## UC San Diego UC San Diego Electronic Theses and Dissertations

#### Title

Admixture History of Andean Highlanders

Permalink https://escholarship.org/uc/item/8fm859v8

**Author** Saini, Shubham

Publication Date 2017

Peer reviewed|Thesis/dissertation

#### UNIVERSITY OF CALIFORNIA, SAN DIEGO

#### Admixture History of Andean Highlanders

A thesis submitted in partial satisfaction of the requirements for the degree Master of Science

in

**Computer Science** 

by

Shubham Saini

Committee in charge:

Professor Vineet Bafna, Chair Professor Vikas Bansal Professor Melissa Gymrek

2017

Copyright Shubham Saini, 2017 All rights reserved. The thesis of Shubham Saini is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2017

DEDICATION

To Family.

#### EPIGRAPH

We shall not cease from exploration And the end of all our exploring Will be to arrive where we started And know the place for the first time. —T. S. Eliot

#### TABLE OF CONTENTS

| Signature Pag          | e                                                                                                                                                                                                                                                                         |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Dedication             |                                                                                                                                                                                                                                                                           |  |  |
| Epigraph               |                                                                                                                                                                                                                                                                           |  |  |
| Table of Cont          | ents                                                                                                                                                                                                                                                                      |  |  |
| List of Figures        |                                                                                                                                                                                                                                                                           |  |  |
| List of Tables         |                                                                                                                                                                                                                                                                           |  |  |
| Acknowledge            | ments                                                                                                                                                                                                                                                                     |  |  |
| Vita                   |                                                                                                                                                                                                                                                                           |  |  |
| Abstract of the Thesis |                                                                                                                                                                                                                                                                           |  |  |
| Chapter 1              | IntroductionIntroductionIntroduction1.1Related WorkIntroduction1.2Thesis OrganizationIntroduction                                                                                                                                                                         |  |  |
| Chapter 2              | Data Sets22.11000 Genomes Project2.2Andean Highlanders Data2.3Native American Data                                                                                                                                                                                        |  |  |
| Chapter 3              | Methods73.1Haplotype Phasing using ShapeIt73.2Population Stratification using Principal Component Analysis73.3Ancestry Proportion Estimation using ADMIXTURE103.4Admixture Events Dating using Alder173.5Local Ancestry Estimation using LAMP-LD173.6Admixture Dynamics17 |  |  |
| Chapter 4              | Results and Discussion164.1Global Population Stratification164.2Ancestry Proportion of the Andean Population174.3Admixture Events Dating184.4Modeling the Admixture Dynamics27                                                                                            |  |  |
| Chapter 5              | Conclusion and Future Directions225.1Future Work24                                                                                                                                                                                                                        |  |  |

| Appendix A   | Native American Samples | 26 |
|--------------|-------------------------|----|
| Appendix B   | Native American Samples | 52 |
| Bibliography |                         | 57 |

#### LIST OF FIGURES

| Figure 2.1: | 1000 Genomes Project                                   | 5  |
|-------------|--------------------------------------------------------|----|
| Figure 3.1: | ShapeIt Haplotype Graph.                               | 8  |
| Figure 3.2: | Linear Time Haplotype Sampling in ShapeIt.             | 8  |
| Figure 3.3: | HMM Structure of LAMP-LD                               | 13 |
| Figure 3.4: | Population Admixture Dynamics Models.                  | 14 |
| Figure 4.1: | Principal Component Analysis of world wide populations | 17 |
| Figure 4.2: | Global Admixture of American Populations.              | 18 |
| Figure 4.3: | Scaled Allele Frequency Spectrum.                      | 19 |
| Figure 4.4: | CSDA Distribution                                      | 22 |

#### LIST OF TABLES

| Table 4.1: | Admixture Dating                | 20 |
|------------|---------------------------------|----|
| Table A.1: | 1000 Genomes Samples            | 26 |
| Table B.1: | Native American Genomes Samples | 52 |

#### ACKNOWLEDGEMENTS

I take the opportunity to acknowledge the people who helped shape this thesis. I would like to express my profound gratitude to my advisor and thesis chair Dr. Vineet Bafna for his advise and support throughout the course of the masters program. He is a great inspiration for my continued interest in the field of bioinformatics.

Besides my advisor, I would like to thank my thesis committee members, Dr. Melissa Gymrek and Dr. Vikas Bansal, for taking time to review this work and giving valuable suggestions.

I would like to express a special thanks of gratitude to my professors, at UCSD and VIT, who over the years shaped me into the scientist I am today.

In the end, I reserve a special mention for my friends and family. I owe all my accomplishments to them.

#### VITA

| 2014      | B. Tech in Computer Science and Engineering, Vellore Institute of Techonology, India |
|-----------|--------------------------------------------------------------------------------------|
| 2014-2015 | Research Associate, Indraprastha Institute of Information Technology, India          |
| 2015-2017 | Master of Science in Computer Science, University of California,<br>San Diego        |

#### PUBLICATIONS

Afreen Ferdoash, Shubham Saini, Jitesh Khurana, Amarjeet Singh, "Analytics Driven Operational Efficiency in HVAC Systems" at The 2nd ACM International Conference on Embedded Systems For Energy-Efficient Built Environments, BuildSys 2015, Seoul, South Korea.

Shubham Saini, Pandarasamy Arjunan, Amarjeet Singh, Ullas Nambiar, "E-Adivino: A Novel Framework for Electricity Consumption Prediction based on Historical Trends" at The 6th ACM International Conference on Future Energy Systems, eEnergy 2015, Bangalore, India.

Amarjeet Singh, Shubham Saini, Sanchit Sharma, Priyank Trivedi, "Energy Optimization in Commercial Buildings: From Monitoring to Savings Realization" at The 6th ACM International Conference on Future Energy Systems, e-Energy 2015, Bangalore, India.

Shubham Saini, Shraey Bhatia, I. Sumaiya Thaseen, "sv(M)kmeans - A Hybrid Feature Selection Technique for Reducing False Positives in Network Anomaly Detection" at The 20th International Conference on Management of Data, COMAD 2014, Hyderabad, India.

Bhavesh Kasliwal\*, Shraey Bhatia, Shubham Saini\*, I.Sumaiya Thaseen, Ch.Aswani Kumar, "A Hybrid Anomaly Detection Model using G-LDA" at The 4th IEEE International Advance Computing Conference, IACC 2014, Gurgaon, India.

#### ABSTRACT OF THE THESIS

#### **Admixture History of Andean Highlanders**

by

Shubham Saini

Master of Science in Computer Science

University of California, San Diego, 2017

Professor Vineet Bafna, Chair

South American populations have a complex admixture history. The earliest Native Americans are known to have migrated into the Americas as early as 14000 years ago. The region saw large scale migrations from European colonial powers starting early 1500s. In just a couple of centuries the entire Western hemisphere came under the control of these European powers. These colonial powers brought millions of Africans across the Atlantic between the 1500s and 1800s through the slave trade which led to further admixture of African populations into the Americans. Due to multiple migrations events, presence of different colonial powers that followed different slave trade practices, South Americans populations have a highly heterogeneous genetic composition. We investigate

the admixture history of one of the South American populations living in Cerro de Pasco, a high altitude mining town in the Andes region of Peru. Studying the admixture history of this population can give us important insights into the origins of several selection forces at play in this population. We found the Andean population to have lesser proportions of European and African ancestry as compared to the other South American populations. The timing of European and African admixture into this population was also found to be significantly different from other populations, which could be a direct result of lower European and African ancestry proportion. These results indicate a higher level of segregation between the Native Americans and the European/African populations in Peru as compared to other regions.

# Chapter 1

# Introduction

South American populations share an interesting and complex admixture history. The earliest Native Americans entered the Americas from Siberia via the Bering Land Bridge [RSH<sup>+</sup>15] nearly 14000 years ago. While the timing of this event is well accepted, the number and timings of migration waves is still under research. However, unlike North America, South American indigenous population is derived from a single migration wave that spread South into the Andes and East into the Amazon basin.

Large scale European migration and colonization then began in early 1500s, starting from Caribbean islands and expanding into the rest of the American mainland. With Spanish being the first Europeans to settle the largest areas of North America, Caribbean and South America, English arriving on the North American coast, and Portuguese and French colonizing parts of Americas, eventually the entire Western hemisphere came under the control of European powers.

Things get more complicated because of the African admixture into the American populations. Between the 1500s and 1800s, millions of African were brought into the Americas for working in mines and plantations through the slave trade, which led to further mixing of Africans into the South American populations. It is estimated that nearly four Africans for every one European crossed the Atlantic. Interesting, most of the slaves were brought into the northern South American areas and North America, as evident from the admixture proportion of present day populations.

Due to multiple migration events, presence of different colonial powers that followed different slave trade practices, the South American populations have a highly heterogeneous genetic background. Several factors like diverse geographical features, social divisions between different ethnicities, and higher slave trade than other regions make the Peruvian populations different from other South American populations. We investigate the admixture of history of one of the South American populations living in Cerro de Pasco, a high altitude mining town in Andean region of Peru. This population is shown to have adapted to high altitude regions with low atmospheric oxygen levels in several works [ZUR<sup>+</sup>13] and multiple samples are diagnosed with Monge disease (Chronic Mountain Sickness). Studying the admixture history of this population can give us important insights into the origins of the selection and the resulting phenotypes. Using publicly available methods we estimate the ancestry proportions of the Andean population. We further estimate the timing of these admixture events and compare it with other American populations.

