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Abstract of the Dissertation

Progress Toward the Next Generation of

Bioreactors for 3D Tissue Engineering

by

Khalid Youssef

Doctor of Philosophy in Biomedical Engineering

University of California, Los Angeles, 2015

Professor Louis Bouchard, Chair

This research is part of an interdisciplinary project to achieve composite tissue

transplantation through novel technology that induces the growth of thick, im-

munocompatible, tissue implants that are compatible with the patient’s immune

system. While the common approach to growing cells in vitro utilizes scaffolds

embedded in perfusion bioreactors, state of the art methods still suffer from many

limitations such as failing to accommodate the dynamical aspect where different

stages of development lead to changes in the material properties. The aim of this

work is to introduce a new generation of perfusion bioreactors not bound by cur-

rent limitations. This is achieved by developing noninvasive feedback visualization

techniques, new scaffold-patterning technology, new approach to bioreactors de-

sign, and control and optimization methods. These novel tools presented herein

will contribute to the development of stable vascular networks that are function-

ally competent to sustain physiological flow and permeate tissue grafts.
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CHAPTER 1

Introduction

Repairing damaged organs in severely wounded patients requires implanting thick

composite tissue/organoids consisting of several types of cells. Cells can be derived

from the patient, resulting in an implant that is compatible with the patient’s

immune system and has the potential to generate multiple tissue types. However,

tissue grown from stem cells in culture cannot grow thicker than 300µm in the

absence of vascular supply [1]. For example, liver organoids that are grown and

implanted into a mouse fail to thrive after implantation due to the lack of well

established vessels. This problem has prevented on-demand production of thick

tissue implants. For larger and more complex tissues, blood vessels from the

host are unable to invade and vascularize the tissue. For these, integration with

hierarchic blood vessels is necessary for adequate delivery of gases and nutrients,

and is also an essential source of signals for organization and development of

functional parts of the organ [2].

A common approach to growing cells in vitro utilizes perfusion bioreactors,

which feature suitable fluid and nutrient mass transport, enable cells to grow

and migrate, and permit the application of a variety of stimuli to the cells to

enhance growth and differentiation. More importantly, bioreactors are employed

because the organization of individual cells into functional structures requires a

3D context. A scaffold provides the medium for cell growth. Ideally, it will be a

spongy-like material composed of biodegradable polymers. Nutrients and other

factors needed for cell growth are delivered through an inlet, while waste products
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exit through an outlet. An ideal bioreactor would enable the growth of tissue using

appropriate cell mixtures, growth factors and nutrients through the presence of a

dynamic environment where growth media is flowed in a controlled manner.

The presence of flow, while unavoidable, can be both beneficial if well con-

trolled, or highly detrimental if uncontrolled. In any case, its role must be better

understood. Experimental results show that flow is critical to the growth and

organization of stable vascular networks both in 2D and 3D. Shear forces asso-

ciated with applied flow have been shown to enhance cell growth and differen-

tiation [3, 4, 5]. In addition, interstitial flow distributions bias the extracellular

transport and gradients of growth factors, which in turn affect cell-cell signal-

ing and morphogenesis [6]. Mechanical stimulation plays a critical role in many

cellular processes, including cell division, contractility, differentiation and motil-

ity. It has been an active area of research in regenerative medicine and tissue

regeneration [3, 4, 5]. The research performed to date has demonstrated that

mechanical stress (shear forces) is an important regulator of cell function and a

relevant component for pre-conditioning cells prior to transplantation into live

organisms [7, 8, 9, 10, 11, 12].

Several groups have focused on developing perfusion bioreactors that impose

flow-induced stresses on cells residing within the scaffold [6, 13, 14, 15]. Param-

eters such as perfusion rate, flow and stresses are typically selected by trial-and-

error. However, growing adequately vascularized thick composite tissue in vitro

requires more precise control over the distribution of forces. Without such control,

the forces can easily fluctuate (spatially or temporally) across a bioreactor, result-

ing in damage to the cells. Furthermore, different developmental stages of tissue

generally require different inputs and stimuli. Protocols become more complex

and begin to evolve with maturation time in bioreactors. It is recognized that

culture conditions need to adapt to tissue maturation evolution.

Until recently, researchers have achieved only crude control of mechanical
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forces, such as the average value of the forces throughout a scaffold. Desired

averages of mechanical stress were achieved through manipulating scaffold poros-

ity, a micro-structural property of the scaffold, and fluid flow rates through the

chamber’s inlet/outlet. Recent studies, have demonstrated the presence of com-

plex internal micro-fluidic patterns within cell growth medium that can alter cell

development [16, 17]. Considerable efforts have been devoted to tailoring shear

stress distributions arising from flow fields applied to bioreactors as a means to

study the cellular response due to spatial gradients [18, 19, 20, 21, 22]. State of

the art approaches involve creating materials with local porosity gradients [23,

24, 25, 26, 19, 20, 27, 28]. While this is suitable for setting initial conditions in a

scaffold at the expense of high material complexity, it fails to accommodate the

dynamical aspect where different stages of development lead to changes in the

material properties.

In the next-generation of bioreactors, adaptive control will be crucial to insure

regenerated tissue quality. In addition to the need to adapt culture conditions to

tissue maturation evolution, due to many variability sources, a culture conditions

sequence that may work to bring a construct from its initial conditions to its

targeted state in one case, may fail in another [29]. However, it is presently difficult

to experimentally determine let alone control flow profiles and flow heterogeneity

within a 3D matrix. Such knowledge would enable optimizing the growth of

functional tissue, which otherwise suffers from the inability to grow beyond small

clusters of cells, through an adaptive control mechanism with feedback.

The work presented herein contributes to advancing spatiotemporal control in

bioreactor scaffolds through two routes; 1. developing noninvasive visualization

techniques using an NMR phase-contrast velocimetry method that can obtain spa-

tially accurate distributions of velocity fields inside biomaterials. 2. developing

flow control, scaffold-patterning technology, and control techniques that convey

precise mechanical stresses to cells that are, in addition, spatially and temporally

3



distributed according to predetermined parameters. From the engineering stand-

point, knowledge of the flow fields may reveal degradation/changes of the scaffold

over time that can be extremely informative feedback for optimization. The main

advantage of using NMR is that it’s nondestructive to the cells. Furthermore,

the obtained information will be essential to study cellular responses to flow and

evaluate flow-induced cell behavior. The aim is to help provide control over the

growth of vascularized tissue in real time, and contribute to the growth of large

vascularized tissue. The rationale is that these novel tools will enable the de-

velopment of stable vascular networks that are functionally competent to sustain

physiological flow and permeate tissue grafts.

A new technique to controlling mechanical stress values through manipulating

the scaffold macrostructure by patterning specific networks of microfluidic flow

channels, in lieu of targeting scaffold microstructure, is presented. It is shown that

spatial distributions of fluid shear forces can be precisely controlled by creating

engraved patterns on the face of the scaffold to redirect the path of fluid flow.

A novel optimization technique is developed based on computational intelligence

algorithms, where the engraved pattern corresponding to a desired distribution

can be determined. This allows for creating desired distributions and gradients of

mechanical stress on demand. Two scaffolds made from identical porous materials

can be made to yield (if desired) entirely different flow properties.

As the tissue grows, the resistance to flow will be altered over time. To over-

come this problem, a real-time control technique is presented. It involves mea-

suring flow patterns in real time using computational flow dynamics techniques

combined with non-invasive real-time visualization methods to derive a variety

of relevant hydrodynamic parameters, and adjustment of the flow field using a

flexible multi-channel bioreactor. The readouts can help assess and track cell de-

velopment inside a scaffold by estimating cell growth from the change in porosity

in a noninvasive manner. In addition to more precise spatial control, using a cus-
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tomized bioreactor containing ten inlets in lieu of the typical single-inlet design

can also offer temporal control of flow fields. The inlet flow rate is used to alter

the stress distribution throughout the scaffold at will. By using multiple inlets,

flow entering the chamber from different inlets at different rates interacts to create

complex flow field patterns. Using an adaptive control technique developed based

on artificial neural networks, the combination of flow rates at each individual inlet

that correspond to a desired flow pattern can be determined. Different combina-

tions yield different flow patterns throughout the same scaffold. This offers the

flexibility of using different distributions at different times, or adaptively main-

taining the same distribution as the medium structure changes with cell growth.

Because tissue/cell growth occurs randomly, the tissue regeneration process must

make use of adaptive real-time feedback control.

Chapter 2 presents a novel computational optimization method to control shear

stress distributions in porous media, by optimizing macro-scale channel topology

to target a desired shear stress within a porous scaffold. The approach is vali-

dated by MRI flow experiments on polymeric scaffolds. It addresses the design

of biomaterial scaffolds for controlling fluid flow and shear stress. Furthermore,

it presents a technique to experimentally map the flow field and measure shear

stress distributions throughout porous scaffolds.

Chapter 3 presents real-time, non-invasive measures of local hydrodynamics

in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were

further used to derive pressure, shear and fluid permeability fields. Finally, remod-

eling of collagen gels in response to precise fluid flow parameters was correlated

with structural changes. Accurate flow maps within 3D matrices will be a critical

step towards understanding cell behavior in response to controlled flow dynamics.

Chapter 4 presents a new NMR denoising technique with superior feature-

preserving abilities. Denoising is efficiently done using a nonlinear filter, which

operates along patch neighborhoods and multiple copies of the original image. The
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use of patches enables the algorithm to account for spatial correlations in the ran-

dom field whereas the multiple copies are used to recognize the noise statistics.

The nonlinear filter, which is implemented by a hierarchical multistage system

of multilayer perceptrons, outperforms state-of-the-art denoising algorithms such

as those based on collaborative filtering and total variation. Compared to con-

ventional denoising algorithms, the developed filter can restore images without

blurring them, making it attractive for use in medical imaging where the preser-

vation of anatomical details is critical, and an important tool for speeding up

NMR data acquisition in order to facilitate real-time feedback.

Chapter 5 presents a new method for controlling interstitial flow fields in scaf-

folds used for tissue engineering applications. A new bioreactor design utilizing

ten fluid inlets is introduced, together with an algorithm that dynamically solves

the inverse problem of computing inlet pressures required to obtain a target flow

field, where arbitrary flow fields can be generated in a single scaffold by individu-

ally adjusting inlet pressures. As most bioreactors used to date have been designed

to operate with a single inlet for fluid flow, this approach can introduce several

advantages over existing methods. These include more accurate and complex flow

fields, real-time control in response to cell growth without altering the composition

or structure of the scaffold material itself, and reducing the need for engineering

the scaffold material properties and alleviating manufacturing complexity. This

constitutes a new platform for studies of cellular responses to mechanical forces in

complex environments. It opens potentially transformative possibilities for tissue

engineering, and will facilitate studying the effect of mechanical force distributions

on tissue development in a bioreactor scaffold beyond initial stages of cell growth.
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CHAPTER 2

Macro-Scale Topology Optimization for

Controlling Internal Shear Stress in a Porous

Scaffold Bioreactor

Article published: Biotechnology and Bioengineering Volume 109, Issue 7, pages

1844-1854, July 2012

2.1 Introduction

Mechanical stimulation of cells has been an important area of research in regen-

erative medicine and tissue regeneration [4, 3, 5]. Several groups have focused on

developing perfusion bioreactors that impose flow-induced shear stresses on cells

residing within a porous matrix [6, 14, 15, 13]. The research performed to date

has demonstrated that shear stress is an important regulator of cell function and

a relevant component for preconditioning cells prior to transplantation into live

organisms [8, 12, 10, 11, 7, 9]. In previous work, local shear stresses were defined

as a function of media flow rate and dynamic viscosity, bioreactor configuration,

and porous scaffold micro-architecture [30, 31, 32]. Target shear stress values

were estimated as averages over the entire scaffold and changes in the overall av-

erage were achieved by varying the scaffold micro-architecture under similar flow

rates [33]. Recent studies, however, have demonstrated the presence of complex

internal microfluidic patterns within the architecture of the porous scaffolds that

can alter cell growth in culture [16, 17]. Nonetheless, methods that convey pre-
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cise shear stresses to cells that are, in addition, spatially distributed according to

predetermined parameters are yet to be developed. Although modeling of scaf-

fold architecture and flow conditions have been considered, no published work,

to our knowledge, has systematically optimized the macroarchitecture of channel

topology within a porous scaffold to achieve a target shear stress under defined

flow inputs. Such a method could have important advantages in that macroscopic

flow conditions are easier to alter than the microstructural parameters, especially

if real-time flow control is required.

In this article, we present a method to define channel topologies that yield a de-

sired shear stress distribution. In our computational approach, channel topologies

are governed by a genetic algorithm (GA) and shear stress distributions assessed

by simulating flow using a Lattice Boltzmann Method (LBM). The GA achieves

optimization by minimizing a cost function based on fuzzy logic rules. The op-

timized topologies demonstrate the ability to obtain a target shear stress with a

more narrow distribution when compared to the case of a non-optimized topol-

ogy. The method could be adapted to generate any desired distribution of internal

shear stresses by modification of the cost function. To validate the optimization

results experimentally, the trend in shear stress distributions under real flow con-

ditions in porous scaffolds were derived from experimental measurements of flow

assisted by magnetic resonance imaging (MRI) techniques. MRI is suitable for

imaging flows non-invasively in optically opaque media (such as porous polymer

scaffolds). This article provides proof-of-principle for the algorithm in two dimen-

sions (2D) and its experimental realization by approximation using stacks of thin

slices of scaffold material. Our method could be extended to optimizing flows by

patterning channels at the microfluidic level, using micro-computed tomography

(m-CT) images as inputs to the pore geometry, and using three-dimensional (3D)

prototyping techniques for the structural reconstitution of the scaffolds. The MRI

technique has the advantage that it can measure flows noninvasively in real-time,
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and should cell-seeded scaffolds be used, it may be possible to devise adaptive

schemes to adjust the flow patterns as needed to account for the effects of cell

growth.

2.2 Methods

2.2.1 Lattice Boltzmann Method (LBM)

To model flows through porous media, a computational fluid dynamics program

was developed based on LBM with no-slip boundary conditions [34]. Pores are

modeled as open spaces in the lattice within which the fluid is allowed to flow.

On the other hand, the walls surrounding a pore are modeled as closed spaces

representing a solid, such that the fluid bounces back upon collision. A D2Q9

Bhatnagar-Gross-Krook (BGK) scheme was adapted to satisfy the evolution equa-

tion of the density distribution function and the conditions defined by Equations

(1) to (3)

∆ifi = −ω(fi − f ei ) (2.1)

∑
i

f ei =
∑
i

fi = ρ (2.2)

∑
i

f ei cia =
∑
i

ficia = ρua (2.3)

where fi is the density distribution function, f ei is the equilibrium density

distribution function, ρ is the density, a = x, y and u = (ux, uy) as velocity, c the

velocity direction and ω = (1
t
) with t as the time scale. These conditions lead to

a generic family of LBGK equilibria that are expressed by Equation (4) in which

Qi is the projector along the ith discrete direction. For the D2Q9 scheme, values

for the weights wi and the speed of sound CS are fixed according to Equation (5).
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f ei = ρwi(1 +
ciaua
c2
s

+
Qiabuaub

2c4
s

) (2.4)

c2
s =

1

3
;w9 =

4

9
;w1,2,3,4 =

1

9
;w5,6,7,8 =

1

36
(2.5)

Shear stress was calculated under the Newtonian fluid assumption using Equa-

tion (6)

↔
τ= ν

(
∇U +∇UT

2

)
(2.6)

where
↔
τ is the shear stress tensor, ν is the dynamic viscosity, and U is the

2D velocity vector field. Shear stress τ was calculated as the largest eigenvalue of

the tensor
↔
τ . The derivatives of the velocity field for the gradient were calculated

by finite-difference approximation for the four partial derivatives at each point on

the lattice corresponding to the fluid phase. The finite-difference approximations

are given in Equations (7) to (10):

∂Ux(i, j)

∂x
≈ Ux(i+ 1, j)− Ux(i− 1, j)

2
(2.7)

∂Ux(i, j)

∂y
≈ Ux(i+ 1, j)− Ux(i, j − 1)

2
(2.8)

∂Uy(i, j)

∂x
≈ Uy(i+ 1, j)− Uy(i− 1, j)

2
(2.9)

∂Uy(i, j)

∂y
≈ Uy(i, j + 1)− Uy(i, j − 1)

2
(2.10)

Simulations were performed on a 128×128 lattice and the method was vali-

dated against “textbook” problems with known analytical solutions: for laminar

flows, benchmark models such as the parallel-plate model were used (the simu-

lation results were compared with the analytical solutions for flow between two

infinite plates); for turbulent flows, vortex streets around a cylinder were simu-

lated.
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2.2.2 Generation of the Channel Topology

To generate channel topologies, we create a set of curves, each of which is rep-

resented by a (L
2
)-dimensional vector where L is the length of the flow chamber

(length is measured along the principal direction of flow). This vector is obtained

by calculating the inverse discrete cosine transform (IDCT) of a second vector of

an equal dimension. The second vector is zero-filled, except for a window near

the start of the vector, and these non-zero entries determine the spatial frequency

content of the curve. The number of discrete cosine components used determines

the complexity of the curve, which is reflected by the maximum number of turns.

A large number of components, however, increases the parameter space for the

topology search and channel complexity and could potentially lead to long opti-

mization times and difficulty in patterning the channels.

A set of curves is obtained, such as illustrated in (Fig. 2.1) A and B. These

curves are superimposed, as shown in (Fig. 2.1) C, forming one quadrant of the

128×128 lattice. They are then symmetrically replicated to cover the entire lattice

(Fig. 2.1) D. Finally, image-processing techniques are used to obtain the desired

channel width and the final topology as shown in (Fig. 2.1) E.

The DCT is known for its energy compaction property, whereby signal infor-

mation tends to be concentrated in the lower frequency components of Fourier

space. Using a topology generation technique that is based on the superposition

of curves, we take advantage of the DCT compaction property to greatly reduce

the number of parameters in the search space. This makes the optimization more

tractable by reducing the search time. This approach also offers additional advan-

tages, such as the ease of manufacturing and simulation. In principle, however,

it should be possible to realize more complex scaffold geometries using 3D proto-

typing printers. In this case, one could envisage using entirely different methods

for generating the topology.
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2.2.3 Topology Optimization by GA

The GA finds an optimal channel configuration under a set of fixed parameters,

i.e., porosity, channel width, number of channels, and flow rate. We note that the

flow of fluid requires a connected pore space. This can be achieved by considering

only pore spaces that are connected; however, doing so would require a detailed

simulation of the 3D pore space geometry, leading to substantial increases in

computational requirements. In our case, we have instead simulated the pore space

using an “effective-medium” approach and our way of ensuring a connected pore

space is to fix the porosity to a sufficiently large value. The search is performed

in an evolutionary manner for a set of discrete cosine components that generate

a channel topology using the mechanism described in Generation of the Channel

Topology Section to obtain an optimal channel geometry that yields a uniform

target shear stress throughout the porous media.

The search begins with a population of random solutions in the search space,

which is defined by all combinations of non-zero entries of each vector. It then

converges towards an optimal solution by evaluating the performance of each

member in the population and passing the best two members to the next genera-

tion in a survival-of-the-fittest manner. The genes of the members with the best

performance are crossed over and a random mutation is performed. The resulting

offsprings are then added to the population as new members. As the generation

number increases, members with improved performance evolve. An illustration of

the evolutionary process carried out by the GA is shown in (Fig. 2.2) where the

shear stress histograms and distributions for members in subsequent generations

are shown. Each member in the population represents a channel topology and the

performance evaluated by simulating fluid flow using the LBM to determine shear

stress distribution and assign a score based on a cost function. The ultimate goal

is to find the channel topology that leads to a minimum of the cost function.
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2.2.4 Cost Function

The L− 1 norm error, ε, can be used to measure the difference between the shear

stress distribution τ(i, j) of a given channel topology and a target distribution γ

as described in Equation (11)

ε =
∑

(i,j)∈Λ

|τ(i, j)− γ| (2.11)

where Λ is the set of lattice coordinates.

The goal of this optimization is to determine a channel topology that produces

a target average shear stress that is uniformly distributed. The cost function can

also be defined by the combination of the average and the standard deviation as

in Equation (12).

ε = w1 · (µ− γ) + w2 ·
(
δ

µ

)
(2.12)

where µ is the average shear stress and δ is the standard deviation. Parameters

w1 and w2 are weights that determine the influence of each component on the total

error. This cost function is a linear relation that can be interpreted as a decision

process that attempts to estimate the performance based on two separate values:

(µ − γ) and (δ/µ) For example, if (µ − γ) is deemed a more important factor

in determining the error, it is assigned a larger weight. Equation (12) is not the

best cost function to use if we want to assign more weight to (δ/µ) when its

value is exceedingly low, which is usually the case when optimizing for a narrow

distribution of shear stress. An interesting alternative is to use fuzzy logic to

model the decision process. Fuzzy logic is a mathematical tool for dealing with

uncertainty. It provides a mechanism for representing linguistic constructs such

as “small, “medium, “good and “few to model the ambiguity associated with

vagueness and imprecision [35]. A possible fuzzy logic system is to evaluate the
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performance of a given channel topology based on a set of four rules: if (µ− γ) is

small and (δ/µ) is small then error is small; if (µ−γ) is big and (δ/µ) is small then

error is medium; if (µ−γ) is small and (δ/µ) is big then error is medium; if (µ−γ)

is big and (δ/µ) is big then error is large. Compared to the L-1 norm, this fuzzy

logic method gives an improvement of ∼15% in shear stress standard deviation

when the average stress matched the target shear stress. A comparison of the

relation between (µ−γ) and (δ/µ) using Equation (12) versus using fuzzy logic is

shown in (Fig. 2.3). Membership functions were represented by Gaussian curves.

The non-linear relationship enables the GA to reach an optimal configuration

more efficiently.

2.2.5 Flow Experiments on Polymeric Scaffolds

2.2.5.1 Scaffold Fabrication

Our theoretical results (to be described in Results Section) were validated in

experiments on porous polymer scaffolds fabricated with flow channels of vari-

ous topologies. Porous scaffolds were prepared by a porogen leaching method

to achieve high porosity. Sugar crystals (250355 µm size distribution) served as

the porogen and were added to a 20 weight percent solution of polycaprolactone

(PCL) in dichloromethane and thoroughly mixed to form a viscous paste (14:1,

sugar:PCL). The sugar/PCL paste was then added to a Teflon mold (2×2 cm2)

machined with the desired channel topology as displayed in (Fig. 2.4) A. A Teflon

plunger was applied to uniformly distribute the paste within the mold and com-

press the sugar crystals, thereby resulting in an interconnected network of pores

upon removal of the sugar. Once the paste has been distributed and compressed,

the scaffold was allowed to cure via solvent evaporation overnight. To achieve

open porosity, the scaffold was leached in deionized water for several days, re-

freshing the water several times a day. To achieve a desired thickness, multiple
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scaffolds can be stacked as shown in (Fig. 2.4) B.

2.2.5.2 Microstructural Characterization of Scaffolds

X-ray µ-CT of the porous scaffolds revealed pore sizes on the order of ∼250 mm;

a representative microtomographic image is displayed in (Fig. 2.4) C. The µ-

CT data was obtained on a SkyScan 1172 with 13 µm spatial resolution and

then analyzed using Matlab (Mathworks, Natick, MA) and iMorph softwares

(http://imorph.sourceforge.net). The 3D data was used to compute the poros-

ity (>70%), specific surface (20,164 m2

m3 ) and pore size distribution as displayed in

(Fig. 2.4) D and E. These parameters (obtained in this study via µ-CT) should

not be taken as true values upon which the success of any method hinges, as the

actual values could be different, depending on the spatial resolution and imag-

ing modality used to characterize the scaffold topography. For example, scanning

electron microscopy revealed more intricate pore features than is observed in the

µ-CT scan (see (Fig. 2.4) F).

2.2.5.3 Bioreactor Construction

To test the porous scaffolds under flow, a cylindrical bioreactor was custom de-

signed and built. The bioreactor was machined from Teflon in two half-sections

to house a 2×2 cm2 square and 1 cm-deep flow chamber, shown in (Fig. 2.4) G.

Inlet and outlet ports were drilled through the Teflon to allow fluid to enter and

exit the flow chamber. Plastic tubing was connected via Swagelok brass fittings

to the inlet and outlet ports. To perform the flow experiments, the scaffold of in-

terest was placed at the base of the flow chamber so that the inlet and outlet were

centered at the scaffold surface. To fill the chamber, two non-channeled porous

scaffolds were then added and compressed by tightening four nylon screws to seal

the bioreactor.
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2.2.5.4 Flow Imaging

A 400 MHz vertical-bore Varian NMR system was used in all experiments. The

bioreactor was placed in the bore of a 40 mm-i.d. imaging probe. For flow imaging,

a spin-echo multi-slice (SEMS) sequence was modified to perform phase-contrast

MRI velocimetry [36] as follows. All existing gradients, except the phase encoding

gradient, were flow compensated. The flow compensation (F.C.) gradients added

are shown as green lobes in (Fig. A.3). Pairs of flow weighting (F.W.), bipolar

gradients were added along x, y, and z axes to select the gradient first moment

(M1). Two experiments were first performed under flow with two gradient val-

ues, +M1 and −M1, where the value of M1 was chosen large enough to include

the highest anticipated flow velocity and avoid phase wrap-around effects. The

two experiments were subtracted in order to obtain a velocity map. The velocity

maps, however, contained artifacts from gradient non-idealities (e.g., eddy cur-

rents and non-linearities) and therefore the contribution from non-idealities was

subtracted from an identical experiment performed in the absence of flow. With

this approach, we were able to measure flow velocities below 1 mm/s using a total

of 12 scans: 3 gradient directions (x, y, z) × 2 gradient reversals (M1,−M1) × 2

runs (flow, no flow). The imaging slice (1.0mm thick) was centered on the in-

let/outlet of the flow chamber, which fed into the patterned surface of the porous

scaffold. The remaining imaging parameters were set to TR=5 s, TE=50 ms,

256×256 matrix and a field of view equal to 25×25mm2. The source code for the

Varianpulse sequence used in these experiments is available for download free of

charge at our web site: http:// 3Dneovascular.mcdb.ucla.edu
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2.3 Results

2.3.1 LBM Simulations

LBM simulations were performed for three different scaffold configurations. The

first configuration is a porous scaffold with no channels. The second configuration

is a porous scaffold with four parallel channels connected to the flow chamber inlet

and outlet. We will refer to this configuration as the “manual design”. The third

configuration is a porous scaffold with channel topology that was optimized using

the topology optimization method. Since this study is a proof-of-concept for the

optimization strategy, a number of constraints were imposed for time efficiency

and to allow a fair comparison to the manual design topology. Accordingly, the

optimization was performed by enforcing comparable channel width and number

of channels. Although this limited the full potential of optimization, the resulting

topology demonstrated a substantial improvement over the control (manual de-

sign). All configurations simulated a scaffold porosity of 95% (in 2D) and average

flow velocity at the inlet of ∼26 mm/s. Based on results for random sphere pack-

ings in n-dimensions (Torquato, 2001), a 95% porosity in 2D likely corresponds

to a lower porosity in 3D.

The simulation results of the three configurations are shown in (Fig. 2.5) A−C.

The shear stress histograms are normalized by the standard deviation and the

shear stress maps are plotted on a logarithmic scale to simplify comparison of

the three channel topologies. When a target shear stress value of 2 (logarithmic

scale) was set for the optimization, an improvement in shear stress uniformity

and distribution is observed for the optimized configuration. (Fig. 2.5) shows the

standard deviation divided by mean shear stress (δ/µ) for each configuration as

a measurement of distribution uniformity. The optimized configuration was more

uniform than both the no-channel (10.6%) and the manual design (5%). We note

than 10% improvement in the quantity (δ/µ) is actually quite a large improvement
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in the shear stress uniformity: the value (δ/µ) optimized for is volume-averaged

over the entire bioreactor including regions near the wall, which see zero flow. It

is, for example, impossible to improve on the values of this ratio near the reactor

boundaries due to the no-slip condition. The best way to see the substantial

improvement that can be achieved using our method is to compare the results of

(Fig. 2.5) (bioreactor with no channels) to the optimization of (Fig. 2.7) presented

later.

In all cases, simulations produced a non-linear relationship between input pres-

sure and average shear stress. For example, in the case of the no-channel config-

uration, a maximum input pressure was reached after which no further increases

in the average shear stress were observed. The introduction of macro-scale chan-

nels to the scaffold alters the average shear stress limit and by implementing

our optimization method, we were able to systematically vary the average shear

stress limit to a desired target, whereas without topology optimization, this value

remained below the plateau maximum. Furthermore, our optimization method of-

fers flexibility to control different aspects of shear stress distribution by modifying

the rules of the fuzzy logic cost function. In other designs (not shown here), the

cost function was modified to assign more weight to minimize standard deviation

thereby producing a channel topology with a value of ∼0.7. This relative devia-

tion can be further optimized by increasing the number of channels and reducing

the width of the channels. However, pushing the level of complexity makes it

more challenging to realize the patterned scaffold experimentally. This is where

improvements in our method could be realized using a 3D prototyping printer

instead of CNC milling.

2.3.2 Flow Rate Simulations

Varying the inlet flow rate varies the applied pressure difference across the flow

chamber of the bioreactor. Simulations were performed for 10 different flow rate
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values that ranged from very low (0.1 mm/s) to very high (5 mm/s). Five sim-

ulations for each flow rate were performed with the same target shear stress and

uniformity measured as the ratio between standard deviation and average shear

stress. (Fig. 2.6) plots the relationship between shear stress uniformity and flow

rate. Analyzing this relationship, the ideal flow rate for a target shear stress value

can be determined and the overall performance (least fluctuations between runs)

can be identified. Large fluctuations were observed for very low and very high flow

rates. At very low flow rates, fluctuations are mainly due to diffusion. At very

high flow rates, the fluctuations are likely due to an inability to find a channel

topology that can match the high flow with the given target shear stress. In other

words, if the flow rate is too high for the target shear stress, no channel topology

can be found to match the target prescription. This is the main cause for the

observed random fluctuations from one run to another.

2.3.3 Flow Rate Optimization

In the previous optimizations, the flow rate was kept fixed during the optimization.

We also investigated the effects of flow rate on shear stress distribution when the

flow rate is allowed to vary during the optimization. In this case, the GA searches

for a combination of topology and flow rate to achieve an optimal distribution for a

target shear stress. The resulting channel topology is displayed in (Fig. 2.7), where

the flow rate corresponds to an inlet velocity value of 91 mm/s. Improvement was

observed both visually and quantitatively since a smaller (δ/µ) value was obtained.

This suggests that removal of the flow rate constraint gives the GA more freedom

to optimize the channel design.
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2.3.4 Flow Imaging Experiments on Fabricated Scaffolds

Each of the fabricated 2×2 cm2 porous scaffolds was placed into the bioreactor flow

chamber and water was flowed at a constant rate of ∼5mL/min using a syringe

pump (Harvard Apparatus). The flow chamber was filled using additional non-

channeled porous scaffold material to minimize water flowing outside the channel

region and making sure that the surface of each scaffold of interest (see (Fig. 2.8)

A−C) was aligned with the chamber’s inlet and outlet. The 2D MRI slices were

imported into MATLAB (The Mathworks, Natick, MA) for analysis. The flow

velocity maps yielded three orthogonal components of the velocity, ~v = (vx, vy, vz),

at each point in space. A plot of the magnitude of the velocity, |~v|, is shown in

(Fig. 2.8) D−F. Velocity fluctuations were estimated from data acquired at zero

flow and yielded errors (1σ limits) on the order of 0.05 mm/s. From the velocity

maps, shear rates were calculated by finite-differences in the plane of the slice

(flow was in-plane) using Equation (13).

γ̇ =
∂xvy + ∂yvx

2
(2.13)

The absolute values of the shear rates at each pixel were retained for analysis

and the resulting shear rate maps are shown in (Fig. 2.8) G−I. Histograms of

the shear rate distributions were plotted normalized to the number of values in

(Fig. 2.8) J−L. We note that this analysis neglects the z-component of velocity,

which could reach up to 30% of the velocity magnitude in some regions of the

scaffold. The values of (δ/µ) for the shear rate distribution are listed in the insets

of (Fig. 2.8) J−L. Substantial improvement was observed for the manual design

compared to the case of no channels. Likewise, a narrower distribution of shear

rates is measured in the topology-optimized scaffold as compared to the manual

design and the no-channel scaffold. This demonstrates our ability to control the

variance of the shear rate distribution. We note that the shear rate maps (Fig. 2.8)
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G−I do not match exactly those of the simulations performed (Fig. 2.5) and

we speculate that the divergence is likely due to the fact that the experimental

flow patterns are inherently 3D, whereas the shear rate analysis was performed

using only two of the velocity components. True 3D analysis of the flow field

could be possible by adapting our MRI flow sequence to perform 3D tomography

instead of 2D slice readouts. Nonetheless, it is noteworthy that the trends in (δ/µ)

measured experimentally match those predicted theoretically and performance of

the topology-optimized scaffold exceeded our theoretical predictions.

