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Abstract

Minmax Optimization:

New Applications and Algorithms

by

Raphael Chinchilla

Minmax optimization is a powerful framework to model optimization problems for

which there is uncertainty with respect to some parameters. In this dissertation we

look at new applications of minmax optimization and at new algorithms to solve the

optimizations.

The new applications revolve around a connection we have developed between min-

max optimization and the problem of minimizing an expected value with stochastic con-

straints, known in the literature as stochastic programming. Our approach is based on

obtaining sub-optimal solutions to the stochastic program by optimizing bounds for the

expected value that are obtained by solving a deterministic minmax optimization prob-

lem that uses the probability density function to penalize unlikely values for the random

variables. We illustrate this approach in the context of three applications: finite horizon

optimal stochastic control, with state or output feedback; parameter estimation with

latent variables; and nonlinear Bayesian experiment design.

As for new algorithms, they are aimed at addressing the problem of finding a local

solution to a nonconvex-nonconcave minmax optimization. We propose two main algo-

rithms. The first category of algorithms are modified Newton methods for unconstrained

and constrained minmax optimization. Our main contribution is to modify the Hessian

matrix of these methods such that, at each step, the modified Newton update direction

can be seen as the solution to a quadratic program that locally approximates the minmax
x



problem. Moreover, we show that by selecting the modification in an appropriate way,

the only stable points of the algorithm’s iterations are local minmax points. The second

category of algorithms are a variation of the learning with opponent learning awareness

(LOLA) method, which we call Full LOLA. The rationale of (Full) LOLA is to construct

algorithms such that the minimizer and maximizer choose their update direction taking

into account the response of their adversary to their choice. The relation between our

method and LOLA is that the latter can be seen as a first order linearization of the Full

LOLA. We show that it is possible to establish asymptotic convergence results for our

method both using fix step length and a variation of the Armijo rule.
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Chapter 1

Introduction

Optimization is a ubiquitous topic, present in one form or another in any quantitative

field of knowledge. The idea of finding a better (or the best) way to do something is

quite natural to humans, and we use it almost daily without necessarily noticing, in

questions like "what is the fastest way to drive to work?", "how can I be a better friend?",

or even "how can I do the best PhD while maintaining a good work-life balance?" (the

last question is an example of unfeasible optimization).

This dissertation looks at the problem of optimization with uncertainties. Consider

the example "what is the fastest way to drive to work?" from above. The time that one

takes will, in general, be impacted not only by distance and speed limits, but also by

traffic. The latter is fundamentally uncertain, so the choice of route that will be taken

will generally depend on how one wants to take into account this uncertainty in their

decision making process. There are two fundamental ways to treat uncertainties. In the

first one, the uncertainty is treated as a random variable, and the goal is to optimize the

average cost. Using the same example, this would mean we answer the question "what

is the fastest way on average to drive to work?". This approach is called stochastic

programming. For the second approach, the uncertainty is treated as an adversarial
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Introduction Chapter 1

variable, meaning we want to minimize the worst possible cost. Using the same example,

this would mean we answer the question "what is the fastest way to drive to work given

the worst possible traffic". This approach is called minmax optimization (also known

as robust optimization).

The first contribution of this dissertation, in Chapter 2, is to show the existence of

a relationship between the stochastic programming problem and a minmax optimization

problem. More specifically, we show that it is possible to use minmax optimization to

obtain upper and lower bounds on the solution to the stochastic programming problem.

This is relevant because most methods to solve stochastic programming tend to be ex-

tremely slow. The second contribution of this dissertation, in Chapters 3 and 4 is to

propose methods to solve the minmax optimization when the optimization variables take

continuous values and the cost function and constraints are differentiable. In Chapter 3

the methods we propose are second order methods, meaning that they are based on the

ideas of Newton’s root finding method. In Chapter 4, the methods are based on the idea

of minimizer and maximizer updating their choice of variable while taking into account

the answer of their adversary’s action.

The contributions of each chapter are summarized in the sections bellow.

Stochastic Programming Using Expected Value Bounds

(Chapter 2)

Optimization of an expected value, also called stochastic programming, appears in

countless areas of applied probability and engineering. In optimal stochastic control,

a dynamical system is subject to stochastic disturbances, and one wants to find the

control that minimizes the expected value of the trajectory tracking error. In maximum

2
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likelihood estimation, unobserved variables may need to be integrated out through an

expected value, to obtain the likelihood of the observed variables. In machine learning,

training a neural network means finding the weights that best classify the expected value

of a random variable.

Given a scalar function V p¨q and a random vector D, the expected value of V pDq can

be lower and upper bounded, respectively, by the minimum and maximum values that

V p¨q takes over the support of D. Our first results shows how these very crude bounds

can be improved by including information encoded in the probability density function

(pdf ) of D. In essence, we solve an optimization over the support of D that includes

terms that penalize unlikely realizations for D. This means that we need to compute and

solve optimality conditions — and therefore essentially compute derivatives and solve

algebraic equations — rather than compute integrals.

The results aforementioned actually define a family of bounds. Two instances of this

family, which we call the additive and multiplicative bounds, are particularly useful. The

first is more appropriate to problems where the cost function V p¨q is polynomial, while

the second one is more appropriate when the cost function is exponential. Both the

additive and multiplicative bounds are parameterized by a scalar parameter ϵ, which can

itself be optimized. To guide the design of the bounds and select ϵ, we develop necessary

and sufficient conditions with respect to ϵ that can be used to make sure that the additive

and multiplicative bounds are finite.

Borrowing ideas from robust optimization, the bounds are used to compute approx-

imate solutions to stochastic programming optimizations: Instead of minimizing an ex-

pected value subject to stochastic constraints, we minimize upper/lower bounds for the

criterion subject to constraints on pessimistic/optimistic bounds for the stochastic con-

straints. For the lower bound, this leads to a minimization on an extended variable space;

for the upper bound, it leads to a minmax problem.
3
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Finally, we discuss three applications for our bounds. The first relates to finite-

horizon stochastic optimal control, with either state feedback or output feedback. In the

former case, the initial state is assumed known, but an expectation is needed over the

realization of future disturbances. In the latter case, the initial state is unknown, and the

expectation is taken with respect to a conditional distribution, given known realizations

of past noisy measurements. Our approach can include stochastic constraints on the

trajectory of the system, which we illustrate through a constraint on the final state.

The second application is related to Maximum Likelihood or Maximum a Posteriori

estimation involving latent variables that cannot be measured [9]. These problems re-

quire the latent variables to be marginalized by an expectation that can be upper/lower

bounded using the results from Section 2.2.

The third application is in the area of Bayesian experiment design [10–12]. The goal is

to optimize the values of experimental parameters to facilitate the estimation of unknown

variables. Experiment design criteria typically involve taking expectations with respect

to unknown variables, including the ones that need to be estimated. Also here, optimal

experiment design can be performed by replacing expectations by bounds.

In the context of feedback control, all three applications discussed above typically

need to be performed in real-time with limited computation, and benefit from the avail-

ability of bounds on how the approximate solution compares with the true optimum. It

is in such scenarios that the approach proposed here is most attractive. In contrast, when

computation is unlimited, Monte Carlo based methods can achieve arbitrarily accurate

solutions to stochastic optimization problems as long as one uses a sufficiently large num-

ber of samples, and will thus eventually out-perform in accuracy the approach proposed

here.

4
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Related Work Stochastic programming has been an active area of research for the last

60 years, therefore a complete overview of the literature is infeasible. Instead, we provide

a brief overview of the most fundamental methods, some recent developments and how

these relate to our work. We discuss separately four approaches: deterministic methods,

stochastic methods, methods based on robust optimization and distributionally robust

optimization .

Deterministic methods rely on computing the expected value using a numerical in-

tegration method such as Gauss-Kronrod [13, 14]. Since numerical integration is com-

putationally infeasible for large problems, deterministic approximations of the expected

value are often used. Common approximations include minimizing the truncated Taylor

expansion of the expected value [15–17] and the Laplace and saddle-point approximations

[18, 19]. A weakness of these methods is that they generally do not provide guarantees

regarding how the solution found compares to the true optimum.

Stochastic optimization methods rely on some form of Monte Carlo sampling. These

methods generally scale well and provide confidence intervals on the solutions. The most

intuitive method is the Sample Average Approximation (SAA) (also known as Empirical

Risk Minimization) [20–22], where the expected value is approximated by the empirical

average obtained through sampling. Stochastic Gradient Descent (SGD) [10] is an easy

to implementation and versatile alternative. The core idea of SGD is to directly draw

samples of the gradient of the expected values, rather than using the gradient of the

empirical mean to do gradient descent. Under appropriate assumptions, both SAA and

SGD are guaranteed to converge to a (possibly local) minimum as the number of sample

grows [22], but accurate results may require a very large number of samples, making

these methods not suitable for real time applications.

The Scenario Approach approximately solves chance-constrained optimizations by

sampling the constraints [23–25]. This approach guarantees constraint satisfaction with
5
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high probability. While the number of samples increases only logarithmically with the

confidence parameter (usually denoted by β), it is also proportional to the dimensions

of the optimization variables and inversely proportional to the risk parameter (usually

denoted by ϵ). As a result, Scenario Approach may require many samples which can lead

to high computational complexity. Moreover, while tight requirements on the confidence

parameter β have a moderate impact in the number of samples, it typically also lead to

more conservative results.

In robust optimization one minimizes for the worst possible perturbation, while guar-

anteeing some base level of performance [26, 27]. Robust optimization has been gaining

popularity in recent years, for examples in fields such as Model Predictive Control [28]

and Machine Learning [29–31]. Some new developments have also been made in numeri-

cal aspects, notably in [32], where the authors provide first and second order optimality

conditions for minmax when the criteria is nonconvex on the minimization variable and

nonconcave on the maximization variable. Robust optimization was traditionally not re-

garded as an approach to solve stochastic programming problems, but in the last decade

some articles have connected the two areas, for instance [33–35].

At the intersection between robust and stochastic optimization lies distributionally

robust optimization (DRO), where the objective is to minimize an expected value for the

worst probability distribution within a set of admissible distributions. This set, called

the ambiguity set, is often constructed from samples of the true distribution and its se-

lection tries to balance between expressiveness (how rich is the information in the set)

and tractability (how easy it is to solve the DRO). In [36,37] the authors use the Wasser-

stein metric to construct the ambiguity set and show that for some classes of problem,

the complexity of solving the associated DRO is similar to that of Sample Average Ap-

proximation. In [38–41] the ambiguity sets are constructed using sample statistics, such

as mean, covariance and entropy. The DRO is reformulated into a minimization on a
6
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larger set of variables using tools from duality theory and convex optimization. When

the ambiguity set is constructed to guarantee (with high probability) that it contains the

true distribution, DRO can also be seen as a method to bound the true expected values,

which can be used to solve stochastic programs. For a broader exposition on DRO we

refer to [42] and the references within.

Newton and interior-point methods for (constrained)

nonconvex-nonconcave minmax optimization with sta-

bility guarantees (Chapter 3)

In minmax optimization, one minimizes a cost function which is itself obtained from

the maximization of an objective function. Minmax optimization is a powerful modeling

framework, generally used to guarantee robustness to an adversarial parameter such as

accounting for disturbances in model predictive control [43, 44], security related prob-

lems [45, 46], or training neural networks to be robust to adversarial attacks [31]. It can

also be used as a framework to model more general problem such as sampling from un-

known distributions using generative adversarial networks [47], reformulating stochastic

programming as minmax optimization [2,48,49], or producing robustness of a stochastic

program with respect to the probability distribution [42]. Minmax optimization is also

known as minimax or robust optimization. A generalization of minmax optimization is

bilevel optimization, where each player has different cost functions [50,51].

Finding a global minmax point for nonconvex-nonconcave problems is generally dif-

ficult, and one has to settle for finding a local minmax point. Surprisingly, only recently

a first definition of unconstrained local minmax was proposed in [52], and the definition

of constrained local minmax in [53].

7
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The foundation of our work involves examining Newton’s method iterations through

the lens of dynamical systems. By analyzing the linearization of the dynamics, we deduce

that every equilibrium point (i.e., a point with a zero gradient) is locally asymptotically

stable. This poses a problem when using Newton’s method for nonconvex minimization,

as the algorithm is drawn to any equilibrium point, regardless of whether it is a local

minimum. Our initial contribution is an examination of the local convergence properties

of a modified Newton’s method, employing a widely accepted Hessian matrix modifi-

cation. This entails adding a matrix, typically a scaled identity matrix, to make the

modified Hessian positive definite [54, Chapter 3.4]. We demonstrate that incorporating

this additive matrix renders every non-local-minimum equilibrium point unstable while

maintaining stability for local minima. This is crucial for nonconvex optimization, as it

ensures that the Newton iterations can only converge to an equilibrium point if it is a

local minimum. Utilizing analogous techniques, we establish similar results for primal-

dual interior-point methods in constrained minimization. These findings directly inspire

the development of new Newton-type algorithms for minmax optimization.

The modified Newton method presented in the previous paragraph can be viewed as

a sequence of local quadratic approximations of the minimization problem. Motivated

by this, we develop Newton-type algorithms for minmax optimization, conceptualized as

a series of local quadratic approximations of the minmax problem. For convex-concave

functions, this quadratic approximation is just the second-order Taylor expansion, which

leads to the (unmodified) Newton’s method, accompanied by its well-established local

convergence properties. However, for nonconvex-nonconcave functions, it is necessary

to add scaled identity matrices to ensure that the local approximations possess finite

minmax solutions (without mandating convex-concavity). Additive terms meeting this

criterion are said to satisfy the Local Quadratic Approximation Condition (LQAC). Em-

ploying a sequence of local quadratic approximations acts as a surrogate for guiding the
8
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modified Newton’s method towards a solution at each step. Nevertheless, we demon-

strate that, unlike minimization, local quadratic approximation-based modifications are

not enough to ensure that the algorithm can only converge towards local minmax points.

Our minmax findings reveal that additional conditions are required on the modification

to unsure the algorithm’s convergence to an equilibrium point is guaranteed only if that

point is a local minmax.

The conditions described above to establish the equivalence between local minmax

and local asymptotic stability of the equilibria to a Newton-type iteration are directly

used to construct a numerical algorithm to find local minmax. By construction, when

this algorithm converges to an equilibrium point, its is guaranteed to obtain a local

minmax. One could be tempted to think that the issue of getting instability for the

equilibria that are not local minima or that are not local minmax is just a mathematical

curiosity, which in practice makes little difference. However, our numerical examples show

otherwise. Most especially the pursuit-evasion MPC problem, finding a local minmax

(rather than an equilibrium that is not local minmax) leads to a completely different

control. Specifically, if the instability property is not guaranteed, the evader is not

able escape from the pursuer. It is important to emphasize that our results fall shy of

guaranteeing global asymptotic convergence to a local minmax, as the algorithm could

simply never converge. However, our numerical examples also show that our algorithm

seems to enjoy good global convergence properties in practice. Using the results of this

paper, we have created a solver for minmax optimization and included it in the solvers

of TensCalc1 [55]; this solver was used to generate the numerical results we present.

Related Work Traditionally, robust optimization focused on the convex-concave case,

with three main methods. The first type of method is based on Von Neuman’s minmax
1https://github.com/hespanha/tenscalc

9

https://github.com/hespanha/tenscalc


Introduction Chapter 1

theorem [56] that states that the min and the max commute when the problem is convex-

concave and the optimization sets are convex and compact. Solving the minmax then

simplifies to finding a point that satisfies the first order condition. While there are many

different methods to achieve this, many of them can be summarized by the problem of

finding the zeros of a monotone operator [57]. The second type of methods consists on

reformulating the minmax as a minimization problem which has the same solution as

the original problem. This is generally done using either robust reformulation through

duality theory or tractable variational inequalities [50, 58–60]. The third, cutting-set

methods, solves a sequence of minimization where the constraint of each minimization is

based on subdividing the inner maximization [61]. The robust reformulation is problem

specific, while the cutting-set approach requires solving many exact maximization which

might not be feasible in large scale.

Motivated by some of the shortcomings of these methods and the necessities of ma-

chine learning, research on minmax optimization started to study first-order methods

based on variations of gradient descent-ascent. The results tend to focus on providing

convergence complexity given different convexity/concavity assumptions on the target

function. In multi-step gradient descent ascent, also know as unrolled or GDmax, the

minimizer is updated by a single gradient descent whereas the maximizer is updated by

several gradient ascent steps that aim to approximately find the maximum. In single

step, the minimizer and maximizer are updated at each iteration. Variations of the stan-

dard gradient descent-ascent includes augmenting it with some distinct features such as

different step sizes, or using momentum. A third option, which is completely different

from what is described for other methods in this section, is to include the gradient from

different time steps in the computation, such as the past one (as in optimistic gradient

descent-ascent), the midpoint between the current and future points (as in extra gradient

descent-ascent) and at future point (as in proximal point). The literature on first-order
10
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methods is very extensive, and we refer to [52, 62–69] and the references within for the

exposition on some of these methods and their convergence properties.

In recent years, researchers have also started to work on algorithms that use second

order derivatives to determine the directions. These algorithm, in their major part have

not attracted as much attention as first order methods. In the Learning with Opponent

Learning Awareness (LOLA), the minimizer anticipates the play of the maximizer using

the Jacobian of the maximizer’s gradient [70, 71]. In competitive gradient descent, both

minimizer and maximizer use the cross derivative of the Hessian to compute their direc-

tion [72]. In follow the ridge, the gradient ascent step is corrected by a term that avoids

a drift away from local maxima [73]. In the total gradient descent-ascent, similarly to

LOLA, the descent direction is computed by taking to total derivative of a function which

anticipates the maximizer’s response to the minimizer [74]. Finally, the complete Newton

borrows ideas from follow the ridge and total gradient to obtain a Newton method which

prioritizes steps towards local minmax [75]. These three last algorithms are shown to

only converge towards local minmax under some conditions, but in none of them it is

addressed the issue of how to adjust the Hessian far away from a local minmax point.

Recently, some second order methods have been proposed for the nonconvex-strongly-

concave case, where the Hessian is modified such that it is invertible and that the min-

imizer update is a descent direction of the objective function at its maximum. They

either use cubic regularization [76,77] or randomly perturb the Hessian [78]. Because of

some of the assumptions these work make, most important the strong-concavity of the

objective function with respect to the maximizer, they are able to establish complexity

analysis and guarantee. It is also worth mention that these algorithms are all multi-step

based, meaning they (approximately) solve the maximization between each update of

the minimizer, whereas our algorithm updates both the minimizer and the maximizer

simultaneously.
11
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On the Asymptotic Convergence of Full LOLA (Chap-

ter 4)

Solving a minmax problem, also known as robust optimization, consists on finding the

optimal strategies for two players that want to optimize opposite interests. Conceptually,

this is a versatile paradigm that can be used to model a variety of situations, including

games such chess, elections between two candidates, an airplane flying in the middle of

a storm and neural network accurately classifying misleading information. Most modern

algorithms to solve minmax problems have players choosing locally their strategy without

taking into account what the other player will do. Our goal in this chapter is to develop

an algorithm in which each player takes chooses their local strategy while taking into

account what will be other player’s action.

The modern approach to minmax problems was established in the seminal chapter by

von Neumann [79] in which he proved that if the problem is convex in the minimization

and concave in the maximization, then the min and the max commute, meaning that the

order of the players does not matter. This is known as the Minmax Theorem and has

since been extended to other cases [80,81].

However, in many problems of interest, the min and max do not necessarily com-

mute. Some of these include adversarial learning [31, 82–84], generative adversarial net-

works [47], robust model predictive control [44, 85, 86], robust estimation [87,88], robust

optimization for stochastic optimization [24,49,89], among many.

In some cases, it is possible to solve the non-commuting minmax problems using

approaches such as robust counterpart or cutting-set methods [58,60,90,91]. In the other

cases, generally when the problem is non-convex non-concave, one is usually restricted

to finding local minmax points, as defined in [32], which have first and second order

necessary and sufficient conditions obtained from the gradient and Hessian.
12
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An elegant method to look for points satisfying the first order necessary condition is

the Learning with Opponent Learning Awareness (LOLA) introduced in [92]. The idea

of LOLA is that the minimizer chooses its direction based on the predicted direction the

maximizer will take. The convergence of a modified version of LOLA was given by the

same group of authors [93].

In this chapter, we introduce the Full LOLA algorithm, of which the standard LOLA

can be seen as a linearization of. In our opinion, the Full LOLA approach has several

elegant properties which motivated us to explore using it. While we did not found any

numerical application that could benefit from this approach instead of using Gradient

Descent Ascent or other (strictly) first order methods, we believe the intuitions developed

in these proofs might end up being useful either for other proofs or in applications we

were not aware of.

The main ingredient of our approach is what we call the full descent ascent directions.

In essence, in a full descent ascent direction, the minimizer does not decrease the cost

function at the current point, but instead decreases the cost function calculated at the

next value that the maximizer will take. This choice of directions reflects the asymmetry

of minmax games, in which the minimizer has less freedom to chose their action than the

maximizer has. Building from this definition, we propose a method to obtain full descent

ascent directions based on gradients. For the maximizer, this is equivalent to gradient

ascent. For the minimizer, the descent direction is obtained from a modified version of

the cost function, in which the value of the maximizer is offset by the gradient ascent

step. The method we propose is actually slightly more general, and allow us to solve

problems with convex constraints. It also allow us to use scaling matrices to compute

the directions, such as the Hessian, obtaining Newton types algorithms. We prove the

asymptotic convergence of the method, for two types of step sizes, either fixed or adjusted

using an Armijo rule.
13



Chapter 2

Stochastic Programming Using

Expected Value Bounds

Parts of this chapter come from [2].

In this chapter we consider the problem of using minmax optimization as a proxy to

solve the problem of minimizing an expected value with stochastic constraints, known in

the literature as stochastic programming. Stochastic programming problems are gener-

ally solved using sample based approaches such as stochastic gradient descent or sample

average approximation. These methods require many samples from the underlying distri-

bution, and are too slow to be used in real time applications. As we show in the remaining

chapters of this dissertation, minmax optimization is substantially faster to solve, which

allows one to obtain accurate solutions to the stochastic programming problem order of

magnitude faster.

We start this chapter by presenting a family of bounds on the expected value of a cost

function, in Section 2.1. The fundamental idea is to substitute the expected value by a

deterministic maximization over the support of the random variable while also penalizing

unlikely variables. This approach allows one to obtain lower and upper bound on any

14



Stochastic Programming Using Expected Value Bounds Chapter 2

scalar expected value.

Based on these results, in Section 2.2 we present how these bounds can be used in the

context of stochastic programming. This is obtained by substituting the expected values

in the cost function and in the stochastic constraints by the bounds we proposed in the

previous section. We show that this proxy minmax problem can be used to bound the

original problem. We also show what are the conditions on the problem such that the

bounds can be solved using numerical tools.

Finally, in Section 2.3 we apply our bounds to three type of problems: stochastic

control of a discrete time system, estimation in the presence of latent variables, and

experiment design. In all of these applications, we show that our algorithm is able to

find solutions similar to the ones obtained by a stochastic optimization algorithm, but

orders of magnitude faster.

Notation Given an underlying probability space pΩ, F , Pq, a random variable X and a

scalar x P R, we denote by PpX ď xq the probability measure of the set tω P Ω : Xpωq ď

xu P F and by ErXs the expected value of X. Given a measurable event E P F with

PpEq ą 0, we define conditional essential infimum and supremum by

ess infrX
ˇ

ˇ Es “ suptx P R : PpX ě x
ˇ

ˇ Eq “ 1u

ess suprX
ˇ

ˇ Es “ inftx P R : PpX ď x
ˇ

ˇ Eq “ 1u.

Unconditional essential infimum and supremum are denoted simply by ess inf X and

ess sup X and correspond to the case E “ Ω. The essential supremum and infimum relax

the usual supremum and infimum by excluding sets of measure zero. One can informally

think of them as supxPX x and infxPX x where X is the support of X.

Given two random variables X, Y we use the notation X
wpo
ď Y when PpX ď Y q “ 1

and analogously for
wpo
ě ,

wpo
ă ,

wpo
ą .

15



Stochastic Programming Using Expected Value Bounds Chapter 2

2.1 Bounds on an expected value

Given a random vector D taking values in D Ă RM and a scalar measurable function

V : D Ñ R, the monotonicity of the expected value ErV pDqs provides the following basic

bound

ess inf V pDq ď ErV pDqs ď ess sup V pDq. (2.1)

The core idea of this section is to improve upon this crude bound by including information

about D, for example, coming from its probability density function (pdf ). To present

our first result, we introduce the following terminology. Consider a right-ordered group

G – pP ,‘q defined on a set P Ă R for which the group operation ‘ satisfies the usual

group properties of closure, associativity, existence of an identity element, and existence

of inverse elements (which we denote using ␣); as well as the right-ordered property

a ď b ñ a‘ c ď b‘ c, @a, b, c P P

[94]. We say that G – pP ,‘q is distributive with respect to integration (or E-distributive

for short) if it is right-ordered and, for every random variable X taking values on P , we

have that

a‘ ErXs “ Era‘Xs, @a P P .

Theorem 2.1.1 (Bounds on an expected value) Consider an E-distributive group

G – pP ,‘q, a random vector D taking values in D Ă RM , and measurable functions

V, α : D ÞÑ P. If ErV pDqs and Er␣αpDqs are finite, then

ess inf JpDq ď ErV pDqs ď ess sup JpDq (2.2)

where the function J : D Ñ R is defined by

Jpdq – V pdq ‘ αpdq ‘ Er␣αpDqs. l

16
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Proof. We prove the upper bound, the proof for the lower bound can be obtained anal-

ogously. For every scalar v ě ess sup V pDq ‘ αpDq, we have that

PpV pDq ‘ αpDq ď vq “ 1,

by the definition of essential supremum. From the monotonicity of the expected value,

we thus conclude that

E
“

V pDq ‘ αpDq
‰

ď v.

Since Er␣αpDqs is finite, we can use the right-ordered property of pP ,‘q to conclude

that

E
“

V pDq ‘ αpDq
‰

‘ Er␣αpDqs ď v ‘ Er␣αpDqs

and then the E-distributed property to obtain

E
“

V pDq ‘ αpDq ‘ ␣αpDqs “ ErV pDqs ď v ‘ Er␣αpDqs.

The upper bound then follows by taking an infimum on the right-hand side over the set

of such scalars v ě ess sup V pDq ‘ αpDq.

The key idea of Theorem 2.1.1 is to improve upon (2.1) by including in Jp¨q terms

that reduce the essential supremum and increase the essential infimum. To reduce the

supremum, for example, one should select αpdq so that it is strongly negative (in the sense

that ␣αpdq should be strongly positive) when V pdq is large and while keeping Er␣αpDqs

relatively small. In the remainder of the chapter we mostly use two E-distributive groups

G and associated functions α that achieve this for our applications of interest. Both

bounds assume that D has a probability density function (pdf ) that we denote by pDp¨q.

Additive Bound: The E-distributive group pP ,‘q “ pR,`q with the usual addition of

reals, and αpdq “ ϵ log pDpdq with ϵ P R, leads to

Jpd, ϵq – V pdq ` ϵ log pDpdq ` ϵ HD, (2.3)

17
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where HD – Er´ log pDpDqs is the differential entropy.

Multiplicative Bound: The E-distributive group pP ,‘q “ pRą0,ˆq with the usual

multiplication of positive reals, and αpdq “ pDpdq
ϵ with ϵ P R, leads to

Jpd, ϵq – V pdq pDpdq
ϵ IDpϵq (2.4)

where IDpϵq – ErpDpDq
´ϵ
s.

The functions J in (2.3) and (2.4) are not necessarily well defined on the measure zero

set where pDpDq “ 0, but the value of J on such set is irrelevant, as it does not affect

the value of the essential supremum or infimum in (2.2).

