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Abstract

Statistical Models for Analyzing Human Genetic Variation

by

Sriram Sankararaman

Doctor of Philosophy in Computer Science

and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Michael I. Jordan, Chair

Advances in sequencing and genomic technologies are providing new opportunities to
understand the genetic basis of phenotypes such as diseases. Translating the large volumes
of heterogeneous, often noisy, data into biological insights presents challenging problems of
statistical inference. In this thesis, we focus on three important statistical problems that
arise in our efforts to understand the genetic basis of phenotypic variation in humans.

At the molecular level, we focus on the problem of identifying the amino acid residues in
a protein that are important for its function. Identifying functional residues is essential to
understanding the effect of genetic variation on protein function as well as to understanding
protein function itself. We propose computational methods that predict functional residues
using evolutionary information as well as from a combination of evolutionary and structural
information. We demonstrate that these methods can accurately predict catalytic residues
in enzymes. Case studies on well-studied enzymes show that these methods can be useful in
guiding future experiments.

At the population level, discovering the link between genetic and phenotypic variation
requires an understanding of the genetic structure of human populations. A common form
of population structure is that found in admixed groups formed by the intermixing of several
ancestral populations, such as African-Americans and Latinos. We describe a Bayesian
hidden Markov model of admixture and propose efficient algorithms to infer the fine-scale
structure of admixed populations. We show that the fine-scale structure of these populations
can be inferred even when the ancestral populations are unknown or extinct. Further, the
inference algorithm can run efficiently on genome-scale datasets. This model is well-suited
to estimate other parameters of biological interest such as the allele frequencies of ancestral
populations which can be used, in turn, to reconstruct extinct populations.

Finally, we address the problem of sharing genomic data while preserving the privacy of
individual participants. We analyze the problem of detecting an individual genotype from
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the summary statistics of single nucleotide polymorphisms (SNPs) released in a study. We
derive upper bounds on the power of detection as a function of the study size, number of
exposed SNPs and the false positive rate, thereby providing guidelines as to which set of
SNPs can be safely exposed.
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Chapter 1

Introduction

The main theme of this thesis is the study of human genetic variation using statistical models.
The central questions in genetics have centered around the link between our genes and our
traits or phenotypes:

• Is a phenotype determined by the genetic code alone or is it also influenced by the
environment? Diseases such as cystic fibrosis are often completely determined by the
genetic code and are termed Mendelian because they follow Mendel’s laws of inheri-
tance. Mendelian phenotypes tend to be rare, however. A vast majority of phenotypes,
including many common diseases such as hypertension or type-2 diabetes, are caused
by a combination of genetic and environmental factors. Relative little is known about
the genetic basis of these complex phenotypes. For instance, attempts to understand
the genetic basis of type-2 diabetes in humans have lead to the discovery of at least 11
genetic variants that influence the risk of type-2 diabetes [Frayling, 2007]. Yet these
discovered variants explain only a small fraction of the disease risk.

• How does variation in the genetic code produce the diversity of phenotypes across
individuals? Is this diversity caused by direct changes to the protein sequences within
each cell or does this variation affect other biological mechanisms ?

• How is this genetic variation shaped by population-level forces such as migration, mix-
ture, and adaptation? Populations that are isolated from each other tend to become
more differentiated by random genetic drift. The need to adapt to the local environ-
ment also leads to differentiation, as seen in the genes involved in skin pigmentation. On
the other hand, migration and mixing tend to reduce the genetic differences amongst
the mixing populations. The distribution of genetic variants across populations is a
result of a combination of these forces.

Rapid advances in whole-genome sequencing and genotyping technologies are enabling us to
answer each of these questions with increasing precision. The large volumes of data pro-
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Chapter 1. Introduction

duced by these technologies coupled with our relative ignorance of the underlying biological
processes have led naturally to the development of statistical models for studying genetic
variation. To be applicable to large-scale datasets, these models need to permit efficient
inference while accurately capturing the essential properties of the underlying biological
processes.

1.1 Genetic and phenotypic variation

The human genetic code consists of a little over 3 billion base paired nucleotides organized
in two sets of 23 chromosomes (22 pairs of autosomes and a pair of sex chromosomes). An
individual inherits one set from each parent. Each of these sets is termed a haploid genome.

Genetic variation refers to the differences in this genetic code at a given position across
individuals in the human population. Several kinds of genetic variant are known to occur.
These include a change at a single nucleotide (known as a single nucleotide polymorphism
or a SNP), an insertion of a nucleotide sequence in the genome or a change in the number
of copies of a genomic sequence (known as copy number variants or CNVs).

It has been observed that two haploid genomes differ in about 0.05% of their bases leading
to an estimated 1.5 million SNPs that differentiate two haploid genomes [Levy et al., 2007]

(The total number of SNPs discovered in the human genome is much higher with an estimate
of at least 12 million as of June 2008 [http://www.ncbi.nlm.nih.gov/projects/SNP/snp_
summary.cgi]). More recent studies have estimated the fraction of non-SNP DNA variation
between two haploid genomes to be around 0.4%. These non-SNP variants account for a
larger fraction of genetic variation than was previously believed [Levy et al., 2007] and their
effect on variation in phenotypes remains to be studied.

We can understand the link between genetic and phenotypic variations at multiple levels.
Phenotypic variation is, to a large degree, driven by changes in the level and timing of proteins
that are expressed in the various cells of the human body. Variation in the genetic code that
alters the amino acid sequence of a protein would be expected to influence some of these
phenotypes. Thus, we can begin to understand the link between genotype and phenotype at
the molecular level. At this level, we would like to understand the effect of genetic variation
on protein function.

Focusing on the molecular level has its limitations. A large fraction of the genetic vari-
ation does not alter the protein sequence because protein-coding genes form only a small
fraction of the human genome. Genetic variation that does not alter the protein sequence
may still affect the phenotype through, as yet poorly understood, regulatory mechanisms
such as transcriptional control, chromatin accessibility, and alternative splicing. How can
we understand the impact of these variants without understanding the biological mecha-
nisms that they influence? One strategy to work around this difficulty involves studying
populations of individuals instead of a single individual. Such an approach would allow us

2
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to analyze the population-level distributions of the variants and infer their impact on vari-
ous phenotypes. While a number of population-level approaches have been proposed [Risch
and Merikangas, 1996; Lander, 1996; Collins et al., 1997; Chakraborty and Weiss, 1988;
McKeigue, 2005], as we will explain shortly, their effectiveness depends on our ability to
understand and exploit the genetic structure of human populations.

1.2 Genetic association: common and rare variants

One approach to identifying the variants that influence a phenotype, termed an association
study, screens either a candidate gene or the entire genome for variants that are highly-
correlated with the phenotypes in a sample of unrelated individuals [Risch and Merikangas,
1996; Lander, 1996; Collins et al., 1997]. In the case of a binary trait where the phenotype
is the presence of absence of a disease, such a study looks for variants that have differing
frequencies in the two groups and is termed a case-control association study (cases refer
to individuals diagnosed with the disease and controls refer to unaffected individuals). To
perform association studies with little prior knowledge of the biological mechanisms involved
in the disease requires an assay of SNP variation across the human genome. Such genomewide
SNP genotyping assays have become feasible due to the development of high-density SNP
microarrays [Wang et al., 1998] that are capable of simultaneously genotyping hundreds of
thousands of SNPs.

A major challenge in these association studies is to maximize the power to detect true
associations while controlling the fraction of false positives (spurious associations). This
problem is particularly severe in a genomewide setting due to the hundreds of thousands of
variants that are tested. False positive associations often arise because of a failure to account
for the underlying structure of the population being studied [Lander and Schork, 1994b].
Many of the early association studies have focused on relatively homogeneous European
subpopulations and have thus avoided the need to account for population structure. To gain
a comprehensive understanding of the genetic basis of complex phenotypes, it is essential
that these studies be applied to non-European populations. However, performing association
studies in populations such as African Americans or Latinos presents a major challenge.
These populations have a complex genetic structure. To a first order, African Americans are
a mixture of Africans and Europeans while Latinos are a mixture of Europeans, Africans
and native Americans.

An association study that does not account for the structure of an African American
population would produce associations simply because a SNP has different allele frequen-
cies in the African and European groups [Pritchard and Rosenberg, 1999]. On the other
hand, population structure can also be exploited to improve the power of detecting associa-
tions [Chakraborty and Weiss, 1988; McKeigue, 2005]. Thus, inferring the genetic structure
of human populations is an important step to understanding human genetic variation.
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Chapter 1. Introduction

Since they only exploit the population-level distribution of genetic variants, genomewide
association studies are expected to detect associations with common SNPs (SNPs with a
minor allele frequency of at least 1% in the population). It was reasoned that these common
SNPs would explain a significant fraction of the variation in common diseases like type-2
diabetes and hypertension (this assumption is referred to as the Common Disease Common
Variant (CDCV) hypothesis [Collins et al., 1997; Lander, 1996; Risch and Merikangas, 1996])
and hence, the detected associations would be useful for predicting disease risk. However,
most of the SNPs identified in the hundreds of genomewide association studies performed so
far have explained only a tiny fraction of the disease variation [Goldstein, 2009; Hirschhorn,
2009; Kraft and Hunter, 2009].

A number of reasons have been proposed for this gap – one possible reason is that the
causal variants are rare and current association study designs have little power to detect
them [Goldstein, 2009]. One strategy to detect rare variants is to use other sources of
functional data to direct the search for associations (such association studies would no longer
be “unbiased”). For example, we could scan for variants that fall in protein-coding regions
and rank these variants according to their functional impact. To do so, we would need to
understand the functional effect of the variants within protein-coding genes. However, the
protein-coding regions comprise a small fraction of the genome so that most variants would
fall outside these regions. Such an approach would fail to detect these other variants. In
the future, functional data such as proximity of a genomic region to transcription-factor
binding sites, positioning of nucleosomes around a region etc. would need to be integrated
to fully understand the impact of rare variants. In effect, these approaches would combine
molecular-level and population-level analyses of genotype-phenotype relationships.

1.3 Predicting functional residues in proteins

The problem of understanding the functional effect of variation in a gene translates directly
to one of identifying the functionally important amino acid residues in the corresponding
protein product. While we have motivated this problem in the context of understanding
genetic variation, identifying functional residues provides valuable clues about the function
of proteins [George et al., 2005] and is an important problem in its own right. The residues
of a protein are involved in different roles: catalytic residues in an enzyme are responsible for
the extraordinary efficiency of the reactions that an enzyme facilitates; ligand-binding and
specificity-determining residues target the protein towards specific substrates while avoiding
others; protein-protein interaction residues mediate the formation of complex assemblies;
allosteric residues allow effector molecules to control the activity of the protein. Since ex-
perimental methods to determine the roles of individual residues are time-consuming and
expensive, computational methods are essential for functional residue prediction; computa-
tional methods provide initial clues that can be followed up by experiments.
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The biggest challenge in developing a computational method to predict each of these
classes of residues is the availability of a benchmark dataset of proteins in which (some
fraction of) the residues have been annotated with their functional role. We focus mainly on
the task of predicting catalytic residues because of the availability of an extensive manually-
curated dataset of catalytic residues [Bartlett et al., 2002; Porter et al., 2004].

Computational methods for identifying functional residues fall into two broad classes:

• Sequence-based methods: Sequence-based methods predict functional residues based
on the primary sequence of the protein alone. These methods examine the patterns
of conservation of each residue in the protein across a set of evolutionarily-related
sequences (homologues). Residues that are more conserved are expected to be func-
tionally important. Methods that only use sequence information are useful because 3D
structural information is not available for a majority of proteins.

The sequence-based methods gather sequences that are homologous to the protein of
interest, build an alignment of these sequences and analyze the conservation patterns
in each column of the alignment. Such methods operate on the assumption that all
residues in a column are homologous; this assumption can be violated due to struc-
tural and functional variability across specific lineages (where a residue conserved in
one subgroup is not conserved in another due to changes in function) and errors in
alignments. While we can reduce variability and alignment errors by restricting the set
of homologues to closely-related sequences, it turns out that analyzing a divergent fam-
ily of proteins can improve the ability to detect truly functional residues. In chapter 2,
we present a sequence-based method that uses phylogenomic information to predict
functional residues in large, highly divergent, protein families.

• Structure-based methods: Structure-based methods use information from the protein
3D structure such as the solvent accessibility of the residue or presence of the residue
in a cleft or pocket, sometimes in combination with sequence information. For ex-
ample, it is well-known that catalytic residues tend to be located in one of the three
largest pockets on the enzyme. Although methods that use structural information in
combination with sequence information would be expected to better predict functional
residues, the accuracies of these methods has remained low. In chapter 3, we present a
statistical method that combines sequence and structural information and significantly
improves over current catalytic residue prediction methods. This method combines
the sequence-based method that we describe in chapter 2 with features computed at
residues near each other in the protein 3D structure within a logistic regression model.
The attempt to combine features from neighboring residues leads to a proliferation of
features and we use a statistical regularization technique to control the complexity of
the resulting model.
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1.4 Locus-specific ancestries in admixed populations

Obtaining a comprehensive understanding of genotype-phenotype relationships requires genomewide
association mapping in different population groups. This would enable the detection of vari-
ants that are common in some groups but rare in others. A major difficulty in studying
genetic variation in populations such as Latinos, is the complex genetic structure of these
populations. These populations are admixed, i.e., they are formed by the intermixing of
several ancestral populations. Each individual genome in these admixed populations is a
mosaic of chromosomal segments inherited from the ancestral populations. Inferring the
ancestry of these admixed genomes is critical for discovering variants associated with dis-
eases. One such technique, known as admixture mapping [Chakraborty and Weiss, 1988;
McKeigue, 2005], scans the admixed population for regions which are preferentially inher-
ited from one of the ancestral populations compared to the genomewide average. Admixture
mapping has been successfully applied in African-Americans to identify regions linked to dis-
eases such as hypertension [Zhu et al., 2005b], prostate cancer [Freedman et al., 2006], and
multiple sclerosis [Reich et al., 2005a]. On the other hand, studies that do not account for
the underlying ancestries can produce spurious signals of association. Thus, we need to infer
the locus-specific ancestries of these admixed populations and correct for these ancestries in
tests of association.

Ancestry inference in admixed populations relies on two properties of admixed genomes:
i) nearby locations on a chromosome tend to be inherited from the same ancestral population
and ii) the patterns of variation at these nearby locations can be used to infer their ances-
tral origin. Ancestry inference is a challenging statistical problem due to several reasons:
genomes from the ancestral populations may not be available, the ancestral populations may
be very similar, or the admixture may be ancient, i.e., the ancestral populations may have
been mixing for a long period of time. In chapters 4 and 5, we describe a method that can
accurately infer locus-specific ancestries even when the ancestral genomes are not available.
This method is based on a probabilistic model of the admixture process (Chapter 5). In-
ference in the model is intractable on genomewide datasets; hence, we propose a fast and
accurate approximation algorithm that is used as initialization for the inference algorithm.

1.5 Genomic Privacy

The statistical power to detect associations in genomewide association studies can be en-
hanced by combining data across these studies in meta-analysis or replication studies. Such
methods require data to flow freely in the scientific community, but this raises privacy con-
cerns. Till recently, many studies pooled individuals together, making only the allele fre-
quencies of each SNP in the pool publicly available. However, even this summary data does
not preserve privacy. It was shown recently that, using the large number of SNPs genotyped
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in these studies, the presence of an individual genotype in such a pool can be determined
with high power [Homer et al., 2008]. An immediate response to this result might be that
detecting the presence of an individual in a pool will not provide any valuable information
in addition to what can already be obtained from the genotype (which is needed to test for
presence in the pool). However, detecting an individual in the pool of cases in a case-control
study reveals the disease status of the individual. For most common diseases, it is difficult to
obtain this disease status directly from the genotype alone. thus, such tests have the ability
to reveal more information than what is already known based on the individual’s genotype.

This result prompted organizations such as the NIH to restrict public access to summary
data as a conservative means of protecting privacy [Gilbert, 2008]. In response, a number of
solutions have since been proposed to deal with the twin issues of sharing genomic data and
protecting individual privacy [Church et al., 2009]. Solutions on extremes of the spectrum
involve giving up the demand for sharing or the requirement of privacy. Amongst solutions
that occupy a middle-ground, one approach proposes setting up a secure infrastructure to
facilitate data sharing. Another approach would involve determining the privacy guarantees
provided by various data-sharing mechanisms and using these to develop guidelines for data-
sharing. To come up with privacy guarantees, we need to determine which set of SNPs can
be safely exposed while preserving an acceptable level of privacy. In chapter 6, we address
this issue by providing an upper bound on the power achievable by any detection method
as a function of factors such as the number and the allele frequencies of exposed SNPs, the
number of individuals in the pool, and the false positive rate of the method.
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Chapter 2

Functional site prediction using
phylogenomic information

2.1 Introduction

The problem of identifying the positions in a protein critical for its structure or function
plays a significant role in biological discovery. These residues (such as the catalytic triad of
serine, aspartate and histidine found in proteases) provide valuable clues about the functions
of proteins. Since experimental methods to determine the roles of individual positions are
time-consuming and expensive, computational methods are widely used for protein functional
residue prediction; these provide initial clues that can be followed up by experiments. In
these experiments, we use the definition of catalytic residues provided by the authors of the
Catalytic Site Atlas and of the CATRES benchmark dataset [Bartlett et al., 2002]. They
defined catalytic residues as those residues in an enzyme active site that participate directly
in catalysis as revealed by structural studies.

Casari, Sander, and Valencia developed one of the first computational approaches to
identify positions conferring functional specificity [Casari et al., 1995]. Another method
for functional residue prediction is Evolutionary Trace (ET) [Lichtarge et al., 1996]. The
original ET method defines progressively more conservative cuts of a phylogeny. The level
of the cut at which a column shows a specific pattern of conservation (either family-wide
or subfamily-specific) is used to assign a score to each position in a protein. A more recent
method, ConSurf [Landau et al., 2005], computes the rate of evolution at each position
based on phylogenetic analysis; residues with lower rates of evolution are considered more
important. Variants of both ET, one of which uses an entropy-based score, [Aloy et al., 2001;
Mihalek et al., 2004] and ConSurf [Mayrose et al., 2004; Nimrod et al., 2005; Glaser et al.,
2006] have also been developed. In general, predictive methods have relied on protein surface
geometry [Peters et al., 1996], energy considerations [Laurie and Jackson, 2005; Elcock,
2001], chemical properties [Ko et al., 2005; Ondrechen et al., 2001] and sequence conservation
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[Lichtarge et al., 1996; Casari et al., 1995; Landgraf et al., 2001; Landau et al., 2005] or have
attempted to combine different features [Gutteridge et al., 2003; Petrova and Wu, 2006;
Youn et al., 2007].

A number of methods focusing exclusively on specificity-determining residues have also
been developed [Del Sol Mesa et al., 2003; Kalinina et al., 2004; Mirny and Gelfand, 2002;
Donald and Shakhnovich, 2005; Pei et al., 2006; Hannenhalli and Russell, 2000]. [Capra and
Singh, 2008] developed a method for scoring the positions in an alignment, termed GroupSim,
which was found to be competitive with a number of previous methods. Some of the methods
proposed for specificity determinant prediction require the subtypes to be specified [Mirny
and Gelfand, 2002; Kalinina et al., 2004; Pirovano et al., 2006; Capra and Singh, 2008;
Hannenhalli and Russell, 2000] while others [Pei et al., 2006; Del Sol Mesa et al., 2003;
Donald and Shakhnovich, 2005] do not. In practice, subtypes are seldom known for a protein
family. Thus, methods which can work without explicit knowledge of subtypes (i.e., from a
tabula rasa) are more suitable for general use.

Here we present a new method - INTREPID (INformation-theoretic TREe traversal
for Protein functional site IDentification). INTREPID takes as input a target protein, a
multiple sequence alignment (MSA) and a gene tree of the family containing the target
protein; a protein structure can also be included to boost performance but is not required.
We focus on methods that exploit only sequence information, since structural information is
not available for a majority of proteins. Methods employing an MSA as input operate on the
assumption that all residues in a column are homologous; this assumption can be violated
due to structural and functional variability across specific lineages and errors in alignments.
A number of enzyme families exhibit variability in the location of catalytic residues [Todd
et al., 2002], while other enzyme families exhibit variation at catalytic positions. The inteins
have been known to exhibit variations in their catalytic residues that in turn affect the
intein-mediated splicing mechanisms. For instance, functional inteins with an N-terminal
alanine instead of the catalytic cysteine or serine have been observed [Johnson et al., 2007;
Southworth et al., 2000]. INTREPID is designed to be robust to these issues.

The key idea in INTREPID is the use of phylogenetic information by examining the
conservation patterns at each node of a phylogenetic tree on a path from the root to the
leaf corresponding to the sequence of interest. For instance, catalytic residues tend to be
conserved across distant homologs and thus will appear conserved at (or near) the root of
a gene tree. By contrast, specificity determinants will not be conserved across all members
of a family but are likely to be conserved within one or more subtypes. Thus, prediction
of these two distinct types of positions requires a different approach for each task. Any
suitable conservation score can be used within the tree traversal of INTREPID depending
on the type of functional residue to be predicted. A number of functions have been developed
for determining functional residues by scoring the columns of a MSA, including information-
theoretic scores based on Shannon Entropy [Shenkin et al., 1991; Sander and Schneider,
1991], Relative Entropy [Wang and Samudrala, 2006], and Jensen-Shannon divergence [Capra
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and Singh, 2007]. INTREPID uses the Jensen-Shannon divergence as it has been found to
be the most accurate conservation-based score for functional residue identification [Capra
and Singh, 2007].

In the catalytic residue prediction problem, we apply INTREPID to large protein families
for enzymes in the Catalytic Site Atlas (CSA) [Porter et al., 2004]. We compare INTREPID
to other sequence-based methods, such as ET, ConSurf, and baseline methods based on
global conservation scores. We also compare INTREPID to the machine-learning methods
reported in [Petrova and Wu, 2006] and in [Youn et al., 2007]. We also analyze the effect
of alignment diversity on the accuracy of catalytic residue prediction. Finally, we apply
INTREPID-SPEC, a variant of INTREPID adapted to specificity determinant prediction,
to the dataset of putative specificity-determining positions (SDPs) generated by Capra and
Singh [Capra and Singh, 2008].

2.2 Catalytic residue prediction

The input to INTREPID comprises a target protein p whose functional residues are to
be predicted, a multiple sequence alignment (MSA) of proteins homologous to p and an
estimated evolutionary tree of these homologs i.e., the gene tree.

Each residue in p is analyzed independently to derive its predicted importance, based on
the conservation patterns at each node on a path from the root to the leaf corresponding
to protein p. INTREPID uses a key observation that was first exploited in the context
of functional residue identification by Casari, Sander and Valencia [Casari et al., 1995] and
reinforced since then by numerous studies: residues playing critical roles for protein structure
or function are often under strong negative selection. This negative selection enables these
residues to be detected due to their strong conservation across a family of related proteins.
Catalytic residues in enzyme active sites are an example of such a class. In predicting
catalytic residues based on sequence conservation, the evolutionary context is critical i.e., the
degree of sequence divergence across homologs included in the analysis will have a significant
impact on the method performance. In a closely related set of proteins, even positions that
are not critical for function may appear well-conserved. Thus, truly critical residues may
only be revealed against a backdrop of evolutionary divergence.

Unfortunately, conservation patterns in an MSA can be affected by inadvertently included
non-homologs, alignment and phylogeny errors, and functional divergence in specific lineages
e.g., where a residue conserved in one subtree is not conserved in another subtree due to
changes in function. INTREPID is designed to detect catalytic residues exhibiting such
behaviour by combining the conservation patterns observed at different nodes of the tree.
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2.2.1 Computing the Positional Importance Score

INTREPID computes an importance score IMPp(x) for every position x in protein p using
a traversal of the phylogenetic tree from the root to the leaf corresponding to p. The tree
traversal enables us to exploit the information over the entire tree, instead of requiring us
to select a particular cut of a tree into subtrees. It also helps to avoid the contribution of
noise from subfamilies or entire lineages that may disagree on the importance of particular
positions.

Every node encountered in this traversal corresponds to a subtree containing p and one
or more homologs, and provides a different perspective on the potential importance of each
position in p. For instance, at the leaf corresponding to p, no homologs are available to
highlight which positions are conserved and which are variable, and it is impossible to predict
which of the positions in p are likely to be critical for function. At the other extreme, residues
that are perfectly conserved across the entire family will be evident when viewed from the
root of the tree. As we traverse a path from the root to the leaf, positions formerly appearing
to be variable will become fixed in specific lineages; at a leaf, all positions will be perfectly
conserved. To enable us to compensate for subtrees with highly correlated or very few
sequences, the score IMPp accounts for the evolutionary distance spanned as estimated by
the sequence divergence.

We denote by S the subtree corresponding to a node encountered in the tree traversal,
cons(S, x) is the conservation of position x within subtree S, and cons(S) is the average
conservation across all columns in subtree S. The importance score at a position x is
computed as

IMPp(x) = maxscons(S, x)− cons(S) (2.1)

Here we use the Jensen-Shannon (J-S) divergence [Lin and Wong, 1990] between the amino
acid distribution and the background (with prior weight = 1

2
as in [Capra and Singh, 2007]).

The importance score thus assigns a high score to those residues that are conserved over a
large subtree of divergent sequences. When subtrees with many highly similar sequences are
considered, the average conservation will be high. In this case, even though the positional
conservation is also high, the difference between these two numbers will be fairly low. The
maximum observed positional conservation on the path from the root to the leaf at each
position x is its importance. We finally normalize the score across all the positions in the

protein p so that the reported score at position x is Z − IMPp(x) = IMPp(x)−IMPp

σ(IMPp)
where

IMPp and σ(IMPp) are the average and standard deviations of the importance scores across
all the columns in the MSA.

We illustrate INTREPID with an example.
Figure 2.1 shows six protein sequences of length four each. The target protein is marked

with an arrow. The nodes traced by the tree traversal are S1, S2, S3, S4, and S5. We first
compute the average Jensen-Shannon divergence in each of the subtrees. In subtree S1,
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Figure 2.1: An example of the INTREPID algorithm. This example shows six protein sequences
of length four each. The target protein p is marked with an arrow. The nodes visited by the tree
traversal are S1, S2, S3, S4, and S5. As explained in the text, INTREPID ranks the positions in
the order 2, 1, 4 and 3 while simple global conservation would rank position 4 above position 3.

the average Jensen-Shannon divergence is: cons(S1) = 0.87+0.73+0.56+0.79
4

= 0.74. Repeating

this calculation for each of the other subtrees, we get cons(S2) = 0.79, cons(S3) = 0.83,
cons(S4) = 0.87, and cons(S5) = 0.89.

Now let us look at column 1. In a tree traversal from the root (node S1) to the leaf
corresponding to p, we compute the following importance scores: cons(S1, 1) = 0.73−0.74 =
−0.1, cons(S2, 1) = 0.82 − 0.78 = 0.03, cons(S3, 1) = 0.91 − 0.82 = 0.09, cons(S4, 1) =
0.91− 0.87 = 0.04, cons(S5, 1) = 0.91− 0.89 = 0.02.

The maximal importance score IMPp(1) = 0.09, corresponds to the score at node S3

where position 1 is completely conserved. Computing these scores for other positions:
IMPp(2) = 0.13, IMPp(3) = −0.03, IMPp(4) = 0.05. As expected, we see that posi-
tion 2 has the highest importance score followed by position 1. If simple global conservation
had been used (i.e., each position had been ranked based on its conservation across the fam-
ily), then position 4 would have a higher rank than position 1. INTREPID gives a higher
score to position 1 than to position 4 because of the higher conservation in position 1 in the
subtree containing p. In other words, position 4 appears to be important for a majority of
the family but may have evolved a different role in the lineage corresponding to subtree S4.
On the other hand, position 1 appears to be associated with a function that is preserved
within the subtree S3 but is lost or modified outside.

Different measures of positional conservation can be used within the tree traversal proto-
col. We also considered using the log-odds of the frequency of the most frequent amino acid
and the relative entropy between the amino acid distribution of position x within subtree
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S and a background distribution [Wang and Samudrala, 2006]. Consistent with the results
reported in [Capra and Singh, 2007], the score based on J-S divergence was found to be
the most accurate. We use the distribution from the BLOSUM62 alignments [Henikoff and
Henikoff, 1992] as the background distribution. See Section 3.E.3 for details and experimen-
tal results using the different positional conservation scores.

2.3 Experiments

We start by describing experiments to assess INTREPID on the prediction of catalytic
residues, and examine the effect of protein family divergence on the accuracy of catalytic
residue prediction.

2.3.1 Preliminaries

We compared INTREPID to two methods that use only sequence information to predict func-
tionally important residues, Evolutionary Trace [Lichtarge et al., 1996] and ConSurf [Pupko
et al., 2002]. We also included in our comparison a baseline method termed Global-JS which
applies the JS-divergence score to each column of the alignment as performed by [Capra
and Singh, 2007]. We used the results from servers implementing ET and ConSurf to ensure
that each of these methods would be run with parameters for which it has been optimized:
the Evolutionary Trace server from Baylor College of Medicine (http://mammoth.bcm.tmc.edu/
traceview/) (BCMET), which implements the improved evolution-entropy hybrid version of
Evolutionary Trace [Mihalek et al., 2004], and the ConSurf web server at Tel Aviv University
(http://consurf.tau.ac.il).

While evaluating these methods, the question of how the reported scores are typically
handled by users needs to be addressed. We consider two ways of post-processing the scores
reported. In the first case, we use the ranks of the residues instead of the scores. This treat-
ment is more useful under the assumption that every protein should have some predicted
residues (if, for instance, the protein is known to be an enzyme). In the second case, we
normalize the scores of each method on each protein and then analyze all 100 proteins as a
set, sorting the normalized scores for each position. In this approach, for some score cutoff,
some proteins may have no predicted positions while others may have several. Normaliz-
ing the scores improved the accuracies of both BCMET and ConSurf compared to using
unnormalized scores.

We computed the following metrics for comparison (note that although sensitivity and
recall are synonymous terms, we follow convention and use each term according to the
analysis):

Recall = Sensitivity = TP
TP+FN

Precision = TP
TP+FP
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Specificity = TN
TN+FP

Here a true positive (TP ) is a residue identified by the CSA as catalytic which is selected by
a method, a false negative (FN) is a catalytic residue that is missed, a false positive (FP )
is a residue erroneously selected by a method (i.e., it is not listed in the CSA), and a true
negative (TN) is a non-catalytic residue that is correctly not selected. Specificity measures
how well a method rejects non-catalytic residues. Since the ratio of catalytic to non-catalytic
residues is low, even apparently high values of specificity can correspond to a large number
of false positives. Precision, which measures the fraction of predicted catalytic residues that
are correct, is a more relevant measure of performance in this setting. We plot the ROC
curve (Sensitivity vs 1-Specificity) and the Precision-Recall curve (Precision vs Recall) for
each of these methods. The ROC curve has been truncated to the high-specificity region for
clarity (Specificity ≥ 80%) although the trends shown are similar over the entire range of
specificities.

2.3.2 Accuracy of INTREPID relative to other conservation-based meth-
ods

Figure 2.2 compares the performance of INTREPID, Global-JS, BCMET and ConSurf on
the CSA-100 dataset (see Section 2.A for details). We see from the figure that INTREPID
has the highest sensitivity over the entire range of specificities and is significantly more
accurate than the other methods. Table 2.1 compares the different methods under various
metrics. For example, at 90% specificity, INTREPID attains a sensitivity of 85.03% relative
to sensitivities of 70.06% and 73.8% by BCMET and ConSurf respectively. The baseline
method (Global-JS) performs quite well (a sensitivity of 78.66% at a specificity of 90%).
At a precision of 10%, INTREPID attains a recall of 75.0% while Global-JS has a recall of
64.0%. ConSurf and BCMET never attain a precision of 10% resulting in 0% recall at this
level. When the normalized scores are used in place of the ranks, we see from Table 2.1 that
INTREPID has the highest sensitivity followed by Global-JS, BCMET, and ConSurf.