#### 1.1 Related Work

A number studies on earliest Native American migrations and admixture history of present day South American populations have been done previously. Reich et. al [RPC<sup>+</sup>12] did an extensive work of collecting ancient and present day samples of Native Americans and studying the genetic diversity of the present American populations. Raghavan et. al [RSH<sup>+</sup>15] worked on uncovering the migration patterns of earliest Native Americans and proposed some interesting facts about the timing and route of these migrations. Ruiz-Linares et. al [RLAAA<sup>+</sup>14] did an extensive analysis of genetic ancestry of Latin Americans and found geographic variation in ancestry and its impact on various physical traits. Waldron et. al [Wal16] studied the genetic events and traced the ancestral origins of South Americans from five countries that led to the population structure of present day South America.

### **1.2** Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 describes the data sets used for this project and preprocessing steps required for analysis. Chapter 3 describes the algorithms and tools used along with the motivation for selecting those tools. Results and corresponding discussion are presented in Chapter 4. Finally, we give concluding remarks about the results and the future scope of this work in Chapter 5.

# Chapter 2

# **Data Sets**

### 2.1 1000 Genomes Project

The 1000 Genomes Project is an international research effort to catalog the human genetic variation. It consists of reconstructed genomes of 2504 samples from 26 populations. The data has high quality haplotypes from 88 million variants including single nucleotide polymorphisms (SNPs), insertion/deletion (indels) and structural variants (SVs). The regions where each population is sampled from are presented on a world map in Figure 2.1.

In this work we use data of 150 European samples (CEU and GBR), 150 Africans (YRI and MSL), 94 Colombians (CLM), 64 Mexicans (MXL), 85 Peruvians from Lima (PEL) and 104 Puerto Ricans (PUR). The sample IDs and additional information of the selected samples is given in Appendix A.



**Figure 2.1**: 1000 Genomes Project: World wide distribution of the populations sampled as part of the project. Actual names for the population IDs can be found at http://www.internationalgenome.org/category/population/

### 2.2 Andean Highlanders Data

The Andean Highlanders data, as described in Zhou et. al [ZUR<sup>+</sup>13], has been previously used to study the genetic mechanisms underlying high altitude adaptation and decode the genetic basis of Chronic Mountain Sickness or Monge disease. The data consists of 120 samples from Andean mountains, residing in Cerro de Pasco, a high altitude mining town of Peru. Whole Genome Sequencing was performed with the Illumina HiSeq2000 platform to a mean per sample depth of 20x-40x. The reads were aligned to the human reference genome hg19 using BWA[LD09], and adjusted using GATK indel realignment. SNVs were finally called and filtered using GATK UnifiedGenotyper with default parameters. We used this data, as prepared by Zhou et. al [ZUR<sup>+</sup>13], for studying the European and African admixture into the population. We further imputed and phased the missing SNPs in this data set using the 1000 Genomes samples mentioned in the previous section using ShapeIt. This led to retaining only those markers that were present in the 1000 Genomes data.

### 2.3 Native American Data

In an effort to study the peopling of Americas, Reich et. al [RPC<sup>+</sup>12] assembled data of 493 individuals from 52 Native American groups, genotyped at nearly 350,000 SNPs. All the samples were genotyped using Illumina arrays at the Broad Institute of Harvard and Massachusetts Institute of Technology. Of the 493 samples, 419 samples were genotyped from genomic DNA, and 74 from whole-genome-amplified material. HAPMIX [PTP<sup>+</sup>09] was used to model the haplotypes into one of the two ancestral panels: "Old World" population of Europeans and Africans, and the "Native" population of Native Americans and Siberians. Genome segments with an expected number of more than 0.01 non-Native American ancestry found using HAPMIX was masked.

We use 100 of the 493 Native American samples for this work (details present in Appendix B). We selected the samples with least proportions of European and African admixture, and in many cases had little to no masking done on them. We also ran IBD analysis to make sure the samples were not related. We further imputed and phased the missing SNPs using the 1000 Genomes samples mentioned previously using ShapeIt. This led to retaining only those markers that were present in the 1000 Genomes data.

# Chapter 3

# Methods

### 3.1 Haplotype Phasing using ShapeIt

A haplotype is a sequence of nucleotides along a single strand of a chromosome. With current sequencing technologies it is difficult to obtain sequences for each chromosomal strand separately. We instead obtain genotype information for each position without the strand information. Haplotype phasing is the process of assigning each nucleotide to the correct strand. Haplotype phase information is required for solving problems like detecting chromosomal segments of distinct ancestry, understanding genetic variation and diseases. understanding gene function, and detecting selection.

A number of methods have been developed in response to tackle these problems. We use one of these methods called ShapeIt [DMZ12], a Hidden Markov Model (HMM) based linear time algorithm. ShapeIt collapses the haplotypes into a graph structure and forms an HMM for this graph. The haplotypes are divided into equal sized disjoint segments, with each segment having J distinct haplotypes. The HMM thus formed has J states for each markers. The edges traversing the HMM are weighted by the number of haplotypes that traverse the nodes and edges. This process is presented in Figure 3.1.



**Figure 3.1**: ShapeIt haplotype graph. Originally there are six haplotypes with eight markers each, given by H. This is collapsed into a graph  $H_G$ , with three unique haplotypes in each segment. The edges are weighted by the number of haplotypes traversing from one node to the next.

Another major improvement of ShapeIt over other methods is linear time sampling of compatible haplotypes. While other methods like Impute2 [HDM09] and MaCH [LWD<sup>+</sup>10] do this in  $O(MN^2)$  where M is the number of markers and N the number of haplotypes, ShapeIt splits the compatible haplotypes into disjoint segments to achieve linear time O(MJ) time sampling of compatible haplotypes. The sampling graph is presented in Figure 3.2.



**Figure 3.2**: Linear time sampling of compatible haplotypes by ShapeIt. Each marker in *S* can have three possible values: 0/1/2. Compatible haplotypes are sampled from the graph  $S_G$ .

Most of the recent methods make use of Identity by Descent (IBD) information to get better phasing accuracy. The key idea behind using IBD information is that even unrelated individuals have distant common ancestors that give rise to IBD segments. This approach was first successfully used [KMF<sup>+</sup>08] by leveraging long rang ( $\geq 10Mb$ ) IBD information. IBD based phasing requires a identical haplotypes in sufficiently large number of samples to phase heterozygous markers. Alternatively, it can be used to phase related individuals given their pedigree information. Mendelian constraints provide haplotype phase information for many heterozygous markers, since any parent-offspring pair must share at least one allele at every position, and the IBD alleles at different sites on the same chromosome will be on a single strand in both the parent and the child, not accounting for recombination events. Thus, haplotype phase information is unknown only at markers where both the parent and offspring are heterozygous, or where genotype information is missing. But the number of such markers are very few whenever a trio (father-mother-child) information is available.

The ShapeIt method is implemented using C++ programming language. The software takes as input a Variant Call Format (VCF) file of the population genotype data, and a recombination maps file that contains the genomic coordinates of the recombination events for a specie. An additional phased reference file of population close to the target population may be given to help increase the phasing accuracy. If a reference file is supplied, then only the markers present in both the reference and target files are phased, and the markers missing from the target file are imputed (approximated). The output from the ShapeIt software is a phased VCF file.

# 3.2 Population Stratification using Principal Component Analysis

Principal Component Analysis (PCA) [Pea01] is a statistical method for converting multi-dimensional data of correlated variables into uncorrelated orthogonal variables called Principal Components. PCA is an efficient way to transform a high-dimensional data into low dimensional representation.

PCA has traditionally been used for population stratification [PPP<sup>+</sup>06]. PCA is applied to genotype data to calculate the principal components that explain the genetic variation in the individuals. The top principal components are continuous axes of variation that represent genetic variation due to ancestry of the samples. We can further apply a clustering algorithm like K-Means for grouping individuals from the same population based on some distance metric.

While the method is easy with little parameters, application of PCA for population stratification has major challenges:

- Deciding the optimal number of principal components.
- Choice of distance metric used for grouping individuals.

### 3.3 Ancestry Proportion Estimation using ADMIXTURE

Admixture is an event when two previously isolated population begin to interbreed. Estimating the proportion of ancestry of an individual from each contributing ancestral population, averaged over the entire genome is known as "global ancestry", "admixture proportion" estimation. *ADMIXTURE* [ANL09] is a Bayesian modeling based admixture estimation algorithm. Unlike other modeling based algorithms like *STRUCTURE* [HFSP09] that uses Markov Chain Monte Carlo (MCMC) for sampling posterior probabilities, *ADMIXTURE* makes use of likelihood function optimization which makes it magnitudes of levels faster. *ADMIXTURE* simultaneously estimates the ancestry proportion and the population allele frequencies, and the likelihood optimization function can accommodate larger number of parameters. The updates to the allele frequency parameters and the ancestry fraction parameter is done alternatively by maximizing the second order Taylor's expansion of the likelihood function. The maximum likelihood estimates are done using a block relaxation approach, which s accelerated using a Quasi-Newton method [ZAL11]. For a population k and individual i, the likelihood function of the ancestry proportion  $q_{ik}$  and allele frequencies  $f_{kj}$  is given as a function of  $g_{ij}$  - number of copies of allele 1 in individual i at SNP j:

$$L(Q,F) = \sum_{i} \sum_{j} g_{ij} ln \left[ \sum_{k} q_{ik} f_{kj} \right] + (2 - g_{ij}) ln \left[ \sum_{k} q_{ik(1 - f_k j)} \right]$$
(3.1)

ADMIXTURE accepts as input genotype data each population in PLINK BED (Binary) [PNTB<sup>+</sup>07] format. The number of populations K is needed as a parameter. The output from the software is percentage global ancestry proportions of the K populations for each individual.

