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Abstract

Autonomous Ornithopter Flight with Sensor-Based Seeking Behavior

by

Stanley Seunghoon Baek

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ronald S. Fearing, Chair

This thesis presents the design of autonomous flight control algorithms for a flapping-
wing aerial robot with onboard sensing and computational resources. We use a 13 gram
ornithopter with biologically-inspired clap-and-fling mechanism. For autonomous flight con-
trol, we have developed 1.0 gram control electronics integrated with a microcontroller, inertial
and visual sensors, communication electronics, and motor drivers. We have also developed a
simplified aerodynamic model of ornithopter flight to reduce the order of the control system.
With the aerodynamic model and the orientation estimation from on-board inertial sensors,
we present flight control of an ornithopter capable of flying toward a target using onboard
sensing and computational resources only. To this end, we have developed a dead-reckoning
algorithm to recover from the temporary loss of the target which can occur with a visual
sensor with a narrow field of view. With closed-loop height regulation of the ornithopter, we
propose a method for identifying the discrepancy between the tethered flight force measure-
ment and the free flight aerodynamic force. Lastly, we present a nondimensionalized analysis
of a motor-driven flapping-wing system and experimentally demonstrate a resonant drive to
reduce average battery power consumption for DC motor-driven flapping-wing robots.
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Chapter 1

Introduction

Flapping-wing flight has long been a perpetual source of deep mystery and enchantment.
The exceptional flight performance of birds and insects has been sufficient to intrigue sci-
entists and engineers. Recent achievements of understanding unsteady aerodynamic forces
generated by birds and insects have encouraged engineers to develop biologically inspired
flapping-wing micro aerial vehicles. Such small-scale aerial vehicles have great potential
for search and rescue, reconnaissance, and surveillance among other fields as they can tra-
verse the highly unstructured environment which larger robots (or terrestrial robots) cannot
bypass.

Flapping-wing aerial vehicles are more attractive than fixed-wing aircraft or rotary-wing
aircraft at small scales. Fixed-wing aircraft lack hovering capability and have lower agility to
avoid indoor obstacles. Rotary-wing aircraft such as helicopters and quadrotors are capable
of hovering, and some small-scale quadrotors are very maneuverable [28, 29]. Rotary-wing
aircraft, however, suffer from wall-proximity effects and are usually inefficient in the low
Reynolds number regime. It could also be argued that flapping-wing aircraft are lower band-
width systems than rotary-wings aircraft. The bandwidth of the control inputs to maintain
lift and stability can be much lower for comparably sized flapping-wing implementations [30].
In terms of efficiency, studies in 2001 and 2002 showed that flight with a propeller, even at
small scales, could be more efficient than with flapping wings [11, 44]. However, a more
recent study in 2009 shows that optimized flapping-wing motion can save up to 27% of the
aerodynamic power required by the optimal steady flight [34].

Though engineers have demonstrated a number of small-scale flapping-wing robots ca-
pable of sustained flight, the autonomous flight control of such robots is still nascent. It is
mainly due to the inherent high-nonlinearity of such robots and lack of system identification.
Also, small-scale flapping-wing robots usually have a minimum number of actuators due to
the size constraints, and therefore the systems are generally under-actuated. The goal of this
thesis is to design and implement control algorithms for autonomous flight of a flapping-wing
robot. We also propose closed-loop flight control as a tool for aerodynamic force analysis
near a stable equilibrium point. Lastly, we discuss a method to improve power efficiency by
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running flapping-wing robots at their resonance to reduce inertial costs of accelerating and
decelerating their wings.

1.1 Control Challenges for Flapping-Wing Robots

Autonomous flight of small-scale flapping-wing robots is still under development. Dif-
ficulties in the development of autonomous flapping-wing flight at small-scale are outlined
below:

1. Most small-scale aerial vehicles developed so far cannot generate enough lift to carry
large payloads, such as for rich onboard sensing and computational resources.

2. These robots are usually highly under-actuated because the size constraint limits the
number of actuators. They are also highly-coupled multi-input and multi-output
(MIMO) systems.

3. Smaller scale flapping-wing air vehicles usually require higher flapping frequencies,
which produce high-frequency vibrations. The inertial force generated by flapping
motion of the wings is transmitted to the body and makes the body vibrate at the
flapping frequency. Slightly asymmetric flapping motion of the wings also produce
undesirable lateral acceleration and yaw moment.

4. System identification of such systems is difficult due to the inherent unsteady air flow
around the wings. Without good system identification, designing state space feedback
control, such as linear quadratic regulator (LQR) control, is very challenging.

Our approaches to autonomous flight control of a small-scale flapping-wing robot include
a reduced-order control system using a simplified flight model, passive pendulum-like sta-
bility, and a failure recovery algorithm. We have developed a simple aerodynamic model of
a flapping-wing robot using time average forces. From a controls standpoint, instantaneous
force control during each flapping stroke is generally not possible since the bandwidth of
the actuator is usually not large enough to change the wing motions during each stroke. To
achieve pendulum-like stability, we have created a CAD (SolidWorks 2010) model to locate
the center of mass of the system at the desired location. The location of the center of mass is
where we can passively stabilize the robot. A carefully chosen location of the center of mass
also minimizes the pitch oscillation. A dead reckoning algorithm has also been developed to
recover from a temporary loss of the sensed target which can occur with a visual sensor with
a narrow field of view.
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1.2 Aerodynamic Forces for Free Flight

An accurate measurement of free flight aerodynamic forces in flapping-wing robots is a
recurring issue. This is because enough lift force must be generated while simultaneously
achieving a stable equilibrum for user defined flight. Indeed, control engineers are usually
interested in the free flight aerodynamic forces of air-vehicles near the stable equilibria.
Then, we can measure accelerations of the body in air to estimate the controlled free flight
aerodynamic forces for given input signals, such as wing velocity, rudder position, etc.

The aerodynamic forces have been measured with a force/torque sensor, such as a load
cell [32] or double cantilevers with strain gauges [50]. Wind tunnel measurements have also
been conducted to measure lift and thrust forces simultaneously [16]. Although tethered
measurement provides a good approximation of aerodynamic forces before free flight, the
difference between the measured forces and the real forces aloft could be unacceptably large.
There are several reasons for the difference between free flight and tethered measurements.
On the one hand, the fixed body of the ornithopter and structural compliance can give rise
to vibrations which either absorb propulsive power or change wing stroke kinematics. On
the other hand, estimating flight force directions in free flight is inherently noisy.

1.3 Efficient Energetics Using Resonant Excitation

Efficient power usage is fundamental to the development of small-scale flapping-wing
robots for the following reasons:

1. Small-scale robots use portable power sources with limited energy capacity.

2. Aerial vehicles require substantial amounts of power to generate lift force for the robot
itself as well as the payload.

3. Autonomous robots require additional power for onboard electronics to process sensor
data as well as closed-loop controllers.

One approach to efficient power usage is to use integrated compliant mechanisms driven at
their resonant frequency. At the smallest scales, compliant mechanisms, resonant excitation,
and piezoelectric actuation work well, due to high speeds, low transmission losses, and high
power density. At larger scales, motor actuation is more suitable. Interestingly, most flapping
wing robots with motor driven mechanisms do not explicitly use a resonant drive system.

Previous work in resonant drive of flapping wing MAVs has considered minimizing input
power assuming constant velocity [41]. However, for heavily loaded structures, motor velocity
will not be constant without a speed controller, which takes active power for deceleration.
Another related result considers minimizing peak torque [21, 26], which improves motor
sizing, yet does not consider the effects of the battery resistance. We show that under
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certain loading conditions, the battery and motor resistance will influence the time average
power required.

Flapping-wing air vehicles can improve efficiency by running at resonance to reduce
inertial costs of accelerating and decelerating the wings. For battery-powered, DC motor-
driven systems with gears and cranks, the drive torque and velocity is a complicated function
of battery voltage. Hence, resonant behavior is not as well defined as for flapping-wing
systems with elastic actuators.

Motor-driven, flapping wing MAVs have been built, including the ‘Microbat’ [17,35,36],
Kawamura’s 2.3 gram MAV [16], the 12 gram Interactive Toys Vamp, and the ‘DelFly’ [8].
Interestingly, these mechanisms do not explicitly use a resonant drive system. Potentially,
resonant excitation can offer increased lift output, with less battery power. However, while
analysis of resonant excitation is intrinsically simple for systems driven by piezoelectric
actuators (e.g. [12]), it is not straightforward for motor actuated systems. The genera-
tion of oscillatory kinematics necessary for flapping-wing flight requires the integration of a
crank-arm, which has a fundamental geometric nonlinearity. The integration of compliant
mechanisms adds additional nonlinear complexity.

1.4 Contributions

The contributions of this work are as follows:

• Control algorithm for autonomous ornithopter flight - We have demonstrated
autonomous flight control of a 13 gram ornithopter capable of flying toward a target
without any remote assistance. For this demonstration, we have developed a closed-
loop attitude regulator for the ornithopter using onboard sensing and computational
resources. We have also developed an algorithm for the ornithopter to predict the
target location when the target is temporarily not visible.

• Identification of free flight forces of an ornithopter - We have demonstrated
the identification of free flight aerodynamic forces at a stable equilibrium point of an
ornithopter and compare them with the tethered flight aerodynamic forces. For the
aerodynamic analysis at a stable equilibrium, we have developed a closed-loop altitude
regulation for the ornithopter using an external camera. The results show that the
tethered aerodynamic force measurement of a 12 gram ornithopter with zero induced
velocity underestimates the total flight force by 24.8 mN or 20%.

• Efficient resonant drive for DC motor-driven ornithopter - The analysis of
a resonant drive has been studied to reduce average battery power consumption for
DC motor-driven flapping-wing robots consisting of a compliant element. For this
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analysis, we have performed a nondimensionalized analysis of a motor-driven slider
crank, considering motor and battery resistance. This analysis is used to demonstrate
the benefits of an efficient resonant drive on a a flapping-wing robot integrated with a
tuned compliant element. The nondimensional analysis can be applied to the generic
class of a motor-driven slider crank mechanisms.

• Lightweight electronics for small-scale robots - We have developed a 1.0 gram
control electronics board consisting of a 40 MHz microprocessor, a 4 MB flash memory,
a 6-axis inertial measurement unit, a wireless transceiver, two motor drivers, and two
visual sensors. The board can also feature surface mount connectors to accommodate
daughter cards to expand the range of sensing and actuating capabilities. The control
board is designed for completely autonomous flight of a 10-gram scale ornithopter.
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Chapter 2

Previous Work

(a) (b) (c)

Figure 2.1: Previous Work in small-scale flapping-wing robots. (a) The Micromechanical
Flying Insect (MFI) at Berkeley [40]. (b) The Harvard Microrobotic Fly [51]. (c) The
DelFly Micro [6].

Engineers have made remarkable progress toward the development of flapping-wing mi-
cro aerial vehicles. An early attempt at a flapping-wing micro aerial vehicle came from
Shimoyama et al. [38]. The authors proposed an implementation of a robot using rigid
plates and elastic joints to fabricate an external skeleton similar to the structure of an in-
sect. More recently, work from the Biomimetic Millisystems Lab at Berkeley explored using
the Smart Composite Microstructures (SCM) process in fabrication of small-scale flapping-
wing robots [49]. Fig. 2.1a shows the Micromechanical Flying Insect (MFI), a 100 mg
flapping-wing robot fabricated using SCM process with four piezoelectric actuators to drive
passively rotating wings [2, 40]. The Harvard Microrobotics Laboratory demonstrated the
first take-off of an at-scale robotic insect [48, 51]. Fig. 2.1b shows the 60 mg biologically
inspired robot that flaps its wings at 110 beats per second using one piezoelectric actuator.
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Since the selection of lightweight batteries at this scale was limited, the development of such
milligram-scale flying robots was still focused on tethered flight.

Whereas the milligram-scale flying robots were still tethered, a few successful develop-
ments in the flapping-wing robots at larger scales were demonstrated. Van Breugel et al.
developed a passively stable 24 gram flapping-wing robot capable of hovering [45]. The
robot took advantage of the clap-and-fling1 mechanism, in addition to passive wing bend-
ing to simplify the design and enhance performance. Delft University developed a series of
flapping-wing robots using clap-and-fling mechanism; DelFly I, DelFly II, and DelFly Mi-
cro [6, 7, 23, 24]. Shown in Fig. 2.1c is the latest version of DelFly, the DelFly Micro, which
is 3 grams and 10 cm from wing tip to wing tip.