2.4 Discussion

All the simulations in this work are done in 2D. The same method could be

extended to control shear stress distributions in 3D. The problem of computation

time could be solved using parallel processing techniques. In our 2D calculations,

the population size used in the GA is 20 and the number of generations is 100, for

a total of 2,000 runs. Considering the size of the search space, the number of runs

performed by the GA is quite low. For example, the number of parameters used

by the GA in the flow rate simulations is 28. If we consider a resolution of 103

for each parameter, this produces a search space of 1,00028 possibilities. Using an

average personal computer, each run takes an average of 9 s for a 128×128 lattice,

or ∼5 h to perform a single optimization. To determine the computational time

required for 3D optimizations using porosity maps from experimental data, we

performed small-scale 3D LBM simulations of the flow field on the m-CT data.

The 3D LBM simulations showed a linear relationship in computational time with

the 2D LBM simulations. This means that a 128×128×128 3D lattice requires

128 times the time required by a 128×128 2D lattice for equivalent time steps.

Additionally, the convergence time will increase with lattice size and the 3D lattice

will require more time steps to converge.
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In preliminary tests conducted on a GPU array (nVIDIA 460GTX) the speed

enhancements observed were as high as 28 times, compared to a 3.2 GHz Intel

CPU (non-parallel computation). The 460 GTX card contains 336 cores with

650MHz clock speed and 1GB memory. On a nVIDIA TESLA card containing

448 cores with 1.15 GHz clock speed and 3GB memory, speed enhancements of 50

times would be expected. Given the increase in computational time due to large

lattice size, convergence time and speed enhancement from GPU implementation,

an estimate for 3D simulations is approximately 20 times the duration of 2D simu-

lations. Thus, a 128×128×128 3D optimization is expected to take approximately

4 days.

In future work, the biological response to the scaffold channel topology could

be experimentally studied. Control over flow and shear stress within a 3D porous

scaffold is essential in order to correlate cell response to a defined shear stress

distribution. By controlling the scaffold macroarchitecture, we can control flow

in 3D and study the effects of shear stress, uniform or varied, on cell growth

(i.e., cell proliferation and migration). The ability to vary the scaffold topology

allows us to control patterns of shear stress within the scaffold. In this study, we

focused on producing uniform patterns of shear stress. However, the spatiotem-

poral patterns of shear stress required for optimal cell growth and proliferation

over time are presently unknown. Therefore, the ability to alter the flow pattern

in both space and time will be paramount to understanding a biological response

to flow and correlated mechanical forces. This need for adaptable flow patterns

is especially relevant considering cell growth within a scaffold is expected to in-

crease the resistance to flow. The MRI technique is particularly suited for use in

adaptive control schemes during growth, due to its ability to provide real-time,

non-invasive measurements. To control flow in 3D, multiple inlets can be arranged

such that patterns of shear stress are applied to stimulate cell growth within the

scaffold and ultimately improve ex-vivo growth of complex tissues in 3D. While
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we have not tested the effects of patterned flows on cell growth in this study,

many research groups are pursuing such investigations. The highporosity and

large-pore-size PCL scaffolds used in our experiments feature open pores on the

surface that facilitate the seeding of the scaffold via injection or gravity-mediated

transport and diffusion. We note that any other scaffold material could poten-

tially be used instead of PCL provided that it is permeable to fluid flow and the

porosity is known to a reasonable degree.

2.5 Conclusion

In this paper, we presented an algorithm to control shear stress distributions in

porous polymeric scaffolds through optimization of macro-scale channel topology.

Experimental results confirm the validity of our 2D optimization methods and

future work will focus on extending these methods to control shear stress distri-

bution in 3D. Parallel processing techniques are under consideration to reduce

computation time and extend the optimization method to 3D geometries. Pro-

viding a means to control shear stress through macro-architecture of a scaffold

could facilitate investigations of shear stress distribution on cell proliferation and

gene expression under flow in a 3D scaffold. The main advantage of redirecting

macroscopic flows is the ability to optimize the shear stresses throughout the en-

tire bioreactor volume without the need to optimize the scaffold microstructure.

The work could be extended to include 3D prototyping techniques for the pro-

duction of scaffolds with more complex geometries. In this case, both microfluidic

and macroscopic control of the flow topology may be achievable.
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Figures

Figure 2.1: Illustration of the generation of a channel topology

A: An initial curve is formed by the IDCT of the vector of discrete cosine

components shown in (B) where only the first six elements are allowed to take

non-zero values. C: Four curves are superimposed followed by (D) symmetrical

replication (up/down, left/right) to yield the final topology, (E).
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Figure 2.2: Shear stress distributions

for eight different generations sampled from a simulation comprising a total of

100 generations. The topology optimization by GA results in: (1) a target shear

stress value of 1; (2) more uniform shear stress distribution around the target

value.
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Figure 2.3: Comparison of error surfaces

in the case of the (A) linear relation versus (B) fuzzy relation.
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Figure 2.4: Flow Experiments on Polymeric Scaffolds

A: Teflon molds used to cast sugar/PCL paste and fabricate 3D scaffolds. B:

The leached scaffolds are highly porous and can be stacked to achieve the

desired thickness. C: X-ray µ-CT image revealing open porosity of scaffold,

scanned at 13 µm resolution. D: 3D rendering of µ-CT data using MATLAB to

estimate porosity and specific surface. E: Pore size distribution as determined by

µ-CT data. F: Scanning electron micrograph of a cross-section representative of

the scaffold. G: Teflon bioreactor shown assembled (left) and opened (right).

The interior of the flow chamber is 2×2×1 cm3.
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Figure 2.5: Computer simulation results

for channel topologies and corresponding input velocities: (A) no channel, (B)

manual design, and (C) optimized channel design. The optimization is limited to

a very small number of discrete cosine components to keep the design simple for

machining purposes (see (Fig. 2.8) C). A better optimization utilizing more

discrete cosine components is shown in (Fig. 2.7). For display purposes, the

logarithm of the flow velocity and shear stress maps is shown.
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Figure 2.6: Uniformity of the shear stress distribution

for different flow rates corresponding to input velocity values ranging from 0.1 to

5 mm/s.

Figure 2.7: Optimized topology

shear stress histogram (left) and shear stress distribution (right). The flow rate

was allowed to vary and more discrete cosine components were used than in the

results of (Fig. 2.5). This resulted in improved performance.
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Figure 2.8: Comparison of MRI-derived shear rate distributions

for water flowing in three different porous scaffolds: (A) no channel ( δ
µ
∼ 0.90),

(B) manual design of the channel topology ( δ
µ
∼ 0.83), and (C)

topology-optimized channel design ( δ
µ
∼ 0.75). In (A−C), a photograph of the

2×2 cm2 porous scaffold shows the channel topology used in the experiments.

The flow rate in each scaffold was 5 mL/min at the inlet and resulted in flow

velocities in the range of 0−1mm/s inside the porous scaffold. Shear rate (γ̇)

distributions (G−L) inside the scaffold were derived from the appropriate flow

map (D−F).
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CHAPTER 3

Real-Time Maps of Fluid Flow Fields in Porous

Biomaterials

Article published: Biomaterials Volume 34, Issue 8, Pages 1980-1986, March 2013

3.1 Introduction

Tissue engineering approaches to regenerative medicine generally employ biore-

actors for the growth of tissues because the organization of individual cells into

functional structures requires a 3D context [37, 13]. Biomaterials have been suc-

cessfully used as 3D scaffolds to mimic specific biochemical and physical envi-

ronments [23, 38, 39, 40]. Naturally, the optimization of tissue growth would

benefit from methods to visualize changes occurring inside the biomaterial over

time. This would enable the control of mechanical and biochemical inputs, such

as fluid flow and transport of growth factors, cytokines and nutrients. However,

to monitor and improve upon the effect of these transport processes within 3D

biomaterials, it is essential to develop technology that can accurately determine

local microflow profiles in real time.

Fluid flow, and in particular, shear forces associated with applied flow have

been shown to enhance cell growth and differentiation [5, 41, 42]. In addition

to shear stress, interstitial flow distributions bias the extracellular transport and

gradients of growth factors, which in turn affect cell-cell signaling and morpho-

genesis [43]. It is difficult to experimentally determine flow profiles and flow
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heterogeneity within a 3D matrix. A first step in solving this problem is to ob-

tain spatially accurate distributions of velocity fields inside biomaterials. This

information will be essential to study cellular responses to flow and evaluate flow-

induced cell behavior. Furthermore, from the engineering standpoint, knowledge

of the flow fields may reveal degradation/changes of the scaffold over time that

can be extremely informative towards future optimizations.

Current approaches engage computational flow modeling to estimate patterns

of flow and shear stress based on known or assumed material properties, primarily

fluid permeability and porosity [44, 20]. However, computational predictions are of

limited value compared to real-time measurements as material properties change

over time. Although optical imaging techniques such as Doppler optical coherence

tomography [45] have been employed, they are hindered by their reliance on op-

tical transparency of the medium and/or the use of particle tracers[46]. As such,

the applicability of optical methods is restricted in opaque and low permeability

materials such as hydrogels.

Here we present a methodology which enables the visualization of interstitial

flow within biomaterials. The nuclear magnetic resonance (NMR) technique is

well suited for this task, due to its ability to probe material properties even in

opaque media. This article evaluates the potential of NMR velocity imaging for

investigating the hydrodynamic properties of biomaterials [47, 48, 49, 36] and

to provide measurements of slow flows. We also discuss the derivation of shear,

hydraulic pressure and fluid permeability maps from a single NMR velocimetry

experiment.
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3.2 Materials and Methods

3.2.1 Implementation of the NMR Velocimetry Technique

A spin-echo multi-slice (SEMS) sequence was modified to compensate for flow on

all gradients except the phase encoding gradient. In the calculations for flow com-

pensation, the full trapezoidal shape of the gradient pulses was used (as opposed

to rectangular approximations). The sequence of pulses is shown in (Fig. A.3).

Pairs of flow weighting (F.W.), trapezoidal bipolar gradients were added along x,

y and z axes to select the gradient first moment (M1). In the case of no flow,

stationary spins experience positive and negative gradients of the same magnitude

leading to a total phase accumulation from the first gradient equal and opposite

to the phase accrued under the second gradient (zero net phase accumulation). In

the case of constant-velocity fluid flow, spins move between the two gradients and

phase cancellation is incomplete, leading to a residual phase that is proportional

to the velocity [36].

Two experiments were performed under flow, with two gradient values: +M1

and M1, where the value of M1 was chosen large enough to include the highest

anticipated flow velocity and avoid phase wrap-around effects. These two exper-

iments were subtracted to obtain a velocity map. This velocity map for slow

flows in biomaterials, however, contains artifacts from gradient nonidealities (e.g.,

eddy currents and nonlinearities). Therefore, a flow/no-flow subtraction proce-

dure was utilized to overcome this problem: for each velocity component, two

scans were subtracted from experiments performed with flow on versus flow off.

This yielded an error-corrected velocity map. With this approach, we are able to

routinely acquire flow maps of the three orthogonal components of the velocity:

−→v = (vx, vy, vz) for voxels of typical size 90 µm × 90 µm × 1 mm with accuracy

of 0.05 mm/s using a total of 12 scans: 3 gradient directions (x, y, z)× 2 gradient

reversals (M1,−M1) × 2 runs (flow, no flow). The accuracy of this subtraction
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technique was validated in experiments involving clear flow in a pipe and porous

media flow against a known average flow rate, for several different flow rates down

to 0.01 mm/s. In terms of temporal resolution, our technique yields 12 scans in

8 minutes of acquisition. The imaging slice (1 mm thick) was positioned in the

middle of the flow chambers. The remaining imaging parameters were: TR=3s,

TE=20ms, 128×128 matrix and field of view (FOV) = 12 mm × 12 mm.

3.2.2 Scaffold Fabrication

3.2.2.1 Porous PCL Scaffold

Porous polymer scaffolds were prepared by a porogen leaching method to achieve

high porosity (9̃0%). Sugar crystals (size distribution in the range 250-355 µm)

served as the porogen and were added to a 20 wt. % solution of polycaprolactone

(PCL; Polysciences) in dichloromethane and thoroughly mixed to form a viscous

paste (14:1, sugar:PCL). The sugar/PCL paste was cast into a 1 cm diameter

Teflon mold and compressed to a height of 3.5 mm with a plunger to uniformly

distribute the paste within the mold and compress the sugar crystals, thereby

resulting in an interconnected network of pores upon removal of the sugar. Once

the paste was distributed and compressed, the scaffold was allowed to cure via

solvent evaporation overnight followed by freeze-drying to remove any residual

solvent. The scaffold was leached in deionized water for several days to remove

the porogen.

3.2.2.2 Hydrogel Matrix

Hydrogel matrices were prepared using a mixture of Matrigel (BD Biosciences),

fibrinogen (Sigma Aldrich) and type 1collagen (BD Biosciences) at a volume com-

position of 10%, 65% and 25%, respectively. To prepare the hydrogel, an aliquot

of 10 mg/ml solution of collagen was first diluted in 10X Dulbecco’s Modified
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Eagle’s Medium (DMEM; Sigma-Aldrich) and neutralized with 1M NaOH. A 10

mg/mL fibrin solution was prepared separately in serum-free 1X DMEM (Invit-

rogen). From the stock solutions, collagen, fibrin and Matrigel were mixed at the

indicated volumetric ratios to yield a final concentration of 3 mg/mL collagen and

6 mg/mL fibrin. Solutions were kept on ice to prevent polymerization of colla-

gen.Thrombin (Sigma Aldrich) was then added at a concentration of 50 U/mL to

allow for crosslinking of the fibrin component. An aliquot of the hydrogel mixture

was added to the appropriate flow chamber and allowed to polymerize at 37 ◦C for

45 minutes. This hydrogel mixture was chosen for sufficient mechanical strength

and permeability to flow.

3.2.3 Material Analysis

3.2.3.1 Scanning Electron Microscopy (SEM)

Hydrogel samples were fixed for 24-48 hours in Karnovsky’s fixative under ag-

itation at 4 ◦C. Samples were subsequently dehydrated in increasing concen-

trations of ethanol (30%, 50%, 70%, 80%, 90%, 96%, 100%) for 15-20 min-

utes at each concentration and then dried using critical point drying (Tousimis,

Andromegasamdri-915-B). To image the hydrogel and PCL scaffolds, freeze dried

samples were freeze fractured in liquid nitrogen. Fractured samples were then

mounted, gold coated (Denton Desk V, HP Cold Sputter Coater w/ Etch Mode)

and imaged (Nova 230 NanoSEM).

3.2.3.2 Micro-computed Tomography (µ-CT)

The µ-CT data for the porous PCL scaffold was obtained using a SkyScan 1172

scanner with 13 µm spatial resolution. The scan data was reconstructed using

cluster reconstruction software (NRecon). For 3D visualization, a 550 µm thick

section of the scaffold was selected and rendered using CTvol software to view the
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interconnected pore network.

3.2.4 Flow Chambers

Two NMR-compatible flow chambers were constructed from Teflon with brass

inlet and outlet. The fluid permeability flow chamber ((Fig. 3.1) A) was designed

for the measurement of flow through porous media. The inlet and outlet screw

directly into the body of the chamber, allowing for a tight seal and an accurate

reading of the pressure drop across the sample. The sample region has a 10 mm-

diameter circular cross-section with a height of 3.5 mm and is sandwiched by

2 large pore-density filters, each 3 mm thick. The sample region holds 500 µL of

the hydrogel mixture or a 3.5 mm thick scaffold. The bioreactor vessel ((Fig. 3.2)

A and B) has the shape of a cylindrical bioreactor with inner rectangular flow

chamber with dimensions 2 cm × 2 cm × 1 cm and 1.5 mm diameter inlet/outlet.

The upper component is sealed hermetically to the bottom component with an

o-ring and nylon screws. For flow experiments, the hydrogel mixture (4.5 mL)

was polymerized around a 1 mm diameter Teflon rod bridged between the ports

of the inlet and outlet. Removal of the Teflon rod yielded a single 1 mm diameter

channel at the center of the hydrogel matrix.

3.2.5 Flow Set-up

Continuous flow was facilitated either by syringe pump (Harvard Apparatus) or by

pressurizing a sample cylinder (Swagelok), containing either 1X DMEM (without

serum) or DI water. The syringe pump was connected directly to the inlet of

the flow chamber via 1
4

inch Teflon tubing. In this configuration, inlet velocities

were controlled by user inputs. In the sample cylinder configuration, compressed

nitrogen gas was used to drive fluid flow via precision micro-pressure regulator

(Model PR4033-400, Ingersoll-Rand/Aro). A digital hydraulic pressure gauge
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(Model DPG8000-30, Omega Engineering Inc.) was placed at the inlet and outlet

of the flow chambers to provide readouts of the pressure drop. To image fluid flow,

a NMR system consisting of a 9.4 T, 400 MHz vertical bore (89 mm diameter)

Varian instrument and a 40 mm-i.d. imaging probe was used. Flow chambers were

placed vertically in the imaging probe. Flow rates at the outlet were measured

using the bucket-and-stopwatch method.

3.2.6 Shear Rate Calculation

From a 2D slice, the in-plane shear rate induced by the fluid flow in the porous ma-

trix can be calculated from digital images using finite differences and the formula,

γ̇ = σxvy+σxvx
2

3.2.7 Hydraulic Pressure Calculation

To derive hydraulic pressure maps, we first take the divergence of the steady-

state Navier-Stokes equation (NSE) for an incompressible fluid and then obtain a

Poisson-type equation for the pressure:

∇2p = −ρ ∂vi
∂xk

∂vk
∂xi

= −ρ ∂
2vivk

∂xk∂xi
(3.1)

where the velocity field,v(x), is known from MRI experiments,ρ is the fluid

density and the pressure field p is subjected to Dirichlet boundary conditions at

the inlet and outlet as measured by hydraulic pressure gauges and Neumann

boundary conditions n̂ · ∇p = 0 at the vessel wall. Previously measured pressure

gradients via MRI used the NSE directly [50]. However, pressures cannot be

obtained reliably with this method due to the path-dependence that arises from

integrating the pressure term. The reason for path dependence is because the

velocity terms in the NSE (such as the convective and viscous terms) are not

conservative fields. Solutions to the Poisson equation, such as used here, do not
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suffer from this problem.

3.2.8 Fluid Permeability Measurements

The slow flow of an incompressible fluid through porous media is typically de-

scribed by Darcy’s law [51], U(x) = − k
µ
· ∇p(x), where U is the average fluid

velocity, ∇p is the applied pressure gradient,µ is the dynamic viscosity, and k

is the fluid permeability tensor. In isotropic media, is taken to be a constant:

k = kI, where is the unit tensor. The permeability k, which has dimensions of

length squared, is roughly the effective pore channel area of the dynamically con-

nected part of the pore space. In general, it must be measured since it cannot be

obtained from simple pore statistics such as porosity or specific surface. A peculiar

feature of the flow field is that only a subset of the pore space contributes to the

fluid permeability. The fluid permeability is calculated as the ratio, k = − QµL
A(p2−p1)

,

where L is the length of the vessel, Q is the volumetric flow rate (customarily mea-

sured with the bucket-and-stopwatch method), A is its cross-sectional area and

(p2 − p1) is the pressure drop between the inlet and outlet.

3.2.9 Fluid Permeability Maps

The permeability maps are obtained by using Darcy’s law, U(x) = − k
µ
· ∇p(x),

where U is fluid velocity, ∇p is pressure gradient, µ is the dynamic viscosity, and

k is the fluid permeability (scalar). Flow maps obtained from MRI measurements

are used to determine local velocity values. Since the resolution of the MRI flow

maps is comparable to pores sizes, the resolution is scaled down four-fold. The

derived pressure maps are used to determine local pressure gradients. Average

permeability is calculated by taking the arithmetic mean of the map horizontally

(main direction of flow), and the geometric mean vertically as described by the

following equation, K = m
n

(∑m
i=1

(∑n
j=1 ki,j

)−1
)−1

, where K is the average
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permeability of the map and ki,j is the local permeability at the ith row and jth

column, such that the map consists of m rows and n columns.

3.3 Results and Discussion

3.3.1 Hydrodynamics in a Porous PCL Scaffold

Flow experiments were performed using a NMR-compatible custom flow chamber

which features a 3.5 mm thick sample chamber sandwiched between two filter

discs ((Fig. 3.1) A). The first biomaterial studied was a porous polymer scaffold

made from polycaprolactone (PCL) via porogen leaching method to yield intercon-

nected pores with average pore size of 256 µm as determined by micro computed

tomography (µ-CT). Micro-CT-derived 3D rendering of the scaffold ((Fig. 3.1) B)

and scanning electron microscopy (SEM) images ((Fig. 3.1) C) demonstrate large

interconnected pores as well as micropores in the scaffold walls. Two different

volumetric flow rates, 5 ml/min and 10 ml/min, were applied via syringe pump

to the PCL scaffold in the flow vessel and a MRI scan was used to probe the

corresponding velocity field −→v = (vx, vy, vz) with voxel size (spatial resolution) of

90 µm × 90 µm 1 mm. A map of the flow speed (magnitude of the velocity)

is shown in (Fig. 3.1) D and H where dotted regions indicate the location of the

PCL scaffold. For both applied flow rates, the resulting flow fields show substan-

tial heterogeneity due to the scaffold’s internal pore network and the chamber wall

boundaries. The shear rates were derived from the gradient of the velocity field

and plotted ((Fig. 3.1) E and I) to further evidence the fluid flow heterogeneity

within the scaffold. From the velocity data and the measured hydraulic pressure

drop across the flow chamber region, we were able to map the internal hydraulic

pressures ((Fig. 3.1) F and J) relative to the outlet pressure.

Using the velocity and hydraulic pressure maps, the fluid permeability can be

computed through the scaffold region as the ratio of velocity to pressure gradi-
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ent. Fluid permeability is a fundamental property of a porous medium and is

of paramount importance in the context of biomaterials where flow plays a crit-

ical role [52, 53]. Permeability is traditionally measured by flowing liquid into

a chamber containing the porous medium. The volumetric flow rate resulting

from an applied pressure differential establishes a proportionality constant be-

tween the two. However, permeability determined by a bulk measurement will

not reflect any local variability due to inhomogeneous flow and/or matrix prop-

erty changes. The fluid permeability maps for the PCL scaffold is displayed in

(Fig. 3.1) G and K. Using the traditional method of the bucket-and-stopwatch,

we calculated a value for the fluid permeability across the PCL scaffold material

to be (3.9± 1.0) 10−13m2. This is to be compared with the average permeabil-

ity values calculated for the scaffold region from the fluid permeability maps:

(2.82± 0.29)× 10−13 m2 and (2.69± 0.19)× 10−13 m2. In the presence of macro-

scopic fluctuations, fluid permeability becomes a local property of the material

that should be averaged over a region larger than the pore size, but smaller than

the scaffold. The MRI flow mapping technique elucidates these local variations

that otherwise would be averaged out in a bulk measurement. As will be discussed

below, this type of local flow measurement is especially useful when the material

properties change over time due to variations on cell growth, increase in matrix

production and/or degradation of the scaffold.

3.3.2 Microflows in a Biopolymer Hydrogel

We next applied the flow mapping technique to biopolymer hydrogels. Hydrogels

are commonly used in 3D cell culture owing to their semblance to extracellu-

lar matrix and the ability to functionalize the fibrillar components to aid cell

growth [54, 55] however their fragility and low permeability make it challenging

to implement flow. The low permeability is due to the small pore size of the

interconnecting fibril network and therefore fluid flow is typically described as in-
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terstitial [25]. Additional issues arise when applying flow to small pore (<5 µm)

hydrogels including erosion of the fibril network and even collapse of the network

under high fluid pressures. To investigate these effects, we formed a biopolymer

hydrogel consisting of a mixture of fibrin, collagen and Matrigel inside the 1 cm

diameter flow chamber ((Fig. 3.1) A). For this gel, an applied input flow rate of

50 µl/min was sufficiently low to prevent collapse of the hydrogel under the applied

fluid pressure. From the velocity field data, the velocity components (vx, vy, vz)

could be resolved in the horizontal, vertical and through-plane flow directions,

respectively ((Fig. 3.2) A). As evidenced by the larger magnitude of the vx com-

ponent we note that primary flow occurs along the horizontal direction, which

was the direction of the applied fluid pressure, and therefore velocity components

orthogonal to the main direction of flow are small.

When the applied input flow rate was increased to 100 µl/min, irreversible

compression occurred in the gel ((Fig. 3.2) B right image). The flow maps show

a significant change in the hydrodynamic response under the 100 µl/min applied

flow rate, as compared to the same hydrogel at 50 µl/min, by erosion of the gel

under the applied fluid pressure ((Fig. 3.2) B). This compression was confirmed

by SEM ((Fig. 3.2) C). Prior to flow, the collagen and fibrin fiber networks are

observed to be fairly uniform ((Fig. 3.2) C left image). After the application of

high flow, however, the hydrogel was severely compressed and the SEM images

show an accordion-like collapse of the gel under the direction of applied flow that is

reminiscent of the lamellar structure of elastin fibers in a blood vessel ((Fig. 3.2) C

right image). The flow mapping technique successfully depicts structural integrity

of the gel. Without such maps, it is nearly impossible to determine whether

changes to the material have occurred unless the experiment is stopped and the

gel is sectioned.
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3.3.3 Interstitial Flow from a Channel

The ability to map perfusion flows in the region surrounding a central channel was

investigated by forming the same biopolymer hydrogel in a Teflon vessel containing

a rectangular flow chamber ((Fig. 3.3) A and B) with 1.5 mm diameter inlet and

outlet. A single channel (1 mm diameter) was patterned in the hydrogel during

polymerization to match the inlet/outlet of the chamber walls. This geometry

yields a model of perfusion from a main flow source to mimic interstitial flow.

The channel provided a primary path for fluid to investigate the path of perfusion

flows into the surrounding gel matrix from the central flow channel ((Fig. 3.3) C).

A volumetric flow rate of 5 ml/min was applied for 15 and 60 minutes, respectively.

The velocity maps −→v = (vx, vy, vz) acquired under steady flow conditions and are

shown in (Fig. 3.3) D and E. Even after 15 minutes of applied flow, non-negligible

erosion of the hydrogel is seen near the inlet leading to escape of fluid through the

region between the gel and vessel wall as evidenced by the larger vy component

and visual inspection of the hydrogel post-experiment. Escaping fluid is seen at

the bottom of the vx component map and erosion leading to vertical flow is seen

in the vy component.

The flow mapping technique enables the visualization of time-dependent ero-

sion of the gel. With extended perfusion of the hydrogel for 60 minutes, erosion

was substantial, as seen in the velocity maps for vx, vy, vz ((Fig. 3.3) E) and en-

larged central channel width. Flow was observed to be a combination of perfusion

flow through the gel matrix and time-dependent erosion around the channel. Flow

speeds in the range 0.1 - 0.8 mm/s were measured in the matrix region surround-

ing the channel ((Fig. 3.3) F). Fluctuations were estimated by taking the standard

deviation of the flow field in regions far away from the flow channel, where flow

was weakest and mostly uniform, to yield an error bar of 0.05 mm/s. A one-

dimensional profile around the channel, averaged along the direction of flow, was

plotted to show that flow was detected outside the channel ((Fig. 3.3) G). These
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flows result in erosion of the hydrogel with time as evidenced by the NMR imag-

ing technique and confirmed by sectioning and visual inspection of the hydrogel

post-experiment. As expected, shear rates ((Fig. 3.3) H) were seen to be strongly

peaked near the channel.

3.3.4 Implications of the Results

The capability to non-invasively measure fluid flows in 3D biomaterials in real time

is a technological advantage that can be applied to many fields including tissue

engineering, cell biology and biomechanics. Prior to this study, the conditions of

the biomaterial would typically be assessed at the beginning and end points of an

experiment; and the flow conditions were mainly obtained through computer mod-

eling or through simple input-output relationships. The phase-cycled, subtraction

NMR technique yields accurate, non-invasive measurements of fluid flow and scaf-

fold integrity in real time during an experiment. We anticipate that this will be

an important tool in regenerative medicine, where the state of a 3D cell culture

in a bioreactor can be monitored over time, enabling real-time control of external

inputs in order to provide optimal conditions for cellular development. Experi-

mental determination of flow is especially important when the flow is complex,

as is the case with biomaterials characterized by variable porosity and tortuosity,

because such systems are difficult to model computationally. The method can

also assess the deformability of a biomaterial. Such deformability effects can be

problematic, as they often lead to unwanted transient or even permanent effects.

Examples of such effects include compression of the material, erosion of the matrix

and escape of fluid along the walls of the flow chamber. Real-time fluid flow maps

in these systems provide windows into the condition of the system.
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3.4 Conclusion

In this article, we have successfully generated detailed flow maps in biomaterials.

We have demonstrated how to derive, from a single experiment, local hydrody-

namic properties such as shear rate, hydraulic pressures and fluid permeability

as well as important structural information about the biomaterial condition. We

anticipate applications of the imaging technique to 3D cell cultures in establishing

quantitative relationships between fluid mechanics, cell growth and organization.

The main strength of the NMR approach is the ability to map flows in optically

opaque media, regardless of the presence or absence of vascular networks. The

NMR readout provides a volume-average flow measurement (averaged over the

image voxel, which is much smaller than 1 mm3, in the present study), making it

an ideal technique for probing interstitial flows.
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Figure 3.1: Spatially-resolved measurements of flow and fluid permeability for a

porous polymer scaffold.

(A) Schematic of the flow chamber with indications for the fluid inlet, outlet and

location of the porous scaffold. (B) 3D rendering based on µ-CT scan data for a

550 µm thick section of the porous polymer scaffold used in the permeability

experiments. (C) SEM images of the porous network with evidence of

micropores (see inset) in the struts of the scaffold pores. Applied flow rates:

(D-G) 5 ml/min and (H-K) 10 ml/min. From left to right: (D,H) MRI flow

fields where the blue arrows indicate the direction of flow; (E,I) shear rate maps

derived from the flow maps; (F,J) pressure field calculated from the MRI flow

map; (G,K) corresponding fluid permeability maps computed from the pressure

and velocity fields. The scaffold (3.5 mm thick) region is indicated in (D,H) by

dotted lines, sandwiched by two filters. The average fluid permeability

calculated for the scaffold region in (G) is 2.6910−13m2 and 2.8210−13m2 in (K).
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Figure 3.2: MRI visualization of flow fields in a hydrogel matrix.

(A) MRI flow maps are plotted for the vx, vy, vz velocity components of an

applied flow rate of 50 µL/min. For the flow maps, the field of view was 6 mm ×

12 mm with an imaged slice thickness of 1 mm. (B) Maps of flow speed are

plotted for the same hydrogel under both 50 µl/min and 100µl/min applied flow

rates. (C) SEM images of the hydrogel matrix prior to and post flow where

compression of the hydrogel is clearly observed by collapse of the fibril network.
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Figure 3.3: Flow mapping in a channeled hydrogel.

Bioreactor displayed (A) sealed and (B) opened to reveal the 2 cm × 2 cm × 1

cm flow chamber. (C) Schematic of the bioreactor indicating the channeled

hydrogel matrix within the flow chamber. (D) Vector components (vx, vy, vz) of

the MRI-derived flow map after 15 minutes of applied 5 mL/min fluid flow in

the channeled hydrogel. Overall flow is from left to right, as can be seen by the

vx component, which dominates over other components. (E) Vector components

of the MRI-derived flow map after 60 minutes of applied flow. Flow speed is

obtained from the velocity maps and averaged along the direction of flow to

yield (F) flow map and (G) 1D profile of average flow speed from the central

channel out into the surrounding hydrogel matrix. Flow velocities within the

channel, well in excess of 2 cm/s, are not shown due to being too far off scale.

(H) The shear rates (γ̇) were derived from the flow map to yield a shear rate

map inside the hydrogel.
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CHAPTER 4

Feature-Preserving Noise Removal

Article will appear in next issue of IEEE Transactions on Medical Imaging

4.1 Introduction

Theprocess of removing noise in an image requires a priori knowledge of the noise

distribution. In Wiener filtering, for example, the optimal filter requires knowledge

of the power spectra of signal and noise [56]. It is common practice to perform

denoising in some transform domain where the signal is sparse and discard the

transform coefficients that do not overlap with those containing the signal [57,

58, 59]. Multi-resolution techniques such as the wavelet transform can achieve

better sparsity and separation of the noise depending on the type of basis element

that are used and the overcompleteness of the basis [60, 61]. A recent method,

Block-matching and 3D filtering (BM3D), also termed “collaborative filtering” has

shown state-of-the-art performance by grouping patches that look similar into 3D

blocks and performing transform domain filtering of each 3D similarity block [62].

These algorithms yield outstanding performance as long as the images obey certain

conditions consistent with algorithm assumptions, such as noise statistics or the

type of patterns contained in the image. If the assumptions are not met, this can

give rise to artifacts or losses in the image fine structure [63].

