵eomorphism, such that in the new coordinates the dynamics of
the system are of the form

⇠̇ = Â⇠ + B̂[f̂(⇠) + ĝ(⇠)u] := F̂ (⇠, u), (5.19)

where Â 2 Rn⇥n and B̂ 2 Rn⇥m define a controllable pair (Â, B̂), f̂ : Rn ! Rm and ĝ : Rn !
Rn⇥m is such that ĝ(⇠) is invertible for each ⇠ 2 Rn. We will let ĝi(⇠) denote the i-th
column of ĝ(⇠). We emphasize that this global transformation is distinct from the local
Jacobian linearizations employed earlier. In this case the application of the feedback rule
u(⇠, v) = ĝ�1(⇠)[�f̂(⇠) + v], where v 2 Rm is a new ‘virtual’ input, results in ⇠̇ = Â⇠ + B̂v.
In essence, feedback linearization reveals a linear structure underlying the global geometry
of the system. Clearly F̂ satisfies Assumption 23, and the following proposition provides
su�cient conditions for Assumptions 24 and 25 to hold in the new coordinates:

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 100

Proposition 1. Suppose that (2.1) is feedback linearizable, and let f̂ , ĝ, Â and B̂ be as
defined above. Assume that i) there exists L̂ > 0 such that k d

d⇠ f̂(⇠)k < L̂ for each ⇠ 2 Rn and

ii) ĝ(·) is constant on Rn. Then there exists � > 0 such that along each trajectory (⇠̃(·), ũ(·))
of F̂ the associated Jacobian linearization (Ã(·), B̃(·)) is �-stabilizable. Furthermore the drift
term d̃(t) = f̂(⇠(t))� Ã(t)⇠̃(t) satisfies kB̃†(t)d̃(t)k2 2L̂k⇠̃(t)k2.

Remark 6. Suppose that the representations of the state running and terminal costs, Q̂ :=
Q � ��1 and V̂ := V � ��1, are convex in the linearizing coordinates and satisfy pointwise
bounds as in Assumption 22. Further assume that the assumptions made of F̂ in Proposition
1 hold. Then the conclusions of Theorem 8 can be applied to the representation of JT (·, ⇠0)
in the linearizing coordinates by rescaling Q̂ and R appropriately.

Thus, the global linearizing coordinates provide a useful tool for verifying the su�cient
conditions in Theorem 8. Moreover, as we illustrate with our counter-examples, they also
provide insight into what goes wrong in cases where the state costs do not lead to stabilizing
behavior.

While we illustrate this point further with our examples, let us briefly remark on the
necessity of the conditions in Proposition 1 (for our analysis). First, note that along a
given solution (⇠̃(·), ũ(·)) we have Ã(t) = Â+ B̂[dd⇠ f̂(⇠̃(t))+

Pm
i=1

d
d⇠gi(⇠̃(t))ũi(t)] and B̃(t) =

B̂ĝ(⇠̃(t)) and d̃(t) = Ã(t)⇠̃(t)� d
d⇠ f̂(⇠̃(t))⇠̃. When condition ii) is violated, even when d

d⇠ ĝ(⇠)

can be bounded globally, the linear growth of Ã(t) with respect to ũ(t) may make the pair
(Ã(·), B̃(·)) more di�cult to stabilize (in the sense of Assumption 24) for large values of the
input. Moreover, in this case d̃(t) will have quadratic cross-terms in ⇠̃(t) and ũ(t), which
may violate the growth conditions in Assumption 25. Similar issues arise when d

d⇠ f̂(⇠) is not
bounded globally. This occurs, for example, in Lagrangian mechanical systems wherein the
Coriolis terms display quadratic growth in the generalized velocities of the system. The core
challenge in each of these cases, from the perspective of our analysis, is that without making
additional structural Assumptions beyond those in Proposition 1 it is di�cult to rule out
cases where the time-varying approximation to the dynamics along some trajectory of the
system is arbitrarily di�cult to stabilize.

Counterexamples

We present three counterexamples and one positive example to illustrate the necessity of our
conditions and generality of our results. The first counterexample demonstrates the necessity
of small control costs. The second demonstrates the necessity of the matching condition
between the drift d̃(t) and range of the linearized B-matrix B̃(t). The third counterexample
constructs an example where our conditions hold, and thus first-order stationary points are
stabilizing, but where there exists a FOS which is not a global optimum. This reveals that
our conditions are more generally than popular forms of “hidden convexity” such as quasi-
convexity. Finally, our fourth example describes a system which is not input a�ne, but for
which the regularity conditions outlined above still hold.

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 101

Relative Weighting of State and Input Costs We first consider the simple inverted
pendulum in Figure 5.1. The states are (x1, x2) = (✓, ✓̇), where ✓ is the angle of the arm
from vertical. The dynamics are governed by

ẋ1

ẋ2

�
=

x2

k sin(x2) + u

�
,

where k = g` with g > 0 the gravitational constant and ` > 0 the length of the arm. The
cost to be minimized is

JT (·, x0) =

Z T

0

kx̃(t)k2Q + rkũ(t)k22dt+ kx̃(T)k2QV
,

where the scalar parameter r > 0 is used to control the relative weighting of the input and
state costs and

QV =

1/4 1/(5

p
2)

1/(5
p
2) 1

�
Q =

1 �1/4

�1/4 1

�
.