These remarkable developments in small-scale flapping-wing robots have extended the
capabilities of flight control for a number of higher level behaviors, such as surveillance and
reconnaissance. In the rest of this chapter, we first provide a brief review of the development
of autonomous flight control of flapping-wing robots. We will also review a number of
approaches to efficient resonant excitation for motor-driven flapping-wing robots integrated
with a compliant element.

2.1 Flight Control for Flapping-Wing Robots

Autonomous flight control of flapping-wing MAVs have been studied with diverse ap-
proaches. Deng et al. [9, 10] designed LQR-based feedback laws for hovering control using
an approximate time-invariant model of the Micromechanical Flying Insect [12] with time
averaged aerodynamic forces. Khan et al. developed a differential flatness-based nonlinear
controller for a time-averaged system that could be applied to flapping-wing MAVs [20].
Other development of closed-loop control for a flapping-wing MAVs was demonstrated by
Shigeoka [37]. Acquiring acceleration and position data using an accelerometer and a Vicon
motion tracking system, Shigeoka developed a simple dynamic model for a flapping-wing
MAV and demonstrated simulation results using frequency analysis. Their approaches per-
formed well in computer simulations, yet they have not been implemented in a real flapping-
wing robot.

Some of the significant research on the development of autonomous flight in a real
flapping-wing robot is summarized here. Tedrake et al. [43] demonstrated autonomous flight
of a 2-meter wingspan ornithopter with enough payload to carry a 400 gram sensor and com-
puter package. For small-scale ornithopters, engineers developed flight controllers using a
ground station for computationally expensive processes such as video processing. De Croon et
al. implemented an obstacle avoidance algorithm for a 16 gram flapping wing DelFly II with
two onboard cameras [6, 7]. In their work, a ground station personal computer was used to
process sensor data and compute control signals. For fixed-wing small-scale aerial vehicles,

1In the clap-and-fling mechanism, the wings clap together and then fling apart. A study shows that the
clap-and-fling mechanism can significantly increase lift coefficients, especially for small insects [31].
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Zufferey et al. demonstrated fully autonomous flight of a 10 gram aerial vehicle by mapping
optical flow signals into control commands in an indoor environment [53]. The developments
of autonomous flight discussed so far, along with the autonomous ornithopter flight in this
thesis, are summarized in Table 2.1.

Table 2.1: Developments of autonomous flight

Developers Specifications Wings Control Design Objectives

Tedrake et al. 2.0 m wing span flapping onboard stable flight

De Croon et al. 16 grams flapping remote obstacle avoidance

Zufferey et al. 10 grams fixed onboard visual navigation

Baek (Chapter 5) 13 grams flapping onboard target seeking

2.2 Resonant Drive for Flapping-Wing Robots

One approach to efficient power usage in flapping-wing MAVs is to use integrated com-
pliant mechanisms driven at their resonant frequency. Goldfarb developed piezoelectric-
actuated flapping-wing MAVs excited at the resonant frequency [4,13,25]. Agrawal demon-
strated a novel, motor-driven four-bar crank-rocker mechanism that integrated a spring to
store energy during a flapping cycle [19, 20, 26, 27]. Resonant drives and compliant mecha-
nisms have been implemented in 100 mg insect-scale wing flapping mechanisms [1,2,12,40,52]
as well as a 5.8 gram hummingbird-inspired flapping mechanism [3]. Recently, Wood [47,48,
51] demonstrated lift-off of an insect-scale 60 mg flapping-wing MAV, employing a 110 Hz
wing beat excited at the resonant frequency with a piezoelectric actuator.

Some of the significant research on the integration of resonant drive mechanisms in DC
motor driven flapping-wing MAVs is summarized here. Khatait et al. [21] demonstrated a
four-bar crank-rocker mechanism that minimized the peak torque requirement of the DC mo-
tor by optimizing the compliant elements of the structure consisting of two flexural hinges.
The authors achieved a reduction of the order of 2.85 in the peak driving torque in a specific
mechanism considered. Tantanawat and Kota [41] proposed integrating distributed compli-
ance to reduce the peak input power requirement of the DC motor on a flapping mechanism.
In their study, the peak power needed to drive the proposed compliant flapping mechanism
is found to be 50% less than a rigid-link four-bar flapping mechanism without a spring, and
15% less than the one with a spring. Madangopal et al. [27], using nonlinear optimization
tools, designed a flapping mechanism with springs attached to the load to reduce the vari-
ation in motor torque. The authors demonstrated 56.32% reduction in the variation of the
peak torque.
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Previous work [21,27,41], discussed above, uses peak input power as a design metric. But
for mobile battery-powered devices, average input power takes precedence over peak power
since average power is directly related to battery capacity. The previous work also assumes
the motor is operating at constant velocity, which is difficult to maintain with high cyclic
loads. A battery as a voltage source with an internal battery resistance is more representative
of a practical system, rather than assuming constant velocity operation. This is due to the
fact that a closed loop speed control requires additional power and components, such as
speed sensors and H-bridges, and may require excess peak torques to maintain constant
velocity with large load variations.
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Part II

Flight Control
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Chapter 3

Ornithopter Platform and
Aerodynamic Model

In this chapter, we present the ornithopter platforms, the light-weight control electronics,
and the PID controller used for the rest of this thesis.

3.1 Ornithopter Platform

The ornithopter used in this thesis has been obtained by modifying from a Silverlit Wing-
Master I-Bird as shown in Fig 3.1. From the original 4 winged ornithopter, the styrofoam
outer body has been removed to reduce the weight. The removal of the styrofoam, however,
results in undesirable bending and torsional compliance of the structure that absorbs some
of the power to be transferred to the environment. As a result, the aerodynamic forces
generated by the wings are significantly reduced. To compensate for this, we have replaced
the main backbone frame with stiff carbon fiber T-beams so that the aerodynamic forces
remain the same.

Another modification was to replace the rudder at the end of I-Bird’s tail with a pro-
peller. The rudder was driven by a magnetic actuator to the left or right direction for yaw
moment. One of the problems of the magnetic actuator was that it required too much cur-
rent (∼300 mA), and the ornithopter could not generate enough lift force when the magnetic
actuator was activated. Another problem was that it had only tristate modes, i.e., full left,
full right, or neutral, which limited the control policy to be bang-bang control. For these
reasons, we replaced the rudder with a bidirectional propeller driven by a 4 mm diameter
pager motor. After this modification, the ornithopter consumed less than 100 mA current at
the maximum speed of the propeller while the propeller generated much higher yaw moment
than the rudder. It also enabled us to implement a PID controller for yaw regulation instead
of a bang-bang control. The specifications of the modified ornithopter are summarized in
Table 3.1.



CHAPTER 3. ORNITHOPTER PLATFORM AND AERODYNAMIC MODEL 13

21
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(a)

(b)
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Figure 3.1: The modified ornithopter equipped with (a) control electronics, (b) a visual
sensor, (c) a battery, and (d) a propeller.

Table 3.1: Specifications of the Modified Ornithopter

Wing span 28 cm

Body length 21 cm

60 mAh Li-Poly Battery 1.8 grams

Motor & gear box for wings 2.8 grams

Steering motor & propeller 0.9 grams

Wings 1.8 grams

Frames & tail 2.6 grams

Control board 1.0 grams

Infrared camera 0.33 grams

Connectors & wires 2.1 grams

Total Weight 13.4 grams
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Figure 3.2: The 1.0 gram control board consisting of a 40 MHz dsPIC microprocessor, a 4MB
flash memory, a 3-axis accelerometer, a 3-axis gyroscope, an 802.15.4 wireless transceiver,
a 2-channel motor driver, an IR camera connector, and a cell phone camera connector. (a)
the control board with a ruler (b) functional block diagram for the control board

3.2 Design of 1.0 gram Control Electronics

For small-scale flapping-wing robots, lightweight control electronics is a crucial design
consideration since such small-scale robots generally cannot carry a large payload. One of
the solutions for lightweight electronics would be custom integrated circuits (ICs), but the
cost of IC developments is generally very high. A more realistic solution is to build control
electronics on a custom lightweight printed circuit board (PCB). With careful design of PCB
and selection of electric components, we have been able to significantly reduce the overall
weight of the robot.

Shown in Fig. 3.2a is the 1.0 gram1 control board consisting of a Microchip 16 bit dsPIC
microprocessor running at 40 MHz, a 4MB flash memory, a 3-axis accelerometer, a 3-axis
gyroscope, an 802.15.4 wireless transceiver, a 2-channel detachable motor driver consisting
of a MOSFET and an H-Bridge, an infrared camera connector, and a cell phone camera
connector. The blank printed circuit board was manufactured using 25 μm thick core FR4
fiberglass for light-weight robotic applications. The board can also feature surface mount
connectors to accommodate daughter cards to expand a range of sensing and actuating ca-
pabilities. The control board is designed for completely autonomous flight of an ornithopter,
i.e., there are no remote control inputs or external control signals during flight. The wireless
transceiver is only used for telemetry. Figure 3.2b shows a functional block diagram for the
control board.

1The weight is measured without visual sensors. The infrared camera is 0.33 grams, and the cell phone
camera is 0.30 grams.
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The control board contains a 40 MIPS dsPIC33FJ128MC706 microprocessor running at
3.3 V through a MIC5335 low dropout linear regulator. The dsPIC microprocessor has been
chosen for its low power consumption and for a range of robotic applications that require a
number of peripherals - we are using 2 I2C channels, 2 SPI channels, 1 UART channel, and
4 PWM channels. The 16 kilobytes internal SRAM is mainly used for buffers to temporarily
store packets received or to be transmitted through the wireless communication link. The
real-time data such as sensor outputs, state estimates, and control input signals for later
review are saved in the Atmel 32-megabit DataFlash memory (AT45DB321D) interfaced via
an SPI channel at the speed of 10 MHz. Using this flash memory, we can prevent important
data from being lost when the microcontroller is reset or the real-time communication via
wireless link is broken.

The board contains a complete implementation of the IEEE 802.15.4 standard for low-rate
wireless personal area networks. The Atmel low power 2.4 GHz transceiver (AT86RF231) is
utilized for the wireless communication with a host computer. The transceiver is interfaced
with the dsPIC processor via an SPI channel at the speed of 6 MHz and communicates with
the host computer at the effective speed of 115kbps. We have also developed a USB dongle
for the host computer using the same transceiver and dsPIC processor so that the computer
can communicate with the control board through the dongle. The interface to the robot
that enables initiating flight and retrieving the data saved in the flash memory is written in
Python. The software also communicates with the robot to configure control parameters,
filter coefficients, etc.

For inertial measurements, a 3-axis gyroscope and a 3-axis accelerometer are interfaced
with the control board via the I2C channels at the speed of 400 KHz. The sampling rate of
the inertial sensors can go up to 1 KHz and the sensors have configurable internal low pass
filters for each axis. The sensors are calibrated for every power recycle and reset operation.

An OmniVision OV7660FSL VGA camera can be connected to the board for visual
navigation such as optical flow, collision avoidance, target following, etc. [14]. The camera
is initialized via an I2C channel, and the pixel data is transmitted via parallel IO ports.
An infrared camera can be connected to the control board through the other I2C channel.
The infrared camera, originated from a Nintendo Wii remote controller, can detect up to 4
infrared emitters at a time and transmits the positions of the emitters at 400 Hz in an image
frame of 1024×768 along with the emitters’ intensity. The sampling rate of the infrared
camera can go up to 1 KHz. More details for this infrared camera can be found in [46].

The motor drivers have a MOSFET and an H-Bridge making it capable of driving an
unidirectional motor as well as a bidirectional motor at the same time. The MOSFET is
driven by a PWM signal to drive the main motor to generate flapping motion of wings, and
the H-Bridge is driven by a PWM signal and a general I/O port to drive the bidirectional
propeller (or the rudder) to generate yaw moment. The back-EMF voltage for the motor
connected to the MOSFET can be measured using an ADC channel. An RC low pass filter
is used to remove the noise for the measurement. The back-EMF measurement is used to
not only regulate the motor speed but also estimate the pitch oscillation of the ornithopter.
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The motor driver is designed to be removed and replaced with a surface-mount connector so
that daughter boards with a range of motor drivers can take the place of the existing motor
drivers.

A 60 mAh Lithium-Polymer battery provides power for the electronics, the DC motors
to drive the flapping wings and the propeller (or the magnetic actuator to steer the rudder).
The DC motor can drive the wings at 17-20 Hz depending on battery charge. The battery has
been carefully mounted on the body of the ornithopter so that we can achieve pendulum-like
passive stability.

