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ABSTRACT OF THE DISSERTATION

Multi-scale Appearance Modeling of Complex Materials

By

Yu Guo

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Professor Shuang Zhao, Chair

Physically-based rendering has become mature and commonplace in recent decades. How-

ever, the rendered results look artificial and overly perfect. Better realism needs higher

fidelity detailed geometry or model complexity, which substantially increases computational

power and human works. To achieve higher physical realism and enable more effective ma-

terial content creation, many techniques are developed in material reflection and scattering

models. We put emphasis on accurately representing and reproducing the rich visual world

from micro-level scales.

The first half of the dissertation focuses on building the bridge from micro-model to macro

properties: we present an accurate appearance model for layered materials derived from

microstructures to define their optical behavior and a general framework of bulk scattering

in participating medium which considers the microscale effects. Consequently, in the sec-

ond half, we discuss the inverse problem of retrieving the micro parameters from captured

materials.

Our first work introduces a new unbiased layered BSDF model based on Monte Carlo simula-

tion, whose only assumption is the layer assumption itself. Our novel position-free path for-

mulation is fundamentally more powerful at constructing light transport paths than generic

light transport algorithms applied to the particular case of flat layers. We introduce two tech-

xii



niques for sampling the position-free path integral, a forward path tracer with next-event

estimation and a full bidirectional estimator. We show several examples featuring multiple

layers with surface and volumetric scattering, surface and phase function anisotropy, and

spatial variation in all parameters.

Our second work presents a generalized framework capable of systematically and rigorously

computing bulk scattering parameters beyond the far-field assumption of the Lorenz-Mie

theory. Our technique accounts for microscale wave-optics effects such as diffraction and

interference and interactions between nearby particles. Our framework is general, can be

plugged in any renderer supporting Lorenz-Mie scattering, and allows arbitrary packing

rates and particle correlation; we demonstrate this generality by computing bulk scattering

parameters for many materials, including anisotropic materials and correlated media.

Finally, we present MaterialGAN, a deep generative convolutional network based on Style-

GAN2, trained to synthesize realistic SVBRDF parameter maps. We show that Material-

GAN can be used as a robust material prior in an inverse rendering framework: we optimize

its latent representation to generate material maps that match the appearance of the cap-

tured images when rendered.

Furthermore, we explore the inverse rendering problem of procedural material parameter

estimation from photographs, presenting a unified view of the problem in a Bayesian frame-

work. In addition to computing point estimates of the parameters by optimization, our

framework uses a Markov Chain Monte Carlo approach to sample the space of plausible

material parameters.
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Chapter 1

Introduction

Rendering is one of the three fundamental problems in computer graphics accompany by

modeling and simulation. It builds the bridge between the 3D virtual world and the images

showed on display. In recent decades, path-tracing-based photorealistic rendering became

a general and standard technique in the movie and animation industries. Most commercial

Ads using rendered images instead of captured photos. We know how light interacts with

surfaces and participating media from the principles of physical rules (especially in optics).

As a result, an indistinguishable virtual world could be established using computers.

As we enjoy the realism of the virtual world from pioneers’ works, more challenges await

us. The real world contains many types of materials, while only a few can be modeled in

renderings, such as diffuse, specular, transparent, and so on. In most cases, people can

quickly tell the object in an image is rendered since it looks too perfect to be true. The over-

perfect issue is because of details missing for complex materials (See Figure 1.1). Artists

always hack the global appearance with texture mapping or mix the existing appearance

models, which is ad-hoc and unrealistic since microstructures of a surface or medium bring

undesirable light interaction and further affect the macro appearance. In this dissertation, we

1



first address a more general but efficient way to handle complex surface reflectance (layered

material) and volumetric scattering with micro details.

Figure 1.1: Examples of complex materials in real life. Left: car with ‘mermaid’
paint; Right: cloud iridescence phenomena.

To better represent the real world, another challenge is to acquire the geometry of the objects,

the physical properties of the materials, and the scene illumination from observed measure-

ments more accurately and efficiently. This inverse process of rendering (inverse rendering)

becomes a popular topic in Computer Graphics and Computer Vision. In industry, artists

use photoshop to create material maps or use some heavy capturing systems to acquiring

them. In the second half of this dissertation, we will focus on material properties estimation

by just giving a small number of input cellphone captures.

To summarize, we develop a smart technique to render layered materials, a framework to

compute scatterings in participating media based on wave optics, an optimization-based

method for SVBRDF (Spatially Varying Bidirectional Reflectance Distribution Functions,

as will be introduced in Chapter 2) reconstruction and then extend it to posterior estimation

using Bayesian inference. These techniques were presented at multiple ACM SIGGRAPH

(Asia) conferences [49, 50, 51] and Pacific Graphics [48]. Our specific contributions include:

2



Position-free Monte Carlo simulation for arbitrary layered BSDFs. Real-world

materials are often layered: metallic paints, biological tissues, and many more. Variation

in the interface and volumetric scattering properties of the layers leads to a rich diversity

of material appearances from anisotropic highlights to complex textures and relief patterns.

However, simulating light-layer interactions is a challenging problem. Past analytical or

numerical solutions either introduce several approximations and limitations, or rely on ex-

pensive operations on discretized BSDFs, preventing the ability to freely vary the layer

properties spatially. In Chapter 3, we introduce a new unbiased layered BSDF model based

on Monte Carlo simulation, whose only assumption is the layer assumption itself. Our novel

position-free path formulation is fundamentally more powerful at constructing light trans-

port paths than generic light transport algorithms applied to the special case of flat layers,

since it is based on a product of solid angle instead of area measures, so does not contain

the high-variance geometry terms needed in the standard formulation. We introduce two

techniques for sampling the position-free path integral, a forward path tracer with next-event

estimation and a full bidirectional estimator. We show a number of examples, featuring mul-

tiple layers with surface and volumetric scattering, surface and phase function anisotropy,

and spatial variation in all parameters.

Chapter 3 is based on the material as it appears in ACM Transactions on Graphics, 2018

(“Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs”, Yu Guo, Miloš

Hašan and Shuang Zhao). The dissertation author was the primary investigator and au-

thor of this paper.

Beyond Mie theory: systematic computation of bulk scattering parameters based

on microphysical wave optics. Light scattering in participating media and translucent

materials is typically modeled using the radiative transfer theory. Under the assumption

of independent scattering between particles, it utilizes several bulk scattering parameters
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to statistically characterize light-matter interactions at the macroscale. To calculate these

parameters based on microscale material properties, the Lorenz-Mie theory has been con-

sidered the gold standard. In Chapter 4, we present a generalized framework capable of

systematically and rigorously computing bulk scattering parameters beyond the far-field as-

sumption of Lorenz-Mie theory. Our technique accounts for microscale wave-optics effects

such as diffraction and interference as well as interactions between nearby particles. Our

framework is general, can be plugged in any renderer supporting Lorenz-Mie scattering, and

allows arbitrary packing rates and particles correlation; we demonstrate this generality by

computing bulk scattering parameters for a wide range of materials, including anisotropic

and correlated media.

Chapter 4 is based on the material as it appears in ACM Transactions on Graphics, 2021

(”Beyond Mie Theory: Systematic Computation of Bulk Scattering Parameters based on

Microphysical Wave Optics”, Yu Guo, Adrian Jarabo and Shuang Zhao). The dissertation

author was the primary investigator and author of this paper.

MaterialGAN: reflectance capture using a generative SVBRDF model. We ad-

dress the problem of reconstructing spatially-varying BRDFs from a small set of image

measurements. This is a fundamentally under-constrained problem, and previous work has

relied on using various regularization priors or on capturing many images to produce plausi-

ble results. In Chapter 5, we present MaterialGAN, a deep generative convolutional network

based on StyleGAN2, trained to synthesize realistic SVBRDF parameter maps. We show

that MaterialGAN can be used as a powerful material prior in an inverse rendering frame-

work: we optimize in its latent representation to generate material maps that match the

appearance of the captured images when rendered. We demonstrate this framework on

the task of reconstructing SVBRDFs from images captured under flash illumination using

a hand-held mobile phone. Our method succeeds in producing plausible material maps
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that accurately reproduce the target images, and outperforms previous state-of-the-art ma-

terial capture methods in evaluations on both synthetic and real data. Furthermore, our

GAN-based latent space allows for high-level semantic material editing operations such as

generating material variations and material morphing.

Chapter 5 is based on the material as it appears in ACM Transactions on Graphics, 2020

(“MaterialGAN: Reflectance Capture using a Generative SVBRDFModel”, Yu Guo, Cameron

Smith, Miloš Hašan, Kalyan Sunkavalli and Shuang Zhao). The dissertation author was the

primary investigator and author of this paper.

A Bayesian Inference Framework for Procedural Material Parameter Estimation.

Procedural material models have been gaining traction in many applications thanks to their

flexibility, compactness, and easy editability. In Chapter 6, we explore the inverse rendering

problem of procedural material parameter estimation from photographs, presenting a unified

view of the problem in a Bayesian framework. In addition to computing point estimates of

the parameters by optimization, our framework uses a Markov Chain Monte Carlo approach

to sample the space of plausible material parameters, providing a collection of plausible

matches that a user can choose from, and efficiently handling both discrete and continuous

model parameters. To demonstrate the effectiveness of our framework, we fit procedural

models of a range of materials—wall plaster, leather, wood, anisotropic brushed metals and

layered metallic paints—to both synthetic and real target images.

Chapter 6 is based on the material as it appears in Computer Graphics Forum, 2020 (“A

Bayesian Inference Framework for Procedural Material Parameter Estimation”, Yu Guo,

Miloš Hašan, Lingqi Yan and Shuang Zhao). The dissertation author was the primary

investigator and author of this paper.

The dissertation is organized as follows 1. We first introduce the basic background on light

1This dissertation is based on a LATEX template for thesis and dissertation documents at UC Irvine [105].
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transport, wave-optics and BRDF representations in Chapter 2. From Chapters 3 to 6,

we present technical details of our layered rendering, wave-optics bulk scattering, SVBRDF

reconstruction and procedure model estimation, respectively. Finally, we present our con-

clusion and discuss future research directions in Chapter 7.
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Chapter 2

Background

In this chapter, we briefly review some background knowledge closely related to this disserta-

tion. Firstly, we recap the fundamental light transport theory and Bidirectional Reflectance

Distribution Function (BRDF). Then we introduce Maxwells’ equation in wave optics. Fi-

nally we talk about some concepts in Markov Chain Monte Carlo (MCMC) methods.

2.1 Light Transport

Radiometry is a set of techniques for measuring electromagnetic radiation, and we use is to

measure the energy of visible lights in nowadays renderings. First we list some important

Radiometric quantities and then describe rendering equations in the following sections.

Table 2.1: List of radiometry quantities.

Quantity Symbol Unit Notes

Flux(Power) Φ W
Radiant energy emitted, reflected,

transmitted or received, per unit time.

Irradiance E W/m2 Flux received by a surface per unit area.

Radiance L W/(Sr ·m2) ∗ Flux per unit solid angle per unit projected area.
∗ watt per steradian per square meter.
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2.1.1 Surface rendering equation

To render photorealistic image, a key concept is to simulate light transport, which models the

light interaction between camera/eyes, scene objects and lightsource. For any point in the

scene, we want to know its spectral radiance Lo(r,ωo, λ, t) of wavelength λ directed outward

along direction ωo at time t, from a particular position r. For simplisity, the commonly

used rendering equation (RE) [71] for surface have two assumptions: geometric optics only

and steady state. Therefore, we reformulate the light radiance as a 5D function of position

(r) and direction (ωo), the outgoing radiance (Lo) is the sum of the emitted radiance (Le)

and the reflected radiance (Lr). The reflected radiance itself is the sum of all directions of

incoming radiance (Li) weighted by the surface reflection (fr) and cosine of incident angle.

Lo(r,ωo) = Le(r,ωo) + Lr(r,ωo)

= Le(r,ωo) +

∫
S2
Li(r,ωi)fr(r,ωi → ωo)⟨n(r),ωi⟩ dωi

(2.1)

Note that, ωo is the direction of the outgoing light, and ωi is the negative direction of the

incoming light.

The rendering equation can fully model the light transport in a space without any partici-

pating media. It is popular to expand this integral equation to path integral formulation and

solve it using Monte Carlo methods (see Veach’s thesis [125]).

2.1.2 Volume rendering equation

When light travels in a participation medium (e.g., smoke, marble and skin), we use radiative

transfer equation (RTE) [18] to describe how the radiance changes by four types of interaction
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events: emission, absorption, out-scattering, and in-scattering.

(ωo · ∇)Lo(r,ωo) =

a) In-scattering︷ ︸︸ ︷
σs(r,ωo)

∫
S2
Li(r,ωi)fp(r,ωi → ωo) dωi

b) Out-scattering︷ ︸︸ ︷
−σs(r,ωo)Lo(r,ωo)

c)Absorption︷ ︸︸ ︷
−σa(r,ωo)Lo(r,ωo)

d)Emission︷ ︸︸ ︷
+Le(r,ωo)

(2.2)

The RTE is a integro-differential equation which can be derived via conservation of energy.

Briefly, the RTE states that a beam of light loses energy through divergence and extinction

(including both absorption (c) and scattering (b) away from the beam) and gains energy from

light sources (d) in the medium and scattering (a) directed towards the beam. Same as RE,

coherence, polarization and light speed are neglected. Optical properties such as refractive

index (m), absorption coefficient (σa), scattering coefficient (σs) are taken as time-invariant

but may vary spatially. In addition, we define the extinction coefficient σt = σa + σs, and

the ratio between σs and σt controls the fraction of radiant energy not being absorbed at

each scattering and is also known as the single-scattering albedo (a). We use phase functions

fp(ωi → ωo) to describe the directional distribution of light scattered in a medium.

It is desirable to rewrite the RTE as an integral equation, which can them be solved numer-

ically using Monte Carlo methods (see Veach’s thesis [125]).

2.2 Scattering Distribution Function

In RE and RTE, an important term is still missing. When light hit a surface or a particle

in the medium, how does the light scatter, or in other words, redistribute both in energy

and direction? To model this scattering effect, we use bidirectional reflectance distribution

function (BRDF) for surface interaction and phase function (PF) for light scattering in a

medium.
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2.2.1 Bidirectional reflectance distribution function (BRDF)

The BRDF is a 4-D function that defines how light is reflected at an opaque surface.

fr(ωi → ωo) =
dLo(ωo)

dEi(ωi)
=

dLo(ωo)

Li(ωi)⟨n,ωi⟩ dωi

(2.3)

The function takes an incoming light direction ωi, and outgoing direction ωo, and returns

the ratio of reflected radiance (Lo) exiting along ωo to the irradiance incident (Li) on the

surface from direction ωi. Each direction ω is itself parameterized by azimuth angle φ and

polar angle θ. n is the (macro) surface normal.

Physically based BRDFs have several properties, including,

Positivity:

fr(ωi → ωo) ≥ 0 (2.4)

Reciprocity:

fr(ωi → ωo) = fr(ωo → ωi) (2.5)

Conserving energy:

∀ωo,

∫
S2
fr(ωi → ωo)⟨n,ωi⟩ ≤ 1 (2.6)

Some basic BRDFs and the BRDFs used in this dissertation are listed below:

Lambertian BRDF distribute the incident energy equally towards all the outgoing di-

rections and give a diffuse appearance.

fr(ωi → ωo) = kd (2.7)

where kd is the albedo or absorption of light which will introducing the color.
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Phong and Blinn-Phong BRDF adds a specular component to introduce glossy effect.

fr(ωi → ωo) = kd + ks(ωir · ωo)
n (2.8)

where ωir is the reflection of incident light and larger n will increase the glossiness of the

material.

Microfacet BRDF is the state-of-the-art model which is widely used in all kinds of ren-

derers. The microfacet theory assumes that all surfaces are formed by tiny microfacets that

are perfectly specular that reflect rays like perfectly smooth mirrors.

fr(ωi → ωo) =
F (ωi,h)G(ωi,ωo,h)D(h)

4⟨n,ωi⟩⟨n,ωo⟩
(2.9)

where h is the half vector that h = (ωi + ωo)/2. The first component F is Fresnel term, G

is the geometry term (shading factor) and D is normal distribution function (NDF) which

indicate the distribution of microfacets normals. With the change of statistics of the micro-

geometry, the macro-properties changes accordingly. All NDF should follow:

∫
S2
D(h)⟨n,h⟩ dh = 1 (2.10)

There’re two forms of NDF we used in most of the papers, Beckmann and GGX.

BRDF is a special case for opaque surface with reflection only. It can be extend to bidi-

rectional transmittance distribution function (BTDF) for opposite side of the surface, and

bidirectional scattering distribution function (BSDF), a superset and generalization of BRDF

and BTDF.
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Spatially varying BRDF The spatially varying BRDF (SVBRDF) is a 6-D function,

fr(r,ωi,ωo), where r describes a 2D location over an object’s surface.

2.2.2 Phase function

Phase function is usually parameterized as a function of the angle (θ) between ωi and ωo,

to model how light scattered in medium. A common phase function is Henyey-Greenstain

(HG) phase function with parameter −1 < g < 1:

fp(θ, g) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
(2.11)

2.3 Maxwell Equations

2.3.1 Basic operators and notation

The differential operator given in Cartesian coordinates {x, y, z}:

∇ =
∂

∂x
i+

∂

∂y
j+

∂

∂z
k (2.12)

For a scalar function f(x, y, z) and a vector field F(x, y, z) = f1(x, y, z)i + f2(x, y, z)j +

f3(x, y, z)k, we have,

Gradient:

∇f =
∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k (2.13)

Divergence:

∇ · F =
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

(2.14)

12



Curl:

∇× F =

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

f1 f2 f3

∣∣∣∣∣∣∣∣∣∣
(2.15)

Laplace operator: ∇2f = ∇ · (∇f)

Curl of Curl: ∇× (∇× F) = ∇(∇ · F)−∇ · (∇F) = −∇ · (∇F) = −∇2F

2.3.2 Derivation

Table 2.2: List of Maxwell notations.

Symbol Unit Notes
E V/m Electric field
H A/m Magnetic field
D C/m2 Electric displacement
B Wb/m2 Magnetic induction
J A/m2 Electric current density
M Magnetic current density
P Electric polarization
ρ C/m3 Electric charge density
q Wb/m3 Magnetic charge density
ε0 F/m Electric permittivity of free space (= 8.854187817× 10−12)
µ0 H/m Magnetic permeability of free space (= 4π × 10−7)

The mathematical description of Maxwell’s equations are [16]:

∇ ·D = ρ ∇ ·B = 0

∇× E = −∂B

∂t
∇×H = J+

∂D

∂t

(2.16)

where, D = ε0E+P and H = 1
µ0
B−M.

In free space, the polarization (P) and magnetization (M) vanish identically. And if there is

no Electric charge density (ρ) and Electric current density (J), we rewrite Maxwell equation
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in the form of E and H,

∇ · E = 0 ∇ ·H = 0

∇× E = −µ0
∂H

∂t
∇×H = ε0

∂E

∂t

(2.17)

To consider Electric and Magnetic field as as time-harmonic (time variation is sinusoidal)

fields with angular frequency of ω, which has the form of û = ue−iωt, the Maxwell equation

become,

∇ · E = 0 ∇ ·H = 0

∇× E = iωµ0H ∇×H = −iωε0E
(2.18)

Take the curl of (2.18),

∇× (∇× E) = iωµ0(∇×H) = ω2µ0ε0E

∇× (∇×H) = −iωε0(∇× E) = ω2µ0ε0H

(2.19)

If we use the rule Curl of Curl, the Maxwell equations reduce to the Helmholtz equations,

∇2E+ k2E = 0 ∇2H+ k2H = 0 (2.20)

where k = ω/c, and c = 1√
µ0ε0

is the light speed in vacuum.

2.4 Bayesian Inference

Bayesian inference is a paradigm for constructing statistical models based on Bayes’ Theorem

p(θ|X) =
p(X|θ)p(θ)

p(X)
∝ p(X|θ)p(θ) (2.21)
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Generally speaking, the goal of Bayesian inference is to estimate the posterior distribution

(p(θ|X)) given the likelihood (p(X|θ)) and the prior distribution (p(θ)). The likelihood is

something that can be estimated from the training data.

2.4.1 Maximum a Posteriori (MAP)

In most of cases, we actually seek to maximize the posterior distribution which takes the

existing data as fixed and determines the probability of any parameter setting θ given that

data X. We call this process Maximum a Posteriori (MAP), an iterative process which

updates the model’s parameters in an attempt to maximize the probability of matching data

to its distribution. Which is exactly the training pocess in a regular machine learning model.

MAP estimates can be computed via numerical optimization such as the conjugate gradient

method or Newton’s method. This usually requires first or second derivatives, which have

to be evaluated analytically or numerically.

2.4.2 Markov Chain Monte Carlo (MCMC)

While MAP is the first step towards fully Bayesian inference, it’s still only computing what

statisticians called a point estimate. The downside of point estimates is that they don’t tell

you much about a parameter other than its optimal setting. In reality, we often want to know

other information, like how certain we are that a parameter’s value should fall within this

predefined range. Therefore, a number of fascinating Bayesian methods have been devised

that can be used to sample (i.e. draw sample values) from the posterior distribution. The

most famous of these is an algorithm called Markov Chain Monte Carlo (MCMC).

In statistics, MCMC methods comprise a class of algorithms for sampling from a probability

distribution. By constructing a Markov chain that has the desired distribution as its equi-
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librium distribution, one can obtain a sample of the desired distribution by recording states

from the chain. The more steps are included, the more closely the distribution of the sample

matches the actual desired distribution.

MCMC is used to simulate physical systems with Gibbs canonical distribution (we will

start to use x instead of θ from here):

p(x) ∝ exp

(
−U(x)

T

)
(2.22)

Probability p(x) of a system to be in the state x depends on the energy of the state U(x)

and temperature T . Any distribution can be rewritten as Gibbs canonical distribution, but

for many problems such energy-based distributions appear very naturally. The goal becomes

learning to sample from the canonical distribution. System has higher probability of staying

in the states with lower energies, so minimize energy is the same as maximum a posteriori.

Metropolis-Hastings (MH) algorithm for MCMC is the simplest Markov Chain process

that can sample from the distribution picks the neighbour of the current state and either

accepts it or rejects depending on the change in energy. Algorithm produces a chain of

states: x1,x2, ...,xn. Each time a candidate from a neighborhood of the last state is selected

x′
n = xn + ε (ϵ is usually taken to be Gaussian with some spread σ). With probability p =

min
[
1, exp

(
U(xn)−U(x′

n)
T

)]
, system accepts new state (jumps to the new state): xn+1 = x′

n

and with probability 1 − p new state is rejected: xn+1 = xn. Note, when energy is lower

in new state U(x′
n) < U(xn), it is always accepted: p = 1. In this way, we give preference

to the states with lower energies, while not restricting the algorithm to always decrease the

energy. The lower temperature, the lower probability to increase energy.

Sampling high-dimensional distributions with MH becomes very inefficient in practice. A

more efficient scheme is
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Hamiltonian Monte Carlo (HMC) algorithm, is also known as Hybrid Monte Carlo.

Velocity v is added to the parameters describing the system. Energy of the system consists

of potential and kinetic parts: E(x,v) = U(x) +K(v). Thus, velocities v and positions x

have independent canonical distributions:

p(x,v) ∝ exp

(
−E(x,v)

T

)
= exp

(
−U(x)

T

)
exp

(
−K(v)

T

)
∝ p(x) p(v). (2.23)

So once it can be sampled from joint distribution p(x,v), x can be also sampled by ignoring

computed velocities v. After initializing the system parameters x,v, it could be evolved

using physics equations: ẋi = vi, mv̇i = −∂U(x)
∂xi

. During a long period of time, it will not

get a canonical distribution by collecting system states, because energy E is conserved in

the system. At some points, velocity is resampled from p(v), thus changing the total energy

and resample the parameters. Sampling from p(v) is very simple, because v is normally

distributed.

HMC uses not only energy U(x), but also it’s gradient. So the ‘price’ of a single iteration is

higher, but HMC is still significantly more efficient than MH. In most cases HMC accepts

new states, but still, it has problems with sampling from distributions with isolated local

minimum and discrete parameters (no gradient provided).

Metropolis-Adjusted Langevin Algorithm (MALA) is based on Langevin Monte

Carlo (LMC). Different from gradient-based HMC, LMC uses a discrete Markov chain, which

is equivalent to a gradient ascent procedure with injected Gaussian noise [88]. The injected

noise prevents the chain from collapsing to just the (local) maximum. Due to discretization

error, the Markov chain is not guaranteed to converge to the same stationary distribution

as the continuous process. This can be corrected by using the Metropolis-Hasting rule

to accept or reject states of the chain. This approach, known as the Metropolis-adjusted

Langevin algorithm (MALA).
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Chapter 3

Layered Materials Rendering

(a) (b1) (c1) (d1) (e1)

normal map (noise)

normal map (scratch)

green absorbing medium

normal map (dragon)

scattering and absorption anisotropic medium 

conductor

anisotropic medium + spatially varying albedo

diffuse

(b2) (c2) (d2) (e2)
conductor

anisotropic

anisotropic medium 
normal map (noise)

normal map (scratch)

green absorbing medium

normal map (dragon)

scattering and absorption anisotropic medium 

conductor

anisotropic medium + spatially varying albedo

diffuse

(b2) (c2) (d2) (e2)
conductor

anisotropic

anisotropic medium 

(b2) (c2)

normal map (noise)

normal map (scratch)

green absorbing medium

normal map (dragon)

scattering and absorption anisotropic medium 

conductor

anisotropic medium + spatially varying albedo

diffuse

(b2) (c2) (d2) (e2)
conductor

anisotropic

anisotropic medium 
normal map (noise)

normal map (scratch)

green absorbing medium

normal map (dragon)

scattering and absorption anisotropic medium 

conductor

anisotropic medium + spatially varying albedo

diffuse

(b2) (c2) (d2) (e2)
conductor

anisotropic

anisotropic medium 

(d2) (e2)

Figure 3.1: We introduce a new BSDFmodel leveraging an efficient Monte Carlo simulation
algorithm applied locally to layered geometries. Our model enjoys the flexibility of using
arbitrary layer interfaces and internal media and is capable of reproducing a wide variety
of appearances. This example contains three vases on a tablecloth, all described using our
BSDF model (see the insets for layer configurations).