### **3.4** Admixture Events Dating using Alder

Alder (Admixture-induced Linkage Disequilibrium for Evolutionary Relationships) [LLP<sup>+</sup>13] is method for dating admixture events - the number of generations since an admixture event happened. Unlike other admixture events dating and reconstruction methods like *ROLLOFF* that are based on allele frequency divergence or modeling Chromosomal Segments of Distinct Ancestry (CSDA), Alder models the exponential decay of admixture induced linkage disequilibrium (LD) as a function of genetic distance. Assuming a population C is derived from the admixture of populations A and B, Alder uses a weighed LD statistic given as:

$$LD = w(x)w(y)D_2(x,y)$$
(3.2)

where w(x) is the allele frequency divergence at site x between admixing popula-

tions A and B, and  $D_2(x, y)$  is the sample covariance between genotypes at sites x and y in the admixed population C.

The exponential decay of weighted LD is modeled as a function of genetic distance *d* in cM. The decay constant *k* of the distribution arises from the heterogeneous mixture computed using pair of SNPs on different chromosome, the amplitude  $\alpha$  is the mixture proportion and the branch length, and the decay rate *z* is the number of generations since the admixture event. The two populations method can be extended to three populations by training multiple models between pairs of populations.

Alder accepts as input genotype data for the ancestral and target population in EIGENSTRAT [PPP+06] format. The output from the software is the weight LD decay for each pair of population, along with the exponential decay parameters.

### 3.5 Local Ancestry Estimation using LAMP-LD

Local ancestry refers to the ancestry at ever genomic locus in an admixed population. Local ancestry has various applications in medical genetics, recombination rate variation studies and detection of selection events. A number of methods have been proposed to address the local ancestry estimation problem like HapMix [PTP<sup>+</sup>09], Win-Pop [PSKH09], LAMP-LD [BPS<sup>+</sup>12]. While HapMix and WinPop are shown to have good accuracy in two way admixed populations, LAML-LD extends previous methods to accomodate multi-way admixtures like the South American population.

LAMP-LD is a HMM based method, working on non-overlapping windows of genomic data. The hidden states of the HMM represent the local ancestries of each window. For a pair of ancestral states, sub-HMMs within the top HMM emit the genotypes and models the ancestries. The transition probabilities of the HMMs are estimated using reference panel of the ancestral populations. Each window is assigned a pair of local



**Figure 3.3**: HMM structure of LAMP-LD: Top level HMM with smaller HMMs as used by LAMP-LD. Each HMM emits the most likely pair of ancestries.

ancestries, followed by relaxing the restriction on locations of ancestry switches. The top HMM, with smaller sub-HMMs as implemented by LAMP-LD is presented in Figure 3.3.

LAMP-LD accepts as input phased haplotype data for all the ancestral populations, and genotype data for the target population. Additionally, genetic maps are also required to capture the recombination process. The output from the software is local ancestry file for each individual, where the ancestry of each locus is given by 0/1/2 (0: both alleles from population 1, 1: one allele each from two populations, 2: both alleles from population 2).

## 3.6 Admixture Dynamics

Studying genetic admixture is important for evolutionary and medical studies. Exploring population admixture dynamics is important for admixture mapping, discovering population history, detecting natural selection signals. Typically, admixed populations follow one of the following three admixture models:

- **Hybrid Isolation:** two mutually isolated populations interbreed and the resulting admixed population evolve in isolation.
- **Gradual Admixture:** two mutually isolated populations interbreed and the resulting admixed population evolve with the ancestral populations.
- **Continuous Gene Flow:** two mutually isolated populations interbreed and the resulting admixed population periodically breeds with one of the ancestral populations.

The three models are represented in Figure 3.4.



**Figure 3.4**: Population Admixture Dynamics Models: mutually isolated populations P1 and P2 breed to produce hybrid population. This hybrid population evolves over generations  $G_i$ , with or without further admixture from P1 or P2 or both depending on the kind of model.

Individuals of an admixed population have their chromosomes resemble a collection of chromosomal segments of the ancestral populations. The CSDA gets rearranged through recombination which provide important information about the population history. Most of the previous studies explored admixture dynamics through simulated data, and do not generally take into account complexity of admixture processes. Jin et. al [JWW<sup>+</sup>12] proposed an approach to explore the population admixture dynamics by genome-wide analysis of CSDA. The general idea behind the proposed approach is that CSDA will be spliced into smaller pieces with each generation after an admixture event, sand the chromosomes from recently admixed populations contain longer CSDAs. Thus, typically the average length of CSDA in population following Hybrid isolation model will be much less than the average length of CSDA in populations following Gradual Admixture or Continuous Gene Flow model.

## **Chapter 4**

## **Results and Discussion**

### 4.1 Global Population Stratification

Principal Component Analysis (PCA) was carried out on Chromosome 19 genotype data using PLINK [PNTB<sup>+</sup>07] PCA implementation. For performing PCA different world populations available in the 1000 genomes data, 100 Native American samples, and 120 Andean samples were used. 1000 genomes data consists of 5 super populations: Africans, Americans, Europeans, South Asians and East Asians. While merging different panels, only those markers were retained that had at least 70% genotyping rate.

Top two principal components were plotted using Python and is presented in Figure 4.1. The African samples were clustered away from all other populations and is separated by PC1. The remainder of populations formed distinct clusters along the PC2. The Andean cluster superimposes over the American (Mexican, Colombian, Puerto Rican and Peruvian) cluster as expected. Further, the Andean cluster lies between all the other clusters, implying close relationship to the other populations.



**Figure 4.1**: Principal Component Analysis of world wide populations: NATAM: Native Americans, SAS: South Asians, EUR: Europeans, EAS: East Asians, AMR: 1000 Genomes South Americans, AFR: Africans. The Andean population is related closest to Europeans, Native Americans and East Asians.

### 4.2 Ancestry Proportion of the Andean Population

We used the program *ADMIXTURE* [ANL09] to evaluate the proportions of ancestry of three major contributing populations: Africans, Europeans and Native Americans. Four other South American populations: Colombians, Mexicans, Puerto Ricans and Peruvians, were also used to compare with the Andean population.

ADMIXTURE method does not explicitly take LD into consideration, and requires that data be filtered to remove LD. To achieve this, the combined data was processed to remove each SNP that had an  $R^2$  value of greater than 0.1 with any other SNP within a 50 SNP sliding window, advanced by 10 at a time. ADMIXTURE was then run in unsupervised mode using number of ancestral populations parameter K = 3 since we have three major populations.

As mentioned earlier, the Native American data had European and African markers masked, hence showing no admixture proportion with other populations. Interesting, unlike other South American populations, Peruvians and Andeans do not have high proportions of African admixture despite large scale slave trade history in the region. One possible reason for this could be the social division between the Africans and other groups of Peru. We also notice that unlike other South American populations (Mexicans, Puerto Ricans and Colombians), Peruvians (and Andeans) have significantly lower European admixture.



**Figure 4.2**: Global Admixture of American Populations: ancestry proportion in different South American populations. Blue: Africans, Red: Europeans, Green: Native Americans. Colombians, Mexicans and Puerto Ricans have significantly higher European and African ancestry as compared to Peruvians and Andeans.

## 4.3 Admixture Events Dating

It is a well accepted fact that South America was first inhabited by Native Americans at least 14000 years ago. Then in the 16th Century European explorers discovered the Americas in soon started to colonize the region. Soon after colonization began, the Europeans brought Africans into the Americas through the slave trade. Considering the Native Americans as the indigenous population of the region, we estimate the dates of European and African admixture into the Andean population using the Alder [LLP<sup>+</sup>13] method.

Alder method assumes the following about the population under study:

1. No non-random mating



2. No bottle-neck events

**Figure 4.3**: Scaled Allele Frequency Spectrum: the number of mutations at each locus and the scaled frequency of the number of mutations. Same scaled frequency values is one of the indicators of random mating.

We applied a simple test to test for random mating: the allele frequency spectrum gives the distribution of allele frequencies of a given set of SNPs in a population. Each

entry in the frequency spectrum gives the number of loci with the non-reference allele frequency. We scale the frequencies by multiplying the frequency to the counts (or number of mutations) to obtain the scaled allele frequency spectrum. In case of random mating, the scaled frequencies for each count value are equal. The scaled allele frequency spectrum for the Andean population is given in Figure 4.3. Except for the count value of 1, the remaining count values have similar frequencies, there by giving a strong evidence for random mating in the population. Testing for bottle-neck events in the history of a population is beyond the scope of this work

Assuming Andean population as a three-way admixture between Native Americans, Europeans and Africans, we estimate the admixture events using Alder and compare the number with other South American populations. The results of this experiment are given in Table 4.1.

