
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Pebble Games and Complexity

Permalink
https://escholarship.org/uc/item/8dq8k8fw

Author
Chan, Siu Man

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8dq8k8fw
https://escholarship.org
http://www.cdlib.org/

Pebble Games and Complexity

by

Siu Man Chan

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Elchanan Mossel, Co-chair
Professor Luca Trevisan, Co-chair

Professor Umesh Vazirani
Professor David Aldous

Spring 2013

Pebble Games and Complexity

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
License 2013

by
Siu Man Chan

1

Abstract

Pebble Games and Complexity

by

Siu Man Chan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Elchanan Mossel, Co-chair

Professor Luca Trevisan, Co-chair

We study the connection between pebble games and complexity.
First, we derive complexity results using pebble games. It is shown that three pebble

games used for studying computational complexity are equivalent: namely, the two-person
pebble game of Dymond–Tompa, the two-person pebble game of Raz–McKenzie, and the
one-person reversible pebble game of Bennett have the same pebble costs over any directed
acyclic graph. The three pebble games have been used for studying parallel complexity and
for proving lower bounds under restricted settings, and we show one more such lower bound
on circuit-depth.

Second, the pebble costs are applied to proof complexity. Concerning a family of un-
satisfiable CNFs called pebbling contradictions, the pebble cost in any of the pebble games
controls the scaling of some parameters of resolution refutations. Namely, the pebble cost
controls the minimum depth of resolution refutations and the minimum size of tree-like
resolution refutations.

Finally, we study the space complexity of computing the pebble costs and of computing
the minimum depth of resolution refutations. It is PSPACE-complete to compute the pebble
cost in any of the three pebble games, and to compute the minimum depth of resolution
refutations.

i

Contents

Contents i

1 Introduction 1
1.1 Computational Complexity . 1
1.2 Pebble Games . 4
1.3 Our Results in Pebble Games . 7
1.4 Combinatorial Models of Computation . 8
1.5 Our Results in Computational Complexity 10
1.6 Proof Complexity . 12
1.7 Our Results in Proof Complexity . 14
1.8 Our Results in Space Complexity of Pebble Costs and Depth of Resolution

Refutations . 15
1.9 Techniques . 16
1.10 Organization . 16

2 Preliminaries 18

3 Equivalence of Pebble Games 19
3.1 Dymond–Tompa Game . 19
3.2 Raz–McKenzie Pebble Game . 19
3.3 Reversible Pebble Game . 20
3.4 When Dymond–Tompa meet Raz–McKenzie 20
3.5 When Raz–McKenzie meet Bennett . 26

4 DAG Evaluation Problem 30
4.1 Karchmer–Wigderson Game . 31
4.2 Thrifty and Output-Relevant Circuits . 31
4.3 Upper Bound for Evaluation . 33
4.4 Adversary Argument: when Raz–McKenzie meet Karchmer–Wigderson . . . 34
4.5 Recursive Lower Bound . 37

5 Resolution Refutations 40

ii

5.1 Size Lower Bound from Depth . 40
5.2 Tight Bounds for Tree-Like Resolution . 41

6 Space Complexity of Pebble Games 43
6.1 Gadgets . 43

7 Some Related Approaches 52

8 Future Directions 54

A Bounds on Information 56

B Figures 58

Bibliography 61

iii

Acknowledgments

I thank my advisors Luca Trevisan and Elchanan Mossel for letting me pursue the research
that excites me, and for giving me a push when I need help with my career. They provided
me encouragement, guidance, and optimism when I faced some of the seemingly impossible
tasks, allowing me to eventually settle them. More importantly, they allowed me to spend
enough time at first to try out different approaches that do not work, which is necessary for
getting the right idea to work at last.

I am grateful for UC Berkeley for offering me a warm atmosphere and a wonderful environ-
ment to carry out my research. Many people made my time in Berkeley a lot more fun, and
steered my research and my life greatly. Special thanks to my office buddies Anand Bhaskar
and Thomas Watson, my other academic siblings James Cook and Anindya De, TGIF or-
ganizer Urmila Mahadev, language technician Piyush Srivastava, and other fellow Theory
students from Berkeley: they include, but are not limited to, Jake Abernethy, Nima Anari,
Antonio Blanca, Brielin Brown, Paul Christiano, Jonah Brown-Cohen, Kevin Dick, Milos
Drezgic, Omid Etesami, Rafael Frongillo, Sakshi Jain, Alexandra Kolla, Henry Lin, Lorenzo
Orecchia, George Pierrakos, Anupam Prakash, Aviad Rubinstein, Grant Schoenebeck, Tselil
Schramm, Jarrett Schwartz, Seung Woo Shin, Meromit Singer, Yaron Singer, Isabelle Stan-
ton, Alexandre Stauer, Ning Tan, Madhur Tulsiani, Gregory Valiant, Thomas Vidick, Di
Wang, and Chris Wilkens. All my fellow students, together with other visiting students An-
drew Drucker, Rishi Gupta, and Mohammad Moharrami, remind me of the many awesome
retreats and laughters. For other senior people with whom I interacted in Berkeley, I thank
Ilias Diakonikolas, Mihai Pǎtraşcu, Martin Suchara, Paul Valiant, and Virginia Vassilevska
Williams for their various inspiring discussions and advices. I also thank other Faculty of
Berkeley for their support and encouragement, and for the attitudes and passions I learned
from them on teaching, research, life and everything; thanks to Richard Karp, Christos
Papadimitriou, Prasad Raghavendra, Satish Rao, Alistair Sinclair, Yun Song, and Umesh
Vazirani. All of the people I met in Berkeley shaped my way for the many more years to
come.

I thank other people I have worked with for their encouragement and for their work on
related research projects leading to this thesis. They include Stephen Cook, Yuval Filmus,
Pierre McKenzie, Toniann Pitassi, Aaron Potechin, Robert Robere, and Dustin Wehr. It
is clear that their ideas and thoughts have influenced my research a lot, both directly or
indirectly.

Finally, I thank my family for their encouragement, patience, support and understanding
throughout my study. I also thank my twin brother Siu On who is only implicitly acknowl-
edged throughout by default.

1

Chapter 1

Introduction

Memory space and parallel time are two important resources of deterministic computation.
To study these two resources, researchers considered different approaches. In this thesis, we
focus on the approach of analyzing pebble games and the approach of analyzing concrete
combinatorial models of computation.

It turns out that there is an unobserved connection between the two approaches. Namely,
many of the combinatorial approaches for studying L versus NL and NC versus P under
different restricted settings implicitly proved a lower bound scaling in the same way as the
pebbling algorithms. This motivates us to study the interaction between pebble games and
complexity: namely, to derive results in computational complexity using pebble games, and
to study the computational complexity of pebble games.

1.1 Computational Complexity

For the moment, we will focus on the following chain of complexity classes concerning parallel
time and memory space:

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P.

Recall that the complexity class P is considered as efficiently solvable problems [31]: formally
it refers to the problems computable by a deterministic Turing machine in polynomial time,
i. e., in deterministic time nO(1) (also denoted DTime[nO(1)]) where n denotes the size of the
input under a reasonable encoding.

The complexity class NCi is considered as problems which can be solved extremely effi-
ciently in parallel: formally it refers to the problems computable by a (sufficiently uniform)
family of boolean circuits of polynomial size and of bounded-poly-logarithmic depth, i. e.,
of size nO(1) and of depth O

(
logi(n)

)
. This is because, when evaluating a circuit using a

simple layer-by-layer strategy, the size of a circuit determines the total number of steps and
its depth determines the parallel time required in a parallel computation.

The complexity class NC is considered as problems which can be solved very efficiently
in parallel: formally it refers to the problems computable by a (sufficiently uniform) family

CHAPTER 1. INTRODUCTION 2

of boolean circuits of polynomial size and of poly-logarithmic depth, i. e., of size nO(1) and
of depth logO(1)(n). As a result, the complexity class NC =

⋃
i≥0 NC

i is the union of all the
levels in the hierarchy of parallel complexity classes. The class NC is robust in the sense
that it captures the notion of efficiency under different models of parallel computation (see,
e. g., [45]).

Apart from parallel time, memory space is another important resource of computation,
and two complexity classes related to memory space are shown in the above chain.

The complexity class L is considered as problems which are solvable with an efficient
usage of memory space: formally it refers to the problems computable by a deterministic
Turing machine in logarithmic space, i. e., in deterministic space O(log n) (also denoted
DSpace[log n]).

The complexity class NL is considered as problems which are solvable with an efficient
usage of memory space when allowing non-determinism: formally it refers to the prob-
lems computable by a non-deterministic Turing machine in logarithmic space, i. e., in non-
deterministic space O(log n).

The Quest for Separations

Most researchers belief that all (at least, almost all) of the inclusions in the above chain of
complexity classes for parallel time and memory space are strict. It means that the above
complexity classes are believed to be separated.

In particular, for parallel time it is believed that NC ⊂ P, i. e., there are efficiently
solvable problems which do not admit speedups on parallel machines. In other words, there
are inherently sequential problems. Also, it is believed that NCi ⊂ NCi+1, i. e., you can solve
more problems with more parallel time.

As a consequence, it is believed that L ⊂ P, i. e., not all efficiently solvable problems
can be solved with an efficient usage of memory space. Also, some researchers believe that
L ⊂ NL, i. e., non-determinism saves space, which is the space complexity analogue of the
belief that non-determinism saves time, i. e., P ⊂ NP.

To study the inclusion or separation of the above complexity classes, one approach is
to study certain combinatorial models (e. g., boolean circuits) that captures the usage of
parallel time or memory space (see § 1.4 for a detailed discussion), because the inclusion or
separation in complexity classes will be mirrored as a corresponding inclusion or separation
on combinatorial models. However, an unrestricted separation of any of the above complexity
classes have not been proven. Researchers therefore studied their separations under certain
restrictions on the combinatorial models of computation, such as the monotone restriction.
In some cases, tight lower bounds and a complete separation of almost all of the above
complexity classes can be proven under such restrictions. For example, under the monotone
restriction, the following separations are known on suitable combinatorial models:

m-NC1 ⊆ m-L ⊂ m-NL ⊆ m-NC2 ⊂ m-NC3 ⊂ · · · ⊂ m-NC ⊂ m-P.

CHAPTER 1. INTRODUCTION 3

In the line of research that achieved the monotone separations [27, 56, 59, 83, 85], three
different pebble games appeared in their proofs. Certain parameters of the three pebble
games (the pebble costs) scale in the same way as the lower bounds, in a precise sense to be
described below. First, the restricted separations are proved by studying complete problems
of the complexity classes. Second, in those complete problems (to be discussed in the next
subsection), there is an underlying graph structure. Third, by considering pebble games over
the graph structure (see § 1.2), the pebble costs in the pebble games scale in the same way
as the lower bounds. It turns out that, over any directed acyclic graph, the pebble costs
in the three different pebble games agree (Theorem 1), and the pebble cost is known to be
connected to other complexity results related to the study of parallel time or of reversibility
in computation.

Before we describe this connection, we first introduce the complete problems that can be
used for studying the inclusion or separation of complexity classes.

Complete Problems

Complete problems provide an alternative characterization of a complexity class, because
they are the “hardest” problems in that class.1 We mention three such complete problems
below, informally.

The Circuit Valuation Problem is specified by the following:
Input A boolean circuit C and an instance x.
Output The boolean value of evaluating the circuit C on instance x.
The Circuit Valuation Problem is complete for the class P of efficiently solvable prob-

lems [65]. Sub-problems of the Circuit Valuation Problem with additional restrictions on
the circuit C are complete for smaller complexity classes: if the circuit C is restricted to
have bounded-poly-logarithmic depth O(logi n), then the sub-problem is complete for the
class NCi of problems solvable extremely efficiently in parallel; if the circuit C is restricted
to have poly-logarithmic depth logO(1) n, then the sub-problem is complete for the class NC
of problems solvable very efficiently in parallel.

In the Generation Problem, there is a collection of m statements. Consider n := m3

implications of the form u ∧ v → w, where each of u, v, w is one of the statements. The
implication u ∧ v → w means that if statement u is true and statement v is true, then
statement w is true.

Input A subset of the implications, denoted I, encoded as n bits.
Output Using the implications in I, does statement m logically follows from statement

1?

1When working with very efficient complexity classes like NC1 or L, it is necessary to consider more effi-
cient notions of reductions than, say, logarithmic space reductions or polynomial time reductions. Formally,
when defining complete problems for very efficient complexity classes like NC1 or L, we need to specify a
very efficient notion of reduction. We ignore such subtleties for the current discussion (i. e., assume that the
circuits are sufficiently uniform), and refer the interested readers to the literature for further discussions on
such uniformity [91].

CHAPTER 1. INTRODUCTION 4

The Generation Problem is a P-complete problem, and is a monotone variant of the
first P-complete problem called Path Systems [32]. Sub-problems of the Generation Prob-
lem with additional restrictions on the structure of ‘the generation graph’ are complete for
smaller complexity classes like non-deterministic logspace (NL) and the parallel complex-
ity classes (NCi, NC) [8, 57], where the generation graph refers to the structure of a logical
proof that statement m follows from statement 1 (see e. g., [27, § 3.2]). For the special case
where the generation graph is a line graph, the Generation Problem reduces to the Directed
Connectivity Problem.

In the Directed Connectivity Problem, there is a collection of m vertices. Consider
n := m2 directed edges of the form u → v, where each of u, v is one of the vertices. The
directed edge u → v means that vertex u can reach vertex v.

Input A subset of directed edges, denoted E, encoded as n bits.
Output Using the directed edges in E, is vertex m reachable from vertex 1 via a directed

path?
The Directed Connectivity Problem is complete for NL, i. e., non-deterministic logarith-

mic space.
Since complete problems are an alternative characterization of a complexity class, any

inclusion or separation of complexity classes can be studied via their corresponding complete
problems. We next describe how the complete problem of Circuit Evaluation is used to
convert results in pebble games into results in computational complexity.

1.2 Pebble Games

Pebble games were introduced for studying programming languages and compiler construc-
tion. The dependency in data flow is modeled by a directed acyclic graph of bounded
in-degree, and the pebble games emulate the register allocation and resource usage in the
flow of data over the graph. As another closely related example in database systems, a di-
rected acyclic graph models the referential structure of tables in a database,2 and the pebble
games emulate the data access pattern executed by a certain query.

In terms of computational resources, deterministic space is traditionally emulated by the
number of (black) pebbles required in a one-player pebble game [81, 94], and parallel time
is traditionally emulated by the time required in a two-player pebble game introduced by
Dymond and Tompa [37]. More accurately, the two-player pebble game of Dymond–Tompa
emulates alternating time as a measure of parallel time (when the number of processors is
unbounded): alternating time measures the time spent on an alternating machine [29], which
is a natural model of (deterministic) parallel computation.

To give a concrete example of how pebble games are related to computational complexity,
we next review the black pebble game briefly and informally.

2In reality, the referential structure can have cycles and have large in-degree. We ignore such complica-
tions in this exposition.

CHAPTER 1. INTRODUCTION 5

Black Pebble Game and Space Complexity

Definition 1.2.1 (Black Pebble Game). Fix a DAG G. The black pebble game over G is
a one-player game as follows. Each vertex of G can store at most one (black) pebble, and
the game begins with no pebbles on G. In each move, Pebbler applies one of the following
rules: (1) if all immediate predecessors of a are pebbled, Pebbler may place a pebble on a
(to pebble a); or (2) Pebbler may remove a pebble from a (to unpebble a) at any time. The
game is over when the sink vertex is pebbled, but all other vertices are unpebbled. A game
takes h pebbles if Pebbler needs h pebbles to finish the game.

The pebble cost of the black pebble game over a graph G is the number of pebbles needed
to pebble the sink vertex.

At a high level (perhaps somewhat incorrectly), the black pebble game is connected
with deterministic space complexity as follows. Recall the P-complete Circuit Evaluation
Problem: given a boolean circuit C and an instance x, compute the value C(x) at the output
gate of C. A boolean circuit is formally a directed acyclic graph, where each vertex (i. e.,
gate) is labeled either by a boolean function (logical-and ∧ or logical-or ∨) or an input
literal (positive or negated variable). Ignore the labeling on the vertices, and consider a
circuit as an unlabeled directed acyclic graph for the discussion in this subsection. Then
any black pebbling strategy to pebble the sink vertex (i. e., the output gate of the circuit
C) gives an algorithm to evaluate the circuit, if we interpret putting a pebble on a vertex
as remembering the value of the corresponding gate in memory. Note that the value at a
gate a can be computed if the values at all immediately preceding gates have be computed
(Rule 1), and the value at a gate a can be forgotten at any time (Rule 2). Now any pebbling
strategy using h pebbles to pebble the sink vertex gives an algorithm to evaluate the circuit
in deterministic space O(h).

We next continue the discussion of how pebble games are related computational com-
plexity.

Pebble Games and Computational Complexity

Upper Bounds The study of these pebble games led to non-trivial algorithms, upper
bounding resource requirements. For space, Hopcroft, Paul, and Valiant [53] showed that
any graph of bounded in-degree on t vertices requires at most O(t/ log t) pebbles in the
one-player black pebble game, implying that a time t (deterministic) computation requires
at most O(t/ log t) space, i. e., DTime[t] ⊆ DSpace[t/ log t].

For parallel time, Dymond and Tompa [37] showed that any graph of bounded in-degree
on t vertices requires at most O(t/ log t) time in the two-player game, strengthening the
above result to imply that a time t (deterministic) computation requires at most O(t/ log t)
alternating time,3 i. e., DTime[t] ⊆ ATime[t/ log t].

3The result on alternating time is stronger, since ATime[t] ⊆ DSpace[t] [29].

CHAPTER 1. INTRODUCTION 6

Pebble Games and Complexity Classes Also, certain relationships among different
resources of computation can be recast as pebbling results. For example, (a slight variant
of) the two-player pebble game of Dymond and Tompa [99] (1) exactly characterizes the
parallelism of different complexity classes (e. g., NCi, NC and P); and (2) can re-derive known
complexity results, including the simulation of Savitch [92] showing that NL ⊆ DSpace[log2 n].

Lower Bounds and Trade-Offs The study of pebble games also gave lower bounds
on resource requirements or indicating trade-offs of different resources in restricted models
of computation.

Paul, Tarjan, and Celoni [82] constructed a graph of bounded in-degree on t vertices which
requires Ω(t/ log t) pebbles in the one-player game emulating space; and by a simulation
argument in pebble games, this graph also requires Ω(t/ log t) time in the two-player game
emulating alternating time [37]. These lower bounds are tight given the upper bounds on
pebble games. To the best of our knowledge, we still don’t know how to save more space or
alternating time (a measure of parallel time) than the pebbling algorithms for a P-complete
problem.4

In addition to the black pebble game and the Dymond–Tompa pebble game, two
other pebble games were used in the combinatorial approach for proving restricted lower
bounds. Their usage will be discussed in details later in § 1.4, and for the moment, we give
an overview for each of them below.

Raz–McKenzie pebble game Raz and McKenzie [85] introduced a two-player pebble
game over a directed acyclic graph, motivated by the depth complexity of decision trees
solving search problems [74]. The pebble game was first used for proving lower bounds on
monotone alternating time (see § 1.4). Later, it was applied to proof complexity, e. g., [18],
and inspired the use of pebbling contradictions which form the basis of most time-space
trade-offs and many separation results in proof complexity (to be discussed in § 1.6). Elias
and McKenzie [39] made explicit the role of the pebble game in the monotone results, and
initiated a study of the pebble cost over different directed acyclic graphs.

Reversible pebble game Bennett [15] initiated the study of reversible computation
as a possibility to eliminate (or significantly reduce) energy dissipation in logical compu-
tation. Reversible computation is increasingly important (i) because computing chips are
getting smaller and energy dissipation is becoming an issue; and (ii) because observation-free
quantum computation is inherently reversible. Bennett studied the time and space complex-
ity in reversible simulation of irreversible computation, and as an abstraction mentioned
reversible pebble game [16], which is the reversible version of the black pebble game. This
led to the study of the reversible pebble game over different directed acyclic graphs [64, 70]
and its relation to time-space trade-offs in reversible simulation of irreversible computa-
tion [21,66,69,102].5 Later, in the combinatorial approach, Potechin [83] independently and

4For example, concerning circuit depth (to be introduced next), although there are some non-pebbling
algorithms for trading circuit depth for (semi-unboundedness of) fan-in [72, 103], those algorithms do not
give a saving in depth when simulated on circuits of bounded fan-in.

5A reversible simulation of an irreversible computation can be considered as a compiler for converting a
source program, which may be irreversible, into a functionally equivalent object program, which is reversible.

CHAPTER 1. INTRODUCTION 7

implicitly used the reversible pebble game (made explicit in [27]) for proving lower bounds
on monotone space complexity (see § 1.4).

The reader is referred to the literature for further discussions on the black pebble game [64,
80], the Dymond-Tompa pebble game [37,99], the Raz–McKenzie pebble game [39,85], and
the reversible pebble game [16,64].

1.3 Our Results in Pebble Games

Theorem 1 (Just a Pebble Game). The Dymond–Tompa pebble game, the Raz–McKenzie
pebble game, and the reversible pebble game of Bennett have the same pebble cost. That is,
for any directed acyclic graph having a unique sink vertex, the following are equivalent for
pebbling the sink vertex:

• it takes h time in the Dymond–Tompa pebble game (§ 3.1);

• it takes h time in the Raz–McKenzie pebble game (§ 3.2);6 and

• it takes h pebbles in the reversible pebble game of Bennett (§ 3.3).

Corollary 1.3.1 (Upper Bounds on Pebble Costs). Any directed acyclic graph on n vertices
with bounded in-degree has cost at most O(n/ log n) in the Raz–McKenzie pebble game or the
reversible pebble game.