From an experimental standpoint, the simplest method to reduce noise is signal

averaging. In the case of additive white Gaussian noise (AWGN) signal averaging
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can be performed until the mean value of the signal is sufficiently high relative

to the noise. In magnetic resonance imaging (MRI), signal transients from each

phase-encode step are acquired and averaged to produce a mean-value image with

higher signal-to-noise ratio (SNR). In photography, the analogous process consists

of increasing the exposure time. The “mean-value” image in the case of AWGN

generally reveals better contrast-to-noise. In the general case, there are three

potential problems with the signal-averaging approach. First, there is an implicit

assumption about the noise statistics. The mean value is the best estimate of

the signal only in special cases. For example, signal averaging fails to remove

multiplicative noise. Second, averaging does not account for spatial correlations

in the image. Third, in the process of averaging data from multiple transients

into single values (the mean values), much information is discarded about the

noise, whose true nature can only be revealed upon realizations of the random

experiment.

In this paper, we propose to denoise each pixel of an image using a nonlinear

filter that operates along a data block which consists of patch neighborhoods of

a pixel and multiple copies of the same image. Thus, an image pixel is denoised

using information from one block of size D = r ×Np, where Np is the number of

pixels in a patch and r is the number of copies. In this study, we use rectangular

patches of size Np = 17 × 17 and r = 7 copies of the image. The nonlinear

filter is designed based on multilayer perceptrons (MLP), which have been shown

to be universal function approximators [64]. The purpose of operating along

patches is to account for possible spatial correlations in the random field of the

image. The method makes no assumptions about the noise statistics. There

is also no guesswork involved in determining suitable thresholds, parameters or

dictionaries. Because every algorithm deserves an acronym, we propose to call it

multiple copies-multilayer perceptrons (MC-MLP).

Our test case will be MRI images, due to the common practice in MRI to per-
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form signal averaging as a way to improve SNR. Poor SNR in MRI may arise in low

magnetic fields or during the detection of metabolites or insensitive nuclei such as

23Na. Such an MRI experiment can be readily configured to save individual tran-

sients separately to provide multiple copies of the same image. Magnitude-mode

MRI images typically feature Rician noise. We validate MC-MLP by comparing

its performance to the total variation method (TV) [65, 66], and a Rician noise

MRI implementation of the state-of-the-art denoising algorithm Block-matching

and 4D filtering (BM4D) [67], which performs collaborative filtering. MC-MLP

outperforms both methods in terms of conventional methods such as peak signal-

to-noise ratio (PSNR), feature similarity (FSIM), and mean structural similarity

(MSSIM), as well as subjective visual quality metrics [68, 69]. We also demon-

strate excellent performance in the removal of multiplicative noise, illustrating the

independence of the method to the type of noise.

4.2 Denoising by multiple copies

4.2.1 Nonlinear filter design with MLP

An image Y is a mapping

Y : {1, . . . , Nx} × {1, . . . , Ny} → S, (4.1)

where S is a set of allowed pixel values. The Cartesian product {1, . . . , Nx} ×

{1, . . . , Ny} will be indexed by t = (i, j). An experimentally measured image

contains noise and is therefore a random field X whose realization is denoted by

X(ω). It is convenient to denote Xt(ω) the value of the t-th pixel in the image

X(ω) (a matrix of size Nx×Ny). The probability space is (Ω,F , P ), where ω ∈ Ω

and Ω is the set of all possible outcomes
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Ω = {I1, I2, . . . , INI
}, NI = (#S)Nx×Ny (4.2)

where Ij (j = 1, . . . , NI) is a Nx × Ny matrix whose elements belong to the set

S and Ii 6= Ij for i 6= j. There is no fundamental restriction on S. For example,

if S is a discrete set such as S = {0, 1, . . . , 255}, then the σ-algebra on Ω can be

taken to be the power set F = 2Ω whereas if S is a continuous interval such as

[0, 255] then Ω can be taken to be the Borel σ-algebra generated by the interval.

P is a probability measure depending on the nature of the experiment and

could be unknown or arbitrary. Its structure can be inferred from individual

realizations ω1, ω2, . . . . For fixed ω ∈ Ω, the mapping Xt(ω)→ S as a function of

t yields a realization (sample path) of the random field. The sample path is an

image in the sense of the mapping (A.1).

Denoising by multiple copies is the task of finding an estimator Ỹ of the

true image Y given the prior information from r realizations of the sample path

{X(ω1), X(ω2), . . . , X(ωr)} where X(ω) = η(ω, Y ), such that Ỹ ≈ Y according

to a suitable distance metric. Here, η(ω, ·) stands for the noise function, which is

determined by the probability measure, P . An example of η(ω, ·) is AWGN, which

takes the form, X(ω) = Y + Γ(ω), where Γ(ω) is a Nx × Ny matrix of random

values that are Gaussian-distributed.

To obtain a good estimate Ỹ ≈ Y , we must reduce the uncertainty of the

estimate. There are at least two ways to do this. The first is to look at more

instances of X, for example, by having several copies of the same image, i.e.

{X(ω1), X(ω2), . . . , X(ωr)} where r is sufficiently large. Since X(ω) varies with

each instance ω according to the noise distribution whereas Y is independent of

ω, the more instances ω we have, the more certain we can be about the value of

our estimate. Although in practice, this increases computational cost, we found

that r = 7 is a good compromise.
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The second approach to obtain more information is to look at the neighborhood

of the pixel Xt(ω). We will denote the coordinates of the neighborhood by the set

of points in a square region Ut centered on t = (i, j):

Ut = {t′ = (i′, j′)|i′ ∈ [i− d, i+ d], j′ ∈ [j − d, j + d]} (4.3)

Ut is referred to as a patch in the text below, where d is the number of pixels

included away from the pixel’s coordinates t = (i, j). This patch region Ut con-

tains Np = (2d+ 1)2 pixels. When denoising images it is important to account for

spatial correlations in the random field X(ω) due to the shape of the deterministic

function Y , or possible spatial correlations in the noise function (if any). Mod-

ern denoising algorithms operate on patches on the premise that images contain

specific shapes and patterns such as curves, edges and plain surfaces. Denoising

algorithms often take the mean of all available copies and recognize one or more

type of low level patterns in patches such as edges. Yet a general searching algo-

rithm can learn higher level patterns and can increase certainty by taking separate

copies into consideration rather than just their mean.

The nonlinear filter design utilizes the information from r copies and a patch

Ut centered on the pixel Xt with neighborhood distance d and finds a function

∃f(X(ω1)|Ut , X(ω2)|Ut , . . . , X(ωr)|Ut) = Ỹ ◦t (4.4)

where X(ω1)|Ut denotes the restriction of the matrix X(ω1) to the Ut neigh-

borhood. It is a (2d + 1) × (2d + 1)-dimensional matrix with entries taking

values in S. Ỹ ◦ is the best estimate of Y that can be obtained from the in-

formation provided by all r copies X(ω1)|Ut , X(ω2)|Ut , . . . , X(ωr)|Ut of the Ut

neighborhood, for all such neighborhoods (∀t). The r two-dimensional matrices

X(ω1)|Ut , X(ω2)|Ut , . . . , X(ωr)|Ut are reshaped into 1D vectors of length Np, then

concatenated into a 1D vector of length D = r×Np denoted by ~xt and used inputs
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to a MLP whose transfer function is a hyperbolic tangent. Thus, a MLP with D

inputs, K outputs, one hidden layer with M nodes yields a K-dimensional output

vector ~̃yt whose k-th component is given by the iterated hyperbolic tangents:

ỹt (k) = tanh

(
M∑
l=0

θ
(2)
l,k tanh

(
D∑
j=0

θ
(1)
j,l xt (j)

))
(4.5)

where z(l) = tanh
(∑D

j=0 θ
(1)
j,l xt (j)

)
, for l = 0, . . . ,M are the outputs of the hid-

den layer. We use the convention where xt(0) = 1 and z(0) = 1, so that θ
(1)
0,l

and θ
(2)
0,k represent biases to the transfer function. The generalization to arbitrary

numbers of hidden layers is straightforward by nesting additional hyperbolic tan-

gents. The calculation of the vector ~̃y is called feed forward propagation. In our

implementation, each MLP has a single output corresponding to a single pixel in

the image. Thus, K = 1 and we may drop the vector notation, writing ỹt instead

of ~̃yt.

Let ~Θ =
[
θ

(1)
j,l |l=0..M

j=0..D , θ
(2)
l,k |k=0..K

l=0..M

]
be a vector of length m containing weights

and bias values for all the nodes. The MLP is trained to solve for f by searching

for an optimal ~Θ that minimizes the sum of square errors in (4.6)

E(~Θ) =
1

2

S∑
s=1

es(~Θ)2, (4.6)

where es(~Θ) = ys− ỹs is the MLP error corresponding to sample s for a given set

of MLP parameters. Here, ys is the desired target value from a low noise image for

an input vector ~xs from a noisy training sample, and ỹs is the MLP estimate of ys.

While the coordinate t is a suitable index in the feed forward phase where every

pixel in the image is processed, we denote it by s in the training phase where an

error is calculated. Training samples are input-output pairs (~xs, ys) picked from

training images in no specific order where the entire image or only parts of the

image might be used for training. s corresponds to the sample number in the

training dataset. S is the total number of training samples.
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The algorithm minimizes the errors at all nodes. Back-propagation uses the

output error in (4.6) to determine errors of individual nodes in the remaining

layers [70]. From n(k) =
∑M

l=0 θ
(2)
l,k tanh

(∑D
j=0 θ

(1)
j,l x(j)

)
, the partial error for a

weight θ
(2)
l,k is obtained by

∂E(~Θ)

∂θ
(2)
l,k

=
∂E(~Θ)

∂n(k)
z(l). (4.7)

The error at a node is determined by taking into account the sum of partial errors

of weights for all connections emanating from it. ~Θ is iteratively updated using

Levenberg-Marquardt search [71]. ∆~Θ is calculated at each iteration using the

update rule,

∆~Θ = −[JTJ + µ1]−1JT~e, (4.8)

and is added to ~Θ. ~e = (e1, e2, . . . , eS) is a vector of MLP errors for all samples.

Here, 1 is an identity matrix and

J =



∂e1(~Θ)

∂Θ1

∂e1(~Θ)

∂Θ2

· · · ∂e1(~Θ)

∂Θm

∂e2(~Θ)

∂Θ1

∂e2(~Θ)

∂Θ2

· · · ∂e2(~Θ)

∂Θm
...

...
. . .

...

∂eS(~Θ)

∂Θ1

∂eS(~Θ)

∂Θ2

· · · ∂eS(~Θ)

∂Θm


(4.9)

is the Jacobian matrix containing first derivatives of MLP errors with respect to

the ~Θ parameters. When µ is large the method behaves like a steepest descent

method. When µ is small the method is equivalent to a Gauss-Newton method.

µ is updated at each iteration depending on how E changes.

While denoising by MLP has been shown to be possible given enough layers,

nodes and training samples, several challenges exist in practice to make it compu-

tationally feasible. Burger and co-workers [72] studied the use of MLPs as a pure

learning denoising approach by training a relatively large MLP to denoise images

corrupted by AWGN. Their MLP did not use multiple copies. It was trained to
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denoise patches of size 17×17 stitched together after denoising to reconstruct the

final image. Their MLP contained four hidden layers with 2,047 nodes each, and

was trained with 362 million samples derived from a database of 1,500 images and

requires approximately one month of training time on a GPU for a specific noise

level. While their MLP could compete with BM3D, it remains impractical in real

applications due to its exceedingly high computational cost and lengthy execution

times.

Here we use an entirely different approach where the system’s architecture

(Fig. 4.1) uses multiple stages of MLP. We divide our system into two phases, a

training phase and a feed forward phase. The training phase is where the MLPs

learn to build an optimized model for the application at hand. This is where the

nonlinear filter is designed. This phase can take anywhere from 15 minutes to

several hours on a modern laptop computer, depending on the noise level. Once

the training phase is complete, the MLPs operate in feed forward mode. This is

the phase where the nonlinear filter is applied to the image data. The feed forward

phase is much faster than the training phase. The time required to denoise an

image is on the order of several seconds to a few minutes, depending on the size

of the image.

4.2.2 Training Phase

4.2.2.1 Multiple stages

The first step to reducing computational cost is using several small MLPs trained

in multiple stages instead of one large MLP. While the MLP architecture can be

optimized to further enhance performance, architecture optimization is a topic

on its own and will not be considered here. The MLPs used in our tests feature

6 hidden layers each with 10 nodes per layer. Performance is better with more

training samples, but larger datasets require more nodes, increasing MLP size and
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computation time. The lower the noise level, the less training is required. Thus,

we do training in a first stage of small MLPs with a relatively small dataset to

minimize noise to a high degree, albeit not state-of-the-art level. When training

is done, first stage MLPs operate in feed forward mode and are used to denoise

original training images. The end result is a set of estimates with arbitrary residual

errors, yielding arbitrary noise distributions with much smaller standard deviation.

Seven first stage MLPs are shown in the diagram and yield seven estimates for each

training image with much lower noise than original copies. Estimates are used to

generate a new dataset for training the second denoising stage MLPs. Multiple

MLP stages can be added in a similar manner and trained hierarchically. A third

denoising stage uses dataset generated from estimates of the second denoising

stage MLPs and so on. In our tests, four MLP stages were used. For clarity, only

two MLP denoising stages are shown in (Fig. 4.1). The last stage in the diagram

is a little different and will be discussed separately.

This multistage denoising approach is extremely powerful and is a major driv-

ing force behind the performance of our algorithm. Multistage denoising is, un-

fortunately, not possible with other denoising methods. This is because other

methods make assumptions about the noise statistics whereas the MLP approach

is noise independent. For example, an algorithm that is designed for use with

Rician noise cannot be used for multistage denoising because its output does not

necessarily have a Rician noise distribution.

4.2.2.2 Multiple Copies

Before patches from r noisy copies are introduced to the input layers of the first

denoising stage MLPs, they are first grouped into r combinations of (r−1) copies.

This produces r distinct realizations of an image random field, but with reduced

noise levels. This is denoted by the
(

7
6

)
block in the diagram, where 7 combinations

of 6 copies are grouped and added together. This reduces noise levels at the input
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to enable shorter training times. This operation is made possible because the MLP

denoising process is noise independent. This technique is also not applicable in

general to other methods where assumptions are made about noise distribution.

For example, adding images with Rician noise produces an image with non-Rician

noise, violating the basic assumption of the algorithm.

4.2.2.3 Patch size

Using d = 8 for (4.3) produces patches of size 17 × 17. When 7 copies are used

this yields an input vector of length 2023. Multistage training allows using smaller

patches per stage while still allowing the system to use information from a large

patch size. This concept is illustrated in Fig. 4.3. For d = 2 for first stage MLPs,

each output represents a center pixel from patches of size 5×5 from original noisy

copies. Using d = 2 for second stage, each output represents a center pixel from

the 5× 5 patches from the first denoising stage MLPs estimates. This collectively

gives an effective patch size of 9×9 from original noisy copies to be used as inputs

for the second denoising stage MLPs. In general, the effective d value for a stage

is the sum of individual d values from previous stages. This technique reduces

processing and memory requirements, making our method applicable to devices

with low computational resources. Using a smaller d value in a consecutive stage

yields a reduction in dimensionality, giving the option of optimizing for speed or

memory. Larger d values are typically assigned for the first training stage where

smaller data sets can be used. Decreasing d in subsequent stages allows for larger

data sets.

4.2.2.4 Feature extraction

In our discussion so far, each stage includes multiple MLPs. Ultimately, we need

one final value for each pixel. One way to do this is by averaging values of all
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estimates from the final stage MLPs. Alternatively, an additional stage can be

added with one MLP and d = 0 to get a final value. However, instead of using raw

MLP outputs to train this additional (now final) stage, we use feature extraction

to enhance generalizing ability. This is indicated by the feature extraction block

where the mean, standard deviation, minimum and maximum of outputs from

stage 2 are used to train the MLPs in stage 3 to get a final result.

4.2.3 Feed forward phase

After completing MLP training for all stages, the system is used in feed forward

mode where image denoising is performed. In our case, we require 7 noisy copies of

an image to produce a clean estimate. Patches are extracted for each pixel from its

surrounding neighbors for all 7 copies, producing 7 patches of size Np = (2d+ 1)2.

Denoising is performed hierarchically. While MLPs in each stage are independent

and can be processed in parallel, the performance at each stage depends on results

from preceding stage. Pixels estimates from the first stage are reorganized into

their corresponding positions in the image. The same data acquisition process is

performed on the first stage image estimates using d values of the second stage.

The final stage produces one final estimate for each pixel. The estimates are

regrouped to produce a final estimate of the denoised image. The total time for

denoising an image depends on its size. The computer used in our work is a laptop

equipped with a 4-core Intel R© CoreTM i7-3610QM CPU @ 2.30 GHz per core. The

average time required for denoising of an 128× 128 image was approximately 15

s. Time grows linearly with the number of pixels, i.e. a 256× 256 image requires

approximately 15 s × 4 = 60 s.
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4.3 Results

Results obtained for various noise levels and distributions indicate that our method

can outperform the current state-of-the-art denoising methods provided the algo-

rithm is given enough training time and samples, under the condition of reasonable

training time. The longest training time we encountered was less than 10 hours.

Because our method allows optimizing performance for specific applications while

maintaining good generalizing ability, datasets need only be on the order of hun-

dreds of thousands training samples. We first perform a time comparison to find

out how much training time it takes our system to achieve comparable results with

the benchmark MLP from [72] and BM3D. We then apply our method to denoising

MRI images with Rician noise and compare our results under different noise levels

with BM4D and TV. We also apply our method to denoising images under ar-

bitrary noise including multiplicative and additive components for different noise

levels. Finally, we apply our method to real MRI data and compare our results to

an array of MRI denoising algorithms. In order to keep comparisons consistent,

we use implementation demos provided by each group for their algorithm on their

website. Links for each method can be found in the reference section. Note that as

our approache is learning-based, noise estimation is not explicitly required by our

method. In practical applications, learning-based denoising approaches implicitly

learn the noise distribution for the specific application from training data and do

not require a separate noise estimation step. When a learning-based approach

is used for general denoising, a database for different noise levels is created and

noise estimation methods are considered at that point, however this is outside the

scope of this paper.
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4.3.1 Time comparison with benchmark MLP and BM3D

A demo for the BM3D method is provided by [62] which can be downloaded at

the URL [73]. The demo provided by [72] contains weights for an MLP that was

trained for 1 month on a GPU system to denoise images with pixel values in the

range [0, 255] contaminated by AWGN of standard deviation 25 (in units of the

pixel range). The demo for the MLP method can be downloaded at the URL [74].

We applied our MC-MLP method to denoise an MRI image after adding AWGN

with equivalent standard deviation to the one provided by the MLP method of [72]

and measured the time it takes to train our system to achieve comparable results.

Given that our method uses 7 copies, we use a standard deviation of 25
√

7 for the

AWGN introduced to each copy as shown in (4.10),

Xt(ω) = Yt + 25
√

7Γt(ω), (4.10)

where the probability measure P is defined as follows: Γt is a zero-mean Gaussian

random field which is spatially uncorrelated in the sense that Γt is independent of

Γu whenever t 6= u. Thus, the spatial correlations in Xt, as seen by the denoising

algorithm, are due to the signal Yt only.

We generate 7 copies Xt(ω1), Xt(ω2), . . . , Xt(ω7) with a standard deviation of

25
√

7 and use them as inputs to the MC-MLP algorithm. The individual copies

are averaged to generate one copy with a standard deviation of 25 to be denoised

by the other algorithms. Our method outperformed the MLP from [72] after only

1 hour of training on a standard laptop computer, as compared to 1 month of

training in their case. Our method also outperformed BM3D after only 10 hours

of training. The results are shown in Fig. 4.4.
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4.3.2 Rician denoising comparison with BM4D and TV

BM3D is adapted to Rician noise by using a transform to map it to AWGN and

then perform AWGN denoising. The Rician noise implementation was applied to

volumetric MRI data. This extension to volumetric data is called BM4D. Instead

of grouping similar 2D patches together in 3D blocks, BM4D groups similar 3D

patches in 4D blocks. A demo with a dataset of volumetric MRI brain image is

provided at the URL [75]. A minimum of 9 slices is required for the demo to work.

We apply our method to the same problem and compare its performance on the

same dataset used by the BM4D demo for different noise levels by changing the

value of σ in the Rician noise distribution added to images. Images with Rician

noise are generally defined as shown in (4.11),

Xt(ω) =

√
(YtR + σΓ

(1)
t (ω))2 + (YtI + σΓ

(2)
t (ω))2. (4.11)

where YtR and YtI are the real and imaginary signal components respectively. P is

defined as follows: Γ
(1)
t and Γ

(2)
t are zero-mean Gaussian random fields which are

statistically independent of each other and spatially uncorrelated in the sense that

Γ
(i)
t , i = 1, 2 is independent of Γ

(i)
u whenever t 6= u. Thus, the spatial correlations

in Xt are due to the signal Yt only.

We generated 7 copies for each noise level to be used by our method. Since

BM4D requires 9 slices, we generate 7 noisy copies for 9 adjacent slices to be

denoised by BM4D. Only the last slice is denoised by our method and compared

to BM4D. This provides the BM4D implementation 9 times more data than our

method. To keep the comparison as fair as possible, we resized slices used for

BM4D by a factor of 3 × 3, yielding the same amount of data for each method.

Unlike the case with AWGN, taking the mean of copies with Rician noise distribu-

tion does not produce a Rician noise distribution. Instead, we performed BM4D

separately on each copy and took the average of all the outcomes.
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For further validation, we also compared our method to a TV implementation

for Rician noise provided by Center of Domain Specific Computing (CSDC) at

UCLA [76]. (Fig. 4.5) and (Fig. 4.6) show results for low and extreme noise

levels, respectively. Results from all noise levels are summarized in (Fig. 4.7).

According to all three metrics used here, peak signal to noise ratio (PSNR), feature

similarity (FSIM) and mean structural similarity (MSSIM), our method displayed

superior performance across all noise levels. But aside from these metrics, the

best assessment is the ability to identify specific anatomical features. It is clear by

comparing (say) (Fig. 4.6) j to (Fig. 4.6) h or (Fig. 4.6) i that our method preserves

the anatomical features whereas competing algorithms merely smooth and blur out

important details. In particular, the gray to white matter contrast remains clearly

defined with our denoising method. From a clinical point of view, this property

is most important. Our method is able to depict much of the layering cortex

whereas information is lost in the images from competing algorithms (Fig. 4.6) h

and i compared to the original image (Fig. 4.6) g, for example, in the dark signal

regions in the inner surface of the sulcus. These results demonstrate the ability of

our method to capture finer features than conventional denoising algorithms are

able to.

4.3.3 Noise with a multiplicative component

In this test, we demonstrate the ability of our method to perform in the presence

of multiplicative noise. We applied our method to denoising MRI images of a

cherry tomato contaminated by the noise distribution of (4.12),

Xt(ω) = σ1Γ
(1)
t (ω)(Yt + σ2Γ

(2)
t (ω)), (4.12)

where P is defined as follows: Γ
(1)
t and Γ

(2)
t are zero-mean Gaussian random fields

which are statistically independent of each other and spatially uncorrelated in the
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sense that Γ
(i)
t , i = 1, 2 is independent of Γ

(i)
u whenever t 6= u. Thus, the spatial

correlations in Xt are due to the signal Yt only.

We tested our method with different noise levels by varying the value of σ2.

Since we are not aware of other methods designed for this type of noise, we com-

pared the results of our system to the mean value of the noisy copies. The latter

approach is the most commonly used method for reducing noise in experiments.

The results are shown in (Fig. 4.8). By comparing (Fig. 4.8) c to (Fig. 4.8) b

[relative to the reference image, (Fig. 4.8) g, it is clear that the method does a

very good job at removing the noise even under conditions of extreme noise.

4.3.4 Application to MRI images with real noise

So far we have evaluated the performance of the algorithm using MRI images

that were contaminated by noise, as is common practice when evaluating novel

denoising algorithms. This enabled us to select the noise distribution and type.

In this section, we collected noisy MRI data sets and evaluated the denoising

performance of our algorithm against a wide variety of high-performance denoising

algorithms. The nature of the noise was not known a priori. Noisy MRI data

was obtained using a spin-echo imaging pulse sequence with different repetition

times (TR) to alter the SNR. All measurements were performed on a 9.4 T vertical

bore Varian VNMRS micro-imaging system, using a 40 mm-i.d. imaging probe.

The imaging parameters were: TR = 100 ms for noise level 1, 50 ms for noise

level 2, TR = 30 ms for noise level 3 (Fig. 4.9), and 2000 ms for the high SNR

original image (Fig. 4.10). TE = 19 ms for all noise levels (Fig. 4.9), and TE =

18 ms for original image (Fig. 4.10). Matrix size = 512 × 512, and field of view

(FOV) = 45 mm × 30 mm. We compared our method to BM4D, TV,adaptive

non-local means filter [77] (AONLM), adaptive multiresolution non-local means

filter [78] (ONLM), optimized blockwise Rician non local means filter [79, 80, 81]

(ORNLM), oracle-based 3D discrete cosine transform filter [82] (ODCT), and
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Table 4.1: PSNR, FSIM, and MSSIM values corresponding to each image in

(Fig. 4.9).
1Copy Mean MC-MLP BM4D TV ORNLM AONLM ONLM ODCT PRINLM

Noise Level 1

(PSNR,

FSIM,

MSSIM)

17.95,

0.72,

0.09

20.61,

0.87,

0.33

26.13,

0.93,

0.81

22.56,

0.92,

0.79

25.82,

0.92,

0.78

25.78,

0.90,

0.70

23.07,

0.90,

0.73

25.71,

0.90,

0.71

23.13,

0.89,

0.71

24.01,

0.92,

0.78

Noise Level 2

(PSNR,

FSIM,

MSSIM)

14.02,

0.57,

0.04

16.46,

0.72,

0.09

21.71,

0.85,

0.70

19.50,

0.85,

0.58

19.48,

0.79,

0.42

20.77,

0.76,

0.41

19.25,

0.76,

0.37

21.15,

0.76,

0.44

19.17,

0.78,

0.47

20.30,

0.85,

0.52

Noise Level 3

(PSNR,

FSIM,

MSSIM)

12.95,

0.53,

0.03

13.85,

0.58,

0.04

19.39,

0.78,

0.60

17.81,

0.76,

0.33

16.73,

0.60,

0.12

18.33,

0.76,

0.31

16.54,

0.54,

0.11

18.28,

0.54,

0.18

16.54,

0.63,

0.26

17.06,

0.78,

0.33

prefiltered rotationally invariant nonlocal means filter [82] (PRINLM). Our MC-

MLP algorithm outperformed all other methods in terms of all the metrics used

(PSNR, FSIM, and MSSIM) for quantification. The results are shown in (Fig. 4.9)

and in Table 4.1.

4.4 Conclusion

We presented a feature-preserving image denoising algorithm in which a nonlin-

ear filter is designed using a hierarchical multistage system of MLPs. From the

point of view of conventional metrics (PSNR, FSIM, MSIM), the algorithm out-

performs state-of-the art methods from low to high noise levels, and can handle

both additive and muliplicative noises, including Gaussian and signal-dependent

Rician nosies. For moderate to low noise levels, competing algorithms are limited

to special cases where the known noise distribution meets narrow criteria. Our

approach is general and is applicable to situations with arbitrary noise distribu-

tions and can even operate under extreme noise levels. It can also be used in

situations where the noise distribution is not known, where it can still learn to

model it from experimental data.

The filtering is computationally efficient and shows that multiple copies of
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the same image enable more effective noise removal with better preservation of

anatomical features. Competing denoising algorithms tend to smooth images to

the point where important anatomical details are lost. There are several possible

scenarios in which our method could be applied. One such application is MRI,

where low SNR or low contrast-to-noise ratio situations frequently arise. Namely,

with low-field MRI, MRI of lower sensitivity nuclei (such as 23Na or 31P), diffusion

tensor imaging in the presence of strong diffusion gradients, MR spectroscopy

of metabolites at low concentrations or functional MRI. Other scenarios could

include x-ray, position emission tomography and ultrasound imaging. Our method

could also be applied to video data using neighboring frames provided that the

motion is not too large or that motion tracking is used. We have shown that as

little as 7 copies are required for good performance, making the method practical

in terms of data acquisition times, as low-SNR situations generally require far

more than 7 signal averages.
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Figures

Figure 4.1: System design for the MC-MLP denoising algorithm as implemented

by multiple stages.
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Figure 4.2: Example of the evolution of the noise distribution after a denoising

stage.

Here (left) the Gaussian input noise distribution is very different from the

(right) noise distribution after the first denoising stage.

Figure 4.3: Multiple stage training allows for using smaller patches at each stage.

Here, a 17× 17 patch is subdivided into smaller patches which are sent to the

multiple stages of denoising for processing.
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(a) single copy (b) mean of 7 copies (c) original image

(d) MLP (e) BM3D (f) MC-MLP

Figure 4.4: Comparison of MC-MLP with MLP and BM3D after 10 hours of

training at noise level σ = 25.

The goal here is to demonstrate computational efficiency of MC-MLP as

compared to MLP, by measuring the training time required to obtain similar

performance as BM3D. (a) Noisy image (1 copy). PSNR: 11.723 dB. FSIM:

0.450. MSSIM 0.135. (b) The average of 7 copies. PSNR 20.242 dB. FSIM:

0.687. MSSIM 0.425. (c) Original (ideal) image with high SNR used as the gold

standard for comparison. (d) MLP method applied to average of the 7 copies.

PSNR 30.615 dB. FSIM: 0.922. MSSIM 0.869. (e) BM3D method applied to

average of the 7 copies. PSNR 31.228 dB. FSIM:0.933. MSSIM 0.908. (f)

Denoising using the MC-MLP method with 7 copies. PSNR 31.242 dB.

FSIM:0.936. MSSIM 0.919.
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(a)TsingleTcopy (b)ToriginalTimage (c)TBM4DTdenoised (e)TMC-MLPTdenoised

(f)TmeanTofT7Tcopies (g)ToriginalTimage
(zoom-in)

(h)TBM4DTdenoised
(zoom-in)

(j)TMC-MLPTdenoised
(zoom-in)

(d)TTVTdenoised

(i)TTVTdenoised
(zoom-in)

Figure 4.5: Comparison of MC-MLP with BM4D and TV methods (σ = 20).

(a) Noisy image (1 copy). PSNR 13.378 dB. FSIM 0.658. MSSIM 0.073. (b)

Original (ideal) image with high SNR used as the gold standard for comparison.

(c) BM4D method applied to each of the 7 copies. The average of 7 denoised

copies is shown. PSNR 28.789 dB. FSIM 0.894. MSSIM 0.804. (d) TV method

applied to each of the 7 copies. The average of 7 denoised copies is shown.

PSNR 21.793 dB. FSIM 0.896. MSSIM 0.703. (e) Denoising using the MC-MLP

method with 7 copies. PSNR 33.314 dB. FSIM 0.951. MSSIM 0.907. (f)

Signal-averaged image corresponding to the mean of 7 copies. PSNR 16.718 dB.

FSIM 0.832. MSSIM 0.273. (g) Close-up on the lower left quadrant of (b) (h)

Close-up on the lower left quadrant of (c). (i) Close-up on the lower left

quadrant of (d). (j) Close-up on the lower left quadrant of (e).
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(a)TsingleTcopy (b)ToriginalTimage (c)TBM4DTdenoised (e)TMC-MLPTdenoised

(f)TmeanTofT7Tcopies (g)ToriginalTimage
(zoom-in)

(h)TBM4DTdenoised
(zoom-in)

(j)TMC-MLPTdenoised
(zoom-in)

(d)TTVTdenoised

(i)TTVTdenoised
(zoom-in)

Figure 4.6: Comparison of MC-MLP with BM4D and TV methods (σ = 70).

(a) Noisy image (1 copy). PSNR 1.863 dB. FSIM 0.373. MSSIM 0.005. (b)

Original (ideal) image with high SNR used as the gold standard for comparison.

(c) BM4D method applied to each of the 7 copies. The average of 7 denoised

copies is shown. PSNR 20.658 dB. FSIM 0.743. MSSIM 0.594. (d) TV method

applied to each of the 7 copies. The average of 7 denoised copies is shown.

PSNR 18.647 dB. FSIM 0.708. MSSIM 0.486. (e) Denoising using the MC-MLP

method with 7 copies. PSNR 22.678 dB. FSIM 0.806. MSSIM 0.652. (f)

Signal-averaged image corresponding to the mean of 7 copies. PSNR 3.523 dB.

FSIM 0.560. MSSIM 0.030. (g) Close-up on the lower left quadrant of (b) (h)

Close-up on the lower left quadrant of (c). (i) Close-up on the lower left

quadrant of (d). (j) Close-up on the lower left quadrant of (e).
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Figure 4.7: PSNR and MSIM comparison of MC-MLP with BM4D method for

different noise levels (σ = 20, 40, 60 and 70).