**Table 4.1**: Admixture Dating: Number of generations since European and African admixture events in various South American populations as obtained through Alder. The number of generations is given by the decay parameter of the exponential curve of weighted linkage distribution.

| Population     | Generations Since Euro- | Generations Since African |
|----------------|-------------------------|---------------------------|
|                | pean Admixture          | Admixture                 |
| Andean         | $9.21 \pm 3.92$         | $8.5 \pm 3.9$             |
| Peru from Lima | $9.93 \pm 4.80$         | $8.66 \pm 4.43$           |
| Colombian      | $13.34 \pm 1.61$        | $11.72 \pm 2.37$          |
| Mexican        | $12.92 \pm 1.72$        | $11.69 \pm 2.70$          |

Through the Alder runs we found some interesting results about the populations from Peru. Unlike other South American populations like Colombians and Mexicans with European admixture dating back 13.34 generations and 12.92 generations (400 years and 387 years assuming 1 generation to be 30 years) respectively, European admixture in Andeans and other Peruvians happened much later around 9.21 generations (276 years) back. Also the standard deviation for the Peruvian populations is much higher than other

populations, which could be due to lesser number of SNPs spanning over the different datasets. While the numbers make sense for Colombians and Mexicans as the European colonization of Americas started in early 1600s, further experiments on Peruvian and Andean populations need to be done to corroborate these results. Detecting for potential bottle-neck event in the history of Peruvian populations could give us a better explanation for these numbers. Also, working with more samples collected from different regions of Peru may capture higher diversity within the Peruvian data.

### **4.4 Modeling the Admixture Dynamics**

We investigated the admixture dynamics of the Andean population on a subset of the entire genome. Using LAMP-LD [BPS<sup>+</sup>12], we found the chromosomal segments of distinct ancestry (CSDA) on Chromosomes 10, 11, 12, 19, 21 and 22, and compared our results with the ones presented by Jin et. al [JWW<sup>+</sup>12]. The CSDA lengths and their frequency in the Andean population is presented in Figure 4.4. The average CSDA length in the Andean population was found to be 4.3 cM with a standard deviation of 3.8 cM. These values are much smaller than the ones reported by Jin et. al [JWW<sup>+</sup>12] for the populations under Hybrid Isolation model. Although prior studies used both simulated and real data to find out the difference in average CSDA lengths of different admixture models, it is unlikely that our population will have average value smaller than 4.3 cM when run with simulated data. We therefore believe that the Andean population is following a Hybrid Isolation model where two ancestral populations (Native Americans and Europeans in this case) admixed several generations back and the resulting hybrid population is evolving in isolation without any external gene flow.



**Figure 4.4**: CSDA Distribution: Frequency distribution of the CSDA lengths. Average CSDA length is 4.3 cM with 3.8 cM standard deviation.
### Chapter 5

## **Conclusion and Future Directions**

South American populations have a complicated history due to multiple migration events from different populations through their history. In this thesis we analyzed the Andean highlander population from Cerro de Pasco, a high altitude town in Peru, as a three way admixture of Native Americans, Europeans and Africans. We performed extensive experiments using previously published methods to validate the admixture history of the Andean population. While most of our results align well with previously established fact, we found some interesting pieces of information that need further analysis. We summarize our findings as follows:

- The Andean population resulted from the admixture between Native Americans, Europeans and Africans. This is supported by historical records on European colonization and African slave trade.
- Unlike other South American populations like Colombians and Mexicans, Peruvians and Andeans have lesser proportions of European and African ancestry; 20% European ancestry in Peruvians compared to more than 60% in Colombians and Mexicans. Several other studies [MGW<sup>+</sup>16, RSH<sup>+</sup>15] presented similar results.

- Unlike other South American populations, Peruvians and Andeans witnessed European admixture much later, after almost 130 years. Interesting, no historical records corroborate this fact.
- The Andean population is evolving under a Hybrid Isolation admixture model.

We also identified some major limitations of this work which may have affected our results:

- The admixture events dates for Andeans and Peruvians obtained using Alder varied significantly as compared to other South American populations. One of the limitations of this work is that we assumed the Peruvian population to not have undergone a bottle-neck event in its history. We need to conduct further experiments to identify any such events that might be influencing the admixture dating results.
- The Peruvian data is collected from two regions: Lima and Cerro de Pasco. This does not necessarily capture the diversity of Peruvian population and more samples from different regions can give us better insights into this population.

#### 5.1 Future Work

We found some interesting results about the admixture history of Andeans through this work, and were able to identify several opportunities to advance this project:

• Andean population is shown to have adapted to high altitude regions and undergone natural selection. Several association studies are currently under for different phenotypes. It will be beneficial to establish any ancestral links for these phenotypes to better understand their origins.

• Finally, this entire study can be formulated into a standard framework for reproducibility and application on any new population that has undergone recent admixture.

# Appendix A

# **Native American Samples**

| Sample ID | Population | Super Population | Sex |
|-----------|------------|------------------|-----|
| NA06984   | CEU        | EUR              | М   |
| NA06985   | CEU        | EUR              | F   |
| NA06986   | CEU        | EUR              | М   |
| NA06989   | CEU        | EUR              | F   |
| NA06994   | CEU        | EUR              | М   |
| NA07000   | CEU        | EUR              | F   |
| NA07037   | CEU        | EUR              | F   |
| NA07048   | CEU        | EUR              | М   |
| NA07051   | CEU        | EUR              | М   |
| NA07056   | CEU        | EUR              | F   |
| NA07347   | CEU        | EUR              | Μ   |
| NA07357   | CEU        | EUR              | Μ   |
| NA10847   | CEU        | EUR              | F   |
| NA10851   | CEU        | EUR              | М   |

Table A.1: 1000 Genomes Samples

| NA11829 | CEU | EUR | Μ |
|---------|-----|-----|---|
| NA11830 | CEU | EUR | F |
| NA11831 | CEU | EUR | М |
| NA11832 | CEU | EUR | F |
| NA11840 | CEU | EUR | F |
| NA11843 | CEU | EUR | М |
| NA11881 | CEU | EUR | М |
| NA11892 | CEU | EUR | F |
| NA11893 | CEU | EUR | М |
| NA11894 | CEU | EUR | F |
| NA11918 | CEU | EUR | F |
| NA11919 | CEU | EUR | М |
| NA11920 | CEU | EUR | F |
| NA11930 | CEU | EUR | М |
| NA11931 | CEU | EUR | F |
| NA11932 | CEU | EUR | М |
| NA11933 | CEU | EUR | F |
| NA11992 | CEU | EUR | М |
| NA11994 | CEU | EUR | М |
| NA11995 | CEU | EUR | F |
| NA12003 | CEU | EUR | М |
| NA12004 | CEU | EUR | F |
| NA12005 | CEU | EUR | Μ |
| NA12006 | CEU | EUR | F |
| NA12043 | CEU | EUR | М |
| NA12044 | CEU | EUR | F |

| NA12045 | CEU | EUR | М |
|---------|-----|-----|---|
| NA12046 | CEU | EUR | F |
| NA12058 | CEU | EUR | F |
| NA12144 | CEU | EUR | М |
| NA12154 | CEU | EUR | М |
| NA12155 | CEU | EUR | М |
| NA12156 | CEU | EUR | F |
| NA12234 | CEU | EUR | F |
| NA12249 | CEU | EUR | F |
| NA12272 | CEU | EUR | М |
| NA12273 | CEU | EUR | F |
| NA12275 | CEU | EUR | F |
| NA12282 | CEU | EUR | М |
| NA12283 | CEU | EUR | F |
| NA12286 | CEU | EUR | М |
| NA12287 | CEU | EUR | F |
| NA12340 | CEU | EUR | М |
| NA12341 | CEU | EUR | F |
| NA12342 | CEU | EUR | М |
| NA12347 | CEU | EUR | М |
| NA12348 | CEU | EUR | F |
| NA12383 | CEU | EUR | F |
| NA12399 | CEU | EUR | М |
| NA12400 | CEU | EUR | F |
| NA12413 | CEU | EUR | М |
| NA12414 | CEU | EUR | F |

| NA12489 | CEU | EUR | F |
|---------|-----|-----|---|
| NA12546 | CEU | EUR | М |
| NA12716 | CEU | EUR | М |
| NA12717 | CEU | EUR | F |
| NA12718 | CEU | EUR | F |
| NA12748 | CEU | EUR | М |
| NA12749 | CEU | EUR | F |
| NA12750 | CEU | EUR | М |
| NA12751 | CEU | EUR | F |
| NA12760 | CEU | EUR | М |
| NA12761 | CEU | EUR | F |
| NA12762 | CEU | EUR | М |
| NA12763 | CEU | EUR | F |
| NA12775 | CEU | EUR | М |
| NA12776 | CEU | EUR | F |
| NA12777 | CEU | EUR | М |
| NA12778 | CEU | EUR | F |
| NA12812 | CEU | EUR | М |
| NA12813 | CEU | EUR | F |
| NA12814 | CEU | EUR | М |
| NA12815 | CEU | EUR | F |
| NA12827 | CEU | EUR | М |
| NA12828 | CEU | EUR | F |
| NA12829 | CEU | EUR | М |
| NA12830 | CEU | EUR | F |
| NA12842 | CEU | EUR | М |