The key idea behind the additive bound is that unlikely values d for D will lead to a

large negative value for log pDpdq and reduce the value of Jpdq. These unlikely values will

contribute with a strong positive value in ´ log pDpDq, but precisely because they are

unlikely, they will not increase HD – Er´ log pDpDqs very much. Overall, this should

thus decrease the supremum of Jpdq over D to create a tighter bound. A similar reason

can be used to justify the function α proposed for the multiplicative bound.

In Appendix 2.A.1, we derive expressions for log pDpdq`HD and pDpdq
ϵIDpϵq for the

Gaussian and for the uniform distributions.

Remark 2.1.2 (Bounds for conditional expectation) Theorem 2.1.1 can also be stated

for conditional expectations, provided that the E-distributive property holds for the con-

ditional expectation with probability one. In this case, the additive and multiplicative

bounds should involve conditional pdf. l

2.1.1 Selection of bound and ϵ

It is possible to establish necessary and sufficient conditions such that the additive and

multiplicative bounds lead to non-trivial results, which are presented in Appendix 2.A.3.
18
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Here, we present a corollary of those results that includes the sufficient conditions which,

in practice, are the most useful in deciding which bounds to use. We require the following

definition to present the corollary. Given a constant γ ą 0 sufficiently small so that

P
`

pDpDq ą γ
˘

ą 0, we say that a measurable function fp¨q is γ-essentially upper bounded

if

ess sup
“

fpDq
ˇ

ˇ pDpDq ą γ
‰

ă 8,

γ-essentially lower bounded if

ess inf
“

fpDq
ˇ

ˇ pDpDq ą γ
‰

ą ´8,

and γ-essentially bounded if it is both γ-essentially upper and lower bounded. γ-essential

boundedness is a much milder requirement than the usual notion of boundedness, as it

allows functions to become very large (growing all the way to infinity) as long as the pdf

becomes sufficiently small.

Corollary 2.1.3 (Sufficient conditions for finite bounds) Assume that pDp¨q is γ-

essentially upper bounded and consider finite constants ϵ P R and c P p0, 1{γq such that

ess sup
“

pDpDq | pDpDq ą γ
‰

ď 1{c.

When V p¨q is γ-essentially bounded, we have that

pDpDq
wpo
ą γ or ess inf

”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ą ϵ

ñ ess inf
`

V pDq ` ϵ log pDpDq
˘

ą ´8.

and

pDpDq
wpo
ą γ or ess sup

”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ă ϵ

19



Stochastic Programming Using Expected Value Bounds Chapter 2

ñ ess sup
`

V pDq ` ϵ log pDpDq
˘

ă `8

Alternatively, when log V p¨q is γ-essentially bounded, we have that

pDpDq
wpo
ą γ or ess inf

”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ą ϵ

ñ ess inf
`

log V pDq ` ϵ log pDpDq
˘

ą ´8.

and

pDpDq
wpo
ą γ or ess sup

”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ă ϵ

ñ ess sup
`

log V pDq ` ϵ log pDpDq
˘

ă `8. l

The first two implications in Corollary 2.1.3 involve V pDq and are relevant for the additive

bound, while the remaining ones involve log V pDq and the multiplicative bound.

Specifically, this result establishes that for the additive and multiplicative bounds to

be non trivial (i.e., finite), it suffices to pick an ϵ such that log c pDpDq dominates either

V pDq or log V pDq, respectively. Therefore, which bound to use essentially depends on

the rates of growth of V p¨q, log V p¨q, and log pDp¨q. When both bounds have a finite value,

we have observed that the approximations seems to be better when V p¨q (or log V p¨q) has

roughly the same magnitude as log pDp¨q.

Among the values of ϵ that lead to a finite upper bound, the conservativeness of the

bound can be minimized by selecting the value of ϵ P R that minimizes

inf
ϵPR

J˚
pϵq, J˚

pϵq – ess sup JpD, ϵq (2.5)

with Jpd, ϵq as in (2.3) or (2.4). It turns out that such minimization over the scalar

parameter ϵ is well-behaved as the function J˚pϵq in (2.5) has appropriate convexity

properties, as noted in the following result proved in Appendix 2.A.2:
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Proposition 2.1.4 (Optimization over ϵ) The function J˚pϵq in (2.5) is convex for

Jpd, ϵq in (2.3) and log-convex for Jpd, ϵq in (2.4). Moreover, J˚pϵq is finite on a convex

set. l

Remark 2.1.5 (Beyond the additive and multiplicative bounds) Most of the dis-

cussion in this section and the application examples discussed in Section 2.3 make use

of the additive and multiplicative bounds. However, these do not necessarily provide the

tightest bounds. Consider for example a chi-square random variable D with 1 degree of

freedom, whose pdf is given by pχ2pdq “ e´ d
2

?
2πd

, @d ą 0 and is known to have an expected

value ErDs equal to 1. The additive upper bound from (2.3) is not useful as it leads to

@ϵ P R

sup
dą0

´

d` ϵ log
´ e´ d

2
?

2πd

¯¯

` ϵHχ2 “ `8,

where Hχ2 is the entropy of D. In contrast, the multiplicative upper bound from (2.4)

leads to the following finite bound

inf
ϵPR

sup
dą0

d

˜

e´ d
2

?
2πd

¸ϵ
ˆ

1
2π

˙
1´ϵ

2
ˆ

2
1´ ϵ

˙
1`ϵ

2

Γ
ˆ

1` ϵ

2

˙

« 1.478.

However, a tight bound can be obtained using the multiplicative group pP ,‘q “ pRą0,ˆq

together with the function αpdq “ d´ϵ, which leads to

inf
ϵPR

sup
dě0

´

d d´ϵ 2ϵ Γp0.5` ϵq

Γp0.5q

¯

“ 1.

While either the additive or the multiplicative bound typically lead to reasonable bounds,

this example shows that it may be worth it to explore alternatives. l

Remark 2.1.6 (Unknown pdf) When the pdf pDp¨q of D is not explicitly known, it is

not easy to use the additive and multiplicative bounds in (2.3)–(2.4), because both include
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pDpdq in the criteria to be optimized over d P D. In such cases, one can still use the bounds

in Theorem 2.1.1, but with functions αpdq that do not explicitly include the pdf of D. We

recall from the discussion right after Theorem 2.1.1, that the key to get a tight upper

bound is to select for αpdq a function that is strongly “negative” when V pdq is large, and

yet Er␣αpDqs is relatively small. For the additive group, the function αpdq – log pDpdq

typically has this property when large values for V pdq have low probability. When the pdf

is unknown, tight bounds can still be obtained as long as one selected for αpdq values that

are strongly negative when V pdq is large and yet D “ d is unlikely. l

2.1.2 Connection to distributionally robust optimization

Distributionally robust optimization (DRO) can provide an alternative approach to

compute bounds for an expected value by noting that

inf
P̄PP

EP̄rV pDqs ď EPrV pDqs ď sup
P̄PP

EP̄rV pDqs, (2.6)

where the subscript in the expected value operator refers to the probability measure

used for the computation of the expected value and P denotes some class of probabil-

ity measures that contains the actual measure P. From a computational perspective,

such bounds can be useful when the minimum and maximum over P are achieved for

measures P̄ for which the expectation EP̄rV pDqs is easier to compute than the original

EPrV pDqs. For example, if we include in P every distribution for which D is measurable,

we essentially get the trivial bounds in (2.2).

It turns out that (2.6) can lead to bounds closely related to those obtained in The-

orem 2.1.1: Suppose for simplicity that we focus our attention on a discrete random

variable D P td1, d2, . . . , dKu and pick for P the set of all distributions with entropy

larger than or equal to the entropy HrPs of the actual probability distribution P. In this
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case, the upper bound in (2.6) is of the form

EPrV pDqs ď max
p̄1,...,p̄K

!
K
ÿ

k“1
V pdkqp̄k : ´

K
ÿ

k“1
logpp̄kqp̄k ě HrPs

)

, (2.7)

where the maximization is taken over the simplex of probability distributions. Because

the entropy is a strictly concave function, as long as P is not the uniform distribution,

p̄k “ 1{K, k P t1, . . . , Ku is a Slater point and strong duality holds, which allow us to

replace the right-hand side of (2.7) by its dual problem:

EPrV pDqs ď inf
ϵď0

max
p̄1,...,p̄K

K
ÿ

k“1
V pdKqp̄k ` ϵ

K
ÿ

n“1
logpp̄kqp̄k ` ϵHrPs. (2.8)

For the same expected value, the additive upper bound provided by Theorem 2.1.1 is of

the form

EPrV pDqs ď inf
ϵPR

max
k

V pdkq ` ϵ logppkq ` ϵHrPs, (2.9)

where, as in (2.5), we pick the least conservative upper bound over the range of parameters

ϵ P R. It turns out that the maximum over k in (2.9) has the same numerical value as

the following maximization over the simplex of distributions:

EPrV pDqs ď inf
ϵPR

max
p̄1,...,p̄K

K
ÿ

n“1
V pdkqp̄k ` ϵ

K
ÿ

k“1
logppkqp̄k ` ϵHrPs, (2.10)

leading to a bound strikingly similar to (2.8). However, the two bounds generally lead

to different numerical values:

i) For distributions with large entropy, the DRO inequalities (2.7) and (2.8) lead to

a tighter bound, because the family of distributions that satisfy the constraint in (2.7)

becomes fairly small. In fact, for the uniform distribution pk “ 1{K, @k with maximal

entropy HrPs “ log K, only the true distribution satisfies the constraint in (2.7) and the

bound is exact.

ii) For distributions with small entropy, (2.10) leads to a tighter bound, which is

exact for the extreme cases of minimum entropy HrPs “ 0. Note that when HrPs “ 0,
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all but one of the pk is nonzero and a single value of k leads to a value of V pdkq`ϵ logppkq

with ϵ ą 0 in (2.10) that is not ´8.

Even though the DRO-based approach in (2.7)–(2.8) can often lead to a tighter bound

than (2.9)–(2.10), an expected value
řK

k“1 V pu, dkqp̄k still appears in (2.7)–(2.8) and

therefore this bound is only helpful in simplifying computations if the optimal distribution

p̄1, . . . , p̄k has some particular structure that makes the computation of
řK

k“1 V pu, dkqp̄k

easier than the original computation EPrV pDqs “
řK

k“1 V pu, dkqpk.

Remark 2.1.7 We focused this section on a discrete random variable D to avoid the

technicalities that would arise from optimizations over general probability measures in

(2.7) and (2.10), but all the key observations made in this section remain unchanged for

a continuous random variable D. l

2.2 Stochastic Programming

We define the following stochastic programming problem with a single scalar con-

straint, but the approach proposed can easily be extended to multiple constraints: Let D

be a random vector taking values in D Ă RM . Given measurable functions V : UˆD ÞÑ R

and G : U ˆD ÞÑ R, with U Ă RN we want to solve

V ˚ – inf
uPU

!

ErV pu, Dqs : ErGpu, Dqs ď 0
)

. (2.11)

The following results provides bounds on V ˚, based on the bounds from Theo-

rem 2.1.1.

Theorem 2.2.1 (Bounds to Stochastic Programming) Consider three E-distributive

groups pPV ,‘V q, pPG,‘Gq, pP ,‘q; functions αV : D ÞÑ PV , αG : D ÞÑ PG, α : D ÞÑ P
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and define

JV pu, dq – V pu, dq ‘V αV pdq ‘V Er␣αV pDqs

JGpu, dq – Gpu, dq ‘G αGpdq ‘G Er␣αGpDqs

Jpu, d, λq – pV pu, dq ` λGpu, dqq ‘ αpdq ‘ Er␣αpDqs,

@u P U , d P D, λ ě 0. If Er␣αV pDqs, Er␣αGpDqs, Er␣αpDqs are finite, then V ▽ ď V ˚ ď

V △ and V ˚ ď V ;, with

V ▽ – inf
uPU

!

`

ess inf JV pu, Dq
˘

: ess inf JGpu, Dq ď 0
)

(2.12)

V △ – inf
uPU

!

`

ess sup JV pu, Dq
˘

: ess sup JGpu, Dq ď 0
)

(2.13)

V ; – inf
uPU

sup
λě0

ess sup Jpu, D, λq. (2.14)

Furthermore, if the infimum in the definition of V △ is achieved at some u “ u△ that is

feasible for (2.13), then u△ is also feasible for (2.11). Additionally, if the infimum in

the definition of V ; is finite and achieved at some u “ u; then u; is also feasible for

(2.11). l

Theorem 2.2.1 guarantees that a solution u△ to the optimization (2.13) is feasible

for the original stochastic program in (2.11) and provides performances guarantees for

u△, in the sense that the expected value ErV pu△, Dqs obtained using u△ will be away

from the optimal V ˚ by no more than V △ ´ V ▽, which can be computed by solving the

optimizations (2.12)–(2.13). Similarly, a solution u; to the optimization (2.14) is also

guaranteed to be feasible and the expected value ErV pu;, Dqs obtained using u; will be

away from the optimal V ˚ by no more than V ;´ V ▽, which can be computed by solving

the optimizations (2.12), (2.14).

It is important to note that Er␣αV pDqs and Er␣αpDqs are constants that do not

depend on either u nor d, and therefore their values do not affect the optimizations in
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(2.12)–(2.14). This means that, if one is not able to determine analytically Er␣αV pDqs

or Er␣αpDqs, any errors in estimating these quantities will not introduce errors in de-

termining u△ or u;. This is specially relevant in large scale problems where obtaining

accurate numerical estimates of Er␣αV pDqs and Er␣αpDqs might be challenging.

As was the case for Theorem 2.1.1, the tightness of the bounds in Theorem (2.2.1)

depends strongly on the choice of the groups, the functions α¨, the cost function, and the

underlying random variable. Nevertheless, as we will see in the next section, the value

of u that minimizes (2.11) and the value of u that minimizes (2.13) or (2.14) are often

very close.

Proof of Theorem 2.2.1. In view of from Theorem 2.1.1, we have that ess inf JGpu, Dq ď

ErGpu, Dqs ď ess sup JGpu, Dq, which guarantees that if u “ u△ is feasible for (2.13),

then u△ is also feasible for (2.11). Moreover,

inf
uPU

!

ErV pu, Dqs : ess inf JGpu, Dq ď 0
)

ď inf
uPU

!

ErV pu, Dqs : ErGpu, Dqs ď 0
)

ď inf
uPU

!

ErV pu, Dqs : ess sup JGpu, Dq ď 0
)

.

From Theorem 2.1.1, we can also conclude that ess inf JV pu, Dq ď ErV pu, Dqs ď ess sup JV pu, Dq,

from which it follows that V ▽ ď V ˚ ď V △.

To establish that V ; is also an upper bound on V ˚, assume by contradiction that

V ; ă V ˚, which means that there exists some u P U such that ess sup Jpu, D, λq ă V ˚,

@λ ě 0. In view of Theorem 2.1.1, this would mean that ErV pu, Dq ` λGpu, Dqs ă V ˚,

@λ ě 0, which is only possible if ErGpu, Dqs ď 0 and consequently ErV pu, Dqs ă V ˚.

The existence of such an u violates (2.11).

Finally note that if the infimum in the definition of V ; is finite and achieved at some

u “ u;, then we must have ess sup Jpu, D, λq ď V ˚ ă 8, @λ ě 0. Reasoning as in the
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paragraph above, this allow us to conclude that ErGpu;, Dqs ď 0 and therefore u; is

feasible.

2.2.1 Combination with Monte Carlo methods

Any point ufeasible that is feasible for the optimization (2.11) can be used to construct

an upper bound by using Monte Carlo averaging to compute

V ˚
ď ErV pufeasible, Dqs «

1
K

K
ÿ

k“1
V pufeasible, dkq, (2.15)

where the dk are independent samples of D. Moreover, it is possible to control the error

introduced by the Monte Carlo averaging by using a sufficiently large number of samples

K. Essentially, to have an error smaller than δ with high probability we need

K ě c VarrV pufeasible, Dqs{δ2, (2.16)

where the constant c is typically small and depends on the desired confidence for the

bound [18].

Any point u△ that achieves V △ and in feasible for (2.13) is also feasible for (2.11)

and can be used in (2.15) to construct an upper bound that is typically tighter than V △,

provided that K is sufficiently large; the same reasoning is true for u; and V ;. In fact,

one can use Theorem 2.1.1 to compute other feasible points that may provide tighter

upper bounds. For example, an alternative feasible point can be obtained by minimizing

a lower bound on the criterion constrained by an upper bound on the constraints, which

leads to

V K – inf
uPU

!

`

ess inf JV pu, Dq
˘

:
`

ess sup JGpu, Dq ď 0
˘

)

. (2.17)

Unlike V △ and V ▽ in Theorem 2.2.1, V K neither provides an upper nor a lower bound

on V ˚. However, any point that achieves the infimum and is feasible for (2.17) is also
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feasible for (2.11) and therefore can be used to construct the upper bound in (2.15). An

alternative method to combine the results in Theorem 2.1.1 with Monte Carlos methods

is obtained by replacing the optimization in (2.14) by

inf
uPU

ess sup Jpu, D, λq

for some fixed λ ě 0. Rather than taking the supremum over λ ě 0 that appears in

(2.14), one could simply adjust λ and/or artificially tightening the constraint until a

Monte Carlo estimate for ErGpu, Dqs guarantees that the constraint is satisfied with a

sufficiently large confidence.

Remark 2.2.2 (Contrast with Sample Average Approximation) It is important

to emphasize the difference between using Monte Carlo averaging to estimate the value of

the expected value for a given value of ufeasible P U , as in (2.15), and optimizing a Monte

Carlo approximation of the criterion, as in

min
uPU

1
K

K
ÿ

k“1
V pu, dkq, (2.18)

which is typically referred to as the Sample Average Approximation (SAA). We can see

in (2.16) that the number of samples required to achieve a desired error δ ą 0 depends

mostly on the variance of V pu, Dq at the point ufeasible. However, the sample complexity

required to obtain the same error in (2.18) is typically much larger as the numerator of

(2.16) would be determined by the Vapnik-Chervonenkis (VC) dimension of the family of

functions u ÞÑ ErV pu, Dqs [95,96]. l

2.2.2 Numerically computing the bounds

We show next that under appropriate regularity assumptions, the essential infima

and suprema in (2.12) and (2.13) are achieved at minima and maxima, respectively, and

can be computed using numerical solvers. To formalize this observation we recall that
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a function f : X Ñ R, X Ă Rn is said to have compact sublevel sets if its sublevel sets

tx P X : fpxq ď λu are compact for every finite λ P R and it is said to have compact

suplevel sets if ´f has compact sublevel sets. For the remainder of this section we assume

that U Ă RN and that D Ă RM is the support of the random variable D, i.e., the smallest

subset of RM for which Ppd P Dq “ 1.

Theorem 2.2.3 Assume that the functions JV , JG : U ˆD Ñ R are continuous and that

U is compact. If JV and JG have compact sublevel sets and (2.12) is feasible, then V ▽

can be obtained by solving

V ▽
“ min

uPU ,d,d̃PD

!

JV pu, dq : JGpu, d̃q ď 0
)

. (2.19)

If JV pu, dq and JGpu, dq have compact suplevel sets and (2.13) is feasible, then V △ “

limµÑ8 V △
µ , with

V △
µ “ min

uPU
max
d,d̃PD

JV pu, dq ` µ
`

max
␣

0, JGpu, d̃q
(˘2

. (2.20)

Whenever the minimum and maxima in (2.20) are achieved for values u△ P U and d△, d̃△ P

D, respectively, for which JGpu
△, d̃△q ď 0, then u△ is feasible and V △

µ is an upper bound

for V ˚. l

The minimization in (2.19) is a regular constrained optimization and can be solved

using commercial products like Knitro [97] or open-source solvers like IPOPT [98] and

TensCalc [99]. For the sequence of minmax problem in (2.20), different algorithms are ap-

plicable depending on the convexity assumptions (convex-concave, nonconvex-concave,

convex-nonconcave, nonconvex-nonconcave). These include methods based on robust

counterpart [26, 58–60], cutting-set [61], and variations of gradient descent-ascent meth-

ods such as [65,66,70,73,75,100–105] among many others. For the examples in Section 2.3,

we used TensCalc, which is based on a variation of interior point methods for gradient

descent ascent.
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Regardless of the solver used, for nonconvex problem like the ones typically arising in

(2.19)–(2.20), it is generally hard to be certain that a local minimum or a local minmax

[32] found by a numerical solver is actually a global optimum. An approach that can be

used to obviate this problem is to replace the nonconvex optimization that arises from

our bounds by pessimistic or optimistic convex relaxation, depending on whether we are

interested in an upper or lower bound on the expected value, respectively. An alternative

approach relies on analyzing the consequences of a solver getting stuck at a local optima

and responding to the specific problems encountered: Theorem 2.2.3 essentially proposes

to replace the stochastic optimization in (2.11) by the sequence of deterministic robust

optimizations V △
µ . A numerical solver for (2.20) can typically be “fooled” in three ways:

i) The solver could converge to a value d△ for d that is a local but not a global

extremum to the inner maximization. This would mean that the value V △
µ returned by

the solver is actually not an upper bound on ErV pu△, Dqs. If it is important to obtain a

high-confidence bound for this expected value and the inner maximization is not concave

(or known to only have a unique local/global maximum), then one can use a Monte Carlo

method to get an accurate estimate for ErV pu△, Dqs, which is typically computationally

much easier than solving (2.11), as discussed in Section 2.2.1.

ii) The solver may converge to a value u△ for u for which JGpu
△, d̃△q ď 0 holds for

a local maximum d̃△ that is not global and the expected value ErGpu△, Dqs is actually

positive. Again here, once the optimization finishes, we can use a Monte Carlo method to

obtain an accurate estimate for ErGpu△, Dqs and reject the solution u△ if the constraint

is violated. Hopefully, different initialization for the solver would resolve this, but one

could also tighten the constraint by asking maxd̃PD JGpu, d̃q to actually be negative.

iii) Finally the solver, may return a value u△ for u that satisfies the constraint but is

a local (rather than a global) extremum of the outer minimization. In this case, it may
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be possible to get a better solution, but the solver was unable to find it. In practice, for

nonconvex problems there is little protection against this, rather than trying a different

initialization for the solver.

It should be noted that any approach based on constructing (non-exact) convex relax-

ations to (2.20) will have very similar issues: pessimistic relaxations may overlook better

solutions (as in iii), whereas optimistic relaxations may accept solutions that violate

constraints (as in ii).

Lemma 2.2.4 (Equivalent compact subset) Consider a continuous function J : Uˆ

D Ñ R with U compact. If J has compact sublevel sets, there exists a compact set D: Ă D

such that

J inf
puq – ess inf

dPD
Jpu, dq “ min

dPD:
Jpu, dq, @u P U

and the function J inf is continuous. Similarly, if J has compact suplevel sets, there exists

a compact set D: Ă D such that

J sup
puq – ess sup

dPD
Jpu, dq “ max

dPD:
Jpu, dq, @u P U

and the function J sup is continuous.

Proof of Lemma 2.2.4. First note that because D is the support of the random variable

D and J is continuous, the essential infimum of Jpu, Dq is equal to the usual infimum of

Jpu, dq over d P D. The same is true for the supremum,

We prove the result only for the minimization, as the proof for the maximization is

analogous. Take an arbitrary point d: P D and define

λ: – max
uPU

Jpu, d:
q, S: – tpu, dq P U ˆD : fpu, dq ď λ:

u.
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The constant λ: is finite because J is continuous and U ˆ̂̂ td:u is a compact set, and the

set S: is compact because J has compact sublevel sets. The desired set D: is then given

by the closure of

Do –
ď

uPU

!

d P D : pu, dq P S
)

.

Note that Do is bounded because S is bounded and therefore its closure D: is compact.

To show that the infimum of Jpu, dq over D is achieved at some point in D:, assume by

contradiction that there exists some d˚ R D: such that Jpu, d˚q ă Jpu, dq, @d P D:. Since

d: P D:, we conclude that Jpu, d˚q ă Jpu, d:q ď λ:. This establishes a contradiction,

because it would mean that pu, d˚q P S: and therefore d˚ P Do Ă D:. Continuity of J inf

then follows from Berge’s Maximum Theorem [106, Chapter E.3].

Proof of Theorem 2.2.3. In view of Lemma 2.2.4, all the essential infima and suprema in

(2.12)–(2.13) are achieved at some point inside a compact subset D: of D and

V ▽
“ inf

uPU

␣

J inf
V puq : J inf

G puq ď 0
(

(2.21)

for the continuous functions

J inf
V puq – min

dPD
JV pu, dq, J inf

G puq – min
dPD

JGpu, dq. (2.22)

Since J inf
G puq is continuous and U is compact, the feasible set tu P U : J inf

G puq ď 0u is

compact and nonempty by assumption. Weierstrass Theorem [107, Proposition A.8] then

allow us to conclude that the inf is actually achieved at some point u▽ P U of the feasible

set. Denoting by d▽
V and d▽

G points in D at which the minima in (2.22) are achieved for

u “ u▽, we conclude that

V ▽
“ JV pu

▽, d▽
V q, JGpu

▽, d▽
Gq ď 0,
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which shows that the right-hand side of (2.19) cannot be larger than V ▽. By contradic-

tion, assume that it is actually strictly smaller than V ▽. This would mean there exist

u P U and d, d̃ P D such that

Jvpu, dq ă V ▽, JGpu, d̃q ď 0.

The right-hand side inequality shows that J inf
G puq ď 0 and therefore such u is feasible for

(2.21) and the left-hand side inequality shows that J inf
V puq ă V ▽, which contradicts the

fact that the infimum in (2.21) is equal to V ▽.

Again using Lemma 2.2.4, we conclude that

V △
“ inf

uPU

!

J sup
V puq : J sup

G puq ď 0
)

(2.23)

for the continuous functions

J sup
V puq – max

dPD
JV pu, dq, J sup

G puq – max
dPD

JGpu, dq. (2.24)

In view of [107, Proposition 4.2.1], limµÑ8 V̄ △
µ “ V △, with

V̄ △
µ – min

uPU
J sup

V puq ` µ
´

max
␣

0, J sup
G puq

(

¯2
.

The result then follows by noting that

max
␣

0, J sup
G puq

(

“ max
d̃PD

max
␣

0, JGpu, d̃q
(

.

and therefore V̄ △
µ “ V △

µ for positive µ.

2.3 Selected Applications

2.3.1 Stochastic control

Consider the dynamical system

xt`1 “ f
`

xt, θ, ut, dt

˘

(2.25a)
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yt “ h
`

xt

˘

` nt, (2.25b)

where xt denotes the state of the system at time t, ut the controlled input, dt a random

disturbance input, yt the measured output, nt measurement noise, and θ a random vector

of parameters.

Our goal to select control inputs u0, . . . , uT ´1 to minimize a finite-horizon criterion

of the form

E
“

W px1, . . . , xT , u0, . . . , uT ´1q
‰

, (2.26)

subject to a constraint of the form

E
“

Upx1, . . . , xT , u0, . . . , uT ´1q
‰

ď 0. (2.27)

We consider two versions of this problem: First a state-feedback scenario in which the

initial state x0 is known and the expectation (2.26) is with regard to the random parame-

ters θ and the disturbances d0, . . . , dT ´1. We then consider an output-feedback scenario in

which the initial state is not known, but one has available past measurements y´K , . . . , y0.

In this case, the expectation in (2.26) is conditioned to these past measurements and it

regards the measurement noise n´K , . . . , n0, the initial state x´K , and the past distur-

bances d´K , . . . , d´1.

State Feedback The state-feedback control problem can be viewed as an instance

of (2.11), with the following associations

u –
`

u0, . . . , uT ´1
˘

,

D –
`

θ, d0, . . . , dT ´1
˘

,

V pu, Dq – W px1, . . . , xT , u0, . . . , uT ´1q,

Gpu, Dq – Upx1, . . . , xT , u0, . . . , uT ´1q,
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with the understanding that the states x1, . . . , xT that appear in the definitions of V pu, Dq

and Gpu, Dq are obtained along solutions to (2.25a) for the control input in u and the

parameters and input disturbances in D.