Since the ConSurf server selects a smaller, more closely related set of sequences as input
to Rate4Site (the program that computes the site-specific evolutionary rates as part of the
ConSurf protocol), we also tested the prediction power of Rate4Site on the CSA-100 dataset
which contains a greater level of sequence divergence. Rate4Site failed to complete on 77 of
the 100 alignments due to memory allocation problems. By removing sequences with greater
than 80% identity, we obtained Rate4Site results on 71 out of the 100 inputs. We refer to
these 71 families as the CSA-71 dataset.

We also ran INTREPID on these reduced alignments as well as the full alignments for
these 71 families. Figure 2.4 compares the performance of INTREPID, run on alignments
made non-redundant at 80% identity and on the original alignments for the CSA-71 dataset,
with Rate4Site. INTREPID, when run on the reduced MSA, has a small but statistically
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Figure 2.2: Results for catalytic residue prediction on a subset of 100 manually curated enzymes
from the Catalytic Site Atlas (termed CSA-100) using rank-based scores: ROC curves compar-
ing INTREPID with other conservation-based functional residue prediction methods: Global-JS,
BCMET and ConSurf (refer Section 2.3.1 for details). The ROC curve shows INTREPID to have
the highest sensitivity over the range of high specificity (≥ 80%) followed by Global-JS. BCMET
performs better as the specificity decreases. Refer to Table 2.1 for full AUC scores.

significant improvement over Rate4Site (Wilcoxon paired sign-rank test p-value of 1.3×10−5).
At 90% specificity, INTREPID attains sensitivities of 83.6% on the full MSA and 85.1% on
the reduced MSA while Rate4Site attains a sensitivity of 84.6%. Similarly, at 10% precision,
INTREPID on the full MSA, INTREPID on the reduced MSA and Rate4Site have 75%, 80%,
and 75% recall. See Figure 2.4 for details. The figure also shows the considerable difference in
accuracies between Rate4Site when run on these alignments and when run as part of ConSurf;
this difference is likely a result of the different alignments used. Importantly, INTREPID
has an average running time of 25.7 seconds on this dataset compared to Rate4Site which
requires 2 hours and 52 minutes on average.

We also evaluated INTREPID on two other datasets consisting of the protein families
used by [Petrova and Wu, 2006] and by [Youn et al., 2007] respectively. On the Petrova
dataset, INTREPID, with a sensitivity of 90.57% at a false positive rate of 13%, is as
accurate as their method which attains a sensitivity of 90% at the same false positive rate
(i.e., the results are essentially indistinguishable). This is a very surprising result because
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INTREPID Global-JS ConSurf BCMET
Residue ranks Sensitivity95 70.06 64.33 49.20 40.76

Sensitivity90 85.03 78.66 73.80 70.06
Sensitivity80 93.95 90.13 89.78 92.04
Recall10 75.0 64.0 0.00 0.00
AUC 0.944 0.924 0.907 0.914
AUC95 0.024 0.022 0.011 0.010
AUC90 0.063 0.058 0.046 0.039
AUC80 0.154 0.145 0.127 0.124
p-value – 3.89× 10−18 1.64× 10−17 1.34× 10−17

Normalized scores Sensitivity95 67.83 58.28 36.74 54.46
Sensitivity90 85.03 75.48 59.42 74.84
Sensitivity80 92.99 89.81 87.86 91.72
Recall10 71.0 56.0 3.83 31.21
AUC 0.935 0.910 0.884 0.919
AUC95 0.022 0.018 0.011 0.016
AUC90 0.060 0.053 0.036 0.048
AUC80 0.149 0.137 0.111 0.134
p-value – 3.89× 10−18 3.89× 10−18 5.27× 10−18

Table 2.1: Statistics comparing the different algorithms on a subset of 100 manually curated
enzymes from the Catalytic Site Atlas (termed CSA-100). BCMET refers to the Evolutionary
Trace server from Baylor College of Medicine. In the top panel, the ranks of the residues were
used while in the bottom panel, the normalized scores were used. Sensitivity is measured at
specificities of 95, 90, and 85% respectively and recall at 10% precision. AUCx (x = 80, 90, 95)
refers to the area under the ROC curve when specificity is at least x%; AUC is the area under
the entire curve. The p-value refers to the Wilcoxon signed rank p-values between the AUC of
the INTREPID and each of the other methods. INTREPID improves significantly over the other
methods on all metrics. BAsed on their ranks, ConSurf and BCMET do not reach a precision
of 10% and hence have zero recall. The confidence intervals on these statistics are reported in
Table 2.2.

INTREPID uses only sequence conservation while the method reported in [Petrova and Wu,
2006] uses a learning algorithm to combine sequence and structural features. [Youn et al.,
2007] present two variants of their method, one employing only sequence information while
the second combines sequence and structural information. They present results for both
variants on a dataset based on ASTRAL 40 v1.65 [Brenner et al., 2000] selected to be non-
redundant at the SCOP family level. On a similarly constructed dataset, INTREPID attains
a recall of 28.13% at a precision of 15% and an AUC of 0.906. When restricted to sequence
features alone, their method attains a sensitivity of about 16% at 15% precision and an
AUC of 0.866. Thus, INTREPID improves over the method used in [Youn et al., 2007] when
restricted to sequence features alone. By contrast, their method that combines sequence
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INTREPID Global-JS ConSurf BCMET
Residue ranks Sensitivity95 [65.47,74.31] [59.67,68.46] [44.95,54.28] [36.30,46.01]

Sensitivity90 [82.31,87.86] [74.92,82.17] [69.44,77.92] [66.35,74.39]
Sensitivity80 [91.82,95.83] [87.42,92.75] [86.79,92.24] [89.35,94.65]
Recall10 [66.00,81.00] [57.00,72.00] [0.00,45.00] [0.00,0.00]
AUC [0.932, 0.955] [0.901, 0.941] [0.894, 0.916] [0.898, 0.916]
AUC95 [0.016, 0.020] [0.019, 0.024] [0.010, 0.013] [0.005, 0.007]
AUC90 [0.049, 0.057] [0.054, 0.061] [0.041, 0.048] [0.032, 0.037]
AUC80 [0.132, 0.144] [0.137, 0.150] [0.122, 0.136] [0.114, 0.124]

Normalized scores Sensitivity95 [62.93,72.24] [53.66,62.68] [31.58,40.88] [50.15,59.46]
Sensitivity90 [81.36,88.07] [73.31,80.68] [70.64,78.59] [52.86,63.79]
Sensitivity80 [90.61,95.55] [87.12,92.36] [83.59,90.83] [89.33,94.10]
Recall10 [60.00,76.00] [38.00,64.00] [0.00,24.00] [16.00,54.00]
AUC [0.924, 0.946] [0.896, 0.923] [0.869, 0.898] [0.907, 0.928]
AUC95 [0.020, 0.024] [0.016, 0.020] [0.009, 0.012] [0.014, 0.017]
AUC85 [0.057, 0.064] [0.049, 0.056] [0.031, 0, 038] [0.045, 0.051]
AUC80 [0.145, 0.156] [0.131, 0.142] [0.103, 0.117] [0.127, 0.138]

Table 2.2: Confidence Intervals for statistics comparing the different algorithms on a subset
of 100 manually curated enzymes from the Catalytic Site Atlas (termed CSA-100). BCMET
refers to the Evolutionary Trace server from Baylor College of Medicine. In the top panel,
the ranks of the residues were used while in the bottom panel, the normalized scores were used.
Sensitivity is measured at specificities of 80, 90, and 95% respectively and recall at 10% precision.
AUCx, x = 80, 90, 95 refers to the area under the ROC curve when specificity is at least x%;
AUC is the area under the entire curve. The 95% confidence interval are computed from 200
bootstrap replicates.

and structural information attains a much higher recall of about 65% at about the same
precision. Reassuringly, the performance of INTREPID is approximately the same across
these different datasets suggesting that these results would generalize well to new protein
families.

2.3.3 Effect of evolutionary divergence on the accuracy of INTREPID

To measure the impact of evolutionary divergence on method performance, we controlled the
sequence diversity of the alignment used. We created restricted alignments at the x%-level,
i.e., sequences were discarded from each of these alignments so that the minimum percent
identity from any sequence to the seed was at least x%. We varied x over 10, 15, 20, and
25% respectively. For comparison, we also included the original alignment which is labeled
“Unrestricted”. The effect of evolutionary divergence on INTREPID is shown in Figure 2.5.
We see that as the divergence of the family increases, INTREPID accuracy increases. At
90% specificity, INTREPID has 42% sensitivity at 25% identity trimming. INTREPID

17



Chapter 2. Functional site prediction using phylogenomic information

Figure 2.3: Results for catalytic residue prediction on a subset of 100 manually curated en-
zymes from the Catalytic Site Atlas (termed CSA-100) using normalized scores: ROC curves
comparing INTREPID with other conservation-based functional residue prediction methods:
Global-JS, BCMET and ConSurf (refer Section 2.3.1 for details). The methods have AUCs
of 0.935, 0.910, 0.919, and 0.884 respectively and AUC90 of 0.060, 0.053, 0.036, and 0.048 re-
spectively.

reaches 85% sensitivity when no sequences are removed. The trends shown here suggest that
INTREPID is robust to divergence in protein families. All methods tested for the impact of
sequence divergence on catalytic residue prediction – INTREPID, Global-JS and Rate4Site
– benefit from increased sequence diversity (see Supplementary Materials).

We have shown in Section 2.3.3 of the main paper that greater evolutionary divergence
improves the accuracy of INTREPID. Global-JS also improves with the inclusion of addi-
tional homologs but appears to be somewhat less robust to sequence divergence (Figure 2.6).
For instance, at 90% specificity, the sensitivity of Global-JS prediction is 42% on the most re-
stricted alignment (removing sequences with less than 25% identity to the seed) but increases
to about 79% on the unrestricted alignment.

Our results are in agreement with previous studies [Panchenko et al., 2004; Aloy et
al., 2001; Landgraf et al., 2001]. In [Landgraf et al., 2001], the recall of their scoring
functions improved when the E-value cutoff for homolog inclusion was reduced from 10−50

to 10−20 while [Aloy et al., 2001] observed a considerable improvement in accuracy of their
method when their alignments had sequence identity less than 30%. Similar results were also
reported by [Panchenko et al., 2004], where the performance doubled on alignments with
average sequence identity of 20% relative to those with average identity of around 45%. An
important difference is that our alignments are highly divergent. In the experiments reported
by [Panchenko et al., 2004], the least divergent dataset had a minimum percent identity
of 25% to the seed. For catalytic residue prediction, we observe that it is beneficial to use
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highly divergent alignments with minimum percent identities extending as low as 10%.

2.3.4 Robustness of INTREPID to non-conserved catalytic residues

The advantage of INTREPID over global conservation analysis can be inferred from the level
at which the maximum score is attained in the tree traversal. A little less than 50% of the
catalytic residues have their maximum scores at the root. However, for 56 of the catalytic

Figure 2.4: Results on a subset of 71 manually curated enzymes from the Catalytic Site Atlas
(termed CSA-71) comparing INTREPID, Rate4Site and ConSurf using rank-based scores. Results
were obtained on alignments derived from the original CSA-100 dataset by removing sequences
with more than 80% sequence identity to one another; the 71 alignments used here were the
alignments on which Rate4Site completed successfully. INTREPID was run on the reduced MSA
as well as on the full MSAs for these 71 families. INTREPID, when run on both MSAs, and
Rate4Site have similar accuracies though INTREPID is slightly more accurate (Area under the
ROC curve for specificity≥ 90%, AUC90, for INTREPID, Rate4Site and ConSurf are 0.061, 0.061,
and 0.059 respectively; Area under the ROC curve, AUC, for these methods are 0.941, 0.938, and
0.940 respectively; the difference in accuracy between INTREPID, run on the reduced MSA, and
Rate4Site is statistically significant with a p-value of 1.3×10−5). Rate4Site is considerably more
accurate than the ConSurf webserver (which also uses the Rate4Site program) – this difference
is likely a result of the different alignments used.
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Figure 2.5: Effect of alignment diversity on catalytic residue prediction: ROC curve for INTREPID
on alignments with varying degrees of evolutionary divergence, indicated by the minimum percent
identity to the sequence used to gather homologs (seed sequence). The original alignment with
no sequences removed is labelled “Unrestricted”. INTREPID performs significantly better with
increasing evolutionary divergence. For instance, INTREPID achieves 42% sensitivity at 90%
specificity and 25% identity trimming but reaches 85% sensitivity when no sequences are removed.

residues (≈ 18% of all catalytic residues in the dataset), the maximum score is attained at
least 5 levels away from the root. In 34 of the 56 residues, INTREPID assigns a better rank
than Global-JS while Global-JS assigns a better rank on 15 (see Figure 2.7 in Supplementary
Materials). Thus, INTREPID is more effective at identifying catalytic residues that are not
conserved across the entire protein family. To illustrate this point, we consider two such
families.

The first example is the enoyl-[acyl-carrier-protein] reductase from Escherichia coli (PDB
id: 1mfp). CSA lists two catalytic residues: K163 and Y156. All methods give high ranks
to K163 while Y156 is far more challenging. INTREPID given Y156 a rank of 18 (out of
258 positions), and BCMET, Global-JS and ConSurf give ranks of 31, 58, and 100 respec-
tively. The homologs gathered for this protein family are found to include other short chain
dehydrogenases (such as 3-oxoacyl-[acyl-carrier-protein] reductase). In these other families,
this position generally contains a glutamine. The catalytic role of this glutamine has been
observed in human 15-hydroxyprostaglandin dehydrogenase [Cho et al., 2006]. The global
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Figure 2.6: Effect of alignment diversity on the accuracy of a global conservation method (Global-
JS) on a subset of 100 manually curated enzymes from the Catalytic Site Atlas (termed CSA-100):
ROC curve for Global-JS on alignments with varying degrees of evolutionary divergence, indicated
by the minimum percent identity to the seed. The original alignment with no sequences removed
is labelled “Unrestricted”. Global-JS performs significantly better with increasing evolutionary
divergence - from 42% sensitivity at 90% specificity and 25% identity trimming to 79% sensitivity
when no sequences are removed.
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Figure 2.7: INTREPID more effectively identifies catalytic residues that are not conserved across
the family because of its use of the phylogenetic tree: Scatter plot comparing the ranks assigned
by INTREPID, a phylogenetic method, and Global-JS, a global conservation (non-phylogenetic)
method, on catalytic residues that are not conserved across the family. Lower ranks correspond
to residues that are easily identified as catalytic. The diagonal denotes residues on which both
methods do equally well, residues above the diagonal are those for which INTREPID gives better
ranks, and residues below the diagonal are those for which Global-JS gives better ranks. Here,
INTREPID gives better ranks to 34 residues and Global-JS to 15.
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frequency of tyrosine at position 156 is only about 25% though it is conserved within a sub-
tree containing 199 sequences in a family with 833 sequences (see Supplementary Figures 2.8
and 2.9).

Another example is Flavocytochrome b2 from Saccharomyces Cerevisiae (PDB id:1fcB).
This protein is part of the flavin mononucleotide (FMN)-dependent oxidoreductases. The
poor conservation at the active site residues in this family has been observed by [Todd et al.,
2001]. This lack of conservation is most evident at the catalytic residues Y143, H373, and
R376 (see Supplementary Figure 2.10). On H373, INTREPID, ConSurf and BCMET all
give ranks of 1 while Global-JS gives a rank of 22. On R376, INTREPID, ConSurf, BCMET,
and Global-JS give ranks of 7, 23, 4, and 9 respectively, while on Y143, the respective ranks
are 23, 66, 56 and 20.

Figure 2.8: Alignment of the family containing enoyl-[acyl-carrier-protein] reductase from Es-
cherichia Coli (PDB id: 1mfp) made non-redundant at 45% sequence identity. Positions marked
in red correspond to catalytic residues (K163, Y156). Y156 is given a rank of 18 (out of 258
positions) by INTREPID, a rank of 58 by Global-JS, 100 by ConSurf and 31 by BCMET. See
Figure 2.9 for an expanded view of a subtree containing the seed 1mfp and Section 2.3.4 of the
main paper for details.
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Figure 2.9: Alignment of sequences in the subtree containing enoyl-[acyl-carrier-protein] reductase
from Escherichia Coli (PDB id: 1mfp) made non-redundant at 70% sequence identity. Positions
marked in red correspond to catalytic residues (K163, Y156). This subtree contains 199 sequences
out of the original 833 sequences. Notice that Y156 is conserved within this subtree while it has
a frequency of only 25% in the entire family. See Section 2.3.4 of the main paper for details.
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Figure 2.10: Alignment of the family containing Flavocytochrome b2 from Saccharomyces Cere-
visiae (PDB id:1fcB) made non-redundant at 40% sequence identity. Positions marked in red
correspond to catalytic residues (H373, R376).
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PDB id Percent id Rank as non-seed Rank as seed
1hti 44.4 57,72,2,29,30 54,67,2,11,29
1pxv 32.9 124,124,4,4 9,32,7,17
1azw 10.8 201,120,64 8,2,1

Table 2.3: INTREPID accuracy decreases with distance from the seed (sequence used to gather
homologs): The table shows the ranks (Rank as non-seed) assigned to the CSA catalytic residues
by INTREPID on a sequence which was not the seed. These ranks are compared to the ranks
(Rank as seed) when the same sequence was used as the seed. As the sequence identity to the
seed decreases, the accuracy decreases as seen from the numerically higher “Rank as non-seed”
column.

2.3.5 Effect of distance of the target protein from the seed on IN-
TREPID accuracy

To test the effectiveness of INTREPID prediction for proteins not used as seeds for selecting
and aligning homologs, we took three families of enzymes from CSA containing at least
two members each in the core (manually curated) dataset. One of these sequences for each
family was used as a seed for clustering homologs, and we used INTREPID to predict critical
residues for all members. We ensured that sequence identities with the seed were not so high
as to make the experiment uninformative (i.e., homologous enzymes from CSA were selected
with less than 50% identity). Table 2.3 compares the ranks of catalytic residues in a sequence
that was not used as seed to the ranks when the same sequence was a seed. As sequence
identity to the seed decreases, the accuracy of INTREPID also decreases. In the context of
predicting catalytic positions in a single protein as opposed to the entire family, these results
would apply to other sequence-based methods as well. Based on these limited results, we
would recommend ensuring that the sequence of interest has sequence identity > 50% to the
seed.

2.4 Examples of INTREPID predictions

In this section, we analyze INTREPID predictions on families found in the PhyloFacts re-
source (http://phylogenomics.berkeley.edu/phylofacts). For the families found in PhyloFacts,
homologs were gathered from UniProt [Apweiler et al., 2004] using Flowerpower [Krishna-
murthy et al., 2007] (with global-local settings and number of SHMM iterations set to 3)
and re-aligned using MUSCLE [Edgar, 2004]. For this analysis, we built neighbor-joining
trees using the PHYLIP software though other tree construction algorithms may be used in
practice. PhyloFacts displays the top 5% of the INTREPID predictions though the cutoff
may be varied by the user (we handle tied scores by selecting all residues at a given score).
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2.4.1 Dihydroneopterin aldolase

Dihydroneopterin aldolase catalyzes the conversion of 7,8-dihydroneopterin (DHNP) to 6-
hydroxymethyl-7,8-dihydropterin (HP) playing an essential role in the folate biosynthesis
pathway. Mammals, unlike bacteria, plants, and yeast, lack a complete folate biosynthesis
pathway and obtain folate from their diet [Lawrence et al., 2005]. Hence, dihydroneopterin
aldolase, along with other enzymes in the folate biosynthesis pathway, has served as a target
for antimicrobial and antibacterial agents [Lawrence et al., 2005].

Figure 2.11: INTREPID predictions for dihydroneopterin aldolase from Staphylococcus aureus
(PDB Id:2dhn, BPG accession:bpg020587). INTREPID correctly predicts the catalytic residues
E22, K100, Q27, K74, and Y54. Of these, only E22 and K100 are listed in the CSA. The non-
CSA functional residues refer to INTREPID predictions that are not listed in the CSA but have
experimental evidence of being catalytic (Q27, K75, and Y54) (see text).

INTREPID predictions on dihydroneopterin aldolase from Staphylococcus aureus (PDB
Id:1dhn) are shown in Figure 2.11. INTREPID correctly predicts the residues E22 and K100,
which are listed as catalytic in the CSA. INTREPID also predicts residues Q27 which forms
a hydrogen bond to the substrate in the crystal structure of neopterin(NP), an analog of 7,8-
dihydroneopterin (DHNP) [Wang et al., 2006]; Y54 which is known to coordinate catalysis
with E22; K74 which influences the affinity of the enzyme for the substrate [Wang et al., 2006;
Hennig et al., 1998]; and G17 and H16.

2.4.2 Src Homology 2 (SH2) domain

SH2 domains are found in multi-domain intracellular signaling proteins and play key roles
in assembling signaling complexes by binding to phosphotyrosine moieties in target proteins.
Key residues in SH2 binding pockets determine the specificity of interaction, and thereby the
pathways in which these proteins participate. The protein used in this analysis, Src SH2 do-
main from Rous sarcoma virus (PDB accession 1SPS chain C), has been crystallized with an
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11-residue polypeptide [Waksman et al., 1993]. Three distinct ligand-binding pockets have
been identified; a phosphotyrosine binding pocket, glutamate binding pocket and hydropho-
bic binding pocket. The key residues in these ligand-binding pockets are R12, R32, S34, E35,
T37, C42, K57, H58, Y59, K60, I71, T72, Y87, D92, G93 and L94 [Waksman et al., 1993;
Songyang et al., 1993]. Amongst the top 6 residue predicted by INTREPID are R32, H58
with the other predictions being W5, G27, F29 and F77.

2.5 Specificity determinant prediction

While the scoring functions discussed in the previous section are designed to detect family-
defining positions (and catalytic positions in particular), this basic tree traversal protocol
can be adapted to detect specificity-determining positions as well. Specificity-determining
positions tend to be conserved within – but different across – subfamilies. For this problem,
we compute the positional conservation score as the relative entropy of the amino acid
distributions within and outside a subtree. This variant is termed INTREPID-SPEC. The
importance score at position x is computed as

SPp(x) = maxsRE(pS
x , p

Sc

x ) (2.2)

where S is a node on the path from the root to the leaf corresponding to p, pS
x denotes

the probability distribution of amino acids at position x for the sequences within subtree
S, and pSc

x denotes the probability distribution of amino acids at position x over the other
sequences. In computing the scores in Equation 2.2, S ranges over all the nodes in the tree
traversal except the root. To avoid saturated probabilities (and handle subtrees with very
few sequences), we use add-one pseudocounts [Durbin et al., 1998]. Such a relative entropy
score was used by [Hannenhalli and Russell, 2000] for specificity-residue prediction when the
subtypes are known. Using the score within the tree traversal allows us to predict specificity
determinants even when the subtypes are not known.

2.6 Experiments

2.6.1 Preliminaries

Methods for specificity determinant prediction can be classified as those that require the
subtypes to be known a priori [Mirny and Gelfand, 2002; Kalinina et al., 2004; Pirovano
et al., 2006; Hannenhalli and Russell, 2000; Capra and Singh, 2008] and those that do
not [Pei et al., 2006; Del Sol Mesa et al., 2003; Donald and Shakhnovich, 2005]. INTREPID
does not require knowledge of the subtypes. For specificity determinant prediction, we use
INTREPID-SPEC (described in Section 2.5). We can implicitly provide subtype information
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to INTREPID-SPEC by building a separate tree for each subtype which are then joined at
the root to obtain a tree for the family. We compared INTREPID-SPEC to the GroupSim
heuristic that was found to be competitive with other sequence-based methods in [Capra
and Singh, 2008]. Note that all the methods that were benchmarked in [Capra and Singh,
2008], including GroupSim, use subtype information. We used the dataset generated by
[Capra and Singh, 2008] for the evaluation. Following the definitions used in [Capra and
Singh, 2008], residues that pass the SDPO filter (low overlap of residues across subtypes and
conserved in at least one subtype) are considered positives and those that do not pass the
SDPL filter (low overlap of residues across subtype) are considered negatives. We used the
alignments from this original dataset.

We ran INTREPID-SPEC on this dataset by choosing each protein in turn as the target
p, computing an importance score and then averaging this score across all the proteins.
Since we are interested in SDPs, we ignore the conservation score at the root during the tree
traversal.

2.6.2 Comparison of INTREPID-SPEC to other sequence-based meth-
ods for specificity determinant prediction

INTREPID-SPEC, when subtype information is used, has accuracies similar to GroupSim
as seen in figure 2.12. ([Capra and Singh, 2008] have shown that GroupSim is competitive
with other sequence-based methods suggesting that INTREPID-SPEC would have similar
accuracies to these other methods as well). Although INTREPID-SPEC does a tree traversal
even when subtype information is provided implicitly, our results show that the maximum
scores for the specificity determinants are attained at the point in the tree that separates
the known subtypes.

We also ran INTREPID-SPEC on trees constructed without knowledge of subtypes (Fig-
ure 2.12). INTREPID-SPEC with subtype information has 10% greater precision across
the range of recall values than when no subtype information is available. This difference in
performance can be attributed to the bias induced by the rooting of the tree on the process
of averaging the INTREPID-SPEC scores across all the sequences in the family. In a family
with multiple subtypes, this procedure gives higher ranks to those SDPs that differentiate
a subtype that is joined to the rest of the family at the root. This bias explains why trees
built using subtype information lead to improved accuracy. When the subtype information
is not used, the top ranked residues often separate subtrees which do not correspond to the
original subtypes. While such predictions are penalized in our present evaluation, these may
be biologically interesting.
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Figure 2.12: Comparison of methods for specificity determinant prediction: INTREPID-SPEC
run on trees built using subtype information and INTREPID-SPEC run with no subtype informa-
tion are compared to GroupSim. INTREPID-SPEC (with subtypes provided) attains accuracies
competitive with GroupSim. Including subtype information improves INTREPID-SPEC recall by
roughly 10% at all levels.

2.7 Conclusions

In this chapter, we have presented INTREPID, a novel method to predict functional residues
from sequence information only. The primary innovation in INTREPID is its use of the
phylogeny of the family to infer the evolutionary pressures on positions within different
subgroups. INTREPID infers functionally important positions through a traversal of the
phylogeny from the root to the target protein located at a leaf; at each point on this path and
for each position independently INTREPID computes a positional conservation score based
on Jensen-Shannon (J-S) divergence between the distribution of amino acids at that position
and a background distribution. Positional scores are adjusted to take into consideration
the scores of other positions within the same subtree; thus positional scores for a subtree
containing highly similar sequences will be small, even though individual positions may be
highly conserved. By contrast, a position that is highly conserved within a subtree that is
otherwise highly variable will have a high JS divergence. Each position is then assigned the
maximal JS score achieved over all nodes on the path. Positions that are conserved across the
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entire family achieve their maximum score at the root, whereas other positions will achieve
their maximum at some distance from the root. Since even catalytic residues are not always
perfectly conserved across a family (if, for instance, sequences with divergent functions are
included in the analysis, or due to alignment errors), this tree traversal enables INTREPID
to exploit the information in highly divergent datasets. In fact, our analysis of CSA-defined
catalytic residues shows that 18% of catalytic residues in the dataset have their maximum
score at least 5 levels from the root of the tree.

We have presented results comparing INTREPID with two of the leading methods in
functional residue prediction that make use of sequence information only – Evolutionary
Trace (ET) and ConSurf and with a simple baseline method that computes the Jensen-
Shannon divergence between the amino acid distribution at a position and a background
distribution (Global-JS). We compared each method on a benchmark dataset of 100 manually
curated sequence-divergent enzymes from the Catalytic Site Atlas. Our results show that
INTREPID has significantly superior accuracy than each of these methods, attaining a
sensitivity of 85% at 90% specificity (in contrast, ET and ConSurf attain sensitivities of 70%
and 74% respectively at the same specificity) and attaining a recall of about 64% at 10%
precision (in contrast neither ET nor ConSurf attain a precision greater than 10%). Since
the ConSurf server selects a more conservative set of sequences than those we selected, we
also did a separate experiment in which we submitted our larger alignments to the Rate4Site
algorithm (the core algorithm within ConSurf). As Rate4Site failed to complete on the
full alignments, we filtered the alignments to reduce highly similar sequences. The method
performances are very close on the 71 alignments on which Rate4Site completed successfully
(ROC analysis shows INTREPID has a small but statistically significant edge over Rate4Site
on this dataset).

In addition to these comparisons with methods using sequence information only, we
compared INTREPID to the machine learning algorithms reported by [Petrova and Wu,
2006] and by [Youn et al., 2007] which make use of structural information. Surprisingly, on
the Petrova dataset, INTREPID is as accurate as their SVM-based method, even though
the latter uses both sequence and structure-based features. On the [Youn et al., 2007]

dataset, INTREPID is more accurate than the variant of their method that makes use of
only sequence features. Reassuringly, the performance of INTREPID is approximately the
same across these different datasets suggesting that it would generalize well to new protein
families.

To analyze the effect of the evolutionary divergence on prediction accuracy, we created
alignments in which the minimum pairwise identity to the seed was restricted. The sensitivity
of INTREPID was found to increase as the alignments became more divergent. These results,
while in agreement with several previous studies [Landgraf et al., 2001; Aloy et al., 2001;
Panchenko et al., 2004], suggest that highly divergent families (with minimum pairwise
identity as low as 10%) can significantly improve catalytic residue prediction.

Prediction of active site residues based on sequence information alone is clearly affected
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by the quality of the sequence data, in particular, on the effective coverage and extent of the
sequence space around the protein of interest. To test the impact on this kind of sequence
space coverage, we analyzed the accuracy of INTREPID in predicting catalytic residues for
sequences not used as seeds in clustering homologs (i.e., which may be towards the periphery
of the sequence space). As expected, accuracy decreases as evolutionary distance to the seed
increases. Our limited results suggest that the sequence of interest should have sequence
identity > 50% to the seed.

In summary, the utility of INTREPID in catalytic site prediction can be traced to the
following features. First, INTREPID relies solely on sequence information, making it useful
when no structural data are available. Secondly, INTREPID is computational efficient,
making it useful in large-scale application, and allowing it to be used on large datasets.
For instance, INTREPID is considerably faster than Rate4Site, with 400-fold lower average
runtime. Third, INTREPID can be used on datasets including highly divergent sequences;
in fact, its accuracy improves as more divergent sequences are included. While INTREPID
is designed to make use of sequence information alone, it can be used as a component in
a prediction protocol that attempts to combine sequence information with other types of
information.

On the task of specificity determinant prediction, a variant of INTREPID, INTREPID-
SPEC, was as accurate as the GroupSim method proposed by [Capra and Singh, 2008] when
both methods were given subtype information. Unlike GroupSim however, INTREPID-
SPEC does not require subtype information since the tree traversal provides an implicit
grouping of sequences. We found that subtype information results in an improvement in
precision of about 10% across the range of recall values.

In this work, we have focused on functional residue prediction in enzymes. In future
work, we plan to assess the performance of these methods on non-enzymes as well as on
other types of functional residues. Scoring functions that may be better suited to detect
other types of conservation signals can be plugged into the INTREPID framework to obtain
improved predictions. Finally, all the estimated accuracies of catalytic residue prediction
methods depend critically on the characteristics of the dataset used to benchmark method
performance. The poor performance of a method on a protein family may simply be the
result of insufficient experimental data available for that family.