18



3.1 Introduction

Physically-based shading models have become mature and commonplace in recent years

across a number of rendering applications, within entertainment, architecture, and industrial

design. However, we are seeing constant progress in the area of material reflection and

scattering models, aiming to achieve higher physical realism and to enable more effective

material content creation.

Many real world materials are comprised of thin layers with varying compositions. For exam-

ple, metallic paint is a dielectric coating covering a metallic substrate composed of randomly

oriented aluminum flakes; the absorption and scattering properties of the dielectric layer give

the material its color and modify its directional scattering properties as well. Many biological

materials (e.g. plant leaves) are also layered, and their appearance is a complex combination

of the absorption properties, scattering phase function, air-material interface roughness, and

thickness variation. Different characteristics of such interfaces and volumetric scattering

properties can produce richly diverse material appearances from anisotropic highlights to

complex textures. Furthermore, detailed layer thickness variations, scratches and bumps on

the layer interfaces give these materials additional richness. Accurately understanding and

simulating these interactions is therefore key to further progress in the rendering of materials.

However, explicitly simulating light-layer interactions by modeling the full geometry of these

layers would be very expensive and cumbersome. The complex and spatially varying interface

and internal microgeometries are much too costly to describe and simulate using standard

3D scene modeling tools such as triangle meshes and volumetric grids. Furthermore, due to

the presence of multiple refractive interfaces, it can be very challenging to correctly construct

light transport paths that connect light scattering locations to light sources, a key operation

in most practical Monte Carlo rendering systems. Cheap approximations to these light

transport problems (e.g. ignoring refraction, or composing layers using simple blending) are
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not sufficient to achieve true realism.

A few techniques have been developed to address this problem. Weidlich and Wilkie [131]

construct a simple and flexible analytical model. However, significant approximations are

necessary; interface roughness is not fully handled for transmission, and no volumetric scat-

tering is supported. The work of Belcour [12] recently introduced a more advanced approach

based on tracking low-order moments of the BSDF lobes; however, it still introduces some

approximations and limitations. On the other hand, Jakob et al. [66] (with a recent follow-

up [139]) introduce a solution that is very accurate, but expensive: it represents BSDFs as

discretized datasets and relies on expensive Fourier-domain operations on these to implement

layer composition and thickness adjustment. This makes free spatial variation of the layer

properties prohibitively expensive: a significant limitation in practice.

In this chapter, we introduce a new layered BSDF model without the above limitations. Our

model provides an accurate, unbiased solution; to our knowledge, it is the only such model.

Unlike previous work, we do not attempt to derive an analytic model for the BSDF lobe

shapes. Instead, inside the evaluation and sampling routines of the layered BSDF, we run

a Monte Carlo simulation of light transport within flat slabs. This is substantially faster

than explicitly constructing the layer geometry, because no expensive scene ray tracing is

required. Our model computes an accurate solution of the layered light transport problem.

It is based on physical interface and volume scattering models, conserves energy and is

reciprocal when possible. It can also be easily integrated into standard Monte Carlo rendering

systems. This requires no precomputation and thus can efficiently handle spatially varying

appearances. It also supports the full range of editability of the layer properties, both

interface and volumetric, and allows anisotropy in both interface BSDFs and phase functions.

In fact, the only limiting assumption of our model is the layer assumption itself.

Our solution is fundamentally more powerful at constructing light transport paths than

generic transport algorithms (e.g standard path tracing, bidirectional or Metropolis trans-
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port); see Figure 3.2.

98 spp 35 spp 280 spp 56 spp 26 spp

60 spp 25 spp 80 spp 15 spp 19 spp

Reference Standard PT Standard BDPT Standard MLT Our unidir. Our bidir.

Figure 3.2: Equal-time comparisons of our unidirectional and bidirectional approach to
standard transport algorithms, on a simple flat layered configuration lit by a small area light.
For standard PT, BDPT and MLT, results are all generated using 3D tracing by applying
these algorithms in a simple 3D scene containing a very large slab with flat interfaces.
Top: A single slab with Henyey-Greenstein scattering between two interfaces, where our
estimators perform similarly, but both significantly outperform path tracing, bidirectional
and Metropolis transport. Bottom: A more complex configuration with two slabs and
three interfaces; both media are using an anisotropic microflake phase function [65]. Our
bidirectional estimator is a clear winner in this case. The references are generated using
standard PT with 100K spp, and all the other images are rendered in 10 seconds.

We introduce a modified path integral framework for light transport in flat slabs, superior to

the standard path formulation in this setting. Because it is based on a product of solid angle

instead of area measures, it does not contain the high-variance geometry terms needed in

standard algorithms. We introduce two simulation techniques within this formulation: the

first is analogous to a forward path tracer with next event estimation through layer bound-

aries and multiple importance sampling; the second is a fully bidirectional estimator. We

show the capabilities of this solution on a number of examples, featuring multiple layers with

surface and volumetric scattering. Our examples show spatial variation in all parameters:

surface BSDF, volume and phase function parameters, layer thickness and surface normal.

See Figure 3.1.
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3.2 Related Work

3.2.1 Discretized layered BSDFs

Previously, a number of BSDF models have been proposed to describe layers with various

assumptions on the interface and subsurface scattering.

An early analytical model by Hanrahan and Krueger [53] already supported multiple layers,

but only single scattering, and without supporting arbitrary BSDFs at interfaces. They

also proposed to add multiple scattering by Monte Carlo simulation, but their simulation

approach only considers volume scattering events (as opposed to a combination of volume

and rough interface events). Furthermore, it uses binning on the outgoing direction, as

opposed to an efficient BSDF evaluation method for a given outgoing direction, which is

provided by our approach.

A model by Stam [118] introduces a solution for rendering skin as a layered material con-

sisting of rough dielectric interfaces bounding a volumetric scattering slab. The solution is

based on discretization of the BSDF into a directional basis, on which the light transport

problem is solved. The model introduced by Jakob et al. [66] can be seen as a signifi-

cant extension of Stam’s discretization approach, working in the Fourier domain. It handles

arbitrary layer stacks, supporting subsurface scattering within thin layers using the adding-

doubling method, in addition to microfacet rough interfaces. The work of Zeltner extends

this approach to anisotropic surface reflectance [139]. These models are highly accurate and

efficient to render with, once the discretized BSDF has been constructed. However, as the

BSDF construction in the discretized basis is relatively expensive, they are best suited for

homogeneous BSDFs. A small number of such BSDFs can be spatially blended with vary-

ing weights, but this has strict limitations, compared to our support for arbitrary spatial

texturing of all parameters.
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3.2.2 Analytic layered BSDFs

The model by Weidlich and Wilkie [131] takes a different approach. They focus on layers

where subsurface scattering is absent (though absorption is allowed), by analytically combin-

ing microfacet BSDFs from the interfaces into a single, potentially multi-lobe, microfacet-like

BSDF. There are significant approximations in this approach, carefully chosen so that in-

tegration (Monte Carlo or otherwise) is never required within a single BSDF query. This

makes the model fast and flexible. Another recent model [47] also takes the approach of

avoiding Monte Carlo integration during queries, by introducing extended normal distribu-

tion functions (ENDFs), analogous to microfacet NDFs but capturing multiple reflection

or scattering events. In the most recent work, Belcour [12] introduced an approach based

on tracking low-order moments of the BSDF lobes. This is a very fast and practical solu-

tion, but still introduces some approximations and limitations (e.g. no surface or volume

anisotropy). In contrast, our method offers unbiased accuracy and even more flexibility, at

the cost of some additional computation and variance. Several previous techniques model

light scattering in layered materials like human skin [27], but these are focused on lateral

light spreading in BSSRDFs, and are orthogonal to our focus on the directional properties

of BSDF models.

3.2.3 Microfacet models for interfaces

BSDF models based on the microfacet theory are commonly used in computer graphics to

capture how light reflects and refracts when interacting with specular surfaces with rough

microstructure. The model by Walter et al. [127] extends the microfacet model of Cook and

Torrance [20] to handle light reflection and transmittance through rough dielectric interfaces,

and is currently seen as standard in physically-based rendering. We use this model to describe

our layer interfaces.
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The microfacet model recently developed by Heitz et al.[57] is capable of capturing interreflec-

tions between the facets and better conserves energy. Schüssler [113] introduced a solution to

the energy loss common in normal mapping techniques, caused by a mismatch between the

shading and geometric normal. These models (or any future improved microfacet models)

could be combined with our approach.

3.2.4 Capability comparison

not available

expensive
precomputation

not available not available

Ours Zeltner 2018 [139] Belcour 2018 [12]

Figure 3.3: Comparison to previous work. The top row shows an example with
anisotropic surface reflectance, where our solution closely matches Zeltner’s, but Belcour’s
approach does not support anisotropy. The middle row shows an example with spatial
variation in the parameters; here our method closely matches Belcour’s, but Zeltner’s ap-
proach does not naturally support spatial variation. The bottom row shows a two-layer
configuration with anisotropic microflake phase functions, which is only supported by our
method.

In Figure 3.3, we compare the capabilities of our approach to recent work [139, 12]. We

consider three features supported by our approach: surface anisotropy, spatial variation, and
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volumetric medium anisotropy. Only one of these is supported in the compared systems:

spatial variation in Belcour’s approach and surface anisotropy in Zeltner’s.

3.3 Background and Overview

In this section, we explicitly state the assumptions of our method, provide background on

the standard path formulation of light transport, and provide a quick overview of the rest of

the chapter.

3.3.1 Assumptions

Although light generally enters and leaves the layer from different locations, we note that

when the layers are thin and the lighting is comparably distant, the entrance and departure

locations will be close enough to each other. We assume it is acceptable to ignore this

displacement, allowing us to describe the light transport in the layers using BSDFs, rather

than BSSRDFs (Figure 3.4).

Figure 3.4: Small displacement assumption: when light hits a thin layer, it gets
reflected and refracted by the interfaces and scattered and absorbed internally. Since the
geometric thickness h of the layer is small, we assume the displacements (e.g., ∆x) of light’s
entrance and departure locations can be neglected.

Furthermore, we assume that the spatial variation of layer properties is slow enough that a

25



BSDF evaluation at a single surface point can locally approximate them as spatially uniform.

This is related to the above in assuming that the horizontal spreading of light is small enough

to be negligible.

In fact, these are the only approximating assumptions of our approach, which otherwise

offers unbiased accuracy and full flexibility in setting the layer properties and varying them

spatially.

3.3.2 Review of Veach’s path integral formulation

In the Veach formulation of light transport [124], light paths are defined as sequences of

vertices connected by segments. The value of a light transport integral (for example, but

not necessarily limited to, a pixel value) is written as

I =

∫
Ω

f(x̄) dµ(x̄), (3.1)

where x̄ = (x0, . . . , xk) is a path with k segments and k+1 vertices on the surfaces or within

the participating media of a scene. Ω is the space of all paths and is defined as the union of

Ωk for k ≥ 0, where Ωk indicates the set of paths of length k. Furthermore, f(x̄) is the path

contribution to the integral, and µ(x̄) is a special measure on the path space, defined as the

product of area measures on the vertices xi. The contribution f(x̄) is a product of vertex

terms (normally BSDFs and phase functions) and geometry terms corresponding to path

segments. The geometry terms contain the squared distance between the two vertices in the

denominator; this is a significant source of variance when trying to connect independently

sampled vertices on thin layer configurations.
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3.3.3 Overview

In Section 3.4, we describe our path formulation of layered light transport. Our path integral

differs from Veach’s formulation in that it is position-free. The key idea is that on an infinite

flat slab, the horizontal positions of vertices do not matter: it is only the vertical position

(depth) of a vertex, and the directions between vertices, that are relevant to a light transport

integral. The vertices are defined by their depth in the layer, as opposed to a full 3D position,

and the segments have variable unit directions.

It is important to note that our position-free formulation is not just a simplified specializa-

tion of the standard formulation to the flat slab setting, but in fact a new approach that

achieves much superior variance to the standard formulation. The key benefit of this new

formulation is that it does not contain the inverse square distance falloff terms that are re-

quired between any two vertices with full positional information. The leads to high variance,

even in advanced estimators such as bidirectional and Metropolis transport, which in fact

perform even worse in this setting than unidirectional; see Figure 3.2 for examples.

In contrast, our approach leads to an efficient estimator based on unidirectional sampling

with next event estimation, and an even more efficient bidirectional estimator. The unidi-

rectional performs similarly (though usually not better) in simpler cases, but in challenging

cases with sharp and/or anisotropic BSDFs and phase functions, the bidirectional version is

clearly more efficient (Figure 3.2, bottom). Figure 3.5 demonstrates the performance of the

estimators through BSDF lobe visualization, also showing a close match to ground truth. In

Section 3.5, we describe these two estimators in detail, and also focus on the two additional

operations critical for integrating a BSDF into a practical renderer: importance sampling

and pdf evaluation.

Finally, we present results in Section 3.6, and summarize in Section 3.7.

27



Ground truth Our unidir. Our bidir.

Figure 3.5: Outgoing lobes of a layered BSDF (reflection and transmission) visualized
as projected hemispheres. Left: ground truth computed by sampling and binning the light
paths. Middle: Our unidirectional estimator. Right: Our bidirectional estimator (same
time).

3.4 Position-Free Path Formulation

In this section, we theoretically define the value of a layered BSDF due to a given layer

stacking, for given query directions ωi and ωo, as a path integral. Given such a definition,

any Monte Carlo method can be used to evaluate the BSDF by randomly sampling paths,

evaluating their contributions and dividing by the corresponding probability density values.

3.4.1 Notation

We will use the notation cosω to denote the z-component of the unit vector ω. We will also

use I(x) to denote an indicator function, returning 1 if the boolean condition x is true and 0

if false. A bold font is used to denote unit vectors (directions) on S2. Please refer to Table

3.1 for the notation used in this section.
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Table 3.1: Notation used in §3.

ωi light direction

ωo camera direction

cosω z-component of the unit vector ω

I(x) binary indicator function

fl(ωi,ωo) layered BSDF (our goal)

fs(z,ωi,ωo) interface BSDF at depth z

f↑, f↓ BSDFs fs at top and bottom interface

fp(ωi,ωo) phase function (normalized as a pdf)

σs, σt scattering and aborption coefficient

f̂p reduced phase function, f̂p = σsfp
zi depth of i-th path vertex

di direction of i-th path segment

x̄ light path (d0, z1, d1, . . . , zk, dk)

vi i-th vertex contribution

si i-th segment contribution

τ(z, z′,ω) transfer through segment

αi i-th segment cosine term exponent

µ(x̄) path space measure

σ(ω) solid angle measure on unit directions

λ(z) line (Lebesgue) measure on real numbers

p(x̄) pdf of path x̄ in measure µ(x̄)

Lv(z,ωo) volume radiance

Ls(z,ωo) outgoing surface radiance

Li
s(z,ωi) incoming surface radiance

S(z,ω) source term in radiative transfer eq.

3.4.2 Position-free path integral

To develop the theory, we will first assume a single infinite flat slab with a BSDF f↑ on the top

interface and a BSDF f↓ on the bottom interface, combined with a homogeneous scattering

volume inside the slab to produce a resulting layered BSDF. The volumetric medium is

defined by a phase function fp, scattering coefficient σs and extinction coefficient σt; we will

use the notation f̂p = σsfp.

For simplicity, we will drop the depth dependence of the volume parameters (though they
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could vary) and we will assume constant scattering / extinction coefficients, though they

can vary with direction for fully anisotropic phase functions, which we also support. We will

further assume that the slab has unit thickness; the formulation can be easily adjusted for

any thickness.

A vertex zi ∈ [0, 1] is a single real number indicating the depth within the layer. A value

of 0 or 1 indicates a surface reflection or refraction event on the bottom or top interface,

respectively. Fractional values indicate volume scattering events at the specified depth. Note

again that the horizontal positions of vertices on the infinite flat interfaces are not needed.

A direction di is a unit vector on S2 denoting the light flow between vertices. In our

convention (inherited from Veach), the vectors point in the direction of light flow (i.e. from

light source to camera), and the vertex/direction indexing follows this as well.

A light path x̄ is a sequence of directions and vertices: x̄ = (d0, z1, d1, . . . , zk, dk).

The first and last directions are aligned with the input and output directions of the layered

BSDF query, i.e. d0 = −ωi and dk = ωo. In contrast to Veach’s formulation, the path

interleaves directions with vertices, and the two ends of the path are defined by directions

(not vertices). See Figure 3.6 for some example paths.

Figure 3.6: Example paths of lengths 1, 2 and 3. In our formulation, the exact positions
of the vertices do not matter: the zi only carry information about which interface the vertex
occurs on. The first and last in the sequence of directions di map to the incoming and
outgoing directions of the underlying BSDF query.

The path contribution f(x̄) of a light path is the product of vertex terms vi (on each
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vertex) and segment terms si (on all internal segments):

f(x̄) = v1s1v2s2 . . . sk−1vk. (3.2)

The vertex term consists of the BSDF or phase function value:

vi = v(zi,−di−1,di) =


f↑(−di−1,di) if zi = 0,

f↓(−di−1,di) if zi = 1,

f̂p(−di−1,di) if 0 < zi < 1.

(3.3)

Define the transfer term τ(z1, z2,ω) as follows:

τ(z, z′,ω) := exp

(
−σt|z′ − z|
| cosω|

)
· I
(
z′ − z

cosω
> 0

)
. (3.4)

The purpose of the exponential term is to compute the transmittance when going from depth

z to z′ following direction ω. The indicator term checks the validity of the configuration (i.e.

if the direction points up, then z′ should be greater than z, and vice versa). The segment

term for internal segments can now be defined as:

si = s(zi, zi+1,di) := τ(zi, zi+1,di) · | cosdi|αi , (3.5)

where

αi = I(zi ∈ {0, 1}) + I(zi+1 ∈ {0, 1})− 1. (3.6)

This definition encapsulates the subtle behavior of cosine terms along the path segments.

For a detailed derivation, please refer to Appendix A.1.

The path space Ω(ωi,ωo) is the set of all paths of one or more vertices, such that the first

direction of the path is equal to −ωi and the last to ωo. It can be seen as the union of the
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spaces of such paths of all lengths k ≥ 1, that is, Ω = ∪k≥1Ωk.

The path space measure µ(x̄) is a product of solid angle measures σ on the internal

directions of the path, times the product of line measures λ on volumetric scattering vertices.

That is, for a k-vertex path,

µ(x̄) =
k−1∏
i=1

σ(di) ·
∏

i∈V (x̄)

λ(zi). (3.7)

Here V (x̄) is the set of indices of volumetric vertices on x̄, and λ is the line measure (i.e.

standard Lebesgue measure on the real numbers).

Finally, we can define the layered BSDF value fl(ωi,ωo) as an integral over the set of

paths Ω(ωi,ωo):

fl(ωi,ωo) =

∫
Ω(ωi,ωo)

f(x̄) dµ(x̄). (3.8)

As usual, any Monte Carlo method can be used to compute this integral. As long as the

probability density p(x̄) with respect to measure µ(x̄) of generated sample paths is known,

we simply average a number of samples of the form f(x̄)/p(x̄).

3.4.3 Derivation

Here we sketch the derivation of the path formulation. Like in Veach’s version (and its volu-

metric extension), the derivation proceeds by recursively expanding the surface and volume

rendering equation (the latter also commonly known as the radiative transfer equation). De-

note the surface radiance by Ls(z,ω) (for z ∈ {0, 1}) and the volume radiance Lv(z,ω) (for

z ∈ [0, 1]).

The volume radiance will satisfy the standard radiative transfer equation, specialized to our
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position-free setting:

Lv(z,ω) = S(z,ω) +

∫ 1

0

τ(z′, z,ω)

| cosω|

∫
S2
f̂p(ω

′,ω)Lv(z
′,ω′) dω′ dz′, (3.9)

where the source term S(z,ω) gives illumination from the boundary of the slab:

S(z,ω) = τ(0, z,ω)Ls(0,ω) + τ(1, z,ω)Ls(1,ω). (3.10)

Notice that, although the source term has two components, only one of them will be non-zero

for any given query. This formulation is valid even with no scattering within the layer, in

which case f̂p = 0 and the second term of Eq. (3.9) vanishes. Further, the 1/| cosω| factor

is due to a change of variable (from free-flight distance to depth). For more details, please

refer to Appendix A.1.

The surface radiance Ls(z,ω) satisfies the standard rendering equation:

Ls(z,ω) =

∫
S2
fs(z,ω,ω′) | cosω′| Li

s(z,ω
′) dσ(ω′), (3.11)

where Li
s(z,ω

′) is the incoming surface radiance. In case the incoming radiance query points

back into the layer, we have

Li
s(z,ω) = Lv(z,−ω). (3.12)

The BSDF value is defined as the radiance leaving the surface in direction ωo, under unit

irradiance from a directional light in direction ωi. This is equivalent to evaluating Ls(1,ωo)

under the boundary condition

Li
s(z,ω) =

δ(ω − ωi)

| cosωi|
. (3.13)

One can easily check that the irradiance under this illumination is unit. Thus the incoming

surface radiance Li
s is given by Eq. (3.13) when ω points out of the layer and Eq. (3.12)

when it points back into the layer.
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The path formulation can now be obtained by recursively expanding the desired value

Ls(1,ωo) using the above equations for Ls and Lv, terminating the paths using the boundary

condition. Note that:

� Each recursive expansion of Eqs. (3.9) or (3.11) will contribute an f̂p or fs term,

respectively, to the path vertex.

� Each volumetric segment will introduce a τ(z, z′,ω) term, whether the first or second

term in Eq. (3.9) is taken.

� Expanding the rendering equation contributes a cosine term to the next segment, while

expanding the radiative transfer equation contributes a 1/cosine term to the previous

segment. A combination of these contributions explains the αi term above.

� The last surface cosine is canceled out when using the boundary condition, due to the

denominator cosine in Eq. (3.13).

3.4.4 Normal mapping

An important feature of our method is the mapping of normals of the layer interfaces,

introducing mismatches between geometric (flat) normals and shading (mapped) normals.

The definition of the segment term (Eq. (3.5)) changes with the presence of shading normals.

Precisely, it becomes

si = τ(zi, zi+1,di)
|⟨n(zi),di⟩| |⟨n(zi+1),di⟩|

| cosdi|
, (3.14)

where n(z) denotes the local shading normal at z (for z ∈ {0, 1}). This term is no longer

symmetric, which implies that BSDFs with mapped normals will in general not be recipro-

cal. When sampling paths from the light, it is important to handle such BSDF using the

correction term introduced by Veach [124] (Eq. 5.19).
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3.4.5 Note about reciprocity

Our layered BSDF will be reciprocal whenever the path contribution f(x̄) is symmetric with

respect to the reversal of the path. Assuming normal mapping is not used, the segment term

si will be symmetric, so the reciprocity boils down to the symmetry of the vertex terms vi.

This will certainly hold if all phase functions and BSDFs are reciprocal.

Note, however, that crossing an interface between regions of different index of refraction

(whether smooth or rough) is not reciprocal in the usual sense. Instead, a physical refractive

BSDF should obey a modified reciprocity relation fs(ωi,ωo) = η2o/η
2
i · fs(ωo,ωi) [127], where

ηi and ηo are the refractive indices of the corresponding media. In the common case where

the layered BSDF’s incoming and outgoing directions are both assumed to be in air, the final

layered BSDF will still be reciprocal, because there will be an equal number of η2 and 1/η2

terms along the path for each medium with index η.

3.4.6 Multiple slabs

Finally, we support extending the framework to multiple slabs. This is relatively straight-

forward theoretically, and simply requires explicitly keeping track of the interface or volume

that a vertex/segment belongs to. We also need to modify the transfer term τ(z, z′ω) to

return zero in cases when the segment crosses an internal interface.

Another option to obtain a multi-layer BSDF is by recursively nesting the BSDFs. To

construct the layered BSDF due to a layer stacking of n slabs, we define the layered BSDF

due to the stacking of the bottom n− 1 slabs, and use this BSDF as the bottom interface’s

BSDF in adding the top layer according to the above theory. We have found that this

approach works in practice, but its performance is worse than the explicit implementation

above.
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3.5 Our Estimators

We now describe our specific layered BSDF method, by presenting our Monte-Carlo solutions

to enable the three key operations needed to fully define a BSDF model: sampling (§3.5.1),

evaluation (§3.5.2) and pdf computation (§3.5.3). Sampling produces the outgoing direction

ωo given the incoming one ωi (or the reverse), while evaluation answers the BSDF query

for given ωi and ωo. Note that the values returned from sampling, evaluation and pdf

procedures are themselves stochastic, and are equal to the true BSDF value, pdf value or

sampling weight only in expectation. Stochastic evaluation was also used in some recent

BSDF models [57].

