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Abstract 

 

Contention and Control: U.S. City and Police Responses to the Occupy  

Campaigns of 2011 

 

by 

 

Nicholas B. Adams 

 

Doctor of Philosophy in Sociology 

 

University of California, Berkeley 

 

Professor Kim Voss, Chair 

 

 

Research on social movement repression and protest policing has identified four main 

factors affecting police responses to protest: political context, police capacity, police 

culture, and the characteristics and actions of the movements police face. However, there 

has been little consensus about when or under what conditions these factors influence 

police decisions. Case studies and large-N studies featuring thin data on incomparable 

cases have not been able to assess the relative strengths of these factors in determining 

protest policing under varying circumstances. This dissertation treats 184 U.S. Occupy 

campaigns as a natural experiment on U.S. cities and towns to explore how political context 

and police factors shape protester and police behavior, and how they do so over the course 

of protest campaigns. Using innovative text-analysis methods that combine the best of 

human hand-coding and automated techniques like topic modeling, this dissertation 

analyses reports of protester and police activities from over 8,000 local, regional, and 

national news accounts to find (1) that the Occupy campaigns followed a rather similar life 

course, and (2) that, contrary to going sociological theory, police are influenced by political 
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elites at the city level and behave strategically. City and police responses are more decisive 

in cities where political authority is relatively concentrated in an executive. Police are more 

accommodating of movements when elections are near.  Police with relatively small 

budgets or workforces are more likely to shut down protest campaigns sooner. 

Departments with relatively fewer officers are also more likely to avoid force-on-force 

mass arrests, preferring to arrest individuals and smaller groups of protesters. Police 

departments dedicated to a community policing philosophy are more accommodating of 

movements, and more likely to focus enforcement efforts on individuals rather than engage 

in group punishment. And, departments in cities with high violent crime rates are more 

likely to take a nonchalant approach to protest campaigns. 
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Chapter 1: Introduction 

 

In the last few years, a wave of protest has swept the world: The Arab Spring, the Occupy 

movement, anti-austerity rioting in England, police and protester clashes in Spain and 

Greece, labor unrest in China, uprising across Ukraine, mass marches in Thailand, 

demonstrations against racist police brutality in the United States—the list goes on. The 

outcomes and storylines of these protest movements depend in large part on the 

popularity of the reforms they seek, the sympathies of the governments they target, and the 

allies they can attract to their cause. But they also depend greatly on the ways protest 

campaigns are policed.   

 

This last claim should surprise no one. Yet, despite decades of research on contentious 

politics describing thousands of contentious events and scores of campaigns, there is 

strikingly little settled theory reliably explaining protest policing and its dynamic 

relationship to protest.  

 

Scholars are not failing outright. And they are not disagreeing to be disagreeable. The cases 

they study are simply different. While scholars have mostly agreed that protester and 

police interactions are shaped by political context, governing capacities, police culture, and 

the claims, strategies, and tactics of challengers, they have not been able to gain clarity 

about the conditions under which these factors matter more or less, how they interact, or 

why each set of factors seems to matter so much at some times and not at others. Achieving 

that level of detailed understanding – one that teases out the dynamics of the interacting 

factors influencing the unfolding of protest campaigns and their policing – requires 

numerous comparable cases of very similar contentious campaigns. The Occupy movement, 

with its 184 campaigns across the U.S., presents a rare opportunity to study questions 

plaguing researchers for decades.  

 

To give a sense of the challenges faced by researchers trying to understand governments’ 

interactions with contentious movements when those movements are not comparable, 

consider a question that has long been relevant to researchers, movement strategists, and 
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authorities facing protest campaigns: Does government repression of a protest march scare 

protesters away from future participation or rally them to the cause? 

 

Carey’s (2006) studies of South American and African protest movements offer a clear 

answer: repression tends to chill movement support. In contrast, Opp and Roehl’s (1990) 

research describing the effects of repression on anti-nuclear protesters in West Germany or 

Moore’s (1998) analysis of Peru and Sri Lanka, however, concludes that repression causes 

a movement to rally. Then again, Karstedt-Henke (1980) offers evidence that repression 

may cause movements to split into separate factions pursuing radical and institutional 

strategies. Some scholars have even argued convincingly that repression may chill, and 

then rally, a movement (Rasler 1996) – a reverse of the phenomenon which may be familiar 

to observers of Occupy Oakland.  

 

As Christian Davenport, an elder among political scientists studying contention and 

repression laments:  

 

“Repression has been found to have every single influence on behavioral 

challenges [protest], including no influence… Results have shown that 

repression increases conflict, decreases conflict up to a certain level of 

repression and then increases it—a U-shape, decreases some forms of 

dissent while increasing others, and has no impact whatsoever. As a 

result[…], we know very little about how repressive behavior influences 

[protest]...” (Davenport and Inman 2012, 624). 

 

Contradictory as these accounts are, they are all likely correct so far as they go. They 

correctly describe the phenomena researchers observed for the cases they studied. To 

overcome the frustration voiced by Davenport, scholars must pose a question much more 

complicated than the simple one italicized above: Under what conditions and at what points 

in the life course of a campaign does government repression of a movement scare protesters 

away from future participation and when does it rally them to the cause? 

 

Answering such a question is very difficult. It requires that one account for multiple factors 

influencing an outcome, including time, and that one collect data on a relatively large 
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number of comparable campaigns to tease out the relative effects of those factors. Until the 

Occupy movement, this simply was not possible.  

 

The lack of comparable movements has so hindered the study of protest policing, in fact, 

that not only have the above questions gone unanswered; many, much more more basic, 

questions have also gone unanswered. The social scientific literature on protest policing is 

still unclear, for instance, about whether (and under what circumstances) police responses 

to protesters are shaped by political elites. There is little consensus, either, about how very 

basic features of a police department – like its budget and number of officers – affect its 

response to protest. And virtually no comparative work has assessed the extent to which a 

police department’s culture – its philosophy about its role in the community and view of 

what it means to be police – shapes its interactions with protest movements.  

 

Instead, scholars have pursued one of two programs. They have contributed single cases 

studies to a slowly accreting literature identifying actions, mechanisms, processes, and 

structural factors likely to affect the interactions of, and outcomes for, contentious 

movements and the governments that respond to them. Or, scholars have collected thin 

data on many, many cases of political contention that are not particularly comparable. 

Chapter 2 describes the victories and defeats of these research programs in more detail. 

The first program offers thick data useful for understanding the range of phenomena and 

factors that should interest researchers, but lacks enough comparable cases to tease out 

how those factors interact to produce particular outcomes. The second program captures 

very thin data on many cases that are so different they cannot easily be compared to 

produce valid findings.  

 

Overall, this research on protest policing has identified four main factors likely to 

determine how police manage protest: the governing context under which police and 

protesters operate, police departments'  capacities, police departments’ cultures, and the 

characteristics and activities of the protest movements they face. No study yet, however, 

has been able to assess the relative strength of these factors in the determination of protest 

policing over the life course of a social movement campaign, the subject of this dissertation.  

 

The study of protest movement campaigns – sequences of protest events all driven by 

(substantially) the same goals, claims, and (strategic) actors – will allow researchers to 

better understand not only how city, police, and movement factors affect protest policing 
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through time, but also to uncover evidence that police and protesters act strategically. So 

far, quantitative researchers attempting to understand police responses to protest have 

only compared cases of (disparate) protest events as one-off phenomena. For instance, 

analysts have treated the second march in a series of protest events seeking equal rights 

for women as though it were attended by entirely different people beginning a protest 

movement anew. Such a conceptual mistreatment of protest campaigns forecloses analyses 

revealing strategic planning and interaction between movements and the police charged 

with controlling them. As a consequence, some of these researchers have mistakenly 

concluded that police do not act strategically when facing protest movements.  

 

Key Questions 

This dissertation endeavors to answer the following questions about protest policing: 

 

Q1: What do police do?: How do police respond to protest in the contemporary United 

States? What sorts of operations and tactics do they typically use? 

Q2: Why do police do what they do?: Do the broad factors thought to influence protest 

policing – features of the governing context, police capacities, police cultures, and 

movement variations  – indeed influence police responses to protest? 

Q3: Do performances vary over campaigns?: If these broad factors do influence 

policing of protest, do their effects vary over the course of protest campaigns? 

Q4: Do police act strategically, or do they simply react to protesters? 

 

Questions 2, 3, and 4 can only be answered statistically if the variation from Occupy 

campaign to Occupy campaign is rather limited. Therefore, this dissertation must also ask: 

 

Q5: Were Occupy campaigns similar? Did they engage in similar contentious 

performances (i.e. Marches, Rallies, Demonstrations, Occupations) from city to city? To 

the extent that prevalence of performances varied, can that variation be assessed and 

controlled for by measurable covariates? 

 

Even, if the answers to Question set 5 are affirmative, Questions 3 and 4 cannot be 

answered unless Occupy campaigns also proceeded according to a rather similar timeline. 
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Therefore, the dissertation also investigates the extent to which Occupy campaigns were 

similar and comparable when it comes to the sequence and timing of their activities.    

 

Q6: Did Occupy campaigns proceed according to a common life course, engaging in a 

common sequence of activities with similar timing? 

 

Research Design 

 

This dissertation overcomes the limitations of previous research attempting to understand 

police and protester interactions by treating the 184 U.S. Occupy campaigns as if they were 

a ‘natural experiment’ on U.S. cities. Readers might imagine a team of scientists creating 

200 identical movements (pretending for the moment that such a thing is possible) and 

placing each one in a separate U.S. city or town. In this hypothetical reality, scientists would 

be able to conclude that any differences they observed in the actions of protesters, police, 

or government officials, from city to city, resulted from differences among the cities.  

 

Occupy, of course, was not created in a lab of scientists. And each campaign of the 

movement was a bit different than its siblings. Some were larger and more active than 

others and they were composed of different individuals. But the U.S. Occupy campaigns are 

very similar compared to the range of protests often compared side-by-side in large-N 

studies of contentious politics and protest policing. The differences between Occupy 

movements, too, are measurable in ways that allow for the statistical control of those 

differences.   

 

This dissertation project began with the collection of over 8,000 news accounts – every 

local, regional, and national newspaper, radio, and television account between September 

1st and December 30th 2011 – describing Occupy-related activities of protesters, police, or 

city government officials. Via a new text analysis approach combining the strengths of 

human hand-coders and automated algorithms, this project identified Occupy events of 

interest and extracted information about the activities occurring within them. This text 

analysis pipeline is described in detail in Chapter 3 and includes methods designed to 

extract information about actors and actions across cities, then normalize those entities so 

that similar phenomena may be counted and compared statistically in light of variables 

describing city contexts and police department capacities and cultures. (These methods 
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include algorithms performing co-reference resolution; custom actor dictionaries to 

identify government officials, police, and protesters; a clause-based subject-verb-object 

triplet extractor; and structural topic modeling of SVO-amplified text units through the 

duration of Occupy campaigns – all explained in Chapter 3.) 

 

This dissertation’s approach inductively identifies a range of contentious performances used 

by protesters and a range of control performances used by police. Analyses measure the 

prevalence of these performances at different points in time and in light of variables 

thought to affect protester, police, and government behaviors. Thereby, this dissertation 

tests many hypotheses about the circumstances under which this or that performance is 

enacted by protesters or police, ultimately answering Questions 2 and 3 above. 

 

 

Overview 

This dissertation continues, in Chapter 2, with an introduction to literatures on social 

movements, protest policing, and social movement repression. The chapter identifies a 

number of apparently conflicting findings from sociologists and political scientists, and 

three broad hypotheses about protest policing motives.  

 

Chapter 3 presents a detailed account of the data, methods, and research design brought to 

bear on the key questions introduced above. It explains the text processing pipeline that 

renders data suitable for testing the hypotheses identified in Chapter 2 and further 

specified in Chapters 4, 5, and 6.  

 

With a clear understanding of what is known, what questions still require answers, and 

how the methods and data of this dissertation are able to provide those answers, Chapter 4 

moves into discovery and analysis. Because all the later chapters concerning protest 

policing activities depend on an understanding of the protest activities to which police and 

cities are responding, Chapter 4 begins with a thick quantitative description of Occupy 

campaigns’ activities. This chapter not only shows how Occupy campaign activities were 

constrained in a coherent, countable set of contentious performances, it begins to show 

that the timing and sequences of those performances were not random, but, in fact, 

conformed to a common campaign life course with only minimal (and measurable) 

variation. This deeper understanding of a constrained set of variables describing protester 
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activities will enable clearer understandings, in later chapters, of what police and cities 

were facing when they made decisions about how to interact with Occupy campaigns. 

 

But just as city and police behaviors do not occur in a vacuum, neither do protester 

activities. A mature body of social movements theory, discussed in Chapter 2, predicts that 

protester activities will be shaped by the political context, the ‘political opportunity 

structures,’ in which they emerge. This theory, developed initially by Doug McAdam, Sidney 

Tarrow, and Charles Tilly (McAdam, Tarrow, Tilly, 2010: McAdam 2010; Tarrow 2013), has 

helped to explain differences across contentious campaigns from decade to decade and 

under various national regimes. But few have observed the effects of political opportunity 

structure at the scale of days and cities (though see Amenta and Zylan 1991 for a study of 

U.S. states). 

 

Chapter 5 extends previous theory to the high-resolution scale of cities and days. Do small 

differences in political opportunity structures – the sorts of variation in government type, 

electoral insecurity, and political ideology measurable across U.S. cities – affect protester 

performances? Do these factors influence protester activities more at some points in their 

campaigns than at others?  

 

With a baseline understanding of what protesters are up to and how political opportunity 

structures impact their activities, Chapter 6, turns to an exploration of police control 

performances. The review of protest policing literatures in Chapter 2 highlights a number 

of hypotheses that have been rather difficult to test prior to the Occupy movements’ 

provision of so much comparable data. Chapter 6 begins by applying the same techniques 

used to understand the range and prevalence of protesters’ contentious performances to 

textual data describing police-initiated events during the Occupy movement. Next, Chapter 

6 tests a number of hypotheses suggesting that police departments’ capacities and cultures 

influence the way they police protests.  

 

The findings of Chapters 4, 5, and 6 are reviewed in Chapter 7. Their implications are 

discussed. Conclusions highlight the extent to which police departments appear to 

determine their own actions, a corrective to some researchers’ (Earle and Soule 2006) 

suggestions that police responses are mostly driven by protesters’ behaviors.  
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Theoretical Contributions 

 

The limitations of current repression and protest policing theories result primarily from 

the complexity of the phenomena they seek to explain. It is very difficult to compare the 

policing of one protest movement to the policing of another which features different aims, 

strategies, and/or tactics. That difficulty is compounded if the political contexts in which 

protest policing occurs differ considerably. With so much variability, the conclusions of 

case studies and small-N comparative studies often contradict one another, and prove 

limited in generalizability.  

 

After years of research developing limited and tenuous conclusions, scholars in this 

subfield have yearned for increased comparative leverage (Koopmans 2004). But, it is 

incredibly rare for any movement contentious enough to draw a protest policing response 

to also spawn independent campaigns enacting similar performances across a large 

number of contextually-similar cities in a short period of time. Fortunately, the Occupy 

movement of 2011 did just that. This dissertation capitalizes on the rare historical 

circumstance of the Occupy movement by treating it as a ‘natural experiment’ enabling the 

investigation of a number of questions still unanswered by scholars of protest policing.  

 

This dissertation makes three significant theoretical contributions to three literatures. 

1. It clarifies for the protest policing and repression literatures when and how 

much political opportunities, police departmental capacity, and police 

departmental culture affect the policing of protest movements (occupation 

campaigns, in particular). 

2. It clarifies for the American sociological literature on protest repression the 

extent to which police responses to protest movements are reactive, strategic, 

and or motivated by their sense of threat to their control. 

3. It demonstrates for the contentious politics/social movements literature the 

value of studying performances within campaigns, particularly the ability of such 

studies to reveal strategic learning and thinking on the part of actors. 
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Chapter 2: Literature Review and 

Theoretical Motivation 

 

 

The key questions of this dissertation concern how US police respond to protest in the 

contemporary United States, why they respond as they do, and how and why those 

responses vary over the course of movement campaigns.  Political scientists have sought 

answers to broad questions about governments’ response to challenges since the discipline 

began. In recent decades, they have also developed a Protest Policing literature focusing 

more closely on what happens when contentious groups meet police in the streets and 

public spaces. Sociologists have joined this discussion more recently, mostly as an 

extension of a broader literature seeking to explain social movement phenomena. But, 

sociologists’ focus also tends to merge with longer-standing sociological preoccupations 

with power struggle and legitimation of authority (in the Marxist and Weberian traditions). 

Hence, the sociological literature on protest policing has been couched in a broader 

discussion of government Repression of social movements and questions about the extent 

to which police enact the will of elites or behave with relative autonomy. 

 

This dissertation bears on and draws from all of these literatures to investigate four major 

factors affecting police responses to protest: city political structures, police capacities, 

police cultures, and protesters’ behaviors. This chapter reviews literatures discussing, in 

turn, what police do when they face protest, how these four factors influence police 

responses to protest, and how this dissertation improves upon existing theory seeking to 

explain police behaviors. While conclusions about the effects of these factors on protest 

policing are rather discordant – reflecting the broad variation of cases across small-N 

studies inadequate for comparison – the going theory developed by sociologists studying 

protest policing quantitatively suggests that police behavior is largely autonomous from 

political elites and reactive to protesters’ on-the-ground actions.  
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Some limitations of the studies generating this theory of reactive and threatened protest 

policing point to the need for this dissertation’s research, which tests three competing 

theories explaining the motivations behind protest policing: that police behave in reaction 

to protesters, that they act strategically, and/or that they respond based upon the level of 

threat they perceive. Finally, since testing whether police behave strategically requires 

measuring their behaviors in a temporal context able to discover planning and responses 

across the duration of a protest campaign,, this chapter reviews social movements 

literature conceptualizing the time-dimension of protester and police activities.  

 

What do police do? 

The foundational task of describing and cataloguing protest policing styles, strategies, and 

tactical repertoires is ongoing. (Readers might see della Porta and Reiter 1998 for an early 

review; Davenport and Inman (2012) for a political science review; and Earl (2011) for the 

latest sociological review) Throughout Western Democracies, authors have noted a shift 

toward softer and more accommodating protest policing tactics from the late 1960s 

through the 1990s. (See Waddington (1994) on the British case and della Porta and Reiter 

(1998); Winter (1998); Fillieule & Jobard (1998); and Jaime-Jimenez and Reinares (1998) 

for continental cases.)  

 

In the US context, McPhail, Schweingruber, and McCarthy ( 

1998) identified two main protest policing approaches. The first, ‘escalated force,’ was 

commonly deployed in the 1960s and early ‘70s, and was characterized by police disregard 

for free speech and assembly rights, intolerance for disruption of normal traffic or routines, 

disinterest in communication or negotiations with protesters, indiscriminate arrest of 

protesters, and dramatic shows of force quickly escalating to the use of batons, tear gas, 

electrical cattle prods, and dogs. The authors describe how this protest policing approach, 

was replaced in the 1970s by a ‘negotiated management’ approach characterized by the 

protection of free speech and assembly rights, the tolerance of “an acceptable level of 

disruption,” extensive interaction with protesters to plan for safe protest activities, a 

minimal use of arrests with a preference for keeping the peace over strict law enforcement, 

and the “minimum necessary use of force” when protecting persons or property and 

arresting lawbreakers (Ibid.).  

 

More recently, authors have argued that protest policing is still evolving in the United 

States. Noakes and Gillham (2007) concluded, after observing police tactics used to manage 
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the 1999 WTO protests in Seattle, that police now use an approach centered on the 

‘strategic incapacitation’ of movements. Police remove protesters from their targets by 

shunting them into protest zones; they use “less-lethal” weapons that are, in fact, rather 

injurious; and they arrest protesters strategically, removing them from the field of action. 

The method of ‘strategic incapacitation’ often also includes covert operations like 

surveillance and movement infiltration. Vitale (2007) argues that he has also identified a 

“command and control” model and a “Miami model” based on observations of New York 

Police Department and Miami Police Department protest policing styles, respectively. 

Waddington (1994), for his part, has coined the terms ‘soft hat’ and ‘hard hat’ protest 

policing to capture the differences between approaches relying primarily on the limiting of 

protests through extensive pre-event negotiations and those that use more overt coercion 

and force.  

 

Even more recently, researchers,say they have identified a new style of protest policing 

that responds, in particular, to protests around international summit meetings. Since the 

1999 Battle in Seattle, argue Starr, Fernandez, and Scholl (2011) a network of security 

experts and consultants has grown up to help international cities defend against 

“alterglobalization” protests seeking to disrupt meetings of the IMF, G8, WTO, and World 

Bank. Host cities largely follow the lead of these consultants, deploying their own officers 

and private security personnel to pre-emptively criminalize dissent and assembly, remove 

protesters from the scenes of meetings, intimidate protesters with the use of less lethal 

weapons, and, in many cases, jail them until meetings are completed. Starr et al (2011) 

stress that this evolving style of ‘strategic incapacitation’ merges physical and 

psychological force to weaken, frustrate, divide, and discourage protesters.  

 

Others have been pointing up the gradual ‘militarization’ of protest policing since the 

1960s. Kraska and Paulsen (1997) have argued that SWAT teams have been used as the 

“iron fist” inside the “velvet glove” of negotiated management approaches for decades. This 

debate (including Kraska and Kappeler 1997; Reiner 1998: Soule and Davenport 2009; 

Waddington 1999) continues, but it is telling that McPhail and McCarthy (2005), the first to 

highlight the trend from escalated force to negotiated management protest policing, have 

acknowledged that protest policing appears to rely, increasingly, on the use (or threat) of 

paramilitary police force. Della Porta (2013) has begun to focus more energy here as well, 

arguing that protest policing has become more aggressive.  
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Authors like Starr and Fernandez (2009) have attempted to link this uptick in state 

repression to shifting state security priorities in the aftermath of 9/11. Cunningham 

(2004), too, has argued that many of the domestic surveillance practices outlawed after the 

exposure of COINTELPRO were re-instated after 9/11, and that these may negatively 

impact movements. Though the impact of these often covert activities are difficult to assess, 

it does seem probable that counterterrorism and counterinsurgency tools and methods 

diffuse from militaries to police departments. Researches have found, for instance, links 

between Reagan’s counterterrorism initiatives and governments’ repression of movements 

(Zwerman 1989).  

 

The identification and naming of broad protest policing styles can provide a useful short-

hand for scholars, but this common practice becomes problematic if it leads researchers to 

believe that a country, state, or even individual police department always (or even 

primarily) uses a signature approach whenever it faces a protest movement. Earl , Soule, 

and McCarthy (2003), in a (rare) large-N comparative study of protest policing in NY State 

during the 1960s and ‘70s, eschewed this trend. Instead of seeking to identify overall 

approaches or styles, the authors conceptualized protest policing in terms of smaller sets of 

tactics that logically fit together. They found that police deployed an array of their 

hypothesized tactical repertoires at various protest events, including doing nothing; 

observing from a distance; setting up barricades to limit protesters and only making 

selective arrests; using extensive force and mass arrest; and using a combination of many 

of these approaches in a single event.  

 

Fortunately, empirical researchers have continued to clarify the literature’s focus on the 

range of tactics that police use (rather than just identifying trends in broad approaches). 

This dissertation will follow and extend this approach, collecting data on an array of police 

activities, then examining them to determine what factors influence the policing of protest. 

 

Measuring Tactics   

 

There are a number of ways authors have sought to conceptualize and operationalize 

specific protest policing activities. Early on, Gary Marx (1979) began the work of 

constructing lists of policing tactics, work carried on by Carley (1997). Some authors have 

built indices around such lists (Davenport 2007), or organized their elements along 

continua from most to least “repressive” (McPhail and McCarthy 2005). Such 

operationalizations have enabled large quantitative studies seeking, since Feierabend and 
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Feierabend (1966), to quantify repression across national contexts. Thus, Brockett 

(1995), Nepstad & Bob (2006) Almeida (2008), Ondetti (2006), and Loveman (1998) have 

studied levels of repression across Central and South America. Alimi (2009), Alimi and 

Meyer (2011), and Rasler (1996) have focused on the Near East. Johnston (2006) has 

focused on former Soviet States. Chang (2008) and Zwerman and Steinhoff (2005) have 

focused on Asian and Pacific Island countries. And others, still, have compared across 

developing countries (Davenport 1994) or non-democratic states (Osa and Schock 2007). 

 

These large-N studies (e.g., della Porta and Reiter 1998) typically seek to explain trends in 

protest policing styles over decades, or their geographic distribution across nations-states. 

They are not designed to explain why police in a particular place or time chose to fire tear 

gas on a particular crowd as opposed to accommodating their protest march. 

  

Researchers performing smaller-N, qualitative studies, on the other hand, have spent more 

energy operationalizing protest repression tactics and developing theories to explain their 

use. Thus, Boykoff (2007), identifies mechanisms of repression like ‘stigmatization,’ 

‘intimidation,’ and ‘resource depletion.” Oliver (2008) categorizes repressive tactics by the 

goals apparently motivating them: ‘incapacitation,’ ‘deterrence,’ and ‘surveillance.’  

 

Earl (2003) offers a useful 12-type taxonomy that appears to successfully categorize all 

types of repression. Each repressive tactic, operation, or strategy may be distinguished by 

the following three criteria: 

“(a) whether the repressive actor is a state, private, or hybrid actor; (b) whether the 

repressive action is coercive or uses more carrot-based “channeling” (McCarthy, 

Britt & Wolfson 1991, Oberschall 1973); and (c) whether the repressive action is 

observable/overt or unobserved/covert.” (Earl 2011, 264). 

 

The police activities investigated in this dissertation are most likely to fit into Earl’s first 

type for all three criteria. They are actions taken by states (a1), typically coercive (b1), and 

overt (c1). More specifically, they are actions taken by city police with the goals of 

managing or controlling local protest movements. As such, this study fits squarely in the 

broader sociological literature on repression, and the narrower political science literature 

on protest policing. 
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The method this dissertation uses to identify and operationalize police activity is new to 

the field and explained fully in Chapter 3. For now, readers may appreciate that it departs 

from previous work in one significant respect: it begins with induction. Rather than 

searching through news reports by hand for evidence of researcher-defined actions, the 

method allows relevant police activity to emerge through a text analysis technique able to 

measure police (and protester) activity in large quantities of news data.  While this 

inductive approach does not align with previous researchers’ operationalizations of 

policing tactics – This dissertation cannot directly count and measure the occurrence of 

policing tactics studied by other researchers. – it does recover ample evidence of those 

tactics. As we will see in Chapter 6, police responding to local Occupy campaigns used a 

broad range of tactics and approaches commonly identified in the literature. This 

dissertation focus most attention, however, on understanding why police do what they do. 

 

Why Do Police Do What They Do? 

 

With a decent understanding of what police do, the sociological and political science 

literatures on repression and protest policing have spent the last decade or so trying to 

explain why they do what they do.  

 

Both literatures agree, broadly, that three main factors are likely to determine how police 

manage protest: the political and governing context under which police operate (McCarthy 

et al. 1991; Davenport 1997; Wisler and Kriesi 1998; Della Porta 2006), police departments’ 

capacities and cultures (Della Porta 1998; Winter 1998; Earl et al. 2003; Worden 1989), and 

the characteristics and activities of the movements they face (Soule and Davenport 2009; 

Earl et al. 2003; Earl and Soule 2006; Davenport and Soule 2011). But to date, no consensus 

has emerged to explain which of these factors matter most in determining protest policing, 

nor under what circumstances.  

 

Political Context 

 

Political contexts, institutions, and authorities are likely to constrain police behavior, 

including their use of protest policing tactics, in various ways (See della Porta 1996 for an 

additional review.) Broadly, political cultures and ideologies shape citizens expectations of 

police and the government officials they elect. Police in liberal democracies are expected to 

do different work than police in authoritarian regimes. Multiple studies have found that 
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left-leaning governments tend to be more tolerant, gentle, and consensual in their dealings 

with movements (Fillieule 1997: 335-40; della Porta 1995; Geary 1985: chapter 7; Winter 

1998). But this is not always the case. Left-leaning governments will sometimes deploy 

‘hard’ protest policing tactics as well (Funk 1991), leading scholars to surmise that they are 

responsive to electoral pressures to demonstrate their ‘law and order’ bona fides (della 

Porta 1999). This dissertation follows Earl and Soule (2006) in operationalizing the 

political climate in which police operate as the ‘% vote for the Democratic candidate in 

the most recent presidential election’ to test the proposition that a cities’ political 

ideological climate affects protest policing.  

 

Sometimes government influence on protest policing is rather apparent. McPhail et al. 

(1998) carefully traced the manifold federal interventions that forced a shift in US protest 

policing styles from ‘escalated force’ to ‘negotiated management’ of protests. Other times, 

government influence may operate indirectly. Waddington (1998) suggests that 

“institutional power is refracted through the lens of how police define their task.” And since 

police tend to avoid ‘in the job trouble’ with superiors beholden to elected officials whose 

preferences are often easily imputed, those elected officials need not make their 

preferences explicit. 

 

The form of a government may impact protest policing as well. Social movements scholars 

have argued that governments with multiple points of power (like cities governed by a 

council as opposed to a strong mayor) may be less-decisive, and therefore less helpful to 

movements (Huber, Ragin and Stephens 1993; Skocpol 1992; Amenta and Young 1999). 

Police departments may be strategically weakened, too, when government forms prevent 

political elites from taking clear decisions. On the other hand, less-decisive governments 

may allow police a free-hand to act as they please toward protest movements. Comparisons 

between Europe and the U.S. seem to indicate that additional layers of government tend to 

insulate police from elites. Thus, Earl acknowledges (2011) that elite opinions are “clearly 

important” to police in Europe (as evidenced by della Porta 1995; Wisler and Kriesi 1998) 

even though she argues elsewhere (Earl and Soule 2006) that they affect police relatively 

little in the United States. As Earl and Soule put it, “the peculiar institutional characteristics 

of police departments … independently structure the dynamics of protest control.” This 

dissertation tests the extent to which government form insulates police from elites 

with an independent variable measuring the ‘Number of power centers’ for each U.S. 

city that experienced an Occupy encampment. 
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Another way to test the effect of political elites on protest policing may be to observe 

whether police respond differently to protest when the political environment is unstable. 

Two competing hypotheses are relevant here. Police in cities that are reshuffling politically 

(due to elections) may be especially solicitous of elite directions. On the other hand, their 

behavior may reflect their sense that they are relatively free of supervision. This 

dissertation tests whether and how political instability effects protest by measuring 

police activity in light of a city’s temporal distance from its most recent and upcoming 

elections. 

 

Contradictory findings regarding the effect of political context on protest policing may 

simply reflect the fact that government officials wield more or less influence over police use 

of specific protest policing performances in different countries, under different 

circumstances, and at different times. In other words, the research may be uneven because 

the influence of government officials is uneven. This dissertation will not just investigate if 

and how much political context and governance matters, but when and under what 

conditions it matters for each protest policing tactic on offer. 

   

Police Capacity  

 

Whether police are acting on direct orders from government officials, ignoring those 

officials, or something in between, their capacity to act is limited by the human and 

material resources at their disposal. A cash-strapped department will not be able to pay the 

overtime necessary to send large squads of police to observe a series of protest events 

recurring several days in a row. Other protest policing performances depend on physical 

technologies (like less-lethal weapons, riot-gear, urban assault vehicles and the like) that 

not all departments can access.  

 

Despite the importance of these variables relatively little research has focused on the effect 

of police capacity on protest policing. Ron (2000) has shown that organizational factors 

affect militaries’ abilities to repress opponents, and Boudreau’s case studies (2001; 2009) 

have confirmed this finding.  

 

Earl and Soule (2006; and Earl, Soule and McCarthy 2003) have led comparative research 

on this question. They found that police capacity, measured as per capita police spending, 
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increased the likelihood that police would show up to a protest (Earl, Soule and McCarthy 

2003) and (2006) that better-resourced departments were less likely to use violent and 

illegitimate tactics (their so-called “Dirty Harry” approach). They surmised that “adequate 

levels of well-trained manpower may increase the chances that police are able to react in 

legal ways and without engaging in a police riot” (2006). One might also suggest that 

depleted departments are more likely to perceive movements as threatening to their 

officers or budget, and therefore more likely to seek to deter movements by responding 

with more force. This dissertation follows Earl and Soule (2006) by operationalizing 

Police Capacity as the per-capita-budget of a police department. It goes further, also 

measuring a department’s number of officers-per-capita to test how these variables 

affect protest policing. 

 

Police Culture 

 

Independent of the resources at their disposal, police departments may pursue protest 

policing performances consistent with their own departmental cultures and missions. 

James Q. Wilson documented the prevailing police cultures of the United States in Varieties 

of Police Behavior (1978), showing that police departments, like other organizations 

engaged in specialized activity, develop and reinforce solidarity through shared beliefs 

about who they are and how they relate to their wider community (Worden 1989). (See 

also Lundman 1980; and Skolnick 1966.) These group- and self-conceptions in relation to 

the wider community, what della Porta calls “police knowledge” (1998), may prefigure 

police understandings of their relationships to protesters. According to theory, 

departments that foster a sense of themselves as the keepers of law and order are focused 

on interdicting behaviors outside of normal routines and are likely to see protest as a 

nuisance at best, a threat to order at worst. 

 

By this same rationale, this dissertation advances another police culture hypothesis: that 

departments routinely faced with violent crime are likely to spend less time, energy, and 

worry on protest movements. Readers are invited to consider how police perceive 

protesters of the middle-class left differently if those police work in a city that sees 

hundreds of murders per year vs. only a handful. In a city where violent crime is rampant, 

this dissertation hypothesizes, police are more likely to see their work as a daily, grinding 

effort to fight seriously traumatic outcomes. From the standpoint of a department that has 

developed such a culture, such a self-understanding of its work, a protest is likely to be 

viewed as only a distraction or a nuisance, not as a major disturbance requiring limited 

time and resources. This dissertation uses a city’s violent crime rate (from the Bureau of 



 

    18

Justice Statistics) to test the hypothesis that police in cities addled by violent crime will 

de-prioritize protest movements and commit less energy to their management. 

 

While it is not always easy to measure police culture quantitatively, scholars have sought to 

test whether police training impacts protest policing behavior. Earl and Soule (2006) 

hypothesized that the number of “police studies programs” in a county might correlate 

with more ‘professional’ protest policing. They found that it did not, but this dissertation 

measures an aspect of police culture that may be even more likely than ‘professionalization 

courses’ to impact the ways police see their protest management work: a department’s 

dedication to community policing.  

 

Departments committed to a philosophy of ‘community policing’ habitually engage with 

community members as allies and may be more likely to view protest activities as 

legitimate expressions of community concerns. Fortunately for this dissertation, the 

Bureau of Justice Statistics has recently released data from its 2010 ‘Law Enforcement 

Management And Administrative Statistics’ (LEMAS) survey that include a host of 

measures for community policing. This dissertation uses an index of community policing 

to test the hypothesis that a departmental culture of community policing reduces 

department use of force and violence against protest campaigns. 

 

Scholars have argued that other cultural effects may emerge from the demographic 

composition of police forces. Della Porta and Fillieule (2008, pg. 225) suggest a shift in 

Italian police culture resulting from the inclusion of women on the force. Given research 

indicating that police often operate through stereotypes of protesters (McClintock, 

Normandeau, Philippe, Skolnick, & Szabo 1974), one might hypothesize that a larger 

minority contingent among a police force (especially in a U.S. context) might also impact 

protest policing culture. This dissertation uses police department ethnic composition 

data to test the hypothesis that departments with a more diverse workforce use less 

force and violence against protest campaigns. 

 

 

Movement Characteristics and Activities 
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Of course, a major factor affecting protest policing is the movement itself. It seems obvious 

that authorities, whether government officials, police, or both, would deploy more 

aggressive policing performances against movements that threaten their interests. Plenty 

of evidence shows this to be true – from qualitative and quantitative studies across every 

inhabited continent and throughout history. (See Davenport 2007; or Earl 2011 for the 

thorough reviews upon which this section draws.)  

 

A large amount of research, therefore, has sought to understand what makes elites and 

police feel threatened. McAdam (1982) has suggested that elites feel threatened by social 

movements rejecting institutional channels of policy change. Similarly, Bromley and Shupe 

(1983) argue that radical or revolutionary goals are most threatening. Such tactics and 

goals would certainly undermine the legitimacy of sitting governments. Even 

countercultural groups, though, seem to raise the alarms of authorities (Wisler and Giugni 

1999). And authorities may become overwhelmed by groups seeking many changes at once 

(McAdam 1982) or from very large and active groups, whatever their cause (Davenport 

2000). Even non-violent protest activities – marches, demonstrations, etc. – may appear 

threatening to police if crowds are large enough (Tilly 1978). In fact, as Eisinger writes, the 

implicit threat of mass disorder is a key feature of protest’s power (1973, pg. 14). 

 

Research on “threat perception” (Mahooney-Norris 2000) also suggests that states are 

aware of their own weaknesses (for instance, with demographic groups or in geographic 

areas) and that they may feel more threatened by movements that are comparatively 

strong where they are weak. A host of authors have argued more recently, however, that 

threats to police are much more likely to affect protest policing than threats to elites, 

especially in the U.S. context (Earl, Soule, McCarthy 2003; Earl and Soule 2009; Soule and 

Davenport 2006). (These arguments are more fully considered below.) 

 

Other researchers have argued that weaker movements may also trigger the sorts of police 

use of force that can make headlines (Gamson 1975; 1990). Here, authorities are cast as 

bullies seeking only to engage in fights they can win. Duvall and Stohl (1983) make this 

argument in a broader state context as well. Collins (2009) proposes a psychological 

mechanism, “forward panic,” that might explain violence against the weak and 

outnumbered as well. However, none of these theories have been quantitatively verified in 

the context of U.S. protest policing. Earl et al. (2003) used two measures of weakness and 

found no results confirming the theory. The first measure sought to test Piven and 

Cloward’s (1977) notion that socially marginalized groups with few political allies were 
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especially likely to be victimized by police – a hypothesis in line with Stockdill’s (1996) 

findings. The second sought to test the notion (in line with de Biasi 1998; and della Porta 

1998) that media support for a movement might protect it from police repression. More 

research is needed in this area.  

 

 

A Summation of Current Theory: Threatened, Reactive Police 

 

Without exception, authors across the social sciences agree that a given protest policing 

response is likely to be caused by some combination of the broad factors above. There is 

less agreement, however, about how and when those factors combine to produce a police 

response – the subject of this dissertation.  If there is any part of this literature where some 

consensus has emerged, however, it is in reference to protest policing in the United States.  

 

American sociological theory on protest policing and social movements has been led, lately, 

by Jennifer Earl and coauthors Sarah Soule, John McCarthy, and Christian Davenport. While 

others have continued with qualitative work cataloguing evolving police responses, Earl 

and coauthors have delivered a raft of quantitative studies arguing for a reinterpretation of 

the second half of the 20th century of protest policing. 

 

Along with others in the field, they have questioned the extent to which the shift from 

‘escalated force’ to ‘negotiated management’ was ever as complete as McPhail et al. (1998) 

initially concluded. But while others have argued that states and police forces have become 

gradually more repressive, Earl and her colleagues have argued that protests have become 

more threatening, earning the more violent policing they have experienced. Moreover, Earl 

and colleagues argue that, at least in the U.S. context where most agree police are insulated 

from political elites (relative to their European counterparts), protesters are largely 

responsible for the police responses they get.  

 

As Soule and Davenport concluded: 
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While most viewed such events as the Battle of Seattle in 1999 and anti-WTO 

protests in Washington D.C. as an end of the détente between police and protesters, 

our findings suggest a different interpretation. Given the greater responsiveness of 

police to threatening protest, it is clear that such incidents of aggressive policing do 

not necessarily represent a throwback to an earlier pattern. Indeed, if we are right, 

then the only thing that had changed by the late 1990s was the manner in which 

protesters engaged in dissident activity. Both of these events were extremely large, 

were characterized by a diversity of tactics, and featured property damage—three 

of the factors found to significantly increase the likelihood of an aggressive police 

response. Thus, it is not so much that the police abandoned their philosophy of 

protecting protesters in favor of aggressively responding to them. Rather, it is likely 

that the features of these events were so threatening to police that they responded 

in the proportional manner that they have always done. (Soule and Davenport 2009, 

17) 

 

According to the authors, factors especially likely to affect police use of force against 

protesters included protester use of confrontational tactics like Rallies, and 

Demonstrations, and Civil Disobedience. In 71 percent of the 15,000 events they studied, 

protesters used these “confrontational tactics,” bringing arrest and police violence upon 

themselves.  

 

Readers might be forgiven for perceiving an apparent police bias in these studies’ 

conclusions. In fact, Earl is very clear that she is attempting to insert a police perspective 

into the literature. It is her contention (and that of her colleagues) that such a perspective 

best explains protest policing in the United States where police are insulated from elites. 

Police in the U.S., Earl argues, enjoy: 

 

“high levels of discretion for line-officers in the performance of routine duties, 

historically varied attachments (and distance) from political elites, [and] an insular 

police culture cultivated formally and informally by police agencies.”1  

 

                                                        

1 One might counter that protest policing is not a routine activity, that varied attachments should be 

measured not ignored, and that culture, too, should be measured not ignored. 
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To best understand how police respond to protest, Earl argues that we must understand 

what they value and what makes them feel threatened.  

 

The social construction of danger and cues of danger means that not all objective 

risks are attended to by officers and agencies and that some objective risks are 

exaggerated (Tauber 1967). This institutional structuring of danger affects how 

police understand and relate to key institutional imperatives such as maintaining 

public order, controlling communities, and controlling interactions with the public 

(Balch 1972; Rubinstein 1980; Skolnick 1966; Tauber 1967; Wilson 1968).  

 

Decisions about all policing, even protest policing, Earl would argue, are ultimately 

processed through a police habitus (Bourdieu 1977) preoccupied with control. Here, Earl 

quotes Rubinstein (1980): 

 

[The police officer] must learn to control his fears and anxiety by looking for signs of 

danger in the places and people he approaches; he must learn to examine people for 

signs of resistance, flight and threat, to limit their chances of hurting him or creating 

situations he cannot control or can control only with the use of force, which is 

appropriate to the circumstances. . . . He must accept and welcome the fact that, as a 

policeman, he must be in control of the situation lest it be in control of him 

(Rubinstein 1980, 75). 

 

If police have any on-the-ground discretion in handling protest (and they surely do), Earl’s 

Blue-centered approach offers a useful perspective to scholars seeking to understand the 

policing of protest. But the dedication of Earl, Soule, and Davenport to the perspective of 

police may go too far if it confuses readers into believing that police are merely reacting to 

protester threats in all cases. 

 

The theory of protest policing advanced by Earl and her co-authors is a bold attempt to 

explain why police respond to protest as they do – the key questions of this dissertation. 

However, many aspects of the theory rely on unsupported assumptions and inferences. 

This dissertation uses more comparable, sensitive, and complete data to test the 

applicability of Earl’s theory to police responses to the Occupy movement.  
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Some Concerns 

 

Across their works, Earl, Davenport, and Soule argue not only that police violence is 

correlated with protester violence, property damage, and use of “confrontational tactics,” 

but that it is caused by these protester activities. Here, they appear to overrun their data. 

Nowhere in any of their studies do they show or explain any method by which they 

ascertain that “aggressive” protester activities preceded the arrival of police on the scene 

or police’s subsequent use of force and arrests. Their data merely show a correlation. In a 

footnote attempt to defend against this concern, Earl and Soule (2006) write: 

 

Critical readers may suggest that the police, at times, provoke violent actions or 

property damage by protesters. This would not affect our findings because police 

are unlikely to see themselves as provoking those actions and are also unlikely to 

change their reaction to violence or property damage even if they believe that their 

actions encouraged protester violence and property damage. Instead, police 

agencies might discourage action that would escalate the intensity of protests, but 

then allow significant police action once protests became violent or damaged 

property. 

 

Earl and Soule appear to be stating that even when police provoke protester violence, they 

still feel threatened by that violence, and therefore the greatest predictor of police use of 

force and violence is still the threat police feel from protester violence and property 

damage. If police provocations of protesters are entirely unintentional, there is some logic 

to this. But if police intentionally provoke protesters, or even just arrive on the scene with a 

plan to arrest them, these authors’ most weighty conclusions – that police only respond 

proportionally to protest events (as they always have) – seem to be undermined.2  

 

                                                        

2 Beyond just “Seeing Blue,” Earl seems to look the other way at the possibility that the police approach she 

calls “Dirty Harry” could include police-initiated violence. According to her findings, the chances of police 

using that approach only increase once protesters are already engaged in property damage and violence, 

especially against counter-demonstrators. One might wonder if, in fact, a “Dirty Harry” sort of approach might 

not include police accommodation of counter-demonstrator scuffles. 
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Earl and Soule (2006) also make pains to explain away elite interest in law and order, in 

order to support their argument that police independently react to protesters.  

 

It is unclear why political elites would have a particular interest in controlling 

missile throwing. However, it is clear that missile throwing directly threatens officer 

safety and was, during the period we examine, widely argued to be an indicator that 

police control was either lost or nearly lost over a situation.  

 

Readers might also question the operationalization of concepts like “Confrontational 

Tactics” and “Radical Goals” that so threatened police according to these authors. One 

wonders why the following categories were not broken down to smaller categories given 

that the authors were examining 15,000 cases of protest events: 

 

Confrontational Tactics: We consider the following forms of protest to be 

confrontational: Civil disobedience, physical attacks, riots, mob violence, strikes, 

slow-downs, sick-ins and other conflicts. We consider the following activities at 

protest events to be confrontational: general civil disobedience, sit-ins and 

derivatives of sit-ins (e.g. shop-ins, penny-ins, etc.) physical attacks, verbal attacks 

or threats, blockades by protesters, building take-overs, looting, damaging property, 

kidnapping, and meeting disruptions.  

 

Radical Goals. We coded the following goals articulated at protest events as radical: 

For: comparable worth, ERA, socialism, communism, fascism, welfare, freedom of 

speech, Affirmative Action, minority political power, minority culture or pride, Black 

separatism, minority extremism, gay rights, Native American rights, and farm 

worker rights. Against: discrimination in employment for any minority group, the 

Vietnam war, imperialism, capitalism, the U.S. government, ROTC and campus 

military recruitment, government surveillance of protesters, the current status of 

minorities in America 

 

 

More Concerns 
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If readers of Earl, Soule, and Davenport accept that police use of force and violence is never 

pre-planned and only results from the threat they feel from protesters, they might also 

accept their argument that American police are so independent from elites that scientists 

need not measure it. In fact, across all of the studies performed by these authors, there is 

almost no accounting for the political context in which police are acting. Soule and 

Davenport (2009) include no measures of political context in their models. Earle, Soule, and 

McCarthy (2003), likewise, include no measures of political context in their models. And 

Earl and Soule (2006) only include a measure of political liberalism as an unreported 

control variable in their models.  

 

Also, while Earl and Soule (2006) acknowledge that features of police departments are 

likely to impact protest policing, this team of scholars has yet to find many measures of 

police capacity or culture that bear on protest policing. Earl and Soule (2006) and Earl et al. 

(2003) found that police budget reduces the likelihood of forceful protest control, but that 

is all.  

 

More Research is Needed 

 

To summarize, the quantitative sociological literature on protest policing argues that the 

protesting of police is mostly determined by protesters themselves. If protesters were to 

ask how they could avoid being beaten by police, these authors could only respond by 

advising them to avoid protesting in favor of radical goals including “freedom of speech” or 

“minority culture or pride.” They might also advise protesters to refrain from engaging in 

“civil disobedience” like “rallies” and “demonstrations.” If protesters felt these restrictions 

were too onerous or that police were too forceful, the current sociological voices speaking 

on the subject would advise them to take it up with police directly, because elected officials 

do not handle such matters.  

 

To many observers, these conclusions might seem especially discordant with our current 

times. Since they were published, crowds and police have struggled through the Occupy 

movement and through the anti-racist police brutality movement. Even if sociology’s 

conclusions about protest policing in the United States were correct for the late 20th 

century, times have changed. 
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Perhaps for the period of 1965 through 1990, police were totally even-handed to an array 

of protest events, each independent of the other. Perhaps they reacted to each of these 

events as they came, without government oversight, without any plan other than to show 

up if things got “out of control.” Perhaps U.S. police departments are so autonomous that 

social scientists need not consider more than the general liberality of the cities in which 

they are embedded when wondering how politics affects their decision making.  

 

Even if that is all true, the sociological literature on protest policing still needs an update. 

The last large-scale quantitative data we have been able to access is over twenty years old. 

To their credit, Earl and colleagues also call for more research to bolster or challenge their 

findings: 

 

It seems reasonable to conclude with some concrete suggestions for future research. 

First, our analysis ends in 1990, but clearly an analysis of protest policing between 

1991 and the present would be enlightening, especially because of some of the well-

publicized events of aggressive policing discussed above. Does our speculation 

about the dynamics of police response to such events as the Battle of Seattle hold up 

to a systematic analysis such as we have conducted for the 1960-1990 era? Second, 

our research was conducted at the event level and predicted the occurrence of two 

different police strategies based on event characteristics and time. But, additional 

analysis should examine these general questions at other levels of analysis. For 

example, one might examine yearly or monthly or weekly counts of different 

policing strategies, introducing lags to examine how past policing strategies impact 

present ones (net of, and in combination with, protester threat). Third, research 

should examine the effects of various exogenous factors, such as the overall 

structure of political opportunities on police use of force and/or violence and 

arrests. As well, one might examine how such exogenous factors interact with 

protester-generated threat to affect policing. Perhaps it is the case that police 

respond in a less proportionate manner (or, in other words, they are more tolerant 

of protester threat) when the political system is more open to protester claims. 

(Soule and Davenport 2009). 

 

This dissertation will move forward with all three suggestions. It analyzes data from the 

present decade; focuses on multiple units of analysis including events (but also actions, 

campaigns, and cities); and measures and analyzes the effects of political opportunity 
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structures on protest policing. Elsewhere, Earl, Soule, and McCarthy (2003) also suggest 

that: 

 

Researchers must move away from [police] presence/absence formulations of 

repression and toward more theoretically and methodologically sensitive 

conceptualizations of police action.  Further, we must refine existing theories so that 

hypotheses can distinguish among the suspected effects of independent variables on 

different forms of police action. 

 

This dissertation takes these suggestions and runs with them. 

 

 

New Research for New Theory 

 

The “Blue-centered” approach offered by Earl and colleagues is not without its merits. In 

particular, it focuses researchers attention on the perspectives of the people who are most 

proximal to protest policing, the police themselves. The notion that police, in addition to 

elites, perceive threats, and perceive those threats differently than elites, is important to all 

future research on this subject. The associated notion (of the “Blue-centered” approach) 

that police merely react to protesters, however, should not be treated as a conclusive 

theory. Based on the evidence reviewed above, it is merely a hypothesis, potentially valid at 

some times and in some places. An alternative hypothesis still thrives in the literature: that 

police (regardless of how closely they are tied to elites) act strategically. They make plans. 

They anticipate protesters actions. They selectively under- or over-enforce laws 

(something even Earl et al. 2003 acknowledges.) 

 

In fact, the notion that police engage protest strategically is commonplace among 

researchers studying Europe. It is also a strong finding among those who have lately turned 

their focus to the policing of international summit meetings (See, especially, Fernandez  

2008; Starr, Fernandez, and Scholl (2011); and della Porta and Tarrow 2012.) In general, 

small-N studies focusing greater attention on the detailed interactions of police and 

protesters are better able to suss out the strategizing of police. Surely, the ‘strategic 

incapacitation’ approach identified by Noakes and Gilham (2007) – including police 
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removal of protesters to irrelevant designated protest areas – is not some a-strategic, 

reaction of police to ongoing protester threats. 

 

When it comes to identifying police strategy, units of analysis matter, too. If researchers 

only record information at the event level, like Earl and her colleagues (and then analyze 

that data statistically), they are unable to notice who initiated violent actions during events 

where police and protesters were both violent. The same data could describe a slow 

escalation precipitated by a protester screaming racial slurs, or a police blitzkrieg of an 

unsuspecting, peaceful demonstration. The latter, of course, would imply that police 

premeditated their attack, and, therefore, were acting strategically. But Earl’s and her 

colleague’s data cannot show it. 

 

Strategic policing can also be recognized by including data at a higher temporal unit of 

analysis. Many social movements string events together into campaigns. By observing 

police and protester activities across events, over the duration of campaigns, researchers 

can learn how police responses vary over the course of those campaigns. If they vary for 

any reason other than protester activity, researchers have evidence that police are acting 

strategically, or at least in response to some input other than protesters’ immediate threats. 

 

This dissertation will observe police and protester actions at all of these levels of temporal 

analysis, especially the campaign and event levels. Unlike many quantitative studies in 

political science, too, it will observe activity occurring in cities, the unit of analysis at which 

(at least in the United States) elite control is most likely to impact local, on-the-ground 

activity. It also considers more variables describing police departments, uncovering 

variations in police capacity and culture that impact protest policing.   

 

Three Hypotheses: Reactive, Strategic, and Threatened Police 

 

This dissertation addresses two literatures simultaneously. To the broader social science 

literature on repression and protest policing, it clarifies how and when political context, 

police capacity, and police culture affect protest policing. To the American sociological 

literature that is currently focused on a police-centered view of protest policing, it tests 

three broad hypotheses: the reactive police hypothesis, the strategic police hypothesis, and 

the threatened police hypothesis. Each of these non-exclusive hypotheses seeks to explain 

protest policing from the view of those most proximal to it. 
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The Reactive Police Hypothesis 

Police are rather independent from elites, and their protest policing behaviors, 

including violence, depend on protesters’ actions.  

 

If a strong version of this hypothesis is true: 

Police activities should not vary across variables describing the political opportunity 

structures of the cities in which they are embedded.  

When movements in different cities behave similarly, police from those different 

cities should behave similarly in their response. 

If departments react differently to similar protester action, those differences should 

be wholly explained by variables describing the police department, since 

departments, according to this hypothesis, are insulated from the effects of variables 

describing city political context.  

Furthermore, even if data reveal that police responses vary by departmental 

variables, we should see little evidence that the timing of police actions is 

determined by variables describing the department. That would suggest that the 

capacity or culture of a police department effected the timing of their performance, 

which would, in-turn, suggest that police were taking decisions to plan, put-off, or 

speed up responses, – all telltale indicators of strategizing.  

 

Strategic Police Hypothesis 

Police act strategically when faced with protest. They consider the elected officials who 

supervise them, take stock of their own department’s resources, and act in line with 

their department’s culture to limit the risk of disorder posed by protesters. They even 

take initiative at times. 

 

If police act strategically: 

 

Data should show that their actions vary depending on the political context in which 

they are embedded. 
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When movements in different cities behave similarly, police departments may 

behave differently, either because they are responding to the desires of political 

elites; optimizing the application of their own department’s resources; or enacting 

heuristics relevant to their own department’s culture.  

If police act strategically, data should also show that the timing of their actions is 

affected by city- and departmental-level variables. The cadence of their activity is 

not solely dictated by protesters’ actions. 

 

Threatened Police Hypotheses 

Police responses to protest are significantly influenced by their perception that the 

protest threatens their sense of control. 

 

If police action are significantly influenced by a sense of threat to control: 

Police should respond with more force (arrests and violence) to larger protest 

campaigns. 

Police departments that are relatively small compared to their populations should 

feel more threat from campaigns, exhibiting less patience and tolerance for them. If 

the ‘Strategic Police’ hypothesis is correct, they may even try to deter future 

activities with early shows of force.3 

Departments that are accustomed to significant disorder and violence should feel 

less threatened and react less forcefully to protest campaigns. 

Departments that embrace a philosophy of community policing should see protest 

campaigns as less threatening, and react less forcefully to those campaigns. 

  

Readers may note that the ‘Threatened Police’ Hypothesis can exist happily alongside 

either the ‘Strategic Police’ or ‘Reactive Police’ Hypothesis. This is intentional. Regardless of 

police departments’ willingness or capacity to plan, their perceptions of threats are likely 

                                                        

3 Whether or not deterrence is effective (see Earl and Soule 2010), many scholars since 

Feierabend and Feierabend (1966) have argued that police seek to deter protest with 

shows of force. 
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to affect how they respond to protests. The individual elements of these three broad 

hypotheses, and more, are tested in Chapter 6 and discussed in Chapter 7. 

 

 

Campaigns, Performances, and Strategies 

 

The ideal research design investigating how city and departmental factors affect protest 

policing is impossible to implement. It would involve creating hundreds of identical social 

movements and planting them in hundreds of cities at the same time. Each movement 

would espouse the same goals, organize in the same fashion, draw from the same 

repertoires and proceed with the same sequence of activities (at least at first). As variations 

in police and protesters activities emerged scientists would know they resulted from 

factors related to the cities in which their treatment ‘movements’ were planted. 

 

This ideal research scenario is far from the design employed by Earl and colleagues. Their 

research uses data on 15,000 social movement events across NY state. Those movements 

had different goals, used different tactics, occurred years or decades apart, and varied from 

one-off events to sustained campaigns. The unobserved variations in these 15,000 events 

result in very noisy data, making it difficult for researchers to extract clear signals about 

the effects of variables related to city political context (political opportunities) or police 

departmental cultural variations. 

 

Furthermore, the treatment of all of these 15,000 events as one-off events (as opposed to 

campaigns) forecloses opportunities to study city and police strategies. If each event is 

treated, statistically, as a brand new phenomenon unto itself, city and police responses will 

also be treated as one-off reactions to brand new phenomena. Analyses of long-term 

policing trends (e.g. Davenport and Soule 2006) may show changes in police behavior over 

years or decades, but the data prevent any inference about whether police are learning and 

shifting approaches over the days and weeks of a protest campaign – signs of strategic 

activity. 
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Here and throughout, this dissertation will use definitions from the social movements 

literature led by Charles Tilly, Doug McAdam, Sid Tarrow and the many researchers who 

have rallied around (or wrestled with) their theories of political contention. Therefore: 

 

A campaign is a sustained, organized public effort making collective claims on 

targeted authorities. Unlike a onetime petition, declaration, or mass meeting, a 

campaign extends beyond any single event – although social movements often 

include petitions, declarations, and mass meetings. A campaign always links at least 

three parties: a group of self-designated claimants, some object(s) of claims, and a 

public of some kind. The claims may target governmental officials, but the 

“authorities” in question can also include owners of property, religious 

functionaries, and others whose actions (or failures to act) significantly affect the 

welfare of many people (Tilly & Tarrow 2007, 119).  

 

 

The 184 Occupy campaigns investigated by this dissertation fit all of the criteria of the Tilly 

and Tarrow definition. Chapter 4 and 5 investigate the extent to which these campaigns 

meet the conditions of the ideal research design outlined immediately above – one able to 

tease out the ways city and police factors influence shifts in police activity over days and 

weeks.  

 

Since the campaigns were not created in a lab then spread across the United States, this 

dissertation must measure and (statistically) account for their differences. It does so 

primarily by measuring the activities of the campaigns in each city, and their prevalence 

through time. So far, this dissertation has used the word “activities” to describe all the 

actions of protesters or police. But the word conflates activity across important units of 

analysis. So, again, following primarily Tilly (2008) (in this case),  this dissertation, 

henceforth, will clarify protester activities across four levels, actions, contentious 

performances, contentious gatherings, and campaigns.  

 

Action is easiest to define because it conforms perfectly to lay understandings.  Action is the 

smallest unit of analysis describing protesters activities in this dissertation and is 

operationalized through the grammar of the English language. An action is a verb carried 

out by some subject. It may include an object that could be another person, and it may 
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include a clausal complement clarifying the action further. For instance, all of the following 

are actions, according to this dissertation. 

 
Protesters chant. 
Police arrest protesters. 
Police spray protesters with pepper spray. 
 

 

These actions, in every case, occur within the context of some event (Tilly often uses the 

word ‘episode’) defined by researchers. An event, like an action, fits closely with lay 

understandings of the word. An anniversary party is an event. It starts at the designated 

time or when a quorum of revelers arrive, and ends when the revelers have left the venue. 

Researchers define events similarly in the context of social movements. They begin, usually 

at a designated time, but really once a quorum have arrived, and last until that quorum is 

no longer sustained. In nearly all cases, these boundaries are rather easy to pick out, 

because news reporters have already marked the beginning and ends of events in their 

reports. Following Tilly, this dissertation refers to events carried out by protesters as 

contentious gatherings. 

 

While most contentious gatherings include many actions, those actions often tend to clump 

together. The actions of a candle light vigil – lighting candles, saying prayers, observing 

moments of silence, paying respects to the departed – are almost never found immediately 

alongside the actions of a protester picket. Actions tend to cohere into pre-planned, or at 

least well-known, performances. 

 

Tilly uses the dramaturgical metaphor of performances to emphasize that contentious 

actions are often part of some larger, rather-scripted whole. Many jazz artists, for instance, 

perform Nina Simone’s “Feelin’ Good.” Each puts his or her own spin on the song, even 

varying their deliveries across concerts. Yet the song is still recognized as ‘Feelin’ Good” 

because musicians hit many of the same notes in the same time as Nina.  

 

In the social movements context, activists learn, enact, and improvise contentious 

performances like marches, rallies, demonstrations, vigils, and the like. Each enactment is 

unique, but the performances are relatively stable in so far as they include similar actors 

committing similar actions. As Tilly put it: 
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Once we look closely at collective making of claims, we see that particular instances 

improvise on shared scripts. Presentation of a petition, taking of a hostage, or 

mounting of a demonstration constitutes a performance linking at least two actors, a 

claimant and an object [i.e. target] of claims (14). 

 

This dissertation will operationalize contentious performances using an innovative 

automated clustering method that directs a computer to recognize clusters of action that 

cohere into stable performances. This method is fully explained in Chapter 3. In short, it 

uses the predictable structure of English grammar to extract actions from news texts about 

Occupy’s contentious gatherings. Then, it uses a (very sophisticated sort of) clustering 

algorithm to identify coherent clusters of action, i.e. performances, occurring within and 

across those contentious gatherings. 

 

Tilly was very interested in contentious performances because he saw these as the key site 

of social movement learning and adaptation, the focus of much of his life’s work.  

 

Innovation occurs incessantly on the small scale, but effective claims depend on a 

recognizable relation to their setting, to relations between the parties, and to 

previous uses of the claim-making form [i.e. performance]” (14). 

 

This dissertation’s interest in studying contentious performances has more to do with 

understanding how that learning and adaptation happens on the scale of days and weeks, 

rather than decades and centuries. Though Tilly, sadly, was unable to get to a study of 

contentious performances within campaigns (as Kriesi (2009, 345) also laments), he clearly 

saw the importance in tracing the use of performances over time, even within the context 

of social movement campaigns: 

 

The particular path of contention affects what happens next because each shared 

effort to press claims lays down a settlement among parties to the transaction, a 

memory of the interaction, new information about the likely outcomes of different 

sorts of interactions, and a changed network of relations within and among 

participants (16). 
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These provisional “settlement[s] among parties,” “new information about the likely 

outcomes of different sorts of interactions,” and “changed relations among participants” are 

exactly the stuff of campaign strategy.  

 

This dissertation will advance Tilly’s final frontier. But, it is not primarily interested in 

discovering the learning and strategizing of Occupy’s activists during their campaigns. It is 

interested in discovering whether and how police were learning and strategizing as they 

faced those campaigns. This task, fortunately, does not require a vast re-thinking of social 

movements theory. 

 

Like Ginger Robbins dancing with Fred Astaire, police “pretty much do everything 

protesters do, just in reverse.” Their activities, therefore, are operationalized by this 

dissertation in precisely the same way with slightly different terminology. Thus, police 

activity comprises actions that cohere into control performances that are enacted at police-

initiated events. (For now, this dissertation only posits the existence of control campaigns, 

though future research may discuss this concept further.) Here, it is worth clarifying that 

police-initiated events (again, identified by researchers by hand) are events in which police 

initiate contact with protesters. They do not include police responses to ongoing 

contentious gatherings. Chapter 6 will describe and explain control performances more fully, 

but examples include police going to Occupy encampments to enforce various city 

ordinances through citations, dismantling those encampments peacefully, or raiding the 

camps with a large show of force and the use of “less lethal” weapons. 

 

By keeping in mind that protester and police activities encompass multiple units of analysis 

– actions, performances, gatherings/events, and campaigns – this dissertation enables 

analyses sensitive to the fact that actions and performances are chosen in the context of 

protester and police understandings of how a campaign is playing out. Are we winning or 

losing? How will we fight the next battle? What can we do to surprise them? How can we 

overcome their strengths and minimize our weaknesses? How can we divide them? How 

can we win more bystanders to our side? 

 

In a world where each event is a brand new phenomenon, the world of Earl and her co-

authors, these questions are hardly relevant. But in the context of a campaign, these 

questions define success or failure. This dissertation makes it possible, for the first time in 

a quantitative study, to imagine how police ask and answer these questions; how much 
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their strategizing is influenced by the political structures constraining the elites who 

supervise them; and how much it is constrained by their own department’s capacities and 

cultural understanding of their work.  
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Chapter 3: Data, Methods, and Research 

Design 

 

In the last third of 2011, 184 U.S. cities and towns experienced an Occupy encampment, 

defined by the presence of at least two tents for at least two consecutive evenings in some 

publicly-accessible space. Many of these encampments included dozens or even hundreds 

of tents pitched for weeks at a time. The occupation campaigns posed real and perceived 

challenges to city governments and police that resulted in many police and protester 

interactions. Those interactions, ranging from accommodation to expulsion and arrest, 

were recorded by local newspaper, television, and radio media in each of the cities where 

the occupation campaigns occurred. This dissertation processes textual data from such 

media accounts to compare protester and police performances across the many U.S. Occupy 

campaigns and draw inferences about how city- and police-level variables affected the 

policing of those campaigns. 

 

The innovative multi-step  process preparing the data analyzed by this dissertation 

required thousands of hours of researcher effort. The goals of all this data processing have 

been to extract from textual accounts of Occupy events information about Occupy and 

police actions; to render those actions countable and comparable; to understand how those 

actions cohere into performances; and, finally, to understand how the prevalence of those 

performances vary over the course of Occupy campaigns and with respect to variables 

describing the political situations of cities, and the capacities and cultures of police 

departments.  

 

This chapter will describe the dissertation’s research design, situation its data collection 

and analysis approach in a tradition of news and event analysis, describe the data 

collection and refinement pipeline in detail, introduce the topic modeling method used to 

identify performances, and discuss the method of regression-based structural topic 

modeling upon which much of the dissertation’s analyses are based. The chapter closes 

with a discussion addressing data concerns that have been mitigated through the 

dissertation’s design and data processing.  
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Research Design 

 

This dissertation asks and answers questions that have been pending in the social 

movements and protest policing literatures for decades. (See Chapter 2 for a review of 

these literatures.) The great weakness of both literatures derives from the fact that most 

movement campaigns are unique or appear in unique geopolitical or temporal contexts. It 

is difficult to compare the policing of different movements when they occur in different 

countries at different times, let alone when their aims, strategies, and tactics differ 

considerably. As a consequence, sociologists and political scientists have made little 

headway answering questions that compare across movements seeking to understand the 

circumstances under which protester or police activities differ. 

 

This dissertation begins to answer some of these questions, addressing, in particular, the 

factors that give rise to different protest policing responses in the United States. These 

questions are only askable and answerable because the Occupy movement spawned so 

many similar campaigns across so many comparable U.S. cities. The campaigns were not 

identical; nor the cities. But they were comparable enough to begin to understand how city-

level variables and police department factors affected the activities of campaigns and police 

departments, and their interactions.  

 

In the analyses featured in Chapters 4, 5, and 6, questions of the following form are asked: 

(1) What performances (identified by SVO-amplified LDA) were occurring during Occupy 

campaigns’ contentious gatherings or police-initiated events? (2) How did the prevalence 

of these performances vary through time, from the beginning to the end of each Occupy 

campaign? (3) How did the prevalence of these performances vary according to city and 

police variables likely to affect them? (4) How did the effects of city and police variables 

identified by (3) vary through time? And, (5) Do answers to these questions suggest that 

police merely react to protest movements, or do they act strategically to control them? 

 

Answers begin to come in Chapter 4, when this dissertation begins to ascertain the degree 

to which Occupy campaigns really are comparable. If campaigns are unique and 

fundamentally incomparable they will not aid comparisons across cities, comparisons 

seeking to understand the factors determining police-initiated responses to the campaigns.  
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Fortunately, structural topic modeling of text units (describe in this chapter, below) 

describing Occupy campaigns’ contentious gatherings, in Chapters 4 and 5, reveals that 

Occupy campaigns were quite comparable. Chapter 4 discovers a range of contentious 

performances common to the known social movements repertoire, plus a few more 

associated with occupation campaigns. Structural topic modeling, in Chapter 5, reveals that 

a range of city-level variables, argued across a broad a deep literature to impact social 

movement participation and activity, did modestly affect the degree to which Occupy 

campaigns engaged in various contentious performances. However, these variables – 

population size and liberality, government type, and political instability – did not greatly 

disturb each campaigns’ fulfillment of a common sequential occupation campaign life 

course.  

 

The discovery of this common life course in Chapter 4, and its confirmation in Chapter 5, is 

crucial. The conclusion that Occupy campaigns varied relatively little, allows researchers to 

trust that variations in the policing of those campaigns resulted primarily from factors 

shaping city governments (already listed) and police departments (like community policing 

culture, budget per capita, personnel per capita, and police experiences with chronic 

violent crime), not from the local Occupy campaigns themselves. 

 

 

Comparisons to Similar Data and Research 

 

The data of this dissertation are unique. But the process by which they were generated has 

drawn on practices that have been common to social movements scholarship and event 

analysis for some time. Many scholars have studied news events (Gurr 1968; Jenkins and 

Eckert 1986; Jenkins and Perrow 1977; Kriesi et al. 1995; Lieberson and Silverman 1965; 

McAdam 1982; Olzak 1992; Shorter and Tilly 1974; Spilerman 1970, 1976). 

 

These, and other researchers, have usually taken one of two approaches to analyzing news 

texts. They have either identified events and their details by hand (Soule and Davenport 

2009; McAdam & Su 2002; McCarthy & McPahil 2006; Olzak & Soule 2009; Franzosi, De 

Fazio, & Vicari 2012; Tilly 2008; King, Bentele, & Soule 2007; Davenport 1997; Della Porta 

& Tarrow 2012); or they have attempted to identify events and their details using rule-
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based algorithms programmed into computers (Hammand and Weidmann 2014; Gao et al. 

2013; Keertipati 2014; Kwak & An 2014; Leetaru and  Schrodt 2013; Schrodt and 

Yonamine). The former approach produces valid data but is extremely time consuming. 

The latter approach is significantly hamstrung by the difficulty of identifying events, 

situations, or contentious gatherings in text.  

 

Hand-coding approaches, often called content analysis, rely on the manual labor of 

researchers and their assistants to categorize by hand the words and sentences of 

documents that refer to researchers’ phenomena of interest. When hand-coding large text 

corpora including thousands of documents or more, researchers face a tradeoff between 

coding for more detailed information about more variables or finishing projects within a 

reasonable time frame and budget. For instance, the Dynamics of Collective Action team 

spent an entire decade collecting information about 22 variables describing 24,000 social 

movement events in the U.S  .4 The team could have finished faster if they had sought 

information on fewer cases or fewer variables, but reducing either would have limited the 

utility of their data for scientific analysis. 

 

Newer, automated approaches to the analysis of text, meanwhile, require far less manual 

work. ‘Dictionary methods,’ like those used by this dissertation to find and replace named 

entities and verbs with normalized actors and verbs, can count keywords of interest. “Bag 

of words” approaches treat documents as matrices of word counts (where each document 

is a row, each column is a unique term found in the entire corpus of documents, and each 

cell is a count of how often that unique term appears in the document), setting up useful 

analyses like TF-IDF (Sparck Jones, 1972), and topic modeling (Blei, Ng, and Jordan, 2003). 

Grammar parsing methods help researchers extract information from text as ordered by its 

syntactic structure. As in this dissertation, grammar parsers can be used to resolve 

coreferences and to identify actions encoded as SVO triplets.  

 

These methods are valuable, and their thoughtful use should be encouraged. But, they 

cannot accurately identify concepts like events, situations, or contentious gatherings.  Such 

text analysis work must be done by humans. Though ClausIE (Del Corro and Gemulla 

2013), a module of CoreNLP this dissertation uses, accurately extracts subject-verb-object 

                                                        

4 For information and documentation on the Dynamics of Collective Action data, go to: 

http://web.stanford.edu/group/collectiveaction/cgi-bin/drupal/ 
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(SVO) triplets describing who is doing what to whom, there are no grammatical units that 

reliably correspond with the ‘social situation’ or ‘event’ in which those SVOs occur. The 

contextual information that would allow one to identify the ‘contentious gathering’ in 

which an action occurs is often encoded in natural language clauses spanning multiple non-

contiguous sentences. That is why this dissertation relies on humans to first identify the 

non-contiguous text units corresponding with protesters’ contentious gatherings or police-

initiated control events. 

 

Automated attempts to identify events in text have failed repeatedly. The Global Data on 

Events Language and Tone (GDELT) project is just the highest-profile example of projects 

using poor-performing automated event-identification algorithms (Leetaru and Schrodt 

2013). GDELT’s event identifying algorithm extracts just one “event” per news article, and 

it defines that “event” as the first subject-verb-object triplet to appear in the news article. 

But, subject-verb-object triplets (SVOs) do not accurately identify events. They identify 

actions. And most events encompass multiple actions. Scholars, including those on the 

GDELT team, have recognized this for some time. They just have not been able to devise a 

better automated method of identifying events since events are not reliably encoded in 

grammar and the words delimiting them often span multiple non-contiguous sentences.  

 

GDELT project director, Philip Schrodt has also lamented that GDELT’s automated event-

identification algorithm misinterprets many events. For instance, WWII memorial 

ceremonies are identified as open conflicts between European countries currently allied 

with one another, and GDELT’s event-identification algorithm reads major football/soccer 

“battles” as literal battles between countries (Leetaru and Schrodt 2013). Hanna’s review of 

data from GDELT (2014) finds that its automated event-identification algorithm misses 

major events, too, such as a march in Washington, D.C. attended by 50,000 people.5  

 

This dissertation uses a hybrid – human and machine – text analysis workflow that 

employs researchers to do the event-identification work that computers cannot, and 

algorithms to complete work computers perform rather effectively and very efficiently.  

 

                                                        

5 See Hanna’s computational social science weblog at: http://badhessian.org/2014/02/assessing-gdelt-with-

handcoded-protest-data/ 
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Data Pipeline 

 

The data displayed in the many figures throughout this dissertation started as 8,342 news 

accounts describing protester, police, and city activities relevant to the Occupy movement 

of 2011. From these accounts, trained researchers extracted text units corresponding to 

particular events of the Occupy movement. These text units were run through algorithms of 

Stanford’s CoreNLP (Natural Language Processing) to resolve coreferences and extract 

subject verb object information. Then, named persons in the text were transformed to 

‘protester,’ ‘police,’ or ‘city’ and verbs were reduced to simpler forms using researcher-

defined dictionaries. The normalized subject verb and object data in these text units were 

amplified using a procedure described below to ensure (in a way that compromises 

between Tilly’s practice and Kriesi’s (2009) wishes) that the actions of people are weighted 

relative to descriptions of event settings. Then, the underlying content of these text units 

was induced via Latent Dirichlet Allocation (topic modeling) to reveal coherent contentious 

and control performances in which protesters and police, respectively, engaged. And, 

finally, as shown in upcoming chapters, the prevalence of these performances was modeled 

as a function of city and police department variables like population and political 

liberalism, political stability, police capacity, community policing culture, and more.  

 

 

This dissertation’s data collection and processing pipeline is graphically displayed in Figure 3.1 
below.  
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Figure 3.1: Data Pipeline

 

     
Note: TUA refers to text units of/for analysis, the hand-identified text units referring to contentious 
performances or police-initiated events. SVO refers to subject-verb-object triplets, actions describing 
who is doing what (to whom). ClausIE is a clause-based information extraction module of Stanford’s 
CoreNLP, designed to extract SVO triplets. STM refers to the method of structural topic modeling and 
the R package used to perform that method. 
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Data Collection and Hand-Coding 

 

With the help of a highly-trained team of undergraduate research assistants, this 

dissertation project collected every mainstream local, regional, and national news report 

on every Occupy campaign in the U.S.  (The protocol used to find local news reports of the 

Occupy campaign is available in the Methodological Appendix A of this dissertation.) Next, 

each of these articles was stripped of formatting, dated (by its publication date), and placed 

in a Google Document folder corresponding with the news publication that published the 

account. These folders, in turn, were placed in a city folder containing all the news accounts 

for each city in which the particular Occupy campaign occurred. These meta-data (city of 

origin and publication date) enable analyses asking how the timing of events or the 

characteristics of the cities in which they were situated affected the activities occurring 

within them (described in the Research Design section above). 

 

 

From the thousands of news accounts describing Occupy-related activities, trained 

researchers extracted 5,304 text units describing contentious gatherings initiated by 

protesters and 3,405 text units describing control events initiated by police. Each text unit 

describes only one gathering or event and excludes all other article text. The words and 

phrases composing the text unit are often not contiguous in the article. For example, the 3rd 

clause of sentence 5, sentence 7, sentences 9 and 10, and the last three words of sentence 

15 could all compose one text unit that refers to a single protest march. Many articles 

included multiple text units, some about protest gatherings, others about police events, 

some about other units of interest that will be explored in other writings. (For an example 

of text unit identification by hand-coding, see Figure 3.2 below).  

 

This dissertation focuses exclusively on contentious gatherings and police-initiated events. 

These events and their corresponding text units are defined not by the actors or actions 

within them, but by the actors initiating them. Therefore, a protester-initiated gathering 

may include actions by police that include warnings, the use of barricades, arrest, or more. 

On the other hand, police-initiated raids of encampments often include protester actions 

like fleeing or resistance. Researchers were trained to recognize text units describing 
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police- or protester- initiated events as intentional, pre-meditated constellations of activity 

that did not respond directly to the actions of the other party.6 Police arrests of activists at 

an ongoing protest gathering, therefore, would be treated as activity within the protester-

initiated contentious gathering. To clarify, regular encampment activities not associated 

with a particular rally, demonstration, march or other contentious gathering, were not 

treated as contentious gatherings. So, if police showed up to an Occupy encampment to 

warn protesters about a curfew, arrest key members, or expel the entire camp, these 

premeditated police activities were treated as police-initiated events. Such distinctions 

allowed the research team to preserving information about which parties were taking 

initiative to generate conditions that might precipitate protester and police interactions or 

confrontations. 

 

The hand-coding of these text units, and thousands more describing other Occupy-related 

phenomena, required a year of effort over the Spring, Summer, and Fall of 2013. Text units 

describing police- and protester- initiated events (and other units of analysis) were hand-

coded in two waves to ensure inter-coder reliability and data validity. Compared to hand-

coding projects of similar scope, this duration is quite short. (The Dynamics of Collective 

Action project, for instance, required a decade of effort to collect data on a similar number 

of text units describing events.7) That is because hand-coding for this dissertation project 

did not require the extraction of variable and attribute data in detail.8 Instead, this project 

uses automated text analysis algorithms in sequence to extract detailed data describing the 

activities occurring within text units describing contentious gatherings and police-initiated 

events. Figure 3.2 below displays an excerpt from a news article that has been hand-coded 

to identify three separate text units for analysis (TUAs). 

 

 

 

 
                                                        

6 See Methodological Appendix A for further details about the hand-coding protocol. 

7 See The Dynamics of Collective Action project at: http://web.stanford.edu/group/collectiveaction/cgi-

bin/drupal/ 

8 Such detailed data will be extracted by crowd workers using an interface I am developing with the support 

of the Sloan Foundation, the Berkeley Institute for Data Science, The Digitial Humanities @ Berkeley, and the 

Hypothes.is Open Annotation Fund. See Appendix C for a full discussion of that work. 
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Figure 3.2: Hand-Coded Article with TUAs Identified 

 

Note: Three TUAs have been identified in this article: a police-initiated event TUA in italicized 

bold font; a protester-initiated event TUA in underlined font; and a second protester-initiated 

event TUA in UNDERLINED ALL-CAPS FONT. Each TUA corresponds with a single event. 

 

 

 

 

Amid chants of "Shame!" by demonstrators, State Police late Saturday made the 

largest group of arrests at the Occupy Albany site since THE PROTEST BEGAN 

OCT. 21. 

 

"Warm up the bus," the protesters chanted as 48 of their colleagues were arrested, 

according to a news release issued by State Police early Sunday. In comparison, 24 

people were arrested Nov. 12 the first time Occupy protesters ignored state 

instructions to leave the park before the 11 p.m. curfew. 

 

This time, by 10:30 p.m. Saturday, about 75 protesters were in the park with no 

State Police presence in sight. However, more than a dozen troopers arrived at 

the scene shortly afterward. They issued their first arrest warning at about 

10:55 p.m., five minutes before the curfew fell. A second warning that arrests 

were imminent was issued at about 11:05 p.m. After the second warning, some 

of the demonstrators dispersed throughout the park. 

 

A circle of about three dozen protesters then formed, waiting for the State 

Police to arrest them. At the urging of those in the circle, several other 

protesters returned to join them and await arrest. … The troopers began 

arresting protesters at about 11:20 p.m.  

 

[article truncated] 
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Latent Dirichlet Allocation – Topic Modeling 

 

For this dissertation, the hand-coded text units corresponding with events of the Occupy 

movement have been processed via an automated text analysis pipeline using multiple 

conventional natural language processing methods with two novel modifications. The 

resulting data are not only suitable for the questions and analyses of this dissertation, they 

have been processed very quickly without requiring the kind of painstaking hand-coding 

that sometimes stretchs on for years using traditional hand-coding. While learning to apply 

the automated methods used in this dissertation required many months of effort, anyone 

using the scripts written for this dissertation can now simply click ‘run’ and perform the 

same processing and analysis in about an hour (See Methodological Appendix A for these 

scripts). 

 

All of the analyses in upcoming chapters rely on Latent Dirichlet Allocation (LDA). Here, I 

describe LDA, often called “topic modeling,” before explaining the additional preparations 

that hand-coded event text units have undergone prior to being entered into topic 

modeling algorithms.  

 

LDA is often used with text data as a way of uncovering the underlying subject matter in 

large bodies of text without having to read all of the text. Researchers feed an LDA 

algorithm documents and the parameter K, defined as the number of topics researchers 

believe are discussed by the text. LDA delivers two forms of output. First, it returns K 

different lists of words. Each list contains every single word found across all the inputted 

documents. But each list orders these words differently such that words listed first are 

most associated with one another and most exclusive of the words topping other lists.9 

These lists of words are called “topics”, and when researchers read the first several words 

in the list, they gain an understanding of what the topic is about and generate their own 

label for the topic. This interpretive process will be familiar to those who have interpreted 

factor analysis output.  

 

                                                        

9 Other term-weighting algorithms used in this dissertation, like FREX and Lift, privilege the terms most 

exclusive to a topic relatively more than the frequency of the terms in the topic. 
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LDA algorithms also generate a second form of output indicating the distribution of these 

“topics” in each document. So, each unit of text (document)– whether it is a news article, a 

paragraph, a sentence, a tweet, or a text unit identified by hand (as in this dissertation) – 

that has been fed into the algorithm by researchers can be summarized as some percentage 

of Topic 3, Topic 5, Topic 24, etc. When trying to make sense of thousands, let alone 

hundreds of thousands of documents, topic modeling helps researchers quickly understand 

the composition of their large body (“corpus”) of documents as a mixture of several topics. 

 

LDA is often called a “generative model” because it attempts to mathematically model the 

way in which a document is written or generated in the first place. The creators of LDA 

developed a generative model of writing by imagining an author setting about to write a 

document about some number of topics. The writer begins the writing process by asking 

herself, “What percentage of this document will be about topic 1, topic2, topic 3 … topic k?” 

Anyone who has outlined a dissertation (for instance) will recognize that one does often set 

about writing with some intention to focus different proportions of the document on the 

various topics it comprises. The hypothetical writer next inventories her vocabulary, a list 

of all the unique words she could use in the document (or across several documents) and 

then asks herself, “What is the probability that each of these words appears when I am 

writing about each of the topics in my list of K topics?” According to LDA’s generative 

model, her writing process takes the following form: Beginning with the first word of the 

document and each word thereafter, she first rolls a K-sided die weighted so that the 

probability of it landing on any of its K, “topic” faces, corresponds with the distributions of 

each of those topics in the document, the answer to her first question. Given that the first 

word of the document is about Topic 3, say, she next rolls a second die unique to Topic 3. 

This die has as many faces as there are unique words in her vocabulary (defined as all the 

unique words in a corpus of documents). But this die is weighted according to the answer 

to her second question, so that terms most associated with Topic 3 are most likely to face 

up. Once these dice are cast, she commits the resulting word to her document and moves 

on to the next word of the document, performing the same procedure until the entire 

document is written.  

 

Now, no one, especially the creators of LDA, believes that New York Times articles, or any 

other documents, are actually produced through such dice games. But the modeling of 

document generation in this way allows for the mathematical reverse engineering of the 

dice in our metaphor above – the probability distributions by which terms appear in topics 

and by which those topics appear in documents. Moreover, this model allows one to 

recover these probability distributions from “bags of words,” document-term matrices 
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(where each document is a row, each column is a unique term found in the entire corpus of 

documents, and each cell is a count of how often that unique term appears in the 

document) that do not require anyone (or more to the point, a computer) to read words in 

the order they were written. Such a model makes it computationally possible to process 

large quantities of text, like the corpus on which this dissertation is based, in a reasonable 

amount of time. 

 

The process whereby our metaphorical dice are reverse-engineered is very similar in 

intuition to clustering – a method with which many readers may be familiar. A simple K-

means clustering algorithm arrays data along two dimensions (often eigenvectors of a 

larger matrix, or other dimensions specified by a researcher) and identifies K (an integer 

>1) clusters in the data, where K is also specified by the researcher. A K-means clustering 

algorithm proceeds by first assigning, at random, K points in the two-dimensional space as 

the centroids (centers) of each of the K clusters. The algorithm then assigns each datum to 

correspond with that centroid closest to it in the two-dimensional space. Next, the 

algorithm moves the previously randomly-assigned centroids to the center of the data 

assigned to it, maximizing the fit of the centroid to the data associated with it. Then, the 

algorithm iterates this process. Now that centroids have moved, it reassigns each datum to 

the centroid closest to it. Some data will keep the same centroid assignment while others 

will change. Then, as before, the position of each centroid is moved to the mean of all points 

assigned to the cluster associated with the centroid. This expectation maximization process, 

in which the algorithm designates an expectation of the final cluster to which each datum 

will be assigned and then maximizes the fit of the cluster’s centroid to those data, continues 

until no more data assignments change, and centroids are no longer moved to maximize fit.  

 

LDA, like K-means clustering, also uses an expectation maximization algorithm that iterates 

over these two steps. However, its expectation and maximization steps are a bit more 

complicated. In its expectation step, LDA generates a probability distribution specifying 

each term’s likelihood of appearing in each topic – the second of our two metaphorical dice. 

In LDA’s maximization step, it specifies each topic’s likelihood of appearing in each 

document – the first of our two metaphorical dice. As with K-means clustering, these 

expectation and maximization steps iterate until there is no more change from one 

iteration to the next. At that point the algorithm is said to have ‘converged’ and a 

researcher can begin viewing the output described above: “topics” comprising lists of terms 

ordered by their probability of appearing in the topic, and a display of topic prevalence in 

each document of the corpus, or the corpus as a whole. 
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Though this approach to summarizing documents is still new to some scholars, it has been 

used widely and successfully since it was developed in 2003, and become especially 

popular with social scientists recently (Bonilla and Grimmer 2013; DiMaggio, Nag, and Blei 

2013; King, Pan, and Roberts 2013; Laver 2000; Marshall 2013; Miller 2013; Mohr et al. 

2013; Vavliakis, Symeonidis, and Mitkas 2013; Zirn and Stuckenschmidt 2014). As a new 

method, it is still somewhat untrusted despite its efficiency tackling large text corpora. 

Detractors often point out that the number of topics, K, must be arbitrarily chosen by 

researchers. However, this is not exactly correct. Topic modeling will seek to fit any 

number of topics, K, to a corpus of data. But if those data are not accurately described by K 

topics, a model will not converge. It will just iterate endlessly, never finding a fit to the data. 

The specification of K by researchers is probably best described as ‘craft’ as opposed to ‘art’ 

or ‘science.’ This dissertation, for instance used a K=40 topic model to uncover contentious 

performances. Wary of the pitfalls of data-mining, this dissertation used a single estimate, 

based on the author’s deep reading of many text units, and the model converged quickly, so 

no other models were run.  

 

For control performances, the dissertation first sought to topic model the corpus of police-

initiated event TUAs using K=25. It was the author’s estimate, based on a reading of many 

police TUAs, that police engaged in a smaller set of performances than protesters. However, 

the initial model did not converge. A model with K set to 20 did not converge either. It was 

only at K=15, that a model converged. This, in itself, is a finding (if not a surprising one): 

police engage in a narrower range of performances compared to protesters. But, it also 

demonstrates that the choice of K is not entirely arbitrary. Topic modeling seeks to fit a 

model to real data. And, while researchers must make decisions setting the parameters by 

which those models fit the data, they cannot do so by fiat. They cannot coerce any model to 

fit any data. 

 

 

In this dissertation, LDA is used to summarize thousands of text units describing protester-

initiated contentious gatherings and police-initiated events. But to increase the likelihood 

that LDA produces topics describing similar activity by similar parties across cities, these 

text units are normalized using some old and new natural language processing approaches.  
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Preparing Event Text Units for Topic Modeling 

 

Many newcomers to topic modeling have been surprised by the quality of the output it 

generates (Grimmer and Stewart 2013; DiMaggio, Nag, Blei 2013). However, LDA is not 

without weaknesses. The method can be very sensitive to rare or exotic portions of text. 

For instance, in her dissertation work, Laura Nelson (2014) found that one of the topics 

generated by topic modeling hundreds of documents from women’s liberation publications 

focused on car maintenance. The topic was extremely rare in the corpus of documents, but 

was so unique that it could not be ‘clustered’ with other topics that made up a larger 

proportion of the corpus.  

 

Taking a warning from the experience of Nelson and others, this dissertation normalizes 

text units about Occupy activities in a few ways. First, since many of the people involved 

with Occupy campaigns bore different names, but similar positions, this dissertation uses 

custom dictionaries of named entities (people’s names and/or titles) that are reduced to 

titles (like Police Chief, Occupy spokesperson, City Manager, etc.) and further reduced to 

‘police,’ ‘protester,’ or ‘city.’ Across Occupy campaigns, these were the three major actors of 

consequence. The process of identifying named entities, called “named entity recognition,” 

and transforming them into one of the three major actor classes of the Occupy movement 

was greatly aided by another common natural language processing technique: coreference 

resolution. 

 

Coreference resolution is a process whereby pronouns are replaced with the noun to which 

they refer. If one inputs the sentence “Tanya likes ice cream and she likes pistachios” into a 

coreference resolution algorithm, it will be transformed into “Tanya likes ice cream and 

Tanya likes pistachios.” By using Stanford Parser’s (AKA CoreNLP’s) coreference resolution 

module (Lee Chang, Peirsman, Chambers, Surdeanu, & Jurafsky 2013) prior to 

implementing custom named entity recognition dictionaries, this dissertation ensures that 

nearly all (CoreNLP’s accuracy is very high but not perfect (Lee et al. 2013).) of the actors 

relevant to the Occupy movement, regardless of a news reporter’s over-use of pronouns, 

were correctly identified with one of the three parties driving Occupy campaigns’ dynamic 

interactions with cities and police. 
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With these two steps complete, a topic modeling algorithm could likely identify many 

topics of interest across the hand-coded text units corresponding with Occupy gatherings 

and events. However, inspired by the work of Charles Tilly, this dissertation adds another 

step to this text processing pipeline. Tilly (2008) recognized that reporters’ language, 

particularly their use of verbs, was rather more artful than necessary or appropriate for 

scientific analysis. Whereas scientists try to clearly define concepts and use those concepts 

consistently, writers tend to find as many ways as possible to describe similar phenomena 

as they seek to keep their writing fresh and colorful. Tilly reduced over 2000 unique verbs 

appearing in news reports describing British contentious gatherings down to 34, verbs, 

then down to 8 verbs: claim, attack, control, cheer, communicate, deliberate, enter, and 

other. The corpus of 8,342 documents examined by this dissertation included 1260 unique 

verbs describing the actions in protester-initiated contentious gatherings. Seeking to 

normalize these 1260 verbs to aid topic modeling, but worrying that excessive verb 

reduction might do violence to reality, this dissertation reduces the 1260 verbs down to 

464.10  

 

All of the above text analysis procedures are deployed to increase the likelihood that LDA 

will produce topics highlighting the similar actions of similar actors across Occupy 

campaigns. Inspired by the work of Robert Franzosi, this dissertation has developed one 

other novel technique to increase the likelihood that LDA recognizes actors and their 

activities: SVO amplification. 

 

SVO-Amplified LDA 

 

Roberto Franzosi, since at least 1998 (Franzosi 1998), has been developing a method called 

Quantitative Narrative Analysis (QNA) that seeks to focus greater researcher attention on 

the individual actions and actors that compose events of interest. The method entails the 

hand-coding of subjects, verbs, and objects (SVOs)– who does what to whom – in text, and 

then the identification of these actions with the events in which they occur. The data 

generated by Franzosi’s approach are extraordinarily rich, numerous, and close to the 

original text. Counts and graphical displays of actor/action networks enable intuitive 

analyses that Franzosi has combined to great effect with more traditional close readings. 

For instance, Franzosi’s QNA (2012) allowed him to correct a history of post-Confederacy 

                                                        

10 For an Appendix of verb transformation, please contact the author. 
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lynchings (Beck and Tolnay, 1990) that had failed to acknowledge the elements of 

racialized romantic jealousy and police complicity in White mob terror. Though 

painstaking, QNA achieves its namesake, allowing for the quantification of actions and story 

through time, and in a way that recovers the agency often lost by less granular quantitative 

approaches to events. 

 

QNA’s demonstration of the utility of SVO triplets as an analytical unit describing action 

inspired the method of SVO-amplified LDA used throughout this dissertation. As with QNA, 

SVO-amplified LDA requires the identification of SVO actions with the events in which they 

are embedded. However, the sequence of the process linking SVOs to events is reversed 

using this dissertation’s approach. Instead of identifying SVOs by hand through a close 

reading, then identifying the events in which they occurred through a second close reading 

(Franzosi’s procedure), this dissertation’s approach extracts SVOs from text units that are 

already hand-coded to be conterminous with contentious gatherings and events. Using this 

dissertation’s procedure, too, SVOs are extracted automatically using a new clause-based 

SVO extraction module of Stanford’s CoreNLP called ClausIE (Del Corro & Gemulla 2013). 

ClausIE uses grammatical rules to identify the verbs in sentences and the subjects and 

objects of those verbs (as well as their open clausal complements when applicable). 

 

Inputting the example police-initiated event text unit (for analysis) (TUA) from Figure 1 

above into ClausIE produces the output appearing in column one of Figure 2 below. Once 

the coreference resolution, named-entity recognition, and verb reduction procedures 

detailed above are applied to that output, data appear in the form shown in column two of 

Figure 2.  

 

Table 3.1: SVO Extractions From One Text Unit 

Output From CoreNLP and ClausIE 
Simplified by keyword-based 

replacements 

Subject_Verb_(verb negation)_Object_Open Clausal 

Complement 
  

the State Police_make_NA_the largest group of arrests at the 

Occupy Albany site_NA 
police_make_arrests 

NA_arrest_NA_48 of their colleagues_NA _arrest_protesters 
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This time , by 10:30 p.m. Saturday , about 75 

protesters_be_NA_NA_NA 
protesters_be_ 

more than a dozen troopers_arrive_NA_NA_NA police_arrive_ 

the 11 p.m. curfew_fall_NA_NA_NA curfew_fall 

more than a dozen troopers_issue_NA_their first arrest 

warning_NA 
police_issue_warning 

NA_issue_NA_A second warning that arrests were 

imminent_NA 
_issue_warning 

some of the demonstrators_disperse_NA_NA_NA protesters_disperse_ 

A circle of about three dozen protesters_form_NA_NA_waiting protesters_form_waiting 

A circle of about three dozen protesters_wait_NA_NA_arrest protesters_wait_arrest 

several other protesters_join_NA_the urging of those in the 

circle_NA 
protesters_join_the urging of protesters 

several other protesters_return_NA_NA_join protesters_return_join 

several other protesters_await_NA_arrest_NA protesters_wait_arrest 

more than a dozen troopers_arrest_NA_protesters who remain 

in neighboring_NA 
police_arrest_protesters 

more than a dozen troopers_begin_NA_NA_arresting police_begin_arresting 

Note: ‘NA’ is returned when ClausIE does not find an ‘Object’ or ‘Open Clausal Complement.’ 

These markers are removed, as shown in column 2 above, prior to analysis. 