Appendix 2.A Datasets

For catalytic residue prediction, we identified a set of 100 enzymes from the manually curated
section of the Catalytic Site Atlas [Porter et al., 2004] selected to ensure that no pair had
detectable homology (i.e., we required a BLAST E-value > 1). We term this the CSA-100
dataset. A PSI-BLAST [Altschul et al., 1997] search was performed with each of these 100
enzymes as a seed against the UniProt database [Apweiler et al., 2004]. PSI-BLAST was run
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for 4 iterations with an E-value inclusion threshold of 1 × 10−4, from which a maximum of
1000 homologs were retrieved. The resulting homologs were realigned using MUSCLE [Edgar,
2004] with MAXITERS set to 2. Identical sequences were discarded. Columns in which the
seed had a gap were removed. A neighbor-joining tree was built from this alignment using
the PHYLIP package [Felsenstein, 1993]. The dataset has alignments with a minimum of
32 sequences, a maximum of 1033 sequences, and a median of 843 sequences. The average
percent identity of the alignments varies from 6.4% to 31.14% with a median of 14.99%. The
dataset contains a total of 314 catalytic residues out of a total of 36, 229 residues with a
median of 3 catalytic residues per enzyme.

For the comparison with the [Petrova and Wu, 2006] dataset, we generated alignments
and trees by the protocol described above using the 79 enzymes reported in their pa-
per [Petrova and Wu, 2006]. The resulting dataset contains 244 catalytic residues out of
a total of 23, 332 residues. For the comparison with the [Youn et al., 2007] dataset, we
picked a random domain from each SCOP family for which we generated alignments and
trees as described above. This dataset contains 1, 172 catalytic residues out of a total of
119, 433 residues.

For specificity determinant prediction, we used the alignments from the dataset con-
structed by [Capra and Singh, 2008]. Neighbor-joining trees were built using the PHYLIP
package [Felsenstein, 1993].

Appendix 2.B INTREPID variants

In this section, we define different INTREPID variants based on the positional conservation
score cons(S, x) which is used to compute the importance score in Equation 2.3.

IMPp(x) = maxscons(S, x)− cons(S) (2.3)

• INTREPID-JS is the method referred as INTREPID in the previous sections. In this
variant, cons(S, x) is the Jensen-Shannon divergence between the amino acid distri-
bution and the background amino acid distribution derived from the Blocks database
[Henikoff and Henikoff, 1992] with prior weight = 1

2
as in [Capra and Singh, 2007].

• INTREPID-LO where cons(S, x) is the log probability of the most frequent amino acid
at position x within subtree S.

• INTREPID-RE where cons(S, x) is computed as the relative entropy between the
amino acid distribution within subtree S of position x and a background distribution
derived from the Blocks database alignments [Henikoff and Henikoff, 1992].

We compare these INTREPID variants to their respective global conservation baselines which
we term Global-JS [Capra and Singh, 2007], Global-LO, and Global-RE (the scoring func-
tion introduced by [Wang and Samudrala, 2006]) respectively. Consistent with the results
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reported in [Capra and Singh, 2007], the score based on J-S divergence was found to be the
most accurate.

Figure 2.13: Results for catalytic residue prediction on a subset of 100 manually curated en-
zymes from the Catalytic Site Atlas (termed CSA-100) using rank-based scores. (Left) ROC
curve comparing the variants of INTREPID (INTREPID-JS referred to as INTREPID in the text,
INTREPID-RE and INTREPID-LO) and the respective variants of global conservation (Global-
JS, Global-RE, and Global-LO). See Section 3.E.3 for a detailed description of these variants.
INTREPID-JS and INTREPID-LO are significantly more accurate than Global-JS and Global-LO
respectively while INTREPID-RE performs worse than Global-RE. (Right) ROC curves compar-
ing INTREPID, Global-JS, BCMET and ConSurf. See Section 2.3.1 for a description of these
methods. The ROC curve shows INTREPID-JS to have the highest sensitivity over the range of
specificity followed by Global-JS. BCMET performs better as the specificity decreases.
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Chapter 2. Functional site prediction using phylogenomic information

Figure 2.14: Comparison of the INTREPID variants and the respective global conservation base-
lines based on the normalized scores on a subset of 100 manually curated enzymes from the
Catalytic Site Atlas (termed CSA-100).
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Chapter 3

Functional site prediction using
phylogenomic and structural information

3.1 Introduction

In this chapter, we focus on the task of predicting catalytic residues in enzymes using infor-
mation from sequence and structure.

The earliest methods for catalytic residue prediction relied on sequence conservation pat-
terns across a family [Casari et al., 1995; Lichtarge et al., 1996; Landau et al., 2005], followed
by increasingly powerful sequence-based scoring functions [Aloy et al., 2001; Mihalek et al.,
2004; Mayrose et al., 2004; Sankararaman and Sjölander, 2008]. Methods relying exclusively
on information from solved 3D structures have been developed, analyzing features such as
the geometric arrangements of residues [Fetrow and Skolnick, 1998], surface geometry [Peters
et al., 1996], electrostatics [Bate and Warwicker, 2004], energetics [Laurie and Jackson, 2005;
Elcock, 2001], and chemical properties [Ondrechen et al., 2001; Tong et al., 2008]. Other
methods combine features derived from sequence and structure [Aloy et al., 2001; Landgraf et
al., 2001; Gutteridge et al., 2003; Petrova and Wu, 2006; Youn et al., 2007; Innis et al., 2004;
Pazos and Sternberg, 2004; Ota et al., 2003].

We present here a new method for predicting catalytic residues, which we have named
Discern. Discern is a statistical predictor that achieves a significant improvement in
performance over published reports of catalytic residue prediction through: (i) the use of
phylogenomic methods (i.e., methods that analyze the evolution of multi-gene families) to
exploit the signal from sequence conservation [Sankararaman and Sjölander, 2008], (ii) the
incorporation of features from structural neighbors (i.e., residues near each other in the pro-
tein 3D structure), and (iii) the use of regularization—specifically, L1-regularization [Tib-
shirani, 1996]—to control model complexity. It is the combination of these three ingredients
that underlies the effectiveness of Discern. While a predictor that includes both sequence
conservation and features from structural neighbors would be expected to have improved
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accuracy, including features from structural neighbors yields a proliferation of parameters
to be estimated from the data, and, as we show, an unregularized predictor based on these
features leads to a decrease in accuracy. Statistical regularization is essential to being able
to make effective use of a rich description of the protein for the purposes of prediction.

We report results on cross-validation experiments on the CATRES benchmark dataset
of experimentally characterized catalytic residues [Bartlett et al., 2002]. CATRES defines a
residue as catalytic if it has been shown to be involved in catalysis either directly or through
other molecules, to stabilize an intermediate transition state, or to influence a cofactor or sub-
strate that aids catalysis. Previously, the best recall (the fraction of true catalytic residues
that are predicted to be catalytic) reported on homology-reduced datasets is 57% at a pre-
cision (the fraction of predicted catalytic residues that are indeed catalytic) of 18.5% [Youn
et al., 2007]. In comparison, Discern yields a recall of 69% at the same precision on a
homology-reduced version of the CATRES dataset.

3.2 The Discern methodology for catalytic residue prediction

The statistical model underlying the Discern predictor is a binary logistic regression model [Hos-
mer and Lemeshow, 2000] that predicts whether a site is catalytic or not based on a list of
features describing a site. Logistic regression takes a weighted linear combination of these
features and then transforms the result to a probability scale. The parameters (i.e., the
weights) in the weighted combination are estimated based on data from the CATRES dataset
of experimentally characterized enzymes [Bartlett et al., 2002].

While similar statistical models have been used previously for catalytic residue predic-
tion [Gutteridge et al., 2003; Petrova and Wu, 2006; Youn et al., 2007], Discern brings
together three ideas that differentiate it from existing predictors. The first is the use of a
sequence conservation score based on phylogenomics as a component of the feature vector
describing a site. In particular, Discern makes use of the INTREPID phylogenomic con-
servation score, described in the previous chapter. INTREPID is based on a tree traversal
that enables it to be applied to highly divergent datasets (e.g., pairwise identities below 5%)
and extract a conservation signal that may only appear at deeply nested subtrees in the
superfamily phylogeny.

The second critical aspect of Discern is its use of information from structurally proximal
amino acids. For instance, it is known that the active site is typically conserved structurally
across homologs, even when sequence identity is low [Baker and Sali, 2001]. This structural
conservation is reflected by high sequence conservation across a family of related proteins in
the structural vicinity of the actual catalytic residue(s). The Discern predictor represents
this fundamental characteristic of active sites by including information from residues that
are proximal in the structure.

In addition to features based on the phylogenomic conservation score, our feature vec-
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tor includes features that have been noted in large-scale studies as typical of catalytic
sites [Bartlett et al., 2002], including relative solvent accessibility, presence in a cleft, sec-
ondary structure, charge, and so on. Given that these features are used to describe not
only a given site but also its structural neighbors, the resulting model has a large number of
features, and overfitting is a concern, particularly given the redundant, noisy nature of many
of these features [Hastie et al., 2001]. The third differentiating aspect of Discern is thus to
use an L1-regularization procedure to estimate the parameters of the model. This procedure
maximizes the likelihood of the logistic regression model under a constraint on the sum of
the absolute values of the parameters in the model; such a constrained estimation procedure
yields a sparse model in which many of these parameters are set to zero [Tibshirani, 1996].
There is a large literature in statistics justifying this overall approach to estimation, where
it is shown that L1-regularization can yield models that are better predictors than those
based on unregularized estimates [Tibshirani, 1996; van de Geer, 2008; Hastie et al., 2001;
Greenshtein and Ritov, 2004; Zhao and Yu, 2006]. L1-regularization has also been used in
a number of bioinformatics applications including gene expression microarray analysis [She-
vade and Keerthi, 2003; Segal et al., 2003] and genome-wide association studies [Hoggart et
al., 2008].

3.2.1 L1-regularized logistic regression

Given an enzyme i with ni amino acid residues, we denote by xxx
(i)
j the d-dimensional vector of

residue-specific features at site j, j = 1, . . . , ni, by XXX(i) the d×n matrix of all such features,
and by z

(i)
j ∈ {+1,−1} the catalytic label of residue j (whether the residue is catalytic or

not). We denote the set of structural neighborhood features by a dN × n matrix YYY (i). Here
N refers to the number of structural neighbors of each residue.

We pick the ten residues closest to residue j to form the set of structural neighbors (the
distance dj,k between two residues is defined as the minimum of the distance among all pairs
of atoms).1

We model the conditional distribution of the random variable Z
(i)
j ∈ {+1,−1} by a

logistic regression

Pr(Z
(i)
j = 1|XXX(i),YYY (i), b,www1,www2) =

1

1 + exp
(
−
(
b+www1

′xxx
(i)
j +www2

′yyy
(i)
j

)) . (3.1)

The model has parameters (b,www1,www2); b is the intercept term which controls the tradeoff
between false positives and false negatives, www1 controls the weights of the residue features
while www2 controls the weights of the features from the structural neighbors. Given a training

1The choice of ten residues as neighbors is arbitrary. It is also possible to treat the size of the structural
neighborhood as a parameter and estimate it.
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set of enzymes and their catalytic residue annotations, we can estimate the parameters
(b,www1,www2). To encode a preference for a “sparse” parameter vector, we adopt a regularized
maximum likelihood approach in which we maximize the sum of the likelihood and an L1

penalty term:

max
www

m∑
i=1

ni∑
j=1

log Pr(z
(i)
j |XXX(i),YYY (i), b,www)− λ‖www‖1, (3.2)

where www = (www1,www2) and where ‖www‖1 =
∑

k |wk| is the L1 norm. The non-negative regu-
larization parameter λ controls the sparsity of the estimate of www; larger values of λ lead to
estimates with increasing numbers of zero components. We chose the value of λ by a cross-
validation procedure. The optimization problem is solved using an interior point method as
implemented in [Koh et al., 2007].

Enforcing sparsity on the parameter vector using L1-regularization not only leads to a
more interpretable fitted parameter vector; it also helps to prevent overfitting. The problem
of overfitting, which is well known in statistics [Hastie et al., 2001], is as follows. When
the model contains a large number of parameters relative to the size of the training set, the
model tends to fit the noise in the training set leading to high accuracy on the training set
but poor performance on the test set. Regularization imposes a constraint on the parameter
space (e.g., by limiting the size of the parameters as measured by the L1 norm) reducing
the “effective degrees of freedom” of the model and forcing the model to generalize more
effectively.

3.2.2 Features for catalytic residue prediction

The feature vector used in our logistic regression model consists of a total of 528 features—
48 features at the residue of interest and at ten neighboring residues. We provide a brief
description of these features in this section as well as some of the options we considered;
further details are provided in Section 3.A.

3.2.2.1 Sequence conservation features

We made use of three sequence conservation scores. The first, termed Global-JS, is the
Jensen-Shannon divergence [Lin and Wong, 1990] between the amino acid distribution at a
column and a background distribution derived from the BLOCKS [Henikoff and Henikoff,
1992] database (with prior weight = 0.5 as in [Capra and Singh, 2007]). The other two
sequence conservation scores make explicit use of the phylogenetic tree topology using the
INTREPID algorithm. The two variants used the Jensen-Shannon divergence (INTREPID-
JS) and the log frequency of the modal amino acid (INTREPID-LO).
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LEU102, conservation=0.9,pocket=yes,.... catalytic?=no

HIS103, conservation=0.5,pocket=yes,.... catalytic?=yes

ASP104, conservation=0.6,pocket=yes,.... catalytic?=yes

TRY105, conservation=0.3,pocket=yes,.... catalytic?=no

Features Label

2.Parameter estimation

1. Annotated dataset

3. Discern Predictor

-0.6 + 0.2 * (conservation > 0.5) - 0.1 * 
(Residue is LEU)  + .........    > 0 

Catalytic probability

GLN1, conservation=0.95,pocket=yes,....

ALA2, conservation=0.3,pocket=yes,....

4. New enzyme

5. Evaluate using Discern
GLN1, conservation=0.95,pocket=yes,....

ALA2, conservation=0.3,pocket=yes,....

catalytic 
probability = 0.91

catalytic 
probability = 0.40

6. Predicted catalytic residues

0. Feature 
extraction

Figure 3.1: Overview of the system for catalytic residue prediction: (0) Features are
derived from the sequence and 3D structure of an enzyme and from homologs identified using
PSI-BLAST. Many features are considered, including the identity of the amino acid, evolutionary
conservation scores, and presence in a pocket or cleft. (1) Annotated dataset (training data): A
dataset of enzymes with catalytic and non-catalytic residues along with features derived for each
residue. (2) We estimate the parameters of the logistic regression model from the training dataset
(this is known as a supervised learning procedure) using L1-regularized maximum likelihood. The
parameters refer to the weights associated with the features. The L1-regularization tends to set
many of the parameters to zero, resulting in a sparse model. (3) The output of the training phase
is a predictor. (4) To predict catalytic residues for a new enzyme, features are derived for the
enzyme as in step 1 and the features are used by the logistic regression to classify each residue.
(5) The predictor derived in step 3 is used to predict the probability that each residue is catalytic
(step 6).
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3.2.2.2 Amino acid properties

Amino acids have varying catalytic propensities as noted in [Bartlett et al., 2002]. We use the
amino acid types as features and also classify the amino acid into one of three categories—
charged (D,E,H,K,R), polar (Q,T,S,N,C,Y) or hydrophobic (A,F,G,I,L,M,P,V,W). See Sec-
tion 3.A.2 for a description of this classification.

3.2.2.3 Structure-based features

For each residue, we compute the residue centrality, the B-factor, solvent accessibility, pres-
ence in a cleft and secondary structure as follows. We compute the B-factor, a measure of
thermal motion for each residue as the average of the B-factors of all its atoms. We compute
a measure of centrality for each residue j as the inverse of the average distance from a residue
to all other residues in the enzyme; i.e., Cj = n−1P

k 6=j d(k,j)
where d(k, j) is the distance from j

to k along the contact map. A residue that is located in the center of the protein has smaller
average distance to all other residues and hence a high centrality measure. We use the 7-state
secondary structure representation output by DSSP [Kabsch and Sander, 1983]. The area of
a residue accessible to solvent is obtained from NACCESS [Hubbard and Thornton, 1993].
We use LigSitecsc [Huang and Schroeder, 2006] to detect the presence of a residue in one of
the three largest pockets in the enzyme.

3.3 Results

In this section we report results of large-scale experiments on manually curated enzymes
from the Catalytic Site Atlas [Bartlett et al., 2002]. We compare Discern to the best
methods for catalytic residue prediction reported in the literature. Two of these methods
make use of machine learning algorithms to combine information from sequence and struc-
ture: a neural network approach [Gutteridge et al., 2003] (denoted NN-Thornton) and a
support vector machine (SVM) method [Youn et al., 2007] (denoted SVM-Mooney). We
also compare Discern to methods that use sequence information only: ConSurf [Landau et
al., 2005], Evolutionary Trace (ET) [Mihalek et al., 2004] and INTREPID [Sankararaman
and Sjölander, 2008]. Webservers, software or pre-computed results were available for the
sequence-based methods, making possible a head-to-head comparison with these methods.
However, neither software nor webservers were available for the methods that also use in-
formation from 3D structure. We therefore compared Discern against NN-Thornton and
SVM-Mooney based on precision and recall statistics reported by the authors.
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Figure 3.2: Results on the CATRES-FAM benchmark dataset comparing Discern against
results on related datasets for four state-of-the-art methods for catalytic site prediction: a neural-
network method [Gutteridge et al., 2003] (denoted NN-Thornton), a Support Vector Machine
approach [Youn et al., 2007] (denoted SVM-Mooney), ConSurf [Landau et al., 2005] and IN-
TREPID [Sankararaman and Sjölander, 2008]. The overlap between CATRES-FAM and the
dataset used by Gutteridge et al. [Gutteridge et al., 2003] is > 76%. Since the dataset used
to validate SVM-Mooney is not available, we report their published performance on a dataset
selected such that no pair belongs to the same SCOP family (i.e., a similar selection process as in
CATRES-FAM). We include two additional methods for comparison: INTREPID [Sankararaman
and Sjölander, 2008] and ConSurf [Landau et al., 2005]. At 18% precision, Discern reaches
69% recall, corresponding to an increase of almost 50% over INTREPID which reaches only 19%
recall at this precision. At the precision levels reported by methods on related datasets, Discern
shows a gain in recall of 20% over NN-Thornton and 12% over SVM-Mooney. ConSurf does not
reach 18% precision on this dataset.
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3.3.1 Discern performance on CATRES-FAM

We used 140 enzymes from the CATRES dataset selected such that no pair were from the
same SCOP (Structural Classification of Proteins) [Murzin et al., 1995] family to produce
a dataset similar to those used in NN-Thornton and SVM-Mooney. We call this dataset
CATRES-FAM. This dataset is described in more detail in Section 3.B.

As shown in Figure 3.2, Discern recall is 12-20% higher on the CATRES-FAM dataset
than that of NN-Thornton and SVM-Mooney at the levels of precision reported by these
authors. As expected, the difference is greater in comparison with ConSurf and INTREPID
(which makes use of sequence information only): at a precision of 18%, Discern has 69%
recall while INTREPID reaches only 19% recall and ConSurf does not attain a precision of
18% over the entire range of recalls (see Figure 3.7 and Table 3.4). At a lower precision of
10%, Discern obtained a recall of 87% compared to a recall of 64% and 35% by INTREPID
and ConSurf respectively.

We also included a control method in these experiments designed to evaluate the contri-
butions of the different ingredients of the Discern predictor (i.e., it was trained identically
to Discern but did not use features for structural neighbors or the INTREPID phyloge-
nomic conservation scores, nor was any attempt made to enforce model sparsity). Notably,
the performance of the control is very similar to the results reported in SVM-Mooney, sug-
gesting that the improved performance of Discern relative to SVM-Mooney is unlikely to
be an artifact of differences between the CATRES-FAM dataset and the datasets used by
these authors.

As discussed in the following section, we also performed a detailed analysis of Escherichia
coli Asparagine Synthetase (PDB id:12as), comparing predictions made by Discern, IN-
TREPID, ET and ConSurf. Additional experiments on datasets filtered to remove members
from the same SCOP superfamily are reported in Section 3.E.1.

3.3.2 Case Study of a Discern prediction: Escherichia coli Asparagine
Synthetase (PDB id:12as)

L-Asparagine synthetase catalyzes the conversion of L-aspartic acid and ammonia to L-
asparagine in the presence of a magnesium ion while hydrolyzing ATP to AMP and py-
rophosphate [Meister, 1974]. L-Asparagine synthetase from Escherichia coli has three cat-
alytic residues identified in the CATRES dataset—D46, R100 and Q116 [Nakatsu et al.,
1998].

Figure 3.3 compares the predictions of Discern with those made by INTREPID, Evo-
lutionary Trace, and ConSurf. Predicted residues are shown at a recall of 100%; i.e., at the
point at which all the catalytic residues listed in CATRES have been selected. The number
of residues selected by each method is thus equal to the worst rank it gives to a catalytic
residue. The figure shows that Discern predicts a total of 16 residues. By contrast, IN-
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Figure 3.3: Comparison of Discern, INTREPID, ConSurf and ET predictions on Escherichia
coli Asparagine Synthetase (PDB id:12as): The predictions from all methods are shown at a recall
of 100%; i.e., when all the catalytic residues listed in CATRES have been selected. Discern
predicts the three catalytic residues listed in CATRES (D46, R100, and Q116) and 13 additional
residues (R214, D115, Y218, D219, D118, E120, H71, K75, K77, R78, D235, E248 and R255) of
which seven have been proposed to play functional roles on the basis of structural studies [Nakatsu
et al., 1998]. In contrast, INTREPID, ConSurf and ET require a total of 33, 44, and 50 residues
respectively to achieve perfect recall. Note that the catalytic residues predicted by the methods
are sometimes visually obscured by the false positives. See Table 3.3 for a list of predicted
residuesand Figure 3.10 for a view of the active site.
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TREPID, ConSurf and ET require a total of 33, 44 and 50 residues respectively to reach
perfect recall.

We separately examined the 20 top-ranked residues for Discern, INTREPID and Con-
Surf (see Table 3.3). (The Baylor College of Medicine ET server results were not included
since it predicted 50 residues with equal scores.) Discern places all three catalytic residues
in its top 20, INTREPID detects one, and ConSurf detects two of the three. Moreover,
using CATRES to assess the performance of prediction methods underestimates the rela-
tive accuracy of Discern, because several of the residues that are not listed in CATRES
have actually been shown or inferred to play functional roles in the literature. In particular,
residues that are described in the literature as playing functional roles but are not listed
in CATRES include P35, K77, E120, D219, D235, E248, S251, R255, and I295 [Nakatsu et
al., 1998]. Of these nine residues, seven are found among the top 20 for Discern, one is
found by INTREPID and two are found by ConSurf. The two residues not included in the
Discern top-20 are P35 (found only by INTREPID), and I295 (found only by ConSurf).

In addition, many of the residues predicted by Discern that have not been described
in the literature as catalytic are actually found in clusters with residues that have been
functionally characterized. These form three sequence motifs that are near each other in the
3D structure but separate in primary sequence (see Figures 3.10 and 3.12). Motif 1 includes
H71, K75 and K77. Of these, K77 has been proposed, based on homology with the catalytic
domain of yeast class II aspartyl-tRNA synthetase, to interact with the beta-carboxylate
group of L-aspartic acid [Nakatsu et al., 1998]. Motif 2 includes D115, Q116, D118, W119
and E120; all lie on a single beta strand that lines the active site cleft (referred to as β-
6). Of these, Q116 is included in CATRES, and E120 has been proposed to interact with
the β-carboxylate group of L-aspartic acid [Nakatsu et al., 1998] (see Figure 3.11). Motif
3 includes R214, Y218, D219 and D220. Of these, the side chain carboxyl group of D219
has been observed to interact with the amino group of the L-asparagine through a water
molecule [Nakatsu et al., 1998].

3.3.3 Aspects of the Discern predictor

Discern combines three ingredients in making a prediction—the use of phylogenomic scores,
information from structural neighbors, and a statistical regularization to control for over-
fitting. To investigate the relative importance of these three aspects of the predictor, we
conducted a set of experiments in which subsets of these aspects were used. The results are
shown in Table 3.1. We see that a performance gain is obtained by including phylogenomic
scores and that—for the unregularized model—a decrease in performance is seen when struc-
tural neighborhood features are also included. This is presumably due to overfitting. Indeed,
when the model is regularized, a significant performance gain is observed.

Discern is not the only method to use information from structural neighbors for catalytic
residue prediction, but there are a few differences between Discern and approaches used
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Method Structural Phylogenomic L1-regularization CATRES-FAM
neighbors conservation scores Precision50 Recall18

Method 0 (Control) - - - 17.00% 48%
Method 1 - Y - 20.45% 55%
Method 2 Y Y - 16.13% 41%
Discern Y Y Y 27.30% 69%

Table 3.1: Comparison of Discern to simplified models. We compare Discern to simpli-
fied models that do not include one or more of (1) structural neighborhood features, (2) phy-
logenomic conservation scores and (3) L1-regularization. Note that the “Control” only uses a
non-phylogenomic sequence conservation score (Global-JS). Precision50 reports the precision at
50% recall, and Recall18 reports the recall at 18% precision (these precision and recall points
were selected to allow direct comparison to the SVM-Mooney method). Discern provides an
improvement over the control of 10.3% precision at 50% recall and an increase in recall of 21%
at 18% precision. See Figure 3.8 for full precision-recall curves.

by others that may contribute to the improved performance. In particular, several methods
use spatial clustering [Landgraf et al., 2001; Aloy et al., 2001; Panchenko et al., 2004] as a
post-processing step [Gutteridge et al., 2003] based on classification of individual positions
independently in an initial stage. In contrast, Discern uses features from structurally
neighboring residues as an integral part of the model. Closer in spirit to Discern is SVM-
Mooney [Youn et al., 2007], which uses atom-level features [Bagley and Altman, 1995] in
concentric shells (weighted equally within each shell) around the Cβ atom of the residue of
interest [Mooney et al., 2005]. As in Discern, this yields a rich set of features describing the
neighborhood. Crucially, however, Youn et al. do not use an explicit regularization penalty
in fitting their model, and the poorer performance of [Youn et al., 2007] relative to Discern
may reflect the kind of overfitting that we observe in Table 3.1.
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Chapter 3. Functional site prediction using phylogenomic and structural information

It is also of interest to investigate quantitative aspects of the full Discern predictor after
it has been fit to the CATRES dataset (see Figure 3.4). Among the 528 candidate features
considered, 157 had non-zero weights in the final model. Examining these weights pro-
vides insight into the ability of Discern to discriminate between catalytic and non-catalytic
residues. The highest weights are associated with features identified by others as highly
correlated with catalytic sites (e.g., high degrees of sequence conservation across homologs,
centrality in 3D structure and relative solvent accessibility), and the largest negative weights
are those shown previously as anti-correlated (e.g., hydrophobicity) [Bartlett et al., 2002].

A more subtle point is the fact that the Discern prediction is based on a combination
of weighted features. For a residue to achieve a high rank (relative to other residues), a
combination of features must be present (or absent, in the case of a feature with negative
weights). For instance, while cysteine has a strong positive weight, this alone will be insuffi-
cient to rank a cysteine above other residues unless it is also highly conserved and has some
level of relative solvent accessibility. This gives Discern the ability to differentiate between
cysteine residues involved in disulfide bridges from those playing catalytic roles.

Note also that some features may be redundant with other features, or with other feature
combinations, and the L1-regularization may give them a zero weight; in such cases it is
not correct to infer that the biological property encoded by the feature is not informative.
Presence of a residue in a cleft or pocket is a case in point. We found that the explicit feature
of presence in a cleft or pocket is given a weight of zero in our model, which is surprising given
that presence in a cleft is known to be one of the hallmarks of catalytic residues [Bartlett
et al., 2002]. However, residue centrality and relative solvent accessibility jointly encode for
presence in a cleft—if a residue is both near the center of the molecule and exposed, it must
be in a deep cleft—and indeed these these two features were present in the final model.

In summary, the features selected by the regularized logistic regression jointly describe
highly conserved, charged, solvent-accessible residues that are found in clefts or pockets, and
whose neighbors in the 3D structure are also highly conserved.

3.4 Conditional Random Field for catalytic residue predic-
tion

The logistic regression model in Discern exploits the structural context by combining fea-
tures from the structural neighbors but still makes independent predictions of the catalytic
label at each residue. In this section, we describe an alternate model based on the frame-
work of Conditional Random Fields (CRFs) [Lafferty et al., 2001]. CRFs allow us to capture
contextual information by coupling the labels of the structural neighbors and making a joint
prediction across all the residues. In principle CRFs can capture more complex dependencies
than a model that treats each residue independently. A dependency of the form structurally
proximal residues X and Y tend to be in the same cleft if they are both catalytic is one example
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Chapter 3. Functional site prediction using phylogenomic and structural information

since it is a function of the features and the residue labels (which need to be inferred).
We define a CRF for the catalytic residue prediction problem as follows:

log Pr(zzz(i)|XXX(i), b,www1,www2,www3) = www′φ(zzz,XXX(i))− Z(i)(b,www1,www2,www3)

= b+

ni∑
j=1

z(i)
j www1

′xxx
(i)
j + z

(i)
j www2

′yyy
(i)
j +www3

′
∑

k∈N(i)(j)

ψ(z
(i)
j , z

(i)
k ,XXX(i))


− Z(i)(b,www1,www2,www3),

(3.3)

where www = (b,www1,www2,www3) and Z(i)(b,www1,www2,www3) = log
(∑

zzz exp
(
www′φ(zzz,XXX(i))

))
is the log

normalizer. Here, in addition to the features used in the logistic regression model, we have
extra interaction features ψ to capture dependencies between the labels of two neighboring
catalytic residues zj, zk. Setting www3 to zero in Equation 3.3 results in the logistic regression
model discussed earlier.

To predict the labels of all the residues jointly, we would like to obtain the labeling zzz(i)∗

with highest posterior probability.

zzz(i)∗ = arg max
zzz

log Pr(zzz|XXX(i), b,www1,www2,www3). (3.4)

The configuration zzz(i)∗ can be computed efficiently provided the interaction features ψ are
chosen carefully. We use a maximum margin approach to estimate the parameters www.

3.4.1 Maximum Margin Parameter Estimation for the CRF

For general interaction features ψ, the problem of computing the maximum a posteriori
(MAP) configuration z∗ of the CRF described in Equation 3.2 is NP-hard [Boykov et al.,
2001]. Efficient algorithms based on graph cuts exist for computing z∗ when the interaction
features are sub-modular; i.e., ψ(0, 0, x) + ψ(1, 1, x) ≥ ψ(0, 1, x) + ψ(1, 0, x) [Boykov et al.,
2001; Kolmogorov and Zabih, 2002; Boykov and Kolmogorov, 2004]. We therefore restrict
the model to sub-modular interaction features ψ which take values in {0, 1}—this restriction
allows us to estimate the parameters www that respect the sub-modularity constraint for all
inputs.

We use a maximum margin approach to estimate the parameters www of the CRF. The
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maximum margin framework leads to the following optimization problem

min
www

1

2
‖www‖2

2 + C

m∑
i=1

ξi such that

www′ (φ(zzz(i),XXX(i))− φ(zzz,XXX(i))
)
≥ L(zzz(i), zzz)− ξi, ∀i = 1, . . . ,m,∀zzz ∈ {+1,−1}ni

ξi ≥ 0, ∀i = 1, . . . ,m

www3 (ψ(0, 0, x) + ψ(1, 1, x)− ψ(1, 0, x)− ψ(0, 1, x)) ≥ 0 ∀x.