Note that the dynamics are linearizable, as they are already in the form (5.19). Moreover,
applying Proposition 1, one can show that that Assumptions 22 through 25 are satisfied
with parameters ↵Q = �Q = 3

4 , ↵R = �R = r, Lx = k and Lu = 0. Considering k = 10,
we find that if if r < 3

4k2 = 3
400 the su�cient conditions for exponential stability of Theorem

8 are satisfied. However, if r is not small enough then there may exists undesirable first
order stationary points of the cost functional. Specifically, consider the initial condition
x0 = (3⇡4 , 0)

T and the control signal ũ(·) ⌘ �k sin(3⇡4) = � 10p
2
, which generates the trajectory

x̃(·) ⌘ x0. The costate along this arc is p(·) ⌘ (3⇡16 ,
3⇡

20
p
2
) and the gradients of the objective

is given by rJT (ũ; x0)(t) = p(t) + ru(t). Thus, we see that if we choose r = 3⇡
200 then we will

have rJT (ũ; x0)(·) ⌘ 0, which demonstrates that ũ is a stationary point of the cost function.
Thus, while RHC stability results which rely on global optimality of each planning problem
predict stabilizing behavior for su�ciently large T > 0 [43], this example demonstrates that
algorithms which only find first order-stationary points may be ‘too myopic’ to guarantee
stability unless the input cost is small enough.

It is interesting to note that it is impossible to find a stationary pair (x̂(·), û(·)) of JT (·, x0)
with the property that x̂(·) ⌘ x0 if we instead have x0 2 (�⇡

2 ,
⇡
2). Indeed, if we pick

ũ(·) = � sin(x0) so that x̂(·) ⌘ x0, then in this case the costate will satisfy the di↵erential
equation �ṗ(t) = Â(t)p(t) + 2qx̂(t) where Â(·) ⌘ cos(x0) > 0. Thus, in this case the costate
cannot be a constant function of time, which means that û(·) cannot be a stationary point
of JT (·, x0).

More broadly, consider a general 1-dimensional system ẋ = F (x, u) which satisfies As-
sumptions 23 and 24. One can verify that and trajectory (x̌(·), ǔ(·)) of F such that x̌(·) ⌘ x0

and ǔ(·) ⌘ ǔ0 (for some x0, ǔ 2 R) can only be a stationary pair of JT (·, x0) if
@
@xF (x0, ū) < 0

and ď(·) ⌘ ď0 = F (x0, ǔ0)� Ǎx0 � B̌u0 is such that sign(d0) = sign(x0), where (Ǎ0, B̌0) are
the Jacobian linearization of F at (x0, ǔ0). This highlights the need to further study how

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 102

the geometry of the Jacobian linearizations and drift terms promote or inhibit stabilizing
behavior.

Structure of Local Drift Term Consider the flexible link manipulator depicted in
Figure 5.1. The state is (x1, x2, x3, x4)T = (✓1, ✓̇1, ✓2, ✓̇2)T , where ✓1 is the angle of the arm
from vertical and ✓2 is the di↵erence between the angle of the arm and the internal angle of
the motor. The dynamics are

2

664

ẋ1

ẋ2

ẋ3

ẋ4

3

775 =

2

664

x2

�K1 sin(x1) +K2x3

x4

�K1 sin(x1)� (K2 +K3)x3 � u

3

775 ,

where K1 = g`, K2 =
k
M and K3 =

k
I , where g is the gravitational constant, ` is the length

of the arm, k = 10 is the spring coe�cient, M the mass of the arm and I the internal inertia
of the motor. For concreteness, we will assume that these physical parameters are such that
K1 = 20 and K2 = K3 = 1. We apply cost functionals of the form

JT (·; x0) =

Z T

0

kx̃(t)kQ + rkũ(t)k22dt+ kx̃(T)kQV ,

Q :=

2

664

1 1
4 0 0

1
4 1 0 0
0 0 1 0
0 0 0 1

3

775 QV :=

2

664

5 �1 �1
4 0

�1 5 0 0
�1

4 0 5 0
0 0 0 5

3

775 .

While the running and terminal costs satisfy Assumption 22 in the x coordinates, Assumption
23 is violated for this parameterization of the control system. Consider the initial condition
x0 = (⇡, 0, 0, 0)T . Note that the input ũ(·) ⌘ 0 generates the trajectory x̃(·) ⌘ x0. The reader
may verify that the costate along this trajectory is p(t) ⌘ (⇡, 14⇡, 0, 0) and the gradient at
this point in the optimization space is defined by JT (ũ; x0)(·) ⌘ 0. Note that this is true for
every choice of prediction horizon T > 0 and choice of the scaling parameter r > 0. Thus,
regardless of the prediction horizon, algorithms which find first-order stationary points may
get stuck at this undesirable equilibrium.

We can also see how the proposed cost function fails to guide local search algorithms to
stabilizing solutions by studying its structure in a set of linearizing coordinates. Indeed,
consider coordinates defined by ⇠ = �(x) where

�(x) = (x1, x2,�K1 sin(x1) +K2x3,�K1 cos(x1)x2 +K2x4).

These coordinates are obtained by input-output linearizing the dynamics with the output
y = x1 (see [90, Chapter 9]), and in the new coordinates the system can be shown to be of the
form (5.19). Thus, in the new coordinates Assumption 23 is satisfied, however, Assumption
22 is not satisfied. Indeed, due to the nonlinearities in �, the reader may verify that the
maps z ! k��1(z)k2Q and z ! k��1(z)kQV are not convex. Thus, in these coordinates, the

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 103

Figure 5.1: (a) Schematic for the simple inverted pendulum (b) schematic for the inverted pendulum with a
flexible joint.

local structure of the state costs attracts trajectories towards the undesirable equilibrium
point we identified above.

Non-Control-A�ne System Consider the scalar system ẋ = f(x)+bu+k cos(x) sin(u),
where f : R ! R satisfies f(0) = 0 and k d

dx f̃(x)k < L for each x 2 Rn and b > k > 0.

Along a given system trajectory (x̃(·), ũ(·)) the Jacobian linearization is (Ã(·), B̃(·)) where
Ã(t) = d

dxf(x̃(t)) � k sin(x̃(t)) sin(ũ(t)) and B̃(t) = b + k cos(x̃(t)) cos(ũ(t)). Note that

|Ã(t)| < L+k and B̃(t) > b�k, and thus it is straightforward to argue that the linearizations
along the trajectories satisfy Assumption 24 for a suitable parameter � > 0. The disturbance
term associated to the chosen trajectory is d̃(t) = f(x̃(t))+k cos(x̃(t)) sin(ũ(t))� Ã(t)x̃(t)�
k cos(x̃(t)) cos(ũ(t))ũ(t), which can be seen to satisfy kB†(t)d̃(t)k 1

b�k ((2L + k)kx̃(t)k +
2kkũ(t)k). Thus, we see that these dynamics satisfy Assumption 25. Further, if in addition
we have 2k

b�k < 1
8 then Assumption 25 can be satisfied by choosing cost functions which

Satisfy Assunption 22 and weight the state and input penalties appropriately. While most
of the systems we consider in this chapter are control-a�ne, this example demonstrates that
Theorem 8 can be applied to non-control-a�ne systems so long as the nonlinearity in the
input is not ‘too large’.