 

These SVO triplets of column 2 are appended to the text units already identified by hand 

prior to topic modeling. The SVOs, therefore, are amplified in the text unit since they 

already appear once in the text unit. But, the SVO triplets, note, are conjoined with 

underscores ‘_’ so that the computer, which uses blank spaces to recognize individual 

terms, will treat each SVO triplet as a single term to be counted just as other terms like 

‘riot,’ ‘plaza,’ or ‘banners.’ With SVOs amplified in the text unit, LDA produces topics that 

are somewhat more focused on people and their activities than other incomparable 

information like weather, setting, and crowd size. Though these latter elements also figure 

in LDA’s production of topics, SVO amplification increases the likelihood that topics will 

cohere around the activities of people determining the fate of Occupy campaigns.  

 



 

    55

As demonstrated in Chapter 4, SVO-amplified LDA performs. Many of the topics identified 

through the procedure call out the sorts of contentious performances – marches, rallies, 

demonstrations, and the like – that researchers have been identifying by hand for years. 

While SVO triplets, compared to more common words like ‘protester’ or ‘police,’ are rarely 

among the most frequent terms defining a topic, commonly used term weighting 

algorithms like FREX, which balances term FRequency and term EXclusivity (in 

constructing a topic) in its ranking of terms, and ‘Lift,’ which prioritizes exclusivity in its 

ranking of terms, accentuate the SVO triplets amplified by the above procedure. When 

interpreting topics by frequent terms and those exclusive to the topic, SVO amplification 

helps researchers to interpret the activities around which a topic coheres. The high-quality 

performance of SVO-amplified LDA owes substantially to the method’s adequacy to theory. 

Contentious performances are composed of individual actions. SVO-amplified LDA privilege 

actions in the form of SVO triplets by appending them to the text describing all of the details 

of a particular event. LDA then uses the terms and SVO-triplets of that event to model topics 

that in many cases cluster co-occurring actions into performances. In the words of social 

movement theory, SVO-amplified LDA of text units bearing terms corresponding with 

protester-initiated contentious gatherings or police-initiated events produces topics that 

correspond with coherent contentious performances and control performances.  

 

Structural Topic Modeling 

 

Topics identified by SVO-amplified LDA are findings in and of themselves. They identify 

coherent and exclusive forms of activity – contentious performances and control 

performances – that may confirm or update researchers’ notions of how protest campaigns 

and protest policing unfold. But these findings also set up additional analyses. Recall that 

each text unit of this dissertation bears meta-data identifying the city hosting the gathering 

or event to which the text unit refers, and the date on which the text unit was published. 

Recall also, that LDA output includes, in addition to topic term lists, a measure of the 

prevalence of each topic in each document of a corpus. Because each text unit is linked to a 

city, topic prevalence in a particular text unit (or aggregated across text units) can be 

ascertained for a particular city or a class of cities. This modeling of topic prevalence by 

meta-data hypothesized to structure topic prevalence is known as ‘structural topic 

modeling.’ 

 

All of the ultimate analyses driving this dissertation use the method of structural topic 

modeling. In Chapters 4 and 5, structural topic modeling enables analyses showing the 
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extent to which different city-level variables shape protesters’ contentious gatherings and 

contentious performances. In Chapter 6, structural topic modeling enables analyses 

showing the extent to which city-level and police-department variables shape the policing 

of protest through control performances. 

 

Because each text unit analyzed in this dissertation includes the date on which it was 

published, structural topic models can also be used to understand how the prevalence of 

these performances varied over the duration of Occupy campaigns. Note, however, that a 

publication date is not equivalent to the date on which the event described by the text unit 

occurred. This dissertation uses the following, original, automated procedure to identify 

the date on which events described in text units occurred: First, the computer is 

programmed to search for the name of any weekday in the text unit. If the name of a day is 

found in a text unit, say ‘Tuesday,” it is next assigned the date of that Tuesday which 

occurred immediately prior to the date on which the text unit was published. If no day 

name is found in the text unit, the performances of the text unit are assigned the date one 

day prior to the publication date. Since all of the news accounts used in this data set derive 

from daily newspapers, radio, and television reports, this procedure accurately records the 

date on which the events described in text units occurred. (Note, too, that hand-coders 

distinguished text referring to future or planned events and these events were excluded 

from the current dataset.) 

 

Assigning dates to the performances described in text units purchases a great deal of 

analytical power. With both city and temporal variables included and interacted in 

structural topic models, the analyses of Chapter 5 and 6 are able to estimate not only the 

degree to which city variables and time affect the prevalence of contentious performances 

and control performances, but also how the effects of city variables on performance 

prevalence vary over the course of Occupy encampments.  

 

City and Police Variables 

The structural topic models of this dissertation estimate the prevalence of protester and 

police performances as functions of city and police variables. Hypotheses relating 

performances to city and police variables are discussed more thoroughly in the literature 

review of Chapter 2 and empirical Chapters 4, 5, and 6.  Here, I briefly describe the data 

sources and collection procedures for these variables.  
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Data on city populations was collected from the U.S. Census Bureau website. Data 

describing city and town government types was gathered primarily from the Municipal 

Year Book of 2011, published by the International City/County Management Association. 

Election data, including percent Obama vote in the 2008 election, and information about 

prior and upcoming elections were harvested from multiple local and regional sources. The 

source for each datum is stored alongside it.  

 

 

Data on police variables including ‘number of sworn officers per capita,’ ‘departmental 

budget per capita,’ ‘percentage of non-white officers,’ and the index of departments’ 

commitment to community policing philosophy were drawn from the 2007 Law 

Enforcement Management and Administration Survey (LEMAS) of U.S. police departments. 

These were the latest data available at the time of publication. One additional police 

variable, violent crime rate, was drawn from a more recent, 2011, Bureau of Justice 

Statistics (BJS) survey of police departments. Where departments were non-responsive to 

the LEMAS survey, researchers sought information from local websites and through direct 

email and phone contact with local departments. All of the sources for each datum are 

listed in a database that will be viewable to the research community once the embargo on 

this dissertation is lifted. 

 

 

Data Concerns 

Readers will note three concerns with the data of this dissertation: (1) News reports may 

not reflect reality. (2) Even if news reports do reflect reality, some events are reported 

multiple times by multiple sources, so data may indicate prevalence of event reports, not 

prevalence of events. (3) The analysis of performances over the life course of each Occupy 

campaign assumes that each campaign is independent of all the others. I address these 

three concerns, here. 

 

The strengths and weaknesses of print news data have been thoroughly discussed by a 

range of researchers (Barranco and Wisler 1999; Franzosi 1987; Myers and Caniglia 2004; 

Ortiz et al. 2005) (See, in particular, Earl, McCarthy, & Soule 2004). Critics of news data are 

concerned with biases of omission and description. Research indicates (e.g. McCarthy et al. 

1999), however, that journalists across sources can be relied upon to report the plain ‘hard 

news’ of events without many errors or embellishments. If anything, reporters are prone to 
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biases of omission. Such omissions are apparent in this dissertation’s data. Local Fox news 

affiliates, for instance, reported Occupy events at less than 20% the rate of local NBC, ABC, 

and CBS affiliates.  

 

 

The optimal strategy for overcoming biases of omission or description entails collecting 

data from as many sources as possible. This dissertation employs that very strategy, 

collecting articles on police and protester interactions for each city from Lexis Nexis and 

from all local, regional, and national news sources. Using the thorough news account 

collection protocol contained in Methodological Appendix A, trained researchers attempted 

to collect every news account of the Occupy movement that reported on events and 

activities of police, protesters, or city officials. When in doubt about a news source, these 

trained researchers included the news account in this dissertation’s corpus since the goal 

was to be as comprehensive as possible. (Future work, described in this dissertation’s 

conclusion will also include other event reports from independent media sources, weblogs, 

twitter, facebook, and police reports.) 

 

Supposing that the news accounts collected for this dissertation comprehensively and 

accurately report the contentious gatherings and events of Occupy campaigns across so 

many cities, readers might still question the extent to which succeeding chapters’ analyses 

measure the prevalence of contentious performances in reporting, not, strictly speaking, 

the prevalence of contentious performances. If some performances in some cities were 

systematically over- or under-reported, data may reflect differing media practices 

alongside differing protester and police activities. Such concerns have been anticipated and 

mitigated in this dissertation. 

 

First of all, a skeptical reader might worry that accounts of Occupy activities in New York 

City and Oakland were over-reported and are, therefore, over-represented in the data. 

Indeed, those who followed the movement in the news will remember that these two 

campaigns garnered the most national and regional attention (in addition to the local 

media attention each individual Occupy campaign received). Fortunately, most of the 

reporting on Occupy events outside the region in which they occurred was very easy to 

identify since the vast majority of such reports went out through syndicated news feeds 

like the Associated Press and Reuters. This dissertation’s hand-coders were instructed to 

hand-code duplicate articles (and even duplicate article paragraphs) for exclusion from the 
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dataset. That step alone has ensured that findings are not swamped by nationally 

syndicated articles that described Occupy campaigns in New York, Oakland, and other large 

cities. Because this step was taken, despite the fact that New York City’s OWS campaign 

kicked off the Occupy Movement, it does not lead the dataset in numbers of text units 

describing protesters’ contentious gatherings. It ranks third behind Oakland and Los 

Angeles (see Table 3.2). 

 

 

 

 

 Table 3.2 Selected Cities, TUA Counts, and POS Variable Scores 

City 
TUA 

count 

Obama 

Supporter

s Score 

(1-5) 

Political 

Instability 

Score (1-3) 

Centers of 

Power 

Score (1-3) 

Atlanta, GA 176 2 1 2 

Baltimore, MD 25 3 3 1 

Boston, MA 67 4 1 2 

Chicago, IL 160 5 1 1 

Dallas, TX 158 4 2 2 

Denver, CO 122 3 1 2 

Houston, TX 37 5 2 1 

Los Angeles, CA 258 5 2 1 

Miami, FL 51 2 1 1 

Minneapolis, MN 104 2 1 2 

Nashville, TN 62 3 2 2 

New Orleans, LA 38 2 1 1 
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New York, NY 256 5 1 1 

Oakland, CA 463 2 1 1 

Philadelphia, PA 207 5 2 1 

Phoenix, AZ 41 4 3 3 

Pittsburgh, PA 69 2 1 1 

Portland, ME 19 1 3 2 

Portland, OR 126 4 1 3 

Raleigh, NC 68 2 2 3 

Sacramento, CA 29 2 1 3 

San Diego, CA 155 4 1 1 

San Francisco, CA 195 4 3 1 

Seattle, WA 217 3 1 1 

Tampa, FL 62 2 1 1 

Washington, D.C. 95 4 1 3 

 

 

Skeptical readers might also worry that cities with multiple newspapers and local radio 

and television news outlets produced many more reports per contentious gathering or 

police-initiated event than cities with fewer news outlets. News media in large cities, like 

New York, for instance, might report 5 versions of a protest march, while a small town like 

Brattleboro, VT with only one newspaper of record might report only 1 version of its local 

protest march on the same day. However, news outlets in smaller cities and towns often 

have less news to report, and are more likely to re-report news throughout the week. It is 

very common to see newspapers in slow-news markets re-tell the story of Tuesday’s march 

as background to the story about Thursday’s demonstration. This practice is less common 

in news markets with shorter news cycles where editors are seeking to cut, not fill, 

columns.  
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Regardless, when comparing the prevalence of contentious or control performance 

prevalence across larger and smaller cities (with more or fewer media outlets, 

respectively) prevalence is calculated separately for smaller and larger cities. That is, the 

prevalence of rally performances in small cities is measured as a proportion of all activities 

in small cities, not as a proportion of performances in all cities. This dissertation, therefore, 

adopts the modest assumption that the over-reporting of events, in general, is similar 

among smaller cities and towns, similar among medium cities, and similar among larger 

cities.  

 

A skeptical reader might accept this assumption but still counter that media in differing 

cities may be systematically over-/under-report different types of performances. Indeed, 

one could imagine a reality in which some media markets, compared to others, are more 

likely to report spectacular events while ignoring smaller marches and demonstrations. 

Perhaps in larger cities, only spectacular protester and police showdowns make the news, 

while in smaller cities, any contentious gathering is a novelty interesting to reporters and 

their audiences. Or less innocently, media outlets in politically liberal environments might 

be more likely to cater to their audiences with news of Occupy (Franzosi 1987; Kriesi et al. 

1995, p. 256), while publishers in conservative markets might help their audiences ignore 

their local Occupy campaign (Gitlin 1980; Herman and Chomsky 1988; Molotch 1979; 

Parenti 1986). The former bias is likely to be controlled for by a covariate specifying city 

size.11 The latter, though, requires a covariate specifying the political 

liberalism/conservatism of a city. As sociologists studying the effects of urban environment 

on media reporting might note (Oliver and Meyer 1999), these two variables produce 

numerous downstream consequences shaping many aspects of cities including their media 

markets. Social movements scholars would point out, as well, that movements’ 

mobilizations, numbers, and trajectories are all significantly determined by the size of their 

pool of potential supporters. Throughout this dissertation, therefore, analyses include a 

variable measuring the size of each cities’ liberal community, calculated by multiplying the 

city’s/town’s population by the percentage of voters who cast ballots for Obama in the 

2008 election.  

 

But such statistical controls do not fully address the pointed critique that models 

estimating, for instance, the effect of political instability on the prevalence of contentious 

                                                        

11 Future research will marshal more data from more varied sources including independent media to assess 

this. 
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performances Targeting City Hall (Figure 5.19 Panel 1) may simply reflect media’s sense 

that these performances are more relevant nearer to elections. Moreover, this critique 

might include a concern that over-reports amplify media’s biased interest in political 

conflicts in the run-up to elections. To address these concerns, spot-checks have been 

performed to determine if media systematically over-report particular activities and if they 

do so based upon POS variables like ‘Political Instability.’  

 

These manual spot-checks entailed the review of text unit content (whenever more than 5 

text units were recorded for a single day of a local Occupy campaign) to ascertain if text 

units (a) were over-reporting the same performances on the same days, (b) if over-reports 

were systematically more common for some performances than for others, and (c) if those 

over-reports varied systematically along with POS variables like ‘Political Instability.’ 

 

As expected, there was some over-reporting of activities since different news sources 

report on the same events and the same newspapers sometimes recall prior events. 

However, this over-reporting was not as starkly duplicative as one might think if imagining 

hand-coders counting events and defining their type by hand. Topic modeling does not 

work that way. It assigns topic proportions to each TUA, but each TUA is not 'counted' as 

this or that singular ‘event type.’ As a simple illustration:   

5 TUAs about the same event on the same day often describe different aspects of the same 

event or describe the event in different levels of detail. But, these 5 TUAs are not quintuple 

counting an event as we would imagine if people were counting events by hand. Instead, 

these TUAs often include non-overlapping information, and each TUA is assigned different 

topic proportions where topics indicate the performances described in the TUAs. For 

instance, 5 TUAs about one march might describe the march in general, associated arrests, 

associated traffic battles, the march in detail, and some associated speeches. In such a case, 

the march may be "over-counted" somewhat, perhaps by a factor of 1.6, but not by a factor 

of 5. Much of the text across these TUAs is ‘counted’ as Arrests, Traffic Battles, and 

Speeches.  

 

As a concrete example, consider the 10 TUAs out of Oakland in Table 3.3 below. All but one 

of these TUAs refer to activities occurring on October 24th, 2011 and describe what 

traditional hand-coders would describe as a single event. But each focuses more or less 

attention on the contentious performances that combine into that event. These TUAs do not 

over-count a single ‘event’ by a factor of 9. They describe many facets of a day’s activities, 
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capturing the distribution of those activities more accurately than hand-coders would if 

they tried to treat the TUA as a single event to be reduced down to a description pre-

defined by researchers.  

 

Table 3.3 TUAs Describing Aspects of an Oakland Event 

8:30 p.m. protesters toward city hall after scattering when police set 

off tear gas , protesters who have gathered again at frank ogawa plaza 

are protesting again , heading down broadway on their way back to 

oakland city hall . police are not following a crowd of protesters at 

14th, but continue to stand sentry at frank h. ogawa plaza .  

gather, 

march, 

police 

stand 

protesters who have gathered again at frank h. ogawa plaza continue 

to regroup and are now returning to frank h. ogawa plaza , near where 

police deployed tear gas earlier . 10:10 p.m. protesters regroup, 

toward frank ogawa plaza  

later, 

details, 

police 

stand 

4 p.m. rally of occupy folks at 14th and madison occupy folks at 14th 

and madison 14th stayed calm in the early going . two buses filled with 

members of the santa clara police 's department in riot gear arrived on 

the scene just before 4 p.m. about 200 to 300 protesters were on 

hand chanting .  

Earlier, 

chanting, 

police back 

up arrives 

a small crowd of 40 gathered at the gated barriers erected to keep 

protesters out of the park in front of city hall shouting and spitting at 

the police line , protesters expressed their anger at what protesters 

witnessed in the early morning hours . outside city hall at about the 

same time, a rush of cops moved forward to prevent people into the 

park in front of city hall where protesters were established . one police 

with the number 87 on his helmet, pointed his rifle at the unarmed 

protesters screaming `` get back , get back ! '' a young man got on his 

knees before the police shouting , `` shoot a young man , shoot a 

young man ! '' breaking a tense moment , police pushed their way 

through the tangle of police and protesters, ordering the police to 

stand back in line and to secure the barrier with plastic ties.  

numbers, 

city hall, 

police, 

tense 

moment 

7 p.m. protesters pause at 20th and franklin for a rally in front of the 

california nurses association building. there are still at least 200 people 

in the street , blocking the intersection . at least three helicopters are 
later still 
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circling overhead .  

protesters flooded the office of mayor jean quan and the alameda 

police 's office with demands to be cited and released.  

target city 

hall 

has occupied a tent city for two weeks . the loose-knit group occupied 

the plaza , repeating instructions over and over again two weeks ago  

reference 

to previous 

camp 

establishm

ent 

estimates of protesters size throughout the evening fluctuated from 

500 to 1,000 , as protesters and police began a march that wound 

from the downtown library to the city jail and then to city center. numbers 

protesters flooded the alameda police's office with demands 

protesters be cited and released. 

demand 

release 

500 protesters initially met at the main branch of the oakland library 

at 4 p.m. chanting that protesters would `` reclaim '' frank h. ogawa 

plaza , where protesters had been camped out for about two weeks 

numbers, 

reclaim 

 

 

While the proportion of TUAs carrying only duplicative information is very low, it is worth 

noting that these TUAs are often very short as well. Across the dataset, they usually carry 

very general summary information like “Protesters marched against corporate greed on 

Tuesday.” Since they are short, they do not significantly amplify the term counts upon 

which LDA is based.  

 

To the extent that this amplification does occur, however, it may actually aid analysis. 

Future work will employ a strategy for linking counts of protesters to the performances in 

which they engage. But, on the frontier of automated text analysis, no one has yet devised a 

reliable way to do this. As a consequence, a march of dozen people could appear to be as 

significant as a march of 1200 people if they are reported upon at the same levels. If we 

adopt the reasonable assumption that larger events featuring more people engaging in 

more, and more meaningful, activity are more likely to be over-reported, this dissertation’s 
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text analytic approach to understanding police and protester interactions may actually 

benefit from some duplication of reports.  

 

That over-reporting, a skeptical reader would argue, could be detrimental however if only 

some kinds of performances are over-reported, especially if they are systematically over-

reported based upon the POS variables that are hypothesized to explain the prevalence of 

performances. A close spot-checking of the data has found that arrests do appear to be 

over-reported across the board. As other scholars have noted (Earl et al. 2004) arrest 

information is easy to come by for journalists (since it is a matter of public record) and it is 

often interesting to news readers. There is no evidence, however, that these over-reports 

vary systematically with this dissertation’s independent variables. 

 

But what of other performances? Do over-reports of those performances vary 

systematically with independent variables measuring political opportunity structures? For 

the most part, it is difficult to generate hypotheses imagining why political opportunity 

structures might influence over-reporting of specific performances. But, one can imagine 

that news outlets in cities nearing elections might play up those protest performances that 

directly target elites and (since our political process runs on money) their wealthy 

constituents. If readers direct their attention to Figure 5.19 Panel 2 in Chapter 5, they will 

notice a higher prevalence of reports highlighting contentious performances Targeting 

Banks in cities that were nearer to an election. In particular, there is a peak in Bank 

Targeting prevalence during the 18th-21st days of encampment. A skeptical reader will 

wonder whether this higher prevalence is driven by multiple events, or media 

amplification, and therefore, over-counting of events.  

 

A close inspection of the data reveals that the higher prevalence, however, seems to be 

driven by increased Bank Targeting activity in cities nearing elections, particularly in 

Bangor, ME and San Francisco, CA, not mere over-reporting. If one, inaccurately, conceives 

of performance prevalence as ‘event counting by hand-coders,’ they might point out that 

activities in San Francisco were described by 6 TUAs when they could have been described 

by 5 TUAs. (One TUA offered only a short, duplicative, summary of a Bank Targeting event 

previously reported upon.)  But given that San Francisco’s activities featured over 500 

protesters targeting four different banks over the course of four days, that skeptic would be 

hard-pressed to argue that media bias – as opposed to events on the ground – are driving 

the data displayed in Figure 5.19 Panel 2.  
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A more demanding skeptic will require more than a 4-day check of one contentious 

performance. “What about City Hall Targeting over the course of campaigns?,” they might 

ask. “Why should readers believe that protesters are savvy and target politicians vying for 

votes when, perhaps, media just want to feed the flames of electoral controversy by over-

reporting events that target city hall.” A reasonable concern. However, of 19 TUAs 

describing City Hall Targeting in cities where elections were near, only 2 of those included 

duplicate information. Separate reports describing City Hall Targeting in San Francisco 

described how protesters marched to City Hall, that the SF Board of Governors was holding 

a meeting, that protesters interrupted the meeting to make demands, that the interruption 

amounted to “heckling’’ (a report that was duplicated in another news account), that the 

mayor defended his decisions, and that the protesters numbered around 100. 

 

Again, since this dissertation’s analyses do not count events per se, but instead measure 

prevalence of performances in text, the duplication of the “heckling” report – especially 

since it comes in a single sentence – can hardly explain an over-counting of events 

substantially biasing findings. These checks (and others finding that multiple reports often 

included few, short duplications) allay concerns about systematically biased over-

reporting. The incidence of purely duplicate reporting in the corpus is low. Multiple TUAs 

describing one event often describe multiple facets of that event. To the extent that some 

TUAs do repeat information, this does not result in a gross over-counting as would occur 

using a hand-coding method, but a modest amplification of (usually very short) summary 

information. That amplification is probably helpful given that current methods do not 

permit the counting of larger and more important events as larger and more important. 

But, apart from arrest reports, the over-counting does not appear to be systematic. While it 

may introduce some noise into the data (and even help observers see more relevant 

performances), a close investigation of the most likely and worrisome form of 

systematically biased over-counting has discovered no evidence giving cause for concern. 

Readers can trust that reports of performance prevalence map onto the prevalence of 

activities as they occurred during the Occupy campaigns of 2011. 

 

The foregoing controls, and spot-checks bolster confidence in the findings of second-order 

analyses that directly compare the prevalence of performances across cities in different 

media markets. Other findings of this dissertation, however, require little or no reliance on 

the assumptions that over-reports are randomly distributed in the dataset. When studying 

the timing and sequence of Occupy campaigns’ performances in Chapter 4, for instance, 

questions center not on the relative prevalence of performances from one city to the next, 
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but on the their timing and sequence over the course of campaigns. The analyses in Chapter 

4 reveal a relatively common life course of U.S. Occupation campaigns – a stable sequence 

of different performances that, with only modest variation, occurred across the different 

cities experiencing an encampment. The timing and sequence of this life course is not 

revealed by perfect counts of events, but by the peaks and valleys of their prevalence 

through time. It matters not whether reports of protesters’ curfew disputes with police 

averaged exactly 4 or 9 in number during the 6th weekend of Occupy campaigns. It matters 

that their prevalence clearly peaked during that particular weekend compared to all other 

weekends. The same goes for other performances during the Occupy campaigns. 

 

On the subject of timing, this dissertation makes one final, strong assumption that might 

concern readers. When counting time, the analyses of this dissertation treat Day 0 as the 

first day of each local Occupy encampment. This decision entails the assumption that 

events of each Occupy campaign unfold according to local timing and dynamics. In many 

ways, this assumption should not be at all controversial. Movement campaigns are planned 

and carried out by the people in the places where rallies, demonstrations and the like 

occur. Campaigns contend with local city officials and local police. They draw support from 

local populations. They march through local streets and schedule their events in synch with 

other local happenings. Occupy, in particular, adopted an ethos that devolved authority to 

the most granular local levels.  

 

However, some might contend that Occupy was a national movement and that time should 

be counted from the beginning of the initial Occupy Wall Street movement encampment in 

New York City. Indeed, some events – a bank transfer day, a day of marches, and a partially 

successful general strike – were coordinated through national social media to occur on the 

same day regardless of when local Occupy campaigns kicked off their encampments. 

 

In fact, neither of these characterizations is entirely right or wrong. Occupy was a national 

movement with many independent local campaigns. But while the national aspects of the 

broader movement shaped the grievances, aims, and strategies animating activities on the 

ground, this dissertation is most interested in uncovering the ways that local campaigns 

interacted with local governments and local police. Those local interactions were planned 

and driven by local actors marshaling local resources and local supporters to contend with 

local governments and local police. Local governments and police, for their part, were 

responding in most cases to the real or perceived needs of their local constituents, drawing 

on their local cultural know-how and local resources to respond to local citizens setting up 



 

    68

encampments in local parks and marching through local streets. While the final closures of 

many camps were coordinated in time through a well documented conference call of 

mayors and police chiefs (Gold 2015), this fact does not at all suggest that city leaders 

developed policy preferences, out of whole cloth, on that conference call. It is much more 

likely that their independent experiences drove them to independent conclusions that the 

Occupations needed to end, and that the conference call only settled the moment when that 

end would come. 

 

Media are wont to aggregate all of the local Occupy campaign narratives into a single 

national narrative, but consider the perspectives of activists, police administrators, and city 

council members in cities across the U.S. They were in the thick of this. They spent 40 or 60 

or 80 hours a week either building a tent city within a city from nothing but enthusiasm 

and donated materials, or ensuring that buses ran on time, that garbage was being 

collected, that streets were repaired, that gang conflicts were managed, that housing 

projects were renovated, that public bonds were paid, that traffic was improved, that 

schools were in session, that neighborhood associations were appeased, the list goes on… 

and that the local Occupy campaign was managed within the boundaries of local 

constituents’ expectations regarding ‘law and order’ and freedom of speech and assembly. 

To reduce the interactions of all these people to their mere enactment of suggestions 

appearing in the op-ed pages of the New York Times, Wall Street Journal, and Twitter is to 

ignore the fact that local life and governance both exist and demand a great deal of local 

attention and local energy. 

 

Readers need not accept this dissertation’s assumption of independent local Occupy 

campaigns in the absence of alternative data, however. Appendix B displays plots of all this 

dissertation’s analyses performed using the alternative assumption that local campaigns 

were, in fact, only franchises of the original Occupy Wall Street encampment in New York 

City’s Zucotti Park. These plots model the timing and prevalence of performances treating 

Day 0 as the first day of the Zucotti encampment. Readers may compare the plots of 

performance prevalence over time in Appendix B to those in the body of the dissertation 

which show rather clear signals (steep peaks and valleys) denoting a common life course of 

Occupy campaigns driven by local factors according to local timing. Then, they may 

determine for themselves the extent to which the movement was a national, centrally 

coordinated affair. (Future work, rather than relying on an assumption of local 

independence or national command and control, will attempt to specify, through a network 

diffusion model, the extent to which both local and national dynamics defined Occupy 

campaigns’ performances.)  
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Chapter 4: The Occupy Campaigns and 

their Life Courses 

 

Readers who were in the U.S. during the fall of 2011 will remember that there were days 

and weeks when one could not turn on the television or radio, one could not open a 

newspaper, without learning about some new development of the Occupy movement. 

Thousands were marching here. Hundreds were arrested there. In this city, a supportive 

shopkeeper closed his business to join the protesters. In that rural town, a college student 

home during fall break set up a lonely tent and banner at the corner of her parents wheat 

fields.  

 

Interviews with protesters and supporters captured the heady energy of the time – 

eternally springing hope in some moments, frustration bordering on despondency in 

others. The peaks and valleys of these emotional narratives, like the rise and fall of Occupy 

activities and their interactions with cities and police, are well understood by some people 

for some locations. Consistent participants in the encampment in Cincinnati, Ohio, for 

instance, will still recall the surprisingly large rally that launched their campaign, their 

frustrations when the city denied their request for permission to camp, their peaceful 

acceptance of weeks of costly citations from police as they defied city ordinances, their 

successful demonstration targeting Fifth Third Bank, police arrests in the days after that 

event, and the disbanding of their camp in the face of so many exorbitant fines and arrests. 

Members of that movement will recall, too, their fortitude in the in the ensuing weeks, their 

determined efforts to mount legal challenges against the city, and their inspired re-

encampment rally led by the Reverend Jesse Jackson. They will likely also recall their 

feelings of failure and hopelessness when police swiftly, seemingly effortlessly, shut down 

their encampment the very next day. Such detailed narratives, across all 184 U.S. 

campaigns, however, are little known throughout the scholarly community. They are little 

known even among the thousands or millions worldwide who participated in Occupy-

related activities.  

 

Even the storytellers reporting the Occupy movement to the public, be they participants or 

journalists, typically only knew a detailed account of what happened in the one campaign 
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they observed up close, and maybe the activities in larger cities, like New York and 

Oakland, that received a great deal of news coverage. This chapter will not report a timeline 

for each of the 184 Occupy campaigns in the U.S. But by gathering and analyzing data on 

the activities of all Occupy campaigns in the U.S., it asks a question that no one has yet been 

able to ask when observing only one or two campaigns at a time: Was there a common 

pattern, or a few common patterns, to the rise and fall of Occupy campaigns’ activities? Is 

there something like a coherent occupation campaign ‘life course?’    

 

The notion of a life course is common in the fields of biology, ecology, psychology, and 

history. The concept implies that there is a ‘natural’ or ‘normal’ sequence and timing to the 

events that compose an entity’s existence from birth to death. Life course analysis entails 

describing some typical life course among a population and the mechanisms that shape it, 

then identifying divergences from that typical life course that require explanation. Most 

people would agree, for instance, that it is accurate and useful to model a human life course 

as one that includes birth, physical growth, primary socialization, puberty, secondary 

socialization, achievement of physical maturity, physical decline, and death. Equipped with 

this knowledge and the expectations it entails, one can then notice that something is ‘off’ 

when, for instance, a 24 year old has not begun puberty, then potentially identify and study 

whatever condition or mechanism has blocked the (statistically) normal unfolding of that 

individual’s life course. 

 

This chapter begins a similar life course analysis for Occupy campaigns. The identification 

of an ‘average’ Occupy campaign life course is important for two reasons. First, the key 

questions of this dissertation concern how police respond to protest campaigns. In order to 

compare police responses to multiple campaigns across multiple cities, this dissertation 

must first ascertain that Occupy campaigns’ activities were comparable. Certainly, the 

campaigns were motivated by similar grievances and tactics. But, to the extent that Occupy 

campaigns’ use of tactics varied, the analyses of police behavior in Chapters 6 and 7 require 

that such variation be captured and controlled for statistically. These are the tasks of 

Chapters 4 and 5.  

 

Second, the identification of an ‘average’ Occupy campaign life course is interesting in its 

own right to social movements scholars. Life course analysis is not entirely new in the 

study of social movements. Herbert Blumer introduced a theory of social movement 

“lifecycles” in the mid-20th century (1951, 203) suggesting that each movement underwent 

stages of “social ferment,” “popular excitement,” “formalization,” and “institutionalization.” 
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Many scholars rejected this theory, citing a number of movements that deviated from 

Blumer’s model (Jackson and Morgan 1978; Meyer and Rowan 1983; Lowi 1971; Minkoff 

1995; Zurcher and Curtis 1973). McAdam, Tarrow, and Tilly (2003) concluded that 

scholars should abandon the goal of fitting movements to a lifecycle model and focus 

attention instead on identifying the mechanisms and processes that shape social 

movements and other forms of contention.    

 

More recently, however, scholars have picked up Blumer’s ambition. Echoing Blumer, but 

allowing for more than one final stage (i.e., institutionalization), Christiansen (2009), 

defines four movement stages: “emergence,” “coalescence,” “bureaucratization,” and 

“decline.” Shultziner (2014) reorganizes these stages into three, yet broader, phases – 

“origins,” “action,” and “outcomes” – and goes on to suggest that the variables explaining 

each differ considerably. Origins often owe to social psychological factors. Actions are 

shaped by “structural and strategic factors” including the “interplay between the 

movement and its opponents.” And, outcomes are determined largely by the strategic skill 

of movement leaders and their opponents. Since each of these stages is explained by 

distinct factors, Shultziner argues that the field of contentious politics would move forward 

faster if it analyzed movements according to these stages instead of attempting 

explanations that are “too wide,” attempting to model whole movements with an expansive 

set of variables. 

 

This dissertation works within Shultziner’s agenda, addressing questions about the ‘action’ 

stage of social movements, and occupation campaigns in particular. Chapter 5, following 

Shultziner’s recommendation to focus on those variables most likely to affect the ‘action’ 

stage, explores structural factors shaping protesters’ deployment of particular contentious 

performances. 

 

The Approach and Hypotheses 

This chapter’s exploration of the ebb and flow of various Occupy performances relies on a 

set of text analysis techniques, described thoroughly in Chapter 3, that may be new to some 

social movements scholars. These methods, especially structural topic modeling, enable the 

testing of hypotheses about the existence of contentious performances and their 

prevalence and sequences (in this chapter), and their variation in light of important city-

level variables (in Chapter 5).  
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The analysis begins by testing the modest hypothesis that coherent contentious 

performances exist at all. Tilly (2008) argued in favor of this hypothesis (for his cases 

drawn from 18th and 19th century Britain) before showing how those contentious 

performances changed over time. His approach began with a principal components analysis 

of a matrix of verbs describing challengers’ activities organized by the events in which they 

occurred. By plotting these in a factor space, he was able to ‘eyeball’ clusters of verbs that 

co-occurred in events. These verbs, he ably argued, cohered as the actions defining a 

number of contentious performances from petitions to marches and property destruction. 

This chapter uses a much-updated method, structural topic modeling (LDA) applying a 

similar intuition.  

 

First, instead of extracting verbs from text and re-writing them by hand as Tilly and his 

team did (a practice risking validity and reliability error), this dissertation uses a 

grammatical parsing algorithm (described in Chapter 3) to extract subject-verb-object 

triplets (who does what to whom) from sentences about protester-initiated gatherings (e.g., 

marches, demonstrations, encampment activities, etc.). Then, instead of using a principal 

components analysis to set-up a researcher-intuited clustering of these triplets, this 

dissertation uses Latent Dirichlet Allocation (more commonly known as topic modeling) to 

allocate the action triplets into a number of coherent contentious performance ‘topics.’ (For 

a comprehensive description of these methods, see Chapter 3.) This approach reduces the 

impact of researcher error or bias. If coherent ‘topics’ describing protester actions emerge, 

they do so because the actions cohere in ways that even a computer (ignorant of all our 

sociological theories) can recognize. Moreover, the method is efficient. Work that would 

likely take years to do by hand, is completed in about an hour using LDA. 

 

If the first hypotheses are confirmed, if topic modeling does discover coherent contentious 

performances from text units describing contentious gatherings, a second class of 

hypotheses may be tested. Because the text units analyzed by this dissertation include data 

identifying the timing of the contentious gatherings to which they refer, it is possible to test 

the hypothesis that the particular performances enacted at these gatherings were 

temporally non-random, that is, that they varied over time according to some ideal-typical 

(or perhaps a few typical) life course(s).  

 

These common life courses, of course, are not totally independent of city governments and 

their policing of protest. Therefore, a third set of hypotheses – suggesting that the 
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prevalence of various contentious performances are related to the political opportunity 

structures in which they are enacted – are tested in Chapter 5.  

 

This chapter’s goal is to discover patterns in protesters’ use of contentious performances 

over the life courses of the ‘action’ stage of their campaigns. But even before reviewing 

findings identifying contentious performances, I pause to hypothesize the sorts of 

contentious performances LDA might discover. Though topic modeling, requiring so little 

input from researchers, is surely a very inductive approach to the identification of 

contentious performances, it may be useful for a certain kind of hypothesis testing, the sine 

qua non of the deductive scientific approach. Specifically, based on close readings of several 

hundred news accounts about the Occupy campaigns, I hypothesize that a topic modeling 

algorithm will recover evidence of the stable and well-rehearsed ‘social movement’ 

performances that developed throughout the 19th century in Britain – marches, 

demonstrations, and rallies. 

 

Hypothesis 4.1a-c: Topic modeling will recover evidence of stable and well-rehearsed 

‘social movement’ performances including (a) marches, (b) demonstrations, and (c) 

rallies.  

 

In addition to these traditional social movements performances, the algorithm, is also 

hypothesized to identify other performances that were common to the Occupy movement 

like large-scale encampment and occupation of public spaces. This performance had not 

been common in the United States since 1932 when 17,000 WWI veterans and their 

families occupied a portion of under-utilized land in Washington D.C. to demand prompt 

payment of unpaid war-time bonuses.  

 

Hypothesis 4.2: Topic modeling will recover evidence of contentious performances 

unique to urban occupation campaigns including encampment in public spaces. 

 

Most observers agree that Occupy’s signature contentious performance, occupation, drew 

inspiration from the occupation of Tahrir Square by Egyptian students, Liberals, and 

opponents of the Mubarak regime. Indeed, the July 13th issue of Adbusters Magazine calling 

for the September 17th occupation of New York City’s financial district specifically cites the 

occupation of Tahrir Square as a model to be emulated. The diffusion of this performance 
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to the U.S. has been described and analyzed by many popular and scholarly authors 

(Goodman 2011; Keating 2011; Gould-Wartofsky 2015). But, other (apparently new) 

contentious performances grew out of the U.S. Occupy movement as well.  

 

U.S. Occupiers developed new contentious performances like the ‘bank-transfer day,’ 

featuring protesters encouraging customers of large and irresponsible banks to transfer 

their accounts to local banks and credit unions in order to punish and reduce the power of 

the very banks that precipitated the financial crisis of 2007-2008. Along these, lines, it is 

also hypothesized that topic modeling will recover frequent references to protester 

attempts to directly block access to banks.  

 

Hypothesis 4.3a-b: Topic modeling will recover evidence of contentious performances 

targeting banks, including bank transfer days and the blocking of entrances to banks. 

 

A mature literature on social movements suggests that social movements’ contentious 

performances often become more disruptive over the course of social movement 

campaigns. (See della Porta and Diani 2009 for a review.) Based on this literature and a 

close readings of hundreds of news articles about the Occupy movement, I hypothesize that 

protesters will engage in performances that use the tactic of blocking sidewalks and streets 

more often as campaigns progress. 

 

Hypothesis 4.4a-b: Topic modeling will recover evidence of contentious performances 

blocking sidewalks and streets, and (b) these performances will happen more later in 

campaigns once performances have escalate to use more disruptive tactics.  

 

Once these contentious performances are arrayed across a temporal axis, a picture of life 

courses will begin to emerge. I further hypothesize, therefore, that the prevalence of camp 

establishment activities will peak early in campaigns, followed by traditional social movements 

performances, then more disruptive performances. 

 

Hypothesis 4.5a-b: Topic modeling of performances through time will recover (a) 

evidence of an occupation campaign life course including (b) a sequence of activity 
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beginning with camp establishment, performances of the traditional social movements’ 

repertoire, and later more disruptive performances. 

 

 

Results – Contentious Performances 

 

Topic modeling algorithms generate two forms of output. First, they offer a list of ranked 

and weighted terms for each topic. Researchers interpret these term lists to determine 

what a topic is about. The algorithm also outputs a measure of the prevalence of each topic 

in each document. This output allows a researcher to understand what a given document is 

about without reading every last word of it. In this case, terms include information about 

actions that constitute topics of contentious performance, which, in turn, constitute text 

units describing contentious gatherings. Finally the prevalence of contentious performances 

across gatherings can be modeled through time (in this chapter) and in light of city-level 

variables (in Chapter 5). 

 

The analysis of results begins with an interpretation of performance topics by the action 

terms they comprise. Then, analysis focuses on the prevalence of topic performances and 

types of contentious gathering through time – an analysis of how performances and 

gatherings do or do not constitute an Occupy movement life course.  

 

Table 4.1, below, lists the top 3 most frequent terms for all 40 topics discovered using LDA 

topic modeling (described in Chapter 3). The line extending from the left to right indicates 

the prevalence of the topic in the entire corpus. Topic 38, about weekend protest activities, 

constitutes 11% of the corpus. Readers should take caution. This does not mean that 11% 

of activities related to the Occupy movement took place on weekends. It means that, 

according to the model, 11% of the reporting about Occupy protester-initiated events 

covered performances and gatherings that occurred on weekends. In general, data 

reported here are data on reports of events not events themselves. Some events may be 

reported multiple times while others are only reported once. This limitation of the data will 

be overcome in future work (see Chapter 7), but does not pose major complications to the 

analyses of this dissertation (See ‘Data Concerns in Chapter 3 for more information). For 

now – as will be demonstrated below – reports of events, performances and gatherings still 

offer useful indicators of the relative rise and fall of Occupy activities through time.  
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Table 4.1: Topic Terms and their Proportions in Corpus

 

 

 

Of these 40 topics, 13 are of particular interest.  Their associated terms are listed in Table 

4.2 along with a label I generated for each topic. (A complete listing of all topics’ terms is 

available in Appendix B.) Of the 26 topics not included, many, like Topic 32 (about Dallas 

protest organizer Stephen Benavides) and Topic 15 referred to a very specific person or 

incident in a specific city. Such topics are useful in that they identify incidents that do not 
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generalize across Occupy campaigns, incidents that can be systematically excluded from 

analysis. Other topics, like Topic 2, seem, at first glance to be about general phenomena – 

“people, rally, speeches.” But closer examination reveals that they referred, again, to some 

specific event. Topic correlations are visualized in Figure 4.1, below.  

 

 

 

Figure 4.1: Graphical Display of Topic Correlations 

 

 

Here, we see that Topic 2, along with Topics 31, 17, 18, and 3 are not closely related to 

other topics. Since they are both distant from other topics and occur rarely in the corpus, 

the analyses reported here treat them as rare events, incomparable to others and 

inexplicable by statistical approaches. They are ignored in the analyses here. Other topics 

are excluded because they are of no particular interest to researchers. For instance, Topic 

11 is rather prevalent across documents and rather central in the network graph above. 

But Topic 11 captures sentences and clauses that inform news readers how long the local 

encampment has existed. Since researchers are interested in ongoing events, not several 

redundant reports of when a local Occupy campaign first established its camp, Topic 11 is 
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most useful in that it captures information researchers can easily exclude from analysis. 

Still other topics, like Topic 28 (about the relocation of camps) may merit future analysis, 

but are less relevant to the questions posed by this dissertation. 

 

The analysis of the life courses of Occupy campaigns in the United States focuses on 13 

topics discovered by the LDA model. Several of these topics, as hypothesized, cohere into 

well-known protest performances. Topic 1 represents activities in which “many” “show” 

“support” through the classic contentious performance called “demonstration.”  

 

Topic 5 represents “protesters” “marching,” often in the “afternoon” and “evening” in some 

“downtown” location, and usually on “weekdays.” Topic 12 represents “Occupy” 

“movement” “members” “rallying” in “numbers.” In addition to the classic contentious 

performances – demonstrations, marches, and rallies – Occupy movements were notable 

for “gathering” in “parks” and “squares,” more often on “weekends” (Topic 38), and 

establishing “Encampments” of “tents” in city “plazas” (Topic 19).  

 

Table 4.2: Topic Term Lists for Topics of Interest 

 

Topic 1 Top Words:  Demonstrations 

 Highest Probability: demonstration, many, show, showed, man, one, indep, smaller, handful, support  

 
FREX: demonstration, showed, demonstration_, squid, latest, goldman, smaller, show, sachs, 

protesters_show_  

 
Lift: _make_at, -take, alberta, authorization, bellagio, belmont, breitbart, canada, channelside, 

clipboard  

Topic 4 Top Words: Sidewalk Contestation 

 
Highest Probability: stay, sidewalk, come, protesters_stay_, protesters_come_, eight, stood, remain, 

margaret, dozen  

 
FREX: schucker, walden, dealings, speculative, wrought, margaret, protesters_stay_, attributed, stay, 

sidewalk  
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Lift: _allow_p.m., _allow_police_stay, _allow_some_do, _appear_allowing, _arrest_shucker_, 

_be_talk, _build_hours_, _damage_hours_, _decide_not/rb_happen_, _do_construction_  

Topic 5 Top Words: Weekday Marching 

 
Highest Probability: cityname, xweekday, downtown, march, protested, afternoon, 

protesters_march_, protesting, around, evening  

 
FREX: downtown, march, cityname, protested, xweekday, protesters_march_, afternoon, evening, 

protesting, sunttrust  

 
Lift: _cite_protesters_disperse, _join_cityname, _march_the, _move_show, _show_solidarity_, 

's_march_bring, afternoon_form_, ame, anti-drilling, attendees_hold_protesters_  

Topic 7 Top Words: Arrests 

 
Highest Probability: arrested, arrest, police, protesters, -year-old, _arrest_protesters_, two, one, tell, 

trespassing  

 
FREX: _arrest_protesters_, pregnant, arrested, -year-old, arrest, custody, comcast, linked, sit, 

trespassing  

 
Lift: _arrest_anyone, _arrest_both_, _arrest_cityname, _arrest_eight_, _arrest_eleven, 

_arrest_five_, _arrest_four_, _arrest_members, _arrest_nine, _arrest_p  

Topic 12 Top Words: Rallies 

 Highest Probability: occupy, rally, movement, members, home, l.., local, rallied, number, national  

 FREX: occupy, l.., movement, rallied, home, foreclosed, protesters_rally_, rally, homes, okc  

 Lift: assn., bobby, bullock, carrefour, elk, hard-hit, hull, jan., legba, lifes  

Topic 19 Top Words: Encampment Activities 

 Highest Probability: plaza, camp, tents, set, encampment, two, center, weeks, camping, civic  

 
FREX: protesters_camp_, _camp_protesters_, protesters_begin_camping, kitchen, tents, tents_, 

camp, weeks, camped, encamped  

 
Lift: _camp_, _camp_occupy_, _camp_protesters_venting, _pitch_a, booths, city_spring_, 
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cityname_camp_, communal, crunchy, dewitt  

  

Topic 22 Top Words: Traffic Battles 

 Highest Probability: police, protesters, tell, polices, police_tell_, said, traffic, block, pepper, spray  

 FREX: pepper, spray, police_tell_, blocked, polices, police, spray_, bicycles, suspects, police_be_  

 
Lift: _arrest_suspects_, _arrest_that, _close_broad, _dismiss_that, _dismiss_video_, _free_one, 

_injure_several_, _join_others_, _move_suspects_, _redirect_traffic_causing  

Topic 24 Top Words: Bank Targeting 

 Highest Probability: xbank, bank, protesters, branch, indep, banks, financial, california, close, district  

 FREX: pnc, institutions, coral, macdonald, accounts_, branch, bank, xbank, banks, financial  

 
Lift: _arrest_bank, _arrest_nobody_, _arrest_sarah, _arrest_they_, _ask_protesters_wear, 

_bail_xbank, _chant_protesters_, _charge_six, _close_cityname, _close_his  

Topic 27 Top Words: City Hall Targeting 

 Highest Probability: city, hall, front, nov., city_tell_, lawn, xweekday, support, event, old  

 FREX: bagby, tech, hall, city, cityname-style, jazz, roommate, alive, duffie, jacket  

 
Lift: alliances, angelenos, eaton, jeers, natalie, _allow_their, _ask_a, _ask_city_, _assign_the, 

_block_those  

Topic 29 Top Words: Curfew Disputes 

 Highest Probability: police, leave, p.m., park, arrested, protesters, arrest, refused, grant, tell  

 
FREX: protesters_block_leave, grant, desks, leave, protesters_leave_, closing, refused, judge, 

congress, ordinance  

 
Lift: balaklava, cta, innocent, _agree_the, _allow_dozens_continue, _allow_not/rb_the, 

_arrest_goodner, _arrest_hours, _arrest_its, _arrest_martinez_trying  
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Topic 35 Top Words: Labor Alliances 

 
Highest Probability: union, groups, members, jobs, protesters, indep, employees, labor, human, 

international  

 FREX: seiu, lori, kirby, dad, jobs, union, international, human, organizations, coalition  

 
Lift: _arrest_jenn, _arrest_n't/rb_apd_, _ask_some_, _bind_n't/rb_the, _charge_jenn, 

_cite_several_, _claim_a, _confuse_protesters_, _dismiss_one, _drive_many_join  

Topic 38 Top Words: Weekend Gatherings 

 
Highest Probability: protesters, xweekendday, park, square, gathered, protesters_be_, gather, xpark, 

second, take  

 
FREX: xpark, xweekendday, park, gather, protesters_be_, square, protesters_gather_, gathered, 

protesters, second  

 
Lift: _settle_, _tell_protesters_leave, angelia, argument_flare_, camping_march_, christians, 

city_occupy_protesters_, city-sanctioned, cityname_have_a, comfort  

Topic 40 Top Words: Standoffs with Riot Gear 

 Highest Probability: protesters, police, riot, gear, protester, move, one, deadline, cops, order  

 FREX: gear, rainey, deadline, riot, deputies, perimeter, standoff, tension, midnight, motorcycle  

 
Lift: blaring, drigger, maalox, prez, uphold, _arrest_just, _arrest_protesters_blocking, 

_arrest_update_, _catch_protesters_, _charge_three  

Note: Each Topic is represented by three lists. ‘Highest Prob’ lists the terms most frequently 

appearing in the topic. FREX lists terms that are frequent and exclusive to the topic (not used 

very frequently in other topics). ‘Lift’ lists terms that are most exclusive to the topic whether or 

not they are used frequently in the topic.  

 

 

 

LDA not only captures all of these activities as topics, it also captures activities targeting 

particular entities like City Hall, banks, and commercial shipping. Topic 27 identifies 
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“events” on the “front” “lawn” of “City Hall” and real-time city responses (i.e. “city_tell”) to 

these events. Topic 24, meanwhile, highlights “protesters” attempts to “close” down 

“bank” “branches” and encourage their fellow citizens to “close” their accounts with those 

banks 

 

LDA of protester-event TUAs even captured a topic describing the very important inclusion 

of Labor unions in the Occupy movement. Topic 35 describes the participation of 

“members” of “union” and “labor” “groups” in “protesters” activities.  

 

Though a full accounting of police responses to Occupy movement activities begins in 

Chapter 6 (the immediate analyses focus on events initiated by Occupy protesters), the 

activities described in LDA topics did not escape the attention or responses of local police 

departments. Consequently, LDA also modeled topics focusing on protester and police 

contests over sidewalk space, curfews, and street blocking, and topics about arrests and 

even standoffs with police in riot gear.  

 

Topic 4 discusses whether police should “allow” “protesters” to “come” to, “stay” on, or 

“remain” on “sidewalks.” Topic 29 focuses on curfew disputes. As many observers of the 

Occupy movement know, “protesters” who “refused” to comply with “judge’s” orders or 

city “ordinances” requiring them to “leave” “parks” in the “p.m.” were often “arrested” by 

“police.” Topic 22 reveals that police showed even less tolerance for protesters attempts’ 

to “block” or “redirect” “traffic.” Such contentious performances often attracted multiple 

“police” warnings and even the use of “pepper” “spray.”   

 

As a result of these and other actions, police often resorted to “arresting” “protesters,” the 

obvious focus of Topic 7. In other cases, police elected to show force with or without 

arresting protesters. Topic 40 describes events in which “police” set up around the 

“perimeter” of “protesters” with “motorcycles” and “riot gear” and engaged in “tense” 

“standoffs,” often in the anticipation of some “protester” “deadline” to follow a “police” 

“order.”  

 

The discovery of all of these topics suggests that LDA over TUAs can successfully identify 

topics/performances of interest to researchers. Next, this chapter explores the prevalence 
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of these topics over time to reveal if and how they constitute an Occupy movement life 

course.  

 

Initial Hypotheses Confirmed 

 

The discovery of contentious performances using topic modeling largely confirms the 

hypotheses above. Without effortful hand-coding, the text processing described in Chapter 

3 was able to recover evidence of stable and well-rehearsed ‘social movement’ 

performances including (a) marches, (b) demonstrations, and (c) rallies, confirming 

Hypotheses 4.1a-c. Results also confirmed Hypothesis 4.2.  Topic modeling identified 

contentious performances unique to urban occupation campaigns including encampment 

in public spaces. Topic modeling also confirmed Hypotheses 4.3a-b. It recovered evidence 

of contentious performances targeting banks. However, the method was not able to 

distinguish between bank transfer days and the blocking of entrances to banks. Finally, 

topic modeling also confirmed Hypothesis 4.4a, recovering evidence of contentious 

performances like blocking sidewalks and streets. None of these results are substantively 

earth-shattering. Readers should expect that these data appear in topic modeling. But, they 

are highlighted here to show the robustness of the topic modeling approach. Not only is it 

efficient, it is accurately identifies the sorts of contentious performances we would expect 

hand-coders to find through a much more painstaking process. 

 

Results – Life Course Analysis 

 

Life course analyses predict that activities of individuals, (here, Occupy campaigns) are not 

uniform through time, but ordered in some coherent sequence of stages. The analyses that 

follow, therefore, will test two null hypotheses and two more positive hypotheses. First, I 

expect analyses to reject the simplest null hypothesis predicting that Occupy activities are 

evenly distributed through time. A slightly less simple null hypothesis might predict that 

the activities of each campaign follow some sequence, but that these sequences are unique 

to each campaign and distributed such that no aggregate pattern of activity will be 

discernable. I expect the data, too, to reject this null hypothesis. More ambitiously, make 

the following hypotheses:  
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Hypothesis 4.5a-b: Topic modeling of performances through time will recover (a) 

evidence of an occupation campaign life course including (b) a sequence of activity 

beginning with camp establishment, performances of the traditional social 

movements’ repertoire, and later more disruptive performances. 

 

The life course analysis is aided by Figures 4.2 – 4.7, which visualize performance 

prevalence over time for a few topics at a time. For each of these visualizations, the time 

axis (x) begins 50 days prior to the establishment of the local campaigns’ encampment and 

carries forward until 160 days after encampment started.12 Readers will notice that each 

topic’s prevalence in the corpus is visualized with 3 lines. The outer two lines indicate the 

bounds of the 95% confidence interval for each estimate of topic prevalence (the middle 

line) by day. Since fewer events occurred at the beginning and ends of each campaign, these 

confidence intervals are rather large for most topics/performances at the extremes of the 

time period under analysis. As a general rule for interpreting Figures throughout this 

dissertation, readers should ignore portions of the plots with very large confidence 

intervals (standard errors).  

 

The equations used to estimate and plot predicted performance (topic) prevalence as a 

function of city and time variables are described in detail in the Methodological Appendix A 

and adhere to the assumptions of general linear regression models. The models behind 

Figures 4.2 – 4.7 estimate, predict, and display topic prevalence for the corpus of text units 

describing protester-initiated contentious gatherings. These models estimate 

��, ��, ��, … �� using the following equation: 

 

 

� = 
�� +  ���� + ���� + ���� + ⋯ ���� +  �  

 

 

                                                        

12 The range of the temporal axis is defined by the data itself. All of the text units in the corpus describe 

contentious gatherings that occurred between 50 days prior and 160 days after the start of the local campaign.  
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Figures 4.2 – 4.7 then predict and display � across (the duration of Occupy campaings) 
 

while holding ��, ��, �� (describing the number of Obama supporters, number of power 

centers, and stability of political alliances) at their means.  

 

Life course analysis begins with a broad overview of Occupy campaigns’ most common (or 

at least most commonly reported) activities. Figure 4.2, below, displays the prevalence of 

gatherings, marches, and encampment activities. As one might expect, reports of activities 

at Occupy encampments – including the institutionalization of regular General Assembly 

meetings, expansion of tents and dwellings, creation of Occupy libraries and kitchens, and 

more – peaked around the zero hour of encampments’ starts, dipped momentarily and rose 

rather steadily over the duration of each camps existence.  

 

Observing the prevalence of ‘Weekend Gatherings’ through time, it appears that most 

camps’ beginnings – like in the case of Cincinnati, mentioned above – were preceded by 

large gatherings on the weekends prior to a camp’s creation. These large events – rallies 

and demonstrations featuring speakers, local artists, musicians, and notables – continued 

throughout campaigns, but, on average, were overtaken in prevalence by regular camp 

activities around week nine of the encampment. The most stable of Occupiers’ contentious 

performances is also the best established in the social movements repertoire: marching. Of 

all the activities protesters engaged in, marching was the one they performed with the 

most consistency from the beginning to the end of their campaigns. This third most 

prevalent performance (marching) was a mainstay of the movement. 
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Figure 4.2 – Weekend Gatherings, Encampment Activities, Weekday Marches

 

 

Note: Predicted prevalence of Weekend Gathering, Weekday Marching, and Encampment 

Activities performances by day of encampment across the full corpus of text units describing 

protester-initiated contentious gatherings. All POS variables (number of liberals, number of 

power centers, and political instability) are held at their means. 

 

With this overview in mind, Figure 4.3 explores more specific contentious performances, 

Rallies and Demonstrations. Though these performances are rather similar in that they 

both feature protesters staying in one location (as opposed to marching), they differ in 

their intentions. Demonstrations are usually directed at some external target, often 

bystanders and passersby, sometimes particular government or media targets. The 

audience of protesters speaking and performing at rallies, on the other hand, is composed 

of other protesters. Rallies are designed to motivate and excite existing and new protest 

members, preparing them to engage in upcoming activities or further identify with 

movement goals. Given this motivation for rallies, it makes sense that they would increase 

in duration over the course of a campaign, as shown in Figure 4.3. 
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Demonstrations (or the reporting thereof) were most common near the beginnings and 

ends of campaigns. The use of demonstration at the beginning of a campaign to clarify 

claims and raise pressure on external targets does not beg for explanation. Given that many 

activities were being channeled into maintaining the life of Occupy encampments, it is not 

surprising, either, that demonstrations’ prevalence attenuated after kicking off Occupy 

campaigns. The later surge in demonstrations is curious, however and its potential cause is 

explored more fully in Chapter 7. 

 

If rallies, unlike demonstrations, are designed to invigorate the faithful, observers should 

expect that they increase in prevalence when new members are incorporated into the 

movement. This is, in fact, exactly what we see in Figure 4.3. Ignoring the noisy data prior 

to camp establishment (Day 0), readers will note a peak in the ‘Labor Alliances’ topic three 

weeks into Occupy campaigns. This is a moment, many will recall, when many labor unions 

were deciding whether and how to join forces with the Occupy movement. After some 

shuffling of feet, a number of unions joined their local Occupy campaigns in the succeeding 

weeks. By Day 50, many labor unions were shoulder to shoulder with Occupy protesters 

enacting a social movements performance they had rehearsed for decades: the Rally.  

 

  

Figure 4.3 – Rallies, Demonstrations, and Labor Alliances
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Note: Predicted prevalence of Rallies, Demonstrations, and Labor Alliances performances by day 

of encampment across the full corpus of text units describing protester-initiated contentious 

gatherings. All POS variables (number of liberals, number of power centers, and political 

instability) are held at their means. 

 

Just as demonstrations are distinguished from rallies by the audiences they target, other 

contentious performances may also be identified by their targets. LDA discovered two 

topics of contentious performance by their association with their primary targets: City 

Halls and Banks. As shown in Figure 4.4 below, Occupy campaigns (in the aggregate) kept 

steady pressure on City Halls across the United States. Actions targeting banks were more 

prevalent near the beginnings of campaigns. In some cases, these actions involved 

protesters sitting in the lobbies of bank branches, or setting up picket lines immediately 

outside their doors. In others, protesters encouraged bank customers to transfer their 

accounts to local credit unions. In any case, these activities (or at least reporting on them) 

attenuated over time.  

 

Figure 4.4 – City Hall Targeting and Bank Targeting

 
Note: Predicted prevalence of City Hall Targeting and Bank Targeting performances by day of 

encampment across the full corpus of text units describing protester-initiated contentious 
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gatherings. All POS variables (number of liberals, number of power centers, and political 

instability) are held at their means. 

 

 

Neither these, nor other protester actions, occurred in a vacuum as the analyses of this 

chapter so far imply. It is somewhat disingenuous, in fact, to write of Occupy life courses 

without any reference to the police forces with which they contend. Indeed, a primary goal 

of this dissertation is to tease out the interactive relationships between police and 

protesters. This chapter and the next were designed to establish a baseline understanding 

of protester activity absent police-initiated events – an understanding to be corrected in 

later chapters. But, even before incorporating police data, LDA has refused to participate in 

the false abstraction of “protester activity” from “police activity.” It is just as well.  

 

Figure 4.5 shows that some of Occupy’s contentious performances cannot be treated as 

protester-only behavior. These topics – related to police and protester contestation over 

sidewalk space, disputes about curfews, and battles over protester disruption of traffic – 

show that some protester activities, no matter how peaceful, consistently trigger police 

reactions. All of these topics involve disputable boundaries, “lines in the sand” that either 

police or protesters can decide to cross. Is the sidewalk public property open for civic 

activity including the confrontation of passersby, or is it a thoroughfare for foot traffic not 

to be blocked? Are curfews legal and enforceable, and under what circumstances are they 

worth enforcing?  “Whose streets? Our streets!”  

 

While other contentious performances center on winning or energizing new members, or 

targeting changes in the behavior of people (governments and banks) with the power to 

favorably respond to claims, activities identified by these topics involve direct 

confrontations with police about what constitutes reasonable disruptive action, about what 

constitutes civil disobedience vs. chaos. Observers and participants in the Occupy 

movement may recognize the pattern below. Sidewalk contestation, though resulting in few 

major clashes or arrests were a common way for police and protesters to attempt to assert 

their wills with one another. At no point, from the beginning to the end of the movement, 

did traffic disruption fail to garner a police response. As demonstrators in Seattle could 

attest (They tangled with police in the streets on days 10, 32, and 45 of their campaign.) 

police consistently cleared blocked intersections and roadways, whether through 



 

    90

warnings, arrests or pepper spray.  On the other hand, curfew violations, for the early part 

of the movement, were generally not strictly enforced by police.   

 

Figure 4.5 – Sidewalk Contestation, Curfew Disputes, Traffic Battles

 

Note: Predicted prevalence of Sidewalk Contestation, Curfew Disputes, and Traffic Battles 

performances by day of encampment across the full corpus of text units describing protester-

initiated contentious gatherings. All POS variables (number of liberals, number of power centers, 

and political instability) are held at their means. 

 

 

 

While police in Cincinnati worked out a system whereby protesters lined up to receive 

nearly daily citations for curfew violations, many police departments behaved more like 

police in St. Louis. There, police had overlooked curfew violations for the first 4 weeks of 

the local encampment. Then, they began to threaten enforcement of curfew orders. And 

finally, in week 6, they forced the eviction of campers, citing the city’s curfew ordinance. 

This rather common pattern is clear in Figures 4.5, 4.6, and 4.7.  Curfew disputes hit their 
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peak 4 to 5 weeks into encampment. Figure 4.6 shows how those disputes resolved in most 

cases: with arrests in week 6 and greater use and threat of force by police in weeks 7 and 8. 

 

Figure 4.6 – Arrests, Standoffs with Riot Gear

 

Note: Predicted prevalence of Arrests and Standoffs with Riot Gear performances by day of 

encampment across the full corpus of text units describing protester-initiated contentious 

gatherings. All POS variables (number of liberals, number of power centers, and political 

instability) are held at their means 

 

The escalation of police and protester mutual disdain is apparent in Figure 4.7, below. 

Police refuse to tolerate traffic disruption from Day 1. By the end of the first week of each 

encampment, rolling debates about sidewalks have begun. By the third weekend of the 

encampment, local police are warning protesters that curfew enforcement is a possibility. 

They show their willingness to enforce curfew orders in the fifth weekend, arresting 

protesters en masse in the sixth weekend. By the seventh weekend, many police 

departments deploy horse-mounted police and skirmish lines of riot police to show their 

resolve to prevent protesters from retaking the ground they had lost in weeks five and six.    
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Figure 4.7 – Policing Responses to Occupy Performances

 

Note: Predicted prevalence of Sidewalk Contestation, Curfew Disputes, Traffic Battles, Arrests 

and Standoffs with Riot Gear performances by day of encampment across the full corpus of text 

units describing protester-initiated contentious gatherings. All POS variables (number of liberals, 

number of power centers, and political instability) are held at their means 

 

 

Discussion 

 

These aggregate data, of course, cannot describe the details of the interactions between 

police and protesters across all US Occupy encampments. The data compiled for these 
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analyses do not even include data on events initiated by police (the subject of Chapter 6). 

But even from these preliminary analyses, a number of things are clear: 

 

• The null hypotheses – that Occupy campaign activities were invariant over time 

(either individually or in the aggregate) – are incorrect. 

• Occupy campaigns’ contentious performances changed with the needs of the 

movement. The energy and participation of early demonstrations and rallies were 

channeled into building Encampments. As new members (like labor unions) joined 

the movement they were welcomed with Rallies (likely) designed to fortify their 

identification with the movement.  

• The life courses of Occupy campaigns were, in some ways, significantly altered by 

police interventions. Energy was diverted into disputes about the physical and 

temporal boundaries enclosing the movement – sidewalks, curfews, and roadways.  

 

These findings largely confirm Hypotheses 4.5 and support Hypothesis 6.x, later. But one 

detail of the life course hypotheses stated above appears to be at least partially incorrect. I 

had hypothesized that protesters would begin their activities with rather innocuous 

performances common to the traditional social movements repertoire (rallies, 

demonstrations and the like), and only escalate into more disruptive performances over 

time. This hypothesis appears to have been mistaken when it comes to performances 

including Traffic Battles with police. Though these actions did rise slightly over the course 

of Occupy campaigns, they appear to have been relatively common even in the beginning of 

the movement. The early use of street blocking defies the hypothesis that disruption was 

absent prior to any escalation of conflict with local police. The implications of this will be 

discussed further in Chapters 6 and 7.  

 

 

Variations in Life Courses? 

 

While the plots above show what Occupy campaigns were doing in the aggregate, one 

should not conclude that each campaign experienced an identical narrative.  

 



 

    94

There are many obvious ways that city variation might affect variation in these life courses. 

Large cities, for instance, house more, liberal, and more liberal, people than their smaller 

counterparts. In larger cities, therefore, the pool of potential Occupy activists and allies is 

significantly larger. Did this play a role in the prevalence of Occupy activities (or reports 

thereof)? 

 

Figures 4.8 – 4.11 below, show topic/performance prevalence for towns and cities with 

large or small pools of potential Occupy activists. The pool of potential supporters is 

calculated by multiplying the population of the city or town by the percentage of voters 

who voted for Obama in the 2008 election. This pool measure, therefore, focuses observers’ 

attention on the size of a city and its political liberality at the same time. (It also controls for 

reporting biases likely to emerge in differing media markets, as explained in Chapter 3.)   

 

Figures 4.8 – 5.8 display a predicted performance prevalence � across three different 

values of one � (e.g. �� for 
 while holding the other � coefficients (e.g.  ��, �� at their 

means. All of these figures rely on the same general equation, below, and are described in 

further detail in the Methodological Appendix: 

 

� = 
�� +  ���� + ���� + ���� + ⋯ ���� +  �  

 

 

The 3 panels of Figure 4.8 show the prevalence of Weekend Gatherings, Encampment 

Activities, and Weekday Marches, respectively. Perhaps surprisingly, smaller, less liberal 

populations appear, at first glance, to have been more active than their counterparts in 

larger, more liberal cities. Note, however, that these differences are not statistically 

significant and may only represent that a higher proportion of local reporting focused on 

these activities. (Readers can assess whether the differences between blue and red lines 

are statistically significant by noting whether the middle line of one color is beyond the 

confidence interval line of another color.)  
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Figure 4.8  – Weekend Gatherings, Encampment Activities, Weekday Marches by Size of 

Liberal Population 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 

Weekend Gatherings, Encampment Activities, and Weekday Marches in the corpus for each 

day of the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘number of liberals’ variable. See Methodological 

Appendix for equations used in estimation and prediction.  
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Figure 4.9 – Rallies, Demonstrations, and Labor Alliances by Size of Liberal Population 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 

Rallies, Demonstrations, and Labor Alliances in the corpus for each day of the Occupy 

movement. Each panel displays three lines predicting topic prevalence for the highest, lowest, 

and middle value of the ‘number of liberals’ variable. See Methodological Appendix for 

equations used in estimation and prediction.  
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That general pattern of activity does not appear to hold, however, when we observe the 

prevalence of contentious performances like Rallies and Demonstrations. Cities with 

smaller and larger pools of potential Occupy supporters engaged in a similar number of 

Rallies. However, cities with larger pools of political liberals appear to have been more 

likely to engage in Demonstrations and to have garnered more Union support during all of 

their activities. Larger cities appear to have engaged in more actions Targeting City Halls 

and Banks, as well (Panels 1 and 2 above). This difference is statistically significant in the 

case of Bank-targeting.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

13 A note for interpreting the significance of any apparent differences: whenever a topic prevalence estimate 

line (the middle line) of one color falls outside the confidence interval (either of the two outer lines) of the 

other color, the model predicts that the differences between estimates of the two values of the covariate are 

statistically significant. 
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Figure 4.10 – City Hall Targeting, Bank Targeting, and Sidewalk Contestation by Size of 

Liberal Population 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 

City Hall Targeting, Bank Targeting, and Sidewalk Contestation in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for the 

highest, lowest, and middle value of the ‘number of liberals’ variable. See Methodological 

Appendix for equations used in estimation and prediction. 
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Campaigns in large and small, liberal and less liberal, cities appear to have differed, too, in 

the amount of police resistance they experienced. Larger cities’ campaigns appear to have 

included more Traffic Blocking actions arousing the ire of police, and more Curfew 

Disputes resulting in statistically significantly more Arrests, as well. Explaining these 

differences and other variations in Occupy campaigns will be the task of Chapter 5.  

 

Figure 4.11 – Traffic Battles, Curfew Disputes, Arrests by Size of Liberal 

Population 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Traffic Battles, Curfew Disputes, and Arrests in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘number of liberals’ variable. See 

Methodological Appendix for equations used in estimation and prediction. 
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Chapter 5: The Correlates of Contentious 

Performances and Campaign Life Courses: 

Political Opportunity Structures   

 

Findings from Chapter 4 suggest that Occupy campaigns may have engaged in a similar 

sequence of activities during the ‘action’ stage of the Occupy movement. That is, they may 

have experienced a similar life course during the ‘action’ stage. However, an initial 

investigation of the effect of city population size and liberality on the prevalence of 

contentious performances suggests that not all Occupy campaigns were the same. A larger 

proportion of campaign activities in small cities and towns centered on Encampment 

activities, while a greater proportion of campaigns’ efforts in larger cities was dedicated to 

Rallies and Demonstrations. Larger cities spent more time targeting banks, too, and 

engaged in more disruptive performances arousing more, and firmer, police responses.  

 

It is important to account for these differences because the ultimate goal of this 

dissertation is to determine which factors – among features of cities, features of police 

departments, and features of Occupy campaigns – explain the policing of protest campaigns 

(and when and under what circumstances.) Those questions can only be answered if it is 

clear either (a) that Occupy campaigns were very similar and/or (b) that they differed only 

in ways that can be measured and controlled for statistically. This chapter aims to more 

thoroughly assess the comparability of Occupy campaigns to determine if and how they 

may be used as a basis for understanding police control performances in Chapter 6. 

 

Students of the sociological literature on social movements will not be surprised by the 

finding (from Chapter 4) that the population of potential movement supporters affected the 

prevalence of Occupy campaign activities. Even when social movement campaigns are 

animated by very similar grievances, make similar claims, and draw on similar repertoires 

of contention, their activities are likely to vary based on the social and political 

environments in which they emerge. As Shultziner notes, “structural factors are often 

crucial at [the action] stage” of a movement. A thorough literature (reviewed in Chapter 2) 

attests to the influence of structural variables on movement action and outcomes.  
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Besides being limited or enabled by a pool a potential supporters, campaign actions 

seeking to mobilize support among elites, polity members, challengers, and outsiders 

depend on the composition of that milieu, the political cultures that define their identities, 

and the political structures which produce and constrain their powers. Taken together, 

these “features of regimes and institutions that facilitate or inhibit a political actor’s 

collective action and… changes in those features” are referred to as ‘political opportunity 

structures’ (Tilly and Tarrow 2006, 49).Tilly defines six dimensions of political opportunity 

structure: 

 

(a) the multiplicity of independent centers of power within the regime,  

(b) the openness of the regime to new actors,  

(c) the instability of current political alignments,  

(d) the availability of influential allies or supporters,  

(e) the extent to which the regime represses or facilitates collective claim-making, 

and (f) decisive changes in (a) to (e). 

 

There has been no small amount of debate about the conceptualization of “political 

opportunity structures.” (See, for instance, Kriesi 1995; Koopmans 1999.) A range of 

scholars, though have moved forward, attempting to assess the impact of POS on 

movement activities and outcomes. Kitschelt (1986) and Kriesi (1995) have argued, 

alongside Tilly that governments featuring more centers of power (across executive, 

legislative, and judicial functions) feature more sources of potential movement allies, 

encouraging movement activity. Others, however, suggest that these government divisions 

also imply more veto points, discouraging movement activity (Huber, Ragin and Stephens 

1993; Skocpol 1992; Amenta and Young 1999; Amenta and Caren 2004, 472). 

 

There are fewer doubts about the encouraging effects openness of regime and instability of 

political alignments have on movements. Piven and Cloward (1977, 31-2) have found that 

electoral instability seems to be an important factor in the efficacy of even high-impact civil 

disruptions like industrial labor strikes. And Tilly (1978, 213-14) found that alliances 

among governments and challengers were most likely during close elections. Multiple 
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authors, too, have found that center-left parties sometimes ignore leftist movements unless 

elections are near (Pizzorno 1978; Pizzorno 1981; della Porta 2001). 

 

Since movement actions rise and fall with levels of support, the availability of allies and 

supporters will obviously impact their activity. While no one doubts that mass movements’ 

attempts to display WUNC (worthiness, unity, numbers, and commitment) (Tilly 2005, 53) 

depend on the size of the pool of supporters from which they draw, it is less clear whether 

the local ecosystem of existing social movement organizations consistently affects the 

activities of social movement campaigns. Some movements, like the U.S. Civil Rights 

Movement of the 1960s, depended greatly on the organizational support and networks of 

churches, foundations, and anti-poverty programs. (McAdam 1982; Morris 1984; della 

Porta and Diani 2006).  Many movements of the left, too, have benefited from the solidarity 

of organized labor (Clawson, 2003). But, a rich SMO environment can also reduce 

movement activity by alleviating or channeling the grievances that animate a movement 

(Jenkins and Leicht 1997: 378–9). Segura-Diaz (2015), in a study using this dissertation’s 

data, even showed that ‘Occupy the Hood’ campaigns, offshoots of the broader Occupy 

movement, were most likely to develop in cities that lacked the social service, and social 

movement, organizations that would typically address the concerns of low-income 

minority communities.  

 

This dissertation explores the impact of these elements of POS on the range of Occupy 

campaign activities identified in Chapter 4. I will argue (more thoroughly in Chapters 6 and 

7) that element (e) is a complex set of dynamic variables to explain, not a relatively stable 

feature of a regime. The remaining elements of POS a–d, however, I operationalize through 

a number of variables describing local cities’/towns’ political environments. 

 

These operationalizations are designed for an analysis seeking to describe and explain the 

deployment of contentious activities and performances at a more granular level of 

geographic resolution than Tilly’s data would allow. Tilly deployed the concept of political 

opportunity structures quantitatively in Regimes and Repertoires (2006, Chapter4) with an 

index of ‘regime capacity’ and a freedom house ‘democracy scale.’ But these measures 

neither attempted to capture political opportunity structure at a local, city/town level, nor 

captured every element of his rather expansive definition.  
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Rather than relying on broad-scale data describing national regimes, I operationalize each 

element of POS listed above using the following variables: 

(a) ‘Number of Power Centers’ – Across the U.S., three city government 

types predominate: Mayor-Council, Council-Manager, and 

Commission. The Mayor-Council type of government features a 

relatively strong executive and relatively week City Council. In terms 

of POS, it features the fewest ‘independent centers of power.” The 

Council-Manger government type features more powerful council 

members with their own center of power. And the Commission 

government type features a number of committees or commissions, 

each with legislative and executive authority over a specific domain 

of municipal governance. ‘Government type’ data have been 

collected for every city in this dissertation’s dataset and arranged on 

a scale from 1-3, ranging from fewest to most independent centers 

of power. If a city is also the seat of State power, one point is added 

to this score. Since no State Capitals are run via Commission, all 

cities’ Government type scores fell between 1 and 3.  

(b) ‘Openness to New Actors’– U.S. city governments are most ‘open to 

new actors’ immediately prior to elections. And in the run-up to 

elections, politicians are most likely to alter their behavior to please 

their constituents. To measure local government openness to new 

actors, I subtracted each Occupy campaign’s start date from the date 

of the next upcoming election. If the next election was within 3 

months, the city’s ‘openness to new actors’ score was tallied as a 3; 

within 3-6 months, a 2, within a year, a 1; beyond a year, 0.  

(c) ‘Instability of Political Alignments’– Political alignments are least 

secure when they are just forming, just after elections. Using the 

same procedure as detailed in (b), I measured the proximity of an 

Occupy campaign’s start date to the latest city election. In the 

analyses that follow I have combined (b) and (c), using a simple 

average, as a measure of Political Instability.  

(d) ‘Availability of Allies and Supporters’ – Given that the Occupy 

movements were largely conceived and perceived as movements of 

the left, an Occupy campaign’s base of potential support, element (d) 

of POS, can be operationalized as # of people who voted for Obama 

in the 2008 election, a number derived by multiplying Obama’s vote 

percentage by the city’s/town’s population according to the 2010 

U.S. Census. 
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(e) ‘The Extent of State Repression’ – (This element of political 

opportunity structure is a dependent variable incorporated into the 

analyses and discussion of Chapters 6 and 7) 

(f) ‘Decisive Changes in (a)-(e)’ – (Neither (a) nor (d) would have 

changed at all during the Fall of 2011. Elements (b) and (c) may 

have changed somewhat, but in ways that are normalized by the 

foregoing analyses. 

 

Equipped with variable data describing the elements of POS for all 184 U.S. cities in which 

Occupy campaigns occurred, this chapter asks if and how those POSs affected the 

enactment of contentious performances by Occupy campaigns. These questions are asked 

and answered using a variant of the LDA/topic modeling technique described in detail in 

Chapter 3, structural topic modeling. Structural topic modeling begins with the same 

algorithm used by LDA/topic modeling. It first produces ‘topic’ output, K lists (where K is 

the number of ‘topics’ defined by researchers), each including a different ordering of the 

full set of unique terms included in the researchers’ text corpus. The term lists are ordered 

by the likelihood that the terms appear alongside one another in the same text unit.  

 

Since the terms of this dissertation’s text corpus describe activities of protesters and police 

during events that are conterminous with the text units being modeled by LDA, the ‘topic’ 

lists of this dissertation may be said to identify contentious performances: sets of action that 

reliably cohere as elements (even sometimes the predominate element of) contentious 

gatherings. 

 

Structural topic modeling uses well-known regression techniques to regress structural 

variables linked to the text units (variables like the size and political form of the cities in 

which the news documents were produced) on topic prevalence for those text units. The 

prevalence of performances in contentious gatherings (described by any or all text unit/s), 

therefore, can be modeled as a function of contentious gathering-level variables like the 

‘city’ in which a contentious gathering described in the text occurred, the date on which it 

occurred, the ‘population’ of the city in which it occurred, the ‘government type’ of that city, 

the POS variables listed as (a) through (d) above for that city, and so on.  

 

Whether or not the city-level POS variables affect protesters’ performances is an open 

question. Tilly, in his words, has “shown amply that contentious repertoires differ 
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dramatically from one type of regime to another.” But Tilly was comparing national 

regimes at the corners of his 2X2 table spanning high- and low-capacity regimes, and 

democratic/nondemocratic regimes. No one would argue that American cities demonstrate 

as much range on these dimensions as states like Somalia, Uganda, South Africa, Venezuela, 

India, Norway, and the U.S. Other authors have estimated the effects of U.S. (subnational) 

State-level political opportunities on social movement activities (Amenta and Zylan 1991). 

Will interesting correlations between city ‘regime’ POS variables and performance 

prevalence emerge even though the differences in POSs among American cities are 

relatively small? 

 

I make the following hypotheses in line with Tilly’s general theory: 

 

Hypothesis 5.1: In cities featuring more independent centers of power, Occupy 

campaigns will be more active. 

Hypothesis 5.2: In cities that have just experienced or will soon experience an election, 

campaigns will be more active, reflecting the general political activity concomitant 

with local political realignments. 

Hypothesis 5.3: In cities that have just experienced or will soon experience an election, 

elites will be more solicitous of Occupy campaigns, and as a consequence, protesters’ 

performances will be less disruptive.  

Hypothesis 5.4: In cities where more Obama voters live, campaigns will be more active 

Hypothesis 5.5: In cities where more Obama voters live, campaigns will feature more 

performances designed for mass crowds, like marches and demonstrations. 

 

Model Results 

 

Readers will recall from Chapter 4 that estimates of performance prevalence are generated 

through the following regression equation: 

 

 

� = 
�� +  ���� + ���� + ���� + ⋯ ���� +  �  
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Figures 5.1 – 5.8 display a predicted performance prevalence � across three different 

values of one � (e.g. �� for 
 while holding the other � coefficients (e.g.  ��, �� at their 

means. (See the Methodological Appendix for more details.) 

 

The plots in Figures 5.1 -5.4, similar in form to those ending Chapter 4, show the 

prevalence of topics/performances since the first day of local encampment. In these plots, 

red lines indicate towns and cities with relatively few centers of power, while blue lines 

represent cities with more centers of power.14 If Tilly’s theory holds even for rather small 

differences in regime composition (The range of American cities’ diversity is significantly 

narrower than the range for states.), protesters activity should be more prevalent in cities 

represented by blue lines, which should appear higher on the y-axis than red lines for most 

of the activities identified by LDA. A note for interpreting the significance of any apparent 

differences: whenever a topic prevalence estimate line (the middle line) of one color falls 

outside the confidence interval (either of the two outer lines) of the other color, the model 

predicts that the differences between estimates of the two values of the covariate are 

statistically significant.  

 

The first panel of Figure5.1 below, shows that cities with more power centers experienced 

statistically significantly more Weekend Gathering activities than cities with relatively 

fewer power centers (at least during the most active portions of the Occupy movement). 

Panel 2, on the other hand, shows that cities with fewer power centers experienced more 

Encampment Activities than cities with more power centers (or at least that these activities 

were more prominent in reporting about these local campaigns), but that the differences 

across these categories of city/town are not statistically significant. Panel three shows that 

there was virtually no difference in the prevalence of Weekday Marching activities (or 

reports thereof) across cities with different numbers of power centers. 

 

 

 

 

                                                        

14 See Methodological Appendix for variables’ assignments to cities. 
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Figure 5.1 – Weekend Gatherings, Encampment Activities, Weekday Marches by 

Number of Power Centers 

 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Weekend Gatherings, Encampment Activities, Weekday Marches 

in the corpus for each day of the Occupy movement. Each panel displays three 

lines predicting topic prevalence for the highest, lowest, and middle value of the 

‘number of power centers’ variable. See Methodological Appendix for equations 

used in estimation and prediction. 
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Figure 5.2 below, shows that number of power centers, likewise, had little to no effect on 

the prevalence of Rallies, Demonstration, or Labor Alliances.  

 

Figure 5.2 – Rallies, Demonstrations, and Labor Alliances by Number of Power 

Centers 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Rallies, Demonstrations, and Labor Alliances in the corpus for each day 

of the Occupy movement. Each panel displays three lines predicting topic prevalence 
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for the highest, lowest, and middle value of the ‘number of power centers’ variable. See 

Methodological Appendix for equations used in estimation and prediction. 

 

The number of power centers, likewise, had little effect on the prevalence of reporting on 

protesters’ targeting of City Halls or Banks. However, whether or not such targeting 

differed across cities led by Strong Mayors versus cities led by Commissions or Councils, 

the former cities did seem to experience more contestation over the sidewalks on which 

that targeting often took place.  

 

Figure 5.3 – City Hall Targeting, Bank Targeting, and Sidewalk Contestation by 

Number of Power Centers 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of City Hall Targeting, Bank Targeting, and Sidewalk Contestation 

in the corpus for each day of the Occupy movement. Each panel displays three 

lines predicting topic prevalence for the highest, lowest, and middle value of the 

‘number of power centers’ variable. See Methodological Appendix for equations 

used in estimation and prediction. 

 

Cities with more centralized authority, too, seemed to experience more curfew disputes 

(Panel 2 in Figure 5.4 below) than their counterpart cities with more distributed 

leadership. The reasons for this will be explored in more detail in Chapter 6.  
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Figure 5.4 – Traffic Battles, Curfew Disputes, and Arrests by Number of Power 

Centers 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Traffic Battles, Curfew Disputes, and Arrests in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘number of power centers’ variable. See 

Methodological Appendix for equations used in estimation and prediction. 
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Political Stability and its Effect on Occupy Activities 

 

Politicians are most responsive to their constituencies immediately prior to elections. And 

they are often most open to change in moments of transitioning political alignments. Tilly 

and others argue that social movement organizers understand this and attempt to take 

advantage of these windows of opportunity to influence political and policy outcomes. If 

their theories are correct, we should expect cities experiencing greater electoral and 

political instability to experience more active Occupy campaigns. Figures 5.5 – 5.8, below, 

offer some support for this general theory.  

 

Figure 5.5 – Weekend Gatherings, Encampment Activities, Weekday Marches by 

Political Instability 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Weekend Gatherings, Encampment Activities, and Weekday Marches in 

the corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘political 

instability’ variable. See Methodological Appendix for equations used in estimation and 

prediction. 

 

 

Panel 2 of Figure 5.5, above, for instance, shows that Encampments appeared to be more 

active in cities that experienced an Election Day around the time of the Occupy movement. 

(Also, note that lines are jagged because they are displaying two values of the ‘political 

instability’ variable at once. There was no way to reduce the visualization of this variable to 

two smooth lines without also unduly reducing the information in the variable during 

model.) 

 

According to Figure 5.6, proximity to an election had relatively less influence on local 

Occupy campaigns’ engagement in Rallies, Demonstrations, or Labor Alliances.  
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Figure 5.6 – Rallies, Demonstrations, and Labor Alliances by Political 

Instability 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Rallies, Demonstrations, and Labor Alliances in the corpus for 

each day of the Occupy movement. Each panel displays three lines predicting 

topic prevalence for the highest, lowest, and middle value of the ‘political 

instability’ variable. See Methodological Appendix for equations used in 

estimation and prediction. 
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However, as Figure 5.7 show, Occupiers did seem to seize on political instability by 

targeting City Halls and Banks with more of their activities. Electoral insecurity, however, 

seems not to have had an impact on the extent to which these and other actions resulted in 

disputes around sidewalk territory.  

Figure 5.7 – City Hall Targeting, Bank Targeting, and Sidewalk Contestation 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of City Hall Targeting, Bank Targeting, and Sidewalk Contestation in the 

corpus for each day of the Occupy movement. Each panel displays three lines 
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predicting topic prevalence for the highest, lowest, and middle value of the ‘political 

instability’ variable. See Methodological Appendix for equations used in estimation and 

prediction 

 

Instead, perhaps, as Panel 1 of Figure 5.8  suggests, Occupy campaigns in cities 

experiencing electoral instability used City Hall and Bank targeting actions in place of 

traffic disruption activities. These different choices of targets could have resulted in the 

greater prevalence of arrests as shown in Panel 3.  

 

Figure 5.8 – Traffic Battles, Curfew Disputes, and Arrests by Political Instability 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Traffic Battles, Curfew Disputes, and Arrests in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘political instability’ variable. See 

Methodological Appendix for equations used in estimation and prediction. 

 

 

The models above show that political opportunity structures do seem to have shaped local 

Occupy campaigns’ choices of targets and activities (or at least the reporting thereof) in 

some (statistically) significant ways.  

 

Hypotheses 5.2, 5.3, 5.4 and 5.5 all won some support. Scholars arguing that more centers 

of power do not make for greater activity seem to have won support as well: Hypothesis 5.1 

was weakened by these findings.15 

 

 

However, it is not clear from these models whether differently situated Occupy campaigns 

simply emphasized some contentious performances more than others, or if they 

experienced fundamentally different life courses altogether. Did differing political 

opportunity structures significantly re-order the sequences of gatherings and 

performances in which local Occupy campaigns engaged?  

 

 

Political Opportunity Structures and Occupy Campaign Life Courses 

 

                                                        

15 Hypothesis 5.1: In cities featuring more independent centers of power, Occupy campaigns will be more active.    Hypothesis 5.2: In cities 

that have just experienced or will soon experience an election, campaigns will be more active, reflecting the general political activity 
concomitant with local political realignments.    Hypothesis 5.3: In cities that have just experienced or will soon experience an election, 
elites will be more solicitous of Occupy campaigns, and as a consequence, protesters’ performances will be less disruptive.    Hypothesis 
5.4: In cities where more Obama voters live, campaigns will be more active.    Hypothesis 5.5: In cities where more Obama voters live, 
campaigns will feature more performances designed for mass crowds, like marches and demonstrations. 
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This final section of Chapter 5, presents plots of models able to answer this more difficult 

and nuanced question. Starting with Figures 5.9 - 5.12 showing the effect that smaller or 

larger pools of Obama supporters have on topic prevalence, these plots are able to show 

how political opportunity structures affect not just the quantity of Occupy related 

performances and gatherings (and/or their reporting), but also the timing of those 

performances and gatherings. 

 

The models used to investigate more sophisticated hypotheses about the prevalence  and 

timing of contentious performances require one key change, the introduction of a term 

interacting an independent variable with time: �� × 
��. 

 

� = 
�� +  �� × 
�� + ���� + ���� + ⋯ ���� +  �  

 

 

The remaining figures of this chapter, and this dissertation, use the above equation to 

estimate ��, ��, ��, … ��  then predicted values of � across three different values of one � 

for 
  while holding the other � coefficients (e.g.  ��, �� at their means. And since these 

models include the interaction term �� × 
 , predictions of � are not simply raised or 

lowered vertically as in Figures 4.8 – 5.8. The shapes of the � prediction lines for each value 

of � across 
 move with the data through time.  

 

 
 

Pools of Support and Occupy Campaign Life Courses 

Hypotheses 5.4 and 5.5 

 

Panels 1 and 2 of Figure 5.9, below, show that cities with small, medium, and large pools of 

potential Occupy supporters engaged in similar levels of Weekend Gatherings and 

Encampment Activities throughout the course of their campaigns. Panel 3, however, 

reveals what Figure 4.8 in Chapter 4 could not, that Weekday marching activities in cities 

with larger pools of support started earlier and peaked three times before the seventh 

week of local campaigns (while such activities only peaked twice in cities with a smaller 

pool of potential supporters). Did the larger pool of supporters allow for quicker 



 

    119

mobilization and more frequent marches? Perhaps. Such questions will be discussed 

further in Chapter 7 in light of more complete data. 

 Figure 5.9 – Weekend Gatherings, Encampment Activities, Weekday Marches by 

Size of Liberal Population Interacted with Time

 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Weekend Gatherings, Encampment Activities, Weekday Marches in the 
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corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘number of 

liberals’ variable interacted with time. See Methodological Appendix for equations 

used in estimation and prediction. 

 

Figures 5.10, below, show that the rhythm of Rallies and Demonstrations also differed 

across cities depending on how many potential supporters local Occupy campaigns could 

access. Panel 3 also supports the unsurprising finding of Figure 4.3 from Chapter 4, that 

Union Alliances with Occupy movements were more prevalent in cities with larger 

populations of political liberals. 
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Figure 5.10 – Rallies, Demonstrations, and Labor Alliances by Size of Liberal 

Population Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Rallies, Demonstrations, and Labor Alliances in the corpus for each day 

of the Occupy movement. Each panel displays three lines predicting topic prevalence 

for the highest, lowest, and middle value of the ‘number of liberals’ variable interacted 

−
0
.2

0
.2

0
.4

Smaller, Less Liberal Population

Modal Population

Large, Liberal Population

−
0
.2

0
.2

0
.4

E
x
p
e
c
te

d
 T

o
p
ic

 P
ro

p
o
rt

io
n

−50 0 50 100 150

−
0
.3

−
0
.1

0
.1

0
.3

Days Since Local Camp Established



 

    122

with time. See Methodological Appendix for equations used in estimation and 

prediction. 

 

 

Figure 5.11, below, shows that protesters in larger cities targeted City Hall sooner than 

their counterparts in smaller cities (Panel 1), but that campaigns in all cities targeted banks 

at a similar rate throughout their life courses (Panel 2). Panel 3 shows that these and other 

actions resulted in sidewalk contestation with police at virtually identical rates and times 

until late in movements when such battles subsided in smaller cities.   

 



 

    123

Figure 5.11 – City Hall Targeting, Bank Targeting, and Sidewalk Contestation by 

Size of Liberal Population Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of City Hall Targeting, Bank Targeting, and Sidewalk Contestation in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘number of 

liberals’ variable interacted with time. See Methodological Appendix for equations 

used in estimation and prediction. 

−
0

.2
0

.2
0

.4

Smaller, Less Liberal Population

Modal Population

Large, Liberal Population
−

0
.2

0
.2

0
.4

E
x
p

e
c
te

d
 T

o
p
ic

 P
ro

p
o

rt
io

n

−50 0 50 100 150

−
0

.3
−

0
.1

0
.1

0
.3

Days Since Local Camp Established



 

    124

 

Overall, campaigns in cities with larger pools of support aroused more police response 

sooner than campaigns in smaller cities. Figure 5.12 Panel 1, below, shows that protesters 

and police in larger cities engaged in more Traffic Battles sooner and continued the 

practice at higher levels than their counterparts in smaller cities. Both large and medium 

cities saw more Curfew Disputes than smaller cities and towns, too. And though virtually all 

campaigns suffered from arrests in the 7th week of their cause, arrests were more prevalent 

in medium and larger cities.   

 

Figure 5.12 – Traffic Battles, Curfew Disputes, and Arrests by Size of Liberal 

Population Interacted with Time
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Traffic Battles, Curfew Disputes, and Arrests in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘number of liberals’ variable interacted 

with time. See Methodological Appendix for equations used in estimation and 

prediction. 

 

 

Examining topic prevalence as a function of liberal population size through time has 

revealed some modest differences in Occupy life courses. Cities with larger pools of 

potential support were quicker to use some performances (like Weekday Marching, Traffic 

Disruption, and activities Targeting City Hall), and they used them more often. They also 

experienced more pitched conflict with police. Peaks of some forms of activity came a week 

or sooner, perhaps, in larger cities. But sequences of activity do not appear to have been 

entirely re-ordered. So far, this analysis suggests that researchers can credibly speak of a 

common occupation movement life course with modest, measurable variations. 

 

 

 

Centers of Power and Occupy Campaign Life Courses 

Hypothesis 5.1 

 

The capacity of movements to make change depends not just on the number of citizens 

they can attract to their cause, but also on their ability to influence decision-making elites 

who might alter policy to support movements’ interests. Mobilizations have been observed 

to occur more frequently and enjoy more success when political regimes feature more elite 

power centers with which movements can engage. When there are more power centers in a 

regime, movement leaders have more potential targets to persuade to their cause, 

justifying and inspiring the participation of more followers. Any failure to win over a 

particular member of the political elite, too, is only a partial failure. The movement can still 

live on, potentially weakening the resolve of a divided government as it persists. If the 

general theory of political opportunity structures holds in the narrower case of city 

governments, estimates of performance prevalence as a function of the number of 

government power centers in a city, through time, should show that movements are more 

active in cities with more power centers.  
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Another, understudied linkage between the number of centers of power in a government 

and the activity levels of protester throughout a campaign concerns protest policing more 

directly: uni-polar governments may be more decisive, and therefore better able to act 

strategically and re-take the initiative from protest campaigns. This dimension of 

Hypothesis 5.1 will be taken up more directly in Chapter 6 as Hypothesis 6.6.  

 

Results displayed in Figures 5.13– 5.16 below show that the number of power centers in a 

city does correlate with a somewhat different pattern of Occupy activities. While Figures 

5.3 and 5.4 only indicated significant difference in the prevalence of Sidewalk Contestion 

and Curfew Dispute performances, Figure 5.13 show a temporal shift in peak activity for 

both Weekend Gatherings and Encampment Activities.   
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Figure 5.13 – Weekend Gatherings, Encampment Activities, Weekday Marches by 

Number of Power Centers Interacted with Time 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Weekend Gatherings, Encampment Activities, Weekday Marches in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘number of 
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power centers’ variable interacted with time. See Methodological Appendix for 

equations used in estimation and prediction. 