Corollary 1.3.2 (Raz–McKenzie versus Black Pebbling). The Raz–McKenzie pebble cost is
at least the (irreversible) black pebble cost.

Remark 1.3.3 (Connections in Pebble Games). Theorem 1 establishes a connection among
different pebble games introduced for very different reasons.

1. It strengthens and explains the simulation result of Dymond–Tompa [37], which states
that the Dymond–Tompa pebble cost of a graph is at least the black pebble cost of a
graph, mirroring the inclusion ATime[t] ⊆ DSpace[t]. It is because the reversible pebble
cost is at least the black pebble cost.

2. It explains some of the known results in computational complexity to be reviewed next
(§ 1.4).

3. It explains some of the known results in proof complexity to be reviewed next. In
particular, Corollary 1.3.2 gives a new connection between two pebble games studied
in proof complexity (see § 1.6).

6This solves an open problem raised in Elias–McKenzie [39] for connecting their pebble game with other
pebble games.

CHAPTER 1. INTRODUCTION 8

4. It connects the pebbling results in the Dymond–Tompa pebble game [37], the Raz–
McKenzie pebble game [39, 85], and the reversible pebble game [27, 64, 70, 83] over
different directed acyclic graphs, e. g., line graphs, pyramid graphs, butterfly graphs,
or the hard-to-pebble graph in [82]. For example, this transfers the tight bound of
Θ(n/ log n) pebbles for the graph in [82] over the Dymond–Tompa pebble game to the
Raz–McKenzie pebble game and to the reversible pebble game, which was not known
before.

To better understand the connection between pebble games and complexity, we next
review the combinatorial approach for proving lower bounds.

1.4 Combinatorial Models of Computation

We briefly recall two combinatorial models of computation which characterize parallel time
and memory space. We ignore the issues of uniformity for the moment, by assuming that
the combinatorial models are sufficiently uniform. Alternatively, the reader may want to
append /poly to every machine-based complexity class.

Circuits Parallel time is modeled by the depth of a circuit: ATime[t] = Depth[t] [91].
Recall that ATime[·] refers to alternating time, a measure of parallel time on alternating
machines. This thesis considers boolean circuits of bounded fan-in unless otherwise noted.

Switching Networks Memory space of a deterministic computation is modeled by
the size of a switching network: DSpace[s] = SNSize[2Θ(s)]. A switching network computes
by reachability in a symmetric way, where the symmetry/reversibility mirrors determin-
ism [66, 90]. The direction DSpace[s] ⊆ SNSize[2Θ(s)] is folklore [68] (e. g., see [83, §2]), and
SNSize[2Θ(s)] ⊆ DSpace[s] is proved by Reingold [90].

Researchers commonly add restrictions to the combinatorial models to get lower bounds
in restricted settings. We recall two such restrictions below.

Monotone Restriction A boolean function is monotone if flipping an input bit from
False to True cannot flip the output bit from True to False. When computing monotone
boolean functions, it is common to add a monotone restriction to the model, which is to
disallow logical negation. Monotone restriction applies to circuits and switching networks
naturally (as opposed to e. g., Turing machines).

Problem-Specific Restriction In addition to the syntactic restriction of monotonic-
ity, researchers also studied different semantic restrictions. Sometimes, the semantic restric-
tion is designed with the computational problem in mind. We give one example below.

Karchmer and Wigderson [59] characterized the depth complexity of circuits as the com-
munication complexity of a two-party game. To explore the intuition given by the commu-
nication game, and in particular whether depth complexity scales with iterated composition
of hard functions (i. e., direct-sum phenomenon), Karchmer, Raz, and Wigderson [58, §6]
invented a communication game called universal composition relation to model iterated
composition of hard functions, where the structure of iterated composition forms a tree

CHAPTER 1. INTRODUCTION 9

(of branching factor and height about log n). Roughly, the universal composition relation is
similar to a standard communication game, except that the parties are required to output a
bit on some leaf node of the tree (intuitively, the parties need to locate a branch of the tree
leading to the leaf node, hence the communication complexity should scale with the height
of the tree). Note that this restriction makes sense only for the problem of universal com-
position relation (unlike the monotone restriction, which applies to any monotone boolean
function), and also only in the model of communication game.

Previous Results

For the depth complexity of semantically restricted circuits, Edmonds, Impagliazzo, Rudich,
and Sgall [38] employed an information-theoretic counting argument to show that the univer-

sal composition relation of d levels of k-bit boolean function requires dk −O
(
d2(2 log k)1/2

)
bits of communication when d = log n/ log log n and k = log n. H̊astad and Wigderson [50]
subsequently constructed a sub-additive measure to show that the universal composition
relation of d levels of k-bit boolean function requires

(
1 − o(1)

)
dk bits of communication

when d = o(
√

k/ log k) and k = log n. Both results suggest the semantic analogue of the
separation NC1 ⊂ NC2, where NCi are circuits of polynomial size and of O

(
logi(n)

)
depth.

For the depth complexity of monotone circuits, Karchmer and Wigderson [59] introduced
the communication game framework to prove that the NL-complete problem of Directed
Connectivity requires Ω(log2 n) depth on monotone circuits,7 implying m-NC1 ⊂ m-NL ⊆
m-NC2. Raz and McKenzie [85] extended the information-theoretic argument of Edmonds–
Impagliazzo–Rudich–Sgall to reprove the Directed Connectivity result of Karchmer–Wigderson,7

and in addition showed the separation of m-NC ⊂ m-P and of m-NCi ⊂ m-NCi+1, by studying
the P-complete problem of Generation.8

The results on monotone circuits were subsequently strengthened to monotone switch-
ing networks, i. e., from (monotone) alternating time to (monotone) deterministic space.9

Departing from the communication game of Karchmer–Wigderson which forms the basis of
most results concerning circuit depth [19,38,44,47,56,58,59,85,86], Potechin [83] introduced
a Fourier analytic framework, proving that Directed Connectivity requires monotone switch-
ing networks of size nΩ(log n), which can be interpreted as proving m-L ⊂ m-NL on monotone
switching networks.10 The Fourier analytic framework is recently reinterpreted as describ-
ing an enumerative-combinatorial invariant [27], and the lower bound of Raz–McKenzie on

7Karchmer–Wigderson [59] and Raz–McKenzie [85] in fact proved the same lower bound of Ω(log2 n) for
the depth of monotone circuits solving Undirected Connectivity, which is L-complete [90].

8We focus on the depth complexity of efficient problems, i. e., inside P or m-P under suitable restrictions,
and did not mention, e. g., the lower bounds of k-clique [6, 27, 44, 49, 85, 87] or matching [86] on monotone
circuits.

9By a simulation argument mirroring ATime[t] ⊆ DSpace[t] (see e. g., [27, §1]), a lower bound of 2Ω(t) on
the size of (monotone) switching networks translates to a lower bound of Ω(t) on the depth of (monotone)
circuits, hence the result on monotone switching network is stronger.

10It should be noted that there are at least two combinatorial models for (non-uniform) m-L in the
literature: as monotone (boolean) circuits (of bounded fan-in) of logarithmic width and polynomial size [46,

CHAPTER 1. INTRODUCTION 10

Generation is strengthened to monotone switching networks. For further discussion on the
switching network model or the Generation Problem, see the references in [27].

As mentioned in § 1.2, two pebble games were used in the monotone results. In general,
the monotone circuit depth for Generation scales as Ω(h log n) when h ≤ nO(1) is the Raz–
McKenzie pebble cost of the generation graph [39]; and the monotone switching network size
for the Generation Problem scales as nΩ(h) when h ≤ nO(1) is the reversible pebble cost of
the generation graph [27].11

1.5 Our Results in Computational Complexity

Theorem 1 has the following consequence by the discussion in § 1.4

Corollary 1.5.1 (Improved Bounds for Generation). For any directed acyclic graph G, for
the sub-problem of Generation where the generation graph is restricted to G, the lower bound
on the size of monotone switching networks [27] implies the lower bound on the depth of
monotone circuits [39] up to constant factors.

In addition, at a high level, we combine the semantic separation of circuit depth [38, 50]
with the framework of Dymond–Tompa game. Instead of considering the iterated multi-
plexor problem of universal composition relation with a tree structure [58, §6], we consider
the iterated indexing problem over any directed acyclic graph. This minor twist completely
changed the combinatorics of the problems. Our computational problem, called DAG eval-
uation (Definition 4.0.11), is a generalization of the tree evaluation problem considered by
Cook, McKenzie, Wehr, Braverman, and Santhanam [33].12 The DAG evaluation prob-
lem is a slight variant of the P-complete problem of circuit evaluation, and it captures the
combinatorial essence of the Generation Problem discussed above [39,75].

For this computational problem, we consider a problem-specific restriction called output-
relevant circuits (§ 4.2). Roughly, in terms of the two-party communication game of Karch-
mer and Wigderson [59], a circuit is output-relevant if the two parties are required to output
a relevant bit, which is a more natural restriction (than the output-leaf restriction in the
universal composition relation) for studying depth complexity.13 In particular, it is unclear
how to turn the universal composition relation into a proper Karchmer–Wigderson game

47], or as monotone switching networks of polynomial size [83, 88]. It appears that the two models are not
comparable. This work focuses on monotone switching networks of polynomial size as the combinatorial
model for (non-uniform) m-L.

11The proof in the journal vesrion of [27] clearly works for any directed acyclic graph.
12The generalization to DAG is also considered by Wehr [101]. For comparison, Wehr studied the branch-

ing program model, and proved a lower bound (instead of a tight bound) in terms of the black pebble cost
of the directed acyclic graph under a relatively restricted setting.

13Output-relevance is motivated by the efficiency of shallowly packing certificates for use by two competing
provers, the alternation of which governs the combinatorial recurrence behind both the Dymond–Tompa game
and the Karchmer–Wigderson game. For further justification, see Remark 4.2.5.

CHAPTER 1. INTRODUCTION 11

(so that it corresponds properly to circuit depth), which is not the case for output-relevant
circuits.

Theorem 2 (Pebbling is Optimal). Consider a directed acyclic graph G whose Dymond–
Tompa game takes h time. Any output-relevant circuit solving the DAG evaluation problem
over G of bit-length k has depth Ω(hk) when 2k ≥ |V |Θ(1).

Theorem 2 is complemented by a matching upper bound, that there is a circuit of depth
O(hk) implementing the pebbling algorithm of Dymond–Tompa. Unlike previous bounds on
monotone circuits [39, 56, 85] which are tight up to nΘ(1), our bounds on restricted circuits
are tight up to multiplicative factors. The tight bound can be interpreted as the semantic
separation of NC from P and of NCi from NCi+1, by considering the pyramid graph of height
Θ(logi n). In terms of circuit depth,14 Theorem 2 gives an exponential improvement on an
incomparable (but more natural13) model over previous results [38,50], which suggested only
a semantic separation of NC1 from NC2.

Remark 1.5.2 (Circuit Depth and NC versus P). Theorem 2 supports the attempt to separate
NC from P (and NCi from NCi+1) by focusing on circuit depth. By connecting (non-monotone
but restricted) circuit depth with the Dymond–Tompa game, Theorem 2 gives evidence to
support the attempt to study circuit depth alone (as opposed to a combination of depth
and size) for separating NC from P,14 due to very similar recurrence in the minimization of
the depth complexity in the Karchmer–Wigderson game and in the Dymond–Tompa game.15

More importantly, now Theorems 1 and 2 together put many of the existing combinatorial
lower bounds concerning circuit depth for separating NC from P [27, 38, 50, 56, 58, 83, 85]
into the Dymond–Tompa game framework. This connection explains the same scaling in
lower bounds given by apparently different pebble games: there is just one pebble game
in disguise.16 However, this raises an interesting follow-up question: why do the different
analyses for different combinatorial arguments under different restricted settings converge to
the same pebble game (which basically characterizes parallelism)? Also, the Dymond–Tompa
game lower bounds the depth complexity on these restricted computational models, so how
far (i. e., how general a model) does this correspondence hold?

14We will discuss some related approaches for separating complexity classes in Chapter 7, including
approaches that consider both the size and depth of a circuit, e. g., by algebro-geometric invariants [76, 78,
79], multi-party communication complexity [20, 25], competing-prover protocols [62], and block-respecting
simulations [73].

15Another evidence was the monotone separation of m-NC from m-P (and of m-NCi from m-NCi+1) by
Raz–McKenzie [85], where the lower bound on depth holds regardless of size (also implied by its strengthen-
ing [27]), although this monotone evidence is weak due to known exponential separations of monotone depth
from non-monotone depth, e. g., for matching [86].

16For example, this may explain why in the Fourier analytic framework [83], it is sufficient to consider
reversible pebbling configurations [27] instead of knowledge sets [83]. Also, Corollary 1.5.1 completes the
picture of simulation results between circuits and switching networks, for the sub-problem of Generation
whose generation graph is any directed acyclic graph (in addition to the line graphs or the pyramid graphs
known previously).

CHAPTER 1. INTRODUCTION 12

We next briefly review the motivation for studying proof complexity, before we state our
results on the depth of resolution refutations.

1.6 Proof Complexity

The study of proof complexity was initiated by Cook and Reckhow [34], who showed that
NP = co-NP iff there is an efficient (i. e., polynomially bounded) proof system. Since its
introduction, proof complexity has been studied by many researchers. We mention below
two such motivations relevant to this thesis.

Combinatorial methods for studying computational complexity One way to
approach the distant goal of separating P from NP is to show that NP 6= co-NP (since P =
co-P), by proving super-polynomial lower bounds on successively stronger proof systems for
propositional tautologies. Hence proving combinatorial lower bounds on proof systems can
be seen as sharpening our combinatorial tools for eventually separating complexity classes,
if possible.

Analysis of practical automated theorem-provers Lower bounds and trade-off
results for seemingly weak and restricted proof systems already apply to the performance
characteristics of most of the automated theorem-provers used in practice. For example,
after failing to search for a satisfying assignment, the execution of the proof search algorithm
in [35, 36] (known as DLL or DPLL) corresponds to a refinement (i. e., a restricted version)
of resolution refutation whose structure forms a tree, hence called a tree-like resolution.
Resolution refutation is a weak proof system in theory but widely used in practice. The
study of trade-off results, or the comparison of different variants of proof systems (e. g.,
tree-like versus general), have consequences to the performance of different proof search
strategies used in practice (see, e. g., [55]).

Resources: Size, Space, and Rank

Out of the many resources considered for studying proof complexity, we mention below three
resources relevant to this thesis.

Size The size of a refutation is the number of clauses,17 or equivalently (up to a factor
of two) the number of derivation steps. Hence the size complexity lower bounds the running
time of a certain class of proof search algorithms (even allowing non-determinism). The size
complexity is widely regarded as the most important complexity measure.

Space Among others, the space of a refutation may count the number of clauses (clause
space) or the number of variables (variable space18) in any configuration in a refutation.

17Some literature calls this measure length, reserving size as the total number of symbols in a refuta-
tion (see e. g., the survey by Nordström [80]). The two measures are polynomially related, and are used
interchangeably in this thesis.

18The term variable space was used in the literature to mean two related but different concepts: the
number of literals counted with repetitions, or the number of variables counted without repetitions. The

CHAPTER 1. INTRODUCTION 13

Hence the space complexity measures the memory requirement (which is often a limiting
resource for clause learning) of a certain class of proof search algorithms. Space complexity
(in the configuration-style) was introduced by Esteban and Torán [41] and extended by
Alekhnovich, Ben-Sasson, Razborov, and Wigderson [3].

Rank The rank of a refutation measures the sequentiality of a certain class of proof
search algorithms, e. g., for resolution-based proof systems, it is depth; and for semi-algebraic
proof systems (i. e., polynomial threshold proof systems like Gomory–Chvátal cutting planes
or Lasserre/Positivstellensatz), it is the number of rounds. At a high level, the rank of
many proof systems may be related: the rank (depth) of the weak proof system of resolu-
tion is related to another measure called width [17, 98], which in certain cases can be used
for proving a rank (round) lower bound on the very strong proof system of Lasserre/Posi-
tivstellensatz [28, 48, 93, 96].19 The depth of resolution refutations was first systematically
studied by Urquhart [98], and the number of rounds of different semi-algebraic proof systems
have been routinely studied, e. g., in proof complexity [22, 23] or in hardness of approxima-
tion [28,93,96].

There are some known relationships among different resources, connecting the most im-
portant resource of size to other resources. This gives another justification for studying space
and rank.

Space and Size Clause space upper bounds (with some loss and via another measure
width) the logarithm of size for resolution [7]. As a partial converse, the logarithm of size
upper bounds clause space for tree-like resolution [41]. As for variable space, a lower bound
on variable space can be escalated to a lower bound on clause space via substitution [13],
and this connection yielded one of the tightest size-space trade-offs currently known in proof
complexity by studying pebbling contradictions [13].

Rank and Size Urquhart argued that rank is significant since “all proofs of reso-
lution size lower bounds implicitly prove depth lower bounds” [98]. In practice, there are
natural rank-based procedures for generating refutations in some proof systems, e. g., the
Davis–Putnam procedure for resolution [36], (a variation of) the Gröbner basis algorithm
for Polynomial Calculus [30], and the semi-definite programming of Lasserre/Positivstellen-
satz [48, 67]. In this sense, rank measures the time needed for deterministically generating
refutations in many practical proof systems, and for them rank may be as important as size
(e. g., in [28,48,67,93,96]).

Previous Results

The pebbling approach is routinely studied in proof complexity, in the form of pebbling con-
tradictions, i. e., an unsatisfiable formula with one boolean variable per vertex, stating that
(1) all source variables are true; (2) truth propagates through the graph; and (3) some sink

latter meaning, which is recently becoming the standard usage [80, Footnote 5], is used here.
19A paper even suggests that any rank lower bound on resolution can be directely translated (with some

loss) into a rank lower bound on some strong proof systems including Lasserre [9], but an anonymous reviewer
claims that this proof is broken.

CHAPTER 1. INTRODUCTION 14

variable is false. Often, certain pebbling properties (e. g., time and space) of the underlying
graph is escalated to the formula via substitution [13] or lifting [54].

The study of pebbling contradictions gave many of the best known separations (of differ-
ent proof systems) and trade-offs (of different resources). In particular, the Raz–McKenzie
pebble game has been used for separating tree-like and general cutting plane refuta-
tions [18], and the (irreversible) black pebble game has been used for separating tree-like
and general resolution size [12, 98], regular and general resolution size [4], DPLL (tree-like
resolution) and a theoretical proof system based on clause learning algorithms [10], Nullstel-
lensatz and Polynomial Calculus degree [22], and the hierarchy of tree-like k-DNF-resolution
and general resolution size [40].20

1.7 Our Results in Proof Complexity

Let ΣG denote the pebbling contradiction over G (Definition 5.1.2, see also [80, 98]). The
substitution construction of Alekhnovich–Razborov [11] is denoted Σ⊕ below; for general-
izations, see [13]. Denote Val(G) as the value of the graph G, i. e., the pebble cost in
the Dymond–Tompa game, or equivalently, in the Raz–McKenzie pebble game or in the
reversible pebble game (Theorem 1).

Theorem 3 (Depth of Pebbling Contradictions). Fix a directed acyclic graph G = (V,E)
with a unique sink τ. The depth complexity of resolution refutation for ΣG is exactly the
pebble cost in the Raz–McKenzie pebble game to pebble the sink vertex of Ĝ, where Ĝ :=
(V ∪ {τ̂}, E ∪ {(τ, τ̂)}) is G augmented with an extra vertex τ̂ as the new sink.

It is easy to see that the variable space needed for resolution refutation of ΣG is at most
the (irreversible) black pebble cost of G by simulating a black pebbling strategy. Take G
to be the line graph on n vertices, this gives a separation of variable space (at most 2) and
depth (at least log n), solving an open problem raised by Urquhart [98, Problem 7.2].

Theorem 4 (Tight Size Bounds for Tree-Like Resolution). The tree-like resolution refutation
of Σ⊕G has size complexity 2Θ(Val(G)).

Remark 1.7.1 (Decision Tree and Reversible Pebble Game). Theorem 3 gives an exact char-
acterization, improving on the lower bound of Urquhart [98]. Exact combinatorial character-
ization can be useful for translating results to different settings, e. g., Berkholz [17] recently
connected the exact combinatorial characterization of resolution width [7] with the combi-
natorial game of Kasai–Adachi–Iwata [2, 60], proving an unconditional time lower bound.
Theorem 4 can be seen as a result in this direction. Also, Theorem 3 allows us to settle the
space complexity of the minimum depth of resolution refutations in § 1.8.

20We did not mention the use of black-white pebbling for time-space trade-offs [11,13], see e. g., [80].

CHAPTER 1. INTRODUCTION 15

Moreover, this shows that the lower bounds in previous works [10, 12, 40], in particular
those concerning the depth of resolution refutations [98], the degree of Polynomial Calcu-
lus [22]21, and the size of tree-like cutting plane refutations [18], morally follow from the
pebble cost of a single pebble game, wearing different costumes listed in Theorem 1. Since
the Dymond–Tompa game and the Raz–McKenzie pebble game were introduced for study-
ing depth complexity, this may explain the use of the (reversible) black pebble game in
Theorem 3 and in previous works.

Recall that k-DNF-resolution (Definition 5.2.1) extends the usual resolution.

Theorem 5. Any k-DNF-resolution refutation of ΣG has depth at least 1+(Val(G)−1)/k.

It is not hard to see that the lower bound should worsen with k, the arity of the DNF
resolution. For constant k (which roughly corresponds to the case of boolean circuits of
bounded fan-in), this lower bound is tight up to constant factors.