Multiple importance sampling (MIS) is commonly used to combine multiple techniques to

produce a given path, and key to obtaining low-noise results under complex lighting condi-

tions. This technique typically uses the sampling pdfs of the techniques being combined to

derive the weights, which requires the pdf values of the layered BSDFs. We introduce two

solutions: an unbiased solution for estimating the exact pdf values in expectation, as well

as a fast and approximate version which we demonstrate is sufficient for MIS (§3.5.3). In a

supplementary document, we show that the estimators are still unbiased in the presence of

approximate pdfs for MIS weighting and stochastic evaluation of both weights and function

values.

3.5.1 BSDF sampling

Sampling a BSDF is the problem of drawing the outgoing direction ωo given the incoming

one ωi (or the reverse), with a pdf proportional, exactly or approximately, to the value

fl(ωi,ωo) (times the cosine term, if possible). This is straightforward: we draw ωo simply

by following the stochastic process given by light interacting with the layered configuration.
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That is, we utilize a pure forward path tracing process that starts with a ray with direction

−ωi and explicitly simulates interactions between the ray and the layer’s interfaces and

internal media by sampling the corresponding BSDFs and phase functions, accumulating a

throughput value along the way. When the ray eventually leaves the layer, its direction gives

ωo and the throughput of the full light transport path gives the stochastic sample weight.

Formally, this weight is an estimate of the BSDF value, times the exitant cosine direction,

divided by the sampling pdf in solid angle measure.

Although this simulation is analogous to standard Monte Carlo path tracing, it is usually

much more efficient than tracing paths in the global scene thanks to the simplicity of the

flat slab configuration (under which ray tracing becomes simple numerical computation, not

requiring any acceleration structures).

3.5.2 BSDF evaluation

To evaluate our BSDF fl at given incoming and outgoing directions ωi and ωo, we introduce

two Monte Carlo based methods to evaluate the path integral from Eq. (3.8). The first one

(§3.5.2) is analogous to a unidirectional path tracer with next-event estimation (NEE), while

the second (§3.5.2) uses a bidirectional scheme.

Unidirectional simulation

In standard path tracing, a shading point would be directly connected to a light source in a

process often called direct illumination or next event estimation (NEE), which is crucial for

low-variance rendering. In an analogy to this technique, consider a shading point inside a

single layer slab (whether on the bottom interface or a scattering point within the medium).

We would like to create a path ending with ωi, intuitively connecting it to an external
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directional light source with direction ωi. However, direct connection between the shading

point and the desired external direction is usually invalid due to the layer’s top refractive

interface.

To address this problem, we introduce our NEE scheme that directly connects scattering

events across potentially rough refractive interfaces. Assume without loss of generality that

our path tracing starts with direction ωo. At each scattering event, we need to find a

direction ω′
i so that ωi → ω′

i follows the BSDF at the interface. To this end, we draw

ω′
i by sampling the interface BSDF backwards, given ωi. Finally, we simply multiply the

accumulated throughput by the weight returned from the sampling routine, and the BSDF

(or phase function) value at the scattering event.

Furthermore, this NEE connection can be combined with a path continuation (by sampling

the phase function or interface BSDF), using MIS for the weighting. This is analogous to

the MIS direct illumination used in many practical path tracers, with the difference that

the path can cross a refractive boundary. Note the distinction between this local MIS,

and the global MIS used by the scene-level transport algorithm (a standard path tracer in

our results). An illustration of these two techniques, applied to a transmit-reflect-transmit

(TRT) configuration, can be found in Figure 3.7-ab.

Previous work on next-event estimation in scattering volumes through refractive interfaces

[128, 77] is related to our scheme, but focuses on arbitrary geometries, which is not necessary

in the flat layer setting.

Extending this NEE scheme to cross multiple layer interfaces is somewhat tedious to imple-

ment, as care must be taken not to double-count light paths. We instead use the recursive

nesting approach to multiple layers (§3.4.6) when using the unidirectional estimator, which

handles these issues automatically.
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(c) (d) (e)(a) (b)

(c) (d) (e)(a) (b)

Figure 3.7: Our Monte Carlo estimators for BSDF values. (ab) Unidirectional es-
timator uses two path sampling strategies for “shading” a vertex on the bottom layer: (a)
sampling the BSDF f↑ of the top interface and connecting at the bottom (next event esti-
mation); or (b) sampling d2 using f↓ and connecting at the top (path continuation). These
strategies are combined using local MIS. (cde) Bidirectional estimator: (c) Two subpaths
with initial directions ωi and ωo. (de) Two full light paths constructed by sampling an
additional direction from each sub-path.

Bidirectional simulation

Although our unidirectional solution works well in many cases, we introduce a new bidi-

rectional approach that performs even better. Our approach is conceptually similar to

bidirectional path tracing (BDPT) but is technically different in several ways due to our

position-free path formulation.

Given the incoming and outgoing directions ωi and ωo, consider two light transport paths,

generated from the light and camera, respectively.

x̄i = (d0, z1,d1, . . . , zs)

x̄o = (d′
0, z

′
1,d

′
1, . . . , z

′
t),

(3.15)
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where d0 = −ωi and d′
0 = −ωo (Figure 3.7-c). Now we can construct a full light path ȳs,t

connecting the s-th vertex in x̄i and the t-th vertex in x̄o (assuming the connection between

zs and z′t does not cross any layer boundary):

ȳs,t = (d0, . . . , zs−1,ds−1, zs, d̃, z
′
t,−d′

t−1, z
′
t−1, . . . ,−d′

0). (3.16)

Unlike traditional BDPT, where the connection term between two given subpaths endpoints

is fixed, there exists infinitely many valid directions d̃ connecting zs and z′t in our case, which

gives us freedom to importance-sample the direction. In practice, we choose d̃ in two ways

by sampling additional directions ds and d′
t by extending the two subpaths with an extra

importance sampling step. We set d̃ to ds and −d′
t respectively. This yields two light paths

ȳ
(0)
s,t and ȳ

(1)
s,t (Figure 3.7-de), thus providing two samples of the path integral. Denote the

extended subpaths by

x̄+
i := (d0, z1,d1, . . . , zs,ds), (3.17)

x̄+
o := (d′

0, z
′
1,d

′
1, . . . , z

′
t,d

′
t), (3.18)

and let x̄∗ denote the adjoint (reversed) version of a light path x̄, e.g.,

x̄+∗
o = (−d′

t, z
′
t,−d′

t−1, . . . , z
′
1,−d′

0).

Let v(z,ω,ω′) and s(z, z′,ω) be the vertex and segment contributions defined in eqs. (3.3)

and (3.5). We can easily verify that

f(ȳ
(0)
s,t ) = f(x̄+

i ) f(x̄
∗
o) s(zs, z

′
t,ds) v(z

′
t,−ds,−d′

t−1), (3.19)

f(ȳ
(1)
s,t ) = f(x̄i) f(x̄

+∗
o ) v(zs,−ds−1,−d′

t) s(zs, z
′
t,−d′

t). (3.20)
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It follows that the two Monte Carlo estimates will be:

f(ȳ
(0)
s,t )

p(ȳ
(0)
s,t )

=
f(x̄+

i )

p(x̄+
i )

f(x̄∗
o)

p(x̄o)
s(zs, z

′
t,ds) v(z

′
t,−ds,−d′

t−1) (3.21)

f(ȳ
(1)
s,t )

p(ȳ
(1)
s,t )

=
f(x̄i)

p(x̄i)

f(x̄+∗
o )

p(x̄+
o )

v(zs,ds−1,d
′
t) s(zs, z

′
t,−d′

t), (3.22)

Note that in general f(x̄o) ̸= f(x̄∗
o) and f(x̄+

o ) ̸= f(x̄+∗
o ) due to non-reciprocal operations such

as shading normals; care must be taken to compute correct throughputs of light subpaths,

as detailed in Chapter 5 of Veach [124].

The above discussion assumed a single light and single camera subpath. In practice, we

combine all prefixes of the sampled subpaths. In particular, we sample subpaths of length

ni and no from the light and camera respectively (the lengths are chosen through Russian

roulette):

x̄i = (d0, z1,d1, . . . , zni
,dni

),

x̄o = (d′
0, z

′
1,d

′
1, . . . , z

′
no
,d′

no
).

(3.23)

For all s and t combinations, Eqs. (3.21) and (3.22) provide 2nino estimators of fl(ωi,ωo).

Combining them using MIS gives us our bidirectional estimator for paths of length 2 or

more vertices. We handle single vertex paths separately. The details of MIS weighting are

discussed in the supplementary document.

3.5.3 Pdf estimation

Another important operation for practical BSDF models is to evaluate the probability density

for sampling provided incoming and outgoing directions. That is, to evaluate p(ωo | ωi), the

probability density of ωo given ωi (assuming that the sampling process draws ωo and fixes

ωi). This operator is used for weight computation in multiple importance sampling (using

balance or power heuristics), a crucial technique for generating low-noise results using scene-
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level Monte Carlo rendering techniques. Note that this pdf is in the solid angle measure; it

is a marginal pdf distinct from the path pdf p(x̄).

Although p(ωo | ωi) is usually easily available for traditional analytical BSDFs, no closed-

form pdf exists in our case. Instead, the pdf evaluation has comparable form to the BSDF

evaluation itself. It can be expressed using another position-free path integral:

p(ωo | ωi) =

∫
Ω(ωi,ωo)

P(x̄) dµ(x̄), (3.24)

where

P(x̄) :=

(
k∏

j=1

p(dj | zj,dj−1)

)(
k−1∏
j=1

p(zj+1 | zj,dj−1)

)
, (3.25)

with k denoting the number of vertices in x̄. Note that dk = ωo.

We introduce two nondeterministic methods, an unbiased and a fast approximate approach,

to estimate p(ωo | ωi). These operations are not used in standard Monte Carlo light transport

and are new, to our knowledge. In practice, the approximate approach can be used when

exact estimations are unnecessary (as is the case for a global path tracer with MIS, which

we use for our results). Note that the estimated p(ωo | ωi) is only ever used for MIS weight

computation. We never use approximate path pdfs for Monte Carlo estimates, as this would

introduce bias. Our BSDF value estimators directly return path throughput with accurate

pdf factored in.

Unbiased pdf estimation

Both our unidirectional and bidirectional Monte Carlo estimators introduced in §3.5.2 can

be adapted to estimate the path integral in Eq. (3.24) in an unbiased manner. For instance,

the estimators given by Eqs. (3.21) and (3.22) simply require a replacement of f by P , and
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become:

P(ȳ(0)s,t )

p(ȳ
(0)
s,t )

=
P(x̄∗

o)

p(x̄o)
p(ds | z′t,−d′

t−1) p(z
′
t | zs,ds), (3.26)

P(ȳ(1)s,t )

p(ȳ
(1)
s,t )

=
P(x̄+∗

o )

p(x̄+
o )

p(d′
t | zs,ds−1) p(zs | z′t,d′

t). (3.27)

Note that some cancellation occurs because p(xi) = P(xi), but in general p(xo) ̸= P(x∗
o).

When jointly estimating the path integrals for the BSDF value (3.8) and the conditional

probability (3.24), the light transport paths x̄ need to be sampled independently to ensure

unbiasedness. Please refer to the supplemental document for a proof.

Approximate pdf estimation

Although the adapted estimators defined in 3.5.3 provide unbiased pdf estimations, they

introduce computational overhead comparable to the BSDF evaluation itself. Thus, for ap-

plications where unbiased pdfs are unnecessary, we introduce an approximation to accelerate

the pdf estimation process. The key idea is to only consider short paths reflecting/refracting

from interfaces, as these events have the largest effect on the pdf lobe shape, and add a con-

stant (Lambertian) term to approximate the effect of volume scattering and longer paths.

In practice, we run Monte Carlo simulation on a simplified layer configuration where all

volumetric media are removed. We further limit the maximal number of vertices on the light

paths to (2L + 1) when ωi · ωo > 0 (i.e., fl(ωi,ωo) captures reflection) and (L + 1) when

ωi · ωo < 0 (i.e., fl(ωi,ωo) captures transmission) where L denotes the number of layers.

Lastly, we add a small constant term to the estimation result. The exact scaling of this term

is not important for MIS weighting (as it will be overwhelmed by the pdfs of sharply peaked

lobes) and we found setting it to 0.1 works well.
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Figure 3.8: Validation of our pdf estimates. The visualization applies a log(1+x) map
for better shape perception. Left: Ground truth by sampling and binning. Middle: Using
the unbiased pdf from §3.5.3. Right: Using the approximate pdf from §3.5.3 matches the
shape of the most important features and approximates longer paths and volume scattering
as diffuse.

See Figure 3.8 for validation of the above pdf approaches against ground truth, and Figure

3.9 for a comparison between renderings using the unbiased and approximated pdf estimation

results. All the other results in this chapter are using approximated PDF for MIS. Unbiased

PDF is much slower, because it requires long light paths, and has to be computed twice per

shading event.

MIS + unbiased pdf (14 min) MIS + approx. pdf (4 min) no MIS (4 min)

Figure 3.9: Multiple importance sampling using our BSDFs. The slabs in this figure
use a layered material with rough dielectric on the top, rough gold conductor on the bottom,
and blueish homogeneous scattering medium in between. Left: Using the unbiased pdf for
MIS in a traditional global path tracer. Middle: Using the approximate pdf is faster and
gives equivalent quality. Right: Using no MIS is clearly inferior.
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3.6 Applications and Results

In this section, we first provide experimental validations (§3.6.1) and then showcase our

method on a number of applications and demonstrate its effectiveness (§3.6.2). All the

renderings are generated using the Mitsuba physically based renderer [64] with our layered

model implemented as a BSDF plugin. Please see the accompanying video for animated

versions of several results.

All the multi-layer results in the chapter use our bidirectional estimator with the explicit

implementation (although our BSDF plugin also supports nesting BSDFs). This is because

the former runs faster, as seen in Figure 3.16-(c).

3.6.1 Validations

Cross validation In Figures 3.5 and 3.8 as well as the supplemental material, we cross-

validate our Monte Carlo estimators depicted in §3.5.2 by comparing our estimated BS-

DFs/pdfs to references generated using forward sampling (§3.5.1) and binning. Notice that

the sampling procedure is a straightforward process that requires none of the complexity

introduced by our path formulation and estimators.

White furnace tests We conducted a few “white furnace tests” to demonstrate the energy

conservation of our layered BSDFs (Figure 3.10). For all these examples, the BSDFs are

constructed such that no energy is lost due to light-layer interactions. Under constant

lighting (where identical amount of light comes from all directions), the object becomes

invisible, demonstrating that our layered BSDFs indeed conserve energy properly.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 3.10: White furnace tests. We demonstrate that our BSDFs conserve energy
properly via three layered BSDF examples respectively given by (a) a dielectric and a diffuse
interface; (b) a dielectric and a conductor interface and participating medium; (c) two
dielectric interfaces and participating medium in between. All the interfaces and media have
albedo one (so no energy is lost due to light-layer interactions). For each example, a simple
object is rendered under both environmental (1) and constant (2) illuminations.

3.6.2 Main Results

(Only a small subset of our results fits into the thesis. Please see our supple-

mental material and video for more results. [Click here])

Application: Coating thickness/normal variation

Figure 3.11 shows renderings of a globe with a dielectric coating on top of a metallic sub-

strate. In this example, both interfaces are colorless and the layer medium has a blue tint.

In Figure 3.11-(a), both interfaces are smooth, creating two overlapped reflections of the

environment map with different amounts of blur. In Figure 3.11-(b), the top interface of
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the globe is smooth, leading to one clear reflection. On the bottom (metallic) interface, we

use a detailed height field to drive the normal variation as well as the medium thickness.

The high-frequency variation of normal direction has resulted in detailed highlights on the

bottom surface. Further, due to varying amounts of attenuation at different thickness, these

highlights exhibit different colors: reflections from greater depths become darker and more

saturated. In Figure 3.11-(c), the height variation is instead applied to the top dielectric

interface, causing the clear reflection of the environment to be replaced by a blurred one.

Further, since the areas under the continents now have larger thickness, their colors become

more saturated. Our layered BSDF model is capable of producing all these appearances us-

ing a simple set of parameters (thickness, roughness and medium absorption) in conjunction

with spatial variation.

(a) (b) (c)

Figure 3.11: Top vs. bottom height variation. Thanks to the physically-based nature
of our layered BSDF model, manipulating heights on its top and bottom interfaces has
greatly varying effects on the final appearance. The height variation drives both normals
and thickness differences (and thus medium absorption). (a) No height variation. (b) Height
variation applied to the bottom interface. (c) Height variation applied to the top interface.

Application: Complex thin sheet transmission

Our physically based BSDF is capable of accurately modeling not only reflection but also

transmission. Figure 3.12 contains an example flat surface rendered with our layered BSDF

under varying illuminations. This model involves dielectric interfaces with spatially varying
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roughnesses and a normal map applied to the front surface. The optical thickness at each

location is obtained by multiplying a base density, which varies across the color channels, by

the geometric height field matching the normal map. In other words, the optical densities

(mean free paths) are spectrally varying, which results in subtle color variations across the

surface (especially for transmitted light), a phenomenon that would be challenging to model

accurately using existing BSDF models. Note again that all of these effects come from the

BSDF model, as the scene geometry is a simple flat polygon.

Back-lit Front-lit Back-lit Front-lit

Figure 3.12: Reflection and transmission: A flat surface rendered with our layered
BSDF under varying illuminations. This model involves dielectric interfaces with spatially
varying roughnesses, normal maps, and thickness. The optical densities (mean free paths)
are spectrally varying, which results in subtle color variations across the surface. Note that
the color (albedo) is not varying.

HG (g = 0.9) HG (g = 0.99) vMF (κ = 10) vMF (κ = 100)

Figure 3.13: Reflection and transmission: A flat surface with a layered BSDF of
spatially varying thickness (which captures the shape of real convex lens). A range of spatially
varying and physically plausible blurring effects can be achieved by varying phase functions.
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Figure 3.13 shows renderings of a magnifying lens filled with scattering media with spa-

tially varying thickness (which captures the shape of real convex lens). Note that the scene

geometry is still just a flat surface. When coupled with different phase functions (Henyey-

Greenstein and von-Mises-Fisher, with different forward scattering parameters), a range of

spatially varying and physically plausible blurring effects can be achieved.

Please see the supplemental images and video for more variations with similar configurations.

Application: Anisotropic layer media for fabrics

Our layered BSDF allows any phase functions within volumetric scattering layers, including

anisotropic microflake phase functions [65, 141, 56] capable of representing fabrics. Figure

3.14 shows three fabrics modeled using our model with “null” top and bottom interfaces (ones

that allows light to travel through without reflecting or refracting it) and anisotropic layer

media with spatially varying albedo and flake orientations (the optical density does not vary

in these examples, though it could). The satin weave shows well aligned yarns have created

smooth and strongly anisotropic highlights. The twill pattern has warp and weft yarns

in different colors, leading to dual colored highlights. The velvet exhibits strong grazing-

angle highlights, an effect that is challenging to model using traditional BSDF models. Our

model successfully captures all the diverse appearances from all three fabrics and produces

convincing impressions of these materials.

Figure 3.15 shows a fabric rendered using fiber orientation data acquired by micro-CT imag-

ing [141]. Our rendering uses a fiber orientation map derived from the full data, and matches

the full volumetric simulation fairly closely, while being 40 times faster. The speedup is be-

cause ours is still a flat BSDF model with parameter mapping, as opposed to full volumetric

tracing that requires expensive ray marching through massive data.
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(a) (b) (c)

Figure 3.14: Anisotropic media within layers. Our layered BSDF offers the generality
to use anisotropic layer media with microflake phase functions. This example shows three
fabrics modeled with our BSDF model with anisotropic layer media: (a) satin; (b) twill;
and (c) velvet.

(a) Volume rendering (b) Our BSDF + fiber-direction map

Figure 3.15: Comparison to volumetric cloth. (a) Images rendered from micro-CT
volumetric data, using the microflake phase function. (b) Renderings using our approach
using a single microflake volumetric layer, where we are using fiber direction maps extracted
from the volumetric data. Our rendering is 40× faster than the volumetric simulation.

Application: Multiple layers

Lastly, in Figure 3.16, we show rendered results of a kettle with varying layer configurations.

In column (a), the material has a single transparent water layer with a dielectric interface

on the top and a metallic surface on the bottom. Both interfaces are normal mapped to

capture the water drops and the scratches, respectively. In column (b), the material shares

the same bottom surface as in (a) but has a smooth top interface and a translucent coating

layer with spatially varying optical thickness and albedo, making only part of the bottom

surface directly visible. Lastly, in column (c), the material has a dual-layer configuration

by stacking the layers from (a) on top of (b). Our method offers the flexibility to model all

three cases with the last one described using the explicit implementation depicted in §3.4.6.
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(a) (b) (c)

Figure 3.16: Multi-layer BSDF. This result shows renderings of a kettle described with:
(a) a single transparent layer with a dielectric top interface capturing the water drops over
a conducting bottom surface with scratches; (b) a single translucent layer with spatially
varying optical thicknesses and albedo over the same bottom surface of (a); (c) a dual layer
configuration created by stacking the transparent layer (a) over the translucent one (b).

3.6.3 Performance

The Monte Carlo processes for sampling and evaluating our BSDFs do introduce compu-

tational overhead. Table 3.2 lists the performance numbers of all our results. Further, we

provide baseline timings using “trivial” BSDFs (that require no stochastic evaluation) to the

same scene geometries. Our performance does degrade with the presence of optically thick

and highly scattering media. However, as already demonstrated in Figure 3.2, rendering us-

ing our model is still significantly faster than explicitly simulating light transport in layered

geometries.

3.7 Conclusion

In this chapter, we introduced a new BSDF model to capture the appearance of layered

materials. Inside the evaluation and sampling routines of the layered BSDF, we run a

Monte Carlo simulation of light transport within flat slabs. This is substantially faster than
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Table 3.2: Render times of all our results (using our “unidir.” and “bidir.” estimators)
as well as baseline models with “trivial” BSDFs (that require no stochastic evaluation). All
the multi-layer models are described using nesting BSDFs for the unidirectional estimator
and the explicit implementations for the bidirectional one. The baseline models exhibit
different appearances and are created solely for performance comparison. All the timings
are converted to a 6-core Intel i7-6800K CPU time, and those between parentheses indicate
render time per mega-pixel. The numbers in bold correspond to methods used for creating
the figures. Please refer to the supplemental material for all the other renderings.

Image size spp
Render time

Unidir. Bidir. Trivial

Fig. 3.1a 3000×2000 1024 2.5 h (25 m) 2.2 h (22 m) 38 m (6.3 m)
Fig. 3.11b 1024×1024 256 2.2 m (2.1 m) 2.6 m (2.5 m) 1.3 m (1.2 m)
Fig. 3.12 800×1200 512 15.2 m (7.9 m) 24 m (12.5 m) 2.4 m (1.3 m)
Fig. 3.13 512×512 1024 6.4 m (6.1 m) 13 m (12.6 m) 1.6 m (1.5 m)
Fig. 3.14a 876×584 256 1.1 m (2.2 m) 1.4 m (2.7 m) 0.6 m (1.1 m)
Fig. 3.14b 876×584 256 1.1 m (2.2 m) 1.4 m (2.7 m) 0.5 m (0.9 m)
Fig. 3.14c 876×584 256 2.5 m (4.9 m) 5.4 m (10.5 m) 0.5 m (0.9 m)
Fig. 3.15b 640×540 256 1.5 m (4.3 m) 1.9 m (5.5 m) 0.5 m (1.4 m)
Fig. 3.16a 1200×1400 256 6.7 m (4.0 m) 12 m (7.1 m) 3.7 m (2.2 m)
Fig. 3.16b 1200×1400 256 7.0 m (4.2 m) 13 m (7.7 m) 3.7 m (2.2 m)
Fig. 3.16c 1200×1400 256 67 m (40 m) 20 m (12 m) 4.7 m (2.8 m)

explicitly constructing the layer geometry, but also allows constructing light transport paths

that would not easily be available to a generic light transport algorithm, due to our new

position-free path formulation.

Within this framework, we introduced unbiased Monte Carlo techniques analogous to a

forward path tracer with next event estimation (NEE) and a fully bidirectional estimator.

We demonstrated the capabilities of our solution on a number of examples, featuring multiple

layers with surface and volumetric scattering, surface and phase function anisotropy, and

spatial variation in all parameters. This leads to the first BSDF layering solution that offers

unbiased accuracy and full flexibility in setting the layer properties.
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Chapter 4

Bulk Scattering in Volumetric

Rendering

N cls = 1 N cls = 100 N cls = 100 N cls = 100 N cls = 100 N cls = 100
ai = 300nm ai = 300nm ai = 500nm ai = 500nm ai = 500nm ai = 500nm
Isotropic Isotropic Isotropic Isotropic Anisotropic Pos. correlated
λ = 700nm λ = 700nm λ = 700nm Multi-spectral λ = 700nm λ = 400nm

Figure 4.1: We introduce a new technique to compute bulk scattering parameters (i.e.,
the extinction and scattering coefficients as well as the single-scattering phase function) in a
systematic fashion. By considering wave optical effects and particle (scatterer) interactions
at the microscopic level, our technique enjoys the generality of supporting a wide range of
media (e.g., isotropic, anisotropic, and correlated). In this figure, we show renderings of thin
slabs lit with a small area light from behind (top). Additionally, we show visualizations of
the corresponding particle distributions (middle) as well as per-cluster particle counts N cls

radii ai (bottom).
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4.1 Introduction

Participating media and translucent materials—such as marble, milk, wax, and human skin—

are ubiquitous in the real world. These materials allow light to penetrate their surfaces and

scatter in the interior.