 

 

 

Figures 5.14 and 5.15, apart from the increased prevalence of Sidewalk Contestation in 

cities with more power centers, show relatively little variation in activities across cities 

with differing numbers of power centers. But Figure 5.16 shows that Curfew Disputes 

peaked earlier in cities with power concentrated in a mayor. This finding suggests that 

differences in Occupy protest activities may owe as much or more to the effect city power 

concentration has on police activity.  Do stronger mayors make for more decisive police? 

Though this dissertation, in need of a starting point, has treated protesters as prime 

movers, the dynamic interactions between protesters and police constitute a ‘coevolution’ 

over the course of campaigns. Some amount of protester activity is likely caused or 

repressed by police. Chapters 6 and 7 will take a closer look at the extent to which 

protesters’ performances are affected by political opportunity structures’ effects on police 

action. If strong mayors indeed make for decisive police action, it is inappropriate to 

conclude that differing rates of protester performances are solely the consequence of the 

structure of static political opportunities.  
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Figure 5.14 – Rallies, Demonstrations, and Labor Alliances by Number of Power 

Centers Interacted with Time  

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Rallies, Demonstrations, and Labor Alliances in the corpus for each day 

of the Occupy movement. Each panel displays three lines predicting topic prevalence 

for the highest, lowest, and middle value of the ‘number of power centers’ variable 
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interacted with time. See Methodological Appendix for equations used in estimation 

and prediction. 

 

 

Figure 5.15 – City Hall Targeting, Bank Targeting, and Sidewalk Contestation by 

Number of Power Centers Interacted with Time
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of City Hall Targeting, Bank Targeting, and Sidewalk Contestation in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘number of 

power centers’ variable interacted with time. See Methodological Appendix for 

equations used in estimation and prediction. 

 

Figure 5.16 – Traffic Battles, Curfew Disputes, and Arrests by Number of Power 

Centers Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Traffic Battles, Curfew Disputes, and Arrests in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘number of power centers’ variable 

interacted with time. See Methodological Appendix for equations used in estimation 

and prediction. 

 

 

 

Political Stability and Occupy Campaign Life Courses 

Hypotheses 5.2 and 5.3 

 

Whether elected officials are nested in a single chain of command, or sit on multiple cross-

cutting committees, all of them have to win votes by engaging their politically active 

constituents. Since movement leaders and casual marchers know this, researchers should 

expect that movement campaigns are more active when elections are coming soon. We can 

also expect that government officials are more accommodating to movements under these 

conditions, a hypothesis tested here and in Chapter 6. Also, since the unstable political 

alignments common to newly seated governments generate increased opportunities for 

movements, we can expect that movements will be more active in cities that just recently 

underwent an election. These two measures – proximity to prior and upcoming elections 

have been averaged to create the measure of political stability used in the analyses here. If 

Tilly’s theory holds, less stable governments should experience more overall activity.  

 

Figure 5.17, below, suggests that while city government instability had little impact on 

Weekend Gatherings (Panel 1), politicians’ desires to remain popular with their 

constituencies may have led them to be more tolerant of Encampment Activities through 

time (Panel 2).  
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Figure 5.17 – Weekend Gatherings, Encampment Activities, Weekday Marches by 

Political Instability Interacted with Time 

 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Weekend Gatherings, Encampment Activities, Weekday Marches in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘political 

instability’ variable interacted with time. See Methodological Appendix for equations 

used in estimation and prediction. 
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According to Panel 1 of Figure 5.18, below, the least stable governments may have 

countenanced more Rallies as well. As evidenced by the late rise of the green lines in Panel 

3, they may also have made special efforts to fold movement energy into Labor activities 

near the end of Occupy campaigns.  

 

Figure 5.18 – Rallies, Demonstrations, and Labor Alliances by Political 

Instability Interacted with Time 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Rallies, Demonstrations, and Labor Alliances in the corpus for each day 
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of the Occupy movement. Each panel displays three lines predicting topic prevalence 

for the highest, lowest, and middle value of the ‘political instability’ variable interacted 

with time. See Methodological Appendix for equations used in estimation and 

prediction. 

 

 

As shown in Figure 5.19 Panel 1, Occupy campaigns in the least politically stable cities 

engaged in significantly more targeting of City Halls. Perhaps protesters in such cities 

recognized opportunity in that political instability. At least for a moment three weeks into 

their campaigns, too, they appear to have engaged in more Bank Targeting and Sidewalk 

Contestation.   
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Figure 5.19– City Hall Targeting, Bank Targeting, and Sidewalk Contestation by 

Political Instability Interacted with Time 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of City Hall Targeting, Bank Targeting, and Sidewalk Contestation in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘political 

instability’ variable interacted with time. See Methodological Appendix for equations 

used in estimation and prediction. 
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City politicians in these municipalities, for their part, seemed to respond in ways that 

accommodated Occupy campaigns much more than their counterparts in other cities. 

Politicians up for election or just settling into office may have been less likely to engage 

protesters in battles over traffic disruption (Panel 1, below). And they appeared 

significantly less likely to engage in Curfew Disputes at points in campaigns when other 

cities had decided enough was enough (Panel 2, below). 

 

Figure 5.20 – Traffic Battles, Curfew Disputes, and Arrests by Political Instability 

Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Traffic Battles, Curfew Disputes, and Arrests in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘political instability’ variable interacted 

with time. See Methodological Appendix for equations used in estimation and 

prediction. 

 

 

Conclusions 

Some of the hypotheses that motivated this chapter have been confirmed. Political 

Opportunity Structures did have some impact on Occupy performances. 

 

Campaigns in cities with larger pools of Obama voters were more active as predicted 

by Hypotheses 5.4. and 5.5.  

 

Political and Electoral Instability affected Occupy campaigns as predicted by 

Hypothesis 5.2 

 

But the findings here do not support the notion that political opportunity structures 

significantly altered the sequence or timing of events.16 Cities with larger or smaller pools 

of potential supporters may have experienced more or less of some contentious 

performance, but the basic pattern of activity outlined in Chapter 4 persisted across cities 

regardless of their support base. Weekend Gatherings kicked off Encampment Activities 

and Weekday Marches. Rallies and Demonstrations targeting City Halls and Banks 

persisted at fairly stable levels throughout each campaign. And regardless of city size and 

political liberalism, Sidewalk Contestation escalated into Curfew Disputes, which escalated 

into a wave of Arrests. These findings largely confirm Hypotheses 4.5a and 4.5b.  

 

                                                        

16 Even where performance prevalence is significantly different across these variables, it is often different at 

the same moment, easing statistical control.   
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The exceptions will be discussed further in Chapter 7: Larger cities engaged in the targeting 

of City Hall a bit sooner than smaller cities. City Halls populated by politicians’ whose hold 

on power was tenuous were targeted more frequently by Occupy campaigns and were less 

apt to escalate Curfew Disputes or Traffic Battles. But when police in these cities finally did 

decide to clamp down on their local campaign with arrests, they did it at the same point in 

the life course as other cities.  

 

These findings are important for two reasons. First, they show that,  

 

Occupation campaigns do appear to unfold according to a rather stable life course 

(with slight variations).  

 

Researchers have not been able show this in the past. The movements they studied were 

either too rare or too different to make a life course hypothesis testable.  

 

Second, the key questions of this dissertation (particularly those addressed in Chapter 6) 

concern the ways in which different police departments policed Occupy movements 

differently. If the 184 Occupy campaigns of the United States unfolded according to 184, or 

even 24 different life courses, it would be very difficult to tease out, statistically, the police 

department characteristics affecting police behavior toward Occupy campaigns. However, 

since all campaigns appear to have unfolded according to a common life course with only 

limited variation, the analyses of Chapter 6 will be able to focus on the police department 

factors that generated disparate protest policing strategies, operations, and tactics. 

Differences in Occupy campaigns can be statistically accounted for by including ‘political 

instability’ and ‘number of liberals’ control variables in models seeking to explain police 

behavior. 
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Chapter 6: Correlates of Protest Policing: 

Political Context, Police Department 

Capacity, Police Culture  

 

 

Chapters 4 and 5 have shown that the 184 Occupy campaigns across the United States 

engaged in fairly similar sequences of contentious performances over their life courses. To 

the extent that their use of those performances varied, those variations can be accounted 

for with variables describing the political opportunity structures of the cities in which they 

were embedded. This chapter, therefore, is able to turn to the questions animating this 

dissertation: What do police do when they attempt to control protest campaigns? And what 

factors affect their enactment of control performances? Are they behaving in line with the 

wishes of elites? Are they focused on their own budgets and personnel capacity? Are they 

enacting the control performances that best jive with their department’s culture, perhaps 

accessing available policing heuristics associated with a philosophy of community policing?  

 

Answers to these questions will motivate discussion in Chapter 7 about the extent to which 

police appear to act out of a sense of threat to their control, and how much they act 

strategically or merely reactively to protest campaigns. 

 

The Approach and Hypotheses 

 

Chapter 6 pursues a similar analytical path as Chapters 4 and 5. It begins by presenting 

SVO-amplified topic model results identifying police control performances. Then, it 

regresses city and police department variables on the prevalence of those control 

performances to show how POS, Police Capacity, and Police Culture affected the incidence 

of control performances over the course of an Occupy campaign.   

 



 

    141

Previous literature on protest policing in the U.S. context has identified several 

constellations of police activity, often called “approaches,” that might well be labeled as 

control performances. Earl, Soule, and McCarthy (2003, 590) created categories for a ‘Do 

Nothing’ performance, a ‘Nothing to See Here’ performance, a ‘Legal Eagles’ performance, a 

‘Dirty Harry’ performance, and a ‘Calling All Cars’ performance. The performances, 

described in Chapter 2, range from showing up and taking no action, to deploying massive 

force including the use of tear gas, mass arrests, and barricades.  

 

As Chapter 4 did, and as described in Chapter 3, this chapter identifies performances not 

using pre-defined categories, but by allowing a computer algorithm to identify clusters of 

actions (extracted from English grammar) that reliably cohere into performances. To test 

the robustness of this approach, I hypothesize that topic modeling of police actions 

occurring during police-initiated events will reveal some common control performances. The 

following hypotheses are based on my own close readings of a thousand or more articles 

about police and protester activities during the Occupy movements. 

 

Hypothesis 6.1: Topic modeling will recover evidence of control performances warning 

protesters to cease or modify their activities. 

 

Hypothesis 6.2: Topic modeling will recover evidence of control performances aimed at 

‘strategic incapacitation,’ the citation and ticketing of protesters for violation of minor 

city ordinances including overnight camping, violating curfews, jaywalking, etc.  

 

Hypothesis 6.3: Topic modeling will recover evidence of control performances that seek 

to incapacitate and discourage movements by arresting individuals or small groups of 

protesters (even when police do not target the entire campaign for arrest.) 

 

Hypothesis 6.4: Topic modeling will recover evidence of control performances that seek 

to peacefully close down encampments. 
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Hypothesis 6.5: Topic modeling will recover evidence of control performances that seek 

to close down encampments through large quantities of arrests, police shows of force, 

and the use of “less lethal” weapons.  

  

 

Results – Control Performances 

 

Readers will recall from Chapter 4 that topic modeling algorithms generate two forms of 

results. First, they offer a list of ranked and weighted terms for each topic. Researchers 

interpret these term lists to determine what a topic is about. The algorithm also yields a 

measure of the prevalence of each topic in each document. These results allow a researcher 

to understand what a given document (text unit) is about without reading every last word 

of it. In this research, results include information about actions that constitute topics 

identifying control performances, which, in turn, constitute text units describing police-

initiated events. Finally, the prevalence of control performances across police-initiated 

events can be modeled through time and in light of variables describing the cities and 

departments in which police work. 

 

As in Chapter 4, this Chapter uses topic modeling to identify performances of particular 

interest for further analysis and hypothesis testing.  

 

Table 6.1 Control Performances Identified by SVO-Amplified LDA 

Topic 4 Top Words:                Ordinance Enforcing 

 Highest Probability: city, camping, protesters, police, county, arrested, arrest, others, courthouse, xweekday, 

ordinance, property, enforce, .m., three  

 FREX: humboldt, king, subjects, -camping, prohibiting, distribution, ban, county, camping, courthouse, sanchez, 

ordinances, codes, fps, enforce  

 Lift: aresheh, carlos, chunk, conceal, craven, kris, now-banned, palmer, police_resist_city_, prohibiting, 

resisting/obstructing, rivera, rorey, shay, sign-bearing  

Topic 7 Top Words:              Dismantling Camps 

 Highest Probability: protesters, police, xpark, tents, xweekday, leave, take, downtown, move, stay, remove, 

members, arrest, belongings, removed  
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 FREX: downtown, tents_, villa, tents, police_tell_protesters_, members, police_stay_, protesters_leave_, remain, 

remove, protesters_stay_, space, pack, belongings, warned  

 Lift: _allow_not/rb_property_, _allow_protesters_remain, _allow_protesters_retrieve, _allow_protesters_stay, 

_arrest_melissa, _block_xpark_, _bring_city_clean, _bring_the, _bulldoze_an, _cite_anyone, _cite_two_, 

_close_downtown, _disposition_protesters_, _empty_pancho, _fine_anyone  

Topic 8 Top Words:                Violently Raiding 

 Highest Probability: police, protesters, city, polices, gas, riot_gear, unlawful, one, tear, assembly, use, cityname, hall, 

camp, xpark  

 FREX: dodger, suits, fired, beanbag, clergy, bullets, gas, affiliate, tear, projectiles, tasha, personnel, stadium, 

assembly, trap  

 Lift: _assign_, _pelt_police_, adkison, allusion, antlers, assembly_resist_police_, belts, blame, bull, cain, choya, 

cops_have_, countless, de-escalate, demobilize  

Topic 9 Top Words:               Deadline Enforcing 

 Highest Probability: xpark, p.m., protesters, police, city, time, warning, arrest, deadline, xweekday, eviction, give, 

night, leave, anyone  

 FREX: grant, cesar, closure, perry, deadline, notices, closing, notices_, johnathan, p.m., anyone, permit, warning, 

permits, cease  

 Lift: _form_protesters_leave, belongings_leave_, bits, bowen_, chilling, clear-, consequences, deadline_come_, 

deportation, edward, frantic, iconic, immigrant, knx, mountain  

Topic 10 Top Words:              Telling 

 Highest Probability: police, tell, said, police_tell_, xweekday, told, sgt., says, say, news, chief, lt., presence, 

statement, department  

 FREX: andy, charlie, briefing, cityname-mecklenburg, police_tell_, norwood, solano, vallejo, said, tell, capt., presence, 

rico, conference, police_tell_police_  

 Lift: armstrong, bassett, briefing, cityname-mecklenburg, fernandez, neiman, norwood, shirts, 

_allow_not/rb_gatherings_, _arrest_eight_, _do_monitoring_, _drive_police_, _focus_police_, _form_protesters_, 

_get_no  

Topic 12 Top Words:                Arresting Resisting Individuals 

 Highest Probability: police, one, tents, man, protesters, street, tent, take, arrested, arrest, polices, around, market, 

person, front  

 FREX: market, reserve, jessica, kneeling, laser, agitators, third, woman, man, person, chain, basillas, child, adam, 

man_  

 Lift: _dismiss_at, _take_he, _use_pepper, advisements, aluminum-frame, avenue_, cannon-like, configuration, 

description, devin, dirt, disassembling, ellen, fifty-five, full-time  

Topic 15 Top Words:                  Arresting Groups 
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 Highest Probability: people, police, arrested, protesters, xpark, arrest, people_, xweekday, leave, morning, six, two, 

xweekendday, structure, arrests  

 FREX: lake, hixon, merritt, shed, people_, six, people, cuesta, structure, d.c., curtis, gentile, mcpherson, main, 

opposing  

 Lift: _charge_three, -foot-high, aboard, akard, band, boy, break-, cannon, carrefour, disruption, elderly, exposure, 

fitzgerald, freeways, fuel  

 Note: Each Topic is represented by three lists. ‘Highest Prob’ lists the terms most frequently 

appearing in the topic. FREX lists terms that are frequent and exclusive to the topic (not used 

very frequently in other topics). ‘Lift’ lists terms that are most exclusive to the topic whether or 

not they are used frequently in the topic. Readers interested in full model output or output 

alphabetically by topic label may consult Methodological Appendix A.  

 

The analysis of results begins with an interpretation of performance topics by the terms 

and SVO action triplets they comprise. 

 

Topic 10 was the most prevalent in the corpus of police-initiated events. It focuses on what 

“police” “Tell,” “said,” or “say” especially to “news” outlets in official “statements” and 

“briefings.”  

 

Topic 7, describing the Dismantling of Camps, was  the next most prevalent control 

performance in the corpus, and involved “police” “taking” “down” and “removing” 

“protesters’” “tents” in local “parks.” Many “protesters” considered “staying”, but many 

were convinced to “leave” rather than risk “arrest” and the forfeiture of their “belongings.”  

 

Many times the Dismantling of Camps was immediately preceded by Deadline Warnings 

and Enforcement, the subject of Topic 9. Topic 9 features “police” “giving” “protesters” 

“warnings” about an upcoming “eviction” “deadline.” They are told to “leave” the “park” by 

a given “time,” on a given “weekday”, or face “arrest.” 

 

Sometimes, according to Topic 8, the control performances of Topics 7 and 9 are not 

enough for police.  Enacting the performance of the Violent Raid, “police” show up to “city 

hall” or a “city park” in “riot gear,” declare an “unlawful” “assembly” and “fire” “tear gas” 
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“beanbags” (presumably rubber) “bullets,” and “projectiles” into “trapped” crowds of 

“protesters.”  

 

Whereas the control performances identified by Topics 10, 7, 9, and 8 were all directed at 

Occupy campaigns as a whole. Police also directed many of their control performances at 

individuals or groups of protesters. 

 

Topic 15 – Arresting Groups describes groups of “people” being “arrested” by “police.” 

“Police” often performed these “arrests” of “protesters” in  “parks” where Occupy 

campaigns encamped whether it was a “weekday” or a “weekend.” Closer inspection of text 

units in which this topic was prevalent show that groups of protesters from a handful to 

hundreds were usually arrested after defying police orders to leave encampments. 

 

Police arrests often targeted individual protesters, though. Topic 12 – Arresting Resisting 

Individuals describes situations in which “one” “man” is “arrested” by police often for 

refusing to “take” down “tents” Closer inspection of text units in which this topic was 

prevalent show that these arrests often included some resistance and scuffle between 

police and protesters.  

 

Finally, it is clear that police often controlled encampments in the name of city ordinances. 

Most of these, as described in Topic 4 – Ordinance Enforcing, were prohibitions against 

“camping.” But “police” also “enforced” other “city” and “county” “ordinances” “prohibiting” 

“sign-bearing,” for instance. Deeper inspection of text units associated with topic also show 

that police cited or “arrested” people for “illegal lodging,” issued “criminal trespass notices” 

to “protesters,” and “enforced” “new rules prohibiting the operation of a food distribution 

table.” 

 

Initial Hypotheses Confirmed 

 

As a robustness check of the method of SVO-amplified topic modeling of control 

performances, I ventured 5 hypotheses predicting the performances that would be 

identified by that method. 
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Hypothesis 6.1 predicted that topic modeling would recover evidence of control 

performances warning protesters to cease or modify their activities. In fact, this 

performance was the most prevalent in the corpus. Usually through statements and 

briefings to new media, police signaled, especially early on in campaigns to protesters how 

they intended to control their contentious gatherings and performances.17 

 

Hypothesis 6.2 predicting that topic modeling would recover evidence of control 

performances aimed at ‘strategic incapacitation,’ the citation and ticketing of protesters for 

violation of minor city ordinances including curfews, jaywalking, etc. was also partially 

confirmed. Topic 4 focuses on police Ordinance Enforcing.   

 

Hypothesis 6.3 predicting that topic modeling will recover evidence of control 

performances that seek to incapacitate and discourage movements by arresting individuals 

or small groups of protesters (even when police do not target the entire campaign for 

arrest) was likewise confirmed. Topic 12 centers on situations in which police arrest 

individual protesters, and Topic 15 focuses on situations in which police arrested multiple 

individuals or groups at a single time. These control performances may overlap, in some 

cases, with those targeting entire Occupy encampments, but this was frequently not the 

case. Such arrests seemed designed, in many cases, to weaken the campaign without 

inciting a full-scale battle between police and protesters. 

 

Hypothesis 6.4 predicted that topic modeling would recover evidence of control 

performances that seek to peacefully close down encampments. This hypothesis was 

confirmed. Besides ‘Telling’ protesters what they expected, this was the most prevalent 

control performance of the Occupy movement. As readers will see below, it was used early 

and often by police. 

 

Hypothesis 6.5 predicted that topic modeling would recover evidence of control 

performances that seek to close down encampments through large quantities of arrests 

and the use of “less lethal” weapons. This hypothesis was confirmed. SVO-amplified LDA 

                                                        

17 See Methodological Appendix A for more details. 



 

    147

(or action-amplified topic modeling, described in full in Chapter 3) recovered a very 

coherent control performance characterized by police wearing riot gear and firing various 

materiel, from bean bag rounds to tear gas into crowds of protesters as they ‘Violently 

Raided’ their encampments. 

 

With a set of inductively identified coherent control performances that, while tailored to 

occupation campaigns, align rather well with the protest policing “approaches” identified in 

the literature, this chapter moves on to test hypotheses concerning how the  prevalence of 

control performances varies by city and police departmental variables 

 

 

Prevalence of Control Performances by City and Departmental Variables 

 

This dissertation turns now to its key question: what factors influence police enactment of 

control performances? 

 

As thoroughly discussed in Chapter 2, there are three sets of factors – apart from protesters 

themselves – that are likely to influence police control performances: the political 

opportunity structures that shape the interests of political elites who supervise police; the 

capacity of police departments to act; and the cultures of police departments. As yet, there 

has been little agreement about how and when these factors influence police control 

performances. Small-N studies are simply not comparable. Different police departments 

make different choices when facing different social movement campaigns in different 

political contexts at different times. Large-N studies have been able to show some long-

term trends in police use of control performances. And they have been able to show that 

more authoritarian governments use more forceful control performances to repress 

movements compared to their democratic counterparts. But no large-N study has been able 

to adequately test hypotheses considering how the city government and police department 

factors affect police allocation of control performances in a particular time and place facing 

a particular movement. None of them have compared across movement campaigns to 

understand how police choices ebb and flow as they interact with a movement. 
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This chapter uses variables measuring political context, police capacity, and police culture 

to observe how these factors impact the prevalence of police control performances over the 

life courses of Occupy campaigns.  

 

Table 6.2 Independent Variables 

Variable 

Name 
Description 

# centers of 

power 

This variables measures the extent to which political elite power is 

fractured or concentrated. Across the U.S., three city government 

types predominate: Mayor-Council, Council-Manager, and 

Commission. The Mayor-Council type of government features a 

relatively strong executive and relatively week City Council. In 

terms of POS, it features the fewest ‘independent centers of power.” 

The Council-Manger government type features more powerful 

council members with their own center of power. And the 

Commission government type features a number of committees or 

commissions, each with legislative and executive authority over a 

specific domain of municipal governance. ‘Government type’ data 

have been collected for every city in this dissertation’s dataset and 

arranged on a scale from 1-3, ranging from fewest to most 

independent centers of power. If a city is also the seat of State 

power, one point is added to this score. Since no State Capitals are 

run via Commission, all cities’ Government type scores fell between 

1 and 3. 

Electoral 

instability 

This variable measures the extent to which the local political 

environment is stable and settled or open to new actors and new 

coalition formations. I subtracted each Occupy campaign’s start 

date from the date of the next upcoming election. If the next 

election was within 3 months, the city’s ‘openness to new actors’ 

score was tallied as a 3; within 3-6 months, a 2, within a year, a 1; 

beyond a year, 0. Since recent elections also imply that political 

coalitions are still taking shape. I performed the same procedure to 

assess the temporal proximity of the camp’s start date to the most 

recent election. I then took a simple average of the two ‘instability 

measures.’ 
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# of liberals This variable measures the pool of supporters on which Occupy 

campaigns can draw. It is calculated as City/Town population 

multiplied by the % of voters casting ballots for Obama in 2008. 

This continuous variable was then rendered categorical for 

visualization purposes. 

Police budget 

per capita 

This variable measures the available budget of a police department 

per citizen in its jurisdiction. Collected by the Bureau of Justice 

Statistics through the Law Enforcement Management and Statistics 

(LEMAS) survey, this continuous variable was rendered categorical 

for visualization purposes. 

Police per 

capita 

This variable measures the police officers of a police department 

per citizen in its jurisdiction. Collected by the Bureau of Justice 

Statistics through the Law Enforcement Management and Statistics 

(LEMAS) survey, this continuous variable was rendered categorical 

for visualization purposes. 

Community 

Policing 

This variable measures a police department’s commitment to 

Community Policing. The Bureau of Justice Statistics, through the 

Law Enforcement Management and Statistics (LEMAS) survey, 

collected over a dozen variables pertaining to community policing. 

This dissertation uses a simple index of these variables described 

in the Methodological Appendix – A. This index was then reduced 

to a 3-value categorical variable for visualization purposes. 

Violent Crime This variable, collected by the Bureau of Justice Statistics, records 

the violent crime rate for all 184 cities in this dissertation’s sample. 

This continuous variable was rendered categorical for visualization 

purposes. 

% Nonwhite 

Officers 

This variable, collected by the Bureau of Justice Statistics’ LEMAS 

survey, records the % of each department’s police force that is 

ethnically non-white. This continuous variable was rendered 

categorical for visualization purposes. 

Note: All continuous variables – from ‘# of liberals’ through ‘%nonwhite officers’ were divided 

into nearly equal ‘bins’ as detailed in the Methodological Appendix A. ‘Number of Centers of 

Power’ and ‘Electoral Instability’ were operationalized according to the specification detailed 

in Chapter 5. 
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The variables described in Table 6.2 above are, based on the review of literatures in 

Chapter 2, are hypothesized to affect police control performances as described in Table 6.3 

below.  

 

Recall as well, from Chapter 2, that some of these specific hypotheses may bear on three 

broader hypotheses particularly relevant to a police-centered theory of protest policing. 

That theory, when seeking explanations for protest policing (including police enactment of 

control performances), takes as its point of departure the perspective of police officers and 

departments. From that perspective, decisions about protest policing are often made based 

on police evaluations of threats to their control over situations - a driving concern of 

anyone whose daily interactions involve significant risk, uncertainty, and the possibility 

that they might effectively manage the two.  

 

The police-centered theory also generates two other hypotheses. One, advanced by Earl, 

Soule, and Davenport, suggests that U.S. police are largely insulated from political elites and 

their concerns, and therefore choose control performances almost entirely in the moment, 

in reaction to protesters contentious performances. This dissertation advances an 

alternative hypothesis, that police are strategic, choosing control performances based not 

only on protester threats, but also the likelihood that their choices will sit well with 

supervising political elites. Moreover, strategic police choose the timing of their control 

performances to maximize their strategic objectives; sometimes they even take the 

initiative to stymie protesters and maintain control. Column 4 of Table 6.3 notes whether 

or not a hypothesis is relevant to a broader Police-Centered theory.  

 

Table 6.3 Hypotheses: Effects of City and Police Variables on Control Performances 

Hypothesis  Description Variables Police-Centered 

Hypothesis? 

6.6 Police performances will be more 

ambivalent to campaigns in cities 

where elites are fractured across 

many power centers. 

# centers of 

power 

Strategic, 

responding to 

elites 

6.7 Police will be more accommodating 

to movements where electoral 

instability makes elites 

Electoral 

instability 

Strategic, 

responding to 
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accommodating to voters. elites 

6.8 Police will use more Individual 

arrests to keep their control 

performances out of the headlines. 

Electoral 

instability 

Strategic, 

responding to 

elites 

6.9  Police performances will reflect 

their beliefs about the popularity of 

the movement with elected officials’ 

constituencies. Departments in 

smaller more conservative towns 

will be less accommodating to 

Occupy campaigns. 

# of liberals Strategic, 

responding to 

elites 

6.10 Police performances will reflect a 

sense of threat from larger crowds 

in liberal cities 

# of liberals Threatened  

    

6.11 Police with smaller budgets are 

more likely to see long-lasting 

campaigns as a threat to their 

budgets, and may be more likely to 

shut down those campaigns (by any 

means necessary) sooner. 

Police 

budget per 

capita 

Threatened 

 

 

6.12 Like departments with smaller 

budgets, departments with fewer 

officers per capita are more likely to 

see long-lasting campaigns as a 

threat to their workforce capacity, 

and may be more likely to shut 

down those campaigns (by any 

means necessary) sooner. 

Police per 

capita 

Threatened 

6.13 Since these departments may have a 

general sense of being under-

powered, they may prefer Arresting 

Individuals as opposed to 

performing group Arrests. 

Police per 

capita 

Threatened 
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6.14 Police in departments committed to 

community policing will be more 

accommodating to movements in 

general.  

Community 

Policing 

 

6.15 Since a tenant of community 

policing involves avoiding group 

punishments for individual actions, 

departments with this philosophy 

are likely to apply control to 

individuals more often than to 

camps. 

Community 

Policing 

 

6.16 Departments in cities with high 

violent crime rates are less likely to 

view protesters as a major threat or 

priority, and therefore are likely to 

respond slower and with more 

accommodation. 

Violent 

Crime  

Threatened 

6.17 Departments with more non-white 

officers are generally less-likely to 

take a hardline against social justice 

movements, and so will be more 

accommodating to Occupy 

campaigns.  

Nonwhite 

Officers 

 

 

Results from Structural Topic Models 

 

Structural Topic Models regress independent variables across topic prevalence scores 

generated by LDA topic modeling. The models used in this chapter to investigate 

hypotheses about the prevalence and timing of control performances use the following 

general equation: 

 

� = 
�� +  �� × 
�� + ���� + ���� + ⋯ ���� +  �  
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Readers may recall this general equation from Chapter 5. As in the latter models and 

figures of Chapter 5 the above equation is used to estimate ��, ��, ��, … ��  then predict 

values of � across three different values of one � for 
  while holding the other � 

coefficients (e.g.  ��, �� at their means.  

 

Unlike the models and figures of Chapter 5, however, Figures 6.1-6.14 use a larger array of 

control variables. Since both city-level POS variables and variables describing police 

departments are likely to affect police-initiated control performances, all these variables 

are used in each model. Again, as in Figures 4.8 – 5.20, all but one of these variables are 

held at their means when predicting � for display in figures. And as in Figures 5.9 – 5.20, 

one � of interest is interacted with 
, then predictions of � are displayed for each value of 

the � of interest  across 
. 

 

In Figures 6.1 – 6.12 below, we see how city and police department variables affected the 

prevalence of control performances for each day of Occupy encampments. 

 

Hypothesis 6.6 predicts that police will act more decisively sooner in cities with fewer 

centers of political power. If decisive action is measured as the use of forceful control 

performances like Arresting, Figure 6.1 seems to support that hypothesis. Cities with 

relatively more power vested in a mayor were much more like to forego the softer 

approach of Ordinance Enforcing, and launch directly into Group and Individual Arresting 

earlier in Occupy campaigns. Cities with more power centers only picked up their arrest 

rates near the end of Occupy campaigns, relying instead on a strategy of hassling individual 

Occupiers with fines, citations, and eviction notices.  

 

Figure 6.1  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Number of Power Centers Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘number of power centers’ variable interacted with time. See 
Methodological Appendix for equations used in estimation and prediction. 

 
 

Cities with Fewer power centers, too, were more likely to shut down encampments 

immediately upon their establishment as shown in Panel 2 of Figure 6.2, below. They 
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performed more Raids, more frequently than police departments in other cities, as well, as 

shown in Panel 3, below. 

 

Figure 6.2  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Number of Power Centers Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Deadline Enforcing, Dismantling Camps, and Violent Raiding in the corpus of text units 
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describing police-initiated events for each day of the Occupy movement. Each panel displays 
three lines predicting control performance prevalence for the highest, lowest, and middle value 
of the ‘number of power centers’ variable interacted with time. See Methodological Appendix 
for equations used in estimation and prediction. 

 

Figure 6.3  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Political Instability Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘instability’ variable interacted with time. See Methodological Appendix for 
equations used in estimation and prediction. 

 

 

Figure 6.3, above, shows that police in the least politically stable cities were somewhat 

more likely to use tactics of strategic incapacitation, including hassling protesters with the 

energetic enforcement of city ordinances. They were less likely to make group arrests than 

their counterpart forces in cities that were more politically stable. But when they did make 

arrests, they were more likely to target individuals and result in scuffles.  

 

 

If police in politically unstable cities sought to discourage movements with citations, their 

counterparts appear to have been more willing to reject camping at the outset of Occupy 

campaigns. Panel 2 of Figure 6.4, below, shows that departments in stable cities were 

significantly more likely to simply remove tents as soon as they were pitched. Panel 3 

shows that they raided camps sooner, too. Departments in less stable cities, on the other 

hand, attempted to set and enforce deadlines multiple times and then engaged in Violent 

Raiding of camps at a significantly higher rate later in the course of campaigns. 
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Figure 6.4  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Political Instability Interacted with Time 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Deadline Enforcing, Dismantling Camps, and Violent Raiding in the corpus of text units 
describing police-initiated events for each day of the Occupy movement. Each panel displays 
three lines predicting control performance prevalence for the highest, lowest, and middle value 
of the ‘political instability’ variable interacted with time. See Methodological Appendix for 
equations used in estimation and prediction. 
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Figure 6.5, below shows that police in jurisdictions with fewer liberals were certainly 

unwelcoming to Occupy campaigns throughout their life course. They Enforced more 

Ordinances, and engaged in more Group Arrests throughout the fall of 2011. They also, 

according to Figure 6.6 set and enforced Deadlines early and often and had no qualms 

about persistently dismantling camps. This steady, unwelcoming pressure seems to have 

discouraged campers so much that these cities did not need to engage in the sort of Raids 

that closed down most camps in cities that may have initially encouraged or accommodated 

the movement.  

 

Figure 6.5  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Size of Liberal Population Interacted with Time
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘number of liberals’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 

 

Figure 6.6  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Size of Liberal Population Interacted with Time
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘number of liberals’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 

 
 
 

Police Capacity 

Earl and  her coauthors suggest that U.S. departments are rather autonomous from Cities, 

at least compared to departments in many other developed countries. If this is true, police 

capacities and cultures should have significantly more impact on police control 

performances than city-level variables we have just reviewed. 

 

The analysis of police department variables’ effects on their policing of protest begins with 

an evaluation of the effect of police budgets on department’s control performances. Figures 

6.7 and 6.8 show that department budget per capita had a modest impact on control 

performances. Poorer departments appear to have been somewhat more likely to Enforce 

Ordinances against protesters (Figure 6.7, Panel 1), perhaps as a revenue-generating tactic. 

While budget seems to have had only a small impact on the use of Arrests, with better-off 

departments, perhaps engaging in that control performance sooner, budget had a 

significant impact on the prevalence of Individual Arrests. It appears that department with 

greater access to resources were much, much more likely to single out Individuals. Was this 

a strategy used to incapacitate protest campaigns without arousing major force-on-force 

battles? And is it a strategy that is especially expensive to carry out? This possibility will be 

discussed further in Chapter 7.  
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Figure 6.7  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Police Budget Interacted with Time
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘police budget’ variable interacted with time. See Methodological Appendix 
for equations used in estimation and prediction. 

 

If budgets affect the way departments handle individual protesters, they seem to have 

relatively little effect on how they manage protest campaigns. Better-resourced 

departments (as shown in Panel 1 of Figure 6.8) may have been better able to establish and 

enforce deadlines on camps. They also appear to have taken direct action to Dismantle 

Camps more frequently than relatively poor departments (Panel 2).  
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Figure 6.8  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Police Budget Interacted with Time 

 
Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘police budget’ variable interacted with time. See Methodological Appendix 
for equations used in estimation and prediction. 

 

Figure 6.9, below, shows that departments with relatively few officers per capita were 
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their control over those camps. When they engaged in arrests, they were more likely to 

target individuals, too (Panel 3).  

Figure 6.9  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Officers per Capita Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
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middle value of the ‘officers per capita’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 

 

Departments with relatively few officers may have an ongoing sense that they have to do a 

lot with a little, that they need to be strategic about their operations. Some indication of 

that attitude appears to hold in the case of protest policing. While larger forces were 

establishing Deadlines for camps (Panel 1), smaller forces (relative to their citizen 

population) were raiding camps. Larger departments were more tolerant of camps, seeking 

to remove them with deadlines before carrying out a wave of raids in week 8 of 

encampments. 
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Figure 6.10  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Officers per Capita Interacted with Time 

 
Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘officers per capita’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 
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Police Culture 

 

Police department’s capacities appear to affect department’s strategic calculus as shown in 

Figure 6.10. Other aspects of a department are likely to affect its views of protest as well.  

 

Figure 6.11 shows that departments in cities with high violent crime rates may have had a 

relatively blasé attitude toward protest policing. Such departments were significantly less 

likely to engage in Ordinance Enforcing. They also arrested fewer protesters until later in 

their campaigns.  
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Figure 6.11  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Police Experience with Violent Crime Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘police experience with violent crime’ variable interacted with time. See 
Methodological Appendix for equations used in estimation and prediction. 
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Departments where homicides and assaults were more common were also slower to react 

to Occupy campaigns. They were much less likely to immediately Dismantle encampments 

(Panel 2 of Figure 6.12), tending instead to manage campaigns through Deadlines threats 

(Panel 1). Eventually, these departments relied on arrests to close down their camps 

(Panels 2 & 3 of Figure 6.11, above).  

Figure 6.12  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Police Experience with Violent Crime Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
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units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘police experience with violent crime’ variable interacted with time. See 
Methodological Appendix for equations used in estimation and prediction. 

 
 
 

Figures 6.13 and 6.14, below, assess the extent to which community policing philosophies 

impact police control performances. Panel 1 of Figure 6.13 shows that departments most 

committed to community policing were also most likely to use Ordinance Enforcing to 

discourage protesters. They also steadily used Arrests (Panels 2 & 3), first primarily of 

groups, then both groups and individuals.  
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Figure 6.13  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Commitment to Community Policing Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘community policing’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 

 
 

Departments most committed to community policing appear to have thoroughly avoided 

Raiding camps, too. While they peacefully Dismantled Camps as much (or more) as 

departments less committed to community policing, they gave fewer Deadline ultimatums, 

and seem to have managed protest by exerting pressure on individuals through Citations 
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and Arrests (Figure 6.13 Panels 1 and 2). Perhaps the orientation to community influenced 

departments’ decisions to avoid direct confrontation with the local Occupy community and 

instead focus on enforcement actions against individuals and smaller groups of protesters. 

 

Figure 6.14  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Commitment to Community Policing Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘community policing’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 

 
 

Discussion 

 
 

Hypothesis 6.6 was confirmed. Police departments in cities that concentrate more power in 

fewer hands appear to have acted more decisively and eschewed “wait and see” strategies. 

They engaged Occupy campaigns more forcefully and sooner. They Arrested more people 

early in campaigns, and chose not to bother with the tactic of strategically hassling 

protesters through citations. Generally more active, cities with stronger executives 

controlling more power Dismantled camps early on, then Raided camps, then set Deadlines, 

then Raided any remaining camps in quicker succession than their counterparts. It appears 

that while U.S. Police Departments may enjoy more autonomy than their European 

Counterparts, this is less true for departments in cities where power is concentrated in the 

hands of fewer ‘deciders.’ Those cities kept departments busy wrestling with local 

campaigns. 

 

Hypothesis 6.7 is largely confirmed. Police departments in cities that were undergoing an 

electoral transition were more likely to defer decisions about how to respond to the 

movement. They were a couple days later in attempting to Dismantle initial encampments 

(Figure 6.4 Panel 2) and less likely to engage in Raids until later in campaigns (Panel 3). 

Instead, these departments targeted individuals for Citation more frequently than their 

counterparts (Figure 6.3 Panel 1) avoiding the “in the job trouble” that might come with 

directly confronting Occupy campaigns too soon. While they may not have been more 

accommodating per se, as Hypothesis 6.9 states, police in politically unstable cities did 

seem to delay activity, probably to seek elite advice.  

 

Hypothesis 6.8 is confirmed. When police in politically unstable cities did engage, they 

were significantly more likely to pick off protesters one-by-one with Individual Arrests 

(Figure 6.3 Panel 3). One (with an imagination) can almost picture the local party boss 

directing police to squash the movement and keep it off the front page. 
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Hypothesis 6.9 is confirmed. Police in smaller, more conservative districts showed no 

tolerance for Occupy campaigns at any point, likely reflecting the sensibilities of political 

elites. They enforced Ordinances with zeal, Arrested Groups at higher rates, and 

persistently Dismantled any tents set up by Occupiers. They never let camps gain a steady 

foothold in their communities. 

 

Hypothesis 6.10 is confirmed. Though departments in cities with larger, liberal populations 

were more accommodating than their counterparts, when they did clash with protesters, 

perhaps because they felt threatened by large crowds and a large pool of reinforcements, 

police were more likely to use control performances that showed their concern for their 

own safety. They wore riot gear, fired projectiles from a distance, and hid behind riot 

shields. 

 

Hypothesis 6.11 was mostly rejected. It was thought that cash-strapped departments might 

feel a sense of urgency about ending protest campaigns early in order to avoid the soaring 

costs of controlling protest. However, there is little evidence, here, to support such a 

hypothesis. The timing of Raiding and Camp Dismantling control performances (Panels 3 

and 2 of Figure 6.8, respectively) were similar across cities with rich and poor police 

departments. If anything, richer departments set earlier eviction Deadlines and were more 

likely to Dismantle Camps (peaceably) over the course of campaigns (Panels 1 and 2, 

respectively).  

 

Finding 6.a: Though it was not hypothesized, readers may be unsurprised to learn that 

cash-strapped departments were more likely to engage in the Enforcement of Ordinances 

(Panel 1 of Figure 6.7). It seems these departments, to some extent greater than their richer 

counterparts, viewed their local Occupy campaign as a revenue-generating opportunity.  

 

Hypothesis 6.12 is confirmed. Police departments with fewer officers per capita, used the 

strategic element of surprise and initiative, perhaps motivated by the desire to avoid weeks 

of confrontation with an Occupation campaign. Like their better-staffed counterparts, many 

of these departments immediately Dismantled encampments before they could even fully 

establish themselves (Figure 6.10 Panel 2). They showed they were serious in the next 

weekend, too, Violently Raiding camps (Figure 6.10 Panel 3) at a time when better-staffed 

departments were just issuing Deadline ultimatums (Figure 6.10 Panel 1). Then, in the next 
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week, these departments issued a raft of tickets for Ordinance violations and issued their 

own Deadlines that they immediately enforced with another round of Raids.  

 

Hypothesis 6.13 is confirmed. Departments with limited staff, though, were also more likely 

to Arrest Individuals one at a time, avoiding force-on-force battles they might be ill-suited 

to engage (Figure 6.9 Panel 3). 

 

Hypothesis 6.14 is confirmed. Police departments with a philosophy of community policing 

were more likely to treat movements with care, in accordance with a conception of the 

encampments as communities and potential allies that could help police root out 

illegal/unwanted behavior. In accordance with their community orientation to local 

campaigns, these departments were less likely to Raid camps, and even less likely to force 

Deadlines on them.  

 

Hypothesis 6.15 is confirmed. Police departments with a philosophy of community policing 

were more likely to control movements through Arrests of Individuals and Groups than 

their counterparts.  

 

 Hypothesis 6.16 is confirmed. Police in cities with higher violent crime rates treated 

Occupy campaigns as more of an annoyance than some great threat to public order. At least 

initially, they were more likely to react to their local Occupy campaign with a shrug (Figure 

6.12 Panel 2) compared to other cities. They did not bother Enforcing pesky Ordinances 

compared to cities with less violent crime. And when they did deal with camps, they were 

most likely to start by issuing a Deadline ultimatum that they hardly enforced. When that 

failed, they issued a second Deadline (Figure 6.12 Panel 1) that they did enforce with 

Arrests of both Groups and Individuals (Figure 6.11 Panels 2&3). But, these departments 

seemed content to disperse Occupiers without much use of riot gear, tear gas, or the all the 

trappings of Violent Raids (Figure 6.12 Panel 3). In line with Hypothesis 6.16, officers who 

more regularly witness serious criminal activity, seemed not to view protesters as a major 

threat requiring counterinsurgency equipment. 

 

Hypothesis 6.17 was not supported. Whether because Occupy movements were 

predominantly white, middle class phenomena, or because police officers’ ethnicity matters 

little to their protest policing calculus, there was no evidence that the percentage of 
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nonwhite officers in a department affected their control performances in any appreciable 

way. In the interest of space visualizations of these models have been omitted. 

 

These findings warrant significant discussion, the opening task of Chapter 7. 
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Chapter 7: Discussion and Conclusions 

 

This dissertation has endeavored to answer the following questions about protest policing: 

Do broad factors thought to influence the policing of protest – features of the 

governing context, police capacities, and police cultures – indeed influence police 

responses to protest? 

If these broad factors do influence the policing of protest, how do their effects vary 

over the course of protest campaigns? 

With results from the analyses of Chapter 6, we have some answers worth discussing 

further.  

Political Opportunities’ Effects on Protest Policing 

 

Small Conservative Towns, Liberal Cities 

 

Researchers have documented a number of ways in which political context, or the structure 

of political opportunities, affect both protest and the policing of protest. In democratic 

societies, where the political elites who (more or less) supervise police departments are 

beholden to voters, social movements often seek elite favor. Even when social movements 

challenge elites, those elites must consider the effect of their response on their future 

elections and current political alliances. It should come as little surprise, therefore, that so 

many scholars have recorded causal linkages between social movements’ relative 

ideological affinity with elites and the subsequent policing of protest. When movements of 

the left make claims on political elites of the left, protest policing tends to be gentler than 

when similar movements target political elites on the political right (Fillieule 1997: 335-40; 

della Porta 1995; Geary 1985: chapter 7; Winter 1998). This dissertation finds, in line with 

these scholars (and confirming Hypothesis 6.9), that police in smaller, more conservative 

districts showed no tolerance for Occupy campaigns at any point, likely reflecting the 

sensibilities of political elites. They enforced ordinances with zeal, arrested groups at 

higher rates, strictly enforced deadlines and eviction orders, and persistently dismantled 

any tents set up by Occupiers.  
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However, authorities’ willingness to accommodate potential ideological allies’ camping on 

their City Hall lawns and blocking Traffic (Figure 5.12 Panel 1) was not infinite even in 

large, liberal cities. Whether elites were flexing their muscles to show their ‘law and order’ 

bona fides as Funk (1991) and della Porta (1999) might suggest, simply allowing police free 

reign as Earl and Soule (2006) might argue, or just facing larger, more radical Occupy 

campaigns; police in larger liberal cities were more likely to battle with protesters. They 

engaged protesters in more curfew disputes, arrested more of them during their 

contentious gatherings (Panels 2&3 of Fig. 5.12), arrested more individual protesters 

sooner, and violently raided camps more, and more frequently. Hypothesis 6.10, based on 

the broader hypothesis that control performances are often chosen based on a police 

departments’ sense of threat to their control, predicted such an outcome.  

 

Political Instability 

 

The typical accommodation pattern noticeable when movements and elites share an 

ideological affinity is thought to be all the stronger when elections are upcoming or have 

just occurred. According to Tilly’s conceptualization of political opportunity structures 

(outlined in Chapter 4), these are moments when elites are seeking allies, either voters or 

coalitions of activists and special interests to help them carry forward their agendas. If, 

indeed, political elites influence protest policing, control performances should be rather 

more accommodating during periods of political instability.  

 

As across all cases, police departments in cities where elites were vying for support 

eventually shut down their local Occupy campaign. But police in these cities were slower to 

act than their counterparts, suggesting that they sought advice and consent from indecisive 

elites. They were a couple days later in attempting to dismantle initial encampments 

(Figure 6.4 Panel 2) and less likely to engage in raids until later in campaigns (Panel 3). 

Instead, these departments attempted to manage campaigns with deadlines (Fig. 6.4 Panel 

1) and targeted individuals for citation and arrest more frequently than their counterparts 

(Figure 6.3 Panels 1&3 and Figure 5.20 Panel 3) avoiding the “in the job trouble” 

(Waddington 1998) that might come with directly confronting Occupy campaigns too soon.  

 



 

    180

 

Centers of Power 

 

Scholars debate the impact of government form on protest. On the one hand, divided 

governments feature more access points for movements and more potential allies with 

power to make the changes activists seek. Thus, Tilly and Tarrow (2007) and others 

(Kitschelt 1986; Kriesi 1995) would likely hypothesize that Council and Commission style 

city governments, with their multiple power centers, provide more opportunities for 

movements than mayor-led governments. Others argue that more centers of power just 

equal more veto points, more obstacles to winning a clear victory (Huber, Ragin and 

Stephens 1993; Skocpol 1992; Amenta and Young 1999).  

 

None yet, however, have tested the impact of divided government on protest policing. 

Convinced that more veto points are likely to result in confusion among political elites and 

police chiefs, this study  has hypothesized that police in mayor-led cities with fewer centers 

of power would act more decisively against Occupy campaigns. Data bear out that 

prediction. Police departments in cities that concentrate power in fewer hands eschewed 

“wait and see” strategies. They engaged Occupy campaigns sooner. They arrested more 

people early in campaigns, and chose not to bother with the tactic of strategically hassling 

protesters through the enforcement of city ordinances. Generally more active, cities with 

stronger executives controlling more power dismantled camps early on, then raided camps, 

then set deadlines, then raided any remaining camps in quicker succession than their 

counterparts. It appears that while U.S. Police Departments may enjoy more autonomy than 

their European Counterparts, this is less true for departments in cities where power is 

concentrated in the hands of fewer ‘deciders.’ Those cities kept police departments busy 

wrestling with local campaigns. 

 
 

Police Capacity’s Effects on Protest Policing 

 

Like any actor in any context, a police department’s ability to deliver a particular control 

performance will likely depend on its capacity to deliver control performances in general. 

Some of this capacity comes down to knowledge and training (a variable difficult to 

measure (so far)), but much of it comes down to basic resources: personnel, and the budget 

to pay their wages. There has been very little research examining the effects of budget on 
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repression and protest policing (though see Ron 2000; and Boudreau 2005; 2009). Small N 

studies often take capacity for granted and just focus on the control performances carried 

out in their particular cases. Quantitative scholars usually focus on the large-scale trends in 

repression across decades and countries, not the allocation of control performances during 

particular cycles or episodes of contention. Earl and Soule (2006) and Earl, Soule, and 

McCarthy (2003), however, have included a simple measure of capacity, police budget per 

capita, in their models. They found that well-resource departments were less likely to 

engage in violence against protesters. This dissertation uses Earl et al.’s measure plus a 

second measuring the number of officers per citizen in a city.  

 

Police Budgets 

 

Results show, contrary to Hypothesis 6.11 that police budget had only a modest impact on 

most police control performances. It was thought that cash-strapped departments might 

feel a sense of urgency about ending protest campaigns early in order to avoid the soaring 

costs of controlling protest. However, the timing of raids and camp dismantling control 

performances (Panels 3 and 2 of Figure 6.8, respectively) were similar across cities with 

rich and poor police departments. If anything, richer departments set earlier eviction 

deadlines and were more likely to dismantle camps (peaceably) over the course of 

campaigns (Panels 1 and 2, respectively). Readers may be unsurprised to learn that cash-

strapped departments were more likely to engage in the enforcement of ordinances (Panel 

1 of Figure 6.7). These departments, to some extent greater than their richer counterparts, 

may have viewed their local Occupy campaign as a source of revenue. The greatest 

difference in control performance prevalence, by far, concerned police arresting individuals 

(Panel 3 of Fig. 6.7). Further research (or at least consultation with an informant from a 

police department) is needed, but perhaps better-resourced departments have personnel 

who assist in the generation of booking paperwork. Without such help, poorer departments 

may lack the capacity to pursue a strategy of movement control that relies on weakening 

movements by arresting their individual members. 

 

Police Personnel 

 

Results of models assessing the impact of departmental personnel per capita performed 

more to expectations. As predicted by a hypothesis (6.12) imagining police to be both 

strategic and mindful of threats to their control, departments with fewer officers per capita, 

used the strategic element of surprise and initiative to avoid prolonged confrontation with 
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their local Occupy campaign. Like their better-staffed counterparts, many of these 

departments immediately dismantled encampments before they could even fully establish 

themselves (Figure 6.10 Panel 2). But, they also showed they were serious in the next 

weekend, too, violently raiding camps (Figure 6.10 Panel 3) at a time when their better-

staffed counterparts were just issuing deadline ultimatums (Figure 6.10 Panel 1). Then, in 

the next week, these departments issued a raft of tickets for Ordinance violations and their 

own Deadlines that they immediately enforced with another round of violent raids. 

Perhaps reflecting their relatively weak numbers, these departments were also less likely 

to engage in group arrests, instead picking off protesters one by one. It seems these 

department sought to avoid force-on-force battles except at times of their own choosing 

(Figure 6.9 Panel 3). 

 
 

Police Culture’s Effects on Protest Policing 

 

The findings of this dissertation suggest that political elites – even in the U.S. context – have 

considerable influence over the protest policing decisions of their local police departments. 

But their input is not absolute. Department’s bring a great deal of knowledge to the table 

when authorities make decisions about protest policing. Their “police knowledge,” too, is 

infused into everything they do (della Porta 1998). Departments, like other organizations, 

develop a shared sense of their purpose, their values, and their best practices. They ‘know’ 

what is good policing and what is ‘bad’ policing and that ‘knowledge’ influences their 

practices in situations from street encounters with suspected drug dealers to clashes with 

protesters. While scholars have studied police cultures in general (Skolnick 1966; Wilson 

1978; Lundman 1980) and note their influence on protest policing outcomes (Worden 

1989; della Porta 1998), none yet have quantitatively and comparatively studied police 

culture’s impact on protest policing as this dissertation does. 

 

Community Policing Philosophy 

 

Over the last two or three decades, a philosophy of ‘community policing’ has risen in 

popularity among police departments across the United States. Every major police 

professional organization endorses the approach, and the Bureau of Justice Statistics, an 

arm of the U.S. Federal Department of Justice, has recently added questions about 

departments’ adherence to the philosophy to its periodic LEMAS survey. The survey is not 

the only tool the DOJ uses to prod departments to adopt the philosophy. Significant funding 
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opportunities are also tied to departments espousing of the creed. Community policing 

entails a number of methods to increase police integration into the communities they are to 

serve and protect. Police are encouraged to directly meet with neighborhood groups, civic 

institutions, schools, and religious institutions. They are urged to create open channels of 

communication through website that invite citizens to engage as police allies. And police 

are assigned to regular ‘beats’ where they are encouraged to leave their patrol cars, walk 

neighborhoods, and befriend the members of their local community. 

This style of policing would seem to produce officers who are more communicative, less apt 

to see citizens as ‘criminals’ or ‘problems,’ and potentially more tolerant of free speech 

assemblies like Occupy campaigns. On the other hand, protests are rare. They do not 

especially resemble other situations in which officers may find themselves. So, it has also 

seemed plausible that a philosophy of community policing would have no impact 

whatsoever on protest policing control performances.  

 

This dissertation has confirmed that, in fact, departments with a philosophy of community 

policing are more likely to treat movements with care. They appear, compared to their 

counterparts, to have conceived of encampments as communities and potential allies that 

could help police root out illegal/unwanted behavior. In accordance with their community 

orientation to local campaigns, these departments were much less likely to Raid camps, and 

even, less likely to force Deadlines upon them. Less likely to take down entire 

encampments, departments committed to community policing, instead focused their 

control performances on Individuals and small Groups, often by Enforcing city Ordinances. 

 

View and Prioritization of Protest 

This dissertation is the first piece of known scholarship to comparatively test the effects of 

police culture on protest policing. Della Porta has suggested (1998) that the way police 

view their work impacts their policing of protest, but this suggestion does not point one 

toward any particular hypothesis about which views result in which kinds of control 

performances. It was a conversation with a police officer (who also happens to hold a Ph.D. 

in sociology) that inspired Hypothesis 6.16 of this dissertation. This officer quipped that 

while officers in some rather sleepy towns and small cities might get rather animated about 

the Occupy movement – the biggest policing event in there area for over a decade – cops in 

larger, “harder” cities just saw it is as either a good opportunity for overtime pay or a mess 

that was going to keep them away from their families on weekends.  
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The officer appears to have had a point. Police in “harder” cities with higher violent crime 

rates treated Occupy campaigns as more of a nuisance than some great threat to public 

order. Their initial reaction to their local Occupy campaigns was mostly a non-reaction 

(Figure 6.12 Panel 2) compared to other cities. They did not bother Enforcing Ordinances 

against the campers. And when they did deal with camps, they were most likely to start by 

issuing a Deadline ultimatum that was mostly a bluff. When that failed, they issued a second 

Deadline (Figure 6.12 Panel 1) that they did enforce with Arrests of both Groups and 

Individuals (Figure 6.11 Panels 2&3). But, these departments seemed content to disperse 

Occupiers without much use of riot gear, tear gas, or the trappings of Violent Raids (Figure 

6.12 Panel 3). In line with Hypothesis 6.16, officers who more regularly witness serious 

criminal activity, took a blasé approach the Occupy movement. 

 

 

 

All of the hypotheses evaluated by this dissertation are listed and described in Table 7.1 

below. 

 

Table 7.1 Summary Evaluation of Hypotheses 

Hypo-

thesis 

# 

Description Variables Confirmed?  Bears on 

Threat, 

Strategic, or 

Reactive 

Hypotheses? 

4.1  Topic modeling will recover 

evidence of stable and well-

rehearsed ‘social movement’ 

performances. 

 

DVs: Rallies, 

Demonstrati

ons, 

Weekday 

Marches 

Yes   

4.2 Topic modeling will recover 

evidence of contentious 

performances unique to 

urban occupation campaigns 

including encampment in 

public spaces. 

DVs: 

Encampment 

Activities, 

Weekend 

Gatherings, 

Curfew 

Disputes, City 

Yes  
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Hall 

Targeting 

4.3 Topic modeling will recover 

evidence of contentious 

performances targeting 

banks, including bank 

transfer days and the 

blocking of entrances to 

banks. 

DV: Bank 

Targeting 

Yes  

4.4 Topic modeling will recover 

evidence of contentious 

performances blocking 

sidewalks and streets, and 

(b) these performances will 

happen more later in 

campaigns once 

performances have escalate 

to use more disruptive 

tactics. 

DVs: 

Sidewalk 

Contestation, 

Traffic 

Battles 

Yes 

 

But not 

4.4b 

 

4.5 Topic modeling of 

performances through time 

will recover (a) evidence of 

an occupation campaign life 

course including (b) a 

sequence of activity 

beginning with camp 

establishment, performances 

of the traditional social 

movements’ repertoire, and 

later more disruptive 

performances. 

 

 Yes  

 

But 4.5b 

was only 

mostly 

supported 

b/c of 4.4b. 

And there 

is enough 

variation in 

life courses 

to require 

that models 

testing 

Hypotheses 

5.x – 6.x 

require POS 
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control 

variables. 

5.1 In cities featuring more 

independent centers of 

power, Occupy campaigns 

will be more active. 

# centers of 

power 

No   

5.2 In cities that have just 

experienced or will soon 

experience an election, 

campaigns will be more 

active, reflecting the general 

political activity concomitant 

with local political 

realignments. 

Political 

instability 

Yes   

5.3 In cities that have just 

experienced or will soon 

experience an election, elites 

will be more solicitous of 

Occupy campaigns, and as a 

consequence, protesters’ 

performances will be less 

disruptive. 

Political 

instability 

Yes   

5.4 In cities where more Obama 

voters live, campaigns will be 

more active. 

# of liberals Yes   

5.5 In cities where more Obama 

voters live, campaigns will 

feature more performances 

designed for mass crowds, 

like marches and 

demonstrations. 

# of liberals Yes   

6.1 Topic modeling will recover 

evidence of control 

performances warning 

protesters to cease or modify 

DV: Telling Yes   
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their activities. 

 

6.2 Topic modeling will recover 

evidence of control 

performances aimed at 

‘strategic incapacitation,’ the 

citation and ticketing of 

protesters for violation of 

minor city ordinances 

including overnight camping, 

violating curfews, 

jaywalking, etc.  

 

DV: 

Ordinance 

Enforcing 

Yes   

6.3 Topic modeling will recover 

evidence of control 

performances that seek to 

incapacitate and discourage 

movements by arresting 

individuals or small groups 

of protesters (even when 

police do not target the 

entire campaign for arrest.) 

 

DVs: Group 

Arresting, 

Arresting 

Resisting 

Individuals 

Yes   

6.4 Topic modeling will recover 

evidence of control 

performances that seek to 

peacefully close down 

encampments 

DV: 

Dismantling 

Camps 

Yes   

6.5 Topic modeling will recover 

evidence of control 

performances that seek to 

close down encampments 

through large quantities of 

arrests, police shows of force, 

and the use of “less lethal” 

DV: Violently 

Raiding 

Yes   
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weapons. 

6.6 Police performances will be 

more ambivalent to 

campaigns in cities where 

elites are fractured across 

many power centers. 

# centers of 

power 

Yes  Strategic, 

responding 

to elites 

6.7 Police will be more 

accommodating to 

movements where electoral 

instability makes elites 

accommodating to voters. 

Political 

instability 

Yes  

 

Strategic, 

responding 

to elites 

6.8 Police will use more 

Individual Arrests to keep 

their control performances 

out of the headlines. 

Political 

Instability 

Yes  Strategic, 

responding 

to elites 

6.9  Police performances will 

reflect their beliefs about the 

popularity of the movement 

with elected officials’ 

constituencies. Departments 

in smaller more conservative 

towns will be less 

accommodating to Occupy 

campaigns. 

# of liberals Yes  Strategic, 

responding 

to elites 

6.10 Police performances will 

reflect a sense of threat from 

larger crowds in liberal cities 

# of liberals Yes  Threatened  

6.11 Police with smaller budgets 

are more likely to see long-

lasting campaigns as a threat 

to their budgets, and may be 

more likely to shut down 

those campaigns (by any 

means necessary) sooner. 

Police budget 

per capita 

No  Threatened 
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6.12 Like departments with 

smaller budgets, 

departments with fewer 

officers per capita are more 

likely to see long-lasting 

campaigns as a threat to 

their workforce capacity, and 

may be more likely to shut 

down those campaigns (by 

any means necessary) 

sooner. 

Police per 

capita 

Yes  Threatened 

6.13 Since these departments may 

have a general sense of being 

under-powered, they may 

prefer Arresting Individuals 

as opposed to performing 

Group Arrests. 

Police per 

capita 

Yes  Threatened 

6.14 Police in departments 

committed to community 

policing will be more 

accommodating to 

movements in general.  

Community 

Policing 

Yes  

 

 

6.15 Since a tenant of community 

policing involves avoiding 

group punishments for 

individual actions, 

departments with this 

philosophy are likely to 

apply control to individuals 

more often than to camps. 

Community 

Policing 

Yes   

6.16 Departments in cities with 

high violent crime rates are 

less likely to view protesters 

as a major threat or priority, 

and therefore are likely to 

respond slower and with 

Violent 

Crime  

Yes  Threatened 
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more accommodation. 

6.17 Departments with more non-

white officers are generally 

less-likely to take a hardline 

against social justice 

movements, and so will be 

more accommodating to 

Occupy campaigns.  

Nonwhite 

Officers 

No   

 

Police-Centered Theory: Threatened? Reactive or Strategic? 

 

Answers to the key questions opening this chapter bear on this dissertation’s second large 

goal: to clarify police-centered theories of protest policing. The going theory of protest 

policing in the American context suggests (1) that police responses to protest are 

substantially motivated by their (sometimes inaccurate) sense of the threat protesters pose 

to their officers, and particularly to their control over situations. This ‘Threatened Police 

Hypothesis’ is evaluated by Hypotheses 6.10 – 6.13, and 6.16, above.  

 

American sociological theory on the repression of movements also currently advances a 

second hypothesis (2), the ‘Reactive Police Hypothesis,’ suggesting that American police are 

autonomous from political elites and choose their control performances based solely on the 

their assessment of threats from protesters. This dissertation advances a third hypothesis 

(3), the ‘Strategic Police Hypothesis.’ This alternative suggests that police act strategically 

when faced with protest. They consider the elected officials who supervise them, take stock 

of their own department’s resources, and act in line with their department’s culture as they 

seek to limit the risk of disorder posed by protesters. They even take initiative at times. 

Hypotheses 6.6 – 6.9 of this dissertation offer crucial tests of the broader ‘Reactive’ and 

‘Strategic’ hypotheses. 

 

Crucial Test Results: Police are Strategic 

 



 

    191

If a strong version of the Reactive Hypothesis is true, the prevalence of police control 

performances should not vary across variables describing the political opportunity 

structures of the cities in which they are embedded. When movements in different cities 

behave similarly, police from those different cities should behave similarly in their 

response. If the ‘Strategic Police’ Hypothesis is correct, variations in the prevalence and 

timing of police control performances should be rather prominent in the data, a result of 

police taking decisions about protest policing in consideration of elites’ concerns and their 

own sense (based on their resources) of the best moments to enact their performances. 

 

As readers have seen in Chapter 6 and in the Table 7.1 above, the confirmation of 

Hypotheses 6.6 – 6.9, which test the effects of political opportunity structure variables on 

the prevalence of police control performances, thoroughly discredit the ‘Reactive Police’ 

Hypothesis. Police departments’ control performances varied in prevalence and timing in 

ways that the broader literature on repression and protest policing (outside of the U.S.) 

would have predicted. Police waited on elites to decide their next steps (Hypothesis 6.6). In 

cities where elites were either up for election or just settling into new political coalitions, 

police were relatively accommodating campaigns (Hypothesis 6.7) and avoided the sorts of 

large battles likely to make headlines (Hypothesis 6.8). And in more conservative towns, 

police showed the leftists campers, from Day One, that they were unwanted by authorities 

(Hypothesis 6.9).  

 

Strategic and Threatened 

 

That police act strategically, does not imply that they always act without assessing the 

threats protesters pose to their officers. Police in large, liberal cities seem to have taken 

stock of the massive crowds that assembled in their public spaces, and then chosen, very 

early on, to beat back the movement with beanbag rounds, tear gas, and rubber bullets 

(Hypothesis 6.10). Departments that were relatively understaffed, too, refused to take any 

chances with their local Occupy campaigns. They also took strategic initiative, mustering all 

their forces to Raid camps early in campaigns (Hypothesis 6.12). These patterns of control 

performances look very much like a strategy of ‘deterrence’ that scholars have identified 

since 1966 (Feierabend & Feierabend), but that Earl and Soule have lately (2010) 

attempted to explain away. Understaffed departments also fought a sort of guerrilla war on 

local encampments, picking off protesters one-by-one with Individual Arrests (Hypothesis 

6.13) rather than controlling them through larger Group Arrests that would require more 
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personnel over time. Such performances offer clear evidence of police acting strategically 

given their assessments that protesters threaten their control. 

 

Earl and Soule’s (2006) astute intuition that police carefully attend to threats to their 

control is brought into vivid relief by the testing of Hypothesis 6.16. If della Porta (1998) 

and Earl and Soule (2006) are right, not only should “police knowledge” affect the way 

officers perform their work, it should affect the way they assess threats to their control. 

That is exactly what a test of Hypothesis 6.16 finds. Police in cities with high crime rates, 

where threats to officers and the public are a regular phenomena, took a very nonchalant 

approach to their local Occupy campaigns. They viewed them as a nuisance perhaps, but 

not as a major threat to be met with riot gear and pepper spray. Compared to their 

counterparts, these departments spent far less time and energy on Occupy movements. 

 

 

Political Opportunity Structures not Occupy Campaign Activities 

 

 

Critical readers may harbor nagging doubts about findings showing that political 

opportunity structures affect police behavior. It has been a key contention of the American 

social movements repression literature that American police departments are insulated 

from political elites. By (a strong version of) this theory, the only way political opportunity 

structures could affect control performances is if they do so by encouraging or discouraging 

protester contentious performances that arouse reactive protest policing. This concern 

should be alleviated by the fact that all of the models testing the effects of political 

opportunity structure variables on the prevalence of police control performances included 

other political opportunity variables as statistical controls. Nonetheless, to satisfy any 

residual uncertainties, and to help provide food for further thought and discussion, I 

provide side-by-side visualizations of the effects of POS on both protester and police 

performances below. Readers have seen all of these plots before, and they retain their labels 

so that readers may cross-reference them in their original context, too. 

 

Here, the critics’ task is to note differences in protester’s contentious performances, 

depicted in columns 1 and 2 of the following pages, and venture plausible reasons why 
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those differences caused the differences in police control performances depicted in column 

3 of each of the following pages.  

 

 

Centers of Power 

 

First, we observe whether and how the number of power centers in a city may have 

affected protesters’ activities in a way that explains differences in protest policing. Readers 

will note three significant, if small, differences in the prevalence of protesters’ contentious 

performances. Protesters in cities with more power centers (with Council or Commission 

style governments that may also have been a state capitol) engaged in more Weekend 

Gatherings in the first week of their campaigns, and more Encampment Activities in their 

second week, than cities led by Mayors. They also appear to have experienced more spats 

with police over Sidewalks. Now, the question asked throughout this section is: do these 

differences explain differences in the prevalence of police control performances? 

 

Recall from the discussion above, and observe, that what most distinguished police control 

performances across these cities was the decisiveness of police action in cities with fewer 

centers of power. Mayor led cities were quicker to Dismantle camps, quicker to Enforce 

Deadlines, and quicker to control Occupy campaigns through Group Arrests and Individual 

Arrests.  It seems the findings discussed above hold up to closer critical analysis. Or maybe 

readers can venture a plausible account for why protesters’ increased Weekend Gatherings, 

Encampment Activities, and Sidewalk Contests would slow the decision-making of cities 

with more power centers.  

 

 

 

 

 



 

    

1
9

4
 

 

 

 

 

−
0

.2
0

.2
0
.4

Fewest Centers of Power

More Centers of Power

Most Centers of Power

−
0
.2

0
.2

0
.4

E
x
p
e
c
te

d
 T

o
p

ic
 P

ro
p

o
rt

io
n

−50 0 50 100 150

−
0
.3

−
0
.1

0
.1

0
.3

Days Since Local Camp Established

−
0
.2

0
.2

0
.4

Fewest Centers of Power

More Centers of Power

Most Centers of Power

−
0
.2

0
.2

0
.4

E
x
p

e
c
te

d
 T

o
p

ic
 P

ro
p
o

rt
io

n

−50 0 50 100 150

−
0

.3
−

0
.1

0
.1

0
.3

Days Since Local Camp Established

−
0

.2
0
.2

0
.4

Fewest Centers of Power

More Centers of Power

Most Centers of Power

−
0
.2

0
.2

0
.4

E
x
p
e

c
te

d
 T

o
p
ic

 P
ro

p
o

rt
io

n

−50 0 50 100 150

−
0
.3

−
0

.1
0
.1

0
.3

Days Since Local Camp Established

Figure 5.13 – Weekend Gatherings, 

Encampment Activities, Weekday Marches 

Figure 5.14 – Rallies, 

Demonstrations, and Labor 

Alliances 

Figure 6.2  – Deadline Enforcing, 

Dismantling Camps, and Violent Raiding 
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Figure 5.15 – City Hall Targeting, Bank 

Targeting, and Sidewalk Contestation 
Figure 5.16 – Traffic Battles, Curfew 

Disputes, Arrests 

Figure 6.1  – Ordinance Enforcing, Group 

Arresting, Arresting Resisting 

Individuals 
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Political Instability 

 

Continuing to double-check this dissertation’s findings, readers will observe plots 

showing the effects of political stability on the prevalence of protester and police 

performances below. The most significant difference in protester activity across 

politically stable and unstable cities concerns Encampment Activities. As a general 

theory of political opportunity structures would predict, Occupy Encampments were 

more Active in cities that were undergoing a political transition. This increased 

activity aligns with the notion that elected officials tend to be more accommodating of 

movements around the time activists are taking to the voting booth. Indeed, as 

discussed above, political elites in politically unstable cities were slightly slower to act 

than their counterparts. They were a couple days later in attempting to Dismantle 

initial encampments (Figure 6.4 Panel 2) and less likely to engage in Raids until later 

in campaigns (Panel 3). Instead, these departments attempted to manage campaigns 

with Deadlines (Fig. 6.4 Panel 1) and targeted Individuals for Citation and Arrest more 

frequently than their counterparts in politically stable cities (Figure 6.3 Panels 1&3 

and Figure 5.20 Panel 3).  

 

These findings suggest not that protester’s increased Encampment Activities caused 

unstable cities’ relative accommodation of the movement, but that elites’ 

accommodation of the movement allowed Occupy campaigns in politically unstable 

cities to engage in more Encampment Activities. Movement campaigns in unstable 

cities appear also to have been slightly more likely to target City Halls and Banks and 

to draw Arrests during their events. None of these differences would explain the 

differences in police behavior. The one, final difference concerns Curfew Disputes. It 

appears that in trying to avoid the large-scale Raids and confrontations that police in 

politically unstable cities eventually brought upon protesters, police Curfew Disputes 

evolved into Ordinance Enforcement in week 4, just as police in more stable cities 

were being to spar with protesters about Curfew orders. Especially since this 

difference concerns a performance in which police and protesters were engaged, there 

does not seem to be a way that it explains the pattern by which police in politically 

unstable cities seemed to delay high-profile efforts to shut down encampments.  
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Figure 5.17 – Weekend Gatherings, 

Encampment Activities, Weekday Marches 

 

Figure 5.18 – Rallies, Demonstrations, and 

Labor Alliances 

Figure 6.4  – Deadline Enforcing, 

Dismantling Camps, and Violent Raiding 
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Figure 5.19– City Hall Targeting, 

Bank Targeting, and Sidewalk 

Contestation 

 

Figure 5.20 – Traffic Battles, Curfew 

Disputes, Arrests 

Figure 6.3  – Ordinance Enforcing, 

Group Arresting, Arresting Resisting 

Individuals 
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Size of Liberal Population 

 

Finally, turning to the last set of plots, below, we explore whether differences in protesters’ 

contentious performances across cities ranging from small and relatively conservative to 

large and liberal may have invited differing control performances from police. First of all, 

consider that across these cities there are no considerable differences in the prevalence of 

pure, protester-led contentious performances – those performances that do not include 

police. Large cities, perhaps, had more Labor support. Otherwise, the differences concern 

Traffic Battles, Curfew Disputes, and Arrests during protester-initiated contentious 

gatherings. The question becomes: did these shared protester/police performances cause 

the early use of Raids and Individual Arrests by police in larger, more liberal cities?  

 

A close inspection shows that the first high peak of the Violent Raid performance occurs 

days before the first peak of the Traffic Battle performance. This suggests that police 

already had a plan to shut down camps, and that protesters’ engagement in Traffic Battles 

may have given them the evidence they needed to justify camp closures. Or, perhaps, police 

reacted with a hair trigger to the very first Traffic Battles they experienced during the 

campaign. This dissertation does not wish to make the mistake of assuming that one party 

or another provoked a performance like a Traffic Battle. But whoever started those 

individual episodes, police clearly went on the offensive, Arresting many more individuals 

during the first week of their local campaign, foregoing Deadline warnings, engaging in 

increased Arrests during contentious gatherings, enacting Curfews, and Enforcing 

Ordinances quite early in campaigns. Though a test of this hypothesis will have to wait for a 

future study, the quick response of police in large, liberal cities may suggest that police 

were already wary of local activists before protesters even began pitching their tents. 

 

By this theory, a strong police reaction to a campaign should not be taken as evidence that 

the campaign caused that police reaction. Indeed, again, there is little discernable difference 

between the contentious performances of campaigns in small-and-conservative vs. large-

and-liberal cities. Moreover, there is nothing in any of the performances occurring during 

Occupy-initiated contentious gatherings that explains the control performances of police in 

smaller, less liberal cities and towns. Those departments chose to Enforce Deadlines and 

peacefully Dismantle Camps at a much higher rate. And they opted for Group Arresting, and 

Ordinance Enforcing at a much higher rate. These differences appear to reflect a strategy of 

driving Occupy campers away with steady, unwelcoming pressure.  
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Of the three measures of political opportunity structures, the number of liberals is the most 

likely to affect both campaign performances and police control performances. With a larger, 

liberal population, campaigns have more potential supporters to draw on, so they often 

bring larger crowds that are more likely to trigger a police sense of insecurity. However, if 

police were only responding to threat, police in smaller cities and towns with a more 

conservative population would have little reason to be so inhospitable to campaigns in 

their own way. Their intolerance for smaller, less threatening campaigns offers support to 

the notion that police consider the ideological affinities between movements and elites 

when making enforcement decisions. One wonders, for instance, if these same police are so 

inhospitable to more conservative movements – a question for future study. 
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Figure 5.9 – Weekend Gatherings, 

Encampment Activities, Weekday Marches 

Figure 5.10 – Rallies, Demonstrations, 

and Labor Alliances 

 

Figure 6.6  – Deadline Enforcing, 

Dismantling Camps, and Violent 

Raiding 
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Figure 5.11 – City Hall Targeting, Bank 

Targeting, and Sidewalk Contestation 

 

Figure 5.12 – Traffic Battles, Curfew 

Disputes, Arrests 

 

Figure 6.5  – Ordinance Enforcing, 

Group Arresting, Arresting Resisting 

Individuals 
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Overall, there is no compelling case to overturn the conclusion that political 

opportunity structures independently shape police control performances. The 

number of power centers, in particular, seems to affect decision-making around 

protest policing. And political instability leads to more accommodating responses, 

or at least responses that attempt to delay a showdown with protesters. More 

research is needed to understand how the pool of potential government and 

movement supporters affects police control performances. Current results are 

crosscutting. One might expect that police were more accommodating to liberal 

movements in liberal cities, but whether because of difficult histories with past 

movements, a sense of greater danger from larger crowds, or some other reason, 

they displayed extraordinarily little patience with Occupy camps. On the other hand, 

as expected, smaller conservative cities and towns were also unaccommodating to 

camps in their own way, perhaps because they went against the grain of prevailing 

political ideologies.  

 

In any case, the relatively large differences in the prevalence and timing of police 

control performances when compared to variations in contentious performances (The 

scales on all plots are identical.) also suggests that differences in policing are not 

completely tied to protesters’ activities. Differences in protest policing that emerge 

as a consequence of police culture underline that point. The sum total of these 

analyses thoroughly repudiate a strong version of the Reactive Police hypothesis.  

 

Readers might be tempted to draw the conclusion not only that police behaved 

strategically during the Occupy movement, but also that they have behaved 

strategically throughout the last several decades of American protest – that Earl, 

Soule, Davenport, and McCarthy have been wrong all along. This dissertation does 

not go so far. Its data only concern Occupy movements in the Fall of 2011. However, 

it is worth noting that the data analyzed by Earl, Soule, Davenport and McCarthy are 

fundamentally incapable of discovering indicators of strategic action that are 

apparent in studies (until now only small-N studies) of protest campaigns. Those 

indicators, of delayed action or strategic initiative-taking, cannot be observed when 

researcher treat each contentious gathering as its own phenomenon, unconnected to 

any larger string of police and protester interaction. Future research using the data 

of Earl and her colleagues might seek to identify and analyze campaigns of protester 

contentious gatherings and include more measures of political opportunity structure. 
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Such an approach would clarify whether or not police during the 1960s, ‘70s, and 

‘80s were merely reacting to protesters or also behaving strategically as this 

dissertation has shown. 

 

 

Conclusions 

 

This dissertation concludes with an evaluation of its contributions to various 

literatures and the public.  

 

Since the substantive contributions of the foregoing research have only been 

possible thanks to significant advancements in the methods of event analysis and 

text analysis, we begin there. For decades, quantitative researchers have hand-

coded event data from newspapers. Resulting databases, describing variables solely 

at the event level, have been used to discern long-term and cross-country trends in 

the prevalence of social movement event-types (marches, vigils, kidnappings, etc.) 

and government efforts to repress them. Seeking to understand, in greater detail, 

the actions occurring within those events, a smaller group of determined researchers 

have also coded the subjects, verbs, and objects (who does what to whom) 

appearing in accounts of events. The work is painstaking, requiring many years 

and/or large teams of research assistants, but the payoff is great, allowing scholars 

to understand how certain actions (e.g. walking, chanting) cohere into some events 

(e.g. marches), while other actions (e.g. lighting candles, saying prayers) cohere into 

different events (e.g. candlelight vigils). This approach has allowed scholars like 

Charles Tilly to uncover and explain the myriad small innovations in contentious 

performances that other scholars viewing events could only observe as high-level 

trends that, perhaps, required them to update their event categorization schemes.  

 

This dissertation project has automated significant portions of this painstaking 

workflow, and goes further. Rather than hand-coding news articles for all variables 

about Occupy events, this dissertation’s research team merely labeled portions of 

news text referring to a single contentious gathering or police-initiated event. Then, 

thanks to recent advancements in computational linguistics, it was possible to 
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extract subject-verb-object data from these event-level text units automatically. 

While the first step required a year of effort, the second requires only a few hours 

(once one is acquainted with the commands that perform the SVO extraction). With 

some (also automated) data cleaning (allowing SVO-amplification of text units, 

event date assignments, and actor normalizations, as described in Chapter 3), these 

data can then be used to automatically (via LDA, a sort of clustering algorithm that 

performs topic modeling) induce coherent performances constructed of SVO actions. 

Since these performances and actions are organized by the events, cities, and dates 

in which and on which they occurred, researchers can then ascertain how city-level 

variables (like those describing political opportunity structures and police 

departments) affect the prevalence of performances through time over the course of 

campaigns. To some researchers who have been seeking a way to record data on all 

of these nested units of analysis (actions, performances, events, campaigns, cities) 

for some time, Hanspeter Kriesi (2009) among them, it is hoped that these methods 

and design will be welcomed. It is also hoped that the larger research community 

will pick up these tools to study campaigns describing event and social movement 

phenomena beyond the Occupy movement. 

 

This dissertation also makes other, substantive contributions to the social 

movements literature. The efforts of Chapter 4 and 5, discerning the extent to which 

Occupy campaigns unfolded according to a common life course, revive a fairly 

dormant ambition of the subfield. Since Blumer’s abandoned efforts in the last 

century, scholars have called for the division of social movement analysis by 

common social movement stages (Shultziner 2014), but few have made significant 

advancements in this area, none performing quantitative research. This dissertation 

confirms Shultziner’s assertion that the active stage of social movements – between 

their origins and outcomes – can be fruitfully studies in terms of political 

opportunity structures. 

 

More importantly, perhaps, this dissertation upgrades the ontological status of 

police repression from a static element of political opportunity structure to dynamic 

control performances to be studied in interaction with contentious performances. 

This update has been long overdue – the stubbornness of the static 

conceptualization of repression owing, no doubt, to the inadequacy of previous 

methods. It has been difficult enough to collect data on what social movements are 

up to, often requiring many years of hand-coding by many people. Researchers have 
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rarely had the time and funding to collect similarly detailed data on authorities’ 

activities. Instead, they have just conceived of  repression as a static phenomenon.  

 

To the American social movements literature, in particular, this dissertation offers 

one final contribution: an update to theories of protest policing. Until now the final 

word on American protest policing has been that police behavior is mostly 

determined in reaction to protesters. If the police response to a protest is rather 

anodyne, it is because protesters are behaving appropriately. If police are violent, it 

is because police felt threatened by protesters. Whether this theory of American 

protest policing is correct or not, it does not seem to square with recent experiences. 

This dissertation clearly shows, in quantitative comparative fashion, what many 

observers and participants in police and protester interactions (including police) 

have observed: that police are strategic. They are clever. They play cat and mouse. 

They wait until the right moment. They consider their political allies. 

 

This dissertation makes more general contributions to the more general social 

science (political science and sociology) literatures on repression and protest 

policing as well.  It hopes not only to show clear evidence of police strategizing, but 

also to encourage more research in this area. Perhaps this work will offer some 

relief to a research community that has long been frustrated by apparently 

contradictory findings. It clarifies that many of the discordant findings in the 

literature can be resolved by observing police and protester interactions through 

time. Yes, police of a single city facing a single Occupy campaign forego Raiding 

camps. And, yes, those same police facing that same Occupy campaign also Violently 

Raid camps with brutal force. There is no contradiction. They just choose one course 

of action early in a campaign and the other later in the same campaign.  