1.8 Our Results in Space Complexity of Pebble Costs

and Depth of Resolution Refutations

Recall that it is of interest to compute the pebble costs due to their connections to different
complexity results, e. g., we want to compute the scaling in (i) the most efficient algorithms
known [37,42,99]; (ii) lower bounds under restrictions [39,83,85]; and (iii) resource usage of
certain proof search algorithms [18,22,98]. We show that computing the pebble cost in any
of three pebble games is PSPACE-hard under logspace reduction, giving a new link between
pebble games and computational complexity.

Theorem 6 (Log-Space Reduction). There is a logspace algorithm that, given a quantified
boolean formula ϕ with m clauses over n variables, outputs a graph Ĝϕ, such that ϕ is

satisfiable iff the pebble cost of ĜF is at most γ + 1, where γ := 7 +m+ 3n+ αn and αn is
the number of universal quantifiers in ϕ. Moreover, after deleting the sink node of Gϕ, the
resulting graph also has a unique sink node.

Theorem 6 follows from Construction 6.1.7 and is summarized as Theorem 14 in § 6.1.
The pebble costs, as well as the minimum depth of resolution refutation, are known to be
computable in PSPACE (see, e. g., [98]). Due to Theorems 1 and 3, we have the following
corollary.

Theorem 7 (PSPACE-Completeness). It is PSPACE-complete to compute (1) the pebble cost
in the Bennett–Dymond–Tompa–Raz–McKenzie pebble game; or (2) the minimum depth of
resolution refutation.

21Buresh-Oppenheim, Clegg, Impagliazzo, and Pitassi only claimed the result in terms of the (irreversible)
black pebble game, but it appears that their proof [22, Lemma 4.10] works also in terms of the reversible
pebble game, due to its combinatorial recurrence (Proposition 3.5.2 and Corollary 3.5.10).

CHAPTER 1. INTRODUCTION 16

This answers an open problem raised by Urquhart [98, Problem 7.1].

1.9 Techniques

The equivalence of the pebble games is proved by simulation arguments, on observing their
similarities in combinatorial recurrence. The results on restricted models fall into three
categories: (1) circuits under semantic restriction (thrifty circuits versus output-relevant
circuits); (2) computational models under monotone restriction (monotone circuits versus
monotone switching networks); and (3) weak proof systems (resolution refutations versus
k-DNF-resolution refutations). Note that in all cases, the second model simulates (thus is
stronger than) the first model.

All the upper bounds proved in this work are given by a pebbling strategy (of one of
the pebble games listed in Theorem 1),22 implemented in the weaker models. As for the
lower bounds in slightly stronger models, although the computation appears not to follow
a pebbling strategy, morally we can always decode an underlying strategy (or a family of
strategies). In other words, the hardness of pebbling is escalated to the hardness in the
respective, slightly stronger models.

As for the actual execution of the lower bound arguments, we consider the specifics of the
models: (1) for circuits under semantic restriction, our lower bound is based on the exten-
sion by Raz–McKenzie [85] of the information-theoretic adversary argument by Edmonds–
Impagliazzo–Rudich–Sgall [38]; (2) for computational models under monotone restriction,
the lower bounds are based on the extension by Chan–Potechin [27] of the framework of
invariants by Potechin [83] or the extension by Raz–McKenzie [85] mentioned above (first
proved in [39], see [26, Appendix B]); and (3) for weak proof systems, our lower bound is an
adversary argument based on the recurrence of the Raz–McKenzie pebble game.

Finally, the results on the space complexity of the pebble games, and of the minimum
depth of resolution refutations, are proved via a gadget reduction from the PSPACE-complete
problem of True Quantified Boolean Formulas.

1.10 Organization

Preliminary definitions and conventions are collected in Chapter 2.
The three pebble games are introduced, and proved equivalent, in Chapter 3. The equiv-

alence of the three pebble games (Theorem 1) follows from Theorems 8 and 9.
The DAG evaluation problem is treated in Chapter 4, which proves the lower bound

of Theorem 2 as Theorem 12, based on the information theoretic counting arguments in

22Note that the upper bound for the problem of Generation on monotone models is not given by an
optimal pebbling strategy, unlike other problems considered here, e. g., graph reachability and the DAG
evaluation problem.

CHAPTER 1. INTRODUCTION 17

Appendix A. The lower bound is complemented by a matching upper bound, proved as
Theorem 11. Proposition 4.2.6 shows that output-relevant circuits simulate thrifty circuits.

The proof complexity of resolution refutations is studied in Chapter 5, which proves
Theorems 3 to 5.

The space complexity of the pebble costs, and of the minimum depth of resolution refu-
tations, is studied in Chapter 6. This is proved via a gadget reduction, using the gadgets
collected in Appendix B.

Other approaches for separating complexity classes around P are discussed in Chapter 7,
and future directions are listed in Chapter 8.

Most of the materials (i. e., except the results on the space complexity of pebble games
in Chapter 6) have appeared in another work by the author [26].

18

Chapter 2

Preliminaries

Denote [n] := {0, 1, . . . , n− 1}. A subset S of a set A is identified with its indicator function
χS ∈ 2A ∼= {0, 1}A, where χS(i) = 1 iff i ∈ S.

Notation 2.0.1 (Restriction). The notation � will be overloaded for different (non-conflicting)
definitions. In general, for a tuple x in a product space X := AB where A and B are sets,
x�b := xb ∈ A denotes the entry of x indexed by b ∈ B. However, there is an exception
for instances to the evaluation problem BDEPk

G (Notation 4.2.1). In any case, for a subset
C ⊆ B, x�C denotes the tuple 〈x�c〉c∈C ∈ AC ; for a subset Y ⊆ X, Y �b := {y�b}y∈Y for
b ∈ B and Y �C := {y�C}y∈Y for C ⊆ B.

This work focuses on boolean circuits of fan-in two having a single output gate, and the
main concern is their depth complexity, measured by the number of edges on the longest
path from an input gate to the output gate (which may be zero), where negation costs no
increase in depth.

We fix our notation for directed acyclic graphs below. For brevity, immediate predecessors
are called in-neighbors here, and immediate successors are called out-neighbors.

Notation 2.0.2 (Directed Acyclic Graph). Consider a directed acyclic graph (DAG) G =
(V,E). For every vertex a ∈ V , denote its in-neighbors as δin(a) := {b ∈ V : (b, a) ∈ E} and
out-neighbors as δout(a) := {b ∈ V : (a, b) ∈ E}, and in-degree as degin(a) := |δin(a)|. For
the DAG G, its source vertices are U := U(G) := {a ∈ V : δin(a) = ∅} and sink vertices are
W := W (G) := {a ∈ V : δout(a) = ∅}.

19

Chapter 3

Equivalence of Pebble Games

We first informally review the three pebble games (§§ 3.1 to 3.3), and then show their
equivalence (§§ 3.4 and 3.5).

To avoid confusion with the two-party communication games of Karchmer–Wigderson
(see § 4.1) or of Raz–McKenzie (called Dart game), this thesis refers to Pebbler and Chal-
lenger (or Colorer) as the two players in a Dymond–Tompa game (or Raz–McKenzie pebble
game).

3.1 Dymond–Tompa Game

The following version of the Dymond–Tompa game is needed, where Pebbler only peb-
ble one vertex in each round, similar to the variant used in [24]. Concerning the number
of pebbles, this one-pebble-per-round version is clearly equivalent to the original multiple-
pebble-per-round version by Dymond and Tompa (by a simulation argument). The informal
Definition 3.1.1 is is formalized as Definition 3.4.1 in §3.4. Its pebble cost is the time needed.

Definition 3.1.1 (Dymond–Tompa Game [37]). Fix a DAG G. The Dymond–Tompa game
(DTG) over G is a two-player (competitive) game as follows. The two players, Pebbler and
Challenger, alternate to move. The Pebbler begins by pebbling a sink vertex of G, which
is then challenged by Challenger. In all subsequent rounds, Pebbler places a pebble on a
vertex of G, then Challenger either (1) rechallenges the currently challenged vertex; or (2)
challenges the vertex pebbled by Pebbler. The game is over when Challenger challenges
a ∈ V , but all in-neighbors of a are pebbled. A game takes h time if Pebbler needs h pebble
moves to win, against an optimal Challenger play.

3.2 Raz–McKenzie Pebble Game

Raz–McKenzie [85] employed the following pebble game in their adversarial strategy for
proving lower bounds on the depth of monotone circuits. Elias–McKenzie [39] initiated the

CHAPTER 3. EQUIVALENCE OF PEBBLE GAMES 20

study of the pebble game over different directed acyclic graphs. The informal Definition 3.2.1
is formalized as Definition 3.4.12 in § 3.4. Its pebble cost is the time needed.

Definition 3.2.1 (Raz–McKenzie Pebble Game). Fix a DAG G. The Raz–McKenzie pebble
game (RMG) over G is a two-player (competitive) game as follows. The two players, Pebbler
and Colorer, alternate to move. The Pebbler begins by pebbling a sink vertex of G, which is
then colored red by Colorer. In all subsequent rounds, Pebbler places a pebble on a vertex
of G, then Colorer colors this vertex either (1) as red; or (2) as blue. The game is over when
some vertex a ∈ V is colored red, but all in-neighbors of a are colored blue. A game takes h
time if Pebbler needs h pebble moves to win, against an optimal Colorer play.

3.3 Reversible Pebble Game

Bennett [16] mentioned reversible pebble game as an abstraction for a reversible simulation
of irreversible computation. The informal Definition 3.3.1 is formalized as Definition 3.5.4.
Its pebble cost is the number of pebbles needed.

Definition 3.3.1 (Reversible Pebble Game). Fix a DAG G. The reversible pebble game
over G is a one-player game as follows. Each vertex of G can store at most one pebble, and
the game begins with no pebbles on G. In each move, Pebbler applies one of the following
rules: (1) if all in-neighbors of a are pebbled, Pebbler may place a pebble on a (to pebble a);
or (2) if all in-neighbors of a are pebbled, Pebbler may remove a pebble from a (to unpebble
a). The game is over when the sink vertex is pebbled, but all other vertices are unpebbled.
A game takes h pebbles if Pebbler needs h pebbles to finish the game.

3.4 When Dymond–Tompa meet Raz–McKenzie

This section formalizes the Dymond–Tompa game (§ 3.4) and the Raz–McKenzie pebble
game (§ 3.4), and proves their equivalence (§ 3.4).

Dymond–Tompa Game

Definitions 3.4.1 and 3.4.2 formalize the intuitive Definition 3.1.1 for the Dymond–Tompa
Game.

Definition 3.4.1 (Dymond–Tompa Game Tree). Fix a DAG G = (V,E). A configuration
of the Dymond–Tompa game (DTG) over G is a tuple 〈〈P, r, c〉〉, where P ⊆ V are the pebbled
vertices, r ∈ P ∪ {⊥} is the vertex just pebbled, and c ∈ P is the vertex under challenge.
The player taking the turn in 〈〈P, r, c〉〉 is Pebbler if r = ⊥, and is Challenger if r ∈ P .

The initial configuration for G is CG := 〈〈{τ},⊥, τ〉〉,1 and the game is over in a con-
figuration 〈〈P, r, c〉〉 if r = ⊥ and δin(c) ⊆ P . A configuration C := 〈〈P, r, c〉〉 moves to a

1Recall that G is assumed to have a unique sink vertex τ in Theorem 1.

CHAPTER 3. EQUIVALENCE OF PEBBLE GAMES 21

configuration C ′ := 〈〈P ′, r′, c′〉〉 (denoted as C ` C ′), if (1) r = ⊥ and r′ ∈ V \ P (Peb-
bler moves in C and then Challenger moves in C ′),2 and the game is not over in C and
P ′ = P ∪{r′} and c′ = c; or (2) r ∈ P and r′ = ⊥ (Challenger moves in C and then Pebbler
moves in C ′), and c′ ∈ {c, r} and P ′ = P .

In the Dymond–Tompa game tree (GameTreeG) for DTG, every node is labeled with
a configuration. First construct the root node of GameTreeG, labeled with the initial
configuration CG. And for any node x labeled with C, for every C ′ such that C ` C ′,
construct a child node x′ of x labeled with C ′. The game tree is finite since Pebbler is
required to pebble an unpebbled vertex.2

Definition 3.4.2 (Value of a (Sub)-Game). For a node x on GameTreeG, define its value

Val(x) :=

1 if x is a leaf node,

minx′ : child of x Val(x
′) if Pebbler moves at internal node x,

1 + maxx′ : child of x Val(x
′) if Challenger moves at internal node x.

Then DTG takes h time if Val(root of GameTreeG) = h.

Intuitively, an optimal game play should focus only on the effective predecessors Vc(P)
of the currently challenged vertex c (Definition 3.4.3). This is formalized as Lemma 3.4.5,
by an induction on Lemma 3.4.6.

Definition 3.4.3 (Effective Predecessors). Relative to any S ⊆ V , for vertices a and b
in V , define the transitive relation a S b if there is a directed path (possibly of zero
length) from a to b avoiding S, i. e., there exists {v0, v1, . . . , v`} ⊆ V \ S such that v0 = a
and v` = b and vi ∈ δin(vi+1) for 0 ≤ i < `. When c is under challenge and P are the
pebbled vertices, define the (not necessarily proper) effective predecessors of c avoiding P as
Vc(P) := {a ∈ V : a (P\{c}) c}.

Proposition 3.4.4 (Effective Predecessors). We have the following:

1. Vc(P) ∩ P = {c} when c ∈ P ;

2. If a ∈ Vc(Q), then Va(Q) ⊆ Vc(Q);

3. If c ∈ Q ⊆ R, then Vc(Q) ⊇ Vc(R); and

4. If c ∈ Q ⊆ R and (R \Q) ∩ Vc(Q) = ∅, then Vc(Q) = Vc(R).

2Note that r′ ∈ V \P in item (1) in the definition of `, i. e., Pebbler is required to pebble an unpebbled
vertex. The game is effectively the same with or without this requirement, since Challenger can always
rechallenge the last challenged vertex if Pebbler repebbles a pebbled vertex, hence an optimal Pebbler
strategy should obey this requirement. This requirement is added here to avoid working with an infinite
game tree, so as to simplify subsequent definitions while not affecting the values of subgames.

CHAPTER 3. EQUIVALENCE OF PEBBLE GAMES 22

Lemma 3.4.5 (Predecessors Determine a Subgame). The value of a subgame depends
only on the effective predecessors of the challenged vertex, i. e., if Vc(Q) = Vc(R), then
Val(〈〈Q,⊥, c〉〉) = Val(〈〈R,⊥, c〉〉).3

Proof. Let P = Q ∪
(
V \ Vc(Q)

)
= R ∪

(
V \ Vc(R)

)
, then Q ⊆ P and R ⊆ P , now do an

induction using Lemma 3.4.6 to show Val(〈〈Q,⊥, c〉〉) = Val(〈〈P,⊥, c〉〉) = Val(〈〈R,⊥, c〉〉).
More precisely, recall that for a subset S ⊆ V , a sink vertex s of S satisfies s ∈ S and
δout(s) ∩ S = ∅. Enumerate P \Q =: {s1, s2, . . . , s`} ⊆ V \

(
Q ∪ Vc(Q)

)
so that si is a sink

of Si where S` := P and Si := Si+1 \ {si+1} for 0 ≤ i < `, and apply Lemma 3.4.6 to get
Val(〈〈Si,⊥, c〉〉) = Val(〈〈Si+1,⊥, c〉〉).

Lemma 3.4.6 (Predecessors Determine Adjacent Subgames). If R = Q∪{q} for some sink
q of V \

(
Q ∪ Vc(Q)

)
, then Val(〈〈Q,⊥, c〉〉) = Val(〈〈R,⊥, c〉〉).3

Proof. Say two Pebbler configurations C1 := 〈〈P1,⊥, c1〉〉 and C2 := 〈〈P2,⊥, c2〉〉 form an
adjacent pair (denoted 〈C1, C2〉) if c1 = c = c2 for some c ∈ V and P2 = P1 ∪ {q} for
some sink q of V \

(
P1 ∪ Vc(P1)

)
. In this case Vc(P1) = Vc(P2) by Proposition 3.4.4. For

two configurations C and C ′, say C is a descendant of C ′ (denoted C � C ′) if there are
configurations {C1, . . . , C`}, such that Ci+1 ` Ci for 1 ≤ i < ` and C1 = C and C` = C ′.4

This partial order on configurations induces a partial order on adjacent pairs by 〈C1, C2〉 �
〈C ′1, C ′2〉 if C1 � C ′1 and C2 � C ′2.

Do an induction following the � order on adjacent pairs 〈Q,R〉 to show that Val(Q) =
Val(R). When Vc(Q) = Vc(R), note that δin(c) ⊆ Q iff Vc(Q) = {c} iff Vc(R) = {c} iff
δin(c) ⊆ R, i. e., the game is over in 〈〈Q,⊥, c〉〉 iff it is over in 〈〈R,⊥, c〉〉. If the game is over,
then Val(〈〈Q,⊥, c〉〉) = 1 = Val(〈〈R,⊥, c〉〉), establishing the base case. Otherwise, the game
is not over. Expand and compare

Val(〈〈Q,⊥, c〉〉) = min
r /∈Q

Val(〈〈Q ∪ {r}, r, c〉〉) and Val(〈〈R,⊥, c〉〉) = min
r /∈R

Val(〈〈R ∪ {r}, r, c〉〉) .

For an r ∈ V \Q, there are two cases.

• r /∈ R: Note that 〈〈〈Q ∪ {r},⊥, c〉〉, 〈〈R ∪ {r},⊥, c〉〉〉 ≺ 〈〈〈Q,⊥, c〉〉, 〈〈R,⊥, c〉〉〉, and since
q is a sink of V \

(
Q∪Vc(Q)

)
and q 6∈ Vr(Q∪{r}), we have 〈〈〈Q ∪ {r},⊥, r〉〉, 〈〈R ∪ {r},⊥, r〉〉〉 ≺

〈〈〈Q,⊥, c〉〉, 〈〈R,⊥, c〉〉〉, hence induction hypothesis gives

Val(〈〈Q ∪ {r}, r, c〉〉) = 1 + max
{

Val(〈〈Q ∪ {r},⊥, r〉〉) , Val(〈〈Q ∪ {r},⊥, c〉〉)
}

= 1 +max
{

Val(〈〈R ∪ {r},⊥, r〉〉) , Val(〈〈R ∪ {r},⊥, c〉〉)
}

= Val(〈〈R ∪ {r}, r, c〉〉) ;

3Clearly the subtree rooted at (and hence the value of) a node x on GameTreeG depends only on the
configuration labeled at x, thus it makes sense to talk about the value of a configuration, although in general
there can be multiple nodes on GameTreeG labeled with the same configuration.

4Hence C � C ′ if some node labeled with C is a (not necessarily proper) descendant of some node labeled
with C ′ on GameTreeG.

CHAPTER 3. EQUIVALENCE OF PEBBLE GAMES 23

• r = q ∈ R \Q: Then

Val(〈〈Q ∪ {q}, q, c〉〉) = Val(〈〈R, q, c〉〉)
= 1 + max

{
Val(〈〈R,⊥, q〉〉) , Val(〈〈R,⊥, c〉〉) }

> Val(〈〈R,⊥, c〉〉) .

Now

Val(〈〈Q,⊥, c〉〉) = min
r /∈Q

Val(〈〈Q ∪ {r}, r, c〉〉)

= min
{

min
r /∈R

Val(〈〈Q ∪ {r}, r, c〉〉) , Val(〈〈Q ∪ {q}, q, c〉〉)
}

= Val(〈〈R,⊥, c〉〉) .

Since the game should only focus on the effective predecessors Vc(P) of the currently
challenged vertex c, an optimal game play should go from the sink to the sources of G
(Claims 3.4.8 and 3.4.10, see Definition 3.4.7).

Definition 3.4.7 (Upstream Strategies). Say a strategy for Pebbler is upstream if Pebbler
only pebbles an effective predecessor of the currently challenged vertex, and a strategy for
Challenger is upstream if Challenger only challenges an effective predecessor of the previously
challenged vertex. More precisely, for configurations C := 〈〈P, r, c〉〉 and C ′ := 〈〈P ′, r′, c′〉〉, say
C moves upstream to C ′ (denoted as C ` C ′) iff C ` C ′ and if (1) r = ⊥ (Pebbler moves in
C) then r′ ∈ Vc(P); or (2) r ∈ P (Challenger moves in C) then c′ ∈ Vc(P). Then a Pebbler
(resp. Challenger) strategy is upstream if every Pebbler (resp. Challenger) move from C to
C ′ satisfies C ` C ′.

Claim 3.4.8 (Optimal Upstream Pebbler). Any subgame-optimal Pebbler strategy is up-
stream, i. e., if configurations C = 〈〈P,⊥, c〉〉 and C ′ satisfy C ` C ′ and Val(C) = Val(C ′),3

then C ` C ′.

Proof. Consider the Pebbler move from C =: 〈〈P,⊥, c〉〉 to C ′ =: 〈〈P ∪ {r}, r, c〉〉 where r /∈ P
and r 6∈ Vc(P) (hence C ` C ′ but C 6 ` C ′), either (1) challenging r is no worse for
Challenger, i. e., Cr := 〈〈P ∪ {r},⊥, r〉〉 has Val(Cr) ≥ Val(C), then a subgame-optimal
strategy of Pebbler would avoid the move from C to C ′ (since Val(C ′) ≥ 1 + Val(Cr) >
Val(C)); or (2) Cr is worse for Challenger, i. e., Val(Cr) < Val(C), then Challenger may
choose to rechallenge c by moving to Cc := 〈〈P ∪ {r},⊥, c〉〉 so that Val(Cc) = Val(C) (by
Proposition 3.4.4 and Lemma 3.4.5), hence a subgame-optimal strategy of Pebbler would
avoid the move from C to C ′ (since Val(C ′) ≥ 1 +Val(Cc) > Val(C)).