The first constraint requires the model to give the highest score to the true labeling zzz(i). All
other labelings are assigned scores lower than the score for the true labeling; the difference
in the scores depends on a cost function L(zzz(i), zzz). We use the Hamming distance as the cost
function—a labeling that is very different from the true labeling should be assigned a lower
score than one that is more similar. To handle nonlinearly separable data, we introduce
the non-negative slack variables ξi, i = 1 . . . ,m. The final constraint ensures that the fitted
model has no non-sub-modular interaction features so that z∗ can be efficiently computed.

We can replace the first constraint with the equivalent

www′φ(zzz(i),XXX(i)) ≥ www′(φ(ẑ̂ẑz(i),XXX(i))) + L(zzz(i), ẑ̂ẑz(i)))− ξi,∀i = 1, . . . ,m,

where ẑ̂ẑz(i) = arg maxzzzwww
′(φ(zzz,XXX(i))) + L(zzz(i), zzz)). The Hamming distance loss does not

affect any of the interaction features so that ẑ̂ẑz(i) can be computed efficiently. The original
optimization problem now reduces to

min
www

1

2
‖www‖2

2 + C
m∑

i=1

www′ (φ(ẑ̂ẑz(i),XXX(i)) + L(zzz(i), ẑ̂ẑz(i))− φ(zzz(i),XXX(i))
)

www3(ψ(0, 0, x) + ψ(1, 1, x)− ψ(1, 0, x)− ψ(0, 1, x)) ≥ 0 ∀x.

This is a convex program with a non-differentiable objective function which we solve using a
subgradient method. In practice, we use the L1-regularized logistic regression to estimate the
parameters (b,www1,www2), discard the zero weights and only estimate the interaction parameter
vectors (www2,www3).

3.4.2 Features used in the CRF

In addition to the features used in the logistic regression, we compute three additional feature
functions for the CRF (described by the ψ terms in Equation 3.2). Each of these feature
functions operates on pairs of neighboring residues; i.e., a pair is predicted as catalytic or not
catalytic if they share one of these features: charged, polar or conserved. (Recall that zj = 1
is residue j is predicted catalytic). The first two feature functions couple two neighboring
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residues if they are both polar or both charged. The last feature function couples two
neighboring residues that are both highly conserved (the INTREPID scores are normalized
to have zero mean and unit variance for each enzyme).

ψ1(zj, zk, x) =

{
1 if zj = zk = 1 & j, k are polar
0 otherwise

ψ2(zj, zk, x) =

{
1 if zj = zk = 1 & j, k are charged
0 otherwise

ψ3(zj, zk, x) =

{
1 if zj = zk = 1 & INTREPID scores for j,k > 1
0 otherwise

3.4.3 Comparison of CRF to the L1-regularized logistic regression

Table 3.2: Comparison of Discern and the CRF. Precision50 reports the precision at
50% recall, and Recall18 reports the recall at 18% precision (these precision and recall points were
selected to allow direct comparison to the results reported in [Youn et al., 2007]). The results
are indistinguishable.

Method CATRES-FAM
Precision50 Recall18

Discern 27.3% 69%
CRF 26.9% 69%

We see from Table 3.2 that the CRF has very similar accuracies to Discern with no
change in recall on the CATRES-FAM dataset. The extra structural features used in the
CRF attained low weights with the highest weight (0.122) being assigned to the feature
that enforces agreement between two structural neighbors if each appears conserved. This
is likely a result of the small number of catalytic sites observed in the dataset so that the
new features introduced by the CRF do not capture any dependencies in addition to those
captured at the feature level by the logistic regression model.

3.5 Discussion

In this chapter, we have described a new approach to the prediction of functional sites in
proteins. Discern is a statistical predictor that brings together three important ideas, the
combination of which are needed in order to obtain the striking improvements in accuracy
that we obtain. First, Discern uses an evolutionary modeling approach (specifically, the
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INTREPID phylogenomic method) to infer the degree to which residues are under selec-
tive pressure. Second, we incorporate information from the structural neighborhood of a
residue including features (such as sequence conservation, charge, solvent accessibility, etc.)
computed for structurally proximal residues. Third, and critically, we use statistical spar-
sification methods (specifically, L1 regularization) to cope with the fact that our statistical
model is based on a large number of redundant, noisy features. Without such regularization,
we find that our method overfits—in particular the inclusion of information from structural
neighbors leads to a decrease in accuracy. With regularization, we obtain a significant in-
crease in accuracy. Regularization allows us to find a signal within the large set of candidate
features that can be used to describe the structural and evolutionary neighborhood of an
amino acid.

The parameters of the statistical model underlying Discern are the weights of various
features that capture the evolutionary and structural context, computed both for the residue
of interest and for its structural neighbors. The largest weights tend to be associated with
features identified by others as highly correlated with catalytic sites (e.g., high degrees of
sequence conservation across homologs, centrality in 3D structure and relative solvent acces-
sibility), and the largest negative weights are those shown previously as anti-correlated (e.g.,
hydrophobicity). But the model is not restricted to such known features; it can create new
features as linear combinations of the given features. Moreover, the model parameters act in
concert: for a residue to achieve a high rank, a single feature is generally insufficient; multi-
ple features must be present. This gives Discern the ability to differentiate between highly
conserved residues playing functional roles from those that may be conserved for structural
reasons.

While most catalytic site prediction methods exploit residue conservation across homologs
as a primary source of signal [Gutteridge et al., 2003; Youn et al., 2007], most methods
restrict homologs to closely related (or only moderately divergent) sequences, limiting the
effective use of this signal [Landgraf et al., 2001; Aloy et al., 2001; Panchenko et al., 2004;
Sankararaman and Sjölander, 2008]. By contrast, Discern makes use of the INTREPID
phylogenomic conservation score, which is able to exploit the conservation information in
highly divergent sequence homologs.

We also considered an extension to logistic regression, based on the framework of Condi-
tional Random Fields (CRF). CRF methods go beyond a simple logistic regression to allow
the coupling of catalytic labels for different residues, enabling us to capture more complex
dependencies and to make a joint prediction of the residue labels. In practice, we find that
the accuracy of the CRF is virtually indistinguishable from Discern.

We have evaluated Discern on a homology-reduced subset of manually curated enzymes
from the Catalytic Site Atlas [Bartlett et al., 2002; Porter et al., 2004]. While the CSA
provides an essential benchmark for the prediction of catalytic sites, as the results in our
case study show, not all functionally important or catalytic residues are listed in the CSA.
Thus, some residues that are predicted as functional by a method may be labeled as false
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positives based on not being present in the CSA even if they are, in fact, catalytic. Finite
resources (e.g., a small number of biological curators entering data into the CSA and the
inevitable lag between publication and data entry) make the development and maintenance
of such a critical resource challenging. Used carefully, automated predictors such as Discern
can help in surmounting this challenge.

Finally, our case study indicates that Discern identifies residues that are involved in
other functions such as ligand-binding. In fact, the general approach underlying Discern
is extensible and general, and can be applied to model other types of functional residues
such as binding pocket specificity determinants and interaction interfaces. Each of these
application areas depends only on the availability of high-quality training data, such as that
provided in the Catalytic Site Atlas.

Appendix 3.A Features evaluated for catalytic residue pre-
diction

The Discern logistic regression predictor is based on a feature vector having 528 component
features. See Table 3.5.

3.A.1 Sequence conservation features

Sequence conservation has been observed to be the most important feature for catalytic
residue prediction [Gutteridge et al., 2003; Youn et al., 2007]. We tested three sequence con-
servation scores. The first, GLOBAL-JS, is the Jensen-Shannon divergence [Lin and Wong,
1990] between the amino acid distribution at a column and a background distribution (with
prior weight = 0.5 as in [Capra and Singh, 2007]). The other two sequence conservation
scores tested make explicit use of the phylogenetic tree topology using the INTREPID algo-
rithm. INTREPID has been shown to be sensitive for catalytic residue prediction in general
and in particular is able to exploit the information in large divergent families. The two
variants used the Jensen-Shannon divergence (INTREPID-JS) and the log frequency of the
modal amino acid (INTREPID-LO).

3.A.1.1 Homolog selection and alignment

PSI-BLAST [Altschul et al., 1997] was run for four iterations against the UniProt database [Ap-
weiler et al., 2004] with an E-value inclusion threshold of 1×10−4 from which a maximum of
1000 homologs were retrieved. A multiple sequence alignment (MSA) was estimated using
MUSCLE [Edgar, 2004] with MAXITERS set to 2, followed by removing identical sequences
and deleting columns in which the seed had a gap. The set of alignments built contain a
minimum of 32 sequences, a maximum of 1033 sequences, and a median of 839 sequences.
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The average percent identity between the seed sequence and homologs in the alignments
varies from 6.42% to 31.14% with a median of 15.22%. Percent identity was computed as
the fraction of the alignment columns that have identical characters in the sequence and
the seed (i.e., the number of identical columns divided by the number of amino acids in the
seed). The low percent identity is partly attributed to the inclusion of many sequences with
local alignments in the MSA.

3.A.1.2 Tree construction

A neighbor-joining tree was built from this alignment using the PROTDIST and NEIGHBOR
programs in the PHYLIP package [Felsenstein, 1993]. The programs were run with default
parameters. We used midpoint rooting (placing the root at the midpoint of the longest span
in the tree).

3.A.2 Amino acid properties

Amino acids have varying catalytic propensities. We use the amino acid types as features
and also classify the amino acid into one of three categories—charged (D,E,H,K,R), polar
(Q,T,S,N,C,Y) or hydrophobic (A,F,G,I,L,M,P,V,W). We used the classification described
in [Bartlett et al., 2002] with one modification. Tryptophan is included among the class of
polar residues in [Bartlett et al., 2002] but among hydrophobic residues by others [Eisenberg
et al., 1982]; we use the latter classification.

3.A.3 Structure-based features

For each residue, we compute the residue centrality, the B-factor, solvent accessibility, pres-
ence in a cleft and secondary structure as follows. We compute the B-factor, a measure of
thermal motion for each residue as the average of the B-factors of all its atoms (derived di-
rectly from its PDB file). We compute a measure of centrality for each residue j as the inverse
of the average distance from a residue to all other residues in the enzyme; i.e., Cj = n−1P

k 6=j d(k,j)

where d(k, j) is the distance from j to k along the contact map. A residue that is located
in the center of the protein has smaller average distance to all other residues and hence a
high centrality measure. We use the 7-state secondary structure representation output by
DSSP [Kabsch and Sander, 1983]. The area of a residue accessible to solvent is obtained
from NACCESS [Hubbard and Thornton, 1993]. We use LigSitecsc [Huang and Schroeder,
2006] to detect the presence of a residue in one of the three largest pockets in the enzyme.

Appendix 3.B Benchmark datasets

We used three datasets in these experiments, all derived from the CSA.
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Our primary benchmark dataset, termed CATRES-FAM, consists of 140 enzymes from
the CATRES [Bartlett et al., 2002] dataset. The CATRES dataset consists of enzymes with
PDB structures with catalytic site information assigned from the literature. Subsets of this
dataset have been used by previous methods for catalytic residue prediction [Gutteridge
et al., 2003; Tong et al., 2008]. The original CATRES dataset contains 178 enzymes. We
discarded 26 enzymes as unusable in these experiments for various reasons: 21 enzymes pre-
sented problems for one or more of our feature extraction programs (18 had catalytic sites
spanning multiple sub-units, and three enzymes had non-numeric PDB residue identifiers),
one of the enzymes had no annotated catalytic residues, one had only one detectable ho-
molog using PSI-BLAST, MUSCLE crashed on another, and two NMR structures were also
discarded as unusable by the structure-based methods. The resulting set of enzymes was
made non-redundant at the SCOP (Structural Classification of Proteins) [Murzin et al., 1995]

family level by removing an additional 12 enzymes. SCOP is a hierarchical classification of
protein domains based on their structural, functional and sequence similarities. Domains
in different SCOP folds are unrelated; domains in the same fold but different superfamilies
have an uncertain relationship (i.e., although their topologies are similar, there is no other
evidence to support homology); domains in the same superfamily are deemed homologous;
domains in the same family have very similar functions and structures. The resulting dataset
contains a total of 472 catalytic residues out of a total of 49,180 residues with a median of
three catalytic residues per enzyme.

CATRES-SF is a second dataset of 121 enzymes that was created ensuring that no pair
of enzymes belongs to the same SCOP superfamily. This dataset is thus filtered at a more
stringent level, presenting a greater challenge to statistical models using this dataset in
cross-validation.

The third dataset, CSA-FAM, consists of a set of 94 enzymes chosen from the manually
curated section of the Catalytic Site Atlas [Porter et al., 2004] such that no pair contained
domains in the same SCOP family and no pair had detectable sequence homology (enforced
by a BLAST E-value >1). We also required each of the sequences in this dataset to have
pre-computed results in the Baylor College of Medicine Evolutionary Trace server to enable
a direct comparison with Evolutionary Trace without putting undue load on their servers.

Appendix 3.C Performance measurements

We measure the precision and the recall on the test set where: Precision = TP
TP+FP

, Recall =
TP

TP+FN
, a true positive (TP) is a residue included in the benchmark dataset that is predicted

as catalytic, a false positive (FP) is a residue not listed in the benchmark that is predicted as
catalytic, and a false negative (FN) is a catalytic residue in the benchmark which has been
missed by a method. The precision-recall curves were averaged over all the cross-validation
folds using the code from [Davis and Goadrich, 2006].
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3.C.1 A note on cross-validation

To assess the performance of our method, we performed 10-fold cross validation over the
enzymes in the benchmark dataset. k-fold cross-validation is a procedure to evaluate the
accuracy of a predictor. The data is partitioned into k equal-sized subsets. In each fold, one
partition is chosen as the test data and the rest of the data forms the training data; e.g., in
10-fold cross-validation, 9/10th of the data would be used to estimate the model parameters,
and then tested on the reserved 1/10th of the data. In the next fold, a different 1/10th is
used to test. The accuracy of the predictor, as measured on the test dataset, is averaged
over the folds to obtain a final estimate of the accuracy. Note that in cross-validation, the
characteristics of the dataset can have a major impact on the performance. In particular,
the presence of homologs in the dataset can lead to an increase in the apparent accuracy
(i.e., an overestimate of the expected accuracy of the method when applied to novel data)
when these homologs occur in both the training and the test set [Youn et al., 2007]. We
also observe a similar decrease in accuracy on the CATRES-SF dataset (non-redundant at
the SCOP superfamily level) relative to CATRES-FAM (non-redundant at the SCOP family
level). The L1-regularization parameter was estimated by a similar cross-validation within
the training set in each fold of the cross-validation.

Appendix 3.D Note on methods compared against

3.D.1 ConSurf and Evolutionary Trace results

The ConSurf-DB database of pre-computed results (http://consurfdb.tau.ac.il) was used to
obtain results on the CATRES sequences while the ConSurf web server at Tel Aviv University
(http://consurf.tau.ac.il) was used to obtain the results on CSA-FAM. Evolutionary
Trace results were obtained from the pre-computed results of the Evolutionary Trace server
at the Baylor College of Medicine (http://mammoth.bcm.tmc.edu/report_maker).

3.D.2 SVM-Mooney

SVM-Mooney [Youn et al., 2007] refers to an implementation of a Support Vector Machine
(SVM) for catalytic residue prediction. The features used in SVM-Mooney include amino
acid residue type, sequence conservation, the structural environment of each residue repre-
sented by 4 shells of thickness 1.875Å, each consisting of 264 atom-based descriptors [Bagley
and Altman, 1995], and a structural conservation obtained by comparing the structural en-
vironment at each residue. SVM-Mooney was evaluated by 10-fold cross-validation on three
datasets derived from the set of 987 protein domains, classified into 396 families, 236 super-
families and 189 folds, in ASTRAL 40v1.65 [Chandonia et al., 2004]. Each of these datasets
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was chosen to be non-redundant at the SCOP fold, superfamily and family levels respec-
tively. SVM-Mooney attained a recall of 57.02% at a precision of 18.51% on the family-level
dataset, a recall of 53.93% at a precision of 16.90% on the superfamily level dataset, and a
recall of 51.11% at a precision of 17.13% on the fold-level dataset.

3.D.3 NN-Thornton

NN-Thornton [Gutteridge et al., 2003] refers to an implementation of a neural network for
catalytic residue prediction. The features used in NN-Thornton include amino acid residue
type, sequence conservation features and structural features such as presence in a pocket, B-
factor and solvent accessibility. Each residue was classified using the above features computed
at the residue alone; i.e., features computed at the structural neighbors were not considered
for prediction. The neural network was evaluated by 10-fold cross-validation on subset of 159
enzymes from the CATRES dataset. NN-Thornton attained a recall of 56% at a precision
of 14%.

Appendix 3.E Results on additional datasets

Results on CATRES-FAM are reported in Section 3.3. In this section, we report results on
the two other datasets.

3.E.1 Discern performance on CATRES-SF

CATRES-SF was selected so that no pair belongs to the same SCOP superfamily, making the
dataset quite challenging. In contrast, the CATRES-FAM contains enzymes from distinct
SCOP families (allowing sequences from the same superfamily to be included). Figure 3.5
shows that, as with other methods, the accuracy of Discern decreases on CATRES-SF. At
a precision of 17%, Discern attains a recall of 65% on CATRES-SF compared to a recall of
70% on CATRES-FAM. Relative to the performance reported by SVM-Mooney on a dataset
of enzymes made non-redundant at the SCOP superfamily level, on which they report a
recall of 53.9% at 16.9% precision, Discern attains an improvement of 11% at the same
level of precision.

3.E.2 Discern performance on CSA-FAM

The CSA-FAM dataset was designed to enable a direct comparison with Evolutionary Trace
(ET) using pre-calculated results from the Baylor College of Medicine ET server [Mihalek
et al., 2004]. CSA-FAM consists of a set of 94 enzymes chosen from the manually curated
section of the Catalytic Site Atlas [Porter et al., 2004] selected such that pre-calculated
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Figure 3.5: Results on the CATRES-SF benchmark dataset comparing Discern
against the SVM-Mooney method, the NN-Thornton method, INTREPID and
ConSurf. SVM-Mooney results shown are from their reported performance on a dataset con-
taining single representatives from SCOP superfamilies (i.e., a similar dataset as CATRES-SF) on
which they report a recall of 53.93% (the fraction of catalytic residues identified) at a precision
of 16.90%. NN-Thornton results are from their reported performance on the CATRES dataset,
which includes sequences from the same SCOP family (i.e., an easier dataset), on which they
report 56% recall at 14% precision. These results show that Discern attains an improvement in
recall of 11% over the SVM-Mooney superfamily-level results (achieving a recall of 65% at 17%
precision relative to a recall of 53.93% reported by SVM-Mooney at the same precision), an im-
provement in recall of 16% over the NN-Thornton results at 14% precision, and an improvement
of 34% over INTREPID at 18% precision. ConSurf does not reach 18% precision on this dataset.

60



Chapter 3. Functional site prediction using phylogenomic and structural information

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

Recall

CSA−FAM

 

 

Discern
Control
NN−Thornton
SVM−Mooney
Intrepid

Figure 3.6: Results on the CSA-FAM benchmark dataset comparing Discern
against the SVM-Mooney method, the NN-Thornton method, INTREPID and a
control. SVM-Mooney results shown are from their reported performance on a dataset contain-
ing single representatives from SCOP families. SVM-Mooney reports 57.02% recall (the fraction
of catalytic residues identified) at 18.5% precision (the fraction of predicted catalytic residues
that are catalytic) on their family dataset. NN-Thornton results are from their reported per-
formance on the CATRES dataset, which includes sequences from the same SCOP family, on
which they report 56% recall at 14% precision. The control was trained identically to Discern
but did not make use of INTREPID scoring functions or structural neighbors, and did not use
L1-regularization to enforce model sparsity. These results show that Discern attains an im-
provement in recall of 23% over the SVM-Mooney family-level results (achieving a recall of 75%
at 18.5% precision relative to a recall of 57.02% reported by SVM-Mooney at the same preci-
sion), an improvement in recall of 26% over the NN-Thornton results at 14% precision, and an
improvement of 39% over INTREPID at 18% precision. Discern also shows an improvement
of 21% over the control at a precision of 18%.
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Figure 3.7: Comparison of Discern to methods that rely only on protein sequence
information. Only Discern makes use of structural information giving it a significant advan-
tage in these experiments. Left: On the CATRES-FAM dataset, at 18% precision, Discern
has 69% recall and INTREPID has 19% recall while ConSurf does not attain a precision of 18%.
At a lower precision of 10%, Discern obtained a recall of 87% compared to a recall of 64%
and 35% by INTREPID and ConSurf respectively. Right: On the CSA-FAM dataset, at a pre-
cision of 10%, Discern has 90% recall while INTREPID, ConSurf and Evolutionary Trace (ET)
have 71%, 3% and 31% recall respectively. ET results were obtained form the Baylor College
of Medicine Evolutionary Trace server. ConSurf results were obtained from the ConSurf server
DataBase (http://consurfdb.tau.ac.il).
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results were available for ET, no pair had detectable sequence homology (enforced by a
BLAST E-value > 1), and no pair came from the same SCOP family. We retrieved results
for each enzyme from the ConSurf server [Landau et al., 2005]. INTREPID scores were
produced based on homologs gathered using PSI-BLAST.

We included the reported performance of the support vector machine (SVM) method
from the Mooney lab [Youn et al., 2007] (denoted SVM-Mooney) on a dataset derived from
the CSA such that only a single representative from each SCOP family was included. SVM-
Mooney reports 57.02% recall at 18.5% precision on their SCOP family dataset. We also
included the neural network method from the Thornton lab (denoted NN-Thornton) which
achieves a recall of 56% at 14% precision on the CATRES dataset.

Figure 3.6 shows that Discern attains an improvement in recall of 23% over the family-
level results reported by SVM-Mooney (Discern achieves a recall of 75% at 18.5% precision
compared to a recall of 57.02% at 18.5% precision achieved by SVM-Mooney). At a precision
of 10%, Discern attains a recall of 90% while INTREPID, ConSurf and ET, all of which use
only sequence information, attain 71%, 3% and 31% recall respectively (see Figure 3.7).

We include a control method, trained identically to Discern but not making use of
INTREPID scoring functions or structural neighbors and without the use of L1-regularization
to enforce model sparsity (see Section 3.E.3 for additional details). Discern also shows an
improvement of 21% over the control at a precision of 18%.

3.E.3 Controlled experiments to test the effect of including phyloge-
nomic conservation score, features computed for structural neigh-
bors, and L1- regularization

The accuracy of the Discern predictor depends critically on the inclusion of discriminative
features while avoiding model overfitting. To assess the relative contribution of different
features we tested the predictive power of statistical models trained identically to Discern
but withholding certain features. Performance was assessed on the CATRES-FAM dataset
using 10-fold cross validation. Table 3.1 gives details on individual models and Figure 3.8
shows full precision-recall curves on the CATRES-FAM dataset.

Method 0, our control, is an unregularized logistic regression with no features from struc-
tural neighbors and no phylogenomic conservation scores (i.e., it uses only GLOBAL-JS, a
measure of the family-wide conservation), similar to methods that exploit information from
both sequence and structure but do not use features computed at structural neighbors, do
not exploit the phylogenetic information and do not use L1-regularization to enforce sparsity.
The control attains a recall of 48% at 18% precision on the CATRES-FAM dataset.

Method 1 is identical to the control but includes INTREPID phylogenomic conserva-
tion scores. Including INTREPID provides an increase to recall of 7% over the control
(recall=55%) at 18% precision.
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Figure 3.8: Precision-Recall curves comparing the different predictors on the
CATRES-FAM dataset. Left: Full Precision-recall curves. Right: Precision-recall curves
for the high precision region (Note that the axes are drawn to different scales). We varied the
inclusion of structural neighbors, the use of L1-regularization, and the inclusion of phylogenetic
conservation scores from INTREPID. The control uses non-phylogenetic conservation scores, while
other methods use INTREPID. Discern is more accurate than the other variants over the range
of recalls, except between a recall of 0.05 and 0.1 where Method 2 is most accurate. Further,
since the control has very similar accuracies to SVM-Mooney and NN-Thornton (as shown in
Section 3.3.1), the improvement of Discern over these methods is significant and is unlikely to
be an artifact of the dataset. See Table 3.1 for details on each variant and a comparison at fixed
points of precision and recall.
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Method 2 is identical to Method 1, but includes features computed at structural neighbors
with no L1-regularization. We see that naively including features from structural neighbors
leads to a decrease in performance. Method 2 attains a recall of 41% at a precision of 18%.

Discern is identical to Method 2 (using phylogenomic conservation scores and features
computed at structural neighbors), but also includes L1-regularization to enforce sparsity.
Relative to Method 1, Discern has 14% greater recall (recall=69%) at 18% precision. Rel-
ative to the control, Discern has 21% greater recall at the same level of precision.

Proceeding from the control to Discern also shows a dramatic reduction in false positive
predictions (residues predicted as catalytic which are not listed in the CATRES dataset).
Measuring precision (the fraction of predicted residues that are actually catalytic) at the
point where half of the catalytic residues have been detected (i.e., a recall of 50%) shows
that the control has precision of 17.0% while Discern has 27.3% precision. In other words,
Discern effectively reduces the ratio of false positives to true positives from 4.1 to 2.8.
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Chapter 3. Functional site prediction using phylogenomic and structural information

Figure 3.10: Top 20 residues predicted by Discern on Escherichia coli Asparagine
Synthetase (PDB id:12as). (Left) Detailed view of the active site. Red indicates residues
listed in CATRES (D46, R100, Q116). Green, yellow and orange indicate residues in motifs 1
(H71, K75 and K77), 2 (D115, Q116, D118, W119 and E120), and 3 (R214, Y218, D219, and
D220) respectively. Other predicted residues are shown in blue. Also shown are the AMP and
L-asparagine molecules. (Right) The predictions shown in space-fill representation. See Table 3.3
for a list of these residues.

67



Chapter 3. Functional site prediction using phylogenomic and structural information

Figure 3.11: Tree and alignment of the homologs for Escherichia coli Asparagine
Synthetase (PDB id:12as). Neighbor-joining tree and alignment derived by making the
original alignment non-redundant at 70% identity relative to the seed. The positions in the seed
sequence correspond to the residue number in PDB minus 3, e.g., the arginine at position 97
corresponds to R100 in the PDB record. R100 is marked with a star because it is listed as
catalytic in CATRES. Note that not all sequences contain an arginine at this position. Positions
in motif 2 (D115, Q116, D118, W119 and E120) have been boxed. The branch lengths of
Q4A671 MYCS5 and Q14QG3 SPICI have been truncated from their original lengths of 1.089
and 1.181 respectively to a value of 0.5 for better visualization.
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Figure 3.12: Alignment of the homologs for Escherichia coli Asparagine Syn-
thetase (PDB id:12as). The displayed alignment was derived by making the original align-
ment non-redundant at 50% identity. Residues listed as catalytic in CATRES (D46, R100 and
Q116) are marked with a star while positions that form motifs based on their Discern scores
have been boxed. See Table 3.3 for the list of predicted residues. Note that even catalytic residues
are not perfectly conserved across the family.
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Table 3.3: Top 20 residues predicted by different methods on Escherichia coli
Asparagine Synthetase (PDB id:12as). The three catalytic residues listed in CATRES
(D46, R100 and Q116) are marked with *. Residues with a proposed functional role that are not
listed in CATRES are marked with †. Discern detects all three catalytic residues in these top
20, INTREPID detects one, and ConSurf detects two of the three. Residues among these top 20
that are also described as functional in the literature but are not listed in CATRES include P35,
K77, E120, D219, D235, E248, S251, R255, and I295. Of these 10 residues, seven are found
among the top 20 for Discern, one is found by INTREPID and two are found by ConSurf. See
Figure 3.10 for the Discern predictions plotted onto the structure of asparagine synthetase.
Figure 3.12 shows an MSA for 12as and homologs. Refer to Section 3.3.2 for a detailed analysis
of these predictions.

Discern Intrepid Consurf
R214 W76 S72
D219† W119 S111
D115 W318 S250
D235† W117 S251†

K77† H309 S298
D46 * W221 I201
R100 * H211 N233
E248† M252 I291
E120† M96 I295†

R255† Q264 A74
Y218 M302 A98
H71 H110 V32
D118 Y218 V55
R78 Q297 V70
K75 N233 V114
Q116 * P35† V137
S251† Q116 * V256
S250 F197 I12
W119 H279 M96
D220 P288 M252
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Table 3.4: Comparison of Discern, INTREPID and ConSurf. Precision50 reports the
precision at 50% recall, and Recall10 reports the recall at 10% precision (ConSurf does not achieve
a precision of 18% on CATRES-FAM).

Method CATRES-FAM CSA-FAM
Precision50 Recall10 Precision50 Recall10

Discern 27.3% 86% 28.3% 90%
INTREPID 13.0% 64% 14.9% 70%
ConSurf 7.9% 35% 5.6% 6%

Table 3.5: Features evaluated for catalytic residue prediction: This set of features
are evaluated at a residue and each of its ten structural neighbors resulting in 48 × 11 = 528
features. RSA and ASA refer to the relative and absolute solvent accessibility respectively. Refer
to Section 3.A for detailed descriptions.

Type of feature Description
Sequence conservation features INTREPID-JS, INTREPID-LO, GLOBAL-JS
Amino acid properties {Charged, Polar, Hydrophobic}, {20 amino acid sidechains}
Structure-based features B-factor, Centrality,

Secondary structure element (Alpha helix, Beta bridge, Strand,
3-helix, pi-helix, H-bonded turn, Bend)
RSA (All atoms, Side chain, Main chain, Non polar, Polar),
ASA (All atoms, Side chain, Main chain, Non polar, Polar),
Presence in each of three largest pockets
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Chapter 4

Estimating local ancestry in admixed
populations

4.1 Introduction

Recent advances in genotyping technologies have opened up unprecedented opportunities to
improve our understanding of complex diseases through disease association studies. In these
studies, a population of cases and controls are genotyped across the genome, and the allele
frequencies are compared across these two groups. Currently, in a typical study, hundreds
of thousands of single nucleotide polymorphisms (SNPs) are genotyped for thousands of
individuals [Bonnen et al., 2006]. These numbers are expected to grow in the coming years
due to the constant improvements in genotyping technologies [Bonnen et al., 2006].

A significant discrepancy between the allele frequencies in the cases and the controls gives
evidence for an association between the SNP and the phenotype, and therefore links the SNP
to the disease. However, a growing concern is that many of the associations found are due to
confounding effects. In particular, if the cases and the controls are not sampled from the same
population, many spurious associations will be discovered, since the two populations may
have different allele frequencies at a SNP regardless of the disease status [Price et al., 2006;
Freedman et al., 2004; Clayton et al., 2005; Lander and Schork, 1994a; Helgason et al., 2005;
Campbell et al., 2005; Hirschhorn and Daly, 2005; Lohmueller et al., 2003; Marchini et al.,
2004]. This bias can be observed in diseases that are more prevalent in one population than
in another. In such cases, the collection of the cases is a biased sample of the population.

Various methods have been proposed to deal with population sub-structure in association
studies [Price et al., 2006; Devlin and Roeder, 1999]. One of the most intuitive approaches is
to first find the population sub-structure within the cases and the controls using a clustering
algorithm such as STRUCTURE[Pritchard et al., 2000], and then to correct it using regression
or other methods that take the sub-population variable into account [Setakis et al., 2006].
The clustering algorithms need to be accurate enough, so that the signal obtained from
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the difference in population sub-structure will be weaker than the signal obtained from the
difference in the disease status.