Assuming that the disturbances dt are independent and identically distributed with

pdf pdp¨q and differential entropy Hd, and that the parameter θ has pdf pθp¨q and differ-

ential entropy Hθ, we have that

HD “ Hθ ` THd, log pDpθ, dq “ log pθpθq `
T ´1
ÿ

t“0
log pdpdtq,

and the optimization in (2.13) with additive upper bounds for ‘G and ‘V takes the form

V △
“min

uPU

!

Xpuq : Upx̄1, . . . , x̄T , u0, . . . , uT ´1q ` ϵ̄HD ``ϵ̄ log pDpθ̄, d̄q ď 0, @θ̄, d̄
)

Xpuq – max
θPΘ,dPD

W px1, . . . , xT , u0, . . . , uT ´1q ` ϵHD ` ϵ log pDpθ, dq,

where U denotes the set of admissible controls; Θ and D the supports of the distributions

for the random parameter and disturbance, respectively; x̄1, . . . , x̄T the solution to (2.25a)

for the control u – pu0, . . . , uT ´1q, parameter θ̄ and disturbance d̄ – pd̄0, . . . , d̄T ´1q;

x1, . . . , xT the solution to (2.25a) for the same control u – pu0, . . . , uT ´1q, but parameter

θ and disturbance d – pd0, . . . , dT ´1q; and ϵ, ϵ̄ the scalar parameters associated with

additive upper bounds used for ‘G and ‘V , respectively. An equivalent formulation of

the optimization in (2.12) gives V ▽.

Output Feedback The output-feedback problem can also be viewed as an instance

of (2.11), but now with the following associations

u –
`

u0, . . . , uT ´1
˘

,

D –
`

θ, x´K , d´K , . . . , dT ´1q,

V pu, Dq – W px1, . . . , xT , u0, . . . , uT ´1q,
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Gpu, Dq – Upx1, . . . , xT , u0, . . . , uT ´1q,

with the understanding that the states x1, . . . , xT that appear in the definition of V pu, Dq

and Gpu, Dq are obtained along solutions to (2.25a) for the control input in u and the

parameters, initial state, and input disturbances in D. In addition, the expectation in

(2.11) is now a conditional expectation, given measurements Y “ py´K , . . . , y0q defined

by (2.25b).

In this case, the optimization in (2.13) with additive upper bounds for ‘V and ‘G

takes the form

V △
“ min

uPU

!

Xpuq : Upx̄1, . . . , x̄T , u0, . . . , uT ´1q`

ϵ̄ log pD|Y pθ̄, d̄, x̄kq ` ϵ̄HD|Y py´K , . . . , y0q ď 0, @θ̄, d̄, x̄k

)

Xpuq – max
θPΘ,dPD,x´KPX´K

W px1, . . . , xT , u0, . . . , uT ´1q`

ϵ log pD|Y pθ, d, x´Kq ` ϵHD|Y py´K , . . . , y0q, (2.28)

where we use the version of the bounds for conditional expectation mentioned in Re-

mark 2.1.2. The conditional pdf that appears in (2.28) can be computed using the fol-

lowing result.

Lemma 2.3.1 (Conditional pdf of a dynamical system) In addition to the assump-

tions made for the state feedback case, also assume that the observation noises nt are

independent and identically distributed with pdf pnp¨q and that the initial state x´K has

pdf px´K
p¨q. If pY py´K , . . . , y0q ‰ 0, the conditional probability density function pD|Y p¨q

is given by
ś0

t“´K pn

´

yt ´ h
`

xt

˘

¯

śT ´1
t“´K pdpdtqpx´K

px´Kq pθpθq

pY py´K , . . . , y0q

with the understanding that xt is obtained along the solutions to (2.25a). l

36



Stochastic Programming Using Expected Value Bounds Chapter 2

1 2 3 4 5 6 7 8 9 10

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
o

n
tr

o
l

u
SAA

u

Figure 2.1: Linear system with unknown dynamics, comparison of the controls u△

obtained from Theorem 2.2.1 and uSAA obtained using Sample Average Approxima-
tion. Using Monte Carlo integration, we obtain that ErV pu△, Dqs “ 1.79 ˆ 103 and
ErV puSAA, Dqs “ 1.62 ˆ 103.

Proof of Lemma 2.3.1. Using the independence of nt, one deduces that the observations

yt are conditionally independent:

pY |Dpy´K , . . . , y0 | x´K , . . . , x0q “

0
ź

t“´K

pYt|Dpyt | xtq.

As the noise nt is additive in (2.25b), a change of variable gives pYt|Dpyt | xtq “ pn

´

yt ´

h
`

xt

˘

¯

. Using Bayes’ theorem and the independence of dt, θ, and x´K finishes the proof.

The differential entropy HD|Y py´K , . . . , y0q that appears in (2.28) is typically difficult

to compute (or even to estimate, e.g., through Monte Carlo integration); especially for

a long sequence of past measurements y´K , . . . , y0. However, this entropy is not affected

by the optimization variable u “ pu0, . . . , uT ´1q, which only includes future controls.

This means that we can determine the optimal value for u in (2.28) without actually

computing HD|Y py´K , . . . , y0q.

Example 2.3.2 (Linear system with unknown dynamics) Consider a linear sys-
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tem, i.e., a system with dynamics

xt`1 “ A xt `B ut ` dt

yt “ C xt ` nt

with dt and nt independent zero mean standard Gaussian processes. The system is time-

invariant, C is an identity matrix, but the matrices A and B are unknown stochastic

parameters of the form

A “

»

—

—

—

—

–

A11 A12 0

0 A22 A23

0 0 A33

fi

ffi

ffi

ffi

ffi

fl

B “

»

—

—

—

—

–

0

0

B31

fi

ffi

ffi

ffi

ffi

fl

,

where A11, A12, A22, A23, A33, B31 are independent Gaussian random variables with

mean 1 and standard deviation 0.25. We chose a quadratic cost

W pu0, . . . uT ´1, x0 . . . xT q “

T ´1
ÿ

t“0
0.5∥ut∥2

2 ` 0.5∥xt∥2
2 ` 0.5∥xT ∥2

2

with a future horizon T “ 10 and constraints on the control that ∥u∥
8
ď 1. We suppose

access to past measurements y´K , . . . , y0 with K “ 20.

The value of the upper bound V △ is 5.04 ˆ 105 and the value of the lower bound

V ▽ is 28. We compare our results with an approximate solution obtained using Sample

Average Approximation (SAA) (i.e., minimizing an empirical mean of the cost). Solving

the upper bound and lower bound optimizations (Theorem 2.2.1) takes about 0.1 seconds,

while solving the Sample Average Approximation takes about 5 minutes. In Figure 2.1

one can see that the controls match each other fairly closely until t “ 6, when they start

to slightly diverge. We also use Monte Carlo integration, as discussed in Section 2.2.1,

to estimate the expected value of the cost for the two controls, obtaining that they differ

by about 10%.
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(a) Expected value of the trajectory without con-

straints on the final state; the expected value of

the cost for this control is EpV pu△, Dqq “ 189.
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(b) Expected value of the trajectory with con-

straints on the final state; the expected value of

the cost for this control is EpV pu;, Dqq “ 250.

Figure 2.2: Expected value of the trajectory of the Dubins vehicle given two different
controls estimated using Monte Carlo integration. Without constraints (a), the control
brings the expected value of the trajectory back to near the origin. With the inclusion
of constraints (b), the control drives the expected value of the final state towards the
correct region.

Example 2.3.3 (Dubins vehicle) Consider a discrete time Dubins vehicle [108, 109]

with dynamics
»

—

—

—

—

–

xt`1

yt`1

ωt`1

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

xt

yt

ωt

fi

ffi

ffi

ffi

ffi

fl

` Ts

»

—

—

—

—

–

v cospωtq

v sinpωtq

ut

fi

ffi

ffi

ffi

ffi

fl

`
T 2

s

2

»

—

—

—

—

–

´v sinpωtqut

v cospωtqut

0

fi

ffi

ffi

ffi

ffi

fl

` dt

where Ts “ 0.1 is the sampling period, v “ 1 is a constant forward speed. The initial state

is known to be rx0, y0, ω0s
1 “ r0, 0, 0s, and we want to optimize for a future horizon T “ 50.

The controls are constrained such that ∥u∥
8
ď π{2. The disturbance dt “ rd

pxq

t , d
pyq

t , d
pωq

t s1

is such that d
pxq

t , d
pyq

t are zero mean Gaussian random variables with variance Ts, and d
pωq

t

is a von Mises random variable, with probability density function eκ cospxq{p2πI0pκqq with
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κ “ 5{Ts and where I0pκq is the modified Bessel function of order 0. The cost function is

W pu0, . . . uT ´1, x0 . . . xT q “

T ´1
ÿ

t“0
0.5∥ut∥2

2 `

T
ÿ

t“0
0.5∥xt∥2

2 ` 0.5∥yt∥2
2

We present two cases, one with no constraints on the states and one with a constraint

on the final state. For both of them, we use the additive bounds.

The first case, without constraints, takes about 1 second to solve, the value of the

upper bound V △ is 1.25 ˆ 105 the lower bound V ▽ only provides the trivial value of 0.

However, using a Monte Carlo integration we compute the expected value of the cost given

the control and obtain 189. We use a Stochastic Gradient Descent to solve (2.26), which

takes about 15 seconds, the optimal cost is 187 and the error between the solution obtained

using the Stochastic Gradient Descent uSGD and the solution obtained using the upper

bound u△ is ∥uSGD ´ u△∥
8
“ 0.029, suggesting that u△ approximately finds the optimal

solution to (2.26)

For the second case, we include the constraint

E

»

—

–

∥∥∥∥∥∥∥∥
»

—

–

xT

yT

fi

ffi

fl

´

»

—

–

1

1

fi

ffi

fl

∥∥∥∥∥∥∥∥
2

fi

ffi

fl

ď 0.25 (2.29)

i.e., we want to find a control such that the expectation of the final value of the trajectories

of px, yq be in neighborhood around the point p1, 1q (look at Figure 2.2b for a visualization

of the constraints). As the problem now has stochastic constraint, we have to choose

between using the upper bound V △ from (2.13) which requires u to satisfy the constraint

max
d

∥∥∥∥∥∥∥∥
»

—

–

xT

yT

fi

ffi

fl

´

»

—

–

1

1

fi

ffi

fl

∥∥∥∥∥∥∥∥
2

` ϵ log pDpdq ` ϵHD ď 0.25, (2.30)

or the upper bound V ; from (2.14). Unfortunately the bound (2.30) of (2.29) is too

conservative, and renders the problem infeasible. The upper bound V ; does not suffer

from this problem. It takes about 30 seconds to solve the optimization for which we
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obtain a value for the upper bound V ; of 1.25 ˆ 108 and the lower bound V ▽ provides

only the trivial value of 0. However, using Monte Carlo integration, we obtain that the

expected value of the cost is 250.

2.3.2 Maximum Likelihood and Maximum a Posteriori with la-

tent variables

Consider an observation x of a random vector X taking values in RM whose dis-

tribution depends on an unknown parameter θ P RP that one wants to estimate. The

Maximum Likelihood Estimation (MLE) [9] of θ is a vector θ˚ P RP such that

θ˚
P arg max

θ
pXpx; θq. (2.31)

where the pdf of X is pXpx; θq. The Maximum a Posteriori (MAP) is the analogous of

the MLE in Bayesian estimation, i.e., when one regards θ as a realization of a random

variable Θ, called the prior, which has pdf pΘp¨q. In this case, the MAP estimation of θ

is a vector θ˚ P RP such that

θ˚
P arg max

θ
pX|Θpx | θqpΘpθq. (2.32)

In many cases, constructing the model requires including latent variables that cannot

be directly observed. This means that one does not know pXpx; θq but does know pX|Dpx |

d; θqpDpdq, where D is a "latent" random vector taking values in RN . In this case, the

MLE θ˚ is given by

θ˚
P arg max

θ
pXpx; θq “

ż

D
pX|Dpx | d; θqpDpdq dd “ arg max

θ
ErpX|Dpx | D; θqs. (2.33)

For the MAP, the analogous deduction leads to

θ˚
P arg max

θ
E
“

pX|Dpx | D; θq
‰

pΘpθq. (2.34)
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Computing the expected values in (2.33) or in (2.34) is normally intractable. The stan-

dard approach is to use the Expectation Maximization (EM) algorithm [110]. An issue

with EM, in addition to a rate of convergence that might be very slow, is that it requires

computing in closed form the expected value ED|X;θ̃rlog pX,DpX, D; θqs, which is often not

possible. In some cases, one can use Monte Carlo EM [110] to compute it, but with rates

of convergence even slower.

The MLE optimization (2.33) can be viewed as an unconstrained form of (2.11),

which using the multiplicative upper bound in (2.13) leads to

θ▽ P arg max
θ

min
d

pX|Dpx |d; θqpDpdq
ϵ IDpϵq (2.35)

or equivalently,

θ▽Parg max
θ

min
d

log
`

pX|Dpx |d; θq pDpdq
ϵ IDpϵq

˘

, (2.36)

which is numerically more stable. For the MAP, one would add log pΘpθq to the right

hand side of (2.36). The multiplicative bound is more amenable for the optimization

than the additive as it allows to solve (2.35) in its logarithmic form (2.36).

Example 2.3.4 (Linear measurements with additive Gaussian noise) Let D „

N p0, σDq, N „ N p0, σNq. Consider T observations of the random variable Xt “ θ`Dt`

Nt where θ is the parameter to be estimated. This problem has a closed form solution,

which is the empirical average of xt. Applied to this problem, equation (2.36) reduces to
1

θ▽ P arg max
θ

min
d1:T

T
ÿ

t“1
´∥xt ´ dt ´ θ∥2

2σ
´1
N ´ ϵ∥dt∥2

2σ
´1
D ´ T logp1´ ϵq ´ T logp2πσNq.

If we take any ϵ such that ϵ ă ´σ´1
N {σ

´1
D , then the solution is 1

T

řT
t“1 xt which is the same

as the exact solution.
1We refer the reader to Appendix 2.A.1 for the deduction of the penalizing term.
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θ (actual value) θ▽ naive MAP MC MMSE MC MAP

»

—

–

2

2

fi

ffi

fl

»

—

–

1.95

2.37

fi

ffi

fl

»

—

–

2.8

0.21

fi

ffi

fl

»

—

–

1.82

1.62

fi

ffi

fl

»

—

–

2.13

1.70

fi

ffi

fl

Table 2.1: Comparison between the actual value of θ, of θ▽ obtained from (2.37) and
three other estimators.

Example 2.3.5 (Norm measurements with Gaussian disturbances and noise)

We have T observations of the random variable Xi “ ∥θ `Di∥2`Ni where θ is the param-

eter to be estimated, D „ N p0, ΣDq and N „ N p0, σNq. We also have a prior distribution

Θ „ N pθ̄, ΣΘq on θ. Applied to this problem, equation (2.36) reduces to

θ▽ P arg max
θ

min
d1:T

T
ÿ

t“1
´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
xt ´ ∥θ ` dt∥2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

σ´1
N

´ ϵ∥dt∥2
Σ´1

D

´
∥∥∥θ ´ θ̄

∥∥∥2

Σ´1
Θ
´ 2T logp1´ ϵq ´ T logp2πσNq (2.37)

where we use the notation ∥v∥2
Q – v1Qv. We take the numerical values T “ 20, ΣD “

“ 2 ´1
´1 1

‰

, σN “ 1 θ̄ “
“

1.8
1.8

‰

, ΣΘ the identity matrix.

The result of (2.37) is shown in Table 2.1 where we compare it with three other

estimators. The first one is what we call naive MAP, where one treats D1, . . . , DT not

as a latent variable, but as a regular variable that one wants to estimate, i.e.,

arg max
θ,d1:T

T
ÿ

t“1
´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
xt ´ ∥θ ` dt∥2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

σ´1
N

´ ∥dt∥2
Σ´1

D
´

∥∥∥θ ´ θ̄
∥∥∥2

Σ´1
Θ

.

The second and third are Monte Carlo methods, where we use a Markov Chain Monte

Carlo to obtain 106 samples from Θ | X, which takes about 30 minutes. Using these

sample, the second estimator is the Monte Carlo estimate of the Minimum Mean Square

Error (MC MMSE) estimator (i.e., the empirical average of the samples). The third
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estimator, we use the sample based estimator of the mode described in [111] to compute

a Monte Carlo estimate of the MAP (MC MAP).

Our estimator θ▽ is significantly closer to real θ and to the MCMC estimate of the

MAP than the naive MAP. θ▽ is also approximately as distant to the true value of θ as

the MMSE estimate. Although none of them is the real MAP, these results suggest that

θ▽ accurately captures the estimation problem and provides a better result than naively

trying to estimate d1:T as in the naive MAP.

2.3.3 Bayesian Optimal Experiment Design

The goal in experiment design is to find inputs for an estimation problem that will

yield samples that provide "more information per sample". Consider a random vector X

with pdf pXpx;u, θq where θ is a vector of unknown parameters and u a vector of control

decision taking values in U Ă RN . The Fisher Information Matrix is

FIpu, θq “ E

„

d log pXpX; u, θq

dθ

d log pXpX; u, θq

dθ

1ȷ

,

where the expected value is taken with respect to X and where we use the denominator-

layout notation for the derivatives (producing column vectors). The Cramer-Rao lower

bound states that, given any unbiased estimator θ̂pu, Xq of θ, its covariance

E
”

pθ̂pu, Xq ´ θqpθ̂pu, Xq ´ θq1
ı

is lower bounded (in the positive definite matrix sense) by FIpu, θq´1. Therefore, if one

minimizes (according to some criteria) FIpu, θq´1, one will decrease the covariance of

any estimator achieving the Cramer-Rao bound.

In Bayesian optimal experiment design one assumes that θ is a realization of an

underlying random vector Θ, with pdf pΘp¨q, and select u˚ to minimize the Bayesian
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D-optimality (the D stands for determinant), criteria:

u˚
P arg min

uPU
Erlog det

`

FIpu, Θq´1˘
s, (2.38)

where the expected value is taken with respect to Θ. It is shown in [12] that (2.38)

optimizes the gain in the Shannon information of the experiment when θ̂pu, Xq is a

Gaussian distribution with mean θ and covariance FIpu, θq´1. In other words, it designs

an experiment that brings more information on average. Alternative Bayesian criteria

include A-optimality (the A stands for average), where one wants to find a u˚ such that

u˚
P arg min

uPU
ErtrpFIpu, Θq´1

qs. (2.39)

In this case, (2.39) minimizes the mean square error of any estimator θ̂pu, Xq that is

unbiased and achieves the Cramer-Rao bound.

The experiment design in (2.38) and (2.39) is an unconstrained form of (2.11). Using

the additive upper bound in (2.13) leads to

V △
“ min

uPU ,ϵ
max
θPΩ

´ log detpFIpu, θqq ` ϵ log pΘpθq ` ϵHΘ

V ▽
“ max

ϵ
min

uPU ,θPΩ
´ log detpFIpu, θqq ` ϵ log pΘpθq ` ϵHΘ.

(2.40)

For Bayesian A-optimality (2.39), we obtain

V △
“ min

uPU ,ϵ
max
θPΩ

trpFIpu, θq´1
q ` ϵ log pΘpθq ` ϵHΘ

V ▽
“ max

ϵ
min

uPU ,θPΩ
trpFIpu, θq´1

q ` ϵ log pΘpθq ` ϵHΘ.

(2.41)

Example 2.3.6 (Optimal trajectories for thermal air wind detection) A glider is

an air vehicle that flies without propellers, using only wind forces to change its altitude.

In order to move up, a glider needs to estimate the location and intensity of the thermal

vertical wind that would push it [112–114].

Given an air column, a common model for the intensity of the vertical wind speed at

position z “ px, yq is

wpw̄, γ, z̄, zq “ w̄e´γ∥z´z̄∥2
2
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where z̄ “ px̄, ȳq denotes the position of the thermal center, w̄ the wind speed at the

thermal center and 1{γ the thermal radius. Our goal is to estimate the thermal parameters

θ “ pw̄, γ, z̄q based on noisy measurements of the vertical air speed of the form

Vt “ wpw̄, γ, z̄, ztq `Nt

where zt is the location where the measurement is taken and Nt are independent zero

mean Gaussian distribution with variance σ2. The probability density function for T

measurements v “ pv1, ..., vT q is given by

pV pv; θq “
1

p2πqT {2σT
e´

řT
t“1pvt´wtq2

2σ2

where wt “ wpw̄, γ, z̄, ztq. The Fisher Information matrix associated to the estimation of

θ is given by,

FIpz1:T , θq “ E

„

d log pV pV ; θq

dθ

d log pV pV ; θq

dθ

1ȷ

“
1
σ4E

«

T
ÿ

t“1

T
ÿ

l“1
pVt ´ wtqpVl ´ wlq

dwt

dθ

dwl

dθ

1
ff

“
1
σ2

T
ÿ

t“1

dwt

dθ

dwt

dθ

1

where

dwt

dθ
“

„

Bwt

Bw̄
,
Bwt

Bγ
,
Bwt

Bz̄

ȷ1

“ e´γ∥zt´z̄∥2“
1,´w̄∥zt ´ z̄∥2,´w̄γpzt ´ z̄q1

‰1
.

Given prior distributions on w̄, γ and z̄, we want to find the measurement points

z1, z2, . . . , zT that minimize (2.38) subject to the constraint that the distance between two

consecutive zt should be no larger than ∆z. As the problem is rotationally symmetric, we

fix the y coordinate of the first point to be 0.

We assign the following prior distributions. Both w̄ and γ follow a Gamma distribu-

tion with parameters respectively pαw̄, βw̄q and pαγ, βγq and the thermal center z̄ follows

a zero mean Gaussian distribution with covariance Σz̄.
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Figure 2.3: Optimal trajectory for the Bayesian experiment design for detecting the
parameters of a vertical thermal air flow

We take the following numerical values. The number of measurements is T “ 20.

The parameters of the priors are αw̄ “ αγ “ 1.25, βw̄ “ βγ “ 0.25 and Σz̄ “ 0.1I.

The maximum displacement between two sampling points is ∆z “ 0.05. The problem is

highly nonconvex, requiring multiple initializations. For the lower bound, it takes about

6.56 seconds to run 100 optimizations with a random walk initialization, obtaining the

lower bound V ▽ “ ´14.27. For the upper bound it takes about 8.92 seconds to run 100

optimizations with random walk initialization, obtaining the upper bound V △ “ 95.41.

Using Monte Carlo integration, as discussed in Section 2.2.1, we obtain that the expected

value of the log determinant of the Fisher Information Matrix given the trajectory is

1.203. The optimal trajectory can be seen in Figure 2.3.

2.4 Conclusions and Future Work

We presented a general method to bound the expected value of any random variable

with known probability density function. Stochastic programming is the main application

of the bounds, where they can be used to determine an optimizer which has performance
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guarantees and satisfies inequality constraints. We illustrate the results with applications

to finite-horizon stochastic control, estimation with latent variables and experiment de-

sign. The numerical results in theses applications show that optimizing the bound lead

to solutions close to the optimal. They also suggest that even when the bounds are not

tight, the argument that minimizes the upper bound is close to the one that minimizes

the stochastic programming problem.

There are many future work directions to be considered. On the bounds themselves,

most of the properties were determined for the additive and multiplicative bound, but

other versions of the bounds could unlock other applications. The connection between

the bounds we developed and distributionally robust optimization remains to be further

understood, in particular for which kind of problem which approach is more suited. On

obtaining solutions to the minmax optimization, an area for future research motivated

by [23–25] arises from replacing the essential suprema used in the upper bound in (2.13)

by maxima over independent samples of the random variable D and establishing sample

complexity bounds to guarantee that the resulting optimization still provides an upper

bound with high probability.

In terms of stochastic control, an evident extension would be stochastic model pre-

dictive control. In the estimation section, it would be interesting to study the asymptotic

properties of the bound. As for new applications, machine learning is an area of signifi-

cant potential. In particular, this method could either be used to accelerate the training

of Neural Networks when there is a partial knowledge of the underlying model or in

adversarial training.
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2.A Appendix of Chapter 2

2.A.1 Penalization term for common distributions

Gaussian distribution The probability density function of a Gaussian Distribution

with mean µ and covariance matrix Σ is

pDpdq “ detp2πΣq´1{2 exp
ˆ

´
1
2∥d´ µ∥2

Σ´1

˙

where we use the notation ∥v∥2
Q – v1Qv.

For the additive bound, HD – Er´ log pDpDqs “
1
2 log detp2πeΣq, therefore the pe-

nalization term simplifies to

log pDpdq `HD “ ´
1
2∥d´ µ∥2

Σ´1 `
1
2M

where M is the dimension of D.

For the multiplicative bound, IDpϵq – ErpDpDq
´ϵ
s “ detp2πΣqϵ{2

p1´ ϵq´M{2 if ϵ ă 1

and `8 otherwise, therefore for ϵ ă 1 the penalization terms simplifies to

pDpdq
ϵIDpϵq “ exp

ˆ

´
1
2ϵ∥d´ µ∥2

Σ´1

˙

p1´ ϵq´M{2

.

Uniform distribution If D is a Uniform distribution over a bounded support D, its

pdf is pDpdq “ V´1
D 1Dpdq where 1Dp¨q is the indicator function of D and VD “ Er1DpDqs

is the volume of D.

For the additive bound, HD “ Er´ logp1DpDqqs` logpVDq “ Er0s` logpVDq, therefore

the penalization terms simplifies to log pDpdq `HD “ 0 @d P D.

For the multiplicative bound, IDpϵq “ ErpVDq
ϵ1DpDq

´ϵs “ pVDq
ϵ, therefore the pe-

nalization term simplifies to pDpdq
ϵIDpϵq “ 1 @d P D.
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2.A.2 Proofs of Section 2.1

To prove the results that follow, we need the following properties of the essential

supremum and infimum which we state without a proof.

Lemma 2.A.1 Given two random variables X and Y then

X
wpo
ě Y ñ ess inf X ě ess inf Y

X
wpo
ě Y ñ ess sup X ě ess sup Y

ess infpX ` Y q ě ess inf X ` ess inf Y

ess suppX ` Y q ď ess sup X ` ess sup Y l

Proof of Proposition 2.1.4. Take ϵ1, ϵ2 P R such that J˚pϵ1q, J˚pϵ2q ă `8 and λ P r0, 1s

J˚
pλ ϵ1 ` p1´ λqϵ2q

“ ess sup V pDq ` pϵ1λ` ϵ2p1´ λqq log pDpDq

“ ess suppλ` 1´ λqV pDq ` pϵ1λ` ϵ2p1´ λqq log pDpDq

ď λ ess sup V pDq ` ϵ1 log pDpDq

`p1´ λq ess sup V pDq ` ϵ2 log pDpDq ă 8

where the inequality follows from Lemma 2.A.1. This establishes that the additive upper

bound is convex in ϵ and that J˚pϵq is finite on a convex set.

For the multiplicative bound, it remains to show that IDpϵq is log convex: take ϵ1, ϵ2 P R

such that IDpϵ1q, IDpϵ2q are finite and λ P r0, 1s. By applying Hölder’s inequality we

obtain

ErpDpDq
´λϵ1pDpDq

´p1´λqϵ2s

ď

´

ErpDpDq
´λϵ1{λ

s

¯λ ´

ErpDpDq
´p1´λqϵ2{p1´λq

s

¯p1´λq
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“
`

ErpDpDq
´ϵ1s

˘λ `
ErpDpDq

´ϵ2s
˘p1´λq

which establishes log convexity.