Corollary 3.4.9 (Optimal Upstream Pebbler). If the game is not over in a Pebbler config-
uration 〈〈P,⊥, c〉〉, then Val(〈〈P,⊥, c〉〉) = minr∈Vc(P)\P Val(〈〈P ∪ {r}, r, c〉〉).

CHAPTER 3. EQUIVALENCE OF PEBBLE GAMES 24

Claim 3.4.10 (Optimal Upstream Challenger). There exists an optimal Challenger strategy
that is upstream, i. e., if configurations C = 〈〈P,⊥, c〉〉 and C ′ = 〈〈P ∪ {r}, r, c〉〉 satisfy C ` C ′,
then there is a Challenger move from C ′ to C ′′ with C ′ ` C ′′ and Val(C ′′) ≥ Val(C)− 1.

Proof. If r ∈ Vc(P), then C ′ ` C ′′ implies C ′ ` C ′′. Now Definition 3.4.2 gives a C ′′ with
C ′ ` C ′′ and Val(C ′′) ≥ Val(C ′) − 1 ≥ Val(C) − 1. Otherwise r 6∈ Vc(P), then consider
C ′′ := 〈〈P ∪ {r},⊥, c〉〉. Proposition 3.4.4 and Lemma 3.4.5 give Val(C ′′) = Val(C), and
clearly C ′ ` C ′′.

Proposition 3.4.11 (Upstream is Monotone). Consider C1 ` C2 ` C3 where C1 =:
〈〈P1,⊥, c1〉〉 and C3 =: 〈〈P3,⊥, c3〉〉. If C1 ` C2 or C2 ` C3, then c3 ∈ Vc1(P1) and
Vc1(P1) ⊇ Vc3(P3).

Raz–McKenzie Pebble Game

Definitions 3.4.12 and 3.4.13 formalize the intuitive Definition 3.2.1 for the Raz–McKenzie
pebble game.

Definition 3.4.12 (Raz–McKenzie Game Tree). Fix a DAG G = (V,E). A configuration of
the Raz–McKenzie game (RMG) over G is a tuple 〈〈P, r, B〉〉, where P ⊆ V are the pebbled
vertices, r ∈ P ∪ {⊥} is the vertex just pebbled, and B ⊂ P are the blue vertices (and
P \ (B ∪ {r}) are the red vertices). The player taking the turn in 〈〈P, r, B〉〉 is Pebbler if
r = ⊥, and is Colorer if r ∈ P .

The initial configuration for G is CRM
G := 〈〈{τ},⊥, ∅〉〉,1 and the game is over in a configu-

ration 〈〈P, r, B〉〉 if r = ⊥ and some d ∈ P \B has δin(d) ⊆ B. A configuration C := 〈〈P, r, B〉〉
moves to a configuration C ′ := 〈〈P ′, r′, B′〉〉 (denoted as C ` C ′), if (1) r = ⊥ and r′ ∈ V \P
(Pebbler moves in C and then Colorer moves in C ′),5 and the game is not over in C and
P ′ = P ∪ {r′} and B′ = B; or (2) r ∈ P and r′ = ⊥ (Colorer moves in C and then Pebbler
moves in C ′), and B ⊆ B′ ⊆ B ∪ {r} and P ′ = P .

In the Raz–McKenzie game tree (GameTreeRM
G) for RMG, every node is labeled with

a configuration. First construct the root node of GameTreeRM
G , labeled with the initial

configuration CRM
G . And for any node x labeled with C, for every C ′ such that C ` C ′,

construct a child node x′ of x labeled with C ′. The game tree is finite since Pebbler is
required to pebble an unpebbled vertex.5

5Note that r′ ∈ V \P in item (1) in the definition of `, i. e., Pebbler is required to pebble an unpebbled
vertex. The game is effectively the same with or without this requirement, since Colorer can always recolor
a vertex with its existing color if Pebbler repebbles a pebbled vertex, hence an optimal Pebbler strategy
should obey this requirement. This requirement is added here to avoid working with an infinite game tree,
so as to simplify subsequent definitions while not affecting the values of subgames.

CHAPTER 3. EQUIVALENCE OF PEBBLE GAMES 25

Definition 3.4.13 (Value of a (Sub)-Game). For a node x on GameTreeRM
G , define its

value

Val(x) :=

1 if x is a leaf node,

minx′ : child of xVal(x
′) if Pebbler moves at internal node x,

1 + maxx′ : child of xVal(x
′) if Colorer moves at internal node x.

Then RMG takes h time if Val(root of GameTreeRM
G) = h.

Dymond–Tompa equals Raz–McKenzie

Theorem 8 (Dymond–Tompa equals Raz–McKenzie). For any DAG G, DTG takes h time
iff RMG takes h time.

Proof. For the ⇐ direction, given an optimal Colorer strategy for RMG, we should construct
a Challenger strategy for DTG to make at least h moves. In each move, when c is under
challenge, after Pebbler pebbles r ∈ V \ P to a configuration 〈〈P ∪ {r}, r, c〉〉 in DTG, Chal-
lenger (1) challenges r if r ∈ Vc(P)ni and Colorer colors r red in response to Pebbler; and
(2) rechallenges c otherwise. Challenger strategy maintains the invariant that c is the only
red vertex among its effective predecessors, i. e., Vc(P) ∩ (P \ B) = {c} (by induction on
Challenger moves). If the game DTG is over in a configuration 〈〈P,⊥, c〉〉, then δin(c) ⊆ P .
It follows that c is red but all of δin(c) are blue; for otherwise, some r ∈ δin(c) is red, but
then r is colored red by Colorer in a round when some d is challenged, and both c and r
are effective predecessors of d in that round (recall Proposition 3.4.11), contradicting the
Challenger strategy. So the game RMG is also over.

For the⇒ direction, given an optimal Challenger strategy for DTG, we should construct a
Colorer strategy for RMG to make at least h moves. By Claim 3.4.10, assume that Challenger
strategy is upstream. In each move, when c is under challenge, after Pebbler pebbles r ∈ V \P
to configurations 〈〈P ′, r, c〉〉 in DTG and 〈〈P ′, r, B〉〉 in RMG with P ′ = P∪{r}, if (1) Challenger
responses to Pebbler by challenging r 6= c (hence r ∈ Vc(P)), then Colorer colors r red; or (2)
Challenger responses by rechallenging c, then Colorer (i) colors r blue unless there are red
vertices d, d′ ∈ P \B blocked by making r blue, i. e., d 6∈ Vd′(B∪{r}) but d ∈ Vd′(B); in which
case (ii) colors r red. Colorer strategy maintains the invariant that c is the only red vertex
among its effective predecessors, i. e., Vc(P) ∩ (P \ B) = {c}; and there is a blue-avoiding
path covering all red vertices, i. e., for any d, d′ ∈ P \ B, d ∈ Vd′(B) or d′ ∈ Vd(B) (by
induction on Colorer moves). As a result, c is the first red vertex in this blue-avoiding path,
i. e., c ∈ Vd(B) for any d ∈ P \ B. If the game RMG is over in a configuration 〈〈P,⊥, B〉〉,
then δin(d) ⊆ B for some d ∈ P \B, thus d = c is the vertex under challenge and δin(c) ⊆ P ,
so the game DTG is also over.

CHAPTER 3. EQUIVALENCE OF PEBBLE GAMES 26

3.5 When Raz–McKenzie meet Bennett

The Raz–McKenzie pebble game (§ 3.5) is connected with the reversible pebble game of
Bennett (§ 3.5) by a simulation argument in § 3.5.

Reformulating Raz–McKenzie Pebble Game

Focusing on the Pebbler side of the Raz–McKenzie pebble game and interpreting it as a
one-player game, Definition 3.5.1 and Proposition 3.5.2 bring the Raz–McKenzie (two-player)
pebble game to a form closer to the (one-player) reversible pebble game.

Definition 3.5.1 (Reduced Configuration). Fix a DAG G = (V,E). A reduced configuration
of the Raz–McKenzie pebble game (RMG) over G is a pair LB,RM of blue B and red R vertices
(B,R ⊆ V) which are disjoint B ∩ R = {}. Any reduced configuration LB,RM corresponds
to the Pebbler configuration 〈〈R ∪B,⊥, B〉〉.

Proposition 3.5.2 (Value of Reduced Configuration).

Val(LB,RM) =

1 if ∃r ∈ R s.t. δin(r) ⊆ B,

1 + min
v∈V \(R∪B)

max

{
Val(LB,R ∪ {v}M),
Val(LB ∪ {v}, RM)

}
otherwise.

Proposition 3.5.3 (Monotonicity). If B1 ⊆ B2 and R1 ⊆ R2, then Val(LB1, R1M) ≥
Val(LB2, R2M).

Reversible Pebble Game

Following its usage in proof complexity [4, 12, 51, 98], the (reversible) black pebble game
is parameterized below with two extra sets of vertices S (extending the sources) and T
(extending the sinks) in Definition 3.5.4. By changing S and T as the induction step goes,
and by focusing on the progress in pebbling outside of S and T , this parameterization
sets up the right recurrence in its translation to and from the Raz–McKenzie pebble game
(Lemmas 3.5.6 and 3.5.9).

Definition 3.5.4 (Reversible Pebble Game). Fix a DAG G = (V,E) and two vertex subsets
S, T ⊆ V which are disjoint S ∩ T = {}. A configuration P in the reversible pebble game
(RPG,S,T) is a subset of pebbled vertices P ⊆ V . Two configurations P1 and P2 are adjacent in
RPG,S,T if P1 and P2 differ by at most one vertex v ∈ V , all of whose in-neighbors are pebbled
or in S, i. e., P1∆P2 ⊆ {v} where δin(v) ⊆ P1 ∪ S for some v ∈ V (in this case, equivalently
δin(v) ⊆ P2 ∪ S). Note that all of S are virtually pebbled, hence referred to as assuming S.
Say a configuration P precisely pebbles a vertex in T ⊆ V assuming S ⊆ V if P \ S = {t}
for some vertex t ∈ T . For two configurations Ps and Pt, a reversible (pebbling) strategy
P = 〈P1, P2, . . . , P`〉 from Ps to Pt in RPG,S,T is a sequence of adjacent configurations, i. e.,

CHAPTER 3. EQUIVALENCE OF PEBBLE GAMES 27

Pj−1 is adjacent to Pj assuming S for 1 < j ≤ `, such that P1 = Ps and P` = Pt. A reversible
(pebbling) strategy for RPG,S,T is a reversible strategy from {} to some Pt in RPG,S,T where
Pt precisely pebbles a vertex in T assuming S.

Definition 3.5.5 (Value of a Configuration). The value of a configuration P is Val(P) :=
|P | the number of pebbles in P . The value of a reversible strategy P := 〈P1, P2, . . . , P`〉 is
Val(P) := max1≤j≤` Val(Pj). The value of the reversible pebble game RPG,S,T isVal(RPG,S,T) :=
minP Val(P), where the minimum is over all reversible strategy P for RPG,S,T (from {} to
precisely pebble some vertex in T assuming S in RPG,S,T).

Raz–McKenzie equals Bennett

Lemma 3.5.6 (Reversible Strategy from Raz–McKenzie Strategy, Induction). There is a
reversible strategy P for RPG,B,R of value Val(P) ≤ Val(LB,RM) =: h.

Proof. If h = 1, then some vertex r ∈ R has all its in-neighbors δin(r) ⊆ B. Now pebble
r ∈ R assuming B, i. e., P := 〈{}, {r}〉, establishing the base case.

If h > 1, fix v ∈ V \ (R ∪B) such that

Val(LB,RM) = 1 + max
{
Val(LB,R ∪ {v}M),Val(LB ∪ {v}, RM)

}
.

Since Val(LB,R ∪ {v}M) < h, there is a reversible strategy P1 =: 〈P1, P2, . . . , P`〉 for
RPG,B,R∪{v} (i. e., assuming B to precisely pebble a vertex in R∪{v}) of value Val(P1) < h.
If a vertex in R is precisely pebbled assuming B (P` \ B = {r} for some r ∈ R), then
we are done P := P1. Otherwise, v is precisely pebbled assuming B (P` \ B = {v}).
Since Val(LB ∪ {v}, RM) < h, there is a reversible strategy P2 for RPG,B∪{v},R (i. e., as-
suming B ∪ {v} to precisely pebble a vertex r ∈ R) of value Val(P2) < h. Hence run
P1, then run P2, and finally run P1 in reverse to forget v. That is, let P := the con-
catenation of P1, P2 ∪ {v}, and P←−

1
∪ {r}; where P←−

1
:= 〈P`, P`−1, . . . , P1〉 reverses P1, and

P1 ∪ {r} := 〈P1 ∪ {r}, P2 ∪ {r}, . . . , P` ∪ {r}〉 denotes the configuration-wise union. Note
that P is a strategy from {} to precisely pebble r ∈ R assuming B.

Lemma 3.5.7 (Raz–McKenzie Strategy from Reversible Strategy). Any reversible strategy
P =: 〈P1, P2, . . . , P`〉 for RPG,B,R has value Val(P) ≥ Val(LB,RM).

Proof. Let r ∈ R be precisely pebbled assuming B, i. e., P` \ B =: {r}. Without loss of
generality δin(r) ∩ R = ∅, for otherwise replace every configuration Pj containing r with
Pj \ {r} ∪ {r′} for some predecessor r′ of r such that δin(r′) ∩ R = ∅. Let m be the first
time (i. e., least integer) such that r is pebbled since Pm, i. e., Pb 3 r for m ≤ b ≤ `. Since
P1 = {}, m > 1. So Pm−1 differs from Pm by a reversible pebble move to pebble r ∈ R∩Pm

assuming B. Thus δin(r) ⊆ Pm ∪ B. Let P1 := 〈Pm, Pm+1, . . . , P`〉 be the strategy since
Pm, and P←−

1
:= 〈P`, P`−1, . . . , Pm〉 be its reverse. Note that δin(r) ⊆

(
Pm ∩ VR(B)

)
∪ B

(see Definition 3.5.8). Apply Lemma 3.5.9 on P←−
1
∩ VR(B), where P←−

1
∩ VR(B) := 〈P` ∩

CHAPTER 3. EQUIVALENCE OF PEBBLE GAMES 28

VR(B), P`−1 ∩ VR(B), . . . , Pm ∩ VR(B)〉 is its configuration-wise intersection with VR(B), to
get Pb with m ≤ b ≤ ` satisfying the second inequality in

|Pb| ≥
∣∣(Pb ∩ VR(B)

)
\B

∣∣+ 1 ≥ Val(LB,RM),

since P` ∩ VR(B) = ∅ (thus P̃ = B in Lemma 3.5.9), and r ∈ Pb \ VR(B) gives the first
inequality.

The following is a pebbling argument by induction, with a twist in using the right ‘poten-
tial function’ and the correct order for induction. First, since we are interested in pebbling
R, it suffices to restrict attention to predecessors of R in the pebbling strategy. Moreover,
since B is assumed, further restrict attention to those pebbling moves outside of B. The
region of interest is denoted VR(B) below. The induction step is applied to the pebbling
move Pm where the first vertex (denoted v below) is remembered till the end (i. e., P`) in the
region VR(B) of interest. By further restricting attention to V \ {v} (in the Pebbling Case
below) or to Vv(v) (in the Unpebbling Case below), it ensures the technical condition that
B and R are disjoint when applying the induction hypothesis (as witnessed by the support
of a strategy).

Definition 3.5.8 (Predecessors, Support). Fix a DAG G = (V,E). Say u ∈ V is a (not
necessarily proper) predecessor of v ∈ V if there is a directed path (possibly of zero length)
from u to v.6 Denote the predecessors by Vv := {u : u is a predecessor of v} for v ∈ V ,
and VR :=

(⋃
r∈R Vr

)
for R ⊆ V . Define the predecessors of R relative to B as VR(B) :=

VR \ (R ∪B). As a shorthand, denote Vv(v) := V{v}({v}) as the proper predecessors of v.
For U ⊆ V , say a configuration P is U-supported if P ⊆ U , and say a strategy P :=

〈P1, P2, . . . , P`〉 is U-supported if each Pj is U -supported for 1 ≤ j ≤ `.

Lemma 3.5.9 (Raz–McKenzie Strategy from Reversible Strategy, Induction). Any VR(B)-supported
reversible strategy P =: 〈P1, P2, . . . , P`〉 in RPG,B,R where δin(r) ⊆ P` ∪ B for some r ∈ R,
has a configuration Pb for some 1 ≤ b ≤ `, so that

∣∣Pb \ P̃
∣∣ + 1 ≥ Val(LP̃ , RM), where

P̃ :=
(⋂

1≤j≤` Pj

)
∪B.

Proof. Decrease ` if necessary, let ` be the first time on P (i. e., least integer) so that δin(r) ⊆
P`∪B for some r ∈ R. If δin(r) ⊆ P̃ , then Val(LP̃ , RM) = 1, so any configuration on P would
do. Otherwise, δin(r) 6⊆ P̃ . Let P̃i :=

(⋂
i≤j≤` Pj

)
∪ B be the set of vertices remembered

since configuration Pi assuming B. Now δin(r) 6⊆ P̃ = P̃1 and δin(r) ⊆ P̃`, and P̃j−1 ⊆ P̃j for
1 < j ≤ `. Let m := argmin{1 < j ≤ ` : P̃1 6= P̃j} indexes the earliest configuration so that
P̃m−1 ⊂ P̃m, and let v ∈ P̃m \ P̃m−1 = P̃m \ P̃1 be the first vertex remembered till the end.
Let P1 := 〈Pm, Pm+1, . . . , P`〉 be the strategy since Pm, which is shorter than P .7 Now for

6Hence the relation of predecessor is the reflexive transitive closure of the relation of immediate prede-
cessor (in-neighbor).

7Formally, the double induction argument does an outer induction on the length of P, then an inner
induction on Val(LP̃ , RM).

CHAPTER 3. EQUIVALENCE OF PEBBLE GAMES 29

any Pb on P1 (i. e., m ≤ b ≤ `),

|Pb \ P̃1| ≥ |Pb \ P̃m|+ 1 , (3.1)

since v ∈
(
Pb \ P̃1

)
\
(
Pb \ P̃m

)
. Note that P̃m = P̃1 ∪ {v} = P̃ ∪ {v}.

Clearly v /∈ P̃ . Also, v is pebbled by a reversible pebble move at Pm, hence δin(v) ⊆
Pm ∪B. It follows that v /∈ R; for otherwise v ∈ R, either it contradicts the minimality of `,
or some vertex before v is pebbled till v is pebbled, contradicting the minimality of m. By
the recurrence of Val(LP̃ , RM) (Proposition 3.5.2), at least one of the following is true.

• (Pebbling Case)
Val(LP̃ ∪ {v}, RM) + 1 ≥ Val(LP̃ , RM) . (3.2)

Note that VR(B ∪ {v}) = VR(B) \ {v}. Hence P2 := P1 \ {v} := 〈Pm \ {v}, Pm+1 \
{v}, . . . , P`\{v}〉 is VR(B∪{v})-supported. Now P̃m =

(⋂
m≤j≤` Pj\{v}

)
∪B∪{v}. The

induction hypothesis on P2 in RPG,B∪{v},R gives a Pb (on P1) satisfying the inequality
in

|Pb \ P̃m|+ 1 =
∣∣(Pb \ {v}

)
\ P̃m

∣∣+ 1 ≥ Val(LP̃m, RM) = Val(LP̃ ∪ {v}, RM) . (3.3)

Finally |Pb \ P̃ |+ 1 ≥ Val(LP̃ , RM) by Inequalities 3.1 to 3.3.

• (Unpebbling Case)

Val(LP̃ , R ∪ {v}M) + 1 ≥ Val(LP̃ , RM) . (3.4)

In fact, δin(v) ⊆ (Pm∩Vv(v))∪B. Let P←−
1
:= 〈P`, P`−1, . . . , Pm〉 be the reverse of P1, and

P2 := P←−
1
∩Vv(v) := 〈P` ∩Vv(v), P`−1 ∩Vv(v), . . . , Pm ∩Vv(v)〉 be its configuration-wise

intersection. Then P2 is VR∪{v}(B)-supported, and also Vv(v)-supported. Let P̃ ′ :=(⋂
m≤j≤` Pj∩Vv(v)

)
∪B ⊆ P̃m\{v} = P̃ . The induction hypothesis on P2 in RPG,B,R∪{v}

gives a Pb (on P1) satisfying the first inequality in

|Pb ∩ Vv(v) \ P̃ ′|+ 1 ≥ Val(LP̃ ′, R ∪ {v}M) ≥ Val(LP̃ , R ∪ {v}M) , (3.5)

where the last inequality follows from monotonicity (Proposition 3.5.3). Note that
Pb ∩ Vv(v) \ P̃ ′ ⊆ Pb \ P̃m, since P̃m ∩ Vv(v) ⊆ P̃ ′. Finally |Pb \ P̃ | + 1 ≥ Val(LP̃ , RM)
by Inequalities 3.1, 3.4 and 3.5.

Corollary 3.5.10 (Raz–McKenzie equals Bennett). For any DAG G, subsets R,B ⊆ V
which are disjoint R ∩B = {}, we have Val(LB,RM) = Val(RPG,B,R).

Proof. By Lemmas 3.5.6 and 3.5.7.

Theorem 9 (Raz–McKenzie equals Bennett). For any DAG G with a unique sink τ, we
have Val(L{}, {τ}M) = Val(RPG,{},{τ}).

