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Abstract

Climate Change Impacts in Alpine Plant Communities

by

Meredith Diana Jabis

Doctor of Philosophy in Environmental Science, Policy and Management

University of California, Berkeley

Professor John Harte, Chair

Mountains have been warming faster than lower elevation ecosystems, and because of tight
coupling between organisms and a compressed growing season, the impacts of change may be
more pronounced in high elevation systems. Further, in the climatically extreme alpine
environment, biotic interactions between neighboring species may be important to alpine species
persistence or colonization by lower elevation species. For species whose upper distributional
range is within or near the alpine-treeline ecotone, climate change will likely relieve cold
temperature limitations to higher elevation establishment. Taken together, climate change is
likely to impact alpine plant phenology, species interactions, and may cause species range shifts.
However because many alpine plants are long-lived, they may persist in the midst of change
resulting in disequilibrium with climate. In the first chapter, I examine the effects of
experimental warming and watering on alpine plant phenology and evaluate the mechanisms
driving change. I ask does warming act directly through temperature or indirectly through
snowmelt or drier soils to influence community flowering? I found that earlier snowmelt, not
warmer temperature, drives advances in alpine plant community flowering. Because of strong
synchrony of alpine phenology to a short growing season, community level flowering duration
was conserved. Early flowering species with strong coupling to snowmelt timing responded most
strongly along with forbs and graminoids, while longer lived cushion plants and succulents were
more resistant to change and did not take advantage of a prolonged growing season. My second
chapter examines the role of species interactions between native alpine vegetation and subalpine
conifers, which have the potential to migrate into the alpine ecosystem. Consistent with the stress
gradient hypothesis, which would predict greater benefits from neighbors at higher elevations, a
shade and moisture tolerant conifer requires neighbors to establish in the alpine, while a sun and
drought tolerant conifer Is equally likely to establish aside neighbors or in vegetation gaps.
Contrary to the stress gradient hypothesis however, a native alpine herb benefits from the
presence of neighbors even at the low elevation end of an environmental stress gradient. In the
final chapter, I use a decade long observational dataset from four mountain summits, at four



elevations, as part of the Global Observation Research Initiative in Alpine Environments. Over a
longer, 40-year time period, maximum and minimum temperatures have risen, while snowmelt
date advanced at a nearby weather station. On the summits, community-wide vegetation cover
decreased while richness increased over the decade of observations. Long-lived alpine plants
were generally slow to respond, but there is some evidence for colonization of the lowest
elevation, the most rugged, and the highest elevation summit. Long-lived alpine species may be
able to resist change resulting in disequilibrium with climate but continued rising temperature
and decreased snow duration will likely have an impact on future composition, performance and
persistence of plant species in alpine tundra communities.
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INTRODUCTION

The composition of alpine plant communities is driven, as in many other systems, by a
combination of biotic and abiotic elements. In the alpine, extreme abiotic conditions include long
periods of snow cover, strong wind scouring, large temperature fluctuation, poor soil
development, early- and late-season frosts and soil moisture dry-down during the growing
season. Organisms must be adapted to this short growing season and strongly seasonal regime in
order to successfully emerge, grow and reproduce. Alpine plant communities are composed of
largely perennial species cued to this seasonally extreme environment. Alpine plant lifeforms
include forbs, graminoids, mat-forming cushion species, succulents, and low-lying shrubs.
Although species are tightly adapted to their environment, in the context of climate change, it is
unclear how alpine species will respond. The rate of climate change will certainly play a role,
and even though steep climatic gradients exist within small spatial scales in the alpine (Loarie et
al., 2009), range filling following the last glacial period was not complete (Dullinger et al.,
2012b). Several key concepts inform how this system may respond to climate change including
the stress gradient hypothesis (Callaway and Walker, 1995), the concept of disequilibrium
dynamics (Svenning and Sandel, 2013), extinction and establishment lags (Alexander et al.
2017) and persistence in microhabitat refugia (Opedal et al., 2015).

The stress gradient hypothesis describes the continuum of interactions, namely
competition and facilitation, between species under various abiotic conditions. It posits that
under conditions of high abiotic stress, neighboring plants can facilitate germination,
establishment, or growth of neighbors due to protection from environmental extremes such as
reducing wind desiccation, providing shade from intense solar radiation and protection from soil
moisture loss. Conversely at the low end of a stress gradient, which in the alpine would be at
relatively lower elevations nearer the subalpine zone, species are more likely to compete for
resources including light, nutrients, and soil moisture. Therefore at higher elevations, plants are
more likely to facilitate one another and at lower elevations, competition is expected to be the
predominant interaction. This hypothesis is relevant in the context of a changing climate as cold
temperature limitations are expected to be relieved for montane and treeline species, potentially
allowing movement upward in elevation into higher stress environments. Reciprocally, alpine
endemics will also experience relief of abiotic stress but novel interactions occurring at the low
end of their alpine stress gradient will occur where competition would be expected to be
predominant. Thus, changes in abiotic stress at both ends of a species range will inform how
species interact and whether competition or facilitation will predominate in community
assembly.

Other conceptual frameworks that may describe how alpine plant communities respond to
climate change include disequilibrium dynamics, migration and extinction lags or extinction
debt. Depending on the rate of climatic alteration, long-lived species may tolerate slowly
changing climatic trends for a period of time before responding. This may be particularly true for
alpine species already adapted to daily weather extremes throughout the growing season. Thus,
these species may persist in a modified climate even when it no longer suits their establishment
niche (Jackson and Overpeck, 2000). Such remnant populations (Eriksson, 2000) would thus be



out of equilibrium with climate creating a local extinction debt (Dullinger et al., 2012a) through
an extinction lag (Alexander et al., 2018). On a smaller scale, infilling of local species may
modify current dominance patterns (Dullinger et al., 2012b). Although relatively short distances
are required for dispersal between montane and alpine environments, the relative pace of alpine
plant community transformation will be informed by a combination of infilling of locally
adapted species, actual dispersal (Engler et al., 2009) and establishment of lower elevation
montane species into the alpine, of alpine species into un-colonized mountain summits, and
extinction of alpine residents.

Finally, the alpine ecosystem displays micro-topographic relief that has historically
structured communities on a relatively small scale. Distinct community types may exist in
relatively close proximity based on small-scale differences in aspect, slope, or depressions which
accumulate snow; thus producing dry meadow, wet meadow, or snowbed communities (Bliss,
1962; Opedal et al., 2015). That such small-scale topography already structures communities
demonstrates the potential for this structure to provide refugia under climate change (Sherrer and
Korner, 2011). Thus microhabitat refugia may further allow species to persist, at least for some
time, in the face of a changing overall climate, which could provide time for local genetic
adaptation (Ashcroft, 2010), albeit the timeframe may not be reasonable for long-lived species.

Since alpine environments are expected to experience relatively rapid rates of
environmental change compared to lower elevations, the alpine environment presents a
conundrum of relatively fast environmental change, with long-lived species that could be slow to
respond. To more completely understand the ways alpine plant communities may respond to
climatic change, my dissertation addressed three main topics: i) alpine flowering phenology,
which investigated how species with tight environmental coupling respond in the short term to a
warmer environment using an actively heated experiment, ii) species interactions between
introduced establishing conifers in the alpine environment and their alpine plant neighbors in the
context of a warmer environment, and iii) a long-term observational study of alpine community
change on several mountain summits.
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1 Warming acts through earlier snowmelt to advance but not
extend alpine community flowering

Abstract

Large-scale warming will alter multiple local climate factors in alpine tundra, yet very few
experimental studies examine the combined yet distinct influences of earlier snowmelt, higher
temperatures and altered soil moisture on alpine ecosystems. This limits our ability to predict
plant species and community responses. To address this gap, we used infrared heaters and
manual watering in a fully factorial experiment to determine the relative importance of these
climate factors on plant flowering phenology, and response differences among plant functional
groups. Heating advanced snowmelt and flower initiation, but exposed plants to colder early-
spring conditions in the period prior to first flower, indicating that snowmelt timing alone, not
temperature advances flowering initiation in the alpine community. Flowering duration was
largely conserved; most plants in heated plots did not extend flowering into the latter part of the
growing season but instead completed flowering ahead of the unheated plots, again indicating no
proximal effect of temperature on community phenology. Although passive warming
experiments have resulted in warming-induced soil drying suggested to advance flower
senescence, supplemental water did not counteract the community-scale advance in flowering
cessation caused by heating or extend flowering in unheated plots, indicating no effect of soil
moisture on length of the flowering period. Functional groups differed in sensitivity to earlier
snowmelt, with flower initiation most advanced by early-season species and flowering duration
lengthened only by graminoids and forbs. We conclude earlier snowmelt, driven by increased
radiative heating, is the most important factor altering alpine flowering phenology. Studies that
only manipulate summer temperature will err in estimating the sensitivity of alpine flowering
phenology to large-scale warming. The wholesale advance in flowering phenology with earlier
snowmelt suggests the alpine community will track the warming climate, but only alpine forbs
and graminoids appear able to take advantage of an extended snow-free season.

1.1 Introduction

Plant phenology is an indicator of ecosystem response to climate change and affects gas
exchange, energy balance, and species interactions (Cleland et al., 2007; Sherry et al., 2007:
Bonan, 2008). Long-term monitoring and remote sensing data suggest that plant phenology has
already advanced in the spring and extended in the fall due to historical warming (Myneni et al.,
1997, Parmesean & Yohe 2003; Root et al., 2003; Wolkovich et al., 2012). In combination,
these adjustments have created a longer growing season that appears to have triggered increased
primary production (Edwards & Richardson, 2004; Nemani et al., 2003) resulting in a greater
draw down of atmospheric CO; during the growing season, amplifying the seasonal peaks and
troughs of atmospheric CO, (Keeling et al., 1996; Ernakovich et al., 2014). Changes in plant
phenology can also alter reproductive synchronicity, which could have cascading impacts on
pollinator interactions (Memmott et al., 2007; Liu et al., 2011), or on birds and small rodents that
depend on vegetative matter or seeds (Inouye et al., 2000; Moritz et al., 2008).



Climate observations hint that high-elevation mountain regions are warming faster than lower
elevations (Giorgi et al., 1997; Theurillat & Guisan, 2001; Rangwala & Miller 2012; MRI,
2015), although this pattern has not been confirmed globally (Oyler et al., 2015). If this is
occurring, alpine ecosystems may be exposed to more rapid and larger climate changes than
lowlands. Alpine plants are adapted to alpine climate, often flowering and reproducing relatively
quickly after snowmelt to take advantage of the short snow-free season, growing close to the
ground to avoid strong winds, and harboring physiological adaptations to prevent tissues from
freezing and to cope with intense solar radiation (Korner, 1999). Because of these adaptations to
alpine climate, and the greater relative sensitivity of biological and chemical processes occurring
in colder temperatures (Kirschbaum, 1995), even small environmental changes could
theoretically elicit a large response, which would make tundra systems sensitive gauges of
environmental change (Petralgia et al., 2014; Prevéy et al., 2017).

Temperature and photoperiod influence spring growth initiation in the alpine (Korner, 1999;
Chuine, 2010); however, once a photoperiod threshold has been exceeded (Korner, 1999; Keller
& Korner, 2003), primary drivers for the initiation of growth and flowering for arctic, alpine and
subalpine species are the timing of snowmelt (access to visible and infrared spectra) and
temperature in the period directly following (Dunne et al., 2003; Hulber et al., 2010; Iler et al.,
2013; Oberbauer et al., 2013; Petraglia et al., 2014; Wang et al., 2014). When the snow melts
completely, solar input rapidly raises soil temperature above zero during the day, melting water,
promoting root activity and enhancing soil nutrient cycling. Earlier phenology takes advantage
of these conditions and increases the time available for seed maturation, the potential for
reproductive success, and the time to build reserves for the next growing season (Bliss, 1962b;
Korner, 1999; Kimball et al., 2014). Perennial alpine and subalpine plants, however, must trade
the benefits of earlier leafing, fruiting, and flowering with the risk of damage from late spring,
early-summer freeze events or summer water stress, which can retard root and plant growth and
destroy reproductive potential for the entire year (Inouye, 2008; Gezon et al., 2016).

Despite potential negative consequences, most research in alpine and arctic tundra ecosystems
finds an advance in flowering phenology in response to warming (Suzuki & Kudo, 1997; Abeli
et al., 2012; Barrett & Hollister, 2016; Bjorkman et al., 2015) via change in temperature (Kopp
& Cleland, 2015) or an advance in snowmelt (Wipf et al., 2009; Iler et al., 2013; Petralgia et al.,
2014). Conversely snow addition delays phenology (Cooper et al., 2011; Smith et al., 2012). For
some species, however, earlier snowmelt via snow removal without additional warming did not
significantly advance flowering phenology due to low ambient temperature (Petralgia et al.,
2014), and in one study, cooler temperatures following early snowmelt caused frost damage
(Wipf et al., 2009). Some studies have found multiple drivers of phenology; over a 22-year
period in arctic control plots Bjorkman et al. (2015) observed an increase of 1°C in ambient
temperature as well as later trending snowmelt and flowering. Yet passive warming after the
snow melted advanced flowering (Bjorkman et al. 2015), suggesting that snowmelt and
temperature both influence phenology but their relative importance under future climate change
is not clear. In the subalpine, earlier snowmelt via snow removal and due to active warming has
advanced flowering time (Gezon et al., 2016; Dunne et al., 2004) but duration of flowering was
unaffected by experimental warming even though years with earlier snowmelt were associated
with extended flowering periods and greater overlap in co-flowering species (Price & Wasser,
1998). While it is clear that the influence of warming in the subalpine advances phenology
through earlier snowmelt and that flowering duration is not modified by extension of the growing
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season (but see CaraDonna et al., 2014), it is unclear how flowering phenology will respond in
the alpine tundra where species may track climate even more closely since they face a sharper
trade-off between risk of reproductive failure due to frost and opportunity for greater
reproductive success with a longer snow-free season.

Most subalpine or tundra phenology studies (Alatalo & Totland, 1997; Welker et al., 1997; Arft
et al., 1999; Wipf et al., 2009; Liu et al., 2011; Cooper et al., 2011; Buizer et al., 2012; Smith et
al., 2012; Dorji et al., 2013; Oberbauer et al., 2013; Petraglia et al., 2014; Bjorkman et al., 2015;
Kopp & Cleland, 2015; Carbognani et al., 2016; Ganjurav et al., 2016; Gezon et al., 2016;
Livensperger et al., 2016; Semenchuk et al., 2016; Zhu et al., 2016) use long-term observations,
open—topped warming chambers following snowmelt, or snow addition/removal. With real
climate change, temperature and snowmelt will be altered simultaneously. Therefore all of these
methods are incomplete in simulating climate change and may yield misleading information
regarding responses and underlying mechanisms. In particular, long-term temperature trends
cannot reveal cause and effect, as they are not controlled, and passive warming after snowmelt
provides information about post-snowmelt sensitivity to temperature and wind reduction but no
evidence for the impact of changes in snowmelt. Further, snow addition or removal provides
information about sensitivity to snowmelt timing alone but not full effects of warming. Though
less commonly used in the subalpine and alpine tundra, active warming (Price & Wasser, 1998;
Dunne et al., 2004; Suonan et al., 2016) both advances snowmelt and warms plants and soils
following snowmelt. This combination allows quantification of the relative importance of
snowmelt timing and temperature within a common framework, to examine which of these two
mechanisms drives alpine plant response to changes in climate.

Even less is known about the effects of soil moisture or its interactions with warming on alpine
plant phenology. Additional precipitation had little effect in a temperate grassland, although
active warming advanced phenology (Sherry et al., 2007). In the alpine, however, ambient
temperature, snow depth, snow persistence and soil moisture all interact. For example, snow
cover reduces temperature variability (Henry, 2008; Brown & DeGaetano, 2011), more snow and
slower snowmelt can result in higher soil moisture when solar input is high, and warmer
temperatures cause earlier snowmelt, and can lead to earlier soil dry-down (Dorji et al., 2013).
Soil moisture influence on alpine and subalpine phenology has been indirectly investigated via
snow manipulation aimed at studying impacts of earlier snowmelt on phenology thus studies
often only measure temperature variation or heat accumulation. This approach does not separate
the effects of snowmelt timing from soil moisture, however, and therefore cannot determine
which is responsible for phenological change. By drying soils, passive warming actually delayed
reproductive phenology and reduced the number of inflorescences of Kobresia pygmaea, a
shallow-rooted alpine plant (Dorji et al., 2013; Zhu et al., 2016) which was a departure from
advancement in two herbs; while concomitantly additional snow delayed phenology for another
herb in the study. Warming-induced soil drying during the growing season could also cause
early senescence (Oberbauer et al., 2013). Moisture can limit the response of subalpine, arctic
and alpine abundance and productivity to warming (Elmendorf et al., 2012; Winkler et al., 2016),
but it remains unclear how flowering phenology will respond to warming if soil moisture
concurrently declines.