Three LEDs are used to indicate various status modes of the board, and a MN1380
battery monitor is used to indicate the battery voltage status. A number of connectors for
ADC channels, general input/output ports, and a UART channel make the board expandable
for other micro-robotic applications. In order to reduce the weight of the board, we have also
implemented a bootloader so that the microcontroller can be programmed via the wireless
communication link without a connector for a hardware programmer.

3.3 PID Controller for Orientation and Height Regu-

lation

kp
e(k)

r(k) up(k)

ud(k)

ui(k)
u(t)

u(k)
H(s)∑∑ ∑ y(t)

y(k)

T

us(k)
ZOH

-1

derivative

integral
controller

controller

saturator

Figure 3.3: Block diagram for the PID controllers. The integral controller consists of the
integral gain and a discrete-time integral anti-windup routine, and the derivative controller
consists of a difference equation and a low pass filter.

The closed-loop height regulation and orientation regulation used in this thesis are im-
plemented by a PID controller, given by

u = kp(r − y) + ki

∫ t

0

(r(τ)− y(τ))dτ + kd (γṙ − ẏ) , (3.1)
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where u is the duty cycle for a motor, kp, ki, and kd are, respectively, the proportional,
integral, and derivative gains for the PID controller, r is the desired input (desired height or
orientation angles), y is the measured (or estimated) output, and γ is the reference weight
for the derivative controller. We set γ = 0 to avoid large transients in the control signal
when the reference is changed.

We have implemented a discrete-time PID controller for (3.1) running in the control
board discussed in Sec. 3.2. We have implemented a timer that generates one interrupt
every T seconds. The discrete-time PID controller written in the C programming language
is executed by the interrupt service routine (ISR) for each timer interrupt triggered. The
block diagram shown in Fig. 3.3 represents the discrete time realization of the PID controller.

The derivative controller in Fig. 3.3 consists of a difference equation and a low pass filter,
which is given by

ud(k) = kd · flpf(y(k − 1)− y(k)

T
), (3.2)

where flpf(·) is a discrete-time Butterworth2 low pass filter written in the C programming
language. The low pass filter has been implemented to reduce the high frequency noise caused
by the difference equation. The filter order and cutoff frequency have been determined based
on examinations of experimental data. The coefficients of the filter have been obtained using
the Matlab butter function.

The integral controller has been implemented with a discrete-time anti-windup algorithm
by testing actuator saturation. If the input duty cycle, denoted by u(k), is not saturated, we
want to accumulate the error for the integral controller. Otherwise, the accumulated error
should remain unchanged. The integral controller is summarized by

ui(k + 1) =

{
ui(k) if u(k) > umax or u(k) < umin,

ui(k) + kiT (r(k)− y(k)) otherwise,

where umax is the maximum input and umin is the minimum input.
The saturator block in Fig. 3.3 is realized in the C programming language to keep the

duty cycle to the system, us(k), in the user defined ranges, (umin, umax). We want us(k)
∈ (-100%, 100%) for the propeller control and us(k) ∈ (60%, 100%) for the flapping-wing
motor. Note that umin for the flapping-wing motor is 60% not 0%. This constraint prevents
the ornithopter from descending too quickly.

2We have chosen the Butterworth filter among various signal processing filters because it has as flat a
frequency response as possible in the passband.
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Chapter 4

Flight Forces and Altitude Regulation

In this chapter, we will demonstrate closed-loop altitude regulation for an ornithopter
using an external camera and an onboard microprocessor. With its rudder fixed in one
direction, the ornithopter always orbits around in front of the camera with a regulated
altitude. With this stable height regulation, we will discuss a method of identification of
free-flight aerodynamic forces near the stable equilibrium. Then, we will compare these
forces with the tethered flight forces measured with a load cell.

4.1 Aerodynamic Model

4.1.1 Aerodynamic Forces

Figure 4.1 depicts the coordinate systems and the forces acting on the body of the
ornithopter. The origin of the body coordinates (et, en) is attached to the center of mass of
the ornithopter. The tangential axis of the body coordinate, et, is defined as the line from the
center of mass, c, passing through the point, r, on which the resultant aerodynamic forces
are acting, and the normal axis of the coordinate, en, is perpendicular to the tangential axis.
The equations of motion in the body coordinate are given by

mẍb −mθ̇ẏb = −mg sin θ + FT , (4.1)

mÿb +mθ̇ẋb = −mg cos θ + FN , (4.2)

Iθ̈ = dFN , (4.3)

where FT is the tangential force in the et direction, FN is the normal force in the en direction,
xb is the displacement in the et direction, yb is the displacement in the en direction, θ is the
angle between et and E1, d is the distance between the center of mass and the origin of the
forces, m is the mass of the ornithopter, I is the moment of inertia, and g is the gravitational
acceleration. The equations of motion can also be written in the inertial frame (E1, E2) fixed
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Figure 4.1: The coordinate systems and the forces acting on the body of ornithopter.

to the ground as follows:

mẍ = −FD, (4.4)

mÿ = −mg + FL, (4.5)

Iθ̈ = dFL cos θ + dFD sin θ, (4.6)

where x is the displacement in the E1 direction, y is the displacement in the E2 direction,
FL is the lift force in the E2 direction, and FD is the drag force in the −E1 direction. The
relationship between (FL, FD) and (FT , FN ) is given by

FL = FT sin θ + FN cos θ (4.7)

FD = −FT cos θ + FN sin θ (4.8)

It is important to note that the aerodynamic forces, F = (FT , FN , FL, FD), are func-
tions of the wing velocity ω, the induced velocity V∞, and the angle of attack α (the angle
between the tangential axis and the direction of the induced velocity). Furthermore, F can
be decomposed into the following two functions

F = F(V∞, ω, α) = Fw(ω) + Fi(V∞, α)

where Fw(ω) is the force solely generated by the flapping motion of the wings while the body
of the ornithopter is stationary, i.e., ẋb = 0 and ẏb = 0, and Fi(V∞, α) is the aerodynamic force
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induced by the motion of the body. Whereas F(V∞, ω, α) is the total resultant force acting
on the body for free flight, Fw(ω) is the tethered flight force that can be measured using
conventional force/torque sensors, such as a load cell. Hence, Fi(V∞, α) is the discrepancy
between the real flight force and the tethered flight force. This is the main difference between
fixed wing aerodynamic forces and flapping wing aerodynamic forces where fixed wing lift
and drag forces are the functions of only the induced velocity and the angle of attack1. While
both lift force and drag force become zero with V∞ = 0 for fixed wing flight, the resultant
force acting on a flapping wing body is still nonzero with V∞ = 0. In this case, Fw(ω) still
produces the lift force for hovering while Fi(V∞, α) = 0.

4.1.2 Passive Stability

The equilibria of the system can be found with (φ̇, ẍ, ÿ) = (0, 0, 0) or (φ̇, ẍb, ÿb) = (0, 0,
0). From (4.1), (4.2), and (4.3), we can find only one equilibrium at FN = 0, φ = 90◦, and
FT = mg (or FL = FT = mg and FD = FN = 0). It is important to note that the system is
pendulum-like passive stable at this equilibrium. Basically, for any small disturbance in the
en direction, the body will start oscillating about the pitch axis and gradually approach φ =
0 with a slight fluctuation of ẋ and ẏ. Therefore, FN should be kept as small as possible to
minimize pitch oscillation. An additional approach to minimize pitch oscillation is carefully
choosing the location of the center of mass so that the resultant force on the body directs
toward et and the mean value of FN vanishes. A stabilizer (or elevator) could be combined
at the tail to actively damp out oscillations, but it requires more weight and more power.

Assuming that the system stays near the stable equilibrium point, we are less interested
in the identification of I and d since φ̈ � 0. On the other hand, the identification of free
flight aerodynamic forces is still important. With closed-loop velocity control, we can easily
estimate the force discrepancy, or aerodynamic induced force, Fi, with constant ẏ and ẋ.
For example, with ÿ = 0 and ẍ = 0 from (4.4) and (4.5), we have FD = 0 and FL = mg.
Consequently, we have

F i
L(V∞, α) = mg − F a

L(ω) (4.9)

F i
D(V∞, α) = −F a

D(ω) (4.10)

4.2 Force Measurements

The propulsive force, Fa(ω), has been measured using a force sensor (ATI Nano 43).
Fig. 4.2 shows the force measurement setup for the ornithopter with the 6-axis load cell.
Using this setup, we have measured the propulsive flight forces, F a

T and F a
N .

1The lift force is L = 1
2CL(α)ρu

2S and the drag force is D = 1
2CD(α)ρu2 S, where α is the angle of

attack, u is the induced velocity, S is the reference area, and ρ is the air density which is constant for a small
range altitude flight.
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F/T Sensor

Figure 4.2: Force measurement setup for the ornithopter with a load cell. The forces of the
L bracket have been subtracted.

An example of the measured thrust forces with 80% PWM duty cycle is shown in Fig. 4.3.
The fundamental frequency of the forces is indeed the flapping frequency of the wings.
Although the peak to peak values are almost 0.6 N, the time average normal force and
tangential force are only F a

N = 18.15 mN and F a
T = 94.95 mN, respectively. The total

average force of 96.7 mN predicts the 12.4 gram ornithopter cannot lift itself at 80% duty
cycle if V∞ = 0.

Shown in Fig. 4.4 are the time average normal force, tangential force, and flapping speed
of wings with various duty cycles. For these average values, we took steady state force
measurement for 10 seconds with a 600 Hz sample rate. The circles in the plots are the
measured data points and the solid lines are the first order polynomial fitted lines. The wing
speed as well as forces are linear functions of the duty cycles in the range between 50% and
100% as shown in the plots.

4.3 Tracking and Control Methods

An external camera with the frame rate of 15 Hz and the resolution of 320×240 is
connected to a PC to track the ornithopter. The resolution of 320×240 pixels with average
distance of 3.8 meters from the camera gives pixel resolution of approximately 1.2 cm at the
ornithopter. The tail of the ornithopter is painted in orange, and the Hue, Saturation, and
Value (HSV) color model [39] is used to extract the orange blob from the image captured from
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Figure 4.3: Measurement of normal force (a) and tangential force (b) with 80% duty cycle.
The average forces are 18.15 mN for normal and 94.95 mN for tangential, as represented by
the dashed-dotted lines.
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Figure 4.4: The average normal force (a), average tangential force (b), and flapping speed of
wings (c) with various duty cycles. The circles are the measured data points and the solid
lines are the first order polynomial fitted lines.
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(a) (b)

Figure 4.5: A camera captured image of a free flying ornithopter (a) and the orange blob of
the ornithopter found by the blob detection algorithm (b).

the camera. The appropriate values of HSV depend on lighting conditions in an environment,
and so they need to be chosen at the beginning of each experiment. Unlike the RGB color
model, however, the Value component is the only variable in HSV that needs to be adjusted
in most trials.

To minimize the time spent for image processing, a Kalman filter has been implemented
to predict the next blob position as follows:

x(k + 1 | k) = x(k) + Tu(k) +w(k),

y(k) = x(k) + v(k),

where x is the position vector, u = (x(k) − x(k − 1))/T is the velocity vector, T = 67 ms
is the time interval, y is the measured position vector, and w and v are independent white
Gaussian noise with σw = 34.9 cm/s and σv = 1.72 cm, respectively. Here, x(k + 1 | k) is
the prediction of the next blob position. With this prediction, the blob detection algorithm
based on OpenCV (Open Source Computer Vision) searches for an orange blob only in a
small rectangular region (50×50 pixels or approximately 30×30 cm) centered at the predicted
point by the Kalman filter. Fig. 4.5a shows an image of the ornithopter taken by the
external camera, and Fig. 4.5b shows the blob detected by the algorithm with 0 ≤ Hue ≤ 13,
95 ≤ Saturation ≤ 255, and 133 ≤ Value ≤ 255.

Once the ground station estimates the center of the location of the ornithopter, the
reference error, e(k), between the estimated position and the desired position is computed.
Then, the error value is transmitted to the ornithopter through the wireless communication
link. The onboard microprocessor takes this data and computes the duty cycle of PWM
signal using the PID controller discussed in Section 3.3. The PID controller gains with kp =
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Figure 4.6: Signal flow for closed-loop altitude regulation

0.35, ki = 0.2, and kd = 0 have been determined by a trial and error method. The low pass
filter for derivative controller discussed in Section 3.3 has not been used for this work. The
microprocessor, then, generates the PWM signal to run the main flapping DC motor. The
signal flow of this control law is summarized in Fig. 4.6.