5.3 First-Order Stabilty Guarantees for Receding
Horizon Control

In receding horizon control (RHC) ormodel predictive control, a planner solves inf ũ(·) JT (ũ, x(t)),
where x(t) is the current state of the real world system. The planner then applies the resulting

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 104

open loop predictive control until a new state measurement is received and the process can
be repeated. As discussed above, most formal stability guarantees require that an (approx-
imate) globally optimal solution is found for each (generally nonconvex) planning problem.
Applying Theorem 8, we provide the first stability guarantees for a formal model of nonlinear
RHC which only requires planning to approximate stationary points.

First-Order Receding Horizon Control

Many practical implementations of RHC use a technique known as warm starting, where the
predictive control returned during each optimization phase is used to construct the ‘initial
guess’ for the subsequent planning problem. This approach has proven highly e↵ective for
systems which require rapid re-planning to maintain stability [15].

To model this approach, we define the first-order receding horizon control strategy, de-
noted FO-RHC, as follows. First a prediction horizon T > 0 and a replanning interval � 2 (0, T]
are chosen and a sequence of replanning times tk = k� for k 2 N are defined. Next, the
process takes in an initial condition of the physical system x0 2 Rn and a warm-start control
ū0 2 UT specified by the user. We let (x(·, x0, ū0),u(·, x0, ū0)) denote the resulting trajectory
produced by the control scheme described below.

At each tk for k 2 N a warm-start routine generates an initial guess ūk(·) = ūk(·; x0, ū0) 2
UT for the problem JT (·;x(·, x0, ū0)); a simple choice for such a routine is presented momen-
tarily. The local search method then optimizes the problem using the chosen initial guess,
and produces the predictive control ũk(·) = ũ(·; x0, ū0). Note that both of these quantities
depend on both the initial condition of the system and the initial warm-start control specified
by the user. The predictive control is constructed via ũk(·) = uplanT (·,x(tk, x0, ū0), ūk) 2 UT ,
where the map uplanT is used to model how the chosen search algorithm selects a predictive
control given for a given initial condition and warm-start input. Finally, the actual control
u(t, x0, ū0) = ũk(t� tk) is applied on the interval [tk, tk+1), and the process repeats.

Assumption 26. We assume that, for any x̂0 2 Rn, ū 2 UT , the planned solution ũ =
uplanT (·, x̂0, ū) 2 UT satisfies the following two conditions with parameter ✏0 > 0:

1. JT (ũ; x̂0) JT (ū; x̂0); and,

2. ũ is an ✏0JT (ũ; x̂0)1/2-FOS of JT (· ; x̂0).

The rationale for the first condition is that many popular trajectory optimization methods
are descent methods, and therefore only decrease the value of the functional JT . The second
condition is reasonable because such methods converge to approximate first-order station-
ary points, even for nonconvex landscapes [12]. The normalization by JT (x̂0, û)1/2 a↵ords
geometric stability in Theorem 9 by ensuring the optimization terminates close enough to a
stationary point for each planning problem as the system trajectory approaches the origin.

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 105

It remains to specify how the warm-starts ūk are produced for k � 1. We propose selecting
ũk with �-delay, continuing until time T , and then applying zero input:

ūk+1(t, x0, ū0) =

(
ũk(t+ �, x0, ū0) t 2 [0, T � �]

0 t 2 (T � �, T].

While more sophisticated warm-starts may be adopted in practice, the above is preferable
for the present analysis because (a) it does not require further system knowledge, and (b) is
ammenable to transparent stability guarantees.

Su�cient Conditions for Exponential Stability of FO-RHC

Finally, we apply Theorem 8 and its assumptions to provide su�cient conditions for the
stability of FO-RHC. In order to obtain exponential convergence, we will require that, given a
desired replanning interval � > 0, the prediction horizon T > 0 is su�ciently large and the
optimality parameter ✏0 > 0 in Assumption 26 is su�ciently small:

Theorem 9. Let the assumptions in Theorem 8 hold. Further assume that the search algo-
rithm chosen for FO-RHC satisfies the conditions in Assumption 26. Then for any prediction
horizon T > 0, replanning interval � 2 (0, T] and optimality parameter ✏0 <

p
2↵QC2, and

each initial condition for the physical system x0 2 Rn and initial warm-start decision vari-
able ū0 2 UT the system trajectory (x(·, x0, ū0),u(·, x0, ū0)) generated by the corresponding
FO-RHC scheme satisfies

kx(tk, x0, ū0)k2
p

M(�, T, ✏0)e
⌘(�,T,✏0)tkkx0k2,

for each k 2 N where we define

M(�, ✏0) := C�0C1
�
1� ↵Q

2 C2✏20
��1

⌘(�, T, ✏0) :=
1
2� ln

�
e��/C1 + T (�, T) + E(�, ✏0)

�

E(�, ✏0) := 1
2C

�
0 C2e2LF �((� + 1)↵Q + ↵V)✏

2
0

T (�, T) := C�0C1(�↵Q + ↵V)e
� T

C1
+�(1

C1
+2LF).

Proof. We first assume that ↵V > 0 and bound the rate of covegence in terms of C0; the
steps of the proof can be repeated by replacing C0 with C�0 throughout and then applying
the tighter of the two bounds.