Differences in species or functional group responses to changes in resources including climate,
soil moisture, energy, nutrients and pollinators will affect their persistence in the community.



Species-specific or functional group strategies prevalent among alpine plants, such as
belowground storage and preformation of buds could decouple plant demand from current
resource availability and temporarily buffer their sensitivity to changes in climate. Also, plants
active earlier in the growing season have been more responsive to changes in climatic conditions
than later-blooming species (Price & Wasser, 1998; Dunne et al., 2003; Sherry et al., 2007;
Wolkovich et al., 2012; Petralgia et al., 2014). This may enhance the likelihood of temporal
mismatch with pollinators because even with a warming-driven extension in the flowering period
a mismatch in timing can still lead to a decline in reproductive success (Petanidou et al., 2014).
Responses of other functional groups to warming have been investigated but are less understood.
In a review of the International Tundra Experiment (ITEX), Arft et al. (1999) found warming
advanced anthesis for both woody and herbaceous arctic species, with forbs and graminoids
exhibiting the greatest reproductive effort in response to warming. In a subsequent ITEX review,
evergreen shrubs and graminoids showed larger advances in flowering than deciduous shrubs
and forbs in warmed plots but all life-form types senesced at similar heat sum values (Oberbauer
et al., 2013). In an alpine ecosystem in the Front Range of the Rockies, forbs (particularly Geum
rossii) flowered earlier with summer warming, and later with snow addition, while a dominant
graminoid flowered slightly earlier with higher temperature (Smith et al., 2012). Responses by
lifeform group have appeared inconsistent making community shifts hard to predict, however
early season species (Petralgia et al., 2014), graminoids (Oberbauer et al., 2013) and forbs
(Smith et al., 2012), are likely to be more sensitive to warming than other community members.

To quantify the combined effects of multiple proximal climate factors on alpine plant phenology
(Park et al., 2018), and to disentangle the relative importance of each, we conducted a fully
crossed heating and watering experiment in alpine tundra at Niwot Ridge, CO, USA. We used
infrared heaters to induce earlier snowmelt and warm plants and soil, and manual watering to
offset warming-induced decreases in soil moisture. We use 4 years of flowering phenology
observations to address four questions: /) How does radiative warming that can affect snowmelt
timing, ecosystem temperature and soil moisture alter flowering phenology (onset, cessation,
duration) across an entire alpine community? Based on studies using multiple experimental and
observational methods (e.g., Price & Wasser, 1998; Dunne et al., 2004; Liu et al., 2011; Smith et
al., 2012; Gezon et al., 2016), we expected that warming would advance flowering onset, thereby
extending flowering duration. 2) Will warming advance onset of spring flowering phenology
through increased temperature, advanced snowmelt or drier soils? Based on findings in the
subalpine (Dunne et al 2003), we expected that snowmelt timing would be the primary driver of
flowering onset. 3) Does the effect of warming on flowering senescence and duration depend on
soil moisture status? Because the snowmelt pulse of soil moisture is depleted at end of the
growing season, we expected heating to delay flower senescence and extend flowering duration
only under increased soil moisture (Reyes-Fox et al., 2014). 4) How do phenologies of
functional groups, lifeforms and species differ in their sensitivity to warming? We expected early
season species (Petralgia et al., 2014), graminoids and forbs, specifically the dominant forb
Geum rossii (Smith et al., 2012), to be more sensitive to warming than other community
members.

1.2 Materials and methods

1.2.1  Study site and experimental design —



Our study was conducted on Niwot Ridge in the Colorado Rocky Mountains (40°3* 14.84”N,
105°35°37.71” W; 3540 m), on a shallow (15°) south-southeast facing slope 400 m above
timberline. The growing season is approximately 3—4 months (June-September; Greenland 1989)
and average annual precipitation and temperature are 966 mm and -2.15°C, with a majority of
precipitation falling as snow (Blanken et al., 2009). Variability in local snow depth is
determined by westerly winds and local topography (Liator et al., 2008).

In 2009 we established twenty 3 m-diameter plots within the alpine tundra and assigned them to
four treatment groups: control (C), heated (H), watered (W), and heated + watered (HW). Each
plot was divided into four 1x1 m* quadrats for observations. Six infrared heaters (Mor Electric
Heating, Comstock Park, MI, USA) were suspended 1.2 m aboveground in hexagonal arrays
surrounding each H and HW plot (Kimball et al., 2007). Heaters were activated in October 2009
and delivered 215 W/m” to the ground in plots under low wind conditions which was expected to
increase temperature +4°C; high wind speeds diminished heating efficiency (Kimball, 2005) and
limited overall warming effects to +1.5°C at 5-10 cm depth in the soil. Winkler et al. (2016)
describes the heating treatment in more detail. Infrared radiation (IR) is absorbed by surfaces so
our aim was to increase growing season plant and soil temperatures - and not to modify air
temperature. While they do not elevate air temperature except very near the ground surface, IR
heaters are advantageous as compared with passive heating designs (Elmendorf et al., 2012,
Oberbauer et al., 2013) because they preserve the ambient wind regime and advance the timing
of snowmelt (Aronson & McNulty, 2009). We applied 2.5 mm of water weekly to the HW and
W groups when soil moisture dropped below ~0.2 m*/m’ (2-3 weeks after snowmelt), to offset
soil drying due to heating, and to study the impacts of increased growing season soil moisture.
Annual water addition totaled ~ 30 mm, which is roughly 20% of mean June—September
precipitation from 1951-1980 on Niwot Ridge (Greenland, 1989).

1.2.2  Phenology observations —

We conducted weekly flowering phenology surveys of 39 species in the community starting
when a quadrat was at least 50% snow free, as determined by weekly snow surveys. Each week,
the phenological stage of each species was recorded as one of the following: (1) vegetative bud,
(2) flower (defined by the presence of visible stamen or stigmatic surfaces), (3) senescence, (4)
bud and flower, (5) bud and senescence, (6) flower and senescence, (7) bud, flower and
senescence. A stage was recorded when at least one individual of a species in a quadrat entered
that stage. Records typically included individuals in multiple phenological phases (i.e. stages 4,
5, 6, 7). Data collection ended when all plants in a species had reached phenological stage 3, 6 or
7, typically mid-late August. Surveys were conducted each growing season from 2009 (pre-
treatment) through 2013. Day of flower initiation (first flower) and cessation (last flower) were
determined by the first flower occurrence and the last flower senescing for each species across
all plots and quadrats, respectively; and flowering duration was calculated as the period between
first and last flower.

1.2.3  Climate and microclimate observations —

Air temperature, relative humidity (HMP45C; Vaisala, Helsinki, Finland) and wind speed were
measured at 2 m height via a meterological tower erected at the center of the site (03101-L; RM
Young, Traverse City, MI, USA). Precipitation was measured at a nearby LTER meteorological
station approximately 500 m away, elevation 3528 m (NWCC 2014). Soil moisture and



temperature were recorded every 15 min averaged over a 5-10 cm probe depth (ECTM or 5TM;
Decagon Devices, Pullman, WA, USA) at the center of each quadrat. Soil probes were
calibrated in the laboratory to volumetric water contents (m’/m’) ranging from dry to saturated
using soil collected adjacent to plots. We determined meltdate of plots as days with greater than
0.5°C diel soil temperature variability, and confirmed that these temperature-based snow cover
determinations were consistent with bi-weekly field snow surveys. Mean daily (diel) soil
temperature (5—10 cm) was calculated between day of snowmelt and: 1) day of first flower, ii)
day of last flower, and iii) day of peak flowering (also the day of peak aboveground biomass) for
each species in the community and for each quadrat. Adequate soil moisture days were
calculated as the total number of days when mean daily volumetric water content was above a
threshold of ®, > 0.13 m*/m’, which corresponded to midday water potentials of approximately
—1.5 MPa for limber pine seedlings at our site (Moyes et al., 2013) and to decreased productivity
in another alpine community (Billings & Bliss, 1959). We used the same time periods described
above for mean soil temperature. Each of these variables were used for analyses of first flower,
last flower and flowering duration respectively.

1.2.4 Statistical analysis —

We examined effects of heating and watering on flowering phenology for 33 species (with 6
species excluded from statistical analyses because they were represented by only a few
individuals at the site, or were not present in control plots) in the community. We used linear
mixed effects models to predict mean date of first flower, last flower and flowering duration for
all species. To quantify the full, combined effects of warming on phenology, our first model
included the main effects of heat, water, year, lifeform, and all 2-way interactions. The lifeform
category included 4 groups — cushion plants (all mat-forming, prostrate forbs and true cushions),
forbs (all other forbs not mat-forming), graminoids, and succulents. We previously found that
the community-wide aboveground productivity response most closely matched that of the
dominant forbs (Winker et al., 2016), so the model was designed so that all other groups would
be compared against forbs (the dominant lifeform) in contrast summaries. We also included
pretreatment (2009) day of first and last flower and flowering duration as covariates in the
models to control for pre-existing variation across plots. Random effects included plot, quadrat
nested within plot, and species. Our sample size of 4,259 observations was reduced from a
potential 20 plots x 4 quadrats x 33 species over 4 years (10560 potential observations) because
not all species were present in all plots or quadrats.

To determine whether warming alters flowering phenology via increases in growing season
temperature, earlier snowmelt and/or changes in soil moisture, we constructed a second model
which included continuous environmental variables standardized by their standard deviations.
The second model included lifeform, mean temperature (Tmean), snow meltdate, adequate soil
moisture days (AdgMoist), and all 2-way interactions as main fixed effects, and the same random
effects as the categorical model. This model did not include the fixed effect ‘year’ or the
‘pretreatment’ covariate because we are leveraging variation among years and across plots in
climate variables, such as snowmelt timing (which varied by ~3 weeks across years) and
growing season temperature, to glean universal relationships between phenology and climate
factors. We also ran mixed effects models to determine how the heating and watering treatments
affected each of the microclimate variables described above.



To assess which lifeforms were more sensitive to combined direct and indirect effects of
warming, we used model 1. To assess whether these lifeform-level phenological responses were
more cued to changes in temperature, snowmelt or moisture we used model 2. To compare
response differences among flowering functional groups we ran the same linear mixed effects
models (1 and 2), but coded species as early, mid or late flowering. Species that initiated
flowering (on average) in May or June were designated as “early”, those that commenced in July
were designated as “mid”, and those that initiated in August, past peak productivity for most
species, were designated as “late”. Lifeform and phenological functional group (early, mid or
late season species) were not included in the same models. To examine warming effects on
phenology across individual species, we ran linear mixed models as described above (model 1)
for each species separately, but only for species that were present in at least 16 plots (15 species
of the 33 included in other analyses).

Models were built using the Ime4 package and all graphics were developed in R (Bates et al.
2015, R Core Team 2014). We summarized the models using restricted maximum likelihood, t-
tests via Satterthwaite approximations for degrees of freedom. Significance levels were
estimated using Wald ” tests (car::Anova in R). To gauge the amount of variation explained by
each model, we computed both marginal and conditional R values following the method of
Nakagawa & Schielzeth (2013). Marginal R? is a measure of variance explained only by fixed
factors, whereas conditional R* is a measure of variance explained by both fixed and random
factors.

1.3 Results

1.3.1 Direct effects of heat —

Heating advanced the timing of snowmelt by approximately 11 days (+/- 5), but did not
significantly increase mean soil temperature during periods directly relevant to phenological
observations (Tables 1.1, 1.2). In fact, mean temperature between snowmelt and day of first
flower was lower in heated plots on average compared to unheated plots (Tables 1.1, 1.2). Soil
moisture, calculated as adequate soil moisture days, was not significantly affected by heating and
there was no effect of watering on soil moisture during periods relevant to flowering phenology
(Table 1.2).

Mean duration of flowering across all species in this perennial alpine community was
approximately three weeks (20 +/- 0.5 days, Supplemental Table 1.1), with the mean date of first
flower for control treatments occurring in mid-July, day-of-year (DOY) 196.75 (+/- 0.68 days),
and the mean last flower initiating senescence in early August DOY 216 (+/- 0.8 days).
Experimental heating advanced flowering initiation community-wide by approximately 8 days
(Table 1.3, Figure 1.1). Contrary to our expectation that flowering cessation would be delayed,
it was instead advanced approximately 7 days by heating (Table 1.3, Figure 1.1), resulting in the
entire flowering period shifting earlier in the season (Table 1.3, Figure 1.1). Thus, also contrary
to our expectation, alpine community flowering duration was unaffected by heating. Models
explained approximately 90 percent of the variation in flowering phenology (Supplemental
Table 1.4).

1.3.2  Indirect effects of heat and water —



As expected, variation in snowmelt had a greater effect than the variation in temperature or
moisture on flowering onset. Meltdate had a larger standardized coefficient (/6); nearly three
times that of mean soil temperature (6.2), and about five times greater than that of soil moisture
(3.3) (Table 1.4). The temperature effect on first flower was also positive — opposite the
expected earlier flowering with higher temperature (Table 1.1). Finally, mean pre-flowering soil
temperature in heated plots was actually cooler than in unheated plots likely because heating
advanced snowmelt by 11 days (Table 1.2), exposing heated plots to cooler nighttime
temperatures earlier in the growing season.

Evidence for warming-driven effects on alpine phenology via soil moisture are ambiguous at
best. Contrary to our expectation that adding water to warmed plots would delay senescence and
extend the flowering season, our watering treatment did not affect flowering initiation, cessation
or duration overall, nor was there a significant interaction between heating and watering (Table
1.3). However, after accounting for snowmelt date and temperature, community wide flowering
initiation and cessation were both later in wetter soils, with no effect of soil moisture on
flowering duration (Table 1.4).

1.3.3  Lifeform and species responses —

Lifeform responses differed only slightly, but in important ways, from the full community
response. Specifically, while warming similarly advanced forb and graminoid flowering
initiation, cushions and succulents advanced less (Table 1.3). All lifeforms had similar
sensitivity of flowering cessation to heating. Heating shortened only cushion flowering duration,
but had no effect on the rest of the community (Table 1.3). Microclimate relationships revealed
a slightly different perspective. With an earlier meltdate, date of first flower advanced more
strongly for cushion and forb species, with weaker responses by graminoids and succulents
(Table 1.4, Figure 1.2a). For last flower, cushions and succulents had a stronger response to
meltdate than forbs and graminoids (Figure 1.2d). Ultimately, graminoid and forb flowering
duration was lengthened by earlier meltdate while cushion and succulent duration was not
(Table 1.4, Figure 1.2g). Soil temperature, with coefficients less than half as strong as meltdate,
had no differential effect on flower initiation across lifeforms, but higher soil temperature was
associated with later flower senescence most strongly for graminoids, with weaker effects on
forbs, cushions and succulents (Table 1.4, Figure 1.2¢). Ultimately, soil temperature was
inversely correlated with flowering duration in cushions and succulents but positively correlated
with duration for graminoids (Table 1.4, Figure 1.2e, h). Soil moisture, with coefficients ~one
fifth as strong as meltdate, had a strong positive relationship with first and last flower in cushion
species, and weaker, but still positive effects on other lifeforms (Table 1.4, Figure 1.2¢, f).
Variation in soil moisture did not explain variation in flowering duration of any group (Table
1.4, Figure 1.2i).

Contrary to predictions, early flowering species were not more sensitive to heating than mid- or
late-season species in terms of flowering initiation, cessation or duration (Table 1.5). This may
be due to the fact that there is not large variation in the flowering season across species at our
alpine site; there was substantial overlap in the flowering period amongst species (Figure 1.1).
However, consistent with our expectations, flowering onset by early-season species was more
sensitive to snowmelt timing than by mid-season species (Table 1.6, Figure 1.3a). Surprisingly,
earlier snowmelt advanced and later snowmelt delayed cessation more strongly for mid- and late-
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season species (Figure 1.3b). Flowering duration was not differentially associated with meltdate
for any phenological functional group.

With respect to soil temperature, mid-season species had the strongest positive relationship
between temperature and flowering initiation (Table 1.6, Figure 1.3d), which is consistent with
less dependence of mid-season phenology on snowmelt date. Increasing soil temperature
correlated with later flower senescence for early-season species but earlier senescence for late-
season species (Figure 1.3e, Table 1.6), which suggests these groups respond distinctly to
temperature once snowmelt cues have subsided. Flowering initiation and cessation were both
later with increasing adequate moisture days for all three phenological functional groups, but
effects were strongest for early season species and weakest for late season species (Figure 1.3c¢,
f). Ultimately, flowering duration was longer with increasing soil moisture for early season
species (Table 1.6), which suggests once the snow melts and soils begin to dry down, early
species benefit most from enhanced moisture. Surprisingly, greater moisture correlated with
shortened duration in mid-season species (Figure 1.3i), perhaps due to a stronger delay in flower
initiation than cessation. Models explained over 90% of the variation in flowering phenology
(Supplemental Table 1.5).