| NIA 120/2 | CEU | ELID | Б |
|-----------|-----|------|---|
| INA12043  | CEU | EUK  | Г |
| NA12872   | CEU | EUR  | М |
| NA12873   | CEU | EUR  | F |
| NA12874   | CEU | EUR  | М |
| NA12878   | CEU | EUR  | F |
| NA12889   | CEU | EUR  | М |
| NA12890   | CEU | EUR  | F |
| HG00096   | GBR | EUR  | М |
| HG00097   | GBR | EUR  | F |
| HG00099   | GBR | EUR  | F |
| HG00100   | GBR | EUR  | F |
| HG00101   | GBR | EUR  | М |
| HG00102   | GBR | EUR  | F |
| HG00103   | GBR | EUR  | М |
| HG00105   | GBR | EUR  | М |
| HG00106   | GBR | EUR  | F |
| HG00107   | GBR | EUR  | М |
| HG00108   | GBR | EUR  | М |
| HG00109   | GBR | EUR  | М |
| HG00110   | GBR | EUR  | F |
| HG00111   | GBR | EUR  | F |
| HG00112   | GBR | EUR  | М |
| HG00113   | GBR | EUR  | М |
| HG00114   | GBR | EUR  | М |
| HG00115   | GBR | EUR  | М |
| HG00116   | GBR | EUR  | М |

| HG00117 | GBR | EUR | М |
|---------|-----|-----|---|
| HG00118 | GBR | EUR | F |
| HG00119 | GBR | EUR | Μ |
| HG00120 | GBR | EUR | F |
| HG00121 | GBR | EUR | F |
| HG00122 | GBR | EUR | F |
| HG00123 | GBR | EUR | F |
| HG00125 | GBR | EUR | F |
| HG00126 | GBR | EUR | М |
| HG00127 | GBR | EUR | F |
| HG00128 | GBR | EUR | F |
| HG00129 | GBR | EUR | М |
| HG00130 | GBR | EUR | F |
| HG00131 | GBR | EUR | М |
| HG00132 | GBR | EUR | F |
| HG00133 | GBR | EUR | F |
| HG00136 | GBR | EUR | М |
| HG00137 | GBR | EUR | F |
| HG00138 | GBR | EUR | М |
| HG00139 | GBR | EUR | М |
| HG00140 | GBR | EUR | М |
| HG00141 | GBR | EUR | М |
| HG00142 | GBR | EUR | М |
| HG00143 | GBR | EUR | М |
| HG00145 | GBR | EUR | М |
| HG00146 | GBR | EUR | F |

| HG00148 | GBR | EUR | М |
|---------|-----|-----|---|
| HG00149 | GBR | EUR | М |
| HG00150 | GBR | EUR | F |
| HG00151 | GBR | EUR | М |
| HG00154 | GBR | EUR | F |
| HG00155 | GBR | EUR | М |
| NA18486 | YRI | AFR | М |
| NA18488 | YRI | AFR | F |
| NA18489 | YRI | AFR | F |
| NA18498 | YRI | AFR | М |
| NA18499 | YRI | AFR | F |
| NA18501 | YRI | AFR | М |
| NA18502 | YRI | AFR | F |
| NA18504 | YRI | AFR | М |
| NA18505 | YRI | AFR | F |
| NA18507 | YRI | AFR | М |
| NA18508 | YRI | AFR | F |
| NA18510 | YRI | AFR | М |
| NA18511 | YRI | AFR | F |
| NA18516 | YRI | AFR | М |
| NA18517 | YRI | AFR | F |
| NA18519 | YRI | AFR | М |
| NA18520 | YRI | AFR | F |
| NA18522 | YRI | AFR | М |
| NA18523 | YRI | AFR | F |
| NA18853 | YRI | AFR | М |

| NA18856 | YRI | AFR | М |
|---------|-----|-----|---|
| NA18858 | YRI | AFR | F |
| NA18861 | YRI | AFR | F |
| NA18864 | YRI | AFR | F |
| NA18865 | YRI | AFR | М |
| NA18867 | YRI | AFR | F |
| NA18868 | YRI | AFR | М |
| NA18870 | YRI | AFR | F |
| NA18871 | YRI | AFR | М |
| NA18873 | YRI | AFR | F |
| NA18874 | YRI | AFR | М |
| NA18876 | YRI | AFR | F |
| NA18877 | YRI | AFR | М |
| NA18878 | YRI | AFR | F |
| NA18879 | YRI | AFR | М |
| NA18881 | YRI | AFR | F |
| NA18907 | YRI | AFR | F |
| NA18908 | YRI | AFR | М |
| NA18909 | YRI | AFR | F |
| NA18910 | YRI | AFR | М |
| NA18912 | YRI | AFR | F |
| NA18915 | YRI | AFR | М |
| NA18916 | YRI | AFR | F |
| NA18917 | YRI | AFR | М |
| NA18923 | YRI | AFR | М |
| NA18924 | YRI | AFR | F |

| NA18933 | YRI | AFR | F |
|---------|-----|-----|---|
| NA18934 | YRI | AFR | М |
| NA19092 | YRI | AFR | М |
| NA19093 | YRI | AFR | F |
| NA19095 | YRI | AFR | F |
| NA19096 | YRI | AFR | М |
| NA19098 | YRI | AFR | М |
| NA19099 | YRI | AFR | F |
| NA19102 | YRI | AFR | F |
| NA19107 | YRI | AFR | М |
| NA19108 | YRI | AFR | F |
| NA19113 | YRI | AFR | М |
| NA19114 | YRI | AFR | F |
| NA19116 | YRI | AFR | F |
| NA19117 | YRI | AFR | М |
| NA19118 | YRI | AFR | F |
| NA19119 | YRI | AFR | М |
| NA19121 | YRI | AFR | М |
| NA19129 | YRI | AFR | F |
| NA19130 | YRI | AFR | М |
| NA19131 | YRI | AFR | F |
| NA19137 | YRI | AFR | F |
| NA19138 | YRI | AFR | Μ |
| NA19141 | YRI | AFR | М |
| NA19143 | YRI | AFR | F |
| NA19144 | YRI | AFR | Μ |

| NA19146 | YRI | AFR | М |
|---------|-----|-----|---|
| NA19147 | YRI | AFR | F |
| NA19149 | YRI | AFR | F |
| NA19152 | YRI | AFR | F |
| NA19153 | YRI | AFR | М |
| NA19159 | YRI | AFR | F |
| NA19160 | YRI | AFR | Μ |
| NA19171 | YRI | AFR | М |
| NA19172 | YRI | AFR | F |
| NA19175 | YRI | AFR | М |
| NA19184 | YRI | AFR | М |
| NA19185 | YRI | AFR | F |
| NA19189 | YRI | AFR | М |
| NA19190 | YRI | AFR | F |
| NA19197 | YRI | AFR | F |
| NA19198 | YRI | AFR | М |
| NA19200 | YRI | AFR | М |
| NA19201 | YRI | AFR | F |
| NA19204 | YRI | AFR | F |
| NA19206 | YRI | AFR | F |
| NA19207 | YRI | AFR | М |
| NA19209 | YRI | AFR | F |
| NA19210 | YRI | AFR | М |
| NA19213 | YRI | AFR | М |
| NA19214 | YRI | AFR | F |
| NA19222 | YRI | AFR | F |

| NA19223 | YRI | AFR | М |
|---------|-----|-----|---|
| NA19225 | YRI | AFR | F |
| NA19235 | YRI | AFR | F |
| NA19236 | YRI | AFR | М |
| NA19238 | YRI | AFR | F |
| NA19239 | YRI | AFR | М |
| NA19247 | YRI | AFR | F |
| NA19248 | YRI | AFR | М |
| NA19256 | YRI | AFR | М |
| NA19257 | YRI | AFR | F |
| HG03078 | MSL | AFR | М |
| HG03079 | MSL | AFR | F |
| HG03081 | MSL | AFR | М |
| HG03082 | MSL | AFR | F |
| HG03084 | MSL | AFR | М |
| HG03085 | MSL | AFR | F |
| HG03086 | MSL | AFR | F |
| HG03088 | MSL | AFR | F |
| HG03091 | MSL | AFR | F |
| HG03095 | MSL | AFR | F |
| HG03096 | MSL | AFR | М |
| HG03097 | MSL | AFR | F |
| HG03209 | MSL | AFR | М |
| HG03212 | MSL | AFR | F |
| HG03224 | MSL | AFR | М |
| HG03225 | MSL | AFR | М |

| HG03376 | MSL | AFR | М |
|---------|-----|-----|---|
| HG03378 | MSL | AFR | F |
| HG03380 | MSL | AFR | F |
| HG03382 | MSL | AFR | М |
| HG03385 | MSL | AFR | М |
| HG03388 | MSL | AFR | М |
| HG03391 | MSL | AFR | М |
| HG03394 | MSL | AFR | М |
| HG03397 | MSL | AFR | М |
| HG03401 | MSL | AFR | F |
| HG03410 | MSL | AFR | F |
| HG03419 | MSL | AFR | F |
| HG03428 | MSL | AFR | F |
| HG03432 | MSL | AFR | М |
| HG03433 | MSL | AFR | М |
| HG03436 | MSL | AFR | М |
| HG03437 | MSL | AFR | F |
| HG03439 | MSL | AFR | М |
| HG03442 | MSL | AFR | М |
| HG03445 | MSL | AFR | М |
| HG03446 | MSL | AFR | F |
| HG03449 | MSL | AFR | F |
| HG03451 | MSL | AFR | М |
| HG03452 | MSL | AFR | F |
| HG03455 | MSL | AFR | F |
| HG03457 | MSL | AFR | М |