The reasons for these shifting patterns of activity need not mystify researchers 

either. They depend on police departments’ assessments of threats to their control 

posed by protesters (assessments colored by their understandings of their jobs), 

and their assessments of political elites’ wishes. They act strategically in ways that 

researches can further investigate as long as they have data able to reveal how 

parties’ performances change over the course of campaigns. 
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Finally, to the public, this dissertation offers a framework for further discussion 

about the state of protest policing in our society. The data are in. They are not 

distorted by pundits. They are not cherry-picked by politicians. They are as 

inductively-generated as can be, as clean as can be. And they show that police and 

political elites do make choices when facing crowds. They strategize. They choose to 

accommodate sometimes. They choose to fire tear gas and rubber bullets at other 

times. And they make those choices based on political expediency, based on their 

sense of threat (real or imagined), and based on what police work means to them. It 

is up to the American public to decide what of this is okay, what of this counts as law 

and order, as democracy, as brutality, and what, if anything, should be done to 

encourage different patterns of police and protester interactions in the future.  
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N

A 

Grand Rapids MI 10/8/11 26 3 188040 49.4 1 2011-11 8/7/07 1 CM 2 241105.33 2 1.78 1 9 2 7.42 2 0.14 1 

Greeley CO 10/24/11 2 92889 44.6 1 2011-11 

11/20/0

7 2 CM 2 228230.51 2 1.54 1 3 1 4.7 2 0.13 1 

Greensboro NC 10/15/11 12 269666 59 2 2013-10 11/3/09 1 CM 2 221486.98 2 2.2 2 8 2 0.01 1 0.24 2 

Harrisburg PA 10/15/11 23 10 49528 83.1 1 2013-11 11/3/09 1 MC 2 NA NA NA NA 0 1 14.07 3 NA 

N

A 

Hartford CT 10/7/11 14 124775 92 1 2011-11 11/6/07 2 MC 2 298423.29 2 3.34 3 13 3 13.14 3 0.37 3 

Honolulu HI 11/5/11 29 16 337256 70 2 2012-09 7/20/10 2 MC 2 561484.32 3 5.73 3 9 2 4.05 1 0.82 3 

Houston TX 10/10/11 37 11 

209945

1 50 5 2011-11 

12/12/0

9 2 MC 1 286679.21 2 2.41 2 10 3 9.95 3 0.46 3 

Huntington WV 10/7/11 3 1 49138 39.8 1 2012-11 11/2/10 2 MC 1 225273.47 2 2.18 2 0 1 6.63 2 NA 

N

A 
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 Indianapolis IN 10/8/11 13 7 820445 64 4 2011-11 11/6/07 2 MC 2 250040.65 2 1.93 2 10 3 11.18 3 0.16 2 

Iowa City IA 10/7/11 14 4 67862 70.2 1 2011-11 1/2/08 2 CO 3 142471.46 1 1.08 1 5 2 2.4 1 0.05 1 

Ithaca NY 11/22/11 1 30014 69.4 1 2011-11 11/6/07 2 MC 1 366827.81 3 2.1 2 0 1 2.3 1 NA 

N

A 

Jackson MS 10/15/11 11 3 173514 50 1 2013-06 6/2/09 1 MC 2 321352.74 3 2.59 3 9 2 9.34 3 0.69 3 

Jacksonville FL 11/5/11 41 5 864263 49 3 2015-05 5/17/11 1 MC 1 344541.74 3 1.92 2 5 2 6 2 0.24 2 

Jersey City NJ 10/11/11 16 1 247597 72.7 2 2011-11 5/12/09 2 CO 3 384893.12 3 NA NA 0 1 7.7 2 NA 

N

A 

Johnson City TN 10/15/11 2 63152 30.2 1 2013-04 4/2/09 1 CM 2 NA NA NA NA NA NA NA NA NA 

N

A 

Kalamazoo MI 10/12/11 11 74262 59 1 2013-11 11/3/09 1 CM 2 NA NA NA NA NA NA NA NA NA 

N

A 

Kansas City MO 10/3/11 12 2 459787 49 2 2015-03 3/22/11 1 CM 2 93521.57 1 0.82 1 13 3 12.04 3 0.59 3 

Lansing MI 10/10/11 13 2 114297 66 1 2014-08 11/3/09 1 MC 2 292642.74 2 2.19 2 10 3 10.23 3 0.22 2 

Las Cruces NM 10/15/11 6 13 97618 58 1 2011-11 11/6/07 2 CM 2 29051.6 1 1.81 2 10 3 4.34 1 0.62 3 

Las Vegas NV 10/6/11 41 1 583756 58 3 2015-06 6/7/11 1 CM 2 884435.5 3 5.04 3 8 2 18.52 3 0.18 2 

Lawrence KS 10/8/11 5 10 87643 64.2 1 2013-04 4/7/09 1 CM 2 165318.05 1 1.57 1 14 3 3.82 1 NA 

N

A 

Lexington KY 9/29/11 7 295803 52 1 2012-11 11/2/10 2 MC 1 167679.16 1 1.93 2 8 2 4.59 2 0.11 1 

Lincoln NE 10/15/11 3 4 258379 52 1 2015-05 5/3/11 1 MC 2 116108.51 1 1.23 1 7 2 3.74 1 0.06 1 

Little Rock AR 10/15/11 27 20 193524 55 1 2014-11 

11/10/1

0 1 CM 3 237697.88 2 2.81 3 7 2 15.01 3 0.29 3 

Long Beach CA 10/15/11 21 36 462257 69 3 2014-04 4/13/10 2 CM 2 389823.09 3 2.12 2 12 3 6.18 2 0.43 3 

Los Angeles CA 10/1/11 258 223 

379262

1 69 5 2013-03 3/3/09 2 MC 1 323591.06 3 2.56 3 10 3 5.29 2 0.59 3 

Louisville  KY 10/4/11 12 3 597337 56 3 2014-11 11/2/10 1 MC 1 251655.59 2 1.98 2 10 3 6.84 2 0.16 2 

Lubbock TX 10/15/11 3 7 236056 31.2 1 2012-05 5/8/10 2 CM 2 35712.67 1 NA NA 0 1 8.31 3 NA 

N
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Madison WI 10/7/11 11 2 233209 73 2 2015-04 4/5/11 1 MC 2 214856.42 1 1.72 1 0 1 3.49 1 0.19 2 

Memphis TN 10/15/11 16 5 646889 63 3 2011-10 

10/15/0

9 2 MC 1 308821.74 3 2.39 2 8 2 15.98 3 0.7 3 

Merced  CA 10/15/11 2 2 255793 52.9 1 2011-11 11/3/09 2 CM 2 168104.68 1 0.45 1 5 2 1.97 1 0.11 1 

Miami FL 10/14/11 51 399457 58 2 2013-11 11/3/09 1 MC 1 45689.4 1 7.74 3 11 3 12.14 3 0.29 3 

Milwaukee WI 10/15/11 28 10 594833 67 3 2012-04 4/1/08 1 MC 1 356368.61 3 3.34 3 8 2 10.03 3 0.34 3 

Minneapolis MN 10/7/11 104 38 382578 63 2 2013-11 11/3/09 1 MC 2 312844.37 3 2.23 2 12 3 10.13 3 0.18 2 

Missoula MT 10/8/11 23 4 66788 61.9 1 2013-11 11/3/09 1 CM 2 166104.03 1 1.5 1 0 1 2.87 1 NA 

N

A 

Mobile  AL 11/5/11 6 9 195111 45.3 1 2013-08 8/25/09 1 CM 2 213759.25 1 2.73 3 0 1 8.3 3 0.29 3 

Mosier OR 11/5/11 1 433 52.2 1 2012-11 11/2/10 2 CO 3 NA NA 36.95 3 0 1 0 1 NA 

N

A 

Muncie IN 10/19/11 4 1 70085 57 1 2011-11 11/6/07 2 MC 1 140816.45 1 1.6 1 8 2 7.32 2 0.05 1 

Murfreesboro TN 10/20/11 2 108755 39.8 1 2014-04 4/6/10 2 CO 3 166318.74 1 1.72 1 0 1 6.01 2 0.16 2 

Muskegon MI 10/17/11 5 38401 63.9 1 2013-11 11/3/09 1 CM 2 228587.51 2 2.37 2 0 1 9.48 3 NA 

N

A 

Nashville  TN 10/8/11 62 66 601222 60 3 2015-08 8/4/11 2 MC 2 270125.84 2 2.18 2 12 3 12.04 3 0.16 2 

Newark NJ 11/18/11 12 7 277140 76 2 2014-05 5/11/10 2 MC 1 469077 3 4.43 3 8 2 11.7 3 0.73 3 

New Haven CT 10/15/11 17 8 129779 88 1 2011-11 11/3/09 2 MC 1 268102.26 2 NA NA 0 1 13.47 3 NA 

N

A 

New Orleans LA 10/6/11 38 36 343829 79 2 2014-02 

12/11/0

9 1 MC 1 325743.32 3 4.65 3 8 2 7.99 2 0.53 3 

New Paltz NY 10/15/11 1 6818 60.6 1 2015-05 5/3/11 1 CM 2 333318.42 3 4.69 3 0 1 4.84 2 0.03 1 

New York City NY 9/17/11 256 85 

817513

3 77 5 2013-11 11/3/09 1 MC 1 464824.24 3 4.41 3 11 3 6.26 2 0.44 3 

Norfolk VA 10/6/11 8 9 242803 71 2 2014-05 5/4/10 2 CM 2 200397.03 1 3.16 3 6 2 5.86 2 0.24 2 
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 Norman OK 12/3/11 2 1 110925 38 1 2013-03 3/2/10 2 CM 2 146014.39 1 1.22 1 0 1 1.72 1 0.06 1 

Northampton MA 10/6/11 1 2 28549 71.8 1 2011-11 11/3/09 2 MC 1 NA NA NA NA NA NA NA NA NA 

N

A 

Oakland CA 10/10/11 463 345 390724 79 2 2014-11 11/2/10 1 MC 1 491395.46 3 2.06 2 6 2 17.02 3 0.5 3 

Ogden UT 11/5/11 3 83796 34.8 1 2011-11 11/6/07 2 MC 1 NA NA NA NA NA NA NA NA NA 

N

A 

Oklahoma 

City OK 10/10/11 31 18 579999 42 2 2014-03 3/2/10 1 CM 3 226695.9 2 1.78 1 10 3 8.81 3 0.14 1 

Olympia WA 10/15/11 10 7 252264 60 1 2011-11 11/6/07 2 MC 2 108001.01 1 0.38 1 0 1 0.5 1 0.03 1 

Omaha NE 10/15/11 14 20 408958 52 2 2013-05 5/12/09 1 MC 1 219768.07 2 1.87 2 10 3 5.65 2 0.18 2 

Orlando FL 10/15/11 18 16 238300 59 1 2012-04 1/29/08 1 MC 1 459044.48 3 3.07 3 7 2 10.87 3 0.38 3 

Palo Alto CA 10/13/11 2 64403 69.6 1 2012-11 1/4/11 2 CM 2 434460.01 3 1.44 1 4 1 0.99 1 0.28 2 

Pensacola FL 10/15/11 4 1 51923 39.9 1 2014-11 11/2/10 1 MC 1 322846.93 3 3.06 3 11 3 7.38 2 0.16 2 

Petaluma CA 10/29/11 5 3 57941 74 1 2014-11 11/2/10 1 CM 2 NA NA NA NA NA NA NA NA NA 

N

A 

Philadelphia PA 10/6/11 207 95 

152600

6 83 5 2011-11 11/6/07 2 MC 1 336837.28 3 4.34 3 9 2 11.97 3 0.45 3 

Phoenix AZ 10/15/11 41 15 

144563

2 44 4 2011-11 8/30/11 3 CM 3 300670.23 2 2.34 2 9 2 5.6 2 0.18 2 

Pittsburgh PA 10/15/11 69 22 305704 57 2 2013-11 11/3/09 1 MC 1 218085.2 2 3 3 6 2 8.1 3 0.2 2 

Pocatello ID 10/15/11 1 54255 42 1 2013-11 11/3/09 1 MC 1 181075.86 1 1.66 1 8 2 2.43 1 0.04 1 

Portland ME 9/30/11 19 16 66194 64 1 2011-11 12/6/10 3 CM 2 188838.87 1 2.42 2 8 2 2.87 1 0.03 1 

Portland OR 10/6/11 126 111 583776 77 4 2012-11 5/20/08 1 CO 3 246669.96 2 1.73 1 11 3 5.2 2 0.11 1 

Poughkeepsie NY 10/15/11 1 32736 53.2 1 2011-11 11/6/07 2 MC 1 336021.51 3 3.27 3 0 1 9.96 3 0.06 1 

Providence RI 10/16/11 21 4 178042 83 1 2014-11 11/2/10 1 MC 2 246342.94 2 2.77 3 4 1 6.36 2 0.2 2 

Raleigh NC 10/15/11 68 7 403892 57 2 2013-10 

10/11/1

1 2 CM 3 202590.14 1 1.76 1 9 2 4.27 1 0.19 2 
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 Richmond VA 10/15/11 26 55 204214 79.2 2 2012-11 11/4/08 1 CM 3 361066.38 3 3.69 3 0 1 6.99 2 0.33 3 

Riverside CA 10/15/11 16 23 303871 50 1 2012-06 11/3/09 2 CM 2 275774.92 2 1.35 1 12 3 4.31 1 0.27 2 

Rochester NY 10/1/11 14 9 210565 57 1 2014-03 3/29/11 2 MC 1 312638.38 3 3.45 3 4 1 9.64 3 0.25 2 

Sacramento CA 10/6/11 29 31 466488 59 2 2012-06 11/4/08 1 CM 3 267959.73 2 1.72 1 11 3 7.19 2 0.24 2 

Salem OR 10/10/11 7 5 154637 48 1 2012-11 11/2/10 2 CM 3 198277.06 1 1.27 1 5 2 3.36 1 0.08 1 

San Antonio TX 10/6/11 16 24 

132740

7 52 4 2013-06 6/13/09 1 CM 2 207993.19 1 1.52 1 6 2 5.3 2 0.49 3 

San Diego CA 10/7/11 155 243 

130740

2 54 4 2012-06 6/3/08 1 MC 1 285850.54 2 1.49 1 7 2 3.9 1 0.34 3 

San Francisco CA 9/17/11 195 177 805235 84 4 2011-11 1/4/11 3 MC 1 505406.38 3 2.41 2 12 3 6.67 2 0.55 3 

San Jose CA 10/2/11 35 32 945942 70 4 2014-01 6/8/10 2 CM 2 273049.29 2 1.47 1 11 3 3.39 1 0.4 3 

San Leandro CA 10/14/11 1 84950 79.7 1 2014-11 11/2/10 1 CM 2 299954.35 2 1.13 1 0 1 4.32 1 NA 

N

A 

San Ramon CA 10/11/11 3 72148 67.7 1 2011-11 11/3/09 2 CM 2 141376.06 1 0.8 1 0 1 0.37 1 NA 

N

A 

Santa Ana CA 10/22/11 26 8 324528 48 1 2012-11 11/2/10 2 CM 2 352453.02 3 1.24 1 9 2 4.05 1 0.49 3 

Santa Cruz CA 10/8/11 55 42 59946 77.8 1 2012-11 11/2/10 2 CM 2 362116.32 3 1.62 1 3 1 8.01 3 0.11 1 

Santa Fe NM 10/8/11 12 1 67947 76.8 1 2014-03 3/2/10 1 MC 2 302633.82 2 2.28 2 0 1 4.49 1 0.57 3 

Santa Rosa CA 10/15/11 29 17 167815 74 1 2012-11 11/2/10 2 CM 2 288316.29 2 1.07 1 2 1 4.06 1 0.15 2 

Scranton PA 10/16/11 4 10 76089 62.6 1 2013-11 11/3/09 1 CM 2 170852.55 1 2.02 2 0 1 2.97 1 0.01 1 

Seattle WA 10/1/11 217 97 608660 70 3 2013-11 11/3/09 1 MC 1 341734.3 3 2.12 2 10 3 6.02 2 0.24 2 

Sebastopol CA 11/5/11 11 4 7379 74 1 2012-11 11/2/10 2 CM 2 352351.27 3 2.03 2 3 1 1.08 1 0.07 1 

Sonoma CA 10/14/11 2 483878 74 3 2012-11 11/2/10 2 CM 2 269783.65 2 0.54 1 10 3 0.07 1 0.1 1 

South Bend IN 10/8/11 22 3 101168 58 1 2011-11 11/6/07 2 MC 1 280753.12 2 2.58 3 9 2 7.35 2 0.16 2 

St. Louis MO 10/1/11 319294 60 

N

A 2013-04 4/7/09 NA MC NA 429027.79 3 4.38 3 8 2 18.63 3 0.35 3 
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 Stockton CA 10/12/11 1 291707 55 2 2012-11 11/4/08 1 CM 2 362430.45 3 1.44 1 12 3 14.24 3 0.3 3 

Syracuse NY 10/2/11 30 1 145170 57 1 2013-11 11/3/09 1 MC 1 271496.81 2 3.43 3 9 2 8.97 3 0.08 1 

Tacoma WA 10/15/11 10 198397 55 1 2013-11 11/3/09 1 CM 2 327625.92 3 1.97 2 8 2 7.6 2 0.15 2 

Tampa FL 10/9/11 62 57 399457 53 2 2015-03 3/22/11 1 MC 1 306335.46 2 2.52 2 9 2 5.58 2 0.3 3 

Toledo OH 10/10/11 2 2 287208 65 2 2013-11 11/3/09 1 CO 3 279754.38 2 2.38 2 0 1 9.99 3 0.25 2 

Trenton NJ 10/13/11 1 4 84913 67.1 1 2014-06 6/15/10 2 MC 2 438095.46 3 4.25 3 6 2 14.23 3 0.41 3 

Tucson AZ 10/15/11 43 103 520116 52 2 2011-11 11/6/07 2 CM 2 328131.9 3 2.14 2 11 3 6.61 2 0.31 3 

Tulsa OK 10/28/11 35 97 391906 38 1 2013-11 

11/10/0

9 1 MC 1 197549.92 1 2.12 2 8 2 10.1 3 0.22 2 

Utica NY 10/13/11 8 62235 48.6 1 2011-11 11/6/07 2 MC 1 201172.97 1 2.76 3 0 1 6.14 2 0.08 1 

Virginia Beach VA 10/15/11 2 437994 49 2 2012-11 11/4/08 1 CM 2 180559.96 1 1.87 2 12 3 1.77 1 0.16 2 

Walnut Creek CA 10/12/11 9 64173 67.7 1 2012-11 11/2/10 2 CO 3 313215.84 3 1.25 1 7 2 1.08 1 0.09 1 

Washington DC 10/1/11 95 25 601723 93 4 2014-11 11/2/10 1 MC 3 791181.39 3 6.22 3 11 3 11.61 3 0.74 3 

West Palm 

Beach FL 10/8/11 7 4 99919 61 1 2015-03 3/8/11 1 CO 3 430348.58 3 3.1 3 3 1 7.7 2 0.26 2 

Wichita KS 10/8/11 12 1 382368 43 2 2015-04 4/5/11 1 CM 2 170496.17 1 1.69 1 9 2 7.72 2 0.09 1 

Wilmington DE 10/15/11 3 1 70851 69.7 1 2012-11 11/4/08 1 CM 2 616123 3 4.8 3 12 3 15.68 3 0.25 2 

Wilmington NC 11/12/11 10 4 106476 49 1 2013-11 11/3/09 1 CM 2 213155.4 1 2.43 2 0 1 6.22 2 0.16 2 

Worcester MA 10/16/11 38 14 181045 55.8 1 2011-11 11/3/09 2 CM 2 199581.78 1 2.66 3 9 2 9.94 3 0.14 1 

Youngstown OH 10/15/11 8 17 66982 62 1 2013-11 11/3/09 1 MC 1 287915.96 2 2.99 3 4 1 9.24 3 0.29 3 
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Alphabetical Contentious (and Mixed) Performances Modeled from Protester-Initiated 

Gatherings 

 

Arrests 

 Highest Probability: arrested, arrest, police, protesters, -year-old, _arrest_protesters_, two, one, tell, 

trespassing  

 FREX: _arrest_protesters_, pregnant, arrested, -year-old, arrest, custody, comcast, linked, sit, trespassing  

 Lift: _arrest_anyone, _arrest_both_, _arrest_cityname, _arrest_eight_, _arrest_eleven, _arrest_five_, 

_arrest_four_, _arrest_members, _arrest_nine, _arrest_p  

Bank Targeting 

 Highest Probability: xbank, bank, protesters, branch, indep, banks, financial, california, close, district  

 FREX: pnc, institutions, coral, macdonald, accounts_, branch, bank, xbank, banks, financial  

 Lift: _arrest_bank, _arrest_nobody_, _arrest_sarah, _arrest_they_, _ask_protesters_wear, _bail_xbank, 

_chant_protesters_, _charge_six, _close_cityname, _close_his  

City Hall Targeting 

 Highest Probability: city, hall, front, nov., city_tell_, lawn, xweekday, support, event, old  

 FREX: bagby, tech, hall, city, cityname-style, jazz, roommate, alive, duffie, jacket  

 Lift: alliances, angelenos, eaton, jeers, natalie, _allow_their, _ask_a, _ask_city_, _assign_the, 

_block_those  

Curfew Disputes 

 Highest Probability: police, leave, p.m., park, arrested, protesters, arrest, refused, grant, tell  

 FREX: protesters_block_leave, grant, desks, leave, protesters_leave_, closing, refused, judge, congress, 

ordinance  

 Lift: balaklava, cta, innocent, _agree_the, _allow_dozens_continue, _allow_not/rb_the, _arrest_goodner, 

_arrest_hours, _arrest_its, _arrest_martinez_trying  

Demonstrations 

 Highest Probability: demonstration, many, show, showed, man, one, indep, smaller, handful, support  

 FREX: demonstration, showed, demonstration_, squid, latest, goldman, smaller, show, sachs, 

protesters_show_  

 Lift: _make_at, -take, alberta, authorization, bellagio, belmont, breitbart, canada, channelside, clipboard  

Encampment Activities   
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 Highest Probability: plaza, camp, tents, set, encampment, two, center, weeks, camping, civic  

 FREX: protesters_camp_, _camp_protesters_, protesters_begin_camping, kitchen, tents, tents_, camp, 

weeks, camped, encamped  

 Lift: _camp_, _camp_occupy_, _camp_protesters_venting, _pitch_a, booths, city_spring_, 

cityname_camp_, communal, crunchy, dewitt  

Labor Alliances  

 Highest Probability: union, groups, members, jobs, protesters, indep, employees, labor, human, 

international  

 FREX: seiu, lori, kirby, dad, jobs, union, international, human, organizations, coalition  

 Lift: _arrest_jenn, _arrest_n't/rb_apd_, _ask_some_, _bind_n't/rb_the, _charge_jenn, _cite_several_, 

_claim_a, _confuse_protesters_, _dismiss_one, _drive_many_join  

Rallies  

 Highest Probability: occupy, rally, movement, members, home, l.., local, rallied, number, national  

 FREX: occupy, l.., movement, rallied, home, foreclosed, protesters_rally_, rally, homes, okc  

 Lift: assn., bobby, bullock, carrefour, elk, hard-hit, hull, jan., legba, lifes  

Sidewalk Contestation  

 Highest Probability: stay, sidewalk, come, protesters_stay_, protesters_come_, eight, stood, remain, 

margaret, dozen  

 FREX: schucker, walden, dealings, speculative, wrought, margaret, protesters_stay_, attributed, stay, 

sidewalk  

 Lift: _allow_p.m., _allow_police_stay, _allow_some_do, _appear_allowing, _arrest_shucker_, _be_talk, 

_build_hours_, _damage_hours_, _decide_not/rb_happen_, _do_construction_  

Standoffs with Riot Gear  

 Highest Probability: protesters, police, riot, gear, protester, move, one, deadline, cops, order  

 FREX: gear, rainey, deadline, riot, deputies, perimeter, standoff, tension, midnight, motorcycle  

 Lift: blaring, drigger, maalox, prez, uphold, _arrest_just, _arrest_protesters_blocking, _arrest_update_, 

_catch_protesters_, _charge_three  

Traffic Battles  

 Highest Probability: police, protesters, tell, polices, police_tell_, said, traffic, block, pepper, spray  

 FREX: pepper, spray, police_tell_, blocked, polices, police, spray_, bicycles, suspects, police_be_  

 Lift: _arrest_suspects_, _arrest_that, _close_broad, _dismiss_that, _dismiss_video_, _free_one, 

_injure_several_, _join_others_, _move_suspects_, _redirect_traffic_causing  
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Weekday Marching  

 Highest Probability: cityname, xweekday, downtown, march, protested, afternoon, protesters_march_, 

protesting, around, evening  

 FREX: downtown, march, cityname, protested, xweekday, protesters_march_, afternoon, evening, 

protesting, sunttrust  

 Lift: _cite_protesters_disperse, _join_cityname, _march_the, _move_show, _show_solidarity_, 

's_march_bring, afternoon_form_, ame, anti-drilling, attendees_hold_protesters_  

Weekend Gatherings  

 Highest Probability: protesters, xweekendday, park, square, gathered, protesters_be_, gather, xpark, 

second, take  

 FREX: xpark, xweekendday, park, gather, protesters_be_, square, protesters_gather_, gathered, 

protesters, second  

 Lift: _settle_, _tell_protesters_leave, angelia, argument_flare_, camping_march_, christians, 

city_occupy_protesters_, city-sanctioned, cityname_have_a, comfort  

 

 

Alphabetical Police Control Performances Modeled from Police-Initiated Events 

 

Arresting Groups 

 Highest Probability: people, police, arrested, protesters, xpark, arrest, people_, xweekday, leave, morning, 

six, two, xweekendday, structure, arrests  

 FREX: lake, hixon, merritt, shed, people_, six, people, cuesta, structure, d.c., curtis, gentile, mcpherson, 

main, opposing  

 Lift: _charge_three, -foot-high, aboard, akard, band, boy, break-, cannon, carrefour, disruption, elderly, 

exposure, fitzgerald, freeways, fuel  

Arresting Resisting Individuals 

 Highest Probability: police, one, tents, man, protesters, street, tent, take, arrested, arrest, polices, around, 

market, person, front  

 FREX: market, reserve, jessica, kneeling, laser, agitators, third, woman, man, person, chain, basillas, child, 

adam, man_  

 Lift: _dismiss_at, _take_he, _use_pepper, advisements, aluminum-frame, avenue_, cannon-like, 

configuration, description, devin, dirt, disassembling, ellen, fifty-five, full-time  

Deadline Enforcing 
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 Highest Probability: xpark, p.m., protesters, police, city, time, warning, arrest, deadline, xweekday, 

eviction, give, night, leave, anyone  

 FREX: grant, cesar, closure, perry, deadline, notices, closing, notices_, johnathan, p.m., anyone, permit, 

warning, permits, cease  

 Lift: _form_protesters_leave, belongings_leave_, bits, bowen_, chilling, clear-, consequences, 

deadline_come_, deportation, edward, frantic, iconic, immigrant, knx, mountain  

Dismantling Camps 

 Highest Probability: protesters, police, xpark, tents, xweekday, leave, take, downtown, move, stay, 

remove, members, arrest, belongings, removed  

 FREX: downtown, tents_, villa, tents, police_tell_protesters_, members, police_stay_, protesters_leave_, 

remain, remove, protesters_stay_, space, pack, belongings, warned  

 Lift: _allow_not/rb_property_, _allow_protesters_remain, _allow_protesters_retrieve, 

_allow_protesters_stay, _arrest_melissa, _block_xpark_, _bring_city_clean, _bring_the, _bulldoze_an, 

_cite_anyone, _cite_two_, _close_downtown, _disposition_protesters_, _empty_pancho, _fine_anyone  

Ordinance Enforcing 

 Highest Probability: city, camping, protesters, police, county, arrested, arrest, others, courthouse, 

xweekday, ordinance, property, enforce, .m., three  

 FREX: humboldt, king, subjects, -camping, prohibiting, distribution, ban, county, camping, courthouse, 

sanchez, ordinances, codes, fps, enforce  

 Lift: aresheh, carlos, chunk, conceal, craven, kris, now-banned, palmer, police_resist_city_, prohibiting, 

resisting/obstructing, rivera, rorey, shay, sign-bearing  

Telling 

 Highest Probability: police, tell, said, police_tell_, xweekday, told, sgt., says, say, news, chief, lt., presence, 

statement, department  

 FREX: andy, charlie, briefing, cityname-mecklenburg, police_tell_, norwood, solano, vallejo, said, tell, 

capt., presence, rico, conference, police_tell_police_  

 Lift: armstrong, bassett, briefing, cityname-mecklenburg, fernandez, neiman, norwood, shirts, 

_allow_not/rb_gatherings_, _arrest_eight_, _do_monitoring_, _drive_police_, _focus_police_, 

_form_protesters_, _get_no  

Violently Raiding 

 Highest Probability: police, protesters, city, polices, gas, riot_gear, unlawful, one, tear, assembly, use, 

cityname, hall, camp, xpark  

 FREX: dodger, suits, fired, beanbag, clergy, bullets, gas, affiliate, tear, projectiles, tasha, personnel, 

stadium, assembly, trap  

 Lift: _assign_, _pelt_police_, adkison, allusion, antlers, assembly_resist_police_, belts, blame, bull, cain, 

choya, cops_have_, countless, de-escalate, demobilize  
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Full 40-Topic Model for Protester-Initiated Gatherings 

 

Topic 1 Top Words:          Demonstrations 

 Highest Probability: demonstration, many, show, showed, man, one, indep, smaller, handful, support  

 FREX: demonstration, showed, demonstration_, squid, latest, goldman, smaller, show, sachs, protesters_show_  

 Lift: _make_at, -take, alberta, authorization, bellagio, belmont, breitbart, canada, channelside, clipboard  

Topic 2 Top Words: 

 Highest Probability: people, rally, speeches, group, conference, members, station, talk, council, alameda  

 FREX: clergy, blogcon, speeches, tabitha, attending, calf, protesters_talk_, foods, alameda, attended  

 Lift: _affirm_the, _appear_a, _arrest_julio, _block_not/rb_train, _carry_wall, _control_protesters_, 

_damage_indep, _damage_municipal, _damage_whole, _do_graffiti  

Topic 3 Top Words: 

 Highest Probability: occupation, college, community, former, one, walmart, protesters, local, minnesota, student  

 FREX: bachmann, michele, neon, spoelstra, alan, indie, uss, burlesque, nevcal, reno  

 Lift: anti-mass, aresheh, bachmann, barnes, beasley, bellecourt, blended, burlesque, canyon, cello  

Topic 4 Top Words: 

 Highest Probability: stay, sidewalk, come, protesters_stay_, protesters_come_, eight, stood, remain, margaret, 

dozen  

 FREX: schucker, walden, dealings, speculative, wrought, margaret, protesters_stay_, attributed, stay, sidewalk  

 Lift: _allow_p.m., _allow_police_stay, _allow_some_do, _appear_allowing, _arrest_shucker_, _be_talk, 

_build_hours_, _damage_hours_, _decide_not/rb_happen_, _do_construction_  

Topic 5 Top Words:          Weekday Marching 

 Highest Probability: cityname, xweekday, downtown, march, protested, afternoon, protesters_march_, 

protesting, around, evening  

 FREX: downtown, march, cityname, protested, xweekday, protesters_march_, afternoon, evening, protesting, 

sunttrust  

 Lift: _cite_protesters_disperse, _join_cityname, _march_the, _move_show, _show_solidarity_, 's_march_bring, 
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afternoon_form_, ame, anti-drilling, attendees_hold_protesters_  

Topic 6 Top Words: 

 Highest Probability: group, october, security, early, guards, tell, members, one, homeless, hunger  

 FREX: hunger, group_march_, voting, chancellor, dennis, mears, october, group, ashley, guards  

 Lift: -_stay_a, --book, -abandoned, adapt, advertised, alwazir, amend, batons--hand, cap, chancellor  

Topic 7 Top Words:          Arrests 

 Highest Probability: arrested, arrest, police, protesters, -year-old, _arrest_protesters_, two, one, tell, trespassing  

 FREX: _arrest_protesters_, pregnant, arrested, -year-old, arrest, custody, comcast, linked, sit, trespassing  

 Lift: _arrest_anyone, _arrest_both_, _arrest_cityname, _arrest_eight_, _arrest_eleven, _arrest_five_, 

_arrest_four_, _arrest_members, _arrest_nine, _arrest_p  

Topic 8 Top Words: 

 Highest Probability: street, wall, protesters, federal, market, across, anti-wall, reserve, building, street_  

 FREX: federal, reserve, wall, street, anti-wall, market, disjointed, street_, across, vinegar  

 Lift: malodorous, missives, modeled, protesters_block_market, prudential, _allow_only, _arrest_peaceful_, 

_back_traffic, _block_not/rb_operations, _close_avenue_  

Topic 9 Top Words: 

 Highest Probability: protesters, police, gas, tear, cityname, frank, ogawa, olsen, xweekday, night  

 FREX: bean, frank, ogawa, tear, olsen, calif., fracture, gas, jamie, rounds  

 Lift: anda, barton, chu/staff, doernberg, dottie, fracture_, futile, gernades, grenade, krystof  

Topic 10 Top Words: 

 Highest Probability: port, protesters, cityname, workers, terminal, p.m., tell, said, operations, trucks  

 FREX: port, ports, truckers, shipping, adeline, ssa, cargo, apl, hanjin, deandre  

 Lift: -week, arbuckle, blue-collar, cargo, cityname_close_, deandre, deprive, endanger, exports, harbors  

Topic 11 Top Words: 

 Highest Probability: oct., since, first, common, campbell, occupying, statehouse, speech, waterfront, free  

 FREX: campbell, statehouse, identifies, anarchist, unitarian, universalist, since, oct., first, #occupycityname  

 Lift: absolute, anthems, arizonan, campbell, cass, colony, cracks, curtiss, designee, disorder  

Topic 12 Top Words:           Rallies 

 Highest Probability: occupy, rally, movement, members, home, l.., local, rallied, number, national  
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 FREX: occupy, l.., movement, rallied, home, foreclosed, protesters_rally_, rally, homes, okc  

 Lift: assn., bobby, bullock, carrefour, elk, hard-hit, hull, jan., legba, lifes  

Topic 13 Top Words: 

 Highest Probability: outside, building, protesters, headquarters, office, main, children, morning, st., front  

 FREX: stumpf, headquarters, outside, office, banker, max, parents, children, rubright, sits  

 Lift: _charge__, _charge_not/rb_protesters_, _close_banks, _evict_school, _leave_police_, _speak_protesters_, 

_think_the, -percenters, -percenters_march_pacing, ''_come_indep_  

Topic 14 Top Words: 

 Highest Probability: streets, hundreds, crowd, estimated, intersection, thousands, manhattan, xplaza, morning, 

xbridge  

 FREX: anniversary, streets, estimated, lower, hundreds, manhattan, irwin, two-month, thousands, streets_  

 Lift: dubinsky, kickoff, ninty-nine, party-like, _assign_police_lead, _block_bullhorns, _claim_police_act, 

_close_third, _estimate_protesters_hour, _force_xbank_close  

Topic 15 Top Words: 

 Highest Probability: protesters, driver, convention, police, tell, car, said, center, one, three  

 FREX: pearce, coal, hartwell, export, driver, convention, heidi, steve, walter, suntrust  

 Lift: _allow_cityname, _allow_her, _allow_protesters_continue, _allow_protesters_leave, _allow_workers_, 

_arrest_steve, _arrest_three_obey, _assess_no, _assess_the, _assign_protesters_  

Topic 16 Top Words: 

 Highest Probability: protest, begin, day, began, corporate, last, greed, started, month, weekend  

 FREX: protest_begin_, protest, greed, protesters_begin_, corporate, began, begin, month, upwards, day  

 Lift: case--case, edt, group_march_protest, group_protest_brutality_, hartzell, lummas, mourn, occupants, 

protest_go_, protesters_begin_their  

Topic 17 Top Words: 

 Highest Probability: protesters, small, school, teachers, political, rallies, westlake, district, members, economic  

 FREX: institute, laney, brittlebank, halsey, merry, telegram, westlake, rallies, christmas, holiday  

 Lift: archways, barbara, blvd, boy, brokers, bushwick, cardenas, cerritos, charter, cross-representation  

Topic 18 Top Words: 

 Highest Probability: way, protests, church, protesters, way_, sixth, mellon, made, make, cityname  

 FREX: cynthia, construction, ingram, buyers, cousin, church, gardens, mellon, sixth, bny  

 Lift: bny-mellon, catholic, cooking, ingram, olive, protests_begin_, quite, _arrest_her, _ask_participants_snap, 
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_claim_the  

Topic 19 Top Words:          Encampment Activities 

 Highest Probability: plaza, camp, tents, set, encampment, two, center, weeks, camping, civic  

 FREX: protesters_camp_, _camp_protesters_, protesters_begin_camping, kitchen, tents, tents_, camp, weeks, 

camped, encamped  

 Lift: _camp_, _camp_occupy_, _camp_protesters_venting, _pitch_a, booths, city_spring_, cityname_camp_, 

communal, crunchy, dewitt  

Topic 20 Top Words: 

 Highest Probability: state, capitol, courthouse, grounds, building, protesters, steps, front, others, capital  

 FREX: troopers, tennessee, capitol, grounds_, j.j., grounds, state, demonstrate, courthouse, hopkins  

 Lift: alexandra, alora, apologized, auctioned, bayless, bitten, chairs_, cook, elaine, fans  

Topic 21 Top Words: 

 Highest Probability: arrests, avenue, four, make, made, mall, reported, arrests_, michigan, p.m.  

 FREX: southwest, crabtree, arrests_, arrests, o'neill, portion, king, michigan, reported, valley  

 Lift: anti-camping, brisk, buren, burson, crabtree, csu, dontae, early-evening, ehrlich, emily  

Topic 22 Top Words:           Traffic Battles 

 Highest Probability: police, protesters, tell, polices, police_tell_, said, traffic, block, pepper, spray  

 FREX: pepper, spray, police_tell_, blocked, polices, police, spray_, bicycles, suspects, police_be_  

 Lift: _arrest_suspects_, _arrest_that, _close_broad, _dismiss_that, _dismiss_video_, _free_one, 

_injure_several_, _join_others_, _move_suspects_, _redirect_traffic_causing  

Topic 23 Top Words: 

 Highest Probability: protesters, another, police, one, said, protester, woman, photographer, back, civil  

 FREX: embarcadero, attackers, another, sharp, slashed, freelance, photographer, brandon, ones, disobedience  

 Lift: abdomen, eve, graber, pen-like, protesters_try_take, retrieve, accelerating, amash, annoyed, cagle  

Topic 24 Top Words:           Bank Targeting 

 Highest Probability: xbank, bank, protesters, branch, indep, banks, financial, california, close, district  

 FREX: pnc, institutions, coral, macdonald, accounts_, branch, bank, xbank, banks, financial  

 Lift: _arrest_bank, _arrest_nobody_, _arrest_sarah, _arrest_they_, _ask_protesters_wear, _bail_xbank, 

_chant_protesters_, _charge_six, _close_cityname, _close_his  

Topic 25 Top Words: 
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 Highest Probability: night, police, protesters, josh, park, three, tell, hours, time, n't  

 FREX: chavez, cesar, harkinson, robertson, rollins, fellows, josh, night, buncombe, vance  

 Lift: chavez, rollins, _admit_trucks, _allow_n't/rb_city_, _allow_protesters_protest, _anger_last, _answer_city_, 

_carry_bill, _close_city_, _close_police_  

Topic 26 Top Words: 

 Highest Probability: part, government, pindep, plaza, hotel, singer, party, obama, rain, county  

 FREX: singer, part-time, blues, mcdaniel, songwriter, ellas, government, hennepin, downpour, fundraising  

 Lift: _allow_n't/rb_a, _arrest_ellas, _arrest_joseph, _arrest_october, _arrest_protesters_prove, _arrest_these, 

_block_three, _cite_these, _crowd_bags, _disband_barricades  

Topic 27 Top Words:           City Hall Targeting 

 Highest Probability: city, hall, front, nov., city_tell_, lawn, xweekday, support, event, old  

 FREX: bagby, tech, hall, city, cityname-style, jazz, roommate, alive, duffie, jacket  

 Lift: alliances, angelenos, eaton, jeers, natalie, _allow_their, _ask_a, _ask_city_, _assign_the, _block_those  

Topic 28 Top Words: 

 Highest Probability: move, week, moved, participants, protesters_move_, last, meet, met, event, roughly  

 FREX: fleming-salopek, furloughed, jill, publicly-owned, week, protesters_move_, participants, moved, effigy, 

recently  

 Lift: accion, bemused, books, buffet, busloads, centered, clerk-recorder, colgate, communities, condi  

Topic 29 Top Words:          Curfew Disputes 

 Highest Probability: police, leave, p.m., park, arrested, protesters, arrest, refused, grant, tell  

 FREX: protesters_block_leave, grant, desks, leave, protesters_leave_, closing, refused, judge, congress, ordinance  

 Lift: balaklava, cta, innocent, _agree_the, _allow_dozens_continue, _allow_not/rb_the, _arrest_goodner, 

_arrest_hours, _arrest_its, _arrest_martinez_trying  

Topic 30 Top Words: 

 Highest Probability: people, several, hundred, people_, dozens, least, side, one, crowd, including  

 FREX: sabeghi, daniele, erville, choi, goodstal, people, salmun, hundred, several, people_  

 Lift: _anger_protesters_, _arrest_fifteen, _arrest_indep, _arrest_then_, _assign_not/rb_both, _bail_n't/rb_h, 

_bring_police_control, _carry_at, _charge_city_, _charge_n't/rb_both  

Topic 31 Top Words: 

 Highest Probability: protesters, lot, fence, two, legislative, hearing, property, mike, vacant, colorado  



 

     249

 FREX: reapportionment, o’kelly, korzen, fence, dirt, lot, hearing, chain-link, colorado, mike  

 Lift: korzen, _allow_not/rb_your, _arrest_anna, _arrest_bradley, _arrest_not/rb_a, _attack_some, _block_no, 

_bring_dinner_, _climb_city_, _continue_march  

Topic 32 Top Words: 

 Highest Probability: police, stephen, benavides, protesters, video, tell, arrest, said, one, arrested  

 FREX: stephen, benavides, planter, benavides_, hollis, ixchel, aguilar, cuesta, video, servant  

 Lift: benavides_stay_, body-slammed, dedrick, improper, limb, padierna, penny, planter, sexual, syrian  

Topic 33 Top Words: 

 Highest Probability: bridge, university, protesters, traffic, river, one, campus, boulevard, bus, peaceful  

 FREX: bridge_, bridge, river, university, bus, lasalle, boulevard, amitai, heller, magick  

 Lift: _tell_each, -pack, alton, amitai, backups, bobbe, bohemia, charlestown, connecting, cornelius  

Topic 34 Top Words: 

 Highest Probability: protesters, dozen, chanting, chant, young, two, slogans, store, protesters_chant_, peace  

 FREX: dack, decker, maupin, excluded, garden, mass., loudly, dozen, alfred, causa  

 Lift: a_yell_, aisles_, alfred, antonio, award, beebe, beebe_tell_, blazers, brutalizing, causa  

Topic 35 Top Words:            Labor Alliances 

 Highest Probability: union, groups, members, jobs, protesters, indep, employees, labor, human, international  

 FREX: seiu, lori, kirby, dad, jobs, union, international, human, organizations, coalition  

 Lift: _arrest_jenn, _arrest_n't/rb_apd_, _ask_some_, _bind_n't/rb_the, _charge_jenn, _cite_several_, _claim_a, 

_confuse_protesters_, _dismiss_one, _drive_many_join  

Topic 36 Top Words: 

 Highest Probability: signs, supporters, tent, indep, holding, carry, south, group, chants, carrying  

 FREX: ari, sterling, salina, post-standard, clean-, dissatisfaction, marino, signs, douglas, magnell  

 Lift: actively, hand-held, pfenning, post-standard, reilly, _move_ari, ability, akbar, ari, backpacks_be_  

Topic 37 Top Words: 

 Highest Probability: police, protesters, building, .m., broadway, fire, vacant, general, people, strike  

 FREX: traveler, san, explosions, fire, launchers, travelers, aid, fires, pablo, broadway  

 Lift: _promise_those, antagonize, bang_be_, black-clad, blitzkrieg, bop, break-, building_take_, calm_settle_, 

cement  
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Topic 38 Top Words:           Weekend Gatherings 

 Highest Probability: protesters, xweekendday, park, square, gathered, protesters_be_, gather, xpark, second, 

take  

 FREX: xpark, xweekendday, park, gather, protesters_be_, square, protesters_gather_, gathered, protesters, 

second  

 Lift: _settle_, _tell_protesters_leave, angelia, argument_flare_, camping_march_, christians, 

city_occupy_protesters_, city-sanctioned, cityname_have_a, comfort  

Topic 39 Top Words: 

 Highest Probability: new, york, meeting, exchange, council, stock, protesters, concert, public, veterans  

 FREX: york, jersey, hip-hop, nicholas, dorsey, hop, proper, new, exchange, concert  

 Lift: _accuse_others_, _allow_not/rb_protesters_conduct, _allow_not/rb_tents_, _allow_protesters_sleep, 

_bill_what_, _bring_the, _catch_cops_physical, _cite_, _cite_-year-old, _continue_challenge  

Topic 40 Top Words:          Standoffs with Riot Gear 

 Highest Probability: protesters, police, riot, gear, protester, move, one, deadline, cops, order  

 FREX: gear, rainey, deadline, riot, deputies, perimeter, standoff, tension, midnight, motorcycle  

 Lift: blaring, drigger, maalox, prez, uphold, _arrest_just, _arrest_protesters_blocking, _arrest_update_, 

_catch_protesters_, _charge_three  

 

 

 

Full 15-Topic Model Results for Police-Initiated Events  

 

Topic 1 Top Words:  

 Highest Probability: police, protesters, citations, polices, arrest, cite, night, cityname, arrested, 

xweekendday, issued, city, cited, pepper, xweekday  

 FREX: garcia, steffen, rene, szayer, commerce, nicholas, relevant, scotney, outlining, rosemary, virato, 

citations, chamber, joseph, laws  

 Lift: _give_, _relate_the, -tent, account_, acoustical, alley, asheland, bleary-eyed, car--car, chat, cheering, 

code_arrest_, code_be_arrest, construct, conte  

Topic 2 Top Words: 

  
 Highest Probability: cityname, protesters, group, arrested, arrest, trespassing, dozen, indep, 

xweekendday, arrests, eight, public, safety, city, protest  
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 FREX: jonathan, meador, mary, foreclosed, glen, hacktivist, kazmi, ayesha, leroy, griffin, gov., belcik, okc, 

safety, marijuana  

 Lift: _arrest_jonathan, _charge_all_leave, alesandra, all_leave_the, alternative, amons, beasely, 

belcik_tell_, bellos, biohazards, bless, brutally, colleagues, conjunction, cottontown  

Topic 3 Top Words: 

 Highest Probability: state, protesters, xpark, xstate, patrol, police, -year-old, xweekday, troopers, capitol, 

arrested, district, nine, arrest, oct.  

 FREX: capitol, ian, pearl, common, gregory, lorenzo, gunter, meighan, monroe, hunter, sur, affluent, 

xstate, state, de-unlawfully  

 Lift: _accuse_gregory, _allow_n't/rb_protesters_do, _allow_protesters_be, _arrest_faith, _arrest_gregory, 

_arrest_ian, _arrest_national, _arrest_nine_, _arrest_police_obey, _arrest_protesters_leave, 

_arrest_thirty-eight, _arrest_thomas, _arrest_twenty-five, _arrest_twenty-nine, _arrest_twenty-three  

Topic 4 Top Words:                   Ordinance Enforcing 

 Highest Probability: city, camping, protesters, police, county, arrested, arrest, others, courthouse, 

xweekday, ordinance, property, enforce, .m., three  

 FREX: humboldt, king, subjects, -camping, prohibiting, distribution, ban, county, camping, courthouse, 

sanchez, ordinances, codes, fps, enforce  

 Lift: aresheh, carlos, chunk, conceal, craven, kris, now-banned, palmer, police_resist_city_, prohibiting, 

resisting/obstructing, rivera, rorey, shay, sign-bearing  

Topic 5 Top Words: 

 Highest Probability: police, center, protesters, civic, plaza, people, move, two, cityname, tent, camp, .m., 

area, one, city  

 FREX: barrel, --work, places, shaunn, civic, center, cartwright, cleaning, luke, protestersground, remains, 

walker, extinguisher, irrigation, skillets  

 Lift: _accuse_most_, _allow_dog, _allow_not/rb_cooking, _allow_not/rb_police_have, 

_allow_not/rb_those, _allow_police_, _allow_those, _arrest, _arrest_joining_, _arrest_police_disperse, 

_block_some, _build_some, _camp_protesters_, _carry_three_, _charge_richard  

Topic 6 Top Words: 

 Highest Probability: protesters, police, xweekday, week, last, cityname, put, raid, former, force, arrest, 

xpark, marine, smoking, arrested  

 FREX: marine, suspect, cigarette, steuart, carotid, prysner, tall, viejo, husband--wife, pounds, spear, 

former, smoking, bed, spitting  

 Lift: cigarette, marine, _admit_protesters_, _allow_never/rb_protesters_erect, 

_arrest_never/rb_protesters_, _arrest_who_, _awake_eyewitness, _charge_anti-war, _charge_many, 

_charge_mike, _dislodge_protesters_, _dismiss_vita, _disperse, _empty_protesters, _evict_  

Topic 7 Top Words:              Dismantling Camps 
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 Highest Probability: protesters, police, xpark, tents, xweekday, leave, take, downtown, move, stay, 

remove, members, arrest, belongings, removed  

 FREX: downtown, tents_, villa, tents, police_tell_protesters_, members, police_stay_, protesters_leave_, 

remain, remove, protesters_stay_, space, pack, belongings, warned  

 Lift: _allow_not/rb_property_, _allow_protesters_remain, _allow_protesters_retrieve, 

_allow_protesters_stay, _arrest_melissa, _block_xpark_, _bring_city_clean, _bring_the, _bulldoze_an, 

_cite_anyone, _cite_two_, _close_downtown, _disposition_protesters_, _empty_pancho, _fine_anyone  

Topic 8 Top Words:                   Violently Raiding 

 Highest Probability: police, protesters, city, polices, gas, riot_gear, unlawful, one, tear, assembly, use, 

cityname, hall, camp, xpark  

 FREX: dodger, suits, fired, beanbag, clergy, bullets, gas, affiliate, tear, projectiles, tasha, personnel, 

stadium, assembly, trap  

 Lift: _assign_, _pelt_police_, adkison, allusion, antlers, assembly_resist_police_, belts, blame, bull, cain, 

choya, cops_have_, countless, de-escalate, demobilize  

Topic 9 Top Words:                  Deadline Enforcing 

 Highest Probability: xpark, p.m., protesters, police, city, time, warning, arrest, deadline, xweekday, 

eviction, give, night, leave, anyone  

 FREX: grant, cesar, closure, perry, deadline, notices, closing, notices_, johnathan, p.m., anyone, permit, 

warning, permits, cease  

 Lift: _form_protesters_leave, belongings_leave_, bits, bowen_, chilling, clear-, consequences, 

deadline_come_, deportation, edward, frantic, iconic, immigrant, knx, mountain  

Topic 10 Top Words:              Telling 

 Highest Probability: police, tell, said, police_tell_, xweekday, told, sgt., says, say, news, chief, lt., presence, 

statement, department  

 FREX: andy, charlie, briefing, cityname-mecklenburg, police_tell_, norwood, solano, vallejo, said, tell, 

capt., presence, rico, conference, police_tell_police_  

 Lift: armstrong, bassett, briefing, cityname-mecklenburg, fernandez, neiman, norwood, shirts, 

_allow_not/rb_gatherings_, _arrest_eight_, _do_monitoring_, _drive_police_, _focus_police_, 

_form_protesters_, _get_no  

Topic 11 Top Words: 

 Highest Probability: city, police, encampment, occupy, camp, hall, xweekday, raid, early, polices, empty, 

plaza, area, morning, cleared  

 FREX: calvin, nola, milam, spring, _evict_protesters_, encampment, encampment_, l.., occupy, empty, 

nypd, hall, raided, raids, cleared  

 Lift: _add_, _affirm_that_, _arrest_almost, _arrest_approximately, _arrest_around, _arrest_arthur, 

_arrest_calvin, _arrest_hundreds_, _arrest_journalists_, _arrest_lawn, _arrest_your_, _ask_city_clear, 
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_be_six, _bound_the, _cancel_preparation  

Topic 12 Top Words:                   Arresting Resisting Individuals 

 Highest Probability: police, one, tents, man, protesters, street, tent, take, arrested, arrest, polices, around, 

market, person, front  

 FREX: market, reserve, jessica, kneeling, laser, agitators, third, woman, man, person, chain, basillas, child, 

adam, man_  

 Lift: _dismiss_at, _take_he, _use_pepper, advisements, aluminum-frame, avenue_, cannon-like, 

configuration, description, devin, dirt, disassembling, ellen, fifty-five, full-time  

Topic 13 Top Words: 

 Highest Probability: police, arrests, street, make, xweekendday, xpark, protesters, cityname, structures, 

arrests_, bradley, watch, made, passageway, russell  

 FREX: passageway, russell, mat, winter, sink, weeks-old, southwest, bradley, arrests_, structures, 

resisted_, fourteen, sycamore, weather, watch  

 Lift: _arrest_bradley, _disband_, anti-structure, arrestees_confront_potential, arrestees_evict_, artwork, 

balanced, city_set_a, cloud, college-aged, constitution, dana, degree, dorothy, emaining  

Topic 14 Top Words: 

 Highest Probability: protesters, police, protester, one, arrest, justin, tell, move, rodriguez, arrested, five, 

bridges, upper, represents, bob  

 FREX: justin, rodriguez, bridges, represents, bob, o’grady, chair, momentoff, shelby, george, maria, uriah, 

curb, vanessa, bridges_  

 Lift: _accuse_five, _allow_not/rb_city_see, _allow_protesters_use, _arraign_the, _arrest_bob, 

_arrest_not/rb_joe, _arrest_o’grady_, _arrest_wbz-tv, _ask_nobody_leave, _assign_anything_, 

_attack_protester, _blind_eli, _block_protesters_, _block_traffic_, _carry_joe  

Topic 15 Top Words:                  Arresting Groups 

 Highest Probability: people, police, arrested, protesters, xpark, arrest, people_, xweekday, leave, morning, 

six, two, xweekendday, structure, arrests  

 FREX: lake, hixon, merritt, shed, people_, six, people, cuesta, structure, d.c., curtis, gentile, mcpherson, 

main, opposing  

 Lift: _charge_three, -foot-high, aboard, akard, band, boy, break-, cannon, carrefour, disruption, elderly, 

exposure, fitzgerald, freeways, fuel  
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Equations for Structural Topic Model Estimates and Figures 

 

The intuition behind structural topic modeling is fully described in Chapter 3. Structural 

topic modeling uses the same Latent Dirichlet Allocation algorithm as used by better-

known “topic modeling.” (Readers interested in more detail about the Latent Dirichlet 

Allocation algorithm used in Structural Topic Modeling should see Roberts, Stewart, and 

Tingley 2014.) Once topics are discovered by that algorithm, just as in traditional LDA topic 

modeling, output also includes estimates of the distribution of topics across documents and 

the aggregate corpus. Structural topic models allow researchers to also use “meta-data” 

variables describing documents as independent variables predicting or explaining the 

prevalence of topics across the corpus. The intuition: variables that describe the documents 

(for examples, where they are from or when they were written) can help explain why a 

topic was more or less prevalent in a document or a class of documents.  Therefore, 

hypotheses predicting topic prevalence (a continuous variable) as a function of 

independent variables describing documents, may be tested using general linear regression 

models.  

 

Here, I specify the models used to estimate and then plot almost all of the Figures of this 

dissertation. Each relies on one of the two following equations (A or B, below) where � = 

the prevalence of a topic in the corpus; 
 = the number of days between an event described 

by the document (text unit) and the establishment of the local Occupy camp; ��,  

��, ��, … �� represent coefficients for variables describing the cities that documents (text 

units) are about (i.e., number of political liberals in a city, the number of power centers in 

its political structure, the instability of its political system, and the capacity and culture of 

its police force); and � is an error term. 

 

 

 

 

(A)  � = 
�� +  ���� + ���� + ���� + ⋯ ���� +  �  
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(B)  � = 
�� +  �� × 
�� + ���� + ���� + ⋯ ���� +  �  

 

 

 

The simplest initial models of Chapter 4 estimated, predicted, and displayed topic 

prevalence for the corpus of text units describing protester-initiated contentious 

gatherings. These models estimated ��, ��, ��, … �� using equation A. Figures 4.2 – 4.7 then 

predict and display � across (the duration of Occupy campaings) 
 while holding ��, ��, �� 

(describing the number of Obama supporters, number of power centers, and stability of 

political alliances) at their means.  

 

Figures 4.8 – 5.8 display the predicted effects of ��, ��, ��, … �� on � over 
. These figures 

also begin with the coefficient estimates of eqution A. However, each Figure displays a 

predicted � across three different values of one � (e.g. �� for 
 while holding the other � 

coefficients (e.g.  ��, �� at their means. 

 

Chapter 5 argues that this approach to estimation and prediction is inadequate because it 

does not allow researchers to observe how different values of � effect � differently through 

time, 
. Therefore, the remaining figures of the dissertation use equation B to interact � 

with 
, while holding other � coefficients at their means. 

 

Figures 5.9 – 6.14 all display predicted values of � across three different values of one � for 


  while holding the other � coefficients (e.g.  ��, �� at their means. And since these models 

include the interaction term �� × 
 , predictions of � are not simply raised or lowered 

vertically as in Figures 4.8 – 5.8. The shapes of the � prediction lines for each value of � 

across 
 move with the data.  

 

The only thing that differs across Figures 5.9 – 6.14 are the specifications of the main � of 

interest, and the control variables ��, ��, … ��.  Each figure’s legend clearly labels the 
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values of the � of interest. And the Figure’s notes indicate which predicted � 

(topic/performance prevalence) is being displayed in each Panel of the Figure. For all 

contentious performance figures (Figures 5.9 – Figures 5.20), the same political 

opportunity structure variables are used: Number of Obama Supporters, Number of Power 

Centers, and Political Instability Score. These are each continuous variables rendered 

ordinal for estimation and visualization purposes. Their operationalizations are fully 

described in Chapter 5. All of these POS variables are used in each model, but only one is 

interacted with 
 in each model – the � of interest. 

 

Figures 6.1-6.14 use a larger array of control variables. Since both city-level POS variables 

and variables describing police departments are likely to affect police-initiated control 

performances, all these variables are used in each model. Again, as in Figures 4.8 – 5.20, all 

but one of these variables are held at their means when predicting � for display in figures. 

And as in Figures 5.9 – 5.20, one � of interest is interacted with 
 as described in Equation 

B, then predictions of � are displayed for each value of the � of interest  across 
. 
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Supplementary Figures for Topic Modeling of Control Performances 

 
Figure 1, below, shows the proportion of each control performance in the corpus of text units 
describing police-initiated events. Figure 2 shows topic correlations for police control 
performances. One can see that, especialy when compared to protesters’ contentious performances, 
police control performances are often decided independently of one another. They are not closely 
linked. 
 

Figure A.1 – Topic Proportions for all Control Performances 

 
 

 

 

 

0.0 0.1 0.2 0.3 0.4

 

Expected Topic Proportions

Topic 14: protesters, police, protester

Topic 6: protesters, police, xweekday

Topic 8: police, protesters, city

Topic 5: police, center, protesters

Topic 3: state, protesters, xpark

Topic 13: police, arrests, street

Topic 2: cityname, protesters, group

Topic 12: police, one, tents

Topic 1: police, protesters, citations

Topic 4: city, camping, protesters

Topic 9: xpark, p.m., protesters

Topic 15: people, police, arrested

Topic 11: city, police, encampment

Topic 7: protesters, police, xpark

Topic 10: police, tell, said
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Figure A.2 – Topic Corrleations for Control Performances 
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Description and protocol of City/Encampment identification procedure 

 
Our team identified the universe of all U.S. Occupy encampments that met the following criteria: 

• Had 2 or more tents for 2 or more nights 
• Were NOT a college campus encampment 
• Were NOT equal to or smaller than (secondary to) a college encampment 

in the same city 
 
We did this by applying the following search protocol to two different lists of cities – one from the 
U.S. Census, and a second from the “Occupy Directory”  http://directory.occupy.net/, which sought 
to document all Occupy encampments around the world. 
 

1. Google search occupy [city name] 

2. If occupy in a city has a different name than the city name (e.g. occupy 

Marin instead of occupy Healdsburg), make sure google searches in steps 

3 -- 5 use the non-standard name (e.g. occupy Marin)  

3. Google search "[ocupy name] encampment'" using either city name or 

alternate occupy name 

4. Google search "[occupy name] camp" using either city name or alternate 

occupy name 

5. Google search "[occupy name] tent" using either city name or alternate 

occupy name 

6. Determine whether the city fits our criteria of selection by scanning the 

articles resulting from searches in steps  3 --5. If none of the searches 

provide solid evidence that the city had a camp with 2 or more tents for 2 

or more nights, that city will not be in our sample. If the city had a camp, 

but it was on a college campus, it will NOT be in our sample. If the city had 

a camp that was the same size as, or smaller than, a camp on a college 

campus located in the same city, it will NOT be in our sample. 

 
We used two different lists to ascertain which camps fit our criteria because it was impractical to 
check every city in the Census list of U.S. cities. While most large cities had an encampment, many 
smaller cities and towns did not. Sampling from the list was not appropriate because we have 
sought to analyze the full universe of Occupy Encampments and government/police responses. The 
Occupy Directory proved to be a great resource. Its team was especially permissive in its criteria of 
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inclusion. Many ‘encampments’ in the Occupy Directory were little more than facebook pages that 
organized occasional actions. Therefore, while it was necessary to remove most cities in their list 
from our dataset, their permissiveness gave us confidence that we, indeed, identified every 
encampment in the U.S.  
 

Protocol for article gathering 

This research PROTOCOL is designed to systematize our article collection and saving 

process to ensure that we are all putting in uniform and maximally efficient effort as we 

hunt down articles to include in our dataset for further coding. 

 

GENERAL NOTES: 

Only research for one city at a time. (Complete the article/blog search process for that 

city before moving on to perform the process for any other city. It might seem like it is 

easier to search for two cities at once in some cases. But it actually is not a good 

practice because the only way to ensure that you've thoroughly and adequately 

gathered articles for a city or town is to go through this whole protocol from start to finish 

anyway. Do not worry about sending articles to your peers. It is more efficient to let 

others find documents for their respective cities. 

We are searching for and saving articles that have information on events (not mere 

opinion about the movement or information about potential upcoming events) – events 

that took place between September 1, 2011 and December 31, 2011. (This is an 

intentional narrowing of the scope of the project.) Some more recent articles, even 

those written as late as August 2012 ((when we stopped the practice of collecting more 

contemporary articles)), may be useful and you may include them. But if the article 

refers only to events occurring after 2011, we are not interested. Do not save it. If it is 

someone's opinion about the movement without referencing any events, don't save it. 

DETAILED STEPS: 

1. Find out the name of the encampment you are looking for. Usually it will be 'Occupy 

[city name],' but sometimes it will be different. Do a Google Search to find out what it is 

called. The name will be important for your keyword searches. 

 

2. Go to Lexis/Nexis. Get there by going to the Berkeley library site,’s ‘Electronic 

Resources’ page http://www.lib.berkeley.edu/find/types/electronic_resources.html and 

typing ‘Lexis’ into the search bar. Click on ‘LexisNexis Academic’:  

a. Click on the 'News' button in the left column 

b.Click on 'All News' 



 

     261

c.  Search For: "[name of encampment (from Step 1 e.g. "occupy Houston"]"; 

Specify Date: "Date is between… 9/01/2011 and 12/31/2011"; Select Source: By 

Type: "US Newspapers & Wires" 

d. Click red 'Search' button 

e. When the results come up, choose Sort: oldest to newest 

f. Skim through the articles or just their headlines enough so that you know if they 

are important – i.e., if they have any factual information about Occupy events and 

camps (including op-eds sometimes). If they are important, click the box to the 

left of the article title (which will tag the article). As you scan through the entire 

search results (which may be several pages long), these boxes will remain 

checked. 

g.Once you have scanned the entire list and checked the boxes for all relevant 

articles, click the blue "View tagged articles" button 

h.Find the 'save' icon in the upper right. It looks like an old computer disk (the 

kind that no one uses anymore.) Click on that and follow the instructions to save  

all articles in the search into a single Word document on your computer. Uncheck 

the boxes for ‘Cover Page,’ ‘Each Document on New Page,’ and ‘search terms in 

bold.’ (There should be no boxes checked.) Click ‘Download.’ 

i.  Copy and paste the contents of this Word document into 

GoogleDrive/EVENTS/[Cityname] as a Google doc. Give it the name 

'Lexis_[OccupyName]' Note: If it is a big file (with more than 50 or so articles), 

you may have to copy and paste 50 articles or so at a time from the word Doc 

into the Google Doc. (Google Drive will crash if, for instance, you try to copy and 

paste the whole 396-article Lexis dump from Occupy Oakland.). 

3. Google Search to find out the names of local newspapers and TV and radio stations 

with websites. 

a. Go to Google and type '[city name, state] local news' 

b. Notice the ‘Search Tools’ button near the middle of the screen, second line, to 

the right of the ‘More’ button. Click on it. It will show you that you are searching 

from a particular city. (Google weights its searches based on where you sit in 

geographic space.) Change the locations so that Google will believe you are in 

the city on which you are performing your search. (This will automatically update 

the search results, though it is common for nothing to change on the first page of 

results.) 

c.  Note the names and web addresses of the local newspapers, radio stations, 

TV stations, etc. in a Google document saved in the 

GoogleDrive/EVENTS/[Cityname]. Name that file '[cityname]_local_sources.’ 

 

4. For each local news source perform a Google Search using 

'[localnewspaperwebsiteaddress.com]: Occupy [cityname]' e.g. "khou.com: occupy 
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houston" (When you use '[website address]: ' before your search term, you are telling 

Google to do its thing on that site only. This is usually the best way to search a site's 

archives.) ALSO, be sure to limit the temporal range of your search. Click on 'show 

search tools,' then 'Custom Range,' then set the date range from September 1, 2011 – 

Dec 31,2011. 

a. Review and consider saving all of the articles in the Google results until you 

get to three consecutive Google results pages whose links are 90% or  more 

totally irrelevant. 

b. Save all articles covering events. (Review criteria above.) Copy and paste the 

text of the articles into a Google doc. Usually it is best to view the article in 

‘Printer-Friendly’ mode and then just copy and paste it into the Google doc. You 

can place multiple articles into this Google document – as many articles as the 

news source has. 

c.  Save the Google document in the DecidingForce/ARTICLES/[Cityname folder 

as ‘[name of news source]’ for example, “Independent_News_Pensacola” 

d. Repeat these steps for each local news source. This will take some time because 

many cities have multiple radio stations, TV news networks, major papers, and smaller 

papers. 

 

Protocol for article formatting 

We are preparing each article for coding. The goal is to reduce the article to basic text. 

These are the steps to do just that, as follows: 

 

1. Open the article. If it is in Microsoft Word, or an html document, simply right-click 

the article and use the “Open With” from the drop-down menu and choose Google 

Docs. This will automatically convert the file to a Google document. If it is already a 

Google Doc, just open it as it is. 

 

2. Hit Ctrl + A to choose all the text. 

 

3. In your edit bar above, left-click Normal text and choose “Normal text” from the 

drop-down menu. Repeat this action. I don’t know why we have to do it twice, but we 

do. 
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4. Keeping the whole text field chosen, next go over to the Line spacing button and 

click it. Choose Line spacing 1.0 

 

5. Next, choose Arial as your font. 

 

6. Choose 12 pt. pica, just to the right of Arial. 

 

7. Bold the text, then unbold it. 

 

8. Italicize the text, then unitalicize it. 

 

9. Underline the text, then hit that button again. 

 

10. Choose Text color and indicate black. 

 

11. At text background color, choose “None” 

 

Now we are ready to prepare the article for coding. Each article needs the following: 

 

+*+* 

Most recent date of article 

 

So, if the date of the article is say, 10-17-11, but was updated on 10-18-11, the top of 

the article will look like this, 

 

+*+* 

10-18-11 
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12. Leave a space under the date of the article, and then single space all the 

information underneath that regarding the publication information. Just use whatever 

information is there. 

 

13. Leave a space before the body of the text. Throughout the article, delete any 

photos that occur, but leave the photo caption if it indicates a codeable tidbit. Otherwise, 

you can delete the photo caption as well. 

 

 Also, if the article is using a paragraph space after every sentence, eliminate 

those spaces as well. 

 

14. At the end of the article, leave a space between it and any further publication 

information, if there is any. 

 

15. If there is another article in the file, leave a space and type in the +*+* with the 

date as indicated above. 

 

16. If it is the last article (or only article) in that particular file, just simply close it and 

move on to the next. 

 

You will come across bits and pieces in some of these articles that are superfluous to 

the text. If, and only if, they are completely irrelevant to the Occupy article, you may 

delete these.  An example would be where the journal has put in links for printing, or 

sharing, or perhaps links to other articles. 

 

Don’t hesitate to ask questions. Look at the articles I’ve already done (A’s and most of 

the B’s) and see what it looks like. 

 

You can call or text me at xxx-xxx-xxxx with any questions at all. Remember: the only 

stupid question is the one you didn’t ask! 
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Description and protocol for text unit identification 

ARTICLE Text Unit Identification PROTOCOL 

 

1. Open the ‘DECIDING FORCE’ folder and then the ‘ARTICLES’ folder. You’ll see that there 

are a lot of articles organized by City. Go to your assigned city and find any document. 

 

2. Note whether the file has a square blue ‘Google Doc’ icon or a ‘W’ icon. If it has a square 

icon, open the document and proceed to step 3. If the icon is a ‘W’ you will need to open the 

document and convert it to a Google Document. To do this, click on the name of the document. 

Google viewer will show you what it looks like. Click on the blue ‘Open’ button at the bottom 

right of the screen. (This will open the document for limited functionality in Google.) Then, go to 

the ‘File’ menu in the upper left of your window and toggle over ‘Open with...,’ then click on 

‘Open with Google Docs.’ Now, the document has been converted to a Google Doc that will 

allow you to edit the document, especially to color code the text. 

 

3. Open the Color Coding Scheme document in a separate window. You’ll want to open as a 

Word document (as opposed to a Google Doc) so you can view it in outline view. If you “show” 

Level2 of the outline only, you’ll see all the color categories on one page. If you “show” Level 3, 

you’ll get some more detail on the things we are looking for in each color-code category.  

 

4. Place your initials and the coding scheme version number under the date of each article you 

code. You should see articles arranged like so: 

 

+*+*                                     ← These symbols denote a new 

article                          

11-3-11     ← On the very next line, the article date 

[enter text here]     ← Your initials and version # (e.g. ‘NBA, v23’)  

 

ARTICLE HEADLINE 

Article text about occupy events, camps, city actions, etc. Article text about 

occupy events, camps, city actions, etc. Article text about occupy events, camps, 
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city actions, etc. Article text about occupy events, camps, city actions, etc. … 

[End of article.] 

 

+*+*                                                              

11-3-11    ← it should look like this once you’re coding it 

NBA, v23       (yes, that comma and space are important) 

 

ARTICLE HEADLINE 

Article text about occupy events, camps, city actions, etc. Article text about 

occupy events, camps, city actions, etc. Article text about occupy events, camps, 

city actions, etc. Article text... etc. … … [End of article.]   

 

 

5. Color code all articles in the Google document according to your training and the coding 

scheme. If an article describes more than one police-, protester-, or unknown-initiated event, 

you need to not only color-code those events, but also change their font to italics (if the second 

such event), underline (if the third), strikethrough (if the fourth), etc. Same goes for multiple 

camps.  See the bottom of the color-coding scheme for the ways that you can indicate 5, 6, or 7 

events  

 

6. Once you have color-coded all articles in the Google Doc, move on to the next Google Doc 

and repeat steps 1 thru 5. 
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Hand-coding Scheme for TUA Identification
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Ethinicities%

…%

Police-presence-characteristics-

Riot-gear-

Horses-

Urban-Assault-Vehicles-

Brandishing-weapons-

Skirmish-lines-

Actions-of-police-or-protesters-that-occurred-during-the-event-

Who-

Police%%

Protester%

Counter5protester%

Anarchist%

How%many%

Tag%

Estimate(

What-

Punch%

Kick%

Push/shove%

To-Whom-

Police%%

Protester%

Counter5protester%

Anarchist%

Media%

How%many%

Tag%

Estimate(

Time-

Sequence-order-

Date/Time-tag--

START-

END-

-

Protester'Initiated-EVENT-
Date/Time-tag--

START-

END-

-

**EVENT-TYPE-

Establishing-a-camp-(will-often-look-like-a-rally)-
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Voluntary-Dissolution-of-a-camp-–-not-directly-resulting-from-a-

police'initiated-raid-

Moving-a-camp-to-a-new-location-(will-often-look-like-a-march)--

NOTE:%implies%the%dissolution%of%the%previous%camp,%so%only%

count%it%as%a%move%if%the%other%camp%is%dissolving%in%the%

process.%If%the%old%camp%survives%while%some%of%the%people%

move%to%a%new%location,%the%move%to%a%new%location%should%

simply%be%coded%as%the%establishment%of%a%new%camp%

March/Parade-(unless-protesters-do-rally/demonstration-type-stuff-

at-the-start-point-or-end-point,-a-march-from-A-to-B-should-just-be-

counted-as-one-event.)-

Rally/Demonstration-

NEW!!-Disrupting-an-on'going-event-of-the-perceived-1%-(e.g.-

conservative-politician’s-speech-at-a-convention/country-club,-city-

council-meeting-ONLY-if-no-intention-to-negotiate-or-make-a-

proposal,-etc.)-

Strike-

Divestment-action-(e.g.-moving-money-from-banks-to-credit-unions)-

Blocking-Action-

Sidewalk%

Street%

Public%transportation%

Airport%

Shipping%port%

Strategic-violence-

Kidnapping%

Assassination%

Bombing%

Assault%

Strategic-sabotage-

Pre5planned%vandalism%

Pre5planned%arson%

PERMITTED?-

From-when-

Till-when-

With-what-conditions-

CROWD-COMPOSITION-(How-many-people…?)-

-Diversity-of…-

Ages%

Classes%

Ethinicities%

…%

Police-
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Protesters-

New!-Protesters-from-other-cities-

Which%city?%

Counterprotesters-

Anarchists-

Media-

Union-Members-

Religious-leaders-or-communities-

Occupy-the-Hood-Folks-

Other-ALLIED-Groups-

Police-presence-characteristics-

Riot-gear-

Horses-

Urban-Assault-Vehicles-

Brandishing-weapons-

Skirmish-lines-

Actions-of-police-or-protesters-that-occurred-during-the-event-

Who-

Police%%

Protester%

Counter5protester%

Anarchist%

How%many%

Tag%

Estimate(

What-

Punch%

Kick%

Push/shove%

Invite%arrest%

And%many%more…%

To-Whom-

Police%%

Protester%

Counter5protester%

Anarchist%

Media%

How%many%

Tag%

Estimate(

Time-

Sequence-order-

Evidence-of-Community-Support-
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High-Level Orientation Document for CoreNLP Coreference Resolution and 

ClausIE SVO Extraction 

 

Getting Started with CoreNLP 

Download 

You can download pre-compiled versions of CoreNLP to run it without having to compile from 

source just so you can try it out and see how it works. 

 

We also need to download the models using this in a pom.xml in the top level of the CoreNLP 

directory and run it with: 

 

mvn 

 

<project xmlns="http://maven.apache.org/POM/4.0.0" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

v4_0_0.xsd"> 

 <modelVersion>4.0.0</modelVersion> 

 <groupId>org.decidingforce</groupId> 

 <artifactId>df-parser</artifactId> 

 <packaging>jar</packaging> 

 <version>1.0-SNAPSHOT</version> 

 <name>df-parser</name> 

 <url>http://maven.apache.org</url> 

 <dependencies> 

   <dependency> 

     <groupId>junit</groupId> 

     <artifactId>junit</artifactId> 

     <version>3.8.1</version> 

     <scope>test</scope> 

   </dependency> 

   <dependency> 

     <groupId>edu.stanford.nlp</groupId> 

     <artifactId>stanford-corenlp</artifactId> 

     <version>3.5.0</version> 

   </dependency> 

   <dependency> 

     <groupId>edu.stanford.nlp</groupId> 

     <artifactId>stanford-corenlp</artifactId> 
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     <version>3.5.0</version> 

     <classifier>models</classifier> 

   </dependency> 

 </dependencies> 

</project> 

 

 

Run 

We are running it using a command line like: 

 

java -Xmx2g -cp classes:models 
edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators 
cleanxml,tokenize,ssplit,pos,lemma,ner,parse,dcoref -file 
/path/to/annotatedinput.xml 

 

The main Stanford documentation describes Usage of CoreNLP in more detail. 

 

Once you become familiar with simply running it from the pre-compiled binaries then you may 

want to look at the source. 

Source code 

We are using the code from github for Stanford’s CoreNLP source, so you can git clone that to 

get started looking at the code. 

 

To make our modifications we have to fully recompile it and I can go over that with you on 

Wednesday when we get together. 

 

Compiling from source 

Latest git repo: git@github.com:stanfordnlp/CoreNLP.git 

Clone with: git clone --depth 1 git@github.com:stanfordnlp/CoreNLP.git 

cd CoreNLP ; ant compile 

export CLASSPATH=/path/to/CoreNLP/classes 

Example Deciding Force Data 

Hand-annotated input 

Our input data would look like the following (color-added for emphasis/clarity; text in bold needs 

coreference resolution): 
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<doc city="San Francisco" date="2015-03-29" articleid="3">A great university called <tua type=”A” 

id=”7”>Stanford is located in California. <tua type=”B” id=”3”> Nick has an old college buddy who works as a 

researcher at its medical school.</tua> </tua> California is in the USA. <tua type=”A” id=”24”> He wants to 

visit soon.</tua></doc> 

Coreference resolution stage 

A pass through coreference resolution might transform this input data into output like: 

 

<doc city="San Francisco" date="2015-03-29" articleid="3">A great university called  <tua type=”A” id=”7”> 

Stanford is located in California. <tua type=”B” id=”3”> Nick has an old college buddy who works as a 

researcher at <dcoref original="its">Stanford’s</dcoref> medical school.</tua> </tua> California is in the 

USA. <tua type=”A” id=”24”><dcoref original=”He”>Nick</dcoref> wants to visit soon.</tua></doc> 

ClausIE stage 

the text below is struck out for the moment because the output format is subject to 

change, potentially significantly, so writing a preprocessor for the next step right now 

might be subject to quite a bit of changes. 

Then ClausIE will be applied to the coreference transformed text to generate: 

 

<doc city="San Francisco" date="2015-03-29" articleid="3">A great university called  <tua type=”A” id=”7”> 

<clauses>Stanford <svo S="Stanford" V=”located” O=”California”>is located</svo> in 

California.</clauses> <tua type=”B” id=”3”><clauses>Nick <svo S=”Nick” V=”has” O=”old college 

buddy”>has</svo> an old college buddy who <svo S=”old college buddy” V=”works” 

O=”researcher”>works</svo> as a researcher at <dcoref original="its">Stanford’s</dcoref> medical 

school.</clauses></tua> </tua> California is in the USA. <tua type=”A” id=”24”><clauses><dcoref 

original=”He”>Nick</dcoref> <svo S=”Nick” V=”visit” O=””>wants to visit</svo> 

soon.</clauses></tua></doc> 

Preprocessing XML in Python for Actor Dictionary 

Given the output from the ClausIE stage above, then using Python lxml must be first scanned 

for TUAs, then the following would be extracted and output in a format suitable for input to the 

topic modeling (probably some kind of flat, CSV format easily read into an R dataframe) , which 

might look something like the following for an article that contains three distinct TUAs; 2 type “A” 

TUAs and 1 type “B” TUA. Here is what a transformation from XML to a linear format would like 

BEFORE applying the Actor Dictionary: 

 

city date article 
id 

tua 
type 

tua 
id 

s v o 

San Francisco 2015-03-29 3 A 7 Stanford located California 

San Francisco 2015-03-29 3 A 7 Nick has old college buddy 

San Francisco 2015-03-29 3 A 7 old college buddy works researcher 

San Francisco 2015-03-29 3 B 3 Nick has old college buddy 
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San Francisco 2015-03-29 3 B 3 old college buddy works researcher 

San Francisco 2015-03-29 3 A 24 Nick visit 
 

 

IMPORTANT NOTE: If you review the XML output from ClausIE, you’ll notice that tua B,3 is 

contained entirely within tua A,7, so the output above shows duplicate SVOs for because the 

SVOs in B,3 also apply to A,7 because it is contained inside it. 

 

Applying Actor Dictionary 

Then it should be simple to apply the actor dictionary such as this: 

 

Nick = Protester 

Stanford = City 

researcher = University Employee 

 

to generate output like so: 

 

city date article 
id 

tua 
type 

tua 
id 

s v o 

San Francisco 2015-03-29 3 A 7 City located California 

San Francisco 2015-03-29 3 A 7 Protester has old college buddy 

San Francisco 2015-03-29 3 A 7 Employee works University 

San Francisco 2015-03-29 3 B 3 Protester has University Employee 

San Francisco 2015-03-29 3 B 3 old college buddy works University 

San Francisco 2015-03-29 3 A 24 Protester visit 
 

 

Customizing CoreNLP for Deciding Force 

Write an xml module (modules are called “annotators” in CoreNLP) 

The first thing that needs to be replaced/modified in the source is the cleanxml annotator which 

simply removes xml tokens from the document, but we want to grab the annotations on each 

span and add it to the annotator pipeline. 
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Borrowing from GATE 

 

It may be possible to re-use ideas or code from GATE (or examples), starting with their 

XmlDocumentHandler.java. 

 

One of the GATE authors says: 

 

Keeping Your Annotations: It looks as if your documents are essentially XML. This is 

good as GATE will happily load XML documents. The text of the document is used as 

the document content while your annotations will end up in the "Original markups" 

annotation set. Any annotations (regardless of which set they are in can be kept and 

exported again later). 

 

(Coreference Resolution: You'll find there is a coreference PR as part of the base ANNIE 

application. It doesn't alter the document content though. What you'll end up with is 

annotations that reference each other to encode the coreference chain.) 

 

Exporting Data: Given that you want to actually edit the document content you'll probably 

need to do some work to produce documents in the form you want. Fortunately with the 

current SVN version this is easier than it used to be. What you'll need to do is produce 

an instance of the gate.DocumentExporter class. There are two exporters in the 

Linguistic_Simplifier plugin which do something similar (they remove/replace text during 

export) and would probably be easy to adapt to your specific use case. 

 

What to do after collecting xml attributes from hand-coded annotations 

There is more that needs to be done after reading the xml and preserving annotations: 

 

Our text data pipeline requires that we carry human-generated, xml-based annotations of 

words (examples in color below) through a text pipeline that includes coreference 

resolution and SVO extraction via ClausIE (an annotator/module of CoreNLP).  

 

A summary of the areas of CoreNLP code and the approach is suggested by some folks at 

Stanford on the mailing list. 

 

GOAL:  

Carry human annotations of words through the Stanford CoreNLP.  
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APPROACH: 

Create two classes that implement the abstract class edu.stanford.nlp.pipeline.Annotator. 

(for example, see CleanXmlAnnotator, EntityMentionsAnnotator or POSTaggerAnnotator) 

 

[POS == Parts of Speech] 

 

Add the annotators to the available pools of annotators. (See StanfordCoreNLP class 

(lines like "pool.register(STANFORD_POS, AnnotatorFactories.posTag(properties, 

annotatorImplementation));").) You will need to change AnnotatorImplementations and 

AnnotatorFactories classes. (Note: There's also a way to set the annotators set 

dynamically using the properties file.) (Also note: when you do  read_id , you can set a 

class for that label with the value of the id.  

 

Add a class to CoreAnnotations and then  

for each token (of type CoreLabel)  

Do something like: 

l.set(CoreAnnotations.CustomID.class, tokenid).  

 

Print  token id  using  l.get(CoreAnnotations.#CustomID.class) 

 

AMPLIFYING NOTES AND DISCUSSION 

-Each token is an instance of CoreLabel, which is a Map from (Class) keys to some 

information you provide. You can stick any extra attributes into that map you want, and 

they will be carried forward through the pipeline. (They won’t print by default in our output 

formats, but you can access them and print them.) 

-A key has to be a class that implements CoreAnnotation<V>, where V is the type of the 

value. It doesn’t have to be defined in CoreAnnotations. You can define the class 

anywhere, but you can look at CoreAnnotations to see what they should look like. 

 

ClausIE: SVO extractor 

Open Source license and permissions to use unpublished code 

 

---------- Forwarded message ---------- 

From: Luciano Del Corro <corrogg@mpi-inf.mpg.de> 

Date: Tue, Apr 7, 2015 at 5:07 AM 

Subject: Re: ?Using ClausIE in the open? 

To: Nicholas Adams <nickbadams@berkeley.edu> 
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Cc: Rainer Gemulla <rgemulla@mpi-inf.mpg.de> 

 

Hi Nicholas 

 

1) You can put the code there, no problem. Just put a link in the README file to our webpage.  

 

2) I think so, our license is http://creativecommons.org/licenses/by-sa/3.0/ 

 

cheers 

Luciano 

 

 

 

Code Enacting CoreNLP Coreference Resolution and ClausIE SVO Extraction 

 

 
diff --git a/_COPYRIGHTS_ b/_COPYRIGHTS_ 
new file mode 100644 
index 0000000..7fb9b6f 
--- /dev/null 
+++ b/_COPYRIGHTS_ 
@@ -0,0 +1,8 @@ 
+Portions of the code reproduced below include original code 
+written for the Deciding Force project and is interspersed with 
+code verbatim, dervied, or modified based on the Stanford CoreNLP 
+codebase which is goverened by the GNU GPL v2 license 
+<http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html>, as 
+well as the ClausIE code adapted from Luciano Del Corro 
+<corrogg@mpi-inf.mpg.de> with permission to use under the 
+CC-BY-SA 3.0 license <http://creativecommons.org/licenses/by-sa/3.0/> 
diff --git a/BUILD.md b/BUILD.md 
new file mode 100644 
index 0000000..789a57f 
--- /dev/null 
+++ b/BUILD.md 
@@ -0,0 +1,24 @@ 
+Some useful commands to keep track of used in the build process: 
+ 
+ 
+``` 
+sudo gpg --keyserver keyserver.ubuntu.com --recv-keys C2518248EEA14886 
+sudo gpg --export --armor C2518248EEA14886 | sudo apt-key add - 
+sudo add-apt-repository -y ppa:webupd8team/java 
+sudo add-apt-repository -y ppa:openjdk-r/ppa 
+sudo apt-get update 
+sudo apt-get install -y openjdk-8-jdk openjdk-8-jre openjdk-8-jre-headless oracle-java8-installer oracle-java8-set-default ant make 
maven2 libmaven-ant-tasks-java screen byobu tmux 
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+sudo update-alternatives --config java 
+sudo update-alternatives --config javac 
+sudo apt-get autoremove --purge -y 
+``` 
+ 
+Old direct-maven installation is no longer necessary since we're using libmaven-ant-tasks-java 
+ 
+``` 
+mvn archetype:generate -DgroupId=org.decidingforce -DartifactId=df-parser -DarchetypeArtifactId=maven-archetype-quickstart -
DinteractiveMode=false 
+mvn -DskipTests package 
+mvn -DskipTests -Xlint:unchecked package 
+mvn clean install -U 
+mvn dependency:copy-dependencies 
+``` 
diff --git a/build.xml b/build.xml 
index b8fc811..435d2ac 100644 
--- a/build.xml 
+++ b/build.xml 
@@ -1,7 +1,13 @@ 
 <!-- JavaNLP core build file --> 
  
-<project name="core" default="compile" basedir="."> 
- 
+<project name="core" default="compile" basedir="." xmlns:artifact="antlib:org.apache.maven.artifact.ant"> 
+  <record name="build.log" loglevel="verbose" action="start" /> 
+  <path id="maven-ant-tasks.classpath" path="lib/maven-ant-tasks.jar" /> 
+  <typedef resource="org/apache/maven/artifact/ant/antlib.xml" 
+           uri="antlib:org.apache.maven.artifact.ant" 
+           classpathref="maven-ant-tasks.classpath" /> 
+ 
+  <property name="build.compiler.emacs" value="on"/> 
   <property name="build.path"      value="${basedir}/classes" /> 
   <property name="source.path"     value="${basedir}/src" /> 
   <property name="doc.path"        value="${basedir}/doc" /> 
@@ -82,6 +88,15 @@ 
     </for> 
   </target> 
  
+  <artifact:dependencies pathId="dependency.classpath"> 
+    <dependency groupId="junit" artifactId="junit" version="3.8.2" scope="test"/> 
+    <dependency groupId="org.codehaus.jackson" artifactId="jackson-mapper-asl" version="1.9.13" scope="runtime"/> 
+    <dependency groupId="net.sf.jopt-simple" artifactId="jopt-simple" version="4.4" scope="runtime"/> 
+    <dependency groupId="edu.stanford.nlp" artifactId="stanford-corenlp" version="3.5.0" classifier="models" scope="runtime"/> 
+    <dependency groupId="xom" artifactId="xom" version="1.2.5" scope="runtime"/> 
+    <dependency groupId="xalan" artifactId="xalan" version="2.7.0" scope="runtime"/> 
+  </artifact:dependencies> 
+ 
   <target name="compile" depends="classpath" 
           description="Compile core sources"> 
     <echo message="${ant.project.name}" /> 
@@ -97,6 +112,7 @@ 
            fork="true" 
            memorymaximumsize="2g" 
            includeantruntime="false"> 
+        <classpath refid="dependency.classpath" /> 
         <classpath refid="classpath" /> 
       <!-- <compilerarg value="-Xmaxerrs"/> 
            <compilerarg value="20"/> --> 
@@ -107,6 +123,7 @@ 
         <compilerarg value="-Xlint:finally"/> 
         <compilerarg value="-Xlint:path"/> 
         <compilerarg value="-Xlint:try"/> 
+        <!-- <compilerarg value="-Xlint:unchecked"/> --> 
 <!-- 
         <compilerarg value="-Xlint:deprecation"/> 
         <compilerarg value="-Xlint:dep-ann"/> 
@@ -143,7 +160,7 @@ 
     </junit> 
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   </target> 
  
-  <target name="itest" depends="classpath,compile" 
+    <target name="itest" depends="classpath,compile" 
           description="Run core integration tests"> 
     <echo message="${ant.project.name}" /> 
     <junit fork="yes" maxmemory="8g" printsummary="off" outputtoformatters="false" forkmode="perTest" haltonfailure="true"> 
@@ -202,6 +219,66 @@ 
     </java> 
   </target> 
  