Regarding warming effects on individual species, when the fifteen species with adequate
representation across plots and treatments are considered individually, the response is similar to
that of the entire community. Heating advanced flowering onset and senescence for almost all
individual species (Table 7, Figure 1). Other community-level expectations were borne out for a
few individual species: first, in one early-season forb, Lloydia serotina, heating significantly
expanded the duration of the flowering season by almost 7 days. Second, watering delayed
flower initiation for the mid-season forb, Erigeron simplex. Lastly, the addition of water in
heated plots appeared to 7) counter the heat-induced advance in flowering initiation in the mid-
season succulent, Lewisia pygmaea and ii) offset the heat-induced advance in senescence and
expanded duration in the early-season forb, Geum rossii. With added moisture, this dominant
forb was able to take advantage of the extended growing season.

Table 1.1 Microclimate variables measured 2010-2013 and averaged by treatment group; 77t
(treatment), Meltdate, TmeanF (mean temperature to day of first flower, °C), TmeanL (mean
temperature ~ last flower, °C), TmeanD (mean temperature ~ peak flowering, °C), AdgF (adequate
soil moisture days ~ to day of first flower), 4dgL (adequate soil moisture days ~ to last flower),
AdgD (adequate soil moisture days ~ peak flowering), +/-se (plus or minus standard error).

- - - - - - -
Trt  Meltdate se TmeanF se TmeanL se TmeanD se AdgF  se AdgqL  se AdgD  se
C 162.3  0.80 9.61 0.08 11.03  0.05 10.73 0.05 2656 048 40.8 0.66 3745 039
H 148.5 1.19 8.58  0.09 10.72  0.07 10.03  0.06 33.21 0.60 47.5 070 40.13 037
HW 1544 0.88 9.09 0.09 11.08 0.06 10.50 0.05 30.33 0.52 46.3 0.65 4153 0.50
w 163.4  0.77 9.51 0.07 10.87  0.05 1046  0.05 27.31 0.50 443 070  35.65 045




Table 1.2 Treatment effects on microclimate variables. Linear mixed effects model parameter
estimates for each microclimate variable explored in the continuous model as described in Table 1:

Meltdate, TmeanF, TmeanL, TmeanD, AdqF, AdgL, AdgD. Wald y* tests and P-values, P(y°), were

calculated for effects of: Year, Water, Heat, and the interaction of Heat*Water.

Coef SE . df P)
Meltdate Intercept 162.45 3.48
Heat -10.72 4.90 7.50 1 0.006
Water 1.56 4.90 0.65 1 0.42
Heat x Water 2.46 6.93 0.13 1 0.72
Year 1553548 3 <2e-16
2011 28.10 0.53
2012 -33.94 0.51
2013 8.44 0.52
TmeanF Intercept 8.93 0.30
Heat -0.75 0.41 3.79 1 0.05
Water -0.04 0.41 0.25 1 0.62
Heat x Water 0.36 0.58 0.39 1 0.53
Year 2910.87 3 <2e-16
2011 2.81 0.08
2012 -1.31 0.08
2013 1.28 0.08
TmeanL  Intercept 10.81 0.26
Heat -0.03 0.36 0.15 1 0.70
Water -0.12 0.36 0.001 1 0.98
Heat x Water 0.25 0.51 0.23 1 0.63
Year 3066.72 3 <2e-16
2011 1.83 0.06
2012 -1.19 0.06
2013 0.38 0.06
TmeanD Intercept 10.50 0.29
Heat -0.42 0.41 0.37 1 0.54
Water -0.26 0.41 0.004 1 0.95
Heat x Water 0.49 0.58 0.69 1 0.41
Year 4598.28 3 <2e-16
2011 2.16 0.05
2012 -0.72 0.05
2013 -0.30 0.05
AdqgF Intercept 25.75 2.97
Heat 5.46 4.17 1.98 1 0.16
Water 1.07 4.17 0.01 1 0.94
Heat x Water -2.62 5.90 0.20 1 0.66
Year 854.89 3 <2e-16
2011 -8.08 0.62
2012 9.16 0.60
2013 -1.78 0.61
AdqL Intercept 38.72 3.61
Heat 5.25 5.07 0.92 1 0.34
Water 4.07 5.06 0.40 1 0.53
Heat x Water -3.63 7.16 0.26 1 0.61
Year 462.53 3 <2e-16
2011 -7.62 0.85
2012 10.08 0.83
2013 1.37 0.85
AdgD Intercept 38.29 2.53
Heat 3.42 3.57 3.38 1 0.07
Water -1.27 3.57 0.001 1 0.98
Heat x Water 2.44 5.05 0.23 1 0.63
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Year

2011 -4.50
2012 9.70
2013 -12.46

0.38
0.38
0.37

3728.61 3

<2e-16

Table 1.3 Linear mixed effects model parameter estimates for main effects and all two-way
interactions for day of first flower, day of last flower and flowering duration in the categorical model
(1). Wald ¥ tests and P-values, P(y%), were calculated for effects of treatments, year, lifeform and
their interactions. For effects with only two levels, the coefficient for the level not shown is the same
magnitude but opposite sign as the coefficient shown. Random effects included: plot, quad nested
within plot, and species. Probabilities <0.05 are given in bold type. Complete results provided in

Supplemental Table 1.2.
First flower Last flower Duration of flowering
Coef r P() | Coef 1 PiY) | Coef 1 P(y)
Intercept 168.21 178.11 16.11
H -7.67 48.23  3.79e-12 -7.04 48.37  3.53e-12 0.66 0.00 0.98
w -1.77 0.02 0.90 0.17 0.18 0.67 1.39 0.45 0.50
Hx W 1.44 0.86 0.35 1.87 1.40 0.24 0.37 0.12 0.73
Pre-phenol 0.12 56.07  6.99e-14 0.14 19.56  9.73e-06 0.11  28.72 8.35e-08
Year 13543.84 <2.2e-16 6229.73 <2.2e-16 17539  <2.2e-16
2011 19.88 19.02 -1.32
2012 | -21.86 -16.92 451
2013 4.12 5.65 1.18
Lifeform 3.55 0.31 2.46 0.48 0.40 0.94
cushions 1.01 3.70 2.83
graminoids 6.97 9.48 2.67
succulents 6.82 7.48 0.30
Lifeform x H 11.31 0.01 6.65 0.08 9.97 0.02
cushions x H 1.68 -1.76 -3.67
graminoids x H 0.50 -0.09 -0.50
succulents x H 2.47 1.48 -0.75
Lifeform x W 0.37 0.95 0.52 0.91 0.64 0.89
cushions x W 0.10 0.42 0.68
graminoids x W 0.12 -0.01 -0.41
succulents x W -0.42 -0.49 -0.26
Year x Heat 68.64  8.36e-15 1331  4.02¢-03 8.29 0.040
2011 xH 4.71 291 -1.65
2012 x H -1.35 0.08 1.56
2013 x H 0.33 0.06 -0.28
Year x Water 5.63 1.31E-01 233 0.506648 3.37 0.33842
2011 x W 1.09 -1.21 -1.62
2012 x W 1.79 -0.61 -1.85
2013 x W 1.04 -1.27 -1.46
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Table 1.4 Linear mixed effects model parameter estimates for main effects and all two-way
interactions for day of first flower, day of last flower and flowering duration in the continuous model
(2). Wald ¥ tests and P-values, P(x%), were calculated for effects of lifeform, meltdate, mean soil
temperature (MeanTemp), adequate soil moisture (AdgMoist), and their interactions. Explanatory
variables were calculated differently for each response variable, see the methods section for a full
explanation. Random effects included: plot, quad nested within plot, and species. Probabilities <0.05
are given in bold type. Complete results provided in Supplemental Table 1.3.

First flower Last flower Duration of flowering
Coef r P(y) Coef xz Py’) | Coef r P()
Intercept 187.77 207.90 20.44
Lifeform 2.08 0.56 1.06 0.79 0.62 0.89
cushion 0.18 1.47 1.74
graminoid 3.58 5.66 1.14
succulent 5.48 5.72 -2.15
Meltdate 16.19 3104.83 <2.2e-16 15.13  1987.32 <2.2e-16 | -290 39.14 3.944¢-10
MeanTemp 6.28 62932  <2.2e-16 3.98 99.49 <2.2e-16 | 0.37 1.90 0.17
AdqMoist 330 589.62 <2.2e-16 396  502.52 <2.2e-16 | -0.14 0.04 0.83
Lifeform x Meltdate 29.69 1.60e-06 100.22 <2.2e-16 30.67 9.98e-07
cushion x Meltdate -0.08 1.52 342
graminoid x Meltdate -2.84 -5.44 -2.29
succulent x Meltdate -1.41 1.26 3.75
Lifeform x MeanTemp 4.87 0.18 27.60 4.41e-06 18.53 3.42¢-04
cushion x MeanTemp 0.06 -1.16 -2.01
graminoid x MeanTemp 1.31 2.44 1.10
succulent x MeanTemp 0.29 -1.93 -2.25
Lifeform x AdqMoist 45.42 7.53e-10 27.58 4.44e-06 2.53 0.47
cushion x AdqMoist 2.15 1.39 -0.38
graminoid x AdqMoist -0.97 -0.93 0.82
succulent x AdqMoist -0.89 -1.11 -0.32
Meltdate x AdqMoist -3.05 668.61  <2.2e-16 -2.33 140.39 <2.2e-16 | -0.33 1.72 0.19
Meltdate x MeanTemp 1.53 22147 <22.2e-16 2.15  416.67 <2.2e-16 | -0.62 5.62 0.02
AdgMoist x MeanTemp 243 22629 @ <2.2e-16 2.09 88.63 <2.2e-16 | -0.24  0.63 0.43
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Tables 1.5 and 1.6. Linear mixed effects model parameter estimates for main effects and all two-

way interactions for 5) the categorical and 6) the continuous model with phenological functional

group (PhenFG) instead of lifeform included in the model. Wald y tests and P-values, P(x?), were

calculated for effects of treatment, year, phenological functional group (PhenFG) and their
interactions. In Table 6, explanatory variables were calculated differently for each response variable,

see the methods section for a full explanation. For effects with only two levels, the coefficient for

the level not shown is the same magnitude but opposite sign as the coefficient shown. Random
effects included: plot, quad nested within plot, and species. Probabilities <0.05 are given in bold
type. Complete results provided in Supplemental Tables 1.7 & 1.8.

Table 1.5
First flower Last flower Duration of flowering
Coef r P() Coef r Pi’) | Coef r Pi)
Intercept 161.24 171.53 15.91
Heat -6.86 51.24 8.17e-13 -6.27 4587  1.27e-11 | 0.65 0.00 0.97
Water -1.92 0.02 0.90 0.21 0.12 0.73 1.69 0.30 0.58
Heat x Water 1.45 0.93 0.34 1.81 1.26 026 | 0.27 0.06 0.80
Pre-phenology 0.12 62.30 2.96e-15 0.14 20.36  6.40e-06 | 0.11 30.19 3.92¢-08
Year 13496.83 <2.2e-16 6229.50 <2.2e-16 175.75 <2.2e-16
2011 19.88 2.92 -1.36
2012 | -21.84 0.13 4.42
2013 4.08 0.08 1.16
PhenFG 52.57 3.84e-12 20.12  4.29e-05 0.72 0.70
mid 10.15 11.36 1.12
late | 23.95 28.55 5.27
PhenFG x H 0.31 0.85 3.18 0.20 1.79 0.41
mid x H -0.10 -1.24 -1.15
late x H -0.74 -1.74 -1.17
PhenFG x W 0.75 0.69 0.15 0.93 1.10 0.58
mid x W 0.14 -0.16 -0.42
late x W 1.21 0.42 -2.14
Year x H 67.80 1.26e-14 13.14 0.004 8.63 0.035
2011 xH 4.68 2.92 -1.61
2012 x H -1.40 0.13 1.66
2013 x H 0.40 0.08 -0.32
Year x W 5.28 0.15 2.23 0.53 3.05 0.38
2011 x W 1.10 -1.16 -1.58
2012 x W 1.73 -0.63 -1.76
2013 x W 0.99 -1.26 -1.35

13



Table 1.6

First flower Last flower Duration of flowering
Coef 1 Pi) | Coef 1 P() | Coef xz P()
Intercept 183.64 203.52 20.35
PhenFG 62.67  2.46e-14 29.26  4.43e-07 0.11 0.94
mid 5.55 6.88 -0.08
late | 19.62 25.77 1.46
Meltdate 16.66 2889.47 <2.2e-16 | 12.84 2028.15 <2.2e-16 | -2.43 39.16 3.91e-10
MeanTemp 624  754.04 <2.2e-16 7.59 13452 <2.2e-16 | 0.53 1.51 0.22
AdqMoist 515  613.55 <2.2e-16 6.66 56841 <22e-16 | 1.12  0.11 0.74
PhenFG x Meltdate 16.74 0.0002 60.45  7.49e-14 0.40 0.82
mid x Meltdate -1.87 2.24 0.35
late x Meltdate -0.19 6.38 -0.34
PhenFG x MeanTemp 12.62 0.0018 134.84 <2.2e-16 5.11 0.08
mid x MeanTemp 1.21 -4.41 -1.06
late x MeanTemp -1.07 -10.49 0.66
PhenFG x AdqMoist 98.56 <2.2e-16 112.87 <2.2e-16 11.81 0.003
mid x AdqMoist -1.57 -2.67 -1.83
late x AdqMoist -4.66 -5.50 -0.88
Meltdate x AdqMoist -3.57  741.80 <2.2e-16 -3.74  340.65 <2.2e-16 | -042  2.66 0.10
Meltdate x MeanTemp 1.41 151.05 <2.2e-16 2.05 36541 <22e-16 | -0.53  4.00 0.05
AdqMoist x
MeanTemp 3.19 31099 <2.2e-16 370 26573 <2.2e-16 | -0.18  0.36 0.55
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Table 1.7 Results of linear mixed effects models for individual species with data across most (at
least 16) plots. A — indicates an advance in date of first flower (doff) or last flower (dolf) and a
reduction in duration. A + indicates a delay in doff or dolf and an extension of flowering duration.

A o indicates no change (coefficients between -1 and 1). The column CMean provides average
control-plot day of first and last flower and flowering duration. Earliest flowering species are at the
top of the list and descend with increasing doff. Species scientific names are denoted in Supplemental
Table 8, and complete results provided in Supplemental Table 1.9. Probabilities <0.05 are given in
bold type.

First Last Duration

C C
Species | Mean  Heat Water H*W | Mean  Heat Water H*W | CMean  Heat Water H*W
GERO | 18521 - 0 o |21878 - - + 3356 - - +
CARU | 188.00 - - + 21279 - 0 0 2479  + + -
LLSE | 188.83 - - + 19911 - + 0 1028 + + -
SIPR 189.32 - - + | 20481 - 0 - 1549  + + -
PODI | 191.68 - 0 + | 21156 - 0 + 19.88  + - -
LEPY | 19222 - - + |20520 - + - 1298  + + -
ARSC | 19328 - - + | 21257 - - + 1928  + 0 0
MIOB | 193.76 - 0 + | 22789 - + - 3413 - + -
ERSI 196.87 - + + | 21163 - + o 1476 - + -
SIAC | 19820 - - + | 21447 - - + 1627 - + +
BIBI 19849 - 0 o |21579 - 0 1853 o - 0
CHJA | 199.03 - 0 - 21753 - + - 1850 o + 0
LUSP | 199.17 - - + | 21438 - 0 1521+ + -
ARFE | 200.13 - - o | 23440 - 0 3427 - + +
TRSP  207.57 - 0 + 22829 - 0 - 2333 o - 0
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Figure. 1.1 Duration of flowering for 28 species present in at least 1 of each of 4 treatments
(color-coded by treatment), species names provided in Supplemental Table 6. Panel a)
represents control and heated plots while b) represents heated + watered and watered plots. The
leftmost point represents the mean date of first flowering with its lower standard error; the
rightmost point represents the date of last flowering with its upper standard error for each
species. The vertical line at DOY 200 was added for ease of comparison between the two

panels.
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Figure 1.2 Interaction plots of lifeform-level date of first (top row), last flower (middle row)
and flowering duration (bottom row). Model estimates of: lifeform x meltdate (plots a, d, and g),
lifeform x mean temperature (plots b, e, and /), and lifeform x adequate moisture (plots c, f, and
i), on the x-axis, and first, last flower and flowering duration on the y-axis. Model estimates are
corrected for random effects. A black-solid, red-dashed, green-dotted and blue-dot-dashed lines
indicate forbs, cushions, graminoids, and succulents respectively. Predictor variables have been
converted from units of standard deviation into native measurement units for clarity.
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Figure 1.3 Interaction plots of phenological functional group (PhenFG) for timing of first (top
row), last flower (middle row) and flowering duration (bottom row). Model estimates of:
phenFG x meltdate (plots a, d, and g), PhenFG x mean temperature (plots b, e, and /), and
PhenFG x adequate moisture (plots ¢, f, and i), on the x-axis, and first, last flower and flowering
duration on the y-axis. Model estimates are corrected for random effects. A solid green, dotted
purple and dot-dashed orange line represents early, mid and late flowering species respectively.
Predictor variables have been converted from units of standard deviation into native
measurement units for clarity.
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1.4 Discussion

In our active infrared heating experiment at Niwot Ridge, CO, warming advanced the flowering
season due to earlier snowmelt, not warmer temperatures. Heating advanced snowmelt
approximately 12 days, but reduced mean preflowering soil temperature, likely due to heated
plot exposure to greater diel temperature variation or a larger number of colder nights in the early
spring. Contrary to our expectations, warming did not extend the flowering season for most
functional groups and species, and watering did not counter the advance in flowering cessation
caused by warming. Finally, in some cases, lifeform and phenological functional groups showed
distinct mean responses to changing climate. Earlier meltdate lengthened graminoid and forb
flowering duration while cushion and succulent duration were less sensitive. Onset of flowering
in early season species responded more strongly to warming-induced advances in snowmelt than
it did in later flowering species.