In computational optics and computer graphics, how light interacts with participating media

and translucent materials is typically modeled using the radiative transfer theory (RTT).

Under this formulation, a participating medium consists of microscopic particles (scatterers)

randomly dispersed in some homogeneous embedding medium. After entering a translucent

material, light travels in straight lines in the embedding medium and occasionally collides

with a particle and gets redirected into a new direction. To capture the macroscopic behavior

of light, the RTT uses a statistical description of the particles (the medium bulk parameters),

namely the extinction coefficient σt (aka. optical density), the scattering coefficient σs, and

the phase function fp.

While purely phenomenological in origin, the RTT has been demonstrated a corollary of

Maxwell equations, under the assumption of far-field or independent scattering [94]. There-

fore, these optical bulk parameters can be obtained from first principles, using e.g. Lorenz-

Mie theory [123, 32]. However, although very successful in practice, this theory neglects the

interactions occurring between particles in their near-field, including wave-optics effects such

as diffraction and interference with neighbor particles. Consequently, Lorenz-Mie theory is

largely limited to isotropic media with relatively low packing rates.

Previously, the classical radiative transfer theory has been generalized to handle materials

with (statistically) organized microstructures. Anisotropic media [65], for instance, have

bulk scattering parameters with stronger directional dependency compared to isotropic me-

dia. Additionally, media comprised of particles with correlated locations can exhibit non-

exponential transmittance and characteristic scattering profiles [15, 67]. Although several
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empirical models have been proposed to model these media, these still base on the very

same far-field assumption of Lorenz-Mie scattering. Therefore, techniques capable of com-

puting the bulk optical parameters of a material, based its microscopic properties, have been

lacking.

In this chapter, we bridge this gap by introducing a new technique to systematically and

rigorously compute the bulk scattering parameters. The elementary building block of our

technique is particle clusters in which individual particles follow user-specified distributions.

Within a cluster, we consider full near-field light transport effects; Between clusters, on the

contrary, we use a far-field approximation to allow efficient modeling of macroscopic level

light transport.

Our formulation is derived from first principles of light transport (i.e., Maxwell electromag-

netism) and reduces to the Lorenz-Mie theory in the special case of single-particle scatter-

ers. Based on this formulation, we demonstrate how the bulk parameters can be computed

numerically. Using our technique, we systematically generate radiative transfer optical pa-

rameters capturing multi-spectral, anisotropic, and correlated scattering effects for particles

with arbitrary distributions (Figure 4.1).

Concretely, our contributions include:

� Establishing a computational framework for modeling light scattering from clusters of

particles (§4.4).

� Showing how radiatve transfer parameters can be computed numerically based on our

formulation (§4.5).

� Demonstrating how our technique can be applied to systematically compute scattering

parameters for a variety of participating media (§4.6).
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4.2 Related Work

Radiative Transfer. Simulating the propagation of light in participating media has

been widely studied in graphics [103], building upon the radiative transfer equation (RTE),

introduced 125 years ago by von Lommel [126] (see [95] for a historical perspective).

This escalar radiative formulation has been extended in graphics accounting for anisotropic

[65], refractive [8], bispectral [52], or spatially-correlated media [67, 15]. All these works

assume a radiometric light transport model, establishing no connections with the electro-

magnetic behaviour governing light transport.

From a wave optics perspective, a few works have generalized light transport in media to

account for wave-based properties, including polarized light transport [134, 68], or coherence

[10]. This last work is of special relevance, given that it was able to simulate purely wave-

based phenomena such as speckle or coherent back-scattering on top of a radiative model.

All these works build on the assumption of the far-field approximation and independent

scattering, which largely simplifies computations. A notable exception is the near-field model

proposed by Bar et al.[11], that renders speckle statistics in the near-field zone of the camera,

although it still considers independent far-field scattering between particles. In contrast, in

this work we explicitly relate the radiometric light transport modeled by the RTE with

physics-based optics based on electromagnetism, and generalize the independent scattering

approximation to account clusters of particles in the near field.

Modeling scattering in media The phase function models the average scattering dis-

tribution at an interaction with the medium. A common approach is to use simple phe-

nomenological models, such as the Henyey-Greenstein phase function [58] or mixtures of von

Mishes-Fisher distributions [40], as well as other functions modeling the scattering of ideal-
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ized anistropic particles [141, 56]; however, these methods lack an explicit relationship with

the underlying microscopic material properties. Under the assumption of geometric optics,

several works have proposed to precompute the phase functions of more complex particles

for granular materials [93, 99] or cloth fibers [7] using explicit path tracing, by neglecting

wave effects.

A more rigorous phase function is based on the Lorenz-Mie theory [123], which provides

closed-form solutions for the Maxwell’s equations for spherical particles [63, 32]. Sadeghi et

al. [112] generalized the Lorenz-Mie theory to larger non-spherical particles in the context of

accurately modeling rainbows. To avoid the expensive sum series of the Lorenz-Mie theory,

Guo et al. [46] proposed to use the geometric optics approximation [41], which give a good

approximation to Lorenz-Mie theory for larger particles at significantly lower cost.

All these approaches provide accurate rigorous solutions to the far-field scattering of disperse

particles.

Beyond Lorenz-Mie, several exact rigorous solutions have been proposed for computing elec-

tromagnetic scattering of particles in media, including the finite elements method (FEM),

the finite difference time domain (FDTD) method, or the boundary elements method (BEM)

[135], which solve the Maxwell’s equations for arbitrary shapes. Xia et al. [136] proposed

using BEM for accurately precomputing the far-field scattering of individual fibers. Un-

fortunately these methods are very slow as the number of particles increase, limiting its

applicability to individual elements in problems with reduced dimensionality.

The T-matrix method [130] generalizes the Lorentz-Mie theory to particles of arbitrary shape

in both the near- and far-fields, with the only assumption of the computed field being outside

a sphere surrounding the particles. This method was later extended to clusters of multiple

particles [106, 90]. We leverage the T-matrix method for computing the scattering of groups

of particles.
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Wave optics in surface scattering Inspired on the vast background on electromagnetic

surface scattering in optics (see [34] for a general survey), several works in graphics have

taken into account relevant wave effects including diffraction-aware BSDFs [55, 117, 21, 26,

59, 120, 132, 138], goniochromatic patterns due to thin-layer interference [116, 42, 13, 45]

or birefringence [119]. These works assume single scattering, with no interaction between

different particles with a few exceptions that assume full incoherence after single scattering

[29, 45]. Notably, Moravec [98] and Musbach et al. [100] computed the full electromagnetic

surface scattering by solving the full wave propagation using the FDTD.

4.3 Preliminaries

We now briefly revisit the basics on first principles of (classical) light transport theory based

on Maxwell electromagnetism. Table 4.1 summarize the symbols using along this chapter.

4.3.1 Electromagnetic Scattering

The propagation of a time-harmonic monochromatic electromagnetic field with frequency ω

is defined by the Maxwell curl equations as

∇× E(r) = iω µ(r)H(r),

∇×H(r) = iω ε(r)E(r),

(4.1)

where ∇ × · is the curl operator; E(r) and H(r) indicate, respectively, the (vector-valued)

electric and magnetic fields at r; µ(r) and ε(r) denote the (scalar-valued) magnetic perme-

ability and electric permittivity at r, respectively; and i :=
√
−1 is the imaginary unit.

Assuming a non-magnetic medium satisfying µ(r) = µ0 with µ0 being the magnetic perme-
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Table 4.1: Notation used in §4.

r ∈ R3 Position

r̂ ∈ S2 Direction to r.

r ∈ R Distance.

ε(r) Permittivity

µ(r) Permeability

ω Wave angular frequency [1/s]

λ = 2πω−1 Wavelength [m]

k(r) = ω
√

ε(r)µ(r) Wavenumber at r

m(r) = k2(r)/k1 Relative refractive index at r

H(r) Magnetic field at r

E(r) Electric field at r (4.4)

Einc(r) Incident electric field r

Esca(r) Scattered electric field at r (4.4)

E0 Amplitude of a planar electric field

Esca
1 (r̂) Far-field angular distribution of the scattered radiation

⇐⇒
G Free-space dyadic Green’s function (4.5)
⇐⇒
T Dyad transition operator (4.9)

g(n̂, r) Planar field scalar propagator

Vi Volume suspended by particle/cluster i

Ri ∈ R3 Representative position of particle/cluster i

R̂ij ∈ S2 Direction from Rj to Ri

Rij ∈ R Distance from Rj to Ri

N cls Number of particles in a cluster

Esca
i (r) Scattered field of r ∈ Vi (4.8)

Ei(r) Exciting field in r ∈ Vi

Eexc
ij (r) Partial exciting field in r ∈ Vi from particle j (4.10)

⇐⇒
A

near

i (n̂inc, r) Near-field scattering dyad of particle/cluster i (4.20).
⇐⇒
Ai(n̂

inc, n̂sca) Far-field scattering dyad of particle/cluster i (4.23).

Ct(n̂
inc), Cs(n̂

inc) Extinction (4.28) and scattering (4.29) cross-sections [m2]

fp(n̂
inc, n̂sca) Phase function (4.30)

ρ Particles density [m−3]

σt(n̂
inc), σs(n̂

inc) Extinction (4.31) and scattering (4.32) coefficients [m−1]

ability of a vacuum, Equation (4.1) reduces to the electric field wave equation

∇2 × E(r)− k2E(r) = 0, (4.2)
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where k(r) = ω
√

ε(r)µ0 is the medium’s wave number at r.

We now assume an infinite homogeneous isotropic medium with permittivity ε1, filled with

scatterers bounded by a finite disjoint region V , with potentially inhomogeneous permittivity

ε2(r). Under this assumption, we can solve Equation (4.2) by expressing it as the volume

integral equation (see §3.1 of Mishchenko’s work [97] for a step-by-step derivation) as the

sum of the incident field Einc(r) and the scattered field Esca(r) due to inhomogeneities in the

medium in the form of scatterers:

E(r) = Einc(r) + Esca(r) (4.3)

= Einc(r) + k2
1

∫
V

[m2(r′)− 1]
⇐⇒
G(r, r′)E(r′) dr′, (4.4)

with k1 the wave number at the hosting medium, m(r) = k2(r)/k1 the index of refraction of

the interior regions V with respect to the hosting medium, and
⇐⇒
G(r, r′) the free-space dyadic

Green’s function defined as:

⇐⇒
G(r, r′) =

(⇐⇒
I + k−2

1 ∇⊗∇
) exp(i k1 |r− r′|)

4π |r− r′|
, (4.5)

where
⇐⇒
I is the identity dyad, and .⊗ . denotes the dyadic product of two vectors. Intuitively,

Equation (4.4) models the scattering field as the superposition of the spherical wavelets

resulting from a change of permitivitty (i.e. with m(r′) ̸= 1). Note also the recursive nature

of Equation (4.4); we will deal with this recursivity in the following section, computing

Esca(r) as a function of the incident field Einc(r).

4.3.2 Foldy-Lax Equations

We now consider a medium filled with N finite discrete particles with volume Vi and index

of refraction mi(r). Considering an incident E-field Einc(r), we can rewrite Equation (4.4)
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as

E(r) = Einc(r) +

∫
R3

U(r′)
⇐⇒
G(r, r′) · E(r′) dr′, (4.6)

where
⇐⇒
G(r, r′) is the dyadic Green’s function (4.5), and U(r) the potential function given by

U(r) =
N∑
i=1

Ui(r) with Ui(r) =


0, (r /∈ Vi)

k2
1[m

2
i (r)− 1]. (r ∈ Vi)

(4.7)

By combining Equations (4.6) and (4.7), we can express the field at any position r ∈ R3

following the so-called Foldy-Lax equation [30, 81] as

E(r) = Einc(r) +
N∑
i=1

=:Esca
i (r)︷ ︸︸ ︷∫

Vi

⇐⇒
G(r, r′) ·

∫
Vi

⇐⇒
T i(r

′, r′′) · Ei(r
′′) dr′′ dr′ (4.8)

with Esca
i (r) and Ei(r) the scattered and partial field of particle i, and

⇐⇒
T j(r, r

′)
⇐⇒
T i(r, r

′) the

dyad transition operator for particle i defined as [121]

⇐⇒
T i(r, r

′) = Ui(r) δ(r− r′)
⇐⇒
I + Ui(r)

∫
Vi

⇐⇒
G(r, r′′) ·

⇐⇒
T (r′′, r′) dr′′, (4.9)

with δ(x) the Dirac delta. The partial field at particle i is defined as Ei(r) = Einc(r) +∑N
j( ̸=i)=1 E

exc
ij (r), where the partial exciting field Eexc

ij (r) from particles j to i is

Eexc
ij (r) =

∫
Vj

⇐⇒
G(r, r′)

∫
Vj

⇐⇒
T j(r

′, r′′)Ej(r
′′) dr′′ dr′, (4.10)

with r ∈ Vi. Note that the scattered and exciting fields for particle j have essentially the

same form. As shown by Mishchenko [94], the Foldy-Lax equation (4.8) solves exactly the

volume integral equation (4.4) for multiple arbitrary particles in the medium, without any

assumptions on their composition or packing rate, beyond the assumption of a homogeneous

hosting medium.
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R̂ij

r

Ri Rj

Rij

Vi Vj

(a)

RkR̂Ck

Ri

RC

RCk

R̂ik

C

(b)

R̂Ck

RC

C

Eexc
Ck

θinc

ϕinc

(c)

Figure 4.2: Schematical representation of the particles scattering geometry. (a)
Previous methods, including Lorenz-Mie theory, assume independent scattering of particles,
assuming that the distance Rij between two particles i and j is very large (i.e. Rij → ∞),
neglecting the potential interactions between particles. (b) In our work we differentiate
between near field scattering of particles within a small region in space (cluster C centered
at RC), and particles k on the far-field region of the cluster (distance RCk → ∞). (c) For
large values of RCk, the direction between particle k and any particle j ∈ C is dPxik ≈ R̂Ck:
Therefore, we can assume an planar exciting field Eexc(r)Ck on the whole cluster C from
particle k, with direction R̂Ck.

Far-field Foldy-Lax Equations Equation (4.10) defines the exact exciting field resulting

from the scattering by particle j on particle i. However, if the distance Rij := ∥Ri − Rj∥
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between particles (with Ri denoting the center of particle i) is large, we can approximate

the propagation distance between any point r ∈ Vi and r′ ∈ Vj as

∥r− r′∥ ≈ Rij + (R̂ij ·∆r)− (R̂ij ·∆r′), (4.11)

with R̂ij := (Ri −Rj)/Rij, ∆r := r −Ri and ∆r′ := r′ −Rj (see Figure 4.2, left). With

this approximation, we can now express Eexc
ij (r) for a point r ∈ Vi using its far-field approx-

imation, as:1

Eexc
ij (r)

≈ eik1(Rij+R̂ij ·∆r)

4πRij

∫
Vj

g(R̂ij,∆r′)

∫
Vj

⇐⇒
T j(r

′, r′′) · Ej(r
′′) dr′′ dr′

=
exp(ik1Rij)

Rij

g(R̂ij,∆r)Eexc
1ij (R̂ij),

(4.12)

where: r ∈ Vi is a point in particle i; g(n̂,∆r) = exp(ik1 R̂ij ·∆r); and Eexc
1ij is the far-field

exciting field from particle j to particle i that is solely characterized by the propagation

direction R̂ij. In order for Equation (4.12) to be valid, the distance Rij needs to hold

the far-field criteria, which relates the Rij with the radius of the particle aj following the

inequality [97]:

k1Rij ≫ max

(
1,

k2
1a

2
j

2

)
. (4.13)

This far-field assumption is both the basis for the Lorenz-Mie theory [123] (to model elec-

tromagnetic scattering from small spherical particles) and, as shown by Mishchenko [94], at

the core of the radiative transfer theory.

In the following, we relax the assumption of near field scattering and compute the Foldy-Lax

equations for clusters of particles for both the near- and far-field regions. Then, we use them

to compute the scattering matrix to be used in the RTE to efficiently approximate light

1We note that, accordingly to Mishchenko [97], the product would require to multiply the integrand by

the dyad (
⇐⇒
I − R̂ij ⊗ R̂ij) to ensure a transverse planar field; we remove it for clarity.
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transport between clusters of particles.

4.4 Scattering from Clusters of Particles

In this section, we present our main theoretical result: the far-field approximated scattering

dyad relating a field incoming at a particle, which will be shown in Equation (4.23). This

dyad can then be used to compute a medium’s bulk scattering parameters, which we will

discuss in §4.4.1.

The two forms of computing the exciting field from particle j to i [Equations (4.10) and

(4.12)] suggest that we can consider two subsets of particles j depending on their distance

with respect to the point of interest r: One set of Nnear particles in the near field and another

set of Nfar particles in the far field. With that, we can now calculate the exciting field in

particle i as:

Ei(r) = Einc(r) +
Nnear∑

j(̸=i)=1

Eexc
ij (r) +

Nfar∑
k=1

Eexc
ik (r). (4.14)

In what follows, we derive the far-field Foldy-Lax equations for groups of particles where a

cluster of these particles are in their respective near-field region, while the other elements

in the system are in the far field. For the simplicity of our derivations, we consider a single

far-field incident field in the cluster, and assume that the far-field particles k do not have

neighbor particles in their respective near field region.

More formally, we now consider a cluster C of NC particles, where all particles i ∈ C are

in their respective near-field region, and that the particles of the cluster have a bounding

sphere centered at RC with radius aC (see Figure 4.2, middle).

Since both the incident field Einc(r) and the exciting field Eexc
Ck (r) from particle k are in the
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far-field region, we can assume both fields to be planar waves defined as

Einc(r) = Einc
0 exp(ik1n̂ ·∆r) = Einc

0 g(n̂,∆r), (4.15)

Eexc
Ck (r) = Eexc

0Ck exp(ik1R̂Ck ·∆r) = Eexc
0Ck g(R̂Ck,∆r), (4.16)

with Einc
0 the amplitude of the planar incident field, n̂ its direction, and ∆r = r − RC.

Equivalently, Eexc
0Ck = exp(ik1 RCk)

RCk
Eexc

1Ck(R̂Ck) is the amplitude of the exciting field at C from

particle k, and R̂Ck its direction.

Now, let us slightly abuse the dot product notation, remove the dependency on the spatial

dependency on each term, and use (φ1 · φ2) =
∫
φ1(x)φ2(x) dx for scalar-valued functions

φ1 and φ2. From the far-field assumptions, plugging Equation (4.14) into the definition of

the scattered field from particle i ∈ C in Equation (4.8) (with Nnear = N cls) yields

Esca
i (r) =

⇐⇒
G ·

⇐⇒
T i · Ei

=
⇐⇒
G ·

⇐⇒
T i ·

Einc +

Nfar∑
k=1

Eexc
Ck +

Ncls∑
j(̸=i)=1

Eexc
ij

 .
(4.17)

By recursively expanding Eexc
ij and some algebraic operations (see the supplemental for the

full derivation), this results into

Esca
i (r) = E0

⇐⇒
G ·

⇐⇒
T i ·

[
g(n̂) +

Ncls∑
j(̸=i)=1

[...]g(n̂)j

]
(4.18)

+

Nfar∑
k=1

Eexc
0Cj

⇐⇒
G ·

⇐⇒
T i ·

[
g(R̂Ck) +

Ncls∑
j(̸=i)=1

[...]g(R̂Ck)
j

] .

where the ”[...]φl ” term represents the recursivity as

[...]φj =
⇐⇒
G ·

⇐⇒
T j ·

φ+
Ncls∑

l( ̸=j)=1

[...]φl

 . (4.19)
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Note that each element in the sum in Equation (4.18) above is the result of the amplitude of

the far-field incident or exciting fields, and a series that encode all the near-field scattering in

the cluster C. We can thus define the scattering dyad
⇐⇒
A

near

i (n̂inc, r) relating a unit-amplitude

planar incident field at particle i from direction n̂inc with the scattered field at point r as

⇐⇒
A

near

i (n̂inc, r) =
⇐⇒
G ·

⇐⇒
T i ·

[
g(n̂inc) +

Ncls∑
j(̸=i)=1

[...]g(n̂
inc)

j

]
. (4.20)

By considering constant Einc
0 and Eexc

0Ck for the whole cluster C, we can compute the cluster’s

scattering dyad as:

⇐⇒
A

near

C (n̂inc, r) =

NC∑
i=1

⇐⇒
Ai(n̂

inc, r), (4.21)

which defines the scattered field for a unit-amplitude incoming planar field in a scene con-

sisting of the particles forming cluster C. In practice, the scattering dyad
⇐⇒
A

near

C (n̂inc, r) can

be computed numerically using standard methods from computational electromagnetics [96].

Far-field approximation Equation (4.20) represents the general form of the scattering

dyad for particle i, which results into a five-dimensional function. Assuming that r is in the

far-field region of a particle i ∈ C, by using the far-field approximation of the scattered or

exciting field (4.12) (we refer to the supplemental document for the derivation), we get the

scattered field by particle i as

Esca
i (r) ≈ eik1Ri

Ri

(
E0

⇐⇒
Ai(n̂, R̂i) +

Nfar∑
k=1

Eexc
0Ck

⇐⇒
Ai(R̂Ck, R̂i)

)
, (4.22)

with Ri = |r−Ri| and R̂i =
r−Ri

Ri
, and

⇐⇒
Ai(n̂

inc, n̂sca) =
g(n̂sca) ·

⇐⇒
T i

4π
·

[
g(n̂inc) +

Ncls∑
j(̸=i)=1

[...]g(n̂
inc)

j

]
. (4.23)
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Finally, since R̂i ≈ R̂C for all particles i ∈ C, we can approximate the far-field scattered

field of cluster C as

Esca
C (r) =

eik1RC

RC

(
E0

⇐⇒
AC(n̂, R̂C) +

Nfar∑
k=1

Eexc
0Ck

⇐⇒
AC(R̂Ck, R̂C)

)
, (4.24)

where
⇐⇒
AC(n̂

inc, n̂sca) =

NC∑
i=1

⇐⇒
Ai(n̂

inc, n̂sca), (4.25)

is the far-field scattering dyad of cluster C.

Thus, by grouping the individual particles into N cls near-field clusters, and assuming that

all clusters and observation point r lay in their respective far field, we can approximate the

Foldy-Lax equation (4.8) as

E(r) = Einc(r) +
Ncls∑
Cj=1

Esca
Cj
(r), (4.26)

with Esca
Cj
(r) the scattered field at cluster Cj.

4.4.1 Relationship with the Radiative Transfer Theory

The scattering dyad
⇐⇒
AC(n̂

inc, n̂sca) given by Equation (4.25) models how a particle cluster C

scatters a planar unit-amplitude incident field in the far field region. However, for rendering

we are generally interested on the average field intensity (i.e. radiance).

As shown by Mishchenko [94], the radiative transfer equation (RTE) directly derives from the

far-field Foldy-Lax equations under three additional assumptions: (i) The amount of coherent

backscattering is negligible; (ii) The particles are randomly distributed according to some

distribution p(Ri, ξi), with Ri and ξ denoting, respectively, the position and properties of a

particle i; and (iii) We are interested on the average field ⟨E(r)⟩.
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Following these assumptions, and after a lengthy derivation, Mishchenko demonstrates that

the bulk scattering properties can be obtained from the far-field Foldy-Lax form, and in

particular from the scattering dyad
⇐⇒
A(n̂inc, n̂sca). Let us first assume that the distribution

of particle properties ξ are independent of the particles position, and compute the average

scattering dyad ⟨
⇐⇒
A(n̂inc, n̂sca)⟩ =

∫
Ω

⇐⇒
Ai(n̂

inc, n̂sca)p(ξi) dξi.

Then, note that the Foldy-Lax equation for clusters of particles (4.26), we derived above

has the same form as the original Foldy-Lax equation (4.8). Thus, by the same derivation

followed by Mishchenko we get to an equivalent RTE based on the scattering dyad of clusters.

Computing the scattering parameters By taking the vectors of the parallel and per-

pendicular polarization θ̂
inc

and φ̂inc of the incident field as shown in Figure 4.2 (right), and

equivalently for the scattered field θ̂
sca

and φ̂sca, we can compute the polarized scattering

components Sθ and Sφ from the cluster’s scattering dyad
⇐⇒
AC(n̂

inc, n̂sca) as

Sθ(n̂
inc, n̂sca) = θ̂

sca
· ⟨

⇐⇒
AC(n̂

inc, n̂sca)⟩ · θ̂
inc
,

Sφ(n̂
inc, n̂sca) = φ̂sca · ⟨

⇐⇒
AC(n̂

inc, n̂sca)⟩ · φ̂inc. (4.27)

Then, based on the two scattering components Sθ and Sφ, we can obtain the optical param-

eters of the medium as

Ct(n̂
inc) = 4πℜ

[
S(n̂inc, n̂inc)

k2
i

]
, (4.28)

Cs(n̂
inc) =

∫
S2

|Sθ(n̂
inc, n̂sca)|2 + |Sφ(n̂

inc, n̂sca)|2

2k2
1

dn̂sca, (4.29)

fp(n̂
inc, n̂sca) =

|Sθ(n̂
inc, n̂sca)|2 + |Sφ(n̂

inc, n̂sca)|2

2k2
1Cs

, (4.30)

with S(n̂inc, n̂inc) = Sφ(n̂
inc, n̂inc) = Sθ(n̂

inc, n̂inc), and ℜ[x] returning the real part of a

complex number x. Lastly, assuming a uniform distribution of clusters, we can compute the
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extinction and scattering coefficients as

σt(n̂
inc) = Ct(n̂

inc)
ρ

⟨N cls⟩
, (4.31)

σs(n̂
inc) = Cs(n̂

inc)
ρ

⟨N cls⟩
, (4.32)

with ρ the number of particles per differential volume, and ⟨N cls⟩ the average number of

particles per cluster. Note that the optical properties defined in Equations (4.28)–(4.32) are

directionally dependent, so they are general and can represent both isotropic and anisotropic

media.