(a) single copy (b) mean of 7 copies (c) MC-MLP

(d) single copy (e) mean of 7 copies (f) MC-MLP

(g) original

Figure 4.8: Comparison of MC-MLP with mean for arbitrary noise including

multiplicative component.

(a) Noisy image (1 copy) σ2 = 50. (b) The average of 7 copies (σ2 = 50). PSNR

13.82 dB. FSIM 0.37. (c) Denoising using the MC-MLP method with 7 copies

σ2 = 50. PSNR 26.88 dB. FSIM 0.87. (d) Noisy image (1 copy) σ2 = 10. (e) The

average of 7 copies (σ2 = 10). PSNR 26.52 dB. FSIM 0.79. (f) Denoising using

the MC-MLP method with 7 copies σ2 = 10. PSNR 33.77 dB. FSIM 0.95. (g)

Original (ideal) image with high SNR used as the gold standard for comparison.
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Figure 4.9: Comparison of MC-MLP algorithm with several MRI denoising meth-

ods

Methods compared: (BM4D, TV, ORNLM, AONLM, ONLM, ODCT, PRINLM)

applied to a T1-weighted image of a cherry tomato acquired on a Varian 9.4 T

microimaging system using a spin-echo imaging sequence. Different noise levels

(noise level 1, 2 and 3) were created by adjusting the TR (repetition time) value

in the pulse sequence. The performance of each denoising algorithm is evaluated

using the performance metrics of PSNR, FSIM, and MSSIM and the values are

given in Table 4.1. The MC-MLP algorithm outperformed other methods for all

noise levels, according to all performance metrics. A high SNR image of the

cherry tomato is shown in (Fig. 4.10) for comparison. The salient feature of our

algorithm is that not only the SNR of the denoised image is higher, even under

conditions of extreme noise levels, but the features of the image are preserved as

opposed to blurred out, as is the case for conventional algorithms.

Figure 4.10: High resolution MRI image of the cherry tomato.

Used for evaluating denoising performance of the results of (Fig. 4.9).
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CHAPTER 5

Engineering Flow Fields in Bioreactor Scaffolds

5.1 Introduction

Regenerative medicine aims to produce fully functional tissue for implantation,

often in an ex vivo setting, for purposes of replacing or regenerating organs. A

common TE protocol is to seed cells into pre-determined tissue scaffolds, adjust

the physical conditions such as flow rate, nutrients and growth factors, and then

measure cell response. In recent years, the role of mechanical forces, such as shear

stress, has been recognized in the context of regulating proliferation, migration

and morphogenesis [83, 84, 85, 86, 87, 88]. Consequently, considerable efforts

have been devoted to tailoring shear stress distributions arising from flow fields

applied to bioreactors as a means to study the cellular response due to spatial

gradients [18, 19, 20, 21, 22]. The state of the art approach involves creating

materials with local porosity gradients [23, 24, 25, 26, 19, 20, 27, 28]. While this

approach is suitable for setting initial conditions in a scaffold at the expense of

high material complexity, it fails to accommodate the dynamical aspect where

different stages of development lead to changes in the material properties.

Herein, we present a general methodology to control mechanical forces inside

bioreactors both in space and in time. Advantages include the creation of complex

flow fields and the possibility of real-time control in response to cell growth without

altering the composition or structure of the scaffold material itself. Arbitrary flow

fields are generated by individually adjusting inlet pressures to a multiple-inlet
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bioreactor, generating various mechanical force distributions in a single scaffold.

Real-time control can be achieved by employing this flow control strategy in a

feedback control loop guided by non-invasive imaging. The spatial distribution of

mechanical forces can be altered on demand by dialing-in the appropriate inlet

pressure at various inlets, thereby offering flexible means of dynamic control that

can adapt to structural changes.

Our approach operates in two phases. The first phase is virtual: a multilayer

perceptron (MLP) is trained to learn the nonlinear relationship between flows ap-

plied at the bioreactor’s inlets and the shear rate maps resulting in the scaffold.

The MLP was trained with examples obtained from computational fluid dynamics

(CFD) simulations that estimate patterns of flow and shear rate based on known

material properties, namely fluid permeability and porosity [44, 20]. A set of inlet

flow speeds is found that can be dialed-in to produce a desired shear rate distribu-

tion in the scaffold. The second phase is experimental, involving the selection of

target shear rate maps, application of the required inlet pressures to generate this

map, followed by experimental verification of the flow field through non-invasive

measurements of flow velocity. The design and construction of a 10-inlets biore-

actor is shown in (Fig. 5.1). The bioreactor is made of non-magnetic materials for

compatibility with a nuclear magnetic resonance (NMR) environment where maps

of fluid velocity [36] were generated inside the reactor. From the flow maps, we

calculated the shear rate distributions using finite-difference approximations [89].

This provides an estimate of interstitial flows in the porous scaffold matrix. NMR

is the method of choice to probe material properties of opaque media in a non-

invasive manner. Namely, it can be used for investigating the hydrodynamic

properties of biomaterials through measurements of shear rate, hydraulic pressure

and fluid permeability, as demonstrated in recent studies [49, 89].
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5.2 Materials and methods

5.2.1 10-channel bioreactor design.

A bioreactor possessing 10 input channels and one output channel was designed to

test our method, as shown in (Fig. 5.1). Inlets are distributed around a chamber

that holds a 3 mm-thick scaffold. There are 3 inlets at a 45◦ angle on each

side, 4 inlets at the bottom and 1 output channel at the top. (Fig. 5.1) a and

b show the CAD drawings of the bioreactor design. (Fig. 5.1) c and d show

the actual bioreactor, and (Fig. 5.1) e shows the fully-assembled bioreactor. The

bioreactor and its parts were made of NMR-compatible materials such as PTFE.

The bioreactor is designed to fit in a 40 mm-i.d. NMR imaging probe. Inlets

are connected to current-controlled mini proportional valves (Kelly Pneumatics,

Inc., Costa Mesa, CA). A programmable current regulating circuit was designed

to receive commands from a computer program to set the current value at each

valve. This enabled computer controlled flow speeds at each inlet. A cellulose

scaffold with high porosity (∼ 90%) was used and experiments were performed

using water as the input fluid.

5.2.2 Adaptive control algorithm.

Our algorithm consists of a fast search method designed to guide a MLP to perform

an initial estimation of required inlet speeds using CFD simulations, by learning

the nonlinear relationship between inlet flow speeds and target parameters. The

scaffold was treated as a grid with nine equal regions. The algorithm was config-

ured to create shear rate patterns by simultaneously controlling shear rate mean

values in these regions. Thus, the problem in our case involves ten inlets and

nine parameters. The system design diagram is shown in (Fig. A.1). A descrip-

tion of the algorithm, pseudo code and a table of main parameters are available

in (App. A). Parameter values can be adjusted depending on the application
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requirements.

5.2.3 CFD shear rate simulation.

Finite element analysis software COMSOL Multiphysics (COMSOL Inc., Burling-

ton, MA) was used to solve Navier-Stokes equations for incompressible Newtonian

laminar flow with no slip boundary conditions:

ρ(U · ∇)U = ∇ · [−P + ν(∇U + (∇U)T ))]− ρG, ρ∇ ·U = 0, (U = 0 at walls).

U denotes the velocity vector field (m·s−1), P is the pressure (Pa), ρ is density

(kg·m3) and ν is the dynamic viscosity (Pa·s). The term ρ · G takes gravity into

consideration, where G is the gravitational acceleration (m·s−2). At the inlets, we

set U = Uin according to the input speed determined by the algorithm. No viscous

stress (P = P0) boundary condition was selected at the outlet. The velocity field

is obtained by solving the Navier-Stokes equation. Shear rate ς (s−1) is then

calculated as a function of the velocity field using finite difference approximations

of ς = (∇U +∇UT )/2. Shear stress τ (Pa) is obtained by multiplying shear rate

values with dynamic viscosity, i.e. τ = νς.

5.2.4 NMR shear rate measurement.

The pulse sequence for the NMR imaging experiment is shown in (Fig. A.3). A

standard spin-echo imaging experiment with slice-select (S.S.), readout (R.O.),

and phase-encode (P.E.) gradients was modified to include phase-contrast ve-

locimetry as in refs. [49, 89]. To generate 2-D images, the sequence is repeated

n times while looping of the P.E. gradient. Flow-compensation (F.C.) gradients

were added along all directions except the P.E. direction. Bipolar, trapezoidal

flow-weighting (F.W.) gradients are added along the x, y, and z directions in

order to select the gradient first moment M1. In the case of no flow, stationary

nuclear spins experience the positive and negative lobes of the bipolar F.W. gra-
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dient with the same magnitude. For stationary spins, the phase accumulation

from the positive lobe is equal and opposite to the phase accumulation from the

negative lobe, resulting in zero net phase accumulation. For moving spins, phase

cancellation is incomplete [36] and the residual phase accumulation is propor-

tional to velocity. Pulse sequence parameter values are listed in Supplementary

Methods.

5.3 Results

A variety of shear rate maps were studied; two examples of spatial patterns are

shown in (Fig. 5.2). (Fig. 5.2) a shows a non-trivial pattern whereas (Fig. 5.2)

d shows a uniform pattern. CFD simulations of flows within the scaffold of the

bioreactor were performed and the results are shown in (Fig. 5.2). The first

simulation (Fig. 5.2) a−c was used to test the algorithm’s ability to find inlet

flow speeds in the case of a complex shear rate distribution. The pattern consists

of a non-linear gradient featuring low shear rates in the lower right hand corner

juxtaposed against a high shear rate region located in the upper left hand corner

(Fig. 5.2) a and b. Along the path connecting these two corners, the shear rate

values range from 0 s−1 to 6 s−1. The convergence plot (Fig. 5.2) 2c demonstrates

that the algorithm converged to a reasonable solution in less than 25 iterations,

and found an accurate solution in less than 50 iterations.

The second simulation (Fig. 5.2) d−f was designed to test the algorithm’s

ability to adapt to changes. The algorithm was required to find inlet flow speeds

to generate a uniform shear rate distribution (shown in (Fig. 5.2) d). The target

shear rate value was originally set to 10 s−1. After 100 iterations, the algorithm

converged to a solution for the 10 s−1 value. At that point, the target shear

rate value was changed to 11 s−1 and the convergence speed to the new value

was assessed. The convergence plot (Fig. 5.2) f shows that the algorithm quickly
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adapts to the new value (Fig. 5.2) e, where only a small number of iterations were

required to find a new solution. This simulation also illustrates the algorithm’s

ability to generate a highly uniform shear rate distribution. It is generally difficult

to create a uniform shear rate distribution in a bioreactor with only a single inlet;

but with 10 inlets excellent results could be obtained. Shear rate values in the

scaffold varied between 10 s−1 and 12 s−1, when the target value selected was

11 s−1.

Experimental validations were conducted by comparing shear rate distribu-

tions from simulations with actual shear rate distributions measured experimen-

tally using the technique of NMR velocimetry [36, 49, 89]. Three different complex

shear rate distributions generated in the same scaffold are shown in Fig. 3, along

with the corresponding maps of shear rates as measured experimentally. We ob-

served excellent agreement between theory and experiments. This demonstrates

that the 10-inlet bioreactor design possesses the ability to dynamically generate

versatile and complex mechanical force distributions within a scaffold, where the

spatial distributions of shear rate values within the scaffold region can be altered

to generate arbitrary patterns by merely changing inlet flow speeds.

5.4 Discussion

Tissue engineering studies of the effects of shear flows have been hampered by the

lack of suitable platforms to control flow fields. Previous attempts at controlling

mechanical forces were limited to altering the scaffold structure and bioreactor

geometry. Most bioreactors used to date have been designed to operate with a

single inlet. Parameters such as perfusion rate, flow, and mechanical stress are

typically selected by trial-and-error. Even then, due to many sources of variability,

a protocol that works to bring a particular construct to a desired stage may likely

fail to work for another construct [29]. Thus, the importance of adaptive control
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with feedback. Given a feedback mechanism, many possible solutions, e.g., single

parameter control, or a proportional-integral-derivative controller, may exist for a

single-inlet bioreactor. However, a single inlet does not permit fine tuning of the

flow field at the microscale, which is an essential element for the study of cellular

responses to flow. Bioreactors with multiple inlets, such as the one presented

herein, reduce the need for engineering the scaffold material properties, may alle-

viate manufacturing complexity while enabling the creation of more accurate and

complex flow fields. Spatiotemporal control of mechanical force distributions in

scaffolds can be used to dynamically control the bioreactor for applications in TE.

Because the relationship between shear maps and inlet pressure is highly non-

linear, the task of finding a set of inlet pressures to generate a desired flow pat-

tern in a 10-inlets bioreactor is a complex adaptive control problem possessing

no known analytical solutions. Thus, the adaptive control algorithm presented

herein constitutes a crucial part of our approach. The algorithm, whose imple-

mentation is described in the Supplementary Methods section, demonstrates high

efficiency, as it converges to a solution with a small number of iterations. Further-

more, it can learn complex input/output relationships between inlet flow speeds

and mechanical force distributions, which gives it the ability to quickly adapt to

changes.

5.5 Conclusions

The concepts presented here are general and could be applied to controlling any

other force field, or the flow of substances (e.g., nutrients, gases). Although not

demonstrated here, scaffold structure, bioreactor geometry and inlet positions

can easily be included as additional parameters to be optimized along with inlet

speeds. The extension to 3-D should be straightforward because it does not require

a redesign of the algorithm. An interesting open question would be to verify what
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shear rate distributions lead to tissue development in a bioreactor scaffold beyond

initial stages of cell growth. A possible extension of this work to provide additional

control of the flow patterns would be to add multiple outlets to the bioreactor;

outlets add more degrees of freedom to the problem where pressure can be released

locally.
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Figure 5.1: Ten-inlet bioreactor design

(a) CAD drawing, bottom part; (b) CAD drawing, top part. Construction: (c)

Actual reactor, bottom part; (d) Actual reactor, top part; (e) Fully assembled

10-inlet bioreactor. Fluid region: (f) Proton density NMR image showing the

fluid region; (g) Corresponding CFD simulation. The inlets are labeled in (g) for

use in (Fig. 5.2) and (Fig. 5.3). In (f) ad (g) the yellow box indicates the region

shown in (Fig. 5.3).
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Figure 5.2: Inverse problem solved by multi-layer perceptron.

Results from CFD simulations are shown: (a) Desired target shear pattern; (b)

Outcome of applying input flow speeds calculated to generate the pattern shown

in (a), rounded to the nearest 0.05 mm/s from inlet #1 to inlet #10 are: [0.50,

0.45, 0.40, 0.15, 0.30, 0.40, 0.80, 1.40, 0.60, 1.20] mm/s, respectively; (c)

Convergence plot with the y-axis corresponding to the cost function and x-axis

corresponding to iteration number; (d) Uniform shear rate pattern at 11 s−1; (e)

Outcome of applying input flow speeds calculated by algorithm to generate the

pattern shown in (d), rounded to the nearest 0.05 mm/s from inlet #1 to inlet

#10 were: [0.00, 0.05, 1.70, 1.95, 3.90, 2.75, 3.50, 0.05, 1.20, 0.00] mm/s,

respectively; (f) Convergence plot with y-axis corresponding to the cost function

and x-axis corresponding to the iteration number.
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Figure 5.3: Validation of CFD results by NMR flow maps.

Results from NMR velocimetry (a) and CFD simulation (b) for the case where

all inlets have same flow speed of 1 mm/s. (c) & (d) are NMR and CFD

simulation results, respectively, where inlets [3, 8, 9 & 10] have a flow speed of

1.5 mm/s, and inlets [1, 2, 4, 5, 6 & 7] have zero flow speed. (e) & (f) are NMR

and CFD simulation results, respectively, where inlets [4, 5, 8, 9 & 10] have zero

flow speed, inlets [6 & 7] have a flow speed of 1 mm/s, and inlets [1, 2 & 3] have

a flow speed of 0.5 mm/s.
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CHAPTER 6

Future Directions

6.1 Introduction

Contributions presented herein will be integrated with work of other people in

the group to ultimately reach the overall goal of growing complex organoids with

proper vascularization. Experiments and simulations conducted so far concern

flow and tissue mapping as well as flow control. In future work, the real-time

information about the state of the tissue growth will be extended by adding cell

growth to the process. Optimization experiments can be modified to use infor-

mation from real-time images of tissue growth. Our group have developed quan-

titative MRI cell and tissue mapping readouts based on measurements of the T2

relaxation time. This information can be included to develop real-time metabolic

imaging readouts based on 13C-labeled glucose NMR spectroscopy measurements.

With tissue and metabolic information, the optimization will maximize metabolic

activity throughout the bioreactor by controlling the temporal and spatial distri-

butions of flow and nutrient inputs and adjusting these inputs as needed, based

on real-time readouts.

Some projects currently in progress that extend the work presented in this

dissertation are briefly discussed here, and some initial results are displayed.
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6.2 Noise Estimation

A noise estimation method has been developed based on the MC-MLP algorithm

presented in chapter 4. With learning based algorithms, training data can be

prepared such that the performance is optimal for a noise distribution at a specific

noise level. The high accuracy and robust performance of MC-MLP allows the

implementation of an accurate noise estimation method. The method is explained

here using Rician noise as an example.

A noise range is specified and divided into intervals of several noise levels. A

separate MC-MLP is trained for each noise level, using an artificial noise distribu-

tion accurately generated for the specific noise level. In the Racian noise example

presented here, a separate MC-MLP is trained with noise generated using (4.11)

for σ values between 15% and 40%, more specifically: σ ∈ {15, 17, 20, 22, 25, 27, 30,

32, 35, 37, 40}.

The key for this method lies in finding a way to measure the performance of a

MC-MLP trained on a specific noise level when used to denoise an image. This is

achieved using the following steps; 1, The image is denoised. 2, The denoised im-

age is subtracted from the original image to produce the estimated noise removed

by the MC-MLP. 3, the distribution of the estimated noise is compared to a Rician

noise distribution generated using a σ value similar to the one used to train the

MC-MLP. 4, A distance measure is produced by calculating the absolute value

of the difference between the standard deviations of the estimated and generated

noise distributions. The MC-MLP that yields the smallest distance corresponds

to the noise level closest to the noise in the image.

In practice, only a small section of the image needs to be evaluated to speed

up the process, it is unnecessary to denoise the entire image. To further speed

up processing time we do not measure the distance for each noise level, binary

search is used instead. (Fig. 6.1) demonstrates the steps taken by the method to
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estimate the noise of an image contaminated with Rician noise with σ = 20.

6.3 1D denoising

Suppose we have an NMR Free Induction Decay signal (FID) signal f with additive

ξ and multiplicative η noise as in (6.1). ω denotes a specific realization of the

random process, and t denotes time. We drop both t and ω from the notation

and consider a fixed moment in time t. Solving for f we get (6.2). The goal is to

find an estimator f̂ for f such that the SNR of the spectrum, defined in (6.3), is

maximized.

s(t, ω) = η(t, ω)f(t) + ξ(t, ω) (6.1)

f =
s− ξ
η

(6.2)

SNR =

∑
|FFT (f)2|∑(

|FFT (f)− |FFT (f̂)|
)2 (6.3)

A 1D version of the the MC-MLP algorithm is being developed and customized

to NMR spectrum denoising. It will be used to speed up metabolic imaging

readouts and allow real-time feedback, by greatly reducing the number of copies

needed for a clear signal. The additive noise component can be estimated from

the tail of the FIDs. The problem lies in estimating the multiplicative noise. The

MC-MLP method is a perfect candidate for this problem. A number of FIDs

with spectrums of varying peak widths and heights are used to train the MLPs.

Additive noise, with a distribution similar to the one estimated from the tail of

the measured FIDs, is added to the training FIDs where multiple noisy copies of

each signals are generated. The MLPs are trained to estimate the actual values of

data points in an FID spectrum given information from multiple copies exposed

to additive noise. The measured signal containing multiplicative noise appears to
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the MLPs as a distorted variation of the data it was trained to recognize. The

robustness of the MC-MLP method allows denoising the multiplicative component

without the need of an explicit knowledge of its distribution.

Initial results from simulations and real data are shown in (Fig. 6.2) and

(Fig. 6.3) for simulated and experimentally acquired data respectively.

6.4 3D denoising

A 3D version of the MC-MLP algorithm is being developed for denoising volu-

metric data. This will be used to help extend the methods presented herein to 3D

measurements and optimization by speeding up acquisition and allowing real-time

readouts. A collaboration with a sodium imaging group has been made to test the

algorithm. 23Na is an insensitive nucleus in MRI imaging characterized with poor

SNR. The challenge in the case of sodium imaging lies in the difficulty to obtain a

clean sodium image for training the algorithm. Thus, a more careful preparation

of training data is needed. Such situations in general, i.e. when original clean

sample images are not available for training, are approached by using images with

low level/general features such as simple curves and edges. This ensures that

the algorithm is not optimized for anatomical features not present in the type of

images its used for denoising.

Although 3D training has not been implemented yet, initial results using 2D

training for denoising volumetric images, one slice at a time, are already encour-

aging. Some initial results are displayed in (Figs. 6.4, 6.5 and 6.6), where perfor-

mance is further enhanced using a technique we call multi-directional denoising.

A 3D volumetric image can be traversed slice by slice along each of its three axis.

In brain imaging notation, this allows viewing slices in the sagittal, axial, and

coronal planes. Thus, each voxel in the volume is shared by three planes with

the exception of voxels on the edges, these can be dealt with using zero padding.
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The idea behind the multi-directional denoising technique is that by denoising the

slices along the three axis each voxel is denoised three times, where the mean of

the three results is then calculated.

The initial results demonstrate clear superiority of MC-MLP in terms of SNR.

However, this is still a work in progress. We have not yet determined the anatom-

ical advantage of our algorithm at this stage. Sodium imaging highlights special-

ized anatomical features that need to be carefully interpreted by sodium imaging

experts. There is still a lot of room for improvement in implementing MC-MLP

for 3D denoising.
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Figure 6.1: Binary search steps.

Noise levels checked by the binary search in the order visited from left to right.

A comparison between the noise distribution of noise obtained from a MC-MLP

denoising and the expected noise for the corresponding σ is shown for each level.

d is a distance measure that indicates how close the two noise distributions are.
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Figure 6.2: Simulation results.

Number of copies: 100. MC-MLP/Apodization SNR: 6.7. MC-MLP/Mean SNR:

16.3.

Figure 6.3: Real data results.

Number of copies: 200. MC-MLP/Apodization SNR: 21.8. MC-MLP/Mean

SNR: 21.9.
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Figure 6.4: Sample mean of 7 sodium MRI recordings.

All sodium images acquired with FLORET sequence at 7T on brain with

15-channel coil, and reconstucted with regridding and sum-of-square of the 15

channels. Real (Nyquist) resolution for data acquisition = 3 mm isotropic =

nominal (reconstructed) resolution = 3 mm isotropic (96x96x96 voxels for FOV

288x288x288 mm). Resized to 255x256x256 voxels. Sodium MRI images courtesy

of Dr. Guillaume Madelin @ NYU. Plotted using BrainSuite software [90]
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a

Figure 6.5: MC-MLP 3D denoising

MC-MLP algorithm denoising of (Fig. 6.4). Axial, sagittal, coronal and 3D

views are shown for the denoised sample. Plotted using BrainSuite software [90]
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Figure 6.6: Removed noise.

Absolute difference of The MC-MLP denoised results and the mean. Plotted

using BrainSuite software [90]
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APPENDIX A

Supplementary Information for Chapter 5

A.1 Supplementary methods

A.1.1 Adaptive control algorithm

The working principle of the search algorithm is illustrated in (Fig. A.1), the

pseudocode is provided in Algorithm 1 below whereas its parameters are listed in

Table A.1. The search algorithm typically starts with an arbitrary shear rate map

specified by the user. Mean values from different regions of the map are fed to

the multi-layer perceptron (MLP) as its input, and the output produced by the

MLP is used to determine the flow speeds of all 10 inlets required to reproduce

the desired target map as closely as possible. A new shear rate map corresponding

to the inlets’ flow speeds generated by the MLP is obtained and compared to the

desired pattern using the cost function ξ of Eq. (A.3). Typically a cost function

that measures the Euclidian distance between a target vector and an evaluated

vector can be used as in Eq. (A.1). Including a Gaussian membership function

as shown in Eq. (A.2) can relax the measurement constraints by allowing a small

margin of error where an approximate measurement is considered acceptable. d

determines the width of the Gaussian function. Using a d value between 2 and 3

“smoothes” the error space, which leads to faster convergence. Finally, in order

to prevent the search algorithm from being biased towards relatively large target

vector components, a normalization is performed by dividing by the target vector

as shown in Eq. (A.3). For example, a target shear rate map can have high

95



variations in shear rate values between different regions. Regions with relatively

high shear rate values will have more weight in the cost function. This can cause

the obtained solution to be less accurate in regions with relatively low shear rate

values. Normalizing as in Eq. (A.3) allows each region to have an equal weight in

the cost function regardless of the target value in that region. When Oj and Tj

are close, the Gaussian function yields a value close to one, and the contribution

of the corresponding measurement to the cost function is small. When they are

far, the Gaussian function yields a value close to zero, and the contribution to

the cost function is large. Oj denotes a measurement (observed value) whereas Tj

denotes the corresponding desired measurement (target value). By measurement

we refer to a mean shear rate value associated with one of the scaffold regions. In

our case, we have partitioned the scaffold into D = 9 regions.

The initial MLP output does not yield an accurate solution. The search algo-

rithm aims to find a solution that is slightly better than the one provided by the

MLP, by following a number of rules to introduce changes to the MLP output as

shown in the pseudocode. The new solution is used to update the MLP weights

as explained in the following section. This guides the MLP to gradually learn the

relationship between the inlets’ flow speeds and the target map after a number

of iterations. The algorithm was validated by applying it to a 2-input control

problem where the convergence path through the error space can be visualized on

a 3D plot. Results from the validation are shown in (Figure A.2).

ξ =

√√√√ D∑
j=1

(Oj − Tj)2 (A.1)

ξ =

√√√√ D∑
j=1

(
Tj − Tje

−(Oj−Tj)
2

2d2

)2

(A.2)
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ξ =

√√√√√ D∑
j=1

(
Tj − Tje

−(Oj−Tj)
2

2d2

Tj

)2

=

√√√√ D∑
j=1

(
1− e

−(Oj−Tj)
2

2d2

)2

(A.3)

Algorithm 1: The control algorithm is described by the pseudo-code below:

1: Initiate MLP inputs

2: Evaluate shear stress map for MLP outputs

3: Compare to target

4: ξb ← ξ

5: ξ1 ← ξ

6: count = 0

7: Reset

8: flag= 0

9: Reset input picking

10: Pick

11: Randomly pick one of the inputs

12: Increase its speed by ds

13: Evaluate shear stress map for resulting input flow speeds

14: if ξ > ξb then

15: Decrease its speed by ds

16: Evaluate shear stress map for resulting input flow speeds

17: if ξ > ξb then

18: goto Check

19: else

20: goto update

21: else

22: update

23: ξb ← ξ
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24: count = 0

25: Update MLP

26: flag = 1

27: Check

28: if All inputs picked then

29: if flag = 1 then

30: goto Reset

31: else

32: count = count + 1

33: if count > bcount then

34: ξb ← ξ

35: count = 0

36: Update MLP

37: goto Reset

38: else

39: Perturb

40: Add random vector multiple of ds to input flow speeds

41: Evaluate shear stress map for resulting input flow speeds

42: if ξ > ξb then

43: goto Perturb

44: else

45: ξb ← ξ

46: count = 0

47: Update MLP

48: goto Reset

49: else

50: goto Pick
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Table A.1: List of the algorithm’s main parameters.

Parameter Description Range Used Value

µ Learning rate µmin:µmax Automated

a Momentum amin:amax Automated

µmin µ lower bound >0 1.00E-06

µmax µ upper bound >µmin 5.00E-02

amin a lower bound >0 1.00E-06

amax a upper bound >amin 5.00E-02

dso Search step size multiplier >0 5.00E-01

ds Search step size: ξ.dso >0 Automated

ξ Cost function value NA Automated

D Number of MLP inputs >0 9

K Number of MLP outputs >0 10

boutput MLP output with current minimum cost NA NA

ξb Current best cost value NA NA

bcount Maximum MLP training epochs for current best output >0 3

d membership function dilatation parameter >0 3

A.1.2 Multi-layer perceptron (MLP)

MLP have been shown to be universal function approximators [56]. A MLP withD

inputs, K outputs, one hidden layer with M nodes yields a K-dimensional output

vector ~̃yt whose k-th component is given by the iterated hyperbolic tangents:

ỹt (k) = tanh

(
M∑
l=0

θ
(2)
l,k tanh

(
D∑
j=0

θ
(1)
j,l xt (j)

))
(A.4)

where

z(l) = tanh

(
D∑
j=0

θ
(1)
j,l xt (j)

)
(A.5)

for which l = 0, . . . ,M are the outputs of the hidden layer. We use the convention

where xt(0) = 1 and z(0) = 1, so that θ
(1)
0,l and θ

(2)
0,k represent biases to the transfer

function. The generalization to arbitrary numbers of hidden layers is straightfor-
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ward by nesting additional hyperbolic tangents. The calculation of the vector ~̃y

is called feed forward propagation.

A MLP with 9 inputs corresponding to the 9 scaffold regions, and 10 outputs

corresponding to the 10 channels is used. Mean values from nine regions of the

shear rate map are stored in a vector denoted by ~xt and used as inputs to a MLP

whose transfer function is a hyperbolic tangent, has 10 outputs corresponding to

the 10 inlets of the bioreactor, and includes two hidden layers with 10 neurons

each. The Back-Propagation with Adaptive Learning rate and Momentum term

method (BPALM) from [58] was used to update the MLP weights. This technique

is suitable in our case since the MLP is trained online one target vector at a

time, and since it offers convergence acceleration as compared to the original back

propagation method proposed by [57] by introducing an adaptive learning rate

and momentum term.

A.1.3 Nuclear magnetic resonance imaging of 10-channel bioreactor

A spin-echo nuclear magnetic resonance (NMR) imaging pulse sequence (Fig. A.3)

was modified for phase-contrast flow velocimetry [36] as in [49, 89] All gradients

except for the phase-encoding (P.E.) gradient include flow-compensation (F.C.).

The F.C. calculations utilize the full trapezoidal shape of the gradient pulse.

Bipolar flow-weighting (F.W.) gradients were added along x,y, and z directions

to select the gradient first moment (M1). With a stationary (no-flow) sample,

the nuclear spins experience the full magnitude of both positive and negative

lobes of the bipolar gradient, resulting in zero net phase accumulation. In the

case of constant-velocity flow, the nuclear spins move during the application of

the two gradients, and phase-cancellation is incomplete, giving a residual phase

proportional to the velocity [36]. Two experiments were performed under flow with

two gradient values +M1 and−M1. M1 is chosen to include the highest anticipated

flow velocity and thus avoid phase wrap-around artifacts. The two experiments
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are subtracted in order to calculate a velocity map. In order to compensate

for gradient non-idealities (e.g. eddy currents and nonlinearities seen during slow

fluid flow in biomaterials), a “flow/no flow” subtraction procedure was utilized; for

each direction of flow, the contribution from non-idealities was subtracted from an

identical experiment performed without fluid flow. The imaging parameters were:

TR = 1 s, TE = 34 ms, 128 × 64 matrix, and field of view (FOV) was 10 cm ×

3 cm. All measurements were performed on a 9.4 T vertical bore Varian VNMRS

micro-imaging system, using a 40 mm-i.d. imaging probe. Shear measurements

were calculated as in [49, 89].
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Figure A.1: System design of the control algorithm.

Multi layer perceptron block (MLP) gets its inputs from shear map

measurements of the scaffold inside the bioreactor, and produces outputs to

update inlets’ flow speeds such that the shear rate map in the scaffold is closer to

the target shear rate map. The MLP training is guided by the search algorithm

that evaluates the MLP performance using the cost function evaluation block

(Cost), and determines the training samples presented to the MLP.
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Figure A.2: 2-input control validation results.

The convergence path shows the search starts at a maxima, avoids getting stuck

in a local minima and finds its way to a global minima in a small number of

steps. (a) 3D plot of the error space. (b) 2D contour projection of the error

space. (c) Convergence plot with y-axis corresponding to the cost function and

x-axis corresponding to the iteration number.
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Figure A.3: NMR imaging pulse sequence.