+  <target name="run-corpus-whole" depends="compile,classpath"> 
+    <property name="data.workset" value="${data.path}/workset" /> 
+    <property name="data.outpath" value="${data.path}/svoset" /> 
+    <mkdir dir="${data.outpath}" /> 
+    <exec executable="data/regenerate-listings.sh"/> 
+    <java classname="edu.stanford.nlp.pipeline.StanfordCoreNLP" fork="true" jvm="java"> 
+      <jvmarg value="-Xmx4g"/> 
+      <jvmarg value="-Xdebug"/> 
+      <arg value="-props"/> 
+      <arg value="df.properties"/> 
+      <arg value="-filelist"/> 
+      <arg value="data/corpus-whole.list"/> 
+      <arg value="-outputDirectory"/> 
+      <arg value="${data.outpath}"/> 
+      <classpath> 
+        <path refid="dependency.classpath" /> 
+ <path refid="classpath"/> 
+ <pathelement path="${build.path}"/> 
+      </classpath> 
+    </java> 
+  </target> 
+ 
+  <target name="run-clausie" depends="compile,classpath"> 
+    <!-- <java classname="${run.class}" fork="true" jvm="java"> --> 
+    <java classname="clausie.ClausIE" fork="true" jvm="java"> 
+      <jvmarg value="-Xmx2g"/> 
+      <jvmarg value="-Xdebug"/> 
+      <!-- <arg value="-v"/> --> 
+      <arg value="-c"/> 
+      <arg value="resources/clausie.conf"/> 
+      <arg value="-f"/> 
+      <!-- <arg value="data/df-subset/clausie-test.txt"/> --> 
+      <arg value="data/df-subset/simple.txt"/> 
+      <classpath> 
+        <path refid="dependency.classpath" /> 
+ <path refid="classpath"/> 
+ <pathelement path="${build.path}"/> 
+      </classpath> 
+    </java> 
+  </target> 
+ 
+  <target name="run-df" depends="compile,classpath"> 
+    <!-- <java classname="${run.class}" fork="true" jvm="java"> --> 
+    <java classname="org.decidingforce.DecidingForce" fork="true" jvm="java"> 
+      <jvmarg value="-Xmx2g"/> 
+      <jvmarg value="-Xdebug"/> 
+      <!-- <arg value="-v"/> --> 
+      <arg value="-c"/> 
+      <arg value="resources/clausie.conf"/> 
+      <arg value="-f"/> 
+      <!-- <arg value="data/df-subset/clausie-test.txt"/> --> 
+      <arg value="data/df-subset/simple.txt"/> 
+      <classpath> 
+        <path refid="dependency.classpath" /> 
+ <path refid="classpath"/> 
+ <pathelement path="${build.path}"/> 
+      </classpath> 
+    </java> 
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+  </target> 
+ 
   <!-- Same as "run," except causes the VM to wait until debugger is attached --> 
   <!-- See http://nlp.stanford.edu/javanlp/did_you_know/eclipse_debug.html for example --> 
   <target name="run-debug" depends="classpath"> 
diff --git a/df.properties b/df.properties 
new file mode 100644 
index 0000000..103501f 
--- /dev/null 
+++ b/df.properties 
@@ -0,0 +1,86 @@ 
+annotators = tokenize, cleanxml, ssplit, pos, lemma, ner, parse, dcoref 
+ 
+# A true-casing annotator is also available (see below) 
+#annotators = tokenize, ssplit, pos, lemma, truecase 
+ 
+# A simple regex NER annotator is also available 
+# annotators = tokenize, ssplit, regexner 
+ 
+#Use these as EOS punctuation and discard them from the actual sentence content 
+#These are HTML tags that get expanded internally to correct syntax, e.g., from "p" to "<p>", "</p>" etc. 
+#Will have no effect if the "cleanxml" annotator is used 
+#ssplit.htmlBoundariesToDiscard = p,text 
+ 
+# 
+# None of these paths are necessary anymore: we load all models from the JAR file 
+# 
+ 
+#pos.model = /u/nlp/data/pos-tagger/wsj3t0-18-left3words/left3words-distsim-wsj-0-18.tagger 
+## slightly better model but much slower: 
+##pos.model = /u/nlp/data/pos-tagger/wsj3t0-18-bidirectional/bidirectional-distsim-wsj-0-18.tagger 
+ 
+# If you set ner.model, you can name any arbitrary model you want. 
+# The models named by ner.model.3class, ner.model.7class, and 
+# ner.model.MISCclass are also added in the order named. 
+# Any of the ner.model properties can be a comma separated list of names, 
+# in which case each of the models in the comma separated list is added. 
+#ner.model = ... 
+#ner.model.3class = /u/nlp/data/ner/goodClassifiers/all.3class.distsim.crf.ser.gz 
+#ner.model.7class = /u/nlp/data/ner/goodClassifiers/muc.distsim.crf.ser.gz 
+#ner.model.MISCclass = /u/nlp/data/ner/goodClassifiers/conll.distsim.crf.ser.gz 
+ 
+#regexner.mapping = /u/nlp/data/TAC-KBP2010/sentence_extraction/type_map_clean 
+#regexner.ignorecase = false 
+ 
+#nfl.gazetteer = /scr/nlp/data/machine-
reading/Machine_Reading_P1_Reading_Task_V2.0/data/SportsDomain/NFLScoring_UseCase/NFLgazetteer.txt 
+#nfl.relation.model =  
/scr/nlp/data/ldc/LDC2009E112/Machine_Reading_P1_NFL_Scoring_Training_Data_V1.2/models/nfl_relation_model.ser 
+#nfl.entity.model =  
/scr/nlp/data/ldc/LDC2009E112/Machine_Reading_P1_NFL_Scoring_Training_Data_V1.2/models/nfl_entity_model.ser 
+#printable.relation.beam = 20 
+ 
+#parser.model = /u/nlp/data/lexparser/englishPCFG.ser.gz 
+#parser.flags = -retainTmpSubcategories 
+ 
+#srl.verb.args=/u/kristina/srl/verbs.core_args 
+#srl.model.cls=/u/nlp/data/srl/trainedModels/englishPCFG/cls/train.ann 
+#srl.model.id=/u/nlp/data/srl/trainedModels/englishPCFG/id/train.ann 
+ 
+#coref.model=/u/nlp/rte/resources/anno/coref/corefClassifierAll.March2009.ser.gz 
+#coref.name.dir=/u/nlp/data/coref/ 
+#wordnet.dir=/u/nlp/data/wordnet/wordnet-3.0-prolog 
+ 
+#dcoref.demonym = /scr/heeyoung/demonyms.txt 
+#dcoref.animate = /scr/nlp/data/DekangLin-Animacy-Gender/Animacy/animate.unigrams.txt 
+#dcoref.inanimate = /scr/nlp/data/DekangLin-Animacy-Gender/Animacy/inanimate.unigrams.txt 
+#dcoref.male = /scr/nlp/data/Bergsma-Gender/male.unigrams.txt 
+#dcoref.neutral = /scr/nlp/data/Bergsma-Gender/neutral.unigrams.txt 
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+#dcoref.female = /scr/nlp/data/Bergsma-Gender/female.unigrams.txt 
+#dcoref.plural = /scr/nlp/data/Bergsma-Gender/plural.unigrams.txt 
+#dcoref.singular = /scr/nlp/data/Bergsma-Gender/singular.unigrams.txt 
+ 
+#whether or not to print singleton entities 
+#output.printSingletonEntities = false 
+output.printSingletonEntities = false 
+outputExtension = .jsonl 
+replaceExtension = true 
+ 
+# This is the regular expression that describes which xml tags to keep 
+# the text from.  In order to on off the xml removal, add cleanxml 
+# to the list of annotators above after "tokenize". 
+#clean.xmltags = .* 
+# A set of tags which will force the end of a sentence.  HTML example: 
+# you would not want to end on <i>, but you would want to end on <p>. 
+# Once again, a regular expression. 
+# (Blank means there are no sentence enders.) 
+#clean.sentenceendingtags = 
+# Whether or not to allow malformed xml 
+#clean.allowflawedxml 
+# clean.sectiontags = "p" 
+# clean.sectionAnnotations = normalized=span[type-id] 
+clean.sentenceendingtags = p 
+clean.docAnnotations = docID=article[metadata] 
+# clean.sectionAnnotations = docID=article[city], dfID=article[srcpath], doctype=article[city], docdate=article[date], 
docsourcetype=article[annotators] 
+# clean.sectionAnnotations = df-type-id=span[type-id], df-type=span[type] 
+clean.tokenAnnotations = df-type-id=span[type-id-color] 
+ 
+continueOnAnnotateError = true 
+tparse.maxlen = 70 
diff --git a/pom.xml b/pom.xml 
new file mode 100644 
index 0000000..c5a67be 
--- /dev/null 
+++ b/pom.xml 
@@ -0,0 +1,51 @@ 
+<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
+  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> 
+  <modelVersion>4.0.0</modelVersion> 
+  <groupId>org.decidingforce</groupId> 
+  <artifactId>df-parser</artifactId> 
+  <packaging>jar</packaging> 
+  <version>1.0-SNAPSHOT</version> 
+  <name>df-parser</name> 
+  <url>http://maven.apache.org</url> 
+  <build> 
+    <resources> 
+        <resource> 
+            <directory>src/</directory> 
+        </resource> 
+    </resources> 
+  </build> 
+  <dependencies> 
+    <dependency> 
+      <groupId>org.codehaus.jackson</groupId> 
+      <artifactId>jackson-mapper-asl</artifactId> 
+      <version>1.9.13</version> 
+    </dependency> 
+    <dependency> 
+      <groupId>junit</groupId> 
+      <artifactId>junit</artifactId> 
+      <version>3.8.1</version> 
+      <scope>test</scope> 
+    </dependency> 
+    <dependency> 
+      <groupId>net.sf.jopt-simple</groupId> 
+      <artifactId>jopt-simple</artifactId> 
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+      <version>4.4</version> 
+    </dependency> 
+    <dependency> 
+ <groupId>xom</groupId> 
+ <artifactId>xom</artifactId> 
+ <version>1.2.5</version> 
+    </dependency> 
+    <dependency> 
+      <groupId>edu.stanford.nlp</groupId> 
+      <artifactId>stanford-corenlp</artifactId> 
+      <version>3.5.0</version> 
+    </dependency> 
+    <dependency> 
+      <groupId>edu.stanford.nlp</groupId> 
+      <artifactId>stanford-corenlp</artifactId> 
+      <version>3.5.0</version> 
+      <classifier>models</classifier> 
+    </dependency> 
+  </dependencies> 
+</project> 
diff --git a/src/clausie/AdvclIndexedConstituent.java b/src/clausie/AdvclIndexedConstituent.java 
new file mode 100644 
index 0000000..e5db38f 
--- /dev/null 
+++ b/src/clausie/AdvclIndexedConstituent.java 
@@ -0,0 +1,43 @@ 
+package clausie; 
+ 
+import java.util.List; 
+import java.util.Set; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+ 
+public class AdvclIndexedConstituent extends IndexedConstituent{ 
+ 
+ private IndexedWord mark; 
+ private List<Clause> clauses; 
+ 
+ 
+        private AdvclIndexedConstituent() { 
+ 
+        } 
+ 
+ 
+        public AdvclIndexedConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                       Type type, List<Clause> clauses) { 
+                super(semanticGraph, root, type); 
+                this.setClauses(clauses); 
+        } 
+ 
+ 
+ public AdvclIndexedConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+   Set<IndexedWord> additionalVertexes, 
+   Set<IndexedWord> excludedVertexes, Type type, List<Clause> clauses) { 
+  super(semanticGraph, root, additionalVertexes, excludedVertexes, type); 
+  this.setClauses(clauses); 
+ } 
+ 
+  /** Returns the clauses derived from the constituent. */ 
+ public List<Clause> getClauses() { 
+  return clauses; 
+ } 
+ 
+ /** Sets the clauses derived from the constituent. */ 
+ public void setClauses(List<Clause> clauses) { 
+  this.clauses = clauses; 
+ } 
+} 
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diff --git a/src/clausie/CCompIndexedword.java b/src/clausie/CCompIndexedword.java 
new file mode 100644 
index 0000000..06a528e 
--- /dev/null 
+++ b/src/clausie/CCompIndexedword.java 
@@ -0,0 +1,48 @@ 
+package clausie; 
+ 
+import java.util.List; 
+import java.util.Set; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+ 
+public class CCompIndexedword extends StructuredConstituent { 
+ 
+ 
+        private List<Clause> clauses; 
+ 
+ 
+        public CCompIndexedword(SemanticGraph semanticGraph, IndexedWord root, 
+                                Type type, List<Clause> clauses) { 
+                super(semanticGraph, root, type); 
+                this.setClauses(clauses); 
+        } 
+ 
+ 
+        public CCompIndexedword(SemanticGraph semanticGraph, IndexedWord root, 
+                                Set<IndexedWord> additionalVertexes, 
+                                Set<IndexedWord> excludedVertexes, Type type, List<Clause> clauses) { 
+                super(semanticGraph, root, additionalVertexes, excludedVertexes, type); 
+                this.setClauses(clauses); 
+        } 
+ 
+        /** Returns the clauses derived from the constituent. */ 
+        public List<Clause> getClauses() { 
+                return clauses; 
+        } 
+ 
+        /** Sets the clauses derived from the constituent. */ 
+        public void setClauses(List<Clause> clauses) { 
+                this.clauses = clauses; 
+        } 
+ 
+ 
+ /** 
+  * @param args 
+  */ 
+ public static void main(String[] args) { 
+  // TODO Auto-generated method stub 
+ 
+ } 
+ 
+} 
diff --git a/src/clausie/ClausIE.java b/src/clausie/ClausIE.java 
new file mode 100644 
index 0000000..a36edff 
--- /dev/null 
+++ b/src/clausie/ClausIE.java 
@@ -0,0 +1,529 @@ 
+package clausie; 
+ 
+import java.io.DataInput; 
+import java.io.DataInputStream; 
+import java.io.FileInputStream; 
+import java.io.FileOutputStream; 
+import java.io.IOException; 
+import java.io.InputStream; 
+import java.io.OutputStream; 
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+import java.io.PrintStream; 
+import java.io.StringReader; 
+import java.util.ArrayList; 
+import java.util.Collection; 
+import java.util.HashMap; 
+import java.util.List; 
+import java.util.Map; 
+ 
+import clausie.Constituent.Flag; 
+import clausie.JavaUtils.MapUtil; 
+import joptsimple.OptionException; 
+import joptsimple.OptionParser; 
+import joptsimple.OptionSet; 
+import edu.stanford.nlp.io.EncodingPrintWriter.out; 
+import edu.stanford.nlp.ling.CoreLabel; 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.parser.lexparser.LexicalizedParser; 
+import edu.stanford.nlp.parser.lexparser.LexicalizedParserQuery; 
+import edu.stanford.nlp.pipeline.ParserAnnotatorUtils; 
+import edu.stanford.nlp.process.CoreLabelTokenFactory; 
+import edu.stanford.nlp.process.Morphology; 
+import edu.stanford.nlp.process.PTBTokenizer; 
+import edu.stanford.nlp.process.TokenizerFactory; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.semgraph.SemanticGraphFactory; 
+import edu.stanford.nlp.trees.Tree; 
+import edu.stanford.nlp.util.ScoredObject; 
+ 
+public class ClausIE { 
+ Tree depTree; 
+ SemanticGraph semanticGraph; 
+ List<ScoredObject<Tree>> trees; 
+ 
+        List<Clause> clauses = new ArrayList<Clause>(); 
+ 
+        boolean kparse = false; 
+        int k = 10; 
+ 
+        double bestScore; 
+        Tree bestDT; 
+        SemanticGraph bestSemanticGraph; 
+        List<Clause> bestClauses; 
+ 
+        List<Proposition> propositions = new ArrayList<Proposition>(); 
+        Map<Proposition, Double> scoredPropositions = new HashMap<Proposition, Double>(); 
+ 
+        PropositionGenerator propositionGenerator; 
+ 
+        Options options; 
+ 
+        private LexicalizedParser lp; 
+        private TokenizerFactory<CoreLabel> tokenizerFactory; 
+        private LexicalizedParserQuery lpq; 
+ 
+        // Indicates if the clause processed comes from an xcomp constituent of the 
+        // original sentence 
+        boolean xcomp = false; 
+        private Morphology morphology; 
+ 
+        // -- construction 
+        // ---------------------------------------------------------------------------- 
+ 
+        public ClausIE(Options options) { 
+                this.options = options; 
+                this.propositionGenerator = new DefaultPropositionGenerator(this.options); 
+        } 
+ 
+        public ClausIE() { 
+                this(new Options()); 
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+        } 
+ 
+ 
+        public ClausIE(LexicalizedParser lp, TokenizerFactory<CoreLabel> tokenizerFactory, 
+                       LexicalizedParserQuery lpq) { 
+                this(new Options()); 
+                this.lp = lp; 
+                this.tokenizerFactory = tokenizerFactory; 
+                this.lpq = lpq; 
+        } 
+ 
+        // -- misc method 
+        // ----------------------------------------------------------------------------- 
+ 
+        public Options getOptions() { 
+                return options; 
+        } 
+ 
+        public void clear() { 
+                semanticGraph = null; 
+                depTree = null; 
+                clauses.clear(); 
+                propositions.clear(); 
+        } 
+ 
+        // -- parsing 
+        // --------------------------------------------------------------------------------- 
+ 
+        /** Initializes the Stanford parser. */ 
+        public void initParser() { 
+                lp = LexicalizedParser 
+                        .loadModel("edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz"); 
+                tokenizerFactory = PTBTokenizer 
+                        .factory(new CoreLabelTokenFactory(), ""); 
+                lpq = lp.lexicalizedParserQuery(); 
+                morphology = new Morphology(); 
+        } 
+ 
+ 
+        /** Clears and parses a new sentence. */ 
+        public void parse(String sentence) { 
+                clear(); 
+                baseParse(sentence); 
+                depTree = lpq.getBestParse(); 
+                semanticGraph = SemanticGraphFactory.generateUncollapsedDependencies(depTree); 
+ 
+                for(IndexedWord iw: semanticGraph.vertexSet()) { 
+                        iw.setLemma(morphology.lemma(iw.word(), iw.tag())); 
+                } 
+        } 
+ 
+        public void kparse(String sentence) { 
+                clear(); 
+                baseParse(sentence); 
+                trees =  lpq.getKBestPCFGParses(k); 
+        } 
+ 
+        private void baseParse(String sentence) { 
+                List<CoreLabel> tokenizedSentence = tokenizerFactory.getTokenizer( 
+                        new StringReader(sentence)).tokenize(); 
+                lpq.parse(tokenizedSentence); // what about the confidence? 
+        } 
+ 
+        /** Returns the constituent tree for the sentence. */ 
+        public Tree getDepTree() { 
+                return depTree; 
+        } 
+ 
+        /** Returns the dependency tree for the sentence. */ 
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+        public SemanticGraph getSemanticGraph() { 
+                return semanticGraph; 
+        } 
+ 
+        // -- clause detection 
+        // ------------------------------------------------------------------------ 
+ 
+        /** Detects clauses in the sentence. */ 
+        public void detectClauses() { 
+                ClauseDetector.detectClauses(this.options, this.semanticGraph, this.depTree, this.clauses); 
+        } 
+ 
+        /** Returns clauses in the sentence. */ 
+        public List<Clause> getClauses() { 
+                return clauses; 
+        } 
+ 
+        // -- proposition generation 
+        // ------------------------------------------------------------------ 
+ 
+        /** Generates propositions from the clauses in the sentence. */ 
+        public void generatePropositions() { 
+                propositions.clear(); 
+ 
+                // holds alternative options for each constituents (obtained by 
+                // processing coordinated conjunctions and xcomps) 
+                final List<List<Constituent>> constituents = new ArrayList<List<Constituent>>(); 
+ 
+                // which of the constituents are required? 
+                final List<Flag> flags = new ArrayList<Flag>(); 
+                final List<Boolean> include = new ArrayList<Boolean>(); 
+ 
+                // holds all valid combination of constituents for which a proposition 
+                // is to be generated 
+                final List<List<Boolean>> includeConstituents = new ArrayList<List<Boolean>>(); 
+ 
+                // let's start 
+                for (Clause clause : clauses) { 
+                        // process coordinating conjunctions 
+                        constituents.clear(); 
+                        for (int i = 0; i < clause.getConstituents().size(); i++) { 
+                                // if(xcomp && clause.subject == i) continue; //An xcomp does 
+                                // not have an internal subject so should not be processed here 
+                                Constituent constituent = clause.getConstituents().get(i); 
+                                List<Constituent> alternatives; 
+                                if (!(xcomp && clause.getSubject() == i) 
+                                    && constituent instanceof IndexedConstituent 
+                                    // the processing of the xcomps is done in Default 
+                                    // proposition generator. 
+                                    // Otherwise we get duplicate propositions. 
+                                    && !clause.getXcomps().contains(i) 
+                                    && ((i == clause.getVerb() && options.processCcAllVerbs) || (i != clause.getVerb() && options.processCcNonVerbs))) 
{ 
+                                        alternatives = ProcessConjunctions.processCC(depTree, constituent, false, false, Integer.MAX_VALUE, null, null); 
+                                } else if (!(xcomp && clause.getSubject() == i) 
+                                           && clause.getXcomps().contains(i)) { 
+                                        alternatives = new ArrayList<Constituent>(); 
+                                        ClausIE xclausIE = new ClausIE(options); 
+                                        xclausIE.semanticGraph = semanticGraph; 
+                                        xclausIE.depTree = depTree; 
+                                        xclausIE.xcomp = true; 
+                                        xclausIE.clauses = ((XcompConstituent) clause.getConstituents() 
+                                                            .get(i)).getClauses(); 
+                                        xclausIE.generatePropositions(); 
+                                        for (Proposition p : xclausIE.propositions) { 
+                                                StringBuilder sb = new StringBuilder(); 
+                                                String sep = ""; 
+                                                for (int j = 0; j < p.constituents.size(); j++) { 
+                                                        if (j == 0)    // to avoid including the subjecct, We 
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+                                                                continue;  // could also generate the prop 
+                                                        // without the subject 
+                                                        sb.append(sep); 
+                                                        sb.append(p.constituents.get(j)); 
+                                                        sep = " "; 
+                                                } 
+                                                alternatives.add(new TextConstituent(sb.toString(), 
+                                                                                     constituent.type)); 
+                                        } 
+                                } else { 
+                                        alternatives = new ArrayList<Constituent>(1); 
+                                        alternatives.add(constituent); 
+                                } 
+                                constituents.add(alternatives); 
+                        } 
+ 
+                        // create a list of all combinations of constituents for which a 
+                        // proposition should be generated 
+                        includeConstituents.clear(); 
+                        flags.clear(); 
+                        include.clear(); 
+                        for (int i = 0; i < clause.getConstituents().size(); i++) { 
+                                Flag flag = clause.getFlag(i, options); 
+                                flags.add(flag); 
+                                include.add(!flag.equals(Flag.IGNORE)); 
+                        } 
+                        if (options.nary) { 
+                                // we always include all constituents for n-ary ouput 
+                                // (optional parts marked later) 
+                                includeConstituents.add(include); 
+                        } else { 
+                                // triple mode; determine which parts are required 
+                                for (int i = 0; i < clause.getConstituents().size(); i++) { 
+                                        include.set(i, flags.get(i).equals(Flag.REQUIRED)); 
+                                } 
+ 
+                                // create combinations of required/optional constituents 
+                                new Runnable() { 
+                                        int noOptional; 
+ 
+                                        @Override 
+                                        public void run() { 
+                                                noOptional = 0; 
+                                                for (Flag f : flags) { 
+                                                        if (f.equals(Flag.OPTIONAL)) 
+                                                                noOptional++; 
+                                                } 
+                                                run(0, 0, new ArrayList<Boolean>()); 
+                                        } 
+ 
+                                        private void run(int pos, int selected, List<Boolean> prefix) { 
+                                                if (pos >= include.size()) { 
+                                                        if (selected >= Math.min(options.minOptionalArgs, 
+                                                                                 noOptional) 
+                                                            && selected <= options.maxOptionalArgs) { 
+                                                                includeConstituents.add(new ArrayList<Boolean>( 
+                                                                                                prefix)); 
+                                                        } 
+                                                        return; 
+                                                } 
+                                                prefix.add(true); 
+                                                if (include.get(pos)) { 
+                                                        run(pos + 1, selected, prefix); 
+                                                } else { 
+                                                        if (!flags.get(pos).equals(Flag.IGNORE)) { 
+                                                                run(pos + 1, selected + 1, prefix); 
+                                                        } 
+                                                        prefix.set(prefix.size() - 1, false); 
+                                                        run(pos + 1, selected, prefix); 
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+                                                } 
+                                                prefix.remove(prefix.size() - 1); 
+                                        } 
+                                }.run(); 
+                        } 
+ 
+                        // create a temporary clause for which to generate a proposition 
+                        final Clause tempClause = clause.clone(); 
+ 
+                        // generate propositions 
+                        new Runnable() { 
+                                @Override 
+                                public void run() { 
+                                        // select which constituents to include 
+                                        for (List<Boolean> include : includeConstituents) { 
+                                                // now select an alternative for each constituent 
+                                                selectConstituent(0, include); 
+                                        } 
+                                } 
+ 
+                                void selectConstituent(int i, List<Boolean> include) { 
+                                        if (i < constituents.size()) { 
+                                                if (include.get(i)) { 
+                                                        List<Constituent> alternatives = constituents 
+                                                                .get(i); 
+                                                        for (int j = 0; j < alternatives.size(); j++) { 
+                                                                tempClause.getConstituents().set(i, 
+                                                                                                 alternatives.get(j)); 
+                                                                selectConstituent(i + 1, include); 
+                                                        } 
+                                                } else { 
+                                                        selectConstituent(i + 1, include); 
+                                                } 
+                                        } else { 
+                                                // everything selected; generate 
+                                                propositionGenerator.generate(propositions, tempClause, 
+                                                                              include); 
+                                        } 
+                                } 
+                        }.run(); 
+                } 
+        } 
+ 
+        public Collection<Proposition> getPropositions() { 
+                if(!kparse) 
+                        return propositions; 
+                else 
+                        return scoredPropositions.keySet(); 
+        } 
+ 
+        // -- command-line interface 
+        // ------------------------------------------------------------------ 
+ 
+        public static void main(String[] args) throws IOException { 
+                OptionParser optionParser = new OptionParser(); 
+                optionParser 
+                        .accepts("f", 
+                                 "input file (if absent, ClausIE reads from stdin)") 
+                        .withRequiredArg().describedAs("file").ofType(String.class); 
+                optionParser 
+                        .accepts( 
+                                "l", 
+                                "if set, sentence identifier is read from input file (with lines of form: <id>\\t<sentence>)"); 
+                optionParser 
+                        .accepts("o", 
+                                 "output file (if absent, ClausIE writes to stdout)") 
+                        .withRequiredArg().describedAs("file").ofType(String.class); 
+                optionParser.accepts("c", "configuration file").withRequiredArg() 
+                        .describedAs("file").ofType(String.class); 
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+                optionParser.accepts("v", "verbose output"); 
+                optionParser.accepts("h", "print help"); 
+                optionParser.accepts("s", "print sentence"); 
+                optionParser.accepts("p", "print best parse confidence"); 
+                optionParser.accepts("k", "extract from k best parses (default 10)"); 
+                OptionSet options; 
+                try { 
+                        options = optionParser.parse(args); 
+                } catch (OptionException e) { 
+                        System.err.println(e.getMessage()); 
+                        out.println(""); 
+                        optionParser.printHelpOn(System.out); 
+                        return; 
+                } 
+                // help 
+                if (options.has("h")) { 
+                        optionParser.printHelpOn(System.out); 
+                } 
+ 
+                // setup input and output 
+                InputStream in = System.in; 
+                OutputStream out = System.out; 
+                if (options.has("f")) { 
+                        in = new FileInputStream((String) options.valueOf("f")); 
+                } 
+                if (options.has("o")) { 
+                        out = new FileOutputStream((String) options.valueOf("o")); 
+                } 
+ 
+                // is there an options file 
+ 
+                // create a ClausIE instance and set options 
+                final ClausIE clausIE; 
+                if (options.has("c")) { 
+                        clausIE = new ClausIE(new Options((String) options.valueOf("c"))); 
+                } else { 
+                        clausIE = new ClausIE(); 
+                } 
+                clausIE.initParser(); 
+                if (options.has("v")) { 
+                        clausIE.getOptions().print(out, "# "); 
+                } 
+ 
+                if (options.has("k")) { 
+                        if(options.valueOf("k") != null) 
+                                clausIE.k = (Integer) options.valueOf("k"); 
+                        clausIE.kparse = true; 
+                } 
+ 
+                // run 
+                DataInput din = new DataInputStream(in); 
+                PrintStream dout = new PrintStream(out); 
+                int lineNo = 1; 
+                for (String line = din.readLine(); line != null; line = din.readLine(), lineNo++) { 
+                        line = line.trim(); 
+                        if (line.isEmpty() || line.startsWith("#")) 
+                                continue; 
+                        int sentenceId = lineNo; 
+                        if (options.has("l")) { 
+                                int tabIndex = line.indexOf('\t'); 
+                                sentenceId = Integer.parseInt(line.substring(0, tabIndex)); 
+                                line = line.substring(tabIndex + 1).trim(); 
+                        } 
+                        if (options.has("v")) { 
+                                dout.print("# Line "); 
+                                dout.print(lineNo); 
+                                if (options.has("l")) { 
+                                        dout.print(" (id "); 
+                                        dout.print(sentenceId); 
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+                                        dout.print(")"); 
+                                } 
+                                dout.print(": "); 
+                                dout.print(line); 
+                                dout.println(); 
+                        } 
+ 
+                        if (!clausIE.kparse) { 
+                                clausIE.parse(line); 
+                                clausIE.detectClauses(); 
+                                try { 
+                                        clausIE.generatePropositions(); 
+                                } catch (java.lang.StackOverflowError e) { 
+                                        System.err.println("IGNORING KNOWN PROBLEM: StackOverflowError"); 
+                                } 
+                        } else { 
+                                clausIE.kparse(line); 
+ 
+                                for(ScoredObject<Tree> tree: clausIE.trees) { 
+                                        clausIE.semanticGraph = SemanticGraphFactory 
+                                                .generateUncollapsedDependencies(tree.object()); 
+                                        clausIE.depTree = tree.object(); 
+                                        double score = Math.exp(tree.score()); 
+                                        clausIE.detectClauses(); 
+                                        clausIE.generatePropositions(); 
+                                        //To store the best tree 
+                                        if(score > clausIE.bestScore) { 
+                                                clausIE.bestSemanticGraph = clausIE.semanticGraph; 
+                                                clausIE.bestDT = clausIE.depTree; 
+                                                clausIE.bestScore = score; 
+                                                clausIE.bestClauses = new ArrayList<Clause> (clausIE.clauses); 
+                                        } 
+ 
+ 
+                                        for (Proposition p : clausIE.propositions) { 
+                                                if(!clausIE.scoredPropositions.containsKey(p)) { 
+                                                        clausIE.scoredPropositions.put(p, score); 
+                                                } else { 
+                                                        clausIE.scoredPropositions.put(p, 
+                                                                                       clausIE.scoredPropositions.get(p) + score); 
+                                                } 
+ 
+                                        } 
+                                        clausIE.clear(); 
+                                } 
+                        } 
+ 
+                        clausIE.scoredPropositions = MapUtil.sortByValue(clausIE.scoredPropositions); 
+ 
+                        if (options.has("v")) { 
+                                if(clausIE.kparse) { 
+                                        clausIE.semanticGraph = clausIE.bestSemanticGraph; 
+                                } 
+                                dout.print("# Best Semantic graph: "); 
+                                dout.println(clausIE.getSemanticGraph().toFormattedString() 
+                                             .replaceAll("\n", "\n#                ").trim()); 
+                        } 
+ 
+                        if (options.has("v")) { 
+                                if(clausIE.kparse) { 
+                                        clausIE.clauses = clausIE.bestClauses; 
+                                } 
+                                dout.print("#   Detected "); 
+                                dout.print(clausIE.getClauses().size()); 
+                                dout.println(" clause(s)."); 
+                                for (Clause clause : clausIE.getClauses()) { 
+                                        dout.print("#   - "); 
+                                        dout.print(clause.toString(clausIE.options)); 
+                                        dout.println(); 
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+                                } 
+                        } 
+ 
+                        if (options.has("s")) { 
+                                dout.print(line); 
+                                dout.println(); 
+                        } 
+ 
+                        for (Proposition p : clausIE.getPropositions()) { 
+                                dout.print(sentenceId); 
+                                for (String c : p.constituents) { 
+                                        // TODO: correct escaping 
+                                        dout.print("\t\""); 
+                                        dout.print(c); 
+                                        dout.print("\""); 
+                                } 
+                                if(clausIE.kparse) { 
+                                        dout.print("\t"); 
+                                        dout.print(clausIE.scoredPropositions.get(p)); 
+                                }else if (options.has("p")) { 
+                                        dout.print("\t"); 
+                                        dout.print(clausIE.lpq.getPCFGScore()); 
+                                } 
+                                dout.println(); 
+                        } 
+                } 
+ 
+ 
+ 
+  // shutdown 
+  if (options.has("f")) { 
+   in.close(); 
+  } 
+  if (options.has("o")) { 
+   out.close(); 
+  } 
+ } 
+} 
diff --git a/src/clausie/Clause.java b/src/clausie/Clause.java 
new file mode 100644 
index 0000000..bc56a59 
--- /dev/null 
+++ b/src/clausie/Clause.java 
@@ -0,0 +1,739 @@ 
+package clausie; 
+ 
+import java.util.ArrayList; 
+import java.util.List; 
+import java.util.LinkedHashMap; 
+import java.util.HashMap; 
+import java.util.Map; 
+ 
+import clausie.Constituent.Flag; 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.trees.Tree; 
+import edu.stanford.nlp.ling.CoreAnnotations; 
+import edu.stanford.nlp.ling.CoreLabel; 
+import edu.stanford.nlp.trees.EnglishGrammaticalRelations; 
+/** 
+ * A clause is a basic unit of a sentence. In ClausIE, a clause consists of a 
+ * set of constituents (at least a subject and a verb) and a type. 
+ */ 
+public class Clause { 
+ // -- Type definition 
+ // ------------------------------------------------------------------------- 
+ 
+ public static Integer IDs = null; 
+ 
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+        public int clauseID; 
+ 
+        /** Clause types */ 
+        public enum Type { 
+                SV, SVC, SVA, SVO, SVOO, SVOC, SVOA, EXISTENTIAL, UNKNOWN; 
+        }; 
+ 
+        // -- member variables 
+        // ----------------------------------------------------------------------- 
+ 
+        protected SemanticGraph semanticGraph; 
+ 
+        protected Tree constTree; 
+ 
+        /** Constituents of this clause */ 
+        public List<Constituent> constituents = new ArrayList<Constituent>(); 
+ 
+        /** Type of this clause */ 
+        protected Type type = Type.UNKNOWN; 
+ 
+        /** Position of subject in {@link #constituents} */ 
+        protected int subject = -1; 
+ 
+        /** Position of verb in {@link #constituents} */ 
+        protected int verb = -1; 
+ 
+        protected boolean cop; 
+ 
+        protected boolean passive; 
+ 
+        private Boolean isNegated = null; 
+ 
+        public List<IndexedWord> clauseMembers; 
+ 
+ 
+        // They are lists because some times the parsers (probably an error) 
+        // generates more than one constituent of each type 
+        // e.g., more than one dobj produced by parser for 
+        // "The man who I told the fact is dead." 
+        /** Position(s) of direct object(s) in {@link #constituents}. */ 
+        protected List<Integer> dobjects = new ArrayList<Integer>(); 
+ 
+        /** Position(s) of indirect object in {@link #constituents} */ 
+        protected List<Integer> iobjects = new ArrayList<Integer>(); 
+ 
+        /** Position of complement in {@link #constituents} (for SVC / SVOC) */ 
+        protected int complement = -1; 
+ 
+        /** Position(s) of xcomps in {@link #constituents} */ 
+        protected List<Integer> xcomps = new ArrayList<Integer>(); 
+ 
+        /** Position(s) of ccomps in {@link #constituents} */ 
+        protected List<Integer> ccomps = new ArrayList<Integer>(); 
+ 
+        /** Position(s) of acomps in {@link #constituents} */ 
+        protected List<Integer> acomps = new ArrayList<Integer>(); 
+ 
+        /** Position(s) of adverbials in {@link #constituents} */ 
+        protected List<Integer> adverbials = new ArrayList<Integer>(); 
+ 
+        /** Non identified dependencies */ 
+        protected List<Integer> deps = new ArrayList<Integer>(); 
+ 
+        /** If a relative pronoun refers to an adverbial */ 
+        protected boolean relativeAdverbial = false; 
+ 
+        /** 
+         * Parent clause of this clause, if any. For example, in 
+         * "He said this is true." the clause "this / is / true" has parent 
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+         * "he / said / this is true". 
+         */ 
+        protected Clause parentClause = null; 
+ 
+        /** Agent (for passive voice). Currently unused. */ 
+        private IndexedWord agent; 
+ 
+        /** Root of the clause. */ 
+        protected IndexedWord root; 
+ 
+ 
+        // -- construction 
+        // ---------------------------------------------------------------------------- 
+ 
+        // make package private 
+        public Clause() { 
+                if(IDs == null) 
+                        IDs = 0; 
+                clauseID = IDs; 
+                IDs++; 
+        }; 
+ 
+        @Override 
+        public Clause clone() { 
+                Clause clause = new Clause(); 
+                clause.setConstituents(new ArrayList<Constituent>(getConstituents())); 
+                clause.setType(type); 
+                clause.setSubject(subject); 
+                clause.setVerb(verb); 
+                clause.setRoot(root); 
+                clause.setDobjects(new ArrayList<Integer>(getDobjects())); 
+                clause.setIobjects(new ArrayList<Integer>(getIobjects())); 
+                clause.setComplement(complement); 
+                clause.setXcomps(new ArrayList<Integer>(getXcomps())); 
+                clause.setCcomps(new ArrayList<Integer>(getCcomps())); 
+                clause.setAcomps(new ArrayList<Integer>(getAcomps())); 
+                clause.setAdverbials(new ArrayList<Integer>(getAdverbials())); 
+                clause.setRelativeAdverbial(relativeAdverbial); 
+                clause.setAgent(agent); 
+                clause.setParentClause(parentClause); 
+                return clause; 
+        } 
+ 
+        // -- methods 
+        // --------------------------------------------------------------------------------- 
+ 
+        /** Determines the type of this clause, if still unknown. */ 
+        void detectType(Options options) { 
+                if (getType() != Type.UNKNOWN) 
+                        return; 
+ 
+                // count the total number of complements (dobj, ccomp, xcomp) 
+                int noComplements = noComplements(); 
+ 
+                // sometimes the parsers gives ccomp and xcomp instead of direct objects 
+                // e.g., "He is expected to tell the truth." 
+                IndexedWord root = ((IndexedConstituent) getConstituents().get(getVerb())) 
+                        .getRoot(); 
+                boolean hasDirectObject = getDobjects().size() > 0 
+                        || (getComplement() < 0 && noComplements > 0 && !options.isCop(root)); 
+                boolean hasIndirectObject = !getIobjects().isEmpty(); 
+ 
+                // Q1: Object? 
+                if (hasDirectObject || hasIndirectObject) { 
+                        // Q7: dir. and indir. object? 
+                        if (noComplements > 0 && hasIndirectObject) { 
+                                setType(Type.SVOO); 
+                                return; 
+                        } 
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+ 
+                        // Q8: Complement? 
+                        if (noComplements > 1) { 
+                                setType(Type.SVOC); 
+                                return; 
+                        } 
+ 
+                        // Q9: Candidate adverbial and direct objects? 
+                        if (!(hasCandidateAdverbial() && hasDirectObject)) { 
+                                setType(Type.SVO); 
+                                return; 
+                        } 
+ 
+                        // Q10: Potentially complex transitive? 
+                        if (options.isComTran(root)) { 
+                                setType(Type.SVOA); 
+                                return; 
+                        } 
+ 
+                        // Q11: Conservative? 
+                        if (options.conservativeSVOA) { 
+                                setType(Type.SVOA); 
+                                return; 
+                        } else { 
+                                setType(Type.SVO); 
+                                return; 
+                        } 
+                } else { 
+                        // Q2: Complement? 
+                        // not sure about acomp, can a copular be transitive? 
+                        if (getComplement() >= 0 || noComplements > 0 && options.isCop(root) 
+                            || !getAcomps().isEmpty()) { 
+                                setType(Type.SVC); 
+                                return; 
+                        } 
+ 
+                        // Q3: Candidate adverbial 
+                        if (!hasCandidateAdverbial()) { 
+                                setType(Type.SV); 
+                                return; 
+                        } 
+ 
+                        // Q4: Known non ext. copuular 
+                        if (options.isNotExtCop(root)) { 
+                                setType(Type.SV); 
+                                return; 
+                        } 
+ 
+                        // Q5: Known ext. copular 
+                        if (options.isExtCop(root)) { 
+                                setType(Type.SVA); 
+                                return; 
+                        } 
+ 
+                        // Q6: Conservative 
+                        if (options.conservativeSVA) { 
+                                setType(Type.SVA); 
+                                return; 
+                        } else { 
+                                setType(Type.SV); 
+                                return; 
+                        } 
+                } 
+        } 
+ 
+        /** 
+         * Checks whether this clause has a candidate adverbial, i.e., an adverbial 
+         * that can potentially be obligatory. 
+         */ 
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+  public String getCandidateAdverbial() { 
+                if (getAdverbials().isEmpty()) 
+                        return null; 
+                if (isRelativeAdverbial()) 
+                  return "FIXME"; 
+ 
+                // is there an adverbial that occurs after the verb? 
+                IndexedWord a = ((IndexedConstituent) getConstituents().get(getAdverbials().get(getAdverbials().size() - 1))).getRoot(); 
+                IndexedWord b = ((IndexedConstituent) getConstituents().get(getVerb())).getRoot(); 
+                System.out.format("ADVERBS: a: %s\tb: %s\tas: %s\n", a, b, getAdverbials().size()); 
+                String str = String.format("%s|%s", a.backingLabel().get(CoreAnnotations.TextAnnotation.class), 
a.backingLabel().get(CoreAnnotations.PartOfSpeechAnnotation.class)); 
+                if (a.index() > b.index()) 
+                  return str; 
+                return null; 
+        } 
+ 
+        public boolean hasCandidateAdverbial() { 
+                if (getAdverbials().isEmpty()) 
+                        return false; 
+                if (isRelativeAdverbial()) 
+                        return true; 
+ 
+                // is there an adverbial that occurs after the verb? 
+                if (((IndexedConstituent) getConstituents().get(getAdverbials().get(getAdverbials() 
+                                                                                    .size() - 1))).getRoot().index() > ((IndexedConstituent) getConstituents() 
+                                                                                                                        .get(getVerb())).getRoot().index()) 
+                        return true; 
+                return false; 
+        } 
+ 
+        /** 
+         * Determines the total number of complements (includes direct objects, 
+         * subject complements, etc.) present in this clause. 
+         */ 
+        public int noComplements() { 
+          int c = (getComplement() < 0 ? 0 : 1); 
+          int d = getDobjects().size(); 
+          int x = getXcomps().size(); 
+          int cc= getCcomps().size(); 
+          System.out.format("d: %s\tc: %s\tx: %s\tcc: %s\n", d, c, x, cc); 
+ 
+                return getDobjects().size() + (getComplement() < 0 ? 0 : 1) + getXcomps().size() 
+                        + getCcomps().size(); 
+        } 
+ 
+        @Override 
+        public String toString() { 
+                return toString(null); 
+        } 
+ 
+        public String toString(Options options) { 
+                Clause clause = this; 
+                StringBuffer s = new StringBuffer(); 
+                s.append(clause.getType().name()); 
+                s.append(" ("); 
+                String sep = ""; 
+                for (int index = 0; index < getConstituents().size(); index++) { 
+                        Constituent constituent = getConstituents().get(index); 
+                        s.append(sep); 
+                        sep = ", "; 
+                        switch (constituent.getType()) { 
+                        case ACOMP: 
+                                s.append("ACOMP"); 
+                                break; 
+                        case ADVERBIAL: 
+                                s.append("A"); 
+                                if (options != null) { 
+                                        switch (getFlag(index, options)) { 
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+                                        case IGNORE: 
+                                                s.append("-"); 
+                                                break; 
+                                        case OPTIONAL: 
+                                                s.append("?"); 
+                                                break; 
+                                        case REQUIRED: 
+                                                s.append("!"); 
+                                                break; 
+                                        } 
+                                } 
+                                break; 
+                        case CCOMP: 
+                                s.append("CCOMP"); 
+                                break; 
+                        case COMPLEMENT: 
+                                s.append("C"); 
+                                break; 
+                        case DOBJ: 
+                                s.append("O"); 
+                                break; 
+                        case IOBJ: 
+                                s.append("IO"); 
+                                break; 
+                        case SUBJECT: 
+                                s.append("S"); 
+                                break; 
+                        case UNKOWN: 
+                                s.append("?"); 
+                                break; 
+                        case VERB: 
+                                s.append("V"); 
+                                break; 
+                        case XCOMP: 
+                                s.append("XCOMP"); 
+                                break; 
+                        } 
+                        s.append(": "); 
+                        if (!(constituent instanceof IndexedConstituent)) { 
+                                s.append("\""); 
+                        } 
+                        s.append(constituent.rootString()); 
+                        if (constituent instanceof IndexedConstituent) { 
+                                s.append("@"); 
+                                s.append(((IndexedConstituent) constituent).getRoot().index()); 
+                        } else { 
+                                s.append("\""); 
+                        } 
+                } 
+                s.append(")"); 
+                return s.toString(); 
+        } 
+ 
+ 
+        public Map<String,String> svoMap(Options options) { 
+                Clause clause = this; 
+                Map<String,String> m = new LinkedHashMap<String,String>(); 
+                for (int index = 0; index < getConstituents().size(); index++) { 
+                        Constituent constituent = getConstituents().get(index); 
+                        String root = constituent.rootString(); 
+                        Constituent.Type cType = constituent.getType(); 
+                        switch (cType) { 
+                        case ADVERBIAL: 
+                                if (options != null) { 
+                                        Constituent.Flag flag = getFlag(index, options); 
+                                        switch (flag) { 
+                                        // case IGNORE: 
+                                        //         s.append("-"); 
+                                        //         break; 
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+                                        // case OPTIONAL: 
+                                        //         s.append("?"); 
+                                        //         break; 
+                                        case REQUIRED: 
+                                                m.put(cType.toString() + flag.toString(), root); 
+                                                break; 
+                                        } 
+                                } 
+                                break; 
+                        case VERB: 
+                                if (constituent instanceof IndexedConstituent) { 
+                                        IndexedConstituent ic = (IndexedConstituent) constituent; 
+                                        IndexedWord iw = ic.getRoot(); 
+                                        CoreLabel label = ic.getRoot().backingLabel(); 
+                                        if (root == "") { 
+                                          root = label.get(CoreAnnotations.OriginalTextAnnotation.class); 
+                                        } 
+                                        m.put(cType.toString(), root); 
+                                        String dfFile = label.get(CoreAnnotations.DFTypeAnnotation.class); 
+                                        if (dfFile != null) { 
+                                          m.put("TUAfile", dfFile); 
+                                        } 
+                                        String dfType = label.get(CoreAnnotations.DFTypeIDAnnotation.class); 
+                                        if (dfType != null) { 
+                                          String[] parts = dfType.split("\\|"); 
+                                          m.put("TUAid", dfType); 
+                                          m.put("TUAtype", parts[0]); 
+                                          m.put("TUAnum", parts[1]); 
+                                          m.put("TUAcolor", parts[2]); 
+                                        } 
+                                        String metadata = label.get(CoreAnnotations.DocIDAnnotation.class); 
+                                        if (metadata != null ) { 
+                                          String[] parts = metadata.split("\\|"); 
+                                          m.put("metadata", metadata); 
+                                          m.put("city", parts[0]); 
+                                          m.put("article_date", parts[1]); 
+                                          m.put("coders", parts[2]); 
+                                          m.put("srcfile", parts[3]); 
+                                        } 
+ 
+                                        // String docType = label.get(CoreAnnotations.DocTypeAnnotation.class); if (docType != null) m.put("city", 
docType); 
+                                        // String docDate = label.get(CoreAnnotations.DocDateAnnotation.class); if (docDate != null) m.put("date", 
docDate); 
+                                        // String docSourceType = label.get(CoreAnnotations.DocSourceTypeAnnotation.class); if (docSourceType != null) 
m.put("annotators", docSourceType); 
+                                        if (label.lemma() != null) m.put("Lemma", label.lemma()); 
+                                        if (clause.hasCandidateAdverbial()) { 
+                                          // IndexedWord child = semanticGraph.getChildWithReln(iw, EnglishGrammaticalRelations.AUX_MODIFIER); 
+                                          // m.put("hasCandidateAdverbial", child.toString()); 
+                                          m.put("hasCandidateAdverbial", clause.getCandidateAdverbial()); 
+                                        } 
+ 
+                                        if (clause.isNegated(options)) { 
+                                                // m.put("NEGATED", iw.toString()); 
+                                                IndexedWord child = semanticGraph.getChildWithReln(iw, 
EnglishGrammaticalRelations.NEGATION_MODIFIER); 
+                                                m.put("NEGATED", child.toString()); 
+                                        } 
+                                } 
+                                break; 
+                        default: 
+                                m.put(cType.toString(), root); 
+                                break; 
+                        } 
+                } 
+                if (clause.getPassive()) { 
+                        String s = m.get("S"); 
+                        String o = m.get("O"); 
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+                        if (o != null && s != null) { 
+                                m.put("NSUBJPASS", "swap"); 
+                                m.put("S", o); 
+                                m.put("O", s); 
+                        } else if (s != null) { 
+                                m.put("NSUBJPASS", "move"); 
+                                m.put("O", s); 
+                                m.remove("S"); 
+                        } else { 
+                                m.put("NSUBJPASS", "unknown"); 
+                        } 
+                } 
+                return m; 
+        } 
+ 
+        /** 
+         * Determines the flag of the adverbial at position {@code index} in 
+         * {@link #adverbials}, i.e., whether the adverbial is required, optional, 
+         * or to be ignored. 
+         */ 
+        public Flag getFlag(int index, Options options) { 
+ 
+                boolean first = true; 
+                for (int i : getAdverbials()) { 
+                        if (i == index && isIgnoredAdverbial(i, options)) 
+                                return Flag.IGNORE; 
+                        else if (i == index && isIncludedAdverbial(i, options)) 
+                                return Flag.REQUIRED; 
+                        int adv = ((IndexedConstituent) getConstituents().get(i)).getRoot() 
+                                .index(); 
+                        if (getConstituents().get(getVerb()) instanceof IndexedConstituent 
+                            && adv < ((IndexedConstituent) getConstituents().get(getVerb())) 
+                            .getRoot().index() && !isRelativeAdverbial()) { 
+                                if (i == index) { 
+                                        return Flag.OPTIONAL; 
+                                } 
+                        } else { 
+                                if (i == index) { 
+                                        if (!first) 
+                                                return Flag.OPTIONAL; 
+                                        return !(Type.SVA.equals(getType()) || Type.SVOA.equals(getType())) ? Flag.OPTIONAL 
+                                                : Flag.REQUIRED; 
+                                } 
+                                first = false; 
+                        } 
+                } 
+                return Flag.REQUIRED; 
+        } 
+ 
+        /** 
+         * Checks whether the adverbial at position {@code index} in 
+         * {@link #adverbials} is to be ignored by ClausIE. 
+         */ 
+        private boolean isIgnoredAdverbial(int index, Options options) { 
+                Constituent constituent = getConstituents().get(index); 
+                String s; 
+                if (constituent instanceof IndexedConstituent) { 
+                        IndexedConstituent indexedConstituent = (IndexedConstituent) constituent; 
+                        IndexedWord root = indexedConstituent.getRoot(); 
+                        if (indexedConstituent.getSemanticGraph().hasChildren(root)) { 
+                                // ||IndexedConstituent.sentSemanticGraph.getNodeByIndexSafe(root.index() 
+                                // + 1) != null 
+                                // && 
+                                // IndexedConstituent.sentSemanticGraph.getNodeByIndexSafe(root.index() 
+                                // + 1).tag().charAt(0) == 'J') { //do not ignore if it modifies 
+                                // an adjective. Adverbs can modify verbs or adjective no reason 
+                                // to ignore them when they refer to adjectives (at lest in 
+                                // triples). This is important in the case of adjectival 
+                                // complements 
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+                                return false; 
+                        } 
+                        s = root.lemma(); 
+                } else { 
+                        s = constituent.rootString(); 
+                } 
+ 
+                if (options.dictAdverbsIgnore.contains(s) 
+                    || (options.processCcNonVerbs && options.dictAdverbsConj 
+                        .contains(s))) 
+                        return true; 
+                else 
+                        return false; 
+        } 
+ 
+        /** 
+         * Checks whether the adverbial at position {@code index} in 
+         * {@link #adverbials} is required to be output by ClausIE (e.g., adverbials 
+         * indicating negation, such as "hardly"). 
+         */ 
+        private boolean isIncludedAdverbial(int index, Options options) { 
+                Constituent constituent = getConstituents().get(index); 
+                String s; 
+                if (constituent instanceof IndexedConstituent) { 
+                        IndexedConstituent indexedConstituent = (IndexedConstituent) constituent; 
+                        IndexedWord root = indexedConstituent.getRoot(); 
+                        if (indexedConstituent.getSemanticGraph().hasChildren(root)) { 
+                                return false; 
+                        } 
+                        s = root.lemma(); 
+                } else { 
+                        s = constituent.rootString(); 
+                } 
+                return options.dictAdverbsInclude.contains(s); 
+        } 
+ 
+        public SemanticGraph getSemanticGraph () { 
+                return semanticGraph; 
+        } 
+ 
+        public void setSemanticGraph (SemanticGraph semanticGraph) { 
+                this.semanticGraph = semanticGraph; 
+        } 
+ 
+        public int getVerb() { 
+                return verb; 
+        } 
+ 
+        public void setVerb(int verb) { 
+                this.verb = verb; 
+        } 
+ 
+        public void setRoot(IndexedWord root) { 
+                this.root = root; 
+        } 
+ 
+        public int getComplement() { 
+                return complement; 
+        } 
+ 
+        public void setComplement(int complement) { 
+                this.complement = complement; 
+        } 
+ 
+        public List<Constituent> getConstituents() { 
+                return constituents; 
+        } 
+ 
+        public void setConstituents(List<Constituent> constituents) { 
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+                this.constituents = constituents; 
+        } 
+ 
+        public int getSubject() { 
+                return subject; 
+        } 
+ 
+        public void setSubject(int subject) { 
+                this.subject = subject; 
+        } 
+ 
+        public List<Integer> getIobjects() { 
+                return iobjects; 
+        } 
+ 
+        public void setIobjects(List<Integer> iobjects) { 
+                this.iobjects = iobjects; 
+        } 
+ 
+        public List<Integer> getDobjects() { 
+                return dobjects; 
+        } 
+ 
+        public void setDobjects(List<Integer> dobjects) { 
+                this.dobjects = dobjects; 
+        } 
+ 
+        public List<Integer> getCcomps() { 
+                return ccomps; 
+        } 
+ 
+        public List<Integer> getDeps() { 
+                return deps; 
+        } 
+ 
+        public void setCcomps(List<Integer> ccomps) { 
+                this.ccomps = ccomps; 
+        } 
+ 
+        public List<Integer> getXcomps() { 
+                return xcomps; 
+        } 
+ 
+        public void setXcomps(List<Integer> xcomps) { 
+                this.xcomps = xcomps; 
+        } 
+ 
+        public List<Integer> getAcomps() { 
+                return acomps; 
+        } 
+ 
+        public void setAcomps(List<Integer> acomps) { 
+                this.acomps = acomps; 
+        } 
+ 
+        public List<Integer> getAdverbials() { 
+                return adverbials; 
+        } 
+ 
+        public void setAdverbials(List<Integer> adverbials) { 
+                this.adverbials = adverbials; 
+        } 
+ 
+        public void setDeps(ArrayList<Integer> deps) { 
+                this.deps = deps; 
+        } 
+ 
+ 
+        public Type getType() { 
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+                return type; 
+        } 
+ 
+        public void setType(Type type) { 
+                this.type = type; 
+        } 
+ 
+        public boolean getCop() { 
+                return cop; 
+        } 
+ 
+        public boolean getPassive() { 
+                return passive; 
+        } 
+ 
+        public IndexedWord getRoot() { 
+                return root; 
+        } 
+ 
+        public void setCop(boolean cop) { 
+                this.cop = cop; 
+        } 
+ 
+        public Clause getParentClause() { 
+                return parentClause; 
+        } 
+ 
+        public void setParentClause(Clause parentClause) { 
+                this.parentClause = parentClause; 
+        } 
+ 
+        public boolean isRelativeAdverbial() { 
+                return relativeAdverbial; 
+        } 
+ 
+        protected void setRelativeAdverbial(boolean relativeAdverbial) { 
+                this.relativeAdverbial = relativeAdverbial; 
+        } 
+ 
+        public void setPassive(boolean b) { 
+                passive = b; 
+ 
+        } 
+ 
+        public void setAgent(IndexedWord agent) { 
+                this.agent = agent; 
+ 
+        } 
+ 
+        public IndexedWord getAgent() { 
+                return agent; 
+        } 
+ 
+        public Tree getTree() { 
+                return constTree; 
+        } 
+ 
+        public void setTree(Tree constTree) { 
+                this.constTree = constTree; 
+        } 
+ 
+        public List<IndexedWord> getClauseMembers(List<IndexedWord> clauseRoots) { 
+                List<IndexedWord> result = new ArrayList<IndexedWord>(); 
+                result.add(root); 
+                getClauseMembers(semanticGraph.getChildList(root), clauseRoots, result); 
+                return result; 
+        } 
+ 
+        private void getClauseMembers(List<IndexedWord> childList, 
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+                                      List<IndexedWord> clauseRoots, List<IndexedWord> result) { 
+                for(IndexedWord child: childList) { 
+                        if(clauseRoots.contains(child) || child.tag().charAt(0) == 'W' || result.contains(child)) 
+                                continue; 
+                        result.add(child); 
+                        getClauseMembers(semanticGraph.getChildList(child), clauseRoots, result); 
+                } 
+        } 
+ 
+ public boolean isNegated(Options options) { 
+  if(isNegated == null) { 
+   if(semanticGraph.isNegatedVertex(root)) { 
+    isNegated = true; 
+   }else { 
+    for(int adverbial: adverbials) { 
+     IndexedConstituent c = (IndexedConstituent) constituents.get(adverbial); 
+     if(options.dictAdverbsInclude.contains(c.getRoot().lemma())) { 
+      isNegated = true; 
+      break; 
+     } 
+    } 
+    if(isNegated == null) 
+     isNegated = false; 
+   } 
+  } 
+ 
+  return isNegated; 
+ } 
+} 
diff --git a/src/clausie/ClauseDetector.java b/src/clausie/ClauseDetector.java 
new file mode 100644 
index 0000000..3a756a1 
--- /dev/null 
+++ b/src/clausie/ClauseDetector.java 
@@ -0,0 +1,857 @@ 
+package clausie; 
+ 
+import java.util.ArrayList; 
+import java.util.Collections; 
+import java.util.HashSet; 
+import java.util.List; 
+import java.util.Set; 
+import java.util.TreeSet; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.semgraph.SemanticGraphEdge; 
+import edu.stanford.nlp.semgraph.SemanticGraphFactory; 
+import edu.stanford.nlp.trees.EnglishGrammaticalRelations; 
+import edu.stanford.nlp.trees.GrammaticalRelation; 
+import edu.stanford.nlp.trees.Tree; 
+ 
+/**{@link ClauseDetector} contains the methods dealing with the detection of clauses. 
+ * After the detection is performed a set of {@link Clause} is created. 
+ * 
+ * {@code detectClauses} first detects the type of clause to be generated based on syntactic relations 
+ * and once a clause is detected a given method is used to create a {@link Clause}. 
+ * 
+ * @date $LastChangedDate: 2013-12-02 15:45:41 +0100 (Mon, 02 Dec 2013) $ 
+ * @version $LastChangedRevision: 1182 $ */ 
+public class ClauseDetector { 
+ 
+        /** Set of dependency relations that do not belong to a complement */ 
+        protected static final Set<GrammaticalRelation> EXCLUDE_RELATIONS_COMPLEMENT; 
+        static { 
+                HashSet<GrammaticalRelation> temp = new HashSet<GrammaticalRelation>(); 
+                temp.add(EnglishGrammaticalRelations.AUX_MODIFIER); 
+                temp.add(EnglishGrammaticalRelations.AUX_PASSIVE_MODIFIER); 
+                temp.add(EnglishGrammaticalRelations.SUBJECT); 
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+                temp.add(EnglishGrammaticalRelations.COPULA); 
+                temp.add(EnglishGrammaticalRelations.ADVERBIAL_MODIFIER); 
+                EXCLUDE_RELATIONS_COMPLEMENT = Collections.unmodifiableSet(temp); 
+        } 
+ 
+        /** Set of dependency relations that belong to the verb */ 
+        protected static final Set<GrammaticalRelation> INCLUDE_RELATIONS_VERB; 
+        static { 
+                HashSet<GrammaticalRelation> temp = new HashSet<GrammaticalRelation>(); 
+                temp.add(EnglishGrammaticalRelations.AUX_MODIFIER); 
+                temp.add(EnglishGrammaticalRelations.AUX_PASSIVE_MODIFIER); 
+                temp.add(EnglishGrammaticalRelations.NEGATION_MODIFIER); 
+                INCLUDE_RELATIONS_VERB = Collections.unmodifiableSet(temp); 
+        } 
+ 
+        private ClauseDetector() { 
+        }; 
+ 
+        /** Detects clauses in the input sentence */ 
+        public static void detectClauses(Options options, SemanticGraph semanticGraph, Tree depTree, List<Clause> clauses) { 
+                IndexedConstituent.sentSemanticGraph = semanticGraph; 
+                List<IndexedWord> roots = new ArrayList<IndexedWord>(); 
+                boolean includeXcomps = true; 
+                for (SemanticGraphEdge edge : semanticGraph.edgeIterable()) { 
+                        // check whether the edge identifies a clause 
+                        if (DpUtils.isAnySubj(edge)) { 
+                                // clauses with a subject 
+                                IndexedWord subject = edge.getDependent(); 
+                                IndexedWord root = edge.getGovernor(); 
+                                addNsubjClause(semanticGraph, depTree, options, roots, clauses, subject, root, false, includeXcomps); //CHECK 
+                        } else if (options.processAppositions && DpUtils.isAppos(edge)) { 
+                                // clauses for appositions 
+                                IndexedWord subject = edge.getGovernor(); 
+                                IndexedWord object = edge.getDependent(); 
+                                addApposClause(depTree, semanticGraph, options, clauses, subject, object); 
+                                roots.add(null); 
+                        } else if (options.processPossessives && DpUtils.isPoss(edge)) { 
+                                // clauses for possessives 
+                                IndexedWord subject = edge.getDependent(); 
+                                IndexedWord object = edge.getGovernor(); 
+                                addPossessiveClause(depTree, semanticGraph, options, clauses, subject, object); 
+                                roots.add(null); 
+                        } else if (options.processPartmods && DpUtils.isPartMod(edge)) { 
+                                // clauses for participial modifiers 
+                                IndexedWord subject = edge.getGovernor(); 
+                                IndexedWord object = edge.getDependent(); 
+                                addPartmodClause(semanticGraph, depTree, options, clauses, subject, object, roots, includeXcomps); 
+                        } 
+                } 
+ 
+                // postprocess clauses 
+                // TODO 
+                for (int i = 0; i < clauses.size(); i++) { 
+                        Clause clause = clauses.get(i); 
+ 
+                        // set parents (slow and inefficient for now) 
+                        IndexedWord root = roots.get(i); 
+                        if (root != null) { 
+                                int index = ancestorOf(semanticGraph, root, roots); // recursion needed to 
+                                // deal 
+                                // with xcomp; more stable 
+                                if (index >= 0) { 
+                                        // System.out.println("Clause " + clause.toString() + " has parent " + 
+                                        // clauses.get(index).toString()); 
+                                        clause.setParentClause(clauses.get(index)); 
+                                } 
+                        } 
+ 
+                        // exclude vertexes (each constituent needs to excludes vertexes of the other 
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+                        // constituents) 
+                        excludeVertexes(clause); 
+                } 
+        } 
+ 
+ 
+        /** Detects clauses in the input sentence 
+         * @return */ 
+        public static List<Clause> detectClauses(Options options, SemanticGraph semanticGraph, Tree depTree, List<IndexedWord> roots, 
boolean includeXcomps) { 
+                List<Clause> clauses = new ArrayList<Clause>(); 
+                for (SemanticGraphEdge edge : semanticGraph.edgeIterable()) { 
+                        // check whether the edge identifies a clause 
+                        if (DpUtils.isAnySubj(edge)) { 
+                                // clauses with a subject 
+                                IndexedWord subject = edge.getDependent(); 
+                                IndexedWord root = edge.getGovernor(); 
+                                addNsubjClause(semanticGraph, depTree, options, roots, clauses, subject, root, false, includeXcomps); 
+                        } else if (options.processAppositions && DpUtils.isAppos(edge)) { 
+                                // clauses for appositions 
+                                IndexedWord subject = edge.getGovernor(); 
+                                IndexedWord object = edge.getDependent(); 
+                                addApposClause(depTree, semanticGraph, options, clauses, subject, object); 
+                                roots.add(null); 
+                        } else if (options.processPossessives && DpUtils.isPoss(edge)) { 
+                                // clauses for possessives 
+                                IndexedWord subject = edge.getDependent(); 
+                                IndexedWord object = edge.getGovernor(); 
+                                addPossessiveClause(depTree, semanticGraph, options, clauses, subject, object); 
+                                roots.add(null); 
+                        }// else if (options.processPartmods && DpUtils.isPartMod(edge)) { 
+                        // clauses for participial modifiers 
+                        //   IndexedWord subject = edge.getGovernor(); 
+                        //   IndexedWord object = edge.getDependent(); 
+                        //   addPartmodClause(semanticGraph, depTree, options, clauses, subject, object, roots, includeXcomps); 
+                        // } 
+                } 
+ 
+                // postprocess clauses 
+                // TODO 
+                for (int i = 0; i < clauses.size(); i++) { 
+                        Clause clause = clauses.get(i); 
+ 
+                        // set parents (slow and inefficient for now) 
+                        IndexedWord root = roots.get(i); 
+                        if (root != null) { 
+                                int index = ancestorOf(semanticGraph, root, roots); // recursion needed to 
+                                // deal 
+                                // with xcomp; more stable 
+                                if (index >= 0) { 
+                                        // System.out.println("Clause " + clause.toString() + " has parent " + 
+                                        // clauses.get(index).toString()); 
+                                        clause.setParentClause(clauses.get(index)); 
+                                } 
+                        } 
+ 
+                        // exclude vertexes (each constituent needs to excludes vertexes of the other 
+                        // constituents) 
+                        excludeVertexes(clause); 
+                } 
+                return clauses; 
+        } 
+ 
+        /** Detects clauses in the input sentence for a given subject 
+         * @return */ 
+        public static List<Clause> detectClauses(Options options, SemanticGraph semanticGraph, Tree depTree, 
+                                                 List<IndexedWord> roots, boolean includeXcomps, IndexedWord subject, IndexedWord root) { 
+                List<Clause> clauses = new ArrayList<Clause>(); 
+                addNsubjClause(semanticGraph, depTree, options, roots, clauses, subject, root, false, includeXcomps); 
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+ 
+                for (int i = 0; i < clauses.size(); i++) { 
+                        Clause clause = clauses.get(i); 
+ 
+                        // set parents (slow and inefficient for now) 
+                        IndexedWord rootN = roots.get(i); 
+                        if (root != null) { 
+                                int index = ancestorOf(semanticGraph, rootN, roots); // recursion needed to 
+                                // deal 
+                                // with xcomp; more stable 
+                                if (index >= 0) { 
+                                        // System.out.println("Clause " + clause.toString() + " has parent " + 
+                                        // clauses.get(index).toString()); 
+                                        clause.setParentClause(clauses.get(index)); 
+                                } 
+                        } 
+ 
+                        // exclude vertexes (each constituent needs to excludes vertexes of the other 
+                        // constituents) 
+                        excludeVertexes(clause); 
+                } 
+                return clauses; 
+        } 
+ 
+        /** Adds in the exclude vertex of a clause the head of the rest of the clauses */ 
+        public static void excludeVertexes(Clause clause) { 
+ 
+                for (int j = 0; j < clause.getConstituents().size(); j++) { 
+                        if (!(clause.getConstituents().get(j) instanceof IndexedConstituent)) 
+                                continue; 
+                        IndexedConstituent constituent = (IndexedConstituent) clause.getConstituents().get(j); 
+ 
+                        for (int k = 0; k < clause.getConstituents().size(); k++) { 
+                                if (k == j || !(clause.getConstituents().get(k) instanceof IndexedConstituent)) 
+                                        continue; 
+                                IndexedConstituent other = (IndexedConstituent) clause.getConstituents().get(k); 
+ 
+                                constituent.getExcludedVertexes().add(other.getRoot()); 
+                                constituent.getExcludedVertexes().addAll(other.getAdditionalVertexes()); 
+                        } 
+                } 
+ 
+        } 
+ 
+        /** TODO */ 
+        private static int ancestorOf(SemanticGraph semanticGraph, IndexedWord node, 
+                                      List<IndexedWord> ancestors) { 
+                for (SemanticGraphEdge e : semanticGraph.getIncomingEdgesSorted(node)) { 
+                        int index = ancestors.indexOf(node); 
+                        if (index >= 0) 
+                                return index; 
+                        index = ancestorOf(semanticGraph, e.getGovernor(), ancestors); 
+                        if (index >= 0) 
+                                return index; 
+                } 
+                return -1; 
+        } 
+ 
+        /** Selects constituents of a clause for clauses with internal subject or coming from a participial modifier 
+         * @param roots The list of roots of the clauses in the sentence 
+         * @param clauses The list of clauses in the sentence 
+         * @param subject The subject of the clause 
+         * @param clauseRoot The root of the clause, either a verb or a complement 
+         * @param partmod Indicates if the clause is generated from a partmod relation*/ 
+        private static void addNsubjClause(SemanticGraph oSemanticGraph, Tree depTree, Options options, List<IndexedWord> roots, 
+                                           List<Clause> clauses, IndexedWord subject, IndexedWord clauseRoot, boolean partmod, boolean includeXcomps) 
{ 
+                //SemanticGraph semanticGraph = new SemanticGraph(oSemanticGraph); 
+                SemanticGraph semanticGraph = SemanticGraphFactory.duplicateKeepNodes(oSemanticGraph); 
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+                List<SemanticGraphEdge> toRemove = new ArrayList<SemanticGraphEdge>(); 
+                //to store the heads of the clauses according to the CCs options 
+                List<IndexedWord> ccs = ProcessConjunctions.getIndexedWordsConj(semanticGraph, 
+                                                                                depTree, clauseRoot, EnglishGrammaticalRelations.CONJUNCT, toRemove, 
+                                                                                options); 
+                for (SemanticGraphEdge edge : toRemove) 
+                        semanticGraph.removeEdge(edge); 
+ 
+                //A new clause is generated for each clause head 
+                for (int i = 0; i < ccs.size(); i++) { 
+                        IndexedWord root = ccs.get(i); 
+                        List<SemanticGraphEdge> outgoingEdges = semanticGraph.getOutEdgesSorted(root); 
+                        List<SemanticGraphEdge> incomingEdges = semanticGraph.getIncomingEdgesSorted(root); 
+ 
+                        SemanticGraphEdge cop = DpUtils.findFirstOfRelation(outgoingEdges, 
+                                                                            EnglishGrammaticalRelations.COPULA); 
+ 
+                        SemanticGraphEdge dep = null; 
+                        if(cop == null && !root.tag().startsWith("V")) { 
+                                boolean cont = false; 
+                                for(SemanticGraphEdge edge: outgoingEdges) { //This makes the car necessary --> OC relation in xcomp, we can 
generate a new clause out of this copular relation (the car, 'is', necessary). So far we are exiting 
+                                        if(DpUtils.isDep(edge) && edge.getDependent().tag().startsWith("V")) { 
+                                                dep = edge; 
+                                                cont = true; 
+                                                break; 
+                                        } 
+                                } 
+                                if(!cont) 
+                                        return; 
+                        } 
+ 
+                        // initialize clause 
+                        Clause clause = new Clause(); 
+                        clause.setTree(depTree); 
+                        clause.setVerb(-1); 
+                        clause.setRoot(root); 
+                        if(ccs.size() > 1){ 
+//             SemanticGraph nSemanticGraph = new SemanticGraph(semanticGraph); 
+                                SemanticGraph nSemanticGraph = SemanticGraphFactory.duplicateKeepNodes(semanticGraph); 
+                                nSemanticGraph.setRoot(root); 
+                                ProcessConjunctions.removeUnnecessary(nSemanticGraph, root); 
+                                clause.setSemanticGraph(nSemanticGraph); 
+                        } else { 
+                                clause.setSemanticGraph(semanticGraph); 
+                        } 
+ 
+ 
+ 
+                        Set<IndexedWord> exclude = null; 
+                        Set<IndexedWord> include = null; 
+                        if (cop != null) { 
+                                clause.setCop(true); 
+                                exclude = DpUtils.exclude(semanticGraph, EXCLUDE_RELATIONS_COMPLEMENT, root); 
+                                include = DpUtils.exclude(semanticGraph, INCLUDE_RELATIONS_VERB, root); 
+                        } else { 
+                                exclude = new HashSet<IndexedWord>(); 
+                        } 
+ 
+                        // relative clause? 
+                        SemanticGraphEdge rcmod = DpUtils.findFirstOfRelation(incomingEdges, 
+                                                                              EnglishGrammaticalRelations.RELATIVE_CLAUSE_MODIFIER); 
+                        SemanticGraphEdge poss = null; 
+                        if (rcmod != null) 
+                                poss = DpUtils.findDescendantRelativeRelation(semanticGraph, root, 
+                                                                              EnglishGrammaticalRelations.POSSESSION_MODIFIER); 
+ 
+                        // determine constituents of clause 
+                        //ArrayList<IndexedWord> coordinatedConjunctions = new ArrayList<IndexedWord>(); // to 
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+                        // store 
+                        // potential 
+                        // conjunctions 
+ 
+//------------------------Set verb or complement, and subject.------------------------------------------------- 
+ 
+ 
+ 
+                        Constituent constRoot = null; 
+                        if (cop != null || (root.tag().startsWith("N") || root.tag().startsWith("J")) && dep != null) {   //He gets wet. The parser does 
not recognize get, the second 
+                                if(dep != null) { 
+                                        clause.getSemanticGraph().addEdge(root, dep.getDependent(), EnglishGrammaticalRelations.COPULA, 0, false); 
+                                        clause.getSemanticGraph().removeEdge(dep); 
+                                        outgoingEdges = clause.getSemanticGraph().getOutEdgesSorted(root); 
+                                        cop = DpUtils.findFirstOfRelationOrDescendent(outgoingEdges, EnglishGrammaticalRelations.COPULA); 
+                                        clause.setCop(true); 
+                                        exclude = DpUtils.exclude(clause.getSemanticGraph(), EXCLUDE_RELATIONS_COMPLEMENT, root); 
+                                        include = DpUtils.exclude(clause.getSemanticGraph(), INCLUDE_RELATIONS_VERB, root); 
+                                } 
+                                clause.setComplement(clause.getConstituents().size()); 
+                                constRoot = new StructuredConstituent(clause.getSemanticGraph(), root, 
+                                                                      Collections.<IndexedWord> emptySet(), exclude, Constituent.Type.COMPLEMENT).build(); 
+                                clause.getConstituents().add(constRoot); 
+ 
+                                clause.setVerb(clause.getConstituents().size()); 
+                                if (!partmod) { 
+                                        clause.getConstituents().add(new StructuredConstituent(clause.getSemanticGraph(), cop 
+                                                                                               .getDependent(), include, Collections.<IndexedWord> emptySet(), 
+                                                                                               Constituent.Type.VERB).build()); 
+                                } else { 
+                                        clause.getConstituents().add(new TextConstituent("be " + clauseRoot.word(), 
+                                                                                         Constituent.Type.VERB)); 
+                                } 
+ 
+                        } else { 
+                                clause.setVerb(clause.getConstituents().size()); 
+                                if (!partmod) { 
+                                        constRoot = new StructuredConstituent(semanticGraph, root, 
+                                                                              Collections.<IndexedWord> emptySet(), exclude, Constituent.Type.VERB).build(); 
+                                } else { 
+                                        constRoot = new TextConstituent("be " + clauseRoot.word(), 
+                                                                        Constituent.Type.VERB); 
+                                } 
+ 
+                                clause.getConstituents().add(constRoot); 
+                        } 
+ 
+                        clause.setSubject(clause.getConstituents().size()); 
+                        if (subject.tag().charAt(0) == 'W' && rcmod != null) { 
+                                clause.getConstituents().add(createRelConstituent(semanticGraph, rcmod.getGovernor(), 
+                                                                                  Constituent.Type.SUBJECT)); 
+                                ((IndexedConstituent) constRoot).getExcludedVertexes().add(rcmod.getGovernor() ); 
+                                rcmod = null; 
+                        } else if (poss != null && poss.getGovernor().equals(subject) && rcmod != null) { 
+                                clause.getConstituents().add(createPossConstituent(semanticGraph, poss, rcmod, subject, 
+                                                                                   Constituent.Type.SUBJECT)); 
+                                rcmod = null; 
+                        } else if (partmod && subject.tag().charAt(0) == 'V') { 
+                                List<SemanticGraphEdge> outsub = semanticGraph.getOutEdgesSorted(subject); 
+                                SemanticGraphEdge sub = DpUtils.findFirstOfRelationOrDescendent(outsub, 
+                                                                                                EnglishGrammaticalRelations.SUBJECT); 
+                                if (sub != null) 
+                                        clause.getConstituents().add(new StructuredConstituent(semanticGraph, sub 
+                                                                                               .getDependent(), Constituent.Type.SUBJECT).build()); 
+                                else 
+                                        clause.getConstituents().add(new StructuredConstituent(semanticGraph, subject, 
+                                                                                               Constituent.Type.SUBJECT).build()); 
+ 
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+                        } else 
+                                clause.getConstituents().add(new StructuredConstituent(semanticGraph, subject, 
+                                                                                       Constituent.Type.SUBJECT).build()); 
+ 
+                        //If the clause comes from a partmod construction exclude necessary vertex 
+                        if (partmod) { 
+                                ((IndexedConstituent) clause.getConstituents().get(clause.getSubject())).excludedVertexes 
+                                        .add(clauseRoot); 
+                                // He is the man crying the whole day. 
+                                List<SemanticGraphEdge> outsub = semanticGraph.getOutEdgesSorted(subject); 
+                                SemanticGraphEdge coppm = DpUtils.findFirstOfRelationOrDescendent(outsub, 
+                                                                                                  EnglishGrammaticalRelations.COPULA); 
+                                if (coppm != null) { 
+                                        ((IndexedConstituent) clause.getConstituents().get(clause.getSubject())).excludedVertexes 
+                                                .add(coppm.getDependent()); 
+                                        SemanticGraphEdge spm = DpUtils.findFirstOfRelationOrDescendent(outsub, 
+                                                                                                        EnglishGrammaticalRelations.SUBJECT); 
+                                        ((IndexedConstituent) clause.getConstituents().get(clause.getSubject())).excludedVertexes 
+                                                .add(spm.getDependent()); 
+                                } 
+ 
+                        } 
+ 
+                        //------------------------Select constituents of the predicate------------------------------------------------- 
+                        for (SemanticGraphEdge outgoingEdge : outgoingEdges) { 
+                                IndexedWord dependent = outgoingEdge.getDependent(); 
+ 
+                                // to avoid compl or mark in a main clause. "I doubt if she was sure whether this was important". 
+                                if(DpUtils.isPassive(outgoingEdge)) { 
+                                        clause.setPassive(true); 
+                                } else if (//DpUtils.isComplm(outgoingEdge) || 
+                                        DpUtils.isMark(outgoingEdge)) { 
+                                        ((IndexedConstituent) constRoot).getExcludedVertexes().add(dependent); 
+                                        //Indirect Object 
+                                } else if (DpUtils.isIobj(outgoingEdge)) { 
+                                        clause.getIobjects().add(clause.getConstituents().size()); 
+                                        //If it is a relative clause headed by a relative pronoun. 
+                                        if (dependent.tag().charAt(0) == 'W' && rcmod != null) { 
+                                                clause.getConstituents().add(createRelConstituent(semanticGraph, 
+                                                                                                  rcmod.getGovernor(), Constituent.Type.IOBJ)); 
+                                                ((IndexedConstituent) constRoot).getExcludedVertexes().add(dependent); 
+                                                rcmod = null; 
+                                                //to deal with the possessive relative pronoun 
+                                        } else if (poss != null && poss.getGovernor().equals(dependent) 
+                                                   && rcmod != null) { 
+                                                clause.getConstituents().add(createPossConstituent(semanticGraph, poss, rcmod, 
+                                                                                                   dependent, Constituent.Type.IOBJ)); 
+                                                rcmod = null; 
+                                                // "regular case" 
+                                        } else 
+                                                clause.getConstituents().add(new StructuredConstituent(semanticGraph, dependent, 
+                                                                                                       Constituent.Type.IOBJ).build()); 
+                                        //Direct Object 
+                                } else if (DpUtils.isDobj(outgoingEdge)) { 
+                                        clause.getDobjects().add(clause.getConstituents().size()); 
+                                        if (dependent.tag().charAt(0) == 'W' && rcmod != null) { 
+                                                clause.getConstituents().add(createRelConstituent(semanticGraph, 
+                                                                                                  rcmod.getGovernor(), Constituent.Type.DOBJ)); 
+                                                ((IndexedConstituent) constRoot).getExcludedVertexes().add(dependent); 
+                                                rcmod = null; 
+                                        } else if (poss != null && poss.getGovernor().equals(dependent) 
+                                                   && rcmod != null) { 
+                                                clause.getConstituents().add(createPossConstituent(semanticGraph, poss, rcmod, 
+                                                                                                   dependent, Constituent.Type.DOBJ)); 
+                                                rcmod = null; 
+                                        } else 
+                                                clause.getConstituents().add(new StructuredConstituent(semanticGraph, dependent, 
+                                                                                                       Constituent.Type.DOBJ).build()); 
+                                        //CCOMPS 
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+                                } else if (DpUtils.isCcomp(outgoingEdge)) { 
+                                        clause.getCcomps().add(clause.getConstituents().size()); 
+                                        clause.getConstituents().add(new StructuredConstituent(semanticGraph, dependent, 
+                                                                                               Constituent.Type.CCOMP).build()); 
+                                        //XCOMPS (Note: Need special treatment, they won't form a new clause so optional/obligatory constituents 
+                                        // are managed within the context of its parent clause) 
+                                } else if (DpUtils.isXcomp(outgoingEdge)) { 
+                                        List<IndexedWord> xcomproots = new ArrayList<IndexedWord>(); 
+                                        List<Clause> xcompclauses = new ArrayList<Clause>(); 
+                                        IndexedWord xcompsubject = null; 
+                                        SemanticGraphEdge xcsub = DpUtils.findFirstOfRelationOrDescendent( 
+                                                semanticGraph.getOutEdgesSorted(outgoingEdge.getDependent()), 
+                                                EnglishGrammaticalRelations.SUBJECT); 
+                                        if (xcsub != null) 
+                                                xcompsubject = xcsub.getDependent(); 
+                                        else 
+                                                xcompsubject = subject; 
+                                        //Need to identify the internal structure of the clause 
+                                        addNsubjClause(semanticGraph, depTree, options, xcomproots, xcompclauses, xcompsubject, 
+                                                       outgoingEdge.getDependent(), false, true); 
+                                        for (Clause cl : xcompclauses) { 
+                                                if (xcsub == null) { 
+                                                        int verb = cl.getVerb(); 
+                                                        ((IndexedConstituent) cl.getConstituents().get(verb)).additionalVertexes 
+                                                                .add(xcompsubject); 
+                                                } 
+ 
+                                                //do not include when there is no  verbal relation. This makes the car necessary. now OC relation appears as 
xcomp 
+                                                boolean incXcompCl = true; 
+                                                if(!outgoingEdge.getDependent().tag().startsWith("V")){ 
+                                                        incXcompCl = false; 
+                                                        for(SemanticGraphEdge edxc: semanticGraph.getOutEdgesSorted(outgoingEdge.getDependent())) { 
+                                                                if(edxc.getDependent().tag().startsWith("V")) { 
+                                                                        incXcompCl = true; 
+                                                                        break; 
+                                                                } 
+                                                        } 
+                                                } 
+ 
+ 
+                                                if(includeXcomps && incXcompCl) { 
+                                                        clauses.add(cl); 
+                                                        roots.add(cl.getRoot()); 
+                                                        if (xcsub == null) { 
+                                                                SemanticGraphEdge sub = 
+                                                                        DpUtils.findFirstOfRelationOrDescendent(semanticGraph.getIncomingEdgesSorted(subject), 
EnglishGrammaticalRelations.SUBJECT); 
+ 
+                                                                GrammaticalRelation rel; 
+                                                                if(sub == null) 
+                                                                        rel = EnglishGrammaticalRelations.SUBJECT; 
+                                                                else 
+                                                                        rel = sub.getRelation(); 
+ 
+                                                                cl.getSemanticGraph().addEdge(cl.getRoot(), xcompsubject, rel, 
+                                                                                              0, true); 
+                                                        } 
+                                                } 
+                                                excludeVertexes(cl); 
+                                        } 
+                                        clause.getXcomps().add(clause.getConstituents().size()); 
+                                        clause.getConstituents().add(new XcompConstituent(semanticGraph, dependent, 
+                                                                                          Constituent.Type.XCOMP, xcompclauses)); 
+ 
+ 
+ 
+                                        //Adjective complement 
+                                } else if (DpUtils.isAcomp(outgoingEdge)) { 
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+                                        clause.getAcomps().add(clause.getConstituents().size()); 
+                                        clause.getConstituents().add(new StructuredConstituent(semanticGraph, dependent, 
+                                                                                               Constituent.Type.ACOMP).build()); 
+                                        //Various Adverbials 
+                                } else if ((DpUtils.isAnyPrep(outgoingEdge) 
+                                            || DpUtils.isPobj(outgoingEdge) 
+                                            || DpUtils.isTmod(outgoingEdge) 
+                                            || DpUtils.isAdvcl(outgoingEdge) 
+                                            || DpUtils.isNpadvmod(outgoingEdge) 
+                                            //|| DpUtils.isPurpcl(outgoingEdge) 
+                                                   ) 
+ 
+                                        ) { 
+                                        if(rcmod != null && DpUtils.findRelClause(semanticGraph.getOutEdgesSorted(dependent))) { 
+                                                processRel(outgoingEdge, semanticGraph, dependent, rcmod, clause); 
+                                                rcmod = null; 
+                                        } else { 
+                                                int constint = clause.getConstituents().size(); 
+                                                clause.getAdverbials().add(constint); 
+                                                clause.getConstituents().add(new StructuredConstituent( 
+                                                                                     semanticGraph, dependent, 
+                                                                                     Constituent.Type.ADVERBIAL).build()); 
+                                        } 
+                                        //Advmod 
+                                } else if (DpUtils.isAdvmod(outgoingEdge)) { 
+                                        int constint = clause.getConstituents().size(); 
+                                        clause.getAdverbials().add(constint); 
+                                        clause.getConstituents().add(new StructuredConstituent(semanticGraph, dependent, 
+                                                                                               Constituent.Type.ADVERBIAL).build()); 
+                                        //Partmod 
+                                        //} else if (DpUtils.isPartMod(outgoingEdge)) { 
+                                        //    int constint = clause.getConstituents().size(); 
+                                        //    clause.getAdverbials().add(constint); 
+                                        //    clause.getConstituents().add(new StructuredConstituent(semanticGraph, dependent, 
+                                        //            Constituent.Type.ADVERBIAL).build()); 
+                                        //Rel appears in certain cases when relative pronouns act as prepositional objects "I saw the house in which I 
grew". 
+                                        // We generate a new clause out of the relative clause 
+                                        //} else if (DpUtils.isRel(outgoingEdge)) { 
+                                        processRel(outgoingEdge, semanticGraph, dependent, rcmod, clause); 
+                                        rcmod = null; 
+ 
+                                        //To process passive voice (!Not done here) 
+                                        // } else if (DpUtils.isAgent(outgoingEdge)) 
+                                        //     clause.agent = dependent; 
+                                        // else if (DpUtils.isMark(outgoingEdge) || DpUtils.isComplm(outgoingEdge)) { 
+                                        // clause.subordinateConjunction = dependent; 
+                                } else if (DpUtils.isExpl(outgoingEdge)) 
+                                        clause.setType(Clause.Type.EXISTENTIAL); 
+                                //  else if (options.processCcAllVerbs && DpUtils.isAnyConj(outgoingEdge)) 
+                                //     coordinatedConjunctions.add(dependent); 
+                        } 
+ 
+                        //------------------------To process relative clauses with implicit (zero) relative pronoun------------------------- 
+                        if (rcmod != null) { //"I saw the house I grew up in", "I saw 
+                                // the house I like", "I saw the man I gave the book" ... 
+                                Constituent candidate = searchCandidateAdverbial(clause); 
+                                if (candidate != null) { 
+                                        // SemanticGraph newSemanticGraph = new SemanticGraph( 
+                                        //       ((IndexedConstituent) candidate).getSemanticGraph()); 
+                                        SemanticGraph newSemanticGraph = SemanticGraphFactory.duplicateKeepNodes(((IndexedConstituent) 
candidate).getSemanticGraph()); 
+                                        IndexedConstituent tmpconst = createRelConstituent(newSemanticGraph, 
+                                                                                           rcmod.getGovernor(), Constituent.Type.ADVERBIAL); 
+                                        newSemanticGraph.addEdge(((IndexedConstituent) candidate).getRoot(), 
+                                                                 rcmod.getGovernor(), EnglishGrammaticalRelations.PREPOSITIONAL_OBJECT, 
+                                                                 rcmod.getWeight(), false); 
+                                        ((IndexedConstituent) candidate).getExcludedVertexes().addAll( 
+                                                tmpconst.getExcludedVertexes()); 
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+                                        ((IndexedConstituent) candidate).setSemanticGraph(newSemanticGraph); 
+                                        rcmod = null; 
+                                } else if (DpUtils.findFirstOfRelation(outgoingEdges, 
+                                                                       EnglishGrammaticalRelations.DIRECT_OBJECT) == null) { 
+                                        clause.getDobjects().add(clause.getConstituents().size()); 
+                                        clause.getConstituents().add(createRelConstituent(semanticGraph, 
+                                                                                          rcmod.getGovernor(), Constituent.Type.DOBJ)); 
+                                        rcmod = null; 
+                                } else if (DpUtils.findFirstOfRelation(outgoingEdges, 
+                                                                       EnglishGrammaticalRelations.INDIRECT_OBJECT) == null) { 
+                                        clause.getIobjects().add(clause.getConstituents().size()); 
+                                        clause.getConstituents().add(createRelConstituent(semanticGraph, 
+                                                                                          rcmod.getGovernor(), Constituent.Type.IOBJ)); 
+                                        rcmod = null; 
+                                } 
+                        } 
+ 
+//------------------------------------------------------------------------------------------------------------------ 
+                        //To deal with parataxis 
+                        SemanticGraphEdge parataxis = DpUtils.findFirstOfRelation(incomingEdges, 
+                                                                                  EnglishGrammaticalRelations.PARATAXIS); 
+                        if (parataxis != null && clause.getConstituents().size() < 3) { 
+                                addParataxisClause(semanticGraph, clauses, depTree, parataxis.getGovernor(), parataxis.getDependent(), 
+                                                   roots); 
+                                return; // to avoid generating (John, said) in "My dog, John said, is great" //To 
+                                // deal with the type of parataxis. Parataxis are either like in the example 
+                                // above or subclauses comming from ":" or ";" this is here because is 
+                                // difficult to identify the type upfront. Otherwise we can count the potential 
+                                // constituents upfront and move this up. 
+                        } 
+ 
+ 
+                        //Detect type and mantain clause lists 
+                        roots.add(root); 
+                        if (!partmod) { 
+                                //               clause.detectType(options); 
+                        } else { 
+                                //              clause.setType(Clause.Type.SVA); 
+                        } 
+                        clauses.add(clause); 
+                } 
+        } 
+ 
+        /** Process relation rel, it creates a new clause out of the relative clause 
+         * @param outgoingEdge The rel labeled edge 
+         * @param semanticGraph The semantic graph 
+         * @param dependent The dependent of the relation 
+         * @param rcmod The relative clause modifier of the relation refered by rel 
+         * @param clause A clause*/ 
+        public static void processRel(SemanticGraphEdge outgoingEdge, SemanticGraph semanticGraph, IndexedWord dependent, 
SemanticGraphEdge rcmod, Clause clause) { 
+                //SemanticGraph newSemanticGraph = new SemanticGraph(semanticGraph); 
+                SemanticGraph newSemanticGraph = SemanticGraphFactory.duplicateKeepNodes(semanticGraph); 
+                List<SemanticGraphEdge> outdep = newSemanticGraph.getOutEdgesSorted(dependent); 
+                SemanticGraphEdge pobed = DpUtils.findFirstOfRelation(outdep, 
+                                                                      EnglishGrammaticalRelations.PREPOSITIONAL_OBJECT); 
+ 
+                SemanticGraphEdge posspobj = null; 
+                if (pobed != null && pobed.getDependent().tag().charAt(0) != 'W') { 
+                        List<SemanticGraphEdge> outpobj = newSemanticGraph 
+                                .getOutEdgesSorted(dependent); 
+                        posspobj = DpUtils.findFirstOfRelation(outpobj, 
+                                                               EnglishGrammaticalRelations.POSSESSION_MODIFIER); 
+                } 
+ 
+                if (pobed != null && pobed.getDependent().tag().charAt(0) == 'W' 
+                    && rcmod != null) { 
+                        newSemanticGraph.addEdge(dependent, rcmod.getGovernor(), 
+                                                 EnglishGrammaticalRelations.PREPOSITIONAL_OBJECT, 
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+                                                 pobed.getWeight(), false); 
+                        newSemanticGraph.removeEdge(pobed); 
+                        int constint = clause.getConstituents().size(); 
+                        clause.getAdverbials().add(constint); 
+                        clause.getConstituents().add(createRelConstituent(newSemanticGraph, 
+                                                                          rcmod.getGovernor(), Constituent.Type.SUBJECT)); 
+                        ((IndexedConstituent) clause.getConstituents().get(constint)) 
+                                .setRoot(dependent); 
+                        clause.setRelativeAdverbial(true); 
+                        rcmod = null; 
+                } else if (pobed != null && posspobj != null && rcmod != null) { 
+                        newSemanticGraph.addEdge(posspobj.getGovernor(), rcmod.getGovernor(), 
+                                                 EnglishGrammaticalRelations.POSSESSION_MODIFIER, 
+                                                 posspobj.getWeight(), false); 
+                        newSemanticGraph.removeEdge(posspobj); 
+                        int constint = clause.getConstituents().size(); 
+                        clause.getAdverbials().add(constint); 
+                        // search pobj copy edge. 
+                        clause.getConstituents().add(createRelConstituent(newSemanticGraph, 
+                                                                          rcmod.getGovernor(), Constituent.Type.SUBJECT)); 
+                        ((IndexedConstituent) clause.getConstituents().get(constint)) 
+                                .setRoot(dependent); 
+                        clause.setRelativeAdverbial(true); 
+                } 
+ 
+        } 
+ 
+        /** Finds the adverbial to which the relative clause is referring to*/ 
+        private static Constituent searchCandidateAdverbial(Clause clause) { 
+                for (Constituent c : clause.getConstituents()) { 
+                        IndexedWord root = ((IndexedConstituent) c).getRoot(); 
+                        if (root.tag().equals("IN") 
+                            && !((IndexedConstituent) c).getSemanticGraph().hasChildren(root)) 
+                                return c; 
+                } 
+                return null; 
+        } 
+ 
+        /** Creates a constituent for a possessive relative clause 
+         * @param semanticGraph The semantic graph 
+         * @param poss The edge referring to the possessive relation 
+         * @param rcmod The relative clause modifier of the relation 
+         * @param constGovernor The root of the constituent 
+         * @param type The type of the constituent*/ 
+        private static Constituent createPossConstituent(SemanticGraph semanticGraph, 
+                                                         SemanticGraphEdge poss, SemanticGraphEdge rcmod, IndexedWord constGovernor, Constituent.Type 
type) { 
+ 
+                //SemanticGraph newSemanticGraph = new SemanticGraph(semanticGraph); 
+                SemanticGraph newSemanticGraph = SemanticGraphFactory.duplicateKeepNodes(semanticGraph); 
+                double weight = poss.getWeight(); 
+                newSemanticGraph.addEdge(poss.getGovernor(), rcmod.getGovernor(), 
+                                         EnglishGrammaticalRelations.POSSESSION_MODIFIER, weight, false); 
+                Set<IndexedWord> exclude = DpUtils.exclude(newSemanticGraph, EXCLUDE_RELATIONS_COMPLEMENT, 
+                                                           rcmod.getGovernor()); 
+                newSemanticGraph.removeEdge(poss); 
+                newSemanticGraph.removeEdge(rcmod); 
+                return new StructuredConstituent(newSemanticGraph, constGovernor, 
+                                                 Collections.<IndexedWord> emptySet(), exclude, type).build(); 
+        } 
+ 
+        /** Creates a constituent for the relative clause implied by rel 
+         * @param semanticGraph The semantic graph 
+         * @param root The root of the constituent 
+         * @param type The type of the constituent*/ 
+        private static IndexedConstituent createRelConstituent(SemanticGraph semanticGraph, 
+                                                               IndexedWord root, Constituent.Type type) { 
+ 
+                List<SemanticGraphEdge> outrcmod = semanticGraph.getOutEdgesSorted(root); 
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+                SemanticGraphEdge rccop = DpUtils.findFirstOfRelation(outrcmod, 
+                                                                      EnglishGrammaticalRelations.COPULA); 
+                if (rccop != null) { 
+                        Set<IndexedWord> excludercmod = DpUtils.exclude(semanticGraph, 
+                                                                        EXCLUDE_RELATIONS_COMPLEMENT, root); 
+                        return new StructuredConstituent(semanticGraph, root, 
+                                                         Collections.<IndexedWord> emptySet(), excludercmod, type).build(); 
+                } else 
+                        return new StructuredConstituent(semanticGraph, root, type).build(); 
+        } 
+ 
+        /** Generates a clause from an apposition 
+         * @param subject The subject of the clause (first argument of the appos relation) 
+         * @param object  The object of the clause (second argument of the appos relation)*/ 
+        private static void addApposClause(Tree depTree, SemanticGraph semanticGraph, Options options, List<Clause> clauses, 
IndexedWord subject, IndexedWord object) { 
+                Clause clause = new Clause(); 
+                clause.setSubject(0); 
+                clause.setVerb(1); 
+                clause.setComplement(2); 
+                clause.setTree(depTree); 
+                clause.getConstituents().add(new StructuredConstituent(semanticGraph, subject, 
+                                                                       Constituent.Type.SUBJECT).build()); 
+                clause.getConstituents().add(new TextConstituent(options.appositionVerb, 
+                                                                 Constituent.Type.VERB)); 
+                clause.getConstituents().add(new StructuredConstituent(semanticGraph, object, 
+                                                                       Constituent.Type.COMPLEMENT).build()); 
+                clause.setType(Clause.Type.SVC); 
+                clauses.add(clause); 
+        } 
+ 
+        /** Generates a clause from a possessive relation 
+         * @param subject The subject of the clause 
+         * @param object  The object of the clause */ 
+        private static void addPossessiveClause(Tree depTree, SemanticGraph semanticGraph, Options options, List<Clause> clauses, 
IndexedWord subject, 
+                                                IndexedWord object) { 
+                Clause clause = new Clause(); 
+                //SemanticGraph newSemanticGraph = new SemanticGraph(semanticGraph); 
+                SemanticGraph newSemanticGraph = SemanticGraphFactory.duplicateKeepNodes(semanticGraph); 
+                clause.setSubject(0); 
+                clause.setVerb(1); 
+                clause.getDobjects().add(2); 
+                clause.setTree(depTree); 
+                Set<IndexedWord> excludesub = new TreeSet<IndexedWord>(); 
+                Set<IndexedWord> excludeobj = new TreeSet<IndexedWord>(); 
+ 
+                excludeobj.add(subject); 
+                List<SemanticGraphEdge> outedobj = newSemanticGraph.getOutEdgesSorted(object); 
+                excludeVertexPoss(outedobj, excludeobj, options); 
+ 
+                SemanticGraphEdge rcmod = null; 
+                if (subject.tag().charAt(0) == 'W') { 
+                        IndexedWord root = newSemanticGraph.getParent(object); 
+                        if (root.tag().equals("IN")) 
+                                root = newSemanticGraph.getParent(root); // "I saw the man in whose wife I trust" 
+                        List<SemanticGraphEdge> inedges = newSemanticGraph.getIncomingEdgesSorted(root); 
+                        rcmod = DpUtils.findFirstOfRelation(inedges, 
+                                                            EnglishGrammaticalRelations.RELATIVE_CLAUSE_MODIFIER); 
+                } else { 
+                        List<SemanticGraphEdge> outedges = newSemanticGraph.getOutEdgesSorted(subject); 
+                        SemanticGraphEdge ps = DpUtils.findFirstOfRelation(outedges, 
+                                                                           EnglishGrammaticalRelations.POSSESSIVE_MODIFIER); 
+                        if (ps != null) 
+                                excludesub.add(ps.getDependent()); 
+                } 
+ 
+                if (rcmod != null) { 
+                        clause.getConstituents().add(createRelConstituent(newSemanticGraph, rcmod.getGovernor(), 
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+                                                                          Constituent.Type.SUBJECT)); 
+                        ((IndexedConstituent) clause.getConstituents().get(0)).getExcludedVertexes().addAll( 
+                                excludesub); // to avoid the s in  "Bill's clothes are great". 
+                } else { 
+                        clause.getConstituents().add(new StructuredConstituent(newSemanticGraph, subject, Collections 
+                                                                               .<IndexedWord> emptySet(), excludesub, Constituent.Type.SUBJECT).build()); 
+                } 
+                clause.getConstituents().add(new TextConstituent(options.possessiveVerb, 
+                                                                 Constituent.Type.VERB)); 
+                clause.getConstituents().add(new StructuredConstituent(newSemanticGraph, object, Collections 
+                                                                       .<IndexedWord> emptySet(), excludeobj, Constituent.Type.DOBJ).build()); 
+                clause.setType(Clause.Type.SVO); 
+                clauses.add(clause); 
+        } 
+ 
+        /** Excludes vertexes for the object of a "possessive clause" 
+         * @param outedobj relations to be examined for exclusion 
+         * @param excludeobj The vertexes to be excluded*/ 
+        private static void excludeVertexPoss(List<SemanticGraphEdge> outedobj, 
+                                              Set<IndexedWord> excludeobj, Options options) { 
+                for (SemanticGraphEdge ed : outedobj) { 
+                        if (DpUtils.isAdvcl(ed) 
+                            || DpUtils.isAdvmod(ed) 
+                            || DpUtils.isAnyObj(ed) // currently everything is 
+                            // excluded except prep and infmod 
+                            || DpUtils.isAnySubj(ed) || DpUtils.isAux(ed) || DpUtils.isCop(ed) 
+                            || DpUtils.isTmod(ed) || DpUtils.isAnyConj(ed) 
+                            && options.processCcNonVerbs) 
+                                excludeobj.add(ed.getDependent()); 
+                } 
+ 
+        } 
+ 
+        /** Creates a clause from a partmod relation 
+         * @param subject The subject of the clause 
+         * @param object  The object of the clause 
+         * @param roots List of clause roots*/ 
+        private static void addPartmodClause(SemanticGraph semanticGraph, Tree depTree, Options options, List<Clause> 
clauses,IndexedWord subject, IndexedWord verb, 
+                                             List<IndexedWord> roots, boolean includeXcomps) { 
+                IndexedWord partmodsub = subject; 
+                addNsubjClause(semanticGraph, depTree, options, roots, clauses, partmodsub, verb, true, includeXcomps); 
+        } 
+ 
+        /** Creates a clause from a parataxis relation 
+    * @param root Head of the parataxis relation 
+    * @param parroot  Dependent of the parataxis relation 
+    * @param roots List of clause roots*/ 
+    private static void addParataxisClause(SemanticGraph semanticGraph, List<Clause> clauses, Tree depTree, IndexedWord root, 
IndexedWord parroot, 
+            List<IndexedWord> roots) { 
+        Constituent verb = new StructuredConstituent(semanticGraph, parroot, Constituent.Type.VERB).build(); 
+        List<SemanticGraphEdge> outedges = semanticGraph.getOutEdgesSorted(parroot); 
+        SemanticGraphEdge subject = DpUtils.findFirstOfRelationOrDescendent(outedges, 
+                EnglishGrammaticalRelations.SUBJECT); 
+        if (subject != null) { 
+            Constituent subjectConst = new StructuredConstituent(semanticGraph, 
+                    subject.getDependent(), Constituent.Type.SUBJECT).build(); 
+            Constituent object = new StructuredConstituent(semanticGraph, root, Constituent.Type.DOBJ).build(); 
+            ((IndexedConstituent) object).excludedVertexes.add(parroot); 
+            Clause clause = new Clause(); 
+            clause.setTree(depTree); 
+            clause.setSemanticGraph(semanticGraph); 
+            clause.setSubject(0); 
+            clause.setVerb(1); 
+            clause.setRoot(parroot); 
+            clause.getDobjects().add(2); 
+            clause.getConstituents().add(subjectConst); 
+            clause.getConstituents().add(verb); 
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+            clause.getConstituents().add(object); 
+            clause.setType(Clause.Type.SVO); 
+            clauses.add(clause); 
+            roots.add(parroot); 
+ 
+        } 
+ 
+    } 
+} 
diff --git a/src/clausie/Constituent.java b/src/clausie/Constituent.java 
new file mode 100644 
index 0000000..1ae961a 
--- /dev/null 
+++ b/src/clausie/Constituent.java 
@@ -0,0 +1,80 @@ 
+package clausie; 
+ 
+/** A constituent of a clause. */ 
+public abstract class Constituent { 
+ 
+    // -- types ----------------------------------------------------------------------------------- 
+ 
+    /** Constituent types */ 
+    public enum Type { 
+            SUBJECT("S"), 
+            VERB("V"), 
+            DOBJ("O"), 
+            IOBJ("IO"), 
+            COMPLEMENT("C"), 
+            CCOMP("CCOMP"), 
+            XCOMP("XCOMP"), 
+            ACOMP("ACOMP"), 
+            ADVERBIAL("A"), 
+            UNKOWN("UNKNOWN"); 
+ 
+            private final String name; 
+ 
+            private Type(String s) { 
+                    name = s; 
+            } 
+ 
+            public String toString() { 
+                    return name; 
+            } 
+    }; 
+ 
+    /** Constituent flags */ 
+    public enum Flag { 
+            REQUIRED("!"), 
+            OPTIONAL("?"), 
+            IGNORE("-"); 
+ 
+            private final String name; 
+ 
+            private Flag(String s) { 
+                    name = s; 
+            } 
+ 
+            public String toString() { 
+                    return name; 
+            } 
+    }; 
+ 
+ 
+        // -- member variables ------------------------------------------------------------------------ 
+ 
+        /** Type of this constituent */ 
+        public Type type; 
+ 
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+ 
+        // -- construction ---------------------------------------------------------------------------- 
+ 
+        /** Constructs a constituent of the specified type. */ 
+        public Constituent(Type type) { 
+                this.type = type; 
+        } 
+ 
+        /** Constructs a constituent of unknown type. */ 
+        public Constituent() { 
+                this.type = Type.UNKOWN; 
+        } 
+ 
+        // -- getters/setters ------------------------------------------------------------------------- 
+ 
+        /** Returns the type of this constituent. */ 
+        public Type getType() { 
+                return type; 
+        } 
+ 
+ 
+        // -- utility methods ------------------------------------------------------------------------- 
+ 
+    /** Returns a textual representation of the root word of this constituent. */ 
+    public abstract String rootString(); 
+} 
diff --git a/src/clausie/DefaultPropositionGenerator.java b/src/clausie/DefaultPropositionGenerator.java 
new file mode 100644 
index 0000000..6e54512 
--- /dev/null 
+++ b/src/clausie/DefaultPropositionGenerator.java 
@@ -0,0 +1,97 @@ 
+package clausie; 
+ 
+import java.util.ArrayList; 
+import java.util.List; 
+import java.util.SortedSet; 
+import java.util.TreeSet; 
+ 
+import clausie.Constituent.Flag; 
+ 
+ 
+/** Currently the default proposition generator generates 3-ary propositions out of a clause. 
+ * 
+ * @date $LastChangedDate: 2013-08-26 15:31:37 +0200 (Mon, 26 Aug 2013) $ 
+ * @version $LastChangedRevision: 977 $ */ 
+public class DefaultPropositionGenerator extends PropositionGenerator { 
+        public DefaultPropositionGenerator(Options options) { 
+                super(options); 
+        } 
+ 
+        @Override 
+        public void generate(List<Proposition> result, Clause clause, 
+                             List<Boolean> include) { 
+                Proposition proposition = new Proposition(); 
+                List<Proposition> propositions = new ArrayList<Proposition>(); 
+ 
+                // process subject 
+                if (clause.getSubject() > -1 && include.get(clause.getSubject())) { // subject is -1 when there is an xcomp 
+                        proposition.constituents.add( generate(clause, clause.getSubject()) ); 
+                } else { 
+                        //throw new IllegalArgumentException(); 
+                } 
+ 
+                // process verb 
+                if (include.get(clause.getVerb())) { 
+                        proposition.constituents.add( generate(clause, clause.getVerb()) ); 
+                } else { 
+                        throw new IllegalArgumentException(); 
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+                } 
+ 
+                propositions.add(proposition); 
+ 
+                // process arguments 
+                SortedSet<Integer> sortedIndexes = new TreeSet<Integer>(); 
+                sortedIndexes.addAll(clause.getIobjects()); 
+                sortedIndexes.addAll(clause.getDobjects()); 
+                sortedIndexes.addAll(clause.getXcomps()); 
+                sortedIndexes.addAll(clause.getCcomps()); 
+                sortedIndexes.addAll(clause.getAcomps()); 
+                sortedIndexes.addAll(clause.getAdverbials()); 
+                if (clause.getComplement() >= 0) 
+                        sortedIndexes.add(clause.getComplement()); 
+                for(Integer index: sortedIndexes) { 
+                        if (clause.getConstituents().get(clause.getVerb()) instanceof IndexedConstituent && clause.getAdverbials().contains(index) 
&& ((IndexedConstituent)clause.getConstituents().get(index)).getRoot().index() < 
((IndexedConstituent)clause.getConstituents().get(clause.getVerb())).getRoot().index()) continue; 
+                        for(Proposition p: propositions) { 
+                                if (include.get(index)) { 
+                                        p.constituents.add( generate(clause, index) ); 
+                                } 
+                        } 
+                } 
+ 
+                // process adverbials  before verb 
+                sortedIndexes.clear(); 
+                sortedIndexes.addAll(clause.getAdverbials()); 
+                for (Integer index : sortedIndexes) { 
+                        if (clause.getConstituents().get(clause.getVerb()) instanceof TextConstituent || 
((IndexedConstituent)clause.getConstituents().get(index)).getRoot().index() > 
((IndexedConstituent)clause.getConstituents().get(clause.getVerb())).getRoot().index()) break; 
+                        if (include.get(index)) { 
+                                for(Proposition p: propositions) { 
+                                        p.constituents.add( generate(clause, index) ); 
+                                        if (clause.getFlag(index, options).equals(Flag.OPTIONAL)) { 
+                                                p.optional.add(p.constituents.size()); 
+                                        } 
+                                } 
+                        } 
+                } 
+ 
+                // make 3-ary if needed 
+                if (!options.nary ) { 
+                        for(Proposition p: propositions) { 
+                                p.optional.clear(); 
+                                if (p.constituents.size() > 3) { 
+                                        StringBuilder arg = new StringBuilder(); 
+                                        for (int i=2; i<p.constituents.size(); i++) { 
+                                                if (i>2) arg.append(" "); 
+                                                arg.append(p.constituents.get(i)); 
+                                        } 
+                                        p.constituents.set(2,  arg.toString()); 
+                                        for (int i=p.constituents.size()-1; i>2; i--) { 
+                                                p.constituents.remove(i); 
+                                        } 
+                                } 
+                        } 
+                } 
+ 
+  // we are done 
+  result.addAll(propositions); 
+ } 
+} 
diff --git a/src/clausie/Dictionary.java b/src/clausie/Dictionary.java 
new file mode 100644 
index 0000000..b39f6e0 
--- /dev/null 
+++ b/src/clausie/Dictionary.java 
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@@ -0,0 +1,56 @@ 
+package clausie; 
+ 
+import java.io.DataInput; 
+import java.io.DataInputStream; 
+import java.io.IOException; 
+import java.io.InputStream; 
+import java.util.HashSet; 
+import java.util.Set; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+ 
+/**A dictionary stores a set of strings. 
+ * 
+ * @date $LastChangedDate: 2013-04-23 12:03:16 +0200 (Tue, 23 Apr 2013) $ 
+ * @version $LastChangedRevision: 735 $ */ 
+public class Dictionary { 
+ 
+        /** Stores the strings */ 
+        public Set<String> words = new HashSet<String>(); 
+ 
+        public Dictionary() { 
+        } 
+ 
+        public int size() { 
+                return words.size(); 
+        } 
+ 
+        public boolean contains(String word) { 
+                return words.contains(word); 
+        } 
+ 
+        public boolean contains(IndexedWord word) { 
+                return words.contains( word.lemma() ); 
+        } 
+ 
+        /** Loads the dictionary out of an {@link InputStream}. Each line 
+         * of the original file should contain an entry to the dictionary */ 
+        public void load(InputStream in) throws IOException { 
+                DataInput data = new DataInputStream(in); 
+                String line = data.readLine(); 
+                while (line != null) { 
+                        line = line.trim(); 
+                        if (line.length() > 0) { // treat everything else as comments 
+                                if (Character.isLetter(line.charAt(0))) { 
+                                        words.add(line); 
+                                } 
+                        } 
+                        line = data.readLine(); 
+                } 
+        } 
+ 
+        public Set<String> words() { 
+                return words; 
+        } 
+ 
+} 
diff --git a/src/clausie/DpUtils.java b/src/clausie/DpUtils.java 
new file mode 100644 
index 0000000..abd5a7b 
--- /dev/null 
+++ b/src/clausie/DpUtils.java 
@@ -0,0 +1,561 @@ 
+package clausie; 
+ 
+import java.util.ArrayList; 
+import java.util.Collection; 
+import java.util.Collections; 
+import java.util.HashSet; 
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+import java.util.List; 
+import java.util.Set; 
+import java.util.TreeSet; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.semgraph.SemanticGraphEdge; 
+import edu.stanford.nlp.trees.EnglishGrammaticalRelations; 
+import edu.stanford.nlp.trees.GrammaticalRelation; 
+import edu.stanford.nlp.trees.Tree; 
+ 
+ 
+/** This class provides a set of utilities to work with {@link SemanticGraph} 
+ * For details on the Dependency parser @see <a href="nlp.stanford.edu/software/dependencies_manual.pdf">the Stanford Parser 
manual 
+ * 
+ * @date $LastChangedDate: 2013-12-02 15:45:41 +0100 (Mon, 02 Dec 2013) $ 
+ * @version $LastChangedRevision: 1182 $ */ 
+public class DpUtils { 
+ 
+        /** Finds the first occurrence of a grammatical relation in a set of edges */ 
+        public static SemanticGraphEdge findFirstOfRelation(List<SemanticGraphEdge> edges, 
+                                                            GrammaticalRelation rel) { 
+                for (SemanticGraphEdge e : edges) { 
+                        if (rel.equals(e.getRelation())) { 
+                                return e; 
+                        } 
+                } 
+                return null; 
+        } 
+ 
+        /** Finds the first occurrence of a grammatical relation or its descendants in a set of edges */ 
+        public static SemanticGraphEdge findFirstOfRelationOrDescendent(List<SemanticGraphEdge> edges, 
+                                                                        GrammaticalRelation rel) { 
+                for (SemanticGraphEdge e : edges) { 
+                        if (rel.isAncestor(e.getRelation())) { 
+                                return e; 
+                        } 
+                } 
+                return null; 
+        } 
+ 
+        /** Finds the first occurrence of a grammatical relation or its descendants for a relative pronoun */ 
+        public static SemanticGraphEdge findDescendantRelativeRelation(SemanticGraph semanticGraph, 
+                                                                       IndexedWord root, GrammaticalRelation rel) { 
+                List<SemanticGraphEdge> explored = new ArrayList<SemanticGraphEdge>(); 
+                return findDescendantRelativeRelation(semanticGraph, root, rel, explored); 
+        } 
+ 
+        public static SemanticGraphEdge findDescendantRelativeRelation(SemanticGraph semanticGraph, 
+                                                                       IndexedWord root, GrammaticalRelation rel, List<SemanticGraphEdge> explored) { 
+                List<SemanticGraphEdge> outedges = semanticGraph.getOutEdgesSorted(root); 
+                for (SemanticGraphEdge e : outedges) { 
+                        if(explored.contains(e)) 
+                                continue; 
+                        if (e.getDependent().tag().charAt(0) == 'W' && rel.isAncestor(e.getRelation())) { 
+                                return e; 
+                        } else { 
+                                explored.add(e); //sometimes there are cycles probably a bug in the parser 
+                                return findDescendantRelativeRelation(semanticGraph, e.getDependent(), rel, explored); 
+                        } 
+                } 
+                return null; 
+        } 
+ 
+        /** Finds all occurrences of a grammatical relation or its descendants in a list of edges */ 
+        public static List<SemanticGraphEdge> getEdges(List<SemanticGraphEdge> edges, 
+                                                       GrammaticalRelation rel) { 
+                List<SemanticGraphEdge> result = new ArrayList<SemanticGraphEdge>(); 
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+                for (SemanticGraphEdge e : edges) { 
+                        if (rel.isAncestor(e.getRelation())) { 
+                                result.add(e); 
+                        } 
+                } 
+                return result; 
+        } 
+ 
+        /** Finds all occurrences of a list of grammatical relation or its descendants in a list of edges */ 
+        public static List<SemanticGraphEdge> getEdges(List<SemanticGraphEdge> edges, 
+                                                       List<GrammaticalRelation> relations) { 
+                List<SemanticGraphEdge> result = new ArrayList<SemanticGraphEdge>(); 
+                for (SemanticGraphEdge e : edges) { 
+                        for(GrammaticalRelation rel: relations) { 
+                                if (rel.isAncestor(e.getRelation())) { 
+                                        result.add(e); 
+                                } 
+                        } 
+                } 
+                return result; 
+        } 
+ 
+        public static Set<IndexedWord> getRelevantWords(IndexedWord root, SemanticGraph semanticGraph, Tree tree, 
+                                                        GrammaticalRelation rel, boolean down) { 
+                Set<IndexedWord> ignore = new HashSet<IndexedWord>(); 
+                return getRelevantWords(root, semanticGraph, tree, rel, down, ignore); 
+ 
+        } 
+ 
+        public static Set<IndexedWord> getRelevantWords(IndexedWord root, SemanticGraph semanticGraph, Tree tree, 
+                                                        GrammaticalRelation rel, boolean down, Set<IndexedWord> ignore) { 
+ 
+                Set<IndexedWord> result = new HashSet<IndexedWord>(); 
+                List<SemanticGraphEdge> edges; 
+                if(down) { //Every parent from the main conj is also a parent for the conjs, not every child of the parent is a child of the conjs 
+                        edges = semanticGraph.getOutEdgesSorted(root); 
+                } else { 
+                        edges = semanticGraph.getIncomingEdgesSorted(root); 
+                } 
+ 
+                for (SemanticGraphEdge e : edges) { 
+                        if (rel.isAncestor(e.getRelation())) { 
+                                IndexedWord toAdd; 
+                                if(down) { 
+                                        toAdd = e.getDependent(); 
+                                } else { 
+                                        toAdd = e.getGovernor(); 
+                                } 
+                                if(ignore.contains(toAdd)) 
+                                        continue; 
+ 
+                                result.add(toAdd); 
+                                ignore.add(toAdd); 
+                                result.addAll(getRelevantWords(toAdd, semanticGraph, tree, 
+                                                               EnglishGrammaticalRelations.CONJUNCT, true, ignore)); 
+                        } 
+                } 
+ 
+                ignore.addAll(result); 
+                List<SemanticGraphEdge> parents = getEdges(semanticGraph.getIncomingEdgesSorted(root), 
EnglishGrammaticalRelations.CONJUNCT); 
+                for(SemanticGraphEdge edge: parents) { 
+                        if(ignore.contains(edge.getGovernor())) 
+                                continue; 
+                        for(IndexedWord element: getRelevantWords(edge.getGovernor(), semanticGraph, tree, rel, down, ignore)) { 
+                                if(down) { 
+                                        if(ProcessConjunctions.isDescendant(tree, semanticGraph, root, edge.getGovernor(), element)) { 
+                                                result.add(element); 
+                                        } 
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+                                } else { 
+                                        result.add(element); 
+                                } 
+                        } 
+                } 
+                return result; 
+        } 
+ 
+        /** Checks if a given grammatical relation is contained in a set of edges */ 
+        public static boolean containsRelation(List<SemanticGraphEdge> edges, GrammaticalRelation rel) { 
+                return findFirstOfRelation(edges, rel) != null; 
+        } 
+ 
+        /** Checks if a given edge holds a subject relation*/ 
+        public static boolean isAnySubj(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.SUBJECT.isAncestor(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an adjective modifier relation*/ 
+        public static boolean isAMod(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.ADJECTIVAL_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a noun compound relation*/ 
+        public static boolean isNN(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.NOUN_COMPOUND_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a nominal subject relation*/ 
+        public static boolean isNsubj(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.NOMINAL_SUBJECT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a clausal subject relation*/ 
+        public static boolean isCsubj(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.CLAUSAL_SUBJECT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a clausal passive subject relation*/ 
+        public static boolean isCsubjpass(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.CLAUSAL_PASSIVE_SUBJECT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a nominal passive subject relation*/ 
+        public static boolean isNsubjpass(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.NOMINAL_PASSIVE_SUBJECT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an external subject relation of an xcomp relation */ 
+        public static boolean isXsubj(SemanticGraphEdge edge) { 
+                return edge.toString().equals("xsubj"); 
+        } 
+ 
+        /** Checks if a given edge holds an object relation */ 
+        public static boolean isAnyObj(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.OBJECT.isAncestor(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a prepositional object relation*/ 
+        public static boolean isPobj(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.PREPOSITIONAL_OBJECT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a direct object relation */ 
+        public static boolean isDobj(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.DIRECT_OBJECT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an indirect object relation */ 
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+        public static boolean isIobj(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.INDIRECT_OBJECT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a negation relation */ 
+        static boolean isNeg(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.NEGATION_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds the 'dep' relation */ 
+        public static boolean isDep(SemanticGraphEdge edge) { 
+                return edge.toString().equals("dep"); 
+        } 
+ 
+        /** Checks if a given edge holds a phrasal verb particle relation */ 
+        public static boolean isPrt(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.PHRASAL_VERB_PARTICLE.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an apposittional relation */ 
+        public static boolean isAppos(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.APPOSITIONAL_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an purpose clause modifier relation */ 
+        //  public static boolean isPurpcl(SemanticGraphEdge edge) { 
+        //      return EnglishGrammaticalRelations.PURPOSE_CLAUSE_MODIFIER.equals(edge.getRelation()); 
+        //  } 
+ 
+        /** Checks if a given edge holds a xcomp relation */ 
+        public static boolean isXcomp(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.XCLAUSAL_COMPLEMENT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a complementizer relation */ 
+        // public static boolean isComplm(SemanticGraphEdge edge) { 
+        //     return EnglishGrammaticalRelations.COMPLEMENTIZER.equals(edge.getRelation()); 
+        // } 
+ 
+        /** Checks if a given edge holds an agent relation */ 
+        public static boolean isAgent(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.AGENT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an expletive relation */ 
+        public static boolean isExpl(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.EXPLETIVE.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an adjectival complement relation */ 
+        public static boolean isAcomp(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.ADJECTIVAL_COMPLEMENT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a prepositional modifier relation */ 
+        public static boolean isAnyPrep(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.PREPOSITIONAL_MODIFIER.isAncestor(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a copular relation */ 
+        public static boolean isCop(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.COPULA.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an adverbial clausal relation */ 
+        public static boolean isAdvcl(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.ADV_CLAUSE_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
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+        /** Checks if a given edge holds a relative clause modifier relation */ 
+        public static boolean isRcmod(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.RELATIVE_CLAUSE_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a clausal complement relation */ 
+        public static boolean isCcomp(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.CLAUSAL_COMPLEMENT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an adverbial modifier relation */ 
+        public static boolean isAdvmod(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.ADVERBIAL_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an np adverbial modifier relation */ 
+        public static boolean isNpadvmod(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.NP_ADVERBIAL_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a marker relation */ 
+        public static boolean isMark(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.MARKER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a propositional complement relation */ 
+        public static boolean isPcomp(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.PREPOSITIONAL_COMPLEMENT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a possession modifier relation */ 
+        public static boolean isPoss(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.POSSESSION_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a possessive modifier relation */ 
+        public static boolean isPosse(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.POSSESSIVE_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a participial modifier relation */ 
+        public static boolean isPartMod(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.VERBAL_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a temporal modifier relation */ 
+        public static boolean isTmod(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.TEMPORAL_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a conjunct relation */ 
+        public static boolean isAnyConj(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.CONJUNCT.isAncestor(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a preconjunct modifier relation */ 
+        public static boolean isPreconj(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.PRECONJUNCT.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a coordination relation */ 
+        public static boolean isCc(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.COORDINATION.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds an auxiliar modifier relation */ 
+        public static boolean isAux(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.AUX_MODIFIER.equals(edge.getRelation()); 
+        } 
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+ 
+        /** Checks if a given edge holds an auxiliar passive modifier relation */ 
+        public static boolean isAuxPass(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.AUX_PASSIVE_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a 'rel' relation */ 
+        public static boolean isRel(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.RELATIVE.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a multi word expression relation */ 
+        public static boolean isMwe(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.MULTI_WORD_EXPRESSION.equals(edge.getRelation()); 
+        } 
+ 
+        /** Checks if a given edge holds a parataxis relation */ 
+        public static boolean isParataxis(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.PARATAXIS.equals(edge.getRelation()); 
+        } 
+ 
+        public static boolean isPassive(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.AUX_PASSIVE_MODIFIER.equals(edge.getRelation()); 
+        } 
+ 
+ 
+ 
+ 
+//    /** Checks if a given edge holds an infinitival modifier relation */ 
+        //   public static boolean isInfmod(SemanticGraphEdge edge) { 
+//  return EnglishGrammaticalRelations.INFINITIVAL_MODIFIER.equals(edge.getRelation()); 
+// } 
+ 
+        /** Checks if a given edge holds a predeterminer relation */ 
+        public static boolean isPredet(SemanticGraphEdge edge) { 
+                return EnglishGrammaticalRelations.PREDETERMINER.equals(edge.getRelation()); 
+        } 
+ 
+        /** Removes some edges from the given semantic graph. 
+         * 
+         * This method traverses the semantic graph starting from the given root. An edge is removed if 
+         * (1) its child appears in <code>excludeVertexes</code>, (2) its relation appears in 
+         * <code>excludeRelations</code>, or (3) the edge has the root as parent and its relation 
+         * appears in <code>excludeRelationsTop</code>. */ 
+        public static void removeEdges(SemanticGraph graph, IndexedWord root, 
+                                       Collection<IndexedWord> excludeVertexes, 
+                                       Collection<GrammaticalRelation> excludeRelations, 
+                                       Collection<GrammaticalRelation> excludeRelationsTop) { 
+                if (!excludeVertexes.contains(root)) { 
+                        List<SemanticGraphEdge> edgesToRemove = new ArrayList<SemanticGraphEdge>(); 
+                        subgraph(graph, root, excludeVertexes, excludeRelations, excludeRelationsTop, 
+                                 edgesToRemove); 
+                        for (SemanticGraphEdge edge : edgesToRemove) { 
+                                graph.removeEdge(edge); 
+                        } 
+                } 
+        } 
+ 
+        /** Removes some edges from the given semantic graph. 
+         * 
+         * This method traverses the semantic graph starting from the given root. An edge is removed if 
+         * its child appears in <code>excludeVertexes</code>. */ 
+        public static void removeEdges(SemanticGraph graph, IndexedWord root, 
+                                       Collection<IndexedWord> excludeVertexes) { 
+                removeEdges(graph, root, excludeVertexes, Collections.<GrammaticalRelation> emptySet(), 
+                            Collections.<GrammaticalRelation> emptySet()); 
+        } 
+ 
+        /** Removes some edges from the given semantic graph. 
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+         * 
+         * This method traverses the semantic graph starting from the given root. An edge is removed if 
+         * its relation appears in <code>excludeRelations</code> or the edge has the root as parent and 
+         * its relation appears in <code>excludeRelationsTop</code>. */ 
+        public static void removeEdges(SemanticGraph graph, IndexedWord root, 
+                                       Collection<GrammaticalRelation> excludeRelations, 
+                                       Collection<GrammaticalRelation> excludeRelationsTop) { 
+                removeEdges(graph, root, Collections.<IndexedWord> emptySet(), excludeRelations, 
+                            excludeRelationsTop); 
+        } 
+ 
+        /** Implementation for 
+         * {@link #removeEdges(SemanticGraph, IndexedWord, Collection, Collection, Collection)} */ 
+        private static void subgraph(SemanticGraph graph, IndexedWord root, 
+                                     Collection<IndexedWord> excludeVertexes, 
+                                     Collection<GrammaticalRelation> excludeRelations, 
+                                     Collection<GrammaticalRelation> excludeRelationsTop, 
+                                     Collection<SemanticGraphEdge> edgesToRemove) { 
+                List<SemanticGraphEdge> explored = new ArrayList<SemanticGraphEdge>(); 
+                subgraph(graph, root, excludeVertexes, excludeRelations, excludeRelationsTop, 
+                         edgesToRemove, explored); 
+        } 
+ 
+        private static void subgraph(SemanticGraph graph, IndexedWord root, 
+                                     Collection<IndexedWord> excludeVertexes, 
+                                     Collection<GrammaticalRelation> excludeRelations, 
+                                     Collection<GrammaticalRelation> excludeRelationsTop, 
+                                     Collection<SemanticGraphEdge> edgesToRemove, 
+                                     Collection<SemanticGraphEdge> explored) { 
+                List<SemanticGraphEdge> edges = graph.getOutEdgesSorted(root); 
+                for (SemanticGraphEdge e : edges) { 
+                        if(explored.contains(e)) 
+                                continue; 
+                        explored.add(e); 
+                        IndexedWord child = e.getDependent(); 
+                        if (excludeVertexes.contains(child) || excludeRelations.contains(e.getRelation()) 
+                            || excludeRelationsTop.contains(e.getRelation())) { 
+                                edgesToRemove.add(graph.getEdge(root, child)); 
+                        } else { 
+                                subgraph(graph, child, excludeVertexes, excludeRelations, 
+                                         Collections.<GrammaticalRelation> emptySet(), edgesToRemove, explored); 
+                        } 
+                } 
+        } 
+ 
+        /** Disconnects independent clauses by removing the edge representing the coordinating conjunction */ 
+        public static void disconectClauses(SemanticGraph graph, Constituent constituent) { 
+                List<SemanticGraphEdge> outedges = graph 
+                        .getOutEdgesSorted(((IndexedConstituent) constituent).getRoot()); 
+                for (int i = 0; i < outedges.size(); i++) { 
+                        SemanticGraphEdge e = outedges.get(i); 
+                        if (DpUtils.isAnyConj(e)) { 
+                                IndexedWord child = e.getDependent(); 
+                                List<SemanticGraphEdge> outNewRoot = graph.getOutEdgesSorted(child); 
+                                SemanticGraphEdge sub = DpUtils.findFirstOfRelationOrDescendent(outNewRoot, 
+                                                                                                EnglishGrammaticalRelations.SUBJECT); 
+                                if (sub != null) 
+                                        graph.removeEdge(e); 
+                        } 
+                } 
+        } 
+ 
+        /** Return a set of vertexes to be excluded according to a given collection of grammatical relations */ 
+        public static Set<IndexedWord> exclude(SemanticGraph semanticGraph, 
+                                               Collection<GrammaticalRelation> rels, IndexedWord root) { 
+                Set<IndexedWord> exclude = new TreeSet<IndexedWord>(); 
+                List<SemanticGraphEdge> outedges = semanticGraph.getOutEdgesSorted(root); 
+                for (SemanticGraphEdge edge : outedges) { 
+                        if (containsAncestor(rels, edge)) { 
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+                                exclude.add(edge.getDependent()); 
+                        } 
+                } 
+                return exclude; 
+        } 
+ 
+        /** Check if an edge is descendant of any grammatical relation in the given set */ 
+        private static boolean containsAncestor(Collection<GrammaticalRelation> rels, 
+                                                SemanticGraphEdge edge) { 
+                for (GrammaticalRelation rel : rels) { 
+                        if (rel.isAncestor(edge.getRelation())) 
+                                return true; 
+                } 
+                return false; 
+        } 
+ 
+        /** Correspondence between nodes in Tree and SemanticGraph */ 
+        public static Tree getNode(IndexedWord word, Tree depTree, SemanticGraph semanticGraph) { 
+                int indexSC = semanticGraph.vertexListSorted().indexOf(word); 
+                int indexDT = Integer.MAX_VALUE; 
+                Tree result = null; 
+                List<Tree> descTree = depTree.getLeaves(); 
+                for(int i = descTree.size() - 1; i >= 0; i--) { 
+                        String s = descTree.get(i).toString(); 
+                        String v = word.value(); 
+                        if(descTree.get(i).toString().equals(word.value())) { 
+                                if((i - indexSC) < indexDT) { 
+                                        result = descTree.get(i); 
+                                        indexDT = i - indexSC; 
+                                } 
+                        } 
+                } 
+                return result; 
+        } 
+ 
+        /** Correspondence between nodes in Tree and SemanticGraph */ 
+        public static IndexedWord getIndexedWord(Tree word, Integer indexDT, Tree depTree, SemanticGraph semanticGraph) { 
+                List<IndexedWord> iwList = semanticGraph.vertexListSorted(); 
+                List<Tree> descTree = depTree.getLeaves(); 
+                if(indexDT == null) 
+                        indexDT = descTree.indexOf(word); 
+                int indexSC = Integer.MAX_VALUE;; 
+                IndexedWord result = null; 
+                for(int i = iwList.size() - 1; i >= 0; i--) { 
+                        if(iwList.get(i).word().equals(word.toString())) { 
+                                if(Math.abs((i - indexDT)) < indexSC) { 
+                                        result = iwList.get(i); 
+                                        indexSC = Math.abs(i - indexDT); 
+                                } 
+                        } 
+                } 
+                return result; 
+        } 
+ 
+        public static boolean findRelClause(List<SemanticGraphEdge> outEdgesSorted) { 
+                for(SemanticGraphEdge edge: outEdgesSorted) { 
+                        if(edge.getDependent().tag().charAt(0) == 'W') 
+                                return true; 
+                } 
+                return false; 
+        } 
+ 
+        public static int getindex(IndexedWord iw, Tree tree, SemanticGraph semanticGraph) { 
+                Tree node = getNode(iw, tree, semanticGraph); 
+                return tree.getLeaves().indexOf(node); 
+        } 
+ 
+        public static IndexedWord getIndexedWord(int index, Tree tree, SemanticGraph semanticGraph) { 
+                Tree node = tree.getLeaves().get(index); 