2.A.3 Necessary and sufficient conditions for finite bounds

Consider a constant γ ą 0 sufficiently small so that P
`

pDpDq ą γ
˘

ą 0. We say a

measurable function fp¨q is γ-essentially upper bounded if

ess sup
“

fpDq
ˇ

ˇ pDpDq ą γ
‰

ă 8,

γ-essentially lower bounded if

ess inf
“

fpDq
ˇ

ˇ pDpDq ą γ
‰

ą ´8,

and γ-essentially bounded if it is both γ-essentially upper and lower bounded.

Theorem 2.A.2 (Finite bounds) Suppose that pDp¨q is γ-essentially upper bounded

and let c P p0, 1{γq be any constant for which

ess sup
“

pDpDq | pDpDq ą γ
‰

ď 1{c, (2.42)

and ϵ an arbitrary finite constant. Regarding the additive bound: Assuming that V p¨q is

γ-essentially lower bounded, then

pDpDq
wpo
ą γ or ess inf

”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ą ϵ

ñ ess inf
`

V pDq ` ϵ log pDpDq
˘

ą ´8. (2.43)

Conversely,

ess inf
`

V pDq ` ϵ log pDpDq
˘

ą ´8

ñ pDpDq
wpo
ą γ or DL ą 0 :
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ess inf
”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ě ϵ`
L

log cγ
. (2.44)

Assuming that V p¨q γ-essentially upper bounded, then

pDpDq
wpo
ą γ or ess sup

”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ă ϵ

ñ ess sup
`

V pDq ` ϵ log pDpDq
˘

ă `8 (2.45)

Conversely,

ess sup
`

V pDq ` ϵ log pDpDq
˘

ă 8

ñ pDpDq
wpo
ą γ or DL ą 0 :

ess sup
”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ď ϵ´
L

log cγ
. (2.46)

Regarding the multiplicative bound: Assuming that log V p¨q is γ-essentially lower bounded,

then

pDpDq
wpo
ą γ or ess inf

”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ą ϵ

ñ ess inf
`

log V pDq ` ϵ log pDpDq
˘

ą ´8.

Conversely,

ess inf
`

log V pDq ` ϵ log pDpDq
˘

ą ´8

ñ pDpDq
wpo
ą γ or DL ą 0 :

ess inf
”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ě ϵ`
L

log cγ
. (2.47)

Assuming that log V p¨q is γ-essentially upper bounded, then

pDpDq
wpo
ą γ or ess sup

”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ă ϵ

ñ ess sup
`

log V pDq ` ϵ log pDpDq
˘

ă `8
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Conversely,

ess sup
`

log V pDq ` ϵ log pDpDq
˘

ă 8

ñ pDpDq
wpo
ą γ or DL ą 0 :

ess sup
”

´ log V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ď ϵ´
L

log cγ
. (2.48)

l

Proof. We will prove the theorem for the additive lower bound [i.e., (2.43) and (2.44)].

The proof for the other bounds can be obtained in an analogous way.

To prove (2.43), we note that since V p¨q is γ-essentially lower bounded there exists a

finite constant L such that

ess inf
“

V pDq | pDpDq ą γ
‰

ě L.

In view of this and (2.42), we have that

P
`

V pDq ě L, pDpDq ď 1{c | pDpDq ą γ
˘

“ 1. (2.49)

Since

V pDq
wpo
ě L, pDpDq

wpo
ď 1{c, pDpDq

wpo
ą γ ñ V pDq ` ϵ log c pDpDq

wpo
ě L˚

ą ´8,

with L˚ – L´ |ϵ| | log cγ|, we conclude from (2.49) that

P
`

V pDq ` ϵ log c pDpDq ě L˚
ˇ

ˇ pDpDq ą γ
˘

“ 1. (2.50)

In case pDpDq
wpo
ą γ, we conclude that the corresponding unconditional probability sat-

isfies the same bound and (2.43) follows. Otherwise,

ess inf
”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ą ϵ
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implies that

P
´

´V pDq

log c pDpDq
ě ϵ

ˇ

ˇ pDpDq ď γ
¯

“ 1. (2.51)

Since

pDpDq ď γ
wpo
ùñ log c pDpDq ď log c γ ă 0, (2.52)

we also conclude from (2.51) that

P
`

V pDq ` ϵ log c pDpDq ě 0
ˇ

ˇ pDpDq ď γ
˘

“ 1. (2.53)

Combining (2.53) and (2.50), we conclude that the corresponding unconditional proba-

bility satisfies

P
`

V pDq ` ϵ log c pDpDq ě mint0, L˚u
˘

“ 1,

from which (2.43) follows.

To prove (2.44), we use the fact that ess inf
`

V pDq` ϵ log pDpDq
˘

ą ´8 implies that

there exists some finite scalar L ą 0, for which

PpV pDq ` ϵ log c pDpDq ě ´Lq “ 1. (2.54)

When pDpDq
wpo
ą γ the implication in (2.44) is tautologically true, so we focus our

attention on the case PppDpDq ď γq ą 0, for which (2.54) implies that

P
`

V pDq ` ϵ log c pDpDq
˘

ě ´L
ˇ

ˇ pDpDq ď γ
˘

“ 1. (2.55)

Using (2.52), we conclude that

V pDq ` ϵ log c pDpDq, pDpDq ď γ
wpo
ñ

´V pDq

log c pDpDq
ě ϵ`

L

log c γ

and therefore (2.55) implies that

P
´

´V pDq

log c pDpDq
ě ϵ`

L

log c γ

ˇ

ˇ pDpDq ď γ
¯

“ 1. (2.56)
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This shows that

ess inf
”

´V pDq

log c pDpDq

ˇ

ˇ pDpDq ď γ
ı

ě ϵ`
L

log cγ
,

which completes the proof of the implication in (2.44).
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Chapter 3

Newton and interior-point methods

for (constrained)

nonconvex-nonconcave minmax

optimization with stability

guarantees

Parts of this chapter come from [1]

In this chapter, we consider the problem of using second order methods to find local

minmax point. Second order methods are crucial for real time applications, such as

robust model predictive control and robust estimation, where using first order methods

tends to be unfeasible due to their slow convergence. However, for nonconvex-nonconcave

problems, second order methods can converge to a point that is not a local minmax.

In order to better explain our approach for minmax optimization, we start by pre-

senting related results for minimization, in Section 3.1. First, we present a widely known
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modification of Newton method used in nonconvex minimization. We show that this

modification can be obtain by requiring the minimization of a second order approxi-

mation of the function to be strongly convex. We then show that a property not well

know about this modification is that it guarantees that the only locally asymptotic stable

equilibrium points of the Newton method iterations are the local minimum points. In

essence, the property guarantee that the modified Newton iteration can only converge

to a local minima. Building on these results, we then turn our attention to constrained

minimization. We start by presenting a modified interior-point method and show how

each descent direction can be obtained from the minimization of a quadratic minimiza-

tion with linear constraints. Similar to the case of unconstrained minimization, we show

that this modified interior-point method is such that the only stable equilibrium points

are local minima.

Based on these results, we address the main topic of the chapter, i.e., the construc-

tion of second order methods for minmax optimization, in Section 3.2. Inspired by the

modification described for minimization case, we construct a modified Newton which

guarantees that the minmax optimization of a second order approximation of the func-

tion is well defined. We then show, using counter example, that these conditions are not

enough to guarantee that the only locally stable equilibrium points are local minmax.

We then derive the conditions such that the modified Newton method guarantees that

the only locally stable equilibrium points of the Newton iterations are local minmax. We

then extend these result by developing an interior-point methods for constrained minmax

and deduce what are the conditions to obtain the appropriate stability results.

Finally, in Section 3.3 we describe how our results can be implemented in an algorithm

to find local minmax points. We test our algorithm in some benchmark examples to show

their efficiency. In addition, we test the algorithm in the homicidal chauffeur problem,

and show that if the Hessian matrix is sparse, the time to solve the optimization scales
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roughly linearly with the number of nonzero elements in the Hessian. The property is

usually found in many problems where the cost function can be represented using stages.

Notation: The set of real numbers is denoted by R. Given a vector v P Rn, its

transpose is denoted by v1. The operation diagpvq creates a matrix with diagonal elements

v and off-diagonal elements 0. The matrix I is the identity, 1 is the matrix of ones and 0

the matrix of zeros; their sizes will be provided as subscripts whenever it is not clear from

context. If a matrix A only has real eigenvalues, we denote by λminpAq and λmaxpAq its

smallest and largest eigenvalues. The inertia of A is denoted by InpAq, and is a 3-tuple

with the number of positive, negative and zero eigenvalues of A.

Consider a differentiable function f : Rn ˆ Rm ÞÑ Rp. The Jacobian (or gradient

if p “ 1) at a point px̄, ȳq according to the x variable is a matrix of size n ˆ p and is

denoted by ∇xfpx̄, ȳq, and analogously for the variable y. When p “ 1 and fp¨q is twice

differentiable, we use the notation ∇yxfpx̄, ȳq :“ ∇y

`

∇xf
˘

px̄, ȳq which has sizes mˆ n.

We use analogous definition for ∇xyfpx̄, ȳq, ∇xxfpx̄, ȳq and ∇yyfpx̄, ȳq.

3.1 Minimization

Let f : X Ñ R be a twice continuously differentiable cost function defined in a set

X Ă Rnx , and consider the minimization problem

min
xPX

fpxq. (3.1)

We recall that a point x˚ is called a local minimum of fp¨q if there exist δ ą 0 such that

fpx˚q ď fpxq for all x P tx P X : ∥x´ x˚∥ ă δu. We will study the property of Newton

type algorithms to solve (3.1) in two distinct cases, when X “ Rnx and when X is defined

by equality and inequality constraints.
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3.1.1 Unconstrained minimization

Let X “ Rnx , which is referred to as unconstrained minimization in the literature. If

fp¨q is twice continuously differentiable in a neighborhood of a point x and ∇xfpxq “ 0

and ∇xxfpxq ą 0, then x is a local minimum of fp¨q [54, Chapter 2].

An extremely popular method to solve a minimization problem is to use Newton’s

root finding method to obtain a point x such that ∇xfpxq “ 0. In its most basic form,

the algorithm’s iterations are given by

x`
“ x` dx “ x´∇xxfpxq´1∇xfpxq. (3.2)

where we use the notation x` to designate the value of x at the next iteration. Newton’s

method biggest advantage is that it converges very fast near any point that satisfies

the first order condition ∇xfpxq “ 0: at least linearly but possibly superlinearly when

the function is Lipschitz [54, Theorem 3.6]. However, this is also precisely Newton’s

method biggest limitation for nonconvex minimization, because it does not distinguish a

local minimum from any other point satisfying the first order condition. Let us further

illustrate this limitation with an example.

Example 3.1.1 Consider the optimization,

min
xPR

x3
´ 3x, (3.3)

for which @x P R,

fpxq :“ x3
´ 3x, ∇xfpxq “ 3x2

´ 3, ∇xxfpxq “ 6x.

The corresponding Newton iteration (3.2) is of the form

x`
“ x´

3x2 ´ 3
6x

,

59



Second order methods for minmax optimization Chapter 3

for which both the local minimum xmin :“ 1 and the local maximum xmax :“ ´1 are locally

asymptotically stable equilibria with superlinear convergence. Specifically,
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x0 ą 0 ñ xk Ñ xmin :“ 1, (local minimum),

x0 ă 0 ñ xk Ñ xmax :“ ´1, (local maximum),

x0 “ 0 ñ iteration fails since ∇xxfpxq “ 6x is not invertible.

Moreover, the iteration never actually “converges” to the global “infimum” x Ñ ´8.

In order to address this limitation, a widely used modification of Newton’s method

for unconstrained nonconvex optimization [54, Chapter 3.4], is obtained by modifying the

basic Newton method such that dx is obtained from solving the following local quadratic

approximation to (3.1)

dx “ arg min
d̄x

fpxq `∇xfpxq1d̄x `
1
2 d̄xp∇xxfpxq ` ϵxpxqIqd̄x (3.4)

“ ´p∇xxfpxq ` ϵxpxqIq
´1∇xfpxq

with ϵxpxq ě 0 chosen such that p∇xxfpxq ` ϵxpxqIq is positive definite. For twice differ-

entiable strongly-convex functions we can choose ϵxpxq “ 0 and this corresponds to the

classical Newton’s method. However, when fp¨q is not strongly-convex, the minimization

in (3.4) is only well-defined if ∇xxfpxq` ϵxpxqI is positive definite, which requires select-

ing a strictly positive value for ϵxpxq, leading to a modified Newton’s method. Regardless

of whether fp¨q is convex, the positive definiteness of ∇xxfpxq ` ϵxpxqI guarantees that

d1
x∇xfpxq “ ´∇xfpxqp∇xxfpxq ` ϵxpxqIq

´1∇xfpxq ă 0 and therefore dx is a descent

direction at x [54]. The corresponding Newton iteration to obtain a local minimum is

then given by

x`
“ x` dx “ x´ p∇xxfpxq ` ϵxpxqIq

´1∇xfpxq. (3.5)

Let us analyze how this modification impacts the convergence in our previous example.
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Example 3.1.2 (Continuation) For the optimization in (3.3), the modified Newton

step in (3.5) becomes x` “ x´ 3x2´3
6x`ϵxpxq

with ϵxp¨q such that
$

’

’

&

’

’

%

ϵxpxq ě 0 x ą 0,

ϵxpxq ą ´6x x ď 0.

(3.6)

In this case,
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x0 ą xmax :“ ´1 ñ xk Ñ xmin :“ 1(local minimum),

x0 ă xmax :“ ´1 ñ xk Ñ ´8 (global “infimum”),

x0 “ xmax :“ ´1 ñ xk “ xmax, @k(unstable equilibrium).

Selecting the function ϵxp¨q with ϵxp¨q “ 0 around xmin results in superlinear convergence

to xmin, but if ϵxp¨q ą 0, the convergence is only linear. For example, picking ϵxpxq “

´6x` η with η ą 0, (3.6) holds for all x, but the modified Newton step in (3.5) becomes

x` “ x´ 3x2´3
η

, which is just a gradient descent.

The following result generalizes the conclusion from the previous example by estab-

lishing that the positive definiteness of ∇xxfpxq ` ϵxpxqI not only guarantees that dx is

a descent direction, but also that every locally asymptotically stable (LAS) equilibrium

point of the Newton iteration (3.5) is a local minimum.

Theorem 3.1.3 (Stability of modified Newton method for minimization) Let x

be an equilibrium point in the sense that ∇xfpxq “ 0. Assume that ∇xxfpxq is invertible

and that ∇xxfp¨q is differentiable in a neighborhood around x. Then for any function

ϵxp¨q that is constant in a neighborhood around x and satisfies ∇xxfpxq` ϵxpxqI ą 0 one

has that if:

i) x is a local minimum, then it is a LAS equilibrium point of (3.5).
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ii) x is not a local minimum, then it is an unstable equilibrium point of (3.5).

The theorem’s first implication is that if the modified Newton iteration starts sufficiently

close to a strict local minimum, it will converge at least linearly fast to it. One could

think that it would always be preferable to have ϵxpxq “ 0 if ∇xxfpxq ą 0, in which

case not only stability can be trivially obtained but also that the Newton method has

superlinear convergence if fp¨q is Lipschitz [54, Theorem 3.6]. However, in practice, there

are situations for which one might want to take ϵxpxq ą 0. A typical case happens if the

smallest eigenvalue of ∇xxfpxq is positive but very small, which might bring numerical

issues when computing the Newton step ∇xxfpxq´1∇xfpxq. This issue can be fixed by

taking ϵxpxq ą 0, and Theorem 3.1.3 guarantees that doing so will not impair (at least

locally) the algorithm’s capacity to converge towards a local minimum.

The theorem’s second implication is, in a way, even more relevant than the first one.

As we mentioned earlier, the regular Newton’s method (meaning, with ϵxpxq “ 0) is

infamously known to be attracted to any point that satisfies ∇xfpxq “ 0, regardless of

whether it is a local minimum, a saddle point, or a local maximum. What Theorem

3.1.3 is essentially saying is that the modified Newton is only attracted to local minima,

and that any other equilibrium point repels the iteration. In essence, this means that the

modified Newton’s method cannot converge towards a point that is not a local minimum,

thus fixing one of the biggest drawbacks of the regular Newton’s method.

Proof of Theorem 3.1.3. From our assumption that ∇xxfpxq is invertible, x is a local

minimum if and only if ∇xxfpxq ą 0. This comes from the second order necessary

condition for minimization [54, Chapter 2].

Let us now prove the stability and instability properties. The first step in our analysis

is to calculate the Jacobian of p∇xxfpxq ` ϵxpxqIq
´1∇xfpxq that appears in (3.5) at an

equilibrium point x. Using the differentiability of ∇xxfp¨q and that ϵxp¨q is constant in a
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neighborhood of x, we obtain that

∇x

´

p∇xxfpxq ` ϵxpxqIq
´1∇xfpxq

¯

“ p∇xxfpxq ` ϵxpxqIq
´1∇xxfpxq`

N
ÿ

i“1
∇xrp∇xxfpxq ` ϵxpxqIq

´1
si∇xfpxqpiq

where ∇xfpxqpiq is the ith element of ∇xfpxq and rp∇xxfpxq`ϵxpxqIq
´1si is the ith column

of p∇xxfpxq ` ϵxpxqIq
´1. Since p∇xxfpxq ` ϵxpxqIq is positive definite, ∇xrp∇xxfpxq `

ϵxpxqIq
´1si is well defined and since x is an equilibrium point, ∇xfpxqpiq “ 0 for i P

t1 . . . Nu and therefore the Jacobian of right-hand side of (3.5) is given by

∇x

´

x´ p∇xxfpxq ` ϵxpxqIq
´1∇xfpxq

¯

“ I ´ p∇xxfpxq ` ϵxpxqIq
´1∇xxfpxq. (3.7)

The main argument of the proof is based on the following result. Let v be an eigen-

vector associated to an eigenvalue ρ of (3.7). Then

´

I ´ p∇xxfpxq ` ϵxpxqIq
´1∇xxfpxq

¯

v “ ρv

ô p1´ ρqv “ p∇xxfpxq ` ϵxpxqIq
´1∇xxfpxqv

ô

´

ρ∇xxfpxq ` pρ´ 1qϵxpxqI
¯

v “ 0 (3.8)

Therefore, ρ is an eigenvalue of (3.7) if and only if ρ∇xxfpxq ` pρ´ 1qϵxpxqI is singular.

We remind the reader that given a dynamical system, if the system’s dynamic equation

is continuously differentiable, a point is a LAS equilibrium point if all the eigenvalues

of the linearized system are inside the unit circle. Conversely, if at least one of the

eigenvalues of the linearized system is outside the unit circle, then the system is unstable

[115, Chapter 8].

From (3.8), ρ “ 0 is an eigenvalue if and only if ϵxpxq “ 0, which, by construction,

can only happen if x is a local minimum, in which case x is a LAS equilibrium point of

(3.5), as expected.
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For ρ ‰ 0, let us rewrite this expression as ∇xxfpxq `µϵxpxqI with µ :“ 1´ 1{ρ. We

conclude that x is a LAS equilibrium point of (3.5) if ∇xxfpxq ` µϵxpxq is nonsingular

@µ P r0, 2s. Conversely, x is an unstable equilibrium point of (3.5) if ∇xxfpxq ` µϵxpxq

is singular for some µ P r0, 2s.

If x is a local minimum, then λminp∇xxfpxqq ą 0. As ϵxpxq ą 0, we conclude that

λminp∇xxfpxq ` µϵxpxqIq ą 0 for every µ ě 0 and therefore x is a LAS equilibrium

point of (3.5). Conversely, if x is not a local minimum then λminp∇xxfpxqq ă 0. By

construction of ϵxpxq, we have that λminp∇xxfpxq ` µϵxpxqIq ą 0, which, by continuity

of the eigenvalue, implies Dµ P p0, 1q such that λminp∇xxfpxq ` µϵxpxqIq “ 0. Therefore

x is an unstable equilibrium point of (3.5).

3.1.2 Constrained minimization

Our results from the previous section can also be extended to consider the case with

more general constraint with the minimization set X involving equality and inequality

constraints of the form

X “ tx P Rn : Gxpxq “ 0, Fxpxq ď 0u

where the functions Gx : Rnx Ñ Rlx and Fx : Rnx Ñ Rmx are all twice continuously

differentiable. It will be convenient for the development of the primal-dual interior-point

method to use slack variables and rewrite (3.1) as

min
x,sx:Gxpxq“0,Fxpxq`sx“0,sxě0

fpxq. (3.9)

where sx P R
mx .

Similar to what we have in the unconstrained minimization, we want a second order

conditions to determine whether a point is a local minimum. Consider the function

Lpzq “ fpxq ` ν 1
xGxpxq ` λ1

xpFxpxq ` sxq,
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where we use the shorthand notation z :“ px, sx, νx, λxq. Lpzq is essentially the La-

grangian of (3.9). In order to present the second order conditions, we need to define two

concepts, the linear independence constraint qualification and strict complementarity

[54, Definitions 12.4 and 12.5].

Definition 3.1.4 (LICQ and strict complementarity) Let the sets of active inequal-

ity constraints for the minimization be defined by

Axpxq “ ti : F piq
x pxq “ 0, i “ 1, . . . , mxu

where F piq
x pxq denote the ith element of Fxpxq. Then:

• The linear independence constraint qualification (LICQ) is said to hold at z if the

vectors in the set

t∇xGpiq
x pxq, i “ 1, . . . , lxu

ď

t∇xF piq
x pxq, i P Axpxqu

are linearly independent.

• Strict complementarity is said to hold at x if λpiq
x ą 0 @i P Axpxq

We have almost all the ingredients to present the second order condition for con-

strained minimization. For unconstrained minimization, a sufficient condition for a point

x to be a local minimum is that ∇xfpxq “ 0 and ∇xxfpxq ą 0. If it were not for the

inequality constraints in (3.9), we would be able to state the second order conditions

using gradients and Hessians of Lpzq. The inequality constraints make the statement a

bit more complicated. The role of the gradient will be played by

gpz, bq :“

»

—

—

—

—

—

—

—

–

∇xLpzq

λx d sx ´ b1

Gxpxq

Fxpxq ` sx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.10)
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with d denoting the element wise Hadamard product of two vectors and b ě 0 the barrier

parameter (its role will be explained shortly). The role of ∇xxfpxq in the unconstrained

minimization will be played by the matrix

Hzzfpzq “

»

—

—

—

—

—

—

—

–

∇xxLpzq 0 ∇xGxpxq ∇xFxpxq

0 diagpλxq 0 diagps1{2
x q

∇xGxpxq
1 0 0 0

∇xFxpxq
1 diagps1{2

x q 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.11)

We also remind the reader that the inertia InpAq of a symmetric matrix A is a 3-tuple

with the number of positive, negative and zero eigenvalues of A.

Proposition 3.1.5 (Second order conditions for constrained minimization) Let

z be an equilibrium point in the sense that gpz, 0q “ 0 with λx, sx ě 0. If the LICQ and

strict complementarity hold at z and

InpHzzfpzqq “ pnx `mx, lx `mx, 0q (3.12)

then x is a local minimum of (3.9).

While this result is relatively well known, we present its proof in Appendix 3.A. The proof

also makes it easier to understand the proof of the second order sufficient conditions for

constrained minmax optimization.

Primal-dual interior-point method

Let dz :“ pdx, ds, dν , dλq be the update direction for z, which will play an equivalent

role to dx in the unconstrained case. A basic primal-dual interior-point method finds a

candidate solution to (3.9) using the iterations

z`
“ z ` αdz “ z ´ α∇zgpz, bq1 ´1gpz, bq (3.13)
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where the barrier parameter b is slowly decreased to 0, so that z converges to a root

of gpz, 0q “ 0 while α P p0, 1s is chosen at each step such that the feasibility condition

λx, sx ą 0 hold [54, Chapter 19]. This basic primal-dual interior-point has similar lim-

itation as a (non-modified) Newton method for unconstrained minimization: it might

converge towards an equilibrium point that is not a local minimum and ∇zgpz, bq might

not be invertible. Similar to what we have done in the unconstrained case, we can modify

this basic primal-dual interior-point method such that the update direction dz is obtained

from a quadratic program that locally approximates (3.9). The rest of this section will

be spent mostly constructing such quadratic program.

Let us start with X described only by equality constraints (i.e. no Fxpxq and no sx),

in which case Lpzq “ fpxq ` ν 1
xGxpxq. Consider the optimization

min
d̄x:Gxpxq`∇xGxpxq1d̄x“0

Lpzq ` d̄1
x∇xLpzq `

1
2 d̄1

xp∇xxLpzq ` ϵxpzqIqd̄x, (3.14)

which locally approximates (3.9) around px, νxq
1. If ∇xGxpxq is full column rank, we

can choose ϵxpzq large enough such that the solution of (3.14) is well defined and unique.

To show that, let us look at (3.14) as an optimization in its own right. Let d̄ν be the

Lagrange multiplier and define the function ḡpd̄x, d̄νq which is the function gpz, bq defined

in (3.10) but now for problem (3.14):

ḡpd̄x, d̄νq :“

»

—

–

∇xLpzq ` p∇xxLpzq ` ϵxpzqIqd̄x `∇xGxpxqd̄λ

Gxpxq `∇xGxpxq
1d̄x

fi

ffi

fl

. (3.15)

1Notice that we use the second order linearization of the Lagrangian Lpzq as the cost function in
(3.14), not the one of fpxq. The justification is that, if x˚ is a local minimum of (3.9) with associated
Lagrange multiplier ν˚, then x˚ is also a local minimum of

min
x:Gxpxq“0

fpxq ` ν˚
x

1Gxpxq.

Evidently, ν˚
x is not know in advance, so instead one uses the value of νx at the current iteration, which

leads to the local approximation (3.14).
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So if one takes any ϵxpzq ě 0 large enough such that

In

¨

˚

˝

»

—

–

∇xxLpzq ` ϵxpzq ∇xGxpxq

∇xGxpxq
1 0

fi

ffi

fl

˛

‹

‚

“ pnx, lx, 0q, (3.16)

then we guarantee that any point d̄x, d̄ν that satisfies ḡpd̄x, d̄νq “ 0 will be a strict local

minimum of (3.14) (see Proposition 3.1.5). Moreover, this choice of ϵxpzq also guarantees

that (3.14) is a strongly convex quadratic program, which, with the fact that ∇xGxpxq

is full column rank, means that the solution pd̄x, d̄νq is unique. Therefore, we will take

the update directions pdx, dνq to be the solution pd̄x, d̄νq. Moreover, with some algebra,

one can show that the solution to (3.14) is given by
»

—

–

dx

dν

fi

ffi

fl

“ ´

»

—

–

∇xxLpzq ` ϵxpzq ∇xGxpxq

∇xGxpxq
1 0

fi

ffi

fl

´1 »

—

–

∇xLpzq

Gxpxq

fi

ffi

fl

“ ´p∇zgpx, bq1 ` diagprϵxpzq1nx , 0lxsqq
´1gpx, bq.

Let us now address the case in which there there are inequality constraints. The

challenge is to take into account the constraint sx ě 0. To address this, let us start by

relaxing the inequality constraint from (3.9) and including it in the cost as the barrier

function ´b11 logpsxq (the logp¨q is element wise).

min
x,sx:Gxpxq“0,Fxpxq`sx“0

fpxq ´ b11 logpsxq. (3.17)

This is a relaxation because ´b11 logpsxq only accepts s ě 0 and goes to `8 if sx Ñ 0.