For each k 2 N we will let J̃k = JT (ũk(·; x0, ū0), x0) and J̃k = JT (ũk(·; x0, ū0), x0). Re-
spectively, these are the cost incurred by the k-th planning solution and the k-th warm-start
initial guess. For simplicity, we drop the dependence on x0 and ū0 from here on. We also let
(x̃k(·), ũ(·)) and (x̄k(·), ūk(·)) denote the corresponding system trajectories. Our goal is to
show that the sequence of losses {J̃k}1k=1 is geometrically decreasing. Indeed, using property
1) of Assumption 26 we have

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 106

J̃k+1
T J̄k+1

T = J̄k+1
T � J̃k

T + J̃k
T (5.20)

=

Z T

T��
Q(x̄k+1(⌧)) +R(ūk+1(⌧))d⌧ + V (x̄k+1(T))

�
Z �

0

Q(x̃k(⌧)) +R(ũk(⌧))d⌧ � V (x̃k(T)) + J̃k
T

Z T

T��
↵Qkx̄k+1(⌧)k22 + ↵V kx̄k+1(T))k22

+
⇣
e�

�
C1 +

↵Q

2
C2✏20

⌘
J̃k

where the second inequality follows from Assumption 22, the fact that ūk+1(t) = 0 for each t 2
[T � �, T], and applying the second inequality in (5.18) which shows that JT��(ũk|[�,T], x̃k(�))
e�

�
C1 J̃k +

↵Q

2 C2✏20J̃k), where we have also used property 2) of Assumption 26. The second
fact also implies that | ˙̄xk+1(t)| = |F (xk+1(t), 0)| LF |x̄(x̄(t))| (by Assumption 21) for each
t 2 [T � �, T]. Thus, by a standard application of a Gronwall-type inequality for each
t 2 [T � �, T] we have will will have

kx̄k+1(t)k22 e2LF �kx̄k+1(T � �)k22 (5.21)

 e2LF �C0
✓
C1e�

T��
C1 J̃k +

1

2
C2✏20J̃k

◆
(5.22)

where we have used the fact that x̃k(T��) = x̄k+1(T��), property 2 from Assumption 26 and
Theorem 8. Combining the above observations with the final inequality in (5.20), integrating,
and rearranging terms, and simplifying provides

J̃k+1
✓
e�

�
C1 + C0

C1e2LF �(�↵Q + ↵V)e

�T��
C1 +

1

2
e2LF �((� + 1)↵Q + ↵V)C2✏20

�◆
J̃k (5.23)

Which simplifies to

J̃k+1
⇣
e�

�
C1 + [T (�, T) + E(�, ✏0)]

⌘
J̃k. (5.24)

This geometric decay implies that

JT (ũk(0), x̃k(0)) e2⌘(�,T,✏0)tkJT (ũ0(0), x̃0(0)) (5.25)

This can then be converted into the desired bound on the state trajectory by applying
Lemmas 14 and 15.

To interpret the above constants, first note that for a fixed replanning interval � > 0
we have lim✏0!0 M(�, ✏0) = C̄�0C1 and limT!1

✏0!0
⌘(�, T, ✏0) = 1

2C1 . Thus, in the limiting case

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 107

FO-RHC recovers the exponential rate of convergence predicted by Theorem 8. Next, note

that ⌘(�, T, ✏0) will only be negative if e�
�
C1 + T (�, T, ✏0) + E(�, ✏0) < 1. Thus, for our

estimate on the rate of convergence to be exponentially decaying we require that T is (at
least) as big as T � ln(C̄�0C1(�↵Q + ↵V)) + �(1 + C12LF).

It is worth noting the significant di↵erences between this stability result and typical stabil-
ity results in the literature (e.g. [44, 33, 34]). Typical stability results use the value function
VT (x0) := infu(·) JT (ũ(·); x0) to certify the stability of the overall receding horizon process
(under the assumption that a global minimizer can be found at each planning instance), and
apply the principle of optimality to argue that VT decreases between the sampling instances.
In our case the principle of optimality is cannot be applied because we are not guaranteed to
obtain even locally optimal solutions. Thus, our proof technique requires demonstrating in a
more direct fashion, which leverages the descent condition for the planner in Assumption 26,
that the cost incurred by the planner at each sampling instance is monotonically decreasing
along trajectories of the system.

5.4 Outlook and Future Work

The conditions required to ensure stability in this section are admittedly quite strong.
Nonetheless, the analysis presented here o↵ers an initial foothold for building up a geometric
theory which characterizes the landscape of nonlinear optimal control problems. Even though
this Chapter does not touch on learning directly, understanding the underlying structure of
the cost functions used in such settings is a clear prerequisite for obtaining complexity or
statistical convergence guarantees in such settings. Here, we outline a few concrete directions
for future work which are currently being pursued by the author and his collaborators.

Understanding the Loss Landscape

The results presented in this Chapter make a connection to full-state feedback linearization,
which in many ways is the starting point for systematically studying the structure of non-
linear systems. However, in order to expand the applicability of the results, broader classes
of systems, such as minimum-phase, non-minimum-phase and di↵erentially flat systems will
need to be considered. Moreover, the applicability of the results to real-world will be greatly
expanded by extending the results to cover tracking scenarios as well as situations where
there are constraints on the states and inputs. Finally, the current results have a weak de-
pendence on the structure of the terminal cost, whereas in many standard analysis [44], a
terminal cost which is a also a (local) control Lyapunov function for the system can be used
to shorten the prediction horizon which is required to stabilize the system.

CHAPTER 5. ON THE STABILITY OF RECEDING HORIZON CONTROL: A
GEOMETRIC PERSPECTIVE 108

Realtime Computational Constraints

Many applications have limited computational resources and strict run-time requirements
for real-time controllers. The lack of convergence guarantees for nonlinear RHC methods has
precluded their use in many safety critical scenarios. An important avenue for future work
will be to leverage the current analysis to bound the number of iterations particular descent
methods, such as gradient descent and I-LQR, require at each planning instance to produce
a controller which will stabilize the system. Such a theory would open the possibility to
apply RHC methods in application domains where end-to-end verification of controllers is
the norm, as is the case in many aerospace applications.