Slice-selective (S.S.) three-dimensional phase-contrast velocimetry spin-echo

nuclear magnetic resonance (NMR) imaging pulse sequence. In order to get a

2-D image, the sequence is repeated n times while stepping the phase-encode

(P.E.) gradient through the phase-encoding scheme. Bipolar trapezoidal

flow-weighting (F.W.) gradients were added along the x,y, and z directions to

select the gradient first moment (M1). Flow-compensation (F.C) gradients are

added along x and z directions. Additional abbreviations: S.S. slice select

gradient; R.O. read out (frequency encode) gradient.
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APPENDIX B

Code

The code was implemented and tested using MATLAB (Mathworks, Natick, MA)

version R2013a.
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B.1 Genetic Algorithm Function

This function needs to be executed from the optimization toolbox:

solver: ga - Genetic Algorithm

Fitness function: @LBM genSChv3128a5

Number of variables: 18
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function error = LBM_genSChv3128a5(xx) 
tic 
warning off all 
xx = xx - min(xx); 
xx = xx / max(xx); 
goal = 0.5e-5; 
goalprc = 20; 
% %%%%%%%%%%%%%%%%%%%initialize%%%%%%%%%%%%%%%%%   
scl = 2; 
omega=1;  
density=1;  
t1=4/9;  
t2=1/9;  
t3=1/36;  
c_squ=1/3;  
nx=64*scl-1;  
ny=64*scl-1; 
tau = 1/omega; 
viscosity = (tau-0.5)/3; 
F=repmat(density/9,[nx ny 9]);  
FEQ=F;  
msize=nx*ny;  
CI=[0:msize:msize*7]; 
BOUND=(rand(nx,ny)>0.6); 
BOUND(1,1:ny)=1; 
BOUND(nx,1:ny)=1; 
BOUND(1:nx,1)=1; 
BOUND(1:nx,ny)=1;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
L = 800; 
W = 800; 
w = 2; 
vrs = 4; 
mnsz = L/4; 

  
A = zeros(L,W); 
kk = 1; 
for ii = 1:w 
    x = 0; 
    x(1:vrs) = xx(kk:kk+vrs-1); 
    kk = kk + vrs; 
x(W) = 0; 
    y = idct(x); 
Y = y - min(y); 
    Y = abs(Y - Y(1)); 
    Y = Y - min(Y); 
    Y = floor(xx(kk)*(L-1)*Y/max(Y)) + 1; 
    kk = kk + 1;  

     

     
    for i = 1:W 
        A(i,Y(i)) = 1; 
    end 
end 

  



Geom = A'; 

  
mGeom = 0; 
mGeom(W,L) = 0; 
for i = 1:L 
    mGeom(:,i) = Geom(:,L-i+1); 
end 

  
Geom(:,L+1:2*L) = mGeom; 

  
mGeom = 0; 
mGeom(W,2*L) = 0; 
for i = 1:W 
    mGeom(i,:) = Geom(W-i+1,:); 
end 

  
tGeom = Geom; 
Geom = mGeom; 
Geom(W+1:2*W,:) = tGeom; 

  

  
Geom = double(imresize(Geom,[mnsz,mnsz]) ~= 0); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
Geom2 = zeros(nx,ny); 
Geom2(:,floor(ny/7)+1:floor(ny-ny/7)) = double(imresize(Geom,[nx,floor(ny-

(2*ny/7))]) ~= 0); 

  
se = strel('line',3,45); 
bw1 = imdilate(Geom2,se); 
se = strel('line',3,-45); 
bw2 = imdilate(Geom2,se); 
bw = bw1 | bw2; 

  
timg = Geom2*255; 
timgc(:,:,1) = timg(:,:,1); 
timgsp = not(timgc' == 0); 
timgss = timgc ~= 0 & timgc ~= 255; 
timgsp = imresize(timgsp,[nx,ny]); 
timgss = imresize(timgss,[nx,ny]); 
BOUND = not(not(BOUND) | timgsp'); 
BOUND = BOUND | timgss; 

  
flnm = ['C:\Users\arj\Documents\MATLAB2\2D9QLBM\mask12.bmp']; 
timg1 = imread(flnm); 
timgc1(:,:,1) = timg1(:,:,1); 
timgsp1 = not(timgc1' == 0); 
timgss1 = timgc1 ~= 0 & timgc1 ~= 255; 
timgsp1 = imresize(timgsp1,[nx,ny]); 
timgss1 = imresize(timgss1,[nx,ny]); 
BOUND = not(not(BOUND) | timgsp1'); 
BOUND = BOUND | timgss1; 



  

  
BOUND = BOUND'; 

  
ON=find(BOUND); 
TO_REFLECT=[ON+CI(1) ON+CI(2) ON+CI(3) ON+CI(4) ... 
            ON+CI(5) ON+CI(6) ON+CI(7) ON+CI(8)]; 
REFLECTED= [ON+CI(5) ON+CI(6) ON+CI(7) ON+CI(8) ... 
            ON+CI(1) ON+CI(2) ON+CI(3) ON+CI(4)]; 
avu=1;  
prevavu=1;  
ts=0;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xx(kk) = xx(kk)*1e-2; 
xx(kk) = max(xx(kk),1e-7); 
xx(kk) = min(xx(kk),1e-2); 
deltaU = xx(kk); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
kk = kk +1; 

  
numactivenodes=sum(sum(1-BOUND)); 

  
dUXbdx = 0; 
dUXbdy = 0; 
dUYbdx = 0; 
dUYbdy = 0; 
dUXbdx(nx,ny) = 0; 
dUXbdy(nx,ny) = 0; 
dUYbdx(nx,ny) = 0; 
dUYbdy(nx,ny) = 0;     
posx = 0; 
szzx = nx; 
posy = 0; 
szzy = ny; 
SS = 0; 
SS(szzx-posx,szzy-posy) = 0; 
SSv = 0; 
SSv(szzx-posx*szzy-posy) = 0; 

  
hold off 

  
while (ts<2000) 

  
    F(:,:,4)=F([2:nx 1],[ny 1:ny-1],4); 
    F(:,:,3)=F(:,[ny 1:ny-1],3); 
    F(:,:,2)=F([nx 1:nx-1],[ny 1:ny-1],2); 
    F(:,:,5)=F([2:nx 1],:,5); 
    F(:,:,1)=F([nx 1:nx-1],:,1); 
    F(:,:,6)=F([2:nx 1],[2:ny 1],6); 
    F(:,:,7)=F(:,[2:ny 1],7);  
    F(:,:,8)=F([nx 1:nx-1],[2:ny 1],8); 
    BOUNCEDBACK=F(TO_REFLECT);  
    DENSITY=sum(F,3); 

  
    UX=(sum(F(:,:,[1 2 8]),3)-sum(F(:,:,[4 5 6]),3))./DENSITY; 



    UY=(sum(F(:,:,[2 3 4]),3)-sum(F(:,:,[6 7 8]),3))./DENSITY; 

     
    UX(1,1:ny)=UX(1,1:ny)+deltaU; 

     
    UX(ON)=0;  
    UY(ON)=0;  
    DENSITY(ON)=0; 
    U_SQU=UX.^2+UY.^2;  
    U_C2=UX+UY;  
    U_C4=-UX+UY;  
    U_C6=-U_C2;  
    U_C8=-U_C4; 

      
    FEQ(:,:,9)=t1*DENSITY.*(1-U_SQU/(2*c_squ)); 
    FEQ(:,:,1)=t2*DENSITY.*(1+UX/c_squ+0.5*(UX/c_squ).^2-U_SQU/(2*c_squ)); 
    FEQ(:,:,3)=t2*DENSITY.*(1+UY/c_squ+0.5*(UY/c_squ).^2-U_SQU/(2*c_squ)); 
    FEQ(:,:,5)=t2*DENSITY.*(1-UX/c_squ+0.5*(UX/c_squ).^2-U_SQU/(2*c_squ)); 
    FEQ(:,:,7)=t2*DENSITY.*(1-UY/c_squ+0.5*(UY/c_squ).^2-U_SQU/(2*c_squ)); 
    FEQ(:,:,2)=t3*DENSITY.*(1+U_C2/c_squ+0.5*(U_C2/c_squ).^2-

U_SQU/(2*c_squ)); 
    FEQ(:,:,4)=t3*DENSITY.*(1+U_C4/c_squ+0.5*(U_C4/c_squ).^2-

U_SQU/(2*c_squ)); 
    FEQ(:,:,6)=t3*DENSITY.*(1+U_C6/c_squ+0.5*(U_C6/c_squ).^2-

U_SQU/(2*c_squ)); 
    FEQ(:,:,8)=t3*DENSITY.*(1+U_C8/c_squ+0.5*(U_C8/c_squ).^2-

U_SQU/(2*c_squ)); 
    F=omega*FEQ+(1-omega)*F; 
    F(REFLECTED)=BOUNCEDBACK; 
    ts=ts+1;   
end 

   
dUXbdx(2:end-1,2:end-1) = (UX(3:end,2:end-1) - UX(1:end-2,2:end-1))/2; 
dUXbdy(2:end-1,2:end-1) = (UX(2:end-1,3:end) - UX(2:end-1,1:end-2))/2; 
dUYbdx(2:end-1,2:end-1) = (UY(3:end,2:end-1) - UY(1:end-2,2:end-1))/2; 
dUYbdy(2:end-1,2:end-1) = (UY(2:end-1,3:end) - UY(2:end-1,1:end-2))/2; 

  
for ssi = posx+1:posx+szzx-1 
    for ssj = posy+1:posy+szzy-1 
            ssU = [dUXbdx(ssi,ssj) dUXbdy(ssi,ssj); dUYbdx(ssi,ssj) 

dUYbdy(ssi,ssj)]; 
            ssU = ssU + ssU'; 
            SS(ssi-posx,ssj-posy) = max(abs(eig(ssU)))* viscosity; 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%error%%%%%%%%%%%%%%%%%%%%%%% 
SSm = 0; 
for ssi = 20:107 
    for ssj = 2:126 
        if timgc(ssj,ssi) == 0 
        SSm(ssi-19,ssj-1) = SS(ssi,ssj); 
        end 
    end 
 end 
SSmskh = double(SSm > goal + goal*(goalprc/100)); 
SSmskl = double(SSm < goal - goal*(goalprc/100)); 
for ssi = 1:length(SSm(:,1)) 



SSv((ssi-1)*(length(SSm(1,:)))+1:ssi*(length(SSm(1,:)))) = SSm(ssi,:); 
end 

  
ssk = 1; 
ssk2 = 1; 
SSvnz = 0; 
SSvmsk = SSv > 0; 
SSvnz(sum(SSvmsk)+1) = 0; 
SSvnznh = 0; 
SSvnznh2 = 0; 
 

for ssi = 1: length(SSv) 
if SSv(ssi) > 0 
    SSvnz(ssk) = SSv(ssi); 
    if SSv(ssi) < 2*10^-5 
        SSvnznh(ssk) = SSv(ssi); 
            ssk = ssk +1; 
    end 
end 
    if SSv(ssi) > 1e-8 && SSv(ssi) < 6e-5 
        SSvnznh2(ssk2) = SSv(ssi); 
            ssk2 = ssk2 +1; 
    end 
end 

  
inrng = (sum(sum((SSm>(goal - goal*(goalprc/100)) & SSm<(goal + 

goal*(goalprc/100)))))/sum(sum(SSm>0))); 
soa = (std(SSvnz)/mean(SSvnz)); 
par1 = 0.75e6*abs(goal - mean(SSvnz)); 
par2 = 5.5*soa; 
par3 = inrng*40; 
pars = [par1 par2 par3]; 
error = generrfuz1(pars)*1000/30; 

  
if sum(sum(timgsp)) < 5000 
    error = inf; 
end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    
Error = 

csvread('C:\Users\arj\Documents\MATLAB2\2D9QLBM\SCh128a5\errorbksch.txt'); 

    
if error(end) < Error(end) - 1 

     
    Error(end+1) = error(end); 
    strng = [num2str(error(end)) ', ' num2str(par1) ', ' num2str(par2) ', ' 

num2str(par3)]; 
   disp(strng); 

  

  
   U_SQUn = U_SQU - min(min(U_SQU)); 
U_SQUn = U_SQUn / max(max(U_SQUn)); 
subplot(1,3,1) 



pp = ((U_SQUn(1:nx,:)*255)') + 50*(((BOUND(1:nx,:)==0)')) - 

0*(((BOUND(1:nx,:)==1)')); 
image(pp); 
colormap(jet(255)) 

  
title(['Flow field']);xlabel(['x   input:'  num2str(deltaU)]);ylabel('y'); 
subplot(1,3,2) 
hist((SSvnznh2 - mean(SSvnznh2))./(std(SSvnznh2)),50); 
title(['Shear Stress Distribution']); 
xlabel(['Error: ',num2str(error/1e0)]) 
ylabel(['std/avg: ',num2str(std(SSvnz)/mean(SSvnz))]) 

  
subplot(1,3,3) 
imagesc(log(10^6*SSm'+1)) 
caxis([0 4]) 
title(['Shear Stress']); 
xlabel(['Average Shear Stress: ',num2str(mean(SSvnz))]) 
ylabel(['In range: ',num2str(sum(sum((SSm>(goal - goal*(goalprc/100)) & 

SSm<(goal + goal*(goalprc/100)))))/sum(sum(SSm>0)))]) 
 

%%%%%%%%%%%%%%%%%%%%%display%%%%%%%%%%%%%%%%%%%%%% 
   

csvwrite('C:\Users\arj\Documents\MATLAB2\2D9QLBM\SCh128a5\errorbksch.txt',Err

or); 

  
   step = csvread('2D9QLBM\SCh128a5\step.txt'); 
   step = step + 1; 
   csvwrite('C:\Users\arj\Documents\MATLAB2\2D9QLBM\SCh128a5\step.txt',step); 
   flnm = ['C:\Users\arj\Documents\MATLAB2\2D9QLBM\SCh128a5\opt' 

int2str(step) '.tif']; 
   saveas(gcf,flnm,'tif'); 
   flnmt = ['C:\Users\arj\Documents\MATLAB2\2D9QLBM\SCh128a5\opt' 

int2str(step) '.txt']; 
   csvwrite(flnmt,xx); 

    
   pause(0.01) 
end 

  
warning on all 
tym = csvread('C:\Users\arj\Documents\MATLAB2\2D9QLBM\SCh128a5\time.txt'); 
   tym = tym + toc; 
   csvwrite('C:\Users\arj\Documents\MATLAB2\2D9QLBM\SCh128a5\time.txt',tym); 
   tym/60 
end      
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vx = res_vz(20:115,80:120); %Adjust to NMR data 
vy = res_vy(20:115,80:120); %Adjust to NMR data 
v = (vx.^2+vy.^2).^.5; 

  
P = zeros(length(vx(:,1)),length(vx(1,:))); 

  
density = 1000;%kg/m^3 
visc = 0.001;%kg/(m.s) 
kvisc = visc/density; 
dx = 1e-4; 
dy = dx; 

  
h = 1e-4;%m 

  
for i = 1:length(P(:,1))-1 
    for j = 1:length(P(1,:))-1 
        gvs(i,j) = ((vx(i+1,j)- vx(i,j) )*(1/dx)*( vx(i+1,j)- vx(i,j)*(1/dx)) 

+ ... 
                (vx(i,j+1)- vx(i,j) )*(1/dx)*( vy(i+1,j)- vy(i,j)*(1/dx)) + 

... 
                (vx(i,j+1)- vx(i,j) )*(1/dx)*( vy(i+1,j)- vy(i,j)*(1/dx)) 

+... 
                (vy(i,j+1)- vy(i,j) )*(1/dx)*( vy(i,j+1)- vy(i,j))*(1/dx)); 
    end 
end 
b = -density*gvs*(h^2); 

  
cns = inf; 
Pt = P; 
while cns > sum(sum(P.*P))*1e-10 
    for i = 2:length(P(:,1))-1 
        for j = 2:length(P(1,:))-1 
            P(i,j) = ((P(i-1,j)+P(i+1,j)+P(i,j-1)+P(i,j+1))+b(i,j))/(4); 
        end 
    end 
    P(:,1) = P(:,2); 
    P(:,end) = P(:,end-1); 
    P(1,:) = P(2,:); 
    P(end,:) = P(end-1,:); 
    P(:,1) = 26600/2;%kg/(m.s^2) 
    P(21:79,end) = 0;%Adjust to outlet position 

 
   imagesc(P) 
   axis square 
   title(num2str(sum(sum(P)))) 
   pause(0.001) 
   cns = sum(sum((Pt - P).*(Pt - P))); 
   Pt = P; 
end 

 
imagesc(v*1e7) 
hold on 
contour(P); 
colorbar 
hold off 



axis square 
title('pressure') 
pause 

  
for i = 2:length(P(:,1))-1 
    for j = 2:length(P(1,:))-1 
        gpx(i,j) = (P(i+1,j)- P(i,j)); 
        gpy(i,j) = (P(i,j+1)- P(i,j)); 
    end 
end 

  
gp = (gpx.^2+gpy.^2).^.5; 
 

imagesc(v) 
axis square 
title('v') 
colorbar 
pause 
contour(gp) 
axis square 
title(['\delta' 'p']) 
colorbar 
pause 

  
imagesc(vx) 
axis square 
title('vx') 
colorbar 
pause 
contour(abs(gpx)) 
axis square 
title(['\delta' 'px']) 
colorbar 
pause 

  
imagesc(vy) 
axis square 
title('vy') 
colorbar 
pause 
contour(abs(gpy)) 
axis square 
title(['\delta' 'py']) 
colorbar 
pause 

  
k = (h*visc*v(2:end-2,2:end-2)./abs(gp(2:end-1,2:end-1))); 

  
kx = (h*visc*abs(vx(2:end-2,2:end-2))./abs(gpx(2:end-1,2:end-1))); 
ky = (h*visc*abs(vy(2:end-2,2:end-2))./abs(gpy(2:end-1,2:end-1))); 

  
for i = 2:length(gp(:,1))-1 
    for j = 2:length(gp(1,:))-1 
        A = [abs(gpx(i,j)); abs(gpy(i,j))]; 
        B = [abs(vx(i,j)); abs(vy(i,j))]; 



        xx = (inv(A'*A))*A'*B; 
        k2(i,j) = xx; 
     end 
end 

  
kx = kx(2:end-1,2:end-1); 
ky = ky(2:end-1,2:end-1); 
k2 = k2(2:end-1,2:end-1); 

  
k = k(2:end-1,2:end-1); 
imagesc(v(2:end-2,2:end-2)*2e-5) 
hold on 
contour(k) 
axis square 
axis off 
title('permeability') 
colorbar 
hold off 
pause 

  
average_k = mean(mean(k))  

  
imagesc(log(k(2:end-3,2:end-2)*1e15)); 
c=colorbar; 
caxis([0 7]); 
t=title(['log permeability 100' '\mu' 'L']); 
axis square; axis off; 
set(c,'fontsize',16); set(t,'fontsize',16); 
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clear 
close all 

  
tic 

  
Resol = 192; 
TRes = 192; 
NL = 1; 
sa = 10 
sm = 1; 
rad = 2; 
rad2 = 2; 
w2d = (rad*2+1)^2; 
w2d2 = (rad2*2+1)^2; 
w3d = 0; 
wg = 10; 
wg1 = 3; 
fthresh = 1; 
thresh = .025; 
noc = 7; 
 

comb = nchoosek(1:noc,(noc-1)); 
nocom = length(comb(:,1)); 

  
BrTstDt = squeeze(mean(imread('sample1.Jpg'),3)); 
ReConI = BrTstDt; 
%%%%%%%%%%%%Load original image for comparison complete. 
ReConI =abs(imresize(ReConI,[Resol,Resol])); 
ReConI = ReConI / max(max(ReConI)); 
ReConI2 = ReConI; 

 
C = ReConI2; 
Resolx = size(ReConI,2); 
Resoly = size(ReConI,1); 
sigma = sa; 
map = 1; 
for jj = 1:noc 
    imwrite(sqrt((C+sa/100.*randn(size(C))).^2 + 

(C+sa/100.*randn(size(C))).^2),'NoisyTmp.Jpg'); 
    TMP = squeeze(mean(imread('NoisyTmp.Jpg'),3)); 
    TMP =abs(imresize(TMP,[Resol,Resol])); 
    TMP = TMP / max(max(TMP)); 
    Data2bR0(jj,:,:) = zeros(Resoly+2*rad+1,Resolx+2*rad+1); 
    Data2bR0(jj,rad+1:Resoly+rad,rad+1:Resolx+rad) = TMP; 
end 
Noisy = squeeze((Data2bR0(1,rad+1:Resoly+rad,rad+1:Resolx+rad))); 

  
comb = nchoosek(1:noc,(noc-1)); 
nocom = length(comb(:,1)); 
for jj = 1:noc 
    Data2bR(jj,:,:) = squeeze(mean(Data2bR0(comb(jj,:),:,:))); 
end 
%%%%%%%%%%%Introducing noise to image complete. 

  

  



UKData = zeros(noc,w2d,(Resolx)*(Resoly)); 
for jj = 1:noc 
    CIm = squeeze(Data2bR(jj,:,:)); 
    CDt = zeros(w2d,(Resolx)*(Resoly)); 
    CTg = zeros(1,(Resolx)*(Resoly)); 
    l = 1; 
        for j = 1+rad:Resoly+rad 
            for k = 1+rad:Resolx+rad 
                CDt(:,l) = reshape(CIm(j-rad:j+rad,k-

rad:k+rad),[1,(2*rad+1)^2]); 
                CTg(l) = ReConI(j-rad,k-rad); 
                l = l + 1; 
            end 
        end 
    UKData(jj,:,:) = CDt; 
end 
Goal = CTg; 
ReConO = reshape(Goal,[Resoly,Resolx])'; 
Mean = reshape(squeeze(mean(UKData(:,ceil(end/2),:))),[Resoly,Resolx])'; 

  
for jj = 1:noc 
    TMP = UKData(comb(jj,:),:,:); 
    for kk = 1:(noc-1) 
        UKDataMC(jj,(kk-1)*w2d+1:kk*w2d,:) = squeeze(TMP(kk,:,:)); 
    end 
end 
%%%%%%%%%%%%Unknown sample data preperation complete. 

  
IData2o(1,:,:) = squeeze(mean(imread('brtr1.Jpg'),3)); 
IData2o(2,:,:) = squeeze(mean(imread('brtr2.Jpg'),3)); 
IData2o(3,:,:) = squeeze(mean(imread('brtr3.Jpg'),3)); 
IData2o(4,:,:) = squeeze(mean(imread('brtr4.Jpg'),3)); 
IData2o(5,:,:) = squeeze(mean(imread('brtr5.Jpg'),3)); 
IData2o(6,:,:) = squeeze(mean(imread('brtr6.Jpg'),3)); 
IData2o(7,:,:) = squeeze(mean(imread('brtr7.Jpg'),3)); 
IData2o(8,:,:) = squeeze(mean(imread('brtr8.Jpg'),3)); 
IData2o(9,:,:) = squeeze(mean(imread('brtr9.Jpg'),3)); 
 

IData2 = abs(imresize(squeeze(IData2o(1,:,1:round(end/2))),[TRes,TRes])); 
IData2 = IData2 / max(max(IData2)); 

  
IData2(end+1:end+TRes,:) = 

abs(imresize(squeeze(IData2o(5,:,:)),[TRes,TRes])); 
IData2(end-TRes+1:end,:) = IData2(end-TRes+1:end,:) / max(max(IData2(end-

TRes+1:end,:))); 

  
IData2(end+1:end+TRes,:) = 

abs(imresize(squeeze(IData2o(9,:,:)),[TRes,TRes])); 
IData2(end-TRes+1:end,:) = IData2(end-TRes+1:end,:) / max(max(IData2(end-

TRes+1:end,:))); 

  
Resolxt = size(IData2,2); 
Resolyt = size(IData2,1); 
L = [(Resolyt/Resolxt)*Resolxt^2, (Resolyt/Resolxt)*Resolxt^2, 

(Resolyt/Resolxt)*Resolxt^2, (Resolyt/Resolxt)*Resolxt^2];  
%%%%%%%%%%%%%Loading training data complete. 



C = IData2; 
for jj = 1:noc 
    imwrite(sqrt((C+sa/100.*randn(size(C))).^2 + 

(C+sa/100.*randn(size(C))).^2),'NoisyTmp.Jpg'); 
    TMP = squeeze(mean(imread('NoisyTmp.Jpg'),3)); 
    TMP = abs(imresize(TMP,[size(IData2,1),size(IData2,2)])); 
    TMP = TMP / max(max(TMP)); 
    TRDataa(jj,:,:) = zeros(Resolyt+2*rad,Resolxt+2*rad); 
    TRDataa(jj,rad+1:Resolyt+rad,rad+1:Resolxt+rad) = TMP; 
end 

  
for jj = 1:noc 
    TRData(jj,:,:) = squeeze(mean(TRDataa(comb(jj,:),:,:))); 
end 
%%%%%%%%%%%Introducing noise to image complete. 

  
TRData0 = zeros(noc,w2d,(Resolxt)*(Resolyt)); 
for jj = 1:noc 
    CIm = squeeze(TRData(jj,:,:)); 
    CDt = zeros(w2d,(Resolxt)*(Resolyt)); 
    CTg = zeros(1,(Resolxt)*(Resolyt)); 
    l = 1; 
        for j = 1+rad:Resolyt+rad 
            for k = 1+rad:Resolxt+rad 
                CDt(:,l) = reshape(CIm(j-rad:j+rad,k-

rad:k+rad),[1,(2*rad+1)^2]); 
                CTg(l) = IData2(j-rad,k-rad); 
                l = l + 1; 
            end 
        end 
    TRData0(jj,:,:) = CDt; 
end 
TGt0 = CTg; 

  
for jj = 1:noc 
    TMP = TRData0(comb(jj,:),:,:); 
    for kk = 1:(noc-1) 
        TRData0MC(jj,(kk-1)*w2d+1:kk*w2d,:) = squeeze(TMP(kk,:,:)); 
    end 
end 
%%%%%%%%%%%%Training data preperation complete. 

  
display('Stage1 training begins...') 
figure 
subplot(3,3,1) 
imagesc(ReConO); 
axis square 
colormap hot 
title('Original'); 
subplot(3,3,2) 
imagesc(Noisy); 
axis square 
colormap hot 
title(['Noisy PSNR: ' mat2str(getPSNR(Noisy, ReConO, 1))]); 
for jj = 1:noc     
    net1 = feedforwardnet([10 10 10 10 10 10]); 



    net1.trainParam.epochs = 40; 
    net1 = 

train(net1,[squeeze(TRData0MC(jj,:,1:L(1)))],[TGt0(1:L(1))],'useParallel','ye

s'); 

     
    NET1(jj).net = net1;     
    Xmin1(jj,:) = min(squeeze(TRData0MC(jj,:,1:L(1)))'); 
    Xmax1(jj,:) = max(squeeze(TRData0MC(jj,:,1:L(1)))'); 
    Tmin1(jj,:) = min(TGt0(1:L(1))); 
    Tmax1(jj,:) = max(TGt0(1:L(1))); 

  
    TRData1f2(jj,:) = net1(squeeze(TRData0MC(jj,:,:))); 
    TMP = reshape(TRData1f2(jj,:),[Resolxt,Resolyt])';     
    RESULT1Tr(jj,:,:) = TMP; 

            
    UKData1f2(jj,:) = net1(squeeze(UKDataMC(jj,:,:))); 
    TMP = reshape(UKData1f2(jj,:),[Resolx,Resoly])';     
    RESULT1(jj,:,:) = TMP; 
    subplot(3,3,jj+2) 
    imagesc(TMP); 
    axis square 
    colormap hot 
    title(['N' mat2str(jj) ' PSNR: ' mat2str(round(getPSNR(TMP, ReConO, 

1)*100)/100)]); 
    PSNR1(jj) = getPSNR(TMP, ReConO, 1); 
    [FSIM, FSIMc] = FeatureSIM(ReConO*255, TMP*255); 
    FSIM1(jj) = FSIM; 
    [mssim ssim_map] = ssim_index(ReConO*255, TMP*255); 
    MSSIM1(jj) = mssim; 
    title(['N' mat2str(jj) ' PSNR: ' mat2str(PSNR1(jj))]); 
    pause(.01) 
end 
for jj = 1:noc 
    TMP = reshape(TRData1f2(jj,:),[Resolxt,Resolyt])';  
    TRData1f2tr(jj,:,:) = zeros(Resolyt+2*rad2,Resolxt+2*rad2); 
    TRData1f2tr(jj,rad2+1:Resolyt+rad2,rad2+1:Resolxt+rad2) = TMP; 
    TMP = reshape(UKData1f2(jj,:),[Resolx,Resoly])';     
    UKData1tr(jj,:,:) = zeros(Resoly+2*rad2,Resolx+2*rad2); 
    UKData1tr(jj,rad2+1:Resoly+rad2,rad2+1:Resolx+rad2) = TMP; 
end 
display('Stage1 training complete') 
fprintf('Av. PSNR: %.4fdB, Av. FSIM: %.4fdB, Av. MSSIM: %.4fdB 

\n',mean(PSNR1),mean(FSIM1),mean(MSSIM1)); 
%%%%%%%%%%%Stage1 training complete 
TRData0MC=0; 
UKDataMC=0; 

  
for jj = 1:noc 
    UKData1ctr(jj,:,:) = squeeze(mean(UKData1tr(comb(jj,:),:,:))); 
end 

  
UKData1 = zeros(noc,w2d2,(Resolx)*(Resoly)); 
for jj = 1:noc 
    CIm = squeeze(UKData1ctr(jj,:,:)); 
    CDt = zeros(w2d2,(Resolx)*(Resoly)); 
    l = 1; 



        for j = 1+rad2:Resoly+rad2 
            for k = 1+rad2:Resolx+rad2 
                CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                l = l + 1; 
            end 
        end 
    UKData1(jj,:,:) = CDt; 
end 

 
for jj = 1:noc 
    TMP = UKData1(comb(jj,:),:,:); 
    for kk = 1:(noc-1) 
        UKData1MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
    end 
end 

  
for jj = 1:noc 
    TRData1f2ctr(jj,:,:) = squeeze(mean(TRData1f2tr(comb(jj,:),:,:))); 
end 

  
TRData1 = zeros(noc,w2d2,(Resolxt)*(Resolyt)); 
for jj = 1:noc 
    CIm = squeeze(TRData1f2ctr(jj,:,:)); 
    CDt = zeros(w2d2,(Resolxt)*(Resolyt)); 
    CTg = zeros(1,(Resolxt)*(Resolyt)); 
    l = 1; 
        for j = 1+rad2:Resolyt+rad2 
            for k = 1+rad2:Resolxt+rad2 
                CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                l = l + 1; 
            end 
        end 
    TRData1(jj,:,:) = CDt; 
end 

 
for jj = 1:noc 
    TMP = TRData1(comb(jj,:),:,:); 
    for kk = 1:(noc-1) 
        TRData1MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
    end 
end 
%%%%%%%%%%%%Training data preperation complete. 

  
display('Stage2 training begins...') 
figure 
subplot(3,3,1) 
imagesc(ReConO); 
axis square 
colormap hot 
title('Original'); 
subplot(3,3,2) 
imagesc(Noisy); 
axis square 
colormap hot 



title(['Noisy PSNR: ' mat2str(getPSNR(Noisy, ReConO, 1))]); 
for jj = 1:noc     
    net2 = feedforwardnet([10 10 10 10 10 10]); 
    net2.trainParam.epochs = 30; 
    net2 = 

train(net2,[squeeze(TRData1MC(jj,:,1:L(2)))],[TGt0(1:L(2))],'useParallel','ye

s'); 

     
    NET2(jj).net = net2;     
    Xmin2(jj,:) = min(squeeze(TRData1MC(jj,:,1:L(1)))'); 
    Xmax2(jj,:) = max(squeeze(TRData1MC(jj,:,1:L(1)))'); 
    Tmin2(jj,:) = min(TGt0(1:L(1))); 
    Tmax2(jj,:) = max(TGt0(1:L(1))); 

     
    TRData2f3(jj,:) = net2(squeeze(TRData1MC(jj,:,:))); 
    TMP = reshape(TRData2f3(jj,:),[Resolxt,Resolyt])';     
    RESULT2Tr(jj,:,:) = TMP; 

        
    UKData2f3(jj,:) = net2(squeeze(UKData1MC(jj,:,:))); 
    TMP = reshape(UKData2f3(jj,:),[Resolx,Resoly])';     
    RESULT2(jj,:,:) = TMP; 
    subplot(3,3,jj+2) 
    imagesc(TMP); 
    axis square 
    colormap hot 
    title(['N' mat2str(jj) ' PSNR: ' mat2str(round(getPSNR(TMP, ReConO, 

1)*100)/100)]); 
    PSNR1(jj) = getPSNR(TMP, ReConO, 1); 
    [FSIM, FSIMc] = FeatureSIM(ReConO*255, TMP*255); 
    FSIM1(jj) = FSIM; 
    [mssim ssim_map] = ssim_index(ReConO*255, TMP*255); 
    MSSIM1(jj) = mssim; 
    title(['N' mat2str(jj) ' PSNR: ' mat2str(PSNR1(jj))]); 
    pause(.01) 
end 
for jj = 1:noc 
    TMP = reshape(TRData2f3(jj,:),[Resolxt,Resolyt])';  
    TRData2f3tr(jj,:,:) = zeros(Resolyt+2*rad2,Resolxt+2*rad2); 
    TRData2f3tr(jj,rad2+1:Resolyt+rad2,rad2+1:Resolxt+rad2) = TMP; 