30

Chapter 4

DAG Evaluation Problem

This chapter studies the DAG evaluation problem. We define below the computational
problem BDEPk

G, the boolean version of the DAG evaluation problem of bit-length k over G.
§ 4.1 recalls the two-party communication game of Karchmer–Wigderson, § 4.2 introduces
two classes of circuits with restricted computational semantics for BDEPk

G, § 4.3 proves an
upper bound as Theorem 11, § 4.4 connects the two-player pebble game of Raz–McKenzie
with the two-party communication game of Karchmer–Wigderson, and § 4.5 proves a lower
bound as Theorem 12.

The following computational problem naturally generalizes the Tree Evaluation Prob-
lem [33] to any directed acyclic graph G. This problem can be seen as a parameterized
version of the P-complete circuit evaluation problem. By studying a slice of the problem (for
a fixed graph G and constant k), we can focus on the combinatorics of the ‘flow of values’
over the graph.

Definition 4.0.11 (DAG Evaluation Problem over G). Consider a DAG G and a bit-length
parameter k ∈ N. Denote the set of k-bit strings as {0, 1}k ∼= [K], where K := 2k. The DAG
Evaluation Problem over G (DEPk

G) is specified by the following.
Input For every vertex a ∈ V , there is a function ta : [K]δ

in(a) → [K].1 The input to
DEPk

G enumerates the n bits of 〈ta〉a∈V as n boolean variables where n := k
∑

a∈V Kdegin(a).
‘Computation’ Define inductively the values 〈va〉a∈V ∈ [K]V by va := ta

(
v�δin(a)

)
∈ [K]

for a ∈ V . That is, the value va is the function ta applied to the values at the in-neighbors
of a.1

Output The output of DEPk
G is the tuple of values 〈vw〉w∈W ∈ [K]W .

Using terminologies of database systems, at every vertex a ∈ V , there is a table ta whose
dimension is the number of in-neighbors of a. The values at in-neighbors of a indexes the
relevant entry in ta, and we are interested in computing the values at the sinks.

1Note that for a source vertex a ∈ U , its function ta degenerates to have a domain of [K]∅, hence the
function ta ∈ [K] can be treated as a k-bit string. Thus its value va is just its function ta ∈ 2[K] treated as
a k bit-string.

CHAPTER 4. DAG EVALUATION PROBLEM 31

Henceforth, without loss of generality, focus on DAGs with exactly one sink vertex τ.
The interest is in the boolean circuit depth complexity of computing a decision version of
DEPk

G (as opposed to a [K]-valued function).

Definition 4.0.12 (Boolean DAG Evaluation Problem). Fix a non-constant boolean func-
tion σ on k-bit strings σ : {0, 1}k → {0, 1}, say the zeroth bit σ(s) := s�0 for s ∈ {0, 1}k.2
The Boolean DAG Evaluation Problem (BDEPk

G) seeks to compute σ(vτ).

4.1 Karchmer–Wigderson Game

Boolean circuit depth complexity is studied here via the (co-operative) communication game
of Karchmer and Wigderson [59]. Recall that given a boolean function f : {0, 1}n → {0, 1}
with promises Y ⊆ f−1(1) and N ⊆ f−1(0), the Karchmer–Wigderson game (KWY,N) is a
communication game between two parties defined as follows: Party 1 (theYes party) is given
a promised Yes instance x ∈ Y , Party 0 (the No party) is given a promised No instance
y ∈ N , and they communicate to locate a bit position i ∈ [n] where the inputs differ (i. e.,
xi 6= yi). (So the communication protocols are computing relations rather than functions.)
And the Karchmer–Wigderson game for a boolean function f is KWf := KWf−1(1),f−1(0).
Karchmer and Wigderson observed that the communication complexity captures exactly the
circuit depth.3

Theorem 10 (Circuit is a Protocol). The depth complexity of f on boolean circuits is exactly
the communication complexity of KWf .

Notation 4.1.1 (Admissible Inputs). Consider the protocol Π (as a rooted binary tree) and
a node g ∈ Π. Denote f−1g (1) as the set of inputs that can be given to Party 1 (the Yes
party) at g and f−1g (0) as the set of inputs that can be given to Party 0 (the No party).
That is, the combinatorial rectangle associated with the node g is f−1g (1)× f−1g (0).

Notation 4.1.2 (Output Node). Given an instance (x, y) ∈ f−1(1)× f−1(0) and a protocol
Π, denote Π(x, y) as the output node (rather than just the value) after running the protocol
Π on the instance.

4.2 Thrifty and Output-Relevant Circuits

This subsection introduces two families of circuits with restricted computational semantics
for BDEPk

G: thrifty circuits and output-relevant circuits.
When concerning depth complexity, a circuit can be assumed to be a formula without loss

of generality. Then a boolean formula C is isomorphic to a corresponding communication

2All non-constant boolean functions are equivalent with respect to the (restricted) lower bounds in this
work. The zeroth bit is chosen here since its computation is trivial, i. e., takes no extra depth.

3Also observed independently by Yannakakis and was implicit in [61], see [59].

CHAPTER 4. DAG EVALUATION PROBLEM 32

protocol Π (denoted C ≡ Π) not only graph-theoretically (as a rooted binary tree), but
also computationally (subsets of Yes and No instances match the combinatorial rectangles,
i. e., for every g ∈ C ≡ Π under the graph isomorphism, any input x ∈ f−1g (1) evaluates
to 1 at gate g ∈ C and any input y ∈ f−1g (0) evaluates to 0 at gate g). Therefore certain
computational notions for a formula (or a circuit) C can equivalently be defined over the
communication protocol Π under the Karchmer–Wigderson correspondence ≡, as is done
below for the notions of thrifty circuits and output-relevant circuits.

Intuitively, a circuit for BDEPk
G is thrifty if its computation depends only on the values

va, but not on other irrelevant bits (variables) of the functions ta (Definition 4.2.3), as an
analogue of thrifty branching programs [33]; and a circuit for BDEPk

G is output-relevant if it
only outputs relevant bits (variables), similar to the players who only output leaves of the
universal composition relation [58, §6]. Note that after taking away the output-relevant re-
striction, a communication game for BDEPk

G is a proper Karchmer–Wigderson game (so that
it corresponds properly to circuit depth). This is not the case for the universal composition
relation.

Notation 4.2.1 (Values). For an input x ∈ {0, 1}n to BDEPk
G, denote x�va as the va value

of x (see Definition 4.0.11). As a shorthand, write x�a for x�va , and x�S for 〈x�a〉a∈S when
S ⊆ V .

Definition 4.2.2 (Thrifty Protocols and Circuits). A protocol Π for KWY,N is thrifty where
Y ⊆ f−1(1) and N ⊆ f−1(0) for f := BDEPk

G, if for any pair of promised Yes instances
x, x′ ∈ Y , and any pair of promised No instances y, y′ ∈ N , such that x�V = x′�V and
y�V = y′�V , we have Π(x, y) = Π(x′, y′). A circuit C for f is thrifty, if there is a thrifty
protocol Π for KWf isomorphic to (the formula equivalent to) C (i. e., C ≡ Π).

Definition 4.2.3 (Relevant Bits). For an input x ∈ {0, 1}n to BDEPk
G, an input bit (variable)

is relevant to x if (1) it is a variable specifying the 〈va′〉a′∈δin(a) entry of ta for a vertex a ∈ V ;
or equivalently (2) x′�V 6= x�V where x′ and x differ only on that bit.

Definition 4.2.4 (Output-Relevant Protocols and Circuits). A protocol Π for KWY,N is
output-relevant where Y ⊆ f−1(1) andN ⊆ f−1(0) for f := BDEPk

G, if for any (x, y) ∈ Y ×N ,
the node Π(x, y) outputs a bit (position) relevant to x and relevant to y. A circuit C for
f is output-relevant, if there is an output-relevant protocol Π for KWf isomorphic to (the
formula equivalent to) C (i. e., C ≡ Π).

Remark 4.2.5 (Relevant Outputs as Certificates). Recall that the depth of a decision tree
depends on the certificate complexity, where a certificate for a particular input x ∈ {0, 1}n
is a subset of bits of x sufficient to witness the membership/non-membership of x in a
language. For both the Dymond–Tompa game (in particular the interpreted variant [99])
and the Karchmer–Wigderson game [59], it is of interest to efficiently pack certificates (for
different Yes/No-instances) into (the leaves of) a shallow ‘winning strategy’ or (the output
nodes of) a shallow protocol. And (the alternation in) the minimization of depth in both

CHAPTER 4. DAG EVALUATION PROBLEM 33

games can be modeled by two competing provers, who present bits of the certificates to
witness membership/non-membership.

Specializing to the computational problem of BDEPk
G, an efficient certificate for a partic-

ular input x ∈ {0, 1}n should contain precisely the bits of the values relevant to x (at least
when k is large, because a certificate containing a full row or column in a table is expensive).
This combinatorial consideration motivates the definition of output-relevant circuits.

Proposition 4.2.6 (Thrifty is Relevant). For f := BDEPk
G and Y ×N ⊆ f−1(1)× f−1(0),

a correct protocol Π for KWY,N (and hence a correct circuit C for f), if thrifty, is output-
relevant.

Proof. If Π for KWY,N is not output-relevant, there is an instance (x, y) ∈ Y ×N such that
Π(x, y) outputs a bit position i ∈ [n] not relevant to (say) x. Flip that bit in x to get x′,
then x′i 6= xi and x�V = x′�V . If Π is thrifty, Π(x, y) = Π(x′, y), but then the protocol is
incorrect on the instance (x, y) or on (x′, y), since either xi = yi or x

′
i = yi.

4.3 Upper Bound for Evaluation

Theorem 11 implements a strategy for the Dymond–Tompa game DTG as a circuit for the
evaluation problem BDEPk

G.

Theorem 11 (Upper Bound for Evaluation). For any directed acyclic graph G whose Dymond–
Tompa game takes h time, there is a (uniform) thrifty circuit C computing BDEPk

G of depth
(h− 1)

(
k + dlog2(k + 1)e

)
= O(hk).

Proof. Apply Lemma 4.3.2 on 〈〈{τ},⊥, τ〉〉, α ∈ [K]∅, j = 0, b = 1.

Definition 4.3.1 (Bit Equality). Let β : {0, 1}k × [k] × {0, 1} → {0, 1} be the bit-equality
function β(z, j, b) := z�j ⊕ b⊕ 1, where ⊕ denotes addition mod 2.

We recall Definitions 3.4.1 and 3.4.2 and Footnote 3, from § 3.4.

Lemma 4.3.2 (Upper Bound for Evaluation, Induction). For any configuration 〈〈P,⊥, c〉〉 of
DTG with Val(〈〈P,⊥, c〉〉) =: h, any values α ∈ [K]P\{c} on P \ {c}, any j ∈ [k], b ∈ {0, 1},
there is a (uniform) thrifty circuit C for BDEPk

G of depth (h− 1)
(
k+ dlog2(k+ 1)e

)
, so that

any x ∈ {0, 1}n with x�P\{c} = α satisfies C(x) = β(x�vc , j, b).

Proof. Since negation does not increase depth, assume b = 1. If h = 1, then δin(c) ⊆ P ,
hence α contains all va for a ∈ δin(c). Now the input gate at the jth position of the α�δin(c)
entry of ta is a circuit C of depth zero satisfying the conditions, establishing the base case. If
h > 1, let r ∈ Vc(P) \ P be such that max{Val(CL),Val(CR)} < h where CL := 〈〈P ′,⊥, r〉〉
and CR := 〈〈P ′,⊥, c〉〉 for P ′ := P ∪ {r} (Corollary 3.4.9). Let CΛ := 〈〈P ′ \ {c},⊥, r〉〉,
then Val(CΛ) = Val(CL) by Lemma 3.4.5. Consider a circuit C constructed as follows:
for every v ∈ [K] ∼= {0, 1}k, let αv ∈ [K]P

′\{c} be such that αv�P\{c} = α and αv�r = v.

CHAPTER 4. DAG EVALUATION PROBLEM 34

For any i ∈ [k], induction hypothesis on 〈CΛ, α, i, v�i〉 gives a circuit Cv,i
Λ , and induction

hypothesis on 〈CR, αv, j, b〉 gives a circuit Cv
R, satisfying the conditions. Construct C :=∨

v∈[K]

(
Cv
R∧

∧
i∈[k] C

v,i
Λ

)
, then depth(C) ≤ maxv∈[K]

{
depth(Cv

R),maxi∈[k]{depth(Cv,i
Λ)}

}
+
(
k+

dlog2(k + 1)e
)
, and for x with x�P\{c} = α, C(x) = Cv

R(x) for v := x�r.

4.4 Adversary Argument: when Raz–McKenzie meet

Karchmer–Wigderson

Our lower bounds are based on the extension by Raz–McKenzie [85] of the adversary argu-
ment by Edmonds–Impagliazzo–Rudich–Sgall [38]. We construct below an interface between
the Karchmer–Wigderson (communication) game and the Raz–McKenzie (pebble) game.
Note that there is no direct mapping between the two parties in the Karchmer–Wigderson
(co-operative) game and the two players in the Raz–McKenzie (competitive) pebble game:
the interface between the two games is not straightforward. Also, unlike the case for mono-
tone circuits where it is possible to abstract away the adversary argument as a communica-
tion game (called Dart), it appears necessary in the non-monotone case to directly run the
adversary argument over the circuit.

Fix a DAG G whose Raz–McKenzie pebble game takes h time, and consider an output-
relevant protocol solving BDEPk

G. It will be shown that the communication game of Karchmer–
Wigderson for the evaluation problem KWBDEPk

G
must take Ω(hk) bits of communication for

an output-relevant protocol. Recall that the two parties in a communication game want to
locate a bit where their inputs differ. Intuitively, for an adversary to foil the two parties, the
adversary wants to achieve two conflicting goals: (1) to provide a pair of inputs satisfying
the promise of being different; and (2) to hide the difference of a particular input pair among
many input pairs, so that the difference is hard for the parties to locate. For hiding the
difference, the adversary would maintain a symmetry between the two parties, so that the
many input pairs they get look similar (called same below). To delay the discovery of the
difference (called different below) by the two parties, the adversary escalates the decision
tree complexity of the Raz–McKenzie pebble game to the communication complexity. For
output-relevant protocols, it suffices for the adversary to hide the difference locally, so that
no different vertices have all its in-neighbors same (see Lemma 4.4.4).

We come up with an adversary (for the Karchmer–Wigderson game) that does the fol-
lowing (to play the Raz–McKenzie pebble game for h moves): she keeps track of a set A
of alive vertices over G, and also a set C of common values over (effectively) A (i. e., va for
a ∈ A) that can be given to both parties (Notation 4.1.1). The adversary maintains the
symmetry between the parties for all the values over A (by keeping C large) until she is
forced to kill some vertex in A. Whenever she kills a vertex, she makes a move for Pebbler
to pebble the newly killed vertex, and then makes a move for Colorer under the optimal
strategy against Pebbler. The parties must spend Ω(k) bits of communication on average to
force the adversary to kill a vertex. And the adversary against an output-relevant protocol

CHAPTER 4. DAG EVALUATION PROBLEM 35

is still in good shape unless h vertices are dead (pebbled), because G takes h time to play
the Raz–McKenzie pebble game.

A bit more precisely, consider the product space X := [K]V with V := V (G), interpreted
as the set of possible values given to the two parties. At every node g of the protocol Π,
any vertex a ∈ V is either same (under symmetry) or different (symmetry is broken) for the
two parties. Denote S := Sg ⊆ V as the set of same vertices, and D := Dg := V \ S as
the set of different vertices at the node g.4 The meaning of same and different vertices is
as follows (Definition 4.4.1): for every different vertex d ∈ D, there are two non-empty sets
P 0
d , P

1
d ⊂ X�d of disjoint promised values (P 0

d ∩ P 1
d = ∅), such that P 1

d are some values at d
that can be given to Party 1, and P 0

d are some values at d that can be given to Party 0; and
there is a set C := Cg ⊆ X�S of common values over S that can be given to both parties. In
addition, a sub-rectangle Y ×N := Yg ×Ng ⊆ f−1g (1)× f−1g (0) will be associated to a node
g.

Definition 4.4.1 (Coherent Data). The data
〈
Y,N, S,D,C, 〈P 0

d , P
1
d 〉d∈D

〉
, where D = V \S

and C ⊆ X�S, is coherent at a node g if (i) Y × N ⊆ f−1g (1) × f−1g (0); and (ii) for any
common value c ∈ C, there are Yes instance x ∈ Y and No instance y ∈ N , so that they
agree with c over S (i. e., x�S = c = y�S), and are as promised over D (i. e., for any different
vertex d ∈ D, we have x�d ∈ P 1

d and y�d ∈ P 0
d).

It will be shown in §4.5 how the adversary maintains the data
〈
Y,N, S,D,C, 〈P 1

d , P
0
d 〉d∈D

〉
at different nodes g of Π. Consider the subset of same vertices whose values have high entropy
under C, and call them alive.

Definition 4.4.2 (Alive Vertices). A vertex a ∈ V is said to be alive (under C) ifAveDega(C) ≥
8 ·K19/20 (see Definition A.0.22). Let A := Ag ⊆ S be the set of alive vertices (at node g).

The idea is that, if the same vertices S, different vertices D, and the alive vertices A
form a safe configuration (Definition 4.4.3) and the data is coherent (Definition 4.4.1) at a
node g, then the adversary is in good shape at g: namely, node g cannot be an output node
of the protocol Π, and the two parties need to continue their communication (Lemma 4.4.4).
Note that when 〈S,D,A〉 is in a safe configuration at a node g, A is non-empty, hence
|C�a| ≥ AveDega(C) � 0 for any a ∈ A and C is non-empty.

Definition 4.4.3 (Safe Configuration). The triple 〈S,D,A〉 with ∅ ⊂ A ⊆ S ⊆ V and
D = V \ S is said to be in a safe configuration if every different vertex d ∈ D has at least
one in-neighbor d′ ∈ δin(d) such that d′ ∈ D ∪ A is different or alive.

Lemma 4.4.4 (Adversary is in Good Shape). Consider a correct, output-relevant protocol
Π for KWf where f := BDEPk

G. If at a node g of the protocol Π, there are sets Y ⊆ f−1g (1),
N ⊆ f−1g (0), S ⊆ V (same), D := V \ S (different), and common values C ⊆ X�S over the

4Formally, the sets Y , N , S, D, C, and A can be different for different gate g, but for cleaner notation
we may drop the reference to a gate g when it is clear from the context.

CHAPTER 4. DAG EVALUATION PROBLEM 36

same vertices S, and for any different vertex d ∈ D, there are non-empty sets P 0
d , P

1
d ⊂ X�d of

disjoint promised values (P 0
d ∩P 1

d = ∅) at d, such that (1) 〈S,D,A〉 forms a safe configuration
where A are the alive vertices (under C); and (2) the data

〈
Y,N, S,D,C, 〈P 0

d , P
1
d 〉d∈D

〉
is

coherent at g, then the node g cannot be an output node of Π.

Proof. Assume that g is a leaf node of Π outputting a bit position i ∈ [n]. The bit position
i specifies a variable of ta for some a ∈ V . Now consider separately whether a is same or
different.

• a ∈ S is same: since C is non-empty, pick any c ∈ C, and by coherence there is an
instance (x, y) ∈ f−1g (1) × f−1g (0) so that x�S = c = y�S, hence x�a = y�a. If Π is
output-relevant, i is a bit (position) relevant to both x and y, so the relevant entries
of x and y are the same at a (i. e., x�δin(a) = y�δin(a), see item (1) of Definition 4.2.3)
and xi = yi, so Π cannot be correct.

• a ∈ D is different: since 〈S,D,A〉 forms a safe configuration, a has an in-neighbor
a′ ∈ δin(a) which is different or alive.

– a′ ∈ D is different: since C is non-empty, pick any c ∈ C, and by coherence there
is an instance (x, y) ∈ f−1g (1) × f−1g (0) as promised at a′ (i. e., x�a′ ∈ P 1

a′ and
y�a′ ∈ P 0

a′). Since P 0
a′ is disjoint from P 1

a′ , x�a′ 6= y�a′ .

– a′ ∈ A is alive: note that |C�a′| ≥ AveDega′(C) � 1, hence there are distinct
c1 6= c0 ∈ C�a′ . Since A ⊆ S, a′ ∈ S is same, by coherence there is x ∈ f−1g (1)
with x�a′ = c1, and by coherence there is y ∈ f−1g (0) with y�a′ = c0. Hence
x�a′ 6= y�a′ .

In both cases, there is an instance (x, y) ∈ f−1g (1)× f−1g (0) such that x�a′ 6= y�a′ , thus
the relevant entries of x and y are different at a (i. e., x�δin(a) 6= y�δin(a)). Then i cannot
be a bit (position) relevant to both x and y, and Π cannot be output-relevant.

To conclude this subsection, the above adversary argument is connected with the Raz–
McKenzie pebble game below.

Definition 4.4.5 (Initial Conditions). At the root node r of the protocol Π for KWf where
f := BDEPk

G, Yr := f−1r (1) = f−1(1), Nr := f−1r (0) = f−1(0), all vertices except the sink
vertex τ are same, so Dr := {τ} and Sr := V \Dr. Let Cr := X�S, P 1

τ := k-bit strings whose
zeroth bit is 1 and P 0

τ := k-bit strings whose zeroth bit is 0.

Note that initially, all same vertices are alive (Ar = Sr), the data
〈
Yr, Nr, Sr, Dr, Cr, 〈P 0

d , P
1
d 〉d∈D

〉
is coherent, and 〈Sr, Dr, Ar〉 is in a safe configuration. Throughout the protocol, dead ver-
tices (i. e., non-alive vertices, V \ A) are precisely the vertices pebbled by Pebbler in the
Raz–McKenzie pebble game, and the initial conditions correspond to the adversary making
the first move of Pebbler to pebble w, and making the first (forced) move of Colorer to
color τ red (i. e., P = V \ A throughout, and the initial configuration is CRM

G in RMG, see

CHAPTER 4. DAG EVALUATION PROBLEM 37

Definition 3.4.12). Later in the protocol, when some vertex a ∈ V loses too much entropy
and dies, the adversary makes a move for Pebbler to pebble a, and then makes a move for
Colorer under the optimal strategy against Pebbler, and (1) keeps a as same if Colorer colors
a blue; or (2) marks a as different if Colorer colors a red. (Thus B = S \A throughout, see
Definition 3.4.12.)