| HG01112 | CLM | AMR | М |
|---------|-----|-----|---|
| HG01113 | CLM | AMR | F |
| HG01119 | CLM | AMR | F |
| HG01121 | CLM | AMR | М |
| HG01122 | CLM | AMR | F |
| HG01124 | CLM | AMR | М |
| HG01125 | CLM | AMR | F |
| HG01130 | CLM | AMR | М |
| HG01131 | CLM | AMR | F |
| HG01133 | CLM | AMR | М |
| HG01134 | CLM | AMR | F |
| HG01136 | CLM | AMR | М |
| HG01137 | CLM | AMR | F |
| HG01139 | CLM | AMR | М |
| HG01140 | CLM | AMR | F |
| HG01142 | CLM | AMR | М |
| HG01148 | CLM | AMR | М |
| HG01149 | CLM | AMR | F |
| HG01250 | CLM | AMR | М |
| HG01251 | CLM | AMR | F |
| HG01253 | CLM | AMR | М |
| HG01254 | CLM | AMR | F |
| HG01256 | CLM | AMR | М |
| HG01257 | CLM | AMR | F |
| HG01259 | CLM | AMR | М |
| HG01260 | CLM | AMR | F |

| HG01269 | CLM | AMR | F |
|---------|-----|-----|---|
| HG01271 | CLM | AMR | Μ |
| HG01272 | CLM | AMR | F |
| HG01275 | CLM | AMR | F |
| HG01277 | CLM | AMR | М |
| HG01280 | CLM | AMR | М |
| HG01281 | CLM | AMR | F |
| HG01284 | CLM | AMR | F |
| HG01341 | CLM | AMR | Μ |
| HG01342 | CLM | AMR | F |
| HG01344 | CLM | AMR | Μ |
| HG01345 | CLM | AMR | F |
| HG01348 | CLM | AMR | F |
| HG01350 | CLM | AMR | М |
| HG01351 | CLM | AMR | F |
| HG01353 | CLM | AMR | М |
| HG01354 | CLM | AMR | F |
| HG01356 | CLM | AMR | М |
| HG01357 | CLM | AMR | F |
| HG01359 | CLM | AMR | М |
| HG01360 | CLM | AMR | F |
| HG01362 | CLM | AMR | М |
| HG01363 | CLM | AMR | F |
| HG01365 | CLM | AMR | М |
| HG01366 | CLM | AMR | F |
| HG01369 | CLM | AMR | F |

| HG01372 | CLM | AMR | F |
|---------|-----|-----|---|
| HG01374 | CLM | AMR | М |
| HG01375 | CLM | AMR | F |
| HG01377 | CLM | AMR | М |
| HG01378 | CLM | AMR | F |
| HG01383 | CLM | AMR | М |
| HG01384 | CLM | AMR | F |
| HG01389 | CLM | AMR | М |
| HG01390 | CLM | AMR | F |
| HG01431 | CLM | AMR | М |
| HG01432 | CLM | AMR | F |
| HG01435 | CLM | AMR | F |
| HG01437 | CLM | AMR | М |
| HG01438 | CLM | AMR | F |
| HG01440 | CLM | AMR | М |
| HG01441 | CLM | AMR | F |
| HG01443 | CLM | AMR | М |
| HG01444 | CLM | AMR | F |
| HG01447 | CLM | AMR | F |
| HG01455 | CLM | AMR | М |
| HG01456 | CLM | AMR | F |
| HG01459 | CLM | AMR | F |
| HG01461 | CLM | AMR | М |
| HG01462 | CLM | AMR | F |
| HG01464 | CLM | AMR | М |
| HG01465 | CLM | AMR | F |

| HG01468 | CLM | AMR | F |
|---------|-----|-----|---|
| HG01474 | CLM | AMR | F |
| HG01479 | CLM | AMR | Μ |
| HG01485 | CLM | AMR | Μ |
| HG01486 | CLM | AMR | F |
| HG01488 | CLM | AMR | Μ |
| HG01489 | CLM | AMR | F |
| HG01491 | CLM | AMR | М |
| HG01492 | CLM | AMR | F |
| HG01494 | CLM | AMR | М |
| HG01495 | CLM | AMR | F |
| HG01497 | CLM | AMR | М |
| HG01498 | CLM | AMR | F |
| HG01550 | CLM | AMR | М |
| HG01551 | CLM | AMR | F |
| HG01556 | CLM | AMR | М |
| NA19648 | MXL | AMR | F |
| NA19649 | MXL | AMR | М |
| NA19651 | MXL | AMR | F |
| NA19652 | MXL | AMR | М |
| NA19654 | MXL | AMR | F |
| NA19655 | MXL | AMR | М |
| NA19657 | MXL | AMR | F |
| NA19658 | MXL | AMR | М |
| NA19661 | MXL | AMR | М |
| NA19663 | MXL | AMR | F |

| NIA 10664 | 1 (1)/1 |     |   |
|-----------|---------|-----|---|
| NA19664   | MXL     | AMR | М |
| NA19669   | MXL     | AMR | F |
| NA19670   | MXL     | AMR | М |
| NA19676   | MXL     | AMR | М |
| NA19678   | MXL     | AMR | F |
| NA19679   | MXL     | AMR | М |
| NA19681   | MXL     | AMR | F |
| NA19682   | MXL     | AMR | М |
| NA19684   | MXL     | AMR | F |
| NA19716   | MXL     | AMR | F |
| NA19717   | MXL     | AMR | М |
| NA19719   | MXL     | AMR | F |
| NA19720   | MXL     | AMR | Μ |
| NA19722   | MXL     | AMR | F |
| NA19723   | MXL     | AMR | Μ |
| NA19725   | MXL     | AMR | F |
| NA19726   | MXL     | AMR | Μ |
| NA19728   | MXL     | AMR | F |
| NA19729   | MXL     | AMR | М |
| NA19731   | MXL     | AMR | F |
| NA19732   | MXL     | AMR | М |
| NA19734   | MXL     | AMR | F |
| NA19735   | MXL     | AMR | М |
| NA19740   | MXL     | AMR | F |
| NA19741   | MXL     | AMR | Μ |
| NA19746   | MXL     | AMR | F |

| NA19747 | MXL | AMR | М |
|---------|-----|-----|---|
| NA19749 | MXL | AMR | F |
| NA19750 | MXL | AMR | М |
| NA19752 | MXL | AMR | F |
| NA19755 | MXL | AMR | F |
| NA19756 | MXL | AMR | М |
| NA19758 | MXL | AMR | F |
| NA19759 | MXL | AMR | Μ |
| NA19761 | MXL | AMR | F |
| NA19762 | MXL | AMR | М |
| NA19764 | MXL | AMR | F |
| NA19770 | MXL | AMR | F |
| NA19771 | MXL | AMR | Μ |
| NA19773 | MXL | AMR | F |
| NA19774 | MXL | AMR | М |
| NA19776 | MXL | AMR | F |
| NA19777 | MXL | AMR | М |
| NA19779 | MXL | AMR | F |
| NA19780 | MXL | AMR | Μ |
| NA19782 | MXL | AMR | F |
| NA19783 | MXL | AMR | Μ |
| NA19785 | MXL | AMR | F |
| NA19786 | MXL | AMR | М |
| NA19788 | MXL | AMR | F |
| NA19789 | MXL | AMR | М |
| NA19792 | MXL | AMR | М |

| NA19794 | MXL | AMR | F |
|---------|-----|-----|---|
| NA19795 | MXL | AMR | М |
| HG01565 | PEL | AMR | М |
| HG01566 | PEL | AMR | F |
| HG01571 | PEL | AMR | М |
| HG01572 | PEL | AMR | F |
| HG01577 | PEL | AMR | М |
| HG01578 | PEL | AMR | F |
| HG01892 | PEL | AMR | М |
| HG01893 | PEL | AMR | F |
| HG01917 | PEL | AMR | М |
| HG01918 | PEL | AMR | F |
| HG01920 | PEL | AMR | М |
| HG01921 | PEL | AMR | F |
| HG01923 | PEL | AMR | М |
| HG01924 | PEL | AMR | F |
| HG01926 | PEL | AMR | М |
| HG01927 | PEL | AMR | F |
| HG01932 | PEL | AMR | М |
| HG01933 | PEL | AMR | F |
| HG01935 | PEL | AMR | М |
| HG01936 | PEL | AMR | F |
| HG01938 | PEL | AMR | М |
| HG01939 | PEL | AMR | F |
| HG01941 | PEL | AMR | М |
| HG01942 | PEL | AMR | F |

| HG01944 | PEL | AMR | Μ |
|---------|-----|-----|---|
| HG01945 | PEL | AMR | F |
| HG01947 | PEL | AMR | М |
| HG01948 | PEL | AMR | F |
| HG01950 | PEL | AMR | Μ |
| HG01951 | PEL | AMR | F |
| HG01953 | PEL | AMR | Μ |
| HG01954 | PEL | AMR | F |
| HG01961 | PEL | AMR | М |
| HG01965 | PEL | AMR | F |
| HG01967 | PEL | AMR | М |
| HG01968 | PEL | AMR | F |
| HG01970 | PEL | AMR | М |
| HG01971 | PEL | AMR | F |
| HG01973 | PEL | AMR | F |
| HG01974 | PEL | AMR | М |
| HG01976 | PEL | AMR | F |
| HG01977 | PEL | AMR | М |
| HG01979 | PEL | AMR | М |
| HG01980 | PEL | AMR | F |
| HG01982 | PEL | AMR | М |
| HG01991 | PEL | AMR | М |
| HG01992 | PEL | AMR | F |
| HG01997 | PEL | AMR | F |
| HG02002 | PEL | AMR | М |
| HG02003 | PEL | AMR | F |

| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | М                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | М                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Μ                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | М                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | М                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | М                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Μ                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | М                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Μ                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Μ                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Μ                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Μ                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Μ                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                         |
| PEL | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Μ                                                                                                                                                                                                                                                                                                                                                                                         |
|     | PEL         P | PELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMRPELAMR </td |

| HG02292 | PEL | AMR | F |
|---------|-----|-----|---|
| HG02298 | PEL | AMR | F |
| HG02299 | PEL | AMR | М |
| HG02301 | PEL | AMR | F |
| HG02304 | PEL | AMR | М |
| HG02312 | PEL | AMR | F |
| HG02345 | PEL | AMR | F |
| HG02348 | PEL | AMR | F |
| HG02425 | PEL | AMR | F |
| HG00551 | PUR | AMR | F |
| HG00553 | PUR | AMR | М |
| HG00554 | PUR | AMR | F |
| HG00637 | PUR | AMR | М |
| HG00638 | PUR | AMR | F |
| HG00640 | PUR | AMR | М |
| HG00641 | PUR | AMR | F |
| HG00731 | PUR | AMR | М |
| HG00732 | PUR | AMR | F |
| HG00734 | PUR | AMR | F |
| HG00736 | PUR | AMR | М |
| HG00737 | PUR | AMR | F |
| HG00739 | PUR | AMR | М |
| HG00740 | PUR | AMR | F |
| HG00742 | PUR | AMR | М |
| HG00743 | PUR | AMR | F |
| HG01047 | PUR | AMR | М |

| HG01048 | PUR | AMR | Μ |
|---------|-----|-----|---|
| HG01049 | PUR | AMR | F |
| HG01051 | PUR | AMR | М |
| HG01052 | PUR | AMR | F |
| HG01054 | PUR | AMR | М |
| HG01055 | PUR | AMR | F |
| HG01058 | PUR | AMR | F |
| HG01060 | PUR | AMR | М |
| HG01061 | PUR | AMR | F |
| HG01063 | PUR | AMR | М |
| HG01064 | PUR | AMR | F |
| HG01066 | PUR | AMR | М |
| HG01067 | PUR | AMR | F |
| HG01069 | PUR | AMR | М |
| HG01070 | PUR | AMR | F |
| HG01072 | PUR | AMR | М |
| HG01073 | PUR | AMR | F |
| HG01075 | PUR | AMR | М |
| HG01077 | PUR | AMR | F |
| HG01079 | PUR | AMR | М |
| HG01080 | PUR | AMR | F |
| HG01082 | PUR | AMR | М |
| HG01083 | PUR | AMR | F |
| HG01085 | PUR | AMR | М |
| HG01086 | PUR | AMR | F |
| HG01088 | PUR | AMR | М |

| HG01089 | PUR | AMR | F |
|---------|-----|-----|---|
| HG01092 | PUR | AMR | F |
| HG01094 | PUR | AMR | М |
| HG01095 | PUR | AMR | F |
| HG01097 | PUR | AMR | М |
| HG01098 | PUR | AMR | F |
| HG01101 | PUR | AMR | М |
| HG01102 | PUR | AMR | F |
| HG01104 | PUR | AMR | М |
| HG01105 | PUR | AMR | F |
| HG01107 | PUR | AMR | М |
| HG01108 | PUR | AMR | F |
| HG01110 | PUR | AMR | М |
| HG01111 | PUR | AMR | F |
| HG01161 | PUR | AMR | М |
| HG01162 | PUR | AMR | F |
| HG01164 | PUR | AMR | М |
| HG01167 | PUR | AMR | М |
| HG01168 | PUR | AMR | F |
| HG01170 | PUR | AMR | М |
| HG01171 | PUR | AMR | F |
| HG01173 | PUR | AMR | М |
| HG01174 | PUR | AMR | F |
| HG01176 | PUR | AMR | М |
| HG01177 | PUR | AMR | F |
| HG01182 | PUR | AMR | М |

| HG01183 | PUR | AMR | F |
|---------|-----|-----|---|
| HG01187 | PUR | AMR | М |
| HG01188 | PUR | AMR | F |
| HG01190 | PUR | AMR | М |
| HG01191 | PUR | AMR | F |
| HG01197 | PUR | AMR | М |
| HG01198 | PUR | AMR | F |
| HG01200 | PUR | AMR | М |
| HG01204 | PUR | AMR | М |
| HG01205 | PUR | AMR | F |
| HG01241 | PUR | AMR | М |
| HG01242 | PUR | AMR | F |
| HG01247 | PUR | AMR | М |
| HG01248 | PUR | AMR | F |
| HG01286 | PUR | AMR | М |
| HG01302 | PUR | AMR | М |
| HG01303 | PUR | AMR | F |
| HG01305 | PUR | AMR | М |
| HG01308 | PUR | AMR | М |
| HG01311 | PUR | AMR | М |
| HG01312 | PUR | AMR | F |
| HG01323 | PUR | AMR | F |
| HG01325 | PUR | AMR | М |
| HG01326 | PUR | AMR | F |
| HG01392 | PUR | AMR | М |
| HG01393 | PUR | AMR | F |

| HG01395 | PUR | AMR | Μ |
|---------|-----|-----|---|
| HG01396 | PUR | AMR | F |
| HG01398 | PUR | AMR | М |
| HG01402 | PUR | AMR | Μ |
| HG01403 | PUR | AMR | F |
| HG01405 | PUR | AMR | М |
| HG01412 | PUR | AMR | М |
| HG01413 | PUR | AMR | Μ |
| HG01414 | PUR | AMR | F |

# **Appendix B**

## **Native American Samples**

| Sample ID    | Sex | Group   | % Genome |
|--------------|-----|---------|----------|
|              |     |         | Masked   |
| 4249815035_A | М   | Pima    | 0.00     |
| 4249815052_A | F   | Pima    | 0.70     |
| 4249815114_A | М   | Pima    | 3.00     |
| 4249815287_A | М   | Quechua | 4.30     |
| 4249815288_A | М   | Quechua | 2.10     |
| 4254930178_A | М   | Pima    | 0.60     |
| 4254930244_A | F   | Pima    | 2.60     |
| 4254930270_A | М   | Pima    | 0.90     |
| 4254930496_A | М   | Quechua | 5.00     |
| 4254930595_A | F   | Pima    | 0.20     |
| 4256126001_A | Μ   | Surui   | 0.00     |
| 4256126002_A | F   | Surui   | 0.00     |
| 4256126004_A | M   | Surui   | 0.00     |

 Table B.1: Native American Genomes Samples

| 4256126007_A    | М | Surui         | 0.00 |
|-----------------|---|---------------|------|
| 4256126036_A    | F | Surui         | 0.00 |
| 4256126086_A    | М | Surui         | 0.00 |
| 4256126171_A    | F | Surui         | 0.00 |
| 4256126172_A    | М | Surui         | 0.00 |
| 4256126173_A    | F | Surui         | 0.00 |
| 4256126183_A    | М | Surui         | 0.00 |
| 4256126202_A    | М | Surui         | 0.00 |
| 4256126311_A    | F | Surui         | 0.00 |
| eastGreenland17 | F | EastGreenland | 0.50 |
| eastGreenland3  | F | EastGreenland | 1.40 |
| eastGreenland7  | F | EastGreenland | 0.40 |
| HGDP00702       | F | Piapoco       | 0.20 |
| HGDP00704       | F | Piapoco       | 0.20 |
| HGDP00706       | F | Piapoco       | 0.00 |
| HGDP00708       | F | Piapoco       | 0.00 |
| HGDP00710       | М | Piapoco       | 0.30 |
| HGDP00832       | F | Surui         | 0.00 |
| HGDP00837       | М | Surui         | 0.00 |
| HGDP00838       | F | Surui         | 0.00 |
| HGDP00843       | М | Surui         | 0.00 |
| HGDP00845       | М | Surui         | 0.00 |
| HGDP00846       | F | Surui         | 0.00 |
| HGDP00849       | М | Surui         | 0.00 |
| HGDP00852       | F | Surui         | 0.00 |
| HGDP00855       | F | Maya1         | 4.20 |