1.4.1 Heating and advanced alpine flowering phenology —

Consistent with our expectations, flowering initiation and cessation occurred earlier with active
warming, for the entire alpine plant community over the 4 years of our study. The heating
treatment caused a mean temperature rise of 1.5°C in the heated plots over the snow-free
growing season, and a flowering advance of approximately 7 days. This result is consistent with
other active experiments (Sherry et al., 2007, Dunne et al., 2003) and with the findings of
Wolkovich et al. (2012), who found an advance of approximately 4.6 days per °C temperature
rise in an analysis of 1,558 species in various ecosystems in response to inter-annual temperature
variation. This suggests that extrapolations based on realistic experimentation have the potential
to replicate plant species responses to non-experimental climate changes (Dunne et al., 2004).

Across the community, flowering duration did not expand despite an imposed warmer growing
season because flowering initiation and cessation both advanced — by 8 and 7 days respectively.
It appears that duration is a conserved trait for most alpine species, or is at least insensitive to
temperature. We therefore did not find any support for our prediction that early flowering would
allow a longer community flowering period and more time to complete the reproductive cycle as
it has in a temperate grassland (Reyes-Fox et al., 2009). This result is consistent with
observations along an elevational gradient in the Canadian arctic that revealed high phenotypic
plasticity in flowering time but evolutionary conservatism in duration (Lessard-Therrien et al.,
2014; Semenchuk et al., 2016). Experimental warming also had no detectable effect on duration
of flowering or fruiting in a subalpine meadow (Price & Wasser, 1998). However, contrasting
evidence from warmed alpine communities on the Tibetan Plateau (Yu et al., 2010), from ITEX
experiments (Oberbauer et al., 2013), and from long-term observations (CaraDonna et al., 2014)
have resulted in shorter and longer reproductive seasons respectively; the former as a result of
winter warming preventing chilling requirements from being met.

1.4.2  Factors driving alpine phenology advance —

To determine the relative importance of the proximal factors through which heating could have
advanced alpine flowering phenology, we examined whether changes were more strongly cued
by advanced snowmelt, post-snowmelt temperature or changes in soil moisture. Timing of
snowmelt emerged as the dominant factor to advance flowering. In our study warming advanced
snowmelt by 11 days (Table 1.2), which advanced flowering initiation and cessation by 8 and 7
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days (Table 1.3), respectively. This dominant effect of snowmelt is consistent with a study in the
Alps that reduced snow depth and advanced snowmelt timing, which concluded that snowmelt
timing had stronger effects than snow depth on phenology and reproduction (Wipf et al., 2009).
Other studies have found the same relationship between earlier snowmelt and advanced
flowering (Dunne et al., 2003; Abeli et al., 2012; Bjorkman et al., 2015), although exposure of
plants to extreme spring temperatures caused frost damage and reduced reproductive capacity in
some high arctic and subalpine species (Wipf et al., 2009; Cooper et al., 2011; Gezon et al.,
2016). Carboganni et al. (2016) found differential flowering triggers based on timescale of
investigation; at the scale of an individual growing season (following snowmelt), air temperature
surrounding plants prompted blooming; but at the annual timescale (across years) variation in
snowmelt date was the dominant predictor for peak flowering time. The strong correlation of
flowering with snowmelt timing is also consistent with local alpine community assemblage
patterns; in which species generally organize along a snowpack depth (and therefore snowmelt
timing) gradient (Korner, 1999), and phenological phases both vegetative and reproductive
generally follow snowmelt patterns (Semenchuk et al., 2016).

Temperature appears to have little direct effect on flowering phenology. Between snowmelt and
the date of flower initiation, we found soil temperature in warmed plots was colder than in
controls. This is because earlier snowmelt results in greater subsequent exposure to short days,
spring frost and generally colder nighttime temperatures that were not fully compensated by
active warming. A similar pattern of exposure to cold early season temperatures was found in a
snow removal study in the high arctic (Wipf et al., 2009). While Hulber et al. (2010) concluded
that temperature sums were an important catalyst initiating flowering phenology for ten alpine
species, in our study, temperature was not more important than snowmelt date as a flowering
trigger as it 1) had a weaker standardized coefficient as compared with snowmelt date, and 2)
does not appear to have caused the advance in community flowering detected from the heating
treatment since soils were actually cooler in heated than control plots. While temperature was a
significant factor explaining variation in timing of first and last flower, the coefficient is positive,
suggesting that as soils warmed later in the growing season, more species in this alpine
community commenced (or ceased) flowering (Figure 1.2b) as would be expected under
unmanipulated conditions. In a subarctic plant community, lagged effects of plant phenology in
response to temperature suggest that shifts can take several years to develop particularly due to
preformation of buds (Mulder et al., 2017).

While water addition did not significantly alter soil moisture or community flowering phenology,
spatial and temporal variation in soil moisture revealed that increased soil moisture was
correlated with delayed onset of flowering and flowering termination, but was uncorrelated with
flowering duration. This is consistent with studies that 1) added snow in plots to increase
moisture and delay snowmelt (Smith et al., 2012; Dorji et al., 2013; Legault et al., 2015), or 2)
analyzed inter-annual variation and found increased winter snowfall (Bjorkman et al., 2015)
resulted in the delay of at least one plant phenophase (budding, flowering or fruiting), although
these studies could not distinguish effects of greater soil moisture from later snowmelt. While
our multivariate model did account for variation in snowmelt timing, it is possible that melt-
water from upslope areas of the site that kept late-melting plots moist longer resulted in some
second order snowmelt-driven variation being absorbed by the soil moisture variable in the
model. That the controlled watering experiment revealed no significant effect suggests, at best,
an ambiguous proximal effect of soil moisture on alpine community phenology.
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1.4.3  Watering does not modulate phenological responses to heating —

Additional soil moisture did not counter any warming-driven advance in cessation of flowering.
This is consistent with two active heating experiments: Dunne et al. (2003) found that soil
moisture played a surprisingly small role in the timing and duration of flowering in a subalpine
meadow, and in a temperate grassland warming advanced flowering phenology but water
addition had little effect (Sherry et al., 2007). However, it contrasts with the suggestion that
shortened growing seasons could be a result of early senescence caused by warming induced soil
drying (Oberbauer et al., 2013). Warming-induced drier soils have also resulted in delayed
flower initiation with warming (Dorji et al., 2013). Further, Reyes-Fox et al. (2014) found
additional CO; reduced moisture stress and delayed the graminoid growing (though not
flowering) season. In our experiment, however, either we did not add water sufficient to elicit a
response or the effect was small relative to variability among species, years, and plots. Although
our watering treatment did not significantly modify alpine soil moisture quantified by adequate
moisture days (Table 1.2) it did affect alpine productivity (Winkler et al., 2016) and first year
tree seedling recruitment (Kueppers et al., 2017), suggesting that phenology may simply be less
sensitive to surface soil moisture than other biological processes in the alpine.

1.4.4  Lifeform, phenological functional group, and species-level differences —

We tested whether commonly used lifeform classes, such as forbs (Smith et al., 2012; Zhu et al.,
2016) and graminoids (Oberbauer et al., 2013), were more sensitive to warming than other
groups such as cushions and succulents, which are longer lived and could perhaps be less
sensitive to climate change (Eriksson, 2000). Indeed, we found succulent and cushion flowering
initiation to be less flexible with imposed warming than forbs and graminoids. Cushion and
succulent flowering durations were shorter with higher temperatures in general, and cushions
were the only lifeform with a shorter flowering duration as a result of warming; although with
earlier snowmelt, cushion and succulent duration remained relatively constant. Taken together,
this suggests cushion and succulent species may be less able to take advantage of climatic
warming and are more at risk for reduced reproductive success than other groups (Petanidou et
al., 2014). This could compound cushion species’ decline in productivity with warming, as
detected in the same experiment (Winkler et al., 2016), putting this archetypal alpine lifeform at
risk of population contraction. Finally, moisture availability most strongly affected date of first
and last flower for cushion species, indicating that dry soils would most significantly advance
cushion flowering phenology (Figures 1.2¢ and 1.2f).

Of all lifeform groups, graminoids responded most strongly to soil temperature, with increasing
temperature extending the end of the flowering season — delaying senescence and extending
duration but not affecting initiation. This disagrees with prior work finding that warmer
temperatures cause earlier flowering phenology of graminoids (Oberbauer et al., 2013). Unlike
graminoids, forb flowering duration was insensitive to temperature, but both graminoid and forb
flowering duration were ultimately lengthened with earlier snowmelt suggesting these groups are
better able to take advantage of future climatic changes. This result disagrees with a shortened
flowering season for graminoids in response to earlier snowmelt (Zhu et al., 2016) and the mean
reproductive period for Kohleria macrantha, an alpine grass (growing in a temperate grassland),
shortening due to warming (Reyes-Fox et al., 2014). That forbs responded to earlier meltdate
with earlier flowering onset, but did not respond to temperature, disagrees with earlier bud break
for forb species following post-snowmelt warming in a meta-analysis of tundra species (Arft et
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al., 2009). Two different effects of warming — earlier snowmelt and warmer temperatures —
appeared to yield longer flowering periods for forbs or graminoids and a shorter period for
cushions and succulents respectively, but via different proximal factors (compare Figures 1.2g
and 1.2h). This suggests that these groups may respond to different climate drivers and
reinforces the importance of simultaneously increasing temperature and advancing snowmelt to
understand drivers and anticipate effects of climate change on alpine plant phenology.

Since prior studies have found that early-season species are highly cued to snowmelt date
(Korner, 1999; Dunne et al., 2003 and references therein), we asked whether they were more
responsive to warming than later-flowering species (sensu Petanidou et al., 2014). In keeping
with the strong community-wide response to heating, early-season species did not advance
flowering initiation or senescence more than mid- or late-season species. This is not surprising
because a short window between snowmelt and first frost compresses the flowering season into
an approximately 8-week week period, with flowering relatively synchronized across species
within the community (Figure 1.1). Differential responses between early and later flowering
alpine species with warming were also not seen on the Tibetan Plateau (Wang et al., 2014),
indicating that the short potential growing season in alpine sites may differ from most lower
elevation communities where stronger responses are typically found in earlier flowering species
(Sherry et al., 2007; Wolkovich et al., 2012). Our early-onset species, however, advanced flower
initiation more with earlier snowmelt (Figure 1.3a), delayed floral senescence more with warmer
temperatures (Figure 1.3e); and delayed flower initiation and senescence more with higher
moisture (Figure 1.3c, i) than occurred with later flowering species. The overall response and
success of early-season species could be controlled by multiple proximal effects of climate
change (Gezon et al 2016), but especially modification of snowmelt timing with the highest
coefficient driving flowering initiation and senescence (Table 1.6). This could simply reflect the
short window between snowmelt and flowering onset for early season species, which does not
afford time for other factors to contribute additional variation to alter flowering phenology.
However, contrary to what was found in a subalpine meadow (Dunne et al., 2003), flowering
duration was not extended by earlier snowmelt. This is consistent with what we found in our
alpine community as a whole; flowering duration appears to be a tightly conserved trait.

Resources are more completely used when individual species' peak demand is spread over the
growing season, leading to complementary phenological strategies (sensu Hooper, 1998; Korner,
1999; Loreau & Hector, 2001; Ackerly, 2003; Sherry et al., 2007). Changes in climate together
with species-specific phenological sensitivity and response strategies may translate to advantages
for some species and disadvantages for others. At the species level, we found the same general
response as the whole community; most species we examined advanced flowering onset and
cessation with heating, with mixed results for flowering duration. These findings are primarily
for the most dominant species in the community, as many could not be tested due to small
sample size. There were some notable differences in species response, however. In the forb,
Lloydia serotina, heating significantly expanded the duration of the flowering season, which we
expected was possible if flowering onset was earlier and senescence simply remained stable.
Watering appeared to counter heat-induced advancement of flowering initiation in Lewisia
pygmaea, this result was expected if heating dried soils, triggering a stress response in plants
causing them to begin the reproductive cycle. Watering reversed both the advance in senescence
and shortened duration caused by heating for the dominant forb Geum rossii; this could be due to
an extension of appropriate growing conditions provided by the treatments. In another forb,
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Erigeron simplex, watering alone delayed flower onset and expanded flowering duration; this
was an unexpected result but could be due to water-logged soils delaying initiation of bud
elongation and flower development. The other 11 species examined did not change flowering
duration (Table 1.7). If phenological responses alter reproductive success via lack of
synchronization in plant-pollinator relationships or cause shortened flowering and differential
reproductive success, this could result in new assemblage patterns. Similarly, increased
synchronization among co-flowering species can enhance interactions with pollinators
(Thompson, 1981; Forrest et al., 2010) and thus reproductive success. Remarkable consistency
amongst species in this study suggests that with warming, community phenology will largely
shift, and there will be little change in synchrony of flowering. Thus if pollinators can similarly
advance their phenology, plant-pollinator interactions could remain intact.

1.4.5 Conclusions —

Most studies to date that have attempted to understand effects of climate warming on alpine plant
phenology are incomplete because they did not assess the individual and combined effects of
temperature, snowmelt, and soil moisture and as a consequence could not explore the relative
importance of proximal climate variables. Our findings agree with other studies that show that
heating advances flowering phenology, but by using a fully factorial experiment in the alpine
tundra, and measuring these distinct proximal variables, we have also shown that heating
advanced alpine phenology primarily through advances in snowmelt, rather than via effects on
plant and soil temperature. This informs prior global findings from warming experiments in the
arctic and alpine tundra, which generally use passive chambers following snowmelt. We also
found flowering duration to be a generally conserved trait in this alpine site with few species or
functional groups expanding flowering duration to take advantage of a longer snow-free season.
Thus, this alpine community — and likely alpine communities more generally — appear to be less
able to capitalize on a longer growing season than lower elevation ecosystems. Continued
advance of the flowering season could alter plant-pollinator relationships and plant reproductive
success if insect pollinators respond in a different manner to environmental cues, but the largely
conservative nature of species and functional group flowering duration would help to maintain
flowering synchrony.