 

     327

+                return getIndexedWord(node, index, tree, semanticGraph); 
+        } 
+ 
+ 
+} 
diff --git a/src/clausie/IndexedConstituent.java b/src/clausie/IndexedConstituent.java 
new file mode 100644 
index 0000000..5e58d3a 
--- /dev/null 
+++ b/src/clausie/IndexedConstituent.java 
@@ -0,0 +1,167 @@ 
+package clausie; 
+ 
+import java.util.List; 
+import java.util.Set; 
+import java.util.TreeSet; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.semgraph.SemanticGraphEdge; 
+import edu.stanford.nlp.semgraph.SemanticGraphFactory; 
+ 
+/** A constituent of a clause described by a {@link SemanticGraph}. 
+ * 
+ * Each constituent has a root vertex. The root together with its the descendants form the 
+ * constituent. In some cases, additional vertexes need to be included or excluded; 
+ * these vertexes are also recorded within this class. 
+ * 
+ * Note that the {@link SemanticGraph} may or may not match the graph of the input sentences or the 
+ * other constituents of the same clause. For example, the semantic graphs are modified when 
+ * processing of coordinating conjunctions. 
+ * 
+ * @date $LastChangedDate: 2013-06-09 15:16:12 +0200 (Sun, 09 Jun 2013) $ 
+ * @version $LastChangedRevision: 799 $ */ 
+public class IndexedConstituent extends Constituent { 
+ 
+        // -- member variables ------------------------------------------------------------------------ 
+ 
+        /** Semantic graph for this sentence */ 
+        protected static SemanticGraph sentSemanticGraph; 
+ 
+        /** Semantic graph for this constituent */ 
+        protected SemanticGraph semanticGraph; 
+ 
+        /** The root vertex of this constituent in {@link #semanticGraph}. This vertex and all its 
+         * descendants are part of the constituent (unless they appear in {@link #excludedVertexes}). */ 
+        protected IndexedWord root; 
+ 
+        /** Additional root vertexes that form this constituent. These vertexes and all their descendants 
+         * are part of the constituent (unless they appear in {@link #excludedVertexes}). */ 
+        protected Set<IndexedWord> additionalVertexes; 
+ 
+        /** Vertexes that are excluded from this constituent. All descendants are excluded as well 
+         * (unless they appear in {@link #root} or {@link additionalRoots}). */ 
+        protected Set<IndexedWord> excludedVertexes; 
+ 
+        // -- construction ---------------------------------------------------------------------------- 
+ 
+        protected IndexedConstituent() { 
+        } 
+ 
+        /** Constructs a new indexed constituent. 
+         * 
+         * @param semanticGraph Semantic graph for this constituent ({@see #semanticGraph}) 
+         * @param root The root vertex of this constituent ({@see {@link #root}) 
+         * @param additionalVertexes Additional root vertexes that form this constituent ({@see 
+         *            {@link #additionalVertexes}) 
+         * @param excludedVertexes Vertexes that are excluded from this constituent ({@see 
+         *            {@link #excludedVertexes}) 
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+         * @param type type of this constituent */ 
+        public IndexedConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                  Set<IndexedWord> additionalVertexes, Set<IndexedWord> excludedVertexes, Type type) { 
+                super(type); 
+                this.semanticGraph = semanticGraph; 
+                this.root = root; 
+                this.additionalVertexes = new TreeSet<IndexedWord>(additionalVertexes); 
+                this.excludedVertexes = new TreeSet<IndexedWord>(excludedVertexes); 
+        } 
+ 
+        /** Constructs a simple indexed constituent without additional additional or excluded vertexes. 
+         * 
+         * @param semanticGraph Semantic graph for this constituent ({@see #semanticGraph}) 
+         * @param root The root vertex of this constituent ({@see {@link #root}) 
+         * @param type type of this constituent */ 
+        public IndexedConstituent(SemanticGraph semanticGraph, IndexedWord root, Type type) { 
+                this(semanticGraph, root, new TreeSet<IndexedWord>(), new TreeSet<IndexedWord>(), type); 
+        } 
+ 
+        /** Creates a deep copy of this indexed constituent. */ 
+        @Override 
+        public IndexedConstituent clone() { 
+                IndexedConstituent clone = new IndexedConstituent(); 
+                clone.type = type; 
+                //clone.semanticGraph = new SemanticGraph(semanticGraph); 
+                clone.semanticGraph = SemanticGraphFactory.duplicateKeepNodes(semanticGraph); 
+                clone.root = this.root; 
+                clone.additionalVertexes = new TreeSet<IndexedWord>(this.additionalVertexes); 
+                clone.excludedVertexes = new TreeSet<IndexedWord>(this.excludedVertexes); 
+                return clone; 
+        } 
+ 
+        // -- getters/setters ------------------------------------------------------------------------- 
+ 
+        /** Returns the semantic graph for this constituent ({@see #semanticGraph}). */ 
+        public SemanticGraph getSemanticGraph() { 
+                return semanticGraph; 
+        } 
+ 
+        /** Returns the semantic graph for this sentence ({@see #sentSemanticGraph}). */ 
+        public SemanticGraph getSentSemanticGraph() { 
+                return sentSemanticGraph; 
+        } 
+ 
+        /** Sets the semantic graph for this constituent ({@see #semanticGraph}). */ 
+        public void setSemanticGraph(SemanticGraph newSemanticGraph) { 
+                semanticGraph = newSemanticGraph; 
+        } 
+ 
+        /** Returns the root vertex of this constituent ({@see {@link #root}). */ 
+        public IndexedWord getRoot() { 
+                return root; 
+        } 
+ 
+        /** Sets the root vertex of this constituent ({@see {@link #root}). */ 
+        public void setRoot(IndexedWord newRoot) { 
+                root = newRoot; 
+        } 
+ 
+        /** Returns additional root vertexes that form this constituent ({@see 
+         * {@link #additionalVertexes}). */ 
+        public Set<IndexedWord> getAdditionalVertexes() { 
+                return additionalVertexes; 
+        } 
+ 
+        /** Returns vertexes that are excluded from this constituent ({@see {@link #excludedVertexes}). */ 
+        public Set<IndexedWord> getExcludedVertexes() { 
+                return excludedVertexes; 
+        } 
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+ 
+        /** Checks whether this constituent is a prepositional phrase (i.e., starts with a preposition). */ 
+        public boolean isPrepositionalPhrase() { //This is a mess, find other way of fixing. This is purelly heuristic. It needs to know the 
semantic graph for the sentence after this is fixed the member variable sentSemanticGraph can be removed 
+                List<IndexedWord> parents = semanticGraph.getParentList(root); //This is not the cleanest way semantics messed up. 
specially with the rel we cannot just check if the head is a preposition (return root.tag().equals("IN")) because the parser some times 
includes a preposition in the verbal phrase "He is about to win" 
+                for(IndexedWord parent: parents) { 
+                        SemanticGraphEdge edge = semanticGraph.getEdge(parent, root); 
+                        if(DpUtils.isRel(edge)) 
+                                return true; 
+                        if(DpUtils.isAnyPrep(edge)) { 
+                                List<IndexedWord> ancestors = semanticGraph.getParentList(parent); 
+                                for(IndexedWord ancestor: ancestors) { 
+                                        SemanticGraphEdge ed = semanticGraph.getEdge(ancestor, parent); 
+                                        if(DpUtils.isRcmod(ed)) 
+                                                return true; 
+                                } 
+                        } 
+                } 
+                return false; 
+                //return root.tag().equals("IN"); 
+        } 
+ 
+        // -- utility methods ------------------------------------------------------------------------- 
+ 
+        /** Returns a textual representation of the root word of this constituent. */ 
+        public String rootString() { 
+                return root.word(); 
+        } 
+ 
+        /** Returns a copy of the semantic graph of this constituent in which all edges (from any 
+     * included vertex) to excluded vertexes have been removed. Useful for proposition generation. */ 
+    public SemanticGraph createReducedSemanticGraph() { 
+        //SemanticGraph result = new SemanticGraph(semanticGraph); 
+     SemanticGraph result = SemanticGraphFactory.duplicateKeepNodes(semanticGraph); 
+        DpUtils.removeEdges(result,  root,  excludedVertexes); 
+        for (IndexedWord v : additionalVertexes) { 
+            DpUtils.removeEdges(result,  v,  excludedVertexes); 
+        } 
+        return result; 
+    } 
+} 
diff --git a/src/clausie/JavaUtils.java b/src/clausie/JavaUtils.java 
new file mode 100644 
index 0000000..e84521f 
--- /dev/null 
+++ b/src/clausie/JavaUtils.java 
@@ -0,0 +1,32 @@ 
+package clausie; 
+import java.util.*; 
+ 
+ 
+public class JavaUtils { 
+ 
+ 
+        public static class MapUtil 
+        { 
+                public static <K, V extends Comparable<? super V>> Map<K, V> 
+         sortByValue( Map<K, V> map ) 
+     { 
+         List<Map.Entry<K, V>> list = 
+             new LinkedList<Map.Entry<K, V>>( map.entrySet() ); 
+         Collections.sort( list, new Comparator<Map.Entry<K, V>>() 
+         { 
+             public int compare( Map.Entry<K, V> o1, Map.Entry<K, V> o2 ) 
+             { 
+                 return (o1.getValue()).compareTo( o2.getValue() ); 
+             } 
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+         } ); 
+ 
+         Map<K, V> result = new LinkedHashMap<K, V>(); 
+         for (Map.Entry<K, V> entry : list) 
+         { 
+             result.put( entry.getKey(), entry.getValue() ); 
+         } 
+         return result; 
+     } 
+ } 
+ 
+} 
diff --git a/src/clausie/NounPhraseIndexedConstituent.java b/src/clausie/NounPhraseIndexedConstituent.java 
new file mode 100644 
index 0000000..44b78fa 
--- /dev/null 
+++ b/src/clausie/NounPhraseIndexedConstituent.java 
@@ -0,0 +1,70 @@ 
+package clausie; 
+ 
+import java.util.List; 
+import java.util.Set; 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.semgraph.SemanticGraphEdge; 
+ 
+public class NounPhraseIndexedConstituent extends StructuredConstituent{ 
+ 
+ 
+        public NounPhraseIndexedConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                            Type type) { 
+                super(semanticGraph, root, type); 
+        } 
+        /** Constructs a new indexed constituent for any noun-phrase relation. 
+         * 
+         * @param semanticGraph Semantic graph for this constituent ({@see #semanticGraph}) 
+         * @param root The root vertex of this constituent ({@see {@link #root}) 
+         * @param additionalVertexes Additional root vertexes that form this constituent ({@see 
+         *            {@link #additionalVertexes}) 
+         * @param excludedVertexes Vertexes that are excluded from this constituent ({@see 
+         *            {@link #excludedVertexes}) 
+         * @param type type of this constituent 
+         * * @param clauses derived from this constituent*/ 
+        public NounPhraseIndexedConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                            Set<IndexedWord> additionalVertexes, 
+                                            Set<IndexedWord> excludedVertexes, Type type) { 
+                super(semanticGraph, root, additionalVertexes, excludedVertexes, type); 
+        } 
+ 
+        public NounPhraseIndexedConstituent build() { 
+                List<SemanticGraphEdge> edges = semanticGraph.outgoingEdgeList(root); 
+                for(SemanticGraphEdge edge: edges) { 
+                        if(DpUtils.isAnyPrep(edge)) { 
+                                getConstituents().add(new PrepositionalPhraseIndexedConstituent(semanticGraph, root, null).build()); 
+                                getPrepPhrases().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAdvmod(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, root, null)); 
+                                advmods.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAMod(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, root, null)); 
+                                getAmods().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isNN(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, root, null)); 
+                                getNn().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAppos(edge)) { 
+                                getConstituents().add(new NounPhraseIndexedConstituent(semanticGraph, root, null).build()); 
+                                appos.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAnyConj(edge)) { 
+                                //Check it should be other noun phrase 
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+                                getConstituents().add(new IndexedConstituent(semanticGraph, root, null)); 
+                                conj.add(getConstituents().size() - 1); 
+                                //} else if(DpUtils.isInfmod(edge)) { 
+                                // getConstituents().add(new IndexedConstituent(semanticGraph, root, null)); 
+                                // infmod.add(getConstituents().size() - 1); 
+                                //} else if(DpUtils.isPartMod(edge)) { 
+                                // getConstituents().add(new IndexedConstituent(semanticGraph, root, null)); 
+                                // partmod.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isRcmod(edge)) { 
+                                //This is another clause check 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, root, null)); 
+                                rcmod.add(getConstituents().size() - 1); 
+                        } 
+ 
+  } 
+  return this; 
+ } 
+ 
+} 
diff --git a/src/clausie/Options.java b/src/clausie/Options.java 
new file mode 100644 
index 0000000..366cc0b 
--- /dev/null 
+++ b/src/clausie/Options.java 
@@ -0,0 +1,233 @@ 
+package clausie; 
+ 
+import java.io.File; 
+import java.io.FileInputStream; 
+import java.io.FileNotFoundException; 
+import java.io.IOException; 
+import java.io.InputStream; 
+import java.io.OutputStream; 
+import java.io.PrintStream; 
+import java.net.URL; 
+import java.util.Arrays; 
+import java.util.Iterator; 
+import java.util.Properties; 
+import java.util.Set; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+ 
+/** Options handles the ClausIe settings which should be loaded out of a configuration file. 
+ * 
+ * @date $LastChangedDate: 2013-04-24 11:35:23 +0200 (Wed, 24 Apr 2013) $ 
+ * @version $LastChangedRevision: 739 $ */ 
+public class Options { 
+        // informatin 
+        public Dictionary dictCopular; 
+        public Dictionary dictExtCopular; 
+        public Dictionary dictNotExtCopular; 
+        public Dictionary dictComplexTransitive; 
+        public Dictionary dictAdverbsConj; 
+        public Dictionary dictAdverbsIgnore; 
+        public Dictionary dictAdverbsInclude; 
+        public boolean conservativeSVA; 
+        public boolean conservativeSVOA; 
+ 
+        /** 
+         * Process coordinating conjunctions with common components. All other verbal coordinating 
+         * conjunctions will always been processed. 
+         * 
+         * Example: some sentence 
+         * Option on: ... 
+         * Option off: 
+         * 
+         * defaulot value 
+         * 
+         * Example sentance that is not affected 
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+         */ 
+        public boolean processCcAllVerbs; 
+        public boolean processCcNonVerbs; 
+        public boolean processAppositions; 
+        public boolean processPossessives; 
+        public boolean processPartmods; 
+// public boolean processPassive = false; // NOT SUPPORTED FOR NOW (collapsed semantic graph needed but less stable) 
+        //add for possesive 
+ 
+        // representation 
+        public boolean nary; 
+        public int minOptionalArgs; // only when nary=false 
+        public int maxOptionalArgs; // only when nary=false 
+        public boolean lemmatize; 
+        public String appositionVerb; 
+        public String possessiveVerb; 
+ 
+        //WSD 
+        public int appositionVerbSynset; 
+        public int possessiveVerbSynset; 
+        public int existentialVerbSynset; 
+ 
+ 
+        //helpds 
+ 
+        /**Constructs the set of options out of a conf file (clausie.conf)*/ 
+        public Options() { 
+                try { 
+                        URL t = getClass().getResource("resources/clausie.conf"); 
+                        InputStream in = t.openStream(); 
+                        setOptions(in); 
+                        in.close(); 
+                } catch (IOException e) { 
+                        // should not happen 
+                        throw new RuntimeException(e); 
+                } 
+        } 
+ 
+        /**Constructs the set of options out of a conf file (fileOrResourceName)*/ 
+        public Options(String fileOrResourceName) throws IOException { 
+                InputStream in = openFileOrResource(fileOrResourceName); 
+                setOptions(in); 
+                in.close(); 
+        } 
+ 
+        private InputStream openFileOrResource(String name) throws IOException { 
+                try { 
+                        File file = new File(name); 
+                        return new FileInputStream(file); 
+                } catch (FileNotFoundException e) { 
+                } 
+                URL url = getClass().getResource(name); 
+                if (url == null) { 
+                        throw new IOException("File or resource '" + name + "' not found."); 
+                } 
+                return url.openStream(); 
+        } 
+ 
+        /** Load options from the configuration file*/ 
+        public void setOptions(InputStream optionsStream) throws IOException { 
+                Properties prop = new Properties(); 
+                prop.load(optionsStream); 
+ 
+                // load the required options 
+                conservativeSVA = Boolean.parseBoolean(getProperty(prop, "conservativeSVA")); 
+                conservativeSVOA = Boolean.parseBoolean(getProperty(prop, "conservativeSVOA")); 
+                processCcAllVerbs = Boolean.parseBoolean(getProperty(prop, "processCcAllVerbs")); 
+                processCcNonVerbs = Boolean.parseBoolean(getProperty(prop, "processCcNonVerbs")); 
+                processAppositions = Boolean.parseBoolean(getProperty(prop, "processAppositions")); 
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+                appositionVerb = getProperty(prop, "appositionVerb"); 
+                processPossessives = Boolean.parseBoolean(getProperty(prop, "processPossessives")); 
+                possessiveVerb = getProperty(prop, "possessiveVerb"); 
+                processPartmods = Boolean.parseBoolean(getProperty(prop, "processPartmods")); 
+                lemmatize = Boolean.parseBoolean(getProperty(prop, "lemmatize")); 
+                nary = Boolean.parseBoolean(getProperty(prop, "nary")); 
+                minOptionalArgs = Integer.parseInt(getProperty(prop, "minOptionalArgs")); 
+                maxOptionalArgs = Integer.parseInt(getProperty(prop, "maxOptionalArgs")); 
+                appositionVerbSynset = Integer.parseInt(getProperty(prop, "appositionVerbSynset")); 
+                possessiveVerbSynset = Integer.parseInt(getProperty(prop, "possessiveVerbSynset")); 
+                existentialVerbSynset = Integer.parseInt(getProperty(prop, "existentialVerbSynset")); 
+ 
+ 
+//  // get dictionaries 
+                dictCopular = getDictionary(prop, "dictCopular"); 
+                dictExtCopular = getDictionary(prop, "dictExtCopular"); 
+                dictNotExtCopular = getDictionary(prop, "dictNotExtCopular"); 
+                dictComplexTransitive = getDictionary(prop, "dictComplexTransitive"); 
+                dictAdverbsConj = getDictionary(prop, "dictAdverbsConj"); 
+                dictAdverbsIgnore = getDictionary(prop, "dictAdverbsIgnore"); 
+                dictAdverbsInclude = getDictionary(prop, "dictAdverbsInclude"); 
+ 
+                // check for unused properties 
+                if (!prop.isEmpty()) { 
+                        System.err.println( "Unknown option(s): " 
+                                            + Arrays.toString( prop.keySet().toArray() )); 
+                } 
+        } 
+ 
+        /** Returns a required option (key) */ 
+        private String getProperty(Properties prop, String key) throws IOException { 
+                String result = prop.getProperty(key); 
+                if (result == null) { 
+                        throw new IOException("Missing option: " + key); 
+                } 
+                prop.remove(key); 
+                return result; 
+        } 
+ 
+        /**Loads a dictionary (key) */ 
+        private Dictionary getDictionary(Properties prop, String key) throws IOException { 
+                String name = getProperty(prop, key); 
+                InputStream in = openFileOrResource(name); 
+                Dictionary dict = new Dictionary(); 
+                dict.load(in); 
+                in.close(); 
+                return dict; 
+        } 
+ 
+        /**Checks if the copular dictionary contains a given word*/ 
+        public boolean isCop(IndexedWord word) { 
+                return dictCopular.contains(word); 
+        } 
+ 
+        /**Checks if the extended copular dictionary contains a given word*/ 
+        public boolean isExtCop(IndexedWord word) { 
+                return dictExtCopular.contains(word); 
+        } 
+ 
+        /**Checks if the non-extended copular dictionary contains a given word*/ 
+        public boolean isNotExtCop(IndexedWord word) { 
+                return dictNotExtCopular.contains(word); 
+        } 
+ 
+        /**Checks if the complex transitive dictionary contains a given word*/ 
+        public boolean isComTran(IndexedWord word) { 
+                return dictComplexTransitive.contains(word); 
+        } 
+ 
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+        /**Returns a string with some initial words of a given dictionary*/ 
+        private String someWords(Set<String> dict) { 
+                if (dict.isEmpty()) return ""; 
+                StringBuffer result = new StringBuffer(); 
+                Iterator<String> it = dict.iterator(); 
+                String sep = ""; 
+                result.append(" ("); 
+                for(int i=0; i<3 && it.hasNext(); i++) { 
+                        result.append(sep); 
+                        result.append(it.next()); 
+                        sep = ", "; 
+                } 
+                if (it.hasNext()) result.append(", ..."); 
+                result.append(")"); 
+                return result.toString(); 
+        } 
+ 
+        public void print(OutputStream out) { 
+                print(out, ""); 
+        } 
+ 
+        /**Print settings*/ 
+        public void print(OutputStream out, String prefix) { 
+                PrintStream pout = new PrintStream(out); 
+ 
+                pout.println(prefix + "CLAUSE DETECTION"); 
+                pout.println(prefix + "  Dict. copular        : " + dictCopular.size() + someWords(dictCopular.words)); 
+                pout.println(prefix + "  Dict. ext-copular    : " + dictExtCopular.size() + someWords(dictExtCopular.words)); 
+                pout.println(prefix + "  Dict. not ext.-cop.  : " + dictNotExtCopular.size() + someWords(dictNotExtCopular.words)); 
+                pout.println(prefix + "  Dict. complex trans. : " + dictComplexTransitive.size() + someWords(dictComplexTransitive.words)); 
+                pout.println(prefix + "  Dict. ignored adverb : " + dictAdverbsIgnore.size() + someWords(dictAdverbsIgnore.words)); 
+                pout.println(prefix + "  Dict. included adverb: " + dictAdverbsInclude.size() + someWords(dictAdverbsInclude.words)); 
+                pout.println(prefix + "  Dict. conj adverbs   : " + dictAdverbsConj.size() + someWords(dictAdverbsConj.words)); 
+                pout.println(prefix + "  Conservative SVA     : " + conservativeSVA); 
+                pout.println(prefix + "  Conservative SVOA    : " + conservativeSVOA); 
+                pout.println(prefix + "  Process all verb CCs : " + processCcAllVerbs); 
+                pout.println(prefix + "  Process non-verb CCs : " + processCcNonVerbs); 
+                pout.println(prefix + "  Process appositions  : " + processAppositions); 
+                pout.println(prefix + "  Process possessives  : " + processPossessives); 
+                pout.println(prefix + "  Process partmods     : " + processPartmods); 
+ 
+                pout.println(prefix + ""); 
+                pout.println(prefix + "REPRESENTATION"); 
+  pout.println(prefix + "  n-ary propositions  : " + nary); 
+  pout.println(prefix + "  Min. opt. args      : " + minOptionalArgs); 
+  pout.println(prefix + "  Max. opt. args      : " + maxOptionalArgs); 
+  pout.println(prefix + "  Lemmatize           : " + lemmatize); 
+  pout.println(prefix + "  Appositions verb    : \"" + appositionVerb + "\""); 
+  pout.println(prefix + "  Possessive verb     : \"" + possessiveVerb + "\""); 
+ } 
+} 
diff --git a/src/clausie/PrepositionalPhraseIndexedConstituent.java b/src/clausie/PrepositionalPhraseIndexedConstituent.java 
new file mode 100644 
index 0000000..06ce2a0 
--- /dev/null 
+++ b/src/clausie/PrepositionalPhraseIndexedConstituent.java 
@@ -0,0 +1,87 @@ 
+package clausie; 
+ 
+import java.util.List; 
+import java.util.Set; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.semgraph.SemanticGraphEdge; 
+ 
+public class PrepositionalPhraseIndexedConstituent extends StructuredConstituent { 
+ 
+        private IndexedWord pobj; 
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+ 
+        public PrepositionalPhraseIndexedConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                                     Type type) { 
+                super(semanticGraph, root, type); 
+        } 
+        /** Constructs a new indexed constituent for any noun-phrase relation. 
+         * 
+         * @param semanticGraph Semantic graph for this constituent ({@see #semanticGraph}) 
+         * @param root The root vertex of this constituent ({@see {@link #root}) 
+         * @param additionalVertexes Additional root vertexes that form this constituent ({@see 
+         *            {@link #additionalVertexes}) 
+         * @param excludedVertexes Vertexes that are excluded from this constituent ({@see 
+         *            {@link #excludedVertexes}) 
+         * @param type type of this constituent 
+         * * @param clauses derived from this constituent*/ 
+        public PrepositionalPhraseIndexedConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                                     Set<IndexedWord> additionalVertexes, 
+                                                     Set<IndexedWord> excludedVertexes, Type type) { 
+                super(semanticGraph, root, additionalVertexes, excludedVertexes, type); 
+        } 
+ 
+        public PrepositionalPhraseIndexedConstituent build() { 
+                if(!semanticGraph.getChildList(root).isEmpty()) 
+                        setPobj(semanticGraph.getChildList(root).get(0)); 
+                else 
+                        return this; 
+                List<SemanticGraphEdge> edges = semanticGraph.outgoingEdgeList(getPobj()); 
+                for(SemanticGraphEdge edge: edges) { 
+                        if(DpUtils.isAnyPrep(edge)) { 
+                                getConstituents().add(new PrepositionalPhraseIndexedConstituent(semanticGraph, edge.getDependent(), 
null).build()); 
+                                getPrepPhrases().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAdvmod(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                advmods.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAMod(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                getAmods().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isNN(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                getNn().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAppos(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                appos.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAnyConj(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                conj.add(getConstituents().size() - 1); 
+                                //} else if(DpUtils.isInfmod(edge)) { 
+                                // getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                // infmod.add(getConstituents().size() - 1); 
+                                //} else if(DpUtils.isPartMod(edge)) { 
+                                // getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                // partmod.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isRcmod(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                rcmod.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAdvcl(edge)) { 
+                                //anothe clause check 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                advcl.add(getConstituents().size() - 1); 
+                        } 
+ 
+  } 
+  return this; 
+ } 
+ 
+ 
+ public IndexedWord getPobj() { 
+  return pobj; 



 

     336

+ } 
+ 
+ 
+ public void setPobj(IndexedWord pobj) { 
+  this.pobj = pobj; 
+ } 
+} 
diff --git a/src/clausie/ProcessConjunctions.java b/src/clausie/ProcessConjunctions.java 
new file mode 100644 
index 0000000..88106d7 
--- /dev/null 
+++ b/src/clausie/ProcessConjunctions.java 
@@ -0,0 +1,598 @@ 
+package clausie; 
+ 
+import java.util.ArrayList; 
+import java.util.Collection; 
+import java.util.List; 
+import java.util.Set; 
+ 
+import clausie.Constituent.Type; 
+ 
+import edu.stanford.nlp.ling.HasWord; 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.semgraph.SemanticGraphEdge; 
+import edu.stanford.nlp.trees.EnglishGrammaticalRelations; 
+import edu.stanford.nlp.trees.GrammaticalRelation; 
+import edu.stanford.nlp.trees.Tree; 
+ 
+/** This is a provisory implementation of the processing of coordinating conjunctions. 
+ * 
+ * Coordinating conjunctions are still a difficult issue for the parser and therefore 
+ * the source of a significant loss in precision by ClausIE. 
+ * 
+ * Code is not clean or optimally efficient. More work needs to be done in how to handle CCs. 
+ * 
+ * @date $  $ 
+ * @version $ $ */ 
+public class ProcessConjunctions { 
+ 
+ 
+        /** Process CCs of a given constituent */ 
+        public static List<Constituent> processCC(Tree depTree, 
+                                                  Constituent constituent, boolean processVerb, boolean completeProcess, Integer levels, IndexedWord 
clauseRoot, List<IndexedWord> roots) { 
+                return generateConstituents(depTree, (IndexedConstituent) constituent, processVerb, completeProcess, levels, clauseRoot, 
roots); 
+        } 
+ 
+        /** Generates a set of constituents from a CC for a given constituent 
+         * @param clauseRoot 
+         * @param roots */ 
+        private static List<Constituent> generateConstituents(Tree depTree, 
+                                                              IndexedConstituent constituent, boolean processVerb, boolean completeProcess, Integer levels, 
IndexedWord clauseRoot, List<IndexedWord> roots) { 
+                IndexedConstituent copy = constituent.clone(); 
+                //copy.setSemanticGraph( copy.createReducedSemanticGraph() ); 
+                copy.setSemanticGraph( copy.getSemanticGraph() ); 
+                List<Constituent> result = new ArrayList<Constituent>(); 
+                result.add(copy); 
+                generateConstituents(copy.getSemanticGraph(), depTree, copy, copy.getRoot(), 
+                                     result, true, processVerb, completeProcess, levels, clauseRoot, roots); 
+                removeUnnecessary(result); //To assure consistency, vertex cannot be eliminated because it affects indices so we eliminate 
edges 
+                return result; 
+ 
+        } 
+ 
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+        public static void removeUnnecessary(List<Constituent> result) { 
+                for(Constituent c: result) { 
+                        SemanticGraph semanticGraph = ((IndexedConstituent) c).getSemanticGraph(); 
+                        IndexedWord root = ((IndexedConstituent) c).getRoot(); 
+                        removeUnnecessary(semanticGraph, root); 
+                } 
+        } 
+ 
+        public static void removeUnnecessary(SemanticGraph semanticGraph, IndexedWord root) { 
+                List<SemanticGraphEdge> edges = semanticGraph.edgeListSorted(); 
+                Set<IndexedWord> descendants = semanticGraph.descendants(root); 
+                for(int i =0; i < edges.size(); i++) { 
+                        if(!descendants.contains(edges.get(i).getDependent()) || !descendants.contains(edges.get(i).getGovernor())) { 
+                                semanticGraph.removeEdge(edges.get(i)); 
+                                edges = semanticGraph.edgeListSorted(); 
+                                i--; 
+                        } 
+                } 
+        } 
+ 
+        // Process CCs by exploring the graph from one constituent and generating more constituents as 
+        // it encounters ccs 
+        private static void generateConstituents(SemanticGraph semanticGraph, Tree depTree, 
+                                                 IndexedConstituent constituent, IndexedWord root, List<Constituent> constituents, 
+                                                 boolean firstLevel, boolean processVerb, boolean completeProcess, Integer levels 
+                                                 ,IndexedWord clauseRoot, List<IndexedWord> roots) { 
+ 
+                if(clauseRoot != null && roots != null && !root.equals(clauseRoot) && roots.contains(root)) 
+                        return; 
+ 
+ 
+                if(levels != null && levels < 1) 
+                        return; 
+ 
+                List<SemanticGraphEdge> outedges = semanticGraph.getOutEdgesSorted(root); 
+                List<SemanticGraphEdge> conjunct = DpUtils.getEdges(outedges, 
+                                                                    EnglishGrammaticalRelations.COORDINATION); 
+ 
+                Boolean processCC = true; 
+                SemanticGraphEdge predet = null; 
+ 
+                //to avoid processing under certain circunstances must be design properly when final setup is decided 
+                if (conjunct != null && !conjunct.isEmpty()) { 
+                        for(SemanticGraphEdge edge: outedges) { 
+                                if(edge.getDependent().lemma().equals("between")) { 
+                                        processCC = false; 
+                                        break; 
+                                } 
+                        } 
+                        SemanticGraphEdge con = DpUtils.findFirstOfRelation(outedges, 
+                                                                            EnglishGrammaticalRelations.QUANTIFIER_MODIFIER); 
+                        if (con != null && con.getDependent().lemma().equals("between")) 
+                                processCC = false; 
+                        List<SemanticGraphEdge> inedg = semanticGraph 
+                                .getIncomingEdgesSorted(root); 
+                        SemanticGraphEdge pobj = DpUtils.findFirstOfRelation(inedg, 
+                                                                             EnglishGrammaticalRelations.PREPOSITIONAL_OBJECT); 
+                        // this wont work with collapsed dependencies 
+                        if (pobj != null && pobj.getGovernor().lemma().equals("between")) 
+                                processCC = false; 
+                        Collection<IndexedWord> sibs = null; 
+                        try { 
+                                sibs = semanticGraph.getSiblings(root); 
+                        } catch(Exception e) { 
+                                System.out.print(root.toString()); 
+                        } 
+                        for (IndexedWord sib : sibs) { 
+                                List<SemanticGraphEdge> insib = semanticGraph 
+                                        .getIncomingEdgesSorted(sib); 



 

     338

+                                predet = DpUtils.findFirstOfRelation(insib, 
+                                                                     EnglishGrammaticalRelations.PREDETERMINER); 
+                                if (predet == null) 
+                                        predet = DpUtils.findFirstOfRelation(insib, 
+                                                                             EnglishGrammaticalRelations.DETERMINER); 
+                                if (predet != null) 
+                                        break; 
+                        } 
+                } 
+ 
+ 
+                for (SemanticGraphEdge edge : outedges) { 
+                        // ClausIE requires this uncommented        if (DpUtils.isParataxis(edge) || DpUtils.isRcmod(edge) || 
DpUtils.isAppos(edge)  && !processVerb) //||(DpUtils.isDep(edge) && constituent.type.equals(Type.VERB) 
+                        //         continue;//to avoid processing relative clauses and appositions which are included as an independent 
clause in the clauses list of the sentence, also no dep in verbs are processed. To reproduce the results of the paper comment this line and 
eliminate the duplicate propositions that may be generated. 
+                        if (DpUtils.isAnyConj(edge) && processCC) { 
+ 
+ 
+                                if(roots != null&& roots.contains(edge.getDependent())) 
+                                        continue;; 
+ 
+ 
+                                boolean cont = false; 
+                                for(SemanticGraphEdge c : conjunct) { 
+                                        if(c.getDependent().lemma().equals("&") && nextToVerb(depTree, semanticGraph, root, edge.getDependent(), 
c.getDependent())) { 
+                                                //nextToVerb(depTree, root.index(), edge.getDependent().index(), c.getDependent().index())) { 
+                                                cont = true; 
+                                                break; 
+                                        } 
+                                } 
+ 
+                                if(cont) 
+                                        continue; 
+ 
+                                IndexedWord newRoot = edge.getDependent(); 
+                                if(predet != null && predet.getDependent().lemma().equals("both")) 
+                                        constituent.getExcludedVertexes().add(predet.getDependent()); 
+ 
+ 
+ 
+                                List<IndexedConstituent> newConstituents = new ArrayList<IndexedConstituent>(); 
+                                for(Constituent c : constituents) { 
+                                        
if(!((IndexedConstituent)c).getSemanticGraph().descendants(((IndexedConstituent)c).getSemanticGraph().getFirstRoot()).contains(root
)) 
+                                                continue; 
+ 
+ 
+                                        if(!containsDescendant(depTree, ((IndexedConstituent)c).getSemanticGraph(), semanticGraph, root, newRoot) && 
shareAllAncestors(semanticGraph, ((IndexedConstituent)c).getSemanticGraph(), root)) 
+                                                continue; 
+ 
+ 
+ 
+                                        IndexedConstituent newConstituent = ((IndexedConstituent) c).clone(); 
+                                        if (firstLevel) { 
+                                                newConstituent.setRoot(newRoot); 
+                                        } 
+                                        newConstituents.add(newConstituent); 
+                                } 
+ 
+                                boolean isTreeRoot = false; 
+                                //To process verbs if the main conj is the root of the graph 
+                                if(!semanticGraph.getRoots().contains(root)) { 
+                                        // Assign all the parents to the conjoint 
+                                        for(Constituent c: newConstituents) { 
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+                                                SemanticGraph newSemanticGraph = ((IndexedConstituent) c).getSemanticGraph(); 
+                                                Collection<IndexedWord> parents = newSemanticGraph.getParents(root); 
+                                                for (IndexedWord parent : parents) { 
+                                                        GrammaticalRelation reln = newSemanticGraph.reln(parent, root); 
+                                                        double weight = newSemanticGraph.getEdge(parent, root).getWeight(); 
+                                                        newSemanticGraph.addEdge(parent, newRoot, reln, weight, false); 
+                                                } 
+                                        } 
+                                        //To process verbs if the main conj is the root of the graph. Assign verb as new root of the graph, remove the 
oother 
+                                } else { 
+                                        isTreeRoot = true; 
+ 
+                                        for(IndexedConstituent c : newConstituents) { 
+                                                c.getSemanticGraph().setRoot(newRoot); 
+                                                c.setRoot(newRoot); 
+                                        } 
+ 
+ 
+                                } 
+ 
+ 
+ 
+ 
+                                // Checks if the children also belongs to the conjoint and if they do, it assignes 
+                                // them 
+                                for(Constituent c: newConstituents) { 
+                                        SemanticGraph newSemanticGraph = ((IndexedConstituent) c).getSemanticGraph(); 
+                                        List<SemanticGraphEdge> outed = newSemanticGraph.getOutEdgesSorted(root); 
+                                        for (SemanticGraphEdge ed : outed) { 
+                                                IndexedWord child = ed.getDependent(); 
+                                                if(DpUtils.isPredet(ed) && ed.getDependent().lemma().equals("both")) { //if it is one level down 
+                                                        for(Constituent cc: constituents) { 
+                                                                if(((IndexedConstituent) cc).getSemanticGraph().containsEdge(ed)) 
+                                                                        ((IndexedConstituent) cc).getSemanticGraph().removeEdge(ed); 
+                                                        } 
+                                                } else if (!DpUtils.isAnyConj(ed) && !DpUtils.isCc(ed) && !DpUtils.isPreconj(ed) 
+                                                           //  && isDescendant(depTree, newRoot.index(), root.index(), child.index())) { 
+                                                           && isDescendant(depTree, newSemanticGraph, newRoot, root, child)) { 
+                                                        GrammaticalRelation reln = newSemanticGraph.reln(root, child); 
+                                                        double weight = newSemanticGraph.getEdge(root, child).getWeight(); 
+                                                        newSemanticGraph.addEdge(newRoot, child, reln, weight, false); 
+ 
+                                                } 
+                                        } 
+                                } 
+ 
+ 
+ 
+ 
+ 
+ 
+                                // disconect the root of the conjoint from the new graph 
+                                for(Constituent c: newConstituents) { 
+                                        SemanticGraph newSemanticGraph = ((IndexedConstituent) c).getSemanticGraph(); 
+                                        List<SemanticGraphEdge> inedges = newSemanticGraph.getIncomingEdgesSorted(root); 
+                                        for (SemanticGraphEdge redge : inedges) 
+                                                newSemanticGraph.removeEdge(redge); 
+                                } 
+ 
+                                for(Constituent c: constituents) { 
+                                        ((IndexedConstituent) c).getSemanticGraph().removeEdge(edge); 
+                                } 
+ 
+                                if(isTreeRoot) { 
+                                        for(IndexedConstituent c : newConstituents) { 
+                                                c.getSemanticGraph().removeVertex(root); 
+                                        } 
+                                } 
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+ 
+                                constituents.addAll(newConstituents); 
+                                //    for(IndexedConstituent c: newConstituents) { 
+                                //    c.getSemanticGraph().prettyPrint(); 
+                                //  } 
+ 
+                                // It passes the constituent with the correct root, if it is the first level it 
+                                // should be the new constituent 
+ 
+                                if(levels != null) 
+                                        levels = levels -1; 
+ 
+                                if (firstLevel || completeProcess) { 
+                                        generateConstituents(((IndexedConstituent) newConstituents.get(0)).getSemanticGraph(), depTree, 
newConstituents.get(0), newRoot, 
+                                                             constituents, false, processVerb, completeProcess, levels, clauseRoot, roots); 
+                                } else { 
+                                        generateConstituents(((IndexedConstituent) newConstituents.get(0)).getSemanticGraph(), depTree, constituent, 
newRoot, 
+                                                             constituents, false, processVerb, completeProcess, levels, clauseRoot, roots); 
+                                } 
+ 
+ 
+ 
+                                // deletes the edge containing the conjunction e.g. and, or, but, etc 
+                        } else if ((DpUtils.isCc(edge) || DpUtils.isPreconj(edge))&& processCC && !edge.getDependent().lemma().equals("&")) { 
+                                for(Constituent c: constituents) { 
+                                        ((IndexedConstituent) c).getSemanticGraph().removeEdge(edge); 
+                                } 
+                        } else if(!DpUtils.isPredet(edge) && !constituent.excludedVertexes.contains(edge.getDependent())) 
+                                if(levels != null) 
+                                        levels = levels -1; 
+                        generateConstituents(semanticGraph, depTree, constituent, edge.getDependent(), 
+                                             constituents, false, processVerb, completeProcess, levels, clauseRoot, roots); 
+                } 
+ 
+        } 
+ 
+        private static boolean shareAllAncestors(SemanticGraph semanticGraph1, SemanticGraph semanticGraph2, IndexedWord root) { 
+ 
+                Set<IndexedWord> d2 = semanticGraph2.descendants(root); 
+                if(d2 == null || d2.isEmpty()) { 
+                        return false; 
+                } 
+ 
+                Set<IndexedWord> d1 = semanticGraph1.descendants(root); 
+ 
+                Set<IndexedWord> v1 = semanticGraph1.descendants(semanticGraph1.getFirstRoot()); //Assumes only one root, otherwhise 
one could delete the non used nodes and call vertexset 
+                Set<IndexedWord> v2 = semanticGraph2.descendants(semanticGraph2.getFirstRoot()); 
+ 
+                int asize1 = v1.size() - d1.size(); 
+                int asize2 = v2.size() - d2.size(); 
+ 
+                if(asize1 != asize2) 
+                        return false; 
+ 
+                for(IndexedWord v: v1) { 
+                        if(d1.contains(v)) 
+                                continue; 
+                        if(!v2.contains(v)) 
+                                return false; 
+                } 
+                return true; 
+        } 
+ 
+        private static boolean containsDescendant(Tree parse, SemanticGraph semanticGraphRoot, SemanticGraph semanticGraphNew, 
IndexedWord root, IndexedWord newRoot) { 
+                Set<IndexedWord> d1 = semanticGraphRoot.descendants(root); 
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+                Set<IndexedWord> d2 = semanticGraphNew.descendants(root); 
+ 
+                for(IndexedWord w: d1) { 
+                        //if(!d2.contains(w) && isDescendant(parse, newRoot.index(), root.index(), w.index()) ) 
+                        if(isDescendant(parse, semanticGraphRoot, newRoot, root, w)) 
+                                return true; 
+                } 
+ 
+                return false; 
+ 
+        } 
+ 
+ 
+ 
+        /** Checks if a node depending on one conjoint also depends to the other */ 
+        //"He buys and sells electronic products" "Is products depending on both sells and buys?" 
+        private static boolean isDescendant(Tree parse, int indexCheck, int indexPivot, 
+                                            int indexElement) { 
+                Tree pivot = parse.getLeaves().get(indexPivot - 1); // because tree parse indexing system 
+                // starts with 0 
+                Tree check = parse.getLeaves().get(indexCheck - 1); 
+                Tree element = parse.getLeaves().get(indexElement - 1); 
+ 
+                while ((!element.value().equals("ROOT"))) {// find a common parent between the head conjoint 
+                        // and the constituent of the element 
+                        if (element.pathNodeToNode(element, pivot) != null) // is this efficient enough? 
+                                break; 
+                        element = element.parent(parse); 
+                } 
+ 
+                List<Tree> path = element.pathNodeToNode(element, check); // find a path between the common 
+                // parent and the other conjoint 
+ 
+                if (path != null) 
+                        return true; 
+                else 
+                        return false; 
+        } 
+ 
+ 
+        /** Checks if a node depending on one conjoint also depends to the other */ 
+        //"He buys and sells electronic products" "Is products depending on both sells and buys?" 
+        public static boolean isDescendant(Tree parse, SemanticGraph semanticGraph, IndexedWord checkIW, IndexedWord pivotIW, 
+                                           IndexedWord elementIW) { 
+                Tree pivot = DpUtils.getNode(pivotIW, parse, semanticGraph); 
+                Tree check = DpUtils.getNode(checkIW, parse, semanticGraph); 
+                Tree element = DpUtils.getNode(elementIW, parse, semanticGraph); 
+ 
+                while ((!element.value().equals("ROOT"))) {// find a common parent between the head conjoint 
+                        // and the constituent of the element 
+                        if (element.pathNodeToNode(element, pivot) != null) // is this efficient enough? 
+                                break; 
+                        element = element.parent(parse); 
+                } 
+ 
+                List<Tree> path = element.pathNodeToNode(element, check); // find a path between the common 
+                // parent and the other conjoint 
+ 
+                if (path != null) 
+                        return true; 
+                else 
+                        return false; 
+        } 
+ 
+ 
+ 
+        /** Retrieves the heads of the clauses according to the CCs processing options. The result contains 
+         * verbs conjoined and a complement if it is conjoined with a verb.*/ 
+        public static List<IndexedWord> getIndexedWordsConj(SemanticGraph semanticGraph, Tree depTree, 
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+                                                            IndexedWord root, GrammaticalRelation rel, List<SemanticGraphEdge> toRemove, 
+                                                            Options option) { 
+                List<IndexedWord> ccs = new ArrayList<IndexedWord>(); // to store the conjoints 
+                ccs.add(root); 
+                List<SemanticGraphEdge> outedges = semanticGraph.outgoingEdgeList(root); 
+                for (SemanticGraphEdge edge : outedges) { 
+                        if (edge.getRelation().equals(rel)) { 
+                                List<SemanticGraphEdge> outed = semanticGraph 
+                                        .outgoingEdgeList(edge.getDependent()); 
+                                // first condition tests if verbs are involved in the conjoints. Conjunctions between complements are treated elsewhere. 
+                                boolean ccVerbs = edge.getDependent().tag().charAt(0) == 'V' 
+                                        || edge.getGovernor().tag().charAt(0) == 'V'; 
+                                //This condition will check if there is a cop conjoined with a verb 
+                                boolean ccCop = DpUtils.findFirstOfRelationOrDescendent(outed, 
+                                                                                        EnglishGrammaticalRelations.COPULA) != null; 
+                                // this condition checks if there are two main clauses conjoined by the CC 
+                                boolean ccMainClauses = DpUtils.findFirstOfRelationOrDescendent(outed, 
+                                                                                                EnglishGrammaticalRelations.SUBJECT) != null ||  
DpUtils.findFirstOfRelationOrDescendent(outed, 
+                                                                                                                                                                                         
EnglishGrammaticalRelations.EXPLETIVE) != null; 
+ 
+                                // This flag will check if the cc should be processed according to the flag and the 
+                                // shared elements. 
+                                boolean notProcess = !option.processCcAllVerbs && outed.isEmpty() 
+                                        && shareAll(outedges, depTree, semanticGraph, root, edge.getDependent()); 
+ 
+                                if ((ccVerbs || ccCop) && !ccMainClauses && !notProcess) { 
+                                        ccs.add(edge.getDependent()); 
+                                } 
+ 
+                                // Disconnects the conjoints. Independent clauses are always disconnected. 
+                                if (((ccVerbs || ccCop) && !notProcess) || ccMainClauses) { 
+                                        toRemove.add(edge); 
+ 
+                                        //To remove the coordination 
+                                        if (option.processCcAllVerbs || !notProcess) { 
+                                                List<SemanticGraphEdge> conjunct = DpUtils.getEdges(outedges, 
+                                                                                                    EnglishGrammaticalRelations.COORDINATION); 
+                                                for (SemanticGraphEdge e : conjunct) { 
+                                                        if (e.getDependent().index() > edge.getDependent().index()) 
+                                                                continue; 
+                                                        if (nextToVerb(depTree, semanticGraph, root, edge.getDependent(), e.getDependent())) { 
+//                              nextToVerb(depTree, root.index(), edge.getDependent().index(), e 
+//                                    .getDependent().index())) { 
+                                                                toRemove.add(e); 
+                                                                break; 
+                                                        } 
+                                                } 
+                                        } 
+                                } 
+                        } 
+                } 
+                if(ccs.size() > 1) 
+                        rewriteGraph(semanticGraph, depTree, ccs); 
+                return ccs; 
+        } 
+ 
+        /** Rewrites the graph so that each conjoint is independent from each other. 
+         * They will be disconnected and each dependent correspondignly assigned */ 
+        private static void rewriteGraph(SemanticGraph semanticGraph, Tree depTree, 
+                                         List<IndexedWord> ccs) { 
+ 
+                for(int i = 0; i < ccs.size(); i++) { 
+                        for(int j = i + 1; j < ccs.size(); j++) { 
+                                //Connect each node in ccs to its parent 
+                                for (SemanticGraphEdge ed : semanticGraph.getIncomingEdgesSorted(ccs.get(i))) { 
+                                        if(semanticGraph.getParents(ccs.get(j)).contains(ed.getGovernor())) continue; 
+                                        semanticGraph.addEdge(ed.getGovernor(), ccs.get(j), ed.getRelation(), ed.getWeight(), false); 
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+                                } 
+ 
+                                //Check if the dependents of the main conjoint are also dependent on each of the conjoints 
+                                // and assign them in each case. 
+                                for (SemanticGraphEdge ed : semanticGraph.getOutEdgesSorted(ccs.get(i))) { 
+                                        IndexedWord child = ed.getDependent(); 
+                                        if(semanticGraph.getChildren(ccs.get(j)).contains(child)) continue; 
+                                        if (!DpUtils.isAnyConj(ed) && !DpUtils.isCc(ed) 
+                                            //&& isDescendant(depTree, ccs.get(j).index(), ccs.get(i).index(), child.index())) { 
+                                            && isDescendant(depTree, semanticGraph, ccs.get(j), ccs.get(i), child)) { 
+                                                semanticGraph.addEdge(ccs.get(j), child, ed.getRelation(), ed.getWeight(), false); 
+                                        } 
+                                } 
+ 
+                        } 
+                } 
+        } 
+ 
+ 
+        private static boolean nextToVerb(Tree depTree, SemanticGraph semanticGraph, IndexedWord firstVerb, IndexedWord 
secondVerb, IndexedWord conj) { 
+                Tree fverb = DpUtils.getNode(firstVerb, depTree, semanticGraph); 
+                Tree sverb = DpUtils.getNode(secondVerb, depTree, semanticGraph); 
+                Tree conjv = DpUtils.getNode(conj, depTree, semanticGraph); 
+ 
+                // This will lead us to the level in the tree we want to compare 
+                conjv = conjv.parent(depTree); 
+ 
+ 
+                List<Tree> siblings = conjv.siblings(depTree); 
+                Tree[] children = conjv.parent(depTree).children(); 
+                if (children.length == 0) 
+                        return false; 
+ 
+                // This will give the node of the conjoint dominating the coordination 
+                while (!siblings.contains(fverb)) { 
+                        fverb = fverb.parent(depTree); 
+                        if (fverb.equals(depTree)) 
+                                return false; 
+                } 
+ 
+                // same for the other conjoint 
+                while (!siblings.contains(sverb)) { 
+                        sverb = sverb.parent(depTree); 
+                        if (sverb.equals(depTree)) 
+                                return false; 
+                } 
+ 
+                Integer fv = null; 
+                Integer sv = null; 
+ 
+                // This will take the indexes of the nodes dominating the conjoint 
+                for (int i = 0; i < children.length; i++) { 
+                        if (children[i].equals(fverb)) 
+                                fv = i; 
+                        else if (children[i].equals(sverb)) 
+                                sv = i; 
+                        if (fv != null & sv != null) 
+                                break; 
+                } 
+ 
+ 
+                // This will check if they are continuous 
+                if(fv == null || sv == null) 
+                        return false; 
+                //Assumes that the minimum distance between adjacent conjoints is 2 in the most usual case---> a,b,c and d 
+                //It is <= 3 to work in the case a,b,c,and, d In the last one the distance is 3. 
+                else if (sv - fv <= 3) 
+                        return true; 
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+ 
+                else 
+                        return false; 
+ 
+        } 
+ 
+        /** Checks if two nodes are conjoined by a given conjunction */ 
+        private static boolean nextToVerb(Tree depTree, int firstVerb, int secondVerb, int conj) { 
+                Tree fverb = depTree.getLeaves().get(firstVerb - 1); 
+                Tree sverb = depTree.getLeaves().get(secondVerb - 1); 
+                Tree conjv = depTree.getLeaves().get(conj - 1); 
+ 
+                // This will lead us to the level in the tree we want to compare 
+                conjv = conjv.parent(depTree); 
+ 
+ 
+                List<Tree> siblings = conjv.siblings(depTree); 
+                Tree[] children = conjv.parent(depTree).children(); 
+                if (children.length == 0) 
+                        return false; 
+ 
+                // This will give the node of the conjoint dominating the coordination 
+                while (!siblings.contains(fverb)) { 
+                        fverb = fverb.parent(depTree); 
+                        if (fverb.equals(depTree)) 
+                                return false; 
+                } 
+ 
+                // same for the other conjoint 
+                while (!siblings.contains(sverb)) { 
+                        sverb = sverb.parent(depTree); 
+                        if (sverb.equals(depTree)) 
+                                return false; 
+                } 
+ 
+                Integer fv = null; 
+                Integer sv = null; 
+ 
+                // This will take the indexes of the nodes dominating the conjoint 
+                for (int i = 0; i < children.length; i++) { 
+                        if (children[i].equals(fverb)) 
+                                fv = i; 
+                        else if (children[i].equals(sverb)) 
+                                sv = i; 
+                        if (fv != null & sv != null) 
+                                break; 
+                } 
+ 
+ 
+                // This will check if they are continuous 
+                if(fv == null || sv == null) 
+                        return false; 
+                //Assumes that the minimum distance between adjacent conjoints is 2 in the most usual case---> a,b,c and d 
+                //It is <= 3 to work in the case a,b,c,and, d In the last one the distance is 3. 
+                else if (sv - fv <= 3) 
+                        return true; 
+ 
+        else 
+            return false; 
+ 
+    } 
+ 
+    /** Checks if two conjoints verbs share all dependents */ 
+    private static boolean shareAll(List<SemanticGraphEdge> outedges, Tree depTree, SemanticGraph semanticGraph, 
+            IndexedWord root, IndexedWord conj) { 
+        for (SemanticGraphEdge edge : outedges) { 
+            if (DpUtils.isAnySubj(edge) || edge.getDependent().equals(conj)) 
+                continue; 
+           // else if (!isDescendant(depTree, conj.index(), root.index(), edge.getDependent() 
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+           //         .index())) 
+            else if(isDescendant(depTree, semanticGraph, conj, root, edge.getDependent())) 
+                return false; 
+        } 
+ 
+        return true; 
+    } 
+ 
+} 
diff --git a/src/clausie/Proposition.java b/src/clausie/Proposition.java 
new file mode 100644 
index 0000000..3aa2653 
--- /dev/null 
+++ b/src/clausie/Proposition.java 
@@ -0,0 +1,127 @@ 
+package clausie; 
+ 
+import java.util.ArrayList; 
+import java.util.HashSet; 
+import java.util.List; 
+import java.util.Set; 
+ 
+/** 
+ * Stores a proposition. 
+ * 
+ * @date $LastChangedDate: 2014-05-20 15:17:22 +0200 (Tue, 20 May 2014) $ 
+ * @version $LastChangedRevision: 1601 $ 
+ */ 
+public class Proposition { 
+ 
+ /** Constituents of the proposition */ 
+ public List<String> constituents = new ArrayList<String>(); 
+ 
+ /** Position of optional constituents */ 
+ Set<Integer> optional = new HashSet<Integer>(); 
+ 
+ // TODO: types of constituents (e.g., optionality) 
+ // sentence ID etc. 
+ 
+ public Proposition() { 
+ } 
+ 
+ /** Returns the subject of the proposition */ 
+ public String subject() { 
+  return constituents.get(0); 
+ } 
+ 
+ /** Returns the relation of the proposition */ 
+ public String relation() { 
+  return constituents.get(1); 
+ } 
+ 
+ /** 
+  * Returns a constituent in a given position <br> 
+  * SVO => i=0 is O 
+  */ 
+ public String argument(int i) { 
+  return constituents.get(i + 2); 
+ } 
+ 
+ /** Returns the number of arguments */ 
+ public int noArguments() { 
+  return constituents.size() - 2; 
+ } 
+ 
+ /** Checks if an argument is optional */ 
+ public boolean isOptionalArgument(int i) { 
+  return optional.contains(i + 2); 
+ } 
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+ 
+ /** 
+  * SVO => i=0 is S, i=1 is V, ... 
+  * @return 
+  */ 
+ public List<String> getConstituents() { 
+  return constituents; 
+ } 
+ 
+ public void setConstituents(List<String> constituents) { 
+  this.constituents = constituents; 
+ } 
+ 
+ @Override 
+ public String toString() { 
+  StringBuffer sb = new StringBuffer(); 
+  String sep = "("; 
+  for (int i = 0; i < constituents.size(); i++) { 
+   String constituent = constituents.get(i); 
+   sb.append(sep); 
+   sep = ", "; 
+   sb.append("\""); 
+   sb.append(constituent); 
+   sb.append("\""); 
+   if (optional.contains(i)) { 
+    sb.append("?"); 
+   } 
+  } 
+  sb.append(")"); 
+  return sb.toString(); 
+ } 
+ 
+ @Override 
+ public int hashCode() { 
+  final int prime = 31; 
+  int result = 1; 
+  result = prime * result 
+    + ((constituents == null) ? 0 : constituents.hashCode()); 
+  result = prime * result 
+    + ((optional == null) ? 0 : optional.hashCode()); 
+  return result; 
+ } 
+ 
+ @Override 
+ public boolean equals(Object obj) { 
+  if (this == obj) 
+   return true; 
+  if (obj == null) 
+   return false; 
+  if (getClass() != obj.getClass()) 
+   return false; 
+  Proposition other = (Proposition) obj; 
+  if (constituents == null) { 
+   if (other.constituents != null) 
+    return false; 
+  } else if (!constituents.equals(other.constituents)) 
+   return false; 
+  if (optional == null) { 
+   if (other.optional != null) 
+    return false; 
+  } else if (!optional.equals(other.optional)) 
+   return false; 
+  return true; 
+ } 
+ 
+ @Override 
+ public Proposition clone() { 
+  Proposition clone = new Proposition(); 
+  clone.constituents = new ArrayList<String>(this.constituents); 
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+  clone.optional = new HashSet<Integer>(this.optional); 
+  return clone; 
+ } 
+} 
diff --git a/src/clausie/PropositionGenerator.java b/src/clausie/PropositionGenerator.java 
new file mode 100644 
index 0000000..f220fc8 
--- /dev/null 
+++ b/src/clausie/PropositionGenerator.java 
@@ -0,0 +1,108 @@ 
+package clausie; 
+ 
+import java.util.Collection; 
+import java.util.Collections; 
+import java.util.HashSet; 
+import java.util.List; 
+import java.util.Set; 
+import java.util.TreeSet; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.trees.EnglishGrammaticalRelations; 
+import edu.stanford.nlp.trees.GrammaticalRelation; 
+ 
+/** Handles the generation of propositions out of a given clause 
+ * 
+ * @date $ $ 
+ * @version $ $ */ 
+public abstract class PropositionGenerator { 
+ 
+        Options options; 
+ 
+        /** Relations to be excluded in every constituent of a clause except the verb */ 
+        protected static final Set<GrammaticalRelation> EXCLUDE_RELATIONS; 
+ 
+        /** Relations to be excluded in the verb */ 
+        protected static final Set<GrammaticalRelation> EXCLUDE_RELATIONS_VERB; 
+ 
+        static { 
+                EXCLUDE_RELATIONS = new HashSet<GrammaticalRelation>(); 
+                EXCLUDE_RELATIONS.add(EnglishGrammaticalRelations.RELATIVE_CLAUSE_MODIFIER); 
+                EXCLUDE_RELATIONS.add(EnglishGrammaticalRelations.APPOSITIONAL_MODIFIER); 
+                EXCLUDE_RELATIONS.add(EnglishGrammaticalRelations.PARATAXIS); 
+ 
+                EXCLUDE_RELATIONS_VERB = new HashSet<GrammaticalRelation>(); 
+                EXCLUDE_RELATIONS_VERB.addAll(EXCLUDE_RELATIONS); 
+                EXCLUDE_RELATIONS_VERB.add(EnglishGrammaticalRelations.valueOf("dep")); //without this asome adverbs or auxiliaries 
will end up in the relation 
+        } 
+ 
+        /** Constructs a proposition generator*/ 
+        public PropositionGenerator(Options options) { 
+                this.options = options; 
+        } 
+ 
+        /** Generates propositions for a given clause*/ 
+        public abstract void generate(List<Proposition> result, Clause clause, List<Boolean> include); 
+ 
+        /** Generates a textual representation of a given constituent plus a set of words*/ 
+        private String generatePhrase(IndexedConstituent constituent, Collection<IndexedWord> words) { 
+                StringBuffer result = new StringBuffer(); 
+                String separator = ""; 
+                result.append(separator); 
+                if (constituent.isPrepositionalPhrase()) { 
+                        if (options.lemmatize) { 
+                                result.append(constituent.getRoot().lemma()); 
+                        } else { 
+                                result.append(constituent.getRoot().word()); 
+                        } 
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+                        separator = " "; 
+                } 
+ 
+                for (IndexedWord word : words) { 
+                        result.append(separator); 
+                        if (options.lemmatize) { 
+                                result.append(word.lemma()); 
+                        } else { 
+                                result.append(word.word()); 
+                        } 
+                        separator = " "; 
+                } 
+                return result.toString(); 
+        } 
+ 
+        /** Generates a textual representation of a given constituent in a given clause*/ 
+        public String generate(Clause clause, int constituentIndex) { 
+                Set<GrammaticalRelation> excludeRelations = EXCLUDE_RELATIONS; 
+                if (clause.getVerb() == constituentIndex) { 
+                        excludeRelations = EXCLUDE_RELATIONS_VERB; 
+                } 
+                return generate(clause, constituentIndex, excludeRelations, 
+                                Collections.<GrammaticalRelation> emptySet()); 
+        } 
+ 
+        /** Generates a textual representation of a given constituent in a given clause*/ 
+        public String generate(Clause clause, int constituentIndex, 
+                               Collection<GrammaticalRelation> excludeRelations, 
+                               Collection<GrammaticalRelation> excludeRelationsTop) { 
+                Constituent constituent = clause.getConstituents().get(constituentIndex); 
+                if (constituent instanceof TextConstituent) { 
+                        return ((TextConstituent) constituent).text(); 
+                } else if (constituent instanceof IndexedConstituent) { 
+                        IndexedConstituent iconstituent = (IndexedConstituent) constituent; 
+                        SemanticGraph subgraph = iconstituent.createReducedSemanticGraph(); 
+                        DpUtils.removeEdges(subgraph, iconstituent.getRoot(), 
+                    excludeRelations, excludeRelationsTop); 
+            Set<IndexedWord> words = new TreeSet<IndexedWord>( 
+                    subgraph.descendants(iconstituent.getRoot())); 
+            for (IndexedWord v : iconstituent.getAdditionalVertexes()) { 
+                words.addAll(subgraph.descendants(v)); 
+            } 
+            if (iconstituent.isPrepositionalPhrase()) 
+                words.remove(iconstituent.getRoot()); 
+            return generatePhrase(iconstituent, words); 
+        } else { 
+            throw new IllegalArgumentException(); 
+        } 
+    } 
+} 
diff --git a/src/clausie/RelativeClauseIndexedConstituent.java b/src/clausie/RelativeClauseIndexedConstituent.java 
new file mode 100644 
index 0000000..c24e59a 
--- /dev/null 
+++ b/src/clausie/RelativeClauseIndexedConstituent.java 
@@ -0,0 +1,49 @@ 
+package clausie; 
+ 
+import java.util.List; 
+import java.util.Set; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+ 
+public class RelativeClauseIndexedConstituent extends IndexedConstituent { 
+ 
+private List<Clause> clauses; 
+ 
+ 



 

     349

+        private RelativeClauseIndexedConstituent() { 
+ 
+        } 
+ 
+ 
+        public RelativeClauseIndexedConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                                Type type, List<Clause> clauses) { 
+                super(semanticGraph, root, type); 
+                this.setClauses(clauses); 
+        } 
+ 
+ 
+        public RelativeClauseIndexedConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                                Set<IndexedWord> additionalVertexes, 
+                                                Set<IndexedWord> excludedVertexes, Type type, List<Clause> clauses) { 
+                super(semanticGraph, root, additionalVertexes, excludedVertexes, type); 
+                this.setClauses(clauses); 
+        } 
+ 
+        /** Returns the clauses derived from the constituent. */ 
+        public List<Clause> getClauses() { 
+                return clauses; 
+        } 
+ 
+        /** Sets the clauses derived from the constituent. */ 
+        public void setClauses(List<Clause> clauses) { 
+                this.clauses = clauses; 
+        } 
+ 
+ 
+ public static void main(String[] args) { 
+  // TODO Auto-generated method stub 
+ 
+ } 
+ 
+} 
diff --git a/src/clausie/StructuredConstituent.java b/src/clausie/StructuredConstituent.java 
new file mode 100644 
index 0000000..3e0c452 
--- /dev/null 
+++ b/src/clausie/StructuredConstituent.java 
@@ -0,0 +1,187 @@ 
+package clausie; 
+ 
+import java.util.ArrayList; 
+import java.util.List; 
+import java.util.Set; 
+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.semgraph.SemanticGraphEdge; 
+ 
+public class StructuredConstituent extends IndexedConstituent { 
+ 
+        List<Constituent> constituents = new ArrayList<Constituent>(); 
+ 
+        private Integer mark = null; 
+ 
+        private Integer aux = null; 
+ 
+        List<Integer> senses = new ArrayList<Integer>(); 
+ 
+        List<Integer> prepPhrases = new ArrayList<Integer>(); 
+ 
+        List<Integer> xcomp = new ArrayList<Integer>(); 
+ 
+        List<Integer> advcl = new ArrayList<Integer>(); 
+ 
+        List<Integer> advmods = new ArrayList<Integer>(); 
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+ 
+        private List<Integer> amods = new ArrayList<Integer>(); 
+ 
+        private List<Integer> nn = new ArrayList<Integer>(); 
+ 
+        List<Integer> appos = new ArrayList<Integer>(); 
+ 
+        List<Integer> conj = new ArrayList<Integer>(); 
+ 
+        List<Integer> infmod = new ArrayList<Integer>(); 
+ 
+        List<Integer> partmod = new ArrayList<Integer>(); 
+ 
+        List<Integer> rcmod = new ArrayList<Integer>(); 
+ 
+        private List<Integer> subjects = new ArrayList<Integer>(); 
+ 
+        private List<Integer> ccomp = new ArrayList<Integer>(); 
+ 
+ 
+        public StructuredConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                     Type type) { 
+                super(semanticGraph, root, type); 
+        } 
+        /** Constructs a new indexed constituent for any noun-phrase relation. 
+         * 
+         * @param semanticGraph Semantic graph for this constituent ({@see #semanticGraph}) 
+         * @param root The root vertex of this constituent ({@see {@link #root}) 
+         * @param additionalVertexes Additional root vertexes that form this constituent ({@see 
+         *            {@link #additionalVertexes}) 
+         * @param excludedVertexes Vertexes that are excluded from this constituent ({@see 
+         *            {@link #excludedVertexes}) 
+         * @param type type of this constituent 
+         * * @param clauses derived from this constituent*/ 
+        public StructuredConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                     Set<IndexedWord> additionalVertexes, 
+                                     Set<IndexedWord> excludedVertexes, Type type) { 
+                super(semanticGraph, root, additionalVertexes, excludedVertexes, type); 
+        } 
+ 
+ 
+ 
+        public StructuredConstituent build() { 
+                List<SemanticGraphEdge> edges = semanticGraph.outgoingEdgeList(root); 
+                for(SemanticGraphEdge edge: edges) { 
+                        if(DpUtils.isAnyPrep(edge)) { 
+                                getConstituents().add(new PrepositionalPhraseIndexedConstituent(semanticGraph, edge.getDependent(), 
null).build()); 
+                                getPrepPhrases().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAdvmod(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                advmods.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAMod(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                getAmods().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isNN(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                getNn().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAppos(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                appos.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAnyConj(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                conj.add(getConstituents().size() - 1); 
+                                //} else if(DpUtils.isInfmod(edge)) { 
+                                // getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                // infmod.add(getConstituents().size() - 1); 
+                                //} else if(DpUtils.isPartMod(edge)) { 
+                                // getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
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+                                // partmod.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isRcmod(edge)) { 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                rcmod.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAdvcl(edge)) { 
+                                //anothe clause check 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                advcl.add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isMark(edge)) { 
+                                //anothe clause check 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                setMark(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAux(edge)) { 
+                                //anothe clause check 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                setAux(getConstituents().size() - 1); 
+                        } else if(DpUtils.isAnySubj(edge)) { 
+                                //anothe clause check 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                getSubjects().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isCcomp(edge)) { 
+                                //anothe clause check 
+                                getConstituents().add(new IndexedConstituent(semanticGraph, edge.getDependent(), null)); 
+                                getCcomp().add(getConstituents().size() - 1); 
+                        } else if(DpUtils.isXcomp(edge)) { 
+                                //anothe clause check 
+                                getConstituents().add(new StructuredConstituent(semanticGraph, edge.getDependent(), null).build()); 
+                                getXcomps().add(getConstituents().size() - 1); 
+                        } 
+                } 
+                return this; 
+        } 
+ 
+ public List<Integer> getPrepPhrases() { 
+  return prepPhrases; 
+ } 
+ 
+ 
+ public void setPrepPhrases(List<Integer> prepPhrases) { 
+  this.prepPhrases = prepPhrases; 
+ } 
+ 
+ 
+ public List<Constituent> getConstituents() { 
+  return constituents; 
+ } 
+ 
+ 
+ public void setConstituents(List<Constituent> constituents) { 
+  this.constituents = constituents; 
+ } 
+ public List<Integer> getNn() { 
+  return nn; 
+ } 
+ public void setNn(List<Integer> nn) { 
+  this.nn = nn; 
+ } 
+ public List<Integer> getAmods() { 
+  return amods; 
+ } 
+ public void setAmods(List<Integer> amods) { 
+  this.amods = amods; 
+ } 
+ public Integer getMark() { 
+  return mark; 
+ } 
+ public void setMark(Integer mark) { 
+  this.mark = mark; 
+ } 
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+ public Integer getAux() { 
+  return aux; 
+ } 
+ public void setAux(Integer aux) { 
+  this.aux = aux; 
+ } 
+ public List<Integer> getSubjects() { 
+  return subjects; 
+ } 
+ public void setSubjects(List<Integer> subjects) { 
+  this.subjects = subjects; 
+ } 
+ public List<Integer> getCcomp() { 
+  return ccomp; 
+ } 
+ public List<Integer> getXcomps() { 
+  return xcomp; 
+ } 
+ public void setCcomp(List<Integer> ccomp) { 
+  this.ccomp = ccomp; 
+ } 
+ 
+} 
diff --git a/src/clausie/TextConstituent.java b/src/clausie/TextConstituent.java 
new file mode 100644 
index 0000000..a2fcb36 
--- /dev/null 
+++ b/src/clausie/TextConstituent.java 
@@ -0,0 +1,28 @@ 
+package clausie; 
+ 
+ 
+/** A textual expression of a constituent. The constituent is represented as a plain string 
+ *  without identifying its internal structure 
+ * 
+ * @date $ $ 
+ * @version $ $ */ 
+public class TextConstituent extends Constituent { 
+        String text; 
+ 
+ /** Constructs a constituent with a specified textual representation and type. */ 
+ public TextConstituent(String text, Type type) { 
+  super(type); 
+  this.text = text; 
+ } 
+ 
+ /** Returns a textual representation of the constituent. */ 
+ public String text() { 
+  return text; 
+ } 
+ 
+ /** Returns a textual representation of the constituent. */ 
+ public String rootString() { 
+  return text; 
+ } 
+ 
+} 
diff --git a/src/clausie/XcompConstituent.java b/src/clausie/XcompConstituent.java 
new file mode 100644 
index 0000000..6e4dceb 
--- /dev/null 
+++ b/src/clausie/XcompConstituent.java 
@@ -0,0 +1,71 @@ 
+package clausie; 
+ 
+import java.util.ArrayList; 
+import java.util.List; 
+import java.util.Set; 
+import java.util.TreeSet; 
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+ 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+ 
+ 
+/** An {@code XcompConstituent} of a clause formed out of an xcomp. 
+ * 
+ * Note that the xcomp relation refers to a clause with an external subject. 
+ * The constituent stores the set of clauses that can be derived from the xcomp 
+ * clause. 
+ * 
+ * @date $LastChangedDate: 2013-04-23 00:04:28 +0200 (Tue, 23 Apr 2013) $ 
+ * @version $LastChangedRevision: 734 $ */ 
+public class XcompConstituent extends StructuredConstituent { 
+ 
+        /** Clauses derived from this constituent */ 
+        private List<Clause> clauses; 
+ 
+        /** Constructs a new constituent for the xcomp relation. 
+         * 
+         * @param semanticGraph Semantic graph for this constituent ({@see #semanticGraph}) 
+         * @param root The root vertex of this constituent ({@see {@link #root}) 
+         * @param type type of this constituent 
+         * @param clauses derived from this constituent*/ 
+        public XcompConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                Type type, List<Clause> clauses) { 
+                super(semanticGraph, root, type); 
+                this.setClauses(clauses); 
+        } 
+        /** Constructs a new indexed constituent for the xcomp relation. 
+         * 
+         * @param semanticGraph Semantic graph for this constituent ({@see #semanticGraph}) 
+         * @param root The root vertex of this constituent ({@see {@link #root}) 
+         * @param additionalVertexes Additional root vertexes that form this constituent ({@see 
+         *            {@link #additionalVertexes}) 
+         * @param excludedVertexes Vertexes that are excluded from this constituent ({@see 
+         *            {@link #excludedVertexes}) 
+         * @param type type of this constituent 
+         * * @param clauses derived from this constituent*/ 
+        public XcompConstituent(SemanticGraph semanticGraph, IndexedWord root, 
+                                Set<IndexedWord> additionalVertexes, 
+                                Set<IndexedWord> excludedVertexes, Type type, List<Clause> clauses) { 
+                super(semanticGraph, root, additionalVertexes, excludedVertexes, type); 
+                this.setClauses(clauses); 
+        } 
+ 
+        /** Returns the clauses derived from the constituent. */ 
+        public List<Clause> getClauses() { 
+                return clauses; 
+        } 
+ 
+        /** Sets the clauses derived from the constituent. */ 
+        public void setClauses(List<Clause> clauses) { 
+                this.clauses = clauses; 
+        } 
+ 
+        @Override 
+        public XcompConstituent clone() { 
+                XcompConstituent clone = new XcompConstituent(semanticGraph, root, type, clauses); 
+                return clone; 
+        } 
+ 
+ 
+ 
+} 
diff --git a/src/edu/stanford/nlp/ling/AnnotationLookup.java b/src/edu/stanford/nlp/ling/AnnotationLookup.java 
index 2cb96ed..1cde937 100644 
--- a/src/edu/stanford/nlp/ling/AnnotationLookup.java 
+++ b/src/edu/stanford/nlp/ling/AnnotationLookup.java 
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@@ -71,6 +71,10 @@ public class AnnotationLookup { 
     SECTIONID_KEY(CoreAnnotations.SectionIDAnnotation.class,"sectionID"), 
     SECTIONDATE_KEY(CoreAnnotations.SectionDateAnnotation.class,"sectionDate"), 
  
+    DF_TYPE_KEY(CoreAnnotations.DFTypeAnnotation.class, "df-type"), 
+    DF_TYPE_ID_KEY(CoreAnnotations.DFTypeIDAnnotation.class, "df-type-id"), 
+    MENTION_KEY(CoreAnnotations.MentionAnnotation.class, "mention"), 
+ 
     // Thang Sep13: for Genia NER 
     HEAD_KEY(CoreAnnotations.HeadWordStringAnnotation.class, "head"), 
     GOVERNOR_KEY(CoreAnnotations.GovernorAnnotation.class, "governor"), 
diff --git a/src/edu/stanford/nlp/ling/CoreAnnotations.java b/src/edu/stanford/nlp/ling/CoreAnnotations.java 
index f43e816..1a3edc1 100644 
--- a/src/edu/stanford/nlp/ling/CoreAnnotations.java 
+++ b/src/edu/stanford/nlp/ling/CoreAnnotations.java 
@@ -1666,4 +1666,24 @@ public class CoreAnnotations { 
   public static class LabelIDAnnotation implements CoreAnnotation<Integer>{ 
     public Class<Integer> getType() { return Integer.class; } 
   } 
+ 
+ 
+  public static class DFTypeAnnotation implements CoreAnnotation<String> { 
+    public Class<String> getType() { 
+      return String.class; 
+    } 
+  } 
+ 
+  public static class DFTypeIDAnnotation implements CoreAnnotation<String> { 
+    public Class<String> getType() { 
+      return String.class; 
+    } 
+  } 
+ 
+  public static class MentionAnnotation implements CoreAnnotation<String> { 
+    public Class<String> getType() { 
+      return String.class; 
+    } 
+  } 
+ 
 } 
diff --git a/src/edu/stanford/nlp/pipeline/Annotator.java b/src/edu/stanford/nlp/pipeline/Annotator.java 
index 58cb952..5281eda 100644 
--- a/src/edu/stanford/nlp/pipeline/Annotator.java 
+++ b/src/edu/stanford/nlp/pipeline/Annotator.java 
@@ -6,17 +6,17 @@ import java.util.Collections; 
 import java.util.Set; 
  