The problem of inferring the population sub-structure is especially challenging when
recently admixed populations are involved. In these populations (e.g., African Americans
and Latinos), two or more ancestral populations have been mixing for a relatively small
number of generations, resulting in a new population in which the ancestry of every individual
can be explained by different proportions of the original populations. Due to recombination
events, even within the DNA of a single individual, different regions of the genome may
originate from different ancestral populations. This adds to the complexity of the problem
of finding the ancestral information of an individual, since in non-admixed populations the
whole genome can be used as an evidence for the population membership of an individual,
while in the admixed case the genome of each individual is fragmented into shorter regions
of different ancestry. It is therefore challenging to find the ancestral information of these
individuals, and in particular, to find the locus-specific ancestries.

An accurate inference of locus-specific ancestry in admixed populations may lead to
improved analysis of studies based on admixture mapping. In these studies, a set of cases
from a recently admixed population is genotyped, and the genome is scanned for regions in
which the proportions of ancestral populations are significantly different than the rest of the
genome [Reich et al., 2005b; Zhu et al., 2005a]. Unfortunately, most of the current methods
for inference of locus-specific ancestral information [Pritchard et al., 2000; Patterson et al.,
2004; Falush et al., 2003; Hoggart et al., 2004] do not scale to large data sets. The only
existing method that copes with large data sets is SABER [Tang et al., 2006], which is based
on an extension of a Hidden Markov Model [Rabiner, 1989] to deal with local haplotype
blocks.

Here, we propose a new method, LAMP (Local Ancestry in adMixed Populations), for
de-novo estimation of the locus-specific ancestry in recently admixed populations (see Fig-
ure 4.1). Our method is based on the observation that previous methods that use a Hidden
Markov Model or extensions of it, are set to infer a very large set of parameters, including
the exact position of the recombination events, which makes the search over the parameter
space infeasible. Instead, our method operates on sliding windows of contiguous SNPs. We
first calculate an optimal window length. Next, we use a clustering algorithm that operates
on these windows and estimates each individual’s ancestry. We then use a majority vote for
each SNP, over all windows that overlap with the SNP, in order to decide the most likely
ancestral populations at the SNP. This simple approach has two advantages over previous
ones. First, we show analytically that the estimates of the algorithm are asymptotically cor-
rect across the entire genome. Second, it optimizes fewer parameters than previous methods
and hence, the optimization is much faster and more robust than previous methods.

We tested LAMP extensively on various data sets of admixed populations generated from
the HapMap resource [http://www.hapmap.org]. Our simulations show that LAMP is sig-
nificantly more accurate than the state of the art methods such as SABER and STRUCTURE.

73

http://www.hapmap.org


Chapter 4. Estimating local ancestry in admixed populations

In addition, LAMP is highly efficient with a running time that is about 200 times faster
than SABER and about 104 times faster than STRUCTURE. The efficiency of LAMP allows us to
estimate ancestries across the genome in several hours on a single computer.

An additional advantage of LAMP is that unlike previous methods such as SABER, it does
not require the ancestral genotypes to infer the locus-specific ancestries (though it can take
advantage of these if available). This may be crucial when the ancestral genotypes cannot be
typed or are unknown. For instance, if one studies the population genetics of populations in
remote geographic locations where historical admixing has not been recorded, a method such
as LAMP could be used to reveal such recent admixing. Furthermore, even in cases where
the history of admixing is known, it is not always possible to genotype all the ancestral
populations, since some of the subpopulations have become extinct and some have entirely
mixed with other populations. On the other hand, as genotypes of major population groups
become available, it would be beneficial to use LAMP-ANC which can take advantage of the
pure genotypes.

Surprisingly, we find that in many cases where LAMP does not receive the genotypes of the
ancestral populations as input, it performs considerably better than SABER. In particular,
on a simulated dataset of African-Americans, when measuring the percentage of individuals
that are predicted with an accuracy of at least 90%, LAMP achieves high accuracies on 90%
of the individuals while SABER and STRUCTURE achieve less than 10%.

Finally, we used LAMP to estimate the individual admixture, and showed empirically that
this results in much more accurate estimates than methods such as STRUCTURE[Pritchard
et al., 2000] or EIGENSTRAT[Price et al., 2006]. This reduction in errors may be used to
considerably reduce the rate of spurious association results in disease association studies.

4.2 Estimating local ancestry

The inference of locus specific ancestry depends on the mathematical model representing the
mixing process of the populations. We will first describe the model assumptions, and then
describe the inference algorithm under the model.

4.2.1 Model assumptions

We assume that there are K ancestral populations A1, . . . , AK that have been mixing for
g generations. If the populations have mixed at different times, then g is taken to be an
upper bound on the number of generations since the beginning of admixture. The fraction
of population Ai in the ancestral population which we call the admixture fraction is αi,
where

∑
i αi = 1. We assume for convenience that α1 ≥ α2 . . . ≥ αK . In each generation,

we assume random mating within the combined pool of the k populations. We denote the
recombination rate at position j by rj. Note that rj is the recombination rate at position j
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at a specific meiosis (one generation), and not through history. We model the transmission
of a chromosome from a parent to a child by walking along the chromosome from the 5’
end to the 3’ end with crossovers between chromosomes occurring as a Poisson process
with rate rj [Haldane, 1919]. For simplicity of the presentation, we will assume a uniform
recombination rate, i.e., that r = rj for every position j. The algorithm and analysis remain
qualitatively the same when applied to non-uniform recombination rates.

We denote the genotype data of individual i at position j as gij, where gij ∈ {0, 1, 2} is
the minor allele count at that position. At position j, the two alleles of individual i have
descended from one or two of the K ancestral populations. We denote by ap

ij ∈ {0, 0.5, 1} the
fraction of alleles descended from population p at position j in individual i. The quantities
ap

ij are unknown; our objective is to derive a method LAMP that accurately estimates these
quantities.

4.2.2 The LAMP framework

We consider a recently admixed population in which the number of generations g since the
beginning of the mixing is small. Therefore, we expect the total number of recombinations
in these g generations to be small as well. The resulting chromosomes are mosaics of the
k populations, where the ancestral breakpoints in which the chromosome ancestry changes
from one population to the other are determined by the recombination events.

We assume that the quantities g, αi, and r are known for the admixed population. The
basic idea in LAMP is to estimate the ancestries of the individuals in a sliding window that
spans l sites. We term l the length of the window. The choice of the length l will be discussed
later. Intuitively, if l is small enough, and the number of generations g is not too large, a
typical window of length l will have almost no recombination events throughout history, and
therefore almost no breakpoints. Therefore, within each window, it is reasonable to use an
inference algorithm that assigns the sequence of genotypes in the window to one or two of the
populations under the assumption that there are no breakpoints in any of the chromosomes.
The latter is a simple clustering problem, although the accuracy of the inference in a given
window improves when the number of SNPs l in the window increases. We therefore search
for a window length l, which is short enough so that most individuals have no breakpoints
and large enough so that there is enough information to correctly cluster the individuals
within the window. This procedure is repeated by sliding the window to cover all the SNPs
on the genome. The windows that overlap a SNP are then combined into a single solution
using a majority vote for the ancestry assignment. We note that unlike previous methods
(e.g. SABER [Tang et al., 2006], or STRUCTURE [Pritchard et al., 2000]), we are not attempting
to estimate the exact positions of the breakpoints, but instead we are trying to minimize the
errors in the locus-specific ancestry prediction across the genome.

The LAMP algorithm works as follows. We first find the optimal window length based
on the parameters g, αi, and r. Then, we use a clustering algorithm that operates on a
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window and estimates for each individual i, and for each ancestral populations Aj, Ak, the
probability pi

jk for individual i to have one chromosome descended from population Aj at
this window and another descended from population Ak. We then use a majority vote for
each SNP, over all windows that overlap with the SNP, in order to decide the most likely
ancestral populations at the SNP. As we argue below, even though this scheme optimizes less
parameters than previous methods, such as SABER, or a regular HMM, we show analytically
and empirically that the estimates of the algorithm are asymptotically correct across the
entire genome.

4.2.3 Estimating the ancestry in a single window

We assume that none of the individuals have a breakpoint within a window and estimate a
single ancestral origin for each individual across the length of the window. This assumption
is largely true if the length of the window is determined correctly (see Section 4.2.4 and
Section 4.C in the supplementary materials). We further assume that the values α1, . . . , αK

are known. These values are the admixture fractions of each of the populations across the
whole genome, and they can be estimated using existing tools such as STRUCTURE[Pritchard et
al., 2000]. In the results section we show that our method is robust to reasonable inaccuracies
in the estimates of α1, . . . , αK .

4.2.3.1 Clustering Algorithm

We assume that sub-population Ai has minor allele frequencies ~fi = fi1, . . . , fin for n SNPs
in a given window of length l, and that the different SNPs in the window are independent.
The latter assumption can be achieved in practice by greedily removing SNPs having a high
correlation coefficient (r2 > 0.1) from the window. We look for a classification function
θ : I → {1, . . . , K}2, where I is the set of individuals, and the range corresponds to the
possible pairs of sub-populations. In particular, we write θ(i) = (θ1(i), θ2(i)) to denote
the ancestries of the two chromosomes of individual i in the current window. We use a
clustering algorithm known as Iterated Conditional Modes (ICM) [Besag, 1986] to find an
optimal classification of each individual in terms of the likelihood. For increased efficiency
in the running time, we seed the algorithm with an initial classification as described in
Section 4.2.3.2.

The updates in the ICM algorithm differ from those in a traditional EM method only
in the E-step. In the latter, the E-step consists of obtaining the expected classification θ,
given the values ~fi. This would provide fractional class membership for each individual i.
However, since we assume that the initial classification provides a reasonable solution, we
find the maximum aposteriori estimate of θ as shown below. For brevity we use Gi to refer
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to the genotype (gi1, . . . , gin) of the individual i.

θ̂(i) = argmaxAsAt∈{1,...,K}2 Pr[θ(i) = AsAt | ~f1, . . . , ~fK ,Gi] (4.1)

= argmaxAsAt∈{1,...,K}2 Pr[Gi | ~f1, . . . , ~fK , θ(i) = AsAt] · Pr[θ(i) = AsAt | ~f1, . . . , ~fK ]

Since α1, . . . , αK are known, under the assumption of random mating, we can estimate
the first term Pr[θ(i) = AsAt | ~f1, . . . , ~fK ] as Pr[θ(i) = AsAt] = 21−δ(s,t)αsαt where δ(x, y) is
1 iff x = y and 0 otherwise.

The other term can be estimated as:

Pr[Gi|~f1, . . . , ~fK , θ(i) = AsAt]

=
∏

gij∈Gi|gij=2 fsjftj ·
∏

gij∈Gi|gij=0 [(1− fsj)(1− ftj)] ·
∏

gij∈Gi|gij=1 [fsj(1− ftj) + ftj(1− fsj)]

In the M-step, we obtain the maximum likelihood estimate of ~f1, . . . , ~fK by finding

argmax ~f1,..., ~fK
Pr[(Gi)

m
i=1 | ~f1, . . . , ~fK , θ] =

m∏
i=1

Pr[Gi | ~f1, . . . , ~fK , θ(i)] (4.2)

If the phase of the individuals is known, the maximum likelihood estimate of ~f1, . . . , ~fK

could have been computed by simply counting the number of alleles in each of the sub-
populations at every position. However, when the phase is not known, the problem becomes
more complicated. Consider for instance a heterozygous site j in an individual i, with
θ1(i) 6= θ2(i). In this case, it is not clear whether the minor allele count should be added to
fθ1(i)j or to fθ2(i)j. To solve this problem, we introduce another classification function per

site, ~λj : I → {0, 1}K . This function is defined on the set of SNPs for which the assignment of
counts is ambiguous i.e., heterozygous SNPs in individuals i with classification θ1(i) 6= θ2(i).

We denote this set of heterozygous SNPs Hi. The function ~λj is defined as

~λj(i) =

{
~es, if j ∈ Hi, one of (θ1(i), θ2(i)) = s, and the minor allele is counted to fsj

not defined for j /∈ Hi

Here ~es is the vector with 1 in coordinate s and 0 elsewhere.
For a heterozygous site j in individual i such that j ∈ Hi, we can now define

Pr[~λj(i) = ~eθ1(i) | f1j, . . . , fKj, θ(i)] = fθ1(i)j(1− fθ2(i)j)

Pr[~λj(i) = ~eθ2(i) | f1j, . . . , fKj, θ(i)] = fθ2(i)j(1− fθ1(i)j)

Pr[~λj(i) = ~es/∈{θ1(i),θ2(i)} | f1j, . . . , fKj, θ(i)] = 0
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Using the assumption of independence of the SNPs and the ~λj just defined, we can rewrite
Equation 4.2 as follows. The usefulness of this will be apparent later.

(f̂1j, . . . , f̂Kj) = argmaxf1j ,...,fKj

m∏
i=1

(∏
j∈Hi

K∑
u=1

Pr[~λj(i) = ~eu | f1j, . . . , fKj, θ(i)]

)

×

 ∏
j∈{1,...,n} Hi

Pr[gij | f1j, . . . , fKj, θ(i)]

 (4.3)

The MLE for f̂ij, . . . , ˆfKj can be found using an EM algorithm where

E-step : λj,s(i) = E[λj,s(i) | fθ1(i)j, fθ2(i)j, θ(i), gij = 1]

=


fθ1(i)j(1−fθ2(i)j)

fθ1(i)j(1−fθ2(i)j)+(1−fθ1(i)j)fθ2(i)j
, for s = θ1(i)

fθ2(i)j(1−fθ1(i)j)

fθ1(i)j(1−fθ2(i)j)+(1−fθ1(i)j)fθ2(i)j
, for s = θ2(i)

0, for s /∈ {θ1(i), θ2(i)}

(4.4)

M-step : f̂sj =
2nsj

2,2 + nsj
2,1 + nsj

1,2 +
∑

j∈Hi
λj,s(i)

2nsj
2,2 + 2nsj

2,1 + 2nsj
2,0 + nsj

1,2 + nsj
1,1 + nsj

1,0

(4.5)

Here λj,s(i) refers to coordinate s of the vector λj(i). n
sj
k,u refers to the number of individuals

who have u ∈ {0, 1, 2} minor alleles and k ∈ {1, 2} copies of alleles from population As

at site j. The counts of these individuals can be obtained based on the classification θ(i).
Notice that the term corresponding to the heterozygous sites which have a single allele from
population As has its contribution modified by λj,s(i). We can now perform expectation-
maximization iterations using equations 4.5 and 4.4. The convergence of these iterations
provides us a maximum likelihood estimate of ~f1, . . . , ~fK . These estimates can then be used
in the next iteration to estimate θ using Equation 4.1.

4.2.3.2 Initializing the clusters

We now describe how we obtain an initial setting of the parameters i.e., the classification
function θ or the allele frequencies ~f1, . . . , ~fK , which are used as starting points by the EM
algorithm. We focus here on two specific scenarios. The first scenario is the case where there
are two ancestral populations i.e., K = 2 and unknown allele frequencies ~f1, . . . , ~fK . In this
instance, we use an algorithm called MAXVAR to provide an initial solution to the EM algo-
rithm. The main motivation behind MAXVAR is to quickly produce a reasonable classification.
The algorithm runs in time linear in the number of SNPs and can take advantage of results
computed from adjacent windows. We have also considered using spectral clustering but in
practice we found that the final classification accuracy is nearly the same as MAXVAR though
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the running time is increased. The result from MAXVAR is a classification of the individuals
which is then used in Equation 4.2 of the EM.

The second scenario is the case where K ≥ 2 and estimates of the allele frequencies
f̂1, . . . , f̂K in the ancestral populations are known. In this case, these allele frequencies are
used as a starting solution in Equation 4.1 of the EM algorithm.

4.2.3.2.1 The (MAXVAR) algorithm When we have two populations, we estimate a win-
dow length l such that most of the individuals have no breakpoints within a window. Thus
the ancestries of these individuals are A1A1, A1A2 or A2A2. We define α = α2 as the admix-
ture fraction of the smaller of the two populations. We now describe a method to find the
ancestry of each individual in this window. We call this the MAXVAR algorithm.

We first define a similarity score S between a pair of individuals. For each SNP j, let

µj =

∑
i gij

n
, where n is the number of individuals, and let σj =

√∑
i(gij − µj)2

n
. For two

individuals i1, i2, we define

S(i1, i2) =
l∑

j=1

(gi1j − µj)(gi2j − µj)

σ2
j

.

For each i ≤ n, let V ar(i) =
∑

i′:i′ 6=i

S(i, i′)2 denote the similarity of all other individuals

to individual i, and let i∗ = argmaxi{V ar(i)}. The MAXVAR algorithm simply finds i∗,
and clusters the individuals according to the values S(i∗, i). In particular, we order the
individuals according to these values, and the smallest (1− α)2n individuals are assigned as
the ancestry of A1A1, the largest α2n individuals are assigned as the ancestry of A2A2, and
the rest are assigned A1A2. We provide a formal proof of correctness of the MAXVAR method
in the supplementary materials (Section 4.A).

4.2.3.2.2 Known ancestries. The problem of estimating the ancestry is considerably
simpler if we are provided estimates of the ancestral allele frequencies. In this case, as
before, we first estimate the window length l. Within each window, we then estimate the
ancestries using the likelihood function given by Equation 4.1 with the given ancestries
f̂1, . . . , f̂K used as the starting solution. The ancestries predicted at each SNP are combined
using a majority vote.

4.2.4 Choosing the window length

In order for the local predictions to achieve reasonable accuracy, the length of the window l
should be short enough so that most individuals do not have a breakpoint in the window and
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long enough so that the SNPs provide sufficient information to observe a difference between
the populations. Note that we use the term breakpoint to refer to a recombination event that
results in a change in ancestry of the adjacent SNPs. The power of our method stems from
the fact that long windows provide much more information than any local behavior, provided
that there are not too many individuals with breakpoints in the window. We are looking
for the maximum window length l so that the errors in the classification due to breakpoints
in the window are bounded. We present empirical results that validate the window length
estimates in Section 4.C of the Supplementary Material.

In each window, the errors in the classification depend on the length of the window, the
number of individuals, and the distance between the populations. Evidently, it is hard to
predict these errors as the distance between the populations is unknown, and the performance
of the EM algorithm is unpredictable for a finite sample. To obtain a bound on the errors, we
consider the most accurate classification of the individuals in a window. Such a classification
is allowed to assign ancestries to the individuals in a window with knowledge of their true
ancestral states ap

ij for p = 1, . . . , K. Thus an individual whose ancestry is AsAt over
the length of the window is always classified correctly. The only errors made by such a
classification are due to the locations of the breakpoints. In the presence of a breakpoint,
an individual would be assigned an ancestry so that the number of errors is minimized. For
instance, an individual with a breakpoint at position j and ancestries As1 and As2 on either
side of the breakpoint gets assigned the majority ancestry over the length of the window
i.e., the individual gets classified as As1 if j > d l

2
e and As2 otherwise. It is easy to see that

the larger the window size l, the more likely it is for an individual to have a breakpoint and
hence, the more the errors in the optimal classification.

The number of recombination events throughout time along a specific window is assumed
to be Poisson distributed with parameter (g − 1)lr. Therefore, as long as (g − 1)lr << 1,
it can be verified that the probability to have a breakpoint in the window is upper-bounded
by 2(g − 1)lr

∑
i<j αiαj under the assumption of random-mating and that the admixture

fractions of the population right before recombination are αi. Therefore, the probability for
a breakpoint on either chromosome is bounded by γ = 4(g − 1)rl

∑
i<j αiαj.

For a given window, the above analysis shows that the expected fraction of individuals
with no breakpoints is 1 − γ. We can now use this to obtain a bound on the fraction of
errors in a window. Let X be the fraction of errors in a window of an algorithm that makes
the optimal classification. Let I be the number of breakpoints in the window. We compute

E[X] = E[E[X|I]] =
∑

i

Pr[I = i]E[X|I = i]

Note that E[E[X|I = 0]] = 0 since the optimal classification in this case makes no errors.
When there is a single breakpoint I = 1, the breakpoint is distributed uniformly over the
length of the window. We denote the position of the breakpoint J ∼ Unif(1, l). The fraction
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of errors in the presence of a single breakpoint at position J is

(X|I = 1, J = j) =

{
1− j

l
j > d l

2
e

j
l

otherwise
(4.6)

We now have

E[X|I = 1] = 2

d l
2
e−1∑

j=1

j

l

1

l
≤ 1

4

If glr << 1 ,we can ignore Pr[I > 1] so that

E[X] ≤ 0 · Pr[I = 0] +
1

4
· Pr[I = 1] + 1 · Pr[I > 1]

≈ γ
1

4
(4.7)

For a bound ε on the expected fraction of errors, we get γ < 4ε. Rewriting the window
length l in terms of ε, we get

l ≤ ε

(g − 1)r
∑

i<j αiαj

(4.8)

While these arguments bound the errors in a single window, it is also possible to bound
the errors due to overlapping windows at a SNP. In this case, the use of a majority vote can
be shown to further improve the accuracy of the predictions. The details of this analysis can
be found in the supplementary materials (Section 4.B).

The analysis presented here is specific to the model of admixture described at the start
of Section 4.2.1. However, it is easy to see that the analysis can be extended to the case of
non-uniform recombination rate, where the probability for a recombination in position i is
ri. In that case, the term (g − 1)lr should be replaced by (g − 1)

∑l
i=0 ri.

The model considered so far does not take into account the distance between the an-
cestral populations while choosing the window length. When the ancestral genotypes are
known, the window length can be chosen to tradeoff the accuracy in separating the ances-
tral genotypes with an increase in the errors due to breakpoints. A binary search over the
window lengths can then pick the optimal window length as discussed in the supplementary
materials (Section 4.D).

4.3 Results

We empirically evaluated LAMP on various data-sets and compared its performance with other
tools that infer ancestry in admixed populations. When comparing to previous methods, it
is important to note that the inputs needed for the different methods are different. In
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particular, in SABER [Tang et al., 2006], the genotypes from the pure ancestral populations
are assumed to be known, while in LAMP, we do not need this extra information. On the
other hand, similar to SABER, LAMP assumes that the recombination rates across the genome
and the admixture fraction (α1, . . . , αk) are known; the latter can be found with reasonable
accuracy using existing methods such as STRUCTURE or EIGENSTRAT, while the former can
be obtained from the previous estimates of recombination rates based on the HapMap data
[Myers et al., 2005]. We also provide LAMP with an estimate of the number of generations
g of admixture which can be approximated if the history of the admixed populations is
known. We show below that our method is robust to deviations in the estimate of g. For
SABER, we set the parameter τ , which roughly corresponds to the number of generations
since admixing, to g. We found that allowing SABER to estimate the values of τ yielded much
poorer estimates of ancestry.

4.3.1 Simulated Datasets

We simulated admixed populations from the HapMap data in the following manner. We
used the SNPs of chromosome 1 from the 500K Affymetrix GeneChip assay R© from each of
the four HapMap populations: Yoruba people from Ibadan, Nigeria (YRI); Japanese from
the Tokyo area (JPT); Han Chinese from Beijing (CHB); and Utah residents with ancestry
from northern and western Europe (CEU). Overall, these span 38,864 SNPs for 60 unrelated
individuals from CHB and YRI and 45 unrelated individuals from CHB and JPT.

For each pair of HapMap populations, we simulated admixed populations by random
mating of individuals from the two populations across several generations. We started by
joining a random set of αn individuals from the first population, and (1 − α)n individuals
from the second population. For the next generation, we repeatedly picked a random pair
of individuals from the combined set of individuals, and generated a child for this pair
by transmitting one chromosome from each individual. We repeated this process for g
generations. We set the recombination rate to be 10−8 per base pair per generation consistent
with previous studies [Nachman and Crowell, 2000]. We note that this model is a worst case
scenario in the sense that in practice the populations are expected to mix in a slower rate,
since individuals tend to mate with individuals from a similar ancestral background. We
simulated admixture for various values of g and α; in the rest of this manuscript, the values of
g and α are 7 and 0.2, unless stated otherwise. These parameters roughly match the nature
of admixing in African-American populations [Patterson et al., 2004; Falush et al., 2003;
Tian et al., 2006; Parra et al., 1998; Collins-Schramm et al., 2003].

4.3.2 LAMP’s performance and accuracy

We evaluated the accuracy of the ancestry estimates inferred by LAMP. We consider the two
versions of LAMP, i.e., the de-novo inference of the local ancestries, as well as the inference of
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the local ancestries based on genotype data of the original ancestral populations. We refer
to the latter method as LAMP-ANC. For each individual i and SNP j, LAMP finds an estimate
âp

ij ∈ {0, 0.5, 1} for the true ancestry ap
ij by a majority vote across the windows overlapping

with position j. We measure the accuracy of LAMP as the fraction of triplets (i, j, p) for which
ap

ij = âp
ij.

We compared LAMP to two state of the art methods: STRUCTURE [Pritchard et al., 2000]

and SABER [Tang et al., 2006]. SABER requires the input genotypes, admixture fraction α,
physical location of the SNPs and the ancestral sequences that were used in the simulation
(i.e., the original HapMap populations) and was also provided the number of generations
g. For STRUCTURE, we only needed to provide the genotypes. We did not compare LAMP to
methods such as AdmixMap [Hoggart et al., 2004] and AncestryMap [Patterson et al., 2004],
since the high density of markers made these methods infeasible.

Table 4.1 summarizes the prediction accuracies of LAMP, LAMP-ANC, SABER, and STRUCTURE.
LAMP and LAMP-ANC were run on the set of 38864 SNPs of chromosome 1. SABER and
STRUCTURE were run on non-overlapping windows of 4000 SNPs that included 36000 of the
original 38864 SNPs. This was done because STRUCTURE got into numerical instabilities when
a large number of SNPs were used, and SABER crashed for an unknown reason when run on
all the SNPs over the set of 500 individuals. For STRUCTURE the linkage model was used
with 10,000 burn-in and 50,000 MCMC iterations. SABER was also seen to crash on some of
the 4000 SNP blocks and these were excluded from the analysis. The accuracy of the an-
cestry estimates were obtained on the SNPs for which all methods returned a result. From
Table 4.1, it is clear that LAMP achieves considerable improvement over the YRI-CEU and
the CEU-JPT datasets, when compared to SABER or STRUCTURE. For the JPT-CHB dataset,
LAMP is worse than SABER, but LAMP-ANC achieves a higher accuracy than SABER.

The accuracy of each of the methods varies across the population. We therefore measured
the average accuracy in predicting the ancestries for each of the individuals. Figure 4.2 shows
the cumulative distribution function of the accuracies achieved by each of the methods across
the set of 500 individuals. As can be seen from the figure, the improvement of LAMP compared
to STRUCTURE and SABER is quite significant. For the YRI-CEU dataset, when measuring the
percentage of individuals that are predicted with an accuracy of at least 90%, LAMP achieves
90% while SABER and STRUCTURE achieve less than 10%. In general, the accuracy in
the predictions that STRUCTURE makes has a higher variance than the predictions made by
SABER and LAMP. On the CEU-JPT dataset, LAMP is more accurate than SABER. On the JPT-
CHB dataset, SABER performs considerably better than LAMP; this is probably due to the fact
that the ancestral populations, which are given to SABER but not to LAMP, are too similar
to distinguish within a window; since LAMP-ANC uses the allele frequencies of the ancestral
individuals as input while still inferring ancestries over entire windows, it is more accurate
than SABER.

Table 4.1 also shows that LAMP achieves a gain in running time of at least two orders
of magnitude. We found that, on a single computer, LAMP and LAMP-ANC take less than 30
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seconds to run on a 4000 SNP block and less than 7 minutes to run on the entire set of 38864
SNPs.

These experiments suggest that LAMP is especially useful when the ancestral populations
are sufficiently different from each other (e.g., CEU and YRI). In those cases, it is actually
not essential to genotype the ancestral individuals, as we observe that LAMP-ANC and LAMP

achieve similar accuracy levels. When the populations are closer (e.g., CHB-JPT), even for
a modest number of generations of mixing (in our case, 7 generations), none of the methods
performs well even when the ancestral populations are given.

4.3.3 Inferring individual admixture

Current studies often use the individual admixture of each individual across the genome
to correct for population stratification [Falush et al., 2003; Shriver et al., 1997; Ziv and
Burchard, 2003; Hanis et al., 1986]. The individual admixture of an individual is defined
by the proportion of ancestors of the individual from each of the ancestral populations. For
instance, for an individual with a mother from CEU and a father from YRI, the individual
admixture would be 50% YRI, and 50% CEU.

Even though LAMP is designed to estimate the locus-specific ancestry, we can use it
to find the individual admixture. We compare the estimates of the individual admixture
obtained from LAMP with those from STRUCTURE. We used the YRI-CEU dataset with g = 7
and α = 0.20. We picked 4318 equally spaced SNPs from chromosome 1. This roughly
matches the number of SNPs required to distinguish non-admixed individuals from even
very closely related subpopulations [Sridhar et al., 2007]. We ran STRUCTURE on this set
of SNPs with 10000 burn-in iterations and 50000 iterations using the NOLINKAGE model
and the NOADMIX mode option set to 0. We ran LAMP on the entire chromosome and
then calculated the locus-specific ancestry of each individual by averaging the ancestries
predicted across the same set of 4318 SNPs given to STRUCTURE. As shown by Figure 4.3,
LAMP consistently achieves considerably better estimates for the individual admixture. In
particular, the average error rate for LAMP is 2.1%, while the average error rate for STRUCTURE
is 5.4%. The difference in the performance between the methods is statistically significant
(Wilcoxon signed rank test p-value of 9.9×10−51). This experiment suggests that since LAMP
is more than 600 times faster than STRUCTURE (see Table 4.1), it would be better to use LAMP
across the entire genome to infer the individual admixture, than to use STRUCTURE across a
smaller set of AIMs. We also inferred the individual admixture using the LINKAGE model
in STRUCTURE but found that this gave a significantly higher average error rate of 9.0%.

Another method to infer the individual admixture is EIGENSTRAT. We ran EIGENSTRAT

on the SNPs used above and chose the largest eigenvector. The ancestries of the individuals
were obtained by scaling the entries of the eigenvector to the interval [0, 1]. We found this
procedure to result in individual admixtures with an average error rate of 13.4%. When we
included 10 ancestral individuals each from the Hapmap YRI and CEU populations reduced

84



Chapter 4. Estimating local ancestry in admixed populations

the average error to 4.1% (Wilcoxon signed rank test p-value of 1.3×10−83). Using all 38864
SNPs decreased the average error to 11.1% and 3.6% respectively.

4.3.4 LAMP’s performance across three admixed populations

When more than two populations are mixed, de-novo inference of the locus-specific ancestry is
a more challenging task. We therefore compare LAMP-ANC, which uses the genotypes from the
ancestral populations, to SABER, on a dataset generated by the mixing of three populations
(YRI, CEU and JPT). We mixed these populations in the ratio 0.4 : 0.4 : 0.2 for seven
generations. Figure 4.4 shows the ancestry estimates of LAMP-ANC for one of the individuals.
LAMP-ANC accurately infers the ancestry over most of the chromosome, and it is clear that
qualitatively the estimates are very close to the true ancestry. To give a more quantitative
measure for the accuracy of LAMP-ANC, we calculated the cumulative distribution function
of the accuracies for each individual of LAMP-ANC and of SABER (see Figure 4.5). Evidently,
LAMP-ANC achieves a significantly better accuracy than SABER across the population (average
accuracies of 92% and 74% respectively).