4.4.2 Relationship with Independent Scattering

Most previous works rendering light transport in media [103] build on the assumption of

independent scattering—that is, particles are in their respective far-field region. It is easy

to verify that this is a special case of Equation (4.14) with N cls = 1, causing the scattering

dyad
⇐⇒
AC of Equation (4.25) to reduce to

⇐⇒
AC(n̂

inc, n̂sca) =
⇐⇒
Ai(n̂

inc, n̂sca) =
g(n̂sca) ·

⇐⇒
T i · g(n̂inc)

4π
, (4.33)

which encodes the scattered field in the far-field region of a particle when excited by an

incident unit-amplitude planar field.

The Lorenz-Mie theory [123] provides closed-form expressions for
⇐⇒
Ai(n̂

inc, n̂sca) for spheres

and cylinders, while numerical solutions of
⇐⇒
Ai(n̂

inc, n̂sca) have been proposed for scatterers

of arbitrary shapes via, for example, the T-matrix method [130], or more recently based on

the BEM for cylindrical fibers [136]. Our work is therefore a generalization of these works

to particles in the near field.
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4.5 Computing the Bulk Scattering Parameters

We now detail our numerical computations of the scattering dyad
⇐⇒
AC(n̂

inc, n̂sca) of Equa-

tion (4.25), which in turn determines the bulk scattering parameters that can be directly

used in any renderer supporting participating media.

Computing
⇐⇒
AC(n̂

inc, n̂sca) essentially boils down to solving the time-harmonic Maxwell equa-

tions for an incident unit-amplitude planar field with direction n̂inc. While several different

methods exist for that purpose (see §16 of [96] for an overview), we opt for the superposition

T-matrix method [89] that has been demonstrated efficient for moderately large N cls, can

handle scatterers with arbitrary geometry, and is based on the principles of the Foldy-Lax

equations, making it particularly appealing for our work.

In practice, we use the open-source CUDA-based CELES solver [28], which implements the

T-matrix method proposed by Mackowski and Mishchenko [90] for spherical or randomly

rotated particles. In our implementation, we focus on clusters of spherical particles. Since

the Lorenz-Mie theory also assumes spherical particles, this allows us to directly compare

our results with those computed using the Lorenz-Mie theory.

To compute the average scattering dyad ⟨
⇐⇒
AC(n̂

inc, n̂sca)⟩, we average the scattered field of

several random realizations of the clusters (each of which obtained by randomly sampling

the position of the particles inside the cluster’s bounding sphere). As we will demonstrate in

§4.6, we use a wide array of distributions including particles uniformly distributed over the

volume of the cluster, positively-correlated particles following Shaw et al. [114], negatively-

correlated particles using Poisson sampling of the sphere, and anisotropic distributions by

uniformly sampling the particles on a oriented 2D disk.

Lastly, we represent the resulting phase function as well as the extinction and scattering cross

sections as tabulated (i.e., piecewise constant) functions that can be used for rendering.
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4.6 Experiments

In this section, we first validate our technique by comparing bulk scattering parameters

computed with our method and the Lorenz-Mie theory (§4.6.1). Then, we apply our tech-

nique described in §4.4 and §4.5 to compute bulk scattering parameters for a wide range of

participating media (§4.6.2).

4.6.1 Validation

To validate our technique, we compare computed bulk scattering parameters provided by

our implementation and MiePlot [80], a free software based on the Lorenz-Mie theory. We

focus on the configuration where a cluster contains only one (spherical) particle as this is a

fundamental assumption of the Lorenz-Mie theory.

300nm 600nm 900nm

Figure 4.3: Comparison against Lorenz-Mie theory. We compare our method with
clusters with a single particle N cls = 1 against a reference solution based on Lorenz-Mie
theory for three different particles radii ai ∈ {300nm, 600nm, 900nm}. As expected, for a
single particle our method reduces to the same results as Lorenz-Mie theory. The wavelength
is λ = 600nm, while the refractive index of the particle is m = 1.5 + 0.1i.

In Figure 4.3, we visualize computed single-scattering phase functions at the wavelength

600 nm with three particle radii (300, 600, and 900 nm). We set the refractive index of the

embedding medium to (1.5 + 0.1i).
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Additionally, we show in Figure 4.4 the corresponding extinction and scattering cross sections

Ct and Cs given by Equations (4.28) and (4.29), respectively. In all these examples, our

computed scattering parameters match those predicted by the Lorenz-Mie theory perfectly.

Figure 4.4: Comparison against Lorenz-Mie theory. We compare the extinction and
scattering cross sections computed with our method for N cls = 1 against the results obtained
using Lorenz-Mie theory. As in Figure 4.3 our results show perfect agreement.

4.6.2 Main Results

We now demonstrate the versatility of our technique by computing bulk scattering param-

eters for a range of participating media. Please see Table 4.2 for the performance statistics

of our experiments.

Table 4.2: Performance statistics for our simulation. The numbers are collected
using a workstation equipped with an Intel i7-6800K six-core CPU and an Nvidia GTX
1080 GPU. To average the randomness of the particle position, we run 50 times for each
simulation, so all the number should times 50 for the results in this chapter.

N fp res. time
Regular (Fig 4.6) 1-500 180x360 3-16s

Multi-spectral (Fig 4.8) 100 180x360x50 35mins
Anisotropic (Fig 4.11) 100 180x360x90 13mins
Correlated (Fig 4.12) 100 180x360 98s
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Isotropic media In computer graphics, volumetric light transport effects are typically

simulated using isotropic media where the extinction and scattering coefficients σt, σs are

directionally independent, and the single-scattering phase function fp is formulated as a 1D

function on the angle between the incident and scattered directions.

Our technique can produce bulk scattering parameters for isotropic media using particles

distributed in radically symmetric densities. We conduct a few ablation studies to demon-

strate how different particle arrangements in a cluster affects the resulting parameters. We

use a wavelength of 600 nm for all these studies and represent the 1D phase functions as

tabulated (i.e., piecewise constant) functions using 180 equal-sized bins.

Sparse Intermediate Dense ai=400nm 500nm 600nm N cls = 20 100 500

(a) Varying particles spacing (b) Varying particles radius (c) Varying particles count

Figure 4.5: Comparison of the resulting phase function for different cluster parame-
ters, for a planar incident field at λ = 700nm. Unless mentioned otherwise, the clusters have
N cls = 100 particles, and each particle has radius ai = 500nm. For each phase function, we
vary: (a) The distance between particles within the cluster; (b) The particle size ai; and (c)
The number of particles N cls.

In our first study, we use a cluster of 100 particles with radii 500 nm. Then, we vary the

distances between particles (by using bounding spheres with different sizes and distributing

particles uniformly in these spheres). As shown in Figure 4.5 (a), the closer the particles

are to each other, the more forward the resulting phase function is. This is expected: With

sparsely distributed particles, it is simpler for light to pass straightly through.
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Figure 4.6: Renderings of homogeneous Lucy models at λ = 700nm. The bulk
scattering parameters are computed using our method with different combinations of particle
radius ai and per-cluster particle count N cls.
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Our second ablation study examines the effect of particle size. With 100 uniformly dis-

tributed particles, we apply our technique to three particle sizes (ai= 400, 500, and 600 nm).

As shown in Figure 4.5 (b), as we increase the particles radius, the phase function becomes

more forward and increases its frequency. This agrees with the behaviour of single particles

predicted by Lorenz-Mie theory.

In our third study, we vary the number of particles in a cluster while keeping the particle

size fixed to ai=500 nm. Figure 4.5 (c) shows that as we increase the number of particles,

the phase function gets more forward and of higher-frequency, in a behaviour somewhat

correlated with the particles size. This is the result of the increasing number of diffractive

elements on the cluster, that instead of making scattering more diffuse (as predicted by

geometric optics) increases its forward frequency.

Lastly, we show in Figure 4.6 monochrome renderings using bulk scattering parameters

obtained with varying combinations of particle count and radius.

Multi-spectral results Since our technique is derived using microphysical wave optics, it

allows systematic generation of multi-spectral parameters based on a single (monochrome)

configuration of particle cluster.

To demonstrate this, we use a configuration of 100 uniformly distributed particles (per

cluster) with radius 500 nm and compute bulk scattering parameters at 50 wavelengths

ranging from 400 nm to 700 nm.

In Figure 4.8, we visualize the computed phase functions at three wavelengths as well as

multi-spectral renderings of a backlit thin slab. The smooth changes in scattering parameters

across wavelength have resulted in a characteristic rainbow-like effect. When using the single-

particle configuration (with identical overall particle density per unit volume), the rainbow

effect is missing.
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N (300, 20) nm N (300, 60) nm N (300, 100) nm N (300, 200) nm

Figure 4.7: Comparison of the resulting phase function and rendering for different particle
radius distribution. They have the same mean radius but different variations.

Figure 4.9 shows renderings of the Lucy model using these scattering parameters.

Anisotropic media Anisotropic media allow the extinction and scattering coefficients σt,

σs to be directionally dependent, and have full 4D phase functions fp. Previously, although

the scattering parameters of anisotropic media can be devised based on the microflake models

[65, 56], equivalences of the Lorenz-Mie theory, to our knowledge, have been lacking.
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Ours

Single-particle

(a) Phase function (b) Thin-slab rendering

Figure 4.8: Multi-spectral results: (a) visualizations of phase functions; (b) cor-
responding multi-spectral renderings of a thin slab lit by a small area light from behind.
Results on the top are generated using a cluster of 100 particles with radii 500nm. Results
on the bottom are obtained using a conventional single-particle setting. We used identical
particle counts per differential volume for both configurations.

By using anisotropic particle distributions, our technique can generate bulk scattering pa-

rameters for anisotropic media. To demonstrate this, we use a configuration where the cluster

contains N cls = 100 particles following an anisotropic Gaussian distribution, as illustrated in

Figure 4.10(a). We tabulate the extinction and scattering cross sections using the latitude-

longitude parameterization with a resolution of 180× 360. Due to the symmetry of the disc,

the resulting phase function fp is three-dimensional, and we tabulated it with the resolution

90×180×360. In Figure 4.10(b), we visualize slices of the computed single-scattering phase

function fp with two incident directions n̂inc. In Figure 4.11, we show renderings of the Lucy

model with three (spatially invariant) orientations.
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(a) Multi. (b) 400nm (c) 550nm (d) 700nm

Figure 4.9: Multi-spectral rendering of Lucy model. (a) Multi-spectral rendering
of a homogeneous Lucy model using identical bulk scattering parameters as the top row of
Figure 4.8. (b–d) Monochrome renderings of the same model at three wavelengths.

Forward Backward

(a) Incident direction (b) Phase function slice

Figure 4.10: Visualizations of slices fp(n̂
inc, ·) of a phase function for two incident

directions n̂inc at λ = 700nm. This phase function is computed using a configuration where
100 particles with radii 500nm follow an anisotropic Gaussian distribution.
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700nm-x 700nm-y 700nm-z

Multi.-x Multi.-y Multi.-z

Figure 4.11: Renderings of homogeneous Lucy models with the same anisotropic
medium as in Figure 4.10. With the medium’s orientation – which determines the axis of
the disk – aligned with the x-, y-, and z-axis, respectively, the Lucy model exhibit distinct
appearances.

Correlated particles Finally, in Figure 4.12 we demonstrate the effect of particles cor-

relation within the cluster, by analyzing particles distributed using both negative (Poisson

sampled) and positive correlation [67]. We compare the effect of introducing microscopic cor-

relation on media where the clusters position is itself correlated, compared with uniformly

distributed particles inside the clusters. These two levels of correlation have significant effect

on the final appearance of the translucent materials.
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(a) Negatively correlated particles (b) Positively correlated particles

(a1) unc. clusters (a2) neg. clusters (b1) unc. clusters (b2) pos. clusters

Figure 4.12: Correlated particles: By correlating particle positions in negatively (a) or
positively (b), our method can produce bulk scattering parameters for correlated media. In
this example, we use λ = 400nm, particle radius ai = 500nm, and per-cluster particle count
N cls = 100. Additionally, we can further correlate particle clusters themselves, a variety
of appearances can be achieved (a1–b2). (The bright dot in (b1) and (b2) emerges from
unscattered light from the area source.)

4.7 Conclusion

In this chapter, we introduce a new technique to systematically compute bulk scattering pa-

rameters for participating media. Built upon first principles of light transport (i.e., Maxwell

electromagnetism), our technique models a translucent material as clusters of particles ran-

domly distributed in embedding media. Our work generalizes the widely-used Lorenz-Mie

theory for rigorously deriving optical properties of scattering media, and can be readily used
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in any radiative-based light transport simulator.

We have demonstrated the significant effects of departing from the underlying assumptions

of Lorenz-Mie theory, and the versatility for modeling a wide range of participating media by

modifying the arrangement of particles within each cluster, including isotropic, anisotropic,

and correlated media.
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Chapter 5

Latent Representation for Materials
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Figure 5.1: We introduce a method to capture SVBRDF material maps from a small
number of mobile flash photographs, achieving high quality results both on original and
novel views. Our key innovation is optimization in the latent space of MaterialGAN, a
generative model trained to produce plausible material maps; MaterialGAN thus serves as a
powerful implicit prior for result realism. Here we show re-rendered views for several different
materials under environment illumination. We use 7 inputs for these results (with 2 of them
shown). (Please use Adobe Acrobat and click the renderings to see them animated.)
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5.1 Introduction

Despite a few decades of effort in computer graphics and vision, capturing spatially-varying

reflectance of real-world materials remains a challenging and actively researched task. Mea-

surement methods have traditionally used custom hardware systems to densely sample illumi-

nation and viewing directions [91, 92], followed by post-processing such as fitting parametric

BRDF models [102]. However, such approaches are restricted to laboratory conditions.

Recent work has explored methods for casual capture of spatially-varying BRDFs (SVBRDFs)

using commodity hardware and in less constrained environments [31, 109, 5, 6, 62]. These

methods usually follow an inverse-rendering approach: they define a forward rendering model

and optimize reflectance parameters so that the simulated appearance matches physical mea-

surements under certain image metrics. With a small number of measured images, this

approach is fundamentally under-constrained: there usually exist many material estimates

capable of producing renderings that match the measurements, but many of these estimates

can be unrealistic and may not generalize to novel illumination and viewing conditions. The

solution to this problem has been to regularize the optimization using pre-determined ma-

terial priors such as linear low-dimensional BRDF models [109, 62] or stationary stochastic

textures [6, 4]. However, such hand-crafted priors do not generalize to a wide range of

real-world materials.

More recently, learning-based approaches have demonstrated remarkable results for recon-

structing SVBRDFs from one [22, 86] or more images [23]. While these methods use

rendering-based losses (similar to the inverse rendering approaches) during training, at test

time they predict SVBRDFs from images using a single feed-forward pass through a deep

network. As a result, the reconstructed material parameters may not accurately reproduce

the measured appearance. In contrast, Gao et al. [35] propose using an optimization-

based approach in conjunction with a learned material prior. Specifically, they train a fully-
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convolutional auto-encoder on a large material dataset and optimize in the latent space of

this auto-encoder. This ensures that the reconstructed SVBRDF parameters both reproduce

the measurements and are plausible real-world materials. However, while this learned mate-

rial prior is a significant improvement over hand-crafted priors, it still produces a relatively

localized and highly flexible latent space that requires a good initialization (for example,

from single image methods [22, 86]) and even then can fail to produce good results.

In this chapter, we propose a different material prior that builds on the remarkable progress

in image synthesis using deep Generative Adversarial Networks (GANs) [43, 72, 73]. We

train MaterialGAN—a StyleGAN2-based deep convolutional neural network [74]—to gener-

ate plausible materials from a large-scale, spatially-varying material dataset [22]. Material-

GAN learns global correlations in material parameters, both spatially (thus encoding texture

patterns) as well as across parameters (for example, relationships between diffuse and spec-

ular parameters). As illustrated in Figure 5.2, sampling from the MaterialGAN latent space

produces plausible, realistic materials with complex variations and diverse appearance.

While GANs have traditionally been used to synthesize images, we demonstrate a very dif-

ferent application, using MaterialGAN as a powerful prior in an inverse rendering-based

material capture framework. We append a rendering layer to MaterialGAN, setting up a

differentiable pipeline from the learned latent space, through generating material maps, to

rendering images under specified views and lighting. This allows us to optimize the Mate-

rialGAN latent vector(s) to minimize the error between the rendered and measured images

and reconstruct the corresponding material maps. Doing so ensures that the reconstructed

SVBRDFs lie on the “manifold of realistic materials”, while at the same time accurately

reproducing the captured images.

We demonstrate that our GAN-based optimization framework produces high-quality SVBRDF

reconstructions from a small number (3-7) images captured under flash illumination using

hand-held mobile phones, and improves upon previous state-of-the-art methods [35, 23].
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Figure 5.2: Seven materials generated by randomly sampling MaterialGAN.
Top to bottom: diffuse albedo, normal, roughness, specular albedo and renderings under
flash illumination. As can be seen, the material maps are high-quality with meaningful
correlations both spatially and across materials parameters, and visually look like plausible
real-world materials.

In particular, it produces cleaner, more realistic material maps that better reproduce the

appearance of the captured material under both input and novel lighting. Moreover, as il-

lustrated in Figure 5.10, MaterialGAN adapts to a wide range of SVBRDF samples ranging

from diffuse to specular materials and near-stochastic textures to structured patterns with

multiple distinct, complex materials.

Furthermore, our GAN-based latent space offers the ability to edit the latent vector in

semantically meaningful ways (via operations like interpolation in the latent space) and

generate realistic materials that go beyond the captured images. This is not possible with

current material capture methods that do not afford any control over their per-pixel BRDF
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estimates.

5.2 Related work

Reflectance capture. Acquiring material data from physical measurements is the goal

of a broad range of methods. Please refer to surveys [133, 44, 25] for more comprehensive

introduction to the related works.

Most reflectance capture approaches observe a material sample under varying viewing and

lighting configurations. They differ in the number of light patterns required and their types

such as moving linear light [36, 109], Gray code patterns [44], spherical harmonic illumination

[39], and Fourier patterns [5].

Methods have also been proposed for material capture “in the wild”, i.e., under uncontrolled

environment conditions with commodity hardware, typically captured with a hand-held mo-

bile phone with flash illumination. Some of these methods impose strong priors on the

materials, such as linear combinations of basis BRDFs [62, 137] (where the basis BRDFs can

come from the measured data [92]). Later work by Aittala et al. [6, 4] estimated per-pixel pa-

rameters of stationary spatially-varying SVBRDFs from two-shot and one-shot photographs.

In the latter case, the approach used a neural Gram-matrix texture descriptor based on the

texture synthesis and feature transfer work of Gatys [37, 38] to compare renderings with

similar texture patterns but without pixel alignment.

More recently, deep learning-based approaches have demonstrated remarkable progress in the

quality of SVBRDF estimates from single images (usually captured under flash illumination)

[84, 22, 86]. These methods train deep convolutional neural networks with large datasets of

artistically created SVBRDFs, and with a combination of losses that evaluate the difference

in material maps and renderings from the dataset ground truth.
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Deschaintre [23] extended the single-shot approach to multiple images. The key idea is to

extract features from the input images with a shared encoder, max-pooling the features

and decoding the final maps from the pooled features. This architecture has the benefit of

being independent of the number of inputs, while also not requiring explicit light position

information. In our experience, this approach produces smooth, plausible maps with low

artifacts; however, re-rendering the maps tends to be not as close to the target measurements

because the network cannot “check” its results at runtime. Moreover, we find that especially

on real data, this method also has strong biases such as dark diffuse albedo maps and

exaggerating surface normals (especially along strong image gradients that might be caused

by albedo variations). We believe this is not due to any technical flaw; the method may be

reaching the limit of what is possible using current feed-forward convolutional architectures

and currently available datasets.

Gao et al. [35] introduced an inverse rendering-based material capture approach that opti-

mizes for material maps to minimize error with respect to the captured images. Since this

is an under-constrained problem, they propose optimizing over the latent space of a learned

material auto-encoder network to minimize rendering error. This approach has the benefit

of explicitly matching the appearance of the captured image measurements, while also using

the auto-encoder as a material “prior”. Moreover, the encoder and decoder are fully con-

volutional, which has the advantage of resolution independence. However, we find that the

convolutional nature of this model also has the disadvantage of only providing local regu-

larization and not capturing global patterns in the material, such as the long-range spatial

patterns and correlations between the different material parameter maps. As a result, this

method relies on previous methods (for example, Deschaintre et al. [22]) to provide a good

initialization, without which it can converge to poor results. In contrast, our MaterialGAN

is a more globally robust latent space and produces higher quality reconstructions without

requiring accurate initializations, though it is no longer resolution-independent.
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Generative adversarial networks. GANs [43] have become extremely successful in the

past few years in various domains, including images [108], video [122], audio [24], and 3D

shapes [85]. A GAN typically consists of two competing networks; a generator, whose goal

is to produce results that are indistinguishable from the real data distribution, and a dis-

criminator, whose job is to learn to identify generated results from real ones. For generating

realistic images (especially of human faces), there has been a sequence of improved models

and training strategies, including ProgressiveGAN [72], StyleGAN [73] and StyleGAN2 [74].

StyleGAN2 in particular is the state-of-the-art GAN model and our work is based on its

architecture, modified to output more channels.

Recently, GANs have also been used to solve inverse problems [17, 9, 104]. In computer

graphics and vision, this work has focused on embedding images into the latent space, with

the goal of editing the images in semantically meaningful ways via latent vector manipu-

lations [144]. This embedding requires solving an optimization problem to find the latent

vector. More recent work such as Image2StyleGAN [1] and Image2StyleGAN++ [2] has

looked at problem of embedding images specifically into the the StyleGAN latent space.

While these methods focus on projecting portrait images into face-specific StyleGAN mod-

els, we find their analysis can be adapted to our problem. We build on this to propose a

GAN embedding-based inverse rendering approach.

5.3 MaterialGAN: A Generative SVBRDF Model

Generative Adversarial Networks [43] are trained to map an input from a latent space (often

randomly sampled from a multi-variate normal distribution) to a plausible instance of the

target distribution. In recent years, GANs have made remarkable progress in synthesizing

high-resolution, photo-realistic images. Inspired by this progress, we propose MaterialGAN,

a GAN that is trained to generate plausible materials, thus implicitly learning an SVBRDF
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manifold. MaterialGAN is based on the architecture of StyleGAN2 [74].

5.3.1 Overview of StyleGAN and its latent spaces

StyleGAN2 [74] is an improvement of StyleGAN [73] and is the state-of-the-art generative

adversarial network (GAN) for image synthesis, especially for human faces. The architecture

has several advantages over previous models like ProgressiveGAN [72] and DCGAN [108].

For our purposes, the main advantage is that the model is not simply a black-box stack

of convolution and upsampling layers, but has additional, more specific structure, allowing

for much easier inversion (latent space optimization). The StyleGAN2 architecture starts

with a learned constant 4 × 4 × 512 tensor and progressively upsamples it to the final

output target resolution via a sequence of convolutional and upsampling layers (7 in total

to end with a final image resolution of 256 × 256). Given an input latent code vector

z ∈ Z ⊂ R512, StyleGAN2 transforms it through a non-linear mapping network of fully-

connected layers into an intermediate latent vector w ∈ W ⊂ R512. The rationale for

the introduction of the space of W is that while Z requires (almost) every latent z ∈ Z

to correspond to a realistic output, vectors w ∈ W are free from this overly stringent

constraint, which leads to a less “entangled” mapping, with more meaningful dimensions (see

[73, 74] for more discussion). In the original StyleGAN, the vector w ∈ W is mapped via

a learned affine transformation to mean and variance “style” vectors that control adaptive

instance normalizations (AdaIN) [61] that are applied before and after every convolution

in the generation process (thus 7 × 2 = 14 times for a model of resolution 256 × 256).

The statistics of the AdaIN normalizations caused the feature maps and output images of

StyleGAN to suffer from droplet artifacts. StyleGAN2 removes the droplet artifacts entirely

by replacing the AdaIn normalization layers with a demodulation operation which bakes

the entire style block into a single layer while maintaining the same scale-specific control

as StyleGAN. We construct a matrix w+ ∈ W+ ⊂ R512×14 by replicating w 14 times.
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During training and standard synthesis, the columns of w+ are identical, and correspond

to w. However, as we will discuss later (and similar to Abdal et al. [1]), we relax this

constraint when optimizing for an embedding; W+ thus becomes an extended latent space,

more powerful than W or Z. Additionally, StyleGAN2 injects Gaussian noise, ξ, into each

of the 14 layers of the generator. This noise gives StyleGAN2 the ability to synthesize

stochastic details at multiple resolutions. Abdal et al. [2] make the observation that one

can also treat these noise inputs ξ as a latent space N . Thus, combining these two spaces

defines yet another latent space W+N .