Iterative Learning Control, Learning-based Receding Horizon
Control, and Policy Optimization

In ongoing work the author is leveraging the current framework to provide practical stability
guarantees from learning based receding horizon control and statistical correctness guaran-
tees for optimization-based iterative learning control methods. Both of these approaches are
based on iterative linearization of the dynamics along a nominal trajectory, and the results
of this chapter can naturally be applied to such scenarios. The author is also currently using
insights from this chapter as the basis for studying the convergence of policy optimization
methods for nonlinear optimal control problems where a controller which stabilizes the sys-
tem for every point drawn from the support of a probability distribution is desired. Thus far,
convergence results are only available for the special case of linear quadratic policy optimiza-
tion problems [26], wherein the simple form of the dynamics makes it possible to understand
the global landscape of the policy optimization problem in a way that can be connected to
the local structure of the problem along a single rollout. The hope here is that the present
results can provide a basis for connecting the global and local structure of nonlinear policy
optimization problems.

109

Chapter 6

Outlook and Future Work

Nonlinear science has always been a patchwork of perspectives which each, in their own
way, help us to cage in how to conceptualize and approach the grand challenges associated
with systematically controlling complex real-world systems. This is reflected in the presen-
tation of the four previous vignettes, which each touch on di↵erent aspects of geometric
control, optimal control and model-based design principles. The primary perspective devel-
oped throughout the dissertation, which is worth stating plainly again here, is that the most
fruitful way forward for understanding how to systematically control complex, uncertain,
nonlinear systems is to use optimal control as a unifying analysis framework and design
framework. In particular, optimal control provides a ‘common language’ which enables us to
bring in insights from geometric control, modern optimization theory and machine learning
on ‘equal footing’.

It is the opinion of the author that the program advocated for in this dissertation will take
at least a decade to reach completion, and likely much longer. However, it is also the opinion
of the author that there is fundamentally no other way forward if we wish to systematically
give scalable, interpretable, and practical guarantees for nonlinear data-driven control for
complex high dimensional systems. Directions for pushing forward the ideas presented in the
dissertation have been provided at the end of each of the chapters. Here, a brief perspective
on how these ideas will interact with real-world engineering pipeline is given.

Approximate Models for Partially Observable Environments

The work presented in this dissertation has focused largely on the ‘internal’ dynamics of
robotic systems. Here, the word internal does not refer to zero dynamics, as in Chapter 4,
but rather to the dynamics that a robot, such as a quadruped, displays when it is making
contact with its environment in a known and planned way. Indeed, the most significant
tacit assumption that has been made throughout the entire dissertation is that we have
access to full-state measurements and that there is no estimation error. In the wild, we
will need our robots to be able to respond to a vast array of dynamic interactions with
di↵erent environments who’s features cannot be observed directly. Retracing an example

CHAPTER 6. OUTLOOK AND FUTURE WORK 110

from Chapter 1, for walking robots walking on uneven terrain it is di�cult to measure even
the angle of the slope that the robot is walking over, let alone build a reasonable approximate
dynamics model for arbitrary ground interactions. If the ideas in this dissertation are to win-
out in the long run, we will need to rethink how we are modelling robotic systems to include
the local environmental interaction they experience along a trajectory that is used to improve
the performance of a data-driven controller.

Learning From Human Demonstrations

Deploying autonomous robots into everyday scenarios will require them to perform intricate,
di�cult-to-specify tasks while working around and with humans. Recently, there has been
significant interest in using human demonstrations to teach robots the skills they require
to operate in these scenarios. However, reliably translating human demonstrations into
a controller synthesis problem that can be easily solved is extremely challenging. This
dissertation work provides an ideal foundation for tackling this problem. Much like cost
functions were to specific systems, the vision here is to tailor inverse learning problems to
specific systems, enabling algorithms to rapidly reconcile high-level human preferences with
the physical limitations of the robot. It will be essential to pursue statistical guarantees
to ensure that these approaches learn to correctly identify and respond to human intent.
Solving these problems will require reconciling techniques from artificial intelligence, the
cognitive sciences and data-driven control, and is essential for safely and reliably deploying
autonomous robotic systems.

Data Driven Hardware and Controller Co-Design

The mechanisms our robots use to interact with the world are relatively simple when com-
pared to the tools found in nature. This is partly due to the fact that building durable yet
intricate mechanisms is extremely challenging. From the control side, the bottleneck has
been coordinating numerous degrees of freedom while responding to actuator dynamics that
change over time due to natural wear and tear. Consequently, in current practice we often
seek a middle ground between building systems that are tractable to control and systems
that can perform the intricate actions required to operate in the real world. The author
intends to leverage this dissertation on scalable synthesis tools, which are designed to han-
dle such complexities, to break this stalemate and co-design new hardware mechanisms and
data-driven control strategies to provide our robots with new opportunities for sensing and
interacting with the world.

What if Scaling is all You Need?

It should be considered, with a healthy amount of skepticism, that is within the realm of
possibility that the ‘blackbox’ approach to optimal control will win out in the end as the
availability of computational resources grows ever-larger and we can prepare our robots,

CHAPTER 6. OUTLOOK AND FUTURE WORK 111

through extensive simulation, for the complexities of the real world. Thus, as was done
throughout the production of the work presented in this dissertation, it will be essential to
constantly rethink how concepts from nonlinear control can be leveraged in these scenarios,
as the way in which engineering teams interact with computational approaches undergoes a
constant series of changes.

112

Bibliography

[1] Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. “Using inaccurate models in
reinforcement learning”. In: International Conference on Machine Learning. 2006,
pp. 1–8.

[2] Joshua Achiam et al. “Constrained Policy Optimization”. In: International Confer-
ence on Machine Learning. 2017, pp. 22–31.

[3] A Pedro Aguiar, Joao P Hespanha, and Petar V Kokotović. “Performance limitations
in reference tracking and path following for nonlinear systems”. In: Automatica 44.3
(2008), pp. 598–610.