| HGDP00857        | F | Maya1     | 5.40 |
|------------------|---|-----------|------|
| HGDP00970        | F | Piapoco   | 0.60 |
| HGDP00995        | F | Karitiana | 0.00 |
| HGDP00998        | М | Karitiana | 0.10 |
| HGDP00999        | F | Karitiana | 0.10 |
| Maya_4032_041732 | М | Maya1     | 1.90 |
| PT-8ZVD          | F | Hulliche  | 4.50 |
| PT-8ZVJ          | Μ | Palikur   | 0.50 |
| PT-8ZVK          | М | Palikur   | 0.10 |
| PT-8ZVS          | F | Zapotec1  | 0.20 |
| PT-8ZVZ          | М | Zapotec1  | 2.40 |
| PT-911I          | М | Chipewyan | 0.20 |
| PT-912N          | F | Mixtec    | 7.60 |
| PT-912T          | F | Mixe      | 1.70 |
| PT-912U          | F | Mixe      | 3.00 |
| PT-912W          | Μ | Mixe      | 0.30 |
| PT-912Z          | Μ | Mixe      | 0.70 |
| PT-9131          | F | Mixe      | 9.60 |
| PT-9133          | F | Mixe      | 1.60 |
| PT-9134          | F | Mixe      | 2.00 |
| PT-9135          | F | Mixe      | 1.50 |
| PT-9136          | М | Mixe      | 0.50 |
| PT-9137          | М | Mixe      | 2.60 |
| PT-913B          | F | Mixe      | 2.00 |
| PT-9172          | F | Kaqchikel | 2.30 |
| РТ-9176          | F | Kaqchikel | 4.40 |
|                  |   |           |      |

| PT-917E | М | Guaymi  | 1.10  |
|---------|---|---------|-------|
| PT-917F | М | Guaymi  | 0.00  |
| PT-917G | М | Guaymi  | 0.20  |
| PT-918H | М | Cabecar | 0.00  |
| PT-918I | М | Cabecar | 1.00  |
| PT-918L | F | Cabecar | 0.00  |
| PT-918M | F | Cabecar | 17.00 |
| PT-918N | F | Cabecar | 0.00  |
| PT-918O | М | Teribe  | 3.30  |
| PT-918P | М | Teribe  | 0.10  |
| PT-918Q | М | Teribe  | 0.10  |
| PT-918U | F | Bribri  | 0.00  |
| PT-918W | F | Bribri  | 9.60  |
| PT-918X | F | Bribri  | 0.00  |
| PT-9198 | F | Maleku  | 0.20  |
| PT-9199 | М | Maleku  | 0.20  |
| PT-91CY | F | Ticuna  | 4.70  |
| PT-91CZ | М | Ticuna  | 0.20  |
| PT-91D6 | М | Kogi    | 0.00  |
| PT-91D9 | М | Embera  | 1.10  |
| PT-91DA | М | Embera  | 0.50  |
| PT-91DC | М | Embera  | 0.10  |
| PT-91DH | М | Waunana | 0.10  |
| PT-91DI | М | Waunana | 0.40  |
| PT-91YT | М | Aymara  | 4.00  |
| PT-91YV | М | Aymara  | 5.50  |
|         |   |         |       |

| PT-91Z2                | M | Aymara    | 5.10 |
|------------------------|---|-----------|------|
| PT-91Z5                | М | Aymara    | 4.20 |
| PT-91ZG                | М | Quechua   | 5.40 |
| PT-9GS8                | М | Wayuu     | 8.10 |
| PT-GLH7                | М | Guarani   | 3.90 |
| Tepehuano_10000_102700 | F | Tepehuano | 5.30 |
| Tepehuano_10028_102728 | F | Tepehuano | 5.20 |
| Zapotec_20016_201516   | М | Zapotec2  | 5.50 |
| Zapotec_20040_202540   | F | Zapotec2  | 4.90 |

## **Bibliography**

- [ANL09] David H Alexander, John Novembre, and Kenneth Lange. Fast modelbased estimation of ancestry in unrelated individuals. *Genome research*, 19(9):1655–1664, 2009.
- [BPS<sup>+</sup>12] Yael Baran, Bogdan Pasaniuc, Sriram Sankararaman, Dara G Torgerson, Christopher Gignoux, Celeste Eng, William Rodriguez-Cintron, Rocio Chapela, Jean G Ford, Pedro C Avila, et al. Fast and accurate inference of local ancestry in latino populations. *Bioinformatics*, 28(10):1359–1367, 2012.
- [DMZ12] Olivier Delaneau, Jonathan Marchini, and Jean-François Zagury. A linear complexity phasing method for thousands of genomes. *Nature methods*, 9(2):179–181, 2012.
- [HDM09] Bryan N Howie, Peter Donnelly, and Jonathan Marchini. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *PLoS Genet*, 5(6):e1000529, 2009.
- [HFSP09] Melissa J Hubisz, Daniel Falush, Matthew Stephens, and Jonathan K Pritchard. Inferring weak population structure with the assistance of sample group information. *Molecular ecology resources*, 9(5):1322– 1332, 2009.
- [JWW<sup>+</sup>12] Wenfei Jin, Sijia Wang, Haifeng Wang, Li Jin, and Shuhua Xu. Exploring population admixture dynamics via empirical and simulated genome-wide distribution of ancestral chromosomal segments. *The American Journal of Human Genetics*, 91(5):849–862, 2012.
- [KMF<sup>+</sup>08] Augustine Kong, Gisli Masson, Michael L Frigge, Arnaldur Gylfason, Pasha Zusmanovich, Gudmar Thorleifsson, Pall I Olason, Andres Ingason, Stacy Steinberg, Thorunn Rafnar, et al. Detection of sharing by descent, long-range phasing and haplotype imputation. *Nature genetics*, 40(9):1068–1075, 2008.

- [LD09] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–wheeler transform. *Bioinformatics*, 25(14):1754–1760, 2009.
- [LLP<sup>+</sup>13] Po-Ru Loh, Mark Lipson, Nick Patterson, Priya Moorjani, Joseph K Pickrell, David Reich, and Bonnie Berger. Inferring admixture histories of human populations using linkage disequilibrium. *Genetics*, 193(4):1233– 1254, 2013.
- [LWD<sup>+</sup>10] Yun Li, Cristen J Willer, Jun Ding, Paul Scheet, and Gonçalo R Abecasis. Mach: using sequence and genotype data to estimate haplotypes and unobserved genotypes. *Genetic epidemiology*, 34(8):816–834, 2010.
- [MGW<sup>+</sup>16] Alicia R Martin, Christopher R Gignoux, Raymond K Walters, Genevieve L Wojcik, Benjamin M Neale, Simon Gravel, Mark J Daly, Carlos D Bustamante, and Eimear E Kenny. Human demographic history impacts genetic risk prediction across diverse populations. *bioRxiv*, page 070797, 2016.
- [Pea01] K Peason. On lines and planes of closest fit to systems of point in space. *Philosophical Magazine*, 2(11):559–572, 1901.
- [PNTB<sup>+</sup>07] Shaun Purcell, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, Manuel AR Ferreira, David Bender, Julian Maller, Pamela Sklar, Paul IW De Bakker, Mark J Daly, et al. Plink: a tool set for whole-genome association and population-based linkage analyses. *The American Journal of Human Genetics*, 81(3):559–575, 2007.
- [PPP<sup>+</sup>06] Alkes L Price, Nick J Patterson, Robert M Plenge, Michael E Weinblatt, Nancy A Shadick, and David Reich. Principal components analysis corrects for stratification in genome-wide association studies. *Nature* genetics, 38(8):904–909, 2006.
- [PSKH09] Bogdan Paşaniuc, Sriram Sankararaman, Gad Kimmel, and Eran Halperin. Inference of locus-specific ancestry in closely related populations. *Bioinformatics*, 25(12):i213–i221, 2009.
- [PTP<sup>+</sup>09] Alkes L Price, Arti Tandon, Nick Patterson, Kathleen C Barnes, Nicholas Rafaels, Ingo Ruczinski, Terri H Beaty, Rasika Mathias, David Reich, and Simon Myers. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. *PLoS Genet*, 5(6):e1000519, 2009.
- [RLAAA<sup>+</sup>14] Andrés Ruiz-Linares, Kaustubh Adhikari, Victor Acuña-Alonzo, Mirsha Quinto-Sanchez, Claudia Jaramillo, William Arias, Macarena Fuentes, María Pizarro, Paola Everardo, Francisco de Avila, et al. Admixture in latin america: geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals. *PLoS Genet*, 10(9):e1004572, 2014.
- [RPC<sup>+</sup>12] David Reich, Nick Patterson, Desmond Campbell, Arti Tandon, Stéphane Mazieres, Nicolas Ray, Maria V Parra, Winston Rojas, Constanza Duque, Natalia Mesa, et al. Reconstructing native american population history. *Nature*, 488(7411):370–374, 2012.
- [RSH<sup>+</sup>15] Maanasa Raghavan, Matthias Steinrücken, Kelley Harris, Stephan Schiffels, Simon Rasmussen, Michael DeGiorgio, Anders Albrechtsen, Cristina Valdiosera, María C Ávila-Arcos, Anna-Sapfo Malaspinas, et al. Genomic evidence for the pleistocene and recent population history of native americans. *Science*, 349(6250):aab3884, 2015.
- [Wal16] Denise Waldron. Population genomics: Genomic analysis of south american ancestry. *Nature Reviews Genetics*, 17(2):66–66, 2016.
- [ZAL11] Hua Zhou, David Alexander, and Kenneth Lange. A quasi-newton acceleration for high-dimensional optimization algorithms. *Statistics and computing*, 21(2):261–273, 2011.
- [ZUR<sup>+</sup>13] Dan Zhou, Nitin Udpa, Roy Ronen, Tsering Stobdan, Junbin Liang, Otto Appenzeller, Huiwen W Zhao, Yi Yin, Yuanping Du, Lixia Guo, et al. Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in andean highlanders. *The American Journal of Human Genetics*, 93(3):452–462, 2013.