Claim 4.4.6 (Safe Till it is Over). Till the Raz–McKenzie pebble game is over, 〈S,D,A〉
remains a safe configuration.

Proof. If 〈S,D,A〉 is not safe, then some different vertex d ∈ D has all its in-neighbors same
and dead, i. e., δin(d) ⊆ S \A. Since dead vertices are pebbled V \A = P and dead vertices
are blue if same B = S \ A (see Definition 3.4.12), it follows that d ∈ P \ B is red while
δin(d) ⊆ B are blue, so the Raz–McKenzie pebble game is over.

4.5 Recursive Lower Bound

This subsection formally proves Theorem 12, by enforcing the pebbling strategy in §4.4 with
information theoretic (counting) arguments (Appendix A). Throughout this subsection, fix
a directed acyclic graph G = (V,E) whose Raz–McKenzie pebble game takes h time, and
an output-relevant protocol Π for KWf where f := BDEPk

G. For any real number α ≥ 0 and
integer 0 ≤ t ≤ |V |, consider the set of all Karchmer–Wigderson games KWY,N satisfying

• there is a node g ∈ Π such that Y ⊆ f−1g (1) and N ⊆ f−1g (0), where the boolean

function f is BDEPk
G;

• there are sets S ⊆ V , D = V \ S, and for every d ∈ D, there are disjoint sets
P 0
d , P

1
d ⊂ X�d, such that Y �d ⊆ P 1

d and N�d ⊆ P 0
d ;

• there is a large set C ⊆ X�A of values when restricted to a set A ⊆ S of alive
co-ordinates (under C, Definition 4.4.2), |A| = t, with at most α bits known about C,
that is, α ≥ log2

(
|X�A|/|C|

)
= tk − log2(|C|);

• C is thick, Thickness(C) ≥ K17/20 (Definition A.0.23 in Appendix A);

• C is common to both Y and N over A, in the sense that C ⊆ (Y �A) ∩ (N�A);

• the data
〈
Y,N, S,D,C, 〈P 0

d , P
1
d 〉d∈D

〉
is coherent at g; and

• the pebble configuration corresponding to 〈S,D,A〉 has value at least t− |V |+ h, i. e.,
Val(〈〈P,⊥, B〉〉) ≥ t − |V | + h where P := V \ A and B := S \ A (Definitions 3.4.12
and 3.4.13).

Any such game KWY,N has data
〈
g, Y,N, S,D,C, 〈P 0

d , P
1
d 〉d∈D, A

〉
, and denote its communi-

cation complexity under output-relevant protocols by CCOutRel := CCOutRel(KWY,N). Note

CHAPTER 4. DAG EVALUATION PROBLEM 38

that 〈S,D,A〉 is in a safe configuration when t > |V |−h+1 by Claim 4.4.6. In this case the
data satisfy the conditions of Lemma 4.4.4. In addition to these data, the extra parameters
α and t specify respectively the amount of information known about the common values C
and the number of alive vertices |A|. Denote the collection of such games with parameters
α and t as Games

[
α, t

]
.

Definition 4.5.1 (Complexity Measure). Let Comp
[
α, t

]
be the minimum communica-

tion complexity by output-relevant protocols solving any Karchmer–Wigderson game in
Games

[
α, t

]
. That is,

Comp
[
α, t

]
:= min

KWY,N∈Games
[
α,t
]CCOutRel(KWY,N) .

The following lemma lower bounds the complexity measure, and follows the proof of the
main theorem of Raz and McKenzie [85, §6].

Claim 4.5.2 (Recursive Lower Bound). When K ≥ |V |20 and t > |V | − h+ 1,

Comp
[
α, t

]
≥ min

{
Comp

[
α + 2, t

]
+ 1, Comp

[
α− 1

20
k + 3, t− 1

] }
.

In particular,

Comp
[
α, t

]
≥ 1

2

[
(t− |V |+ h− 1)

(k

20
− 3

)
− α

]
.

Proof. Consider a Karchmer–Wigderson game KWY,N in Games
[
α, t

]
with data

〈
g, Y,N, S,

D,C, 〈P 0
d , P

1
d 〉d∈D, A

〉
. There are two cases:

1. for every j ∈ A, AveDegj(C) ≥ 8 ·K19/20, and

2. for some j ∈ A, AveDegj(C) < 8 ·K19/20.

Then the first half of the lemma follows from Claims 4.5.3 and 4.5.4 below. Induction then
gives the second half.

Claim 4.5.3 (Recursive Lower Bound, Alive Case). Assume t > |V | − h + 1. If for every
j ∈ A, we have AveDegj(C) ≥ 8 ·K19/20, then

CCOutRel ≥ Comp
[
α + 2, t

]
+ 1 .

Proof. Recall that Π denotes the output-relevant protocol solving the game. The node g
cannot be an output node of Π by Lemma 4.4.4. Assume without loss of generality that
Player 1 transmits the first bit at node g ∈ Π, which partitions Y into two sets Y0 and Y1

(respectively at nodes g0 and g1, children of g). Now, we have

|(Y0�A) ∩ (N�A)| ≥ |C|/2 or |(Y1�A) ∩ (N�A)| ≥ |C|/2 .

CHAPTER 4. DAG EVALUATION PROBLEM 39

Assume the former without loss of generality, and let C ′ := (Y0�A) ∩ (N�A). The assump-
tion on average degree, together with Lemma A.0.24, gives AveDegj(C

′) ≥ 4 · K19/20 for
every j ∈ A. Now Lemma A.0.27 gives a set C ′′ ⊆ C ′ with |C ′′| ≥ |C ′|/2 ≥ |C|/4 and
Thickness(C ′) ≥ K17/20. Let Y ′′ :=

{
x ∈ Y : x�A ∈ C ′′

}
be the subset of Y consistent with

C ′′ when restricted to A. Then KWY ′′,N is in Games
[
α + 2, t

]
, and the lemma follows. (A

bit more precisely, KWY,N is the same as KWY ′′,N , except that g is updated to g0, Y to Y ′′,
and C to C ′′.)

Claim 4.5.4 (Recursive Lower Bound, Dead Case). Assume that K ≥ |V |20. If for some
j ∈ A, we have AveDegj(C) < 8 ·K19/20, then

CCOutRel ≥ Comp
[
α− 1

20
k + 3, t− 1

]
.

Proof. We have AveDegj(C) < 8 ·K19/20 and Thickness(C) ≥ K17/20. Let A′ := A \ {j}
and C ′ := C�A′ . Now Lemmas A.0.25 and A.0.26 give

|C ′|
|X�A′ |

>
|C|

|X�A|
1

8
K1/20 and Thickness(C ′) ≥ K17/20 ,

hence log2
(
|X�A′|/|C ′|

)
< α− 1

20
k+3. After making j dead, update 〈S,D,A〉 to 〈S ′, D′, A′〉

so that Val(〈〈P ′,⊥, B′〉〉) ≥ Val(〈〈P,⊥, B〉〉)−1, where P ′ = V \A′, B′ = S ′ \A′, P = V \A,
and B = S \ A (Definitions 3.4.12 and 3.4.13). In case j is made different, we need two
new sets P 0

j , P
1
j of promised values at j, as given by Claim 4.5.5 (together with Y ′, N ′).

Otherwise, j is made same, and let Y ′ := Y and N ′ := N . In either case, the game KWY ′,N ′

with data
〈
g, Y ′, N ′, S ′, D′, C ′, 〈P 0

d , P
1
d 〉d∈D′ , A′

〉
is in Games

[
α− 1

20
k + 3, t− 1

]
, and the

lemma follows.

Claim 4.5.5 (Symmetry Breaking). For K ≥ |V |20, if Y , N , A and C are such that
C ⊆ (Y �A) ∩ (N�A), given j ∈ A with MinDegj(C) ≥ K17/20, let A′ := A \ {j} and
C ′ := C�A′, then there exist Y ′ ⊆ Y , N ′ ⊆ N , and disjoint P 0

j , P
1
j ⊂ X�j, such that

C ′ ⊆ (Y ′�A′) ∩ (N ′�A′) and Y ′�j ⊆ P 1
j and N ′�j ⊆ P 0

j .

Proof. Randomly partitionX�j into P 1
j and P 0

j , by including each string in P 1
j independently

with probability half, and let P 0
j := X�j\P 1

j . Let Y
′ be the subset of Y which when projected

to j is in P 1
j , and similarly define N ′ from N and P 0

j . Now C ′ ⊆ (Y ′�A′) ∩ (N ′�A′) fails to
hold only when there is a c′ ∈ C ′ such that all extensions of c′ are in P 1

j , or all are in

P 0
j . Since MinDegj(C) ≥ K17/20, this happens with probability at most |C ′| · 2−K17/20+1 ≤

K |V | ·2−K17/20+1 ≤ 2K
1/20 log2 K−K17/20+1 � 1. Hence the claimed sets exist with overwhelming

probability.5

Theorem 12 (Lower Bound for Evaluation). For any directed acyclic graph G whose Raz–
McKenzie pebble game takes h time, if 2k ≥ |V |20, then any output-relevant circuit computing
BDEPk

G has depth at least (h− 1)(k
40

− 2) = Ω(hk).

5Alternatively, the existence of the claimed set can be demonstrated by a deterministic greedy algorithm.

40

Chapter 5

Resolution Refutations

This chapter connects the pebble games to some parameters of some refinements of resolution
refutations. Namely, concerning a family of unsatisfiable CNFs called pebbling contradic-
tions, the pebble cost in any of the pebble games controls the scaling of the minimum depth
of resolution refutations, and of the minimum size of tree-like resolution refutations.

5.1 Size Lower Bound from Depth

For further background on resolution refutations of unsatisfiable formulas, see e. g., [80, 98].
The empty, unsatisfiable formula is denoted as ⊥.

Urquhart [98] escalated the depth complexity of a resolution refutation to a size lower
bound on tree-like resolution refutations, based on the Prover/Delayer game introduced by
Pudlák–Impagliazzo [84] and employed by Ben-Sasson–Impagliazzo–Wigderson [12], with
the substitution construction of Alekhnovich–Razborov [11] (denoted Σ⊕ below; for gener-
alizations, see [13]).

Lemma 5.1.1 (Size Lower Bound from Depth [98, Theorem 5.4]). If Depth(Σ ` ⊥) ≥ k,
then any tree-like resolution refutation of Σ⊕ has size at least 2k.

Based on Ben-Sasson–Wigderson [14] which extends Raz–McKenzie [85], Urquhart then
constructed a pebbling contradiction formula [98, Theorem 4.6] by escalating the hardness
of black pebble game [82], separating the width and depth of resolution refutations. We will
see that it suffices to escalate the hardness of reversible black pebble game, which turns out
to be connected to the depth complexity of search problems.

Recall that the pebbling contradiction for a graph G is an unsatisfiable formula with
one boolean variable per vertex, capturing the logic that (1) all source variables are true;
(2) truth propagates through the graph; and (3) some sink variable is false.

Definition 5.1.2 (Pebbling Contradictions). Let ΣG denote the pebbling contradiction over
G, which is a CNF boolean formula defined as follows. ΣG has one boolean variable v for each
vertex v ∈ G. ΣG is the conjunction over the following clauses, and hence is unsatisfiable.

CHAPTER 5. RESOLUTION REFUTATIONS 41

• for all source vertex v in G, ΣG has a clause with a single positive literal v;

• for all non-source vertex v in G having in-neighbors δin(v), ΣG has a clause v ∨∨
u∈δin(v) ū; and

• for the sink vertex τ of G, ΣG has a clause with a single negative literal τ̄.

5.2 Tight Bounds for Tree-Like Resolution

For an unsatisfiable formula Σ, we will need the well-known isomorphism between (regular)
tree-like resolution refutations for Σ and decision trees solving the search problem for Σ [12,
Lemma 7].

Theorem 3 (Depth of Pebbling Contradictions). Fix a directed acyclic graph G = (V,E)
with a unique sink τ. The depth complexity of resolution refutation for ΣG is exactly the
pebble cost in the Raz–McKenzie pebble game to pebble the sink vertex of Ĝ, where Ĝ :=
(V ∪ {τ̂}, E ∪ {(τ, τ̂)}) is G augmented with an extra vertex τ̂ as the new sink.

Proof. Concerning depth complexity, assume the resolution refutation is tree-like without
loss of generality. Note that a minimum depth tree-like resolution must be regular (as
pointed out by Urquhart [98], this is proved by Grigori Tseitin [95], or alternatively this
follows from a simple tree pruning argument [97]). Now it corresponds to a valid strategy in
the Raz–McKenzie pebble game over Ĝ. For the other direction, any valid strategy in the
Raz–McKenzie pebble game over Ĝ clearly gives a (regular) tree-like resolution refutation
for ΣG.

Theorem 4 (Tight Size Bounds for Tree-Like Resolution). The tree-like resolution refutation
of Σ⊕G has size complexity 2Θ(Val(G)).

Proof. Since Val(Ĝ) ≥ Val(G), Lemma 5.1.1 and Theorem 3 give the lower bound. For the
upper bound, we show a tree-like resolution refutation of depth O

(
Val(G)

)
, using the fact

that Val(Ĝ) ≤ Val(G) + 1. Note that a Raz–McKenzie strategy over Ĝ of value Val(Ĝ)
naturally gives a decision tree for Σ⊕G of depth 2Val(Ĝ), which in turn gives a resolution

refutation of depth 2Val(Ĝ).

Finally, we extend the lower bound on depth complexity to k-DNF-resolution refutations
introduced by Kraj́ıček [63]. For its motivation, see e. g., the survey by Nordström [80]. We
follow the standard to treat a term (i. e., a conjunction of literals) dually as a collection of
literals.

Definition 5.2.1 (k-DNF-Resolution). Lines in a k-DNF-resolution refutation are k-DNF
formulas, derived using the following inference rules (A and B denote k-DNF formulas, S
and T denote k-terms, and l1, . . . , lk denote literals):

CHAPTER 5. RESOLUTION REFUTATIONS 42

k-cut
(l1 ∧ · · · ∧ lk′) ∨ A ¬l1 ∨ · · · ∨ ¬lk′ ∨B

A ∨B
, where k′ ≤ k.

∧-introduction A ∨ S A ∨ T

A ∨ (S ∧ T)
, where |S ∪ T | ≤ k.

∧-elimination
A ∨ S

A ∨ T
, where T ⊆ S.

Weakening
A

A ∨B
, for any k-DNF formula B.

Theorem 5. Any k-DNF-resolution refutation of ΣG has depth at least 1+(Val(G)−1)/k.

Proof. Imagine an adversary, who keeps track of a k-DNF formula Ad at ‘depth’ d in the
refutation and a restriction ρd, satisfying the invariant that (1) ρd falsifies Ad; and (2) the
configuration corresponding to ρd has value at least Val(Ĝ) − (d − 1)k, i. e., let Bd be the
variables assigned True under ρd, Rd False (the extra sink of Ĝ is always assumed False),
then Val(LBd, RdM) ≥ Val(Ĝ)− (d− 1)k.

The adversary starts with the unsatisfiable k-DNF formula A1 := ⊥ and ρ1 := the unique
sink of Ĝ is False, satisfying the invariant at ‘depth’ d := 1. If the adversary hits an axiom
formula Ad from ΣG, then ρd falsifies Ad, i. e., Val(LBd, RdM) = 1, giving the required depth
on the refutation.

Otherwise, we have Ad and ρd, where Ad is the result (i. e., on the bottom row) of an
inference rule. We will locate Ad+1 as one of the formulas on the top row of the inference
rule, and update ρd+1 appropriately. For the ∧-elimination rule and the weakening rule, the
adversary takes Ad+1 as the only formula on the top row, and takes ρd+1 := ρd to maintain
the invariant. For the ∧-introduction rule, the adversary takes ρd+1 := ρd, and takes Ad+1

to be a formula on the top row that is falsified by ρd+1.
For the remaining, interesting case of a k-cut rule, the adversary maintains Ad+1 and

ρd+1 by the recurrence of the Raz–McKenzie pebble game (Proposition 3.5.2). There are at
most k fresh variables among the literals l1, . . . , lk′ outside of the domain of ρd. At least one
assignment to the fresh variables gives an extension ρd+1 to ρd such thatVal(LBd+1, Rd+1M) ≥
Val(LBd, RdM)− k, and at least one formula Ad+1 on the top row is falsified by ρd+1.

43

Chapter 6

Space Complexity of Pebble Games

This chapter settles the space complexity of computing the pebble costs in the Bennett–
Dymond–Tompa–Raz–McKenzie pebble game, and the minimum depth of resolution refuta-
tion. Recall that we want to show Theorem 7 via Theorem 6, which are restated below.

Theorem 7 (PSPACE-Completeness). It is PSPACE-complete to compute (1) the pebble cost
in the Bennett–Dymond–Tompa–Raz–McKenzie pebble game; or (2) the minimum depth of
resolution refutation.

Theorem 6 (Log-Space Reduction). There is a logspace algorithm that, given a quantified
boolean formula ϕ with m clauses over n variables, outputs a graph Ĝϕ, such that ϕ is

satisfiable iff the pebble cost of ĜF is at most γ + 1, where γ := 7 +m+ 3n+ αn and αn is
the number of universal quantifiers in ϕ. Moreover, after deleting the sink node of Gϕ, the
resulting graph also has a unique sink node.

6.1 Gadgets

Quantifier Gadgets

Throughout this subsection, assume γi pebbles are given for some integer γi ≥ 5.
Following previous works [43,52], truth values are represented using the gadget in Fig. B.1.

Say variable xi is in true position if nodes xi and x̄′i in the gadget are pebbled, and x′i is
unpebbled. Say variable xi is in false position if nodes x̄i and x′i in the gadget are pebbled,
and x̄′i is unpebbled.

For cleaner diagrams, the gadget on the LHS of Fig. B.2 means that k extra source nodes
precede node v. Note that node v may have other immediate predecessors in addition to the
extra source nodes. For example, the node qi in Fig. B.3 has γi − 2 immediate predecessors:
γi − 5 extra source nodes, plus xi, x̄i, and qi−1.

The existentially quantified variable ∃xi has a gadget as shown in Fig. B.3. Note that
node qi−1 comes from the gadget of the adjacent quantified variable Qi−1xi−1.

CHAPTER 6. SPACE COMPLEXITY OF PEBBLE GAMES 44

The universally quantified variable ∀xi has a gadget as shown in Fig. B.4. Note that
node qi−1 comes from the gadget of the adjacent quantified variable Qi−1xi−1.

Clause Gadgets

The gadget for the j-th clause, lj,1 ∨ lj,2 ∨ lj,3, has its skeleton shown in Fig. B.5. Assume
that the literals lj,1, lj,2, lj,3 are over distinct variables. Note that in Fig. B.5 the six nodes
lj,1, l

′
j,1 lj,2, l

′
j,2 lj,3, and l′j,3 come from the quantifier gadgets corresponding to the variables

in literals lj,1, lj,2 and lj,3. Say literal lj,1 is in true position if node lj,1 is pebbled but node l′j,1
is unpebbled. Say literal lj,1 is in false position if node l′j,1 is pebbled (regardless of whether
node lj,1 is pebbled). Let the corresponding node for literal lj,1 in true (resp. false) position
be node lj,1 (resp. l′j,1). Define similarly for literals lj,2 and lj,3.

For example, if literal lj,1 is in true position, literals lj,2, lj,3 false position, then their
corresponding nodes are lj,1, l

′
j,2, l

′
j,3. Let Cj := {aj, bj, cj, dj, ej, fj, uj, vj, wj, pj} be nodes

not shared with the quantifier gadgets. The gadget behaves like a disjunction in the sense
that at least one literal is in true position if, and only if, six additional pebbles are needed
to reach a certain configuration (Lemmas 6.1.1 to 6.1.3).

Lemma 6.1.1 (Six is Sufficient). Assume at least one of the literals lj,1, lj,2, lj,3 is in true
position, and the rest are in false position. Let Lj be their corresponding nodes. Six pebbles
(in addition to those on Lj) are sufficient to reach the configuration where precisely Lj ∪
{pj} are pebbled, starting from the configuration where precisely Lj are pebbled, under the
constraint that Lj remain pebbled.

Proof. Assume exactly one literal is in true position for the moment. Without loss of gen-
erality, assume literal lj,1 is in true position, and literals lj,2, lj,3 are in false position. Their
corresponding nodes are Lj = {lj,1, l′j,2, l′j,3}.

Under the constraint that Lj remain pebbled, consider the following strategy to pebble
pj using six pebbles (in addition to Lj):

1. Pebble lj,2 then bj then ej, unpebble bj then lj,2. Now precisely Lj ∪ {ej} are pebbled.

2. Pebble lj,3 then cj then fj then wj, unpebble fj then cj then lj,3. Now precisely
Lj ∪ {wj, ej} are pebbled.

3. Pebble aj then dj then uj, unpebble dj then aj. Now precisely Lj ∪ {uj, wj, ej} are
pebbled.

4. Pebble lj,2 then bj, unpebble ej then bj then lj,2. Now precisely Lj ∪ {uj, wj} are
pebbled.

5. Pebble lj,3 then cj then fj, unpebble cj then lj,3. Now precisely Lj ∪ {uj, wj, fj} are
pebbled.

CHAPTER 6. SPACE COMPLEXITY OF PEBBLE GAMES 45

6. Pebble aj then dj, unpebble aj, pebble vj. Now precisely Lj ∪ {uj, vj, wj, dj, fj} are
pebbled.

7. Pebble pj. Now precisely Lj ∪ {pj, uj, vj, wj, dj, fj} are pebbled.

In order to pebble precisely Lj ∪ {pj}, do the following instead.

i. Run the above steps 1, 2, 3, 4, 5, 6 and 7 to pebble pj.

ii. Run the reverses of the above steps 6, 5, 4, 3, 2 and 1. For example, the reverse of step
6 is to unpebble vj, pebble aj, unpebble dj then aj. After running the reverse of step 6,
precisely Lj ∪{uj, wj, fj}∪{pj} are pebbled. Further after running the reverses of steps
5, 4, 3, 2 and 1, precisely Lj ∪ {pj} are pebbled.