5.3.2 MaterialGAN training

MaterialGAN was trained with the dataset provided by Deschaintre et al. [22] (and also

used in Gao et al. [35]). They generated this dataset by sampling the parameters of pro-

cedural material graphs from Allegorithmic Substance Share to create an initial set of 155

high-quality SVBRDFs at resolution 4096× 4096. The dataset was augmented by blending

multiple SVBRDFs and generating 256×256 resolution crops at random positions, scales and

rotations. The final dataset consists of around 200,000 SVBRDFs. For detailed information

about the curation of dataset we refer the reader to [22]. Since pairs of SVBRDFs in the

dataset were the same with only a slight variation, we selected 100,000 SVBRDFs. The maps

for each SVBRDF are stacked in 9 channels (3 for albedo, 2 for normals, 1 for roughness,

and 3 for specular albedo). We account for this by adapting the MaterialGAN architecture

to output 9-channel outputs. MaterialGAN is trained in TensorFlow (version 1.15) with the

same loss functions and similar hyper-parameters from StyleGAN2 [74]. StyleGAN2 config-

uration F was used for all experiments. The generator and discriminator were trained using

Adam optimizers. The learning rate was increased per resolution from 0.001 to 0.0025 for

both the generator and the discriminator. The discriminator was shown 25 million images.

Training on 8× Nvidia Tesla V100 takes about 5 days. Figure 5.2 shows materials generated
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by randomly sampling the MaterialGAN latent space and images rendered from them. As

can be seen here, MaterialGAN generates a wide variety of nearly photorealistic materials

ranging from structured to stochastic, diffuse to specular, and with large-scale variations to

fine detail. Furthermore, Figure 5.3 and the accompanying video show example interpola-

tions between pairs of generated materials in the latent space, producing plausible non-linear

morphing results.

Figure 5.3: Interpolation in MaterialGAN latent space. Each row shows an exam-
ple of interpolation between two randomly generated materials, demonstrating non-linear
morphing behavior.

5.4 SVBRDF Capture using MaterialGAN

We utilize MaterialGAN, the powerful generative model described in the previous section, in

a fundamentally new fashion: to capture SVBRDF maps. Specifically, we use MaterialGAN
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Figure 5.4: Our inverse rendering pipeline. We optimize for latent vectors w+ and ξ,
that feed into the layers of the StyleGAN2-based MaterialGAN model. The MaterialGAN
generator produces material maps (diffuse albedo, normal, roughness and specular albedo),
that are rendered under the captured view/light settings. Finally, the renderings and mea-
surements are compared using a combination of L2 and perceptual losses.

as a material prior for SVBRDF acquisition via an inverse rendering framework (See Figure.

5.4). Our goal is to estimate the SVBRDF parameter maps from one or a small number of

photographs of a near-planar material sample. We utilize a common BRDF model that in-

volves a diffuse and a specular component using the microfacet BRDF with the GGX normal

distributions [127]. Our unknown parameter vectors θ := (a,n, r, s) encode the four per-

pixel parameter maps: diffuse albedo a, surface normal n, roughness r, and specular albedo

s. To recover the unknown parameter maps, we capture k images I1, · · · , Ik. We assume

known viewing and lighting configurations for each image, which we denote as (Li, Ci). Fur-

ther, we assume that the material is lit by a single point source, collocated with the camera.

1 The images can be reprojected into a common frontal view (which is straightforward with

a known viewing configuration).

We introduce a differentiable rendering operator R that takes as input the parameter maps

as well as the viewing and lighting configurations, and synthesizes corresponding images of

the material. Under this setup, our goal is to find values of the unknown parameters θ so

1In theory, non-collocated lights, area lights or projection patterns (e.g. on an LCD or similar screen)
can be used as well, and would require a straightforward modification to our forward rendering process.
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that renderings with these parameters match the measurements Ii. In other words, we focus

on solving the following optimization problem:

θ∗ = argmina,n,r

∑k
i=1 L(R(θ; Li, Ci), Ii), (5.1)

where L is a loss function that measures the difference between the captured images, Ii and

the renderings generated from the estimated SVBRDF parameters, R(θ; Li, Ci).

5.4.1 Incorporating the MaterialGAN prior

Eq. (5.1) is, in general, a challenging optimization to solve due to its under-constrained

nature. Given a small number of input measurements, the optimization can overfit to the

input, producing implausible maps that do not generalize to novel views and lighting. To

overcome this challenge, we leverage the MaterialGAN prior: instead of directly optimizing

for the parameter maps θ, we can optimize for a vector u in the MaterialGAN latent space

and map (decode) this latent vector back into material maps θ. The optimization problem

then becomes:

u∗ = argminu

∑k
i=1 L(R(G(u); Li, Ci), Ii), (5.2)

where G is the learned MaterialGAN generator. Given that both G and R are differentiable

operations, Eq. (5.2) can be optimized via gradient-based methods to estimate u∗ and the

corresponding SVBRDF maps G(u∗).

The above operation is similar to recent work on embedding images in the StyleGAN latent

space [1, 2]. The key difference is that we do not match material parameters directly, but

evaluate their error through the rendering operator R(·). To our knowledge, ours is the first

approach to use a GAN latent space in combination with a rendering operator.
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Loss function. We optimize Eq. 5.2 using a combination of a standard per-pixel L2

loss and a “perceptual loss” [70] that has been shown to produce sharper results in image

synthesis tasks:

L(I, I ′) = λ1Lpixel + λ2Lpercept, (5.3)

The perceptual loss is defined as:

Lpercept(I, I
′) =

∑4
j=1w

percept
j ∥Fj(I)− Fj(I

′)∥22 , (5.4)

where F1, · · · , F4 are the flattened feature maps corresponding to the outputs of VGG-19

layers conv1 1, conv1 2, conv3 2, and conv4 2 from a pre-trained VGG network [115]. See

section 5.4.3 for more details.

Optimization details. We convert the TensorFlow-trained MaterialGAN model to Py-

Torch, in which our optimization framework is implemented. We optimize Eq. 5.2 using the

Adam optimizer in PyTorch, with a learning rate of 0.01. We set all other hyper-parameters

to default values. Now that our basic optimization framework is set up, there remain two

key ingredients to implement our GAN-based optimization framework (Eq. (5.2)): (i) the

choice of latent space that we optimize u over, and (ii) our optimization strategy to minimize

the objective function. In the following sections, we describe our approach, along with an

empirical analysis of these design choices.

5.4.2 Latent space

As discussed in Sec. 5.3.1, StyleGAN2 (and consequently, MaterialGAN) has a number of

potential latent spaces. In particular, MaterialGAN uses three different style latent spaces:

the input latent code z ∈ Z , the intermediate latent code w ∈ W and per-layer styles

w+ ∈ W+. StyleGAN2 also injects noise ξ ∈ N into every layer of the network to generate
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stochastic variations. The typical forward generation process of the GAN only uses z, with

w being generated from z via a mapping network, and w+ being generated from w via affine

transformations. However, Abdal et al. [1] note that the space of Z is too restrictive for

accurate embedding of faces or other content into the GAN space. In other words, given

the image of a human face, it is generally impossible to find a single z ∈ Z such that the

generated image closely matches the target. This remains the case even when extending the

space to W , i.e., when searching for a w instead of a z. The space W+, on the other hand,

offers much stronger representative power. Our experiments on embedding material maps

into MaterialGAN demonstrate that optimizing for W+ is also needed for MaterialGAN to

accurately reproduce input maps. We demonstrate this in Figure 5.5, via an experiment

where we embed a given material (with known material maps) into MaterialGAN. As shown

in rows (2) and (3), maps generated by optimizing w+ ∈ W+ contain more detail compared

to those using w ∈ W .

G
T

W
W

+
W

+
N

Figure 5.5: Embedding SVBRDFs into different latent spaces. We take two
synthetic SVBRDF material maps (top) and embed them into different latent spaces with
and without the noise space (second–fourth rows). For illustration, we also embed the maps
into a pure-noise space only ; this is unable to recover the color at all.

On the other hand, some small-scale details are still missing. In fact, according to our exper-
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iments, only colors and large-scale features can be captured by theW+ space. For depicting

high-frequency patterns, as demonstrated in the last row of Figure 5.5, we need to go even

further and optimize the noise vector ξ (instead of drawing it from multi-variate normal

distributions). We note that optimizing for the noise component is even more important

in MaterialGAN, compared to embedding faces in StyleGAN or StyleGAN2. We suspect

that this is because with human faces, the distinction between large-scale features (e.g.,

eyes, noise, and mouth) and small-scale features (e.g., winkles) is very prominent, allowing

the W+ space to focus mostly on the large-scale features while leaving the small-scale ones

to the noise vector ξ ∈ N . In our case, the boundary between large-scale and small-scale

material features is much less distinct. The physical scales of real-world materials varies

in a continuous fashion, making it virtually impossible to assign them to only one of the

W+ and N spaces. We hypothesize that for this reason, we need to focus on both W+

and N to achieve high-quality reconstruction of SVBRDF maps. Based on these empirical

observations, estimating SVBRDF parameter maps from photographs using our pre-trained

MaterialGAN boils down to solving the following optimization:

u∗ = argmin
w+∈W+, ξ∈N

k∑
i=1

L(R(G(w+, ξ); Li, Ci), Ii). (5.5)

Since there are two variables w+ and ξ that behave in a correlated fashion, a proper opti-

mization strategy is crucial to achieve high-quality results. We now discuss our alternating

two-step optimization method.

5.4.3 Optimization strategy

Abdal et al. [1, 2] recommended using a two-stage setting by first optimizing w+ (with ξ

fixed) and then ξ (with w+ fixed). In our case, this approach does work in some cases

but is not always the top-performing option. In addition to this strategy, we propose two
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alternatives, leading to three different optimization schemes:

1. Strategy 1: Optimize w+ first, then optimize ξ;

2. Strategy 2: Jointly optimize both w+ and ξ;

3. Strategy 3: Alternatively optimize w+ and ξ for a small number (for example, 10)

of iterations each.

SVBRDF maps Optimization Novel

G
T

(1)

(2)

(3)

Figure 5.6: Optimization strategy. We evaluated three optimization strategies: (1)
optimize w+ first, then ξ; (2) jointly optimize w+ and ξ; (3) alternate between w+ and
ξ every 10 iterations. Strategy (1) causes artifacts during the optimization, and (2) brings
more noise into the maps. Particularly, for textures with small features, (1) and (2) may
drive the optimization to bad local minima while the per-pixel loss could still be very low.
Strategy (3) appears to be a good compromise, giving us better results in most cases. Note:
“Optimization” means an optimized input view or its re-rendering, i.e. not a novel view.

Figure 5.6 shows a comparison of these strategies. All of them give reasonable results, but

Strategy 1 is better suited for materials with strong large-scale features. Strategy 2 provides
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the fastest convergence because it allows the noise vector ξ to be modified from the very

beginning. This, however, generally causes the optimization to use ξ for encoding higher-

level features and is prone to overfitting. Finally, Strategy 3—a hybrid of Strategies 1 and

2—behaves in a more robust fashion than either of the previous strategies in most cases. We

use Strategy 3 for all the results in this chapter. Additionally, our experiments indicate that

it is desirable to use different VGG layer weights for the optimization of w+ and ξ. The

weights we are using are, for w+: [1/512,1/512,1/128,1/64]; for ξ: [1/64,1/64,1/256,1/512].

Noise optimization vs. post-refinement. Instead of optimizing latent space w+ with

noise ξ, another option is to apply post-refinement (that is, pixel-space optimization without

any latent space) after optimizing w+ only. However, the space w+ is too small to realis-

tically match per-pixel detail: if optimizing w+ only, the resulting maps have significant

artifacts. Adding post-refinement to such a result essentially becomes per-pixel optimization

(with little regularization), which tends to to work poorly with a small number of inputs.

Optimizing ξ offers more powerful regularization, as the noise is inserted into all layers of

the generator, rather than just appended at the end (like post-refinement). We show two

failure examples in Figure 5.7, where optimizing w+ leads to unsatisfactory texture maps.

5.4.4 Initialization

We find that our method is robust to the initialization of the latent vectors. We experimented

with using the same initial configuration—represented by the material produced by the mean

w of our GAN training data (see Figure 5.8(a))—and found that is works well for most of

the materials we tried (both synthetic and real). However, this initialization represents a

material with a high roughness (reflecting a bias in our training data) and sometimes leads

to errors when fitting highly specular / low roughness materials. Therefore, we add an

additional low roughness initialization (see Figure 5.8(b)). In practice, given the captured
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Figure 5.7: Noise optimization vs. post-refinement. (1) Optimize w+ and ξ but
no post-refinement; (2) Optimize w+ only but with post-refinement. This shows that ξ
takes an important role; optimizing only w+ has too little expressive power and converges to
suboptimal solutions, which post-refinement cannot fix (see especially normal maps in (2)).

images, we run our MaterialGAN optimization starting from both initializations and retain

the result with the lowest optimization error of Eq. (5.3). All of our results in this chapter

followed this scheme.
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(a) Mean w initialization (b) Low roughness initialization

Figure 5.8: Visualization of our constant initializations. We initialize our optimiza-
tion with the two materials shown here and pick the result with the lowest final loss. (This
applies in cases where we do not use the result from Deschaintre et al. as initialization, as
detailed in the results section and supplementary materials.) Left: Material maps generated
from the mean latent vector w. Right: An additional low roughness, specular initialization.

5.5 Results

(Only a small subset of our results fits into the thesis. Please see our supple-

mental material and video for more results. [Click here])

Test data. For synthetic tests, we use several examples from the test set of Deschaintre

[22], as well as some from the Adobe Stock dataset [86]. This gives a total of 30 synthetic

results. For our real results, we use a hand-held mobile phone to capture images with flash,

resulting in a collocated camera and point light illumination. Similar to previous work

[62, 23], we use a paper frame to register the multiple images. We add markers to the frame

to improve camera pose estimation. Using this process, we capture 40 physical samples with

nine images per material, roughly covering the sample with 3×3 specular highlights. Unless

otherwise specified, all our results use seven images for inverse-rendering optimizations and

the remaining two (under novel lighting) for evaluating the results.

Inverse-rendering performance. Our optimization takes about 2 minutes to complete

2000 iterations on a Titan RTXGPU. In many cases, the results converge after 500 iterations,
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but we use 2000 everywhere for simplicity.

SVBRDF maps Optimization Novel views
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Figure 5.9: SVBRDF reconstruction on synthetic data. We demonstrate results on
synthetic SVBRDFs, one from [23] (top) and one from the Adobe Stock Material dataset
(bottom). We are able to accurately reconstruct these materials from 7 input images (one
input shown). Many more synthetic results are available in supplementary materials.

Testing on synthetic data. Figure 5.9 contains two synthetic results using our method,

showing a close match both in maps and in novel view renderings. For more results, please

refer to supplemental materials. We note that all methods perform better on synthetic data

than on real data, possibly because of the exact BRDF model match and perfect calibration,

and also because the synthetic test set, while distinct from the training set, is relatively

similar in style.
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Figure 5.10: SVBRDF reconstruction on real data. We reconstruct SVBRDF maps from 7 inputs,
and compare the resulting maps and images rendered under 2 novel views. Gao’s method [35] initialized
with Deschaintre’s [23] direct predictions (denoted as “[Gao19]+”) tends to have complex reflectance burnt
into the specular albedo map, leading to inaccurate predictions under novel views. Our method with simple
initializations, in contrast, is less prone to such burn-ins and generally produces more accurate renderings
under novel views. Please refer to Table 5.1 for more information on the quality of these renderings.
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Table 5.1: Accuracy of the novel-view renderings shown in Figure 5.10 measured
using the Learned Perceptual Image Patch Similarity (LPIPS) metric where our method
produces better predictions than Gao’s [35] in most cases.

Material Ours [Gao19]+ Material Ours [Gao19]+
wall-plaster-white 0.071 0.132 plastic-red-carton 0.095 0.166

leather-blue 0.146 0.356 bathroomtile2 0.225 0.231
wood-walnut 0.226 0.252 wood-tile 0.202 0.192

book1 0.147 0.318 book2 0.042 0.122
giftbag1 0.183 0.218 cards-red 0.059 0.092

5.5.1 Comparison with prior work on real data

Here we compare our method and Gao et al. [35]. For more results and comparisons,

including with Deschaintre et al. [23], and including with and without initialization for

ours and Gao’s method, please refer to supplemental materials. We show 10 real examples

from our cell phone capture pipeline in Figure 5.10. Note that Gao’s method is significantly

dependent on initialization, while the same is not true for our method. Therefore, in this

figure, we show Gao’s result with initialization by Deschaintre et al. [23], while our result is

shown without initialization. Furthermore, note that we are initializing Gao’s method with

the 2019 multi-input method by Deschaintre, which is a better initialization than the 2018

single-input method. Thus the baseline we are comparing against is, strictly speaking, even

higher than what is published in Gao et al., and combines the two best methods published

at this time. Generally, we find that our method produces cleaner maps and is less prone to

overfitting (burn-in) than Gao’s, while producing more accurate re-renderings under original

and novel lighting. Table 5.1 shows a quantitative evaluation of the re-rendering quality on

novel lighting. As these novel views would be hard to match pixel-wise using any method,

as they have never been observed, we use a perceptual method, specifically the Learned

Perceptual Image Patch Similarity (LPIPS) metric [140] (lower is better). Note that our

method (without initialization by Deschaintre’s method) produces better scores for novel

views than Gao’s method (with initialization) for most images; even in the case where our

LPIPS score is worse, our maps still look more plausible overall. We also report quantitative
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evaluations (histograms) for our entire set of results (see Figure 5.11). For synthetic data,

we compare the RMSE of all predicted maps (diffuse albedo, normal, roughness, specular

albedo), as we do know the ground truth for them. For both synthetic and real data, we

compare the LPIPS scores on novel lighting. We use a + sign to indicate initialization

by Deschaintre et al. In the top row, we compare both methods without initialization

by Deschaintre’s method, while in the middle row, both methods are initialized, and in

the bottom row, we compare our method without initialization to Gao’s with initialization.

Generally, we find that if both methods are initialized the same way, our method outperforms

Gao’s. Even in the last row, our performance is comparable on synthetic data (worse on

normal map and better on diffuse/specular maps) and still better on real data overall.
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Figure 5.11: Performance statistics of Gao [35] and our method. For each technique, we compute (i)
the Learned Perceptual Image Patch Similarity (LPIPS) metric between renderings of the output SVBRDF
maps and the reference images for 40 real and 30 synthetic examples; and (ii) the root-measure-square
error (RMSE) of the inferred maps for the synthetic examples. For both metrics, a lower score indicates
a better accuracy. Using identical initializations, our technique (“Ours” and “Ours+”) outperforms Gao’s
(“[Gao19]” and “[Gao19]+”) consistently for both real and synthetic examples, as demonstrated in the
top and the middle row. Furthermore, our technique with constant initializations (“Ours”) has a similar
performance with Gao’s method initialized using Deschaintre’s [23] direct predictions (“[Gao19]+”) on the
synthetic examples and outperforms the latter on the real examples, as shown on the bottom.

Note about Deschaintre et al. We find that the results from [23] have much less accurate

re-rendering than either ours or Gao’s method, as they are not doing any optimization to

precisely fit the target images. The mismatches we observe are definitely not due to simple

scaling or gamma correction issues, as that would be consistent across examples; rather, we

find that the method performs much better on synthetic examples that match the visual
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style of its training set. On the other hand, their method is fast and results tend to be clean

and artifact-free, so they are very suitable for initialization of optimization methods.

5.5.2 Additional comparisons
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Figure 5.12: SVBRDF results with different initialization Unlike Gao’s method, ours is
less strongly dependent on a good initialization from Deschaintre’s method [23]. In most of cases,
starting from simple texture maps (given by our constant initializations) is already good enough to
converge to a clean solution. We show all combinations (with and without good initializations) for
both methods, for one synthetic and one real example, where techniques initialized with [Deschain-
tre] are denoted with the suffix “+” (i.e., “Ours+” and “[Gao19]+”). Note the failure of Gao’s
method without good initializations (i.e., “Gao19”).

Optimization with different initializations. In Figure 5.12, we compare our method

to Gao’s with and without initialization by Deschaintre’s method in all 4 combinations, on

a synthetic and a real example. This shows that Gao’s method more significantly dependent

on good initialization that ours (even though our method can still occasionally benefit).
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Figure 5.13: Per-pixel post-refinement. Unlike Gao’s method, post-refinement via per-pixel
optimization makes less of a difference in our method. Without post-refinement, [Gao19]+ (i.e.,
Gao’s method initialized with Deschaintre’s [23] direct predictions) usually produces blurry results,
as shown in the row marked as “[Gao19]+ (NR)”. Our method, on the contrary, does not rely nearly
as heavily on post-refinement: Without it, our results are already quite sharp (see “Ours (NR)”),
thanks to the generative power of our MaterialGAN. A zoomed-in version is attached below each
SVBRDF map and novel-view image.

Post-refinement. In general, the quality of our maps is sufficient after using our Mate-

rialGAN based optimization. However, Gao’s method introduced a post-refinement step,

where the maps are further optimized without any latent space, and with at most minor

regularization. Therefore, we also implement a similar post-refinement step. However, like

good initialization, this post-refinement makes less of a difference in our method, and Gao’s

method is more dependent on it, as it produces significantly blurry maps without it. This is

shown in Figure 5.13; note the difference in sharpness of the maps.
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Figure 5.14: Performance using different numbers of input images (synthetic data).
The quality of recovered SVBRDF maps, as demonstrated by the plots, generally improves with
more input images for both our and Gao’s [35] methods. Our method with constant (Ours) and
neural (Ours+) initializations are comparable or better than Gao’s ([Gao19]+) with neural ini-
tialization [23] . For a highly specular material shown on the right, although the LPIPS metric
computed using renderings under 5 novel views of our results is similar to that of Gao’s, ours better
preserve the specular highlight. For each material, all the renderings including the references (GT
Novel) are generated using one of the 5 novel views.

Optimization with different numbers of input images. While most of our results are

shown with 7 inputs, using two additional inputs for novel lighting evaluation, our method

does work with various numbers of input images. We show 3 synthetic examples in Figure

5.14, with different numbers of inputs from 1 to 25. All the three examples are the same

as used in Gao’s work. The errors of both reconstructed SVBRDF maps and novel-view

renderings generally decrease with more input images, as is expected for an inverse-rendering

method. In Figure 5.15, we compare real capture results with 1, 3, and 7 inputs, with and

without initialization by Deschaintre’s method, and also include Gao’s results for 3 and 7

inputs (with initialization). Our result remains plausible with 3 inputs, though artifacts

do get reduced with more inputs. For all numbers of inputs, our result (with or without

initialization) tends to be cleaner than Gao’s.
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Figure 5.15: Performance using different numbers of input images (real data). The
quality of SVBRDF maps recovered by our method generally improves with more input images
under both constant initialization (see “Ours”) and Deschaintre [23] initialization (see “Ours+”).

Editing operations. An additional advantage of the StyleGAN-based latent space is the

ability to achieve semantically meaningful operations such as morphing, by interpolating two

or more parent latent codes to create a hybrid offspring material. Morphing in latent space

often preserves semantic features qualitatively better than naive interpolation in pixel space.

Figure 5.16 and the supplemental video show morphing of a few real materials using linear

interpolation in latent space, compared to the corresponding naive interpolation (linear in

pixel space).
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GAN-based interpolation of SVBRDF maps Linear interpolation of SVBRDF maps

Figure 5.16: Material interpolation. Renderings of interpolations between two
SVBRDFs recovered from real images using our method. Results on the left and right
columns are obtained, respectively, using our GAN latent space and näıve linear interpola-
tion.

5.6 Conclusion

We propose a novel method for acquiring SVBRDFs from a small number of input images,

typically 3 to 7, captured using a hand-held mobile phone. We use an optimization framework

that leverages a powerful material prior, based on a generative network, MaterialGAN,

trained to synthesize plausible SVBRDFs. MaterialGAN learns correlations in SVBRDF

parameters and provides local and global regularization to our optimization. This produces

high-quality SVBRDFs that accurately reconstruct the input images, and because of our

MaterialGAN prior, lie on a plausible material manifold. As a result, our reconstructions

generalize better to novel views and lighting than previous state-of-the-art methods.

We believe that our work is only a first step toward GAN-based material analysis and

synthesis and our experiments suggest many avenues for further exploration including im-

proving material latent spaces and optimization techniques using novel architectures and

losses, learning disentangled and editable latent spaces, and expanding beyond our current

isotropic BRDF model.
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Chapter 6

Procedural Parameters for Materials
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Figure 6.1: A scene rendered with material parameters estimated using our method:
bumpy dielectrics, leather, plaster, wood, brushed metal, and metallic paint. The insets show
a few examples of the input (target) images, and renderings produced using our procedural
models with parameters found by Bayesian posterior sampling.
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6.1 Introduction

Physically accurate simulation of material appearance is an important yet challenging prob-

lem, with applications in areas from entertainment to product design and architecture visu-

alization. A key ingredient to photorealistic rendering is high-quality material appearance

data. Acquiring such data from physical measurements such as photographs has been an

active research topic in computer vision and graphics. Recently, procedural material models

have been gaining significant traction in the industry (e.g., Substance [3]). In contrast to

traditional texture-based spatially varying BRDFs that represent the variation of surface

albedo, roughness, and normal vectors as 2D images, procedural models generate such infor-

mation using a smaller number of user-facing parameters, providing high compactness, easy

editability, and automatic seamless tiling.