     
    TMP = reshape(UKData2f3(jj,:),[Resolx,Resoly])';     
    UKData2tr(jj,:,:) = zeros(Resoly+2*rad2,Resolx+2*rad2); 
    UKData2tr(jj,rad2+1:Resoly+rad2,rad2+1:Resolx+rad2) = TMP; 
end 
display('Stage2 training complete') 
fprintf('Av. PSNR: %.4fdB, Av. FSIM: %.4fdB, Av. MSSIM: %.4fdB 

\n',mean(PSNR1),mean(FSIM1),mean(MSSIM1)); 
%%%%%%%%%%%Stage2 training complete 
TRData1MC=0; 
UKData1MC=0; 

  
for jj = 1:noc 
    UKData2ctr(jj,:,:) = squeeze(mean(UKData2tr(comb(jj,:),:,:))); 
end 

  
UKData2 = zeros(noc,w2d2,(Resolx)*(Resoly)); 



for jj = 1:noc 
    CIm = squeeze(UKData2ctr(jj,:,:)); 
    CDt = zeros(w2d2,(Resolx)*(Resoly)); 
    l = 1; 
        for j = 1+rad2:Resoly+rad2 
            for k = 1+rad2:Resolx+rad2 
                CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                l = l + 1; 
            end 
        end 
    UKData2(jj,:,:) = CDt; 
end 

 
for jj = 1:noc 
    TMP = UKData2(comb(jj,:),:,:); 
    for kk = 1:(noc-1) 
        UKData2MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
    end 
end 

   
for jj = 1:noc 
    TRData2f3ctr(jj,:,:) = squeeze(mean(TRData2f3tr(comb(jj,:),:,:))); 
end 

  
TRData2 = zeros(noc,w2d2,(Resolxt)*(Resolyt)); 
for jj = 1:noc 
    CIm = squeeze(TRData2f3ctr(jj,:,:)); 
    CDt = zeros(w2d2,(Resolxt)*(Resolyt)); 
    l = 1; 
        for j = 1+rad2:Resolyt+rad2 
            for k = 1+rad2:Resolxt+rad2 
                CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                l = l + 1; 
            end 
        end 
    TRData2(jj,:,:) = CDt; 
end 

 
for jj = 1:noc 
    TMP = TRData2(comb(jj,:),:,:); 
    for kk = 1:(noc-1) 
        TRData2MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
    end 
end 
%%%%%%%%%%%%Training data preperation complete. 

  
display('Stage3 training begins...') 
figure 
subplot(3,3,1) 
imagesc(ReConO); 
axis square 
colormap hot 
title('Original'); 
subplot(3,3,2) 



imagesc(Noisy); 
axis square 
colormap hot 
title(['Noisy PSNR: ' mat2str(getPSNR(Noisy, ReConO, 1))]); 
for jj = 1:noc     
    net3 = feedforwardnet([10 10 10 10 10 10]); 
    net3.trainParam.epochs = 20; 
    net3 = 

train(net3,[squeeze(TRData2MC(jj,:,1:L(3)))],[TGt0(1:L(3))],'useParallel','ye

s'); 

     
    NET3(jj).net = net3;     
    Xmin3(jj,:) = min(squeeze(TRData2MC(jj,:,1:L(1)))'); 
    Xmax3(jj,:) = max(squeeze(TRData2MC(jj,:,1:L(1)))'); 
    Tmin3(jj,:) = min(TGt0(1:L(1))); 
    Tmax3(jj,:) = max(TGt0(1:L(1))); 

  
    TRData3f4(jj,:) = net3(squeeze(TRData2MC(jj,:,:))); 
    TMP = reshape(TRData3f4(jj,:),[Resolxt,Resolyt])';     
    RESULT3Tr(jj,:,:) = TMP; 

        
    UKData3f4(jj,:) = net3(squeeze(UKData2MC(jj,:,:))); 
    TMP = reshape(UKData3f4(jj,:),[Resolx,Resoly])';     
    RESULT3(jj,:,:) = TMP; 
    subplot(3,3,jj+2) 
    imagesc(TMP); 
    axis square 
    colormap hot 
    title(['N' mat2str(jj) ' PSNR: ' mat2str(round(getPSNR(TMP, ReConO, 

1)*100)/100)]); 
    PSNR1(jj) = getPSNR(TMP, ReConO, 1); 
    [FSIM, FSIMc] = FeatureSIM(ReConO*255, TMP*255); 
    FSIM1(jj) = FSIM; 
    [mssim ssim_map] = ssim_index(ReConO*255, TMP*255); 
    MSSIM1(jj) = mssim; 
    title(['N' mat2str(jj) ' PSNR: ' mat2str(PSNR1(jj))]); 
    pause(.01) 
end 
for jj = 1:noc 
    TMP = reshape(TRData3f4(jj,:),[Resolxt,Resolyt])';  
    TRData3f4tr(jj,:,:) = zeros(Resolyt+2*rad2,Resolxt+2*rad2); 
    TRData3f4tr(jj,rad2+1:Resolyt+rad2,rad2+1:Resolxt+rad2) = TMP; 

     
    TMP = reshape(UKData3f4(jj,:),[Resolx,Resoly])';     
    UKData3tr(jj,:,:) = zeros(Resoly+2*rad2,Resolx+2*rad2); 
    UKData3tr(jj,rad2+1:Resoly+rad2,rad2+1:Resolx+rad2) = TMP; 
end 
display('Stage3 training complete') 
fprintf('Av. PSNR: %.4fdB, Av. FSIM: %.4fdB, Av. MSSIM: %.4fdB 

\n',mean(PSNR1),mean(FSIM1),mean(MSSIM1)); 
%%%%%%%%%%%Stage3 training complete 
TRData2MC=0; 
UKData2MC=0; 

  

  



  

  

  
for jj = 1:noc 
    UKData3ctr(jj,:,:) = squeeze(mean(UKData3tr(comb(jj,:),:,:))); 
end 

  
UKData3 = zeros(noc,w2d2,(Resolx)*(Resoly)); 
for jj = 1:noc 
    CIm = squeeze(UKData3ctr(jj,:,:)); 
    CDt = zeros(w2d2,(Resolx)*(Resoly)); 
    l = 1; 
        for j = 1+rad2:Resoly+rad2 
            for k = 1+rad2:Resolx+rad2 
                CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                l = l + 1; 
            end 
        end 
    UKData3(jj,:,:) = CDt; 
end 

 
for jj = 1:noc 
    TMP = UKData3(comb(jj,:),:,:); 
    for kk = 1:(noc-1) 
        UKData3MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
    end 
end  

  
for jj = 1:noc 
    TRData3f4ctr(jj,:,:) = squeeze(mean(TRData3f4tr(comb(jj,:),:,:))); 
end 

  
TRData3 = zeros(noc,w2d2,(Resolxt)*(Resolyt)); 
for jj = 1:noc 
    CIm = squeeze(TRData3f4ctr(jj,:,:)); 
    CDt = zeros(w2d2,(Resolxt)*(Resolyt)); 
    l = 1; 
        for j = 1+rad2:Resolyt+rad2 
            for k = 1+rad2:Resolxt+rad2 
                CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                l = l + 1; 
            end 
        end 
    TRData3(jj,:,:) = CDt; 
end 

 
for jj = 1:noc 
    TMP = TRData3(comb(jj,:),:,:); 
    for kk = 1:(noc-1) 
        TRData3MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
    end 
end 
%%%%%%%%%%%%Training data preperation complete. 



  
display('Stage4 training begins...') 
figure 
subplot(3,3,1) 
imagesc(ReConO); 
axis square 
colormap hot 
title('Original'); 
subplot(3,3,2) 
imagesc(Noisy); 
axis square 
colormap hot 
title(['Noisy PSNR: ' mat2str(getPSNR(Noisy, ReConO, 1))]); 
for jj = 1:noc     
    net4 = feedforwardnet([10 10 10 10 10 10]); 
    net4.trainParam.epochs = 20; 
    net4 = 

train(net4,[squeeze(TRData3MC(jj,:,1:L(4)))],[TGt0(1:L(4))],'useParallel','ye

s'); 

     
    NET4(jj).net = net4;     
    Xmin4(jj,:) = min(squeeze(TRData3MC(jj,:,1:L(1)))'); 
    Xmax4(jj,:) = max(squeeze(TRData3MC(jj,:,1:L(1)))'); 
    Tmin4(jj,:) = min(TGt0(1:L(1))); 
    Tmax4(jj,:) = max(TGt0(1:L(1))); 

  
    TRData4f5(jj,:) = net4(squeeze(TRData3MC(jj,:,:))); 
    TMP = reshape(TRData4f5(jj,:),[Resolxt,Resolyt])';     
    RESULT4Tr(jj,:,:) = TMP; 

        
    UKData4f5(jj,:) = net4(squeeze(UKData3MC(jj,:,:))); 
    TMP = reshape(UKData4f5(jj,:),[Resolx,Resoly])';     
    RESULT4(jj,:,:) = TMP; 
    subplot(3,3,jj+2) 
    imagesc(TMP); 
    axis square 
    colormap hot 
    title(['N' mat2str(jj) ' PSNR: ' mat2str(round(getPSNR(TMP, ReConO, 

1)*100)/100)]); 
    PSNR1(jj) = getPSNR(TMP, ReConO, 1); 
    [FSIM, FSIMc] = FeatureSIM(ReConO*255, TMP*255); 
    FSIM1(jj) = FSIM; 
    [mssim ssim_map] = ssim_index(ReConO*255, TMP*255); 
    MSSIM1(jj) = mssim; 
    title(['N' mat2str(jj) ' PSNR: ' mat2str(PSNR1(jj))]); 
    pause(.01) 
end 
for jj = 1:noc 
    TMP = reshape(TRData4f5(jj,:),[Resolxt,Resolyt])';  
    TRData4f5tr(jj,:,:) = zeros(Resolyt+2*rad2,Resolxt+2*rad2); 
    TRData4f5tr(jj,rad2+1:Resolyt+rad2,rad2+1:Resolxt+rad2) = TMP; 

     
    TMP = reshape(UKData4f5(jj,:),[Resolx,Resoly])';     
    UKData4tr(jj,:,:) = zeros(Resoly+2*rad2,Resolx+2*rad2); 
    UKData4tr(jj,rad2+1:Resoly+rad2,rad2+1:Resolx+rad2) = TMP; 
end 



display('Stage4 training complete') 
fprintf('Av. PSNR: %.4fdB, Av. FSIM: %.4fdB, Av. MSSIM: %.4fdB 

\n',mean(PSNR1),mean(FSIM1),mean(MSSIM1)); 
%%%%%%%%%%%Stage4 training complete 

  
ReConN = squeeze(mean(RESULT4)); 

 
szx = size(ReConN,2)+2*wg; 
szy = size(ReConN,1)+2*wg; 
zfReConN = zeros(szy,szx); 
zfReConN(wg+1:end-wg,wg+1:end-wg) = ReConN; 
GIm = 0; 
A = 1; 
x0 = 0; y0 = 0; 
sigma_x = 1; 
sigma_y = 2; 
[X, Y] = meshgrid(-wg:1:wg, -wg:1:wg); 
for theta = 0:pi/100:pi 
    a = cos(theta)^2/2/sigma_x^2 + sin(theta)^2/2/sigma_y^2; 
    b = -sin(2*theta)/4/sigma_x^2 + sin(2*theta)/4/sigma_y^2 ; 
    c = sin(theta)^2/2/sigma_x^2 + cos(theta)^2/2/sigma_y^2; 
    Z = A*exp( - (a*(X-x0).^2 + 2*b*(X-x0).*(Y-y0) + c*(Y-y0).^2)) ; 
end 
for j = wg+1:szy-wg 
for i = wg+1:szx-wg 
tmp = zfReConN(j-wg:j+wg,i-wg:i+wg); 
GIm(j-wg,i-wg) = mean(mean(tmp .* Z)); 
end 
end 
GMean = GIm; 
GMean = max(max(ReConO)).*(GMean / max(max(GMean))); 

  
t = toc/60 

  
figure 
subplot(2,2,1) 
imagesc(rot90(ReConO)); 
axis square; axis off 
colormap hot 
title('Original'); 
subplot(2,2,2) 
imagesc(rot90(Noisy)); 
axis square; axis off 
colormap hot 
PSNR = getPSNR(Noisy, ReConO, 1); 
[FSIM, FSIMc] = FeatureSIM(ReConO*255, Noisy*255); 
FSIM = FSIM; 
[mssim ssim_map] = ssim_index(ReConO*255, Noisy*255); 
MSSIM = mssim; 
title(sprintf('1 Copy (PSNR %.3f dB, FSIM %.3f, MSSIM %.3f)', ... 
    PSNR, FSIM, mssim)); 
subplot(2,2,3) 
imagesc(rot90(Mean)); 
axis square; axis off 
colormap hot 
PSNR = getPSNR(Mean, ReConO, 1); 



[FSIM, FSIMc] = FeatureSIM(ReConO*255, Mean*255); 
FSIM = FSIM; 
[mssim ssim_map] = ssim_index(ReConO*255, Mean*255); 
MSSIM = mssim; 
title(sprintf('Mean (PSNR %.3f dB, FSIM %.3f, MSSIM %.3f)', ... 
    PSNR, FSIM, mssim));      
subplot(2,2,4) 
imagesc(rot90(ReConN)); 
axis square; axis off 
colormap hot 
PSNR = getPSNR(ReConN, ReConO, 1); 
[FSIM, FSIMc] = FeatureSIM(ReConO*255, ReConN*255); 
[mssim ssim_map] = ssim_index(ReConO*255, ReConN*255); 
FSIM = FSIM; 
MSSIM = mssim; 
title(sprintf('MCMLP (PSNR %.3f dB, FSIM %.3f, MSSIM %.3f)', ... 
    PSNR, FSIM, mssim)); 

     
PNN = getPSNR(ReConN, ReConO, 1); 
PMean = getPSNR(Noisy, ReConO, 1); 
PGMean = getPSNR(GMean, ReConO, 1); 
[FSIM, FSIMc] = FeatureSIM(ReConO*255, ReConN*255); 
FNN = FSIM; 
[FSIM, FSIMc] = FeatureSIM(ReConO*255, Noisy*255); 
FMean = FSIM; 
[FSIM, FSIMc] = FeatureSIM(ReConO*255, GMean*255); 
FGMean = FSIM; 
[mssim ssim_map] = ssim_index(ReConO*255, ReConN*255); 
MNN = mssim; 
[mssim ssim_map] = ssim_index(ReConO*255, Noisy*255); 
MMean = mssim; 
[mssim, ssim_map] = ssim_index(ReConO*255, GMean*255); 
MGMean = mssim; 

  
fprintf('PSNR: Noisy: %.4fdB, NN: %.4fdB, GMean: %.4fdB 

\n',PMean,PNN,PGMean); 
fprintf('FSIM: Noisy: %.4fdB, NN: %.4fdB, GMean: %.4fdB 

\n',FMean,FNN,FGMean); 
fprintf('MSSIM: Noisy: %.4fdB, NN: %.4fdB, GMean: %.4fdB 

\n',MMean,MNN,MGMean); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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warning off; 
clc; 
clf; 
clear all; 
close all 

  
fprintf('%s \n', 'Welcome to MCMLP Denoising Demo') 
fprintf('%s \n\n', 'Khalid Youssef') 

  

  
[namein, pathin, filterindex] = uigetfile({  '*.Jpg','JPEG image (*.Jpg)'}, 

'Select one or several files (using +CTRL or +SHIFT)','MultiSelect', 'on'); 
if isequal(namein,0) | isequal(pathin,0) 
    disp('User pressed cancel') 
else 
    disp(['Input file : ', fullfile(pathin, namein)]) 
    [pathstr, name_s, ext]=fileparts(fullfile(pathin, namein)); 

       
    noc = 7; 
    rad = 2; 
    rad2 = 2; 
    w2d = (rad*2+1)^2; 
    w2d2 = (rad2*2+1)^2; 
    wg = 3; 

         
    flag = 0; 
    for jj = 1:noc 
        str = [namein(1:end-5) mat2str(jj) '.JPG']; 
        disp(['Noisy Copy ' mat2str(jj) ': ', fullfile(pathin, str)]) 
        [pathstr, name_s, ext]=fileparts(fullfile(pathin, str)); 

  
        TMP = imread(str);     
        TMP = squeeze(mean(TMP,3))/255; 

  
        DATA(jj,:,:) = TMP; 
    end 

      

     
    for jj = 1:noc 
    TMP = squeeze(DATA(jj,:,:)); 
    Resolx = size(TMP,2); 
    Resoly = size(TMP,1); 

     
    Data2bR0(jj,:,:) = zeros(Resoly+2*rad+1,Resolx+2*rad+1); 
    Data2bR0(jj,rad+1:Resoly+rad,rad+1:Resolx+rad) = TMP; 
    end 

  
    Noisy = squeeze((Data2bR0(1,rad+1:Resoly+rad,rad+1:Resolx+rad))); 

  
    comb = nchoosek(1:noc,(noc-1)); 
    nocom = length(comb(:,1)); 
    for jj = 1:noc 
        Data2bR(jj,:,:) = squeeze(mean(Data2bR0(comb(jj,:),:,:))); 
    end 



    %%%%%%%%%%%Introducing noise to image complete. 

     
    UKData = zeros(noc,w2d,(Resolx)*(Resoly)); 
    for jj = 1:noc 
        CIm = squeeze(Data2bR(jj,:,:)); 
        CDt = zeros(w2d,(Resolx)*(Resoly)); 
        CTg = zeros(1,(Resolx)*(Resoly)); 
        l = 1; 
            for j = 1+rad:Resoly+rad 
                for k = 1+rad:Resolx+rad 
                    CDt(:,l) = reshape(CIm(j-rad:j+rad,k-

rad:k+rad),[1,(2*rad+1)^2]); 
                    l = l + 1; 
                end 
            end 
        UKData(jj,:,:) = CDt; 
    end 
    Mean = reshape(squeeze(mean(UKData(:,ceil(end/2),:))),[Resoly,Resolx])'; 

  
    for jj = 1:noc 
        TMP = UKData(comb(jj,:),:,:); 
        for kk = 1:(noc-1) 
            UKDataMC(jj,(kk-1)*w2d+1:kk*w2d,:) = squeeze(TMP(kk,:,:)); 
        end 
    end 
    %%%%%%%%%%%%Unknown sample data preperation complete. 

     

     
%%%%%%%%%%%%%%%%%%%%%%%%%noise estimation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
opt = [15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40]; 

  
mn = 1; 
mx = length(opt); 

  
pn = 1; 

  
[D1,h1,h2] = 

MCMLP_EstimateJPG(Data2bR0(:,1:128+2*rad+1,1:128+2*rad+1),opt(mn)); 
subplot(3,3,pn) 
pn = pn + 1; 
if (std(h1) - std(h2)) <= 0 
    hist(h2,20) 
    hold on 
    hist(h1,20) 
    h = findobj(gca,'Type','patch'); 
    set(h(1),'FaceColor',[0 .5 .2],'EdgeColor','w'); 
    set(h(2),'FaceColor',[1 0 .1],'EdgeColor','w'); 
else 
    hist(h1,20) 
    hold on 
    hist(h2,20) 
    h = findobj(gca,'Type','patch'); 
    set(h(1),'FaceColor',[0 .5 .2],'EdgeColor','w'); 
    set(h(2),'FaceColor',[1 0 .1],'EdgeColor','w'); 
end 



title(mat2str(opt(mn))) 
xlabel(mat2str(D1)) 

     
[D2,h1,h2] = 

MCMLP_EstimateJPG(Data2bR0(:,1:128+2*rad+1,1:128+2*rad+1),opt(mx)); 
subplot(3,3,pn) 
pn = pn + 1; 
if (std(h1) - std(h2)) <= 0 
    hist(h2,20) 
    hold on 
    hist(h1,20) 
    h = findobj(gca,'Type','patch'); 
    set(h(1),'FaceColor',[0 .5 .2],'EdgeColor','w'); 
    set(h(2),'FaceColor',[1 0 .1],'EdgeColor','w'); 
else 
    hist(h1,20) 
    hold on 
    hist(h2,20) 
    h = findobj(gca,'Type','patch'); 
    set(h(1),'FaceColor',[0 .5 .2],'EdgeColor','w'); 
    set(h(2),'FaceColor',[1 0 .1],'EdgeColor','w'); 
end 
title(mat2str(opt(mx))) 
xlabel(mat2str(D2)) 
while mx ~= mn 
if D1 < D2 
    mx = mx - ceil((mx-mn)/2); 
    if mx ~= mn 
        [D2,h1,h2] = 

MCMLP_EstimateJPG(Data2bR0(:,1:128+2*rad+1,1:128+2*rad+1),opt(mx)); 
        subplot(3,3,pn) 
pn = pn + 1; 
        if (std(h1) - std(h2)) <= 0 
    hist(h2,20) 
    hold on 
    hist(h1,20) 
    h = findobj(gca,'Type','patch'); 
    set(h(1),'FaceColor',[0 .5 .2],'EdgeColor','w'); 
    set(h(2),'FaceColor',[1 0 .1],'EdgeColor','w'); 
else 
    hist(h1,20) 
    hold on 
    hist(h2,20) 
    h = findobj(gca,'Type','patch'); 
    set(h(1),'FaceColor',[0 .5 .2],'EdgeColor','w'); 
    set(h(2),'FaceColor',[1 0 .1],'EdgeColor','w'); 
end 
title(mat2str(opt(mx))) 
xlabel(mat2str(D2)) 
    end 
else 
    mn = mn + ceil((mx-mn)/2); 
    if mx ~= mn 
        [D1,h1,h2] = 

MCMLP_EstimateJPG(Data2bR0(:,1:128+2*rad+1,1:128+2*rad+1),opt(mn)); 
        subplot(3,3,pn) 
pn = pn + 1; 



        if (std(h1) - std(h2)) <= 0 
    hist(h2,20) 
    hold on 
    hist(h1,20) 
    h = findobj(gca,'Type','patch'); 
    set(h(1),'FaceColor',[0 .5 .2],'EdgeColor','w'); 
    set(h(2),'FaceColor',[1 0 .1],'EdgeColor','w'); 
else 
    hist(h1,20) 
    hold on 
    hist(h2,20) 
    h = findobj(gca,'Type','patch'); 
    set(h(1),'FaceColor',[0 .5 .2],'EdgeColor','w'); 
    set(h(2),'FaceColor',[1 0 .1],'EdgeColor','w'); 
end 
title(mat2str(opt(mn))) 
xlabel(mat2str(D1)) 
    end 
end 
end 
pause(.1) 

     
opt2 = MCMLP_EstimateJPG2(Data2bR0(:,1:128+2*rad+1,1:128+2*rad+1),opt(mx)); 
[val,ind] = min(abs(opt-opt2)); 
if (opt2 < 15 - 1.25) || (opt2 > 35 + 1.25) 
    display('Noise is out of range') 
else 
    if (opt(mx) < 35) && (opt2 > opt(ind) + 1.25) 
        ind = ind + 1; 
    end 

  

  
if mod(opt(ind),5) == 0 
    str = [mat2str(opt(ind)/100)]; 
else 
    str = [mat2str((opt(ind)+.5)/100)]; 
end 
display(['Estimated sigma: ' str]) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if mod(opt(ind),5) == 0 
    str = ['demo' mat2str(opt(ind)) 'JPG']; 
else 
    str = ['demo' mat2str(opt(ind)) 'hJPG']; 
end 
    load(str) 

  
    display('Stage1 denoising begins...') 
    for jj = 1:noc       

  
        xmin = Xmin1(jj,:); 
        xmax = Xmax1(jj,:); 
        tmin = Tmin1(jj,:); 
        tmax = Tmax1(jj,:); 

  

  



        IW = cell2mat(S1IW(jj,1)); 
        IB = cell2mat(S1B(jj,1)); 
        LB1 = cell2mat(S1B(jj,2)); 
        LB2 = cell2mat(S1B(jj,3)); 
        LB3 = cell2mat(S1B(jj,4)); 
        LB4 = cell2mat(S1B(jj,5)); 
        LB5 = cell2mat(S1B(jj,6)); 
        LB6 = cell2mat(S1B(jj,7)); 
        LW1 = cell2mat(S1LW(jj,2,1)); 
        LW2 = cell2mat(S1LW(jj,3,2)); 
        LW3 = cell2mat(S1LW(jj,4,3)); 
        LW4 = cell2mat(S1LW(jj,5,4)); 
        LW5 = cell2mat(S1LW(jj,6,5)); 
        LW6 = cell2mat(S1LW(jj,7,6)); 

  
        tst = squeeze(UKDataMC(jj,:,:)); 
        UKData1f2(jj,:) = tmin + (tmax-

tmin)*((LW6*tansig(LW5*tansig(LW4*tansig(LW3*tansig(LW2*tansig(LW1*tansig... 
            (IW*(-1+ 2*((tst-repmat(xmin',[1 size(tst,2)])))./... 
            (repmat(xmax',[1 size(tst,2)])- repmat(xmin',[1 

size(tst,2)])))... 
            +repmat(IB,[1 size(tst,2)]))+repmat(LB1,[1 

size(tst,2)]))+repmat(LB2,[1 size(tst,2)]))+... 
            repmat(LB3,[1 size(tst,2)]))+repmat(LB4,[1 

size(tst,2)]))+repmat(LB5,[1 size(tst,2)]))+LB6) +1)/2; 

  
        TMP = reshape(UKData1f2(jj,:),[Resolx,Resoly])';     
        RESULT1(jj,:,:) = TMP; 
    end 

  
    for jj = 1:noc 
        TMP = reshape(UKData1f2(jj,:),[Resolx,Resoly])';     
        UKData1tr(jj,:,:) = zeros(Resoly+2*rad2,Resolx+2*rad2); 
        UKData1tr(jj,rad2+1:Resoly+rad2,rad2+1:Resolx+rad2) = TMP; 
    end 
    display('Stage1 denoising complete') 
    %%%%%%%%%%%Stage1 denoising complete 

  
    for jj = 1:noc 
        UKData1ctr(jj,:,:) = squeeze(mean(UKData1tr(comb(jj,:),:,:))); 
    end 

  
    UKData1 = zeros(noc,w2d2,(Resolx)*(Resoly)); 
    for jj = 1:noc 
        CIm = squeeze(UKData1ctr(jj,:,:)); 
        CDt = zeros(w2d2,(Resolx)*(Resoly)); 
        l = 1; 
            for j = 1+rad2:Resoly+rad2 
                for k = 1+rad2:Resolx+rad2 
                    CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                    l = l + 1; 
                end 
            end 
        UKData1(jj,:,:) = CDt; 
    end 



  
    for jj = 1:noc 
        TMP = UKData1(comb(jj,:),:,:); 
        for kk = 1:(noc-1) 
            UKData1MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
        end 
    end 

  

  
    display('Stage2 denoising begins...') 
    for jj = 1:noc      

  
        xmin = Xmin2(jj,:); 
        xmax = Xmax2(jj,:); 
        tmin = Tmin2(jj,:); 
        tmax = Tmax2(jj,:); 

  

  
        IW = cell2mat(S2IW(jj,1)); 
        IB = cell2mat(S2B(jj,1)); 
        LB1 = cell2mat(S2B(jj,2)); 
        LB2 = cell2mat(S2B(jj,3)); 
        LB3 = cell2mat(S2B(jj,4)); 
        LB4 = cell2mat(S2B(jj,5)); 
        LB5 = cell2mat(S2B(jj,6)); 
        LB6 = cell2mat(S2B(jj,7)); 
        LW1 = cell2mat(S2LW(jj,2,1)); 
        LW2 = cell2mat(S2LW(jj,3,2)); 
        LW3 = cell2mat(S2LW(jj,4,3)); 
        LW4 = cell2mat(S2LW(jj,5,4)); 
        LW5 = cell2mat(S2LW(jj,6,5)); 
        LW6 = cell2mat(S2LW(jj,7,6)); 

  
        tst = squeeze(UKData1MC(jj,:,:)); 
        UKData2f3(jj,:) = tmin + (tmax-

tmin)*((LW6*tansig(LW5*tansig(LW4*tansig(LW3*tansig(LW2*tansig(LW1*tansig... 
            (IW*(-1+ 2*((tst-repmat(xmin',[1 size(tst,2)])))./... 
            (repmat(xmax',[1 size(tst,2)])- repmat(xmin',[1 

size(tst,2)])))... 
            +repmat(IB,[1 size(tst,2)]))+repmat(LB1,[1 

size(tst,2)]))+repmat(LB2,[1 size(tst,2)]))+... 
            repmat(LB3,[1 size(tst,2)]))+repmat(LB4,[1 

size(tst,2)]))+repmat(LB5,[1 size(tst,2)]))+LB6) +1)/2; 

         
        TMP = reshape(UKData2f3(jj,:),[Resolx,Resoly])';     
        RESULT2(jj,:,:) = TMP; 
    end 

  
    UKData1MC = 0; 

  
    for jj = 1:noc 
        TMP = reshape(UKData2f3(jj,:),[Resolx,Resoly])';     
        UKData2tr(jj,:,:) = zeros(Resoly+2*rad2,Resolx+2*rad2); 
        UKData2tr(jj,rad2+1:Resoly+rad2,rad2+1:Resolx+rad2) = TMP; 
    end 



    display('Stage2 denoising complete') 
    %%%%%%%%%%%Stage2 denoising complete 

  

  
    for jj = 1:noc 
        UKData2ctr(jj,:,:) = squeeze(mean(UKData2tr(comb(jj,:),:,:))); 
    end 

  
    UKData2 = zeros(noc,w2d2,(Resolx)*(Resoly)); 
    for jj = 1:noc 
        CIm = squeeze(UKData2ctr(jj,:,:)); 
        CDt = zeros(w2d2,(Resolx)*(Resoly)); 
        l = 1; 
            for j = 1+rad2:Resoly+rad2 
                for k = 1+rad2:Resolx+rad2 
                    CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                    l = l + 1; 
                end 
            end 
        UKData2(jj,:,:) = CDt; 
    end 

  
    for jj = 1:noc 
        TMP = UKData2(comb(jj,:),:,:); 
        for kk = 1:(noc-1) 
            UKData2MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
        end 
    end 

  
    display('Stage3 denoising begins...') 
    for jj = 1:noc       

  
    xmin = Xmin3(jj,:); 
    xmax = Xmax3(jj,:); 
    tmin = Tmin3(jj,:); 
    tmax = Tmax3(jj,:); 

  
    IW = cell2mat(S3IW(jj,1)); 
    IB = cell2mat(S3B(jj,1)); 
    LB1 = cell2mat(S3B(jj,2)); 
    LB2 = cell2mat(S3B(jj,3)); 
    LB3 = cell2mat(S3B(jj,4)); 
    LB4 = cell2mat(S3B(jj,5)); 
    LB5 = cell2mat(S3B(jj,6)); 
    LB6 = cell2mat(S3B(jj,7)); 
    LW1 = cell2mat(S3LW(jj,2,1)); 
    LW2 = cell2mat(S3LW(jj,3,2)); 
    LW3 = cell2mat(S3LW(jj,4,3)); 
    LW4 = cell2mat(S3LW(jj,5,4)); 
    LW5 = cell2mat(S3LW(jj,6,5)); 
    LW6 = cell2mat(S3LW(jj,7,6)); 

  
    tst = squeeze(UKData2MC(jj,:,:)); 



    UKData3f4(jj,:) = tmin + (tmax-

tmin)*((LW6*tansig(LW5*tansig(LW4*tansig(LW3*tansig(LW2*tansig(LW1*tansig... 
            (IW*(-1+ 2*((tst-repmat(xmin',[1 size(tst,2)])))./... 
            (repmat(xmax',[1 size(tst,2)])- repmat(xmin',[1 

size(tst,2)])))... 
            +repmat(IB,[1 size(tst,2)]))+repmat(LB1,[1 

size(tst,2)]))+repmat(LB2,[1 size(tst,2)]))+... 
            repmat(LB3,[1 size(tst,2)]))+repmat(LB4,[1 

size(tst,2)]))+repmat(LB5,[1 size(tst,2)]))+LB6) +1)/2; 

  
        TMP = reshape(UKData3f4(jj,:),[Resolx,Resoly])';     
        RESULT3(jj,:,:) = TMP; 
    end 

  
    UKData2MC = 0; 

  
    for jj = 1:noc 
        TMP = reshape(UKData3f4(jj,:),[Resolx,Resoly])';     
        UKData3tr(jj,:,:) = zeros(Resoly+2*rad2,Resolx+2*rad2); 
        UKData3tr(jj,rad2+1:Resoly+rad2,rad2+1:Resolx+rad2) = TMP; 
    end 
    display('Stage3 denoising complete') 
    %%%%%%%%%%%Stage3 denoising complete 

  

  
    for jj = 1:noc 
        UKData3ctr(jj,:,:) = squeeze(mean(UKData3tr(comb(jj,:),:,:))); 
    end 