Our research demonstrates that realistic experimentation that maintains multi-factor responses to
enhanced infrared radiation can, in fact, predict plant community response to natural variation in
climate; the experimental warming produced similar advances in phenology as observational
studies examining time-series of observations (Wolkovich et al., 2012). Yet by analyzing
controlled experimental results together with observed plant sensitivity to spatial, interannual and
experimental variation in multiple climate factors, we were able to determine that in the alpine,
temperature is a less important predictor of phenological change. Water addition did not alter
flowering initiation or cessation, nor did it moderate effects of warming, suggesting that soil
drying is not as important to flowering phenology in this system as it is for productivity. Alpine
systems vary in summer moisture availability so such global differences in this variable can be
expected. Lifeform and species results suggest a complex community response to a changing
climate; according to microclimate results, longer-lived cushion and succulent species appear to
be less able to take advantage of a warmer climate and extend the flowering season, while forbs
and graminoids are more elastic and could potentially enhance reproductive success. This could
have implications for the community as a whole, particularly since cushion species have been
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found to facilitate neighbor recruitment. Further research focusing on alpine plant-pollinator
interactions and their implications for fecundity and recruitment under changing climate are
needed. Differential species responses will influence the composition of future communities,
which may in turn alter ecosystem structure and functions.
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2 Migration of trees into the alpine tundra: Alpine neighbors assist
late-seral but not early-seral conifer seedlings

Abstract

Climate change is projected to alter the altitude and latitude of the treeline globally, however
seed germination and seedling survival is a critical local control on the expansion or contraction
of treeline. The realized climatic conditions that colonizing seedlings will experience is a product
of both the ambient climate and interactions with plant neighbors. Recruiting conifers may have
to compete with alpine plants or they may be facilitated via protection from the intense alpine
environment by neighbors during establishment. To determine whether neighboring plant species
can alter the success of seedling recruitment into the alpine tundra ecosystem in the context of
climate change, we conducted a controlled replicated experiment with two treeline conifer
species. Within the alpine tundra on Niwot Ridge, CO, we imposed crossed active heating and
watering manipulations in a common garden experiment and removed neighboring plants from
emerging conifer seedlings and a naturally occurring mature alpine herb. Consistent with its late-
seral status, Picea engelmanii seedlings showed lower survival as compared with Pinus flexilis
three weeks following neighbor removal, and one year following only survived in watered plots.
P. engelmanii also had the highest instantaneous water use efficiency (WUE) of all three species.
Consistent with its early-seral status, limber pine seedlings were less sensitive to alpine
neighbors, and responded to neighbor removal by lowering the quantum yield of photosynthesis
(dbrsn), or reducing WUE when also heated. Contrary to expectations from the stress gradient
hypothesis, at the low stress and low elevation edge of an alpine herb’s range, survival of
Chionophila jamesii was lower without neighbors regardless of climate treatment. Results
suggest that P. flexilis has the highest invasion potential into the alpine tundra ecosystem due to
its ability to tolerate warmer and drier conditions, which appears to relieve the necessity of
neighbor facilitation, while Engelmann spruce will require neighbor facilitation to expand its
range. Given future climate change this could mean a range expansion for limber pine and a
concomitant land cover change with likely consequences for alpine plant diversity and ecosystem
function.

2.1 Introduction

Given the expected increase in global temperatures due to rising CO, levels, and the dependence
of treeline position on temperature clines globally (Korner, 1998; Paulsen et al., 2000; Korner
and Paulsen, 2004; Danby and Hik, 2007; Korner, 2012), alpine and arctic treelines are expected
to shift upward in elevation and latitude in the coming decades (Dullinger et al., 2004; Harsch et
al., 2009). This could result in substantial modification of current alpine plant community
composition and diversity, which is primarily dominated by graminoids, forbs, succulents and
low stature woody species (Korner, 1999). There is evidence of trees invading subalpine
meadows over the 20™ and early 21 centuries (Haugo et al., 2011; Durak et al., 2015; Lubetkin
et al., 2017), and of shrubs and trees beginning expand into the alpine (Harsch et al., 2009;
Formica et al., 2014). Invasion of trees into the alpine environment requires seed dispersal,
germination and successful establishment (Malanson et al., 2007). While temperature constraints
may be primary for growth of mature trees, environmental constraints on seedling establishment
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may be different from those that maintain adults; micro-scale climate factors may be more
important (Germino and Smith, 1999; Mabher et al., 2005; Smith et al., 2009).

Climatic conditions in the alpine such as low temperatures at night followed by high solar
radiation the following day have been found to cause conifer seedling mortality in the alpine-
treeline ecotone (Germino and Smith, 2000), and spring temperatures and soil moisture have
emerged as key drivers for tree seedling establishment across several ecosystems (Weisberg and
Baker, 1995; Ibanez et al., 2007; Walck et al., 2011; Millar et al., 2015; Loranger et al., 2016).

In the alpine, however, low-stature vegetation is structured to decouple from the free atmosphere
and the mat-like structure of alpine herbs therefore creates a boundary layer with a distinct
climate (Korner, 1999). This layer can reflect or absorb incoming solar radiation and thus
moderate daytime high temperatures, however proximity to the ground can also expose plants to
cold air pooling. Greater radiative losses to a clear night sky may also expose plants to more frost
events (Jordan and Smith, 1994; Jordan and Smith 1995b). Thus, the microclimate that migrating
tree seedlings would experience is different than that of adult trees because of proximity to the
ground and neighboring vegetation.

Assuming that viable seeds can arrive to the alpine from the treeline edge, establishment and
recruitment will likely depend on very local microclimatic conditions that can be modified by the
vegetation neighborhood (Germino et al., 2002; Smith et al., 2003). Interactions between species
such as competition and facilitation always co-occur, however depending on environmental
conditions one may predominate (Callaway and Walker, 1997). The stress gradient hypothesis
states that under more stressful abiotic conditions, facilitation may be more common between co-
existing species. At the highest edge of their stress gradient, germinating trees may experience
competition for resources (light, water, nutrients) from alpine neighbors (Moir et al., 1999;
Tingstad et al., 2015), or according to this hypothesis, alternatively may be buffered from
extreme environmental conditions in the alpine such as strong and desiccating wind (Hadley and
Smith, 1987), temperature extremes and intense solar radiation (Jordan and Smith, 1995a) by
neighboring alpine species (Weisberg & Baker 1995, Héttenschwiler & Smith, 1999; Germino et
al., 2002; Smith et al., 2003; Malanson et al., 2007; Batllori et al., 2009; Grau et al., 2013). Many
studies in the alpine-treeline ecotone have thus found patterns of seedling establishment
aggregated near neighboring vegetation such as grasses (Germino et al., 2002), on the leeward
side of tree islands (Héttenschwiler & Smith, 1999) or underneath abiotic shelters (Germino and
Smith, 1999) which may moderate temperature and soil moisture. In addition, experimental
shading and nocturnal warming as would be experienced under the cover of alpine vegetation,
had positive effects on photosynthesis in seedlings of Picea engelmanii and Abies lasiocarpa
(Germino and Smith, 1999). Under a climate change scenario, it is unclear how these microsite
biotic and abiotic interactions will be modified (Spasojevic et al., 2013) and is possible that
warming trends could counteract any benefit of overhead shelter.

The expansion of a species range may place pioneer individuals in a higher stress environment.
Previous work in the alpine treeline ecotone in the front range of CO has linked large-scale
subalpine conifer seedling mortality with low volumetric soil water content (Reinhardt et al.,
2015) and with drought stress in midday stem water potential, stomatal conductance,
photosynthesis, and respiration (Moyes et al., 2013). Further, summer precipitation was at least
as important as temperature in limiting growing season carbon gain in establishing subalpine
conifers at and above alpine treeline (Moyes et al., 2015).
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Instantaneous measurements of seedling physiology can indicate stress under recent or current
environmental conditions. The efficiency of photosystem II photochemistry (¢bpsy) provides a
measure of the rate of electron transport and can be used as an indication of overall
photosynthesis (Maxwell and Johnson, 2000). Under conditions of greater stress, more photons
will be deflected from the photosynthetic apparatus and the efficiency of photosynthesis will
decrease. Instantaneous photosynthetic water-use efficiency (WUE) is the ratio between carbon
gain in photosynthesis and water loss during transpiration. It is measured as the ratio of mass of
CO, fixed, to mass of water released into the atmosphere expressed as mg CO, g H,0 (Nobel
1980), and provides a measure of water stress. Under low stress conditions, the conductivity of a
plant’s vascular system and the atmospheric water demand are the main constraints on water use
(Lambers et al., 2008). However, when a plant is water stressed from heat, drought or
desiccation from wind (DeLucia and Schlesinger, 1991) there can be more water lost per carbon
gain, hence instantaneous water use efficiency can be used to estimate one component of in situ
plant stress.

The capacity to establish in a new environment depends, in part, on the life history traits and
physiological properties of a species (Dullinger et al., 2004; Maher et al., 2005). In the treeline
of the Colorado Front Range, Engelmann spruce (Picea engelmanii Parry ex. Engelm) and
limber pine (Pinus flexilis James) are widely distributed conifers that occur at high elevation up
to the treeline. Limber pine is a shade-intolerant pioneer species that can persist under
conditions of high solar radiation and dry infertile soils, while Engelmann spruce is a later
successional species tolerant of shade and adapted to higher moisture substrates. Lazarus et al.
(2018) found that limber pine is adapted to conditions of higher moisture stress, demonstrated by
higher intrinsic WUE, a slower growth rate and reliance on seed reserves as compared with
Engelmann spruce.

We experimentally tested how neighboring plants influenced the ability of these two species to
invade an intact alpine meadow in the context of climate change by using a climate change x
common garden x removal experiment in the alpine tundra at Niwot Ridge, CO. We also
compared the response of a native and mature alpine herb, Rocky Mountain snowlover
(Chionophila jamesii Benth), restricted geographically to the alpine tundra (Weber, 1976;
Ackerfield, 2015) and at the lower end of its elevational range, to the same treatments. We asked
two questions: 1) How do neighboring alpine plants affect survival and ecophysiology of tree
seedlings and a mature alpine plant? We predicted that the removal of neighboring alpine species
would have a negative impact on seedling ecophysiology (measured using ¢psy and
instantaneous WUE) in the short term, and lower survival in the longer term. Further, we
expected Engelmann spruce to be more sensitive to neighbor removal. 2) How do climate
manipulations alter these effects? We expected warming could relieve cold temperature
limitations but could also dry soils and thereby amplify the negative effects of neighbor removal
but watering would offset negative effects of drier soils.

2.2 Materials and methods

2.2.1 Experimental design —

We conducted our experiment at the alpine site within the Alpine Treeline Warming Experiment
(ATWE) on Niwot Ridge in the Front Range of the Colorado Rocky Mountains (40°3° 14.84”N,

27



105°35°37.71” W; 3540m), on a shallow south-southeast facing slope. The site is 400m above
the elevation of established trees, primarily of krummbholtz (stunted trees below 3m height) form,
with thin and rocky soils. The majority of precipitation falls as snow, and snow depth is locally
variable due to westerly winds and topography. Average annual precipitation and temperature
are 966 mm and -2.15°C respectively (Blanken et al. 2009). See Castanha et al. (2012) for more
details on site and Kueppers et al. (2017) for experimental design. Our alpine site is also located

at 3540 m, only 200 m above the lowest elevation range of the alpine herb, Chionophila jamesii
(Ackerfield, 2015).

Our fully crossed design included two arrays of twenty 3m-diameter plots assigned to four
treatment groups: control (C), heated (H), watered (W), and heated + watered (HW). Each plot
was divided into four 1x1 m’* quadrats. Six infrared (Mor Electric Heating, Comstock Park, MI,
USA) heaters (1000W each) were suspended 1.2m aboveground in hexagonal arrays surrounding
each heated plot (Kimball et al., 2007). The heating treatment delivered 215 W/m” under low
wind conditions, but in the alpine, high wind speeds diminished heating efficiency (Kimball et
al., 2007) and limited overall warming effects to +1.4°C (Kueppers et al., 2017). Once soil
moisture dropped below ~0.2m*/m’ (2-3 weeks after snowmelt), we applied 2.5mm of water
weekly to watered plots to compensate for soil drying due to heating, and to study the impacts of
increased growing season soil moisture. Annual water addition totaled ~ 30mm, which is roughly
20% of mean June—September precipitation from 1951-1980 on Niwot Ridge (Greenland 1989).

Each plot was divided into four 1x1 m* quadrats. One array of 20 plots was seeded in the fall of
2014 with locally collected (within 8 km) seed from forest and treeline, with seed of each species
and source elevation sown in a separate quadrat. In 2015, we selected 2 target individuals within
one of four quadrats for each Pinus flexilis (PIFL), or Picea engelmannii (PIEN), and removed
all neighboring alpine plants and spike moss within a S5cm radius around each target plant
seedling. For each quadrat and for each tree species selected, we chose 2 target individuals
designated for neighbor removal and 2 control individuals with neighbors intact (N = 40 per
species). For the alpine herb (Chionophila jamesii, CHJA) neighbor removal, the protocol was
the same except we used 1 target and 1 control individual (N = 20) in the second 20-plot
experimental array, which was not sown with tree seed. Survival assessments were conducted
twice: at three weeks for seedlings and at one-year following neighbor removal for both the
alpine herb and tree seedlings.

2.2.2  Measurements of physiological stress —

To determine whether experimental treatments affected the capacity of both seedlings and an
alpine herb to tolerate exposure to high light, we assessed efficiency of Photosystem II in situ
(dbpsn ) using a photosynthesis chamber with a fluorometer attachment (6400-40; Li-Cor
Biosciences). We measured the ratio of variable to maximum fluorescence, divided by
fluorescence in light saturation dbpsy = (F\/F,,)/F,, (Maxwell and Johnson 2000). Measurements
were performed at actinic red light (1500 pmol m > s "), with an additional 10% of blue light to
maximize stomatal opening, and 400 pmol CO2 mol ™' in the cuvette. Air temperature and
humidity in the chamber was set to match environmental conditions by the flow of air into the
chamber. Ultimately, the PIEN seedlings were too small (short) to reach the opening of the
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fluorometer chamber, so no fluorescence measurements were taken for this species. Short
segments of PIFL needles and CHJA leaf material were pressed flat in the chamber for
measurement. We collected fluorescence data between 9 am and 3pm during a 7-day period
from August 10-17, 2015.

To quantify the level of moisture stress the plants experienced under the experimental treatments,
we assessed the ratio of carbon gain during photosynthesis to water loss via transpiration as
water use efficiency in situ. We used the same LICOR photosynthesis chamber this time
analyzing gas exchange. During all gas exchange measurements, CO2 gas concentration was set
to 400 pmol CO2 mol ™' in the cuvette, and relative humidity and temperature were matched to
ambient conditions as above. Instantaneous water use efficiency (WUE) was calculated as:
photosynthetic rate 4 (umol C m™ s™)/transpiration E (mol Hy0 m™ s™).

To quantify the influence of treatments on the microclimate directly adjacent to target plants, we
collected soil temperature at the soil surface and percent volumetric soil water content over a 0-5
cm depth within a Scm radius of each target plant within 1-2 hours of the gas exchange and
fluorescence readings. These measurements were collected three weeks following removal
treatments.

2.2.3  Statistical analysis —

To assess survival three weeks following removal, we ran separate generalized linear mixed
effects models for each seedling species, including the water*removal and heat*removal
interaction terms as main fixed effects and plot as a random effect with a logit link and binomial
distribution (function Ime4::glmer in R3.3.2 package Matrix). For PIFL, the final model only
included the fixed effect of removal (because minimal change in survival prohibited a more
complex model fit). To evaluate survivorship at one year, we ran separate models for each of the
three species. Models for CHJA and PIFL included the same terms as above, but the model for
PIEN included only a water*removal interaction term (we separately evaluated a water*removal
and a heat*removal model because very low survival in unwatered plots precluded more
complex model fits). To assess effects on Pppsy and instantaneous WUE of each species in
various treatments, we again ran separate models for each species as above with heat*removal
and water*removal as main fixed effects and plot as a random effect, but with a gaussian
distribution and an identity link. Microclimate readings adjacent to plants were analyzed with a
similar model as above with data for the two species of seeding combined; the alpine herb
readings were analyzed in a separate model because it was located in an independent array.
Models were built using the Ime4 package and all graphics were developed in R (Bates et al.
2015, R Core Team 2014). We summarized the models using restricted maximum likelihood, z-
tests via Laplace approximation and t-tests via Satterthwaite approximations for degrees of
freedom (binomial and Gaussian distributions respectively). Significance levels were estimated
using Wald y” tests (car::Anova in R).

2.3 Results

2.3.1 Treatment effects —
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The heating treatment increased mean 5—10 cm soil temperature +1.4°C (+/— 0.03) and reduced
volumetric soil water content by —0.016 m® m™ (+/— 0.001) on average over the snow free
growing seasons of 2010-2014 in the seeded alpine plots (Kueppers et al., 2017). In the
unseeded plots, from 2010-2015, heating increased mean 5—10 cm soil temperature +1.2°C (+/—
0.07) and reduced volumetric soil water content by —0.012 m> m™ (+/— 0.0016) on average. The
watering treatment increased 5—10 c¢m soil volumetric water content in seeded plots by +0.008
m’ m” (+/— 0.001) and in unseeded plots by +0.025 m’ m™ (+/— 0.001). Three weeks following
removals, the instantaneous microclimate around seedlings was warmer in removal plots and
wetter in watered plots (Tables 2.1a & b). The microclimate around the native herb was cooler
in the watered and water*removal plots and warmer in removal and heat*removal plots (Table
la), and wetter in watered plots (Table 2.1b).