This completes the proof if exactly one literal is in true position.
If more literals are in true position, note that it does not take more pebbles. For example,

assume literals lj,1 and lj,2 are in true position, literal lj,3 in false position. In this case, the
corresponding nodes are Lj = {lj,1, lj,2, l′j,3}. Then the above steps 1–7 take no more then
six additional pebbles, by ignoring pebble or unpebble moves on lj,2.

Lemma 6.1.2 (Six is Necessary). Assume each of literals lj,1, lj,2, or lj,3 is in true position
or false position. Let Lj be their corresponding nodes. Six pebbles (in addition to those on
Lj) are necessary to reach the configuration where precisely Lj ∪ {pj} are pebbled, starting
from the configuration where precisely Lj are pebbled, under the constraint that Lj remain
pebbled.

Proof. Consider the first time t1 such that pj remains pebbled since t1. A pebble move put
a pebble on pj at t1, hence all of uj, vj and wj are pebbled at t1. At the end, all of uj, vj and
wj are unpebbled. Let t2 be the first time after t1 such that one of uj, vj or wj is unpebbled
at time t2 + 1. Without loss of generality, assume uj is unpebbled at time t2 + 1, then dj
and ej are pebbled at time t2. Moreover, all of uj, vj and wj remain pebbled between time
t1 and t2. At time t2, the six nodes pj, uj, vj, wj, dj and ej are pebbled.

Lemma 6.1.3 (Seven is Necessary). Assume all of the literals lj,1, lj,2 and lj,3 are in false
position. Let Lj := {l′j,1, l′j,2, l′j,3} be their corresponding nodes. Seven pebbles (in addition to
those on Lj) are necessary to reach the configuration where precisely Lj ∪ {pj} are pebbled,
starting from the configuration where precisely Lj are pebbled, under the constraint that Lj

remain pebbled. The seven pebbles are needed at a time to pebble or unpebble some node in
Cj.

Proof. Define t1 and t2 as in the proof of Lemma 6.1.2. If there are at least seven pebbled
nodes addition to Lj at time t2 (when uj ∈ Cj is unpebbled), then we are done. Otherwise,
in addition to Lj, precisely the six nodes {pj, uj, vj, wj, dj, ej} are pebbled at time t2, hence
precisely five nodes P := {pj, vj, wj, dj, ej} are pebbled at time t2 + 1. Consider the first

CHAPTER 6. SPACE COMPLEXITY OF PEBBLE GAMES 46

time t3 after t2 such that some node in P is unpebbled at time t3 + 1, which must happen
by the end. Between t2 and t3, all of P are pebbled. The node unpebbled at time t3 + 1
cannot be pj (which remains pebbled since t1), and if (i) it is dj, then aj is pebbled at time
t3; since aj is not pebbled at time t2 + 1, aj ∈ Cj is first pebbled at some time t4 between t2
and t3, and both aj and lj,1 are pebbled at t4, giving a total of seven pebbles together with
P ; and if (ii) it is ej, this case is symmetric to the first case; and if (iii) it is vj, essentially
the same argument as in the first case would do, by considering fj instead of aj, and if (iv)
it is wj, this case is symmetric to the third case.

This motivates modifying Fig. B.5 to Fig. B.7, using the notation in Fig. B.6. Henceforth,
assume βj pebbles are given for some integer βj ≥ 7. For cleaner diagrams, introduce a
dashed region notation on the LHS of Fig. B.6 to add extra sources and a common immediate
predecessor to every node in a region (cf. Fig. B.2). Augment the clause gadget as in Fig. B.7
to add βj − 7 sources and a common predecessor pj−1 to each node in Cj. For Lemmas 6.1.4
and 6.1.6, treat pj−1 as a source node.

Lemma 6.1.4 (βj is Sufficient). Assume at least one of the literals lj,1, lj,2, lj,3 is in true
position, and the rest are in false position. Let Lj be their corresponding nodes. With βj

additional pebbles, the configuration Lj ∪{pj} can be reached, starting from the configuration
Lj, under the constraint that Lj remain pebbled.

Proof. Modify the proof of Lemma 6.1.1. Add an initial move to pebble pj−1. Before each
pebble or unpebble move to a node in Cj, first pebble all extra sources of that node using
βj − 7 pebbles. After each such move, remove all βj − 7 pebbles. Add a final move to
unpebble pj−1. At most βj pebbles are used.

Lemma 6.1.5 (βj is Necessary). Assume at least one of the literals lj,1, lj,2, lj,3 is in true
position, and the rest are in false position. Let Lj be their corresponding nodes. To reach
the configuration Lj ∪ {pj}, starting from the configuration Lj, under the constraint that Lj

remain pebbled, there is a time such that βj additional pebbles are used, and at which a node
in Cj is being pebbled or unpebbled.

Proof. Consider time t2 as in the proof of Lemma 6.1.2. Six pebbles (in addition to those on
Lj ∪ {pj−1} or extra sources) are present in the augmented clause gadget in Fig. B.7. Since
a node in Cj is being pebbled or unpebbled, its βj − 7 extra sources are pebbled. This gives
a total of βj pebbles (in addition to Lj).

Lemma 6.1.6 (βj is Not Enough). Assume all of the literals lj,1, lj,2 and lj,3 are in false
position. Let Lj := {l′j,1, l′j,2, l′j,3} be their corresponding nodes. With βj additional pebbles,
the configuration Lj ∪ {pj} cannot be reached, starting from the configuration Lj, under the
constraint that Lj remain pebbled.

CHAPTER 6. SPACE COMPLEXITY OF PEBBLE GAMES 47

Proof. Fix a strategy to pebble Lj ∪ {pj} from Lj. By Lemma 6.1.3, there must be a time t
when seven pebbles (in addition to those on Lj ∪ {pj−1} or the extra sources) are present in
the augmented clause gadget in Fig. B.7. Moreover, at time t, a node in Cj is being pebbled
or unpebbled, thus its βj − 7 extra sources are pebbled. This requires βj + 1 pebbles (in
addition to Lj).

Overall Construction

Fix a quantified boolean formula ϕ := QnxnQn−1xn−1 . . . Q1x1F with n quantified variables,
where F :=

∧m
j=1 lj,1 ∨ lj,2 ∨ lj,3 is a 3CNF formula with m clauses. Assume that the three

literals in every clause are over distinct variables.

Construction 6.1.7. Construct a directed graph Gϕ as follows. Let αi be the number of
universal quantifiers among the inner-most i quantifiers Qi, Qi−1, . . . , Q1. Let βj := 6 + j
and γi := βm + 3i + αi. Note that βj = βj−1 + 1 and γ0 = βm. If Qi is an existential
quantifier, then γi = γi−1 + 3; if Qi is a universal quantifier, then γi = γi−1 + 4. Let
γ := γn + 1 = 7 +m+ 3n+ αn.

Construct a node p0 with five extra sources. For 1 ≤ j ≤ m, construct the dashed region
in the augmented clause gadget for clause j as in Fig. B.7. Let q0 := pm. For 1 ≤ i ≤ n,
construct a quantifier gadget for the quantified variable Qixi as in Fig. B.3 or Fig. B.4.
Construct a node τ with γ − 2 extra sources, and add an edge from qn to τ. For 1 ≤ j ≤ m,
for 1 ≤ k ≤ 3, connect according to the literal lj,k, i. e., add an edge from the node lj,k (in
some quantifier gadget) to the corresponding node in the augmented clause gadget for clause
j as in Fig. B.7. This completes the construction.

For an example, see Fig. B.8.

Definition 6.1.8 (Partial Assignment). A partial assignment ρ : [n] → {0, 1, ∗} is a partial
function from variables to boolean values.1 Say variable xi is pebbled according to ρ if (1)
xi is unassigned (i. e., ρ(i) = ∗) and no node in Fig. B.1 is pebbled; or (2) xi is assigned
to true (i. e., ρ(i) = 1) and variable xi is precisely in true position (i. e., precisely xi and x̄′i
are pebbled in Fig. B.1); order (3) xi is assigned to false (i. e., ρ(i) = 0) and variable xi is
precisely in false position (i. e., precisely x̄i and x′i are pebbled in Fig. B.1). Let Uρ denote
the union of nodes, over all variables, pebbled according to ρ. For brevity, call a partial
assignment ρ an i-assignment if it leaves exactly the inner-most i variables unassigned, i. e.,
ρ(k) = ∗ iff k ≤ i.

Definition 6.1.9 (Restriction). Fix a quantified boolean formula ϕ := QnxnQn−1xn−1 . . . Q1x1F ,
where F is a 3CNF formula. For an i-assignment ρ, the restriction of ϕ by ρ is ϕ�ρ :=
QixiQi−1xi−1 . . . Q1x1(F �ρ), where F �ρ denotes the CNF with variables assigned according
to ρ.

1In this chapter, we define [n] := {1, 2, . . . , n}.

CHAPTER 6. SPACE COMPLEXITY OF PEBBLE GAMES 48

Notation 6.1.10 (Predecessors). Say node v is a (not necessarily proper) predecessor of
node u if there is a path (of possibly zero length) from v to u. Denote the set of predecessors
of node u by Vu.

To simplify the description of pebbling strategies, when a move is made to pebble or
unpebble a node v with extra sources, it means to prepend a sequence of moves to pebble
all extra sources of v, and to append a sequence of moves to unpebble all extra sources of
v. It can be verify that the extra sources can be pebbled within the claimed number of
pebbles. Also, all time intervals mentioned below are inclusive, i. e., the start and end times
are included.

Lemma 6.1.11. For 0 ≤ i ≤ n, for any i-assignment ρ, if ϕ�ρ is true, then starting from
configuration Uρ, there is a strategy to use γi pebbles (in addition to those on Uρ) to reach
configuration Uρ ∪ {qi}, under the constraint that Uρ remain pebbled.

Proof. When i = 0, recall that q0 = pm and γ0 = βm, then Lemma 6.1.11 in this case follows
from Claim 6.1.12.

Claim 6.1.12. For 0 ≤ j ≤ m, for any 0-assignment ρ, if the first j clauses of F are
satisfied by ρ, then starting from the configuration Uρ, there is a strategy Sj to use βj pebbles
(in addition to those on Uρ) to reach configuration Uρ ∪ {pj}, under the constraint that Uρ

remain pebbled.

Proof. When j = 0, the strategy S0 is to pebble the extra sources of p0, pebble p0, then
unpebble the extra sources of p0, using β0 = 6 additional pebbles.

When j > 0, assume that the first j clauses of F are satisfied by ρ. That is, the first
j− 1 clauses of F are satisfied by ρ, and at least one literal of clause j is true under ρ. Then
Claim 6.1.12 follows from the proof of Lemma 6.1.4: to pebble pj−1 as the initial move, run
Sj−1 instead; to unpebble pj−1 as the final move, run the reverse of Sj−1 instead. At most
βj additional pebbles are needed, since βj = βj−1 + 1.

When i > 0, there are two cases. Let ρ1 be the (i − 1)-assignment obtained from ρ by
setting xi to true (i. e., ρ1(k) := 1 if k = i, and ρ1(k) := ρ(k) otherwise), and ρ0 be obtained
from ρ by setting xi to false.

(Existential Quantifier) If Qi = ∃, since ϕ�ρ is true, at least one of ϕ�ρ1 or ϕ�ρ0 is
true. Assume the former without loss of generality, consider the following strategy. Focus
on Fig. B.3.

1. Pebble x′i and xi, unpebble x′i, pebble x̄′i. Now precisely nodes xi and x̄′i are pebbled,
and variable xi is pebbled according to ρ1.

2. Apply induction hypothesis on ρ1 to pebble qi−1. Now precisely nodes xi, x̄
′
i and qi−1

are pebbled.

3. Pebble x̄i. Now precisely nodes xi, x̄i, x̄
′
i and qi−1 are pebbled.

CHAPTER 6. SPACE COMPLEXITY OF PEBBLE GAMES 49

4. Pebble qi.

The claimed strategy is to run steps 1–4, and then the reverses of steps 3–1. At most γi
additional pebbles are used, since γi = γi−1 + 3.

(Universal Quantifier) If Qi = ∀, since ϕ�ρ is true, both ϕ�ρ1 and ϕ�ρ0 are true.
Consider the following strategy. Focus on Fig. B.4.

1. Pebble x′i and xi, unpebble x′i, pebble x̄′i. Now precisely nodes xi and x̄′i are pebbled,
and variable xi is pebbled according to ρ1.

2. Apply induction hypothesis on ρ1 to pebble qi−1. Now precisely nodes xi, x̄
′
i and qi−1

are pebbled.

3. Pebble hi. Now precisely nodes xi, x̄
′
i, qi−1 and hi are pebbled.

4. Apply (the reverse strategy in) induction hypothesis on ρ1 to unpebble qi−1. Now
precisely nodes xi, x̄

′
i and hi are pebbled.

5. Run the reverse of step 1 to unpebble xi and x̄′i. Now precisely node hi is pebbled.

6. Pebble x̄′i and x̄i, unpebble x̄
′
i, pebble x

′
i. Now precisely nodes x̄i, x

′
i and hi are pebbled,

and variable xi is pebbled according to ρ0.

7. Apply induction hypothesis on ρ0 to pebble qi−1. Now precisely nodes x̄i, x
′
i, hi and

qi−1 are pebbled.

8. Pebble qi.

The claimed strategy is to run steps 1–8, and then the reverses of steps 7–1. At most γi
additional pebbles are used, since γi = γi−1 + 4.

Lemma 6.1.13. For 0 ≤ i ≤ n, for any i-assignment ρ, if starting from configuration
Uρ, there is a strategy to use γi pebbles (in addition to those on Uρ) to reach configuration
Uρ ∪ {qi}, under the constraint that Uρ remain pebbled, then ϕ�ρ is true.

Proof. When i = 0, recall that q0 = pm and γ0 = βm, then Lemma 6.1.13 in this case follows
from Claim 6.1.14.

Claim 6.1.14. For 0 ≤ j ≤ m, for any 0-assignment ρ, if starting from the configuration
Uρ, there is a strategy to use βj pebbles (in addition to those on Uρ) to reach configuration
Uρ ∪ {pj}, under the constraint that Uρ remain pebbled, then the first j clauses of F are
satisfied by ρ.

Proof. When j = 0, the first 0 clauses of F are vacuously satisfied by ρ. When j > 0, assume
there is a strategy Sj to use βj additional pebbles to reach configuration Uρ ∪ {pj} starting
from Uρ. By Lemma 6.1.6, at least one literal of clause j is true under ρ. Let t be the time
when βj pebbles are used as given by Lemma 6.1.5. When restricted to the predecessors

CHAPTER 6. SPACE COMPLEXITY OF PEBBLE GAMES 50

of pj−1, the sub-strategy of Sj since time t gives a strategy Sj−1 to reach configuration Uρ

starting from Uρ∪{pj−1} using at most βj−1 = βj−1 additional pebbles (because pj remains
pebbled between time t and the end). Induction hypothesis on (the reverse of) Sj−1 shows
that the first j− 1 clauses of F are satisfied by ρ. Hence the first j clauses of F are satisfied
by ρ.

When i > 0, there are two cases. Let ρ1 be the (i − 1)-assignment obtained from ρ by
setting xi to true (i. e., ρ1(k) := 1 if k = i, and ρ1(k) := ρ(k) otherwise), and ρ0 be obtained
from ρ by setting xi to false. Let P := Vqi−1

\ {xi, x̄i, x
′
i, x̄
′
i} be the predecessors of qi−1

outside of the variable gadget in Fig. B.1.
(Existential Quantifier) If Qi = ∃, focus on Fig. B.3. Consider the first time t since

when qi remains pebbled till the end. At time t, both xi and x̄i are pebbled.

Claim 6.1.15 (No Double True). Either x′i or x̄′i is pebbled at time t.

Proof. Assume not, prove by induction on time since t that qi, xi and x̄i are pebbled, but x
′
i

and x̄′i are unpebbled. This is true by assumption at time t. There are three pebbles on qi,
xi and x̄i, hence x

′
i cannot be pebbled using γi pebbles, and neither can x̄′i. Hence xi and x̄i

cannot be unpebbled. This contradicts that xi and x̄i are unpebbled at the end in Uρ.

At time t, the nodes qi, xi, x̄i and qi−1 are pebbled. All γi − 5 extra sources of qi are also
pebbled. Using γi pebbles, at most one of x′i or x̄

′
i can be pebbled at time t. By Claim 6.1.15,

exactly one of them is pebbled, say x̄′i, then variable xi is in true position. No other node is
pebbled.

Claim 6.1.16. Until all of P are unpebbled, nodes xi and x̄′i remain pebbled, and x′i remains
unpebbled.

Proof. At time t, nodes qi, xi and x̄′i are pebbled, and x′i is unpebbled. If some node of P is
pebbled, then this accounts for four out of γi pebbles. Hence x̄′i cannot be unpebbled, and
x′i cannot be pebbled. Hence xi cannot be unpebbled.

The three nodes qi, xi and x̄′i remain pebbled until all of P are unpebbled. So at most
γi − 3 = γi−1 pebbles can be used in this time interval. By induction hypothesis on ρ1, ϕ�ρ1
is true. The other case, where x′i is pebbled at time t, shows that ϕ�ρ0 is true. In either case,
ϕ�ρ is true.

(Universal Quantifier) If Qi = ∀, focus on Fig. B.4. Consider the first time t1 since
when qi remains pebbled till the end. At time t1, nodes qi, hi, x̄i, x

′
i and qi−1 are pebbled.

All γi − 5 extra sources of qi are also pebbled. Using γi pebbles, no other node is pebbled
at t1, and variable xi is in false position. Let t2 be the first time after t1 such that all of
P = Vqi−1

\ {xi, x̄i, x
′
i, x̄
′
i} are unpebbled.

Claim 6.1.17. Until t2, nodes x̄i, x
′
i and hi remain pebbled, node x̄′i remain unpebbled.

CHAPTER 6. SPACE COMPLEXITY OF PEBBLE GAMES 51

Proof. At time t1, nodes qi, x̄i, x
′
i and hi are pebbled, node x̄

′
i is unpebbled. If some node of

P is pebbled, then this accounts for five out of γi pebbles. Hence x′i cannot be unpebbled,
and x̄′i cannot be pebbled. Hence hi and x̄i cannot be unpebbled.

The four nodes qi, hi, x̄i and x′i remain pebbled between t1 and t2. So at most γi−4 = γi−1
pebbles can be used between t1 and t2. By induction hypothesis on ρ0, ϕ�ρ0 is true.

Let t3 be the first time after t2 such that hi is unpebbled at t3 + 1. At t3, nodes qi−1, xi

and x̄′i are pebbled. Let t4 be the first time such that at all time between t4 and t3, at least
one of xi or x

′
i is pebbled. Let t5 be the first time such that at all time between t5 and t3, at

least one of x̄i or x̄
′
i is pebbled. Let t6 be the first time such that at all time between t6 and

t3, some node of P is pebbled. Note that t6 is after t2. Let t7 := max{t4, t5, t6} be the last
event of the three, clearly t7 is after t2.

Claim 6.1.18 (Fixed Position). Between t7 and t3, there is no move to pebble or unpebble
x′i or x̄′i.

Proof. Both nodes qi and hi remain pebbled between t2 to t3. Between t7 and t3, at least one
pebble is on xi or x

′
i, at least one pebble is on x̄i or x̄

′
i, and at least one pebble is on P . This

accounts for five out of γi pebbles, so not all extra sources of x′i or of x̄
′
i can be pebbled.

At time t3, the five nodes qi, hi, xi, x̄
′
i and qi−1 are pebbled. All γi − 5 extra sources of

hi are also pebbled. Hence no other node is pebbled, and variable xi is in true position. By
Claim 6.1.18, t7 = t6, and at t7 − 1 all of P is unpebbled. It follows that the four nodes qi,
hi, xi and x̄′i remain pebbled between t7 − 1 and t3. At most γi − 4 = γi−1 pebbles can be
used in this time interval. By induction hypothesis on ρ1, ϕ�ρ1 is true.

Since ϕ�ρ1 is true and ϕ�ρ0 is true, ϕ�ρ is true.

Theorem 13. The sink node τ of Gϕ can be pebbled using γ pebbles iff ϕ is true.

Proof Sketch. By Lemmas 6.1.11 and 6.1.13.

Theorem 14. Consider Ĝϕ := (V ∪ {τ̂}, E ∪ {(τ, τ̂)}), which is Gϕ =: (V,E) augmented
with an extra node τ̂ as the new sink. There is a pebbling strategy using γ+1 pebbles, starting
from the empty configuration, to the configuration where precisely τ̂ is pebbled, iff ϕ is true.

52

Chapter 7

Some Related Approaches

We recall below some related approaches for separating complexity classes mostly around P.
Multi-Party Communication Complexity As an approach to separate ACC0 from

P, researchers considered the multi-player pointer jumping problem [20, 25, 100], with the
aim of proving a sufficiently strong lower bound in the number-on-forehead multi-party (si-
multaneous message) communication model. A variant of the problem with a tree structure,
called tree pointer jumping problem [100], is like the tree evaluation problem with informa-
tion flowing in the reverse direction (from root to leaves).