4.4 Experimental Results and Discussion

With an external camera as an altitude sensor, we have successfully achieved closed-
loop height regulation of the ornithopter. The rudder is fixed in one direction so that the
ornithopter always orbits around in the same direction in front of the camera. Fig. 4.7
shows a step response of the closed-loop system. The lateral motion (in the E1 direction)
shows a pure sinusoidal curve with a slowly varying DC term, which indicates a lateral
drift due to external disturbances, such as an indoor breeze. The sinusoidal curve with a
nearly constant frequency and constant peak-to-peak amplitude indicates a constant speed
in lateral direction. The longitudinal displacement and the desired altitude are also shown.
The maximum error in the plot is only about 10 cm, which is located at t ≈ 18s. The error
after t = 20s. is less than 3 cm. The average duty cycle for the DC motor is 80% for this
experiment. A sequence of video frames in the range between t = 32.51s and t = 33.53s is
shown in Fig. 4.8. The solid cyan circles are the locations of orange tails detected by the
blob tracking algorithm and the white horizontal lines in the middle of frames indicate the
desired altitude.

The orbital motion of the ornithopter was the result of the force on the rudder fixed in
one direction, not the result of the wing motions or the induced velocity. With a nearly
constant lateral speed, therefore, it is still safe to assume that ẍ due to FL and FD is close
to zero. In other words, the centripetal acceleration is provided solely by the force on the
rudder, and the other component of the acceleration in the tangential direction is still zero.
Also the average longitudinal acceleration in the range between t = 25s and t = 33s is close
to zero2. From this result and the inspection of images taken by the camera, we know that

2Due to the vibratory nature of flapping mechanisms, there are always nonzero body accelerations at a
high frequency, but the accelerations at a low frequency (< 1 Hz) at hovering could be zero.
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Figure 4.7: Closed-loop step response of height regulation. (top) lateral displacement, (mid-
dle) longitudinal displacement and desired altitude, and (bottom) duty cycle for the driving
DC motor.
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Figure 4.8: A sequence of video frames shows successful altitude control. The solid cyan
circles are the locations of orange tails detected by the blob tracking algorithm. The white
horizontal lines in the middle of frames indicate the desired altitude.
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Figure 4.9: Diagram of actual forces and measured forces

θ̇ = 0 in average and the free flight aerodynamics forces are FD = 0 and FL = mg = 121.5
mN.

As discussed in Section 4.1, we have θ = 90◦, FL = FT = mg and FD = FN = 0 at the
equilibrium point. From the load cell measurement, however, we have Fw

N = 18.15 mN and
Fw
T = 94.95 mN. The difference here indicates that (1) the force vectors for measurement did

not agree with the actual tangential and normal force vectors (2) the tethered measurement
underestimated the flight forces. Fig. 4.9 shows the actual force vectors and the measured
force vectors (F ′

T , F
′
N). In order to fix the measurement, we must first find the angle φ

between the actual flight forces and measured flight forces. We have φ = tan−1(F ′
N/F

′
T ) =

10.8◦ in this case. The magnitude of the sum of two vectors (F ′
N , F

′
T ) is 96.7 mN. From this

result, we know that tethered measurement with zero induced velocity underestimates the
lift force by F i

L = 121.5 - 96.7 = 24.8 mN at 80% duty cycle. F ′′
T -F ′

T and F ′′
N -F

′
N are the

underestimated forces in the measurement coordinates.
Shown in Fig. 4.10 are the response of height regulation with an added mass of 0.34 grams.

It shows an oscillatory longitudinal response due to the changes in pitch angle. Because of
the added mass, the system needs to generate a larger lift force, which is coupled with the
drag force. This larger drag force results in larger oscillatory behavior of pitch angle.
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Figure 4.10: Closed-loop step response of height regulation with an added mass. (top) lateral
displacement, (middle) longitudinal displacement and desired altitude, and (bottom) duty
cycle for the driving DC motor.
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Chapter 5

Flight Control for Target Seeking

In this chapter, we present closed-loop onboard attitude regulation for the ornithopter,
equipped with inertial sensors, visual sensors, and a microprocessor for onboard processing
of sensor signals as well as control input signals. We also discuss dead reckoning to the
target location when the target is temporarily not exposed on the visual sensor. Based
on the development of onboard attitude regulation and the dead reckoning algorithm, we
demonstrate autonomous flight of the ornithopter flying toward a target without any external
resources.

5.1 Attitude Estimation

The coordinate systems1 and the forces generated by the wings and the propeller are
depicted in Fig. 5.1. The body coordinates (ex, ey, ez), attached to the center of mass, are
chosen to be the principal axes of inertia of the ornithopter. T represents the propulsive
force on the average center of pressure generated by the flapping motion of the wings. The
center of pressure is denote by c.p. in Fig. 5.1. The force, R, produced by the propeller
generates the moment about the ez axis.

The kinematic equations of angular motion of the ornithopter can be written in 3-2-1 (or
Z-Y-X) Euler angles [33],

⎛
⎝ φ̇

θ̇

ψ̇

⎞
⎠ =

⎛
⎝ p+ q sin φ tan θ + r cosφ tan θ

q cos φ− r sin φ
q sinφ sec θ + r cosφ sec θ

⎞
⎠ , (5.1)

where p, q, and r are angular rates in the ex, ey, and ez axis, respectively, and φ, θ, and ψ
are the Euler angle representations for roll, pitch, and yaw, respectively.

1The coordinate systems used in this section are 3-dimensional unlike the coordinate systems in Sec-
tion 4.1. Note that the axes defined here are not the same as those in Section 4.1.
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Figure 5.1: The coordinate systems and the forces generated by the wings and the propeller.

To estimate the orientation of the ornithopter, we calibrate the gyroscope before each
flight in order to remove constant biased measurement errors. During flight we obtain the
angular velocities of the ornithopter in the body axes (p, q, r) using the 3-axis gyroscope
and compute (φ̇, θ̇, ψ̇) for every 2.5 milliseconds using (5.1). Then, we integrate (φ̇, θ̇, ψ̇) to
estimate the real time orientation of the ornithopter in Euler angles, (φ, θ, ψ).

The integration-based attitude estimation used in this work requires much less com-
putational power than other estimators based on Bayesian statistics such as [5, 15, 22, 42].
However, it has a serious drawback; integration drift is gradually accumulated and generates
a large amount of error as time elapses. The integration drift for the gyroscopes used in
this work is approximately 0.1 degrees per second. Although the ground truth orientation
estimates are erroneous over time, the deviation angles between the ornithopter’s orientation
angles and the target location is not affected by the drift when we determine the desired
orientation angles, which will be discussed in following section.
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ε(k + 1)

ε(k)

ξ

ΔΨ

Ψ(k)

t0

t0 +Δt

Figure 5.2: Prediction of target location at time k + 1 based on the current orientation and
its rate at time k.

5.2 Prediction of Target Location

5.2.1 Target Tracking Algorithm

The desired yaw angle, rψ(k), and desired pitch angle, rθ(k), at time k, are computed by

rψ(k) = ψ(k) + εψ(k), (5.2)

rθ(k) = θ(k) + εθ(k), (5.3)

where εψ and εθ are, respectively, the yaw deviation angle and the pitch deviation angle
between the ornithopter’s heading and the target. We can rewrite (5.2) and (5.3) in vector
form,

r(k) = Ψ(k) + ε(k), (5.4)

where r = (rψ, rθ)
T, Ψ = (ψ, θ)T, and ε = (εψ, εθ)

T.
The deviation angle, ε, is computed by

ε(k) = Ω(k)p(k),

where p is a vector of pixel values of the target location directly obtained from the infrared
camera, defined by (px, py)

T , and Ω is the combination of scaling matrix and rotational
transformation defined by

Ω(k) =

(
sx 0
0 sy

)(
cos(φ(k)) sin(φ(k))
− sin(φ(k)) cos(φ(k))

)
.

Here, sx = 20◦/1024 and sy = 15◦/768 are the scale factors to convert pixel locations to
angles, and the roll angle, φ, is the rotation of the infrared camera about the ex axis.
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As the ornithopter travels, the orientation angle, Ψ, as well as the deviation angle, ε,
change in time as shown in Fig. 5.2. Therefore, the attitude regulation using the desired
orientation angle computed by (5.4) can be improved with the prediction of the orientation
angle and the deviation angle at the subsequent state. This prediction can also be used in
dead reckoning of the target location when the target is temporarily lost.

At t = t0, the deviation angle is ε(k). For Δt, the orientation of the ornithopter is
changed by ΔΨ(k+1) � Ψ(k+1) - Ψ(k), and the deviation angle at k+1 becomes ε(k+1).
From Fig. 5.2, we can find

ΔΨ(k + 1) + ε(k + 1) ≈ ε(k) + ξ, (5.5)

where ξ is the angle between the position of the ornithopter at t0 and the position at t0+Δt
with respect to the target. Since the distance between the ornithopter and the target is
unknown, ξ is also unknown. Then, using (5.4) and (5.5), the prediction of the desired
orientation can be written by

r(k + 1|k) = Ψ(k) + ε(k + 1)

≈ Ψ(k) + ε(k) + ξ(k)−ΔΨ(k + 1)

≈ r(k) + ξ(k)−ΔΨ(k).

Now, we can formulate a Kalman filter to predict the desired orientation angle as follows

r(k + 1|k) = r(k) +Bu(k) +w(k),

ε(k) = r(k) +Du(k) + v(k).

Here, u(k) = (Ψ(k),Ψ(k − 1))T is the input vector to the Kalman filter, the process noise
w(k) and the measurement noise v(k) are independent zero mean Gaussian noises, B is the
process weighting factor to compensate the unknown value of ξ2 and defined by

B =

( −αψ 0 αψ 0
0 −αθ 0 αθ

)
,

where αψ is the process weighting factor for the yaw angle and αθ is the process weighting
factor for the pitch angle, and D is defined by

D =

( −1 0 0 0
0 −1 0 0

)
.

The value of α is determined by the state of target tracking. We have experimentally
found that (αψ, αθ) = (1.2, 1.2) is sufficient if the target is exposed on the infrared camera.
The target, however, is occasionally not exposed on the camera after large external distur-
bances or large overshoots from the desired trajectory.3 For this case, we need to have a
dead reckoning algorithm to estimate the target location without any sensor input.

2If the target is located infinitely far away from the ornithopter, the practical value of ξ would be zero.
In this case, the process weighting factor, α, will be 1.

3The infrared camera used in this work has a narrow field of view, which is ±20◦ horizontally and ±15◦

vertically.
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Figure 5.3: Signal flow for closed-loop onboard controller

5.2.2 Dead Reckoning to Target Location

When the target is not exposed on the camera, the innovation term in the Kalman filter
is ignored since the measurement from the visual sensor is meaningless. Then, an algorithm
for dead reckoning takes the place of target tracking as depicted in Fig. 5.3 to predict the
target location.

Figure 5.4 illustrates an example of the ornithopter’s trajectory when the ornithopter
momentarily loses the target. At t = t1, the target is lost, and for t1 ≤ t ≤ t2, the ornithopter
flies away from the target, i.e., sgn(εψ) �= sgn(Δψ). For t2 ≤ t ≤ t3, the target is still lost, but
the ornithopter flies toward the target, i.e., sgn(εψ) = sgn(Δψ). The target is rediscovered
at t = t3.

The dead reckoning algorithm keeps the desired pitch angle unchanged while the target
is lost, i.e., rθ(k + 1) = rθ(k). For the desired yaw angle, we have experimentally found
that αψ = 2 is sufficient most of time when the ornithopter is flying away from the target.
When the ornithopter is turning toward the target while the target is still lost, we keep the
desired yaw angle unchanged, i.e., rψ(k+1) = rψ(k). The dead reckoning discussed so far is
summarized as follows4:

rθ(k + 1) = rθ(k),

rψ(k + 1) =

{
rψ(k) if sgn(εψ) = sgn(Δψ),

rψ(k)− 2ΔΨ otherwise.

4This algorithm would not work if the target is unobservable for a long period of time, possibly due to
large disturbance
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Figure 5.4: Illustration of dead reckoning of target location. The two lines at the head of
the ornithopter represent the field of view of the infrared camera, and the dot represents the
location of the target.