The estimation of procedural model parameters faces several challenges. First, the procedural

generation and physics-based rendering of materials is a complex process with a diverse set

of operations, making the relationship between procedural model parameters and properties

of the final renderings non-linear and non-trivial. Additionally, designing a suitable loss

function (metric) to compare a synthesized image to a target image is not obvious. Finally,

given the soft nature of the image matching problem, a single point estimate of the “best”

match may be less informative than a collection of plausible matches that a user can choose

from.

In this chapter, we introduce a new computational framework to estimate the parameters

of procedural material models that focuses on these issues. Our framework enjoys high

generality by not requiring the procedural model to take any specific form, and supporting

any differentiable BRDF models, including anisotropy and layering.

To design the loss function, we consider neural summary functions (embeddings) based on

Gram matrices of VGG feature maps [37, 38], as well as hand-crafted summary functions
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(§6.4). The VGG feature map approach is becoming standard practice in computer vision,

and was first introduced to material capture by Aittala et al. [4]; we extend this approach

to procedural material estimation.

We make two main contributions. The first contribution is a unified view of the procedural

parameter estimation problem in a Bayesian framework (§6.5), precisely defining the pos-

terior distribution of the parameters given the captured data and priors, allowing for both

maximization and sampling of the posterior. Four components (priors, procedural mate-

rial model, rendering operator, summary function) together define our posterior distribution

(outlined in Figure 6.2).

parameters

source of
randomness

procedural
generator

rendering
operator likelihood

summary
function

di�use color
normal vectors

roughness
anisotropy

layering
lighting

...

prior

posterior

target
image

input unknown intermediate outputdi�erentiable non-di�erentiable

Figure 6.2: Our posterior computation combines priors, a procedural material model, a
rendering operator, a summary function, and a target image. This posterior distribution
can then be sampled to provide plausible values of the parameter vector. The value of the
posterior is computed up to a normalization term, which does not effect MCMC sampling.
The entire posterior definition is differentiable in the material parameters (excluding optional
discrete model parameters).

Our second contribution is to introduce a Bayesian inference approach capable of draw-

ing samples from the space of plausible material parameters. This provides additional in-

formation beyond single point estimates of material parameters (for example, though not

limited to, discovering similarity structures in the parameter space). Further, due to an

ability to combine multiple Markov-Chain Monte Carlo (MCMC) sampling techniques such

as Metropolis-Hasting (MH), Hamiltonian Monte Carlo (HMC), and Metropolis-adjusted

Langevin algorithm (MALA), our technique is capable of efficiently handling both discrete
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and continuous model parameters. Posterior sampling is a well-studied area within statistics

and has been used in computer vision and inverse rendering [79], but to our knowledge, it

has not yet been applied to material appearance acquisition.

To demonstrate the effectiveness of our framework, we fit procedural models for a diverse set

of materials from standard opaque dielectrics (e.g. plastics, leather, wall paint) to dielectrics

with 3D structure (wood) to anisotropic brushed metals and layered metallic paints (see

Figure 6.1, §6.6, and the supplemental materials).

6.2 Related Work

We review previous work on material parameter estimation in computer graphics and vision,

as well as on Markov-Chain Monte Carlo (MCMC) methods in Bayesian inference.

SVBRDF capture. A large amount of previous work focuses on acquisition of material

data from physical measurements. The methods generally observe the material sample with

a fixed camera position, and solve for the parameters of a spatially-varying BRDF model

such as diffuse albedo, roughness (glossiness) and surface normal. They differ in the number

of light patterns required and their type; the patterns used include moving linear light [36],

Gray code patterns [31] and spherical harmonic illumination [39]. In these approaches,

the model and its optimization are specific to the light patterns and the optical setup of

the method, as general non-linear optimization was historically deemed inefficient and not

robust enough.

More recently, Aittala et al. [5] captured per-pixel SVBRDF data using Fourier patterns

projected using an LCD screen; their algorithm used a fairly general, differentiable for-

ward evaluation model, which was inverted in a maximum a-posteriori (MAP) framework.
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Later work by Aittala et al. [6, 4] found per-pixel parameters of stationary spatially-varying

SVBRDFs from two-shot and one-shot flash-lit photographs, respectively. In the latter case,

the approach used a neural Gram-matrix texture descriptor based on the texture synthesis

and feature transfer work of Gatys [37, 38] to compare renderings with similar texture pat-

terns but without pixel alignment. We demonstrate that this descriptor makes an excellent

summary function within our framework; in fact, the approach works well in our case, as the

procedural nature of the model serves as an additional implicit prior, compared to per-pixel

approaches. On the other hand, our forward evaluation process is more complex than Aittala

et al., since it also includes the procedural material generation itself.

Recent methods by Deschaintre et al. [22], Li et al. [86] have been able to capture non-

stationary SVBRDFs from a single flash photograph by training an end-to-end deep con-

volutional network. Gao et al. [35] introduced an auto-encoder approach, optimizing the

appearance match in the latent space. All of these approaches estimate per-pixel parameters

of the microfacet model (diffuse albedo, roughness, normal), and are not obviously appli-

cable to estimation of procedural model parameters, nor to more advanced optical models

(significant anisotropy, layering or scattering).

Procedural material parameter estimation. Focus on estimating the parameters of

procedural models has been relatively rare. The dual-scale glossy parameter estimation

work of Wang et al. [129] finds, under step-edge lighting, the parameters of a bumpy surface

model consisting of a heightfield constructed from a Gaussian noise power spectrum and

global microfacet material parameters. Their results provide impressive accuracy, but the

solution is highly specialized for this material model and illumination.

Recently, Hu et al. [60] introduced a method for inverse procedural material modeling that

treats the material as a black box, and trains a neural network mapping images to parameter

vector predictions. The training data comes from evaluating the black box model for random
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parameters. In our experiments, this approach was less accurate; our fully differentiable

models can achieve higher accuracy fits and can be used to explore posterior distributions

through sampling. In a sense, this neural prediction method could be seen as orthogonal

to ours, as we could use it for initialization of our parameter vector, continuing with our

MCMC sampling.

Optical parameters of fiber-based models. Several approaches for rendering of fabrics

model the material at the microscopic fiber level [141, 142, 82]. However, the optical prop-

erties of the fibers (e.g. roughness, scattering albedo) have to be chosen separately to match

real examples. Zhao et al. [141] use a simple but effective trick of matching the mean and

standard deviation (in RGB) of the pixels in a well-chosen area of the target and simulated

image. Khungurn et al. [76] have extended this approach with a differentiable volumetric

renderer, combined with a stochastic gradient descent; however, their method is still specific

to fiber-level modeling of cloth.

Bayesian inference and MCMC. A variety of methods used across the sciences are

Bayesian in nature; in this chapter, we specifically explore Bayesian inference for parameter

estimation through Markov-Chain Monte Carlo (MCMC) sampling of the posterior distri-

bution. Provided a nonnegative function f , MCMC techniques can draw samples from the

probability density proportional to the given function f without knowing the normalization

factor. Metropolis-Hastings [54] is one of the most widely used MCMC sampling methods. If

f is differentiable, the presence of gradient information leads to more efficient sampling meth-

ods such as Hamiltonian Monte Carlo (HMC) [101, 14] and Metropolis-adjusted Langevin

algorithm (MALA) [111]. Our inference framework is not limited to any specific MCMC

sampling technique. In practice, our implementation handles discrete model parameters us-

ing MH and continuous ones using MALA (with preconditioning [19]). We opt MALA for

its simpler hyper-parameter tweaking (compared to HMC).
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MCMC applications in graphics and vision. Markov chain Monte Carlo techniques

have been heavily studied in rendering, though not for Bayesian inference, but rather for

sampling light transport paths with probability proportional to their importance; notably

Metropolis light transport [125] and its primary sample space variant [75]. Much further work

has built on these techniques, including more recent work that uses a variant of Hamiltonian

Monte Carlo [83]. However, all of these approaches focus on better sampling for traditional

rendering, rather than parameter estimation in inverse rendering tasks.

In computer vision, Bayesian inference with MCMC has been used for the inverse problems

of scene understanding. A notable previous work is Picture [79], a probabilistic system

and programming language for scene understanding tasks, for example (though not limited

to) human face and body pose estimation. The programming language is essentially used to

specify a forward model (e.g., render a face in a given pose), and the system then handles the

MCMC sampling of the posterior distribution through a combination of sampling (proposal)

techniques. This is closely related to the overall design of our system. However, the Picture

system does not appear to be publicly available, and our application is fairly distant from

its original goals.

6.3 Preliminaries

Procedural model generation. We focus on procedural material models which utilize

specialized procedures (pieces of code) to generate spatially varying surface reflectance in-

formation. Specifically, let θ be the parameters taken by some procedural material generation

process f0. Then, f0(θ) generates the material properties (e.g., albedo, roughness, surface

normals, anisotropy, scattering, etc.), in addition to any other parameters required by ren-

dering (e.g. light parameters), which can in turn be converted into a synthetic image Is via
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a rendering operator R. This forward evaluation process can be summarized as

Is = R(f0(θ)) = f(θ), (6.1)

where f is the composition of R and f0. When modeling real-world materials, it is desirable

to capture naturally arising irregularities. In procedural modeling, this is usually achieved

by making the model generation process f0 to take extra random input z (e.g., random

seeds, pre-generated noise textures, etc.) that is then used to create the irregularities. This

also causes the full forward evaluation to become f(θ; z) := R(f0(θ; z)).

Continuous and discrete parameters. While most procedural material parameters tend

to be continuous, discrete parameters can be useful for switching certain components on and

off, or for choosing between several discrete noise types. We model this by splitting the

parameter vector into continuous and discrete components, θ = (θc,θd). We assume the

forward evaluator f to be differentiable with respect to θc (but not θd or the random input

z).

Inverse problem specification. We consider the problem of inferring procedural model

parameters θ given a target image It (which is typically a photograph of a material sample

under known illumination). This, essentially, requires inverting f in Eq. (6.1): θ = f−1(It).

Direct inversion of f = R ◦ f0 is intractable for any but the simplest material and rendering

models. Instead, we aim to identify a collection of plausible values θ such that Is has similar

appearance to It:

find examples of θ s.t. It ≈ f(θ; z), (6.2)

for some (any) z, where ≈ is an appearance-match relation that will be discussed in the next

section.
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6.4 Summary Functions

To solve the parameter estimation problem using Eq. (6.2), a key ingredient is the appearance-

match relation. Unfortunately, we cannot use simplistic image difference metrics such as the

L2 or L1 norms. This is because the features (bumps, scratches, flakes, yarns, etc.) in the

images of real-world materials are generally misaligned, even when the two images represent

the same material. In procedural modeling, as shown in Figure 6.3, with irregularities cre-

ated differently using z1 and z2, the same procedural model parameters θ can yield slightly

different results f(θ; z1) and f(θ, z2).

(a1) (a2) (b1) (b2)

Figure 6.3: L2 norm difference. Each pair of images among (a, b) are generated using
identical model parameters θ but different irregularities z. The pixel-wise L2 norm of the
difference between these image pairs is large and not useful for estimating model parameters.

To overcome this challenge, we use the concept of a summary function, which abstracts away

the unimportant differences in the placement of the features, and summarizes the predicted

and target images into smaller vectors whose similarity can be judged with simple metrics

like L2 distance. We define an image summary function S to be a continuous function that

maps an image of a material (It or Is) into a vector in Rk. An idealized summary function

would have the property that

S(f(θ1, z1)) = S(f(θ2, z2)) ⇔ θ1 = θ2. (6.3)

That is, applying the summary function would abstract away from the randomness z and
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the difference between the two summary vectors would be entirely due to different material

properties θ. Practical summary functions will satisfy the above only approximately. How-

ever, a good practical summary function will embed images of the same material close to

each other, and images of different materials further away from each other. Below we discuss

several techniques for constructing summary functions.

Neural summary function. Gatys et al. [37, 38] introduced the idea of using the features

of an image classification neural network (usually VGG [115]) as a descriptor TG of image

texture (or style). Optimizing images to minimize the difference in TG (combined with

other constraints) allowed Gatys et al. to produce impressive, state-of-the art results for

parametric texture synthesis and style transfer between images. While further work has

introduced improvements [110], we find that the original version from Gatys et al. works

already well in our case.

Aittala et al. [4] introduced this technique to capturing material parameter textures (albedo,

roughness, normal and specular maps) of stationary materials. They optimized for a 256×256

stationary patch that matches the target image in various crops, using a combination of TG

and a number of special Fourier-domain priors. In our case (for procedural materials), we

find that the neural summary function TG works even more effectively; we can simply apply

it to the entire target or simulated images (not requiring crops nor Fourier-domain priors).

Specifically, define the Gram matrix G of a set of feature maps F1, · · · , Fn such that it has

elements

Gij = mean(Fi · Fj), (6.4)

where the product Fi ·Fj is element-wise. TG is defined as the concatenation of the flattened

Gram matrices computed for the feature maps before each pooling operation in VGG19.

Note that the size of the Gram matrices depends on the number of feature maps (channels),
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not their size; thus TG is independent of input image size.

Statistics and Fourier transforms of image bins. While the neural summary function

performs quite well, we find that in some cases we can improve upon it. A simple idea for

a summary function is to use the (RGB) mean of the entire image; an improvement is to

subdivide the image into k bins (regions) and compute the mean of each region. We found

concentric bins perform well for isotropic materials, and vertical bins are appropriate for

anisotropic highlights (e.g. brushed metal). Furthermore, we can additionally use a fast

Fourier transform of the entire image or within bins. Note that automatic computation of

derivatives is possible with the FFT, and supported by the PyTorch framework. In our

current results, we use a summary function that combines the means and 1D FFTs of 64

vertical bins for the brushed metal example; all other examples use the neural summary

function combined with simple image mean.

6.5 Bayesian Inference of Material Parameters

In what follows, we first describe a Bayesian formulation of the estimation problem in terms

of a posterior distribution. Next, we discuss how to use the posterior for point estimation

in a maximum a-posteriori (MAP) framework, and how the Markov-Chain Monte Carlo

(MCMC) methods for Bayesian inference extend the point estimate approach by sampling

from the posterior.

6.5.1 Bayesian formulation

We treat the procedural model parameters θ as random variables with corresponding prob-

ability distributions.
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We first introduce a prior probability distribution p(θ) of the parameters, reflecting our

pre-existing beliefs about the likelihood values of the unknown parameters. For example, for

most material categories, we know what range the albedo color and roughness coefficients of

the material should typically be in.

Further, we model the ≈ operator from Eq. (6.2) as an error distribution. Specifically,

we postulate that the difference between the simulated image summary S(f(θ, z)) and the

target image summary S(It) follows a known probability distribution. In practice, we use a

(multi-variate) normal distribution with zero mean and the covariance Σe:

S(f(θ, z))− S(It) ∼ N (0,Σe). (6.5)

Our experiments indicate that this simple error distribution works well in practice, and we

regard Σe as a hyper-parameter and set it manually.

We also have multiple options in handling the random vector z. While it is certainly theoret-

ically possible to estimate it, we are not really interested in its values; we find it simpler and

more efficient to simply choose z randomly, fix it, and assume it known during the process

of estimating the “interesting” parameters θ. Under these assumptions, according to the

Bayes theorem, we can write down the posterior probability of parameters θ, conditional on

the known values of It and z, as:

p(θ|It, z) ∝ N [S(f(θ, z))− S(It); 0,Σe] p(θ), (6.6)

where the right side does not need to be normalized; the constant factor has no effect on

parameter estimates. For numerical stability, we compute the negative log posterior, viz.

− log p(θ|It, z), in practice. Equation (6.6) also holds when θ involves discrete parameters,

as long as the prior is properly defined as a product of a continuous pdf p(θc) and a discrete

probability p(θd).
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6.5.2 Point estimate of parameter values

A point estimate of the parameter vector can be modeled in the maximum a-posteriori

(MAP) framework. We simply estimate the desired parameter values θ as the maximum of

the posterior pdf p(θ|It, z) given by Eq. (6.6). For continuous θ, this problem can be solved

using standard non-linear optimization algorithms. In the presence of discrete parameters,

there is no single accepted solution. While various heuristics could be used, our sampling

approach described below provides a cleaner solution to discrete parameter estimation.

6.5.3 Markov-Chain Monte Carlo Sampling of the Posterior

Although the point estimate approach gives satisfactory results in many cases, it is not

without problems. For example, since a perfect match between a procedural material and

a photograph is generally impossible, it can be desirable to have a set of imperfect matches

for the user to choose from. Further, there could be an entire subset of the parameter space

giving solutions of approximately equivalent fit under the target view and lighting; however,

these may look quite different from each other in other configurations, and a user may want

to explore those differences. Lastly, with the presence of discrete parameters, it is not obvious

how to solve the maximization in Eq. (6.6) efficiently.

In this chapter, we use the well-known technique of full Bayesian inference, sampling the pos-

terior pdf defined in Eq. (6.6) using Markov-Chain Monte Carlo (MCMC) techniques, specif-

ically Metropolis-Hasting (MH) [54], Hamiltonian Monte Carlo (HMC) [14], and Metropolis-

adjusted Langevin algorithm (MALA) [111]. While well explored in statistics and various

scientific fields, to our knowledge, this technique has not been used for the inference of

material parameters.

The goal of the sampling is to explore the posterior with many (typically thousands or more)
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samples, each of which represents a material parameter vector consistent with the target im-

age. Plotting these samples projected into two dimensions (for a given pair of parameters)

gives valuable insight into similarity structures. Furthermore, interactively clicking on sam-

ples and observing the predicted result can help a user to quickly zoom in on a preferred

solution, which an automatic optimization algorithm is fundamentally incapable of.

Algorithm 1: MCMC sampling of material parameters (θc,θd)

1 samplePosterior(N , α, θ
(1)
c , θ

(1)
d )

Input: Sample count N , probability α for sampling continuous parameters, initial
continuous parameters θ

(1)
c and discrete ones θ

(1)
d

Output: N material parameter estimates {(θ(t)
c ,θ

(t)
d ) : 1 ≤ t ≤ N}

2 begin
3 for t = 1 to (N − 1) do
4 Draw ξ ∼ U [0, 1)
5 if ξ < α then // Mutate continuous parameters

6 θ′
c ← ContinuousSample(θ

(t)
c )

7 θ′
d ← θ

(t)
d

8 else // Mutate discrete parameters

9 θ′
c ← θ

(t)
c

10 θ′
d ← DiscreteSample(θ

(t)
d )

11 end

12 (θ
(t+1)
c ,θ

(t+1)
d )← MetropolisHasting((θ′

c,θ
′
d), (θ

(t)
c ,θ

(t)
d ))

13 end

14 return {(θ(1)
c ,θ

(1)
d ), . . . , (θ

(N)
c ,θ

(N)
d )}

15 end

Algorithm 1 summarizes our MCMC sampling process. At each iteration, we mutate either

the continuous parameters (with probability α) or the discrete ones (with probability 1−α).

For the former case, we utilize the gradient of the log pdf with respect to θc to efficiently

obtain a new proposal θ′
c (Line 6). Our implementation uses MALA for this process, although

HMC could also work. For the latter case, we obtain a new proposal θ′
d of the discrete

parameters, currently by uniformly sampling their joint probability mass function (Line 10).

Upon obtaining a full proposal, we use the standard Metropolis-Hasting rule (Line 12) to

stochastically select the new sample (θ
(t+1)
c ,θ

(t+1)
d ) by either accepting the newly proposed
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(θ′
c,θ

′
d) or (rejecting the proposal and) keeping the previous sample (θ

(t)
c ,θ

(t)
d ).

6.6 Material Models and Results

(Only a small subset of our results fits into the thesis. Please see our supple-

mental material and video for more results. [Click here])

We now demonstrate the effectiveness of our technique by fitting several procedural material

models to a mix of synthetic and real target images.

Our forward evaluation process uses collocated camera and light. This configuration closely

matches a mobile phone camera with flash (which is used for most of the real target images)

and simplifies some BRDF formulations (because the incoming, outgoing, and half-way vec-

tors are all identical). Further, we assume that the distance between camera and sample is

known as it is generally easy to measure or estimate. The knowledge of the camera field

of view allows us to compute the physical scale of the resulting pixels. Lastly, we treat

light intensity and camera vignetting (expressed as an image-space Gaussian function) as

(unknown) parameters of the forward evaluation process so that they do not need to be

calibrated. Our parameter inference framework presented in §6.4 and §6.5 is not limited to

this specific setup.

All the procedural material models we used, which will be detailed in §6.6.2, are implemented

using PyTorch which automatically provides GPU acceleration and computes derivatives

through backpropagation. For all material parameter inference tasks, our forward evaluation

generates 512 × 512 images. Notice that the recovered parameters can then be used to

generate results with much higher resolution because the procedural models are generally

resolution-independent.
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6.6.1 Similarity Relations in Translucency

As a motivating example, we first illustrate the behavior of the MCMC material parameter

estimation process on the case of a homogeneous translucent material with two varying

parameters. In this example, the shape of the posterior can be analytically derived (using

the similarity theory) and easily plotted. This serves as a demonstration and validation of

our approach.

Figure 6.4: A motivating example of a scattering material with two estimated parameters
(scattering coefficient and phase function parameter). The posterior distribution sampled
with our method for three synthetic input images is able to detect the full structure of the
parameter space, matching the predictions from similarity theory.

Specifically, the material parameter space of translucent materials under the radiative trans-

fer framework [18] is known to be approximately over-complete [143]. Specifically, two sets

of parameters (σs, σa, g) and (σ∗
s , σ

∗
a, g

∗) satisfying the following similarity relation usually

yield similar final appearances:

σa = σ∗
a, (1− g)σs = (1− g∗)σ∗

s , (6.7)

where σa and σs are, respectively, the absorption and scattering coefficients, and g is the first
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Legendre moment of the phase function. We show in Figure 6.4 that applying our Bayesian

inference method to σs and g (with fixed σa) computes a posterior distribution that agrees

well with the predicted similarity relation (6.7).

6.6.2 Procedural Material Models

We show results generated using synthetic images in Figures 6.5 and 6.6 as well as real pho-

tographs (taken with different cameras) in Figure 6.7. Please see the supplemental material

for more results, including animations illustrating point estimations and sampling. Below

we describe the six procedural models tested. Please refer to the supplement for additional

detail and a PyTorch implementation. For each parameter, we define a reasonable truncated

Gaussian distribution as its prior (also see supplement). In most cases, the MCMC sam-

pling starts from the peak of the prior. In some examples (e.g wood), we first run posterior

maximization and then switch to sampling from the optimized point. We drop some number

(typically 200 to 1000) of initial MCMC samples due to burn-in.

Table 6.1: Performance statistics for our MCMC-based posterior sampling. The numbers
are collected using a workstation equipped with an Intel i7-6800K six-core CPU and an
Nvidia GTX 1080 GPU.

Material bump leather plaster flakes metal wood
# of parameters. 8 12 11 13 10 23
MCMC (1k iter.) 180s 194s 190s 187s 182s 290s

Bumpy microfacet surface. This model depicts an opaque dielectric surface with an

isotropic noise heightfield. We use a standard microfacet BRDF with the GGX normal

distribution [127] combined with a normal map computed from an explicitly constructed

heightfield. We assume that the Fresnel reflectance at normal incidence can be computed

from a known index of refraction (a value of 1.5 is a good estimate for plastics). We assume an

unknown roughness r (GGX parameter α = r2) and a Lambertian diffuse term with unknown
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Target S1 S2 S3 Target S1 S2 S3

Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1Bump-1 Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2Bump-2

Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1 Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2Leather-2

Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1Plaster-1 Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2

Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1Metallicflake-1 Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2Metallicflake-2

Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1Brushmetal-1 Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2Brushmetal-2

Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1Wood-1 Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2Wood-2

Figure 6.5: Results of our MCMC sampling on synthetic inputs. Each row corresponds
to two examples of a different material model. For each example, the first column is the
synthetic target image. We show MCMC samples in the other columns, where S1 and S2 are
chosen closer to the peak of the posterior distribution, and S3 is further away. More results
please refer to supplemental materials.

albedo ρ. This model is identical to Wang et al. [129], except using the GGX instead of

Beckmann microfacet distribution. The main practical difference from the capture setup in

that paper is that we use a point light, instead of step-edge illumination.

The bumpy heightfield is constructed using an inverse Fourier process including: (i) choosing

a power spectrum in the continuous Fourier domain; (ii) discretizing it onto a grid of complex

numbers; (iii) randomly choosing the phase of each texel on the grid (while keeping the

chosen amplitude); and (iv) applying an inverse fast Fourier transform whose real component
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Target S1 S2 S3 Target S1 S2 S3

Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1Leather-1 Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2Plaster-2

Figure 6.6: MCMC sampling with discrete parameters. In these examples, we
illustrate the ability of our sampling to handle discrete parameters. In both examples, one
noise inputs used in the procedural model can be switched between several different types of
noise. Out of the thousands of sampled solutions, we pick three that have different settings
of the discrete parameter where the (log) pdf values decrease from S1 to S3.

becomes the resulting heightfield. At render time, we use the normal map derived from this

heightfield.