[4] Notker Amann, David H Owens, and Eric Rogers. “Iterative learning control using
optimal feedback and feedforward actions”. In: International Journal of Control 65.2
(1996), pp. 277–293.

[5] Notker Amann, David H Owens, and Eric Rogers. “Predictive optimal iterative learn-
ing control”. In: International Journal of Control 69.2 (1998), pp. 203–226.

[6] Aaron D Ames and Matthew Powell. “Towards the Unification of Locomotion and
Manipulation through Control Lyapunov Functions and Quadratic Programs”. In:
Lecture Notes in Control and Information Sciences 449 (2013), pp. 219–240.

[7] Aaron D Ames et al. “Rapidly exponentially stabilizing control lyapunov functions
and hybrid zero dynamics”. In: IEEE Transactions on Automatic Control 59.4 (2014),
pp. 876–891.

[8] Zvi Artstein. “Stabilization with relaxed controls”. In: Nonlinear Analysis: Theory,
Methods & Applications 7.11 (1983), pp. 1163–1173.

[9] Martino Bardi, Italo Capuzzo Dolcetta, et al. Optimal control and viscosity solutions
of Hamilton-Jacobi-Bellman equations. Vol. 12. Springer, 1997.

[10] Suneel Belkhale et al. “Model-based meta-reinforcement learning for flight with sus-
pended payloads”. In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 1471–
1478.

[11] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966), pp. 34–37.

[12] Dimitri P Bertsekas. “Nonlinear programming”. In: Journal of the Operational Re-
search Society 48.3 (1997), pp. 334–334.

BIBLIOGRAPHY 113

[13] Dimitri P Bertsekas and John N Tsitsiklis. “Gradient convergence in gradient methods
with errors”. In: SIAM Journal on Optimization 10.3 (2000), pp. 627–642.

[14] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena
Scientific, 1996.

[15] Hans Georg Bock et al. “E�cient direct multiple shooting in nonlinear model predic-
tive control”. In: Scientific Computing in Chemical Engineering II 2 (1999), pp. 218–
227.

[16] Julio H Braslavsky, Richard H Middleton, and James S Freudenberg. “Cheap control
performance of a class of nonright-invertible nonlinear systems”. In: IEEE transac-
tions on automatic control 47.8 (2002), pp. 1314–1319.

[17] Julio H Braslavsky, Marıéa M Seron, and Petar V Kokotović. “Near-optimal cheap
control of nonlinear systems”. In: IFAC Proceedings Volumes 31.17 (1998), pp. 107–
112.

[18] Arthur E Bryson and Yu-Chi Ho. Applied optimal control: optimization, estimation,
and control. Routledge, 2018.

[19] Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. “Heuristic-guided re-
inforcement learning”. In: Advances in Neural Information Processing Systems 34
(2021), pp. 13550–13563.

[20] Christine Chevallereau et al. “Rabbit: A testbed for advanced control theory”. In:
IEEE Control Systems Magazine 23.5 (2003), pp. 57–79.

[21] Chef-Seng Chow and John N Tsitsiklis. “The complexity of dynamic programming”.
In: Journal of complexity 5.4 (1989), pp. 466–488.

[22] Kurtland Chua et al. “Deep reinforcement learning in a handful of trials using proba-
bilistic dynamics models”. In: Advances in neural information processing systems 31
(2018).

[23] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simulation
for games, robotics and machine learning. http://pybullet.org. 2016–2019.

[24] Xingye Da et al. “Learning a Contact-Adaptive Controller for Robust, E�cient Legged
Locomotion”. In: Conference on Robot Learning. PMLR. 2021, pp. 883–894.

[25] Marc Deisenroth and Carl E Rasmussen. “PILCO: A model-based and data-e�cient
approach to policy search”. In: International Conference on Machine Learning. 2011,
pp. 465–472.

[26] Maryam Fazel et al. “Global convergence of policy gradient methods for the lin-
ear quadratic regulator”. In: International Conference on Machine Learning. PMLR.
2018, pp. 1467–1476.

[27] Bruce Francis. “The optimal linear-quadratic time-invariant regulator with cheap
control”. In: IEEE Transactions on Automatic Control 24.4 (1979), pp. 616–621.

BIBLIOGRAPHY 114

[28] Vincent François-Lavet, Raphael Fonteneau, and Damien Ernst. “How to discount
deep reinforcement learning: Towards new dynamic strategies”. In: arXiv preprint
arXiv:1512.02011 (2015).

[29] Randy Freeman and Petar V Kokotovic. Robust nonlinear control design: state-space
and Lyapunov techniques. Springer Science and Business Media, 2008.

[30] Vladimir Gaitsgory, Lars Grüne, and Neil Thatcher. “Stabilization with discounted
optimal control”. In: Systems & Control Letters 82 (2015), pp. 91–98.

[31] Vladimir Gaitsgory et al. “Stabilization with discounted optimal control: the discrete
time case”. In: (2016).

[32] Robert M Gower. “Convergence theorems for gradient descent”. In: Lecture notes for
Statistical Optimization (2018).

[33] Gene Grimm et al. “Examples when nonlinear model predictive control is nonrobust”.
In: Automatica 40.10 (2004), pp. 1729–1738.

[34] Gene Grimm et al. “Model predictive control: for want of a local control Lyapunov
function, all is not lost”. In: IEEE Transactions on Automatic Control 50.5 (2005),
pp. 546–558.

[35] Tuomas Haarnoja et al. “Learning to walk via deep reinforcement learning”. In: arXiv
preprint arXiv:1812.11103 (2018).

[36] Tuomas Haarnoja et al. “Soft Actor-Critic: O↵-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor”. In: CoRR abs/1801.01290 (2018).
eprint: 1801.01290.

[37] Tuomas Haarnoja et al. “Soft actor-critic: O↵-policy maximum entropy deep rein-
forcement learning with a stochastic actor”. In: International conference on machine
learning. PMLR. 2018, pp. 1861–1870.