5.2.3 Control Method

Autonomous flight control of the ornithopter is implemented with the onboard sensors
and microprocessor as described in Section 3.1. We have used the PID controller discussed
in Section 3.3. There are two PID controllers running simultaneously at 400 Hz for yaw and
pitch regulation. The desired inputs to the PID controllers (denoted as r(k) in Fig. 3.3) for
this chapter are the desired orientation angles, rψ and rθ, and the output signals from the
plant (denoted as y(k) in Fig. 3.3) are the estimates of the orientation angles, ψ and θ. For
the PID controllers, we assume that the propeller mainly contributes to the yaw moment
and the wings mainly contribute to the pitch moment and the thrust.

5.3 Experimental Results and Discussion

We conducted a number of experiments to verify the control method described in Sec-
tion 5.2.3. First, we placed an infrared emitting target approximately 10 meters away from
the initial location of the ornithopter. To test loss of the target, the ornithopter was released
with an initial nonzero roll angle. Subsequently, the ornithopter could turn away from the
target at the beginning of its flights and lost the target in one or two seconds. To inspect the
trajectories of the ornithopter flights, we took movies of the ornithopter while it was flying
toward the target. The mosaics of a flight toward the target in the longitudinal view and
the lateral view are shown in Fig. 5.5.

The orientation angles (ψ and θ), the deviation angles (εψ and εθ), the desired angles (rψ
and rθ), and the trajectory of the flight in Fig. 5.5 are plotted in Fig. 5.6. The ornithopter
flew away from the desired yaw angle at the beginning of its flight as shown in Fig. 5.6a
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Figure 5.5: Mosaics of the ornithopter flying toward the target. The numbers denote the
time stamp. (a) longitudinal view and (b) lateral view.
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Figure 5.6: An experimental result of flight control of target seeking. The regions covered
by gray shadows indicate that the target was lost. (a) yaw angle regulation (b) pitch angle
regulation (c) the trajectory of the ornithopter flying toward the target. The dashed lines
in (c) represents the field of view of the infrared camera, the numbers next to circles denote
the time stamp, and the dot on the upper right corner represents the target.
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because of the initial nonzero roll angle. Subsequently, it lost the target as the target was
no longer exposed on the camera. The loss of target is represented by regions covered by
gray shadows in Fig. 5.6. The constant values of the deviation angles in the gray area shown
in Fig. 5.6a and Fig. 5.6b indicate that the deviation angles were not updated due to the
loss of the target. As the ornithopter flew away from the target while the target was lost,
the desired angle rapidly increased for 1.2 s ≤ t ≤ 1.7 s because we set α = 2. When t was
approximately 1.7 s, the ornithopter started turning back toward the target and the desired
yaw angle stayed constant for rψ(k + 1) = rψ(k). As the yaw angle approached close to
the desired yaw angle, the target was discovered by the camera at t ≈ 2.4 s. After a small
overshoot, the yaw angle stayed close to the desired value as shown in Fig. 5.6a.

The desired pitch angle remained unchanged due to rθ(k+1) = rθ(k) while the target was
lost. After the target was discovered at t ≈ 2.4 s, the desired pitch angle was updated with
the deviation angle. Although the pitch angle was oscillating with approximately 0.7 Hz
because of the inherent dynamic property of the ornithopter, it stayed close to the desired
pitch angle as time elapsed as shown in Fig. 5.6b.

From the movies, we were able to extract the last 4 seconds of the path data of the
ornithopter as shown in Fig. 5.6c.5 The dot on the upper right corner in Fig. 5.6c represents
the target location. The dashed lines represent the field of view of the infrared camera. It
is evident from the trajectory that the target was not exposed on the camera momentarily,
but the ornithopter still managed to turn toward the target and reached it at last.

We performed more experiments to investigate the accuracy of the flight control for target
seeking as shown in Fig. 5.7. The set of ornithopter trajectories show that the ornithopter
successfully rediscovered the target after the target was lost, and the ornithopter finally
reached the target for most of the trials. With 20 trials with different initial roll angles, the
ornithopter reached 17 times within a radius of 0.5 m from the target.

5Due to the narrow field of view of the external cameras, we were not able to take movies for the beginning
of the flight.
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Figure 5.7: A set of trajectories of ornithopter flights toward the target. The dot on the
upper right corner represents the target.
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Part III

Power Efficient Design
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Chapter 6

Efficient Resonant Drive of
Flapping-Wing Robots

Figure 6.1: A 5.8 gram hummingbird-inspired flapping mechanism developed at UC Berke-
ley [3].

In this chapter, we will present a nondimensional analysis of a nonlinear motor-driven
crank-arm mechanism coupled to a mass-spring system as a solution to general motor driven
oscillators, such as used in flapping-wing robots. Using this analysis, we will demonstrate
a link between the resonant frequency of a compliant mechanism and the ideal motor input
voltage to achieve maximum power efficiency. We will also demonstrate the effect of the
geometric nonlinearity associated with the crank arm and the effect of damping, both motor
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and aerodynamic. Finally, we will apply this analysis to a 5.8g flapping mechanism shown
in Fig. 6.1 and empirically identify the improvement to the system’s power plant efficiency.

6.1 Analysis

p h

θ

φ

r
l

xxo

m

k

b

T

Figure 6.2: A load connected to a spring and a damper is driven by a DC motor through a
crank arm.

Compliant mechanisms driven by a DC motor such as the flapping robot pictured in
Fig. 6.1 can be modelled as depicted in Fig. 6.2. The crank arm driven by a motor/gear is
connected to a load (slider) with a spring and a damper. The equation of motion is expressed
as:

η2Jmθ̈ + η2bmθ̇ +
r cos(φ− θ)

cos(φ)
(mẍ+ b|ẋ|ẋ+ kx) = T, (6.1)

where

m = the mass of the load,
k = the spring constant,
b = the aerodynamic damping coefficient,
φ = the angular position of the connecting rod,
θ = the angular position of the crank arm,
l = the lengths of the connecting rod,
r = the lengths of the crank arm,
Jm = the moment of inertia of the motor,
bm = the damping coefficient of the motor,
η = the gear ratio,
T = the torque applied to the crank arm.
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In (6.1), the b|ẋ|ẋ term is the nonlinear aerodynamic damping force.
The displacement of the slider, x, can be expressed as

x = r sin θ

Substituting x and its derivatives, ẋ and ẍ, into (6.1), we obtain

θ̈(η2Jm+βmr
2 cos θ)+θ̇η2bm+βkr

2 sin θ+θ̇2(βbr3 sgn(θ̇ cos θ) cos2 θ−βmr2 sin θ) = T (6.2)

Here, β is defined as

β =
cos(φ− θ)

cosφ
= cos θ +

λ cos θ sin θ√
1− λ2 cos2 θ

,

where λ � r/l is the ratio of the crank arm length to the connecting rod length. For the
second equality, the law of sines is applied to remove φ;

r cos θ = l sin φ. (6.3)

The sgn(θ̇ cos θ) term in (6.2) can also be simplified to sgn(cos θ) for the direction of motor
revolution does not change.

The defining equations of the DC motor are

Tm = Kti, (6.4)

L
di

dt
+ iRm +Keω = Vs, (6.5)

where Vs is the input voltage, Tm is the torque generated by the DC motor and T = ηTm,
L is the inductance of the motor, i is the induced current, Rm is the motor and battery
resistance, Ke is the back EMF coefficient, and Kt is the torque coefficient of the motor.
Since L is generally very small, we can safely set L = 0 for the rest of the analysis in this
chapter. Substituting (6.4) and (6.5) into (6.2), we can obtain the equation of the overall
dynamic system:

θ̈(η2Jm + βmr2 cos θ) + θ̇η2
(
bm +

KtKe

Rm

)
+ βkr2 sin θ

+ θ̇2(βbr3 sgn(cos θ) cos2 θ − βmr2 sin θ) =
ηKt

Rm

Vs (6.6)
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To obtain a nondimensional equation of motion, define the following variables:

ωn �
√
k

m
: the undamped natural frequency of the slider,

τ � ωnt : the nondimensional time,

Ω � dθ

dτ
=

θ̇

ωn
: the nondimensional angular velocity of the motor,

Ω̇ � d2θ

dτ 2
=

θ̈

ω2
n

: the nondimensional angular acceleration of the motor,

J � η2
Jm
mr2

: the nondimensional moment of inertia of the motor,

Bm � bm +
KtKe

Rm
: the effective motor damping,

ζ � br

2m
: the damping ratio of the slider,

ζm � η2
Bm

2mr2ωn
: damping ratio of the motor,

T̃ � T

mr2ω2
n

: the nondimensional motor torque.

We can now obtain a nondimensional equation of motion for (6.6) as follows:

(J + β cos θ)Ω̇ + 2ζmΩ + β sin θ + (2ζβ sgn(cos θ) cos2 θ − β sin θ)Ω2 = u, (6.7)

where u is the nondimensional input voltage defined as

u =
ηKt

mr2Rmω2
n

Vs.

6.2 Case Studies

6.2.1 Case I: Constant Speed

It is rather easy to understand the behavior of the resonant drive with a constant speed
excitation due to the similarity to linear mass-spring systems. For the case of constant motor
speed, we can set Ω̇ = 0 in (6.7) and we have

2ζmΩ + β sin θ + (2ζβ sgn(cos θ) cos2 θ − β sin θ)Ω2 = u.

The variation of torque required to drive the system in one cycle is shown in Fig. 6.3. The
peak value of the output torque becomes minimal close to Ω = 1.0, where the system is excited
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Figure 6.3: Variation of nondimensional torque in one cycle for various constant angular
speed with λ = 0.1, ζm = 0.1, and ζ = 0.1.

at its resonant frequency. This plot agrees with the results of the minimal torque approach
studied by Khatait et al. [21]. In their study, they have demonstrated that there is a certain
value of torsional stiffness of flexural joints corresponding to the driving frequency that
minimizes the peak input torque. Indeed, the corresponding driving frequency in their study
is fundamentally identical to the resonant frequency of the compliant system discussed here.
Additionally, the choice of spring constant in the study of Tantanawat and Kota [41] indeed
provides their compliant system with the resonant frequency matching with the desired
flapping frequency so that the peak input power is minimized.

It should also be noted that for the values of Ω away from 1, negative torques are
required to drive the system at a constant speed, i.e., excessive kinetic energy of the inertial
load is transmitted back to the motor instead of converted to strain energy in the spring.
Tantanawat and Kota [41] have assumed in their study that this negative input power, which
is the energy absorbed by the motor from the load, is fully recovered. However, this is not
true when taking into account motor and battery resistance - power is still dissipated with
negative current in the motor and battery resistances. From a controls standpoint, absorbing
the energy for later use or supplying negative current to decelerate the plant is undesirable.

In fact, the variation of input torque can also be reduced tremendously by reducing
the ratio of the crank arm length to the connecting rod length, λ. As shown in Fig. 6.4a,
the peak input torque becomes smaller as λ decreases. The torque variation also becomes
more symmetrical, and negative input torque is no longer required. Indeed, with λ ∼0, φ
becomes 0 and the force applied to the mass through the connecting rod becomes a pure
sinusoidal input to the mass-spring system. However, an excessively small value of λ (very
long connecting rod) results in undesirable bending modes of the connecting rod. λ ≥ 0.2 is
also undesirable because it requires not only high peak torques but also negative torques to
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Figure 6.4: Nondimensional torque and average power for constant motor speed. (a) Varia-
tion of nondimensional torque in one cycle for various values of λ with Ω = 0.9, ζm = 0.1,
and ζ = 0.1. (b) Nondimensional average power required to drive the system at a constant
angular speed for various damping ratios with λ = 0.1, ζm = 0

keep the speed constant.
Nondimensionalized average power required to drive the system in one cycle with respect

to damping ratio is shown in Fig 6.4b. The average power is reduced at Ω∼1 when ζ ≤
0.2, i.e., at Ω∼1 we can achieve a local minimum of the power to drive the crank.1 As the
damping ratio increases, an addition of a spring to the system makes a negative contribution
because the input power supplies not only the energy dissipated in the damper but also the
energy to be stored in the spring.

6.2.2 Case II: Constant Input Voltage

When a constant voltage is applied to the DC motor, the resonant drive behavior becomes
more complicated since the frequency of the applied force (or the motor speed) to a load
no longer remains constant. The motor speed and torque, however, stay almost constant if
the system is driven at its resonant frequency and the damping ratios are small. Shown in
Fig. 6.5a and Fig. 6.5b are, respectively, the motor speed and the torque for small damping
ratios of ζm = 0.002 and ζ = 0.01 (λ = 0.2535). When the nondimensional input voltage u
is 0.25, the motor speed and torque indeed remain almost constant. Furthermore, the motor
speed is almost one, i.e., the system is driven at its resonant frequency.