  
    UKData3 = zeros(noc,w2d2,(Resolx)*(Resoly)); 
    for jj = 1:noc 
        CIm = squeeze(UKData3ctr(jj,:,:)); 
        CDt = zeros(w2d2,(Resolx)*(Resoly)); 
        l = 1; 
            for j = 1+rad2:Resoly+rad2 
                for k = 1+rad2:Resolx+rad2 
                    CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                    l = l + 1; 
                end 
            end 
        UKData3(jj,:,:) = CDt; 
    end 

  
    for jj = 1:noc 
        TMP = UKData3(comb(jj,:),:,:); 
        for kk = 1:(noc-1) 
            UKData3MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
        end 
    end 

  
    display('Stage4 denoising begins...') 
    for jj = 1:noc     

  
        xmin = Xmin4(jj,:); 



        xmax = Xmax4(jj,:); 
        tmin = Tmin4(jj,:); 
        tmax = Tmax4(jj,:); 

  
        IW = cell2mat(S4IW(jj,1)); 
        IB = cell2mat(S4B(jj,1)); 
        LB1 = cell2mat(S4B(jj,2)); 
        LB2 = cell2mat(S4B(jj,3)); 
        LB3 = cell2mat(S4B(jj,4)); 
        LB4 = cell2mat(S4B(jj,5)); 
        LB5 = cell2mat(S4B(jj,6)); 
        LB6 = cell2mat(S4B(jj,7)); 
        LW1 = cell2mat(S4LW(jj,2,1)); 
        LW2 = cell2mat(S4LW(jj,3,2)); 
        LW3 = cell2mat(S4LW(jj,4,3)); 
        LW4 = cell2mat(S4LW(jj,5,4)); 
        LW5 = cell2mat(S4LW(jj,6,5)); 
        LW6 = cell2mat(S4LW(jj,7,6)); 

  
        tst = squeeze(UKData3MC(jj,:,:)); 
        UKData4f5(jj,:) = tmin + (tmax-

tmin)*((LW6*tansig(LW5*tansig(LW4*tansig(LW3*tansig(LW2*tansig(LW1*tansig... 
            (IW*(-1+ 2*((tst-repmat(xmin',[1 size(tst,2)])))./... 
            (repmat(xmax',[1 size(tst,2)])- repmat(xmin',[1 

size(tst,2)])))... 
            +repmat(IB,[1 size(tst,2)]))+repmat(LB1,[1 

size(tst,2)]))+repmat(LB2,[1 size(tst,2)]))+... 
            repmat(LB3,[1 size(tst,2)]))+repmat(LB4,[1 

size(tst,2)]))+repmat(LB5,[1 size(tst,2)]))+LB6) +1)/2; 

  
        TMP = reshape(UKData4f5(jj,:),[Resolx,Resoly])';     
        RESULT4(jj,:,:) = TMP; 
    end 

  
    UKData3MC = 0; 
    display('Stage4 denoising complete') 
    %%%%%%%%%%%Stage4 denoising complete 

  

  
    ReConN = squeeze(mean(RESULT4)); 
    Denoised = ReConN; 

         
    figure 
    subplot(1,3,1) 
    imagesc((Noisy)); 
    axis square; axis off 
    colormap hot 
    title('1 Copy','FontSize',18) 

     
    subplot(1,3,2) 
    imagesc((Denoised)); 
    axis square; axis off 
    colormap hot 
    title('NN','FontSize',18) 
    pause(.1) 



[namein, pathin, filterindex] = uigetfile({  '*.Jpg','JPEG image (*.Jpg)'}, 

'Select one or several files (using +CTRL or +SHIFT)','MultiSelect', 'on'); 
if isequal(namein,0) | isequal(pathin,0) 
    disp('User pressed cancel') 
else 
    disp(['Input file : ', fullfile(pathin, namein)]) 
    [pathstr, name_s, ext]=fileparts(fullfile(pathin, namein)); 

  
    ReConI = imread(namein);     
    ReConI = squeeze(mean(ReConI,3)); 
    ReConI = ReConI / max(max(ReConI)); 
    Original = ReConI; 

  
    subplot(1,3,3) 
    imagesc((ReConI)); 
    axis square; axis off 
    colormap hot 
    title('Original','FontSize',18); 

  
    Diff = Denoised - Original; 
    RMSE = sqrt(mean(Diff(:).^2)); 
    PSNR = 20*log10(1/RMSE) 

     
    [FSIM, FSIMc] = FeatureSIM(Denoised*255,Original*255); 
    display('Comp') 
    FSIM 
    [mssim ssim_map] = ssim_index(Denoised*255,Original*255); 
    display('Comp') 
    mssim 
end 
end 
end 
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function [dist,h1,h2] = MCMLP_EstimateJPG(Data,sa)  

     
    Try_sigma = sa/100 
    if mod (sa,5) == 0 
        str = ['demo' mat2str(sa) 'JPG']; 
    else 
        str = ['demo' mat2str(floor(sa)) 'hJPG']; 
    end 
    load(str) 

     
    NL = 1; 
    rad = 2; 
    rad2 = 2; 
    noc = 7; 
    w2d = (rad*2+1)^2; 
    w2d2 = (rad2*2+1)^2; 
    w3d = 0; 
    wg = 3; 
    wg1 = 3; 
    fthresh = 1; 
    thresh = .025;  

     
    Data2bR0 = Data; 
    Resolx = 128; 
    Resoly = 128; 
    Noisy = squeeze((Data2bR0(1,rad+1:Resoly+rad,rad+1:Resolx+rad))); 

  
    comb = nchoosek(1:noc,(noc-1)); 
    nocom = length(comb(:,1)); 
    for jj = 1:noc 
        Data2bR(jj,:,:) = squeeze(mean(Data2bR0(comb(jj,:),:,:))); 
    end 

  
    %%%%%%%%%%%Introducing noise to image complete. 

     
    UKData = zeros(noc,w2d,(Resolx)*(Resoly)); 
    for jj = 1:noc 
        CIm = squeeze(Data2bR(jj,:,:)); 
        CDt = zeros(w2d,(Resolx)*(Resoly)); 
        l = 1; 
            for j = 1+rad:Resoly+rad 
                for k = 1+rad:Resolx+rad 
                    CDt(:,l) = reshape(CIm(j-rad:j+rad,k-

rad:k+rad),[1,(2*rad+1)^2]); 
                    l = l + 1; 
                end 
            end 
        UKData(jj,:,:) = CDt; 
    end 
    Mean = reshape(squeeze(mean(UKData(:,ceil(end/2),:))),[Resoly,Resolx])'; 

  
    for jj = 1:noc 
        TMP = UKData(comb(jj,:),:,:); 
        for kk = 1:(noc-1) 
            UKDataMC(jj,(kk-1)*w2d+1:kk*w2d,:) = squeeze(TMP(kk,:,:)); 



        end 
    end 
    %%%%%%%%%%%%Unknown sample data preparation complete. 

  
    display('.') 
    for jj = 1:noc       

  
        xmin = Xmin1(jj,:); 
        xmax = Xmax1(jj,:); 
        tmin = Tmin1(jj,:); 
        tmax = Tmax1(jj,:); 

  
        IW = cell2mat(S1IW(jj,1)); 
        IB = cell2mat(S1B(jj,1)); 
        LB1 = cell2mat(S1B(jj,2)); 
        LB2 = cell2mat(S1B(jj,3)); 
        LB3 = cell2mat(S1B(jj,4)); 
        LB4 = cell2mat(S1B(jj,5)); 
        LB5 = cell2mat(S1B(jj,6)); 
        LB6 = cell2mat(S1B(jj,7)); 
        LW1 = cell2mat(S1LW(jj,2,1)); 
        LW2 = cell2mat(S1LW(jj,3,2)); 
        LW3 = cell2mat(S1LW(jj,4,3)); 
        LW4 = cell2mat(S1LW(jj,5,4)); 
        LW5 = cell2mat(S1LW(jj,6,5)); 
        LW6 = cell2mat(S1LW(jj,7,6)); 

  
        tst = squeeze(UKDataMC(jj,:,:)); 
        UKData1f2(jj,:) = tmin + (tmax-

tmin)*((LW6*tansig(LW5*tansig(LW4*tansig(LW3*tansig(LW2*tansig(LW1*tansig... 
            (IW*(-1+ 2*((tst-repmat(xmin',[1 size(tst,2)])))./... 
            (repmat(xmax',[1 size(tst,2)])- repmat(xmin',[1 

size(tst,2)])))... 
            +repmat(IB,[1 size(tst,2)]))+repmat(LB1,[1 

size(tst,2)]))+repmat(LB2,[1 size(tst,2)]))+... 
            repmat(LB3,[1 size(tst,2)]))+repmat(LB4,[1 

size(tst,2)]))+repmat(LB5,[1 size(tst,2)]))+LB6) +1)/2; 

  
        TMP = reshape(UKData1f2(jj,:),[Resolx,Resoly])';     
        RESULT1(jj,:,:) = TMP; 
    end 

  
    for jj = 1:noc 
        TMP = reshape(UKData1f2(jj,:),[Resolx,Resoly])';     
        UKData1tr(jj,:,:) = zeros(Resoly+2*rad2,Resolx+2*rad2); 
        UKData1tr(jj,rad2+1:Resoly+rad2,rad2+1:Resolx+rad2) = TMP; 
    end 
    %%%%%%%%%%%Stage1 denoising complete 

  

  
    for jj = 1:noc 
        UKData1ctr(jj,:,:) = squeeze(mean(UKData1tr(comb(jj,:),:,:))); 
    end 

  
    UKData1 = zeros(noc,w2d2,(Resolx)*(Resoly)); 



    for jj = 1:noc 
        CIm = squeeze(UKData1ctr(jj,:,:)); 
        CDt = zeros(w2d2,(Resolx)*(Resoly)); 
        l = 1; 
            for j = 1+rad2:Resoly+rad2 
                for k = 1+rad2:Resolx+rad2 
                    CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                    l = l + 1; 
                end 
            end 
        UKData1(jj,:,:) = CDt; 
    end 

  
    for jj = 1:noc 
        TMP = UKData1(comb(jj,:),:,:); 
        for kk = 1:(noc-1) 
            UKData1MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
        end 
    end 

  

  
    display('.') 
    for jj = 1:noc      

  
        xmin = Xmin2(jj,:); 
        xmax = Xmax2(jj,:); 
        tmin = Tmin2(jj,:); 
        tmax = Tmax2(jj,:); 

  

  
        IW = cell2mat(S2IW(jj,1)); 
        IB = cell2mat(S2B(jj,1)); 
        LB1 = cell2mat(S2B(jj,2)); 
        LB2 = cell2mat(S2B(jj,3)); 
        LB3 = cell2mat(S2B(jj,4)); 
        LB4 = cell2mat(S2B(jj,5)); 
        LB5 = cell2mat(S2B(jj,6)); 
        LB6 = cell2mat(S2B(jj,7)); 
        LW1 = cell2mat(S2LW(jj,2,1)); 
        LW2 = cell2mat(S2LW(jj,3,2)); 
        LW3 = cell2mat(S2LW(jj,4,3)); 
        LW4 = cell2mat(S2LW(jj,5,4)); 
        LW5 = cell2mat(S2LW(jj,6,5)); 
        LW6 = cell2mat(S2LW(jj,7,6)); 

  
        tst = squeeze(UKData1MC(jj,:,:)); 
        UKData2f3(jj,:) = tmin + (tmax-

tmin)*((LW6*tansig(LW5*tansig(LW4*tansig(LW3*tansig(LW2*tansig(LW1*tansig... 
            (IW*(-1+ 2*((tst-repmat(xmin',[1 size(tst,2)])))./... 
            (repmat(xmax',[1 size(tst,2)])- repmat(xmin',[1 

size(tst,2)])))... 
            +repmat(IB,[1 size(tst,2)]))+repmat(LB1,[1 

size(tst,2)]))+repmat(LB2,[1 size(tst,2)]))+... 



            repmat(LB3,[1 size(tst,2)]))+repmat(LB4,[1 

size(tst,2)]))+repmat(LB5,[1 size(tst,2)]))+LB6) +1)/2; 

         
        TMP = reshape(UKData2f3(jj,:),[Resolx,Resoly])';     
        RESULT2(jj,:,:) = TMP; 
    end 

  
    UKData1MC = 0; 

  
    for jj = 1:noc 
        TMP = reshape(UKData2f3(jj,:),[Resolx,Resoly])';     
        UKData2tr(jj,:,:) = zeros(Resoly+2*rad2,Resolx+2*rad2); 
        UKData2tr(jj,rad2+1:Resoly+rad2,rad2+1:Resolx+rad2) = TMP; 
    end 
    %%%%%%%%%%%Stage2 denoising complete 

  
    for jj = 1:noc 
        UKData2ctr(jj,:,:) = squeeze(mean(UKData2tr(comb(jj,:),:,:))); 
    end 

  
    UKData2 = zeros(noc,w2d2,(Resolx)*(Resoly)); 
    for jj = 1:noc 
        CIm = squeeze(UKData2ctr(jj,:,:)); 
        CDt = zeros(w2d2,(Resolx)*(Resoly)); 
        l = 1; 
            for j = 1+rad2:Resoly+rad2 
                for k = 1+rad2:Resolx+rad2 
                    CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                    l = l + 1; 
                end 
            end 
        UKData2(jj,:,:) = CDt; 
    end 

  
    for jj = 1:noc 
        TMP = UKData2(comb(jj,:),:,:); 
        for kk = 1:(noc-1) 
            UKData2MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
        end 
    end 

  
    display('.') 
    for jj = 1:noc       

  
    xmin = Xmin3(jj,:); 
    xmax = Xmax3(jj,:); 
    tmin = Tmin3(jj,:); 
    tmax = Tmax3(jj,:); 

  
    IW = cell2mat(S3IW(jj,1)); 
    IB = cell2mat(S3B(jj,1)); 
    LB1 = cell2mat(S3B(jj,2)); 
    LB2 = cell2mat(S3B(jj,3)); 
    LB3 = cell2mat(S3B(jj,4)); 



    LB4 = cell2mat(S3B(jj,5)); 
    LB5 = cell2mat(S3B(jj,6)); 
    LB6 = cell2mat(S3B(jj,7)); 
    LW1 = cell2mat(S3LW(jj,2,1)); 
    LW2 = cell2mat(S3LW(jj,3,2)); 
    LW3 = cell2mat(S3LW(jj,4,3)); 
    LW4 = cell2mat(S3LW(jj,5,4)); 
    LW5 = cell2mat(S3LW(jj,6,5)); 
    LW6 = cell2mat(S3LW(jj,7,6)); 

  
    tst = squeeze(UKData2MC(jj,:,:)); 
    UKData3f4(jj,:) = tmin + (tmax-

tmin)*((LW6*tansig(LW5*tansig(LW4*tansig(LW3*tansig(LW2*tansig(LW1*tansig... 
            (IW*(-1+ 2*((tst-repmat(xmin',[1 size(tst,2)])))./... 
            (repmat(xmax',[1 size(tst,2)])- repmat(xmin',[1 

size(tst,2)])))... 
            +repmat(IB,[1 size(tst,2)]))+repmat(LB1,[1 

size(tst,2)]))+repmat(LB2,[1 size(tst,2)]))+... 
            repmat(LB3,[1 size(tst,2)]))+repmat(LB4,[1 

size(tst,2)]))+repmat(LB5,[1 size(tst,2)]))+LB6) +1)/2; 

  
        TMP = reshape(UKData3f4(jj,:),[Resolx,Resoly])';     
        RESULT3(jj,:,:) = TMP; 
    end 

  
    UKData2MC = 0; 

  
    for jj = 1:noc 
        TMP = reshape(UKData3f4(jj,:),[Resolx,Resoly])';     
        UKData3tr(jj,:,:) = zeros(Resoly+2*rad2,Resolx+2*rad2); 
        UKData3tr(jj,rad2+1:Resoly+rad2,rad2+1:Resolx+rad2) = TMP; 
    end 
    %%%%%%%%%%%Stage3 denoising complete 

  
    for jj = 1:noc 
        UKData3ctr(jj,:,:) = squeeze(mean(UKData3tr(comb(jj,:),:,:))); 
    end 

  
    UKData3 = zeros(noc,w2d2,(Resolx)*(Resoly)); 
    for jj = 1:noc 
        CIm = squeeze(UKData3ctr(jj,:,:)); 
        CDt = zeros(w2d2,(Resolx)*(Resoly)); 
        l = 1; 
            for j = 1+rad2:Resoly+rad2 
                for k = 1+rad2:Resolx+rad2 
                    CDt(:,l) = reshape(CIm(j-rad2:j+rad2,k-

rad2:k+rad2),[1,(2*rad2+1)^2]); 
                    l = l + 1; 
                end 
            end 
        UKData3(jj,:,:) = CDt; 
    end 

  
    for jj = 1:noc 
        TMP = UKData3(comb(jj,:),:,:); 



        for kk = 1:(noc-1) 
            UKData3MC(jj,(kk-1)*w2d2+1:kk*w2d2,:) = squeeze(TMP(kk,:,:)); 
        end 
    end 

  
    display('.') 
    for jj = 1:noc     

  
        xmin = Xmin4(jj,:); 
        xmax = Xmax4(jj,:); 
        tmin = Tmin4(jj,:); 
        tmax = Tmax4(jj,:); 

  
        IW = cell2mat(S4IW(jj,1)); 
        IB = cell2mat(S4B(jj,1)); 
        LB1 = cell2mat(S4B(jj,2)); 
        LB2 = cell2mat(S4B(jj,3)); 
        LB3 = cell2mat(S4B(jj,4)); 
        LB4 = cell2mat(S4B(jj,5)); 
        LB5 = cell2mat(S4B(jj,6)); 
        LB6 = cell2mat(S4B(jj,7)); 
        LW1 = cell2mat(S4LW(jj,2,1)); 
        LW2 = cell2mat(S4LW(jj,3,2)); 
        LW3 = cell2mat(S4LW(jj,4,3)); 
        LW4 = cell2mat(S4LW(jj,5,4)); 
        LW5 = cell2mat(S4LW(jj,6,5)); 
        LW6 = cell2mat(S4LW(jj,7,6)); 

  
        tst = squeeze(UKData3MC(jj,:,:)); 
        UKData4f5(jj,:) = tmin + (tmax-

tmin)*((LW6*tansig(LW5*tansig(LW4*tansig(LW3*tansig(LW2*tansig(LW1*tansig... 
            (IW*(-1+ 2*((tst-repmat(xmin',[1 size(tst,2)])))./... 
            (repmat(xmax',[1 size(tst,2)])- repmat(xmin',[1 

size(tst,2)])))... 
            +repmat(IB,[1 size(tst,2)]))+repmat(LB1,[1 

size(tst,2)]))+repmat(LB2,[1 size(tst,2)]))+... 
            repmat(LB3,[1 size(tst,2)]))+repmat(LB4,[1 

size(tst,2)]))+repmat(LB5,[1 size(tst,2)]))+LB6) +1)/2; 

  
        TMP = reshape(UKData4f5(jj,:),[Resolx,Resoly])';     
        RESULT4(jj,:,:) = TMP; 
    end 

  
    UKData3MC = 0; 
    %%%%%%%%%%%Stage4 denoising complete 

  
    ReConN = squeeze(mean(RESULT4)); 
    Denoised = ReConN;    

     
    esigma = sa/100; 
    S = ReConN(:); 
    kk = 1; 
    for jj = 1:length(S) 
    [val,ind] = min(S); 
    if kk < .05*length(S); 



        In(kk) = ind; 
        kk = kk + 1; 
    end 
    S(ind) = inf; 
    end 
    N = Noisy(:); 
    M = N(In); 
    Es = sqrt((randn(length(M),1)*esigma).^2+(randn(length(M),1)*esigma).^2); 
    dist = abs(std(M) - std(Es)); 
    distance = dist 

  
    h1 = M; 
    h2 = Es; 
end 

 



B.4 10 Channel Bioreactor Control

This program requires COMSOL server for MATLAB (COMSOL Inc., Burlington,

MA). Version 4.2 was used in this work.
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clear 
close all 
scale = 0; 

 
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelNode.create('mod1'); 

  
model.geom.create('geom1', 2); 

  
model.mesh.create('mesh1', 'geom1'); 

  
model.physics.create('spf', 'LaminarFlow', 'geom1'); 

  
model.study.create('std1'); 
model.study('std1').feature.create('stat', 'Stationary'); 

  
model.geom('geom1').lengthUnit('mm'); 
model.geom('geom1').feature.create('imp1', 'Import'); 
model.geom('geom1').feature('imp1').set('filename', 

'C:\Users\arj\Documents\MATLAB\BioReact\geom5.mphbin'); 
model.geom('geom1').feature('imp1').importData; 
model.geom('geom1').run; 

  
model.material.create('mat1'); 
model.material.remove('mat1'); 
model.material.create('mat1'); 
model.material('mat1').name('Water, liquid'); 
model.material('mat1').set('family', 'water'); 
model.material('mat1').propertyGroup('def').set('dynamicviscosity', 

'eta(T[1/K])[Pa*s]'); 
model.material('mat1').propertyGroup('def').set('ratioofspecificheat', 

'1.0'); 
model.material('mat1').propertyGroup('def').set('electricconductivity', 

'5.5e-6[S/m]'); 
model.material('mat1').propertyGroup('def').set('heatcapacity', 

'Cp(T[1/K])[J/(kg*K)]'); 
model.material('mat1').propertyGroup('def').set('density', 

'rho(T[1/K])[kg/m^3]'); 
model.material('mat1').propertyGroup('def').set('thermalconductivity', 

'k(T[1/K])[W/(m*K)]'); 
model.material('mat1').propertyGroup('def').set('soundspeed', 

'cs(T[1/K])[m/s]'); 
model.material('mat1').propertyGroup('def').func.create('eta', 'Piecewise'); 
model.material('mat1').propertyGroup('def').func('eta').set('funcname', 

'eta'); 
model.material('mat1').propertyGroup('def').func('eta').set('arg', 'T'); 
model.material('mat1').propertyGroup('def').func('eta').set('extrap', 

'constant'); 
model.material('mat1').propertyGroup('def').func('eta').set('pieces', 

{'273.15' '413.15' '1.3799566804-0.021224019151*T^1+1.3604562827E-4*T^2-

4.6454090319E-7*T^3+8.9042735735E-10*T^4-9.0790692686E-13*T^5+3.8457331488E-



16*T^6'; '413.15' '553.75' '0.00401235783-2.10746715E-5*T^1+3.85772275E-

8*T^2-2.39730284E-11*T^3'}); 
model.material('mat1').propertyGroup('def').func.create('Cp', 'Piecewise'); 
model.material('mat1').propertyGroup('def').func('Cp').set('funcname', 'Cp'); 
model.material('mat1').propertyGroup('def').func('Cp').set('arg', 'T'); 
model.material('mat1').propertyGroup('def').func('Cp').set('extrap', 

'constant'); 
model.material('mat1').propertyGroup('def').func('Cp').set('pieces', 

{'273.15' '553.75' '12010.1471-80.4072879*T^1+0.309866854*T^2-5.38186884E-

4*T^3+3.62536437E-7*T^4'}); 
model.material('mat1').propertyGroup('def').func.create('rho', 'Piecewise'); 
model.material('mat1').propertyGroup('def').func('rho').set('funcname', 

'rho'); 
model.material('mat1').propertyGroup('def').func('rho').set('arg', 'T'); 
model.material('mat1').propertyGroup('def').func('rho').set('extrap', 

'constant'); 
model.material('mat1').propertyGroup('def').func('rho').set('pieces', 

{'273.15' '553.75' '838.466135+1.40050603*T^1-0.0030112376*T^2+3.71822313E-

7*T^3'}); 
model.material('mat1').propertyGroup('def').func.create('k', 'Piecewise'); 
model.material('mat1').propertyGroup('def').func('k').set('funcname', 'k'); 
model.material('mat1').propertyGroup('def').func('k').set('arg', 'T'); 
model.material('mat1').propertyGroup('def').func('k').set('extrap', 

'constant'); 
model.material('mat1').propertyGroup('def').func('k').set('pieces', {'273.15' 

'553.75' '-0.869083936+0.00894880345*T^1-1.58366345E-5*T^2+7.97543259E-

9*T^3'}); 
model.material('mat1').propertyGroup('def').func.create('cs', 

'Interpolation'); 
model.material('mat1').propertyGroup('def').func('cs').set('funcname', 'cs'); 
model.material('mat1').propertyGroup('def').func('cs').set('interp', 

'piecewisecubic'); 
model.material('mat1').propertyGroup('def').func('cs').set('extrap', 

'const'); 
model.material('mat1').propertyGroup('def').func('cs').set('table', {'273' 

'1403'; '278' '1427'; '283' '1447'; '293' '1481'; '303' '1507'; '313' '1526'; 

'323' '1541'; '333' '1552'; '343' '1555'; '353' '1555'; '363' '1550'; '373' 

'1543'}); 
model.material('mat1').propertyGroup('def').addInput('temperature'); 
model.material('mat1').set('family', 'water'); 

  
model.physics('spf').feature.create('out1', 'Outlet', 1); 
model.physics('spf').feature('out1').selection.set([24]); 
model.physics('spf').feature.create('inl1', 'Inlet', 1); 
model.physics('spf').feature('inl1').selection.set([5]); 
model.physics('spf').feature.create('inl2', 'Inlet', 1); 
model.physics('spf').feature('inl2').selection.set([3]); 
model.physics('spf').feature.create('inl3', 'Inlet', 1); 
model.physics('spf').feature('inl3').selection.set([1]); 
model.physics('spf').feature.create('inl4', 'Inlet', 1); 
model.physics('spf').feature('inl4').selection.set([18]); 
model.physics('spf').feature.create('inl5', 'Inlet', 1); 
model.physics('spf').feature('inl5').selection.set([22]); 
model.physics('spf').feature.create('inl6', 'Inlet', 1); 
model.physics('spf').feature('inl6').selection.set([28]); 
model.physics('spf').feature.create('inl7', 'Inlet', 1); 
model.physics('spf').feature('inl7').selection.set([35]); 



model.physics('spf').feature.create('inl8', 'Inlet', 1); 
model.physics('spf').feature('inl8').selection.set([49]); 
model.physics('spf').feature.create('inl9', 'Inlet', 1); 
model.physics('spf').feature('inl9').selection.set([50]); 
model.physics('spf').feature.create('inl10', 'Inlet', 1); 
model.physics('spf').feature('inl10').selection.set([51]); 
model.physics('spf').feature.create('vf1', 'VolumeForce', 2); 
model.physics('spf').feature('vf1').selection.set([1]); 
model.physics('spf').feature('vf1').set('F', {'0' '-9810' '0'}); 
model.physics('spf').feature('inl1').set('U0in', 1, '0.1'); 

  
model.mesh('mesh1').autoMeshSize(3); 
model.mesh('mesh1').run; 

  
model.sol.create('sol1'); 
model.sol('sol1').study('std1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
model.sol('sol1').feature('st1').set('study', 'std1'); 
model.sol('sol1').feature('st1').set('studystep', 'stat'); 
model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature.create('s1', 'Stationary'); 
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('s1').feature('fc1').set('initstep', 0.01); 
model.sol('sol1').feature('s1').feature('fc1').set('minstep', 1.0E-6); 
model.sol('sol1').feature('s1').feature('fc1').set('dtech', 'auto'); 
model.sol('sol1').feature('s1').feature('fc1').set('maxiter', 25); 
model.sol('sol1').feature('s1').feature.create('d1', 'Direct'); 
model.sol('sol1').feature('s1').feature('d1').set('linsolver', 'pardiso'); 
model.sol('sol1').feature('s1').feature('fc1').set('linsolver', 'd1'); 
model.sol('sol1').feature('s1').feature('fc1').set('initstep', 0.01); 
model.sol('sol1').feature('s1').feature('fc1').set('minstep', 1.0E-6); 
model.sol('sol1').feature('s1').feature('fc1').set('dtech', 'auto'); 
model.sol('sol1').feature('s1').feature('fc1').set('maxiter', 25); 
model.sol('sol1').feature('s1').feature.remove('fcDef'); 
model.sol('sol1').attach('std1'); 

  
model.result.create('pg1', 2); 
model.result('pg1').set('data', 'dset1'); 
model.result('pg1').feature.create('surf1', 'Surface'); 
model.result('pg1').feature('surf1').set('expr', {'spf.U'}); 
model.result('pg1').set('frametype', 'spatial'); 
model.result('pg1').name('Velocity (spf)'); 
model.result.create('pg2', 2); 
model.result('pg2').set('data', 'dset1'); 
model.result('pg2').feature.create('con', 'Contour'); 
model.result('pg2').feature('con').set('expr', {'p'}); 
model.result('pg2').set('frametype', 'spatial'); 
model.result('pg2').name('Pressure (spf)'); 
model.result('pg2').feature('con').set('number', 40); 
model.sol('sol1').runAll; 
model.result('pg1').run; 

 
noin = 9;%%%%%% inpt vector length 
noout = 10;%%%%%% number of outputs 
nohn = 10;%%%%%% number of neurons in hidden layer 
nohn2 = 10; 



Whl_i = rand(nohn,noin)/100; 
Bhl = rand(nohn,1)/100; 
Whl_2 = rand(nohn2,nohn)/100; 
Bhl2 = rand(nohn2,1)/100; 
Wo_hl2 = rand(noout,nohn2)/100; 
Bo = rand(noout,1)/100; 
mu = .01; 
h1 = ones(nohn,1)*mu; 
h2 = ones(nohn2,1)*mu; 
h3 = ones(noout,1)*mu; 
mo = 0.025; 
a1 = ones(nohn,1)*mo; 
a2 = ones(nohn2,1)*mo; 
a3 = ones(noout,1)*mo; 
u = .1; 
v = .2; 
ds = 1e-1; 
dso = ds; 
maxms = 5e-2; 
minms = 1e-6; 
bcount = 0; 
mfd = 3; 

  
target = 10*ones(3,3); 
inspeed = rand(1,10); 
Err =  0; 
Errs = zeros(9,1); 
errn = zeros(1,10); 
errb = inf; 
outptb = zeros(10,1); 
inpt = ones(noin,1)/100; 
inptP = inpt; 
fl = ones(3,3); 
flb = fl; 
flag = 0; 
vv = 1; 

  
x0 = -.5:.05:3; 
y0 = -.5:.05:3; 
[x,y] = meshgrid(x0,y0); 
xx = [x(:),y(:)]; 

  
ii = 1; 
ds = 5e-1; 
dso = ds; 
iii = ii; 

  
figure 
imagesc(imresize(target,[100,100])) 
figure 

  
for ii = iii:iii+49 
    if ii > 10 
        if mod(ii,2) == 0 
        scale = scale + .001; 
        end      



    else 
        scale = 0; 
    end 
    outpt  = purelin(Bo + Wo_hl2*logsig(Bhl2+ Whl_2*logsig(Bhl + 

Whl_i*inpt))); 
    hl = logsig(Bhl + Whl_i*inpt); 
    hl2 = logsig(Bhl2+ Whl_2*logsig(Bhl + Whl_i*inpt)); 
    inspeed = min(max(abs(outpt),0),100); 
    inspeedP = inspeed; 

  
    model.physics('spf').feature('inl1').set('U0in', 1, [mat2str(inspeed(1)) 

'[mm/s]']); 
    model.physics('spf').feature('inl2').set('U0in', 1, [mat2str(inspeed(2)) 

'[mm/s]']); 
    model.physics('spf').feature('inl3').set('U0in', 1, [mat2str(inspeed(3)) 

'[mm/s]']); 
    model.physics('spf').feature('inl4').set('U0in', 1, [mat2str(inspeed(4)) 

'[mm/s]']); 
    model.physics('spf').feature('inl5').set('U0in', 1, [mat2str(inspeed(5)) 

'[mm/s]']); 
    model.physics('spf').feature('inl6').set('U0in', 1, [mat2str(inspeed(6)) 

'[mm/s]']); 
    model.physics('spf').feature('inl7').set('U0in', 1, [mat2str(inspeed(7)) 

'[mm/s]']); 
    model.physics('spf').feature('inl8').set('U0in', 1, [mat2str(inspeed(8)) 

'[mm/s]']); 
    model.physics('spf').feature('inl9').set('U0in', 1, [mat2str(inspeed(9)) 