The optimization (3.17) only has equality constraints, so similar to what we did in (3.14),

let us construct a local second order approximation of (3.17) around z:

min
d̄x,d̄s:

Gxpxq`∇xGxpxq1d̄x“0,

Fxpxq`sx`∇xFxpxq1d̄x`d̄s“0

Lpzq ´ b11 logpsxq ` d̄1
x∇xLpzq ` d̄1

spλx ´ b1m sxq

`
1
2 d̄1

xp∇xxLpzq ` ϵxpzqIqd̄x `
1
2 d̄1

s diagpλx m sxqd̄s (3.18)
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where m designates the element wise division of two vectors. Equation (3.18) is not

exactly a second order approximation because instead of using as quadratic term for d̄s

the matrix b diagpsxq
´2 (which is the actual matrix given by second order approximation

of ´b11 logpsx ` dsq around sx), we used the matrix diagpλx m sxq. This is a relatively

well known substitutions for interior-point methods, and is what makes it be a primal-

dual interior-point method instead of a barrier interior-point method. The technical

justification is that, if we were at a point such that gpz, bq “ 0, the two would be

equivalent as λx d sx ´ b1 “ 0. In practice, it has been observed that this modified

linearization tends to perform better because it provides directions ds that also take into

account the current value of λx in the quadratic form, which helps to get a direction dz

that does no violate the constraints λx, sx ą 0 [54, Chapter 19.3].

Because (3.18) is a quadratic program with linear equality constraints, just as it was

the case for (3.14), we can use the exact same reasoning to choose ϵxpzq. Let us define

the matrices

Jzzfpzq “

»

—

—

—

—

—

—

—

–

∇xxLpzq 0 ∇xGxpxq ∇xFxpxq

0 diagpλx m sxq 0 I

∇xGxpxq
1 0 0 0

∇xFxpxq
1 I 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.19)

and Epzq :“ diagpϵxpzq1nx , 0mx`lx`mxq. If ϵxpzq is chosen large enough such that InpJzz`

Epzqq “ pnx`mx, lx`mx, 0q, then the solution pd̄x, d̄sq of (3.18) and associated Lagrange

multipliers pd̄ν , d̄λq are unique. With some algebra, one could show that the solution of

(3.18) is

dz “ ´pJzzfpzq ` Epzqq´1S´1gpz, bq

“ ´p∇zgpz, bq1 ` Epzqq´1gpz, bq

where S :“ diagp1nx , sx, 1lx`mxq. Putting it all together, the modified primal-dual
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interior-point is governed by the equation

z`
“ z ` αdz “ z ´ αp∇zgpz, bq1 ` Epzqq´1gpz, bq, (3.20)

where α P p0, 1s is chosen such that λx, sx ą 0. Conveniently, because we used diagpλxm

sxq for the second order linearization of the barrier, when ϵxpxq “ 0, we recover the

basic primal-dual interior-point method from (3.13). We refer to [54, Chapter 19] for

a complete description of an algorithm using (3.20), including a strategy to decrease

the barrier parameter b. Alternatively, we describe such strategy in Section 3.3 for the

minmax optimization case.

We can now state a result connecting the stability/instability of any equilibrium

point of the modified primal-dual interior-point method to such point being or not a

local minimum. The theorem says essentially the same thing as Theorem 3.1.3: On

the one hand, even if InpJzzfpzqq “ pnx ` mx, lx ` mx, 0q, taking ϵxpzq ą 0 will not

impair the algorithm’s capacity to converge towards a local minimum; this can be useful,

for instance, if InpJzzfpzqq has an eigenvalue close to 0. On the other hand, using the

modified primal-dual interior-point method essentially guarantees that the algorithm can

only converge towards and equilibrium point if such point is a local minimum, thus fixing

the issue of primal-dual interior-point methods being attracted to any equilibrium point,

regardless of whether such point is a local minimum.

Theorem 3.1.6 (Stability of modified interior-point method for minimization)

Let α “ 1 and pz, bq with b ą 0, be an equilibrium point in the sense that gpz, bq “ 0.

Assume the LICQ and strict complementarity hold at z, that Jzzfpzq is invertible, and

that Jzzfp¨q is differentiable on a neighborhood around z. Then for any function ϵxp¨q that

is constant in a neighborhood around z and satisfies InpJzz`Epzqq “ pnx`mx, lx`mx, 0q

one has that if:

i) z is a local minimum, then it is a LAS equilibrium point of (3.20).
70



Second order methods for minmax optimization Chapter 3

ii) z is not a local minimum, then it is an unstable equilibrium point of (3.20).

Proof sketch. First, using the same arguments as in the proof of Theorem 3.1.3, we

conclude that the Jacobian of the dynamic system (3.20) around a point z for which

gpz, bq “ 0 is

I ´ α
´

Jzzfpzq ` Epzq
¯´1

S´1∇zgpz, bq1 “ I ´ α
´

Jzzfpzq ` Epzq
¯´1

Jzzfpzq (3.21)

Second, it is straightforward to check that Hzzfpzq “ S1{2JzzfpzqS1{2 which, using

Sylvester’s law of inertia [116, Theorem 1.5], means that InpHzzfpzqq “ InpJzzfpzqq. This

means that one can check the second order conditions in (3.12) by using Jzzfpzq.

Let us define the matrix

Rpµq “ Zxpzq
1

»

—

–

∇xxLpzq ` µϵxpzqI 0

0 diagpλx m sxq

fi

ffi

fl

Zxpzq

where Zxpzq P R
nx`mx,nx´lx is a matrix with full column rank such that

»

—

–

∇xGxpxq
1 0

∇xFxpxq
1 I

fi

ffi

fl

Zxpzq “ 0. (3.22)

Using the same arguments as in the proof of Proposition 3.1.5, we conclude that

InpJzzfpzq ` Epzqq “ InpRpµqq ` plx `mx, lx `mxq,

which implies that InpJzzfpzq ` Epzqq “ pnx ` mx, lx ` mxq is equivalent to Rp1q ą 0

and that the second order sufficient condition is equivalent to Rp0q ą 0. This means that

the rest of the theorem’s proof is analogous to the one of Theorem 3.1.3, but instead of

looking at the sign of the smallest eigenvalue of ∇xxfpxq`µϵxpzqI, one looks at the sign

of the smallest eigenvalue of the matrix Rpµq.

If z is a local minimum, then λminpRp0qq ą 0. As ϵxpzq ě 0, we conclude that

λminpRpµqq ą 0 for every µ ě 0 and therefore z is a LAS equilibrium point of (3.13).
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Conversely, if z is not a local minimum, λminpRp0qq ă 0. By construction, ϵxpzq is

such that λminpRp1qq ą 0, therefore, by continuity of the eigenvalue, there is a µ P p0, 1q

such that λminpRpµqq “ 0 and therefore z is an unstable equilibrium point of (3.13).

3.2 Minmax optimization

Consider the minmax optimization problem

min
xPX

max
yPYpxq

fpx, yq (3.23)

where f : Rnx ˆ Rny Ñ R is a twice continuously differentiable objective function,

X Ă Rnx is the feasible set for x and Y : X Ñ Rny is a set-valued map that defines an

x dependent feasible set for y; we do not make any convexity or concavity assumption

on fp¨q, X and Yp¨q. We chose Yp¨q to be dependent on x because this describes the

most general application. Moreover, having the constraints of the inner maximization to

depend on the value of outer maximization is often necessary in problems such as robust

Model Predictive Control or in bi-level optimization. Furthermore, notice that we do not

make any assumption on whether the min and the max commute (and this would not

be well defined as Yp¨q depends on x). A solution px˚, y˚q to (3.23) is called a global

minmax and satisfies

fpx˚, yq ď fpx˚, y˚
q ď max

ỹPYpxq
fpx, ỹq @px, yq P X ˆ Ypx˚

q.

A point px˚, y˚q is said to be a local minmax of (3.23) if there exist a constant δ0 ą 0

and a positive function hp¨q satisfying hpδq Ñ 0 as δ Ñ 0, such that for every δ P p0, δ0s

and for every px, yq P tx P X : ∥x´ x˚∥ ď δu ˆty P Ypx˚q : ∥y ´ y˚∥ ď hpδqu we have

fpx˚, yq ď fpx˚, y˚
q ď max

ỹPYpxq:∥ỹ´y˚∥ďhpδq
fpx, ỹq
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[52,53]. Inspired by the properties of the modified Newton and primal-dual interior-point

methods for minimization in Section 3.1, we want to develop a Newton-type iterative

algorithm of the form
»

—

–

x`

y`

fi

ffi

fl

“

»

—

–

x

y

fi

ffi

fl

`

»

—

–

dx

dy

fi

ffi

fl

. (3.24)

where dx and dy satisfy the following properties:

P1: At each time step, pdx, dyq is obtained from the solution of a quadratic program that

locally approximates (3.23) and therefore px`, y`q can be seen as an improvement

over px, yq. This acts as a surrogate for guiding the modified Newton’s method

towards a solution at each step.

P2: The iterations of (3.24) can converge towards an equilibrium point only if such point

is a local minmax. Similar to what was the case in minimization (see Example

3.1.1), a pure Newton method will be attracted to any equilibrium point. This

makes sure that the iterations will not be attracted to equilibrium points that are

not local minmax.

P3: The iterations of (3.24) can converge to any local minmax. This property means

that any modification to Newton’s method needs to keep local minmax as attractor.

3.2.1 Unconstrained minmax

We start by considering the case where X “ Rnx and Yp¨q “ Rny such that (3.23)

simplifies to

min
xPRnx

max
yPRny

fpx, yq. (3.25)
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For this case, [52] establishes second order sufficient conditions to determine if a point

px, yq is a local minmax which can be stated in terms of the inertia of the matrix

∇zzfpx, yq :“

»

—

–

∇xxfpx, yq ∇xyfpx, yq

∇yxfpx, yq ∇yyfpx, yq

fi

ffi

fl

.

We recall that the inertia InpAq of a symmetric matrix A is a 3-tuple with the number

of positive, negative and zero eigenvalues of A.

Proposition 3.2.1 (Second order conditions for unconstrained minmax) Let px, yq

be an equilibrium point in the sense that ∇xfpx, yq “ 0 and ∇yfpx, yq “ 0. If

Inp∇yyfpx, yqq “ p0, ny, 0q and Inp∇zzfpx, yqq “ pnx, ny, 0q (3.26)

then px, yq is a local minmax.

The second order conditions in [52] are:

Inp∇yyfpx, yqq “ p0, ny, 0q and

Inp∇xxfpx, yq ´∇xyfpx, yq∇yyfpx, yq´1∇yxfpx, yqq “ pnx, 0, 0q,

which turn out to be equivalent to the inertia conditions in Proposition 3.2.1 in view

of Haynsworth inertia additivity formula [116, Theorem 1.6]. Notice that the second

order sufficient conditions are not symmetric. A point might be a local minmax even

if ∇xxfpx, yq č 0 as long as ´∇xyfpx, yq∇yyfpx, yq´1∇yxfpx, yq (which is positive) is

large enough. So the second order conditions are what allow one to distinguish between

an equilibrium point being a local minmax and a minmin, maxmax or maxmin. One

can interpret the second order sufficient conditions as saying that y ÞÑ fpx, yq is strongly

concave in a neighborhood around px, yq and x ÞÑ maxỹ:∥y´ỹ∥ăδ fpx, ỹq as being strongly

convex in a neighborhood around px, yq for some δ ą 0. Notice that these are only local
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properties around local minmax, as fp¨q may be nonconvex-nonconcave away from local

minmax points.

In order to obtain property P1, we propose to obtain the Newton direction pdx, dyq

for (3.24) by solving the following local quadratic approximation to (3.25)

min
d̄x

max
d̄y

fpx, yq `∇xfpx, yq1d̄x `∇yfpx, yq1d̄y ` d̄1
x∇xyfpx, yqd̄y

`
1
2 d̄1

x

´

∇xxfpx, yq ` ϵxpx, yqI
¯

d̄x `
1
2 d̄1

y

´

∇yyfpx, yq ´ ϵypx, yqI
¯

d̄y (3.27)

with ϵxp¨q and ϵyp¨q chosen so that the minmax problem in (3.27) has a unique solution,

which means that the inner (quadratic) maximization must be strictly concave and that

the outer (quadratic) minimization of the maximized function must be strictly convex,

which turns out to be precisely the second order sufficient conditions in Proposition 3.2.1,

applied to the approximation in (3.27), which can be explicitly written as follows:

In
´

∇yyfpx, yq ´ ϵypx, yqI
¯

“ p0, ny, 0q and

In
´

∇zzfpx, yq ` Epx, yq
¯

“ pnx, ny, 0q
(LQAC)

where Epx, yq “ diagpϵxpx, yq1nx ,´ϵypx, yq1nyq. We call these condition the Local Quadratic

Approximation Condition (LQAC). It is straightforward to show that the Newton itera-

tions (3.24) with pdx, dyq obtained from the solution to (3.27) is given by
»

—

–

x`

y`

fi

ffi

fl

“

»

—

–

x

y

fi

ffi

fl

`

»

—

–

dx

dy

fi

ffi

fl

“

»

—

–

x

y

fi

ffi

fl

´

´

∇zzfpx, yq ` Epx, yq
¯´1

»

—

–

∇xfpx, yq

∇yfpx, yq

fi

ffi

fl

. (3.28)

To obtain properties P2 and P3, we need all locally asymptotically stable equilibrium

points of (3.27) to be local minmax of (3.25) and that all other equilibrium points of

(3.27) to be unstable. For the unconstrained minimization in Section 3.1.1, to obtain

the equivalent of properties P2 and P3 it was sufficient to simply select ϵxp¨q such that

the local quadratic approximation (3.4) has a well-defined minimum (Theorem 3.1.3).
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However, for minmax optimization the (LQAC) does not suffice to guarantee that P2

and P3 hold. Our first counter example bellow show how the (LQAC) are not enough

to ensure that P2 holds; our second counter example show how they are not enough to

guarantee that P3 holds.

Example 3.2.2 Consider fpx, yq “ 1.5x2 ´ 4xy ` y2 for which the unique equilibrium

point x “ y “ 0 is not a local minmax point. Take ϵyp0, 0q “ 4 and ϵxp0, 0q “ 0 which

satisfy (LQAC). The Jacobian of the dynamics is

I ´

ˆ

»

—

–

3 ´4

´4 2

fi

ffi

fl

`

»

—

–

0 0

0 ´4

fi

ffi

fl

˙´1
»

—

–

3 ´4

´4 2

fi

ffi

fl

«

»

—

–

0 0.72

0 0.54

fi

ffi

fl

which has eigenvalues approximately equal to p0, 0.54q. Therefore p0, 0q is a LAS equilib-

rium point of (3.28) even though it is not a local minmax point.

Example 3.2.3 Consider fpx, yq :“ ´0.25x2` xy´ 0.5y2, for which the unique equilib-

rium point x “ y “ 0 is a local minmax point. Take ϵyp0, 0q “ 3 and ϵxp0, 0q “ 0.2 which

satisfy (LQAC). The Jacobian of the dynamics is

I ´

ˆ

»

—

–

´0.5 1

1 ´1

fi

ffi

fl

`

»

—

–

0.3 0

0 ´3

fi

ffi

fl

˙´1
»

—

–

´0.5 1

1 ´1

fi

ffi

fl

“

»

—

–

6 ´15

1.5 ´3

fi

ffi

fl

,

for which the eigenvalues are 1.5˘ 1.5i. Therefore p0, 0q is an unstable equilibrium point

of (3.28) even though it is a local minmax point.

The main contribution of this section is a set of sufficient conditions that, in addition to

(LQAC), guarantee P2 and P3 hold.

Theorem 3.2.4 (Stability of modified Newton’s method for minmax) Let px, yq

be an equilibrium point in the sense that ∇xfpx, yq “ 0 and ∇yfpx, yq “ 0. Assume that
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∇zzfpx, yq and ∇yyfpx, yq are invertible and that ∇zzfp¨q is differentiable on a neigh-

borhood around px, yq. Then there exist functions ϵxp¨q and ϵyp¨q that are constant in a

neighborhood around px, yq, satisfy the (LQAC) at px, yq and guarantee that if:

i) px, yq is a local minmax, then it is a LAS equilibrium point of (3.28).

ii) px, yq is not a local minmax, then it is an unstable equilibrium point of (3.28).

The theorem’s implications are similar to those of Theorem 3.1.3. On the one hand,

if px, yq is a local minmax, then it is possible to construct functions ϵxp¨q and ϵyp¨q that

guarantee that the modified Newton method can converge towards a local minmax. A

natural choice for such function near a local minmax is to take ϵyp¨q “ ϵxp¨q “ 0, which

not only provides the stability result, but can also achieve superlinear convergence if fp¨q

is Lipschitz. On the other hand, if px, yq is an equilibrium point but not a local minmax,

it is possible to construct functions ϵxp¨q and ϵyp¨q such that the algorithm’s iterations

cannot converge towards it. This means that the modified Newton’s method for minmax

can only converge towards an equilibrium point if such point is a local minmax.

While the statement of Theorem 3.2.4 is about existence, the proof is actually con-

structive. The functions ϵxp¨q and ϵyp¨q are not unique, and have to satisfy the following

conditions:

i) For the stability result, if ϵypx, yq “ 0, then the stability property is guaranteed by

any ϵxpx, yq ě 0. If ϵypx, yq ą 0, then ϵxpx, yq needs to be taken large enough to

satisfy the condition in equation (3.31) of the proof.

ii) For the instability result:

• unless Inp∇yyfpx, yqq ‰ p0, ny, 0q and Inp∇zzfpx, yqq “ pnx, ny, 0q, then it is

sufficient for ϵxpx, yq and ϵypx, yq to satisfy the (LQAC) to guarantee instabil-

ity.
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• if Inp∇yyfpx, yqq ‰ p0, ny, 0q and Inp∇zzfpx, yqq “ pnx, ny, 0q then for a given

ϵypx, yq, ϵxpx, yq needs to be large enough such that for some µ P p0, 1q,

Inp∇zzfpx, yq ` µEpx, yqq ‰ pnx, ny, 0q.

We use these results in Section 3.3 to present an efficient way to numerically construct

these functions.

Proof of Theorem 3.2.4. The fact that the (LQAC) can always be satisfied is straightfor-

ward: as ∇zzfpx, yq is differentiable, its eigenvalues are bounded and can be made have

the desired inertia by taking sufficiently large (but finite) values of ϵxpx, yq and ϵypx, yq.

Moreover, from our assumption that ∇zzfpx, yq and ∇yyfpx, yq are invertible, px, yq is a

local minmax point if and only if px, yq satisfy the second order sufficient in (3.26); this

is implied by the second order necessary conditions for local minmax in [52].

Using the same reasoning as in Theorem 3.1.3, as the (LQAC) hold then p∇zzfpx, yq`

Epx, yqq is nonsingular and the Jacobian of the dynamical system (3.28) at px, yq is

I ´ p∇zzfpx, yq ` Epx, yqq´1∇zzfpx, yq. (3.29)

Therefore, we can also use the same reasoning as in the proof of Theorem 3.1.3 to conclude

that px, yq is a LAS equilibrium point of (3.28) if ∇zzfpx, yq`µEpx, yq is nonsingular @µ P

r0, 2s. Conversely, px, yq is an unstable equilibrium point of (3.28) if ∇zzfpx, yq`µEpx, yq

is singular for some µ P p0, 2q.

For the rest of the proof, it will be useful to have defined the function

Rpµq “ ∇xxfpx, yq ´∇xyfpx, yqp∇yyfpx, yq ´ µϵypx, yqIq´1∇yxfpx, yq ` µϵxI (3.30)

and to drop the inputs px, yq from the expressions in order to shorten them.

Let us start by proving the statement for the case when px, yq is a local minmax, in

which case the (LQAC) hold with ϵy “ ϵx “ 0. We will prove that if

ϵx ě λminpϵy∇xyf∇yyf´2∇yxfq. (3.31)
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then px, yq is a LAS equilibrium point of (3.28). To prove it, we will show (3.31) ensures

that ∇zzf ` µE is nonsingular @ µ ě 0. First, as ∇yyf ă 0, µ ě 0, and ϵy ě 0, we have

∇yyf ´ µϵyI ă 0 and is thus nonsingular. Second, let us show that the condition (3.31)

implies that for any vector v

min
µPr0,2s

v1Rpµqv “ v1Rp0qv. (3.32)

Taking the derivative of v1Rpµqv with respect to µ we obtain

v1
´

ϵxI ´ ϵy∇xyfp∇yyf ´ µϵyIq´2∇yxf
¯

v ą v1
´

ϵxI ´ ϵy∇xyf∇yyf´2∇yxf
¯

v

in which we use the the fact that ∇yyf´2 ľ p∇yyf ´ µϵyIq´2 for all µ ě 0 as ∇yyf ă 0,

and ϵy ě 0. Therefore, if (3.31) holds, the derivative of v1Rpµqv with respect to µ is

non-negative, thus the cost does not decrease with µ, which implies that the minimum

is obtained for µ “ 0, which proves (3.32). Therefore if ϵx and ϵy are chosen to satisfy

(3.31), then @µ P r0, 2s it holds that Rpµq ľ Rp0q ą 0I, where the second inequality comes

from the second order sufficient conditions for unconstrained minmax (3.26). As neither

∇yyf ´ µϵyI ă 0 nor Rpµq are singular for µ P r0, 2s, Haynsworth inertia additivity

formula [116, Theorem 1.6] implies that ∇zzf ` µE is nonsingular @µ P r0, 2s, and

therefore px, yq is a LAS equilibrium point of (3.28).

Now the second part, let us prove the statement for the case in which px, yq is not a

local minmax. We will show that for every ϵy such that P p∇yyf ´ ϵyIq “ p0, ny, 0q there

for any large enough ϵx, the (LQAC) are satisfied and

∇zzf ` µ diagpϵx1nx ,´ϵy1nyq “ ∇zzf ` µE (3.33)

is singular for some µ P p0, 1q, which in turn guarantees that px, yq is an unstable equi-

librium point of (3.28) (see discussion in the beginning of the proof).
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If Inp∇zzfq ‰ pnx, ny, 0q, then any large enough value of ϵx such that (LQAC) holds

is enough to guarantee that ∇zzf ` µE is singular for some µ P p0, 1q. The proof is

straightforward: If Inp∇zzfq ‰ pnx, ny, 0q and Inp∇zzf ` Eq “ pnx, ny, 0q (from the

(LQAC)), then, by continuity of the eigenvalue Dµ P p0, 1q such that ∇zzf ` µE is

singular.

If Inp∇zzfq “ pnx, ny, 0q but Inp∇yyfq ‰ p0, ny, 0q, then the (LQAC) is not enough

to guarantee that px, yq is an unstable equilibrium point. However, it is possible to

guarantee instability. The proof is the following.

Let µ˚ be the largest µ P p0, 1q such that ∇yyf ´µϵyI is singular. We know that this

point exists because, on the one hand, by assumption ∇yyf is invertible (and therefore

µ˚ ą 0), and on the other hand, we know that ∇yyf ć 0 and that ∇yyf ´ ϵyI ă 0 by

construction (and therefore µ˚ ă 1).

Now take any µ̄ P p0, µ˚q such that ∇yyf ´ µ̄ϵyI is invertible (there are uncountable

many). Suppose there exists ϵ̄ such that for any ϵx ě ϵ̄, the (LQAC) hold and Inp∇zzf `

µ̄Eq ‰ pnx, ny, 0q. If such ϵ̄ exists, then, by the continuity of the eigenvalues, if Inp∇zzf`

µ̄Eq ‰ pnx, ny, 0q this means that ∇zzf ` µE is singular for some µ P p0, µ̄s.

So, to conclude the proof, we just need to show the existence of such ϵ̄. Take any

ϵx such that Inp∇zzf ` µ̄Eq “ pnx, ny, 0q (otherwise the proof is tautological). From

Haynsworth inertia additivity formula, we have that

Inp∇zzf ` µ̄Eq “ InpRpµ̄qq ` Inp∇yyf ´ µ̄ϵyIq

with InpRpµ̄qq “ pnx ´ k, k, 0q and Inp∇yyf ´ µ̄ϵyIq “ pk, ny ´ k, 0q for some k P

t1, . . . , minpnx, nyqu. On the one hand, it is straightforward to establish that Dϵ̄1 such that

if ϵx ě ϵ̄1, then InpRpµ̄qq ‰ pnx´ k, k, 0q, which means that Inp∇zzf ` µ̄Eq ‰ pnx, ny, 0q.

On the other hand, Dϵ̄2 such that if ϵx ě ϵ̄2, then Inp∇zzf `µEq “ pnx, ny, 0q. Therefore,

we can define ϵ̄ “ maxpϵ̄1, ϵ̄2q, which concludes the proof
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3.2.2 Constrained minmax

We now consider the case with more general constraint sets involving equality and

inequality constraints of the form

X “ tx P Rnx : Gxpxq “ 0, Fxpxq ď 0u and

Ypxq “ ty P Rny : Gypx, yq “ 0, Fypx, yq ď 0u
(3.34)

where the functions Gx : Rnx Ñ Rlx , Fx : Rnx Ñ Rmx , Gy : Rnx ˆ Rny Ñ Rly and

Fy : Rnx ˆ Rny Ñ Rmy are all twice continuously differentiable. Similar to what we did

in Section 3.1.2, it will be convenient for the development of the primal-dual interior-point

method to use slack variables and rewrite the constrained minmax (3.23) as

min
x,sx:Gxpxq“0,Fxpxq`sx“0,sxě0

max
y,sy :Gypx,yq“0,Fypx,yq`sy“0,syě0

fpx, yq. (3.35)

where sx P R
mx and sy P R

my .

Similar to what we have done in the unconstrained case, we want to present second

order conditions to determine if a point is a constrained local minmax. In order to do so,

we need to extend some fundamental concepts of constrained minimization to constrained

minmax optimization. The function

Lpzq :“ fpx, yq ` ν 1
xGxpxq ` λ1

xpFxpxq ` sxq ` ν 1
yGypx, yq ´ λ1

ypFypx, yq ` syq,

will play an equivalent role as the Lagrangian with pνx, νy, λx, λyq as the equivalent of

Lagrange multipliers; we use the shorthand notation z “ px, sx, y, sy, νy, λy, νx, λxq. Fur-

thermore, we use the following definition of linear independence constraint qualifications

(LICQ) and of strict complementarity for minmax optimization:

Definition 3.2.5 (LICQ and strict complementarity for minmax) Let the sets of

active inequality constraints for the minimization and maximization be defined, respec-
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tively, by

Axpxq “ ti : F piq
x pxq “ 0, i “ 1, . . . , mxu and

Aypx, yq “ ti : F piq
y px, yq “ 0, i “ 1, . . . , myu

where F piq
x pxq and F piq

y px, yq denote the ith element of Fxpxq and Fypx, yq. Then:

• The linear independence constraint qualification (LICQ) is said to hold at z if the

vectors in the sets

t∇xGpiq
x pxq, i “ 1, . . . , lxu

ď

t∇xF piq
x pxq, i P Axpxqu and

t∇yGpiq
y px, yq, i “ 1, . . . , lyu

ď

t∇yF piq
y px, yq, i P Aypx, yqu

are linearly independent.

• Strict complementarity is said to hold at z if λpiq
y ą 0 @i P Aypx, yq and λpiq

x ą 0 @i P

Axpxq

We have almost all the ingredients to present the second order conditions for con-

strained minimization. For the unconstrained minmax optimization, the second order

condition in Proposition 3.2.1 required that gradients (∇xfpx, yq and ∇yfpx, yq) were

equal to zero and that Hessians (∇zzfpx, yq and ∇yyfpx, yq) had a particular inertia.