The peak input power, calculated by Ω · T̃ , becomes minimal when the nondimensional
input voltage u is 0.25 as shown in Fig. 6.5c. It should be noted that the induced motor
current is directly proportional to the motor torque as presented in (6.4). Hence, the electrical

1The global minimum occurs at Ω=0, but Ω∼0 is not an interesting region.
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Figure 6.5: Effect of input voltages with ζm = 0.002, ζ = 0.01, and λ = 0.2535. (a) the
variation of nondimensional speed. (b) the variation of nondimensional torque. (c) the
variation of nondimensional power.
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power for the motor as well as the mechanical power from the motor have the minimal
peak-to-peak values. As the input voltage increases or decreases, the torque becomes more
oscillatory and eventually becomes negative, i.e., some of the kinetic energy of the load is
transmitted back to the battery instead of stored in the spring.

The effect of the aerodynamic damping ratio, ζ , is shown in Fig. 6.6. As the damping
ratio increases, the required torque to drive the load clearly increases while the motor speed
decreases. Both motor speed (Fig. 6.6a) and torque (Fig. 6.6b) become more oscillatory,
which can be expected from the ζβ cos2 θ term in (6.7). The effect of ζm is, however, in-
dependent of the oscillating behaviors as expected from the 2ζmΩ term, and the DC value
of Ω monotonically decreases as ζm increases. The effect of the parameter ζm is basically
the same as a damping ratio of a linear mass-spring-damper system. Figure. 6.6c shows the
nondimensional power increase as the damping ratio increases, which is not surprising. As a
side note, this model also provides an estimate of motor velocity for a given battery voltage,
for which no closed-form solution is available.

The required average input power with respect to the mean of nondimensional motor
speed, E[Ω], is shown in Fig. 6.7.2 While the average power with no spring monotonically
increases with the speed, the average power with a spring has a minimum. The best improve-
ment of efficiency occurs when E[Ω] is approximately 1. It is well known that the magnitude
response for a linear mass-spring system becomes less than unity with an out-of-phase drive
and therefore no power benefits can be achieved when compared to a spring-less system.
However, power reduction can be achieved for the motor driven compliant system studied
here even though the operating speed is significantly higher than the undamped natural fre-
quency of the load. The significant prediction is that low damped mechanical systems with
a spring driven by a DC motor can be excited at a higher speed than the system without
a spring for the same amount of input power. Hence, greater power can be obtained or a
smaller motor can be used.

6.3 Experiments

The flapping mechanism shown in Fig. 6.1 consists of two mirrored levers actuated by a
single DC motor [3]. The fulcrum of each lever is cantilevered by a beam and hinge from a
base structure that also houses the DC motor coupled to a gearbox and crank. Due to the
kinematic constraints set by the equal lengths of both fulcrum beams, the system effectively
becomes a slider-crank mechanism. Motion normal to the lever plane is restricted by the
geometry of the fulcrum beams, and an additional Sarrus linkage, positioned between the
driving block and the base structure and operating out of plane, effectively constrains the
motion of the driving block along the intended linear path. The specifications of the flapping
mechanism are given in Table 6.1.

2Data is not available for E[Ω] < 0.5 because small values of constant input voltage cannot overcome the
initial spring force to complete a revolution.
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Figure 6.6: Effect of damping ratio with ζm = 0.002, u = 0.25, and λ = 0.2535. (a) the
variation of nondimensional speed. (b) the variation of nondimensional torque. (c) the
variation of nondimensional power.
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Figure 6.7: average power (top) and power reduction using a spring (bottom) with respect
to the mean of nondimensional motor speed E[Ω]. (ζm = 0.002 and ζ = 0.05)

Table 6.1: Specifications of the flapping mechanism

motor inertia 1.41gm-mm2

motor damping 8.26gm-mm2/s

gear ratio 1:8.57

wing inertia 142.9gm-mm2

air damping 0.05-0.11kg/m for θ̇=120-160s−1

spring constant 140N/m

crank arm 4 mm

connecting rod 17 mm

total mass 5.8 gm
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Figure 6.8: Measurement of motor speed (top) and induced current (bottom) with constant
input voltages. (1) no spring in vacuum at V = 1.45V (2) with spring in vacuum at V =
1.05V (3) no spring in air at V = 1.70V (4) with spring in air at V = 1.55V.
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The motor velocity and the measured current of the flapping mechanism with and without
a linear coiled spring were measured as shown in Fig. 6.8. The additional 140N/m spring
was added between the slider crank and the ground. The undamped natural frequency of the
load was calculated as ωn = 155rad/s (24.5Hz) with the effective wing mass of 5.83×10−3kg.3

Measurements were also taken in vacuum in order to verify the analysis for the crank-arm
model with extremely low aerodynamic damping. With the measurements in vacuum, the
aerodynamic damping versus internal damping of the mechanism could be examined. The
motor damping ratio and aerodynamic damping ratio are calculated to be ζm = 0.13 and ζ
= 0.03, respectively.4 For the same mean motor speed of 24Hz, the speed variation as well
as current variation for the mechanism with a spring are smaller than those without a spring
both in air and in vacuum. The RMS current (and torque) is also lower with a spring than
without a spring, which implies that lower mechanical power is required with a spring to
generate the same flapping frequency.

The average power and power reduction for various flapping frequencies are shown in
Fig. 6.9. At high input voltages where the average motor speeds were greater than 15Hz, the
average power for the system with spring became less than the system without spring. With
extremely low aerodynamic damping in vacuum, we could achieve up to 60% power reduction.
Up to 30% power reduction was also achieved when flapping at 15-30Hz with a constant input
voltage of 1-3V DC. This can increase continuous flight time and decrease battery mass. The
percent power reduction remained almost constant as the flapping frequency increases.

The effect of an integrated spring on the lift force generated by our flapping mechanism
was briefly examined. The results showed a 20-30% increase in average lift force for the
spring-integrated system, relative to the spring-less system operating at the same flapping
frequency. The electrical input power was also reduced, as predicted. Hi-speed video showed
a more symmetric upstroke and downstroke in the spring-integrated system. The experiment
indicates that the spring, in addition to reducing input power at a given operating frequency,
is also beneficially altering the flapping wing trajectory. This result essentially agrees with
the study by Khan et al [18] in that appropriate spring constant and inertia can increase the
lift force with less input power. In their study, the spring constant and inertia were chosen
by numerical optimization.

To briefly verify our crank-arm model analysis on another system, an Interactive Toy’s
VAMP RC ornithopter was modified by adding a 980N/m spring as shown in Fig. 6.10 . The
ornithopter flaps at 14-16Hz with a fully charged 40mAh lithium polymer battery. On-board
electronics, battery, and styrofoam body were removed from the ornithopter, and the motor
was directly connected to a power supply. The undamped natural frequency of the load
was calculated as ωn = 118.4rad/s (18.8Hz) with the effective wing mass of 69.85×10−3kg.

3The effective mass of the wings were calculated as mw = 2Jw/d
2, where Jw is the moment inertia of a

single wing and d is the distance between the fulcrum and the pin joint coupling the connecting rod and the
lever arm.

4To calculate the aerodynamic damping, motor velocity and current for the flapping mechanism in vacuum
as well as in air was measured. Using these measurements, the damping coefficient, b, was estimated.
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Figure 6.9: Measurement of average power (top) and power reduction using a spring (bottom)
for a flapping wing robot driven by constant input voltages
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Measurements were also taken without a spring to compare the power consumption.

Figure 6.10: An Interactive Toy’s VAMP RC ornithopter with an added spring.

Shown in Fig. 6.11 are the average power and power reduction for various flapping speeds.
When the average motor speed was greater than 12Hz, the average power for the system with
spring became less than for the system without spring. At 16Hz, up to 19% power reduction
has been achieved. It would be possible to obtain a similar amount of power reduction even
at higher flapping frequencies if the motor could operate at higher input voltages.

The experiments discussed in this section manifest that resonant excitation by a constant
voltage can reduce the average power consumption for DCmotor-driven flapping-wing robots.
We have made use of the nondimensional analysis to carefully choose the spring constant
for the compliant elements. As a result, a nontrivial amount of power reduction has been
achieved for both flapping-wing robots.
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Figure 6.11: Measurement of average power (top) and power reduction using a spring (bot-
tom) for an Interactive Toy’s VAMP RC ornithopter.
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Part IV

Conclusions
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Chapter 7

Conclusions

This work describes the development of the components necessary for the realization of
small-scale autonomous ornithopter flight. The height regulation described in Chapter 4 and
the target-seeking algorithm described in Chapter 5 are the core development for autonomous
ornithopter flight. The identification of the flight forces at a stable equilibrium discussed in
Chapter 4 shows the direction toward the full system identification using closed-loop control.
The resonant excitation for motor-driven robots with the nondimensional analysis described
in Chapter 6 provides a methodology to guide the mechanical design and predict optimal
operating points based on power efficiency.

7.1 Flight Control of Flapping-Wing Robots

As a first step toward autonomous flight, closed-loop altitude control using an external
camera has been implemented on a flapping-wing micro aerial vehicle. An external camera
running at 15 Hz has been used to measure the ornithopter’s altitude. Also, a blob tracking
algorithm with a Kalman filter has been developed to track the location of the ornithopter.
Using these developments, we have demonstrated the ornithopter flying at regulated altitudes
with the maximum error of 10 cm for a step input.

An analysis of flight forces acting on flapping wing robots explains the deviation between
the measured forces and the free flight forces. Using this analysis and the height regulation,
we have identified that tethered aerodynamic force measurement of a 12.4 gram ornithopter
with zero induced velocity underestimates the total force by 24.8 mN, likely due to the
absence of induced velocity and the tether restraining the body.

For autonomous flight for a 13 gram ornithopter without any external assistance, we
have described implementation of closed-loop attitude control using onboard sensors and
a microcontroller. For this implementation, we have developed a 1.0 gram microcontroller
board integrated with inertial and visual sensors, a wireless transceiver, and motor drivers.
An algorithm using a Kalman filter has been developed to predict the desired orientation
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angle when the target is temporarily not observable. With these developments, we have
presented the ornithopter flying toward an infrared emitting target using an onboard infrared
camera. The 28 cm wing-span ornithopter was able to land within a radius of 0.5 m from
the target with more than 85% success (N = 20).

7.2 Resonant Excitation of DCMotor-Driven Flapping-

Wing Robots

A nondimensional analysis of a motor driven compliant system has been developed to
estimate the efficiency of power transmission to the environment for a resonant flapping-wing
mechanism. With the nondimensional analysis of a motor driven compliant system, we have
analytically developed a methodology to guide the mechanical design and predict optimal
operating points based on power efficiency. We have experimentally demonstrated that the
average power (as well as the peak torque) can be reduced by resonant excitation with a
constant voltage for motor-driven oscillating systems with a spring. Moreover, simulations
show that an average power of 0.43W with 0.13W peak-to-peak is required to drive a crank-
arm system with a spring at the average speed of 150 rad/sec (s.d. = 7.7 rad/sec) with
a constant voltage of 2.65V, whereas an average power of 0.48W with 0.22W peak-to-peak
(not including the power for speed controller) is required for the constant speed of 150
rad/sec.1 This 10% reduction in average power directly translates to a 10% increase in range
or payload. In addition to this specific example, the generalized crank-arm model presented
in this thesis can be easily applied to most motor-driven oscillating systems by constructing
an equivalent crank-arm model.

7.3 Future Work

System identification of the ornithopter is an essential part of the control based on a
state space model. The states of the ornithopter can be estimated by a sensor fusion algo-
rithm using vision-based relative velocity sensing (optical flow) and inertial sensors. Also,
direct measurement of acceleration using inertial sensors, which are already integrated in
the control board, will enable us to measure free flight aerodynamic forces. With better
understanding of the map between the input and the output of the ornithopter based on the
system identification, we believe we can implement a better control policy for higher level
behaviors, such as coordinated flight of multiple ornithopters or obstacle avoidance.