Leather and plaster. These materials can be modeled similarly as the aforementioned

bumpy surfaces except for the computation of the heightfield and roughness. For plaster,

a fractal noise texture is scaled (in space and intensity) and thresholded (controlled by

additional parameters) to produce both the heightfield and a roughness variation texture.

For leather, on the contrary, a Voronoi cell map is used to get the effect of leather-like cells

(with parameters for scaling and thresholding), and additional small-scale fractal noise is

added. Further, we use multiple (pre-generated) noise textures and Voronoi cell maps to

diversify the micro-scale appearances that our models can produce. The choice of these

textures and maps is captured using a discrete parameter. In Figure 6.6, we show a few

example samples drawn from the posterior distributions using Algorithm 1.

Brushed metal. The brushed metal material extends the above bumpy surface, by in-

troducing anisotropy to both the GGX normal distribution and the noise heightfield used

to compute the normal map, while dropping the diffuse term. We make both the BRDF
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Photo S1 S2 S3 Photo S1 S2 S3

Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3Bump-3 Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4Bump-4

Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3Leather-3 Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4Leather-4

Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5Leather-5 Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6Leather-6

Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3Plaster-3 Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4Plaster-4

Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3Metallicflake-3 Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4Metallicflake-4

Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3Brushmetal-3 Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3Wood-3

Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4Wood-4 Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5

Figure 6.7: Results of our MCMC sampling on real inputs. For each example, the first
column is the real target image (photo). We show MCMC samples in the other columns,
where sample-1 and sample-2 are chosen closer to the peak of the posterior distribution,
and sample-3 is further away. Note that the target images for Plaster-4 and Wood-5 are
captured under natural illumination, while the corresponding synthetic images still assume
collocated flash illumination; despite this mismatch, the estimated material parameters are
still reasonable. Note, target images for Leather-4, Leather-6 and Wood-4 are from the
publicly released dataset of [4]. For more results please refer to supplemental materials.

and the Fourier-domain Gaussian power spectrum anisotropic. The parameters of the model

thus include two roughnesses, as well as two Fourier-domain standard deviations. We make

the anisotropic highlight vertical and centered in the target image.

129



Metallic flakes. Metallic paint with flakes is a stochastic material with multiple BRDF

lobes (caused by light reflecting off the flakes). Our model involves three components, each

being an isotropic microfacet lobe, to describe top coating, flakes and glow, respectively.

The top coating is usually highly specular, and we make its roughness a model parameter.

We assume an index of refraction of 1.5, implying a Fresnel (Schlick) reflectivity at nor-

mal incidence of 0.04. The flakes are chosen as Voronoi cells of a random blue-noise point

distribution; they have a roughness parameter and varying normals chosen from the Beck-

mann distribution with an unknown roughness, and with unknown Fresnel reflectivity. The

scale of the cell map is itself a (differentiable) parameter. Lastly, the glow is a component

approximating the internal scattering between the top interface and the flakes, and has its

own roughness, Fresnel reflectivity and a flat normal. An extra weight parameter linearly

combines the flakes and the glow.

Wood. We also created a partial PyTorch implementation of the comprehensive 3D wood

model of Liu et al. [87]. This material is a 3D model of the growth rings of a tree, with

a number of parameters controlling colors and widths of growth rings, as well as global

distortions and small-scale noise features. The 3D wood is finally projected by a cutting

plane to image space, defining diffuse albedo, roughness and height.

Mismatched models. Lastly, we demonstrate in Figure 6.8 the impact of forward pro-

cedural models. Since these model-generating procedures are essentially material-specific

priors, using mismatched models generally leads to results that match overall image statis-

tics but with incorrect patterns.
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Photo Leather Prior Plaster Prior Wood Prior
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Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5Wood-5

Figure 6.8: Comparison with mismatched forward models. With an inappropriate model
as the prior, it would only match the global color but missing all the details.

6.6.3 Additional Comparisons

Comparison to Aittala et al. We first compare our technique to with one introduced

by Aittala et al. [4] in Figure 6.9 using input photos published as supplemental materials

from their work. Their work uses the same VGG-based loss (summary function), but opti-

mizes directly in texture space. Both methods manage to reproduce the overall pattern and

reflectance of the input photos. Thanks to the underlying procedural models, our method is

able to synthesize larger results without visually obvious periodic patterns, and with more

plausible global variation.

Comparison to neural methods. We also compare our method with the forward neural

prediction method of Hu et al. [60]. Their method uses an AlexNet network structure [78],

mapping an image of a material sample to the parameters of an appropriate procedural

model. We apply their network structure with our BRDFs and lighting conditions, as their

original implementation assumes Lambertian materials and outdoor sun/sky lighting. We
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Figure 6.9: Comparison with the Aittala et al. [4]. Results in the third column are
rendered using tiled versions of texture maps shown in the fourth column.
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Figure 6.10: Comparison to the forward neural prediction method of Hu et al. [60], where
we apply their network structure with our BRDFs and lighting conditions. The photo (top)
is better matched by our MCMC sampling results (middle) than their prediction (bottom),
which moreover tends to become worse for more complex BRDF models and with more
parameters. On the other hand, [60] can be used as an efficient initialization of our sampling,
as shown in Figure 6.11.
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show the results in Figure 6.10. In general, we find the method gives moderately accurate

results, which moreover tends to become worse for more complex BRDF models and with

more parameters.
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Figure 6.11: Initialization of our sampling with the method of Hu et al. [60] on a
synthetic bumpy surface example. The figure shows joint posterior distributions over two
parameters using different initializations: a random initialization drawn from the prior (a)
and the prediction of [HDR19] (b). As we can see, starting from the result of [HDR19] can
shorten the burn-in phase of the MCMC sampling process.

To some extent, the method of [60] is orthogonal to ours, as it can be used as an efficient

initialization for our sampling. In Figure 6.11, we compare our MCMC sampling results with

a random starting point to one using the result of Hu et al. for initialization. This reduces

the burn-in period required by the MCMC method.

Finally, we also compare to the single input SVBRDF estimation method of Deschaintre et

al. [22] (See Figure 6.12). This method takes a 256×256 target image, and produces material

maps at the same resolution, pixel-wise aligned to the input. This pixel-wise alignment is

not achievable with our (procedural) method. However, the overall perceptual appearance

is usually worse than ours. In some cases (Plaster-4, Metallicflake-4), the method produces

specular burn-in, as the strong highlight cannot be fully removed in the resulting maps.

Advanced BRDF models like brushed metal and metallic flakes are not explicitly handled

by their method and usually fail. Finally, their result does not support higher resolutions,

seamless tiling, nor editability; these benefits come from the use of a procedural model.
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Figure 6.12: Comparison to the single input SVBRDF estimation method of Deschaintre
et al. [22]. Due to the nature of the method, their texture patterns are closely aligned with
the input image; however, the overall perceptual appearance match is usually worse than
our method. In some cases, the method produces specular burn-in, as the strong highlight
cannot be fully removed and causes holes in the resulting maps (Plaster-4, Metallicflake-4).
Advanced BRDF models like brushed metal and metallic flakes are not explicitly handled
by their method and usually fail.

Figure 6.13 shows a quantitative comparison of the Learned Perceptual Image Patch Similar-

ity (LPIPS) metric [140] between the captured photos and the re-renderings using different

methods.

134



Bu
m
p-
3

Bu
m
p-
4

Le
at
he
r-3

Le
at
he
r-4

Le
at
he
r-5

Le
at
he
r-6

Pl
as
te
r-3

Pl
as
te
r-4

Fl
ak
e-
3

Fl
ak
e-
4

M
et
al
-3

W
oo
d-
3

W
oo
d-
4

W
oo
d-
5

0.0

0.5
LP

IP
S

Ours
[HDR19]
[DAD*18]

Figure 6.13: Quantitative evaluation. The LPIPS of our results are consistently better
than [60]. Some LPIPS values from [22] are better than ours, since (as per-pixel methods)
they can better match the noise patterns in the textures.

6.7 Conclusion

Procedural material models have become increasingly more popular in the industry, thanks

to their flexibility, compactness, as well as easy editability. In this chapter, we introduced

a new computational framework to solve the inverse problem: the inference of procedural

model parameters based on a single input image.

The first major ingredient to our solution is a Bayesian framework, precisely defining the

posterior distribution of the parameters, combining four components (priors, procedural ma-

terial model, rendering operator, summary function). The second ingredient is an Bayesian

inference approach that leverages MCMC sampling to sample posterior distributions of pro-

cedural material parameters. This technique enjoys the generality to handle both continuous

and discrete model parameters and provides users additional information beyond single point

estimates and allows a cleaner extension to handle discrete parameters.
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Chapter 7

Conclusion and Future work

In the dissertation, we focus on material appearances modeling in both forward and inverse

rendering. All the macro properties are modeled from microscales or hyperparameter spaces.

First we have presented two scattering frameworks in forward rendering, one for layered

materials (thin planer surface) and the other one for participating medium (bulk,particles).

The first work LayeredBSDF provides a general solution to layered materials which is

included in Physically Based Rendering, Fourth Edition [107]. It leads to the first BSDF

layering solution that offers unbiased accuracy and full flexibility in setting the layer proper-

ties. Our second work Beyond Mie Theory generalizes the widely-used Lorenz-Mie theory

for rigorously deriving optical properties of scattering media and can be readily used in any

radiative-based light transport simulator.

Then we have estimated material properties using latent space and procedural parameters.

Our third work MaterialGAN is the first step toward GAN-based material analysis by

synthesis, and our experiments suggest many avenues for further exploration. Our last work

Bayesian Inference Sampling handles both continuous and discrete model parameters

and provides users additional information beyond single-point estimates, and allows a cleaner
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extension to handle discrete parameters.

In the end, we will discuss the limitation of our work and future directions:

LayeredBSDF Our model relies on the assumption of thin flat layers (Figure 3.12) and

cannot capture effects caused by geometric or optical variations at the global scale. Examples

include internal caustics and shadowing arising from major normal variations and color

bleeding caused by light scattering though media with varying colors. Generalizing our

technique to include bidirectional subsurface scattering distribution functions (BSSRDFs)

is an interesting further topic. In addition, as our model simulates subsurface scattering

using Monte Carlo path tracing, the performance may degrade with the presence of optically

thick layers with many scattering events. Using fast approximated solutions such as [69, 33]

to capture multiple scattering may be a useful extension. Lastly, since we model light

transport using traditional radiative transfer, wave effects such as thin film interference are

not handled. An interesting challenge is to integrate wave optics into our model to accurately

and efficiently handle light interference and phase shifts.

Beyond Mie Theory While taking into account the effect of the near-field on clusters,

our work is still based on the RTT. Therefore it relies on the far-field approximation to

represent a scattering dyad useful for rendering. Therefore, while we can handle near- and

far-field scattering, we cannot accurately model the scattering in the intermediate region,

which we treat as the far field. Using more accurate representations, that capture the effects

at such near-field region could further enhance the generality of our theory and, thus, is an

interesting future topic. This would however require exploring an alternative light transport

framework beyond the RTT. Right now, our implementation requires precomputing the

bulk optical properties of the media. This limits the applicability of our work to media with

homogeneous particle statistical properties. Finding faster approximations for our scattering
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functions, in the same spirit as the geometric optics approximation for Lorenz-Mie theory

[41], is an interesting future research. Finally, our implementation is currently limited in

practice to spherical particles with identical radii within a particle cluster. Allowing general

and spatially varying particle shapes by using an alternative implementation of the T-matrix

method would further improve the versatility of our technique.

MaterialGAN Our current BRDF model is shared by previous work, but certain common

effects (layering on book covers, subsurface fiber scattering in woods, anisotropy in fabrics)

are not correctly captured by it. An extension of our generative model and rendering operator

would be possible, though the key challenge is finding high-quality training data for these

effects. Our assumption of almost flat samples will fail for materials with strong relief

patterns, and will produce blurring or ghosting if there are obvious parallax effects in the

aligned captured images. Strong self-shadowing or inter-reflections are also not currently

handled. Solving for height instead of normal, with a more advanced rendering operator, may

be able to resolve parallax effects and to correctly predict (and undo) shadowing effects from

strong height variations. Furthermore, more precise calibration may improve our accuracy.

This would likely require knowledge of the cell phone hardware, and/or pre-calibration of

its properties (e.g. flash light falloff, lens vignetting, and color processing properties). The

resolution of our result can be increased with a coarse-to-fine post-process, since we have a

fairly good result as the initialization of next level of resolution.

Bayesian Inference Sampling In the future, we would like to increase the complexity

of the models supported even further, to handle materials like woven fabrics, transmissive

BTDFs, and more. Finally, extensions to our approach could be used to estimate parameters

of procedural models beyond materials, including geometry and lighting, as long as the

parameters could be differentiated.
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Appendix A

Appendix for Chapter 3

A.1 Detailed Derivations

We now provide detailed derivations for the key equations in §3.4.

Position-free radiative transfer equation. Traditionally, the radiative transfer equa-

tion (RTE) involves an integral over free-flight distance t:

Lv(z,ω) = S(z,ω) +

∫ t′

0

exp(−tσt)

∫
S2
f̂p(ω

′,ω)Lv(z
′,ω′) dω′ dt, (A.1)

where z′ := z− t cosω and t′ denotes the distance between z and the closest layer boundary.

Since t = (z−z′)/ cosω, changing the integration variable from t to z′ in Eq. (A.1) yields an

additional factor of (cosω)−1 which in turn gives our position-free RTE (3.9). Notice that

the change-of-variable ratio only appears within the integration (and not in the source term

S).
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Cosines in path contribution. The contribution f of a light path x̄ can be obtained by

repeatedly expanding the rendering equation (3.11) and our position-free RTE (3.9).

Similar to the traditional path integral formulation, for each vertex zi corresponding to an

interface event (i.e., reflection or refraction), a cosine term | cosdi| is needed to ensure the

measure of projected solid angle.

On the other hand, a segment of our light path connecting two depths zi and zi+1 via direction

di can yield an additional | cosdi|−1 when zi+1 corresponds to a volumetric scattering. Thus,

for each i, the path contribution involve a factor of | cosdi|αi with:

� αi = 1 if zi and zi+1 are both on interfaces;

� αi = 0 (i.e., no cosdi term) if (i) zi is volumetric and zi+1 lies on an interface (so that

no cosdi terms appear during expansion), or (ii) zi is interfacial and zi+1 is volumetric

(so that both | cosdi| and | cosdi|−1 are present, canceling out each other);

� αi = −1 if zi and zi+1 are both volumetric vertices.

Eq. (3.6) provides a compact way to encode these rules.

A.2 Efficient Weight Computation

Weights of Light Transport Paths. Given a light subpath x̄i and a camera subpath x̄o

with ni and no vertices respectively, our bidirectional estimator combines 2nino estimators

of the form f(ȳ
(u)
s,t )/p

(u)
s,t (ȳ

(u)
s,t ) with s ∈ {1, 2, . . . , ni}, t ∈ {1, 2, . . . , no}, and u ∈ {0, 1} via

the multiple importance sampling (MIS) framework. This yields a combined estimator:

ni∑
s=1

no∑
t=1

1∑
u=0

w
(u)
s,t (ȳ

(u)
s,t )

f(ȳ
(u)
s,t )

p
(u)
s,t (ȳ

(u)
s,t )

, (A.2)
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where the weight w
(u)
s,t , when using the balanced heuristics [Veach 1997], is given by

w
(u)
s,t (ȳs,t) =

(
s+t−1∑
s′=1

1∑
u′=0

p
(u′)
s′,s+t−s′(ȳs,t)

p
(u)
s,t (ȳs,t)

)−1

(A.3)

for any path ȳs,t with (s+ t) vertices.

Notice that, compared to standard bidirectional path tracing that combines nino estima-

tors, our position-free formulation offers twice the number of estimators since the direction

connecting two depths is not unique.

Efficient Weight Computation. Computing Eqs. (A.2) and (A.3) for all s and t näıvely

has a time complexity of O(nino(ni+no)) and is too slow to be practical. We now present our

method that runs in O(nino) time. Our approach is conceptually similar to Veach’s method

for standard BDPT but differs in the exact mathematical form due to our position-free path

formulation (see §3.5).

Let ȳs,t = (d0, z1,d1, . . . , zn,dn) with n = s+ t. For all s′, t′ ∈ {1, 2, . . . , n}, define

p
(0)
s′ :=

s′−1∏
i=1

p(di | zi,di−1) p(zi+1 | zi,di), (A.4)

p
(1)
t′ :=

n−1∏
i=n−t′+1

p(−di | zi+1,−di+1) p(zi | zi+1,−di), (A.5)

which denote the probability for constructing two subpaths containing the first s′ and last

t′ vertices of ȳ, respectively. Then, for all u′, s′ and t′, it holds that

p
(u′)
s′,t′(ȳs,t) = p

(0)
s′ p

(1)
t′ q

(u′)
s′ , (A.6)
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where

q
(u′)
s′ :=


p(ds′ | zs′ ,ds′−1) if u = 0,

p(−ds′ | zs′+1,−ds′+1) if u = 1.

(A.7)

It follows that
p
(u′)
s′,t′(ȳs,t)

p
(u)
s,t (ȳs,t)

=
p
(0)
s′ p

(1)
t′ q

(u′)
s′

p
(0)
s p

(1)
t q

(u)
s

. (A.8)

Note that, for any s′ < s, we have

p
(u′)
s′,t′(ȳs,t) = p

(0)
s′

p
(1)
t′

p
(1)
t+1

q
(u′)
s′ p

(1)
t+1. (A.9)

It follows that

s−1∑
s′=1

1∑
u′=0

p
(u′)
s′,t′(ȳs,t)

p
(u)
s,t (ȳs,t)

=
p
(1)
t+1

p
(1)
t q

(u)
s

s−1∑
s′=1

1∑
u′=0

p
(0)
s′

p
(1)

t′

p
(1)
t+1

q
(u′)
s′

p
(0)
s︸ ︷︷ ︸

=: P
(0)
s

. (A.10)

Since

p
(1)
t′

p
(1)
t+1

=
s−1∏

i=s′+1

p(−di | zi+1,−di+1) p(zi | zi+1,−di), (A.11)

it is easy to verify that P
(0)
s depends only on depths zs′ and directions ds′ with s′ ≤ s, which

are all from the subpath x̄i. Further, P
(0)
s′ remains constant for all paths ȳs,t with s > s′.

This allows us to precompute P
(0)
s using x̄i for s = 1, 2, . . . , ni. To this end, P

(0)
s (ȳ) can be

efficiently evaluated using the following relation:

P (0)
s =


0 (s = 0),

p
(0)
s−1

p
(0)
s

(
P

(0)
s−1

p
(1)
t+2

p
(1)
t+1

+
∑

u′ q
(u′)
s−1

)
(s > 1).

(A.12)

Using Eq. (A.12), we can compute P
(0)
s (x̄i) for s = 1, 2, . . . , ni in O(ni) time.
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Similarly, for all t′ < t, we have

t−1∑
t′=1

1∑
u′=0

p
(u′)
s′,t′(ȳs,t)

p
(u)
s,t (ȳs,t)

=
p
(0)
s+1

p
(0)
s q

(u)
s

t−1∑
t′=1

1∑
u′=0

p
(0)

s′

p
(0)
s+1

p
(1)
t′ q

(u′)
n−t′

p
(1)
t︸ ︷︷ ︸

=: P
(1)
t

, (A.13)

where P
(1)
t only depends on x̄o can be computed in O(no) time.

With both P
(0)
s and P

(1)
t precomputed, Eq. (A.3) becomes

w
(u)
s,t (ȳs,t) =

(
1 + P (0)

s + P
(1)
t +

1∑
u′=0

p
(u′)
s−1,t+1(ȳs,t) + p

(u′)
s+1,t−1(ȳs,t)

p
(u)
s,t (ȳs,t)

)−1

, (A.14)

which can be computed in constant time. This leads to a full bidirectional estimator with

time complexity O(nino).

A.3 MIS with stochastic function and weight evalua-

tion

Introduction. While Monte Carlo integration and multiple importance sampling (MIS)

are widely used in practice, we use extended versions of these techniques: our MIS weighting

is based on approximate (not exact) pdfs, and our weight and function evaluation are both

stochastic (i.e. they consume additional random numbers, and are equal to the true weight

and function value only in expectation). For this reason, we review standard Monte Carlo

and MIS estimators, and show that our extensions still lead to unbiased results.

Monte Carlo estimator. Let f(x) be an integrable function on domain D, and let X

be a random variable on domain D with probability distribution p(x), such that p(x) > 0
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whenever f(x) ̸= 0. An integral

I =

∫
D

f(x) dx (A.15)

can be approximated by the unbiased estimator

Xf =
f(X)

p(X)
. (A.16)

It is easy to see that Xf is an unbiased estimate of I:

EX [Xf ] =

∫
D

p(x)
f(x)

p(x)
dx =

∫
D

f(x) dx = I. (A.17)

Note, the cancellation of p(x) is always possible due to the assumption that p(x) > 0 for all

x where f(x) is non-zero.

Combining estimators through MIS. Multiple importance sampling (MIS) combines

two different sampling strategies (random variables) X1 and X2 on D, with pdfs p1(x) and

p2(x), to compute the integral I more robustly. This is achieved by choosing weighting

functions w1(x) and w2(x) such that w1(x) + w2(x) = 1 for all x ∈ D.

Furthermore, we shall require that if p1(x) = 0 or p2(x) = 0, the corresponding f(x) = 0.

The integral I is thus split into I1 and I2:

I = I1 + I2 =

∫
D

w1(x)f(x) dx+

∫
D

w2(x)f(x) dx. (A.18)

The following are unbiased estimators for I1 and I2:

X1
f =

w1(X)f(X)

p1(X)
X2

f =
w2(X)f(X)

p2(X)
. (A.19)
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This can be seen as follows:

EX [X
1
f ] =

∫
D

p1(x)
w1(x)f(x)

p1(x)
dx =

∫
D

w1(x)f(x) dx = I1, (A.20)

and the same argument works for I2. Again, the reason the cancellation of p1(x) works is

that either it is non-zero, or f(x) = 0, due to the assumption above.

Also note that we made no assumptions on the weights other than that they sum to 1. In

particular, there is no requirement that the weights be derived from exact pdfs, and we are

free to base them on approximate pdfs, among other choices.

Stochastic function evaluation. Now suppose that the function evaluation is itself

stochastic, i.e. it is an unbiased estimator f(x,R) of the true value of f(x), that uses a

uniform random number R on the interval [0, 1) during its evaluation. The argument can

be easily extended for the case of consuming multiple uniform random numbers. We use a

single random number in the proof for brevity.

Because the function estimator is unbiased, we have ER[f(x,R)] =
∫ 1

0
f(x, r) dr = f(x) for

all x. Therefore, our full estimator becomes:

Xf =
f(X,R)

p(X)
. (A.21)

We can see that this estimator is still unbiased, by computing its expected value over X and

R:

EX,R[Xf ] =

∫
D

∫ 1

0

p(x)
f(x, r)

p(x)
dr dx

=

∫
D

p(x)

∫ 1

0
f(x, r) dr

p(x)
dx

=

∫
D

p(x)
f(x)

p(x)
dx = I (A.22)
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Stochastic weight and function evaluation When both the weight evaluation and

the function evaluation in an MIS estimator are stochastic, the resulting estimator is still

unbiased, provided that the random numbers used by the weight and the function are in-

dependent (which enables us to rewrite the joint integral over both random choices into

separate integrals). Specifically, consider an unbiased estimator w1(x,R1) of the true value

of w1(x), and an unbiased estimator f(x,R2) of the true value of f(x), based on uniform

random numbers R1 and R2 on the interval [0, 1). (again, this can be easily extended for

the case of consuming multiple uniform random numbers.) The estimator for integral I1 will

become:

X1
f =

w1(X,R1)f(X,R2)

p1(X)
(A.23)

We can see that this estimator is unbiased, by computing its expected value over X, R1 and

R2:

EX,R1,R2 [X
1
f ] =

∫
D

∫ 1

0

∫ 1

0

p1(x)
w1(x, r1)f(x, r2)

p1(x)
dr1 dr2 dx

=

∫
D

p1(x)

∫ 1

0
w1(x, r1) dr1 ·

∫ 1

0
f(x, r2) dr2

p1(x)
dx

=

∫
D

p1(x)
w1(x)f(x)

p1(x)
dx = I1. (A.24)

The same argument can be used for X2
f .

Discussion. Application to direct illumination integral. In our application, the

integral of interest I is normally the direct illumination estimate at a shading point. The

function f(x) involves the product of the BSDF and illumination values; this is integrated

over the unit sphere (or unit hemisphere for BRDFs with no transmission), which is the

domain D. The random variables X1 and X2 are outgoing directions ωo chosen by light

sampling and BSDF sampling, respectively. For the case of light sampling, we need to

stochastically evaluate the MIS weight and BSDF value for the chosen ωo; these evaluations
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will consume vectors of uniform random numbers R1 and R2, respectively.

No approximation of pdfs in estimator denominators. While we use approximate

stochastic pdfs to define the weights, we never approximate the pdfs in the denominators of

our estimators. In our case, the accurate values of these pdfs are already baked into the f/p

estimates returned by the position-free Monte Carlo simulations.

Sum of stochastic weights. The sum of the stochastic approximations to weights w1 and

w2 will generally not be exactly 1, but this is not required. We simply require that

1. the expected values of the weights sum to 1, so that the integral I separates correctly

into I1 and I2,

2. X1
f and X2

f are unbiased estimators for I1 and I2, respectively.

The combination of these properties implies an unbiased estimate for I.
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