Analogously to what was the case for the constrained minimization in Section 3.1.2, if

it were not for the inequality constraints in (3.34), we would be able to state the second

order conditions using gradients and Hessians of Lpzq. The inequality constraints make
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the statement a bit more complicated. The role of the gradient will be played by

gpz, bq :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

∇xLpzq

λx d sx ´ b1

∇yLpzq

´λy d sy ` b1

Gypx, yq

´Fypx, yq ´ sy

Gxpxq

Fxpxq ` sx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where d denotes the element wise Hadamard product of two vectors and b ě 0 the barrier

parameter, which is the extension to minmax of the function gp¨q defined in (3.10) for

the minimization. The role of ∇yyfpx, yq will be played by

Hyyfpzq “

»

—

—

—

—

—

—

—

–

∇yyLpzq 0 ∇yGypx, yq ´∇yFypx, yq

0 ´ diagpλyq 0 ´ diagps1{2
y q

∇yGypx, yq1 0 0 0

´∇yFypx, yq1 ´ diagps1{2
y q 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.36a)

while the role of ∇zzfpx, yq will be played by

Hzzfpzq “

»

—

—

—

—

–

Hxxfpzq Hxyfpzq Hxλfpzq

Hxyfpzq1 Hyyfpzq 0

Hxλfpzq1 0 0

fi

ffi

ffi

ffi

ffi

fl

(3.36b)

with blocks defined by

Hxyfpzq “

»

—

–

∇xyLpzq 0 ∇xGypx, yq ´∇xFypx, yq

0 0 0 0

fi

ffi

fl

Hxxfpzq “

»

—

–

∇xxLpzq 0

0 diagpλxq

fi

ffi

fl

Hxλfpzq “

»

—

–

∇xGxpxq ∇xFxpxq

0 diagps1{2
x q

fi

ffi

fl

(3.36c)
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Proposition 3.2.6 (Second order conditions for constrained minmax) Let z be

an equilibrium point in the sense that gpz, 0q “ 0 with λy, λx, sy, sx ě 0. If the LICQ and

strict complementarity hold at z and

InpHyyfpzqq “ ply`my, ny `my, 0q and

InpHzzfpzqq “ pnx `mx ` ly`my, lx `mx ` ny `my, 0q
(3.37)

then px, yq is a local minmax of (3.23).

Similar to what was the case for the second order sufficient conditions for uncon-

strained minmax in Proposition 3.2.1, the conditions in (3.37) are not symmetric, high-

lighting that there is a distinction between the minimizer and maximizer. Moreover,

similar to the unconstrained case, one can interpret the second order sufficient condi-

tions as saying that y ÞÑ fpx, yq is strongly concave in a neighborhood around px, yq and

x ÞÑ maxỹPYpxq:∥y´ỹ∥ăδ fpx, ỹq as being strongly convex in a neighborhood around px, yq

for some δ ą 0.

The conditions for Proposition 3.2.6 are slightly stricter than the ones in [53] as we

require strict complementarity and LICQ both for the max and the min. However, our

conditions allow us to verify whether a point is a local minmax using the inertia, instead

of having to compute solution cones. We prove that given these stricter assumptions our

conditions are equivalent to those in [53] in Appendix 3.A.

Primal-dual interior-point method

Let dz “ pdx, dsx , dy, dsy , dνy , dλy , dνx , dλxq be a shorthand notation to designate the up-

date direction of the variables z “ px, sx, y, sy, νy, λy, νx, λxq. Similar to the basic primal-

dual interior-point method introduced in Section 3.1.2, a basic primal-dual interior-point

method for minmax finds a candidate solution to (3.35) using the iterations

z`
“ z ` αdz “ z ´ α∇zgpz, bq1 ´1gpz, bq (3.38)
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where the barrier parameter b is slowly decreased to 0, so that z converges to a root of

gpz, 0q “ 0 while α P p0, 1s is chosen at each step such that the feasibility conditions

λy, λx, sy, sx ą 0 hold. We want to modify this basic primal-dual interior-point so it

satisfies the properties P1, P2 and P3.

In order to obtain property P1, we propose to obtain dz from the solution of a

quadratic program that locally approximates (3.35). Using equivalent arguments as in

the development of the quadratic program (3.18) for the constrained minimization in

Section 3.1.2, we obtain that the objective function should be

Kpdx, dsx , dy, dsyq “ Lpzq `∇xLpzq1dx ` pλx ´ b1m sxq
1dsx `∇yLpzq1dy

´ pλy ´ b1m syq
1dsy ` d1

x∇xyLpzqdy `
1
2d1

xp∇xxLpzq ` ϵxpzqIqdx

`
1
2d1

sx
diagpλx m sxqdsx `

1
2d1

yp∇yyLpzq ´ ϵypzqIqdy ´
1
2d1

sy
diagpλy m syqdsy ,

where ϵxpzq ě 0 and ϵypzq ě 0 are scalar and m designates the element wise division

of two vectors. The feasible sets dX for pdx, dsxq and the set-valued map that defines

a feasible set dYpdxq for pdy, dsyq are obtained from the first order linearization of the

functions in X and Ypdyq and are given by

dX “ tpdx, dsxq P R
nx ˆRmx : Gxpxq `∇xGxpxq

1dx “ 0,

Fxpxq ` sx `∇xFxpxq
1dx ` dsx “ 0u

dYpdxq “ tpdy, dsyq P R
ny ˆRmy : Gypx, yq `∇xGypx, yq1dx `∇yGypx, yq1dy

“ 0, Fypx, yq ` sy `∇xFypx, yq1dx `∇yFypx, yq1dy ` dsy “ 0u.

If ∇xGxpxq and ∇yGypx, yq have linearly independent columns, we propose to obtain

pdx, dsx , dy, dsyq as the optimizers and pdνy , dλy , dνx , dλxq the associated Lagrange multi-

pliers of the minmax optimization

min
d̄x,d̄sx PdX

max
d̄y ,d̄sy PdYpd̄xq

Kpd̄x, d̄sx , d̄y, d̄syq (3.39)
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where ϵxpzq and ϵypzq are chosen such that the solution to (3.39) is unique. We can apply

to (3.39) the second order condition from Proposition 3.2.6 and obtain that ϵxpzq and

ϵypzq need to be chosen to satisfy

InpJyyfpzq ´ Eypzqq “ ply`my, ny `my, 0q and

InpJzzfpzq ` Epzqq “ pnx `mx ` ly`my, lx `mx ` ny `my, 0q
(ConsLQAC)

where Eypzq :“ diagpϵypzq1ny , 0ly`2myq and Epzq :“ diagpϵxpzq1nx , 0mx ,´ϵypzq1ny , 0ly`2my`lx`mxq;

Jzzfpzq is the equivalent of the matrix defined in (3.36b) for the problem (3.39) and can

be shown to be equal to

Jzzfpzq “ S´1{2HzzfpzqS´1{2
“ S´1∇zgpz, bq1. (3.40)

with S “ diagp1nx , sx, 1ny , sy, 1ly`my`lx`mxq; Jyyfpzq is the equivalent partition of Jzzfpzq

as Hyypzq is of Hzzpzq. We will call these conditions the Constrained Local Quadratic

Approximation Conditions (ConsLQAC). In this case, it is straightforward to show that

modifying the basic primal-dual interior-point iterations in (3.38) by taking dz from the

solution of (3.39) leads to the iterations

z`
“ z ` αdz “ z ´ αpJzzfpzq ` Epzqq´1S´1gpz, bq. (3.41)

Analogously to what was the case in unconstrained minmax optimization, choosing

ϵxpzq and ϵypzq such that the (ConsLQAC) hold is not sufficient to guarantee that P2

and P3 hold for the modified primal-dual interior-point method (a counter example can

be found in Section 3.3.2). Our next theorem is the extensions of Theorem 3.2.4 to the

modified primal-dual interior-point and has the equivalent consequences: For property P3

to hold, as long as ϵxpzq is large enough, taking ϵypzq ą 0 will not impair the algorithm’s

capacity to converge towards a local minmax; this can be useful, for instance, if InpJzzq

has an eigenvalue close to 0. For property P2 to hold, in order to guarantee that the

modified primal-dual interior-point method cannot converge towards an equilibrium point
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that is not local minmax, the (ConsLQAC) are sufficient only whenever InpJzzfpzqq ‰

pnx`mx` ly`my, lx`mx`ny`my, 0q. Otherwise, ϵxpzq needs to be taken large enough

such that InpJzzfpzq ` µEpzqq ‰ pnx ` mx ` ly ` my, lx ` mx ` ny ` my, 0q for some

µ P p0, 1q.

Theorem 3.2.7 (Stability of modified interior-point method for minmax) Let α

“ 1 and pz, bq with b ą 0, be an equilibrium point in the sense that gpz, bq “ 0. Assume

the LICQ hold at z, that Jzzfpzq and Jyyfpzq are invertible, and that Jzzfp¨q is differ-

entiable in a neighborhood around z. Then there exists functions ϵxp¨q and ϵyp¨q that are

constant in a neighborhood around z, satisfy the (ConsLQAC) at z and guarantee that if:

i) z is a local minmax, then it is a LAS equilibrium point of (3.41).

ii) z is not a local minmax, then it is an unstable equilibrium point of (3.41).

Proof. Let us define the partitions, Jxxfpzq, Jyxfpzq, and Jxλfpzq of Jzzfpzq analogously

to the partitions Hxxfpzq, Hyxfpzq, and Hxλfpzq of Hzzfpzq.

Using the same arguments as in the proof of Theorem 3.1.3, we conclude that the

Jacobian of the dynamic system (3.41) around a point z such that gpz, bq “ 0 is

I ´ α
´

Jzzfpzq ` Epzq
¯´1

S´1∇zgpz, bq1 “ I ´ α
´

Jzzfpzq ` Epzq
¯´1

Jzzfpzq (3.42)

Moreover from (3.40) we have that InpHzzfpzqq “ InpS1{2JzzfpzqS1{2q. Using Sylvester’s

law of inertia [116, Theorem 1.5], this simplifies to InpHzzfpzqq “ InpJzzfpzqq. If a point

z is such that gpz, bq “ 0, then one can check (3.37) using Jzzfpzq and Jyyfpzq.

Let us define the matrices

Rypµq “ Zypzq
1

»

—

–

∇yyLpzq ´ ϵpzqµI 0

0 ´ diagpλy m syq

fi

ffi

fl

Zypzq (3.43a)
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Rxpµq “ Zxpzq
1
´

Jxxfpzq ´ JxyfpzqpJyyfpzq ´ µEypzqq
´1Jyxfpx, yq ` µExpzq

¯

Zxpzq

(3.43b)

where Zypzq P R
ny`my ,ny´ly and Zxpzq P R

nx`mx,nx´lx are any full column rank matrices

such that
»

—

–

∇yGypx, yq ´∇yFypx, yq

´I 0

fi

ffi

fl

Zypzq “ 0 and Jxλfpzq1 Zxpzq “ 0. (3.44)

Using the same reasoning as in the proof of Proposition 3.2.6 one can conclude that

InpJyyfpzq ´ µEypzqq “ InpRypµqq ` ply `my, ly `my, 0q

InpJzzfpzq ` µEpzqq “ InpRxpµqq ` InpJyyfpzq ´ µEypzqq ` plx `mx, lx `mx, 0q,

which implies that the (ConsLQAC) can be stated as

Ryp1q ă 0 and Rxp1q ą 0.

This means that the exact same arguments used in the proof of the unconstrained minmax

in Theorem 3.2.4 can be used for the constrained case. More specifically, each arguments

with

∇yyfpx, yq ´ ϵypx, yqµI

and

∇xxfpx, yq ´∇xyfpx, yqp∇yyfpx, yq ´ µϵypx, yqIq´1∇yxfpx, yq ` µϵxpx, yqI.

has an analogous statement with Rypµq and Rxpµq, respectively. For the sake of com-

pleteness, we highlight the main points of the analogy.

First, when z is such that (3.37) holds, the sufficient condition for z to be a LAS

equilibrium point of (3.41) is that

∇µRxp0q “ Zxpzq
1
´

Expzq ´ JxyfpzqJyyfpzq´1EypzqJyyfpzq´1Jyxfpzq
¯

Zxpzq ľ 0. (3.45)
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The only extra argument needed is to show that condition (3.45) is always feasible for

some ϵxpzq large enough. This is not evident as the matrix

M :“ ´JxyfpzqJyyfpzq´1EypzqJyyfpzq´1Jyxfpzq

has size pnx`mxqˆpnx`mxq while Expzq only has nx nonzero elements in the diagonal.

However, because of the structural zeros in Jxyfpzq and Eypzq, one can verify with some

algebraic manipulation that rankpMq :“ r ď minpnx, nyq. Let Λ be the matrix with

eigenvalues of M in decreasing order and V its associated eigenvectors such that M “

V ΛV 1. We can partition V into V1 of size pr, rq associated to the nonzero eigenvalues of

M and V2 “ Inx`mx´r. This partition means that Expzq “ V 1ExpzqV , which means on

can conclude that

∇µRxpµq “ Zxpzq
1V 1

´

Expzq ` Λ
¯

V Zxpzq,

which implies that one can always take ϵx large enough such that for each negative

diagonal entries of Λ, the equivalent diagonal element of pExpzq ` Λq is positive.

Now the second part, let us prove the statement when z is such that the second order

conditions in (3.37) do not hold. We need to prove that

Jzzfpzq ` µEpzq (3.46)

is singular for some µ P p0, 1q. On the one hand, using the same analysis as in the proof of

Theorem 3.2.4, we conclude that the (ConsLQAC) are sufficient to guarantee that z is an

unstable equilibrium point of (3.41) if InpJzzfpzqq ‰ pnx`mx`ly`my, lx`mx`ny`my, 0q.

On the other hand, if InpJzzfpzqq “ pnx ` mx ` ly ` my, lx ` mx ` ny ` my, 0q, than

we can guarantee that by taking ϵx sufficiently large, there is a µ P p0, 1q such that

InpJzzfpzq ` µEq ‰ pnx `mx ` ly `my, lx `mx ` ny `my, 0q, which means that z is an

unstable equilibrium point of (3.41). This concludes the proof.
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3.3 Algorithmic development and numerical exam-

ples

The following algorithm combines the result of the previous section to propose a

method for selecting ϵxpzq and ϵypzq that satisfies the (ConsLQAC) and guarantees the

stability properties of Theorem 3.2.7. We only state the algorithm for the constrained

case, its specialization to the unconstrained case is straightforward. In order to keep

the algorithm more simple and to highlight the instability property, we chose to use the

functions ϵyp¨q “ ϵxp¨q “ 0 whenever the algorithm is near a local minmax.
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Algorithm 1 Primal-dual interior-point method for minmax
Require: An initial point z “ px, sx, y, sy, νy, λy, νx, λxq, an initial barrier parameter

value b, a barrier reduction factor σ P p0, 1q, a stopping accuracy δs ě 0, a δϵ ą 0

that defines a neighborhood for stopping to adjust ϵx and ϵy.

1: while ∥gpz, bq∥
8
ą δs do

2: if ∥gpz, bq∥
8
ą δϵ then

3: ϵx Ð 0, ϵy Ð 0

4: if (ConsLQAC) cannot be satisfied with ϵy “ ϵx “ 0 then

5: Increase ϵy until

InpJyyfpzq ´ Eyq “ ply `my, ny `my, 0q

6: Increase ϵx until

InpJzzfpzq ` Eq “ pnx `mx ` ly `my, lx `mx ` ny `my, 0q

7: if InpJzzfq “ pnx `mx ` ly `my, lx `mx ` ny `my, 0q then

8: Increase ϵx until, for some value of µ P p0, 1q,

InpJzzfpzq ` µEpzqq ‰ pnx `mx ` ly `my, lx `mx ` ny `my, 0q

9: end if

10: end if

11: end if

12: Compute a new z using the equation

z Ð z ´ α
´

Jzzfpzq ` E
¯´1

S´1gpz, bq

where α P p0, 1s is selected such that the feasibility conditions

λy, λx, sy, sx ą 0 hold.

13: if ∥gpz, bq∥
8
ď b then

14: b Ð σ b

15: end if

16: end while
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Proposition 3.3.1 (Construction of the modified interior-point method) Algorithm

1 generates functions ϵxp¨q and ϵyp¨q that satisfy the conditions of Theorem 3.2.7 in the

neighborhood of any equilibrium point z˚ that satisfy the assumptions of Theorem 3.2.7.

Proof. For each z, Algorithm 1 produces values of ϵx and ϵy that only depend on z,

therefore ϵxp¨q and ϵyp¨q are functions. Moreover, ϵxp¨q and ϵyp¨q are such that either

the stability condition (3.45) or the instability condition (3.46) are satisfied for each z,

therefore they are satisfied in the neighborhood of any equilibrium point z˚. Finally, ϵxp¨q

and ϵyp¨q are constant in a neighborhood around each equilibrium point as the values of

ϵx and ϵy are not adjusted when ∥gpz, bq∥
8
ď δϵ.

In Algorithm 1, for each z, pϵx, ϵyq is chosen to satisfy the conditions of Theorem

3.2.7, and therefore generate the desired stability and instability. This means that the

algorithm essentially guarantees that the modified primal-dual interior-point method can

only converge to an equilibrium point if such point is a local minmax. A key point of the

algorithm is that it only uses the inertia of matrices, which can be efficiently computed

using either the LBLt or LDLt decomposition, as we further detail in the following

remark.

Remark 3.3.2 (Computing the inertia) It is not necessary to actually compute the

eigenvalues of Jzzfpzq in order to determine the inertia. A first option is to use the lower-

triangular-block-lower-triangular-transpose (LBLt) decomposition [54, Appendix A], which

decomposes Jzzfpzq into the product LBL1 where L is a lower triangular matrix and B

a block diagonal one, the inertia of B is the same as the inertia of Jzzfpzq.

Let Γ “ diagpγ1nx`mx ,´γ1ny`my , γ1ly`my ,´γ1lx`mxq, with γ a small positive num-

ber. A second approach is to use the lower-triangular-diagonal-lower-triangular-transpose

(LDLt) decomposition, to decompose Jzzfpzq`Γ into the product LDL1 where L is a lower

triangular matrix and D is a diagonal matrix; the inertia of D, which is given by the
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number of positive, negative and zero elements of the diagonal of D, gives the inertia of

Jzzfpzq ` Γ. The matrix Γ introduces a distortion in the inertia but it helps to stabilize

the computation of the LDLt decomposition, which tends to be faster than the LBLt de-

composition. This is the approach we use in our implementation; it has been studied in

primal-dual interior-point algorithms for minimization and the distortion introduced by

Γ tends to be compensated by a better numerical algorithm [117,118]. ˝

3.3.1 Benchmark example for unconstrained minmax

Consider the following functions

f1px, yq “ 2x2
´ y2

` 4xy ` 4{3y3
´ 1{4y4

f2px, yq “ p4x2
´ py ´ 3x` 0.05x3

q
2
´ 0.1y4

q exp
`

´0.01px2
` y2

q
˘

f3px, yq “ px´ 0.5qpy ´ 0.5q ` exp
`

´px´ 0.25q2 ´ py ´ 0.75q2
˘

f4px, yq “ xy.

The first three have been used as examples in [69,73,119] respectively, whereas the fourth

one is a well known case for a simple but challenging function to find the local minmax.

These problems all satisfy the assumption of Theorem 3.2.4 and have local minmax

points. We have chosen these functions because, as we will show, they illustrate some

interesting behaviors.

Our goal is to compare the performance of Algorithm 1 to the performance of two

well established algorithms. On the one hand, we look at the performance of a “pure”

Newton algorithm, i.e. using ϵxp¨q “ ϵyp¨q “ 0. On the other hand, we look into the

convergence of a Gradient Descent Ascent (GDA), i.e.

x`
“ x´ αx∇xfpx, yq

y`
“ y ` αy∇yfpx, yq

93



Second order methods for minmax optimization Chapter 3

Pure Newton GDA Algorithm 1

Cnvg Cnvg mm Iter Cnvg Cnvg mm Iter Cnvg Cnvg mm Iter

f1 1000 1000 4.1 1000 1000 485 1000 1000 5.7

f2 1000 665 7.3 976 976 18195 996 996 8.1

f3 954 485 4.8 373 373 40936 709 709 7.1

f4 1000 1000 1 0 0 – 1000 1000 1

Table 3.1: Comparing the performance of Pure Newton’s method, Gradient Descent
Ascent and Algorithm 1

.

where αx and αy are constant and different for each problem; we did our best to select

the best values αx and αy for each problem.

Each algorithm is initialized 1000 times, using the same initialization for the three

of them each time. We compare their convergence properties according to three criteria:

the number of times the algorithm converged (Cnvg), the number of times it converged

to a local minmax point (Cnvg mm) and the average number of iterations to converge

to a local minmax point (Iter). The algorithm is terminated when the infinity norm of

the gradient is smaller than δs “ 10´5 and we declare that they did not converge if it has

not terminated in less than 500 iterations for the pure Newton and Algorithm 1, and 50

000 for GDA. The result of the comparison is displayed in Table 3.1. The key take away

from these examples is that Algorithm 1 never converges towards an equilibrium point

that is not a local minmax, in contrast with the pure Newton method which is attracted

to any equilibrium point. Here is a detailed observation from this comparison.

• The pure Newton algorithm has good overall convergence for all the problems, but it

also tends to often converge towards an equilibrium point that is not a local minmax

problems. On the other hand, the pure Newton converges to a local minmax in less
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iterations than the other two methods. While this is expected when comparing to

the GDA, it might not be clear why it is the case when compared to Algorithm 1.

We believe the most likely reason is that by taking ϵx and ϵy different than 0, it

requires some more iterations to converge towards a local minmax.

• The GDA algorithm seems to enjoy the property of always converging towards

a local minmax, and except for f3p¨q and f4p¨q, it has good rate of convergence.

However, GDA takes an exceptionally long number of iterations to converge. This

is somehow expected from the fact that it is a first order method, and it is partially

compensated by each iteration being more simple to compute. However, one must

keep in mind that none of this takes into account the time that needs to be spent

adjusting the step sizes until a good convergence rate can be obtained.

• At last, Algorithm 1 is across the board the algorithm with better convergence

towards local minmax, and it does so in the smallest number of iterations. As it was

expected from the theory, Algorithm 1 never converges towards an equilibrium point

that is not a local minmax. From a numerical perspective, the biggest takeaway is

that while our results are only about local convergence, the algorithm still enjoys

good global convergence properties; only in f3p¨q it does not converge essentially

100% of the time.

• Function f4p¨q is particularly interesting example. First, notice that the pure New-

ton converges in one iteration. This is expected as the iterations are given by
»

—

–

x`

y`

fi

ffi

fl

“

»

—

–

x

y

fi

ffi

fl

´

»

—

–

0 1

1 0

fi

ffi

fl

´1 »

—

–

y

x

fi

ffi

fl

“

»

—

–

x

y

fi

ffi

fl

´

»

—

–

0 1

1 0

fi

ffi

fl

´1 »

—

–

0 1

1 0

fi

ffi

fl

»

—

–

x

y

fi

ffi

fl

“

»

—

–

0

0

fi

ffi

fl

.

This is in stark contrast with GDA which, as it is well known, does not converge

towards the local minmax. As for Algorithm 1, it converges even though it does
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Figure 3.1: Trajectory for Homicidal Chauffeur problem with and without guarantee-
ing instability at equilibrium points that are not a local minmax.

not satisfy the assumptions of Theorem 3.2.4, further emphasizing that these are

sufficient but not necessary conditions. Notice that Algorithm 1 is not the same as

the pure Newton as the Hessian will be modified with an ϵypx, yq ą 0 to guarantee

that the portion of the Hessian associated to the maximization is negative definite.

3.3.2 The homicidal chauffeur example for constrained minmax

In the homicidal chauffeur problem, a pursuer driving a car is trying to hit a pedes-

trian, who (understandably) is trying to evade it. The pursuer is modeled as a discrete

time Dubins’s vehicle with equations

x`
p “

»

—

—

—

—

–

xp1q
p ` v cos xp3q

p

xp2q
p ` v sin xp3q

p

xp3q
p ` u

fi

ffi

ffi

ffi

ffi

fl

“: ϕppxp, uq

where xpiq
p designates the ith element of the vector xp, v is a constant forward speed and

u is the steering, over which the driver has control. The pedestrian is modeled by the
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accumulator

x`
e “ xe ` d “: ϕepxe, dq

where d is the velocity vector. Given a time horizon T , and initial positions xeptq and

xpptq, we want to solve

min
UPU

max
DPD

T ´1
ÿ

i“0

∥∥∥xp1,2q
p pt` i` 1q ´ xept` i` 1q

∥∥∥2

2
` γuupt` iq2 ´ γd∥dpt` iq∥2

2 (3.47)

where xp1,2q
p designates the first and second elements of the vector xp; γu and γd are

positive weights; and U , U , D and D are defined for i “ 0, . . . , T ´ 1

U :“ upt` iq, xppt` i` 1q

U :“ tupt` iq, xppt` i` 1q : upt` iq2 ď u2
max, xppt` i` 1q “ ϕp

`

xppt` iq, upt` iq
˘

u

D :“ dpt` iq, xept` i` 1q

D :“ tdpt` iq, xept` i` 1q : ∥dpt` iq∥2
2 ď d2

max, xept` i` 1q “ ϕe

`

xept` iq, dpt` iq
˘

u.

Instead of explicitly computing the solution of the trajectory of the pursuer and evaders,

we are implicitly computing them by setting the dynamics as equality constraints; we

will show shortly that this has an important impact on the scalability of the algorithm.

Each player is controlled using Model Predictive Control (MPC), meaning that at

each time step t we solve (3.47) obtaining controls uptq and dptq, which are then used

to control the system for the next time step. The problem satisfy the assumptions of

Theorem 3.2.7, as it is differentiable and has local minmax points for which the LICQ

and strict complementarity hold.

The importance of guaranteeing instability It is natural to ask whether it is im-

portant to enforce the instability guarantee, specially in the case where the (ConsLQAC)

is not enough, meaning one needs to use line 7 of Algorithm 1. In Figure 3.1 we show

what can happen if they are not enforced. We take the homicidal chauffeur problem
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with a horizon of T “ 20 and we run the MPC control for t “ 1, . . . , 50. In one case

we enforce the instability guarantee, meaning that we use line 7 of Algorithm 1, on the

second case we only enforce the (ConsLQAC), and on the third case we only enforce the

instability guarantees after t “ 25. In all cases, we start the system with the exact same

initial conditions.

In the first case, the evader (which is the maximizer), is able to find a control that

allows it to get further from the pursuer. The average cost for all the time steps (t “

1, . . . , 50) ends up being around 0.2. In the second case, the solver keeps being attracted

towards a point that is not a local minmax (and more precisely, not a local maximum),

which means that the evader is not capable of escaping the pursuer; as a consequence,

the average cost for all the time steps ends up being around 0.05, which is lower, as

expected. Finally, in the third case, at t “ 25 the solver starts to be able to converge

towards a local minmax, and the evader is able to escape from the pursuer.

This example illustrates how crucial it is to enforce instability. By doing it, we

guarantee that the algorithm can only converge towards an equilibrium point that is a

local minmax, and this can completely change the numerical solution.

Exploiting sparsity Instead of setting the dynamics as equality constraints in (3.47),

one could simply find the solution of the trajectory equation at each time step. This

means to explicitly calculate xppt`i`1q “ ϕp

´

ϕp

`

. . . , upt`i´1q
˘

, upt`iq
¯

. In the MPC

literature, this is known as the sequential approach, versus the simultaneous approach we

used in (3.47) [120, Chapter 8.1.3]. We want to study the scalability of the algorithm by

enlarging the horizon T , both when using the sequential and the simultaneous approaches.

The sequential approach solves an optimization problem in a smaller space state,

because it only needs to solve the optimization for uptq, . . . , upt` T q and dptq, . . . , dpt`

T q and it does not have to handle equality constraints. However, as we can see from
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Figure 3.2: Scaling of homicidal chauffeur with horizon length and sparsity pattern of
the Hessian when using the sequential approach

the sparsity pattern in Figure 3.2b, the Hessian is rather dense, with large parts of it

containing nonzero entries. As it can be seen in Figure 3.2a, the algorithm scales rather

poorly as the horizon length (and hence, the number of variables) increases; it no longer

converges reliably after T “ 80.