'[mm/s]']); 
    model.physics('spf').feature('inl10').set('U0in', 1, 

[mat2str(inspeed(10)) '[mm/s]']); 
    model.sol('sol1').runAll; 
    model.result('pg1').run; 
    shear = mphinterp(model,'spf.sr','coord',xx'); 
    shear = reshape(shear,length(x0),length(y0)); 
    for i1 = 1:71 
    for j1 = 1:71 
    if isnan(shear(i1,j1)) == 1 
    shear(i1,j1) = 0; 
    end 
    end 
    end 
    smapsim = shear(end-60:end-41,11:31);; 
    if ii == 1 
        Vid1(:,:,vv) = imresize(imresize(abs(smapsim),[3,3]),[100,100]); 
        vv = vv + 1; 
    end 

  
    fl = imresize(abs(smapsim),[3,3]); 
    flP = fl; 
    Inspeed = inspeed' 

  
    errs = (target - target.*exp(-(fl-target).^2./(2*mfd^2)))./target; 
    eerrs = reshape(errs,[1,9]) 
    err = sum(reshape(errs,[1,9]).^2)^.5;    
    if err == 0 
        break 



    end 
    Errs(:,ii) = eerrs'; 
    Err(ii) = err; 

  
    dst = ds;   
    if flag == 0     
        order = randperm(10); 
        for jj = 1:10 
            refresh 
 

            outptt = outpt; 
            outptt(order(jj)) = 

outptt(order(jj))+dst*sign(outptt(order(jj))); 
            inspeed = inspeedP; 
            inspeed(order(jj)) = min(max(abs(outptt(order(jj))),0),100); 
            model.physics('spf').feature(['inl' 

mat2str(order(jj))]).set('U0in', 1, [mat2str(inspeed(order(jj))) '[mm/s]']); 
            model.sol('sol1').runAll; 
            model.result('pg1').run; 
            shear = mphinterp(model,'spf.sr','coord',xx'); 
            shear = reshape(shear,length(x0),length(y0)); 
            for i1 = 1:71 
            for j1 = 1:71 
            if isnan(shear(i1,j1)) == 1 
            shear(i1,j1) = 0; 
            end 
            end 
            end 

  
            smapsim = shear(end-60:end-41,11:31); 
            flt = flP; 
            flt = imresize(abs(smapsim),[3,3]); 
            errst = (target - target.*exp(-(flt-

target).^2./(2*mfd^2)))./target; 

 
            errt = sum(reshape(errst,[1,9]).^2)^.5;  
            if errt > errb && bcount < 3                
                errt = errb; 
                outptt = outptb; 
                flt = fltb; 
                bcount = bcount + 1; 
            else 
                errb = errt; 
                outptb = outptt; 
                fltb = flt; 
                bcount = 0; 
            end 
            if errt < err 
                Vid1(:,:,vv) = 

imresize(imresize(abs(smapsim),[3,3]),[100,100]); 
                vv = vv + 1; 
                errn(order(jj)) = outptt(order(jj)) - outpt(order(jj)); 
                fl = flt; 

  
                %****************************************Update parameters  
                hlerror2 = Wo_hl2'*errn'; 



                hlerror = Whl_2'*hlerror2; 
                if ii > 1 
                    e1 = (hlerror - hlerrorP)./(hlerror+(hlerror==0)*1); 
                    e2 = (hlerror2 - hlerror2P)./(hlerror2+(hlerror2==0)*1); 
                    e3 = (errn' - errnP')./(errn'+(errn'==0)*1); 

                     
                    h1 = max(min(h1.*(1-sign(e1)*u.*exp(-e1)),maxms),minms); 
                    h2 = max(min(h2.*(1-sign(e2)*u.*exp(-e2)),maxms),minms); 
                    h3 = max(min(h3.*(1-sign(e3)*u.*exp(-e3)),maxms),minms); 

                     
                    a1 = max(min(a1.*(1-sign(e1)*v.*exp(-e1)),maxms),minms); 
                    a2 = max(min(a2.*(1-sign(e2)*v.*exp(-e2)),maxms),minms); 
                    a3 = max(min(a3.*(1-sign(e3)*v.*exp(-e3)),maxms),minms); 
                end 
                dWhl_i =  repmat(h1,[1,noin]).*((hlerror.*(hl.*(1-

hl)))*inpt'); 
                dBhl = h1.*(hlerror.*(hl.*(1-hl))); 
                dWhl_2 =  repmat(h2,[1,nohn]).*((hlerror2.*(hl2.*(1-

hl2)))*hl'); 
                dBhl2 = h2.*(hlerror2.*(hl2.*(1-hl2))); 
                dWo_hl2 =  repmat(h3,[1,nohn2]).*(errn'*hl2'); 
                dBo = h3.*errn'; 

                                                
                Whl_i = Whl_i + dWhl_i; 
                Bhl = Bhl + dBhl; 
                Whl_2 = Whl_2 + dWhl_2; 
                Bhl2 = Bhl2 + dBhl2; 
                Wo_hl2 = Wo_hl2 + dWo_hl2; 
                Bo = Bo + dBo; 

  
                if ii > 1%%%%%%%%%%%%%%%%%%%%Add momentum 
                Whl_i = Whl_i + repmat(a1,[1,noin]).*dWhl_ip; 
                Bhl = Bhl + a1.*dBhlp; 
                Whl_2 = Whl_2 + repmat(a2,[1,nohn]).*dWhl_2p; 
                Bhl2 = Bhl2 + a2.*dBhl2p; 
                Wo_hl2 = Wo_hl2 + repmat(a3,[1,nohn2]).*dWo_hlp; 
                Bo = Bo + a3.*dBop; 
                end 

  
                dWhl_ip = dWhl_i; 
                dBhlp = dBhl; 
                dWhl_2p = dWhl_2; 
                dBhl2p = dBhl2; 
                dWo_hlp = dWo_hl2; 
                dBop = dBo; 
                %**************************************** 

  
                subplot(2,2,3) 
                imagesc(imresize(flt,[100,100])); 
                title(mat2str(order(jj)))      
                caxis([0,1.5*max(max(target))]) 
                colorbar 
                axis square; axis off 
                pause(.01) 
            else 
                refresh 



                outptt = outpt; 
                outptt(order(jj)) = outptt(order(jj))-

dst*sign(outptt(order(jj))); 
                inspeed = inspeedP; 
                inspeed(order(jj)) = min(max(abs(outptt(order(jj))),0),100); 
                model.physics('spf').feature(['inl' 

mat2str(order(jj))]).set('U0in', 1, [mat2str(inspeed(order(jj))) '[mm/s]']); 
                model.sol('sol1').runAll; 
                model.result('pg1').run; 
                shear = mphinterp(model,'spf.sr','coord',xx'); 
                shear = reshape(shear,length(x0),length(y0)); 
                for i1 = 1:71 
                for j1 = 1:71 
                if isnan(shear(i1,j1)) == 1 
                shear(i1,j1) = 0; 
                end 
                end 
                end 

             
                smapsim = shear(end-60:end-41,11:31);; 
                flt = flP; 
                flt = imresize(abs(smapsim),[3,3]); 
                errst = (target - target.*exp(-(flt-

target).^2./(2*mfd^2)))./target; 
                errt = sum(reshape(errst,[1,9]).^2)^.5;  
                if errt > errb && bcount < 3                
                    errt = errb; 
                    outptt = outptb; 
                    flt = fltb; 
                    bcount = bcount + 1; 
                else 
                    errb = errt; 
                    outptb = outptt; 
                    fltb = flt; 
                    bcount = 0; 
                end 
                if errt < err 
                    Vid1(:,:,vv) = 

imresize(imresize(abs(smapsim),[3,3]),[100,100]); 
                    vv = vv + 1; 
                    errn(order(jj)) = outptt(order(jj)) - outpt(order(jj)); 
                    fl = flt; 

  
                   %****************************************Update parameters  
                    hlerror2 = Wo_hl2'*errn'; 
                    hlerror = Whl_2'*hlerror2; 
                    if ii > 1 
                        e1 = (hlerror - hlerrorP)./(hlerror+(hlerror==0)*1); 
                        e2 = (hlerror2 - 

hlerror2P)./(hlerror2+(hlerror2==0)*1); 
                        e3 = (errn' - errnP')./(errn'+(errn'==0)*1); 

  
                        h1 = max(min(h1.*(1-sign(e1)*u.*exp(-

e1)),maxms),minms); 
                        h2 = max(min(h2.*(1-sign(e2)*u.*exp(-

e2)),maxms),minms); 



                        h3 = max(min(h3.*(1-sign(e3)*u.*exp(-

e3)),maxms),minms); 

  
                        a1 = max(min(a1.*(1-sign(e1)*v.*exp(-

e1)),maxms),minms); 
                        a2 = max(min(a2.*(1-sign(e2)*v.*exp(-

e2)),maxms),minms); 
                        a3 = max(min(a3.*(1-sign(e3)*v.*exp(-

e3)),maxms),minms); 
                    end 
                    dWhl_i =  repmat(h1,[1,noin]).*((hlerror.*(hl.*(1-

hl)))*inpt'); 
                    dBhl = h1.*(hlerror.*(hl.*(1-hl))); 
                    dWhl_2 =  repmat(h2,[1,nohn]).*((hlerror2.*(hl2.*(1-

hl2)))*hl'); 
                    dBhl2 = h2.*(hlerror2.*(hl2.*(1-hl2))); 
                    dWo_hl2 =  repmat(h3,[1,nohn2]).*(errn'*hl2'); 
                    dBo = h3.*errn'; 

  
                    Whl_i = Whl_i + dWhl_i; 
                    Bhl = Bhl + dBhl; 
                    Whl_2 = Whl_2 + dWhl_2; 
                    Bhl2 = Bhl2 + dBhl2; 
                    Wo_hl2 = Wo_hl2 + dWo_hl2; 
                    Bo = Bo + dBo; 

  
                    if ii > 1%%%%%%%%%%%%%%%%%%%%Add momentum 
                    Whl_i = Whl_i + repmat(a1,[1,noin]).*dWhl_ip; 
                    Bhl = Bhl + a1.*dBhlp; 
                    Whl_2 = Whl_2 + repmat(a2,[1,nohn]).*dWhl_2p; 
                    Bhl2 = Bhl2 + a2.*dBhl2p; 
                    Wo_hl2 = Wo_hl2 + repmat(a3,[1,nohn2]).*dWo_hlp; 
                    Bo = Bo + a3.*dBop; 
                    end 

  
                    dWhl_ip = dWhl_i; 
                    dBhlp = dBhl; 
                    dWhl_2p = dWhl_2; 
                    dBhl2p = dBhl2; 
                    dWo_hlp = dWo_hl2; 
                    dBop = dBo; 
                    %**************************************** 

  
                    subplot(2,2,3) 
                    imagesc(imresize(flt,[100,100])); 
                    title(mat2str(order(jj))) 
                    caxis([0,1.5*max(max(target))]) 
                    colorbar 
                    axis square; axis off 
                    pause(.01) 
                else 
                    refresh 
                    errn(order(jj)) = 0; 
                end 
            end 
        end 



    else 
        outptt = outpt; 
        outptt = outptt+dst*(rand(10,1)-.5); 
        inspeed = inspeedP; 
        inspeed = min(max(abs(outptt),0),100); 
        for kk = 1:10 
            model.physics('spf').feature(['inl' mat2str(kk)]).set('U0in', 1, 

[mat2str(inspeed(kk)) '[mm/s]']); 
        end 
        model.sol('sol1').runAll; 
        model.result('pg1').run; 
        shear = mphinterp(model,'spf.sr','coord',xx'); 
        shear = reshape(shear,length(x0),length(y0)); 
        for i1 = 1:71 
        for j1 = 1:71 
        if isnan(shear(i1,j1)) == 1 
        shear(i1,j1) = 0; 
        end 
        end 
        end 

     
        smapsim = shear(end-60:end-41,11:31);; 
        flt = flP; 
        flt = imresize(abs(smapsim),[3,3]); 
        errst = (target - target.*exp(-(flt-target).^2./(2*mfd^2)))./target; 
        errt = sum(reshape(errst,[1,9]).^2)^.5;  
        if errt > errb && bcount < 3                
            errt = errb; 
            outptt = outptb; 
            flt = fltb; 
            bcount = bcount + 1; 
        else 
            errb = errt; 
            outptb = outptt; 
            fltb = flt; 
            bcount = 0; 
        end 
        if errt < err 
            Vid1(:,:,vv) = imresize(imresize(abs(smapsim),[3,3]),[100,100]); 
            vv = vv + 1; 
            errn = outptt' - outpt'; 
            fl = flt; 

  
            %****************************************Update parameters  
            hlerror2 = Wo_hl2'*errn'; 
            hlerror = Whl_2'*hlerror2; 
            if ii > 1 
                e1 = (hlerror - hlerrorP)./(hlerror+(hlerror==0)*1); 
                e2 = (hlerror2 - hlerror2P)./(hlerror2+(hlerror2==0)*1); 
                e3 = (errn' - errnP')./(errn'+(errn'==0)*1); 

  
                h1 = max(min(h1.*(1-sign(e1)*u.*exp(-e1)),maxms),minms); 
                h2 = max(min(h2.*(1-sign(e2)*u.*exp(-e2)),maxms),minms); 
                h3 = max(min(h3.*(1-sign(e3)*u.*exp(-e3)),maxms),minms); 

  
                a1 = max(min(a1.*(1-sign(e1)*v.*exp(-e1)),maxms),minms); 



                a2 = max(min(a2.*(1-sign(e2)*v.*exp(-e2)),maxms),minms); 
                a3 = max(min(a3.*(1-sign(e3)*v.*exp(-e3)),maxms),minms); 
            end 
            dWhl_i =  repmat(h1,[1,noin]).*((hlerror.*(hl.*(1-hl)))*inpt'); 
            dBhl = h1.*(hlerror.*(hl.*(1-hl))); 
            dWhl_2 =  repmat(h2,[1,nohn]).*((hlerror2.*(hl2.*(1-hl2)))*hl'); 
            dBhl2 = h2.*(hlerror2.*(hl2.*(1-hl2))); 
            dWo_hl2 =  repmat(h3,[1,nohn2]).*(errn'*hl2'); 
            dBo = h3.*errn'; 

  
            Whl_i = Whl_i + dWhl_i; 
            Bhl = Bhl + dBhl; 
            Whl_2 = Whl_2 + dWhl_2; 
            Bhl2 = Bhl2 + dBhl2; 
            Wo_hl2 = Wo_hl2 + dWo_hl2; 
            Bo = Bo + dBo; 

  
            if ii > 1%%%%%%%%%%%%%%%%%%%%Add momentum 
            Whl_i = Whl_i + repmat(a1,[1,noin]).*dWhl_ip; 
            Bhl = Bhl + a1.*dBhlp; 
            Whl_2 = Whl_2 + repmat(a2,[1,nohn]).*dWhl_2p; 
            Bhl2 = Bhl2 + a2.*dBhl2p; 
            Wo_hl2 = Wo_hl2 + repmat(a3,[1,nohn2]).*dWo_hlp; 
            Bo = Bo + a3.*dBop; 
            end 

  
            dWhl_ip = dWhl_i; 
            dBhlp = dBhl; 
            dWhl_2p = dWhl_2; 
            dBhl2p = dBhl2; 
            dWo_hlp = dWo_hl2; 
            dBop = dBo; 
            %**************************************** 

 
            subplot(2,2,3) 
            imagesc(imresize(flt,[100,100])); 
            title('random itteration') 
            caxis([0,1.5*max(max(target))]) 
            colorbar 
            axis square; axis off 
            pause(.01) 
        else 
            refresh 
            errn = zeros(1,10); 
        end 
    end 
    errn = errn 
    Errn(:,ii) = errn'; 

  
    if ii > 3 && sum(sum(abs(Errn(:,ii-2:ii)))) == 0 && Err(ii) > .05 
        flag = 1; 
    else  
        flag = 0; 
    end 
    inpt = reshape(fl,[9,1])/100; 
    ds = dso*err; 



    hlerrorP = hlerror; 
    hlerror2P = hlerror2; 
    errnP = errn; 

     
    if ii < 51 
        subplot(2,2,2) 
        plot((Err*1000),'Color','r','LineWidth',3); 
        axis square 
        title(mat2str(ii)) 
        grid on 
        subplot(2,2,4) 
        plot((Errs'*1000)); 
        title(mat2str(ds)) 
        axis square 
        grid on 
        pause(.1) 
    else 
        subplot(2,2,2) 
        plot((Err(:,end-50:end)*1000),'Color','r','LineWidth',3); 
        axis square 
        title(mat2str(ii)) 
        grid on 
        subplot(2,2,4) 
        plot((Errs(:,end-50:end)'*1000)); 
        title(mat2str(ds)) 
        axis square 
        grid on 
        pause(.1) 
    end 

  
    subplot(2,2,1) 
    imagesc(imresize(fl,[100,100])); 
    caxis([0,1.5*max(max(target))]) 
    axis image; axis off 
    subplot(2,2,3) 
    hold off 
    x0 = -.5:.05:3; 
    y0 = -.5:.05:3; 
    [x,y] = meshgrid(x0,y0); 
    xx = [x(:),y(:)]; 
    vi = mphinterp(model,'v','coord',xx'); 
    vi = reshape(vi,length(x0),length(y0)); 
    for i1 = 1:71 
    for j1 = 1:71 
    if isnan(vi(i1,j1)) == 1 
    vi(i1,j1) = 0; 
    end 
    end 
    end 
    imagesc(imresize(flipud(fliplr(abs(vi(:,1:41)))),[1024,512])) 
    axis image; axis off 
    pause(.01) 
    Vid2(:,:,ii) = flipud(fliplr(abs(vi(:,1:41)))); 
    refresh 
end 

  



pause 
for j = 1:ii 
subplot(2,2,1) 
imagesc(squeeze(Vid1(:,:,j))) 
title('approximation') 
caxis([0,1.5*max(max(target))]) 
colorbar 
axis image; axis off 
subplot(2,2,3) 
imagesc(imresize(target,[100,100])) 
caxis([0,1.5*max(max(target))]) 
title('target') 
colorbar 
axis image; axis off 
subplot(1,2,2) 
imagesc(imresize(squeeze(Vid2(:,:,j)),[1024,512])) 
axis image; axis off 
pause(.1) 
end 

  
subplot(2,2,1) 
imagesc(imresize(fl,[100,100])); 
caxis([0,1.5*max(max(target))]) 
colorbar 
axis image; axis off 
subplot(2,2,3) 
imagesc(imresize(target,[100,100])); 
caxis([0,1.5*max(max(target))]) 
colorbar 
axis image; axis off 
subplot(2,2,2) 
plot((Err*1000),'Color','r','LineWidth',3); 
axis square 
title(mat2str(ii)) 
grid on 
subplot(2,2,4) 
x0 = -.5:.05:3; 
y0 = -.5:.05:3; 
[x,y] = meshgrid(x0,y0); 
xx = [x(:),y(:)]; 
vi = mphinterp(model,'v','coord',xx'); 
vi = reshape(vi,length(x0),length(y0)); 
for i1 = 1:71 
for j1 = 1:71 
if isnan(vi(i1,j1)) == 1 
vi(i1,j1) = 0; 
end 
end 
end 
imagesc(imresize(flipud(fliplr(abs(vi(:,1:41)))),[1024,512])) 
axis image; axis off 

  
figure 

  
subplot(1,3,1) 
imagesc(imresize(target,[100,100])); 



caxis([0,1.5*max(max(target))]) 
axis image; axis off 
title('Target','FontSize',28) 
subplot(1,3,2) 
imagesc(imresize(fl,[100,100])); 
caxis([0,1.5*max(max(target))]) 
axis image; axis off 
title('Result','FontSize',28) 
subplot(1,3,3) 
plot((Err*1000),'Color','r','LineWidth',3); 
axis square 
title(mat2str(ii)) 
grid on 
xlabel('Itteration','FontSize',28) 
ylabel('Cost','FontSize',28) 
title('Convergence','FontSize',28) 
subplot(1,3,1) 
colorbar 
subplot(1,3,2) 
colorbar 
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[24] J. Culver, J. Hoffmann, R. Poché, J. Slater, J. West, and M. Dickinson,
“Three-dimensional biomimetic patterning in hydrogels to guide cellular or-
ganization,” Adv. Mater., vol. 24, no. 17, pp. 2344–2348, 2012.

[25] M. Song, D. Dean, and M. Knothe Tate, “Mechanical modulation of nascent
stem cell lineage commitment in tissue engineering scaffolds,” Biomaterials,
vol. 34, no. 23, pp. 5766–5775, 2013.

[26] P. Tseng and D. Di Carlo, “Substrates with patterned extracellular matrix
and subcellular stiffness gradients reveal local biomechanical responses,” Adv.
Mater., vol. 26, no. 8, pp. 1242–1247, 2013.

[27] Z. Zhang, L. Yuan, P. Lee, E. Jones, and J. Jones, “Modeling of time de-
pendent localized flow shear stress and its impact on cellular growth within
additive manufactured titanium implants,” J. Biomed. Mater. Res., Part B,
vol. 102, no. 8, pp. 1689–1699, 2014.

[28] R. McCoy, C. Jungreuthmayer, and F. O’Brien, “Influence of flow rate and
scaffold pore size on cell behavior during mechanical stimulation in a flow
perfusion bioreactor,” Biotechnol. Bioeng., vol. 109, no. 6, pp. 1583–1594,
2012.

[29] F. Couet, S. Meghezi, and D. Mantovani, “Fetal development, mechanobiol-
ogy and optimal control processes can improve vascular tissue regeneration
in bioreactors: an integrative review,” Med. Eng. Phys., vol. 34, no. 3, pp.
269–278, 2012.

[30] S. VanGordon, R. Voronov, T. Blue, R. Shambaugh, D. Papavassiliou, and
V. Sikavitsas, “Effects of scaffold architecture on preosteoblastic cultures un-
der continuous fluid shear,” Industrial & Engineering Chemistry Research,
vol. 50, pp. 620–629, 2011.

[31] R. Voronov, S. VanGordon, V. Sikavitsas, and D. Papavassiliou, “Distribution
of flow-induced stresses in highly porous media,” Applied Physics Letters,
vol. 97, no. 2, pp. 024 101–024 103, 2010.

[32] ——, “Computational modeling of flow-induced shear stresses within 3d
saltleached porous scaffolds imaged via micro-ct,” Biomechanics, vol. 43,
no. 7, p. 12791286, 2010.

[33] B. Porter, R. Zauel, H. Stockman, R. Guldberg, and D. Fyhrie, “3-d compu-
tational modeling of media flow through scaffolds in a perfusion bioreactor,”
Biomechanics, vol. 38, no. 3, pp. 543–549, 2005.

[34] S. S, The Lattice Boltzmann equation for fluid dynamics and beyond: Numer-
ical mathematics and scientific computation. Ocford Science Publications,
2001.

166



[35] S. Sivanandam, S. Sumathi, and S. Deepa, Introduction to fuzzy logic using
MATLAB. Springer, 2007.

[36] P. Callaghan, Principles of nuclear magnetic resonance microscopy. Claren-
don Press Oxford, 1991, vol. 3.

[37] S. Hollister, “Porous scaffold design for tissue engineering,” Nature Material,
vol. 4, no. 7, pp. 518–524, 2005.

[38] E. Place, N. Evans, and M. Stevens, “Complexity in biomaterials for tissue
engineering,” Nat. Mater., vol. 8, pp. 457–470, 2009.

[39] L. Adamo, O. Naveiras, P. Wenzel, S. McKinney-Freeman, P. Mack, and
J. Gracia-Sancho, “Biomechanical forces promote embryonic hematopoiesis,”
Nature, vol. 459, no. 7250, pp. 1131–1135, 2009.

[40] E. Tzima, M. Irani-Tehrani, W. Kiosses, E. Dejana, D. Schultz, and B. En-
gelhardt, “A mechanosensory complex that mediates the endothelial cell re-
sponse to fluid shear stress,” Nature, vol. 437, no. 7057, pp. 426–431, 2005.

[41] S. Obi, K. Yamamoto, N. Shimizu, S. Kumagaya, T. Masumura, and T. Sok-
abe, “Fluid shear stress induced arterial differentiation of endothelial progen-
itor cells,” Applied Physiology, vol. 106, no. 1, pp. 203–211, 2009.

[42] C. Hahn and M. Schwartz, “Mechanotransduction in vascular physiology and
atherogenesis,” Nature Reviews Molecular Cell Biology, vol. 10, no. 1, pp. 53–
62, 2009.

[43] C. Helm, M. Fleury, A. Zisch, F. Boschetti, and M. Swartz, “Synergy between
interstitial flow and vegf directs capillary morphogenesis in vitro through
a gradient amplification mechanism,” PNAS, vol. 102, no. 44, pp. 15 779–
15 784, 2005.

[44] F. Boschetti, M. Raimondi, F. Migliavacca, and G. Dubini, “Prediction of the
micro-fluid dynamic environment imposed to three-dimensional engineered
cell systems in bioreactors,” Biomechanics, vol. 39, no. 3, pp. 418–425, 2006.

[45] Y. Jia, P. Bagnaninchi, Y. Yang, A. Haj, M. Hinds, and S. Kirkpatrick,
“Doppler optical coherence tomography imaging of local fluid flow and shear
stress within microporous scaffolds,” Journal of Biomedical Optics, vol. 14,
no. 3, 2009.

[46] J. Santiago, S. Wereley, C. Melnhart, D. Beebe, and R. Adrian, “A particle
image velocimetry system for microfluidics,” Experiments in Fluids, vol. 25,
no. 4, pp. 316–319, 1998.

[47] M. Britton and P. Callaghan, “Two-phase shear band structures at uniform
stress,” Physical Review Letters, vol. 78, no. 26, pp. 4930–4933, 1997.

167



[48] P. Swider, M. Conroy, A. Pedrono, D. Ambard, S. Mantell, and K. Soballe,
“Use of high resolution mri for investigation of fluid flow and global perme-
ability in a material with interconnected porosity,” Biomechanics, vol. 40,
no. 9, pp. 2112–2118, 2007.

[49] K. Youssef, J. Mack, M. Iruela-Arispe, and L.-S. Bouchard, “Macro-scale
topology optimization for controlling internal shear stress in a porous scaffold
bioreactor,” Biotechnol. Bioeng., vol. 109, no. 7, pp. 1844–1854, 2012.

[50] S. Urchuk and D. Plewes, “Mr measurements of pulsatile pressure gradients,”
Journal of Magnetic Resonance Imaging, vol. 4, no. 6, pp. 829–836, 1994.

[51] A. Scheidegger, The physics of flow through porous media. University of
Toronto Press, 1974.

[52] F. Brandl, F. Sommer, and A. Goepferich, “Rational design of hydrogels for
tissue engineering: impact of physical factors on cell behavior,” Biomaterials,
vol. 28, no. 2, pp. 134–146, 2007.

[53] J. Drury and D. Mooney, “Hydrogels for tissue engineering: scaffold design
variables and applications,” Biomaterials, vol. 24, no. 24, p. 43374351, 2003.

[54] M. Lutolf and J. Hubbell, “Synthetic biomaterials as instructive extracellular
microenvironments for morphogenesis in tissue engineering,” Nature Biotech-
nology, vol. 23, no. 1, pp. 47–55, 2005.

[55] S. D., “Designing cell-compatible hydrogels for biomedical applications,” Sci-
ence, vol. 336, no. 6085, pp. 1124–1128, 2012.

[56] W. John, “The extrapolation, interpolation and smoothing of stationary time
series with engineering applications.” Journal of the American Statistical As-
sociation, vol. 47, pp. 319–321, 1952.

[57] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning for
sparse coding,” Proceedings of the 26th Annual International Conference on
Machine Learning, vol. 8, pp. 689–696, 2009.

[58] M. Elad and M. Aharon, “Image denoising via sparse and redundant represen-
tations over learned dictionaries,” IEEE Transactions on Image Processing,
vol. 15, pp. 3736–3745, 2006.

[59] M. Protter and M. Elad, “Image sequence denoising via sparse and redundant
representations,” IEEE Transactions on Image Processing, vol. 18, pp. 842–
861, 2010.

[60] C. S. Anand and J. S. Sahambi, “Wavelet domain non-linear filtering for mri
denoising,” Magnetic Resonance Imaging, vol. 28, pp. 175–191, 1961.

168



[61] R. Yan, L. Shao, and Y. Liu, “Nonlocal hierarchical dictionary learning us-
ing wavelets for image denoising,” IEEE Transactions on Image Processing,
vol. 22, pp. 4689–4698, 2013.

[62] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3d transform-domain collaborative filtering,” IEEE Transactions on
Image Processing, vol. 16, pp. 1–16, 2007.

[63] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms,
with a new one,” Multiscale Modeling Simulations, vol. 4, pp. 490–530, 2005.

[64] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, 1989.

[65] R. W. Liu, L. Shi, W. Huang, J. Xu, S. C. H. Yu, and D. Wang, “Generalized
total variation-based mri rician denoising model with spatially adaptive reg-
ularization parameters,” Magnetic Resonance Imaging, vol. 32, pp. 702–720,
2014.

[66] P. Getreuer, “Rudin-osher-fatemi total variation denoising using split breg-
man,” Image Processing On Line, vol. 4.2, pp. 74–95, 2012.

[67] M. Maggioni and A. Foi, “Nonlocal transform-domain denoising of volumetric
data with groupwise adaptive variance estimation,” Proceedings SPIE 8296,
Computational Imaging, 2012.

[68] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, pp. 1–14, 2004.

[69] L. Zhanga, L. Zhanga, X. Moub, and D. Zhang, “Fsim: a feature similarity
index for image quality assessment,” IEEE Transactions on Image Processing,
vol. 20, pp. 2378–2386, 2011.

[70] E. Rumelhart, G. Hinton, and R. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 9, pp. 533–536, 1986.

[71] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the
marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, pp.
989–993, 1994.

[72] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: can plain
neural networks compete with bm3d?” EEE Conference on Computer Vision
and Pattern Recognition, pp. 2392–2399, 2012.

[73] K. Dabov, A. Danieyan, and A. Foi. (2014) Bm3d demo soft-
ware for image/video restoration and enhancement public release v2.00.
http://www.cs.tut.fi/∼foi/GCF-BM3D/.

169



[74] H. C. Burger. (2012) Image denoising with multi-layer perceptrons.
http://people.tuebingen.mpg.de/burger/neural denoising/cvpr2012.html.

[75] M. Maggioni and A. Foi. (2013) Bm4d software for volumetric data denoising
and reconstruction public release ver. 2.3. http://www.cs.tut.fi/∼foi/GCF-
BM3D/.

[76] P. Getreuer. (2009) reciandenoise: 2d and 3d total variation based
rician denoising. https://code.google.com/p/cdsc-image-processing-
pipeline/downloads/list.

[77] J. Manjon, P. Coupe, L. Marti-Bonmati, D. Collins, and M. Robles, “Adap-
tive non-local means denoising of mr images with spatially varying noise
levels,” Journal of Magnetic Resonance Imaging, pp. 192–203, 2010.

[78] P. Coupe, J. Manjon, M. Robles, and D. Collins, “Adaptive multiresolu-
tion non-local means filter for three-dimensional magnetic resonance image
denoising,” IET Image Processing, pp. 558–568, 2012.

[79] P. Coupe, J. V. Manjon, E. Gedamu, D. Arnold, M. Robles, and D. L. Collins,
“Robust rician noise estimation for mr images,” Medical Image Analysis, pp.
483–493, 2010.

[80] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot, “An op-
timized blockwise non local means denoising filter for 3d magnetic resonance
images,” IEEE Transactions on Medical Imaging, pp. 425–441, 2008.

[81] N. Wiest-Daessle, S. Prima, P. Coupe, S. Morrissey, and C. Barillot, “Rician
noise removal by non-local means filtering for low signal-to-noise ratio mri:
applications to dt-mri,” 2008, pp. 171–179.

[82] J. Manjon, P. Coupe, A. Buades, D. Collins, and M. Robles, “New methods
for mri denoising based on sparseness and self-similarity,” Medical Image
Analysis, pp. 18–27, 2012.

[83] A. Engler, S. Sen, H. Sweeney, and D. Discher, “Matrix elasticity directs stem
cell lineage specification,” Cell, vol. 126, no. 4, pp. 677–89, 2006.

[84] J. Rutkowski and M. Swartz, “A driving force for change: interstitial flow as
a morphoregulator,” Trends Cell Biol., vol. 17, no. 1, pp. 44–50, 2007.

[85] K. Saha, A. Keung, E. Irwin, Y. Li, L. Little, and D. Schaffer, “Substrate
modulus directs neural stem cell behavior,” Biophys. J., vol. 95, no. 9, pp.
4426–4438, 2008.

[86] Z. Syedain, J. Weinberg, and R. Tranquillo, “Cyclic distension of fibrin-based
tissue constructs: Evidence of adaptation during growth of engineered con-
nective tissue,” Proc. Nat. Acad. Sci. USA, vol. 105, no. 18, pp. 653–654,
2008.

170



[87] D. Fletcher and R. Mullins, “Cell mechanics and the cytoskeleton,” Nature,
vol. 463, pp. 485–492, 2010.

[88] R. Udan, T. Vadakkan, and M. Dickinson, “Dynamic responses of endothelial
cells to changes in blood flow during vascular remodeling of the mouse yolk
sac,” Development, vol. 140, no. 19, pp. 4041–4050, 2013.

[89] J. Mack, K. Youssef, O. Noel, M. Lake, A. Wu, M. Iruela-Arispe, and L.-
S. Bouchard, “Real-time maps of fluid flow fields in porous biomaterials,”
Biomaterials, vol. 34, no. 8, pp. 1980–1986, 2013.

[90] D. Shattuck and R. Leahy, “Brainsuite: An automated cortical surface iden-
tification tool,” Medical Image Analysis, vol. 8, no. 2, pp. 129–142, 2002.

171