[38] Jemin Hwangbo et al. “Control of a quadrotor with reinforcement learning”. In: IEEE
Robotics and Automation Letters 2.4 (2017), pp. 2096–2103.

[39] Jemin Hwangbo et al. “Learning agile and dynamic motor skills for legged robots”.
In: Science Robotics 4.26 (2019), eaau5872.

[40] Julian Ibarz et al. “How to train your robot with deep reinforcement learning: lessons
we have learned”. In: The International Journal of Robotics Research 40.4-5 (2021),
pp. 698–721.

[41] Alberto Isidori. Nonlinear control systems. Springer Science & Business Media, 2013.

[42] Ali Jadbabaie and John Hauser. “On the stability of receding horizon control with
a general terminal cost”. In: IEEE Transactions on Automatic Control 50.5 (2005),
pp. 674–678.

[43] Ali Jadbabaie and John Hauser. “On the stability of unconstrained receding horizon
control with a general terminal cost”. In: Proceedings of the 40th IEEE Conference
on Decision and Control (Cat. No. 01CH37228). Vol. 5. IEEE. 2001, pp. 4826–4831.

BIBLIOGRAPHY 115

[44] Ali Jadbabaie, Jie Yu, and John Hauser. “Receding horizon control of the Caltech
ducted fan: A control Lyapunov function approach”. In: Proceedings of the 1999 IEEE
International Conference on Control Applications (Cat. No. 99CH36328). Vol. 1.
IEEE. 1999, pp. 51–56.

[45] Ali Jadbabaie, Jie Yu, and John Hauser. “Unconstrained receding-horizon control
of nonlinear systems”. In: IEEE Transactions on Automatic Control 46.5 (2001),
pp. 776–783.

[46] Tae-Jeong Jang, Chong-Ho Choi, and Hyun-Sik Ahn. “Iterative learning control in
feedback systems”. In: Automatica 31.2 (1995), pp. 243–248.

[47] Michael Janner et al. “When to trust your model: Model-based policy optimization”.
In: Advances in Neural Information Processing Systems 32 (2019).

[48] Nan Jiang et al. “The dependence of e↵ective planning horizon on model accuracy”.
In: Proceedings of the 2015 International Conference on Autonomous Agents and
Multiagent Systems. Citeseer. 2015, pp. 1181–1189.

[49] Ryan Julian et al. “E�cient adaptation for end-to-end vision-based robotic manipu-
lation”. In: (2020).

[50] Ryan Julian et al. “Never stop learning: The e↵ectiveness of fine-tuning in robotic
reinforcement learning”. In: arXiv preprint arXiv:2004.10190 (2020).

[51] Rudolph Emil Kalman. “A new approach to linear filtering and prediction problems”.
In: (1960).

[52] Christopher M Kellett and Andrew R Teel. “Results on discrete-time control-Lyapunov
functions”. In: 42nd IEEE International Conference on Decision and Control (IEEE
Cat. No. 03CH37475). Vol. 6. IEEE. 2003, pp. 5961–5966.

[53] Johannes Köhler, Melanie Zeilinger, and Lars Grüne. “Stability and performance
analysis of NMPC: Detectable stage costs and general terminal costs”. In: arXiv
preprint arXiv:2110.11021 (2021).

[54] J Zico Kolter and Andrew Y Ng. “Policy search via the signed derivative.” In:
Robotics: science and systems. Vol. 5. 2009.

[55] Ashish Kumar et al. “Rma: Rapid motor adaptation for legged robots”. In: arXiv
preprint arXiv:2107.04034 (2021).

[56] Thanard Kurutach et al. “Model-Ensemble Trust-Region Policy Optimization”. In:
International Conference on Learning Representations. 2018.

[57] Nathan Lambert, Kristofer Pister, and Roberto Calandra. “Investigating Compound-
ing Prediction Errors in Learned Dynamics Models”. In: arXiv preprint arXiv:2203.09637
(2022).

[58] Nathan O Lambert et al. “Low-level control of a quadrotor with deep model-based re-
inforcement learning”. In: IEEE Robotics and Automation Letters 4.4 (2019), pp. 4224–
4230.

BIBLIOGRAPHY 116

[59] Joonho Lee et al. “Learning quadrupedal locomotion over challenging terrain”. In:
Science robotics 5.47 (2020).

[60] Sergey Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In: Journal
of Machine Learning Research 17.1 (Jan. 2016), pp. 1334–1373. issn: 1532-4435.

[61] Sergey Levine et al. “O✏ine reinforcement learning: Tutorial, review, and perspectives
on open problems”. In: arXiv preprint arXiv:2005.01643 (2020).

[62] Zhongyu Li et al. “Reinforcement Learning for Robust Parameterized Locomotion
Control of Bipedal Robots”. In: arXiv preprint arXiv:2103.14295 (2021).

[63] B. Lincoln and A. Rantzer. “Relaxing dynamic programming”. In: IEEE Transactions
on Automatic Control 51.8 (2006), pp. 1249–1260. doi: 10.1109/TAC.2006.878720.

[64] Bo Lincoln and Anders Rantzer. “Relaxing dynamic programming”. In: IEEE Trans-
actions on Automatic Control 51.8 (2006), pp. 1249–1260.

[65] Zhao Mandi, Pieter Abbeel, and Stephen James. “On the E↵ectiveness of Fine-tuning
Versus Meta-reinforcement Learning”. In: arXiv preprint arXiv:2206.03271 (2022).

[66] David QMayne. “Model predictive control: Recent developments and future promise”.
In: Automatica 50.12 (2014), pp. 2967–2986.

[67] David Q Mayne and Hannah Michalska. “Receding horizon control of nonlinear sys-
tems”. In: Proceedings of the 27th IEEE Conference on Decision and Control. IEEE.
1988, pp. 464–465.

[68] David Q Mayne et al. “Constrained model predictive control: Stability and optimal-
ity”. In: Automatica 36.6 (2000), pp. 789–814.