The simultaneous approach on the other hand solves the optimization problem in a

much larger space state, because not only it needs to also solve for uptq, . . . , upt ` T q

and dptq, . . . , dpt ` T q, but also for xpptq, . . . , xppt ` T q and xeptq, . . . , xept ` T q and it

also needs to handle equality constraints. Fortunately, as we can see from the sparsity

pattern in Figure 3.3b, most of the entries in the Hessian are actually structurally zero

(meaning they are always zero). TensCalc’s implementation of the LDLt factorization

exploits sparsity patterns and scales roughly in OpT q, which makes it substantially more

efficient than standard LDLt decomposition, which scales in OpT 3q [54, Appendix A]. At

each step of Algorithm 1, most of the time is spent computing the LDLt decomposition,

either for adjusting ϵx and ϵy or to invert Hzzfpzq. As a consequence, we can see in

Figure 3.3a that both the number of iterations necessary to solve the optimization as
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Figure 3.3: Scaling of homicidal chauffeur with horizon length and sparsity pattern of
the Hessian

well as the time per iteration scale roughly linear, the first being multiplied by about 1.7

while the second by 3.5 while the horizon length T is multiplied by roughly 30.

Remark 3.3.3 (Minmax problems with shared dynamics) In the homicidal chauf-

feur, the control of the pursuer does not impact the dynamics of the evader, and vice versa.

This is why in (3.47) the dynamics can be set as equality constraints independently for

the min and for the max.

Now consider the problem

x`
“ fpx, u, dq

where u is the control and d is the disturbance and one wants to minimize a cost function

V pxp1q, . . . , xpT q, up0q, . . . , upT ´1qq given the worst disturbance dp1q, . . . , dpT q. Because

both the control and the disturbances influence the dynamics, we need to include the dy-

namics as equality constraints for the maximization, leading to the optimization problem

min
upiqPU ,i“0,...,T ´1

max
dpiqPD,xpi`1q,i“0,...,T ´1:

xpi`1q“fpxpiq,upiq,dpiqq

V
´

xp1q, . . . , xpT q, up0q, . . . , upT ´ 1q
¯
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where U , D are the feasible sets for the control and disturbances. It is important to

notice that x just acts as a latent/dummy variable that allows us to avoid solving the

trajectory equation. Setting it as a maximization variable does not changes the result as

x is always exactly determined by the value of u and d. It does, however, improves the

numerical efficiency of the algorithm as now the Hessian matrices are sparse and their

LDL decomposition can be efficiently computed. ˝

3.4 Conclusion

The main contribution of this article is the construction of Newton and primal-dual

interior-point algorithm for nonconvex-nonconcave minmax optimization that can only

converge towards an equilibrium point if such point is a local minmax. We established

this results by modifying the Hessian matrices such that the update steps can be seen

as the solution of quadratic programs that locally approximate the minmax problem.

While our results are only local, using numerical simulations we see that the algorithm

is able to make progress towards a solution even if it does not start close to it. We also

illustrated using numerical examples how important it is to have a formulation of the

minmax problem such that the Hessian matrix is sparse.

The main future direction would be to develop non-local convergence results. We

believe that the best approach to obtain such results would be to develop a type of

Armijo rule which could be used to obtain similar results to those from minimization.

Developing filters and merit function could also play an important role in coming up with

ways to improve the algorithm’s convergence.
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3.A Appendix of Chapter 3

3.A.1 Proof of Proposition 3.1.5 (constrained minimization)

The first step is to show that gpz, 0q “ 0 is equivalent to the Karush–Kuhn–Tucker

(KKT) conditions [54, Chapter 12]. Consider the “full" Lagrangian L̃px, sx, νx, λx, τxq “

fpxq ` ν 1
xGxpxq ` λ1

xpFxpxq ` sxq ´ τ 1
xsx for the optimization (3.9). The KKT condition

would then be that
»

—

—

—

—

—

—

—

—

—

—

–

∇xL̃px, sx, νx, λx, τxq

∇sxL̃px, sx, νx, λx, τxq “ λx ´ τx

Gxpxq

Fxpxq ` sx

τx d sx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0 (3.48)

and sx, τx ě 0. The second equation can be used to substitute τx by λx, which gives the

equality gpz, 0q “ 0.

Now the second order sufficient conditions. Let us start by rewriting the minimization

(3.1) but instead of using as slack variables sx with the constraint sx ě 0, using the slack

variable wx d wx (where d is the element wise product):

min
x,wx:Gxpxq“0,Fxpxq`wxdwx“0

fpxq. (3.49)

Consider now the solution cone

Cxpzq :“ tpdx, dwq P R
nx`mxzt0u : ∇xGxpxq

1dx “ 0, ∇xFxpxqdx ` 2 diagpwxqdw “ 0u

Let px, wx, νx, λxq be a point such that the KKT conditions for (3.49) hold. As, by

assumption, the LICQ and strict complementarity conditions hold, if
»

—

–

dx

dw

fi

ffi

fl

1 »

—

–

∇xxLpzq 0

0 2 diagpλxq

fi

ffi

fl

»

—

–

dx

dw

fi

ffi

fl

1

ą 0 @pdx, dwq P Cxpzq (3.50)
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then px, wx, νx, λxq is a local minimum of (3.49). The proof can be found in [54, Theorem

12.5].

We now need to prove that (3.50) is equivalent to the condition (3.12) from the

proposition. Because the LICQ and strict complementarity hold, the set Cxpzq is given

by the null space (a.k.a. the kernel) of the matrix

H̃xλfpzq “

»

—

–

∇xGxpxq ∇xFxpxq

0 2 diagpwxq.

fi

ffi

fl

(3.51)

This result can be found in [54, Chapter 12.5], in the subsection “Second-order conditions

and projected Hessian". Let Zx P R
nx`mx,nx`mx´mx´lx be a matrix with full column rank

such that H̃xλfpzq1 Zx “ 0. Then, the condition (3.50) can be rewritten as

Z 1
x

»

—

–

∇xxLpzq 0

0 2 diagpλxq

fi

ffi

fl

Zx ą 0

which is equivalent to say that

In

¨

˚

˝

Z 1
x

»

—

–

∇xxLpzq 0

0 2 diagpλxq

fi

ffi

fl

Zx

˛

‹

‚

“ pnx ´ lx, 0, 0q

Now consider the matrix

H̃zzfpzq “

»

—

—

—

—

—

—

—

–

∇xxLpzq 0 ∇xGxpxq ∇xFxpxq

0 2 diagpλxq 0 2 diagpwq

∇xGxpxq
1 0 0 0

∇xFxpxq
1 2 diagpwq 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.52)

As the LICQ conditions hold, according to [54, Theorem 16.3]

InpH̃zzfpzqq “ In

¨

˚

˝

Z 1
x

»

—

–

∇xxLpzq 0

0 2 diagpλxq

fi

ffi

fl

Zx

˛

‹

‚

` plx `mx, lx `mx, 0q.
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Therefore (3.50) holds if and only if InpH̃zzfq “ pnx `mx, lx `mx, 0q.

We have almost finished the proof, we now just need to prove that InpH̃zzfpzqq “

InpHzzfpzqq. Using the equality condition Fxpxq ` wx d wx “ 0, we obtain the relation

wx “ p´Fxpxqq
1{2 “ s1{2

x . If we substitute back this result in H̃zzfpzq we almost have

that H̃zzfpzq is equal to Hzzfpzq except for the 2 in front of diagpλxq and diagps1{2q.

Take the matrix Ξ defined by

Ξ “ diagpr1nx , rap1q, ap2q, ..., apmxq
s, 1lx`mxsq

where

apiq
“

$

’

’

&

’

’

%

1
2 if λpiq

x “ 0 and spiq
x ‰ 0

1?
2 if λpiq

x ‰ 0 and spiq
x “ 0

with λpiq
x and spiq

x denoting the ith elements of λx and sx. Then ΞH̃zzfpzqΞ “ Hzzfpzq

which, according to Sylvester’s law of inertia [116, Theorem 1.5], implies that inertiapH̃zzfpzqq “

inertiapHzzfpzqq, which finishes the proof. ˝

3.A.2 Proof of Proposition 3.2.6 (constrained minmax opti-

mization)

First, using the exact same reasoning as in the proof of Proposition 3.1.5, one can

show that gpz, 0q “ 0 is equivalent to the first order necessary condition in [53].

Similarly to what we did in the proof of Proposition 3.1.5, let us start by rewriting

the constrained minmax optimization (3.35) using the slack variables w d w:

min
x,wx:Gxpxq“0,Fxpxq`wxdwx“0

max
y,wy :Gypx,yq“0,Fypx,yq`wydwy“0

fpx, yq.

Consider the solution cones

Cypzq :“ tpdy, dwyq P R
ny`myzt0u : ∇yGypx, yqdy “ 0, ∇yF px, yqdy ` 2 diagpwyqdwy “ 0u
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and

Cxpzq :“ tpdx, dwxq P R
nx`mxzt0u : ∇xGxpxq

1dx “ 0∇xFxpxqdx ` 2 diagpwxqdwx “ 0u

Let z be a point such that gpz, 0q “ 0. As, by assumption, the LICQ and strict

complementarity hold, if
»

—

–

dy

dwy

fi

ffi

fl

1 »

—

–

∇yyLpzq 0

0 ´2 diagpλyq

fi

ffi

fl

»

—

–

dy

dwy

fi

ffi

fl

ă 0 @ pdy, dwyq P Cypzq (3.53a)

and
»

—

–

dx

dwx

fi

ffi

fl

1

´

HxxLpzq ´HxyfpzqHyyfpzq´1Hxyfpzq1
¯

»

—

–

dx

dwx

fi

ffi

fl

ą0 @ pdx, dwxq P Cxpzq (3.53b)

then px, wx, νx, λxq is a local minimum of (3.49). The proof can be found in [53, Theorem

3.2].

The proof between the equivalence of the condition (3.53a) and InpHyyfpzqq “ ply `

my, ny `my, 0q is almost identical to the proof of Proposition (3.1.5).

The condition on the inertia of InpHzzfpzqq require some more development. In an

analogous way to the proof of Proposition (3.1.5), let Zx be a matrix with full column rank

such that Hxλfpzq1 Zx “ 0. Then the sufficient conditions (3.53b) for the reformulated

outer minimization is

Z 1
x

´

Hxxfpzq ´Hyxfpzq1Hyyfpzq´1Hyxfpzq
¯

Zx ą 0. (3.54)

We want now to define a new partition of Hzzfpzq which we will use to finish the proof.

Consider the matrices

H̄zzfpzq “

»

—

–

Hxxfpzq Hxyfpzq

Hxyfpzq1 Hyyfpzq

fi

ffi

fl

and H̄xλfpzq “

»

—

–

Hxλfpzq

0ny`my`ly`my ,lx`mx

fi

ffi

fl

.

105



Second order methods for minmax optimization Chapter 3

such that

Hzzfpzq “

»

—

–

H̄zzfpzq H̄xλfpzq

H̄xλfpzq1 0lx`mx

fi

ffi

fl

Let the matrix

Z̄x :“

»

—

–

Zx 0nx`mx,ny`my`ly`my

0ny`my`ly`my ,nx´lx Iny`my`ly`my .

fi

ffi

fl

One can show that Z̄x is full column rank and such that H̄xλfpzq1 Z̄x “ 0. Therefore if

we apply [54, Theorem 16.3] to Hzzfpzq (with the new partitioning) gives

InpHzzfpzqq “ In
`

Z̄ 1
xH̄zzfpzqZ̄x

˘

` plx `mx, lx `mx, 0q

In turn, In
`

Z̄ 1
xH̄zzfpzqZ̄x

˘

can be simplified using Haynsworth inertia additivity for-

mula [116, Theorem 1.6]:

In
`

Z̄ 1
xH̄zzfpzqZ̄x

˘

“ In

¨

˚

˝

»

—

–

Z 1
xHxxfpzqZx Z 1

xHxyfpzq

Hxyfpzq1Zx Hyyfpzq

fi

ffi

fl

˛

‹

‚

“ In
´

Z 1
x

´

Hxxfpzq ´HxyfpzqHyyfpzq´1Hxyfpzq1
¯

Zx

¯

` InpHyyfpzqq.

Therefore, if (3.53a) holds, (3.53b) is equivalent to

InpHzzfpzqq “ pnx ´ lx, 0, 0q ` ply `my, ny `my, 0q ` plx `mx, lx `mx, 0q

which finishes the proof. ˝
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Chapter 4

On the Asymptotic Convergence of

Full LOLA

A fundamental question of minmax optimization is, given a pair of current points, how to

pick update directions such that the new points are closer to the solution of the problem.

In the previous chapter, these directions were obtained from a modified second order

linearization of the minmax around the current point. The limitation of this approach

is that it requires computing many LDL decomposition of the matrices, which can be

unfeasible in large scale problems.

In this chapter, we take a different approach, and look at the question of obtaining

minmax directions from using the concept of full descent ascent direction, which we

introduce in Section 4.1. In its essence, a full descent ascent direction is a pair of vectors

that updated the current values of the minimizer and maximizer such that they are

aware of each other update. We show that this approach has some more fundamental

connection with minmax optimization then other types of approaches.

Given the definition of full descent ascent, the next question we address is how to

obtain a full descent ascent direction, in Section 4.2. In the method we propose, the
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maximizer computes the direction after the minimizer, while the minimizer computes

their direction based on a gradient approximation of the step the maximizer will take.

We then go on to show that this method to obtain directions produce full descent ascent

directions.

Finally, in Section 4.3, we study what are the conditions such that the limit points of

the generated sequence are equilibrium points, which is know as asymptotic convergence.

We prove that for two types of choices of step sizes, either with fixed step sizes or using an

Armijo Rule, we can obtain asymptotic convergence. Moreover, we also show a version

of the capture theorem, which implies that there is a neighborhood around equilibrium

points that attract the full descent ascent iterations.

Notation: The set of real numbers is denoted by R. Given a vector v P Rn, its

transpose is denoted by v1. Consider a differentiable function f : Rn ˆ Rm ÞÑ Rp.

The Jacobian (or gradient if p “ 1) at a point px̄, ȳq according to the x variable is a

matrix of size nˆp and is denoted by ∇xfpx̄, ȳq. The partial derivative according to the

coordinate x is a matrix of size nˆ p and is denoted by Bxfpx̄, ȳq. Given a differentiable

function g : Rn ÞÑ Rm, ∇xfpx̄, gpx̄qq “ Bxfpx̄, gpx̄qq `∇xgpx̄qByfpx̄, gpx̄qq. For a twice

differentiable function, the cross derivative is given by ∇xyfpx̄, ȳq “ ∇xp∇yfpx̄, ȳqq.

4.1 Problem statement

Consider two non-empty, closed and convex sets 1 X Ă Rn and Y Ă Rm and a

function f : X ˆ Y ÞÑ R. The minmax optimization

min
xPX

max
yPY

fpx, yq (4.1)

1We remind the reader that Rn is closed and convex.
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denotes the problem of finding a point px˚, y˚q P X ˆ Y such that @y P Y and @x P X

fpx˚, yq ď fpx˚, y˚
q ď max

ỹPY
fpx, ỹq.

If such point exists, it is called a global minmax of fp¨q.

4.1.1 Local minmax

Except in some specific cases, such as when fp¨q is convex in x and concave in y,

finding a global minmax is extremely challenging. An alternative is to look for a local

minmax, which was first defined in [32].

Definition 4.1.1 (Local minmax according to Jin et al.) A point px˚, y˚q is said

to be a local minmax of fp¨q if there exist δ0 ą 0 and a positive function hp¨q satisfying

hpδq Ñ 0 as δ Ñ 0, such that for any δ P p0, δ0s, @x P X : ∥x´ x˚∥ ď δ and @y P Y :

∥y ´ y˚∥ ď hpδq we have that

fpx˚, yq ď fpx˚, y˚
q ď max

ỹPY:∥ỹ´y˚∥ďhpδq
fpx, ỹq l

Essentially, a local minmax is defined by properties that hold on neighborhoods around

px˚, y˚q. Local properties have the advantage that they tend to be easier to verify than

global ones. Unfortunately, a global minmax might not be a local minmax, and we refer

the reader to the original paper for a counter example and an analysis on this question.

Despite this evident drawback in the definition of local minmax, one of its main

advantages is that one can deduce first order necessary conditions of optimality. We

state the result in a slightly more general form than it is stated in [32] in order to take

into account constraints.

Proposition 4.1.2 (First order necessary condition) Assume fp¨q is continuously

differentiable and px˚, y˚q is a local minmax. Then, @y P Y, py ´ y˚q1∇yfpx˚, y˚q ď 0.

Moreover, Dδ0 ą 0 such that @x P X : ∥x´ x˚∥ ă δ0, px´ x˚q1∇xfpx˚, y˚q ě 0. l
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Proof. Starting with the max, fix any y P Y and let us denote py :“ py ´ y˚q. Because

Y is convex, for any β P r0, 1s, y˚ ` βpy P Y . As px˚, y˚q is a local maximum, there exist

β̃ : @β P r0, β̃s the following inequality holds

0 ě fpx˚, y˚ ` βpyq ´ fpx˚, y˚q

β

Because fp¨q is continuously differentiable, according to the mean value Theorem, there

exist β̄ P r0, βs such that the previous inequality is equivalent to

0 ě Byfpx˚, y˚
` β̄pyq

1py.

Taking the limit as β goes to 0 finishes the first part of the proof. Now for the min,

take the δ0 from the definition of local minmax, fix any x P X : ∥x´ x˚∥ ă δ0 and let

us denote px :“ px ´ x˚q. Because X is convex, for any α P r0, 1s, x˚ ` αpx P X and

∥px∥ ă δ0. Take the function hp¨q from the definition of local minmax, and define the

local optimum

p˚
ypαpxq “ arg max

py :y˚`pyPY,∥py∥ăhpαpxq

.

By the definition of hp¨q we have that p˚
ypαpxq Ñ 0 as α Ñ 0. Then, as px˚, y˚q is a local

minmax,

0 ď
fpx˚ ` αpx, y˚ ` p˚

ypαpxqq ´ fpx˚, y˚q

α

“
fpx˚ ` αpx, y˚ ` p˚

ypαpxqq ´ fpx˚, y˚q ` fpx˚`, y˚ ` p˚
ypαpxqq ´ fpx˚`, y˚ ` p˚

ypαpxqq

α

ď
fpx˚ ` αpx, y˚ ` p˚

ypαpxqq ´ fpx˚, y˚ ` p˚
ypαpxqq

α

“ Bxfpx˚
` ᾱpx, y˚

` p˚
ypαpxqq

1px for some ᾱ P r0, αs

taking the limit as α goes to zero finishes the proof.

Corollary 4.1.3 (Unconstrained conditions) Assume fp¨q is continuously differen-

tiable and px˚, y˚q is a local minmax and an interior point of X ˆY. Then ∇yfpx˚, y˚q “

0 and ∇xfpx˚, y˚q “ 0. l
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Proof. For the max, if y˚ is an interior point of Y , then for any y P Y there is a β P p0, 1s

such that y˚ ´ βpy´ y˚q P Y . Therefore we have that py´ y˚q1∇yfpx˚, y˚q ď 0 and that

´βpy ´ y˚q1∇yfpx˚, y˚q ď 0 which implies that ∇yfpx˚, y˚q “ 0. The proof for the min

is equivalent.

4.1.2 Descent ascent algorithms

Consider two arbitrary functions dxpx, yq and dypx, yq that satisfy the conditions that

x ` dxpx, yq P X and y ` dypx, yq P Y and a sequence of scalars tpαk, βkqu with αk, βk P

p0, 1s. Given an initial point px0, y0q P X ˆ Y , the sequence tpxk, ykqu is recursively

defined by

xk`1
“ xk

` αkdxpx
k, yk

q

yk`1
“ yk

` βkdypx
k`1, yk

q.

(4.2)

In general, there are no closed form expressions to obtain local minmax points.

Instead, one uses descent ascent algorithms, in which one designs numerical functions

dxpx, yq and dypx, yq and sequences tpαk, βkqu such that every limit point of the sequence

tpxk, ykqu satisfies the first order optimality conditions of Proposition 4.1.2; we call such

points of stationary points. The most common type of descent ascent algorithms uses

alternating descent ascent sequences, for which we give the following definition:

Definition 4.1.4 (Alternating descent ascent) We say that the sequence defined by

(4.2) is an alternating descent ascent sequence if it satisfies

fpxk`1, yk
q ď fpxk, yk

q (4.3a)

fpxk`1, yk`1
q ě fpxk`1, yk

q. (4.3b)

with at least one of the inequalities holding strictly. By extension, we say that αdxpx, yq

and βdypx, yq are alternating descent ascent directions. l
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This formality includes many of the most popular algorithms minmax algorithms.

Here are some examples:

1. Gradient Descent Ascent: dxpx, yq “ ´α∇xfpx, yq and dypx, yq “ β∇yfpx, yq with

α and β P p0,`8q

2. Gradient Descent multiple Ascent: dxpx, yq “ ´α∇xfpx, yq and dypx, yq “
řn

k“1 ∇yfpx, ỹkq, with α and β P p0,`8q and where ∇yfpx, ỹkq is implicitly de-

fined by

ỹ1 “ y ` β∇yfpx, yq

ỹ2 “ ỹ1 ` β∇yfpx, ỹ1q

...

3. GradaMax: dxpx, yq “ ´α∇xfpx, yq with α P p0,`8q and

dypx, yq P arg maxdy :y`dyPY fpx, y ` dyq, β “ 1.

4. Alternating minmax: dxpx, yq P arg mindx:x`dxPX fpx` dx, yq and

dypx, yq P arg maxdy :y`dyPY fpx, y ` dyq.

Other methods popular in the robust training community such as Fast Gradient Sign

Method (FGSM) and Projected Gradient Descent (PGD) can also be expressed as alter-

nating directions minmax.

A notable characteristic of alternating descent ascent sequences is that each player

takes an action without taking into consideration what will be the consequences on the

other player’s action. Instead, we argue in this chapter for an approach where dxpx, yq

and dypx, yq are computed simultaneously, each player choosing their action while taking

into account the other player’s move. This is captured in the following definition.
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Definition 4.1.5 (Full descent ascent) We say that the sequence defined by (4.2) is

a full descent ascent sequence if it satisfies

fpxk`1, yk`1
q ď fpxk, yk

` βkdypx
k, yk

qq (4.4a)

fpxk`1, yk`1
q ě fpxk`1, yk

q. (4.4b)

with at least one of the inequalities holding strictly. By extension, we say that αdxpx, yq

and βdypx, yq are full descent ascent directions. l

Fundamentally, the full descent ascent captures the nature of minmax optimizations.

Not only the descent ascent step choices are, by construction, asymmetric, but it also

reflects the fact the minimization needs to chose their step considering what will be the

action of the max.

Remark 4.1.6 (Solving minmax as a full descent ascent algorithm) If one uses

the GradMax (as defined above), then the sequence (4.2) could asymptotically converge

towards a local minmax, most notable if fp¨q is strongly convex in x and strongly concave

in y. Now, consider an analogous choice of full descent ascent directions given by:

dxpx
k, yk

q P arg min
dx:dx`xkPX

fpx` dx, y ` dypx` dx, yqq

dypx
k`1, yk

q “ arg max
dy :y`dyPY

fpxk`1, yk
` dyq.

where we assume the arg max is uniquely achieved. This choice of directions is exactly

the solution of the minmax optimization. Evidently, one does not have access to closed

form expressions of such functions, as this is the goal itself of an optimization algorithm.

However, this shows how the full descent ascent directions describe a more appropriate

concept of direction to find mimnax points.
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4.2 Obtaining local full descent ascent directions

In order to obtain local dxpx, yq and dypx, yq, it is usefull to consider the following

result from minimization. Suppose one wants to solve the problem minxPX fpxq where X

is a convex set. If fp¨q is continuously differentiable, projected direction methods solve

this optimization by generating a sequence xk`1 “ xk ` αdxpx
kq where dxpxq is a local

descent direction obtained from solving the quadratic subproblem

dxpxq “ arg min
dx:dx`xPX

fpxq ` d1
x∇xfpxq `

1
2d1

xApxqdx (4.5)

where Apxq is a strictly positive definite matrix and α P p0, 1s. A large number of

optimization methods can be written in this form including gradient descent (choosing

Apxq as the identity matrix), Newton method (choosing Apxq as the Hessian matrix),

Gauss-Newton method and its generalizations, Quasi-Newton methods, Trust Region

methods (by also including a constraint on the norm of dx) among many others.

In an analogous way, if fpx, yq is differentiable in y, we define dypx, yq as the solution

of

dypx, yq “arg max
dy :y`dyPY

fpx, yq ` d1
y∇yfpx, yq ´

1
2d1

yBpx, yqdy (4.6)

where Bpx, yq is a positive definite matrix. It is important to emphasize that dypx, yq is

function both of x and y. Consider the function f̂xpx, yq defined by

f̂xpx, yq :“ fpx, y ` βdypx, yqq. (4.7)

If f̂xpx, yq is differentiable in x, we define dxpx, yq by

dxpx, yq “arg min
dx:x`dxPX

f̂xpx, yq ` d1
x∇xf̂xpx, yq `

1
2d1

xApx, yqdx (4.8)

where Apx, yq is a positive definite matrix. We can now state our first result

Proposition 4.2.1 (Computing local directions) If fpx, yq is continuously differen-

tiable with respect to y and f̂xpx, yq is continuously differentiable with respect to x on a
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neighborhood around a point px̃, ỹq which is not a stationary point, then there exist α0

and β0 such that @α P p0, α0q and @β P p0, β0q αdxpx̃, ỹq and βdypx̃, ỹq are full descent

ascent directions. l

Proof. Consider the equations

fpxk`1, yk`1
q “ f̂pxk, yk

q ` αdxpx
k, yk

q
1∇xf̂pxk, yk

q ` opαq

fpxk`1, yk`1
q “ fpxk`1, yk

q ` βdypx
k`1, yk

q
1∇yfpxk`1, yk

q ` opβq

where we use the fact that fpxk`1, yk`1q “ f̂pxk`1, ykq. As the functions are continuously

differentiable, there exist α0 and β0 such that @α P p0, α0q and @β P p0, β0q the terms opαq

and opβq are dominated. From (4.6) and (4.8), we have that dypx
k, ykq1∇yfpxk, ykq ě 0

and dxpx
k, ykq1∇xf̂pxk, ykq ď 0. As at least either dypx

k, ykq1∇yfpxk, ykq or

dxpx
k, ykq1∇xf̂pxk, ykq is non zero, otherwise pxk, ykq would be a stationary point, then

they are full descent ascent directions.

We will now look at two particular choices of matrices Apx, yq and Bpx, yq that will

also help understanding the algorithm. In both we will consider the unconstrained case

(X “ Rn and Y “ Rm).

4.2.1 Full LOLA

The first case is when one chooses Apx, yq and Bpx, yq as the identity matrix, which

is what we call the full LOLA. The direction for the max is

βdypx, yq “ β∇yfpx, yq.

For the min, the direction is

dxpx, yq “ ´∇xfpx, y ` β∇yfpx, yqq
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“´ Bxfpx, y ` β∇yfpx, yqq ´ β∇xyfpx, yqByfpx, y ` β∇yfpx, yqq.

If one linearizes this direction around px, yq one obtains

dxpx, yq “ ´∇xfpx, yq ´ β∇xyfpx, yq∇yfpx, yq

i.e. the standard LOLA direction.

Using these results, the full descent ascent sequence is

xk`1
“ xk

´ αk∇xfpxk, yk
` βk∇yfpxk, yk

qq

yk`1
“ yk

` βk∇yfpxk`1, yk
q.