2.3.2  Survival —

In partial agreement with our hypothesis that neighbor removal would negatively affect seedling
survival, three weeks following alpine plant removal, PIEN survival was lower but PIFL was
unaffected. PIEN experienced lower survival when neighbors were removed (92% survival with
neighbors intact and 70% following removal; Table 2.2 & Figure 2.1) regardless of climate
treatments. Survival of PIFL was essentially unaffected with 98.5% survival regardless of
removal or climate treatment.

Seedling survivorship one year post-removal of neighboring plants also responded differentially
between the species. In agreement with predictions that PIEN would be more impacted by
treatments, the only PIEN survivors in heated plots were also watered; in fact PIEN seedlings
only survived in watered plots (Table 2.3 & Figure 2.2) regardless of removal. In the more
drought tolerant seedling species, PIFL, survivorship did not respond to any of the neighborhood
or climate treatments. For the alpine herb, CHJA, removal marginally (o < 0.1) reduced survival
(Table 3); a larger sample size may provide more confidence in this result.

2.3.3 Physiological response —

In agreement with our predictions that neighbor removal would reduce the efficiency of
photosynthesis, $dpsi was lower in PIFL seedlings with neighbors removed, but was not
impacted consistently by the climate treatments (Table 2.4, Figure 2.3). Conversely, for the
alpine herb CHJA, &psy; was unaffected by neighbor removal but was marginally reduced (o <
0.1) with additional heat.

Instantaneous water use efficiency was actually highest in PIEN (¢ = 5.85, p = 1.38¢”, Figure
2.4) as compared with PIFL and CHJA. Contrary to our expectations for any of the species,
instantaneous water use efficiency was reduced for PIFL when plants were warmed and
neighbors were removed (Table 2.5).
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Table 2.1a Linear mixed effects model parameter estimates for main effects and two-way
interactions for instantaneous surface soil temperature (°C) around seedlings and an alpine herb
three weeks following neighbor removal and within an hour of physiology measurements.

Seedlings CHJA

Coef SE X dat P Coef SE X df PXP)
Intercept 16.61095 1.42374 152339 12176
H -0.01552  1.64277 0.0069 1 0.93 | -2.2478 1.4025  0.6502 1 0.42
w -1.64503  1.64321 0.4923 1 0.48 | -1.6522 1.4025 3.8061 1 0.05
Removal 0.69 1.07961 5.9755 1 0.01 132 0.7959 104733 1 0.001
H*Removal 029 121806 0.0572 1 0.81 235 09054  6.764 1 0.009
W*Removal 1.17 122308 0.9159 1 0.34 | -1.8748 0.9054  4.2875 1 0.04

Table 2.1b Linear mixed effects model parameter estimates for main effects and two-way
interactions for instantaneous volumetric soil moisture (%) adjacent to seedlings and an alpine
herb at 0-5 cm depth three weeks following neighbor removal and within an hour of physiology

measurements.
Seedlings CHJA

Coef SE X df PX) Coef SE X df PXP)
Intercept 6.21 0.53808 6.46  0.9987
H -0.08134  0.61659 1415 1 023 | -1.1775 1.1417 0.0999 1 0.75
W 1.03  0.61746 115719 1 0.0007 3.86 1.1417 7.6344 1 0.006
Removal -0.43497 0.71031  0.2863 1 0.59 0.13 1.2322 0.0176 1 0.89
H*Removal | -0.99506 0.80167  1.5407 1 0.21 292 14018 43533 1 0.04
W*Removal 122 0.80482  2.2859 1 0.13 | -2.7348 14018 3.8061 1 0.05

Table 2.2 Linear mixed effects model parameter estimates for main effects and two-way
interactions for three-week survival of PIEN (Picea engelmanii) and PIFL (Pinus flexilis)
following neighbor removal within climate treatments. Wald y” tests and P-values, P(y’), were
calculated for effects of treatments and their interactions. Effects have only two levels, so the
coefficient for the level not shown is the same magnitude but opposite sign as the coefficient
listed. Plot was included as a random effect. Probability <0.05 is indicated with bold type.

PIEN PIFL
Coef  SE X df P Coef SE X df P
Intercept 2.03 0.83 8.82 324
H 036 086 060 1 044
w -1.10 091 003 1 086
Removal 287 102 1204 1 0.001 | 7.10E-07 149 0 1 1.00
H*Removal 006 1.08 000 1 096
W*Removal 153 112 186 1 017
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Figure. 2.1 Mean three week survival (+/- 1 standard error) of PIEN (Picea engelmanii) and
PIFL (Pinus flexilis) seedlings in the alpine following the removal of all neighboring plants
within 5 cm (see Table 2). The removal treatment is indicated with grey hashing.
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Figure. 2.2 Figure 2. Mean 1-year survivorship (+/- 1 standard error) of the two tree species
PIEN (Picea engelmanii) and PIFL (Pinus flexilis) seedlings, and an alpine herb CHJA
(Chionophila jamesii) one year following the removal of alpine herb neighboring plants. Plots
with heated treatments are depicted with red bars, blue bars depict watered plots, purple bars

depict heated + watered plots and the removal treatment is indicated with grey hashing (see
Table 3.)
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Figure. 2.3 Mean &pgy (+/- 1 standard error) for PIFL (Pinus flexilis) seedlings, and an alpine
herb CHJA (Chionophila jamesii) three weeks following the removal of neighboring alpine
plants. Plots with heated treatments are depicted with red bars, blue bars depict watered plots,

purple bars depict heated + watered plots and, the removal treatment is indicated with grey
hashing (see Table 4).
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Figure 2.4 Water use efficiency for PIEN (Picea engelmanii), PIFL (Pinus flexilis) seedlings,
and an alpine herb CHJA (Chionophila jamesii) three weeks following the removal of
neighboring alpine plants. Plots with heated treatments are depicted with red bars blue bars
depict watered plots, purple bars depict heated + watered plots, and the removal treatment is
indicated with grey hashing (see Table 5).



2.4 Discussion

2.4.1 Stress gradient hypothesis and neighbors —

Prior studies have found seedling establishment to be idiosyncratic according to species life
history and physiology (Loranger et al., 2016). While native alpine vegetation has been
traditionally thought to compete with tree seedlings for resources including nutrients, light and
water (Billings, 1959; Tingstad et al., 2015), relatively new evidence suggests positive
associations between plant neighbors including shrubs, krumholtz trees and grasses with tree
seedling density and survival (Weisberg & Baker, 1995; Hittenschwiler and Smith, 1999;
Germino et al., 2002; Smith et al., 2003; Grau et al., 2013). This suggests neighbors can facilitate
tree seedling recruitment through several potential mechanisms: reducing incoming IR, buffering
intense and drying wind (Hattenschwiler and Smith, 1999), shading soils or enhancing soil
moisture.

At the upper edge of the stress gradient for tree seedlings, the presence of plant neighbors
appears to enhance survival in the alpine environment for the moisture and shade tolerant conifer
species Engelmann spruce. These seedlings perform better with neighbors intact as they showed
greater survival in the first 3 weeks with neighbors, which could be due to a warmer
microclimate in removal plots (Table 1a). Engelmann spruce seedlings and saplings in the
alpine-treeline ecotone of the Medicine Bow Mountains occurred most frequently near islands of
adult trees (Germino et al., 2002). This could be due to protection from cold nighttime
temperatures found to kill spruce seedlings (Helmers et al., 1970). In addition, Maher et al.
(2005) observed that tree and herb cover had additive effects on survivorship and photosynthesis
of conifer seedlings (including Engelmann spruce) except under alleviated water stress
implicating soil moisture as we found in this study, discussed below.

Inconsistent with our expectations, limber pine survival was not harmed by neighbor removal,
but also was not enhanced, suggesting neutral interactions with neighbors. Given its ability to
tolerate xeric conditions on exposed slopes, this result is reasonable (Rebertus et al., 1991; Letts
et al., 2009). Donnegan and Rebertus (1999) also found solitary pines with no spruce or fir
neighbors had a greater chance of survival than individuals within clumps of six or more trees.
Despite its clear tolerance for high light, because this conifer species has not yet invaded the
alpine, we presumed that neighbors would provide some moderation of the harsh alpine
environment. Indeed, neighbor removal reduced photosynthetic efficiency indicating seedlings
experienced some elevated level of stress but not enough to cause mortality. Perhaps its high
survival rate is due to its capacity to engage in photo-protective mechanisms as has been
demonstrated for low temperature tolerance in other conifers (Germino and Smith, 1999;
Germino and Smith, 2000). Second, when limber pine seedlings were heated and neighbors
were removed seedling water use efficiency was lower which could indicate a lowered stress
environment. Since this is unlikely, lowered photosynthesis could explain reduced water use
efficiency consistent with the in situ dpsy response (Figure 2.3). In another study at this site,
Moyes et al. (2013) found lower rates of growth and maintenance respiration at high temperature
in warmed plots, which suggested respiratory but not photosynthetic acclimation to warmer
growing temperatures.
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Situated just above treeline our site was ideal for testing the low-elevation edge of the alpine
stress gradient on Niwot ridge for the native herb mountain snow lover. Our alpine site is
located at 3540 m, only 200 m above the species lowest elevation range (Ackerfield, 2015).
Contrary to expectations from the stress gradient hypothesis, which would predict benefits from
neighbor removal in the lower elevation alpine (Callaway 1995, Callaway and Walker 1997,
Callaway 1997), we found no benefits, and even negative effects of removal on survival of this
alpine herb. Presence of neighbors was important for survival of Rocky mountain snowlover
regardless of climate treatment even at this low elevation edge of its altitudinal range, suggesting
facilitation is still the predominant interaction.

2.4.2  Microclimate and climate change —

Engelmann spruce success in the alpine ecosystem also appears to be influenced by the local
microclimate. Of all species studied, we predicted Engelmann spruce would be most affected by
the alpine environment due to its tolerance of high soil moisture and shade (Kauffman and
Eckard, 1977; Gill et al., 2015). In comparison, limber pine displays an adaptive response to
drier conditions by maintaining a generally high intrinsic WUE (Lazarus et al., 2017).
Symptomatic of severe water stress, three weeks following neighbor removal, Engelmann spruce
displayed the highest instantaneous water use efficiency of all three species. In order to conserve
water Engelmann spruce seedlings maintained higher WUE than expected based on prior
measurement over lifetime of a seedling of this species in the alpine and treeline environments
(Lazarus et al., 2017). Thus soil moisture availability is likely limiting Engelmann spruce in the
alpine. Further, spruce only survived in watered plots, regardless of other treatments, over the
one-year timeframe of the study. Since these plots were also moister (Table 2.1b), greater
survival in moister plots is also consistent with water limitation. In another study at this site,
warming reduced Englemann spruce recruitment above the treeline primarily due to soil drying
(Kueppers et al., 2017). Similarly, photosynthesis and respiration were highest for potted spruce
seedlings at moisture deficits less than 10% (Ronco, 1970). Indeed, in other subalpine forests,
spruce was less drought-tolerant than pines and therefore expected to require amelioration of the
environment before it could colonize (Donnegan and Rebertus, 1999).

Zurbriggen et al. (2013) found that seedling success of a number of tree species was not limited
by current climate above treeline. In our study, local climatic modification did not significantly
alter limber pine seedling survival over one year, reinforcing the idiosynchratic nature of species
responses and suggesting that limber pine may possess adaptive mechanisms to deal with the
alpine environment particularly in the context of climate change. Limber pine seedlings are
generally larger and have deeper roots than Engelmann spruce (Lazarus et al., 2017), which may
allow them to better tolerate both drying associated with warming and the alpine environment
without protection from neighboring species.

For an alpine herb, we predicted that heating would relieve abiotic cold stress and make plant
associates less important (as in Callaway et al., 2002). Removal of neighbors did lower
survivorship, but the addition of heat did not change mortality. Although over the growing
season, heating did increase 5-10 cm soil temperatures, according to instantaneous temperature at
the soil surface adjacent to plants following removals (Table 2.1a), warmed plots were not
significantly warmer. Given these plants are relatively long lived, it is possible that treatments
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were not strong enough or that the timeframe of exposure (one year) was not long enough to
elicit a response.

2.4.3 Implications for treeline shifts —

The combination of warmer and wetter conditions in Rocky Mountain National Park have been
associated with spruce and fir migration into the forest-tundra ecotone in the last 150 years
(Hessl & Baker, 1997). Understanding the mechanisms that support success in early stages of
tree establishment is critically important for projecting the impact of climate change on future
tree ranges and potential re-organization of alpine community composition. Biotic associations
provided by neighboring species appear to be important for a later-seral conifer, but not as
relevant for an early-seral species. In our study, Engelmann spruce demonstrates low invasion
potential; all spruce seedlings perished except those that were watered, suggesting a major
constraint involves soil drying associated with projected warming. Thus success may depend on
the actual realization of future temperature and summer precipitation. Limber pine seedlings are
larger, have deeper roots, grow more slowly, and exhibit a higher WUE than Engelmann spruce
(Lazarus et al., 2017), which may allow them to better tolerate drying associated with both
warming and neighbor removal and provide a physiological advantage for migration into the
alpine environment. This species may be able to avoid potential competition by recruiting into
vegetation gaps.

This study complements niche models and demography studies, which suggest a reduction in
Engelmann spruce’s current range in the coming decades (Dobrowski et al., 2015; Kueppers et
al., 2017), because it highlights the benefits of biotic association for the leading edge of
Engelmann spruce recruitment. This upper edge of its range could be broadened via biotic
associations with neighbors which are not limited to but may include shading, which reduces soil
drying and needle desiccation, wind buffering and reduction of incoming solar radiation. Even
without enhanced precipitation, the alpine will likely become more invasible for limber pine due
to its ability to tolerate low moisture conditions. This structural community change will likely
have implications for future alpine ecosystem function and biodiversity (Malanson et al., 2007).
The result of these shifts could result in ecosystem services more akin to those of a mature forest
system such as: greater coupling with the free atmosphere (Germino and Smith, 1999), carbon
sequestration and a greater albedo (Jackson et al., 2008) which in turn can impact feedbacks
(Bonan et al., 2008) into the climate system.
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3 Slow alpine tundra vegetation change in the Ruby Mountains of
Colorado

Abstract

Climate warming is expected to acutely affect high elevation temperature sensitive ecosystems,
which have already experienced a greater rate of temperature rise in the last 50 years. We report
the response of alpine vegetation to climatic variability and trends for a GLORIA (Global
Observation Research Initiative in Alpine Environments) target region in the Ruby Mountains of
Colorado. Local climate is changing, evidenced by increasing winter temperatures and earlier
snowmelt during the last 40 + years. Consistent with the perennial life histories of plants in this
alpine community, we found moderate change in plant community trends over time as well as
inter-annual variation, which correlated with climatic variability. Community-wide vegetation
cover decreased while species richness increased from 2008 to 2017. The vegetation community
composition was organized by aspect and summit but did not change over time. A non-
significant trend of increased species with a warmer thermal niche was found on the lowest
summit, while colonization by cold-adapted species appears to be occurring on other summits.
One short-lived forb and two grasses decreased cover over time. The relatively limited changes
that did occur suggest slow trailing edge dynamics since long-lived species changed very little,
while increased richness suggests potentially faster transformation on the leading edge, at the
highest elevation site. Rising winter temperatures and decreased snow duration will likely cause
longer-term changes in vegetation but may take time due to the long-lived nature of these plant
communities.

3.1 Introduction

The temperature signal associated with anthropogenic climate modification appears to be
amplified in high elevation alpine ecosystems (Giorgi et al., 1997; Rangwala and Miller, 2012;
MRI 2015). By some estimates these high elevation systems have experienced an approximately
1.2 times faster rise in annual mean temperatures than lower elevation sites, measured by
weather stations greater than 500 m above sea level over the period 1961-2010 (Wang et al.,
2014; Wang et al., 2016; but see Oyler et al., 2015). Further, spring warming for high-elevation
stations in the European Alps has been 3.5 times greater than the corresponding northern
hemisphere temperature rise over the last three decades (Marty & Meister, 2012), suggesting
alpine tundra communities may be disproportionately impacted by climatic changes (Canone et
al., 2007; McCain and Colwell, 2011). These alpine communities can also be sensitive
indicators of climate change because of tight phenological coupling to a short snow-free growing
season (Korner, 1999; Petralgia et al., 2014; Prevéy et al., 2017) and the greater relative
sensitivity of biological and chemical processes occurring in colder temperatures (Kirschbaum,
1995). Conversely, because most alpine plants are long-lived perennials, and are adapted to
substantial daily temperature fluctuations during the growing season, they may not respond to
short-term oscillations in climate, but rather their response may lag behind longer-term climatic
trends (Svenning and Sandel, 2013).