We can also take advantage of reinforcement learning for the control policies. However,
real-time processing of reinforcement learning would be too expensive to run on the onboard

1The specifications of the system in the simulations are: η = 8.6, ζm = 0.1, ζ = 0.01, λ = 0.2, Kt = 0.2
Nmm/A, Ke = 0.67 mV-sec, and Jm = 1.4 gmm2.
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electronics. Instead, we can search the optimal policy on a ground station with a high com-
putational power processor, and transmit the control signals via the wireless communication
link.

Improvement of the ornithopter platform will be necessary to include additional actuators
and sensors. First, we can modify the ornithopter’s body to reduce the weight. The styrofoam
tail can be replaced with carbon fiber frames and thin polymer sheets to reduce the weight.
With this modification, we expect a weight reduction of at least 1.5 grams. We can also
modify the wing transmission for higher propulsion forces. An increase in lift force can
be achieved by increasing the wing stroke angle by modifying the crank-arm transmission
system. Also, adding an additional actuator producing a pitch moment will improve the
control of the pitch motion, which is coupled with the propulsive forces generated by the
wings. For approximately 18 Hz pitch oscillations generated by the wings, a thin plate driven
by a low bandwidth magnetic actuator would be feasible to generate a sufficient aerodynamic
moment. Since the infrared camera has a narrow field of view, integrating another infrared
camera or a small cellular phone camera with a wide field of view would be necessary for
higher-level behavior applications such as multiple-target tracking and multiple coordinated
flight.
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Appendix A

Dynamometer for DC Motors

In the design of motor-driven systems, the choice of a motor that can provide the required
torque and speed, possibly with minimal power and weight, is one of the most significant
process. For most of commercially-available DC motors, specifications of the motors, such
as stalled torques, the unloaded motor speeds, and the maximum power outputs for var-
ious input voltages, are usually provided. For small pager motors, usually provided with
limited specifications, stalled torques and unloaded speeds for various input voltages can be
measured using simple apparatus such as a force/torque sensor. However, there is a signifi-
cant drawback in the measurement of stalled torque. The motors are overheated if they are
stalled, which results in inaccurate torque measurements and possibly serious damage to the
motors.

Most of the time, motors are integrated with gears to generate higher torques in com-
pensation for lower speeds. Theoretically, the motor properties with gears can be calculated
with the gear ratio. For example, the torque coefficient with gears is given by

torque coefficient with gears = (torque coefficient)× (gear ratio)2

under the assumption of no transmission loss in the gears. In reality, the friction in gears
- especially, the friction in small-scale gears with the diameter of ∼1 cm - is nontrivial.
Therefore, the direct measurements of torques and speeds with gears provide more accurate
estimates of motor properties.

In this chapter, we introduce a method to determine motor properties - torque coeffi-
cient, speed constant, back EMF coefficient, and damping coefficient - using the bench-top
dynamometer shown in Fig. A.1. The dynamometer, designed by Aaron Hoover at the
Biomimetic Millisystems Lab at U.C. Berkeley, consists of a reflective photosensor (Omron
EE-SY413 Reflective Photomicrosensor) and a speed encoder with large inertia. The speed
encoder, printed on a sheet of paper, is attached to an acrylic plate, and it is driven by a
motor (it can also be driven via gears). The motor is connected to a power supply for a
constant voltage. The photosensor, consisting of a light detector and a light emitter, outputs
5 volts when the emitted light is reflected by the white surface on the speed encoder and 0
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Figure A.1: Benchtop dynamometer for DC motors. The apparatus pictured on the right is
designed by Aaron Hoover at the Biomimetic Millisystems Lab at U.C. Berkeley.

volts for the black surface. The output is captured at 25 KHz to estimate the angular speed
of the motor.

A.1 Estimation of Motor Properties

V M

i R

T , ω

Motor

VemfVm
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+

-

Figure A.2: A circuit model for a DC motor

The equation of motion for a DC motor is expressed as:

Jmω̇ + bmω = T, (A.1)
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where ω is the speed of the motor, Jm is the moment of inertia of the speed encoder (the
moment of inertia of the motor can be ignore since it is much smaller than the moment of
inertia of the speed encoder), bm is the damping coefficient of the motor, and T is the torque
generated by the motor. The defining equations of a DC motor are

T = kti, (A.2)

L
di

dt
+ iR + keω = V, (A.3)

where V is the input voltage, L is the inductance of the motor, i is the induced current, R is
the internal motor resistance, ke is the back EMF coefficient, and kt is the torque coefficient
of the motor. Since L is generally very small, we can safely set L = 0. Figure A.2 shows the
equivalent circuit model for a DC motor with L = 0.

Suppose that the switch, s, in Fig. A.2 is closed at t = 0. Then, the motor speed, ω,
gradually increases until it reaches the steady state, where ω̇ = 0. The transient and steady
state period are denoted by I and II, respectively, in Fig. A.3. After the motor speed stays
its steady state value for approximately 5 seconds (or at t = 10 s), the switch is reopened.
This results in i = 0 with nonzero back EMF voltage, i.e., Vemf �= 0 since ω �= 0. Fig. A.3a
and Fig. A.3b show, respectively, the motor speed, ω, and the motor voltage, Vm.

A.1.1 Damping Coefficient

For t > 10 s, we have from (A.2) and (A.1)

Jmω̇ + bmω = 0. (A.4)

We know the solution of (A.4) is

ω = A exp(− bm
Jm

t), (A.5)

where the initial motor speed, A, is the steady state motor speed at t = 10 s. This exponential
function is depicted in the region III in Fig. A.3a. The time constant, τ � Jm/bm, can be
determined by a curve fitting function, such as the Matlab polyfit function, after taking the
logarithm of the curve in the region III in Fig. A.3a. Then, the motor damping coefficient,
bm, can be estimated by Jm/τ with a known value of Jm.

A.1.2 Back EMF Coefficient

We can also determine ke with i = 0 for t > 10 s from (A.3), which is given by

ke =
Vm
ω
.

The region III in Fig. A.3c shows the ratio of the motor voltage to the motor speed, equiv-
alently the back EMF coefficient of the motor, ke.
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Figure A.3: An example of (a) motor speed, (b) motor voltage, and (b) their ratio. The
region I is the transient period, the region II is the steady state period, and the region III
is the zero input current period.
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A.1.3 Torque Coefficient

In order to estimate the torque coefficient, kt, we can combine (A.1), (A.2), and (A.3)
with L = 0 to obtain

Jmω̇ + bmω = kt
V − keω

R
. (A.6)

With ω̇ = 0 at the steady state, we have

kt =
Rbmω

V − keω
=

Rbm
ω
V

1− ke
ω
V

=
Rbmks
1− keks

,

where the speed constant, ks, is the ratio of the steady state motor velocity to the input
voltage, i.e., ks � ω/V given that ω̇ = 0. The region II in Fig. A.3c shows 1/ks.

A.2 Estimation of Maximum Power
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Figure A.4: Motor torque vs. motor speed for various input voltages.

Using (A.2) and (A.3) with L = 0, we can derive the torque-velocity equation,

T =
kt
R
V − kekt

R
ω.

With the measurements of ω and Vm and the estimates of kt and ke for various constant
input voltages, we can draw torque-speed curves for a motor, such as shown in Fig. A.4. The
mechanical power generated by the motor is given by

p = T · ω =
kt
R
V · ω − kekt

R
ω2. (A.7)
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To obtain the argument of ω̂ that maximizes the mechanical power, we take a derivative of
p with respect to ω and set it to zero;

dp

dω
=
kt
R
V − 2

kekt
R

ω = 0.

Then, the solution is

ω̂ =
V

2ke
. (A.8)

It should be noted that ω̂ is just a half of the unloaded motor speed - the x-intercepts
in Fig. A.4 are the unloaded motor speeds. The maximum power can be calculated by
substituting (A.8) into (A.7), which is given by

pmax =
1

4R

kt
ke
V 2.

A.3 Specifications of Small DC Motors

Using the dynamometer, we measured the motor speed and the motor voltage with
various input voltages. Then, using the method discussed in this chapter, we estimated the
properties of Didel1 and Vamp2 motors and summarized in Table A.1.

1www.didel.com
2The RC ornithopter pictured in Fig. 6.10.
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Appendix B

Schematics of ImageProc2

The schematics and the bill of material (BOM) for the control board, aka ImageProc2,
are attached in this chapter.

Table B.1: Bill of material for ImageProc2

Part Value Device
BALUN HHM1710D1 BALUNA

C1 0.1uF CAP0402-CAP
C2 1nF CAP0402-CAP
C3 1uF CAP0402-CAP
C4 1uF CAP0402-CAP
C5 1uF CAP0402-CAP
C6 1uF CAP0402-CAP
C7 2.2nF CAP0402-CAP
C8 0.1uF CAP0402-CAP
C9 0.1uF CAP0402-CAP
C10 10nF CAP0402-CAP
C11 1nF CAP0402-CAP
C12 10uF CAP0603-CAP
C13 0.1uF CAP0402-CAP
C14 0.1uF CAP0402-CAP
C15 1uF CAP0402-CAP
C16 1uF CAP0402-CAP
C17 1uF CAP0402-CAP
C18 0.1uF CAP0402-CAP
C19 22pF CAP0402-CAP
C20 22pF CAP0402-CAP
C21 12pF CAP0402-CAP

continued on next page
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Table B.1: Bill of material for ImageProc2 continued

Part Value Device
C22 12pF CAP0402-CAP
C23 0.1uF CAP0402-CAP
C24 1uF CAP0402-CAP
C25 1uF CAP0402-CAP
C26 1uF CAP0402-CAP
C27 2.2uF CAP0402-CAP
C28 0.1uF CAP0402-CAP
C29 10uF CAP0603-CAP
D1 PMEG2015EJ DSOD323
JP1 MPCS2PH MPCS2PH
JP2 51441-2493-C OV7660FSL CON-24
JP3 ICD2 MPCS6PH
JP4 WII MPCS6PH
JP5 MPCS6PH MPCS6PH
JP6 MPCS2PH MPCS2PH
JP7 MPCS2PH MPCS2PH
JP8 MPCS2PH MPCS2PH
JP9 MPCS2PH MPCS2PH
JP10 SOLDER PADS 9P
LED1 Red LEDCHIP-LED0603
LED2 Green LEDCHIP-LED0603
LED3 Yellow LEDCHIP-LED0603
PROC DSPIC33FJ128MC706A DSPIC33FJ128MC706-I/PT
Q1 ZXMN2B01FCT MOSFET-NCHANNELSMD
R1 1k R-US R0402
R2 100k R-US R0402
R3 1k R-US R0402
R4 1k R-US R0402
R5 4.7k R-US R0402
R6 4.7k R-US R0402
R7 4.7k R-US R0402
R8 4.7k R-US R0402
R9 10k R-US R0402
R10 27k R-US R0402
R12 470 R-US R0402
R13 1k R-US R0402
R14 470 R-US R0402

continued on next page
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Table B.1: Bill of material for ImageProc2 continued

Part Value Device
R15 470 R-US R0402
U1 MIC5335-SPYMT MIC5320-JGYML
U2 MIC5320-JGYML MIC5320-JGYML
U3 ITG-3200 ITG-3200-00
U4 AT86RF231-ZU AT86RF231-ZU
U5 AT45DB321D AT45DB321D
U6 ECS-2033 OSCILLATORS
U7 A3903S A3903S
U8 ADXL345-LGA12 ADXL345
U9 MN13822-L VOL DETECTOR
U10 ECS-160-8 CRYSTALS
U11 ANTENNA ANTENNA
U12 ANTENNA-CHIP ANTENNA-CHIP
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Figure B.1: Schematics of ImageProc2 - microcontroller, gyroscope, flash memory, and cell
phone camera connector
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Figure B.2: Schematics of ImageProc2 - motor driver, oscillator, and infrared camera con-
nector
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Figure B.3: Schematics of ImageProc2 - wireless transceiver, accelerometer, battery monitor,
and voltage regulators
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Appendix C

Matlab Simulation Code for Resonant
Drive

The Matlab simulation codes used for the plots in Chapter 6 are attached in this chapter.

Listing C.1: This code generates Fig. 6.3 and Fig. 6.4a.