 /** 
- * This is an interface for adding annotations to a partially annotated 
- * Annotation.  In some ways, it is just a glorified function, except 
- * that it explicitly operates in-place on Annotation objects.  Annotators 
+ * This is an interface for adding annotations to a fully annotated 
+ * Annotation.  In some ways, it is just a glorified Function, except 
+ * that it explicitly operates on Annotation objects.  Annotators 
  * should be given to an AnnotationPipeline in order to make 
  * annotation pipelines (the whole motivation of this package), and 
  * therefore implementers of this interface should be designed to play 
  * well with other Annotators and in their javadocs they should 
  * explicitly state what annotations they are assuming already exist 
- * in the annotation (like parse, POS tag, etc), what keys they are 
- * expecting them under (see, for instance, the ones in CoreAnnotations), 
- * and what annotations they will add (or modify) and the keys 
+ * in the annotation (like parse, POS tag, etc), what field they are 
+ * expecting them under (Annotation.WORDS_KEY, Annotation.PARSE_KEY, 
+ * etc) and what annotations they will add (or modify) and the keys 
  * for them as well.  If you would like to look at the code for a 
  * relatively simple Annotator, I recommend NERAnnotator.  For a lot 
  * of code you could just add the implements directly, but I recommend 
@@ -40,7 +40,7 @@ public interface Annotator { 
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   /** 
    * Given an Annotation, perform a task on this Annotation. 
    */ 
-  void annotate(Annotation annotation); 
+  public void annotate(Annotation annotation) ; 
  
   /** 
    * The Requirement is a general way of describing the pre and post 
@@ -55,14 +55,14 @@ public interface Annotator { 
    * <br> 
    * We do nothing to override the equals or hashCode methods.  This 
    * means that two Requirements are equal iff they are the same 
-   * object.  We do not want to use {@code name} to decide 
+   * object.  We do not want to use <code>name</code> to decide 
    * equality because a subclass that uses more information, such as 
    * the particular kind of tsurgeon used in a hypothetical 
    * TsurgeonAnnotator, cannot use a stricter equals() than the 
    * superclass.  It is hard to get stricter than ==. 
    */ 
-  class Requirement { 
-    private final String name; 
+  public class Requirement { 
+    public final String name; 
     public Requirement(String name) { 
       this.name = name; 
     } 
@@ -76,57 +76,57 @@ public interface Annotator { 
    * Returns a set of requirements for which tasks this annotator can 
    * provide.  For example, the POS annotator will return "pos". 
    */ 
-  Set<Requirement> requirementsSatisfied(); 
+  public Set<Requirement> requirementsSatisfied(); 
  
   /** 
    * Returns the set of tasks which this annotator requires in order 
    * to perform.  For example, the POS annotator will return 
    * "tokenize", "ssplit". 
    */ 
-  Set<Requirement> requires(); 
+  public Set<Requirement> requires(); 
  
   /** 
    * These are annotators which StanfordCoreNLP knows how to create. 
    * Add new annotators and/or annotators from other groups here! 
    */ 
-  String STANFORD_TOKENIZE = "tokenize"; 
-  String STANFORD_CLEAN_XML = "cleanxml"; 
-  String STANFORD_SSPLIT = "ssplit"; 
-  String STANFORD_POS = "pos"; 
-  String STANFORD_LEMMA = "lemma"; 
-  String STANFORD_NER = "ner"; 
-  String STANFORD_REGEXNER = "regexner"; 
-  String STANFORD_ENTITY_MENTIONS = "entitymentions"; 
-  String STANFORD_GENDER = "gender"; 
-  String STANFORD_TRUECASE = "truecase"; 
-  String STANFORD_PARSE = "parse"; 
-  String STANFORD_DETERMINISTIC_COREF = "dcoref"; 
-  String STANFORD_COREF = "hcoref"; 
-  String STANFORD_RELATION = "relation"; 
-  String STANFORD_SENTIMENT = "sentiment"; 
-  String STANFORD_COLUMN_DATA_CLASSIFIER = "cdc"; 
-  String STANFORD_DEPENDENCIES = "depparse"; 
-  String STANFORD_NATLOG = "natlog"; 
-  String STANFORD_OPENIE = "openie"; 
-  String STANFORD_QUOTE = "quote"; 
+  public static final String STANFORD_TOKENIZE = "tokenize"; 
+  public static final String STANFORD_CLEAN_XML = "cleanxml"; 
+  public static final String STANFORD_SSPLIT = "ssplit"; 
+  public static final String STANFORD_POS = "pos"; 
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+  public static final String STANFORD_LEMMA = "lemma"; 
+  public static final String STANFORD_NER = "ner"; 
+  public static final String STANFORD_REGEXNER = "regexner"; 
+  public static final String STANFORD_ENTITY_MENTIONS = "entitymentions"; 
+  public static final String STANFORD_GENDER = "gender"; 
+  public static final String STANFORD_TRUECASE = "truecase"; 
+  public static final String STANFORD_PARSE = "parse"; 
+  public static final String STANFORD_DETERMINISTIC_COREF = "dcoref"; 
+  public static final String STANFORD_COREF = "hcoref"; 
+  public static final String STANFORD_RELATION = "relation"; 
+  public static final String STANFORD_SENTIMENT = "sentiment"; 
+  public static final String STANFORD_COLUMN_DATA_CLASSIFIER = "cdc"; 
+  public static final String STANFORD_DEPENDENCIES = "depparse"; 
+  public static final String STANFORD_NATLOG = "natlog"; 
+  public static final String STANFORD_OPENIE = "openie"; 
+  public static final String STANFORD_QUOTE = "quote"; 
  
  
-  Requirement TOKENIZE_REQUIREMENT = new Requirement(STANFORD_TOKENIZE); 
-  Requirement CLEAN_XML_REQUIREMENT = new Requirement(STANFORD_CLEAN_XML); 
-  Requirement SSPLIT_REQUIREMENT = new Requirement(STANFORD_SSPLIT); 
-  Requirement POS_REQUIREMENT = new Requirement(STANFORD_POS); 
-  Requirement LEMMA_REQUIREMENT = new Requirement(STANFORD_LEMMA); 
-  Requirement NER_REQUIREMENT = new Requirement(STANFORD_NER); 
-  Requirement GENDER_REQUIREMENT = new Requirement(STANFORD_GENDER); 
-  Requirement TRUECASE_REQUIREMENT = new Requirement(STANFORD_TRUECASE); 
-  Requirement PARSE_REQUIREMENT = new Requirement(STANFORD_PARSE); 
-  Requirement DEPENDENCY_REQUIREMENT = new Requirement(STANFORD_DEPENDENCIES); 
-  Requirement DETERMINISTIC_COREF_REQUIREMENT = new Requirement(STANFORD_DETERMINISTIC_COREF); 
-  Requirement COREF_REQUIREMENT = new Requirement(STANFORD_COREF); 
-  Requirement RELATION_EXTRACTOR_REQUIREMENT = new Requirement(STANFORD_RELATION); 
-  Requirement NATLOG_REQUIREMENT = new Requirement(STANFORD_NATLOG); 
-  Requirement OPENIE_REQUIREMENT = new Requirement(STANFORD_OPENIE); 
-  Requirement QUOTE_REQUIREMENT = new Requirement(STANFORD_QUOTE); 
+  public static final Requirement TOKENIZE_REQUIREMENT = new Requirement(STANFORD_TOKENIZE); 
+  public static final Requirement CLEAN_XML_REQUIREMENT = new Requirement(STANFORD_CLEAN_XML); 
+  public static final Requirement SSPLIT_REQUIREMENT = new Requirement(STANFORD_SSPLIT); 
+  public static final Requirement POS_REQUIREMENT = new Requirement(STANFORD_POS); 
+  public static final Requirement LEMMA_REQUIREMENT = new Requirement(STANFORD_LEMMA); 
+  public static final Requirement NER_REQUIREMENT = new Requirement(STANFORD_NER); 
+  public static final Requirement GENDER_REQUIREMENT = new Requirement(STANFORD_GENDER); 
+  public static final Requirement TRUECASE_REQUIREMENT = new Requirement(STANFORD_TRUECASE); 
+  public static final Requirement PARSE_REQUIREMENT = new Requirement(STANFORD_PARSE); 
+  public static final Requirement DEPENDENCY_REQUIREMENT = new Requirement(STANFORD_DEPENDENCIES); 
+  public static final Requirement DETERMINISTIC_COREF_REQUIREMENT = new Requirement(STANFORD_DETERMINISTIC_COREF); 
+  public static final Requirement COREF_REQUIREMENT = new Requirement(STANFORD_COREF); 
+  public static final Requirement RELATION_EXTRACTOR_REQUIREMENT = new Requirement(STANFORD_RELATION); 
+  public static final Requirement NATLOG_REQUIREMENT = new Requirement(STANFORD_NATLOG); 
+  public static final Requirement OPENIE_REQUIREMENT = new Requirement(STANFORD_OPENIE); 
+  public static final Requirement QUOTE_REQUIREMENT = new Requirement(STANFORD_QUOTE); 
  
   /** 
    * These are annotators which StanfordCoreNLP does not know how to 
@@ -135,32 +135,30 @@ public interface Annotator { 
    * already included in other parts of the system, such as sutime, 
    * which is already included in ner. 
    */ 
-  Requirement GUTIME_REQUIREMENT = new Requirement("gutime"); 
-  Requirement SUTIME_REQUIREMENT = new Requirement("sutime"); 
-  Requirement HEIDELTIME_REQUIREMENT = new Requirement("heideltime"); 
-  Requirement STEM_REQUIREMENT = new Requirement("stem"); 
-  Requirement NUMBER_REQUIREMENT = new Requirement("number"); 
-  Requirement TIME_WORDS_REQUIREMENT = new Requirement("timewords"); 
-  Requirement QUANTIFIABLE_ENTITY_NORMALIZATION_REQUIREMENT = new Requirement("quantifiable_entity_normalization"); 
-  Requirement COLUMN_DATA_CLASSIFIER = new Requirement("column_data_classifer"); 
+  public static final Requirement GUTIME_REQUIREMENT = new Requirement("gutime"); 
+  public static final Requirement SUTIME_REQUIREMENT = new Requirement("sutime"); 
+  public static final Requirement HEIDELTIME_REQUIREMENT = new Requirement("heideltime"); 
+  public static final Requirement STEM_REQUIREMENT = new Requirement("stem"); 
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+  public static final Requirement NUMBER_REQUIREMENT = new Requirement("number"); 
+  public static final Requirement TIME_WORDS_REQUIREMENT = new Requirement("timewords"); 
+  public static final Requirement QUANTIFIABLE_ENTITY_NORMALIZATION_REQUIREMENT = new 
Requirement("quantifiable_entity_normalization"); 
+  public static final Requirement COLUMN_DATA_CLASSIFIER = new Requirement("column_data_classifer"); 
  
   /** 
-   * The Stanford Parser can produce this if it is specifically requested. 
+   * The Stanford Parser can produce this if it is specifically requested 
    */ 
-  Requirement BINARIZED_TREES_REQUIREMENT = new Requirement("binarized_trees"); 
+  public static final Requirement BINARIZED_TREES_REQUIREMENT = new Requirement("binarized_trees"); 
  
   /** 
    * These are typical combinations of annotators which may be used as 
    * requirements by other annotators. 
    */ 
-  Set<Requirement> TOKENIZE_AND_SSPLIT = Collections.unmodifiableSet(new ArraySet<Requirement>(TOKENIZE_REQUIREMENT, 
SSPLIT_REQUIREMENT)); 
-  Set<Requirement> TOKENIZE_SSPLIT_POS = Collections.unmodifiableSet(new ArraySet<Requirement>(TOKENIZE_REQUIREMENT, 
SSPLIT_REQUIREMENT, POS_REQUIREMENT)); 
-  Set<Requirement> TOKENIZE_SSPLIT_NER = Collections.unmodifiableSet(new ArraySet<Requirement>(TOKENIZE_REQUIREMENT, 
SSPLIT_REQUIREMENT, NER_REQUIREMENT)); 
-  Set<Requirement> TOKENIZE_SSPLIT_PARSE = Collections.unmodifiableSet(new ArraySet<Requirement>(TOKENIZE_REQUIREMENT, 
SSPLIT_REQUIREMENT, PARSE_REQUIREMENT)); 
-  Set<Requirement> TOKENIZE_SSPLIT_PARSE_NER = Collections.unmodifiableSet(new 
ArraySet<Requirement>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT, PARSE_REQUIREMENT, NER_REQUIREMENT)); 
-  Set<Requirement> TOKENIZE_SSPLIT_POS_LEMMA = Collections.unmodifiableSet(new 
ArraySet<Requirement>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT, POS_REQUIREMENT, LEMMA_REQUIREMENT)); 
-  Set<Requirement> TOKENIZE_SSPLIT_POS_DEPPARSE = Collections.unmodifiableSet(new 
ArraySet<Requirement>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT, POS_REQUIREMENT, DEPENDENCY_REQUIREMENT)); 
-  Set<Requirement> PARSE_AND_TAG = Collections.unmodifiableSet(new ArraySet<Requirement>(POS_REQUIREMENT, 
PARSE_REQUIREMENT)); 
-  Set<Requirement> PARSE_TAG_BINARIZED_TREES = Collections.unmodifiableSet(new ArraySet<Requirement>(POS_REQUIREMENT, 
PARSE_REQUIREMENT, BINARIZED_TREES_REQUIREMENT)); 
- 
+  public static final Set<Requirement> TOKENIZE_AND_SSPLIT = Collections.unmodifiableSet(new 
ArraySet<Requirement>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT)); 
+  public static final Set<Requirement> TOKENIZE_SSPLIT_POS = Collections.unmodifiableSet(new 
ArraySet<Requirement>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT, POS_REQUIREMENT)); 
+  public static final Set<Requirement> TOKENIZE_SSPLIT_NER = Collections.unmodifiableSet(new 
ArraySet<Requirement>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT, NER_REQUIREMENT)); 
+  public static final Set<Requirement> TOKENIZE_SSPLIT_PARSE = Collections.unmodifiableSet(new 
ArraySet<Requirement>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT, PARSE_REQUIREMENT)); 
+  public static final Set<Requirement> TOKENIZE_SSPLIT_PARSE_NER = Collections.unmodifiableSet(new 
ArraySet<Requirement>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT, PARSE_REQUIREMENT, NER_REQUIREMENT)); 
+  public static final Set<Requirement> TOKENIZE_SSPLIT_POS_LEMMA = Collections.unmodifiableSet(new 
ArraySet<Requirement>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT, POS_REQUIREMENT, LEMMA_REQUIREMENT)); 
+  public static final Set<Requirement> PARSE_AND_TAG = Collections.unmodifiableSet(new 
ArraySet<Requirement>(POS_REQUIREMENT, PARSE_REQUIREMENT)); 
+  public static final Set<Requirement> PARSE_TAG_BINARIZED_TREES = Collections.unmodifiableSet(new 
ArraySet<Requirement>(POS_REQUIREMENT, PARSE_REQUIREMENT, BINARIZED_TREES_REQUIREMENT)); 
 } 
diff --git a/src/edu/stanford/nlp/pipeline/AnnotatorImplementations.java 
b/src/edu/stanford/nlp/pipeline/AnnotatorImplementations.java 
index 8ee43a5..a9d08e0 100644 
--- a/src/edu/stanford/nlp/pipeline/AnnotatorImplementations.java 
+++ b/src/edu/stanford/nlp/pipeline/AnnotatorImplementations.java 
@@ -4,7 +4,6 @@ import edu.stanford.nlp.ie.NERClassifierCombiner; 
 import edu.stanford.nlp.ie.regexp.NumberSequenceClassifier; 
 import edu.stanford.nlp.naturalli.NaturalLogicAnnotator; 
 import edu.stanford.nlp.naturalli.OpenIE; 
-import edu.stanford.nlp.util.MetaClass; 
 import edu.stanford.nlp.util.PropertiesUtils; 
 import edu.stanford.nlp.util.ReflectionLoading; 
  
@@ -72,12 +71,12 @@ public class AnnotatorImplementations { 
    */ 
   public Annotator ner(Properties properties) throws IOException { 
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-    List<String> models = new ArrayList<>(); 
+    List<String> models = new ArrayList<String>(); 
     String modelNames = properties.getProperty("ner.model"); 
     if (modelNames == null) { 
       modelNames = DefaultPaths.DEFAULT_NER_THREECLASS_MODEL + "," + DefaultPaths.DEFAULT_NER_MUC_MODEL + "," + 
DefaultPaths.DEFAULT_NER_CONLL_MODEL; 
     } 
-    if ( ! modelNames.isEmpty()) { 
+    if (modelNames.length() > 0) { 
       models.addAll(Arrays.asList(modelNames.split(","))); 
     } 
     if (models.isEmpty()) { 
@@ -99,10 +98,7 @@ public class AnnotatorImplementations { 
  
     String[] loadPaths = models.toArray(new String[models.size()]); 
  
-    Properties combinerProperties = PropertiesUtils.extractSelectedProperties(properties, 
-            NERClassifierCombiner.DEFAULT_PASS_DOWN_PROPERTIES); 
-    NERClassifierCombiner nerCombiner = new NERClassifierCombiner(applyNumericClassifiers, 
-            useSUTime, combinerProperties, loadPaths); 
+    NERClassifierCombiner nerCombiner = new NERClassifierCombiner(applyNumericClassifiers, useSUTime, properties, loadPaths); 
  
     int nThreads = PropertiesUtils.getInt(properties, "ner.nthreads", PropertiesUtils.getInt(properties, "nthreads", 1)); 
     long maxTime = PropertiesUtils.getLong(properties, "ner.maxtime", 0); 
@@ -135,8 +131,8 @@ public class AnnotatorImplementations { 
   /** 
    * Annotate parse trees 
    * 
-   * @param properties Properties that control the behavior of the parser. It use "parse.x" properties. 
-   * @return A ParserAnnotator 
+   * @param properties 
+   * @return 
    */ 
   public Annotator parse(Properties properties) { 
     String parserType = properties.getProperty("parse.type", "stanford"); 
@@ -166,23 +162,8 @@ public class AnnotatorImplementations { 
             .CUSTOM_ANNOTATOR_PREFIX.length()); 
     String customClassName = properties.getProperty(property); 
  
-    try { 
-      // name + properties 
-      return new MetaClass(customClassName).createInstance(customName, properties); 
-    } catch (MetaClass.ConstructorNotFoundException e) { 
-      try { 
-        // name 
-        return new MetaClass(customClassName).createInstance(customName); 
-      } catch (MetaClass.ConstructorNotFoundException e2) { 
-        // properties 
-        try { 
-          return new MetaClass(customClassName).createInstance(properties); 
-        } catch (MetaClass.ConstructorNotFoundException e3) { 
-          // empty arguments 
-          return new MetaClass(customClassName).createInstance(); 
-        } 
-      } 
-    } 
+    return ReflectionLoading.loadByReflection(customClassName, customName, 
+            properties); 
   } 
  
   /** 
diff --git a/src/edu/stanford/nlp/pipeline/CleanXmlAnnotator.java b/src/edu/stanford/nlp/pipeline/CleanXmlAnnotator.java 
index 206e9a6..4207dfb 100644 
--- a/src/edu/stanford/nlp/pipeline/CleanXmlAnnotator.java 
+++ b/src/edu/stanford/nlp/pipeline/CleanXmlAnnotator.java 
@@ -82,16 +82,16 @@ public class CleanXmlAnnotator implements Annotator{ 
  
   /** 
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    * A map of document level annotation keys (i.e. docid) along with a pattern 
-   *  indicating the tag to match, and the attribute to match. 
+   *  indicating the tag to match, and the attribute to match 
    */ 
-  private final CollectionValuedMap<Class, Pair<Pattern,Pattern>> docAnnotationPatterns = new CollectionValuedMap<>(); 
+  private CollectionValuedMap<Class, Pair<Pattern,Pattern>> docAnnotationPatterns = new CollectionValuedMap<Class, Pair<Pattern, 
Pattern>>(); 
   public static final String DEFAULT_DOC_ANNOTATIONS_PATTERNS = 
"docID=doc[id],doctype=doc[type],docsourcetype=doctype[source]"; 
  
   /** 
    * A map of token level annotation keys (i.e. link, speaker) along with a pattern 
-   *  indicating the tag/attribute to match (tokens that belong to the text enclosed in the specified tag will be annotated). 
+   *  indicating the tag/attribute to match (tokens that belows to the text enclosed in the specified tag witll be annotated) 
    */ 
-  private final CollectionValuedMap<Class, Pair<Pattern,Pattern>> tokenAnnotationPatterns = new CollectionValuedMap<>(); 
+  private CollectionValuedMap<Class, Pair<Pattern,Pattern>> tokenAnnotationPatterns = new CollectionValuedMap<Class, 
Pair<Pattern, Pattern>>(); 
   public static final String DEFAULT_TOKEN_ANNOTATIONS_PATTERNS = null; 
  
   /** 
@@ -106,10 +106,10 @@ public class CleanXmlAnnotator implements Annotator{ 
   private Pattern ssplitDiscardTokensMatcher = null; 
  
   /** 
-   * A map of section level annotation keys (i.e. docid) along with a pattern 
-   *  indicating the tag to match, and the attribute to match. 
+   * A map of section level annotation keys (i.e. docid) along with a pattern i 
+   *  indicating the tag to match, and the attribute to match 
    */ 
-  private final CollectionValuedMap<Class, Pair<Pattern,Pattern>> sectionAnnotationPatterns = new CollectionValuedMap<>(); 
+  private CollectionValuedMap<Class, Pair<Pattern,Pattern>> sectionAnnotationPatterns = new CollectionValuedMap<Class, 
Pair<Pattern, Pattern>>(); 
   public static final String DEFAULT_SECTION_ANNOTATIONS_PATTERNS = null; 
  
   /** 
@@ -151,8 +151,8 @@ public class CleanXmlAnnotator implements Annotator{ 
     dateTagMatcher = toCaseInsensitivePattern(dateTags); 
   } 
  
-  private static Pattern toCaseInsensitivePattern(String tags) { 
-    if (tags != null) { 
+  private Pattern toCaseInsensitivePattern(String tags) { 
+    if(tags != null){ 
       return Pattern.compile(tags, Pattern.CASE_INSENSITIVE); 
     } else { 
       return null; 
@@ -202,7 +202,7 @@ public class CleanXmlAnnotator implements Annotator{ 
   } 
  
   private static final Pattern TAG_ATTR_PATTERN = Pattern.compile("(.*)\\[(.*)\\]"); 
-  private static void addAnnotationPatterns(CollectionValuedMap<Class, Pair<Pattern,Pattern>> annotationPatterns, String conf, 
boolean attrOnly) { 
+  private void addAnnotationPatterns(CollectionValuedMap<Class, Pair<Pattern,Pattern>> annotationPatterns, String conf, boolean 
attrOnly) { 
     String[] annoPatternStrings = conf == null ? new String[0] : conf.trim().split("\\s*,\\s*"); 
     for (String annoPatternString:annoPatternStrings) { 
       String[] annoPattern = annoPatternString.split("\\s*=\\s*", 2); 
@@ -247,7 +247,7 @@ public class CleanXmlAnnotator implements Annotator{ 
     return process(null, tokens); 
   } 
  
-  private static String tokensToString(Annotation annotation, List<CoreLabel> tokens) { 
+  private String tokensToString(Annotation annotation, List<CoreLabel> tokens) { 
     if (tokens.isEmpty()) return ""; 
     // Try to get original text back? 
     String annotationText = (annotation != null)? annotation.get(CoreAnnotations.TextAnnotation.class) : null; 
@@ -262,20 +262,19 @@ public class CleanXmlAnnotator implements Annotator{ 
     } 
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   } 
  
-  // Annotates CoreMap with information from xml tag 
+  // Annotates coremap with information from xml tag 
  
   /** 
-   * Updates a CoreMap with attributes (or text context) from a tag. 
-   * 
+   * Updates a coremap with attributes (or text context) from a tag 
    * @param annotation - Main document level annotation (from which the original text can be extracted) 
-   * @param cm - CoreMap to annotate 
+   * @param cm - coremap to annotate 
    * @param tag - tag to process 
    * @param annotationPatterns - list of annotation patterns to match 
    * @param savedTokens - tokens for annotations that are text context of a tag 
    * @param toAnnotate - what keys to annotate 
-   * @return The set of annotations found 
+   * @return 
    */ 
-  private static Set<Class> annotateWithTag(Annotation annotation, 
+  private Set<Class> annotateWithTag(Annotation annotation, 
                                      CoreMap cm, 
                                      XMLUtils.XMLTag tag, 
                                      CollectionValuedMap<Class, Pair<Pattern,Pattern>> annotationPatterns, 
diff --git a/src/edu/stanford/nlp/pipeline/DeterministicCorefAnnotator.java 
b/src/edu/stanford/nlp/pipeline/DeterministicCorefAnnotator.java 
index 0e9b26d..13a6749 100644 
--- a/src/edu/stanford/nlp/pipeline/DeterministicCorefAnnotator.java 
+++ b/src/edu/stanford/nlp/pipeline/DeterministicCorefAnnotator.java 
@@ -18,13 +18,8 @@ import edu.stanford.nlp.dcoref.SieveCoreferenceSystem; 
 import edu.stanford.nlp.ling.CoreAnnotations; 
 import edu.stanford.nlp.ling.CoreLabel; 
 import edu.stanford.nlp.dcoref.CorefCoreAnnotations; 
-import edu.stanford.nlp.semgraph.SemanticGraph; 
-import edu.stanford.nlp.semgraph.SemanticGraphCoreAnnotations; 
-import edu.stanford.nlp.semgraph.SemanticGraphFactory; 
-import edu.stanford.nlp.semgraph.SemanticGraphFactory.Mode; 
 import edu.stanford.nlp.trees.Tree; 
 import edu.stanford.nlp.trees.TreeCoreAnnotations; 
-import edu.stanford.nlp.trees.GrammaticalStructure.Extras; 
 import edu.stanford.nlp.util.ArraySet; 
 import edu.stanford.nlp.util.CoreMap; 
 import edu.stanford.nlp.util.Generics; 
@@ -70,7 +65,7 @@ public class DeterministicCorefAnnotator implements Annotator { 
   } 
  
   @Override 
-  public void annotate(Annotation annotation) { 
+  public void annotate(Annotation annotation){ 
     try { 
       List<Tree> trees = new ArrayList<Tree>(); 
       List<List<CoreLabel>> sentences = new ArrayList<List<CoreLabel>>(); 
@@ -86,9 +81,6 @@ public class DeterministicCorefAnnotator implements Annotator { 
           Tree tree = sentence.get(TreeCoreAnnotations.TreeAnnotation.class); 
           trees.add(tree); 
  
-          SemanticGraph dependencies = SemanticGraphFactory.makeFromTree(tree, Mode.COLLAPSED, Extras.NONE, false, null, true); 
-          sentence.set(SemanticGraphCoreAnnotations.AlternativeDependenciesAnnotation.class, dependencies); 
- 
           if (!hasSpeakerAnnotations) { 
             // check for speaker annotations 
             for (CoreLabel t:tokens) { 
@@ -117,7 +109,7 @@ public class DeterministicCorefAnnotator implements Annotator { 
       // add the relevant info to mentions and order them for coref 
       Document document = mentionExtractor.arrange(annotation, sentences, trees, allUnprocessedMentions); 
       List<List<Mention>> orderedMentions = document.getOrderedMentions(); 
-      if (VERBOSE) { 
+      if(VERBOSE){ 
         for(int i = 0; i < orderedMentions.size(); i ++){ 
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           System.err.printf("Mentions in sentence #%d:\n", i); 
           for(int j = 0; j < orderedMentions.get(i).size(); j ++){ 
@@ -129,8 +121,62 @@ public class DeterministicCorefAnnotator implements Annotator { 
       Map<Integer, CorefChain> result = corefSystem.coref(document); 
       annotation.set(CorefCoreAnnotations.CorefChainAnnotation.class, result); 
  
+      // for backward compatibility 
       if(OLD_FORMAT) { 
-        addObsoleteCoreferenceAnnotations(annotation, orderedMentions, result); 
+        List<Pair<IntTuple, IntTuple>> links = SieveCoreferenceSystem.getLinks(result); 
+ 
+        if(VERBOSE){ 
+          System.err.printf("Found %d coreference links:\n", links.size()); 
+          for(Pair<IntTuple, IntTuple> link: links){ 
+            System.err.printf("LINK (%d, %d) -> (%d, %d)\n", link.first.get(0), link.first.get(1), link.second.get(0), link.second.get(1)); 
+          } 
+        } 
+ 
+        // 
+        // save the coref output as CorefGraphAnnotation 
+        // 
+ 
+        // cdm 2013: this block didn't seem to be doing anything needed.... 
+        // List<List<CoreLabel>> sents = new ArrayList<List<CoreLabel>>(); 
+        // for (CoreMap sentence: annotation.get(CoreAnnotations.SentencesAnnotation.class)) { 
+        //   List<CoreLabel> tokens = sentence.get(CoreAnnotations.TokensAnnotation.class); 
+        //   sents.add(tokens); 
+        // } 
+ 
+        // this graph is stored in CorefGraphAnnotation -- the raw links found by the coref system 
+        List<Pair<IntTuple, IntTuple>> graph = new ArrayList<Pair<IntTuple,IntTuple>>(); 
+ 
+        for(Pair<IntTuple, IntTuple> link: links){ 
+          // 
+          // Note: all offsets in the graph start at 1 (not at 0!) 
+          //       we do this for consistency reasons, as indices for syntactic dependencies start at 1 
+          // 
+          int srcSent = link.first.get(0); 
+          int srcTok = orderedMentions.get(srcSent - 1).get(link.first.get(1)-1).headIndex + 1; 
+          int dstSent = link.second.get(0); 
+          int dstTok = orderedMentions.get(dstSent - 1).get(link.second.get(1)-1).headIndex + 1; 
+          IntTuple dst = new IntTuple(2); 
+          dst.set(0, dstSent); 
+          dst.set(1, dstTok); 
+          IntTuple src = new IntTuple(2); 
+          src.set(0, srcSent); 
+          src.set(1, srcTok); 
+          graph.add(new Pair<IntTuple, IntTuple>(src, dst)); 
+        } 
+        annotation.set(CorefCoreAnnotations.CorefGraphAnnotation.class, graph); 
+ 
+        for (CorefChain corefChain : result.values()) { 
+          if(corefChain.getMentionsInTextualOrder().size() < 2) continue; 
+          Set<CoreLabel> coreferentTokens = Generics.newHashSet(); 
+          for (CorefMention mention : corefChain.getMentionsInTextualOrder()) { 
+            CoreMap sentence = annotation.get(CoreAnnotations.SentencesAnnotation.class).get(mention.sentNum - 1); 
+            CoreLabel token = sentence.get(CoreAnnotations.TokensAnnotation.class).get(mention.headIndex - 1); 
+            coreferentTokens.add(token); 
+          } 
+          for (CoreLabel token : coreferentTokens) { 
+            token.set(CorefCoreAnnotations.CorefClusterAnnotation.class, coreferentTokens); 
+          } 
+        } 
       } 
     } catch (RuntimeException e) { 
       throw e; 
@@ -139,75 +185,14 @@ public class DeterministicCorefAnnotator implements Annotator { 
     } 
   } 
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-  // for backward compatibility with a few old things 
-  // TODO: Aim to get rid of this entirely 
-  private static void addObsoleteCoreferenceAnnotations(Annotation annotation, List<List<Mention>> orderedMentions, 
-                                                        Map<Integer, CorefChain> result) { 
-    List<Pair<IntTuple, IntTuple>> links = SieveCoreferenceSystem.getLinks(result); 
- 
-    if(VERBOSE){ 
-      System.err.printf("Found %d coreference links:\n", links.size()); 
-      for(Pair<IntTuple, IntTuple> link: links){ 
-        System.err.printf("LINK (%d, %d) -> (%d, %d)\n", link.first.get(0), link.first.get(1), link.second.get(0), link.second.get(1)); 
-      } 
-    } 
- 
-    // 
-    // save the coref output as CorefGraphAnnotation 
-    // 
- 
-    // cdm 2013: this block didn't seem to be doing anything needed.... 
-    // List<List<CoreLabel>> sents = new ArrayList<List<CoreLabel>>(); 
-    // for (CoreMap sentence: annotation.get(CoreAnnotations.SentencesAnnotation.class)) { 
-    //   List<CoreLabel> tokens = sentence.get(CoreAnnotations.TokensAnnotation.class); 
-    //   sents.add(tokens); 
-    // } 
- 
-    // this graph is stored in CorefGraphAnnotation -- the raw links found by the coref system 
-    List<Pair<IntTuple, IntTuple>> graph = new ArrayList<Pair<IntTuple,IntTuple>>(); 
- 
-    for(Pair<IntTuple, IntTuple> link: links){ 
-      // 
-      // Note: all offsets in the graph start at 1 (not at 0!) 
-      //       we do this for consistency reasons, as indices for syntactic dependencies start at 1 
-      // 
-      int srcSent = link.first.get(0); 
-      int srcTok = orderedMentions.get(srcSent - 1).get(link.first.get(1)-1).headIndex + 1; 
-      int dstSent = link.second.get(0); 
-      int dstTok = orderedMentions.get(dstSent - 1).get(link.second.get(1)-1).headIndex + 1; 
-      IntTuple dst = new IntTuple(2); 
-      dst.set(0, dstSent); 
-      dst.set(1, dstTok); 
-      IntTuple src = new IntTuple(2); 
-      src.set(0, srcSent); 
-      src.set(1, srcTok); 
-      graph.add(new Pair<>(src, dst)); 
-    } 
-    annotation.set(CorefCoreAnnotations.CorefGraphAnnotation.class, graph); 
- 
-    for (CorefChain corefChain : result.values()) { 
-      if(corefChain.getMentionsInTextualOrder().size() < 2) continue; 
-      Set<CoreLabel> coreferentTokens = Generics.newHashSet(); 
-      for (CorefMention mention : corefChain.getMentionsInTextualOrder()) { 
-        CoreMap sentence = annotation.get(CoreAnnotations.SentencesAnnotation.class).get(mention.sentNum - 1); 
-        CoreLabel token = sentence.get(CoreAnnotations.TokensAnnotation.class).get(mention.headIndex - 1); 
-        coreferentTokens.add(token); 
-      } 
-      for (CoreLabel token : coreferentTokens) { 
-        token.set(CorefCoreAnnotations.CorefClusterAnnotation.class, coreferentTokens); 
-      } 
-    } 
-  } 
- 
  
   @Override 
   public Set<Requirement> requires() { 
-    return new ArraySet<>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT, POS_REQUIREMENT, NER_REQUIREMENT, 
PARSE_REQUIREMENT); 
+    return new ArraySet<Requirement>(TOKENIZE_REQUIREMENT, SSPLIT_REQUIREMENT, POS_REQUIREMENT, NER_REQUIREMENT, 
PARSE_REQUIREMENT); 
   } 
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   @Override 
   public Set<Requirement> requirementsSatisfied() { 
     return Collections.singleton(DETERMINISTIC_COREF_REQUIREMENT); 
   } 
- 
 } 
diff --git a/src/edu/stanford/nlp/pipeline/StanfordCoreNLP.java b/src/edu/stanford/nlp/pipeline/StanfordCoreNLP.java 
index c0442ab..9acccc7 100644 
--- a/src/edu/stanford/nlp/pipeline/StanfordCoreNLP.java 
+++ b/src/edu/stanford/nlp/pipeline/StanfordCoreNLP.java 
@@ -520,6 +520,16 @@ public class StanfordCoreNLP extends AnnotationPipeline { 
     } 
   } 
  
+  public void xmlPrint(Annotation annotation, OutputStream os, String filename) throws IOException { 
+    try { 
+      Class clazz = Class.forName("edu.stanford.nlp.pipeline.XMLOutputter"); 
+      Method method = clazz.getMethod("xmlPrint", Annotation.class, OutputStream.class, StanfordCoreNLP.class, String.class); 
+      method.invoke(null, annotation, os, this, filename); 
+    } catch (NoSuchMethodException | IllegalAccessException | ClassNotFoundException | InvocationTargetException e) { 
+      throw new RuntimeException(e); 
+    } 
+  } 
+ 
   // 
   // runtime, shell-specific, and help menu methods 
   // 
@@ -887,7 +897,7 @@ public class StanfordCoreNLP extends AnnotationPipeline { 
             switch (outputFormat) { 
             case XML: { 
               OutputStream fos = new BufferedOutputStream(new FileOutputStream(finalOutputFilename)); 
-              xmlPrint(annotation, fos); 
+              xmlPrint(annotation, fos, finalOutputFilename); 
               fos.close(); 
               break; 
             } 
@@ -934,8 +944,10 @@ public class StanfordCoreNLP extends AnnotationPipeline { 
  
           endTrack("Processing file " + file.getAbsolutePath() + " ... writing to " + finalOutputFilename); 
  
-        } catch (IOException e) { 
-          throw new RuntimeIOException(e); 
+        } catch (Exception e) { 
+                System.err.println("IGNORING ERROR:"); 
+                e.printStackTrace(System.err); 
+          // throw new RuntimeIOException(e); 
         } 
       }); 
     } 
diff --git a/src/edu/stanford/nlp/pipeline/XMLOutputter.java b/src/edu/stanford/nlp/pipeline/XMLOutputter.java 
index 4423bfb..8582f37 100644 
--- a/src/edu/stanford/nlp/pipeline/XMLOutputter.java 
+++ b/src/edu/stanford/nlp/pipeline/XMLOutputter.java 
@@ -2,11 +2,17 @@ package edu.stanford.nlp.pipeline; 
  
 import java.io.IOException; 
 import java.io.OutputStream; 
+import java.io.FileOutputStream; 
+import java.io.BufferedOutputStream; 
 import java.io.PrintWriter; 
 import java.io.StringWriter; 
 import java.util.List; 
+import java.util.ArrayList; 
 import java.util.Map; 
+import java.util.HashMap; 
+import java.util.Set; 
  
+import org.decidingforce.DFClausIE; 
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 import edu.stanford.nlp.dcoref.CorefChain; 
 import edu.stanford.nlp.dcoref.CorefCoreAnnotations; 
 import edu.stanford.nlp.ie.machinereading.structure.EntityMention; 
@@ -30,7 +36,9 @@ import edu.stanford.nlp.semgraph.SemanticGraphCoreAnnotations; 
 import edu.stanford.nlp.semgraph.SemanticGraphEdge; 
 import edu.stanford.nlp.util.CoreMap; 
 import edu.stanford.nlp.util.Pair; 
+import edu.stanford.nlp.util.IntPair; 
 import edu.stanford.nlp.util.StringUtils; 
+import org.codehaus.jackson.map.ObjectMapper; 
 import nu.xom.*; 
  
  
@@ -44,18 +52,38 @@ public class XMLOutputter extends AnnotationOutputter { 
   // the namespace is set in the XSLT file 
   private static final String NAMESPACE_URI = null; 
   private static final String STYLESHEET_NAME = "CoreNLP-to-HTML.xsl"; 
+  public String associated_filename; 
+  public String prefix; 
+  public HashMap<String,BufferedOutputStream> filemap; 
  
   public XMLOutputter() {} 
  
   /** {@inheritDoc} */ 
   @Override 
   public void print(Annotation annotation, OutputStream os, Options options) throws IOException { 
-    Document xmlDoc = annotationToDoc(annotation, options); 
-    Serializer ser = new Serializer(os, options.encoding); 
-    ser.setIndent(2); 
-    ser.setMaxLength(0); 
-    ser.write(xmlDoc); 
-    ser.flush(); 
+    // Document xmlDoc = annotationToDoc(annotation, options); 
+    // Serializer ser = new Serializer(os, options.encoding); 
+    // ser.setIndent(2); 
+    // ser.setMaxLength(0); 
+    // ser.write(xmlDoc); 
+    // ser.flush(); 
+    filemap = new HashMap<String,BufferedOutputStream>(); 
+    ArrayList<Map> al = annotationToSVO(annotation, options, prefix, filemap); 
+    for (String k: filemap.keySet()) { 
+      filemap.get(k).close(); 
+    } 
+    if (al == null) return; 
+    ObjectMapper mapper = new ObjectMapper(); 
+    for (Map svo : al) { 
+      try { 
+        System.err.println("Writing: " + mapper.writeValueAsString(svo)); 
+        os.write(mapper.writeValueAsString(svo).getBytes()); 
+        os.write("\n".getBytes()); 
+      } catch (IOException e) { 
+        e.printStackTrace(); 
+      } 
+    } 
+    os.flush(); 
   } 
  
   public static void xmlPrint(Annotation annotation, OutputStream os) throws IOException { 
@@ -66,6 +94,13 @@ public class XMLOutputter extends AnnotationOutputter { 
     new XMLOutputter().print(annotation, os, pipeline); 
   } 
  
+  public static void xmlPrint(Annotation annotation, OutputStream os, StanfordCoreNLP pipeline, String filename) throws IOException { 
+    XMLOutputter o = new XMLOutputter(); 
+    o.associated_filename = filename; 
+    o.prefix = filename.substring(0, filename.lastIndexOf('.')); 
+    o.print(annotation, os, pipeline); 
+  } 
+ 



 

     365

   public static void xmlPrint(Annotation annotation, OutputStream os, Options options) throws IOException { 
     new XMLOutputter().print(annotation, os, options); 
   } 
@@ -78,9 +113,175 @@ public class XMLOutputter extends AnnotationOutputter { 
     return annotationToDoc(annotation, options); 
   } 
  
+  public static void writeTUA(CoreLabel token, String filename, String type, String word, String orig, 
HashMap<String,BufferedOutputStream> filemap) { 
+    String[] parts = type.split("\\|"); 
+    String type_id = parts[0] + '-' + parts[1]; 
+    filename += "-" + type_id + ".tua"; 
+    try { 
+      BufferedOutputStream os; 
+      if (!filemap.containsKey(filename)) { 
+        os = new BufferedOutputStream(new FileOutputStream(filename)); 
+        filemap.put(filename, os); 
+      } 
+      os = filemap.get(filename); 
+      token.set(CoreAnnotations.DFTypeAnnotation.class, filename); 
+      os.write(word.getBytes()); 
+      os.write(" ".getBytes()); 
+    } catch (IOException e) { 
+      System.err.println("Problem writing TUA file: " + filename); 
+      e.printStackTrace(); 
+    } 
+  } 
+ 
   /** 
    * Converts the given annotation to an XML document using the specified options 
    */ 
+  public static ArrayList<Map> annotationToSVO(Annotation annotation, Options options, String filename, 
HashMap<String,BufferedOutputStream> filemap) { 
+    ArrayList<Map> result = new ArrayList<Map>(); 
+ 
+    Map<Integer, CorefChain> corefChains = 
+      annotation.get(CorefCoreAnnotations.CorefChainAnnotation.class); 
+    if (corefChains != null) { 
+      dcorefTransform(annotation, corefChains); 
+    } 
+    String text = "ERROR: there should be text here"; 
+    if(annotation.get(CoreAnnotations.SentencesAnnotation.class) != null){ 
+      int sentCount = 1; 
+      for (CoreMap sentence: annotation.get(CoreAnnotations.SentencesAnnotation.class)) { 
+        text = ""; 
+        Integer lineNumber = sentence.get(CoreAnnotations.LineNumberAnnotation.class); 
+        Tree tree = sentence.get(TreeCoreAnnotations.TreeAnnotation.class); 
+        SemanticGraph basicDependencies = sentence.get(SemanticGraphCoreAnnotations.BasicDependenciesAnnotation.class); 
+        List<CoreLabel> tokens = sentence.get(CoreAnnotations.TokensAnnotation.class); 
+        // System.out.print("Dcoref: "); 
+        StringBuffer s = new StringBuffer(); 
+ 
+        for(int j = 0; j < tokens.size(); j ++) { 
+          int tokNum = j + 1; 
+          // if (corefChains != null) { 
+          //   addWordInfo(tokens.get(j), tokNum, sentCount, corefChains); 
+          // } 
+          CoreLabel token = tokens.get(j); 
+          String word = token.get(CoreAnnotations.TextAnnotation.class); 
+          String orig = token.get(CoreAnnotations.OriginalTextAnnotation.class); 
+          String type = token.get(CoreAnnotations.DFTypeIDAnnotation.class); 
+          if (word != "") { 
+            s.append(word + " "); 
+            if (null != type) writeTUA(token, filename, type, word, orig, filemap); 
+          } 
+ 
+          // System.out.print(word + " "); 
+        } 
+        System.out.println(); 
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+        text = s.toString(); 
+        sentCount ++; 
+ 
+        try { 
+          if (tree != null && basicDependencies != null) { 
+            // String text = sentence.get(CoreAnnotations.TextAnnotation.class); 
+            final DFClausIE df = new DFClausIE(text, basicDependencies, tree); 
+            result.addAll(df.run()); 
+          } 
+        } catch (IOException e) { 
+          System.err.println("There was a problem with DF"); 
+        } 
+      } 
+    } 
+ 
+    return result; 
+  } 
+ 
+ 
+  private static int countMentions(CorefChain cluster) { 
+    int count = 0; 
+    for(IntPair mid: cluster.getMentionMap().keySet()) { 
+      count += cluster.getMentionMap().get(mid).size(); 
+    } 
+    return count; 
+  } 
+ 
+  private static void dcorefTransform(Annotation annotation, Map<Integer, CorefChain> corefChains) { 
+    List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class); 
+    int cid = 0; 
+    for (CorefChain cluster : corefChains.values()) { 
+      // System.out.println(cid + " " + countMentions(cluster)); 
+      // each mention saved on one line 
+      Map<IntPair, Set<CorefChain.CorefMention>> mentionMap = cluster.getMentionMap(); 
+      for(IntPair mid: mentionMap.keySet()) { 
+        // all mentions with the same head 
+        Set<CorefChain.CorefMention> mentions = mentionMap.get(mid); 
+        for(CorefChain.CorefMention mention: mentions) { 
+          int sentNum = mention.sentNum - 1; 
+          int headIndex = mention.headIndex - 1; 
+          int startIndex = mention.startIndex - 1; 
+          int endIndex = mention.endIndex - 1; 
+          System.out.print(" " + sentNum); 
+          System.out.print(" " + headIndex); 
+          System.out.print(" " + startIndex); 
+          System.out.print(" " + endIndex); 
+          System.out.println(); 
+ 
+          CoreMap sentence = sentences.get(sentNum); 
+          List<CoreLabel> tokens = sentence.get(CoreAnnotations.TokensAnnotation.class); 
+ 
+          for (int i = startIndex; i < endIndex; i++) { 
+            CoreLabel token = tokens.get(i); 
+            if (token.get(CoreAnnotations.OriginalTextAnnotation.class) == null) { 
+              token.set(CoreAnnotations.OriginalTextAnnotation.class, token.get(CoreAnnotations.TextAnnotation.class)); 
+            } 
+            if (i == headIndex) { 
+              CorefChain.CorefMention rep = cluster.getRepresentativeMention(); 
+              token.set(CoreAnnotations.TextAnnotation.class, rep.mentionSpan); 
+              System.out.format("head token: %s\n", token); 
+            } else { 
+              // token.set(CoreAnnotations.TextAnnotation.class, "DELETED"); 
+              token.set(CoreAnnotations.TextAnnotation.class, ""); 
+              // token.remove(); 
+              System.out.format("token: %s\n", token); 
+            } 
+          } 
+          // one mention per line 
+          // System.out.print(" " + mention.position.length()); 
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+          // System.out.print(mid.getSource() + " " + mid.getTarget()); 
+          // if(mention == cluster.getRepresentativeMention()) System.out.print(" " + 1); 
+          // else System.out.print(" " + 0); 
+ 
+          // System.out.print(" " + mention.mentionType); 
+          // System.out.print(" " + mention.number); 
+          // System.out.print(" " + mention.gender); 
+          // System.out.print(" " + mention.animacy); 
+          // System.out.print(" " + mention.corefClusterID); 
+          // System.out.print(" " + mention.mentionID); 
+          // System.out.print(" {"); 
+          // for(int i = 0; i < mention.position.length(); i ++) 
+          //   System.out.print(" " + mention.position.get(i)); 
+          // System.out.print("} | " + mention.mentionSpan); 
+          System.out.println(); 
+        } 
+      } 
+      cid++; 
+    } 
+  } 
+ 
+  private static void addWordInfo(CoreMap token, int id, int sentCount, Map<Integer, CorefChain> corefChains) { 
+    for (CorefChain chain : corefChains.values()) { 
+            // System.err.println("chain: " + chain.getMentionMap().get(sentCount)); 
+            // System.err.println("chain: " + sentCount + " " + id); 
+            Set<CorefChain.CorefMention> set = chain.getMentionsWithSameHead(sentCount, id); 
+            if (set != null && !set.isEmpty()){ 
+                    CorefChain.CorefMention rep = chain.getRepresentativeMention(); 
+                    String original = token.get(CoreAnnotations.TextAnnotation.class); 
+                    token.set(CoreAnnotations.OriginalTextAnnotation.class, original); 
+                    System.out.format("token: %s\trep.mentionSpan: %s\tchain: %s\n", token, rep.mentionSpan, chain); 
+                    token.set(CoreAnnotations.TextAnnotation.class, "{"+rep.mentionSpan+"}"); 
+                    for (CorefChain.CorefMention m : set) { 
+                      System.out.format("mention: m.headIndex: %s\tm.startIndex: %s\tm.endIndex: %s\n", m.headIndex, m.startIndex, 
m.endIndex); 
+                            // token.set(CoreAnnotations.TextAnnotation.class, rep.mentionSpan); 
+                    } 
+            } 
+    } 
+  } 
+ 
   public static Document annotationToDoc(Annotation annotation, Options options) { 
     // 
     // create the XML document with the root node pointing to the namespace URL 
@@ -88,7 +289,7 @@ public class XMLOutputter extends AnnotationOutputter { 
     Element root = new Element("root", NAMESPACE_URI); 
     Document xmlDoc = new Document(root); 
     ProcessingInstruction pi = new ProcessingInstruction("xml-stylesheet", 
-            "href=\"" + STYLESHEET_NAME + "\" type=\"text/xsl\""); 
+          "href=\"" + STYLESHEET_NAME + "\" type=\"text/xsl\""); 
     xmlDoc.insertChild(pi, 0); 
     Element docElem = new Element("document", NAMESPACE_URI); 
     root.appendChild(docElem); 
@@ -107,6 +308,9 @@ public class XMLOutputter extends AnnotationOutputter { 
     Element sentencesElem = new Element("sentences", NAMESPACE_URI); 
     docElem.appendChild(sentencesElem); 
  
+    Map<Integer, CorefChain> corefChains = 
+      annotation.get(CorefCoreAnnotations.CorefChainAnnotation.class); 
+ 
     // 
     // save the info for each sentence in this doc 
     // 
@@ -119,16 +323,17 @@ public class XMLOutputter extends AnnotationOutputter { 
         if (lineNumber != null) { 
           sentElem.addAttribute(new Attribute("line", Integer.toString(lineNumber))); 
         } 
-        sentCount ++; 
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         // add the word table with all token-level annotations 
         Element wordTable = new Element("tokens", NAMESPACE_URI); 
         List<CoreLabel> tokens = sentence.get(CoreAnnotations.TokensAnnotation.class); 
-        for(int j = 0; j < tokens.size(); j ++){ 
+        for(int j = 0; j < tokens.size(); j ++) { 
           Element wordInfo = new Element("token", NAMESPACE_URI); 
-          addWordInfo(wordInfo, tokens.get(j), j + 1, NAMESPACE_URI); 
+          int tokNum = j + 1; 
+          addWordInfo(wordInfo, tokens.get(j), tokNum, sentCount, corefChains, NAMESPACE_URI); 
           wordTable.appendChild(wordInfo); 
         } 
+        sentCount ++; 
         sentElem.appendChild(wordTable); 
  
         // add tree info 
@@ -142,29 +347,36 @@ public class XMLOutputter extends AnnotationOutputter { 
         } 
  
         SemanticGraph basicDependencies = sentence.get(SemanticGraphCoreAnnotations.BasicDependenciesAnnotation.class); 
+        try { 
+                String text = sentence.get(CoreAnnotations.TextAnnotation.class); 
+                final DFClausIE df = new DFClausIE(text, basicDependencies, tree); 
+        df.run(); 
+        } catch (IOException e) { 
+                System.err.println("There was a problem with DF"); 
+        } 
  
-        if (basicDependencies != null) { 
-          // add the dependencies for this sentence 
-          Element depInfo = buildDependencyTreeInfo("basic-dependencies", 
sentence.get(SemanticGraphCoreAnnotations.BasicDependenciesAnnotation.class), tokens, NAMESPACE_URI); 
-          if (depInfo != null) { 
-            sentElem.appendChild(depInfo); 
-          } 
+        // if (basicDependencies != null) { 
+        //   // add the dependencies for this sentence 
+        //   Element depInfo = buildDependencyTreeInfo("basic-dependencies", 
sentence.get(SemanticGraphCoreAnnotations.BasicDependenciesAnnotation.class), tokens, NAMESPACE_URI); 
+        //   if (depInfo != null) { 
+        //     sentElem.appendChild(depInfo); 
+        //   } 
  
-          depInfo = buildDependencyTreeInfo("collapsed-dependencies", 
sentence.get(SemanticGraphCoreAnnotations.CollapsedDependenciesAnnotation.class), tokens, NAMESPACE_URI); 
-          if (depInfo != null) { 
-            sentElem.appendChild(depInfo); 
-          } 
+        //   depInfo = buildDependencyTreeInfo("collapsed-dependencies", 
sentence.get(SemanticGraphCoreAnnotations.CollapsedDependenciesAnnotation.class), tokens, NAMESPACE_URI); 
+        //   if (depInfo != null) { 
+        //     sentElem.appendChild(depInfo); 
+        //   } 
  
-          depInfo = buildDependencyTreeInfo("collapsed-ccprocessed-dependencies", 
sentence.get(SemanticGraphCoreAnnotations.CollapsedCCProcessedDependenciesAnnotation.class), tokens, NAMESPACE_URI); 
-          if (depInfo != null) { 
-            sentElem.appendChild(depInfo); 
-          } 
-        } 
+        //   depInfo = buildDependencyTreeInfo("collapsed-ccprocessed-dependencies", 
sentence.get(SemanticGraphCoreAnnotations.CollapsedCCProcessedDependenciesAnnotation.class), tokens, NAMESPACE_URI); 
+        //   if (depInfo != null) { 
+        //     sentElem.appendChild(depInfo); 
+        //   } 
+        // } 
  
         // add the MR entities and relations 
         List<EntityMention> entities = sentence.get(MachineReadingAnnotations.EntityMentionsAnnotation.class); 
         List<RelationMention> relations = sentence.get(MachineReadingAnnotations.RelationMentionsAnnotation.class); 
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-        if (entities != null && ! entities.isEmpty()){ 
+        if (entities != null && entities.size() > 0){ 
           Element mrElem = new Element("MachineReading", NAMESPACE_URI); 
           Element entElem = new Element("entities", NAMESPACE_URI); 
           addEntities(entities, entElem, NAMESPACE_URI); 
@@ -179,17 +391,19 @@ public class XMLOutputter extends AnnotationOutputter { 
           sentElem.appendChild(mrElem); 
         } 
  
+ 
         /** 
          * Adds sentiment as an attribute of this sentence. 
          */ 
-        Tree sentimentTree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class); 
+        Tree sentimentTree = sentence.get(SentimentCoreAnnotations.AnnotatedTree.class); 
         if (sentimentTree != null) { 
           int sentiment = RNNCoreAnnotations.getPredictedClass(sentimentTree); 
           sentElem.addAttribute(new Attribute("sentimentValue", Integer.toString(sentiment))); 
-          String sentimentClass = sentence.get(SentimentCoreAnnotations.SentimentClass.class); 
+          String sentimentClass = sentence.get(SentimentCoreAnnotations.ClassName.class); 
           sentElem.addAttribute(new Attribute("sentiment", sentimentClass.replaceAll(" ", ""))); 
         } 
  
+ 
         // add the sentence to the root 
         sentencesElem.appendChild(sentElem); 
       } 
@@ -198,14 +412,14 @@ public class XMLOutputter extends AnnotationOutputter { 
     // 
     // add the coref graph 
     // 
-    Map<Integer, CorefChain> corefChains = 
-            annotation.get(CorefCoreAnnotations.CorefChainAnnotation.class); 
-    if (corefChains != null) { 
-      List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class); 
-      Element corefInfo = new Element("coreference", NAMESPACE_URI); 
-      if (addCorefGraphInfo(options, corefInfo, sentences, corefChains, NAMESPACE_URI)) 
-        docElem.appendChild(corefInfo); 
-    } 
+    // Map<Integer, CorefChain> corefChains = 
+    //   annotation.get(CorefCoreAnnotations.CorefChainAnnotation.class); 
+    // if (corefChains != null) { 
+    //   List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class); 
+    //   Element corefInfo = new Element("coreference", NAMESPACE_URI); 
+    //   if (addCorefGraphInfo(options, corefInfo, sentences, corefChains, NAMESPACE_URI)) 
+    //     docElem.appendChild(corefInfo); 
+    // } 
  
     // 
     // save any document-level annotations here 
@@ -238,7 +452,7 @@ public class XMLOutputter extends AnnotationOutputter { 
         int target = root.index(); 
         String sourceWord = "ROOT"; 
         String targetWord = tokens.get(target - 1).word(); 
-        final boolean isExtra = false; 
+        boolean isExtra = false; 
  
         addDependencyInfo(depInfo, rel, isExtra, source, sourceWord, null, target, targetWord, null, curNS); 
       } 
@@ -287,7 +501,7 @@ public class XMLOutputter extends AnnotationOutputter { 
   } 
  
   /** 
-   * Generates the XML content for MachineReading entities. 
+   * Generates the XML content for MachineReading entities 
    */ 
   private static void addEntities(List<EntityMention> entities, Element top, String curNS) { 
     for (EntityMention e: entities) { 
@@ -297,11 +511,11 @@ public class XMLOutputter extends AnnotationOutputter { 



 

     370

   } 
  
   /** 
-   * Generates the XML content for MachineReading relations. 
+   * Generates the XML content for MachineReading relations 
    */ 
   private static void addRelations(List<RelationMention> relations, Element top, String curNS, double beam){ 
-    for (RelationMention r: relations){ 
-      if (r.printableObject(beam)) { 
+    for(RelationMention r: relations){ 
+      if(r.printableObject(beam)) { 
         Element re = toXML(r, curNS); 
         top.appendChild(re); 
       } 
@@ -309,7 +523,7 @@ public class XMLOutputter extends AnnotationOutputter { 
   } 
  
   /** 
-   * Generates the XML content for the coreference chain object. 
+   * Generates the XML content for the coreference chain object 
    */ 
   private static boolean addCorefGraphInfo 
     (Options options, Element corefInfo, List<CoreMap> sentences, Map<Integer, CorefChain> corefChains, String curNS) 
@@ -369,10 +583,41 @@ public class XMLOutputter extends AnnotationOutputter { 
     chainElem.appendChild(mentionElem); 
   } 
  
-  private static void addWordInfo(Element wordInfo, CoreMap token, int id, String curNS) { 
+  private static void addWordInfo(Element wordInfo, CoreMap token, int id, int sentCount, Map<Integer, CorefChain> corefChains, String 
curNS) { 
     // store the position of this word in the sentence 
     wordInfo.addAttribute(new Attribute("id", Integer.toString(id))); 
+    // wordInfo.addAttribute(new Attribute("foomen", token.get(CorefCoreAnnotations.CorefChainAnnotation.class))); 
+    // token.get(CorefCoreAnnotations.CorefChainAnnotation.class) 
+    String dfType = token.get(CoreAnnotations.DFTypeIDAnnotation.class); 
+    if (dfType != null) { 
+            wordInfo.addAttribute(new Attribute("df-type-id", dfType)); 
+    } 
+    for (CorefChain chain : corefChains.values()) { 
+            // System.err.println(chain.getMentionMap().get(sentCount)); 
+            // System.err.println(sentCount + " " + tokNum); 
+            Set<CorefChain.CorefMention> set = chain.getMentionsWithSameHead(sentCount, id); 
+            if (set != null && !set.isEmpty()){ 
+                    CorefChain.CorefMention rep = chain.getRepresentativeMention(); 
+                    for (CorefChain.CorefMention m : set) { 
+                            String original = token.get(CoreAnnotations.TextAnnotation.class); 
+                            token.set(CoreAnnotations.OriginalTextAnnotation.class, original); 
+                            setSingleElement(wordInfo, "originalWord", curNS, original); 
+                            token.set(CoreAnnotations.TextAnnotation.class, rep.mentionSpan); 
+                    } 
+            } 
+    } 
  
+  //   for (Map.Entry<Integer,CorefChain> entry : corefChains.entrySet()){ 
+  //           Integer i = entry.getKey(); 
+  //           if (i == sentCount) { 
+  //                   CorefChain chain = corefChains.get(i); 
+  //                   Set<CorefChain.CorefMention> mentions = chain.getMentionsWithSameHead(sentCount, id); 
+  //                   CorefChain.CorefMention rep = chain.getRepresentativeMention(); 
+  //                   setSingleElement(wordInfo, "mention", curNS, rep.mentionSpan); 
+  //           } 
+  //   } 
+  // // public Set<CorefMention> getMentionsWithSameHead(int sentenceNumber, int headIndex) { 
+  // // public CorefMention getRepresentativeMention() { return representative; } 
     setSingleElement(wordInfo, "word", curNS, token.get(CoreAnnotations.TextAnnotation.class)); 
     setSingleElement(wordInfo, "lemma", curNS, token.get(CoreAnnotations.LemmaAnnotation.class)); 
  
@@ -417,12 +662,6 @@ public class XMLOutputter extends AnnotationOutputter { 
       wordInfo.appendChild(cur); 
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     } 
  
-    if (token.containsKey(SentimentCoreAnnotations.SentimentClass.class)) { 
-      Element cur = new Element("sentiment", curNS); 
-      cur.appendChild(token.get(SentimentCoreAnnotations.SentimentClass.class)); 
-      wordInfo.appendChild(cur); 
-    } 
- 
 //    IntTuple corefDest; 
 //    if((corefDest = label.get(CorefDestAnnotation.class)) != null){ 
 //      Element cur = new Element("coref", curNS); 
@@ -489,9 +728,9 @@ public class XMLOutputter extends AnnotationOutputter { 
       top.appendChild(relation.getSubType()); 
     } 
  
-    List<EntityMention> mentions = relation.getEntityMentionArgs(); 
+    List<EntityMention> ents = relation.getEntityMentionArgs(); 
     Element args = new Element("arguments", curNS); 
-    for (EntityMention e : mentions) { 
+    for (EntityMention e : ents) { 
       args.appendChild(toXML(e, curNS)); 
     } 
     top.appendChild(args); 
@@ -518,5 +757,6 @@ public class XMLOutputter extends AnnotationOutputter { 
     return probs; 
   } 
  
-} 
  
+ 
+} 
diff --git a/src/org/decidingforce/DFClausIE.java b/src/org/decidingforce/DFClausIE.java 
new file mode 100644 
index 0000000..aeb213d 
--- /dev/null 
+++ b/src/org/decidingforce/DFClausIE.java 
@@ -0,0 +1,352 @@ 
+package org.decidingforce; 
+ 
+import java.io.DataInput; 
+import java.io.DataInputStream; 
+import java.io.FileInputStream; 
+import java.io.FileOutputStream; 
+import java.io.BufferedOutputStream; 
+import java.io.File; 
+import java.io.FileNotFoundException; 
+import java.io.IOException; 
+import java.io.InputStream; 
+import java.io.OutputStream; 
+import java.io.PrintStream; 
+import java.io.StringReader; 
+import java.util.ArrayList; 
+import java.util.Collection; 
+import java.util.HashMap; 
+import java.util.List; 
+import java.util.Map; 
+ 
+import clausie.Constituent.Flag; 
+import clausie.JavaUtils.MapUtil; 
+import clausie.Clause; 
+import clausie.Proposition; 
+import clausie.Options; 
+import clausie.IndexedConstituent; 
+import clausie.DefaultPropositionGenerator; 
+import clausie.XcompConstituent; 
+import clausie.TextConstituent; 
+import clausie.Constituent; 
+import clausie.PropositionGenerator; 
+import clausie.ClauseDetector; 
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+import clausie.ProcessConjunctions; 
+import joptsimple.OptionException; 
+import joptsimple.OptionParser; 
+import joptsimple.OptionSet; 
+import edu.stanford.nlp.io.EncodingPrintWriter.out; 
+import edu.stanford.nlp.ling.CoreLabel; 
+import edu.stanford.nlp.ling.IndexedWord; 
+import edu.stanford.nlp.pipeline.ParserAnnotatorUtils; 
+import edu.stanford.nlp.process.CoreLabelTokenFactory; 
+import edu.stanford.nlp.process.PTBTokenizer; 
+import edu.stanford.nlp.semgraph.SemanticGraph; 
+import edu.stanford.nlp.semgraph.SemanticGraphFactory; 
+import edu.stanford.nlp.trees.Tree; 
+import edu.stanford.nlp.util.ScoredObject; 
+import org.codehaus.jackson.map.ObjectMapper; 
+ 
+public class DFClausIE { 
+ Tree depTree; 
+ SemanticGraph semanticGraph; 
+ String text; 
+ List<ScoredObject<Tree>> trees; 
+ 
+        List<Clause> clauses = new ArrayList<Clause>(); 
+ 
+        int k = 10; 
+ 
+        double bestScore; 
+        Tree bestDT; 
+        SemanticGraph bestSemanticGraph; 
+        List<Clause> bestClauses; 
+ 
+        List<Proposition> propositions = new ArrayList<Proposition>(); 
+        Map<Proposition, Double> scoredPropositions = new HashMap<Proposition, Double>(); 
+ 
+        PropositionGenerator propositionGenerator; 
+ 
+        Options options; 
+ 
+        // Indicates if the clause processed comes from an xcomp constituent of the 
+        // original sentence 
+        boolean xcomp = false; 
+ 
+        // -- construction 
+        // ---------------------------------------------------------------------------- 
+ 
+        public DFClausIE(Options options) { 
+                this.options = options; 
+                this.propositionGenerator = new DefaultPropositionGenerator(this.options); 
+        } 
+ 
+        public DFClausIE() { 
+                this(new Options()); 
+        } 
+ 
+ 
+        public DFClausIE(String text, SemanticGraph sg, Tree t) throws IOException { 
+                this(new Options("resources/clausie.conf")); 
+                this.text = text; 
+                this.semanticGraph = sg; 
+                this.depTree = t; 
+        } 
+ 
+        // -- misc method 
+        // ----------------------------------------------------------------------------- 
+ 
+        public Options getOptions() { 
+                return options; 
+        } 
+ 
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+        public void clear() { 
+                semanticGraph = null; 
+                depTree = null; 
+                clauses.clear(); 
+                propositions.clear(); 
+        } 
+ 
+        /** Returns the constituent tree for the sentence. */ 
+        public Tree getDepTree() { 
+                return depTree; 
+        } 
+ 
+        /** Returns the dependency tree for the sentence. */ 
+        public SemanticGraph getSemanticGraph() { 
+                return semanticGraph; 
+        } 
+ 
+        // -- clause detection 
+        // ------------------------------------------------------------------------ 
+ 
+        /** Detects clauses in the sentence. */ 
+        public void detectClauses() { 
+          // System.err.println("ClauseDetector.detectClauses:" + this.options + this.semanticGraph + this.depTree + this.clauses); 
+          if (this.semanticGraph != null || this.depTree != null) { 
+          ClauseDetector.detectClauses(this.options, this.semanticGraph, this.depTree, this.clauses); 
+          } 
+        } 
+ 
+        /** Returns clauses in the sentence. */ 
+        public List<Clause> getClauses() { 
+                return clauses; 
+        } 
+ 
+        // -- proposition generation 
+        // ------------------------------------------------------------------ 
+ 
+        /** Generates propositions from the clauses in the sentence. */ 
+        public void generatePropositions() { 
+                propositions.clear(); 
+ 
+                // holds alternative options for each constituents (obtained by 
+                // processing coordinated conjunctions and xcomps) 
+                final List<List<Constituent>> constituents = new ArrayList<List<Constituent>>(); 
+ 
+                // which of the constituents are required? 
+                final List<Flag> flags = new ArrayList<Flag>(); 
+                final List<Boolean> include = new ArrayList<Boolean>(); 
+ 
+                // holds all valid combination of constituents for which a proposition 
+                // is to be generated 
+                final List<List<Boolean>> includeConstituents = new ArrayList<List<Boolean>>(); 
+ 
+                // let's start 
+                for (Clause clause : clauses) { 
+                        // process coordinating conjunctions 
+                        constituents.clear(); 
+                        for (int i = 0; i < clause.getConstituents().size(); i++) { 
+                                // if(xcomp && clause.subject == i) continue; //An xcomp does 
+                                // not have an internal subject so should not be processed here 
+                                Constituent constituent = clause.getConstituents().get(i); 
+                                List<Constituent> alternatives; 
+                                if (!(xcomp && clause.getSubject() == i) 
+                                    && constituent instanceof IndexedConstituent 
+                                    // the processing of the xcomps is done in Default 
+                                    // proposition generator. 
+                                    // Otherwise we get duplicate propositions. 
+                                    && !clause.getXcomps().contains(i) 
+                                    && ((i == clause.getVerb() && options.processCcAllVerbs) || (i != clause.getVerb() && options.processCcNonVerbs))) 
{ 
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+                                        alternatives = ProcessConjunctions.processCC(depTree, constituent, false, false, Integer.MAX_VALUE, null, null); 
+                                } else if (!(xcomp && clause.getSubject() == i) 
+                                           && clause.getXcomps().contains(i)) { 
+                                        alternatives = new ArrayList<Constituent>(); 
+                                        DFClausIE xclausIE = new DFClausIE(options); 
+                                        xclausIE.semanticGraph = semanticGraph; 
+                                        xclausIE.depTree = depTree; 
+                                        xclausIE.xcomp = true; 
+                                        xclausIE.clauses = ((XcompConstituent) clause.getConstituents() 
+                                                            .get(i)).getClauses(); 
+                                        xclausIE.generatePropositions(); 
+                                        for (Proposition p : xclausIE.propositions) { 
+                                                StringBuilder sb = new StringBuilder(); 
+                                                String sep = ""; 
+                                                for (int j = 0; j < p.constituents.size(); j++) { 
+                                                        if (j == 0)    // to avoid including the subjecct, We 
+                                                                continue;  // could also generate the prop 
+                                                        // without the subject 
+                                                        sb.append(sep); 
+                                                        sb.append(p.constituents.get(j)); 
+                                                        sep = " "; 
+                                                } 
+                                                alternatives.add(new TextConstituent(sb.toString(), 
+                                                                                     constituent.type)); 
+                                        } 
+                                } else { 
+                                        alternatives = new ArrayList<Constituent>(1); 
+                                        alternatives.add(constituent); 
+                                } 
+                                constituents.add(alternatives); 
+                        } 
+ 
+                        // create a list of all combinations of constituents for which a 
+                        // proposition should be generated 
+                        includeConstituents.clear(); 
+                        flags.clear(); 
+                        include.clear(); 
+                        for (int i = 0; i < clause.getConstituents().size(); i++) { 
+                                Flag flag = clause.getFlag(i, options); 
+                                flags.add(flag); 
+                                include.add(!flag.equals(Flag.IGNORE)); 
+                        } 
+                        if (options.nary) { 
+                                // we always include all constituents for n-ary ouput 
+                                // (optional parts marked later) 
+                                includeConstituents.add(include); 
+                        } else { 
+                                // triple mode; determine which parts are required 
+                                for (int i = 0; i < clause.getConstituents().size(); i++) { 
+                                        include.set(i, flags.get(i).equals(Flag.REQUIRED)); 
+                                } 
+ 
+                                // create combinations of required/optional constituents 
+                                new Runnable() { 
+                                        int noOptional; 
+ 
+                                        @Override 
+                                        public void run() { 
+                                                noOptional = 0; 
+                                                for (Flag f : flags) { 
+                                                        if (f.equals(Flag.OPTIONAL)) 
+                                                                noOptional++; 
+                                                } 
+                                                run(0, 0, new ArrayList<Boolean>()); 
+                                        } 
+ 
+                                        private void run(int pos, int selected, List<Boolean> prefix) { 
+                                                if (pos >= include.size()) { 
+                                                        if (selected >= Math.min(options.minOptionalArgs, 
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+                                                                                 noOptional) 
+                                                            && selected <= options.maxOptionalArgs) { 
+                                                                includeConstituents.add(new ArrayList<Boolean>( 
+                                                                                                prefix)); 
+                                                        } 
+                                                        return; 
+                                                } 
+                                                prefix.add(true); 
+                                                if (include.get(pos)) { 
+                                                        run(pos + 1, selected, prefix); 
+                                                } else { 
+                                                        if (!flags.get(pos).equals(Flag.IGNORE)) { 
+                                                                run(pos + 1, selected + 1, prefix); 
+                                                        } 
+                                                        prefix.set(prefix.size() - 1, false); 
+                                                        run(pos + 1, selected, prefix); 
+                                                } 
+                                                prefix.remove(prefix.size() - 1); 
+                                        } 
+                                }.run(); 
+                        } 
+ 
+                        // create a temporary clause for which to generate a proposition 
+                        final Clause tempClause = clause.clone(); 
+ 
+                        // generate propositions 
+                        new Runnable() { 
+                                @Override 
+                                public void run() { 
+                                        // select which constituents to include 
+                                        for (List<Boolean> include : includeConstituents) { 
+                                                // now select an alternative for each constituent 
+                                                selectConstituent(0, include); 
+                                        } 
+                                } 
+ 
+                                void selectConstituent(int i, List<Boolean> include) { 
+                                        if (i < constituents.size()) { 
+                                                if (include.get(i)) { 
+                                                        List<Constituent> alternatives = constituents 
+                                                                .get(i); 
+                                                        for (int j = 0; j < alternatives.size(); j++) { 
+                                                                tempClause.getConstituents().set(i, 
+                                                                                                 alternatives.get(j)); 
+                                                                selectConstituent(i + 1, include); 
+                                                        } 
+                                                } else { 
+                                                        selectConstituent(i + 1, include); 
+                                                } 
+                                        } else { 
+                                                // everything selected; generate 
+                                                propositionGenerator.generate(propositions, tempClause, 
+                                                                              include); 
+                                        } 
+                                } 
+                        }.run(); 
+                } 
+        } 
+ 
+        public Collection<Proposition> getPropositions() { 
+                        return propositions; 
+        } 
+ 
+        public ArrayList<Map> run() { 
+                OutputStream out = System.out; 
+                PrintStream dout = new PrintStream(out); 
+                ArrayList<Map> al = new ArrayList<Map>(); 
+                this.detectClauses(); 
+                try { 
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+                        this.generatePropositions(); 
+ 
+                        dout.println(this.getSemanticGraph().toFormattedString() 
+                                     .replaceAll("\n", "\n#                ").trim()); 
+ 
+                        dout.print("#   Detected "); 
+                        dout.print(this.getClauses().size()); 
+                        dout.println(" clause(s)."); 
+                        ObjectMapper mapper = new ObjectMapper(); 
+                        for (Clause clause : this.getClauses()) { 
+                                Map svo = clause.svoMap(this.options); 
+                                if (svo != null) { 
+                                  // Object o; 
+                                  // o = svo.get("TUAid"); 
+                                  // if (o instanceof String) { 
+                                  //   String TUAid = (String) o; 
+                                  //   svo.remove("TUAid"); 
+                                  //   svo.put("TUAid", TUAid); 
+                                  // } 
+                                  // o = svo.get("metadata"); 
+                                  // if (o instanceof String) { 
+                                  //   String metadata = (String) o; 
+                                  //   svo.remove("metadata"); 
+                                  //   svo.put("metadata", metadata); 
+                                  // } 
+                                  svo.put("text", this.text); 
+                                  al.add(svo); 
+                                  try { 
+                                    dout.print(mapper.writeValueAsString(svo)); 
+                                  } catch (IOException e) { 
+                                    e.printStackTrace(); 
+                                  } 
+                                  dout.println(); 
+                                } 
+                        } 
+                } catch (java.lang.NullPointerException e) { 
+                        System.err.println("IGNORING KNOWN PROBLEM: NullPointerException"); 
+                } catch (java.lang.IndexOutOfBoundsException e) { 
+                        System.err.println("IGNORING KNOWN PROBLEM: IndexOutOfBoundsException"); 
+                } catch (java.lang.StackOverflowError e) { 
+                        System.err.println("IGNORING KNOWN PROBLEM: StackOverflowError"); 
+                } 
+                return al; 
+        } 
+} 

 

Description and code for actor and verb replacements dictionaries 

Most of the actor and verb dictionary replacements were accomplished in Python.  
 
The following code converts excel spreadsheets of named-persons into python ‘dict’ files: 
 
#!/usr/bin/env python 
 
import pandas as pd 
import numpy as np 
 
import json 
import argparse 
 
 
parser = argparse.ArgumentParser(description='Label actors') 
parser.add_argument('csv_file', help='CSV file') 
parser.add_argument('--label', help='Global label') 
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args = parser.parse_args() 
 
 
df = pd.read_csv(args.csv_file, encoding="latin-1") 
 
# Select everything but the first two columns 
df_in = df.ix[:,2:] 
 
# Find places where names are filled in 
mask = df_in.isnull().as_matrix() 
 
# Grab place names and roles 
locations = df.ix[:, 1] 
roles = df.columns 
 
rows, cols = np.where(~mask) 
joined_actors = df_in.as_matrix()[rows, cols] 
 
actor_info = [] 
for (joined_actor, row, col) in zip(joined_actors, rows, cols): 
    for actor in [a.strip() for a in joined_actor.split(';')]: 
        actor_org_info = [s.strip() for s in actor.split(':')] 
 
        name = actor_org_info[0] 
        other_org_name, other_org_role = '', '' 
 
        if len(actor_org_info) == 3: 
            other_org_name, other_org_role = actor_org_info[1:] 
        elif len(actor_org_info) == 2: 
            other_org_role = actor_org_info[1] 
 
        actor_dict = {'name': name, 
                      'location': locations[rowHigh-Level Orientation Document for CoreNLP Co-reference Resolution and ClausIE SVO Extraction], 
                      'role': roles[col + 2], 
                      'class': args.label, 
                      'other_org': {'name': other_org_name, 
                                    'title': other_org_role}} 
        actor_info.append(actor_dict) 
 
 
fn = 'output_' + args.csv_file.replace('.csv', '') + '.json' 
with open(fn, 'w') as f: 
    print('Saving ouput to', fn) 
    json.dump(actor_info, f, indent=2) 

 
 
 
The following code scans through TUA text by city and replaces named-actors with “police,” 
“protester,” or “city.” 
 
#!/usr/bin/env python 
 
from jsonlite import jsonlite2json 
from replacement_factory import replacement_factory 
 
 
import json 
import sys 
import os 
 
 
DEBUG = False 
 
 
if len(sys.argv) < 3: 
    print("Usage: actor_replacement.py parsed_text.jsonlite actor_dict.json") 
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    print() 
    print("Actor dict can be generated from CSV using actor_parser.py") 
    sys.exit(1) 
 
 
parsed_jsonl, actor_json = sys.argv[1:] 
 
with open(parsed_jsonl) as f: 
    data = jsonlite2json(f) 
 
with open(actor_json) as f: 
    repl = json.load(f) 
 
 
# Set up replacement actor dictionary 
repl_dict_named_entities = {entity["name"].lower(): entity["class"].lower() for entity in repl} 
repl_dict_named_entities.update({"{} {}".format(entity["role"].lower(), 
                                 entity["name"].lower()): 
                                 entity["class"].lower() for entity in repl}) 
 
multiple_replace_named_entities = replacement_factory(repl_dict_named_entities) 
 
# Here we specify where the dictionary has to be applied 
for entry in data: 
    for key in entry: 
        entry[key] = entry[key].lower() 
 
 
for i, entry in enumerate(data): 
    if 'S' in entry: 
        entry['S'] = multiple_replace_named_entities(entry['S']) 
 
    if 'O' in entry: 
        entry['O'] = multiple_replace_named_entities(entry['O']) 
 
    if 'tua' in entry: 
        entry['tua'] = multiple_replace_named_entities(entry['tua']) 
 
    if (i % 500 == 0): 
        print('Progress: %.1f%%\r' % (i / (len(data) - 1) * 100), end='') 
 
print("Progress: 100%") 
 
 
fn = 'output_' + os.path.split(parsed_jsonl)[-1] 
with open(fn, 'w') as f: 
    print('Saving ouput to', fn) 
    for line in data: 
        f.writelines([json.dumps(line), '\n']) 

 
 
 
The following code scans through all Subject and Objects and replaces named-actors with “police,” 
“protester,” or “city.” It also scans through all Verbs and replaces them with a shorter list of verbs. 
 
#!/usr/bin/env python 
 
from jsonlite import jsonlite2json 
 
from replacement_factory import replacement_factory 
 
import json 
import sys 
import re 
import os 
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DEBUG = False 
 
 
if len(sys.argv) < 4: 
    print("Usage: actor_replacement.py parsed_text.jsonlite words_to_actor.csv words_to_words.csv") 
    print() 
    print("Actor dict can be generated from CSV using actor_parser.py") 
    sys.exit(1) 
 
 
parsed_jsonl, words_to_actor, words_to_words = sys.argv[1:] 
 
with open(parsed_jsonl) as f: 
    data = jsonlite2json(f) 
 
 
# 
# --- Handle words to entity replacements --- 
# 
 
import csv 
f = csv.reader(open(words_to_actor, encoding="latin-1")) 
 
header = next(f) 
replacement_values = header[1:5] 
replacements = [line[1:5] for line in f] 
 
# These classes will be parsed out later.  For now, dump them. 
replacements = [[item.split(':')[0].strip() for item in line] for line in replacements] 
 
repl_dict_actors = {} 
for line in replacements: 
    for i, item in enumerate(line): 
        if item.strip(): 
            repl_dict_actors[item.lower()] = replacement_values[i].lower() 
 
# 
# --- Handle words to words replacements --- 
# 
 
print(words_to_words) 
f = csv.reader(open(words_to_words)) 
 
header = next(f) 
assert('Lemmas' in header[0]) 
 
repl_dict_verbs = {} 
for line in f: 
    words = [w.strip() for w in line[:2]] 
    if words[0] and words[1]: 
        repl_dict_verbs[words[0].lower()] = words[1].lower() 
 
 
multiple_replace_actors = replacement_factory(repl_dict_actors) 
multiple_replace_verbs = replacement_factory(repl_dict_verbs) 
 
 
# Here we specify where the dictionary has to be applied 
for entry in data: 
    for key in entry: 
        entry[key] = entry[key].lower() 
 
 
for i, entry in enumerate(data): 
    if DEBUG: 
        if any(k in entry['text'] for k in keys): 
            print() 
            print('<<', entry['text']) 
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            print('>>', multiple_replace(entry['text'])) 
 
    if 'S' in entry: 
        entry['S'] = multiple_replace_actors(entry['S']) 
 
    if 'O' in entry: 
        entry['O'] = multiple_replace_actors(entry['O']) 
 
    if 'tua' in entry: 
        entry['tua'] = multiple_replace_actors(entry['tua']) 
 
    if 'Lemma' in entry: 
        entry['Lemma'] = multiple_replace_verbs(entry['Lemma']) 
 
 
 
    if (i % 1000 == 0): 
        print('Progress: %.1f%%\r' % (i / (len(data) - 1) * 100), end='') 
print("Progress: 100%") 
 
 
fn = 'output_' + os.path.split(parsed_jsonl)[-1] 
with open(fn, 'w') as f: 
    print('Saving ouput to', fn) 
    for line in data: 
        f.writelines([json.dumps(line), '\n']) 

 
 
 

Data Preparation and Topic Modeling in R – Chapters 4 & 5 
 

The following is the R code used to perform structural topic modeling on protester event text units. 
It starts by reading in data where each row is an event text unit. Then, data describing the cities in 
which events occurred are merged with the dataset. Some variables are generated. A date-of-event 
variable is derived from the article_date and the days (e.g. ‘Tuesday’) mentioned in the text. 
Continuous city variables describing Political Opportunity Structures are converted to ordinal 
variables. Then, Structural Topic Models are estimated and plotted. 
 
rm(list=ls()) 
options(encoding= "UTF-8") 
library(jsonlite) 
library(plyr) 
# #install.packages('reshape') 
require(reshape) 
#  
setwd("~/Documents/Protester_Repertoires") 
 
 
## Protester.jsonl + Police.jsonl combined to cover ALL cities in current dataset 
## removed 4 irrelevant lines with "city" of "Assignments as of 9-21-13" mistakenly included in Police.jsonl 
all <- stream_in(file("All.jsonl")) 
 
###GET RID OF NON-TUA ARTEFACTS and focus on one type at a time... and exclude irrelevant cities 
all <- subset(all, TUAfile != "NA") 
all <- subset(all, TUAtype == 'Protester') 
 
 
####READ IN TUA TEXT #Thanks, Karthik Ram ################################### 
read_file <- function(TUAfile) { 
  readChar(TUAfile, file.info(TUAfile)$size) 
} 
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library(dplyr) 
all <- all %>% 
  rowwise()  %>% 
  mutate(tua = read_file(TUAfile)) 
 
#tua is the name of the new column 
 
#THEN, convert pros into a legitimate data.frame #Thanks, Daniel Turek 
class(all) 
#prosdf <- class(as.data.frame(pros))  #not sure I need that 
all <- as.data.frame(all) 
class(all) 
 
###################################################################### 
#########send out for actor dictionary parsing in python 
 
stream_out(all, file("Protester11.jsonl")) 
 
##do the stuff in python 
 
#########read back in with all those replacements in S, O, and tua text, and Lemma 
all2<- stream_in(file("final_output_July9_15_reproduction.jsonl"))     #this file is (dumbly) in actor-parser-master-2 
##########convert cells with replacements to thier simple actor name 
#write a function for this 
 
all2$S[grepl('protesters', all2$S)] <- 'protesters' 
all2$O[grepl('protesters', all2$O)] <- 'protesters' 
all2$S[grepl('police', all2$S)] <- 'police' 
all2$O[grepl('police', all2$O)] <- 'police' 
all2$S[grepl('city', all2$S)] <- 'city' 
all2$O[grepl('city', all2$O)] <- 'city' 
 
# df$b[grepl('cats', df$b)] <- 'cats' 
# df$b[grepl('cats', df$b)] <- 'cats' 
 
#CONCATENATE S, V, O, XCOMP to create S_V_O tokens for later inclusion in topic modeling 
all2$svo<-paste(all2$S, all2$Lemma, all2$NEGATED, all2$O, all2$XCOMP, sep = "_") 
 
all2$svocon<-paste(all2$S, all2$Lemma, all2$NEGATED, all2$O, all2$XCOMP, all2$svo, sep = " ") 
 
all2$tua_svo<-paste(all2$tua, all2$svo, sep = " ") 
 
#APPEND svocons to Tua text.  
all2$tua_svocon<-paste(all2$tua, all2$S, all2$Lemma, all2$NEGATED, all2$O, all2$XCOMP, all2$svo, sep = " ") 
 
###### 
#View(all$tua_svo[grepl('Bradley Russell', all$tua_svo)]) 
 
##################MERGE on city key############################### 
##################MERGE on city key############################### 
## knowncities.csv is derived from cityvars2.csv with 4 extraneous 
## cities removed (moved into unused extracities.csv) and 5 missing 
## cities added (see last 5 entries in knowncities.csv) 
known <- read.csv("knowncities.csv", header = TRUE, colClasses = c('character', 'character')) 
extra <- read.csv("extracities.csv", header = TRUE, colClasses = c('character', 'character')) 
 
known$key <- tolower(gsub('[^[:alpha:]]', '', paste(known$city,known$state))) 
 
rewrite <- function(x) { 
  if (x == "cleveland") return ("clevelandoh") 
  if (x == "dayton") return ("daytonoh") 
  if (x == "jackson") return ("jacksonms") 
  if (x == "allentowncity") return ("allentownpa") 
  if (x == "lansingcity") return ("lansingmi") 
  if (x == "pensacolaflorida") return ("pensacolafl") 
  if (x == "cedarfallscedarvalley") return ("cedarfallsia") 
  if (x == "everettcity") return ("everettwa") 
  if (x == "coachella") return ("coachellavalleyca") 
  if (x == "lexingtonfayetteky") return ("lexingtonky") 
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  if (x == "louisville") return ("louisvillejeffersoncountyky") 
  if (x == "newyork") return ("newyorkcityny") 
  if (x == "nashville") return ("nashvilledavidsontn") 
  string = x 
  inlist = known$key 
  abbr <- substr(string, 1, nchar(string)-2) 
  found <- inlist[grepl(paste("^", string, sep=""), inlist)] 
  if (length(found) == 0) { 
    found <- inlist[grepl(paste("^", abbr, "$", sep=""), inlist)] 
  } 
  if (length(found) == 1) { 
    return(found) 
  } else if (length(found > 1)) { 
    warning(paste("found duplicates: ", string)) 
    return(found) 
  } else { 
    warning(paste("did not find: ", string)) 
    return(F) 
  } 
} 
 
all2$key <- mapply(rewrite, tolower(gsub('[^[:alpha:]]', '', all2$city))) 
 
cityvars3 <- read.csv("cityvars3.csv", header = TRUE, colClasses = c('character', 'character', 'character', 'character', 'integer', 'character', 
'integer', 'numeric', 'numeric', 'numeric', 'character', 'character', 'character', 'numeric', 'numeric', 'numeric', 'numeric', 'numeric', 
'numeric', 'factor', 'numeric'), fileEncoding = "UTF-8") 
all3 <- merge(all2, cityvars3, by=c("key"), all.x=TRUE) 
unique(all3$key) ## return all 185 cities 
unique(paste(all3$Clean_city,all3$State)) ## returns all 185 cities... (because uniqueness MUST include state, not just city) 
unique(all3$Clean_city) ## as expected returns ONLY 179 cities... because some states have same city name!!!! 
 