41



Such lags in the response of species to realized or predicted climatic change has been described
by disequilibrium dynamics (Svenning and Sandel, 2013), and occurs when a particular
vegetation assemblage or an individual species is out of equilibrium with suitable climatic
conditions, creating an extinction debt (Dullinger et al., 2012a). This discrepancy can be
explained by extinction lags at trailing edges or dispersal and establishment lags at leading edges
of species ranges caused by a host of mechanisms including biotic interactions (Alexander et al.,
2017). Further, both landscape level and small scale micro-topographic heterogeneity can buffer
against loss of climatically suitable habitat and provide refugia for some species (Sherrer and
Korner, 2011; Opedal et al., 2015). Despite the potential for disequilibrium, both range
expansions (Pauli et al., 2012) and range contractions in mountain systems have been
documented (Pauli et al., 2007; Moritz et al., 2008; Lemprecht et al., 2018). Further, there
appears to be variability amongst eco-regions including Mediterranean alpine zones and boreal
or temperate systems based on differences in moisture regime (Pauli et al., 2012).

Ultimately, changes in plant community assembly can be expected from shifts in individual
species abundance or distribution resulting from climate change. Indeed, plant species adapted to
warmer climates have either shifted upward in altitude or increased in relative abundance in a
process termed thermophilization (Gottfried et al., 2012; Lemprecht et al., 2018), in synch with a
global temperature rise of 0.13°C per decade in mountainous areas (IPCC 2013). Although
incomplete range filling is common even following post glacial migration (Dullinger et al
2012b), climatic changes will likely cause relative shifts in species dominance partly resulting
from in-filling from the local species pool. Mountain aspects, which differ in thermal
accumulation, have been found to be a strong determinant of vegetation patterns and also the
pace of climate-induced changes in plant distributions (Winkler et al., 2016a). The impacts of a
changing climate may be more pronounced in some vegetation types than others, such as
particular life forms (De Valpine and Harte, 2001; Winkler et al., 20165). Finally, changes in
community composition can have cascading effects on ecosystem processes such as soil carbon.
For example, in an actively heated subalpine site, forbs are being replaced by shrubs (Harte and
Shaw, 1995), which has impacted the soil carbon budget (Seleska et al., 2002) and will
ultimately impact feedbacks to the climate system (Harte et al., 2015).

In order to track changes in alpine plant communities using a standardized approach, the Global
Observation Research Initiative in Alpine Environments (GLORIA) network was established in
2001 (Pauli et al., 2015). This network has already demonstrated changes in richness, vegetation
cover, range expansion and thermophilization in alpine plant communities as noted above
(Gottfried et al., 2012; Pauli et al., 2012; Winkler et al., 2016a; Lemprecht et al., 2018). As part
of the larger network, we collected data from four summits over a 10-year period at a GLORIA
“target region” in the Ruby Range of the Elk Mountains of Colorado, to assess several questions:
1) Has alpine plant cover or richness changed over time, and are certain aspects or summits
driving that change? 2) Is observed variation in cover or richness correlated with inter-annual
climate variability or long-term climate trends? 3) Is there a change in community composition
over time, driven by particular lifeforms, or species? 4) Has there been a change consistent with
a thermophilization effect — an increase in cover or abundance of montane and treeline species
and a decrease in alpine and nival (from regions of perpetual snow) species?
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3.2 Methods

3.2.1 Study area —

In 2007, we established a target “region” which includes four summits at four different
elevations in the Ruby Range of the Elk Mountains in Gunnison County, Colorado within the
GLORIA project network following the multi-summit approach; i) Treasury high (TRH, 4023 m)
is located approximately 150 m below the true summit of Treasury Mountain characterized by a
mixture of loose rock and cryptobiotic crusts with heterogeneous distribution of alpine flora. ii)
Ruby mountain (RUB, 3854 m) is characterized by very steep scree slopes on south and east
aspects and relatively dense turf-like vegetation. iij) Cinnamon mountain (CIN, 3747 m) is
characterized by scree slopes on all sides, and iv) Treasury low (TRL, 3,566 m) is located on the
saddle between Treasury mountain and Cinnamon mountain, just above upper treeline with a
small patch of krummholz-form Engelmann spruce approximately 10 m below the east aspect of
the summit. The area is mostly loose scree with very sparse vegetation, and the north-facing
slope is very steep with outcrops of metamorphic rock.

3.2.2 Vegetation data collection and classification —

Vegetation was sampled according to the GLORIA multi-summit approach (Pauli et al., 2015).
Beginning in the growing season of 2008, at each summit a 3 x 3 meter grid was established on
aspects facing each cardinal direction 5 m below the summit peak. In each of the four corners of
the grid a 1 m” quadrat was used to visually estimate total vegetation cover of all vascular plant
species and a common spike moss, Selaginella densa (Rydb). The GLORIA protocol suggests a
resampling period of every 5 years. However, to determine whether variation in inter-annual
climatic conditions could cause short-term fluctuations in vegetation cover, in the first 5-year
period we conducted annual re-surveys to understand the level of inter-annual variability and to
more clearly detect long-term trends. This resulted in vegetation surveys in six years over a 10-
year period including: 2008, 2009, 2010, 2011, 2012 & 2017. Surveying 4 quadrats for each of 4
aspects, for 4 summits over 6 years provided a total of 384 quadrat-year samples.

To determine if particular lifeforms changed over the course of the survey, species were
categorized into one of the following classes: cushion plant (mat-forming, prostrate forbs and
true cushions), forb, graminoid, “moss” (the spike moss — Selaginella densa), shrub and
succulent. To determine the altitudinal rank of a species for the thermophilization (the increase
in abundance or cover of species with a warmer, lower elevation thermal niche) analysis, we
followed the protocol of Gottfried et al. (2012) and used a standardized flora for Colorado
(Ackerfield et al., 2015) to provide an elevation range and habitat description for each species.
We modified the altitudinal rank system from Gottfried et al. (2012) (Supplemental Table 3.1) to
accommodate the available information for species present in the Colorado flora, and assigned
ranks 1 — 6 for each species based on both elevation range and habitat description (Supplemental
Table 3.2). Species with a strictly nival distribution center were assigned to rank level 1, and
lower elevation species undifferentiated in distribution from montane to treeline were assigned a
rank level 6 (Supplemental Table 3.1; Gottfried et al., 2012). A weighted average for all species
in each quadrat was then calculated, using assigned ranks, to generate the thermic vegetation
indicator S using the formula:

S = (Xrank(species;)x cover(species;)y 2cover(species;)
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Differences in the thermic vegetation indicator, S, between 2008 and all subsequent
survey years were used to quantify conversions in the plant community, and termed the
thermophilization indicator, D, defined by the formula (D = Sycarj — S2008). Positive differences
indicate increased cover (or immigration) of thermic species with a higher altitudinal rank, or the
decline or loss of cryophilic species with a lower rank (Gottfried et al., 2012). Negative
differences would indicate the reciprocal: increased cover or colonization of cryophilic species
with a lower altitudinal rank or the decline or loss of thermic species with a higher rank.

3.2.3 Environmental variables —

To characterize inter-annual climate variation, we used publicly available data from daily
observations at a measurement station at the north edge of the Rocky Mountain Biological
Laboratory (RMBL), approximately 8-10 km from the summits and 600 m lower in elevation at
2900 m (barr, 2018). We used i) total annual snowfall (snow total), ii) the date the ground was
completely snow free (hereafter termed snowmelt date), and iii) monthly average maximum and
minimum air temperature measurements for all months each year (2000 — 2018) and just for
winter months November through April (1975 —2018) as measures of inter-annual variability.
Summit weather stations and soil temperature loggers in the 3 x 3m plots showed long data gaps
due to battery failure, lightning damage and frost heaving, and were not used in this analysis.

3.2.4 Data analyses —

To understand the variability and trend of ambient climatic conditions during a longer-term
period while vegetation was establishing, we ran simple linear regressions of maximum and
minimum winter temperature, snow total, and snowmelt date against year from 1975 — 2018 (a
~40 year record). To determine whether vegetation cover and richness changed during the survey
period, and, whether that change varied by summit or aspect, we used a linear mixed model to
predict community-wide vegetation cover with the main effects of year, summit and aspect with
the random effect of quadrat nested within plot.

To assess whether change in cover or richness were driven by climate variability, we first ran a
correlation analysis to determine which climate variables were correlated (Supplemental Table
3.3). To evaluate which climate variables best predicted cover and richness, we compared several
models with cover and richness predicted by each individual climate variable and multiplicative
models including paired uncorrelated (correlation threshold <0.3) climate variables and two-way
interactions of: snow total, snowmelt, growing season- (May through August) and winter-
(November through April) minimum and maximum temperature using Akaike's Information
Criterion (AIC) with the stats package in R. To further assess model fit, we calculated Akaike
weights (MuMin package in R) and A AIC for each model formulation.

To assess changes in community composition we used Nonmetric Multi-dimensional Scaling
(NMDS) ordination to visually compare community composition among summits using the
metaMDS function within the vegan package in R. Relative cover was first calculated by
dividing each species cover value by total quadrat cover. For this community dataset, we chose
Sorensen (Bray-Curtis) distance, a proportional city-block distance measure capable of handling
datasets with multiple zero values (McCune and Grace 2002). Statistical analyses of community
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composition predicted by summit, aspect and year were performed in R using a Permutational
Multivariate Analysis of Variance (PerManova) with the adonis function. Both the ordination
and the PerManova are non-parametric and suited to community data, which is often non-normal
and contains many zero values (Peterson and McCune 2001, McCune and Grace 2002).
PerManova allows partitioning of variance of the distance matrix while preserving the
distribution-free qualities of non-parametric tests. The test statistic is calculated directly from
the distance matrix, and p-values are obtained using random permutations of the data (Anderson,
2001).

To further evaluate composition changes, and assess whether lifeforms changed over time, we
ran a linear mixed model predicting community wide cover by the fixed effects year, lifeform
and year*lifeform with a random effect of quadrat nested within plot. We also assessed
individual models of richness by time for each summit. To understand whether the proportion of
cryophilic species in plots changed over time, or whether thermophilization had occurred, we ran
a linear mixed model predicting S, the thermic indicator, by year, summit and aspect with a
random effect of plot. As a final measure of compositional change amongst individual species,
we also analyzed models of individual species with time for species present in all years and
present in at least 20 quadrats with a random effect of aspect. Linear mixed models were built
using the /me4 package and all graphics were developed in R (Bates et al., 2015, R Core Team
2016). Significance levels were estimated using Wald ¥ tests (car::Anova in R).

3.3 Results

3.3.1 Inter-annual variability and trends in climate —

According to the weather station at RMBL in the Ruby mountains of Colorado, maximum and
minimum winter temperatures have increased during a 43-year period between 1975 and 2018
(r* =0.07, slope = 0.12, p(t) = 4.21x10°° and = 0.04, slope = 0.08, p(t) = 0.0006 respectively,
Figure 3.1c & d). In addition, snowmelt date decreased weakly (* = 0.08, slope =—0.3, p(t) =
0.06) but total snow accumulation did not change significantly during the same period (Figure
3.1a&Db).

3.3.2 Trends in vegetation cover and richness —

Vegetation cover declined over the decade of sampling, while richness increased, and both
differed summits and aspects (Table 3.1, Figure 3.2). Ruby and Treasury high had the highest
cover while Treasury high had the greatest richness (Figure 3.2), and Treasury high had the
greatest richness increase over time (y°=24.96, p = 0.000001).

Climate variability explained community-wide vegetation cover and richness trends. The AIC
model comparisons showed maximum winter temperature was the most predictive variable
(Table 3.2) for community level vegetation cover and significantly correlated with an overall
decline in cover over the time period (Table 3.3). The combination of winter maximum and the
interaction of winter maximum and minimum temperatures best predicted richness (Table 3.3).
Winter maximum temperature correlated with an increase in richness.

3.3.3 Community changes and organization —
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Community composition did not change over time (¥ = 1.5, df =1, P(f) = 0.1), but was organized
by summit (F =31.3, df =3, P(f) = 0.001) and aspect (F = 14.7, df =3, P(f) = 0.001; Figure 3.3).

Within this alpine vegetation community, lifeform classification predicted vegetation cover, but
the interaction of year with lifeform did not (Table 3.4). Most lifeforms followed the community
wide pattern and decreased in cover over time. Forbs were the most dominant lifeform.

The thermic vegetation indicator, S, did not vary over time, but did vary by summit (x*= 14.2, df
=3, p=0.003) and weakly by aspect ((x*= 6.8, df =3, p = 0.08). Thus, the mean
thermophilization indicator, D, exhibited a non-significant negative trend, indicating a shift
towards lower thermic indicator values between resurvey years and the baseline year of 2008
(Figure 3.5).

We recorded 89 species across the four summits. Twenty-seven of these species were present in
all years and in at least 20 quadrats providing sufficient data to perform individual mixed
models; of these, three significantly declined in cover over time: one biennial forb, Androsace
septentrionalis (weakly significant: y*= 3.63, df= 1, p = 0.06), and two grasses Festuca
brachyphylla (x*=9.42, df= 1, p = 0.002), and Trisetum spicatum (x*=4.20, df= 1, p = 0.04).

Table 3.1 Linear mixed effects model parameter estimates for main effects and all two-way
interactions for community wide cover and species richness predicted by year, summit and
aspect. Wald y” tests and P-values, P(y°), were calculated for fixed effects and the random effect
included quad nested within plot. Probabilities <0.05 are given in bold type.

Cover Richness
Coef SE xX df P Coef SE daf P
Intercept 3.12 1.58 -0.13  1.37
Year -0.12 0.13 9.59 1 0.002 0.06 0.07 48.64 1 3.07e-12
Summit 12.05 3 0.01 91.68 3 <2.2e-16
RUB 0.52 1.51 2.61 1.47
TRH 0.57 1.36 6.79 1.46
TRL -0.90 1.69 -0.11 146
Aspect 1291 3 0.005 2024 3 0.0002
N -1.47 1.15 397 146
S -0.08 1.27 -0.67 147
\% 1.11 1.11 290 1.46
Summit x Year 0.04 3 1.00 2259 3 4.91e-05
RUB x Year 0.01 0.12 0.10 0.07
TRH x Year 0.02 0.11 0.29 0.07
TRL x Year 0.02 0.14 -0.004 0.07
Aspect x Year 1.77 3 0.62 1.62 3 0.66
N x Year 0.07 0.09 -0.02  0.07
S x Year -0.01 0.10 0.03 0.07
W x Year -0.03 0.09 0.07 0.07

46



100°0> v +0S°6S L9°€CL] UIAIMMOUS + UTAM +3]W | [00°0> ¥ SI'PE GG T8SEl UIA[S 4 MOUS + UIAIS + MOUS
10000> v S68¥S 90°61L1 UIAS4MOUS + UIAS + Mous | 100°0> ¥ 8TI¢ 89°6LSE1 UHAIM 4 MOUS + UTJAM + MOUS
10000> T o6VI'¥bS 1€8ILI Mmous | 100°0> v L0'9C LY'PLSEL UIAI M4 MMOUS + UTAIM + [l
100°0> T T8S'8¥Y SLTILI W | 000> T S00C S'896¢€1 Aous
10000> v 6V9°LY I8 TILI UM XBIAS + UTAM + XBINS | 100°0> +  €€91 ELYISE] UIA/M 4 XBIAS + UTJAIM + XBIAS
10000> v L69°¢h 98°LOLI UIAIMMOUS + UM + MO0US | T00°0> ¢ $9°C1 PO v9SEl o
100°0> T 98¢y SS90LI UM | T00°0> ¢ 0T°¢l 09°196¢1 XeN3
100°0> ¢C IS6'0¥ CI'SOLI XeNS | €00°0 ¢ €011 €V 65S¢El UIng
100°0> T 19§9C €L°0691 s | €00°0 ¢ €601 £€°655¢1 RIS AG
10000> T L6T'8I 9Y"C891 XBJNM | SO0 AN A4S G8¢SSEl UM XBIAM + UM + XBIAM
90°0 ¥ ELY'S ¥9°6991 XBINM; XBIAS + XBAM + XBNS | $7°0 ¥ LIT LS 0SSET XBINM; XBIAS + XBJAM + XBINS
60 ¥ 0 LT'¥991 UM XBINM + UIAIM + XBIAM | TL°0 ¢ 0 0¥ 81SEl XBJNM
M o1y Vv oIV [oPOIN "M 1 oV y )\ [oPON
WVA.NQQU.NWN RN\»QD

"PAIUdsaId 1930 01 dANR[AI 11J 159q Ay} Surdq [dpow [Ied Jo A11qeqold ay} 2Jed1pul YOIyM ‘SIYIIoM Iy I ‘M ‘SanfeA

UOLIILI)) UONBULIOJU] Iy a1t DIV 10[d urgiim pajsau penb Jo 100130 wopuel e papnjoul sjopow [[y sarnjerddwd) (Xopym ‘utpym)
IomuIm pue (X3 ‘urpy3) uoseds 3uIMoI3 WNWIXeW PUB WNWIUIW ‘(772ul) JJOWMOUS ‘(Mous) [8J0) MOUS :JO S}I9JJ9 10J pIje[nofes
a1oM ‘(X)d ‘son[eA-d pue sisd) X Pl 'S)99JJ0 UIEU S SUOTORIIUI AeM-0M) [[& PUE A)IGELIEA QJRWI[O [ENUUE-IONUI JO SOINSLOW
JUQIJIP AQ SSQUYILI PUB JOA0D UONEIOZIA [QAJ[-Aunuuod 3undrpaid suosuredwod [9powr S30919 POXIW JBUI] JO SINSY '€ dqBL

47



Table 3.3 Linear mixed effects model parameter estimates for main effects of community wide
i) cover predicted by winter maximum temperature and ii) richness predicted by winter max and
minimum temperature with a random effect of quad nested within plot. Wald y” tests and P-
values, P(x’) are shown; probabilities <0.05 are given in bold type.