% Analysis of the dynamics of a crank arm connected to a
% mass−spring−damping system.
% Last modified on July 2, 2009
% Author: Stan Baek

lambda = .1; % ratio of crank arm length to connecting arm length
zeta m = 0.1; % damping ratio of the motor
zeta = 0.1; % damping ration of the slider

theta = linspace(−pi,pi,30); % angular position of the crank arm
omega = linspace(0, 2, 30); % nondimensional angular velocity
[Theta Omega] = meshgrid(theta,omega);

beta = cos(Theta)...
+ lambda*cos(Theta).*sin(Theta)./sqrt(1−lambdaˆ2.*cos(Theta).ˆ2);

u = 2*zeta m*Omega + beta.*sin(Theta)...
+ Omega.ˆ2.*beta.*(2*zeta*sign(cos(Theta))*cos(Theta).ˆ2 − sin(Theta));

mesh(Theta, Omega, u);
set(gcf,'Position', [474 399 426 250]);
set(gca, 'XTick', [−pi −pi/2 0 pi/2 pi]);
set(gca, 'XTickLabel', {'−pi' '−pi/2' '0' 'pi/2' 'pi'});
set(gca, 'YTick', [0 0.5 1 1.5 2]);
set(gca, 'YTickLabel', {'0' '0.5' '1' '1.5' '2'});
xlabel('theta');
ylabel('Omega');



APPENDIX C. MATLAB SIMULATION CODE FOR RESONANT DRIVE 75

zlabel({'T'});
axis([−pi pi 0 2 −1 3.2])

omega = [0.8 0.9 1 1.1 1.2];
num plot = length(omega);
cmap = colormap('jet');
colorOrder = cmap(floor(length(cmap)/num plot): ...

floor(length(cmap)/num plot):length(cmap),:);

% Effect of lambda
omega = 0.9;
zeta m = 0.1;
zeta s = 0.1;
Lambda = [0.4 0.3 .2 0.1 0.01];
Theta = linspace(−pi,pi,50);
figure
set(gcf,'Position', [474 399 426 250]);
for i = 1:length(Lambda)

Omega=omega;
lambda = Lambda(i);

mu = lambda*cos(Theta)./sqrt(1−lambdaˆ2*sin(Theta).ˆ2);
gamma = (1+mu).*sin(Theta);
dmu = −lambda*sin(Theta)./sqrt(1−lambdaˆ2*sin(Theta).ˆ2)+...

lambdaˆ3*cos(Theta).ˆ2.*sin(Theta)./(1−lambdaˆ2*sin(Theta).ˆ2).ˆ(3/2);

T = Omega.*(2*zeta m + 2*zeta s*gamma.ˆ2)+...
Omega.ˆ2.*gamma.*(cos(Theta) + mu.*cos(Theta) + dmu.*sin(Theta))...
−gamma.*(cos(Theta) + cos(Theta)./mu − sqrt(1/lambdaˆ2 −1) );

plot(Theta, T, 'Color',colorOrder(i,:));
hold on;

end

legend( strcat('\lambda = ', num2str(Lambda')));
set(gca, 'XTick', [−pi −pi/2 0 pi/2 pi]);
set(gca, 'XTickLabel', {'−pi' '−pi/2' '0' 'pi/2' 'pi'});
xlabel('theta');
ylabel('T');

Listing C.2: This code generates Fig. 6.4b.

% Analysis of the dynamics of a crank arm connected to a
% mass−spring−damping system.
% This script shows the output power of a geared motor with
% respect to constant driving angular speed.
% When the system is excited at the resonant frequency,
% the required output power is going to be minimum.
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Theta = linspace(−pi,pi,300);
zeta = [0.1, 0.2, 0.3, 0.4];
zeta m = 0.0;
lambda = 1/10;
OMEGA = linspace(0.001, 2, 200);
beta = cos(Theta) + ...

lambda*cos(Theta).*sin(Theta)./sqrt(1−lambdaˆ2.*cos(Theta).ˆ2);

Power = zeros(length(zeta), length(OMEGA));

for j = 1:length(zeta)
for i = 1:length(OMEGA)

Omega = OMEGA(i);

T = Omega*2*zeta m + ...
Omegaˆ2*beta.*(2*zeta(j)*sign(cos(Theta)).*cos(Theta).ˆ2 − ...
sin(Theta)) + beta.*sin(Theta);

Power(j, i) = norm(T*Omega)/sqrt(length(T));
end

end

figure;
plot(OMEGA, Power(1,:), 'b', OMEGA, Power(2,:), 'r');
hold on;
plot(OMEGA, Power(3,:), 'g', OMEGA, Power(4,:), 'k');
xlabel('Omega');
ylabel('MechPower');
axis([0 1.5 0 1]);

Listing C.3: This code generates Fig. 6.5.

function ode analysis

global Jm lambda Kt Ke Rm bm eta m r b k

Jm = 1.4107e−9;
eta = 8.57;
r = 4e−3;
l = 17e−3;
lambda = r/l;

Kt = 0.1916e−3;
Ke = 0.6723e−3;
Rm = 3.2;

leverarm = 7e−3;
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J = 142.91e−9;
m = 2*J/leverarmˆ2;

bm = 6.8196e−10; %zeta m = 0.002;
b = 2.9165*0.01; %zeta = 0.01;
k = 105;
omega n = sqrt(k/m);

u = [0.20 0.25 0.30];

Vin = u*m*rˆ2*Rm*omega nˆ2/(eta*Kt);

numPlot = length(Vin);
cmap = colormap('jet');
colors = cmap(1:ceil((length(cmap))/(numPlot−1))−1:length(cmap),:);

figure(1);
set(gcf,'DefaultLineLineWidth',1.2);
set(gcf, 'position', [616 409 424 239]);
hold on;
xlabel('time');
ylabel('Omega');

figure(2);
set(gcf,'DefaultLineLineWidth',1.2);
set(gcf, 'position', [616 409 424 239]);
hold on;
xlabel('time');
ylabel('T');
hold on

figure(3);
set(gcf,'DefaultLineLineWidth',1.2);
set(gcf, 'position', [616 409 424 239]);
hold on;
xlabel('time');
ylabel('Power');
hold on

numSamples = 2000;

for i = 1:length(Vin)

theta init = 0;
dtheta init = 200;

init = [theta init, dtheta init];
tint = linspace(0,2,numSamples); %time interval over which solution ...

is desired.



APPENDIX C. MATLAB SIMULATION CODE FOR RESONANT DRIVE 78

options = odeset('RelTol',1e−4,'AbsTol',[1e−4]);
[t,Y]=ode45(@dynamics, tint, init, options, Vin(i));

%%%%%%%%%%%%%%%%%%%%% PLOTS ***************
theta = Y(:,1);
omega = Y(:,2);

Vemf = eta*Ke*omega;
current = (Vin(i) − Vemf)/Rm;
torque = eta*Kt*current;

Omega = omega(numSamples/2:end)/omega n;
tau = omega n*(t(numSamples/2:end)−t(numSamples/2));
figure(1)
plot(tau, Omega, 'color', colors(i,:));

T = torque(numSamples/2:end)/(m*rˆ2*omega nˆ2);
figure(2);
plot(tau, T, 'color', colors(i,:));

P = T.*Omega;
figure(3);
plot(tau, P, 'color', colors(i,:));
mean(P)

end

figure(1);
legend('u=0.20', 'u=0.25', 'u=0.30', 'orientation', 'horizontal', ...

'location', 'south');
axis( [0 0.1*omega n 0 1.5] );
set(gca,'FontSize',11);

figure(2);
legend('u=0.20', 'u=0.25', 'u=0.30', 'orientation', 'horizontal');
axis( [0 0.1*omega n −0.02 0.06] );
set(gca,'FontSize',11);

figure(3);
legend('u=0.20', 'u=0.25', 'u=0.30', 'orientation', 'horizontal');
axis( [0 0.1*omega n −0.02 0.06] );
set(gca,'FontSize',11);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function dy=dynamics(t,y, u)
%dynamics.m returns derivative information to Matlab
global Jm lambda Kt Ke Rm bm eta m r b k

dy = zeros(length(y),1);
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theta = y(1);
dtheta = y(2);

beta = cos(theta) + ...
lambda*cos(theta)*sin(theta)/sqrt(1−lambdaˆ2*cos(theta)ˆ2);

J = m*rˆ2*beta*cos(theta) + etaˆ2*Jm;
B1 = etaˆ2*(bm + Kt*Ke/Rm);
B2 = beta*(sign(cos(theta))*b*rˆ3*cos(theta)ˆ2 − m*rˆ2*sin(theta));
K = beta*k*rˆ2*sin(theta);
U = eta*Kt/Rm*u;

ddtheta = 1/J * (U − B1*dtheta − B2*dthetaˆ2 − K);
dy(1) = dtheta;
dy(2) = ddtheta;

Listing C.4: This code generates Fig. 6.6.

function ode analysis

global Jm lambda Kt Ke Rm bm eta m r b k

Jm = 1.4107e−9;
eta = 8.57;
r = 4e−3;
l = 17e−3;
lambda = r/l;

Kt = 0.1916e−3;
Ke = 0.6723e−3;
Rm = 3.2;

leverarm = 7e−3;
J = 142.91e−9;
m = 2*J/leverarmˆ2;

bm = 6.8196e−10; %zeta m = 0.002;
B = 2.9165*[0.01 0.1 0.3]; %zeta = b/2.9165
k = 105;
omega n = sqrt(k/m);

u = 0.25;
Vin = u*m*rˆ2*Rm*omega nˆ2/(eta*Kt);

numPlot = length(B);
cmap = colormap('jet');
colors = cmap(1:ceil((length(cmap))/(numPlot−1))−1:length(cmap),:);
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figure(1);
set(gcf,'DefaultLineLineWidth',1.2);
set(gcf, 'position', [616 409 424 239]);
hold on;
xlabel('time');
ylabel('Omega');

figure(2);
set(gcf,'DefaultLineLineWidth',1.2);
set(gcf, 'position', [616 409 424 239]);
hold on;
xlabel('time');
ylabel('T');
hold on

figure(3);
set(gcf,'DefaultLineLineWidth',1.2);
set(gcf, 'position', [616 409 424 239]);
hold on;
xlabel('time');
ylabel('Power');
hold on

numSamples = 2000;

for i = 1:length(B)

theta init = 0;
dtheta init = 200;

b = B(i);

init = [theta init, dtheta init];
tint = linspace(0,2,numSamples); %time interval over which solution ...

is desired.
options = odeset('RelTol',1e−4,'AbsTol',[1e−4]);
[t,Y]=ode45(@dynamics, tint, init, options, Vin);

%%%%%%%%%%%%%%%%%%%%% PLOTS ***************
theta = Y(:,1);
omega = Y(:,2);

Vemf = eta*Ke*omega;
current = (Vin − Vemf)/Rm;
torque = eta*Kt*current;

Omega = omega(numSamples/2:end)/omega n;
tau = omega n*(t(numSamples/2:end)−t(numSamples/2));
figure(1);
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plot(tau, Omega, 'color', colors(i,:), 'LineWidth', 1);

T = torque(numSamples/2:end)/(m*rˆ2*omega nˆ2);
figure(2);
plot(tau, T, 'color', colors(i,:), 'LineWidth', 1);

P = T.*Omega;
figure(3);
plot(tau, P, 'color', colors(i,:));

end

figure(1);
legend('\zeta=0.01', '\zeta=0.1', '\zeta=0.3', 'orientation', 'horizontal');
axis( [0 0.1*omega n 0 1.5] );
set(gca,'FontSize',11);

figure(2);
legend('\zeta=0.01', '\zeta=0.1', '\zeta=0.3', 'orientation', 'horizontal');
axis( [0 0.1*omega n −0.04 0.3] );
set(gca,'FontSize',11);

figure(3);
legend('\zeta=0.01', '\zeta=0.1', '\zeta=0.3', 'orientation', 'horizontal');
axis( [0 0.1*omega n −0.04 0.13] );
set(gca,'FontSize',11);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function dy=dynamics(t,y, u)
%dynamics.m returns derivative information
global Jm lambda Kt Ke Rm bm eta m r b k

dy = zeros(length(y),1);
theta = y(1);
dtheta = y(2);

beta = cos(theta) + ...
lambda*cos(theta)*sin(theta)/sqrt(1−lambdaˆ2*cos(theta)ˆ2);

J = m*rˆ2*beta*cos(theta) + etaˆ2*Jm;
B1 = etaˆ2*(bm + Kt*Ke/Rm);
B2 = beta*(sign(cos(theta))*b*rˆ3*cos(theta)ˆ2 − m*rˆ2*sin(theta));
K = beta*k*rˆ2*sin(theta);
U = eta*Kt/Rm*u;

ddtheta = 1/J * (U − B1*dtheta − B2*dthetaˆ2 − K);
dy(1) = dtheta;
dy(2) = ddtheta;
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