 
#get rid of cities outside our data set 
all3 <- subset(all3, key!="lakeworthfl") 
all3 <- subset(all3, key!="athensga") 
all3 <- subset(all3, key!="lancasterpa") 
all3 <- subset(all3, key!="clevelandtn") 
 
 
################################################# 
################################################# 
 
 
###################### 
#DATES STUFF 
###################### 
 
#First, Cleaning 
# Replace "None" with Jan 1, 1999 so it is a date by which you can filter later. 
class(all3$article_date) 
all3$article_date<-as.character(all3$article_date) 
 
Broken <- subset(all3, article_date=="none") 
Broken <- subset(all3, article_date=="undated") 
Broken <- subset(all3, article_date=="") 
Broken <- subset(all3, (nchar(article_date) > 8)) 
Broken <- subset(all3, article_date=="???") 
Broken <- subset(all3, Next_Election==NA) 
rm(Broken) 
 
all3clean <- subset(all3, article_date!="") 
all3clean <- subset(all3clean, article_date!="+*") 
all3clean <- subset(all3clean, article_date!="???") 
all3clean <- subset(all3clean, article_date!="none") 
all3clean <- subset(all3clean, article_date!="undated") 
all3clean <- subset(all3clean, (nchar(article_date) < 9)) 
all3clean <- subset(all3clean, article_date!="12-12-")  #or was it 12-2 
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View(unique(all3clean$article_date)) 
 
class(all3clean$article_date) 
#as.character(all3clean$article_date) 
 
##################################### 
#Some FUNCTIONS for DATE EXTRACTION 
##################################### 
#This function takes a formatted date as Y-m-d and returns weekday 
day_from_date <- function(adate = NULL) {   
  if (!is.null(adate)) {  
    day_list <- c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", 
                  "Saturday") 
    dow <- try(which(grepl(weekdays(as.Date(adate, "%m-%d-%y")), day_list)), silent=TRUE) 
    if(inherits(dow, "try-error")) dow <- NA 
    return(dow) 
  } 
} 
 
# This function takes some text and returns the position on the weekday list 
# So return_days("Monday Tuesday Friday") 
# will return 2 (for Monday) 
return_days <- function(text) {  
  if(!is.na(text)){ 
  if(is.character(text)) { 
    day_list <- c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", 
                  "Saturday") 
    res <- as.numeric(which(sapply(day_list, grepl, text, ignore.case = TRUE))) 
    if (length(res) == 0) { 
      res <- NA 
    } else { 
      res<-res[1] # we can add more handling here to deal with multiple weekday mentions 
    } 
  } 
  } else res <- NA 
  return(res) 
} 
 
# Function takes weekday difference between article_date and text_date and 
# calculates approximate date. 
day_in_text <- function(article_day, aday, pdate) {  
  if(!is.na(pdate)){ 
    date_diff <- aday - pdate 
    if (date_diff > 0) { 
      out <- as.Date(article_day, "%m-%d-%y") - date_diff 
    } else { 
      dd <- ifelse(date_diff != 0, date_diff + 7, 0) 
      out <- as.Date(article_day, "%m-%d-%y") - dd 
    } 
  } else{ 
    out <- try(as.Date(article_day, "%m-%d-%y") - 1, silent=TRUE) 
    if(inherits(out, "try-error")) out <- NA 
  } 
  return(out) 
} 
 
########clean out weird dates########## 
View(unique(all3clean$article_date)) 
####################################### 
all3clean <- subset(all3clean, article_date!="3-30-12") 
all3clean <- subset(all3clean, article_date!="10-22-13") 
all3clean <- subset(all3clean, article_date!="10-28-13") 
all3clean <- subset(all3clean, article_date!="7-17-12") 
all3clean <- subset(all3clean, article_date!="9-24-12") 
all3clean <- subset(all3clean, article_date!="2-27-12") 
all3clean <- subset(all3clean, article_date!="11-1-13") 
all3clean <- subset(all3clean, article_date!="10-26-13") 
all3clean <- subset(all3clean, article_date!="11-17-12") 
all3clean <- subset(all3clean, article_date!="11-7-10") 
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all3clean <- subset(all3clean, article_date!="12-13-1") 
all3clean <- subset(all3clean, article_date!="12-11-12") 
 
 
 
############################################## 
#NOW, to extract DATES from tua text daynames 
############################################## 
library(lubridate) 
#library(dplyr) 
library(readr) 
 
all3clean$article_date<-as.character(all3clean$article_date) 
 
published_day <-  sapply(all3clean$article_date, day_from_date) 
 
text_day <- sapply(all3clean$tua_svo, return_days) 
guessing_date_in_text <- mapply(function(a,b,c) 
  day_in_text(article_day=a, aday=b, pdate=c), 
  a=all3clean$article_date, 
  b=published_day, 
  c=text_day, 
  SIMPLIFY=FALSE) 
 
guessing_date_in_text <- lapply(guessing_date_in_text, function(x) as.character(x)) 
guessing_date_in_text <- c(do.call(rbind, guessing_date_in_text)) 
all3clean$text_date <- guessing_date_in_text 
all3clean$text_date <- as.Date(all3clean$text_date, "%Y-%m-%d") 
View(unique(all3clean$text_date)) 
 
 
 
############################# 
#DAYS running variables 
############################# 
#days camped 
#text_date - campstartdate 
class(all3clean$Campaign.Start.Date) 
#character 
class(all3clean$text_date) 
#Date 
all3clean$camp_date<-as.Date(all3clean$Campaign.Start.Date, "%m/%d/%y") 
all3clean$dayscamped<- all3clean$text_date - all3clean$camp_date 
all3clean$dayscamped<-as.numeric(all3clean$dayscamped) 
View(unique(all3clean$dayscamped)) 
View(unique(all3clean$camp_date)) 
View(unique(all3clean$Campaign.Start.Date)) 
View(unique(all3clean$text_date)) 
 
 
 
 
#days since zucotti 
all3clean$dayszuc<-all3clean$text_date - as.Date("2011-09-17") 
all3clean$dayszuc<-as.numeric(all3clean$dayszuc) 
View(unique(all3clean$dayszuc)) 
 
############################################# 
#ReFactor POS Variables 
############################################# 
 
 
 
#make so Gov't_Type captures increasing openness from Mayoral to Commission + state capital 
all3clean$Govt_Type<-factor(all3clean$Govt_Type, levels=c("MC", "CM", "CO")) #if this doesn't work, check that cityvars2 has been 
updated 
#convert levels to numbers 
all3clean$govt3<-as.numeric(all3clean$Govt_Type) 
#add the state capital number 
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all3clean$pos1<- all3clean$govt3 + all3clean$State.Capital 
View(unique(all3clean$govt3)) 
View(unique(all3clean$State.Capital)) 
View(unique(all3clean$pos1)) 
 
 
###### 
#Electoral instability 
####### 
#camp start date - prior election. wihtin 3 months... 3, within 6... 2, within 12 months... 1, otherwise 0  
#upcoming election - camp start date ... same as above 
#then add them together 
#class(all3clean$Next_Election) 
#View(unique(all3clean$Next_Election)) 
#add an arbitrary daydate "01" to all the Next_Election data 
all3clean$Next_Election<-as.Date(paste(all3clean$Next_Election,"-01", sep=""))  
View(unique(all3clean$Next_Election)) 
table(all3clean$Next_Election) 
#set as Date type and calculate weeks till next election 
all3clean$Next_Election<-as.Date(all3clean$Next_Election, "%Y-%m-/%d/") 
all3clean$weekstill<-as.numeric(difftime(all3clean$Next_Election, as.Date("2011-09-17"), units = "weeks")) 
View(unique(all3clean$weekstill)) 
 
#calculates weeks since last election 
all3clean$Prior_Election<-as.Date(all3clean$Prior_Election, "%m/%d/%y") 
class(all3clean$Prior_Election) 
all3clean$weekssince<-as.numeric(difftime(as.Date("2011-09-17"), all3clean$Prior_Election, units = "weeks")) 
View(unique(all3clean$weekssince)) 
 
 
 
#### 
library(Hmisc) 
all3clean$stability3<-(all3clean$weekssince + all3clean$weekstill) 
all3clean$stability3<- as.numeric(cut2(all3clean$stability3, g=3)) 
table(all3clean$stability3) 
 
 
 
#### code below is what I used in the first run ###### correcting as writing Chapter 6 
# a <- 20 - floor(all3clean$weekstill / 13) 
# all3clean$weekstill<-floor(a/5) 
#  
# b <- 20 - floor(all3clean$weekssince / 13) 
# all3clean$weekssince<-floor(b/5) 
#  
# all3clean$stability<-(all3clean$weekssince + all3clean$weekstill)*2/3 
# View(unique(all3clean$stability)) 
#  
# all3clean$stability<-(all3clean$weekssince + all3clean$weekstill) 
# table(all3clean$stability) 
# # make stability easier to work with 
# class(all3clean$stability) 
# all3clean$stability2<-ceiling(all3clean$stability *3/4-1) 
# table(all3clean$stability2) 
 
 
 
 
 
 
####### 
#Obama voters as pool of supporters 
####### 
all3clean$pool<-all3clean$Population*all3clean$Obama_Vote2008/100 
 
#cut it up into equal sized bins 
install.packages('Hmisc') 
library(Hmisc) 



 

     386

all3clean$pool2 <- as.numeric(cut2(all3clean$pool, g=5)) 
View(unique(all3clean$pool2)) 
all3clean$pool3 <- as.numeric(cut2(all3clean$pool, g=3)) 
 
all3clean$pop3 <- as.numeric(cut2(all3clean$Population, g=3)) 
all3clean$Obama3 <- as.numeric(cut2(all3clean$Obama_Vote2008, g=3)) 
View(unique(all3clean$pop)) 
View(unique(all3clean$Obama)) 
 
class(all3clean$Obama) 
 
class(all3clean$pop) 
 
 
save(all3clean,file="Diss4.Rda") 
load("Diss4.Rda") ##################################################### 
 
 
save(all3clean, file="Diss6.Rda")  #this is a reproduction with 3-value variables and using the later iteration of the Stefan's dictionary 
#################################################### 
#################################################### 
#convert from SVO data.frame to TUA data.frame 
#################################################### 
#################################################### 
################################################### 
View(unique(all3clean$tua)) 
 
processNicksDF <- function(df) { 
  out <- data.frame(tua = character(), 
                    text = character(), 
                    key = character(), 
                    pos1 = numeric(), 
                    stability3 = numeric(), 
                    Obama3 = numeric(), 
                    dayscamped = numeric(), 
                    dayszuc = numeric(), 
                    pop3 = numeric(), 
                    Obama_Vote2008 = numeric(), 
                    Population = numeric(), 
                    pool3 = numeric(), 
                    stringsAsFactors = FALSE) 
  for(e in unique(df$tua)) { 
    tempDF <- df[df$tua==e,] 
    prep <- data.frame(tua = e, 
                       text = paste(e, paste(tempDF$svocon, collapse=' ')), 
                       key = tempDF$key[1], 
                       pos1 = tempDF$pos1[1], 
                       stability3 = tempDF$stability3[1], 
                       Obama3 = tempDF$Obama3[1], 
                       dayscamped = tempDF$dayscamped[1], 
                       dayszuc = tempDF$dayszuc[1], 
                       pop3 = tempDF$pop[1], 
                       Obama_Vote2008 = tempDF$Obama_Vote2008[1], 
                       Population = tempDF$Population[1], 
                       pool3 = tempDF$pool3[1], 
                       stringsAsFactors = FALSE) 
    out <- rbind(out, prep)  
  } 
  return(out) 
} 
 
#build TUA-based dataframe 
df <- processNicksDF(all3clean) 
# 
# 
#                 SAVE!!!! 
##############################################################################################
########## 
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##############################################################################################
########## 
# save(df,file="TUAdf3.Rda") 
# load("TUAdf3.Rda") 
# save(df,file="TUAdf4.Rda")  #includes city 'key' variable now! 
save(df,file="TUAdf5.Rda")   #fixes while writing Chapter 6 
##############################################################################################
########## 
 
View(df$text) 
#clean up svo stuff 
df$text <-gsub('NA', '', df$text) 
df$text<-gsub('_+', '_', df$text) 
df$text<-gsub('"', '', df$text) 
df$text<-gsub('-rsb-', '', df$text) 
df$text<-gsub('-lsb-', '', df$text) 
df$text<-gsub('-lrb-', '', df$text) 
df$text<-gsub('-rrb-', '', df$text) 
df$text<-gsub(',', '', df$text) 
df$text<-gsub(':', '', df$text) 
df$text<-gsub('-rsb-', '', df$text) 
 
#fix some mistakes from prior substitutions 
df$text<-gsub('protestersers', 'protesters', df$text) 
df$text<-gsub('protestersed', 'protested', df$text) 
df$text<-gsub('protestersing', 'protesting', df$text) 
df$text<-gsub('protesterors', 'protesters', df$text) 
df$text<-gsub('protestors', 'protesters', df$text) 
df$text<-gsub('police police police', 'police police', df$text) 
df$text<-gsub('protesters protesters protesters', 'protesters protesters', df$text) 
df$text<-gsub('police police police', 'police police', df$text) 
df$text<-gsub('protesters protesters protesters', 'protesters protesters', df$text) 
df$text<-gsub('police police police', 'police police', df$text) 
df$text<-gsub('protesters protesters protesters', 'protesters protesters', df$text) 
df$text<-gsub('police police', 'police', df$text) 
df$text<-gsub('protesters protesters', 'protesters', df$text) 
 
 
#reduces some special classes of objects like citynames, days, parks, plazas, and some other named entitites 
df$text<-gsub("bo didley community plaza|frank ogawa plaza|calder plaza|cesar chavez plaza|hemming plaza|san jacinto plaza", 'xplaza', 
df$text) 
df$text<-gsub("Albany|Albuquerque|Allentown|philly|Anaheim|Anchorage|Ann 
Arbor|Arcata|Asheville|Ashtabula|Atlanta|Augusta|Aurora|Austin|Bakersfield|Baltimore|Bangor|Baton 
Rouge|Bellingham|Bend|Bethlehem|Binghamton|Birmingham|Bloomington|Boise|Boston|Bowling 
Green|Brattleboro|Buffalo|Burlington|Canton|Cedar Falls|Cedar Rapids|Chapel 
Hill|Carrboro|Charleston|Charleston|Charlotte|Chattanooga|Chicago|Chico|Cincinnati|Claremont|Clarksville|Cleveland 
              |Coachella Valley|Colombus|Colorado Springs|Columbia|Corpus Christi|Dade City|Dallas|Dayton|Daytona Beach|Denver|Des 
Moines|Detroit|Dover|Duluth|Easton|El Paso|Eugene|Eureka|Everett|Fairbanks|Fayetteville|Flint|Fort Collins|Fort Lauderdale|Fort 
Myers|Fort Wayne|Fort Worth|Frederick|Fresno|Gainesville|Grand 
Rapids|Greeley|Greensboro|Harrisburg|Hartford|Honolulu|Houston|Huntington|Indianapolis|Iowa City|Irvine|Ithaca|Jackson| 
              Jacksonville|Jersey City|Johnson City|Kalamazoo|Kansas City|Lansing|Las Cruces|Las Vegas|Lawrence|Lexington|Lincoln|Little 
Rock|Long Beach|Los Angeles|Louisville|Jefferson 
County|Lubbock|Madison|Memphis|Merced|Miami|Milwaukee|Minneapolis|Missoula|Mobile|Mosier|Muncie|Murfreesboro|Muskegon|N
ashville|Davidson|New Haven|New Orleans|New Paltz|New York City|Newark|Norfolk|Norman|Northampton|Oakland|Ogden|Oklahoma 
City|Olympia| 
              Omaha|Orlando|Palo 
Alto|Pensacola|Petaluma|Philadelphia|Phoenix|Pittsburgh|Pocatello|Portland|Portland|Poughkeepsie|Providence|Raleigh|Richmond|Ri
verside|Rochester|Sacramento|Salem|San Antonio|San Diego|San Francisco|San Jose|San Leandro|San Ramon|Santa Ana|Santa 
Cruz|Santa Fe|Santa Rosa|Scranton|Seattle|Sebastopol|Sonoma|South Bend|St. 
Louis|Stockton|Syracuse|Tacoma|Tallahassee|Tampa|Toledo|Trenton|Tucson|Tulsa|Utica| 
              Virginia Beach|Walnut Creek|Washington|West Palm 
Beach|Wichita|Wilmington|Wilmington|Worcester|Youngstown|Yuma|Venice", "cityname", df$text, ignore.case=TRUE) 
df$text<-gsub("California", 'xstate', df$text) 
df$text<-gsub("cityname movement|cityname protesters|cityname demonstrators|cityname activists|occupy cityname", 'protesters', 
df$text) 
df$text<-gsub("cityname deputies|cityname police department|cityname police", 'police', df$text) 
df$text<-gsub("bank of america| indep of america|wells fargo|chase bank", 'xbank', df$text) 
 
df$text<-gsub("brooklyn bridge|cityname street bridge", 'xbridge', df$text) 
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df$text<-gsub("jessica reznieck", 'xprotester', df$text) 
df$text<-gsub("saturday|sunday", 'xweekendday', df$text) 
df$text<-gsub("monday|tuesday|wednesday|thursday|friday", 'xweekday', df$text) 
df$text<-gsub("grand circus park|academy park|lafayette park|bubier park| thomas square park|smith park|zucotti park|cityname-
jefferson park|woodruff park|oak cliff park|pioneer park", 'xpark', df$text) 
df$text<-gsub("cielo vista mall|valley malls", 'xshop', df$text) 
View(df$text) 
 
 
#remove all rows with missing data 
df <- na.omit(df) 
 
#save(df,file="DissTUAstm_Sunday.Rda") 
save(df,file="DissTUAstm_7_9_15.Rda") # fixing plots while writing Chapter 6 
 
 
 
rm(all) 
rm(all3clean) 
 
 
 
 
################################################## 
#STRUCTURAL TOPIC MODELING  
################################################## 
#load("DissTUAstm2.Rda") 
load("DissTUAstm_Wednesday.Rda") 
load("DissTUAstm_Sunday.Rda") 
 
#install.packages('stm') 
library(stm) 
install.packages('igraph') 
library(igraph) 
remove.packages('igraph') 
 
############################################## 
#PREPROCESSING 
############################################## 
 
#stemming/stopword removal, etc. also duplicates all data for a metadata file created in next step 
?textProcessor 
processed <- textProcessor(df$text, metadata=df, stem=FALSE, removepunctuation=FALSE) 
 
#structure and index for usage in the stm model. Verify no-missingness. can remove low frequency words using 'lower.thresh' option. 
See ?prepDocuments for more info 
?prepDocuments 
out <- prepDocuments(processed$documents, processed$vocab, processed$meta, lower.thresh = 0) 
 
 
#IF YOU WANT TO FIDDLE WITH LOWER THRESHHOLDS, take a look at how many words and documents would be removed with 
different lower.thresholds    !!! check Error: could not find function "plotRemoved" 
#plotRemoved(processed$documents, lower.thresh=seq(1,200, by=100)) 
 
#CREATES docs and (identical) meta dataframes and a vocab vector of all words in the corpus -- these are the elements of stm  
docs <- out$documents 
vocab <- out$vocab 
meta <-out$meta 
 
############################################## 
#RUN AND CHOOSE THE BEST TOPIC MODEL 
############################################## 
 
#to test the affects of POS on operational/tactical activity, we use indicators of the various aspects of POS 
#number of power centers is represented by Gov't Type 
#openness to new actors is represented by Months  
#instability of current political alignments is also represented by Mayor Strength 
#availability of influential allies or supporters (will be added in after humans handcode for such allies) 
#the extent to which the regime represses should not be folded into POS, but is open for observation and analysis 
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#ADD in POS variables and date 
 
 
#let STM help you compare a number of models side by side. It will keep the models that don't stink (i.e. that converge quickly)  
 
# lifecourse40Select <- selectModel(out$documents,out$vocab,K=40,prevalence =~ pos1 + pool2 + stability2 + s(dayscamped), 
max.em.its=250, data=out$meta, runs=20) 
#  
#  
 
plotModels(lifecourse40Select) 
 
forty4<-lifecourse40Select$runout[[4]] 
forty1<-lifecourse40Select$runout[[1]] 
forty3<-lifecourse40Select$runout[[3]] 
forty2<-lifecourse40Select$runout[[2]] 
 
save(lifecourse40, file="stmlifecourse.Rda") 
 
 
 
 
############################################## 
#BEGIN INTERPRETING THE MODELS  
############################################## 
 
labelTopics(lifecourse40, topics=c(1, 4, 5, 7, 10, 12, 19, 22, 24, 27, 29, 35, 38, 40), n=10) 
 
forty4$settings$seed 
#4813083 
 
###WORDCLOUD for a specified TOPIC 
cloud(forty4, topic=9) 
cloud(it3, topic=9, max.words=50) 
cloud(lifecourse40, topic=40) 
 
cloud(lifecourse40, topic=19) 
 
?cloud 
###Read DOCUMENTS that are highly correlated with the topics you specify using findThoughts() function 
#object 'thoughts1' contains 2 documents about topic 1. 'texts=shortdoc,' gives you just the first 250 words 
thoughts1<-findThoughts(it, texts=df$tua, n=1, topics=13)$docs[[1]] 
#will show you the output 
?findThoughts 
plotQuote(thoughts1, width=40, main="Topic 9") 
?plotQuote 
#how about more documents for more of these topics? 
thoughts7 <- findThoughts(it, texts=shortdoc,n=2, topics=7)$docs[[1]] 
thoughts10 <- findThoughts(it, texts=shortdoc,n=2, topics=10)$docs[[1]] 
thoughts4 <- findThoughts(it, texts=shortdoc,n=2, topics=4)$docs[[1]] 
#And in a 2X2 table? We like 2X2 tables!  --- Note: this command will force all remaining plots into a 2X2 table format 
par(mfrow = c(2, 2),mar=c(.5,.5,1,.5))  
plotQuote(thoughts1, width=40, main="Topic 1") 
plotQuote(thoughts4, width=40, main="Topic 4") 
plotQuote(thoughts7, width=40, main="Topic 7") 
 
##see PROPORTION OF EACH TOPIC in the entire CORPUS. Just insert your STM output 
plot.STM(lifecourse40, type="summary", main = " ", topics= c(1:40), xlim=c(0,.4)) 
plot.STM(lifecourse40, type="hist", topics= c(1:20), xlim=c(0,.4)) 
?plot.STM 
##see GRAPHICAL NETWORK DISPLAY of how closely related topics are to one another, (i.e., how likely they are to appear in the same 
document) Requires 'igraph' package 
install.packages('huge') 
library(huge) 
mod.out.corr<-topicCorr(lifecourse40, method = c("simple")) 
plot.topicCorr(mod.out.corr) 
?topicCorr 
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##############################################################################################
######################## 
# STM: SEE HOW PREVALENCE OF TOPICS VARIES ACROSS DOCUMENTS ACCORDING TO DOCUMENT COVARIATES (METADATA)  
##############################################################################################
######################## 
preplc40 <- estimateEffect(1:40 ~ pos1 + pool2 + stability2 + s(dayscamped), lifecourse40, meta=meta, uncertainty = "Global") 
 
cols <-brewer.pal(4, "Set1")[c(3,4,2,1)] 
plot.estimateEffect(preplc40, covariate = "dayscamped", topics = c(38, 5 ,19),  
                    model=lifecourse40, method="continuous", 
                    xlab="Days since local camp established", 
                    xlim=c(-60,166), labeltype = "custom", 
                    linecol=cols, printlegend=FALSE) 
                     
legend("topleft", c('Weekend Gatherings', 'Weekday Marching', 
                    'Encampment Activities'), 
                lwd=2, col=cols, bty="n")                     
                     
                   
 
cols <-brewer.pal(4, "Set1")[c(2,1,3,4)] 
plot.estimateEffect(preplc40, covariate = "dayscamped", topics = c(12, 1, 35),  
                    model=lifecourse40, method="continuous", 
                    xlab="Days since local camp established", 
                    xlim=c(-60,166), labeltype = "custom", 
                    linecol=cols, printlegend=FALSE) 
                     
legend("topleft", c('Rallies', 'Demonstrations', 'Labor Alliances'), 
       lwd=2, col=cols, bty="n")                     
                     
 
cols <-brewer.pal(4, "Set1")[c(2,3,1,4)] 
plot.estimateEffect(preplc40, covariate = "dayscamped", topics = c(27, 24),  
                    model=lifecourse40, method="continuous", 
                    xlab="Days since local camp established", 
                    xlim=c(-60,166), labeltype = "custom", printlegend=FALSE) 
 
legend("topleft", c('City Hall Targeting', 'Bank Targeting'), 
       lwd=2, bty="n") 
 
 
 
cols <-brewer.pal(4, "Set1")[c(2,1,3,4)] 
plot.estimateEffect(preplc40, covariate = "dayscamped", topics = c(4, 29, 22),  
                    model=lifecourse40, method="continuous", 
                    xlab="Days since local camp established", 
                    xlim=c(-60,166), labeltype = "custom", 
                    linecol=cols, printlegend=FALSE) 
                    printlegend=FALSE) 
                     
legend("topleft", c('Sidewalk Contestations', 'Curfew Disputes', 'Traffic Battles'), 
       lwd=2, col=cols, bty="n")                     
                     
 
 
                     
cols <-brewer.pal(4, "Set1")[c(2,1,3,4)] 
plot.estimateEffect(preplc40, covariate = "dayscamped", topics = c(7, 40),  
                    model=lifecourse40, method="continuous", 
                    xlab="Days since local camp established", 
                    xlim=c(-60,166), labeltype = "custom", 
                    linecol=cols, printlegend=FALSE) 
                     
legend("topleft", c('Arrests', 'Standoffs with Riot Gear'), 
       lwd=2, col=cols, bty="n")                    
 
 



 

     391

 
 
cols <-brewer.pal(5, "Set1")[c(3,4,5,2,1)] 
plot.estimateEffect(preplc40, covariate = "dayscamped", topics = c(4, 29, 22, 7, 40),  
                    model=lifecourse40, method="continuous", 
                    xlab="Days since local camp established", 
                    xlim=c(-60,166), labeltype = "custom", 
                    linecol=cols, 
                    lwd=4, 
#                     custom.labels = c('Sidewalk Contestations', 'Curfew Disputes','Arrests', 'Traffic Battles', Standoffs with Riot Gear')) 
printlegend=FALSE) 
 
legend("topleft", c('Sidewalk Contestations', 'Curfew Disputes','Street Battles', 'Arrests', 'Standoffs with Riot Gear'), 
       lwd=2, col=cols, bty="n") 
 
 
# plot.estimateEffect(preplc40, covariate = "dayscamped", topics = c(30, 43 ,8 ),  
#                     model=it, method="continuous", 
#                     xlab="Days sicne local camp established", 
#                     main="Activity prevalence since local camps tart", 
#                     xlim=c(-60,166), labeltype = "custom", 
#                     custom.labels = c('target city hall', 'riot cops', 
#                                       'arrests')) 
#  
# plot.estimateEffect(preplc40, covariate = "dayscamped", topics = c(30, 43 ,8 ),  
#                     model=it, method="continuous", 
#                     xlab="Days sicne local camp established", 
#                     main="Activity prevalence since local camps tart", 
#                     xlim=c(-60,166), labeltype = "custom", 
#                     custom.labels = c('target city hall', 'riot cops', 
#                                       'arrests')) 
#  
# plot.estimateEffect(preplc40, covariate = "dayscamped", topics = c(30, 43 ,8 ),  
#                     model=it, method="continuous", 
#                     xlab="Days sicne local camp established", 
#                     main="Activity prevalence since local camps tart", 
#                     xlim=c(-60,166), labeltype = "custom", 
#                     custom.labels = c('target city hall', 'riot cops', 
#                                       'arrests')) 
 
 
 
 
####################### 
####################### 
####################### 
#Chapter 5 
####################### 
####################### 
####################### 
preplc40 <- estimateEffect(1:40 ~ pos1 + pool2 + stability2 + s(dayscamped), lifecourse40, meta=meta, uncertainty = "Global") 
 
#Simple plots of topic prevalence over time at different levels of covariate. These are NOT time*covariate interactions. Notice how they 
stack 
 
f <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
#Weekend Rallies by size of Obama supporting population 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(38), 
                    method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.05,.2), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                    xlim=c(-60,166), xaxt="n", linecol='red', printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(38), 
                    method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(38), 
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                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
legend("topleft", c('Smaller, Less Liberal Population', 'Modal Population', 'Large, Liberal Population'), 
       lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
 
 
#Camp Activity by size of Obama supporting population 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(19), 
                    method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.2,.25), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                    xlim=c(-60,166), xaxt="n", linecol='red', printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(19), 
                    method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(19), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
mtext("Expected Topic Proportion", 2, line=4) 
 
 
#Weekday Marches by size of Obama supporting population 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(5), 
                    method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.05,.2), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                    xlim=c(-60,166), linecol='red', printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(5), 
                    method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(5), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
mtext("Days Since Local Camp Established", 1, line=3) 
} 
 
pdf.f(f, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/pop_activity_w3.pdf', 
      width=4, height=7) 
 
 
 
g <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
#Rallies by size of Obama supporting population 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(12), 
                    method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.15), ylab="Expected Topic 
Proportion", xaxt="n",  
                    xlim=c(-60,166), linecol='red', printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(12), 
                    method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(12), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
legend("topleft", c('Smaller, Less Liberal Population', 'Modal Population', 'Large, Liberal Population'), 
       lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
 
#Demonstrations by size of Obama supporting population 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(1), 
                    method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.125), ylab="Expected Topic 
Proportion",  xaxt="n", 
                    xlim=c(-60,166), linecol='red', printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(1), 
                    method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(1), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE)                     
mtext("Expected Topic Proportion", 2, line=4) 
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#Labor Alliances by size of Obama supporting population 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(35), 
                    method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.12,.125), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                    xlim=c(-60,166), linecol='red', printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(35), 
                    method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(35), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
mtext("Days Since Local Camp Established", 1, line=3) 
      
} 
 
pdf.f(g, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/pop_rallies_w3.pdf', 
      width=4, height=7) 
 
 
h <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  #Rallies by size of Obama supporting population 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(27), 
                      method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.15), ylab="Expected Topic 
Proportion", xaxt="n",  
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(27), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(27), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("topleft", c('Smaller, Less Liberal Population', 'Modal Population', 'Large, Liberal Population'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
   
  #Demonstrations by size of Obama supporting population 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(24), 
                      method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.125), ylab="Expected Topic 
Proportion",  xaxt="n", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(24), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(24), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  #Labor Alliances by size of Obama supporting population 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(4), 
                      method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.12,.125), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(4), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(4), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
    
} 
pdf.f(h, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/pop_targeting_w3.pdf', 
      width=4, height=7) 
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i <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  #Rallies by size of Obama supporting population 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(22), 
                      method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.15), ylab="Expected Topic 
Proportion", xaxt="n",  
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(22), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(22), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("topleft", c('Smaller, Less Liberal Population', 'Modal Population', 'Large, Liberal Population'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
   
  #Demonstrations by size of Obama supporting population 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(29), 
                      method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.125), ylab="Expected Topic 
Proportion",  xaxt="n", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(29), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(29), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  #Labor Alliances by size of Obama supporting population 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(7), 
                      method="continuous", moderator="pool2", moderator.value=c(1), add=FALSE, ylim=c(-.12,.125), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(7), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(7), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
    
} 
pdf.f(i, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/pop_dusrupt_w3.pdf', 
      width=4, height=7) 
 
 
 
###################################################### 
###################################################### 
#Activity by pos1 
###################################################### 
###################################################### 
 
j <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  #Weekend Rallies by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(38), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.05,.22), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt="n", linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(38), 
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                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(38), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("topleft", c('Fewer Power Centers', 'More Power Centers', 'Most Power Centers'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
   
   
  #Camp Activity by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(19), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.2,.25), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt="n", linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(19), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(19), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  #Weekday Marches by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(5), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.05,.2), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(5), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(5), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
} 
 
pdf.f(j, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/pos_activity_w3.pdf', 
      width=4, height=7) 
 
 
k <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  #Rallies by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(12), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.1,.15), ylab="Expected Topic 
Proportion", xaxt="n",  
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(12), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(12), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("topleft", c('Fewer Power Centers', 'More Power Centers', 'Most Power Centers'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
   
  #Demonstrations by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(1), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.1,.125), ylab="Expected Topic 
Proportion",  xaxt="n", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(1), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(1), 
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                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  #Labor Alliances by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(35), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.12,.125), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(35), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(35), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
   
} 
 
pdf.f(k, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/pos_rallies_w3.pdf', 
      width=4, height=7) 
 
 
l <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  #Rallies by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(27), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.1,.15), ylab="Expected Topic 
Proportion", xaxt="n",  
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(27), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(27), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("topleft", c('Fewer Power Centers', 'More Power Centers', 'Most Power Centers'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
   
  #Demonstrations by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(24), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.1,.125), ylab="Expected Topic 
Proportion",  xaxt="n", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(24), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(24), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  #Labor Alliances by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(4), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.12,.125), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(4), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(4), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
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} 
 
pdf.f(l, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/pos_targeting_w3.pdf', 
      width=4, height=7) 
 
m <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  #Rallies by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(22), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.1,.15), ylab="Expected Topic 
Proportion", xaxt="n",  
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(22), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(22), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("topleft", c('Fewer Power Centers', 'More Power Centers', 'Most Power Centers'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
   
  #Demonstrations by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(29), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.1,.125), ylab="Expected Topic 
Proportion",  xaxt="n", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(29), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(29), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  #Labor Alliances by size of # independent power centers 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(7), 
                      method="continuous", moderator="pos1", moderator.value=c(1), add=FALSE, ylim=c(-.12,.125), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(7), 
                      method="continuous", moderator="pos1", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(7), 
                      method="continuous", moderator="pos1", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
     
} 
pdf.f(m, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/pos_disrupt_w3.pdf', 
      width=4, height=7) 
 
 
 
###################################################### 
###################################################### 
#Activity by stability2 
###################################################### 
###################################################### 
 
n <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  #Weekend Rallies by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(38), 
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                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.05,.22), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt="n", linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(38), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(38), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("topleft", c('More Political Stability', 'Less Political Stability', 'Least Political Stability'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
   
   
  #Camp Activity by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(19), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.2,.25), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt="n", linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(19), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(19), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  #Weekday Marches by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(5), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.05,.2), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(5), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(5), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
} 
 
pdf.f(n, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/stab_activity_w3.pdf', 
      width=4, height=7) 
 
 
o <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  #Rallies by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(12), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.15), ylab="Expected Topic 
Proportion", xaxt="n",  
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(12), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(12), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("topleft", c('More Political Stability', 'Less Political Stability', 'Least Political Stability'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
   
  #Demonstrations by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(1), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.125), ylab="Expected Topic 
Proportion",  xaxt="n", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(1), 
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                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(1), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  #Labor Alliances by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(35), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.12,.125), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(35), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(35), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
   
} 
 
pdf.f(o, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/stab_rallies_w3.pdf', 
      width=4, height=7) 
 
 
p <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  #Rallies by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(27), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.15), ylab="Expected Topic 
Proportion", xaxt="n",  
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(27), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(27), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("topleft", c('More Political Stability', 'Less Political Stability', 'Least Political Stability'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
   
  #Demonstrations by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(24), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.125), ylab="Expected Topic 
Proportion",  xaxt="n", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(24), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(24), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  #Labor Alliances by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(4), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.12,.125), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(4), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(4), 
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                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
 
pdf.f(p, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/stab_targeting_w3.pdf', 
      width=4, height=7) 
 
q <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  #Rallies by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(22), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.15), ylab="Expected Topic 
Proportion", xaxt="n",  
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(22), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(22), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("topleft", c('More Political Stability', 'Less Political Stability', 'Least Political Stability'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n", cex=1) 
   
  #Demonstrations by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(29), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.1,.125), ylab="Expected Topic 
Proportion",  xaxt="n", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(29), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(29), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  #Labor Alliances by size of stability 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(7), 
                      method="continuous", moderator="stability2", moderator.value=c(1), add=FALSE, ylim=c(-.12,.125), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(7), 
                      method="continuous", moderator="stability2", moderator.value=c(2), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(preplc40, covariate="dayscamped", model=lifecourse40,topic=c(7), 
                      method="continuous", moderator="stability2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(q, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/stab_disrupt_w3.pdf', 
      width=4, height=7) 
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######plot writing function 
pdf.f <- function(f, file, ...) { 
  cat(sprintf('Writing %s\n', file)) 
  pdf(file, ...) 
  on.exit(dev.off()) 
  f() 
} 
 
 
 
prep3int <- estimateEffect(c(38, 5, 19, 12, 1, 35, 27, 24, 4, 22, 29, 7) ~ pos1 + stability2 + pool2*s(dayscamped), lifecourse40xpool2, 
                           metadata=meta, uncertainty="None") 
################ 
################ 
################ 
 
 
r <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(38), 
                    method="continuous", moderator="pool2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                   linecol='red', printlegend=FALSE) 
plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(38), 
                    method="continuous", moderator="pool2", xaxt='n',moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(38), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
legend("top", c('Smaller, Less Liberal Population', 'Modal Population', 'Large, Liberal Population'), 
       lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
 
#Topic 19 "Camp Activities" 
plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(19), 
                    method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                    xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(19), 
                    method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(19), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
                mtext("Expected Topic Proportion", 2, line=4) 
 
plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(5), 
                    method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                    xlim=c(-60,166), linecol='red', printlegend=FALSE) 
plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(5), 
                    method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(5), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
            mtext("Days Since Local Camp Established", 1, line=3) 
 
} 
pdf.f(r, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intpool_activities_w3.pdf', 
      width=4, height=7) 
################### 
#################### 
################### 
#################### 
 
rr <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
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  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(12), 
                      method="continuous", moderator="pool2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(12), 
                      method="continuous", moderator="pool2", xaxt='n',moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(12), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Smaller, Less Liberal Population', 'Modal Population', 'Large, Liberal Population'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  #Topic 19 "Camp Activities" 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(1), 
                      method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(1), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(1), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(35), 
                      method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(35), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(35), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(rr, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intpool_rallies_w3.pdf', 
      width=4, height=7) 
 
################### 
#################### 
################### 
#################### 
t <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(27), 
                      method="continuous", moderator="pool2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(27), 
                      method="continuous", moderator="pool2", xaxt='n',moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(27), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Smaller, Less Liberal Population', 'Modal Population', 'Large, Liberal Population'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(24), 
                      method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
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  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(24), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(24), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(4), 
                      method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(4), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(4), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(t, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intpool_targeting_w3.pdf', 
      width=4, height=7) 
 
################### 
#################### 
################### 
#################### 
################### 
#################### 
################### 
u <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(22), 
                      method="continuous", moderator="pool2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(22), 
                      method="continuous", moderator="pool2", xaxt='n',moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(22), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Smaller, Less Liberal Population', 'Modal Population', 'Large, Liberal Population'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(29), 
                      method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(29), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(29), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(7), 
                      method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(7), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep3int, covariate="dayscamped", model=lifecourse40xpool2,topic=c(7), 
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                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(u, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intpool_disrupt_w3.pdf', 
      width=4, height=7) 
 
 
 
 
 
#################################### 
#################################### 
 
lifecourse40xstability2 <- stm(out$documents,out$vocab,K=40,prevalence =~ pos1 + stability2*s(dayscamped) + pool2, max.em.its=250, 
data=out$meta, seed=4813083) 
save(lifecourse40xstability2,file="STMlf40xstability2.Rda") 
 
prep4int <- estimateEffect(c(38, 5, 19, 12, 1, 35, 27, 24, 4, 22, 29, 7) ~ pos1 + stability2*s(dayscamped) + pool2, lifecourse40xstability2, 
                           metadata=meta, uncertainty="None") 
################ 
################ 
 
################ 
 
################ 
#                        ###########          STABILITY INTERACTIONS     ############################################ 
################ 
 
 
v <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(38), 
                      method="continuous", moderator="stability2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(38), 
                      method="continuous", moderator="stability2", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(38), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Stable', 'Less Stable', 'Least Stable'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  #Topic 19 "Camp Activities" 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(19), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(19), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(19), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(5), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(5), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(5), 
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                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(v, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intstability_activities.pdf', 
      width=4, height=7) 
################### 
#################### 
################### 
#################### 
 
w <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(12), 
                      method="continuous", moderator="stability2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(12), 
                      method="continuous", moderator="stability2", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(12), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Stable', 'Less Stable', 'Least Stable'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  #Topic 19 "Camp Activities" 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(1), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(1), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(1), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(35), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(35), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(35), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(w, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intStability_rallies.pdf', 
      width=4, height=7) 
 
################### 
#################### 
################### 
#################### 
x <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(27), 
                      method="continuous", moderator="stability2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
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                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(27), 
                      method="continuous", moderator="stability2", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(27), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Stable', 'Less Stable', 'Least Stable'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(24), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(24), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(24), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(4), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(4), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(4), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(x, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intStability_targeting.pdf', 
      width=4, height=7) 
 
################### 
#################### 
################### 
#################### 
################### 
#################### 
################### 
y <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(22), 
                      method="continuous", moderator="stability2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(22), 
                      method="continuous", moderator="stability2", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(22), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Stable', 'Less Stable', 'Least Stable'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(29), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(29), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
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  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(29), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(7), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(7), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep4int, covariate="dayscamped", model=lifecourse40xstability2,topic=c(7), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(y, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intStability_disrupt.pdf', 
      width=4, height=7) 
 
 
 
 
 
################################### 
#################################### 
#################################### 
#################################### 
 
 
 
#################################### 
#################################### 
lifecourse40xpos12 <- stm(out$documents,out$vocab,K=40,prevalence =~ pos1*s(dayscamped) + stability2 + pool2, max.em.its=250, 
data=out$meta, seed=4813083) 
save(lifecourse40xpos12,file="STMlf40xpos12.Rda") 
#################################### 
#################################### 
load("STMlf40xpos12.Rda") 
 
 
prep5int <- estimateEffect(c(38, 5, 19, 12, 1, 35, 27, 24, 4, 22, 29, 7) ~ pos1*s(dayscamped) + stability2 + pool2, lifecourse40xpos12, 
                           metadata=meta, uncertainty="None") 
################ 
################ 
 
################ 
 
################ 
#                        ###########          POS 1 Interactions    ############################################ 
################ 
 
 
z <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(38), 
                      method="continuous", moderator="pos1", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(38), 
                      method="continuous", moderator="pos1", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(38), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Fewest Centers of Power', 'More Centers of Power', 'Most Centers of Power'), 
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         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(19), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(19), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(19), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(5), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(5), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(5), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(z, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intPos1_activities_fixed.pdf', 
      width=4, height=7) 
################### 
#################### 
################### 
#################### 
 
aa <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(12), 
                      method="continuous", moderator="pos1", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(12), 
                      method="continuous", moderator="pos1", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(12), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Fewest Centers of Power', 'More Centers of Power', 'Most Centers of Power'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  #Topic 19 "Camp Activities" 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(1), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(1), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(1), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(35), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
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  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(35), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(35), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(aa, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intPos1_rallies_fixed.pdf', 
      width=4, height=7) 
 
################### 
#################### 
################### 
#################### 
bb <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(27), 
                      method="continuous", moderator="pos1", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(27), 
                      method="continuous", moderator="pos1", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(27), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Fewest Centers of Power', 'More Centers of Power', 'Most Centers of Power'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(24), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(24), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(24), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(4), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(4), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(4), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(bb, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intPos1_targeting_fixed.pdf', 
      width=4, height=7) 
 
################### 
#################### 
################### 
#################### 
################### 
#################### 
################### 
cc <- function(){ 
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  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(22), 
                      method="continuous", moderator="pos1", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(22), 
                      method="continuous", moderator="pos1", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(22), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Fewest Centers of Power', 'More Centers of Power', 'Most Centers of Power'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(29), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(29), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(29), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(7), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(7), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(prep5int, covariate="dayscamped", model=lifecourse40xpos12,topic=c(7), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(cc, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 4 Figures and Tables/intPos1_disrupt_fixed.pdf', 
      width=4, height=7) 
 
 
 
 
#################################### 
#################################### 
#################################### 
 
 
 
 
 

Data Preparation and Topic Modeling in R – Chapter 6 
 

The following is the R code used to perform structural topic modeling on police event text units. It 
starts by reading in data where each row is an event text unit. Then, data describing the cities in 
which events occurred are merged with the dataset. Some variables are generated. A date-of-event 
variable is derived from the article_date and the days (e.g. ‘Tuesday’) mentioned in the text. 
Continuous police department variables describing Police Capacity and Culture converted into 
ordinal variables. Then, Structural Topic Models are estimated and plotted. 
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rm(list=ls()) 
options(encoding= "UTF-8") 
library(jsonlite) 
library(plyr) 
# #install.packages('reshape') 
require(reshape) 
#  
 
all <- stream_in(file("All.jsonl")) 
 
###GET RID OF NON-TUA ARTEFACTS and focus on one type at a time...  
all <- subset(all, TUAfile != "NA") 
all <- subset(all, TUAtype == 'Police') 
 
 
####READ IN TUA TEXT #Thanks, Karthik Ram ################################### 
read_file <- function(TUAfile) { 
  readChar(TUAfile, file.info(TUAfile)$size) 
} 
 
library(dplyr) 
all <- all %>% 
  rowwise()  %>% 
  mutate(tua = read_file(TUAfile)) 
 
#tua is the name of the new column 
 
#THEN, convert pros into a legitimate data.frame #Thanks, Daniel Turek 
class(all) 
#prosdf <- class(as.data.frame(pros))  #not sure I need that 
all <- as.data.frame(all) 
class(all) 
 
###################################################################### 
#########send out for actor dictionary parsing in python 
 
stream_out(all, file("Police3.jsonl")) 
 
##do the stuff in python 
 
#########read back in with all those replacements in S, O, and tua text, and Lemma 
all2<- stream_in(file("final_output.jsonl")) 
 
##########convert cells with replacements to thier simple actor name 
#write a function for this 
 
all2$S[grepl('protesters', all2$S)] <- 'protesters' 
all2$O[grepl('protesters', all2$O)] <- 'protesters' 
all2$S[grepl('police', all2$S)] <- 'police' 
all2$O[grepl('police', all2$O)] <- 'police' 
all2$S[grepl('city', all2$S)] <- 'city' 
all2$O[grepl('city', all2$O)] <- 'city' 
 
 
#CONCATENATE S, V, O, XCOMP to create S_V_O tokens for later inclusion in topic modeling 
all2$svo<-paste(all2$S, all2$Lemma, all2$NEGATED, all2$O, all2$XCOMP, sep = "_") 
 
all2$svocon<-paste(all2$S, all2$Lemma, all2$NEGATED, all2$O, all2$XCOMP, all2$svo, sep = " ") 
 
all2$tua_svo<-paste(all2$tua, all2$svo, sep = " ") 
 
#APPEND svocons to Tua text.  
all2$tua_svocon<-paste(all2$tua, all2$S, all2$Lemma, all2$NEGATED, all2$O, all2$XCOMP, all2$svo, sep = " ") 
 
###### 
#View(all$tua_svo[grepl('Bradley Russell', all$tua_svo)]) 
 
##################MERGE on city key############################### 
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## knowncities.csv is derived from cityvars2.csv with 4 extraneous 
## cities removed (moved into unused extracities.csv) and 5 missing 
## cities added (see last 5 entries in knowncities.csv) 
known <- read.csv("knowncities.csv", header = TRUE, colClasses = c('character', 'character')) 
extra <- read.csv("extracities.csv", header = TRUE, colClasses = c('character', 'character')) 
 
known$key <- tolower(gsub('[^[:alpha:]]', '', paste(known$city,known$state))) 
 
rewrite <- function(x) { 
  if (x == "cleveland") return ("clevelandoh") 
  if (x == "dayton") return ("daytonoh") 
  if (x == "jackson") return ("jacksonms") 
  if (x == "allentowncity") return ("allentownpa") 
  if (x == "lansingcity") return ("lansingmi") 
  if (x == "pensacolaflorida") return ("pensacolafl") 
  if (x == "cedarfallscedarvalley") return ("cedarfallsia") 
  if (x == "everettcity") return ("everettwa") 
  if (x == "coachella") return ("coachellavalleyca") 
  if (x == "lexingtonfayetteky") return ("lexingtonky") 
  if (x == "louisville") return ("louisvillejeffersoncountyky") 
  if (x == "newyork") return ("newyorkcityny") 
  if (x == "nashville") return ("nashvilledavidsontn") 
  string = x 
  inlist = known$key 
  abbr <- substr(string, 1, nchar(string)-2) 
  found <- inlist[grepl(paste("^", string, sep=""), inlist)] 
  if (length(found) == 0) { 
    found <- inlist[grepl(paste("^", abbr, "$", sep=""), inlist)] 
  } 
  if (length(found) == 1) { 
    return(found) 
  } else if (length(found > 1)) { 
    warning(paste("found duplicates: ", string)) 
    return(found) 
  } else { 
    warning(paste("did not find: ", string)) 
    return(F) 
  } 
} 
 
all2$key <- mapply(rewrite, tolower(gsub('[^[:alpha:]]', '', all2$city))) 
 
cityvars4 <- read.csv("cityvars4_policevars.csv", header = TRUE, colClasses = c('character', 'character', 'character', 'character', 'integer', 
'character', 'integer', 'numeric', 'numeric', 'numeric', 'character', 'character', 'character', 'numeric', 'numeric', 'numeric', 'numeric', 
'numeric', 'numeric', 'factor', 'numeric', 'numeric', 'numeric', 'numeric', 'numeric', 'numeric'), fileEncoding = "UTF-8") 
all3 <- merge(all2, cityvars4, by=c("key"), all2.x=TRUE) 
 
#bring in bars from first analyses 
polkey <- read.csv("polkey.csv", header = TRUE, colClasses = c('character', 'numeric', 'numeric', 'numeric'), fileEncoding = "UTF-8") 
all3 <- merge(all3, polkey, by=c("key"), all.x=TRUE) 
head(all3) 
 
 
#get rid of cities outside our data set 
all3 <- subset(all3, key!="lakeworthfl") 
all3 <- subset(all3, key!="athensga") 
all3 <- subset(all3, key!="lancasterpa") 
all3 <- subset(all3, key!="clevelandtn") 
 
 
################################################# 
################################################# 
 
 
###################### 
#DATES STUFF 
###################### 
 
#First, Cleaning 
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# Replace "None" with Jan 1, 1999 so it is a date by which you can filter later. 
class(all3$article_date) 
all3$article_date<-as.character(all3$article_date) 
 
 
all3clean <- subset(all3, article_date!="") 
all3clean <- subset(all3clean, article_date!="+*") 
all3clean <- subset(all3clean, article_date!="???") 
all3clean <- subset(all3clean, article_date!="none") 
all3clean <- subset(all3clean, article_date!="undated") 
all3clean <- subset(all3clean, (nchar(article_date) < 9)) 
all3clean <- subset(all3clean, article_date!="12-12-")  #or was it 12-2 
 
 
View(unique(all3clean$article_date)) 
 
class(all3clean$article_date) 
#as.character(all3clean$article_date) 
 
##################################### 
#Some FUNCTIONS for DATE EXTRACTION 
##################################### 
#This function takes a formatted date as Y-m-d and returns weekday 
day_from_date <- function(adate = NULL) {   
  if (!is.null(adate)) {  
    day_list <- c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", 
                  "Saturday") 
    dow <- try(which(grepl(weekdays(as.Date(adate, "%m-%d-%y")), day_list)), silent=TRUE) 
    if(inherits(dow, "try-error")) dow <- NA 
    return(dow) 
  } 
} 
 
# This function takes some text and returns the position on the weekday list 
# So return_days("Monday Tuesday Friday") 
# will return 2 (for Monday) 
return_days <- function(text) {  
  if(!is.na(text)){ 
    if(is.character(text)) { 
      day_list <- c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", 
                    "Saturday") 
      res <- as.numeric(which(sapply(day_list, grepl, text, ignore.case = TRUE))) 
      if (length(res) == 0) { 
        res <- NA 
      } else { 
        res<-res[1] # we can add more handling here to deal with multiple weekday mentions 
      } 
    } 
  } else res <- NA 
  return(res) 
} 
 
# Function takes weekday difference between article_date and text_date and 
# calculates approximate date. 
day_in_text <- function(article_day, aday, pdate) {  
  if(!is.na(pdate)){ 
    date_diff <- aday - pdate 
    if (date_diff > 0) { 
      out <- as.Date(article_day, "%m-%d-%y") - date_diff 
    } else { 
      dd <- ifelse(date_diff != 0, date_diff + 7, 0) 
      out <- as.Date(article_day, "%m-%d-%y") - dd 
    } 
  } else{ 
    out <- try(as.Date(article_day, "%m-%d-%y") - 1, silent=TRUE) 
    if(inherits(out, "try-error")) out <- NA 
  } 
  return(out) 
} 
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########clean out weird dates########## 
View(unique(all3clean$article_date)) 
####################################### 
# all3clean <- subset(all3clean, article_date!="3-30-12") 
# all3clean <- subset(all3clean, article_date!="10-22-13") 
# all3clean <- subset(all3clean, article_date!="10-28-13") 
# all3clean <- subset(all3clean, article_date!="7-17-12") 
# all3clean <- subset(all3clean, article_date!="9-24-12") 
# all3clean <- subset(all3clean, article_date!="2-27-12") 
# all3clean <- subset(all3clean, article_date!="11-1-13") 
# all3clean <- subset(all3clean, article_date!="10-26-13") 
# all3clean <- subset(all3clean, article_date!="11-17-12") 
# all3clean <- subset(all3clean, article_date!="11-7-10") 
# all3clean <- subset(all3clean, article_date!="12-13-1") 
# all3clean <- subset(all3clean, article_date!="12-11-12") 
all3clean <- subset(all3clean, article_date!="3-23-12") 
all3clean <- subset(all3clean, article_date!="10-26-13") 
all3clean <- subset(all3clean, article_date!="10-28-13") 
all3clean <- subset(all3clean, article_date!="2-1-12") 
all3clean <- subset(all3clean, article_date!="4-9-13") 
all3clean <- subset(all3clean, article_date!="no date") 
all3clean <- subset(all3clean, article_date!="3-30-12") 
all3clean <- subset(all3clean, article_date!="11-1-13") 
all3clean <- subset(all3clean, article_date!="9-24-12") 
 
 
############################################## 
#NOW, to extract DATES from tua text daynames 
############################################## 
library(lubridate) 
#library(dplyr) 
library(readr) 
 
all3clean$article_date<-as.character(all3clean$article_date) 
 
published_day <-  sapply(all3clean$article_date, day_from_date) 
 
text_day <- sapply(all3clean$tua_svo, return_days) 
guessing_date_in_text <- mapply(function(a,b,c) 
  day_in_text(article_day=a, aday=b, pdate=c), 
  a=all3clean$article_date, 
  b=published_day, 
  c=text_day, 
  SIMPLIFY=FALSE) 
 
guessing_date_in_text <- lapply(guessing_date_in_text, function(x) as.character(x)) 
guessing_date_in_text <- c(do.call(rbind, guessing_date_in_text)) 
all3clean$text_date <- guessing_date_in_text 
all3clean$text_date <- as.Date(all3clean$text_date, "%Y-%m-%d") 
View(unique(all3clean$text_date)) 
############################# 
#DAYS running variables 
############################# 
#days camped 
#text_date - campstartdate 
class(all3clean$Campaign.Start.Date) 
#character 
class(all3clean$text_date) 
#Date 
all3clean$camp_date<-as.Date(all3clean$Campaign.Start.Date, "%m/%d/%y") 
all3clean$dayscamped<- all3clean$text_date - all3clean$camp_date 
all3clean$dayscamped<-as.numeric(all3clean$dayscamped) 
View(unique(all3clean$dayscamped)) 
View(unique(all3clean$camp_date)) 
View(unique(all3clean$Campaign.Start.Date)) 
View(unique(all3clean$text_date)) 
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#days since zucotti 
all3clean$dayszuc<-all3clean$text_date - as.Date("2011-09-17") 
all3clean$dayszuc<-as.numeric(all3clean$dayszuc) 
View(unique(all3clean$dayszuc)) 
 
 
#################################################### 
#################################################### 
#REFACTOR POLICE CAPACITY AND CULTURE VARIABLES 
#################################################### 
#################################################### 
 
 
library(Hmisc) 
all3clean$nonwhite <- as.numeric(cut2(all3clean$nonwhitecops, g=3)) 
all3clean$budget <- as.numeric(cut2(all3clean$budget, g=3)) 
all3clean$crime <- as.numeric(cut2(all3clean$crime, g=3)) 
all3clean$officers <- as.numeric(cut2(all3clean$officers, g=3)) 
all3clean$cp <- as.numeric(cut2(all3clean$cp, g=3)) 
#################################################### 
#################################################### 
#################################################### 
#convert from SVO data.frame to TUA data.frame 
#################################################### 
#################################################### 
################################################### 
View(unique(all3clean$tua)) 
 
processNicksDF <- function(df) { 
  out <- data.frame(tua = character(), 
                    text = character(), 
                    stability2 = numeric(), 
                    pos1 = numeric(), 
                    nonwhite = numeric(), 
                    budget = numeric(), 
                    crime = numeric(), 
                    officers = numeric(), 
                    cp = numeric (), 
                    Obama = numeric(), 
                    dayscamped = numeric(), 
                    dayszuc = numeric(), 
                    Obama_Vote2008 = numeric(), 
                    Population = numeric(), 
                    pool2 = numeric(), 
                    stringsAsFactors = FALSE) 
  for(e in unique(df$tua)) { 
    tempDF <- df[df$tua==e,] 
    prep <- data.frame(tua = e, 
                       text = paste(e, paste(tempDF$svocon, collapse=' ')), 
                       stability2 = tempDF$stability2[1], 
                       pos1 = tempDF$pos1[1], 
                       nonwhite = tempDF$nonwhitecops[1], 
                       budget = tempDF$budget[1], 
                       crime = tempDF$crime[1], 
                       officers = tempDF$officers[1], 
                       cp = tempDF$cp[1], 
                       Obama = tempDF$Obama[1], 
                       dayscamped = tempDF$dayscamped[1], 
                       dayszuc = tempDF$dayszuc[1], 
                       Obama_Vote2008 = tempDF$Obama_Vote2008[1], 
                       Population = tempDF$Population[1], 
                       pool2 = tempDF$pool2[1], 
                       stringsAsFactors = FALSE) 
    out <- rbind(out, prep)  
  } 
  return(out) 
} 
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#build TUA-based dataframe 
df <- processNicksDF(all3clean) 
 
 
 
View(df$text) 
#clean up svo stuff 
df$text <-gsub('NA', '', df$text) 
df$text<-gsub('_+', '_', df$text) 
df$text<-gsub('"', '', df$text) 
df$text<-gsub('-rsb-', '', df$text) 
df$text<-gsub('-lsb-', '', df$text) 
df$text<-gsub('-lrb-', '', df$text) 
df$text<-gsub('-rrb-', '', df$text) 
df$text<-gsub(',', '', df$text) 
df$text<-gsub(':', '', df$text) 
df$text<-gsub('-rsb-', '', df$text) 
df$text<-gsub('$', '', df$text) 
 
#reduces some special classes of objects like citynames, days, parks, plazas, and some other named entitites 
df$text<-gsub("bo didley community plaza|frank ogawa plaza|calder plaza|cesar chavez plaza|jacome plaza|kanawha plaza|justin 
herman plaza|hemming plaza|san jacinto plaza|mckeldin square|thomas square|dewey square|fountain Square", 'xplaza', df$text) 
df$text<-gsub("Albany|Albuquerque|Allentown|philly|Anaheim|Anchorage|Ann 
Arbor|Arcata|Asheville|Ashtabula|Atlanta|Augusta|Aurora|Austin|Bakersfield|Baltimore|Bangor|Baton 
Rouge|Bellingham|Bend|Bethlehem|Binghamton|Birmingham|Bloomington|Boise|Boston|Bowling 
Green|Brattleboro|Buffalo|Burlington|Canton|Cedar Falls|Cedar Rapids|Chapel 
Hill|Carrboro|Charleston|Charleston|Charlotte|Chattanooga|Chicago|Chico|Cincinnati|Claremont|Clarksville|Cleveland 
              |Coachella Valley|Colombus|Colorado Springs|Columbia|Corpus Christi|Dade City|Dallas|Dayton|Daytona Beach|Denver|Des 
Moines|Detroit|Dover|Duluth|Easton|El Paso|Eugene|Eureka|Everett|Fairbanks|Fayetteville|Flint|Fort Collins|Fort Lauderdale|Fort 
Myers|Fort Wayne|Fort Worth|Frederick|Fresno|Gainesville|Grand 
Rapids|Greeley|Greensboro|Harrisburg|Hartford|Honolulu|Houston|Huntington|Indianapolis|Iowa City|Irvine|Ithaca|Jackson| 
              Jacksonville|Jersey City|Johnson City|Kalamazoo|Kansas City|Lansing|Las Cruces|Las Vegas|Lawrence|Lexington|Lincoln|Little 
Rock|Long Beach|Los Angeles|Louisville|Jefferson 
County|Lubbock|Madison|Memphis|Merced|Miami|Milwaukee|Minneapolis|Missoula|Mobile|Mosier|Muncie|Murfreesboro|Muskegon|N
ashville|Davidson|New Haven|New Orleans|New Paltz|New York City|Newark|Norfolk|Norman|Northampton|Oakland|Ogden|Oklahoma 
City|Olympia| 
              Omaha|Orlando|Palo 
Alto|Pensacola|Petaluma|Philadelphia|Phoenix|Pittsburgh|Pocatello|Portland|Portland|Poughkeepsie|Providence|Raleigh|Richmond|Ri
verside|Rochester|Sacramento|Salem|San Antonio|San Diego|San Francisco|San Jose|San Leandro|San Ramon|Santa Ana|Santa 
Cruz|Santa Fe|Santa Rosa|Scranton|Seattle|Sebastopol|Sonoma|South Bend|St. 
Louis|Stockton|Syracuse|Tacoma|Tallahassee|Tampa|Toledo|Trenton|Tucson|Tulsa|Utica| 
              Virginia Beach|Walnut Creek|Washington|West Palm 
Beach|Wichita|Wilmington|Wilmington|Worcester|Youngstown|Yuma|Venice", "cityname", df$text, ignore.case=TRUE) 
df$text<-gsub("California|tennessee|colorado", 'xstate', df$text,ignore.case=TRUE) 
df$text<-gsub("acevedo", 'city', df$text) 
df$text<-gsub("cwait", 'peak', df$text) 
df$text<-gsub("riot gear", 'riot_gear', df$text) 
df$text<-gsub("capt. jeff estes|capt. j.w. estes|steve noblitt|noblitt|pete simpson|pete riot simpson|pettit|andrew pettit|jeff basett|april 
skalland|buhr|charles ramsey|gordon ramsey|bobby dodd|capt. doug  weismann|lt. andrew shouse|sgt. paul edwards|lt. rick sucee|jeff 
halstead|finnerty|lt. bill|greg mullen|capt. jeff goodwin|chief adam|patrol capt. daryl fisher|sgt. jonathan|sgt. ronnie lance|capt. todd 
dykstra|lt. doug mozan|capt. rich stronach|kevin mccormick|marty citynameer|law enforcement|cpl. angelina valuri|troy 
thompson|jenna mcculley|lt. kathy flynn|sgt. rich weiner|sgt. steve noblitt|office r iverson|col. jim wolfinbarger|jenna mcculley", 'police', 
df$text) 
df$text<-gsub("cityname movement|cityname protesters|o'grady|diller|cityname demonstrators|cityname activists|adam platz|george 
diller|jose tellez|michael rodriguez|amanda faye mosqueda|johnny okane|charles william florenza|lawrence gregory ziese|reynaldo 
crespo|gilbert ceballos|jason brodsky|jason rivera|carl casey|anthony diaz|christopher devcich|moses quiroz|jane one doe|kayla 
elizabeth fields|robert jefferson dietrich|occupy cityname|jo jones|rudy sanchez|lauren ross|justin jeffre|occupy baltiprotesters|patrick 
robinson|benjamin walden|kathryn heil|nathaniel davis|ryan donald cartwright|erick nutz|chuck nasmith|christina cooke|bobby 
donehoo|rob keppler|jonathan bowen|karel sourcre|vanessa maria graber|kerner|james kerner|james r. kerner|sean wildman|benjamin 
katz|robbie abalos|alicia dion|kevin flynn|katie christofilis|seth collins", 'protesters', df$text) 
df$text<-gsub("cityname deputies|cityname police department|cityname police", 'police', df$text) 
df$text<-gsub("bank of america| indep of america|wells fargo|chase bank", 'xbank', df$text) 
 
df$text<-gsub("brooklyn bridge|cityname street bridge", 'xbridge', df$text) 
df$text<-gsub("jessica reznieck", 'xprotester', df$text) 
df$text<-gsub("saturday|sunday", 'xweekendday', df$text) 
df$text<-gsub("monday|tuesday|wednesday|thursday|friday", 'xweekday', df$text) 
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df$text<-gsub("grand circus park|academy park|lafayette park|bubier park|thomas square park|monroepark|veinte de agosto|smith 
park|westlake park|zucotti park|cityname-jefferson park|woodruff park|oak cliff park|pioneer park|garfield park|piatt park", 'xpark', 
df$text) 
df$text<-gsub("cielo vista mall|valley malls", 'xshop', df$text) 
 
#fix some mistakes from prior substitutions 
df$text<-gsub('protestersers', 'protesters', df$text) 
df$text<-gsub('protestersed', 'protested', df$text) 
df$text<-gsub('protestersing', 'protesting', df$text) 
df$text<-gsub('protesterors', 'protesters', df$text) 
df$text<-gsub('protestors', 'protesters', df$text) 
df$text<-gsub('police police police', 'police police', df$text) 
df$text<-gsub('protesters protesters protesters', 'protesters protesters', df$text) 
df$text<-gsub('police police police', 'police police', df$text) 
df$text<-gsub('protesters protesters protesters', 'protesters protesters', df$text) 
df$text<-gsub('police police police', 'police police', df$text) 
df$text<-gsub('protesters protesters protesters', 'protesters protesters', df$text) 
df$text<-gsub('police police', 'police', df$text) 
df$text<-gsub('protesters protesters', 'protesters', df$text) 
 
#make all parks and plazas the same thing 
df$text<-gsub('xpark|xplaza|park','xpark', df$text) 
 
 
 
View(df$text) 
 
# make stability easier to work with 
# df$stability2<-ceiling(df$stability *3/4-1) 
# table(df$stability2) 
 
#remove all rows with missing data 
df <- na.omit(df) 
 
save(df,file="DissTUAstm_police6.Rda") 
 
##############################################################################################
###################################################### 
##############################################################################################
###################################################### 
##############################################################################################
###################################################### 
#If you want to merge visualizations from protester models, be sure to first rename all those objects 
##############################################################################################
###################################################### 
prodf<-df 
prodocs<-docs 
proout<-out 
provoab<-vocab 
prometa<-meta 
proprocessed<-processed 
##############################################################################################
###################################################### 
##############################################################################################
###################################################### 
##############################################################################################
###################################################### 
##############################################################################################
###################################################### 
 
 
load("DissTUAstm_police6.Rda") 
 
 
# #with population binary 
# df$pool3 <- as.numeric(cut2(df$pool2, g=2)) 
# table(df$pool3) 
# save(df,file="DissTUAstm_Wednesday.Rda") 
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################################################## 
#STRUCTURAL TOPIC MODELING - 
################################################## 
 
#install.packages('stm') 
library(stm) 
install.packages('igraph') 
library(igraph) 
remove.packages('igraph') 
 
##############################################   
#PREPROCESSING 
############################################## 
 
#stemming/stopword removal, etc. also duplicates all data for a metadata file created in next step 
?textProcessor 
processed <- textProcessor(df$text, metadata=df, stem=FALSE, removepunctuation=FALSE) 
 
#structure and index for usage in the stm model. Verify no-missingness. can remove low frequency words using 'lower.thresh' option. 
See ?prepDocuments for more info 
?prepDocuments 
out <- prepDocuments(processed$documents, processed$vocab, processed$meta, lower.thresh = 0) 
 
 
#CREATES docs and (identical) meta dataframes and a vocab vector of all words in the corpus -- these are the elements of stm  
docs <- out$documents 
vocab <- out$vocab 
meta <-out$meta 
 
############################################## 
#RUN AND CHOOSE THE BEST TOPIC MODEL 
############################################## 
 
 
police15Selectx <- selectModel(out$documents,out$vocab,K=15,prevalence =~ pos1 + pool2 + stability2 + s(dayscamped) + 
stability2*dayscamped + nonwhite + budget + crime + officers + cp, max.em.its=275, data=out$meta, runs=10) 
x4<- stm(out$documents,out$vocab,K=15,prevalence =~ pos1 + pool2 + stability2 + s(dayscamped) + stability2*dayscamped + nonwhite 
+ budget + crime + officers + cp, max.em.its=275, data=out$meta, seed=1867757) 
save(x4, file="stmpolice3.Rda") 
 
 
############################################## 
#BEGIN INTERPRETING THE MODELS -- FUN!!! 
############################################## 
 
labelTopics(x4, topics=c(1:15), n=15) 
 
x4$settings$seed 
1867757 
 
# ###Read DOCUMENTS that are highly correlated with the topics you specify using findThoughts() function 
# #object 'thoughts1' contains 2 documents about topic 1. 'texts=shortdoc,' gives you just the first 250 words 
thoughts1<-findThoughts(x4, texts=df$text, n=2, topics=2)$docs[[1]] 
# #will show you the output 
?findThoughts 
plotQuote(thoughts1, width=250, main="Topic") 
?plotQuote 
 
##see PROPORTION OF EACH TOPIC in the entire CORPUS. Just insert your STM output 
plot.STM(x4, type="summary", main = " ", topics= c(1:15), xlim=c(0,.4)) 
 
 
 
 
##############################################################################################
######################## 
# STM: SEE HOW PREVALENCE OF TOPICS VARIES ACROSS DOCUMENTS ACCORDING TO DOCUMENT COVARIATES (METADATA 
##############################################################################################
######################## 
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pdf.f <- function(f, file, ...) { 
  cat(sprintf('Writing %s\n', file)) 
  pdf(file, ...) 
  on.exit(dev.off()) 
  f() 
} 
 
 
####################################  
#################################### 
pol15xpool2 <- stm(out$documents,out$vocab,K=15,prevalence =~ pos1 + stability2 + pool2*s(dayscamped) + nonwhite + budget + 
crime + officers + cp, max.em.its=250, data=out$meta, seed=1867757) 
 
polpool2 <- estimateEffect(c(4, 15, 12, 9, 7, 8, 10) ~ pos1 + stability2 + cp + nonwhite + budget + crime + officers + pool2*s(dayscamped), 
pol15xpool2, 
                           metadata=meta, uncertainty="None") 
################ 
save(pol15xpool2, file="pol15xpool2.Rda") 
save(polpool2, file="polpool2.Rda") 
################ 
#pool2 targeting individuals 
# 
# 
 
pr <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(4), 
                      method="continuous", moderator="pool2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(4), 
                      method="continuous", moderator="pool2", xaxt='n',moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(4), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Smaller, Less Liberal Population', 'Modal Population', 'Large, Liberal Population'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  #Topic 19 "Camp Activities" 
  plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(15), 
                      method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(15), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(15), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(12), 
                      method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(12), 
                      method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(12), 
                      method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
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pdf.f(pr, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intpool_ind_w3.pdf', 
      width=4, height=7) 
################### 
#################### 
################### 
#################### 
#activities pool2 targeting camps 
 
pt  <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(9), 
                        method="continuous", moderator="pool2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                        linecol='red', printlegend=FALSE) 
plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(9), 
                    method="continuous", moderator="pool2", xaxt='n',moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(9), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
legend("top", c('Smaller, Less Liberal Population', 'Modal Population', 'Large, Liberal Population'), 
       lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
 
#Topic 19 "Camp Activities" 
plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(7), 
                    method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                    xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(7), 
                    method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(7), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
mtext("Expected Topic Proportion", 2, line=4) 
 
plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(8), 
                    method="continuous", moderator="pool2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                    xlim=c(-60,166), linecol='red', printlegend=FALSE) 
plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(8), 
                    method="continuous", moderator="pool2", moderator.value=c(3), add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
plot.estimateEffect(polpool2, covariate="dayscamped", model=pol15xpool2,topic=c(8), 
                    method="continuous", moderator="pool2", moderator.value=c(5), add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
mtext("Days Since Local Camp Established", 1, line=3) 
 
} 
pdf.f(pt, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intpool_camp_w3.pdf', 
      width=4, height=7) 
 
 
 
################### 
#################### 
################### 
#################################### 
#################################### 
 
 
#################################### 
#################################### 
 
pol15xstability2 <- stm(out$documents,out$vocab,K=15,prevalence =~ pos1 + stability2*s(dayscamped) + pool2 + nonwhite + budget + 
crime + officers + cp, max.em.its=250, data=out$meta, seed=1867757) 
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#pol15xpool2 <- stm(out$documents,out$vocab,K=15,prevalence =~ pos1 + stability2 + pool2*s(dayscamped) + nonwhite + budget + 
crime + officers + cp, max.em.its=250, data=out$meta, seed=1867757) 
polstability2 <- estimateEffect(c(4, 15, 12, 9, 7, 8, 10) ~ pos1 + stability2*s(dayscamped) + cp + nonwhite + budget + crime + officers + 
pool2, pol15xstability2, 
                           metadata=meta, uncertainty="None") 
################ 
 
#                        ###########          STABILITY INTERACTIONS     ############################################ 
################ 
 
 
u <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(4), 
                      method="continuous", moderator="stability2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(4), 
                      method="continuous", moderator="stability2", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(4), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Stable', 'Less Stable', 'Least Stable'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  #Topic 19 "Camp Activities" 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(15), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(15), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(15), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(12), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(12), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(12), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
   
} 
pdf.f(u, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intstability_individuals.pdf', 
      width=4, height=7) 
 
 
v <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(9), 
                      method="continuous", moderator="stability2", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(9), 
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                      method="continuous", moderator="stability2", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(9), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Stable', 'Less Stable', 'Least Stable'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  #Topic 19 "Camp Activities" 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(7), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(7), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(7), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
   
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(8), 
                      method="continuous", moderator="stability2", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(8), 
                      method="continuous", moderator="stability2", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polstability2, covariate="dayscamped", model=pol15xstability2,topic=c(8), 
                      method="continuous", moderator="stability2", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
   
} 
pdf.f(v, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intstability_camp.pdf', 
      width=4, height=7) 
################### 
#################### 
#################################### 
 
################ 
#                        ###########          GOV TYPE INTERACTIONS     ############################################ 
################ 
#################################### 
#################################### 
pol15xpos1 <- stm(out$documents,out$vocab,K=15,prevalence =~ pos1*s(dayscamped) + stability2 + pool2 + nonwhite + budget + 
crime + officers + cp, max.em.its=250, data=out$meta, seed=1867757) 
 
#################################### 
#################################### 
 
polpos1 <- estimateEffect(c(4, 15, 12, 9, 7, 8, 10) ~ pos1*s(dayscamped) + stability2 + cp + nonwhite + budget + crime + officers + pool2, 
pol15xpos1, 
                                metadata=meta, uncertainty="None") 
 
w <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(4), 
                      method="continuous", moderator="pos1", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(4), 
                      method="continuous", moderator="pos1", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(4), 
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                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Fewest Centers of Power', 'More Centers of Power', 'Most Centers of Power'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  #Topic 19 "Camp Activities" 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(15), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(15), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(15), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(12), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(12), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(12), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3)   
} 
 
pdf.f(w, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intPos1_inds.pdf', 
      width=4, height=7) 
################### 
#################### 
################### 
#################### 
 
y <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(9), 
                      method="continuous", moderator="pos1", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(9), 
                      method="continuous", moderator="pos1", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(9), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Fewest Centers of Power', 'More Centers of Power', 'Most Centers of Power'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  #Topic 19 "Camp Activities" 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(7), 
                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(7), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(7), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(8), 
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                      method="continuous", moderator="pos1", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(8), 
                      method="continuous", moderator="pos1", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polpos1, covariate="dayscamped", model=pol15xpos1,topic=c(8), 
                      method="continuous", moderator="pos1", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(y, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intPos1_camp.pdf', 
      width=4, height=7) 
 
################### 
#################### 
################### 
#################### 
 
pol15xbudget <- stm(out$documents,out$vocab,K=15,prevalence =~ pos1 + stability2 + pool2 + nonwhite + budget*s(dayscamped) + 
crime + officers + cp, max.em.its=250, data=out$meta, seed=1867757) 
 
#################################### 
#################################### 
 
polbudget <- estimateEffect(c(4, 15, 12, 9, 7, 8, 10) ~ pos1 + stability2 + cp + nonwhite + budget*s(dayscamped) + crime + officers + 
pool2, pol15xbudget, 
                          metadata=meta, uncertainty="None") 
 
 
 
z <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(4), 
                      method="continuous", moderator="budget", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(4), 
                      method="continuous", moderator="budget", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(4), 
                      method="continuous", moderator="budget", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Lowest Budget per capita', 'Modal Budget', 'Highest Budget'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(15), 
                      method="continuous", moderator="budget", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(15), 
                      method="continuous", moderator="budget", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(15), 
                      method="continuous", moderator="budget", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(12), 
                      method="continuous", moderator="budget", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(12), 
                      method="continuous", moderator="budget", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(12), 
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                      method="continuous", moderator="budget", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(z, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intBudget_inds.pdf', 
      width=4, height=7) 
 
################### 
#################### 
################### 
#################### 
################### 
#################### 
################### 
aa <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(9), 
                      method="continuous", moderator="budget", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(9), 
                      method="continuous", moderator="budget", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(9), 
                      method="continuous", moderator="budget", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Lowest Budget per capita', 'Modal Budget', 'Highest Budget'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(7), 
                      method="continuous", moderator="budget", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(7), 
                      method="continuous", moderator="budget", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(7), 
                      method="continuous", moderator="budget", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(8), 
                      method="continuous", moderator="budget", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(8), 
                      method="continuous", moderator="budget", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polbudget, covariate="dayscamped", model=pol15xbudget,topic=c(8), 
                      method="continuous", moderator="budget", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(aa, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intBudgetCamps.pdf', 
      width=4, height=7) 
 
 
 
#################################### 
#################################### 
#################################### 
#################################### 
#################################### 
pol15xofficers <- stm(out$documents,out$vocab,K=15,prevalence =~ pos1 + stability2 + pool2 + nonwhite + budget + crime + 
officers*s(dayscamped) + cp, max.em.its=250, data=out$meta, seed=1867757) 
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#################################### 
#################################### 
 
polofficers <- estimateEffect(c(4, 15, 12, 9, 7, 8, 10) ~ pos1 + stability2 + cp + nonwhite + budget + crime + officers*s(dayscamped) + 
pool2, pol15xofficers, 
                            metadata=meta, uncertainty="None") 
 
bb <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(4), 
                      method="continuous", moderator="officers", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(4), 
                      method="continuous", moderator="officers", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(4), 
                      method="continuous", moderator="officers", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Fewest Officers per capita', 'Modal Officers', 'Most Officers'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(15), 
                      method="continuous", moderator="officers", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(15), 
                      method="continuous", moderator="officers", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(15), 
                      method="continuous", moderator="officers", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(12), 
                      method="continuous", moderator="officers", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(12), 
                      method="continuous", moderator="officers", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(12), 
                      method="continuous", moderator="officers", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(bb, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intOfficersInds.pdf', 
      width=4, height=7) 
 
 
cc <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(9), 
                      method="continuous", moderator="officers", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(9), 
                      method="continuous", moderator="officers", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(9), 
                      method="continuous", moderator="officers", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Fewest Officers per capita', 'Modal Officers', 'Most Officers'), 
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         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(7), 
                      method="continuous", moderator="officers", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(7), 
                      method="continuous", moderator="officers", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(7), 
                      method="continuous", moderator="officers", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(8), 
                      method="continuous", moderator="officers", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(8), 
                      method="continuous", moderator="officers", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polofficers, covariate="dayscamped", model=pol15xofficers,topic=c(8), 
                      method="continuous", moderator="officers", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(cc, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intOfficersCamps.pdf', 
      width=4, height=7) 
 
 
 
 
 
 
#################################### 
#################################### 
#################################### 
#################################### 
#################################### 
pol15xcp <- stm(out$documents,out$vocab,K=15,prevalence =~ pos1 + stability2 + pool2 + nonwhite + budget + crime + officers + 
cp*s(dayscamped), max.em.its=250, data=out$meta, seed=1867757) 
 
#################################### 
#################################### 
 
polcp <- estimateEffect(c(4, 15, 12, 9, 7, 8, 10) ~ pos1 + stability2 + cp*s(dayscamped) + nonwhite + budget + crime + officers + pool2, 
pol15xcp, 
                              metadata=meta, uncertainty="None") 
 
dd <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(4), 
                      method="continuous", moderator="cp", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(4), 
                      method="continuous", moderator="cp", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(4), 
                      method="continuous", moderator="cp", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Least Committed to Comm Policiing', 'Somewhat Committed', 'Most Committed to Comm Policing'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(15), 
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                      method="continuous", moderator="cp", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(15), 
                      method="continuous", moderator="cp", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(15), 
                      method="continuous", moderator="cp", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(12), 
                      method="continuous", moderator="cp", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(12), 
                      method="continuous", moderator="cp", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(12), 
                      method="continuous", moderator="cp", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(dd, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intCpInds.pdf', 
      width=4, height=7) 
 
 
ee <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(9), 
                      method="continuous", moderator="cp", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(9), 
                      method="continuous", moderator="cp", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(9), 
                      method="continuous", moderator="cp", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Least Committed to Comm Policiing', 'Somewhat Committed', 'Most Committed to Comm Policing'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(7), 
                      method="continuous", moderator="cp", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(7), 
                      method="continuous", moderator="cp", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(7), 
                      method="continuous", moderator="cp", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(8), 
                      method="continuous", moderator="cp", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(8), 
                      method="continuous", moderator="cp", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polcp, covariate="dayscamped", model=pol15cp,topic=c(8), 
                      method="continuous", moderator="cp", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
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} 
pdf.f(ee, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intCpCamps.pdf', 
      width=4, height=7) 
 
#################################### 
######################################################################## 
######################################################################## 
######################################################################## 
######################################################################## 
######################################################################## 
######################################################################## 
######################################################################## 
#################################### 
 
 
pol15xvio <- stm(out$documents,out$vocab,K=15,prevalence =~ pos1 + stability2 + pool2 + nonwhite + budget + crime*s(dayscamped) 
+ officers + cp, max.em.its=250, data=out$meta, seed=1867757) 
 
#################################### 
#################################### 
 
polvio <- estimateEffect(c(4, 15, 12, 9, 7, 8, 10) ~ pos1 + stability2 + cp + nonwhite + budget + crime*s(dayscamped) + officers + pool2, 
pol15xvio, 
                        metadata=meta, uncertainty="None") 
 
ff <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(4), 
                      method="continuous", moderator="crime", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(4), 
                      method="continuous", moderator="crime", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(4), 
                      method="continuous", moderator="crime", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Least Violent Crime', 'Modal Violent Crime', 'Most Violent Crime'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(15), 
                      method="continuous", moderator="crime", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(15), 
                      method="continuous", moderator="crime", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(15), 
                      method="continuous", moderator="crime", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(12), 
                      method="continuous", moderator="crime", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(12), 
                      method="continuous", moderator="crime", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(12), 
                      method="continuous", moderator="crime", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(ff, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intViolentInds.pdf', 
      width=4, height=7) 
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gg <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(9), 
                      method="continuous", moderator="crime", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.3,.5), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(9), 
                      method="continuous", moderator="crime", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(9), 
                      method="continuous", moderator="crime", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Least Violent Crime', 'Modal Violent Crime', 'Most Violent Crime'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(7), 
                      method="continuous", moderator="crime", moderator.value=1, add=FALSE, ylim=c(-.3,.5), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(7), 
                      method="continuous", moderator="crime", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(7), 
                      method="continuous", moderator="crime", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(8), 
                      method="continuous", moderator="crime", moderator.value=1, add=FALSE, ylim=c(-.3,.4), ylab="Expected Topic Proportion", 
xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(8), 
                      method="continuous", moderator="crime", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polvio, covariate="dayscamped", model=pol15xvio,topic=c(8), 
                      method="continuous", moderator="crime", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(gg, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intViolentCamps.pdf', 
      width=4, height=7) 
 
 
 
#################################### 
#################################### 
#################################### 
#################################### 
#################################### 
pol15xnw <- stm(out$documents,out$vocab,K=15,prevalence =~ pos1 + stability2 + pool2 + nonwhite*s(dayscamped) + budget + crime 
+ officers + cp, max.em.its=250, data=out$meta, seed=1867757) 
 
#################################### 
#################################### 
 
polnw <- estimateEffect(c(4, 15, 12, 9, 7, 8, 10) ~ pos1 + stability2 + cp + nonwhite*s(dayscamped) + budget + crime + officers + pool2, 
pol15xnw, 
                         metadata=meta, uncertainty="None") 
 
hh <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(4), 
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                      method="continuous", moderator="nonwhite", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.7,.9), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(4), 
                      method="continuous", moderator="nonwhite", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(4), 
                      method="continuous", moderator="nonwhite", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Least Diverse Depts', 'Modal Dept Diversity', 'Most Diverse Depts'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(15), 
                      method="continuous", moderator="nonwhite", moderator.value=1, add=FALSE, ylim=c(-.7,.9), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(15), 
                      method="continuous", moderator="nonwhite", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(15), 
                      method="continuous", moderator="nonwhite", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
   
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(12), 
                      method="continuous", moderator="nonwhite", moderator.value=1, add=FALSE, ylim=c(-.7,.9), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(12), 
                      method="continuous", moderator="nonwhite", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(12), 
                      method="continuous", moderator="nonwhite", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(hh, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intnonwhiteInds.pdf', 
      width=4, height=7) 
 
 
ii <- function(){ 
  layout(matrix(1:3, ncol=1, byrow=TRUE)) 
  par(oma=c(4,6,2,1), mar=c(1,1,1,1), mgp=c(2,1,0), 
      cex.axis=1.5) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(9), 
                      method="continuous", moderator="nonwhite", xaxt='n', xlim=c(-60,166), moderator.value=1, add=FALSE, ylim=c(-.7,.9), 
ylab="Expected Topic Proportion", 
                      linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(9), 
                      method="continuous", moderator="nonwhite", xaxt='n',moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(9), 
                      method="continuous", moderator="nonwhite", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  legend("top", c('Least Diverse Depts', 'Modal Dept Diversity', 'Most Diverse Depts'), 
         lwd=2, col=c('red', 'blue', 'darkgreen'), bty="n") 
   
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(7), 
                      method="continuous", moderator="nonwhite", moderator.value=1, add=FALSE, ylim=c(-.7,.9), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), xaxt='n', linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(7), 
                      method="continuous", moderator="nonwhite", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(7), 
                      method="continuous", moderator="nonwhite", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Expected Topic Proportion", 2, line=4) 
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  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(8), 
                      method="continuous", moderator="nonwhite", moderator.value=1, add=FALSE, ylim=c(-.7,.9), ylab="Expected Topic 
Proportion", xlab="Days since local camp established", 
                      xlim=c(-60,166), linecol='red', printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(8), 
                      method="continuous", moderator="nonwhite", moderator.value=2, add=TRUE, labeltype = "custom", linecol='blue', 
printlegend=FALSE) 
  plot.estimateEffect(polnw, covariate="dayscamped", model=pol15xnw,topic=c(8), 
                      method="continuous", moderator="nonwhite", moderator.value=3, add=TRUE, labeltype = "custom", linecol='darkgreen', 
printlegend=FALSE) 
  mtext("Days Since Local Camp Established", 1, line=3) 
   
} 
pdf.f(ii, file= '/Users/nickbadams/Dropbox/NickDiss/Chapter 6 Figures/intnonwhiteCamps.pdf', 
      width=4, height=7) 
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Appendix B: Figures Counting Time from 

Day 0 of New York’s Encampment 

Each of the figures below can be viewed alongside each of the figures of the dissertation. 

Figure X.4.2, for example, differs only from Figure 4.2 in that performances are modeled 

from Day 0 of the OWS encampment at Zuccotti Park in New York. See Chapter 3 Data 

Concerns for the motivation behind these figures.Appendix B 

Figure X.4.2 – Weekend Gatherings, Encampment Activities, Weekday Marches

 

 

Note: Predicted prevalence of Weekend Gathering, Weekday Marching, and Encampment 

Activities performances by day since Zuccotti camp established across the full corpus of text units 

describing protester-initiated contentious gatherings. All POS variables (number of liberals, 

number of power centers, and political instability) are held at their means. 
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Figure X.4.3 – Rallies, Demonstrations, and Labor Alliances 

Note: 

Predicted prevalence of Rallies, Demonstrations, and Labor Alliances performances by day since 

Zuccotti camp established across the full corpus of text units describing protester-initiated 

contentious gatherings. All POS variables (number of liberals, number of power centers, and 

political instability) are held at their means. 
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Figure X.4.4 – City Hall Targeting and Bank Targeting 

Note: 

Predicted prevalence of City Hall Targeting and Bank Targeting performances by day since 

Zuccotti camp established across the full corpus of text units describing protester-initiated 

contentious gatherings. All POS variables (number of liberals, number of power centers, and 

political instability) are held at their means. 
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Figure X.4.5 – Sidewalk Contestation, Curfew Disputes, Traffic Battles 

Note: 

Predicted prevalence of Sidewalk Contestation, Curfew Disputes, and Traffic Battles 

performances by day since Zuccotti camp established across the full corpus of text units 

describing protester-initiated contentious gatherings. All POS variables (number of liberals, 

number of power centers, and political instability) are held at their means. 
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Figure X.4.6 – Arrests, Standoffs with Riot Gear 

Note: 

Predicted prevalence of Arrests and Standoffs with Riot Gear performances by day since Zuccotti 

camp established across the full corpus of text units describing protester-initiated contentious 

gatherings. All POS variables (number of liberals, number of power centers, and political 

instability) are held at their means 
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Figure X.4.7 – Policing Responses to Occupy Performances 

Note: 

Predicted prevalence of Sidewalk Contestation, Curfew Disputes, Traffic Battles, Arrests and 

Standoffs with Riot Gear performances by day since Zuccotti camp established across the full 

corpus of text units describing protester-initiated contentious gatherings. All POS variables 

(number of liberals, number of power centers, and political instability) are held at their means 

 

 

 

 

 

 

 

 

Figure X.4.8  – Weekend Gatherings, Encampment Activities, Weekday Marches by Size 

of Liberal Population 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 

Weekend Gatherings, Encampment Activities, and Weekday Marches in the corpus for each 

day of the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘number of liberals’ variable. See Methodological 

Appendix for equations used in estimation and prediction.  

Figure X.4.9 – Rallies, Demonstrations, and Labor Alliances by Size of Liberal 

Population 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 

Rallies, Demonstrations, and Labor Alliances in the corpus for each day of the Occupy 

movement. Each panel displays three lines predicting topic prevalence for the highest, lowest, 

and middle value of the ‘number of liberals’ variable. See Methodological Appendix for 

equations used in estimation and prediction.  

Figure X.4.10 – City Hall Targeting, Bank Targeting, and Sidewalk Contestation by Size 

of Liberal Population 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 

City Hall Targeting, Bank Targeting, and Sidewalk Contestation in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for the 

highest, lowest, and middle value of the ‘number of liberals’ variable. See Methodological 

Appendix for equations used in estimation and prediction. 

Figure X.4.11 – Traffic Battles, Curfew Disputes, Arrests by Size of Liberal 

Population 
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Note: Panel 1 (Top), Panel 2 

(Middle), and Panel 3 (Bottom) show the predicted prevalence of Traffic Battles, 

Curfew Disputes, and Arrests in the corpus for each day of the Occupy movement. Each 

panel displays three lines predicting topic prevalence for the highest, lowest, and 

middle value of the ‘number of liberals’ variable. See Methodological Appendix for 

equations used in estimation and prediction. 

Figure X.5.1 – Weekend Gatherings, Encampment Activities, Weekday Marches 

by Number of Power Centers 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Weekend Gatherings, Encampment Activities, Weekday Marches in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘number of 

power centers’ variable. See Methodological Appendix for equations used in estimation 

and prediction. 
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Figure X.5.2 – Rallies, Demonstrations, and Labor Alliances by Number of Power 

Centers 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Rallies, Demonstrations, and Labor Alliances in the corpus for each day 

of the Occupy movement. Each panel displays three lines predicting topic prevalence 

for the highest, lowest, and middle value of the ‘number of power centers’ variable. See 

Methodological Appendix for equations used in estimation and prediction. 
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Figure X.5.3 – City Hall Targeting, Bank Targeting, and Sidewalk Contestation by 

Number of Power Centers 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 

City Hall Targeting, Bank Targeting, and Sidewalk Contestation in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for the 

highest, lowest, and middle value of the ‘number of power centers’ variable. See 

Methodological Appendix for equations used in estimation and prediction. 
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Figure X.5.4 – Traffic Battles, Curfew Disputes, and Arrests by Number of Power 

Centers 

Note: Panel 1 (Top), Panel 2 

(Middle), and Panel 3 (Bottom) show the predicted prevalence of Traffic Battles, 

Curfew Disputes, and Arrests in the corpus for each day of the Occupy movement. Each 

panel displays three lines predicting topic prevalence for the highest, lowest, and 

middle value of the ‘number of power centers’ variable. See Methodological Appendix 

for equations used in estimation and prediction. 
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Figure X.5.5 – Weekend Gatherings, Encampment Activities, Weekday Marches 

by Political Instability 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Weekend Gatherings, Encampment Activities, and Weekday 

Marches in the corpus for each day of the Occupy movement. Each panel 

displays three lines predicting topic prevalence for the highest, lowest, and 
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middle value of the ‘political instability’ variable. See Methodological Appendix 

for equations used in estimation and prediction. 

Figure X.5.6 – Rallies, Demonstrations, and Labor Alliances by Political 

Instability 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Rallies, Demonstrations, and Labor Alliances in the corpus for 

each day of the Occupy movement. Each panel displays three lines predicting 
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topic prevalence for the highest, lowest, and middle value of the ‘political 

instability’ variable. See Methodological Appendix for equations used in 

estimation and prediction. 

 

Figure X.5.7 – City Hall Targeting, Bank Targeting, and Sidewalk Contestation 

Note: Panel 1 (Top), Panel 2 

(Middle), and Panel 3 (Bottom) show the predicted prevalence of City Hall Targeting, 
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Bank Targeting, and Sidewalk Contestation in the corpus for each day of the Occupy 

movement. Each panel displays three lines predicting topic prevalence for the highest, 

lowest, and middle value of the ‘political instability’ variable. See Methodological 

Appendix for equations used in estimation and prediction 

 

Figure X.5.8 – Traffic Battles, Curfew Disputes, and Arrests by Political 

Instability 
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ote: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Traffic Battles, Curfew Disputes, and Arrests in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘political instability’ variable. See 

Methodological Appendix for equations used in estimation and prediction. 

 

Figure X.5.9 – Weekend Gatherings, Encampment Activities, Weekday Marches 

by Size of Liberal Population Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Weekend Gatherings, Encampment Activities, Weekday Marches in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘number of 

liberals’ variable interacted with time. See Methodological Appendix for equations 

used in estimation and prediction. 
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Figure X.5.10 – Rallies, Demonstrations, and Labor Alliances by Size of Liberal 

Population Interacted with Time 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Rallies, Demonstrations, and Labor Alliances in the corpus for each day 

of the Occupy movement. Each panel displays three lines predicting topic prevalence 

for the highest, lowest, and middle value of the ‘number of liberals’ variable interacted 

−
0

.2
0

.2
0

.4
Smaller, Less Liberal Population

Modal Population

Large, Liberal Population

−
0
.2

0
.2

0
.4

E
x
p

e
c
te

d
 T

o
p
ic

 P
ro

p
o

rt
io

n

0 50 100 150 200

−
0

.3
−

0
.1

0
.1

0
.3

Days Since Zucotti Camp Established



 

     454

with time. See Methodological Appendix for equations used in estimation and 

prediction. 

 

Figure X.5.11 – City Hall Targeting, Bank Targeting, and Sidewalk Contestation 

by Size of Liberal Population Interacted with Time 

Note: Panel 1 (Top), Panel 2 

(Middle), and Panel 3 (Bottom) show the predicted prevalence of City Hall Targeting, 

Bank Targeting, and Sidewalk Contestation in the corpus for each day of the Occupy 
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movement. Each panel displays three lines predicting topic prevalence for the highest, 

lowest, and middle value of the ‘number of liberals’ variable interacted with time. See 

Methodological Appendix for equations used in estimation and prediction. 

 

Figure X.5.12 – Traffic Battles, Curfew Disputes, and Arrests by Size of Liberal 

Population Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Traffic Battles, Curfew Disputes, and Arrests in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘number of liberals’ variable interacted 

with time. See Methodological Appendix for equations used in estimation and 

prediction. 

 

Figure X.5.13 – Weekend Gatherings, Encampment Activities, Weekday Marches 

by Number of Power Centers Interacted with Time 



 

     457

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Weekend Gatherings, Encampment Activities, Weekday Marches in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘number of 

power centers’ variable interacted with time. See Methodological Appendix for 

equations used in estimation and prediction. 
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Figure X.5.14 – Rallies, Demonstrations, and Labor Alliances by Number of 

Power Centers Interacted with Time  

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Rallies, Demonstrations, and Labor Alliances in the corpus for each day 

of the Occupy movement. Each panel displays three lines predicting topic prevalence 

for the highest, lowest, and middle value of the ‘number of power centers’ variable 
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interacted with time. See Methodological Appendix for equations used in estimation 

and prediction. 

 

Figure X.5.15 – City Hall Targeting, Bank Targeting, and Sidewalk Contestation 

by Number of Power Centers Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of City Hall Targeting, Bank Targeting, and Sidewalk Contestation in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘number of 

power centers’ variable interacted with time. See Methodological Appendix for 

equations used in estimation and prediction. 

 

Figure X.5.16 – Traffic Battles, Curfew Disputes, and Arrests by Number of Power 

Centers Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Traffic Battles, Curfew Disputes, and Arrests in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘number of power centers’ variable 

interacted with time. See Methodological Appendix for equations used in estimation 

and prediction. 
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Figure X.5.17 – Weekend Gatherings, Encampment Activities, Weekday Marches 

by Political Instability Interacted with Time 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Weekend Gatherings, Encampment Activities, Weekday Marches in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘political 
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instability’ variable interacted with time. See Methodological Appendix for equations 

used in estimation and prediction. 

 

Figure X.5.18 – Rallies, Demonstrations, and Labor Alliances by Political 

Instability Interacted with Time 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Rallies, Demonstrations, and Labor Alliances in the corpus for each day 
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of the Occupy movement. Each panel displays three lines predicting topic prevalence 

for the highest, lowest, and middle value of the ‘political instability’ variable interacted 

with time. See Methodological Appendix for equations used in estimation and 

prediction. 

 

Figure X.5.19– City Hall Targeting, Bank Targeting, and Sidewalk Contestation 

by Political Instability Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of City Hall Targeting, Bank Targeting, and Sidewalk Contestation in the 

corpus for each day of the Occupy movement. Each panel displays three lines 

predicting topic prevalence for the highest, lowest, and middle value of the ‘political 

instability’ variable interacted with time. See Methodological Appendix for equations 

used in estimation and prediction. 

 

 

Figure X.5.20 – Traffic Battles, Curfew Disputes, and Arrests by Political 

Instability Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Traffic Battles, Curfew Disputes, and Arrests in the corpus for each day of 

the Occupy movement. Each panel displays three lines predicting topic prevalence for 

the highest, lowest, and middle value of the ‘political instability’ variable interacted 

with time. See Methodological Appendix for equations used in estimation and 

prediction. 
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Figure X.6.1  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Number of Power Centers Interacted with Time 

 
Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘number of power centers’ variable interacted with time. See 
Methodological Appendix for equations used in estimation and prediction. 
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Figure X.6.2  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Number of Power Centers Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Deadline Enforcing, Dismantling Camps, and Violent Raiding in the 

corpus of text units describing police-initiated events for each day of the Occupy 

movement. Each panel displays three lines predicting control performance prevalence 

for the highest, lowest, and middle value of the ‘number of power centers’ variable 
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interacted with time. See Methodological Appendix for equations used in estimation 

and prediction. 

 

Figure X.6.3  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Political Instability Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted 

prevalence of Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in 
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the corpus of text units describing police-initiated events for each day of the Occupy 

movement. Each panel displays three lines predicting control performance prevalence 

for the highest, lowest, and middle value of the ‘instability’ variable interacted with 

time. See Methodological Appendix for equations used in estimation and prediction. 

 

 

Figure X.6.4  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Political Instability Interacted with Time 
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Deadline Enforcing, Dismantling Camps, and Violent Raiding in the corpus of text units 
describing police-initiated events for each day of the Occupy movement. Each panel displays 
three lines predicting control performance prevalence for the highest, lowest, and middle value 
of the ‘political instability’ variable interacted with time. See Methodological Appendix for 
equations used in estimation and prediction. 
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Figure X.6.5  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Size of Liberal Population Interacted with Time 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘number of liberals’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 
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Figure X.6.6  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Size of Liberal Population Interacted with Time 

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
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middle value of the ‘number of liberals’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 

 
 
 

Figure X.6.7  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Police Budget Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
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units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘police budget’ variable interacted with time. See Methodological Appendix 
for equations used in estimation and prediction. 

 

Figure X.6.8  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Police Budget Interacted with Time
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘police budget’ variable interacted with time. See Methodological Appendix 
for equations used in estimation and prediction. 

 

Figure X.6.9  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Officers per Capita Interacted with Time
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘officers per capita’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 

 
 

Figure X.6.10  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Officers per Capita Interacted with Time
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Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘officers per capita’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 
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Figure X.6.11  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Police Experience with Violent Crime Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘police experience with violent crime’ variable interacted with time. See 
Methodological Appendix for equations used in estimation and prediction. 
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Figure X.6.12  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Police Experience with Violent Crime Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘police experience with violent crime’ variable interacted with time. See 
Methodological Appendix for equations used in estimation and prediction. 
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Figure X.6.13  – Ordinance Enforcing, Group Arresting, Arresting Resisting 

Individuals by Commitment to Community Policing Interacted with Time 

 
Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘community policing’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 
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Figure X.6.14  – Deadline Enforcing, Dismantling Camps, and Violent Raiding by 

Commitment to Community Policing Interacted with Time

 

Note: Panel 1 (Top), Panel 2 (Middle), and Panel 3 (Bottom) show the predicted prevalence of 
Ordinance Enforcing, Group Arresting, Arresting Resisting Individuals in the corpus of text 
units describing police-initiated events for each day of the Occupy movement. Each panel 
displays three lines predicting control performance prevalence for the highest, lowest, and 
middle value of the ‘community policing’ variable interacted with time. See Methodological 
Appendix for equations used in estimation and prediction. 

 

−
0

.2
0

.2
0

.4

Least Committed to Comm Policiing

Somewhat Committed

Most Committed to Comm Policing
−

0
.2

0
.2

0
.4

E
x
p

e
c
te

d
 T

o
p
ic

 P
ro

p
o

rt
io

n

0 50 100 150 200

−
0

.3
−

0
.1

0
.1

0
.3

Days Since Zuccotti Camp Established