4.3.5 Empirical Robustness of LAMP

The performance of LAMP clearly depends on the nature of the data, on the number of
generations g, and on α. We varied g for a simulated YRI-CEU admixed population with
the fraction of CEU α = 0.20. As shown in Figure 4.6, even when g is as large as 20, LAMP
reaches an accuracy of 88%, and LAMP-ANC reaches an accuracy of 93%. For more realistic
values of g, (i.e. g < 10) the accuracy of LAMP is above 93%.

To measure the effect of α on the performance of LAMP, we measured the performance
for simulated data with g = 7 for different values of α (see Figure 4.6). We observe that
LAMP performs well for values of α of up to 0.40 with it accuracy remaining above 90% and
its performance drops sharply to a little above 50% accuracy for α = 0.5.

Finally, we measured the effect of the distance between the ancestral populations, by
comparing the accuracy of LAMP across the YRI-CEU, CEU-JPT and the JPT-CHB datasets.
As shown in Table 4.1 (see also Figure 4.6), LAMP is quite accurate on the CEU-JPT and
the YRI-CEU datasets, but its performance is quite poor on the JPT-CHB dataset. In such
a situation, the availability of allele frequencies is essential for accurate inference, as we
observe that LAMP-ANC maintains an accuracy of around 70%.

4.3.6 Robustness to Parameter Settings

Since LAMP requires as an input the values of α and g, it is important to verify that inaccurate
estimates of these parameters do not affect the results significantly. We tested LAMP by
benchmarking it over the simulated YRI-CEU dataset, with true values of g = 7 and α = 0.2.
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We ran LAMP on this dataset with different erroneous input values of g and α. In Figure 4.7
we observe that if the number of generations g is mistakenly given to LAMP as 4 or larger,
than the accuracy of LAMP is kept reasonably high, and in particular it is at least 90%. On the
other hand, it seems that if the input α is very different from the true α, LAMP can perform
quite poorly. For instance, when the input α is set to 0.4 instead of 0.2, the accuracy level is
about 85%. However, since α is a single parameter across all individuals, standard methods
such as STRUCTURE [Pritchard et al., 2000] give reasonable accuracy for α (e.g. the estimates
for the YRI-CEU dataset are between 0.17 and 0.24 across 10 runs) , we can safely assume
that the error in the prior estimate of α is within a factor of 0.5, in which case LAMP maintains
a very good performance.

The model used in LAMP requires the SNPs to be independent. To ensure this, we discard
SNPs with r2 above a threshold. We empirically chose a threshold of 0.10 for r2 so that we
retain a majority of the SNPs. However, as shown in Figure 4.8 the accuracy of LAMP does
not change much even when this threshold is raised so that the SNPs retained are no longer
independent. The accuracy begins to decrease only at stringent thresholds below 0.005 due
to a tendency to discard informative SNPs. We also examined the impact of the sample
size on the ancestry estimates. While an increase in sample size might lead to SNPs being
significantly linked even when the mutual r2 is small, for practical purposes, such SNPs are
essentially uncorrelated. Thus, LAMP is also robust to the sample size as shown in Figure 4.8.

Finally, we measured the effect of the method used to simulate the data on the differ-
ent algorithms. To achieve this, we amplified the Hapmap haplotypes for YRI and CEU
populations using the model of Li and Stephens [Li and Stephens, 2003]. Briefly, the Li
and Stephens model generates additional haplotypes based on the ones already observed.
The newly generated haplotypes are composed from previous ones, assuming mutation and
recombination. The recombination rate in this model depends on the number of observed
haplotypes, such that the rate is higher when less haplotypes are observed. This reduces
the recurrent sampling of haplotypes, and as was shown by Li and Stephnes, mimics more
accurately the generation of haplotypes. This resulted in a set of 10000 ancestral individuals
which then underwent admixture with g = 7 and α = 0.20 as described earlier. On this new
dataset, the accuracies obtained by LAMP, LAMP-ANC and SABER were 94.72%, 94.70%, and
89.09% respectively. The accuracies are close to the accuracies obtained on the YRI-CEU
dataset described in Table 4.1.

4.4 Discussion

We have presented a new method, LAMP, for de-novo estimation of locus-specific ancestry
in recently admixed populations. Unlike previous methods for locus-specific ancestry (e.g.,
SABER), LAMP does not use any information about the ancestral populations (i.e., it estimates
the ancestries de-novo). We show that LAMP is analytically justified and that it achieves
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significant improvements over existing methods both in terms of accuracy of prediction and
speed. In particular, LAMP can easily be applied to whole genome datasets, and the resulting
locus-specific ancestries can be estimated within a few hours.

De-novo estimation of the locus-specific ancestries is sometimes infeasible, especially when
the ancestral populations are very close to each other (e.g., CHB and JPT). We therefore
extended LAMP to a method called LAMP-ANC, which uses additional genotypes from the
ancestral populations as priors. This approach has been shown to be useful before by methods
such as SABER.

When compared to previous methods, LAMP is shown to achieve significantly better accu-
racy than other methods (SABER and STRUCTURE). The increase in accuracy may be crucial
when trying to correct for population stratification in studies that involve recently admixed
populations, as well as in studies that are based on admixed mapping. Furthermore, im-
proved accuracy in the locus-specific ancestry estimation has potential applications in finding
better signals for selection and other events across the genome.

While LAMP relies on a knowledge of the parameters g and α, we have shown the robustness
of the ancestry estimates to inaccuracies in these parameters. These parameters control the
window size. As the window size is decreased, each window may contain fewer informative
SNPs. On the other hand, errors in classifying individuals who have breakpoints within a
window are reduced. This tradeoff is illustrated in Figure 4.7 where we see that the ancestry
estimates are robust when g is overestimated. In practice, we would therefore recommend
using an upper bound on g when g cannot be estimated accurately. Furthermore, g may
actually be a more complex parameter. For example, if some portions of the admixed
population have admixed for g1 generations and other portions have been admixed for only
g2 generations, where g2 is smaller than g1. In this case, g is set to be g1, and more accurate
results are expected than if the whole population has admixed for exactly g1 generation.

The fact that the LAMP algorithm performs better on the unbalanced case (α << 0.5)
than on the balanced case, seems counterintuitive at first. The reason for this phenomenon
is the fact that a small α helps to break the symmetry. Even if all windows were perfectly
clustered, combining the solutions of the different windows into one integrated solution is
not a simple task when α = 0.5 due to symmetry. That is, after clustering the individuals in
every given window, we are still left with the problem of deciding which cluster is population
1, and which one is population 2. If α < 0.5, then this decision is easier since the smaller
cluster could be labeled as population 1, and the larger cluster as population 2.

Further, it is interesting to note that even though SABER models the LD structure while
LAMP does not, it appears that LAMP performs better than SABER. This could be attributed
to several possible reasons. First, it may be that the LD structure only adds slightly to
the information captured by the independent SNPs. Second, it may be that optimizing the
model in SABER is a harder task than optimizing the model in LAMP due to the larger number
of parameters, and thus SABER may potentially not converge to the global optimum of its
parameter space.
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A simple extension to LAMP can be used to infer the individual admixture. As we show
here, the resulting estimates of the individual admixture are considerably better than the
estimates achieved by STRUCTURE or EIGENSTRAT. A number of recent studies have produced
panels of Ancestry Informative Markers (AIMs) in admixed populations [Tian et al., 2007;
Mao et al., 2007; Price et al., 2007; Smith et al., 2004], which are SNPs that have differing
frequencies in the ancestral populations. It is possible that the AIMs may be used to im-
prove the accuracy of individual admixture prediction done by STRUCTURE or other methods
including LAMP. However, the AIMs have disadvantages since there is a risk of over-fitting,
and the studied population may be somewhat different than the population for which the
AIMs were found. As we show here, in an era where the genotyping technology is getting
cheaper, it is useful to use the entire set of genotyped SNPs in the analysis of population
stratification.

Dataset Distance LAMP LAMP-ANC SABER STRUCTURE

YRI-CEU 0.055 0.94 0.95 0.87 0.84
CEU-JPT 0.036 0.87 0.93 0.82 0.47
JPT-CHB 0.0045 0.48 0.72 0.68 0.40
Time (sec) 394 246 7681 2.57× 105

(38864 SNPs) (38864 SNPs) (4000 SNPs) (4000 SNPs)

Table 4.1: A summary of the comparison between LAMP, LAMP-ANC, SABER, and STRUCTURE

(LAMP-ANC is LAMP run with knowledge of the ancestral genotypes). The accuracy across all
positions on chromosome 1 is shown for the three admixed populations. The distance between
the admixing population (measured by the mean squared distance between the allele frequency
vectors) is also shown indicating the difficulty in separating alleles from the populations. The
time taken to run each of the methods is shown. LAMP and LAMP-ANC were run on the entire set
of 38864 SNPs while SABER and STRUCTURE were run on non-overlapping blocks of 4000 SNPs
due to issues with scaling them to the entire dataset. For SABER and STRUCTURE the accuracies
reported here are obtained by averaging the accuracies across the blocks while the running time
is the time to run a single block. Each of these methods was run on a single computer.

Appendix 4.A Correctness of MAXVAR

In this section, we analyze the correctness of the MAXVAR algorithm. We have two populations
A1 and A2. We denote α = α2 as the admixture fraction of A2 - the smaller of the two
populations. The MAXVAR algorithm classifies the individuals into three types of ancestries,
i.e., A1A1, A1A2, and A2A2. The algorithm works by first picking a specific individual termed
a pivot, and then clustering individuals based on their similarity to the pivot. We show that
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when the the populations are significantly different from each other, the pivot will have an
ancestry A2A2 with high probability. In this case, we show that one can define a similarity
score S (as defined in the Methods Section), such that the individuals who are also of ancestry
A2A2 have positive similarity score to the pivot while those with ancestry A1A1 have negative
similarity scores in expectation. Thus, the individuals with the smallest (1− α)2n values of
the similarity score are assigned an ancestry of A1A1, the largest α2n values are assigned an
ancestry of A2A2 and the rest are assigned A1A2.

Let pA1A1 , pA1A2 , pA2A2 be the frequencies of individuals of the three types in the popu-
lation. We assume that pA1A1 = (1 − α)2, pA2A2 = α2, and that pA1A2 = 2α(1 − α). Let
pk, qk be the minor allele frequencies of population A1 and A2 respectively in position k.
Furthermore, we assume that the values of µk and σk (as defined in the Methods Section)
are constants, and that µk = αpk + (1− α)qk, σ

2
k = 2α2pk(1− pk) + 2α(1− α)[pk(1− pk) +

qk(1− qk)]+2(1−α)2qk(1− qk). If the number of individuals is large enough, the variance is
quite low, and therefore this is not a restrictive assumption. We define the distance between
the two populations as W =

∑
k (pk − qk)

2σ2
k. Under these assumptions, it is easy to see

that if aa, ab, bb are three given individuals with ancestry A1A1, A1A2, A2A2 respectively in
the window, then the expected similarity score S between pairs of individuals is:

E[S(aa, aa′)] = 4α2W, E[S(aa, ab)] = −2(1− 2α)αW,

E[S(aa, bb)] = −4(1− α)αW, E[S(ab, ab′)] = (1− 2α)2W, (4.9)

E[S(ab, bb)] = 2(1− 2α)(1− α)W, E[S(bb, bb′)] = 4(1− α)2W,

where aa′, ab′, bb′ are individuals with ancestries A1A1, A1A2, A2A2, but they are different
individuals than aa, ab, and bb. From this, it is easy to verify that the expected sum of
squares over all individuals that are different from aa, ab, and bb can be approximated as:

∑
i:i6=bb

E[S(i, bb)]2 ≈ 8(1− α)3αW 2n∑
i:i6=ab

E[S(i, ab)]2 ≈ 2α(1− α)(1− 2α)2W 2n∑
i:i6=aa

E[S(i, aa)]2 ≈ 8α3(1− α)W 2n

The only reason for the approximation is that the number of individuals with ancestry
A2A2 that are different from bb is (1 − α)2n − 1, while we consider it as (1 − α)2n. This
approximation is not restrictive when the number of individuals is reasonably large.
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Defining Pk = pk(1− pk), Qk = qk(1− qk), we can write the variance of these scores as

V [S(aa, aa)] = 4
∑

k

Q2
k

σ4
k
, V [S(aa, ab)] = 2

∑
k

Q2
k + PkQk

σ4
k

V [S(aa, bb)] = 4
∑

k
PkQk

σ4
k
, V [S(ab, ab)] =

∑
k

P 2
k +Q2

k + 2PkQk

σ4
k

V [S(ab, bb)] = 2
∑

k

P 2
k +PkQk

σ4
k

, V [S(bb, bb)] = 4
∑

k

P 2
k

σ4
k

We can conclude that the variance of the similarity scores from the rest of the individuals
to an individual with one of the 3 ancestries is

V [
∑
i:i6=bb

S(i, bb)] ≈ 4α2n
∑

k

P 2
k

σ4
k

+ 4α(1− α)n
∑

k

P 2
k + PkQk

σ4
k

+ 4(1− α)2n
∑

k

PkQk

σ4
k

= 4n
∑

k

Pk
α2Pk + α(1− α)(Pk +Qk) + (1− α)2Qk

σ4
k

= 2n
∑

k

Pk

σ2
k

V [
∑

i:i6=aa

S(i, aa)] ≈ 4α2n
∑

k

PkQk

σ4
k

+ 4α(1− α)n
∑

k

Q2
k + PkQk

σ4
k

+ 4(1− α)2n
∑

k

Q2
k

σ4
k

= 4n
∑

k

Qk
α2Pk + α(1− α)(Pk +Qk) + (1− α)2Qk

σ4
k

= 2n
∑

k

Pk

σ2
k

V [
∑

i:i6=ab

S(i, ab)] ≈ n
∑

k

2α2(P 2
k + PkQk) + 2α(1− α)(Q2

k + P 2
k + 2PkQk) + 2(1− α)2(Q2

k + PkQk)

σ4
k

= n
∑

k

Qk + Pk

σ2
k
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Hence, the squared distances are given by

E[
∑
i:i6=bb

S(i, bb)2] = V [
∑
i:i6=bb

S(i, bb)] +
∑
i:i6=bb

E[S(i, bb)]2

≈ n

(
2
∑

k

Pk

σ2
k

+ 8α(1− α)3W 2

)
E[
∑

i:i6=ab

S(i, ab)2] = V [
∑

i:i6=ab

S(i, ab)] +
∑

i:i6=ab

E[S(i, ab)]2

≈ n

(∑
k

Pk +Qk

σ2
k

+ 2α(1− α)(1− 2α)2W 2

)
E[
∑

i:i6=aa

S(i, aa)2] = V [
∑

i:i6=aa

S(i, aa)] +
∑

i:i6=aa

E[S(i, aa)]2

≈ n

(
2
∑

k

Qk

σ2
k

+ 8α3(1− α)W 2

)

Asymptotically, when n is large enough, the pivot i∗ will be fromA2A2 if E[
∑

i:i6=bb S(i, bb)2] >

max(E[
∑

i:i6=ab S(i, ab)2], E[
∑

i:i6=aa S(i, aa)2]). After simplifying the above expressions, we
get that the requirement is that∑

k

Pk −Qk

σ2
k

+ 4α(1− α)(1− 2α)W 2 > 0

The last inequality holds if the distance between the populations (W ) is large enough. In
that case, by Equation 4.9, the ordering of the individuals according to their similarity to
the pivot should give the correct clustering asymptotically.

Appendix 4.B Accuracy of the window length and the ma-
jority vote

For a given window, the analysis in Section 4.2.4 shows that the expected fraction of indi-
viduals with no breakpoints is 1−γ. Here, we strengthen this analysis under the assumption
that the errors in the predictions of the different windows are independent.

It is easy to see that the expected fraction of individuals with two or more breakpoints
in a window is smaller than γ2. For a given individual with a breakpoint in position i, we
denote the ancestry by (As1 , As2 , i, As3), where As1 is the ancestry of the non-recombinant
chromosome and As2 and As3 are the ancestries of the recombinant chromosome. We assume
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that the probability to classify such an individual as As1As2 is i
l
, and the probability to

classify it as As1As3 is 1 − i
l
. There are l windows that overlap with any SNP. Consider a

SNP which is a distance d away from a breakpoint. Let X be the number of times that the
SNP is incorrectly classified as As1As3 . Clearly,

E[X] =
l−d∑
i=1

i

l
≈ (l − d)2

2l
.

Using a Chernoff bound [Chernoff, 1952], the probability to incorrectly classify this SNP
after the majority vote is

Pr(X >
l

2
) = Pr(X > (1 +

d

l − d
)2E[X]) < e−

( d
l−d

(2+ d
l−d

))2E[X]

2 = e−
(d(2+ d

l−d
))2

4l < e−
d2

l .

In the case that there are no other breakpoints within distance l from the breakpoint con-
sidered, the expected number of errors around the breakpoint for the individual is∫ l

0

e
−x2

l dx =

∫ √
2l

0

e
−x2

2

√
l/2dx ≈

√
l/2

√
2π =

√
l/π

If there are breakpoints within distance l of each other, we take the worst-case assumption
that all windows containing the two breakpoints make erroneous predictions over their entire
length l. Since the expected fraction of breakpoints in an individual is γ

l
, and the expected

fraction of pairs of breakpoints that are of distance smaller than l is at most γ2, we can bound
the expected number of errors as γ√

πl
+ γ2 = 4

∑
i<j αiαj(g − 1)r(

√
l/π + 4(

∑
i<j αiαj)(g −

1)rl3). Based on this analysis, a sufficient condition to achieve a desired error rate of ε is to

have 1
π
(

8(g−1)r(
P

i<j αiαj)

ε
)
2

< l <
1

4(g − 1)r
∑

i<j αiαj

√
ε

2
. For typical values of g and r, the

lower bound on l is small enough to be negligible.

Appendix 4.C Estimate of window length

The window length derived in Equation 4.8 bounds the classification errors within each
window to a desired error rate ε. Since all SNPs within a window are assigned the same
ancestry, any algorithm that is used within this window will incur some errors in the presence
of breakpoints. Hence the window length was calculated under the assumption that the
classification algorithm within the window was the most accurate possible i.e., any errors in
the classification were only a result of breakpoints within a window. Here we empirically
show that, for the window lengths computed using Equation 4.8, the average classification
error for a most accurate classification is bounded by the error rate ε which is set to 0.10.
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Within each window, the most accurate ancestry assignment is inferred assuming that
the true ancestries are known. The most accurate assignment consists of assigning to an
individual the ancestry found in a majority of the SNPs in that window. Thus, an individual
who has no breakpoints is always correctly classified while an individual with a breakpoint
at position i < b l

2
c in a window of length l and ancestries As1 and As2 on either side of

the breakpoint will have errors in positions {1, . . . , i}. The error rate for a window is the
fraction of positions that are incorrectly classified in the window.

We computed the average of these errors in overlapping windows that span chromosome
1 of the YRI-CEU dataset for different values of g and α. We see in Figure 4.9 that the
average error is below ε. However, the variance of the estimates (indicated by the minimum
and the maximum fraction of errors) increases with larger g or with α→ 0.5. The window size
estimates seem to provide a good bound on the average fraction of errors due to breakpoints.

Appendix 4.D Practical issues in implementing LAMP

In this section, we describe some of the issues that we faced while implemeting LAMP. One
of the issues that we needed to address was how to determine the degree of overlap between
adjacent windows. An extreme degree of overlap would require adjacent windows to differ
in a single SNP. In practice, we found that a smaller degree of overlap, where consecutive
windows overlapped in a fraction c = 80% of their length, did not significantly change the
accuracy while resulting in faster running times. The overlap between adjacent windows
can be exploited to further improve the running time. While using the MAXVAR algorithm
to obtain an initial classification, each window requires a computation of the similarity
score between all pairs of individuals. The similarity score is computed using an inner
product of the normalized genotypes as described in Section 4.2.3.2. Instead of computing
these similarity scores over entire windows of length l, we can compute these scores over
chromosomes of length (1− c)l. The similarity score in a new window can then be computed
from that of the previous window by adjusting for the non-overlapping regions.

As we mentioned at the end of Section 4.2.4, the window length calculation should take
into account the distance between the two populations. This is feasible when the ancestral
genotypes are known. In this scenario, the accuracy of the classification for a given window
length can be obtained by running LAMP-ANC on the ancestral genotypes. With an increase
in the window length, this accuracy is exptected to increase. On the other hand, the errors
due to breakpoints, as given in Equation 4.8, increases with window length. We can then
search for the window length that maximizes the product of the fraction of individuals who
do not have breakpoints and the fraction of these individuals who are accurately classified.
For populations that are well-separated such as YRI-CEU and CEU-JPT, we find that the
number of SNPs needed to accurately classify a non-admixed individual is much smaller than
the length of the window obtained from Equation 4.8, so that it suffices to simply set the
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window length to the latter estimate.
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Figure 4.1: Two individuals in an admixed population. Ancestries predicted by LAMP(top panel)
and true ancestries (bottom panel) are shown for each individual. As shown in the Figure, the
ancestries (represented by red and blue) vary across the genome, and LAMP performs well in
inferring the ancestry at each location.
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Figure 4.2: Comparison of the accuracies of LAMP, LAMP-ANC, SABER, and STRUCTURE on 3 ad-
mixed populations - YRI-CEU (left), CEU-JPT (middle), and JPT-CHB (right). The cumulative
distribution function (CDF) is obtained from the accuracy of ancestry predictions for each indi-
vidual. Note that the scales differ across the plots. CDFs that are to the right side correspond
to higher accuracy. The graph on the left, for instance, shows that LAMP achieves an accuracy
of at least 92% on 90% of the individuals. LAMP achieves an improved accuracy over SABER and
STRUCTURE in the YRI-CEU and CEU-JPT populations while performing worse on the JPT-CHB
population. LAMP-ANC performs consistently well on all three populations. Also notice the de-
crease in accuracy across all methods as we move from left to right as the ancestral populations
become more similar.
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Figure 4.3: Comparison of the accuracy of methods for predicting individual admixture. a) The
errors in the individual ancestries for each of the 500 YRI-CEU individuals. b) Errors in a) plotted
as a Cumulative Distribution Function (CDF). The top-left region of the curve corresponds to
higher accuracy. LAMP predicts the individual admixture with an error of less than 3% in 80% of
the cases.
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Figure 4.5: Cumulative Distribution Function (CDF) of the accuracy achieved per individual. The
methods compared are LAMP-ANC and SABER for the YRI-CEU-JPT admixture. LAMP achieves
an accuracy of at least 80% on all the individuals.
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Figure 4.9: Empirical validation of the window length estimates. The window length is estimated
in the Methods Section (Section 4.2.4). These estimates are based on a parameter ε, which
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dataset, with ε = 0.1. Evidently, the actual average error rate falls within the desired error
bound. The maximum and the minimum fraction of errors in a window are also shown.
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Chapter 5

A probabilistic model for inferring local
ancestry

5.1 Introduction

Given the genetic underpinnings of the ancestral origin problem it is natural to consider
inference methods based on probabilistic models. Indeed, most previous work has made
use of hidden Markov models (HMMs), where the states are the ancestral populations,
the transitions roughly correspond to historical recombination events and the emission ma-
trix models population-specific allele frequencies [Pritchard et al., 2000; Falush et al., 2003;
Patterson et al., 2004; Hoggart et al., 2004]. Such Markovian models capture the linkage
disequilibrum (LD) among alleles that arises due to admixture, but they fail to account for
within-population linkage disequilibrium (the HMM assumes that alleles are independent
once the ancestries are known). It is possible, however, to augment the HMM to include
additional Markovian dependencies among the observed alleles to attempt to account for the
latter form of LD; such a model has been referred to as a Markov Hidden Markov Model
(MHMM) and has been implemented in the program SABER [Tang et al., 2006].

In this chapter, we consider an augmented form of the HMM/MHMM framework for
modeling admixture which includes explicit indicators for recombination events. Specifi-
cally, if a recombination event occurs between SNPs, then the ancestry of the SNPs are
chosen independently; if recombination does not occur, then the ancestries are set equal.
These explicit indicators serve several purposes. First, they make it possible to estimate the
location of recombination events; the set of events is generally a strict superset of the set
of change-of-ancestry events that are captured by the state sequence. The use of explicit
indicators within an admixture model thus makes it possible to use admixture data to make
inferences regarding historical recombinations and recombination rates. Second, recombi-
nation indicators can yield improvements in the estimates of haplotype frequencies. Note
in particular that the MHMM used in SABER conditions on the ancestral state to decide
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whether to use pairwise or singleton allele probabilities (if the state does not change, then
the pairwise probabilities are used; otherwise singleton probabilities are used). However,
haplotypes are broken up by recombination, not only by change of ancestry, and it would
seem desirable to be able to condition on these more fine-grained events.

One of the goals of this chapter is thus to investigate the role of recombination indi-
cators in HMM/MHMM models. Another goal is to consider more broadly whether the
HMM/MHMM modeling and inference framework provides a practical computational solu-
tion to the problem of modeling of admixture and LD. In these models, inference of ancestry
is tractable once its parameters are determined, but the need to estimate various hyperpa-
rameters is a challenging problem that has led researchers to Markov chain Monte Carlo
(MCMC) sampling procedures. These procedures have desirable theoretical properties in
the limit of large numbers of samples, but in practice they can be overly slow for realistic
data sets.

To tackle the computational problem, [Sankararaman et al., 2008] have recently presented
a rather different, non-model-based approach to inferring locus-specific ancestries. This
method (referred to as “LAMP”) is based on running a window over the genome, computing
the local ancestry of each individual within each window based on a local-likelihood model,
and combining the results from the windows overlapping a given SNP using a majority vote.
[Sankararaman et al., 2008] have shown empirically that this approach provides estimates
of ancestry that significantly improve on the HMM-based methods. This improvement may
be due to the inadequacy of the Markovian assumptions, but it may also arise because the
HMM models are being initialized randomly and the MCMC procedures are not mixing on
a practical time scale.

To address this issue, note that practical applications of HMMs in other literatures,
most notably the speech and signal processing literatures [Huang et al., 2001], emphasize
the critical need for effective initialization of parameter estimation procedures for HMMs.
Practical inference for HMM-based admixture models may also require effective initialization.
Accordingly, we investigate the possibility of using the solution from LAMP to initialize an
HMM. Hill-climbing in likelihood from the LAMP solution may provide an effective way to
retain the advantages of a model-based method while not sacrificing performance.

A final issue that we investigate concerns the modeling of background LD when the
data are a dense set of SNPs. As alluded to earlier, the HMM does not attempt to model
background LD. The MHMM models background LD via a simple first-order Markov chain
that links neighboring alleles. To evaluate the adequacy of this model of background LD,
we compare the MHMM to an alternative approach that prunes SNPs with a heuristic that
discards highly-correlated SNPs and then uses these SNPs as input to an HMM.

Our experimental work focuses on the problem of inferring locus-specific ancestries in a
population that is assumed to originate from two unknown ancestral populations [Sankarara-
man et al., 2008; Falush et al., 2003]. We also consider a less-studied scenario in which we
assume that one of the ancestral populations is unknown, or its genotypes are not given, and
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we wish to infer the allele frequencies in this population. This scenario may be appropriate
in situations in which it is difficult to obtain external estimates of the allele frequencies of
one of the ancestral populations. This is the case, for example, in many modern Caribbean
populations (such as Puerto Ricans), where the native American population has vanished.

5.2 Methods

In this section, we describe the augmented HMM that serves as the basis of our experiments.
We also describe an MHMM that incorporates a model of background LD along the lines of
SABER [Tang et al., 2006]. We then describe various forms of inference algorithms for these
hidden Markov models, emphasizing the use of the EM procedure for parameter estimation.

5.2.1 Probabilistic Model

To simplify our presentation, let us assume that the number of populations that have been
admixed is two (the notation is slightly more involved in the case of more than two popula-
tions but no new ideas are needed). Also, again for simplicity of presentation, we restrict our
attention to haplotypes; genotypes can be handled in a straightforward manner as described
in Appendix 5.4.1.

Let m denote the number of haplotypes, and let n denote the number of SNPs. Let X
be the observed binary matrix of SNPs; i.e., Xi,j is the jth SNP of the ith haplotype. Let ppp
and qqq be the vectors of the allele frequencies in the ancestral populations. Hence, pj is the
probability to obtain ‘1’ in the jth SNP in the first population and qj is the corresponding
probability in the second population. The matrix Z denotes the ancestry information of
each haplotype at each SNP: Zi,j ∈ {0, 1} holds the ancestry of haplotype i at the jth SNP
(0 if SNP j of haplotype i originated from the first population and 1 if it originated from
the second). We use the matrix W to denote recombination events. Specifically, Wi,j equals
‘1’ if at least one recombination event occurred during the history of the admixture process
in the ith haplotype in the interval between the (j − 1)th SNP and the jth SNP, and ‘0’
otherwise. The (n − 1)-dimensional vector θθθ denotes the probability of at least one such
recombination event, with θj corresponding to the interval between the (j − 1)th and the
jth SNPs. The fraction of the first population in the ancestral population, which we call
the admixture fraction, is denoted by α. Finally, g denotes the number of generations of the
admixed process (in the sense that 1

g−1
models the average length of ancestral chromosome

blocks in the current admixed population).
Given the parameters g, α, ppp, qqq, and θθθ, we model a haplotype as being generated as

follows: recombination points are generated on each chromosome based on a Poisson process
whose rate parameter depends on g and the recombination rate r. This process corresponds
to setting some of the W ’s to 1. Then the ancestries of the resulting chromosomal blocks
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are determined independently for each block with α being the probability to choose the
first ancestry. We assume that the mating is random across the populations. Given the
ancestry at a particular position, an allele is generated using the corresponding ancestral
allele frequency. We assume that the alleles are generated independently in a block.

We now describe the marginal and conditional distributions of the model. We assume a
uniform prior over the interval [0, 1] for each of the parameters α, ppp, qqq. The parameter g is
assumed to be distributed uniformly over the interval [gmin, gmax] for some gmax > gmin > 1.
Given the ancestry and given the allele frequencies of a specific SNP j in haplotype i, Xi,j

is a Bernoulli random variable with distribution:

Pr(Xi,j = 1|Zi,j, pj, qj) =

{
pj Zi,j = 0
qj Zi,j = 1

. (5.1)

The distribution of the ancestry of a specific SNP depends on the occurrence of a recom-
bination event. On the occurrence of a recombination between SNPs j and j−1 of haplotype
i, the ancestry Zi,j is chosen with probability α to be 0 and 1 otherwise. If there was no
recombination, the ancestry stays the same as that at the previous SNP:

Pr(Zi,j|Zi,j−1,Wi,j, α) =

{
δ(Zi,j, Zi,j−1) Wi,j = 0
(1− α)Zi,jα(1−Zi,j) Wi,j = 1

.

where δ(x, y) = 1, iff x = y.
Since we assume that the recombination process is a Poisson process, the variables Wi,j

and Wi,k are independent for k 6= j and the probability for a specific location between SNPs
j − 1 and j to have at least one recombination depends solely on θj. For j > 1, we have
Pr(Wi,j = 1|θj) = θj and θj = 1− e−(g−1)ljrj , where lj is the distance between the (j − 1)th
SNP and the jth SNP and rj is the recombination rate in that region. In our specific problem,
θj is a deterministic function of g. In other situations, it may be more appropriate for g to
parameterize a prior over θj.

Marginalizing over the recombination indicator Wi,j we obtain the mixture distribution
that is used as a transition matrix by programs such as STRUCTURE [Falush et al., 2003]

and SABER [Tang et al., 2006].