In contrast with the standard (alternating) gradient descent ascent, in (full) LOLA, the

descent direction uses the gradient of the maximzer to correct the direction towards where

it should go. In the case where case where pxk, ykq is a local maximum, both the full and

standard LOLA are equivalent to a gradient descent ascent as ∇yfpxk, ykq “ 0.

4.2.2 Full Newton types algorithms

Full descent ascent algorithms can also be used as Newton types algorithms by choos-

ing matrices Apx, yq and Bpx, yq as Hessian. For the maximizer, the straightforward

choice of matrix is Bpx, yq “ ´∇yyfpx, yq. For the minimizer there are two options. The

first option is to take Apx, yq “ ∇xxfpx, yq and the secondis to take

Apx, yq “ ∇xxf
´

x, y ´ β∇yyfpx, yq´1∇yfpx, yq
¯

Taking Apx, yq “ ∇xxfpx, yq has the advantage of making the differentiation easier,

while in the second option we more closely maintain the spirit of full descent ascent of

minimizing the cost of the future direction.

Remark 4.2.2 (Differentiability of f̂xpx, yq) The assumption of differentiability of

f̂xpx, yq with respect to x is closely related to the differentiability of dypx, yq, which is
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known as sensitivity analysis. In the case where px, yq is an interior point of the constrain

set (or, equivalently, if Y “ Rm) a sufficient condition is that ∇yfpx, yq and Bpx, yq are

differentiable. However, establishing differentiability in the case where px, yq is not an

interior point is substantially more challenging, and naming such conditions goes beyond

the scope of this chapter. We refer the reader to [121] which has a thorough treatment of

the topic. l

Remark 4.2.3 (Using momentum) In minimization, algorithms with momentum are

of the general form xk`1 “ xk ´ αp∇xfpxkq ` pk
xq. One example of such algorithm is to

use pk
x “ ∇xfpxk´1q ` µ pk´1

x with µ P r0, 1s.

The framework of full descent ascent also allows for methods with momentum by

substituting ∇yfxpx, yq by ∇yfxpx, yq ` py in (4.6) and ∇xf̂xpx, yq by ∇xf̂xpx, yq ` px

in (4.8), although these might no longer be full descent ascent directions as we define in

Definition 4.1.5. l

4.3 Asymptotic convergence

Our goal now is to obtain conditions such that every limit point of the sequence

xk`1
“ xk

` αkdxpx
k, yk

q

yk`1
“ yk

` βkdypx
k`1, yk

q

where dxpx
k, ykq is given by (4.8) and dypx

k`1, ykq is given by (4.6) is a stationary point.

We will not make any assumption of convexity or concavity instead casting the results

in the most general possible way. For this reason, our convergence results will pertain

to asymptotic properties of full descent ascent sequences. Results on non asymptotic

convergence will be the subject of a future work.
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For the sake of conciseness, we will state our using the notation

f̂xpx, yq “ fpx, y ` βdypx, yqq.

Let us denote by λminpMq and λmaxpMq the smallest and largest eigenvalues of a

symmetric matrix M . In addition to the assumptions of convexity and closeness of X

and Y and the continuous differentiability of fp¨q and f̂xp¨q we will also need the following

assumptions.

Assumption 4.3.1 Given a full descent ascent sequence tpxk, ykqu, for all k the eigen-

values of Apxk, ykq and Bpxk, ykq are bounded by bellow and above and away from zero,

meaning that there exist positive constants c1, c2, c3, c4 such that @k ą 0,

λminpApx
k, yk

qq ą c1 λmaxpApx
k, yk

qq ă c2

λminpBpx
k, yk

qq ą c3 λmaxpBpx
k, yk

qq ă c4 l

This assumption essentially guarantees that optimizations (4.6) and (4.8) will always be

well defined and only have one solution. It is important to emphasize that Apx, yq and

Bpx, yq are algorithmic choices in the sense that they are chosen by the practitioner.

Our first result concerns the convergence when the matrices Apxk, xkq and Bpxk, xkq

and the step sizes αk, βk are constant.

Theorem 4.3.2 (Constant step size) Let tpxk, ykqu be a full descent ascent sequence

with αk “ βk “ 1, Apx, yq “ A and Bpx, yq “ B. Assume that @x1, x2 P X and

@y1, y2 P Y there exist constants Lx, Ly ą 0 such that the following smoothness condition

holds:

∥∇xfpx1, y1q ´∇xfpx2, y2q∥ ă Lx

b

∥x1 ´ x2∥2
` ∥y1 ´ y2∥2

∥∇yfpx1, y1q ´∇yfpx2, y2q∥ ă Ly

b

∥x1 ´ x2∥2
` ∥y1 ´ y2∥2
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If 2
´

Lx

b

1` λminpBqL2
y

¯´1
ą λminpAq

´1 and 2 L´1
y ą λminpBq

´1 then every limit point

of tpxk, ykqu is a stationary point of fp¨q. Moreover, dxpx, yq and dypx, yq are full descent

ascent directions, meaning that

fpxk`1, yk`1
q ď fpxk, yk

` dypx
k, yk

qq

fpxk`1, yk`1
q ě fpxk`1, yk

q

with at least one of the inequalities holding strictly. l

In order to prove this theorem, we need the results from the following Lemma:

Lemma 4.3.3 (Simultaneous descent ascent are gradient related) The full descent

ascent directions dxpx, yq and dypx, yq are gradient related meaning that for any se-

quence tpxk, ykqu that converges to a nonstationary point, then the corresponding sequence

tpdxpx
k, ykq, dypx

k, ykqqu is bounded and satisfies

lim sup
kÑ8

dxpx
k, yk

q
1∇xf̂xpx

k, yk
q ď 0

lim inf
kÑ8

dypx
k`1, yk

q
1∇yfpxk`1, yk

q ě 0 l

with at least one inequality holding strictly and where f̂xpx, yq is defined in (4.7).

Proof. The proof is inspired in the proof of Prop 3.3.1 of [122].

Assume that tpxk, ykqu converges to a non stationary point px̃, ỹq. We need to prove

the following four equations

lim sup
kÑ8

∥∥∥dxpx
k, yk

q
∥∥∥ ă 8 (4.9a)

lim sup
kÑ8

∥∥∥dypx
k, yk

q
∥∥∥ ă 8 (4.9b)

lim inf
kÑ8

dypx
k`1, yk

q
1∇yfpxk`1, yk

q ě 0 (4.9c)

lim sup
kÑ8

dxpx
k, yk

q
1∇xf̂xpx

k, yk
q ď 0 (4.9d)
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By continuity of the projection (see Prop. 1.1.4 in [122]) and the differential continuity

of ∇xf̂xpx, yq and ∇yfpx, yq

lim
kÑ8

∥∥∥dypx
k, yk

q
∥∥∥ “ ∥dypx̃, ỹq∥ ă 8

lim
kÑ8

∥∥∥dxpx
k, yk

q
∥∥∥ “ ∥dxpx̃, ỹq∥ ă 8

which proves (4.9b) and (4.9a). To prove (4.9c) and (4.9d), first remember the property

that, for any continuously differentiable function ϕpxq on a convex set X , if x˚ is a local

minimum, then ∇ϕpx˚q1px´ x˚q ě 0 @x P X ; there is an equivalent property for a local

maximum. Applying these condition to (4.6) and (4.8) we obtain

`

Bpxk`1, yk
qdypx

k`1, yk
q ´∇yfpxk`1, yk

q
˘1
pd̃y ´ dypx

k`1, yk
qq ě 0 @d̃y : dy ` yk

P Y
´

Apxk, yk
qdxpx

k, yk
q `∇xf̂xpx

k, yk
q

¯1

pd̃x ´ dxpx
k, yk

qq ě 0 @d̃x : dx ` xk
P X

The above equations hold for pd̃x, d̃yq “ p0, 0q which yields

∇xf̂xpx
k, yk

q
1dxpx

k, yk
q ď ´dxpx

k, yk
qApxk, yk

qdxpx
k, yk

q ď ´c1

∥∥∥dxpx
k, yk

q
∥∥∥2

(4.11a)

∇yfpxk`1, yk
q

1dypx
k`1, yk

q ě dypx
k`1, yk

q
1Bpxk`1, yk

qdypx
k`1, yk

q ě c3

∥∥∥dypx
k`1, yk

q
∥∥∥2

(4.11b)

where the last inequality is taken from the boundness of the eigenvalues of Apxk, ykq and

Bpxk`1, ykq. Taking the limit we obtain

lim inf
kÑ8

dypx
k`1, yk

q
1∇yfpxk`1, yk

q ě c3∥dypx̃, ỹq∥2
ě 0

lim sup
kÑ8

dxpx
k, yk

q
1∇xf̂xpx

k, yk
q ď ´c1∥dxpx̃, ỹq∥2

ď 0

with at least one inequality holding strictly because px̃, ỹq is not a stationary point.

Proof of Theorem 4.3.2. Let us start proving the property for the max. Using the prop-

erty known as the ascent lemma for Lipschitz function (see Prop. A.24 in [122]) we have

120



On the Asymptotic Convergence of Full LOLA Chapter 4

that

fpxk`1, yk
` dypx

k, yk
qq ´ fpxk`1, yk

q ě ∇yfpxk`1, yk
q

1dypx
k, yk

q ´
Ly

2
∥∥∥dypx

k`1, yk
q
∥∥∥

Combining this result with (4.11b) where c3 :“ λminpBq we obtain

fpxk`1, yk`1
q ´ fpxk`1, yk

q ě

ˆ

λminpBq ´
Ly

2

˙∥∥∥dypx
k`1, yk

q
∥∥∥ ě 0

where the right most inequalities hold because λminpBq ą Ly{2. So if px̄, ȳq is a limit

point of a subsequences tpxk, ykquK then

lim
kÑ8,kPK

fpxk`1, yk`1
q ´ fpxk`1, yk

q “ 0

implying, by continuity of the projection, that ∥dypx̄, ȳq∥ “ 0.

For the min, take f̂xpx, yq as defined in (4.7) and consider the following inequalities
∥∥∥∇xf̂xpx` dxpx, yq, yq ´∇xf̂xpx, yq

∥∥∥
“

∥∥∥∥∥∇xf

ˆ

x` dxpx, yq, y ` dy

´

x` dxpx, yq, y
¯

˙

´∇xfpx, y ` dypx, yqq

∥∥∥∥∥
ď Lx

c

∥dxpx, yq∥2
`

∥∥∥∥dy

´

x` dxpx, yq, y
¯

´ dypx, yq
∥∥∥∥2

ď Lx

c

∥dxpx, yq∥2
`

∥∥∥∥B´1∇yf
´

x` dxpx, yq, y
¯

´B´1∇yfpx, yq
∥∥∥∥2

ď Lx

c

∥dxpx, yq∥2
` λminpBq

∥∥∥∥∇yf
´

x` dxpx, yq, y
¯

´∇yfpx, yq
∥∥∥∥2

ď Lx

b

∥dxpx, yq∥2
` λminpBqL2

y∥dxpx, yq∥2

“ Lx

b

1` λminpBqL2
y∥dxpx, yq∥

where in the third line we used the fact that projections are nonexpansive (see Prop.

1.1.4 in [122]). These imply that the function f̂xpx, yq is also smooth with constant

Lx

b

1` λminpBqL2
y. So using the equivalent steps as for the max we arrive to

f̂xpx
k
` dxpx

k, yk
q, yk

q ´ f̂xpx
k, yk

q ď

¨

˝

Lx

b

1` λminpBqL2
y

2 ´ λminpAq

˛

‚

∥∥∥dxpx
k, yk

q
∥∥∥ ď 0
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where the right most equality hold because λminpAq ą Lx

b

1` λminpBqL2
y {2. So if

px̄, ȳq is a limit point of a subsequences tpxk, ykquK then

lim
kÑ8,kPK

f̂xpx
k`1, yk

q ´ f̂xpx
k, yk

q “ 0

implying, by continuity of the projection, that ∥dxpx̄, ȳq∥ “ 0. Therefore that px̄, ȳq is a

stationary point.

It is easier to interpret Theorem 4.3.2 when X “ Rn, Y “ Rm The full descent ascent

directions are

dypx, yq “B´1∇yfpx, yq

dxpx, yq “ ´ A´1∇xfpx, y `B´1∇yfpx, yqq.

Now if we use the fact that λmaxpA
´1q “ λminpAq

´1 and equivalent to B, Theorem 4.3.2

essentially says two things. The first one is that the larger the constants Lx, Ly are, the

smaller the step sizes, represented by λminpAq
´1 and λminpBq

´1, can be. This kind of

result is typical in optimization. But the second particularly interesting thing is that the

maximum step size of the minimizer depends on the step size of maximizer, essentially

stating that if the maximizer take small steps, the minimizer also needs to take small

steps. The idea that the minimizer needs to take smaller steps than the maximizer is

common in minmax optimization (see for instance the discussion for Gradient Descent

Ascent on [32]). What is innovative in our result is that we are able to quantify exactly

how big the step can be.

The biggest limitation of Theorem 4.3.2 is that one often does not know the values

of Lx and Ly. As a consequence, one would need to manually tune the matrices A and

B using a on trial and error, and the step sizes are rarely as large as they could be. Our

next result uses an Armijo type condition and a backtracking algorithm to determine the

step sizes. We point out that the result does not require the smoothness condition.
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Take two scalars σx, σy P p0, 1q. At a given point pxk, ykq, given two step sizes pαk, βkq,

we define the following Armijo type conditions for the minmax

fpxk`1, yk`1
q ´ f̂xpx

k, yk
q ď σx αk dxpx

k, yk
q

1∇xf̂xpx
k, yk

q (4.12a)

fpxk`1, yk`1
q ´ fpxk`1, yk

q ě σy βk dypx
k`1, yk

q
1∇yfpxk, yk

q (4.12b)

with at least one of the inequalities holding strictly and where f̂xpx, yq is given by (4.7).

We bring attention to the reader that dxpx, yq and f̂px, yq depend on the value of βk.

These Armijo conditions not only guarantee that αkdxpx
k, ykq and βkdypx

k`1, ykq are full

descent ascent directions, but also guarantees that at each iteration the steps are suffi-

ciently large. We use these conditions to design Algorithm 2 and prove its convergence.
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Algorithm 2 Simultaneous descent ascent with Armijo rule
Require: An initial point px0, y0q and rates rx, ry P p0, 1q

1: pαk, βkq “ p1, 1q

2: Fmin “ f̂xpx
k, ykq ` σxαkdxpx

k, ykq1∇xf̂pxk, ykq

3: Fmax “ fpx̃, ykq ` σy βk dypx̃, ykq1∇yfpx̃, ykq

4: while fpx̃, ỹq ´ Fmin ą 0 and fpx̃, ỹq ´ Fmax ă 0 do

5: x̃ “ xk ` αkdxpx
k, ykq

6: ỹ “ yk ` βkdypx̃, ykq

7: Fmin “ f̂xpx
k, ykq ` σxαkdxpx

k, ykq1∇xf̂pxk, ykq

8: Fmax “ fpx̃, ykq ` σy βk dypx̃, ykq1∇yfpx̃, ykq

9: if fpx̃, ỹq ´ Fmin ą 0 then

10: αk “ αk rx

11: end if

12: if fpx̃, ỹq ´ Fmax ă 0 then

13: βk “ βk ry

14: end if

15: end while

16: xk`1 “ x̃

17: yk`1 “ ỹ

18: k “ k ` 1

19: Go to 1

Theorem 4.3.4 (Convergence of Armijo) Every limit point of a sequence tpxk, ykqu

generated by Algorithm 2 is a stationary point. l

Proof. This proof is inspired by the proof of Prop. 1.2.1 in [122]. Take f̂xpx, yq as

defined in (4.7) and, in order to have shorter expressions, let us define dk
x :“ dxpx

k, ykq
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and dk
y :“ dypx

k`1, ykq.

As fp¨q and f̂xp¨q are continuous function, then as px̄, ȳq is a limit point of tpxk, ykqu

then fpx̄, ȳq is a limit point of tfpxk, ykqu and equivalent to f̂xp¨q. Moreover, fpx̄, ȳq is

also a limit point of tfpxk`1, ykqu.

Starting with the max. From the previous argument, we have that

fpxk`1, yk
q ´ fpxk`1, yk`1

q Ñ 0.

By the choice of direction in (4.8) we have that dk
y

1∇yfpxk`1, ykq ě 0. Combining this

with the Armijo rule in (4.12b) we have that

fpxk`1, yk
q ´ fpxk`1, yk`1

q ď ´σyβkdk
y

1∇yfpxk`1, yk
q ď 0 (4.13)

Therefore we obtain that

lim
kÑ8

βkdk
y

1∇yfpxk`1, yk
q “ 0 (4.14)

Now the min. Combining (4.11b) and (4.14) implies that βk dk
y Ñ 0n. And as f̂xp¨q

is continuous, we obtain

f̂xpx
k, yk

q ´ fpxk`1, yk`1
q Ñ 0.

By the choice of descent direction we have that dk
x

1∇xf̂xpx
k, ykq ď 0, and by the

Armijo rule

f̂xpx
k, yk

q ´ fpxk`1, yk`1
q ě ´σx αkdk

x
1∇xf̂xpx

k, yk
q ě 0

Therefore we obtain

lim
kÑ8

αkdk
x

1∇xf̂xpx
k, yk

q “ 0 (4.15)

As dk
x and dk

y are gradient related from Lemma 4.3.3, in order for (4.14) and (4.15)

to hold simultaneously either px̄, ȳq is a stationary point or αk Ñ 0 or βk Ñ 0.
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We will assume, in order to arrive to a contradiction, that px̄, ȳq is not a stationary.

We will start by assuming that tβku Ñ 0, and show that it implies that tαku Ñ 0 and

then show it leads to a contradiction.

The core argument used to prove the contradiction relies in the following observation.

If tβku Ñ 0 it means that there exist a k̄, such that for each k ą k̄

f
`

xk
` αkdk

x, yk
˘

´ f

ˆ

xk
` αkdk

x, yk
`

β

ry

k

dk
y

˙

ą ´
β

ry

k

σydk
y

1∇yf
`

xk
` αkdk

x, yk
˘

. (4.16)

This equation holds because tβku Ñ 0 implies that the alternating backtracking algo-

rithm will always need to run at least one time after some point, which we called k̄. If

the alternating backtracking algorithm ran at least one time it means that the Armijo

conditions for the max was not verified for βk{ry, otherwise there would not have been

the need to run another iteration of the backtracking, which justifies (4.16).

Since the search direction dk
y is gradient related, then tdk

yu is bounded and so there

exists a subsequences tdk
yuK̄ of tdk

yu such that tdk
yuK̄ converges to some point d̄y. Then,

@k P K̄, k ą k̄

fpxk ` αkdk
x, ykq ´ fpxk ` αkdk

x, yk ` βk{rydk
yq

βk{ry

ą ´σydk
y

1∇yfpxk
` αkdk

x, yk
q (4.17)

By the mean value theorem, this relation can be written as

´dk
y

1∇yfpxk
` αkdk

x, yk
` β̃kdk

yq ą ´σydk
y

1∇yfpxk
` αkdk

x, yk
q (4.18)

with β̃k P r0, βk{rys. Now taking the limit as k Ñ 8, k P K̄ and because tβku Ñ 0 we

obtain

´d̄y
1∇yfpx̄, ȳq ě ´σyd̄y

1∇yfpx̄, ȳq ô 0 ě p1´ σyqd̄y
1∇yfpx̄, ȳq ñ 0 ě d̄y

1∇yfpx̄, ȳq.
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There are two possible cases. The first one is that the last inequality holds strictly, i.e.

d̄y
1∇yfpx̄, ȳq ă 0. This contradicts the assumption that d̄y is gradient related, therefore

this case is not possible. The second case is that d̄y
1∇yfpx̄, ȳq “ 0. By contradiction

assumption, px̄, ȳq is not a stationary point, meaning limkÑ8 αkdk
x

1∇xf̂xppx
k, ykq ‰ 0

(otherwise px̄, ȳq is a stationary point). By (4.15) this implies that tαku Ñ 0.

Analogously to the previous case, if tαku Ñ 0 then there exist a k̄ such that for each

k ą k̄

f̂xpx
k, yk

q ´ f̂x

ˆ

xk
`

αk

rx

dk
x, yk

˙

ă ´σx
αk

rx

k

dk
x

1∇xf̂xpx
k, yk

q. (4.19)

Using equivalent arguments as above, we arrive to the conclusion that there is a sub-

sequences tdk
xuK̄ that converges to some point d̄x and that satisfies 0 ď d̄x

1∇xfpx̄, ȳq

which, if the inequality is strict, contradicts the assumption that dx is gradient related ,

or contradicts the proof assumption that px̄, ȳq is not a stationary point. Therefore, by

contradiction px̄, ȳq is a stationary point.

The idea behind Algorithm 2 is to obtain steps sizes αk, βk that satisfy the Armijo

conditions by implementing a backtracking algorithm. A fundamental aspect of the

algorithm is that αk and βk are updated only when they do not satisfy their respective

Armijo conditions; this plays a crucial role in the proof of Theorem 4.3.4.

Theorem 4.3.2 and Theorem 4.3.4 guarantee that every limit point of the generated

full descent ascent sequence is a stationary point, but they do not guarantee that such

limit points exist. This is guaranteed by the next result, the Capture Theorem. The

Capture Theorem essentially says that, if px˚y˚q is an isolated local minmax, if one

element pxk̄, yk̄q of the full descent ascent passes close enough to it, then tpxk, ykqu will

converge towards px˚, y˚q.

Theorem 4.3.5 (Capture Theorem) Let tpxk, ykqu be a sequence generated by the full

descent ascent direction method using either the Theorem 4.3.2 or Theorem 4.3.4. Let
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px˚, y˚q be an isolated local minmax on a neighborhood where it is also the only stationary

point. Then there exist a neighborhood Sx Ă X around x˚ and a neighborhood Sy Ă Y

around y˚ such that if for some k̄, pxk̄, yk̄q P SxˆSy then limk,kąk̄px
k, ykq “ px˚, y˚q. l

Proof. This proof is inspired by the proof of Prop. 1.2.4 of [122]. Let the interval r0, δ0s

and the function hp¨q be the ones associated to the local minmax px˚, y˚q according

to Definition 4.1.1 . Take f̂xpx, yq as defined in (4.7) and, in order to have shorter

expressions, let us define dk
x :“ dxpx

k, ykq and dk
y :“ dypx

k`1, ykq.

Let us now take a specific δ P r0, δ0s. By definition, px˚, y˚q is also a local minmax in

that interval. Define for t P r0, δs and t P r0, hpδqs the functions

ϕxpt, yq “ min
xPX :tď∥x˚´x∥ďδ

f̂xpx, yq ´ f̂xpx
˚, y˚

q

ϕypt, xq “ max
yPY:tď∥y˚´y∥ďhpδq

fpx, yq ´ fpx˚, y˚
q

For a fixed y, ϕxpt, yq is an increasing function of t and for a fixed x, ϕypt, xq is a decreasing

function of t. Given any ϵx P p0, δs and ϵy P p0, hpδqs, take rx P p0, ϵxs and ry P p0, ϵys

such that

∥x´ x˚∥ ă rx ñ ∥x´ x˚∥` c´1
1

∥∥∥∇xf̂xpx, yq
∥∥∥ ă ϵx (4.20a)

∥y ´ y˚∥ ă ry ñ ∥y ´ y˚∥` c´1
3 ∥∇yfpx, yq∥ ă ϵy (4.20b)

where c1 and c3 are from Assumption 4.3.1. Consider the open sets

Sx :“ tx P X : ∥x´ x˚∥ ă ϵx and @y : ∥y ´ y˚∥ ă ϵy, f̂xpx, yq ´ fpx˚, y˚
q ă ϕxprx, yqu

Sy :“ ty P Y : ∥y ´ y˚∥ ă ϵy and @x : ∥x´ x˚∥ ă ϵx, fpx, yq ´ fpx˚, y˚
q ă ϕypry, xqu.

Now we prove that xk P Sx ñ xk`1 P Sx and that yk P Sy ñ yk`1 P Sy.

Starting with xk, as xk P Sx and yk P Sy, then

ϕx

´∥∥∥x˚
´ xk

∥∥∥, yk
¯

ď f̂xpx
k, yk

q ´ fpx˚, y˚
q ă ϕxprx, yk

q
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where the right inequality derives from the definition of Sx and the left inequality from the

definition of ϕxp¨q. As ϕxp¨q is increasing in t, the previous relation implies
∥∥∥x˚ ´ xk

∥∥∥ ă rx.

Now we use the fact that in both Theorem 4.3.2 and 4.3.2 we have that αk ď 1. Moreover,

because the projection is a contracting map
∥∥∥dk

x

∥∥∥ ď c´1
1

∥∥∥∇xf̂xpx
k, ykq

∥∥∥ we obtain

∥∥∥xk`1
´ x˚

∥∥∥ ď ∥∥∥xk
´ x˚

∥∥∥` ∥∥∥αkdk
x

∥∥∥ ď ∥∥∥xk
´ x˚

∥∥∥` c´1
1

∥∥∥∇xf̂xpx
k, yk

q
∥∥∥ ď ϵx

where the last inequality derives from (4.20a). Now looking back at the max from the

previous equation we have that
∥∥∥xk`1 ´ x˚

∥∥∥ ď ϵx which implies

ϕy

´∥∥∥y˚
´ yk

∥∥∥, xk`1
¯

ě fpxk`1, yk
q ´ fpx˚, y˚

q ą ϕypry, xk`1
q.

As ϕyp¨q is decreasing in t, the previous relation implies
∥∥∥y˚ ´ yk

∥∥∥ ă ry. Now using

the assumptions that βk ď 1 (same argument as αk) and because the projection is a

contracting map
∥∥∥dk

y

∥∥∥ ď c´1
3

∥∥∥∇xfpxk`1, ykq
∥∥∥ we obtain

∥∥∥yk`1
´ y˚

∥∥∥ ď ∥∥∥yk
´ y˚

∥∥∥` ∥∥∥βkdk
y

∥∥∥ ď ∥∥∥yk
´ y˚

∥∥∥` c´1
3

∥∥∥∇xfpxk`1, yk
q
∥∥∥ ď ϵy

As tpxk, ykqu is a full descent ascent sequence
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

f̂xpx
k`1, ykq ´ f̂xpx

˚, y˚q ď f̂xpx
k, ykq ´ f̂xpx

˚, y˚q ă ϕxprx, ykq∥∥∥xk`1 ´ x˚
∥∥∥ ď ϵx∥∥∥yk`1 ´ y˚
∥∥∥ ď ϵy

ñ xk`1
P Sx

and
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

fpxk`1, yk`1q ´ fpx˚, y˚q ď fpxk`1, ykq ´ fpx˚, y˚q ă ϕypry, xk`1q∥∥∥xk`1 ´ x˚
∥∥∥ ď ϵx∥∥∥yk`1 ´ y˚
∥∥∥ ď ϵy

ñ yk`1
P Sy

Finally, by induction we have that if for some k̄, xk̄ P Sx and yk̄ P Sy, then xk P Sx

and yk P Sy @k ą k̄. Let S̄x and S̄y be the closure of Sx and Sy. They are compact sets,
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therefore the sequence pxk, ykq must have at least one limit point which is a stationary

point according to Theorem 4.3.2 and Theorem 4.3.4 . As the only stationary point is

px˚, y˚q, therefore pxk, ykq Ñ px˚, y˚q.

4.4 Conclusion

In this chapter, we have presented a new type of algorithm to solve minmax optimiza-

tion using what we call full descent ascent directions. We have shown that such directions

are better at generalizing the concept of descent direction from regular optimization. We

were also able to state conditions that guarantee the asymptotic convergence of such

algorithm to local minmax points.

While we have not found applications for which full descent ascent directions outper-

form the state of the art, they provide an elegant way to look at minmax optimization.

Further exploration, both with respect to the theory and practice, could unfold cases in

which such directions outperform other methods.

´
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