Cover Coef SE X2 df PX"2)
Intercept 2.45 0.24

Winter Max Temp -0.20 0.05 1549 1 0.00008
Richness

Intercept -6.98 2.36

Winter Max Temp 5.06 0.89 2918 1 6.61¢-08
Winter Min Temp -1.24 0.23 0.69 1 0.40
wMinTemp x wMaxTemp 0.49 0.09 2920 1 6.519¢-08

Table 3.4 Linear mixed effects model parameter estimates for main effects of community wide
cover predicted by year, lifeform and the interaction of lifeform and year, with a random effect
of quad nested within plot. Wald * tests and P-values, P(x’) are shown; probabilities <0.05 are
given in bold type.

Coef SE X"2 df PX"2)

Intercept 2.82 0.45
Year -0.09 0.03 879 1 0.003
Lifeform 504.78 5 <2e-16

cushion | -1.82 1.19

graminoid | -0.15 0.76

moss 4.82 1.45

shrub 6.44 1.56

succulent | -2.19 2.04
Lifeform x Year 1.07 5 0.96

cushion x year 0.07 0.10
graminoid x
year 0.01 0.06

moss x year | 0.009 0.123

shrub x year 0.07 0.13
succulent x
year 0.11 0.18
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3.4 Discussion

3.4.1 Vegetation patterns with climate and over time —

Over the course of the decade of observations, community wide vegetation cover decreased
while species richness increased, and maximum winter temperatures increased. Observed losses
in plant cover could be a product of higher total snow accumulation in the baseline year, 2008
(Figure 3.1), causing higher cover in the baseline year, however since higher cover best
correlated with cooler maximum winter temperatures, this alternate hypothesis is unlikely. Using
a large number of digital herbarium records (2,468) for angiosperm taxa throughout North
America, mean maximum temperature was the best predictor of phenology, out of 25 climate
parameters assessed (Park and Mazer, 2018). Another GLORIA site in the Alps on Mt
Schrankogel also documented a community level decrease in cover and increased richness
(Lemprecht et al., 2018) in keeping with our findings here for the Ruby Mts. Further, resurveys
of historical plots on 26 summits in the Alps and Australia in 1992 found an increase in richness
(Grabher et al., 1994), and several other GLORIA studies have also found a trend of increased
species richness, though not always site-wide increases. Studies have found richness increases
only on the lowest summit (Michelsen et al., 2011), differences amongst regions (Pauli et al.,
2012), or at the upper elevation edge (Pauli et al., 2007) suggesting expansion at the leading edge
for alpine pioneers. At our site, an increase in species richness could be a product of improved
sampling efforts from greater knowledge of the community over time, or considered with lower
it cover could suggest colonization events occurring and thus more, smaller (and younger)
individuals comprising cover estimates.

3.4.2  Thermophilization not in the direction expected —

The thermophilization analysis provides a few clues to the drivers of species shifts. Instead of a
positive thermophilization indicator, as would be expected if lower-elevation species were
colonizing (or increasing cover, Gottfried et al., 2012) we found consistently negative
differences (D) between the baseline and subsequent sampling years at three of the four summits.
Despite a lack of “thermophilization” our results could nonetheless be a product of climate
change. Cinnamon mountain (CIN) had a particularly negative thermophilization index, but with
scree slopes on all sides it could be gaining cryophilic plants, simply adding plants where none
existed before, or existing cryophilic plants may be increasing cover (Figure 3.4b). Cryophilic
species colonizing higher, colder slopes thus may still be reflective of higher elevation locations
becoming more suitable for plant life in a warming climate (Pauli et al., 2007). Further, it is
likely that more than one process is occurring. On the lowest elevation summit, Treasury low
(TRL), thermophilization may be occurring demonstrated by a positive thermophilization
indicator and an increase of warmer ranked species (or cover, Figure 3.4b). Such conversion
was also found at the lowest, least rugged summit at a GLORIA target region in the Alps
(Lemprecht et al., 2018), and is consistent with an expansion of species ranges upslope (Pauli et
al., 2012), and also consistent with dispersal limitations at the leading edge of species ranges
(Alexander et al., 2017).

3.4.3 Aspect as an organizing factor —

I show that the composition of the alpine plant communities on four summits at our site in the
Ruby Range of Colorado is organized by summit and aspect (Figure 3.3). Mountain aspect was
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correlated with temperature sums for 123 summits in 32 regions in the GLORIA network across
Europe (Winkler et al., 2016a), with higher temperature sums in east and south facing aspects.
Further, species colonization in temperate GLORIA regions was positively related to temperature
with greater colonization on east and south aspects. At our site in CO, some aspects were entirely
missing plants, primarily due to loose, rocky outcroppings with poor or no organic soil
formation. Further, we found higher cover on west aspects instead of east and south. Many
factors, including solar input, predominant wind direction, substrate, biotic associations and
microsite conditions (Sherrer and Korner, 2011) will determine the final product of community
assembly. With increasing global temperatures it is possible on alpine summits with
predominantly facilitative species interactions, the more thermally exposed aspects will be the
first to experience enhanced thermal stress gradient, which may shift species interactions from
predominantly facilitative to competitive as cold temperature limitations are relieved (Callaway
et al. 2002; Winkler et al., 2016a).

3.4.4 Slow to change or persistence —

During the decade of record, this alpine plant community experienced relatively little change.
We did not find changes in community composition or in particular lifeforms over time. Long-
lived perennial species, some of which have a lifespan of 50-300 years (Morris and Doak, 1998)
may not respond in the short term (i.e. 10-year timeframe). This could be a product of
disequilibrium dynamics (Svenning and Sandel, 2013), remnant populations (Erikkson 2000)
persisting in the midst of a changing climate, or that the pace of climate change is actually slow.
Even though steep climatic gradients exist within small spatial scales in the alpine (Loarie et al.,
2009), range filling following the last glacial period is not complete (Dullinger et al., 20125). A
resistant response in longer lived species is consistent with findings at an actively warmed study
in the alpine tundra that found little change in flowering phenology for cushion and succulent
species as compared with more responsive forbs and graminoids (Jabis et al., 2018 in review),
and is also consistent with the un-watered response of biomass in the same experiment (Winkler
et al., 2016b). The decline in cover in the present study was driven by the most dominant group,
forbs, also consistent with a decline in cover for heated but not watered plots in the alpine on
Niwot ridge, CO (Winkler et al., 2016b) suggesting a potential interactive water limitation.

We did find three individual species lowered cover over time; two perennial grasses and
one annual to short lived perennial, Androsace septentrionalis. Reduced cover in this relatively
short-lived montane species is consistent with findings in a warming meadow in the subalpine
(Panetta et al., 2018) which demonstrated climate change reduced population size and purged
seed banks. It is also consistent with species with shorter lifespans responding more strongly to
climate (Moritz et al., 2008).

3.4.5 Conclusions —

Climate change appears to be occurring, evidenced by increasing winter temperatures and earlier
snowmelt date during the last 40 + years in the Ruby mountains of CO. Rising temperature
(Table 3.1¢ & d) and decreased snow duration (Table 3.1b) will likely have an impact on future
composition, performance and persistence of plant species in alpine and nival communities.
Consistent with the largely perennial composition of this alpine community, however, we found
moderate change over time with simultaneous variation in inter—annual climatic conditions. The
relatively limited changes that did occur suggest slow trailing edge dynamics since long—lived
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species changed very little; while increased richness suggests potentially faster transformation on
the leading edge, at the highest elevation site. That plant communities are organized by aspect is
not novel, however consistency with other alpine sites in Europe suggests future work, with more
time points, should assess whether thermophilization is more likely to occur on warmer southern
and eastern aspects and if northern and western aspects are refugia for cryophilic species. This
study has achieved a preliminary assessment of a single GLORIA site, however moving forward,
it has also demonstrated an approach that can be used to analyze a larger set of exiting GLORIA
sites across the western US, which is in keeping with the original and stated GLORIA network
goals.
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CONCLUSION

The aim of this dissertation was to understand how climate change might alter assembly of plant
communities in the alpine environment with implications for local extinction and ecosystem
processes. I examined three main topics: flowering phenology, species interactions, and range
shifts using both an actively warmed experiment and long-term observations.

In the first chapter, I examined alpine plant flowering response to an actively heated environment
over a four-year period. Consistent with organization of communities on a snowmelt and depth
gradient, flowering phenology advanced concurrent with advance in snowmelt rather than in
response to warmer temperatures. Due to very tight coupling of alpine species to a short growing
season, constrained on either end by growth limiting cold events (killing frosts), community
wide flowering duration was conserved. Early season species responded most strongly to
snowmelt and also capitalized on warmer temperatures to extend senescence. Forbs and
graminoids capitalized on a longer season by expanding duration while cushion plants and
succulent flowering duration was unchanged. Shifts in plant flowering phenology are important
because of the importance of synchrony in the plant-pollinator mutualism, the role of flowering
in plant reproduction and persistence, and potential links between flowering and growth
phenology on ecosystem processes such as carbon cycling, which will feedback into the
atmosphere.

In the second chapter I examined the role of alpine neighbors in recruitment of treeline conifers
into the alpine ecosystem. I found that seedlings of a shade and moisture tolerant conifer, Picea
engelmanii, appear to require the facilitation of neighbors in short term (3-week) survival while
soil moisture is limiting in the longer term. Further, higher instantaneous water use efficiency
than would be expected in Picea engelmanii suggests stomatal closure and high relative water
stress as compared with seedlings of Pinus flexilis and a native alpine herb Chionophylla jamesii.
For seedlings of a sun loving and drought tolerant conifer, P. flexilis, neighbors were
unimportant to survival but did enhance photosynthetic efficiency. Contrary to the stress gradient
hypothesis, at the low elevation edge of a stress gradient for an obligate alpine herb, C. jamesii,
neighbors facilitated survival to one year following removals.

The objective of the final chapter was to record shifts in vegetation cover, richness, colonization
or disappearance of species on four mountain summits occurring along an elevation gradient, and
to decipher the role of inter-annual variability and climate trends in any conversion. Over the
course of one decade, community wide vegetation cover declined while richness increased across
all summits. During a 40 year period while vegetation was establishing, at a local weather station
(approximately 8 km away and 600 m lower in elevation), snowmelt occurred earlier while
winter minimum and maximum temperatures increased. Community-level vegetation cover
varied by aspect and summit with western aspects and the highest summit exhibiting greatest
cover. Similarly, the greatest richness was found on the two tallest summits and western aspects.
Community level composition did not change but also varied by aspect and summit. A non-
significant thermophilization effect (or an increase in warm-adapted species cover or richness)
occurred on the lowest summit while colonization (or increased cover) of cryophilic species may
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be occurring on other summits. Changes in particular lifeforms were consistent with the overall
community level pattern, while one short-lived herb and two grasses declined over time. Overall
this study showed slow change in plant community patterns with concurrent slow change in
climatic conditions, which does not provide evidence for disequilibrium dynamics but also does
not refute them.

This dissertation contributed to a broader understanding of three processes, phenology, species
interactions, and range dynamics, all occurring within alpine plant communities in the context of
climate change. While the overall response of alpine tundra communities, comprised of
primarily long lived species, has been generally slow, certain life-forms appear to respond more
readily: relatively shorter-lived graminoids and forbs, consistent with an expectation of
disequilibrium dynamics and extinction lags in longer-lived species. While it is expected that
global treeline will shift upward in elevation, for western US forests, this may depend on species
interactions and trends in precipitation as well as temperature. Over time it is likely that
continued changes in climate would produce new and potentially novel assemblages of species,
particularly if new lifeforms including trees do colonize. We can certainly expect changes in
dominance patterns and perhaps local extinctions, which could alter forage for alpine endemics
like pika, may exhibit differences in albedo, and will likely provide alternate feedbacks to the
climate system.
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A: Supplementary information for Chapter 1

Supplemental Table 1.1 Mean and standard error of the date of first and /ast flower, and
flowering duration.

Treatment First +/-se Last +/-se Duration  +/-se
Control 196.75 0.68 216.67 0.79 20.17 0.50
Heat 188.99 0.64 210.04 0.72 21.12 0.34
H+W 190.78 0.67 211.37 0.73 20.70 0.47

Water 196.43 0.70  216.07 0.72 19.98 0.45
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Supplemental table 1.4 Marginal (fixed factors only) and conditional (all factors) R* values for
the two models presented in Tables 3 & 4 computed using the method of Nakagawa and

Schielzeth (2013).
First Last Duration
Model RM2 RCZ RM2 RCZ RM2 RCZ
Categorical (Table 3) | 0.72 0.90 0.52 0.84 0.08 0.38
Continuous (Table 4) | 0.81 0.93 0.53 0.88 0.07 041

Supplemental table 1.5 Marginal (fixed factors only) and conditional (all factors) R* values for
the two models presented in Tables 5 & 6 computed using the method of Nakagawa and

Schielzeth (2013).

Model

Last
Ry’ R¢

First
Ry’ RE

Duration
Ry*  R¢

Categorical (Table 5)
Continuous (Table 6)

0.84 0.89
0.89 0.93

0.66 0.83
0.75 0.88

0.08 0.36
0.05  0.39

Supplemental table 1.6 The 39 species recorded in plots at our site, the number of plots (of 20
possible) in which they were present, and their lifeform and phenological functional group
(PhenFG). Species which do not have lifeform or phenological functional group listed were not
included in the community-level analysis; species highlighted in bold were also included in

Figure 1.

Code Genus Species # Plots  Lifeform PhenFG
ALGE | Allium geyeri 2 - -
ANSE Androsace septentrionalis 7 forb early
ARFE | Arenaria fendleri 20 forb middle
ARSC | Artemisia scopulorum 20 forb middle
BIBI Bistorta bistortoides 20 forb middle
CAMP | Campanula  spp. 12 forb late
CAOC | Castilleja occidentalis 16 forb middle
CARU | Carex rupestris 17 graminoid early
CEBE Cerastium beeringianum 5 - -
CHJA | Chionophila jamesii 20 succulent middle
ERAR Eritrichium  aretioides 9 forb early
ERSI Erigeron simplex 20 forb middle
FEBR | Festuca brachyphylia 17 graminoid late
GERO | Geum rossii 20 forb early
HYAC | Hymenoxys acaulis 2 - -
HYGR | Hymenoxys  grandiflora 12 forb middle
LEPY | Lewisia pygmaea 20 succulent middle
LLSE Lloydia serotina 16 forb early
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LUSP

MELA
MIOB

MISP
ORAL
PESC
PHCO
POAL
POAR
PODI
PRAN
RAAD
SARH
SELA
SIAC
SIPR
SOMU
THMO
TRDA
TRPA
TRSP

Luzula
Mertensia
Minuartia
Minuartia
Oreoxis
Pedicularis
Phlox

Poa

Poa
Potentilla
Primula
Ranunculus
Saxifraga
Sedum
Silene
Sibbaldia
Solidago
Thlaspi
Trifolium
Trifolium

Trisetum

spicata
lanceolata
obtusiloba
spp.

alpina
scopulorum
condensata
alpina
arctica
diversifolia
angustifolia
adoneus
rhomboidea
lanceolatum
acaulis
procumbens
multiradiata
montanum
dasyphyllum

parryi
spicatum

20

20
15

11

10
17

16
16
14
13
20

19
20

graminoid

cushion

forb
forb
forb
graminoid
graminoid
forb
forb
forb
forb
succulent
cushion
cushion
forb
forb
forb
graminoid

middle

middle

early
late
middle
late
middle
middle
early
early
middle
late
middle
early
late
early
middle
late
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