5.2.2 Modelling Background LD

The HMM framework assumes that alleles are conditionally independent given the states
and thus is not able to capture within-population LD. The MHMM model implemented in
SABER [Tang et al., 2006] attempts to capture such background LD by allowing additional
dependencies directly between the observable XXX i variables. The form of these dependencies
differ depending on the ancestries Zi,j−1 and Zi,j. In particular, if these ancestries are the
same, then a pairwise emission probability is used. If these ancestries are different, then
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Figure 5.1: A graphical representation of the probabilistic model underlying SWITCH. The shaded
circles correspond to observed random variables while the unshaded circles are unobserved random
variables. The circles within the box correspond to a single individual; the circles outside the box
are shared across the individuals. See Section 4.2.1 for details.
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a singleton emission probability is used. SABER estimates the pairwise probabilities using
ancestral haplotypes (which are assumed to be available).

Given that our model makes use of explicit recombination indicators Wi,j, we can condi-
tion on these variables instead of the ancestry variables Zi,j. Formally, we define the following
transition matrix for j > 1:

Pr(Xi,j = 1|Wi,j, Zi,j, Xi,j−1, pj, qj, pj−1,j, qj−1,j)

=

{
Pr(Xi,j = 1|Zi,j, pj, qj), if Wi,j = 1
Pr(Xi,j = 1|Zi,j, Xi,j−1, pj−1,j, qj−1,j), otherwise

(5.2)

The transition matrix is defined so that if Wi,j = 1 (i.e., a recombination has occurred
between SNPs j − 1 and j), then the allele seen at position j is independent of the allele at
position j − 1. If Wi,j = 0, the SNPs at position j − 1 and j belong to the same ancestral
haplotype, and the emission probability of the allele at position j depends on the allele at
j−1. Here pj−1,j and qj−1,j are the pairwise (conditional) SNP frequencies at positions j−1
and j in the haplotypes from the two respective populations.

Why do we condition on recombination events instead of ancestries (as in SABER)? Note
that the conditioning in SABER ignores recombinations that do not change the ancestries.
Such recombinations are expected to be common when the admixture fraction α << 1

2
. In

that case, assuming random mating, an expected fraction α2 + (1 − α)2 of recombinations
will not lead to a change in the ancestry. Ignoring such events can be problematic. Consider
a scenario where the haplotype frequencies are estimated from an ancestral population.
Assume that 00 and 11 are the only haplotypes present in this ancestral population. In the
admixed population, a new haplotype, say 01, may arise due to a recombination event that
is not accompanied by a change in the ancestry. By ignoring the recombination event and
assuming that the two loci share a haplotype, the MHMM would assign a small probability
(indeed, a zero probability in our example) to the new haplotype 01. On the other hand, in
a model that conditions on the recombination indicators Wi,j, the new haplotype is assigned
a frequency that is the product of the allele frequencies at the two loci.

5.2.3 Inference Problems

In this section, we focus on two inferential problems that can be framed within the HMM/MHMM
formalism. In both problems, we seek the maximum a posteriori (MAP) estimates of a sub-
set of the variables in the model and we find parameter estimates via the EM algorithm. For
simplicity, we assume that the number of generations g is constant and known, and therefore
θθθ is known. This is often the case for admixed populations. The two problems that we
consider are: (1) The admixture fraction is known, the allele frequencies are unknown, and
the goal is to find the local ancestries for each SNP in each haplotype. The optimization
problem is to find (W,Z) such that Pr(W,Z|X,α, g) is maximized. We refer to this problem
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as the local ancestries inference problem. (2) The allele frequencies are known for one of the
ancestral populations, and the goal is to find the allele frequencies of the other as well as
the admixture fraction. Here, the local ancestries are missing variables. The optimization
problem is to find (q, α) such that Pr(qqq, α|X,ppp) is maximized. We refer to this problem as
the ancestral allele frequencies inference problem.

5.2.3.1 Local Ancestries Problem

To compute the local ancestries, we would like to compute the MAP estimates of Z and W
by solving the following optimization problem:

arg max
Z,W

log[Pr(W,Z|X,α,θθθ)]. (5.3)

In each iteration of EM, the updates to Z and W are computed by a Viterbi algorithm with
the emission probabilities Pr(Xi,j|Zi,j, pj, qj) replaced by an integral over pj, qj. The E-step

involves computing the posterior probabilities of pj, qj; i.e., Pr(pj, qj|X.,j, Z
(t)
.,j ). This can

be done easily using Bayes’ theorem. The M-step involves solving m separate optimization
problems in ZZZi,WWW i, i ∈ {1, . . . ,m} where ZZZi denotes the vector of ancestries for the ith
haplotype and WWW i denotes the corresponding vector of recombination events:

{log[Pr(Zi,1|α)] + I1,i(Zi,1)}+
n∑

j=2

{Ij,i(Zi,j) + fi,j−1,j(Zi,j−1, Zi,j,Wi,j)} (5.4)

where fi,j−1,j(Zi,j−1, Zi,j,Wi,j) ≡ log[Pr(Zi,j|Zi,j−1,Wi,j, α)] + log[Pr(Wi,j|θj)] corresponding
to log transition probabilities and
Ij,i(Zi,j) ≡

∑m
i=1

∑n
j=1

∫
{log[Pr(Xi,j|Zi,j, pj, qj)] Pr(pj, qj|X.,j, Z

(t)
.,j )dpjdqj} are expectations

of the log emission probabilities.
Generally, the values of Ij,i(z) can be tabulated for each i, j, z by computing the inte-

gral over a grid on the {pj, qj}. For our setting, we have a uniform prior over pj and qj
which permits the integral to be evaluated analytically as shown in Appendix 5.4.2. We can
maximize (5.4) by dynamic programming. The values obtained for Z,W are then used to
recompute the integrals Ij,i(Zi,j) and the procedure is iterated.

5.2.3.2 Ancestral Allele Frequencies Problem

To compute the ancestral allele frequencies, we compute the MAP estimates of qqq and α:

arg max
qqq,α

log Pr(qqq, α|X,ppp,θθθ) = arg max
qqq,α

log Pr(X|ppp, qqq, α,θθθ)
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since we have a uniform prior on qqq and α. We assume g and ppp to be known. Let qqq(t), α(t)

denote the current estimates of qqq, α. The EM algorithm produces new estimates qqq(t+1), α(t+1)

that improve the objective function:

q
(t+1)
j =

∑m
i=1Xi,jdi,j(z)∑m

i=1 di,j(1)
, α(t+1) =

∑m
i=1 di,1(0) +

∑n
j=2 ci,j(1, 0)

m+
∑m

i=1

∑n
j=2

∑
z∈{0,1} ci,j(1, z)

Here ci,k(w, z) ≡ Pr(Wi,k = w,Zi,k = z|Xi, qqq
(t), α(t), ppp,θθθ) and di,j(z) ≡ Pr(Zi,j = z|Xi, qqq

(t), α(t), ppp,θθθ)
are the posterior probabilities of (W,Z) and Z at the jth SNP of haplotype i respectively
and are computed by an application of the forward-backward algorithm in the E-step.

These updates have an intuitive interpretation. At each position j, the new value of
qj is the fraction of SNPs that are 1 out of all SNPs belonging to the second population
(weighted by their posterior probabilities). The update for α is the fraction of ancestries
chosen from the first population whenever a new haplotype is chosen (weighted by their
posterior probabilities).

5.3 Experiments

We have implemented the HMM and the EM algorithm that we have described in a pro-
gram that we term “SWITCH.” We have also implemented a program that we refer to as
“SWITCH-MHMM” that is based on the MHMM. In this section, we describe experiments
aimed at evaluating these procedures.

These experiments were run on datasets generated from HapMap data [http://www.
hapmap.org]. We used SNPs found in the Affymetrix 500K GeneChip Assay R© [http:
//www.affymetrix.com/products/arrays/specific/500k.affx] from chromosome 1 for
each of the HapMap populations; i.e., Yorubans (YRI), Japanese (JPT), Han Chinese (CHB),
and western Europeans (CEU). For a pair of populations, we simulated admixture by picking
individuals from two ancestral populations in the ratio α : 1 − α. In each generation,
individuals mate randomly and produce offspring. The rate of the recombination process
is set to 10−8 per base pair per generation [Nachman and Crowell, 2000]. The mixing
process is repeated for g generations. We generated datasets consisting of admixtures of
YRI-CEU, CEU-JPT and JPT-CHB populations. We set g to 7 and α to 0.20 since these
roughly correspond to the admixing process in African-American populations as estimated
in [Patterson et al., 2004; Falush et al., 2003; Tian et al., 2006]. For each of the problems,
we use only genotype data. Since the HMM underlying SWITCH assumes that the SNPs
are conditionally independent given the states, in the input to SWITCH we greedily remove
SNPs that have a high correlation coefficient, r2 > 0.1, with any other SNP. We refer to this
usage of SWITCH as “uSWITCH.” (When the entire set of SNPs is used, we refer to the
usage simply as SWITCH). Ancestry estimates at the discarded SNPs were filled in from the
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highly-correlated SNP that was retained.
The remainder of this section is organized as follows. In Section 5.3.1 we compare the

performance of various methods on the local ancestries problem. The role of the inference
algorithms and background LD models are discussed in Sections 5.3.2 and 5.3.3 respectively.
The performance of methods on the problems of predicting recombination events and the
ancestral allele frequencies problem are discussed in Sections 5.3.4 and 5.3.5 respectively.

5.3.1 Local Ancestries Problem

We first compare the estimates of the ancestries obtained from SWITCH to the estimates
obtained from SABER and LAMP. In these experiments, the methods are given g and α. We
consider two settings depending on whether the ancestral frequencies, (ppp, qqq), are available.
Even when the frequencies of the ancestral populations are available, it is still advantageous
to use the data to update the frequency estimates, which may have drifted from the ancestral
frequencies.

When they are available, uSWITCH uses a maximum-likelihood classification based on
these frequencies as initialization. We refer to this variation of uSWITCH as uSWITCH-
ANC. SABER also requires the ancestral allele frequencies. The version of LAMP that uses
ancestral frequencies is termed LAMP-ANC.

When the ancestral allele frequencies are not known, LAMP can still be used, as can
uSWITCH. For the latter, we use the estimates of ancestries from LAMP to initialize the
EM algorithm.

For each individual i and SNP j, each method finds an estimate âp
ij ∈ {0, 0.5, 1} for

the true ancestry ap
ij. We measure the accuracy of a method as the fraction of triplets

(i, j, p) for which ap
ij = âp

ij. The first half of Table 5.1 compares the accuracies of SABER,
LAMP-ANC and uSWITCH-ANC on 100 random datasets of YRI-CEU, CEU-JPT and
JPT-CHB. uSWITCH-ANC improves significantly over LAMP-ANC and SABER on the
YRI-CEU dataset. On the CEU-JPT, uSWITCH-ANC and LAMP-ANC have comparable
performance, and both methods are more accurate than SABER. All methods perform poorly
on the JPT-CHB dataset due to the closeness of the two populations. The second half
of Table 5.1 compares the accuracies of uSWITCH and LAMP. On the YRI-CEU data,
uSWITCH, with an accuracy of 96.0%, improves significantly over LAMP, which has an
accuracy of 94.0% (Wilcoxon paired signed rank test p-value of 3.89× 10−18). Interestingly,
uSWITCH improves significantly over LAMP-ANC even though the latter uses the ancestral
allele frequencies. On the CEU-JPT and the JPT-CHB datasets, uSWITCH seems to have
slightly higher accuracies than LAMP. We believe that using more informative priors on
the variables ppp, qqq, should yield further improvements by improving the estimation of low-
frequency alleles. These results indicate that the HMM is most useful when the mixing
populations can be easily distinguished as is the case with the YRI-CEU admixture.

Although the versions of uSWITCH have a factor of 5 − 10 increase in running time
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compared to LAMP, they still run under an hour on large datasets making them feasible for
genome-scale problems.

5.3.2 Role of the Inference algorithm

To understand the impact of the inference algorithm and the initialization, we compared
uSWITCH to STRUCTURE. While the model used in uSWITCH is the same as the model
used in STRUCTURE when the recombination indicatorsW are integrated out, the inference
algorithms differ. uSWITCH obtains the posterior mode of the ancestries Z using an EM
algorithm with LAMP providing the initialization. STRUCTURE computes the posterior
marginals of each Zi,j using an MCMC algorithm to integrate out the unknown parameters.
To evaluate the output from STRUCTURE, we threshold the posterior mean to obtain the
actual ancestry estimates; that is, position i, j is assigned 0, 1 or 2 alleles from one of the
populations depending on whether the posterior marginal E(Zi,j|X) lies in [0, 0.5), [0.5, 1.5)
or (1.5, 2). We compared the ancestry estimates produced by the two methods on the YRI-
CEU dataset. STRUCTURE was run for 10000 burn-in and 50000 MCMC iterations (see
below for further discussion of this choice). The linkage model was used. STRUCTURE was
run on non-overlapping sets of 4000 SNPs covering 36000 of the 38000 initial SNPs due to
numerical instabilities when larger number of SNPs were used.

On the YRI-CEU dataset, uSWITCH achieved an accuracy of 97% while STRUCTURE
achieved an accuracy of 84%. To isolate the reason for this difference, we evaluated MCMC
algorithms which differ from STRUCTURE in varying degrees. First, we ran MCMC from a
random starting point for 1000 iterations with 100 iterations of burn-in and used the posterior
mean as the ancestry estimates. This yielded estimates with an accuracy of 91.13%. When
the LAMP estimates were used as a starting point, the accuracy was 94.9%. This suggests
that the chain has not mixed in our STRUCTURE runs. To test this suggestion formally, we
simulated five such chains each from different random starting points. We then computed a
multivariate potential scale reduction factor (PSRF) [Brooks and Gelman, 1998] for random
sets of 100 p’s and q’s and found it to be consistently large (> 1.2). When the Markov chain
is unable to converge quickly, the initialization influences the ancestry estimates. Given that
the MCMC algorithms do not converge even after being run for several days (in particular,
the STRUCTURE runs required a little less than three days while the other MCMC runs
took about a day to run), good initialization becomes essential.

Two other differences between STRUCTURE and the MCMC algorithm that we im-
plemented are that the latter discards correlated SNPs and fixes the hyperparameters. We
modified the MCMC runs to retain the correlated SNPs and the accuracy falls to 74.9%.
We conclude that the pruning of highly correlated SNPs can have a large impact on the
accuracy of models that do not attempt to account for background LD. Another approach
to this problem is to attempt to account for background LD via the MHMM approach; we
discuss this approach in the following section.
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5.3.3 Modelling background LD

As discussed earlier, we refer to our implementation of an MHMM model based on the
recombination indicators Wi,j as SWITCH-MHMM. We also implemented a version of the
model based on the ancestries Zi,j instead of the recombination indicators. We refer to this
model as “MHMM”; it is the same as the model underlying SABER. (Our implementation
differs from SABER in the inference procedures that we used; in particular, the ancestry
estimates were computed by a Viterbi algorithm.)

In the first scenario that we studied, both the MHMM and the SWITCH-MHMM were
given the ancestral haplotypes. The ancestral haplotypes were used to estimate the pairwise
SNP emission probabilities. The single SNP frequencies were estimated using LAMP-ANC.
In this experiment, SWITCH-MHMM achieved an accuracy of 91.9%, while the MHMM
yielded an accuracy of 88.9%. This demonstrates that improvements can be obtained by
conditioning on recombination indicators instead of conditioning on ancestral states.

In a second scenario, the pairwise SNP emission probabilities were estimated directly
from the admixed data. In this case, the accuracies of SWITCH-MHMM and MHMM were
both 95.7%. It is interesting to note that these accuracies are higher than in the case that
ancestral haplotypes were used to estimate parameters. This is presumably due to the fact
that the estimates of haplotype frequencies are more accurate when estimated from the
admixed population itself. Finally, we also measured the accuracy of ancestry estimates
from SWITCH (i.e., when the entire set of SNPs was taken as input) and observed that the
accuracy drops to 93.1%. This improvement in accuracies when background LD is taken into
account has been observed before [Tang et al., 2006]. However, the accuracy of uSWITCH
is higher than SWITCH-HMM. Thus, the heuristic of removing highly correlated SNPs and
then running SWITCH appears to be competitive, in practice, to the methods based on
explicit (but simplified) models of background LD.

5.3.4 Predicting Recombinations

Another advantage of the use of the recombination indicators W is that they open the pos-
sibility of inference of historic recombinations created by the mixing process after the initial
admixture event. While a change in the ancestry between two SNPs implies a recombination
event, many recombination events do not result in a change in the ancestry. When α is
small, this happens quite often. To study this issue, we measured the accuracy of uSWITCH
in predicting such recombinations. If a predicted recombination falls within 5 Kbases of the
SNPs flanking a true recombination, it is called a true positive. If multiple recombinations
are predicted within this window, only one is counted as a true positive. False positives and
false negatives are defined similarly. The precision and recall of the predictions are then
computed as Precision = TP

TP+FP
and Recall = TP

TP+FN
. We combine these numbers by

taking a harmonic mean, reporting F − score = 2Precision×Recall
Precision+Recall

.
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As a baseline, we use a null model that predicts recombinations based on the exponentially-
distributed lengths of the haplotypes. The total number of recombinations in the null model
is set to the number of predicted recombinations and the precision and recall of the predic-
tions are computed similarly.

On the YRI-CEU dataset, uSWITCH attains an F − score of 70.8 while the null model
attained an F-score of 52.8. uSWITCH was found to be consistently more accurate than the
null model on the CEU-JPT and JPT-CHB datasets as well (data not shown).

We now consider models that attempt to account for background LD. For the MHMM
model, since the model does not explicitly represent recombinations, the recombinations
are inferred (naively) based on a change in the ancestry labels. The results are shown in
Table 5.2. When we use the ancestral haplotypes to estimate parameters, the MHMM and
SWITCH-MHMM achieve F − scores of 35.0 and 41.5 respectively. Using the admixed data
to estimate parameters, the two models achieve F − scores of 78.0 and 79.3 respectively.
We see that the explicit W variables allow more accurate prediction of recombinations in
the admixed genomes. When we restrict attention to breakpoints (recombinations that
change the ancestry), the difference between the models is diminished though the relative
performance is the same.

As discussed in the previous section, SWITCH-MHMM (and the other models that in-
corporate background LD) has lower accuracy than uSWITCH which ignores background
LD and uses a heuristic to prune correlated SNPs. However, SWITCH-MHMM predicts re-
combinations more accurately (while uSWITCH is more accurate in predicting breakpoints).
This result suggests that models that incorporate background LD (albeit imperfectly) may
be useful in inferring recombinations in admixed genomes.

5.3.5 Ancestral Allele Frequencies Problem

We now turn to the problem of inferring ancestral allele frequencies. To obtain a benchmark,
we implemented a naive algorithm. The naive algorithm is given the true value of α (which is
not available to the model). The idea behind the naive algorithm is as follows. For a position
j with minor allele frequency fj, and allele frequencies pj and qj in the two populations, if
the number of individuals is large, fj can be written as fj = (1−α)pj +αqj. So we compute

the allele frequency qj at position j as qj = max (min(
fj−(1−α)pj

α
, 1), 0). We used two different

estimates of α, yielding algorithms that we refer to as “Naive1” and “Naive2.” Naive1 uses
the value of α = 0.20 which is the admixture fraction in the first generation of admixture.
Naive2 uses an α measured from each dataset.

We calculated the L1 error (the sum of the absolute values of the errors) between the
estimated q̂qq and the true qqq. The L1 error averaged over 100 datasets of YRI-CEU, CEU-JPT
and JPT-CHB is shown in Table 5.3. We see that uSWITCH reduces the L1 error by about
30% in the YRI-CEU and the CEU-JPT datasets while there is no significant difference for
the JPT-CHB dataset.
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We also compared the ancestry estimates from uSWITCH with those from STRUCTURE
on single instances of YRI-CEU, CEU-JPT and JPT-CHB datasets (the running time of
STRUCTURE prohibited multiple runs). The L1 errors for uSWITCH are 7.1%, 8.3%, and
12.7% on the respective datasets. STRUCTURE obtains errors of 25.8%, 29.0%, and 25.2%
respectively.

5.4 Discussion

Markovian models such as HMMs and MHMMs are a natural approach to admixture that
aim to strike a balance between predictive performance and inferential complexity. We
have explored several variations on the HMM/MHMM theme with the aim of identifying
combinations of model specification, inference procedure and data preprocessing that are
most effective in realizing this balance.

We have found that explicit indicators of recombination events can be useful. These
indicators allow us to provide a more fine-grained version of the MHMM that allows new
haplotypes to emerge when recombinations occur, and not only when ancestral state changes.
We found that this approach yielded better estimates when haplotype emission probabilities
are inferred from ancestral populations. Also, by making the recombination events explicit
in our model, we are able to infer historic recombinations. While being interesting in and of
themselves, these predictions may be helpful in allowing admixture data to be used in the
inference of recombination hotspots.

HMM and MHMM models require the estimation of model hyperparameters. One ap-
proach to estimating these hyperparameters is to use MCMC algorithms, but these algo-
rithms can be impractical on realistic datasets. We have shown that an EM-based approach
starting with an accurate initialization (the non-model-based procedure LAMP) yielded high
accuracy at reasonable cost. Indeed, this approach yielded the best results of any algorithm
that we studied.

Our conclusions regarding background LD are mixed. If an MHMM model is to be
used to attempt to capture background LD, then we recommend conditioning on explicit
recombination indicators. On the other hand, we found that a heuristic approach, in which
highly-correlated SNPs are discarded before running an HMM, yielded higher accuracy than
the MHMM. One possible direction for future research is to consider richer MHMM models
than the pairwise model considered here and in SABER.
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Method YRI-CEU CEU-JPT JPT-CHB
uSWITCH-ANC 97.6±0.3 94.5±0.8 66.4±2.7
LAMP-ANC 94.9±0.6 93.7±0.7 69.9±2.1
SABER 89.4±0.8 85.2±1.2 68.2±1.9

uSWITCH 96.0± 0.6 83.2±5.6 51.4±2.8
LAMP 94.0±0.8 82.9±5.5 50.6±2.5

Table 5.1: Accuracies of ancestry estimates averaged over 100 datasets. The methods are
compared under two settings. When the ancestral allele frequencies are known, the methods
compared are LAMP-ANC, uSWITCH-ANC, and SABER. When the ancestral allele frequencies
are not known, the methods compared are uSWITCH and LAMP.

Model Recombinations Breakpoints
F-score Precision/Recall F-score Precision/Recall

MHMM (anc) 35.0 21.5/95.1 12.2 6.5/99.9
SWITCH-MHMM(anc) 41.5 26.5/95.2 23.4 13.3/98.3
MHMM 78.0 87.0/70.0 49.5 33.5/94.8
SWITCH-MHMM 79.3 85.0/74.3 49.8 33.8/94.8
uSWITCH 74.5 88.7/64.2 53.7 33.8/92.5

Table 5.2: Accuracies of the different models on the prediction of recombinations and breakpoints.
(anc) denotes the ancestral haplotypes were used to estimate parameters.

Appendix

5.4.1 Model for Genotype Data

It is straightforward to extend the model to handle genotype data. Since the SNPs are
assumed to be independent, we can model the SNP at each position as a random variable
that depends on the alleles in the corresponding haplotypes. We introduce random variables
Yi,j ∈ {0, 1, 2}, i ∈ {1, . . . , m

2
} (assuming that m is even) representing the j- th SNP of the

i-th genotype. The value of this SNP depends on the values of the j-th alleles in haplotypes
2i− 1 and 2i:

Pr(Yi,j|X2i−1,j, X2i,j) = δ(Yi,j = X2i−1,j +X2i,j).

We now replace all X variables in previous equations with Y , and instead of Equation (5.1)
we use Pr(Yi,j = N |Z2i−1,j, Z2i,j, pj, qj), which can be calculated for each N ∈ {0, 1, 2}.
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5.4.2 Analytical Computation of Ij,i

In this section, we show how the integrals Ij,i(Zi,j) introduced in Section 5.2.3.1 can be
analytically evaluated. Recall the definition of Ij,i:

Ij,i(Zi,j) =

∫ {
log[Pr(Xi,j|Zi,j, pj, qj)] Pr(pj, qj|X.,j, Z

(t)
.,j )dpjdqj

}
. (5.5)

We define the following quantities:

π
(t)
j,1 =

m∑
i=1

Xi,jZ
(t)
i,j π

(t)
j,0 =

m∑
i=1

(1−Xi,j)Z
(t)
i,j

ξ
(t)
j,1 =

m∑
i=1

Xi,j(1− Z
(t)
i,j ) ξ

(t)
j,0 =

m∑
i=1

(1−Xi,j)(1− Z
(t)
i,j ).

(5.6)

The log likelihood in Equation (5.5) can be written as

Pr(Xi,j|Zi,j, pj, qj) = (q
Xi,j

j (1− qj)
1−Xi,j)Zi,j

· (pXi,j

j (1− pj)
1−Xi,j)1−Zi,j .

Using the above expression, we can now write the posterior:

Pr(pj, qj|X.,j, Z
(t)
.,j ) ∝ Pr(X.,j|pj, qj, Z

(t)
.,j ) Pr(pj) Pr(qj)

∝
m∏

i=1

Pr(Xi,j|pj, qj, Z
(t)
i,j ) Pr(pj) Pr(qj)

∝ pπ
(t)
j,1(1− p)π

(t)
j,0qξ

(t)
j,1(1− q)ξ

(t)
j,0

=
pπ

(t)
j,1(1− p)π

(t)
j,0qξ

(t)
j,1(1− q)ξ

(t)
j,0

B(π
(t)
j,1, π

(t)
j,0)B(ξ

(t)
j,1, ξ

(t)
j,0)

.

Method YRI-CEU CEU-JPT JPT-CHB
uSWITCH 7.7±0.5 8.5±0.6 11.7±1.3
Naive1 11.8±0.5 12.2±0.5 12.5±0.5
Naive2 11.8±1.2 12.3±1.2 12.6±1.2

Table 5.3: Average L1 error in the estimates of qqq. The methods compared are uSWITCH (which
estimates q and α jointly) and two naive algorithms that are given the true α = 0.20 and α
estimated from the data respectively.
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Here B(a, b) denotes the beta function
∫ 1

0
xa(1− x)bdx.

Substituting the above expression into Equation (5.5) we obtain:

Ij,i(Zi,j) = XiZiJ(π
(t)
j,1, π

(t)
j,0)

+ (1−Xi)ZiJ(π
(t)
j,0, π

(t)
j,1)

+Xi(1− Zi)J(ξ
(t)
j,1, ξ

(t)
j,0)

+ (1−Xi)(1− Zi)J(ξ
(t)
j,0, ξ

(t)
j,1),

where J(a, b) =
∫ 1

0
log xxa(1− x)bdx.

Notice that in our setting a and b are non-negative integers. So we can compute J(a, b)
by performing a Binomial expansion on (1− x)b and integrating each term:

J(a, b) =

∫ 1

0

log xxa

{
b∑

r=0

(
b

r

)
(−1)rxr

}
dx

=
b∑

r=0

(
b

r

)
(−1)r

∫ 1

0

dx log xxa+r

=
b∑

r=0

(
b

r

)
(−1)r+1 1

(a+ r + 1)2 .
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Genomic privacy

6.1 Introduction

One of the major challenges in genome-wide association studies is that of achieving desired
levels of statistical power for detecting weak associations while maintaining control on false
positive rates. Power can be enhanced by combining data across studies in meta-analysis
or replication studies. Such methods require data to flow freely in the scientific community,
however, and this raises privacy concerns. Until recently, many studies have pooled indi-
viduals together, making the allele frequencies of each SNP in the pool publicly available.
It has been implicitly assumed that releasing such summary data provides a secure way to
share a study’s results without compromising privacy. It therefore came as a major surprise
when Homer et al. [Homer et al., 2008] recently showed that high-density SNP arrays can
be used to accurately identify the presence of individual genotypes in a mixture of DNA
even when their DNA is present in small concentrations. Although aimed at applications in
forensics, their findings raised the possibility that the presence of individual genotypes can
be inferred from summary data, and this has led to the removal of formerly publicly available
summary data from previous studies as a conservative means of protecting the privacy of
human subjects [Gilbert, 2008].

However, for many applications (see, e.g., [Barrett et al., 2008; Zeggini et al., 2008;
Cooper et al., 2008]), it is sufficient to have access to the summary data for only a subset
of the SNPs (exposed SNPs), and it thus seems desirable to investigate whether some ap-
propriately defined level of privacy can still be maintained if the number of exposed SNPs
is sufficiently small. Establishing guarantees of this kind requires understanding how this
number varies as a function of factors such as the allele frequencies of the SNPs, the number
of individuals in the pool, and, of particular importance, the method used to detect the
individual in the pool. Indeed, an analysis of this kind was pursued by [Homer et al., 2008],
who proposed a particular detection method and estimated the statistical power of detecting
an individual in a sample of exposed SNPs using that method. But while an analysis of any
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specific method provides an estimate of power, it does not rule out the possibility that some
other method yields a larger power, and is, thus, unable to provide any guarantee that the
power of detection is below some acceptable level. What is needed is an upper bound on the
power achievable by any method.

In this chapter, we address this issue, providing guidelines as to which set of SNPs can
be safely exposed for a given pool size, maximal allowable power β and false positive level α.
Our approach is based on casting the problem as a statistical hypothesis testing problem for
which the likelihood ratio test (LR-test) attains the maximal power achievable ([Lehmann,
2005]). This provides a guarantee that it is safe to expose a set of SNPs for which the
LR-test does not achieve sufficient power. Moreover, our empirical results show that the
LR-test is more powerful than the method suggested by [Homer et al., 2008], especially
when α is small. Finally, our theoretical and empirical results lead to a conclusion that
is qualitatively different than that of [Homer et al., 2008] in that we find that the power
achieved by considering whole-genome datasets is in fact limited.

6.2 Methodology

6.2.1 Model assumptions

In association studies, individuals in the pool are assumed to be chosen randomly from a pure
population. For a pool of n individuals we expose m SNPs, for which the allele frequencies
in the population and the pool are p1, . . . , pm, and p̂1, . . . , p̂m, respectively. In the models
we consider, we assume that the SNPs are independent. This is motivated by the fact that,
in practice, the SNPs that we choose to expose can be selected sufficiently far apart on the
chromosome that they can be considered independent; moreover, this assumption makes our
theoretical analysis tractable. We also assume that the SNP-allele frequencies are bounded
away from zero and one; i.e., there exists a > 0 such that a ≤ pj ≤ 1 − a, j ∈ {1, . . . ,m}.
This is a natural assumption because it is usually the case that only those SNPs whose minor
alleles are sufficiently well represented in the population are considered in association studies;
moreover, the exposed SNPs can be explicitly selected to have a prespecified minimal minor
allele frequency.

6.2.2 Hypotheses

To construct a likelihood ratio test, we must first specify the models corresponding to the
null and the alternative hypotheses respectively. Since the SNPs are assumed independent,
we describe the model for a single SNP.
Null hypothesis: We assume that the pool is constituted of n individuals drawn indepen-
dently from a reference population, in which the SNP-allele frequency is p (two alleles are
drawn independently for each individual). We assume that the pool frequency for that SNP
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is obtained by averaging the binary values of the alleles of all individuals, so that 2np̂ is a
binomial random variable, Bin(2n, p). The two alleles of the individual of interest, i.e., the
individual whose genotype is being tested for presence in the pool, are drawn independently
from a Bernoulli variable with parameter p, since, under the null, that individual is drawn
independently of the pool from the same reference population.
Alternative hypothesis: We assume that the pool is constituted of the individual of in-
terest whose alleles are drawn from a Bernoulli variable with parameter p, which is merged
with a pool of n− 1 individuals obtained as under the null. Thus p̂ is the average of 2n− 2
alleles of the n − 1 individuals in the pool and the two alleles of the individual of interest.
For moderately large n the model can be approximated by a simpler model which consists
in sampling a pool of size n, computing the allele frequency in the pool, and drawing the
two alleles of the individual of interest as Bernoulli with parameter p̂.