[69] Hanna Michalska and David Q Mayne. “Robust receding horizon control of con-
strained nonlinear systems”. In: IEEE transactions on automatic control 38.11 (1993),
pp. 1623–1633.

[70] Manfred Morari and Jay H Lee. “Model predictive control: past, present and future”.
In: Computers & Chemical Engineering 23.4-5 (1999), pp. 667–682.

[71] Rémi Munos and Csaba Szepesvári. “Finite-Time Bounds for Fitted Value Iteration.”
In: Journal of Machine Learning Research 9.5 (2008).

[72] Anusha Nagabandi et al. “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning”. In: arXiv preprint arXiv:1803.11347 (2018).

[73] Anusha Nagabandi et al. “Neural network dynamics for model-based deep reinforce-
ment learning with model-free fine-tuning”. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2018, pp. 7559–7566.

[74] Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy invariance under reward
transformations: Theory and application to reward shaping”. In: Icml. Vol. 99. 1999,
pp. 278–287.

BIBLIOGRAPHY 117

[75] Paavo Parmas et al. “PIPPS: Flexible model-based policy search robust to the curse
of chaos”. In: International Conference on Machine Learning. PMLR. 2018, pp. 4065–
4074.

[76] Xue Bin Peng et al. “Learning agile robotic locomotion skills by imitating animals”.
In: arXiv preprint arXiv:2004.00784 (2020).

[77] Xue Bin Peng et al. “Sim-to-real transfer of robotic control with dynamics random-
ization”. In: 2018 IEEE international conference on robotics and automation (ICRA).
IEEE. 2018, pp. 3803–3810.

[78] Marek Petrik and Bruno Scherrer. “Biasing approximate dynamic programming with
a lower discount factor”. In: Advances in neural information processing systems 21
(2008), pp. 1265–1272.

[79] Elijah Polak.Optimization: algorithms and consistent approximations. Vol. 124. Springer,
2012.

[80] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press,
1987.

[81] Romain Postoyan et al. “Stability analysis of discrete-time infinite-horizon optimal
control with discounted cost”. In: IEEE Transactions on Automatic Control 62.6
(2016), pp. 2736–2749.

[82] Romain Postoyan et al. “Stability guarantees for nonlinear discrete-time systems con-
trolled by approximate value iteration”. In: 2019 IEEE 58th Conference on Decision
and Control (CDC). IEEE. 2019, pp. 487–492.

[83] James A Primbs, Vesna Nevistić, and John C Doyle. “Nonlinear optimal control: A
control Lyapunov function and receding horizon perspective”. In: Asian Journal of
Control 1.1 (1999), pp. 14–24.

[84] Quanser. Linear servo base unit with inverted pendulum. Apr. 2021. url: https:
//www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/.

[85] Unitree Robotics. A1. url: https://www.unitree.com/products/a1/.

[86] Ugo Rosolia and Francesco Borrelli. “Learning model predictive control for iterative
tasks. a data-driven control framework”. In: IEEE Transactions on Automatic Control
63.7 (2018), pp. 1883–1896.

[87] Ali Saberi and Peddapullaiah Sannuti. “Cheap and singular controls for linear quadratic
regulators”. In: IEEE Transactions on Automatic Control 32.3 (1987), pp. 208–219.

[88] Peddapullaiah Sannuti. “Direct singular perturbation analysis of high-gain and cheap
control problems”. In: Automatica 19.1 (1983), pp. 41–51.

[89] PEDDAPULLAIAH Sannuti and H Wason. “Multiple time-scale decomposition in
cheap control problems–singular control”. In: IEEE transactions on automatic control
30.7 (1985), pp. 633–644.

BIBLIOGRAPHY 118

[90] Shankar Sastry. Nonlinear systems: analysis, stability, and control. Vol. 10. Springer
Science & Business Media, 1999.

[91] Sosale Shankara Sastry and Alberto Isidori. “Adaptive control of linearizable sys-
tems”. In: IEEE Transactions on Auto. Control 34.11 (1989), pp. 1123–1131.

[92] Angela P Schoellig, Fabian L Mueller, and Ra↵aello D’andrea. “Optimization-based
iterative learning for precise quadrocopter trajectory tracking”. In:Autonomous Robots
33.1 (2012), pp. 103–127.

[93] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[94] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[95] Pierre OM Scokaert, David Q Mayne, and James B Rawlings. “Suboptimal model
predictive control (feasibility implies stability)”. In: IEEE Transactions on Automatic
Control 44.3 (1999), pp. 648–654.

[96] Rodolphe Sepulchre, Mrdjan Jankovic, and Petar V Kokotovic. Constructive nonlin-
ear control. Springer Science & Business Media, 2012.

[97] Marıéa M Seron et al. “Feedback limitations in nonlinear systems: From Bode integrals
to cheap control”. In: IEEE Transactions on Automatic Control 44.4 (1999), pp. 829–
833.

[98] Laura Smith et al. “Legged Robots that Keep on Learning: Fine-Tuning Locomotion
Policies in the Real World”. In: arXiv preprint arXiv:2110.05457 (2021).

[99] Eduardo D Sontag. “A ‘universal’ construction of Artstein’s theorem on nonlinear
stabilization”. In: Systems and Control Letters 13.2 (1989), pp. 117–123.

[100] Chen Tessler and Shie Mannor. “Reward Tweaking: Maximizing the Total Reward
While Planning for Short Horizons”. In: arXiv preprint arXiv:2002.03327 (2020).

[101] Tyler Westenbroek et al. “Combining model-based design and model-free policy op-
timization to learn safe, stabilizing controllers”. In: IFAC-PapersOnLine 54.5 (2021),
pp. 19–24.

[102] Tyler Westenbroek et al. “Reinforcement Learning with Simple Models and Low-Level
Feedback Controllers”. In: arXiv (2022).

[103] Xiaobin Xiong and Aaron D Ames. “Dynamic and versatile humanoid walking via
embedding 3d actuated slip model with hybrid lip based stepping”. In: IEEE Robotics
and Automation Letters 5.4 (2020), pp. 6286–6293.