6.2.3 The LR-test

For an individual with genotype (x1, . . . , xm) ∈ {0, 1, 2}m, the LR-test is based on the log
likelihood ratio statistic:

L̄ =
m∑

j=1

2∑
k=0

1{xj=k} log
π̂k

j

πk
j

, (6.1)

where 1{xj=k} is 1 if xj =k and 0 otherwise, and πk
j and π̂k

j are the genotype frequencies in
the population and in the pool, derived from pj and p̂j, respectively, under an assumption
of Hardy-Weinberg equilibrium.

We note that the LR-test is an abstract test that cannot be constructed exactly in
practice since it requires knowledge of the population allele frequencies pj. In practice,
these frequencies can only be estimated from an independent reference dataset drawn from
the same population. We therefore differentiate the exact LR-test from the approximate
LR-test, in which an estimate of the allele frequencies is substituted for pj. An important
property of the exact test is that the Neyman-Pearson lemma [Lehmann, 2005] guarantees
that the power of any test, whether based on known population frequencies or not, cannot
be better than that of the exact LR-test. By analytically characterizing the power of the
exact LR-test, for large pools and common SNPs, we can bound the power β of any test as
a function of m,n, and α.

6.2.4 Detection in a single pool vs. discrimination between pools

Our experiments demonstrate that there is a discrepancy between the power achieved by the
LR-test and the power achieved by the test described in [Homer et al., 2008]. This stems
from the fact that the two experiments were based on different hypotheses. In [Homer et al.,
2008], the pool was assumed to be generated by random sampling of n individuals from the
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distribution defined by p1, . . . , pm. The alternative hypothesis in our study and in [Homer
et al., 2008] is that the pool contains the tested individual. Where the two studies differ
is in the definition of the null hypothesis: in our case, under the null hypothesis the tested
individual is randomly picked from the general population, while in [Homer et al., 2008],
the individual is assumed to be randomly sampled from the finite reference dataset. This
seemingly subtle difference between the two null hypotheses leads to quite different results
because the finite reference dataset is small (currently < 5000).

Consider, for example, an extreme case in which the population consists of 10 individuals
of which 5 are in the pool and the rest in the reference dataset; it is easy to detect any
particular individual in this case. Detection is harder when the population consists of 1
million individuals of which 5 are in the pool. It becomes even harder if, out of these 1
million individuals, only a random set of 5 are available in the reference dataset, which
corresponds to the situation occurring in practice.

In practice, we show that the power attained using the null hypothesis of [Homer et al.,
2008] more than doubles at a false positive rate of 10−6

Figures 6.4 and 6.5 compare the two settings. When all the independent common SNPs
in the WTCCC are used, for a false positive level of 10−6 the approximate LR test attains
a power of 1 and 0.88 under the alternate setting of [Homer et al., 2008] and the original
setting respectively. The ROC curves can be extrapolated to lower false positive levels
using Equation 6.4 corrected for a finite reference dataset. We then see that for a false
positive level of 10−6, the power of the approximate LR test is 0.96 and 0.31 under the two
settings. Figure 6.5 shows the same trend when only 10000 independent common SNPs are
used— for discrimination between two pools, the power more than doubles at a false positive
level of 10−6. We have also theoretically analyzed the power in this alternate setting ( see
Supplementary Note accompanying [Sankararaman et al., 2009]) and we can show that when
the size of the reference dataset is the same as the size of the pool, the number of SNPs
needed drops by a factor of four in this setting.

6.2.5 Summary of the Analysis.

For clarity, we will give an overview of the analysis for a haploid individual; the case of
genotypes is slightly more technical: we refer the interested reader to the supplementary
note accompanying [Sankararaman et al., 2009]. For haploids, the LR-test is

L̄ =
m∑

j=1

[
xj log

p̂j

pj

+ (1− xj) log
1− p̂j

1− pj

]
. (6.2)

The Neyman-Pearson lemma guarantees that no test can have larger power than the
likelihood ratio test. Thus, characterizing the power of the LR test, as a function of the pool
size n, the number of independent SNPs m and a tolerable false positive rate α, determines
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the largest power β achievable for any test given (m,n, α); conversely, it also determines the
maximal value m so that no (α, β)-test can be obtained for a pool of size n.

The exact LR-test cannot be constructed in practice since it requires knowledge of the
true SNP-allele frequencies. In practice, the test performed will be the approximate LR-
test, where the allele frequencies in the population are estimated from a reference dataset.
Nonetheless, we analyze the exact LR-test because it provides an upper bound on the power
of any test, whether it uses the true frequencies or not.

If n is larger than 100 and the minor allele frequency is greater than 0.05, the exact LR
statistic can be shown to be very well approximated under both hypotheses by the simpler
statistic

m∑
j=1

[
1√
n

xj−pj√
pj(1− pj)

Zj −
1

2n

(xj−pj)
2

pj(1− pj)
Z2

j

]
, (6.3)

where Zj are standard Gaussian variables. The statistic in Equation 6.3 can be analyzed
easily: provided n is moderately large, each term in the sum has mean µ0 = − 1

2n
under the

null and µ1 = + 1
2n

under the alternative and variance σ2
0 = σ2

1 = 1
n

in both cases. But, for
m moderately large and MAF not too small (MAF > 0.05), the distribution of the exact LR
statistic is itself approximately Gaussian and, for a Gaussian test, the relationship between
sample size m, power β, and false positive rate α is mµ0 + zασ0

√
m = mµ1 − z1−βσ1

√
m. In

our case this yields the fundamental relation given in Equation 6.4. Note that this result is
independent of the allele frequencies provided MAF > 0.05.

As a consequence, for pools of size greater than 100, if m ≤ (zα + z1−β)2n, any test of
level α is guaranteed to have power no larger than β. For small pools, µ0, µ1, σ

2
0 and σ2

1 can
be computed algorithmically and the power can still be computed exactly, even though no
simple analytical expression is available (the power would depend in this case on all SNP
frequencies).

A virtue of having reduced the analysis of the LR-test to the analysis of Equation (6.3) is
that it can be used to obtain insight into the behavior of the LR-test under various interesting
alternative scenarios (More details on these scenarios can be found in the Supplementary
Note accompanying [Sankararaman et al., 2009]):

• In general, the frequencies pj need be estimated. The power drops due to the estimation
procedure and we can characterize the drop in power for the approximate LR-test. In
particular, if the reference dataset used to estimate pj has the same size as the pool,
the number of SNPs needed to reach the same power is doubled.

• The LR-test for the detection of an individual in a pool is very similar to the test for
discrimination between two pools, though the test for discrimination between pools
has higher power. We analyze this case with the same tools and show that if both
pools have the same size, the necessary number of SNPs is halved. Combined with the
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drop in power due to estimating pj mentioned above, detection of an individual in a
pool needs four times as many SNPs as discriminating between two pools.

• Genotyping errors only decrease the power of the optimal test. This is intuitively clear
since genotyping errors would be expected to make it harder to match an individual’s
genotype to that in the pool. We can show analytically that this is true under a very
broad assumption that the errors are generated by the same mechanism under the null
and the alternative hypothesis.

• Detecting a relative of the individual of interest in the pool is also done at the expense
of a drop in power. We show analytically that for a given power, detecting a sibling
instead of the individual of interest requires four times as many SNPs.

6.3 Experiments

6.3.1 Experimental setup

We compared the power of the approximate LR-test and the power of the statistic used in
[Homer et al., 2008] empirically. We also compared the empirical results to the theoretical
prediction, using a variant of Equation (6.4) with a correction for the finite size of the
reference dataset (see the supplementary information accompanying [Sankararaman et al.,
2009] for the derivation of the correction). The only change arising from the correction
is that the factor 1

n
in Equation (6.4) is replaced by 1

n
(1 − n

ñ
) where ñ is the sum of the

number of individuals in the pool and the reference dataset. We use this corrected version
of Equation (6.4) whenever we compare the approximate LR to our theoretical calculations.

To evaluate the power of the approximate LR-test empirically, we created pools contain-
ing n = 1000 genotypes. Allele frequencies were computed for the pool. Individuals not part
of the pool were used as a reference dataset to estimate the population allele frequencies.
Under the null hypothesis (where the individual is not present in the pool), we pick an in-
dividual from the pool, remove the contribution of the individual to the allele frequencies
for the pool and then compute the statistic for this individual; note that under the null, the
individual is neither present in the pool nor in the sample of individuals outside the pool.
Under the alternative hypothesis, we simply pick an individual from the pool and compute
the statistic for this individual.

6.3.2 Experiments on simulated data

The ROC curves display the power of the approximate LR test, the power of the statistic
used in [Homer et al., 2008] and the theoretical power for the approximate LR-test. We first
computed the ROC curves on simulated data; we simulated independent SNPs for values of
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Figure 6.1: ROC curves comparing the LR-test with a plug-in allele frequency estimate, its
theoretical power (denoted “LR theory”), computed using a modified version of Equation (6.4)
corrected to account for the use of the plug-in estimate, and the statistic proposed by Homer et
al. on a pool of size n = 1000. (Left) ROC curves for simulated data with m = 1000, 10000
exposed SNPs. (Right) ROC curves on the WTCCC data with m = 1000, 10000, and 33138
SNPs (the total set of independent SNPs). The LR-test performs significantly better than the
test of Homer et al. Nonetheless, the power stays below 0.95 for a false positive level of 10−3

even when all the independent SNPs are used. Note the close agreement between the empirical
and the theoretical results.

n = 1000 and m = 1000, 10000. The allele frequencies were picked independently from a
Beta distribution fitted to allele frequencies in the range [0.05, 0.95] found in the HapMap
CEU population. The reference dataset consisted of 2000 individuals drawn from the same
allele frequency distribution. The results (Figure 6.1) show the close agreement between the
theoretical and empirical curves for the LR-test. Further, the LR-test is consistently more
powerful than the statistic proposed by [Homer et al., 2008], particularly at low false positive
levels. To test the statistical significance of this difference, we performed a Wilcoxon signed
rank test on the AUC (area under the ROC curve) of 100 bootstrap replicates. We found
that the AUC of the LR-test was significantly greater than the statistic in [Homer et al.,
2008] for m = 1000 and m = 10000 (in both cases, the p-value was 3.9×10−18). Importantly,
for a group of size 1000, the power is low even with 10000 independent SNPs—less than 0.50
at a 10−3 false positive level.
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6.3.3 Experiments on the WTCCC data

We constructed pools of size 1000 from the WTCCC control dataset consisting of 2937
individuals. There were 3004 individuals from the 58C and the UKBS control groups. We
retained 2937 individuals after removing individuals with more than 3% missing data, related
individuals and individuals with non-European ancestry.

We set a = 0.05 and retained only the set of independent SNPs (we used a p-value on
r2 of 10−5). This gave us a set of 33,138 autosomal SNPs from the original set of 462,386
SNPs. It is striking to see that the power stays below 0.95 for a false positive level of
10−3 even when all the independent SNPs are used (Figure 6.1). Computing the power
at lower p-values using Equation (6.4), we see that the power to detect an individual at
a false positive level of 10−6 is only about 0.47 even when all the independent SNPs are
used. The latter contradicts the results of [Homer et al., 2008], who find that the power to
detect individuals is high even with a false positive level of 10−6. This discrepancy can be
attributed to different formulations of the hypothesis testing problem. In particular, [Homer
et al., 2008] test whether an individual is present in the pool or alternatively in the reference
dataset, while we test whether an individual is present in the pool or alternatively in the
larger underlying population. Although the null hypothesis of [Homer et al., 2008] may be
of interest in forensics applications, we argue that our formulation is more relevant to the
discussion of privacy issues.

If the entire set of 358,053 SNPs with MAF above 0.05 is used (this set includes the
set of 33,138 independent SNPs), Figure 6.2 shows a small reduction in the power when
the same approximate LR test—which assumes independence—is used. However, when the
SNPs are no longer independent, there is a potential risk that linkage disequilibrium could
be exploited to design a more powerful test.

6.3.4 Genotyping errors

Thus far we have assumed that there are no genotyping errors for either the individual
or the pool. In practice, genotyping errors occur in 0.1%-1% of the SNPs so that even
when the tested individual is actually present in the pool, the tested genotype might differ
from the genotype present in the pool. Intuitively, genotyping errors should reduce the
power of the best detection method available, since noise is introduced, and this can be
proved theoretically (see the supplementary note accompanying [Sankararaman et al., 2009]).
Empirically, when we randomly add genotyping errors to the set of 33,138 SNPs, we observe
that the power decreases with the rate of genotyping errors (see Figure 6.3).
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6.3.5 Detecting relatives in a pool

The LR-test can be extended to test for the presence of a specific relative of the tested
individual. This scenario is similar to identifying a genotype in the presence of errors. The
modified test is parameterized by γ, the probability that the relative and the tested individual
share an allele. Thus, γ = 1 reduces to the case where the test detects the individual (or an
identical twin), γ = 1

2
denotes a test that detects siblings or parents, and so on. We used

the independent SNPs (33,138) in the WTCCC dataset and evaluated the power to detect
individuals with different degrees of relatedness to the tested individual (γ = 1, 1

2
, 1

4
, 1

8
). We

observe a sharp decrease in power when we go from γ = 1 to γ = 1
2

even though all the SNPs
were used (Figure 6.6). At a false positive rate of 10−3, the power decreases from around
0.95 for γ = 1 to 0.22 for γ = 0.5 to 0.03 for γ = 0.25.

6.3.6 Transferrability across populations

Our analysis provides a population-independent bound on power, i.e., the power computed
from Equation (6.4) does not depend on the allele frequencies and hence, should be the
same across different populations. In a further experiment, we evaluated this aspect of our
analysis by repeating our experiments on the YRI population from the HapMap. Since the
number of YRI individuals in the HapMap is relatively small, we simulated a dataset of 3000
individuals by sampling from the YRI allele frequencies at independent SNPs with MAF
> 0.05. We computed power for a pool of size 1000 individuals for m = 1000, 10000 and
33,138 SNPs (the number obtained from the WTCCC data). The results shown in Figure 6.7
confirm our analysis. A caveat is that the number of independent SNPs with small MAF
may differ across the populations. This would affect the total number of SNPs that can
potentially be exposed for a given population.

6.4 Discussion

We have analytically characterized the power of the LR-test whenm common SNPs in linkage
equilibrium are exposed in a pool of n individuals. In this case, the relation between m,n, α
and β can be described as

zα + z1−β ≈
√
m

n
, (6.4)

where zx is the 100(1− x)-percentile of the normal distribution. (so that the probability for
a normally distributed variable to have a value larger than zx is exactly x)

Equation (6.4) is valid for large pools (n > 100) and for common SNPs (minor allele
frequency > 0.05). It provides an upper bound on the number of SNPs that can be safely
exposed for a particular choice of false positive rate and power. Note that Equation (6.4)
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implies that m, the allowed number of exposed SNPs, is linear in n for fixed α and β, and
importantly, that the power of the test does not depend on the allele frequencies p1, . . . , pm,
as long as the minor allele frequencies (MAFs) are sufficiently large.

The conditions necessary for our analysis to hold suggest the following prefiltering pro-
tocol to obtain a set of SNPs that can potentially be exposed: remove all SNPs with MAF
≤ 0.05 and retain a subset of SNPs in linkage equilibrium. We then use the LR-test to
determine the set of exposed SNPs.

In using this bound, several issues should be kept in mind. First, our analysis assumes
that the exposed SNPs are in linkage equilibrium. When the exposed SNPs are in linkage
disequilibrium, the power of the LR-test is reduced (see Figure 6.2); nonetheless, under these
circumstances, there is a potential risk that one could leverage the linkage disequilibrium
in order to get better power from a different test. We thus recommend that dependent
SNPs not be exposed until this issue can be studied rigorously. Second, Equation (6.4) is
based on the assumptions of common SNPs and large pools (MAF > 0.05 and n > 100).
The presence of rare SNPs may improve the power of the LR-test or other tests, and thus
jeopardize privacy. We have studied the effect of pool size empirically using both simulated
data and real summary data (see Methods), and found that Equation (6.4) is accurate for
n > 100 for a Caucasian population. However, unless it is clear that the assumptions of
common SNPs and large pools are met, we would recommend that Equation (6.4) be used
as a rough guide and that final decisions regarding the set of exposed SNPs should be based
on an empirical computation of the power of the LR-test.

To this end, we have implemented a tool, SecureGenome, that takes as input a genotype
dataset (including the individuals’ genotypes) together with a ranking of the SNPs, greedily
removes SNPs that are in linkage disequilibrium, and determines the number of highly ranked
SNPs that can be safely exposed. The program outputs this value along with the power of
the LR-test evaluated both empirically and theoretically. This tool can serve as a practical
guide to allow researchers to develop a consensus that takes into account both privacy and
the need to leverage data collected throughout the community.

126



Chapter 6. Genomic privacy

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

False positive rate (Log base 10)

P
ow

er

 

 

LR (Independent SNPs)
LR (theory)
LR (All SNPs)

Figure 6.2: ROC curve of the approximate LR test, constructed under a model of
independent SNPs, applied on all 358,053 dependent SNPs from the WTCCC
data. The power of the test decreases slightly when SNPs in linkage disequilibrium are included.
We compare the power of the approximate LR test applied on the 358,053 SNPs from the WTCCC
data (the set of all SNPs published in the WTCCC study with MAF > 0.05) to the test applied
on the set of 33138 independent, common SNPs.
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Figure 6.3: ROC curves for the approximate LR-test under different genotyping
error rates. As the genotyping error rate increases from 1% to 10%, the power of the LR-test
(constructed with the assumption of no genotyping errors) decreases significantly. We used the
set of all 33138 independent, common SNPs in the WTCCC dataset.
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Figure 6.4: ROC curves comparing the power attained by the approximate LR-
test and by the statistic used in Homer et al. [Homer et al., 2008] when applied to
all 33138 independent, common SNPs in the WTCCC data, under two different
settings. (Left) In the setting studied in this paper, individuals in the pool and the finite reference
dataset, and the individual of interest are all sampled independently from the same distribution
under the null hypothesis. Under the alternative hypothesis, the tested individual is randomly
sampled from the pool. (Right) The setting considered in [Homer et al., 2008] has the identical
alternative hypothesis whereas, under the null hypothesis, the individual is randomly sampled
from the finite reference dataset. Both the LR statistic and the statistic proposed in [Homer
et al., 2008] are markedly more powerful in the second setting. When extrapolated to a false
positive level of 10−6, the power (both theoretical and empirical) is less than 0.5 (0.30 for the
approximate LR-test and 0.47 for the LR theory) in the first setting. In contrast, at the same
false positive level, the approximate LR test and 0.99 for the LR theory attain a power of 0.95
and 0.99 respectively, in the second setting.
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Figure 6.5: ROC curves comparing the power attained by the approximate LR-test
and by the statistic used in Homer et al [Homer et al., 2008] when applied to a
subset of 10000 independent, common SNPs from the WTCCC data, under two
different settings (see the caption of Figure 6.4 for descriptions of the settings). For a false
positive level of 10−3, the power of either test is at least doubled in the second setting.
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Figure 6.6: ROC curve of the approximate LR-test on the task of detecting rel-
atives. The power to detect relatives is considerably smaller relative to the power to detect
the tested individual: it decreases significantly even when testing first-order relationships (γ = 1

2

for siblings and parents). We used the set of all 33138 independent, common SNPs from the
WTCCC data.

130



Chapter 6. Genomic privacy

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate (Log base 10)

P
ow

er

m=100

m=1000

m=33138

Figure 6.7: The power attained by the LR-test is not population-specific. The power of the
LR-test, with a plug-in allele frequency estimate, computed for m = 1000, 10000 and 33138
on the HapMap YRI dataset, closely matches its theoretical power, computed using a modified
version of Equation (6.4) corrected to account for the use of the plug-in estimate. Note that the
theoretical power does not depend on the specific allele frequencies of a population.
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Conclusions

7.1 Contributions of this thesis

In this thesis, we have focused on three important statistical problems that arise in the study
of human genetic variation.

• At the molecular level, we have focused on the problem of predicting functional residues
in proteins. In chapter 2, we have described INTREPID, a phylogenomic method, that
infers functionally important residues based on the sequence information alone.

The primary innovation in INTREPID is its use of the phylogeny of the family to infer
the evolutionary pressures on positions within different subgroups. INTREPID infers
functionally important positions through a traversal of the phylogeny from the root to
the target protein located at a leaf; at each point on this path and for each position in
the multiple sequence alignment, INTREPID computes a positional conservation score
based on Jensen-Shannon (J-S) divergence between the distribution of amino acids
at that position and a background distribution. Positional scores are adjusted to take
into consideration the scores of other positions within the same subtree; thus positional
scores for a subtree containing highly similar sequences will be small, even though in-
dividual positions may be highly conserved. By contrast, a position that is highly
conserved within a subtree that is otherwise highly variable will have a high JS diver-
gence. Each position is then assigned the maximal JS score achieved over all nodes on
the path. Positions that are conserved across the entire family achieve their maximum
score at the root, whereas other positions will achieve their maximum at some distance
from the root. Since even catalytic residues are not always perfectly conserved across
a family (if, for instance, sequences with divergent functions are included in the anal-
ysis, or due to alignment errors), this tree traversal enables INTREPID to exploit the
information in highly divergent datasets. On the task of catalytic residue prediction,
INTREPID was found to be more accurate than other conservation-based functional
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residue prediction methods such as ConSurf and Evolutionary Trace as well as scoring
functions that do not use a phylogenetic tree. Further, the sensitivity of INTREPID
was found to increase as the alignments became more divergent.

In chapter 3, we have addressed the problem of functional residue prediction using
evolutionary and structural information. We described a statistical method, Discern,
that brings together three important ideas. First, Discern uses an evolutionary mod-
eling approach (specifically, the INTREPID phylogenomic method) to infer the degree
to which residues are under selective pressure. Second, we incorporate information
from the structural neighborhood of a residue including features (such as sequence
conservation, charge, solvent accessibility, etc.) computed for structurally proximal
residues. Third, and critically, we use statistical sparsification methods (specifically,
L1 regularization) to cope with the fact that our statistical model is based on a large
number of redundant, noisy features. Without such regularization, we find that our
method overfits—in particular the inclusion of information from structural neighbors
leads to a decrease in accuracy. With regularization, we obtain a significant increase
in accuracy. Regularization allows us to find a signal within the large set of candidate
features that can be used to describe the structural and evolutionary neighborhood of
an amino acid. On a homology-reduced subset of manually curated enzymes from the
Catalytic Site Atlas, Discern attains improvements in recall of 12-20% over reported
results on the task of catalytic residue prediction.

• At the population level, we have focused on the problem of inferring locus-specific an-
cestries in admixed populations. In chapter 5, we have described a Bayesian hidden
Markov model (HMM) that describes the admixture process. Inference in this model is
intractable because the model parameters are unknown. Existing approaches for infer-
ence use Markov Chain Monte Carlo (MCMC) algorithms which are computationally
expensive and do not converge on a time scale of several days. Instead, we have pro-
posed directly maximizing the likelihood using an iterative Expectation-Maximization
(EM) algorithm.

The EM algorithm requires an initial solution. Random initializations result in low
accuracies because of the high dimensionality of the solution space. We propose a
fast and accurate initialization procedure, LAMP, that exploits the structure of the
admixed genome (Chapter 4). LAMP divides the genome into overlapping windows.
The windows are chosen to be long enough to be informative about the ancestry but
short enough so that few windows have a breakpoint. Classification within a window
is relatively easy and classification across overlapping windows are combined by a ma-
jority vote. This gives us an initial estimate of the ancestries which are then improved
by the EM algorithm.

Results on simulated admixtures show that our implementation of this model, SWITCH,
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can accurately estimate ancestries even when the ancestral genotypes are not available.
Further, SWITCH can run efficiently on genome-scale datasets e.g., locus-specific an-
cestries of 500 genotype from human chromosome 1 can be inferred in under 30 min.
Further, the model incorporates other parameters of biological interest and these can
be inferred as well. As an example, we demonstrate that the model can be used to
infer the allele frequencies of ancestral populations and these estimates can be used
to reconstruct extinct populations such as the native American populations that were
ancestral to present-day Latinos.

• As association studies become a widely adopted tool, it is increasingly important for
the generated data to be shared across studies. While such sharing can improve the
power to detect associations, there is a danger that the privacy of study participants
might be compromised.

In Chapter 6, we have addressed the issue of genomic privacy by providing guidelines
as to which set of SNPs can be safely exposed for a given pool size, maximal allowable
power β and false positive level α. Our approach is based on casting the problem as
a statistical hypothesis testing problem for which the likelihood ratio test attains the
maximal power achievable ([Lehmann, 2005]). This provides a guarantee that it is safe
to expose a set of SNPs for which the LR-test does not achieve sufficient power. Our
theoretical and empirical results lead to a conclusion that is qualitatively different than
the result obtained in [Homer et al., 2008] in that we find that the power achieved by
considering whole-genome datasets is in fact limited.

7.2 Future Directions

In this section, we outline directions for future research.

7.2.1 Functional residue prediction

• We have focused on catalytic residue prediction because of the availability of a large
dataset of enzymes annotated with experimentally verified catalytic residues. How-
ever, the methodology underlying Discern can be applied to predicting other classes
of functional residues such as ligand-binding residues, allosteric residues, specificity-
determinants and residues in interaction interfaces. Allosteric residues are a specially
interesting and difficult class for our methodology because of their weaker conservation
signals and the lack of large-scale annotations.

Similarly, specificity-determining residues are difficult to detect because they show
conservation within subtrees of the family tree but vary across these subtrees. Methods
for identifying these residues have relied primarily on these conservation patterns.
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However, these residues are, often, close to the active site on the 3D structure. Thus,
we can imagine a two step procedure in which we predict the catalytic residues and
then use proximity to the catalytic residues as a feature to predict the specificity-
determinants. The success of this approach will depend on a large-scale dataset of
annotated specificity-determinants. A good predictor for specificity-determinants can,
in turn, provide features for catalytic residue prediction.

• A test of the usefulness of computational functional residue prediction methods would
be their ability to make novel predictions which can then be verified experimentally.
It would be important to understand if the mutation of predicted functional residues
results in alleles with reduced functional abilities. A first step in this direction in-
volves evaluating predicted functional residues in human proteins against resources
that document the functional impact of mutations in these proteins, such as OMIM
[http://www.ncbi.nlm.nih.gov/omim].

There are a number of families of enzymes that are believed to be catalytically inactive,
e.g., some kinase families lack key catalytic residues and are designated as pseudok-
inases. Functional residue prediction methods can provide clues about the presence
of novel catalytic residues in these enzymes and could provide insights into alternate
mechanisms of catalysis.

• Functional residue prediction methods can also be used to improve protein function
prediction. Such a method would be particularly useful in cases where homologues with
known function have low sequence similarity to the protein of interest. In such cases,
it is difficult to confidently assert that the two distantly related proteins have similar
function. On the other hand, conservation of key functional residues across the two
proteins increases the likelihood that they perform the same function. Such a prediction
method would assign a score to the alignment of the two proteins. The score could
be computed as a weighted sum of the log likelihood of an ancestral residue mutating
to the aligned pair of residues in the two sequences. The weight of a position would
be determined by the probability that this position is functionally important. Such
a method has been proposed [George et al., 2005] using catalytic residue annotations
from the Catalytic Site Atlas (CSA). However, the use of CSA limits the applicability
of their method.

An interesting test case for these enhanced function prediction methods is the set of
proteins whose 3D structures are being solved as part of structural genomics initia-
tives [Chandonia and Brenner, 2006]. As of December 2009, these initiatives have
solved the structure of more than 250 domains of unknown function; of these only 41%
can be annotated based on literature and structural homology leaving more than half
the domains with no reliable functional annotation [http://kb.psi-structuralgenomics.
org/update/2009/12/full/fa_psisgkb.2009.54.html].
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7.2.2 Population structure and association studies

• While we can now efficiently and accurately infer locus-specific ancestries in admixed
populations, our studies have been restricted to recent admixtures (admixtures that
occurred over the last 500 years). Ancestry inference in ancient admixtures is a harder
problem because historic recombination events have broken down the stretches of the
chromosome that share ancestry. Such admixtures require models that can faithfully
capture the patterns of variation across short stretches of the genome as well as efficient
inference algorithms in these models.

• Current methods for association mapping in admixed populations use the signal from
the ancestries (admixture mapping) or the signal from the alleles (association mapping)
in isolation. Tests that combine both signals can improve the statistical power to detect
weak associations. The ancestries are informative of associations across large regions
while the alleles are informative across smaller regions – a consequence of the fact that
recombinations within each of the ancestral populations have broken down correlations
over a longer period of time than the recombinations during admixture. Thus, we can
use the ancestry signal to rapidly identify a large region and then use the allelic signal
to narrow down the association within these regions. While it is conceivable that many
variants of these hybrid tests would be sensitive to even modest associations, combining
these signals optimally is an open question.

• The model underlying SWITCH can be used to infer the allele frequencies of the ances-
tral populations. This problem is of great interest as it can be used to reconstruct the
allelic spectrum of currently extinct populations, such as the Taino who are ancestors
of modern-day Puerto Ricans.

7.2.3 Genomic Privacy

• There are a number of questions that need to be investigated in the context of ge-
nomic privacy. Our current analysis holds for common, independent SNPs. What
privacy guarantees can be given when rare or dependent SNPs need to be exposed?
Privacy mechanisms developed in the databases community, like the notion of differen-
tial privacy [Dwork, 2006], require sufficiently perturbing the summary data to prevent
detection. Notions such as differential privacy provide strong guarantees but render
the summary data useless as they require a large amount of noise to be added to each
SNP (Each SNP needs to be perturbed with noise drawn from a distribution with stan-
dard deviation O(m) where m is the total number of exposed SNPs). A reason for the
large amount of noise is that differential privacy provides a distribution-free privacy
guarantee. One approach around this problem is to formulate a notion of privacy that
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is dependent on the allele frequency distribution. Such an approach could resolve the
limitations associated with differential privacy.

Analyzing a utility-constrained notion of privacy where SNPs are perturbed while
maximizing the detection power presents yet another interesting direction. Analyses
such as these can relax the current requirement of common, independent SNPs thereby
allowing rare and dependent SNPs to be exposed. A further important direction is
to understand how to share data in the case where multiple phenotypes are present
for each genotype. Treating each phenotype as an independent study risks exposing
summary statistics that could then be combined to increase the power of detection.

• Privacy risks are not restricted to data from association studies alone. Heterogeneous,
often publicly-available, databases present newer risks. For instance, geneological
databases can be combined with genotype datasets to identify the genotypes [Gitschier,
2009]. Social networks can often be used to identify these family relationships when
geneological databases are not available. Similarly, hospital health records can poten-
tially be linked to genotype data enabling an attacker to obtain the identity associated
with a genotype.

Thus, there are two major challenges facing the scientific community: i) understanding
the privacy risks involved in sharing genomic data and devising algorithms that would
enable secure sharing, and ii) developing an infrastructure that would give researchers
easy access to this data. This, in turn, requires integrating the different data sources
and establishing an efficient mechanism to query these sources. Organizations such
as the Wellcome Trust and companies such as 23andMe provide access to genotype
and phenotype data, hospital databases store longitudinal phenotype data from pa-
tients, while independent researchers and drug companies aim to combine these data
to identify novel associations.

Further, the nature of genetic data is such that the privacy of an individual is closely
tied to the privacy of his/her parents, siblings and other relatives. As the number of
sources of data and the number of individuals in these databases grow, we may have
to reconsider the very notion of genomic privacy.
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