Extension to Karchmer–Wigderson framework Aaronson–Wigderson [1] extended
the Karchmer–Wigderson framework [59] to consider a refereed communication game be-
tween two parties (verifiers) and an additional prover, where a sufficiently strong lower
bound on communication complexity would separate NL from NP. Kol–Raz [62] extended
the Aaronson–Wigderson framework of refereed communication game to a competing-prover
protocol with two verifiers and two provers, and suggested it as an approach for separating
NC from P.

Block-Respecting Simulations Lipton–Williams [73] recently suggested that a suf-
ficiently strong lower bound on depth (e. g., n1−O(1)) may be able to separate NC from P, even
with a very weak lower bound on size (e. g., n1+Ω(1)), by using a block-respecting simulation
to trade depth for size and non-uniformity. The idea of proving lower bounds by trading
depth for size was due to Allender–Koucký [5].

Combinatorial Invariants Mulmuley–Sohoni [78, 79] advocated the study of sym-
metry and invariants of the computational problems as an approach for separating VP from
VNP, the non-uniform and algebraic analogue of P versus NP. One motivation is that Mul-
muley [76] applied semi-algebraic geometry to give a non-uniform and algebraic separation
of alg-NC from alg-P and alg-NCi from alg-NCi+1 on a restricted model of PRAM without bit
operations, setting the stage for proving stronger lower bounds. Another motivation is that
properties described by certain combinatorial invariants are unlikely to be large or natural
in the sense of Razborov–Rudich [89], see e. g., Mulmuley [77, §4.3].

Our Approach For comparison, our approach is closer to the competing prover pro-
tocols [62] than to the multi-party communication complexity approach [20, 25, 100], due

CHAPTER 7. SOME RELATED APPROACHES 53

to the way that information is shared among the small number of parties involved (similar
to [1, 59]). Also, the study of the DAG evaluation problem (BDEPk

G) or the Generation
Problem might provide the depth lower bounds required by block-respecting simulations [73]
(recall the pebbling results in §1.2). In terms of combinatorial invariants, instead of consider-
ing representation-theoretic, algebro-geometric invariants [78, 79], we have been considering
enumerative-combinatorial invariants shaped by pebbling strategies [27, 83] on monotone
models. Our approach is inspired by the consideration of thrifty branching programs [33].

54

Chapter 8

Future Directions

We discuss some open problems below.

Problem 8.0.19. Is it possible to connect other resources of the pebble games?

For example, this thesis did not discuss the rounds in the Dymond–Tompa pebble game
(or Raz–McKenzie pebble game), or the time in the reversible pebble game. It is of interest,
since some resources of (the interpreted variant of) the Dymond–Tompa game [99] capture
other computational resources, e. g., bounded alternations.

Problem 8.0.20. Would it help to prove lower bounds by considering the uniformity of the
circuits?

It is not hard to see that BDEPk
G is not solvable by AC0 circuits when G is the pyramid

graph of height h = nΘ(1). Namely, when k ≈ 1
4
log n and h ≈ n1/4, the average sensitivity

of BDEPk
G is nΘ(1) (while any function computed by AC0 circuits has average sensitivity

logO(1) n [71]). It follows that BDEPk
G is not computable by AC0-uniform AC0 circuits. Is it

possible to relax the uniformity or the complexity of the circuits in this lower bound?

Problem 8.0.21. The Dymond–Tompa game lower bounds the scaling in complexity, for
the problem of Generation on monotone switching networks, and for the problem of iterated
indexing on output-relevant circuits, over any directed acyclic graph and for a wide range of
parameters. To what extent, and on how general a model, does this correspondence hold?

The thrifty hypothesis of Cook, McKenzie, Wehr, Braverman, and Santhanam [33] can
be rephrased as the conjecture that this correspondence holds for the black pebble game on
the iterated indexing problem over the graph of binary trees, and on the model of branching
programs, up to constant factors.

It would be interesting to refute or to establish the optimality of (the interpreted variant
of) the Dymond–Tompa pebbling algorithms for space or parallel time: either (1) we get
more space-efficient algorithms for graph reachability, or faster parallel speed-up for any

CHAPTER 8. FUTURE DIRECTIONS 55

P-complete problem (e. g., linear programming, semi-definite programming, circuit evalua-
tion);1 or (2) we get very strong complexity results, e. g., L ⊂ NL ⊂ NC ⊂ P and NCi ⊂ NCi+1,
and DTime[t] 6⊆ ATime

[
o(t/ log t)

]
.

1Note that we consider ATime[·] as parallel time, so some improvements [72,103] do not apply.

56

Appendix A

Bounds on Information

This appendix collects the information theoretic (counting) arguments of Raz and McKen-
zie [85] used in this work. It may be a good idea to consult [85] (and also [38] that in-
spired [85], e. g., on the notion of predictability) for the intuition behind the information
theoretic arguments (used in the depth lower bounds in restricted models [18,39,56,85]).

Let X := [K]` be an `-fold product space and let C be a subset of X. Given a co-ordinate
j ∈ [`], define the bipartite graph Graphj(C) := 〈VL, VR, E〉, where VL := C�j and VR :=
C�[`]\j and (vL, vR) ∈ E iff there is a c ∈ C such that c�j = vL ∈ VL and c�[`]\j = vR ∈ VR.

Definition A.0.22 (Average Degree [85]). Given j ∈ [`], we have Graphj(C) = 〈VL, VR, E〉
and

AveDegj(C) :=
|E|
|VR|

=
|C|

|C�[`]\j|
.

Definition A.0.23 (Min Degree and Thickness [85]). Given j ∈ [`], we have Graphj(C) =
〈VL, VR, E〉 and

MinDegj(C) := min
vR∈VR

deg(vR) .

Note that MinDegj(C) > 0, by definition of projection. Now

Thickness(C) := min
j∈[`]

MinDegj(C) .

Lemma A.0.24 (Large Size means Large Average Degree [85, Claim 5.1], [38, Lemma 4]).
Let C ′ ⊆ C. Then for any j,

AveDegj(C
′) ≥ |C ′|

|C|
·AveDegj(C) .

Lemma A.0.25 (Entropy Refill). For any j ∈ [`],

|C�[`]\j|
Kt−1 =

|C|
Kt

K

AveDegj(C)
.

APPENDIX A. BOUNDS ON INFORMATION 57

Lemma A.0.26 (Dropping Index does not Drop Thickness [85, Claim 5.2]). For any j ∈ [`],

Thickness(C�[`]\j) ≥ Thickness(C) .

Lemma A.0.27 (Distilling Thickness from Average Degree [85, Corollary 5.4]). Assume
that K ≥ `20. If for every j, AveDegj(C) ≥ 4 ·K19/20, then there exists C ′ ⊆ C such that:

1. |C ′| ≥ |C|/2, and

2. Thickness(C ′) ≥ K17/20.

58

Appendix B

Figures

x′i

xi

x̄′i

x̄i

Figure B.1:
Variable xi.

k

v

=
. . .

v

v1v2 vk

Figure B.2: k extra sources
for v.

x′i

xi

x̄′i

x̄i

γi − 3 γi − 3

qi γi − 5

qi−1

Figure B.3: Existentially
quantified variable ∃xi.

x′i

xi

x̄′i

x̄i

γi − 4 γi − 4

hi

qi γi − 5

γi − 5
qi−1

Figure B.4: Universally
quantified variable ∀xi.

APPENDIX B. FIGURES 59

aj

bj

cj

dj

ej

fj

uj

vj

wj

pj

l′j,1

l′j,2

l′j,3

lj,1

lj,2

lj,3

Figure B.5: Clause j.

k
v =

k

k k

v

Figure B.6: k extra sources and
a common immediate predecessor
for all nodes in a dashed region.

aj

bj

cj

dj

ej

fj

uj

vj

wj

pj

l′j,1

l′j,2

l′j,3

lj,1

lj,2

lj,3

βj − 7

pj−1

Figure B.7: Augmented gadget for
clause j.

APPENDIX B. FIGURES 60

p0
5

a1

b1

c1

d1

e1

f1

u1

v1

w1

p1

0

a2

b2

c2

d2

e2

f2

u2

v2

w2

p2

1

a3

b3

c3

d3

e3

f3

u3

v3

w3

p3

2

x′4

x4

x̄′4

x̄4

18 18

h4

q4 17

17

x′3

x3

x̄′3

x̄3

15 15

q3 13

x′2

x2

x̄′2

x̄2

11 11

h2

q2 10

10

x′1

x1

x̄′1

x̄1

8 8

q1 6

τ
22

Figure B.8: Example construction for ϕ := ∀x4∃x3∀x2∃x1F , where F := (x4 ∨ x̄2 ∨ x1) ∧
(x̄4 ∨ x3 ∨ x2) ∧ (x4 ∨ x̄3 ∨ x̄1).

61

Bibliography

[1] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.
ACM Transactions on Computation Theory, 1(1):2:1–2:54, February 2009.

[2] Akeo Adachi, Shigeki Iwata, and Takumi Kasai. Some combinatorial game problems
require Ω(nk) time. Journal of the ACM, 31(2):361–376, mar 1984.

[3] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184–1211, jan 2002.

[4] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An
exponential separation between regular and general resolution. Theory of Computing,
3(1):81–102, 2007.

[5] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-
reducibility. Journal of the ACM, 57(3):14:1–14:36, mar 2010.

[6] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean func-
tions. Combinatorica, 7(1):1–22, 1987.

[7] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution
width. Journal of Computer and System Sciences, 74(3):323–334, may 2008.

[8] David A. Mix Barrington and Pierre McKenzie. Oracle branching programs and
Logspace versus P. Information and Computation, 95(1):96–115, 1991.

[9] Paul Beame, Trinh Huynh, and Toniann Pitassi. Hardness amplification in proof
complexity. In Proceedings of the 42nd ACM symposium on Theory of computing,
STOC ’10, pages 87–96, New York, NY, USA, 2010. ACM.

[10] Paul Beame, Russell Impagliazzo, Toniann Pitassi, and Nathan Segerlind. Formula
caching in DPLL. ACM Transactions on Computation Theory, 1(3):9:1–9:33, mar
2010.

[11] Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, jan 2009.

BIBLIOGRAPHY 62

[12] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of
tree-like and general resolution. Combinatorica, 24(4):585–603, 2004.

[13] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Sep-
arations and trade-offs via substitutions. In Bernard Chazelle, editor, ICS, pages
401–416. Tsinghua University Press, 2011.

[14] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
Journal of the ACM, 48(2):149–169, mar 2001.

[15] Charles H. Bennett. Logical reversibility of computation. IBM Journal of Research
and Development, 17(6):525 –532, nov 1973.

[16] Charles H. Bennett. Time/Space trade-offs for reversible computation. SIAM Journal
on Computing, 18(4):766–776, 1989.

[17] Christoph Berkholz. On the complexity of finding narrow proofs. In FOCS, pages
351–360. IEEE Computer Society, 2012.

[18] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. Exponential
separations between restricted resolution and cutting planes proof systems. In FOCS,
pages 638–647, Palo Alto, California, USA, 1998. IEEE Computer Society.

[19] Ravi B. Boppana and Michael Sipser. The complexity of finite functions. In Handbook
of Theoretical Computer Science, Volume A: Algorithms and Complexity (A), pages
757–804. Elsevier and MIT Press, 1990.

[20] Joshua Brody and Amit Chakrabarti. Sublinear communication protocols for multi-
party pointer jumping and a related lower bound. In Susanne Albers and Pascal Weil,
editors, 25th International Symposium on Theoretical Aspects of Computer Science
(STACS 2008), volume 1 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 145–165, Dagstuhl, Germany, 2008. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik.

[21] Harry Buhrman, J. Tromp, and Paul Vitanyi. Time and space bounds for reversible
simulation. arXiv:quant-ph/0101133, jan 2001. Journal of Physics A: Mathematical
and General, 34(2001), 6821–6830.

[22] Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann
Pitassi. Homogenization and the polynomial calculus. Computational Complexity,
11(3):91–108, 2002.

[23] Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann
Pitassi. Rank bounds and integrality gaps for cutting planes procedures. Theory of
Computing, 2(1):65–90, 2006.

BIBLIOGRAPHY 63

[24] Samuel R. Buss, Stephen A. Cook, Arvind Gupta, and Vijaya Ramachandran. An
optimal parallel algorithm for formula evaluation. SIAM Journal on Computing,
21(4):755–780, 1992.

[25] Amit Chakrabarti. Lower bounds for multi-player pointer jumping. In IEEE Confer-
ence on Computational Complexity, pages 33–45. IEEE Computer Society, 2007.

[26] Siu Man Chan. Just a pebble game. Electronic Colloquium on Computational Complex-
ity (ECCC), 20:42, 2013. To appear in the 28th IEEE Conference on Computational
Complexity (CCC 2013).

[27] Siu Man Chan and Aaron Potechin. Tight bounds for monotone switching networks
via fourier analysis. 2012. Journal version to appear in the Theory of Computing.

[28] Siu On Chan. Approximation resistance from pairwise independent subgroups. Elec-
tronic Colloquium on Computational Complexity (ECCC), 19:110, 2012.

[29] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal
of the ACM, 28(1):114133, January 1981.

[30] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, STOC ’96, pages 174–183, New York, NY,
USA, 1996. ACM.

[31] Alan Cobham. The intrinsic computational difficulty of functions. In Proceedings of
the International Conference on Logic, Methodology, and Philosophy of Science, pages
24–30, 1965.

[32] Stephen A. Cook. An observation on time-storage trade off. Journal of Computer and
System Sciences, 9:308–316, December 1974.

[33] Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul San-
thanam. Pebbles and branching programs for tree evaluation. ACM Transactions on
Computation Theory, 3(2):4:1–4:43, January 2012.

[34] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, mar 1979.

[35] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, jul 1962.

[36] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, jul 1960.

BIBLIOGRAPHY 64

[37] Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by syn-
chronous parallel machines. Journal of Computer and System Sciences, 30(2):149 –
161, 1985.

[38] Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jiri Sgall. Communica-
tion complexity towards lower bounds on circuit depth. Computational Complexity,
10:210–246, 2001. 10.1007/s00037-001-8195-x.

[39] Yara Elias and Pierre McKenzie. DAG evaluation and the red-blue problem. In
Advances and Applications of Automata on Words and Trees, 2010. http://www.

dagstuhl.de/Materials/Files/10/10501/10501.McKenziePierre.Slides.pdf.

[40] Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution
with bounded conjunctions. Theoretical Computer Science, 321(2–3):347–370, aug
2004.

[41] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and
Computation, 171(1):84–97, nov 2001.

[42] Anna Gál and Jing-Tang Jang. The size and depth of layered boolean circuits. Infor-
mation Processing Letters, 111(5):213–217, feb 2011.

[43] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling problem
is complete in polynomial space. SIAM Journal on Computing, 9(3):513–524, 1980.

[44] Mikael Goldmann and Johan H̊astad. A simple lower bound for monotone clique using
a communication game. Information Processing Letters, 41(4):221 – 226, 1992.

[45] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel Com-
putation: P-Completeness Theory. Oxford University Press, apr 1995.

[46] Michelangelo Grigni. Structure in Monotone Complexity. PhD thesis, Massachusetts
Institute of Technology, June 1991.

[47] Michelangelo Grigni and Michael Sipser. Monotone separation of logarithmic space
from logarithmic depth. Journal of Computer and System Sciences, 50(3):433–437,
1995.

[48] Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs
for the parity. Theoretical Computer Science, 259(1–2):613–622, may 2001.

[49] Armin Haken. Counting bottlenecks to show monotone P 6= NP. In FOCS, pages
36–40. IEEE Computer Society, 1995.

[50] Johan H̊astad and Avi Wigderson. Composition of the universal relation. In Advances
in Computational Complexity Theory, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 119–134. American Mathematical Society, 1997.

http://www.dagstuhl.de/Materials/Files/10/10501/10501.McKenziePierre.Slides.pdf
http://www.dagstuhl.de/Materials/Files/10/10501/10501.McKenziePierre.Slides.pdf

BIBLIOGRAPHY 65

[51] Alexander Hertel and Alasdair Urquhart. Game characterizations and the PSPACE-
Completeness of tree resolution space. In Jacques Duparc and Thomas Henzinger,
editors, Computer Science Logic, volume 4646 of Lecture Notes in Computer Science,
pages 527–541. Springer Berlin / Heidelberg, 2007.

[52] Philipp Hertel and Toniann Pitassi. The PSPACE-completeness of black-white peb-
bling. SIAM Journal on Computing, 39(6):2622–2682, jan 2010.

[53] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal of
the ACM, 24(2):332–337, apr 1977.

[54] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying
communication complexity hardness to time-space trade-offs in proof complexity. In
Howard J. Karloff and Toniann Pitassi, editors, STOC, pages 233–248. ACM, 2012.

[55] Matti Järvisalo, Arie Matsliah, Jakob Nordström, and Stanislav Živný. Relating proof
complexity measures and practical hardness of SAT. In Michela Milano, editor, Prin-
ciples and Practice of Constraint Programming, Lecture Notes in Computer Science,
pages 316–331. Springer Berlin Heidelberg, jan 2012.

[56] Jan Johannsen. Depth lower bounds for monotone semi-unbounded fan-in circuits.
Theoretical Informatics and Applications, 35(3):277–286, 2001.

[57] Neil D. Jones and William T. Laaser. Complete problems for deterministic polynomial
time. In Proceedings of the Sixth Annual ACM Symposium on Theory of Computing,
STOC ’74, pages 40–46, New York, NY, USA, 1974. ACM.

[58] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower
bounds via the direct sum in communication complexity. Computational Complexity,
5(3/4):191–204, 1995.

[59] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990.

[60] Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete
problems. SIAM Journal on Computing, 8(4):574–586, nov 1979.

[61] Maria Klawe, Wolfgang J. Paul, Nicholas Pippenger, and Mihalis Yannakakis. On
monotone formulae with restricted depth. In STOC, pages 480–487, New York, NY,
USA, 1984. ACM.

[62] Gillat Kol and Ran Raz. Competing provers protocols for circuit evaluation. In Pro-
ceedings of the 4th conference on Innovations in Theoretical Computer Science, ITCS
’13, pages 473–484, New York, NY, USA, 2013. ACM.

BIBLIOGRAPHY 66

[63] Jan Kraj́ıček. On the weak pigeonhole principle. Fundamenta Mathematicae,
170(1):123–140, 2001.

[64] Richard Královič. Time and space complexity of reversible pebbling. RAIRO - Theo-
retical Informatics and Applications, 38(02):137–161, 2004.

[65] Richard E. Ladner. The circuit value problem is log space complete for p. SIGACT
News, 7(1):18–20, jan 1975.

[66] Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. Reversible space equals deter-
ministic space. Journal of Computer and System Sciences, 60(2):354 – 367, 2000.

[67] Jean B. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM Journal on Optimization, 11(3):796–817, jan 2001.

[68] Chang-Yeong Lee. Representation of switching circuits by binary-decision programs.
Bell System Technical Journal, 38(4):985–999, 1959.

[69] Ming Li, John Tromp, and Paul Vitanyi. Reversible simulation of irreversible com-
putation by pebble games. arXiv:quant-ph/9703009, mar 1997. Physica D120 (1998)
168-176.

[70] Ming Li and Paul Vitanyi. Reversibility and adiabatic computation: Trading time and
space for energy. Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, 452(1947):769–789, apr 1996.

[71] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. Journal of the ACM, 40(3):607–620, jul 1993.

[72] Richard Lipton and Anastasios Viglas. Non-uniform depth of polynomial time and
space simulations. In Andrzej Lingas and Bengt Nilsson, editors, Fundamentals
of Computation Theory, volume 2751 of Lecture Notes in Computer Science, pages
323–354. Springer Berlin / Heidelberg, 2003.

[73] Richard J. Lipton and Ryan Williams. Amplifying circuit lower bounds against poly-
nomial time with applications. In IEEE Conference on Computational Complexity,
pages 1–9, 2012.

[74] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the
decision tree model. SIAM Journal on Discrete Mathematics, 8(1):119–132, feb 1995.

[75] Pierre McKenzie, 2010. Personal communication.

[76] Ketan D. Mulmuley. Lower bounds in a parallel model without bit operations. SIAM
Journal on Computing, 28(4):1460–1509, 1999.

BIBLIOGRAPHY 67

[77] Ketan D. Mulmuley. On P vs. NP and geometric complexity theory. Journal of the
ACM, 58(2):5:1–5:26, apr 2011.

[78] Ketan D. Mulmuley and Milind Sohoni. Geometric complexity theory I: An approach
to the P vs. NP and related problems. SIAM Journal on Computing, 31(2):496–526,
jan 2001.

[79] Ketan D. Mulmuley and Milind Sohoni. Geometric complexity theory II: towards ex-
plicit obstructions for embeddings among class varieties. SIAM Journal on Computing,
38(3):1175–1206, jan 2008.

[80] Jakob Nordström. Pebble games, proof complexity and time-space trade-offs. 2012.
To appear in Logical Methods in Computer Science.

[81] Michael S. Paterson and Carl E. Hewitt. Comparative schematology. In Jack B. Den-
nis, editor, Record of the Project MAC conference on concurrent systems and parallel
computation, pages 119–127. ACM, New York, NY, USA, 1970.

[82] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a
game on graphs. In Proceedings of the Eighth Annual ACM Symposium on Theory of
Computing, STOC ’76, pages 149–160, New York, NY, USA, 1976. ACM.

[83] Aaron Potechin. Bounds on monotone switching networks for directed connectivity.
2010. An updated version to appear in Journal of the ACM.

[84] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k-sat.
In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms,
SODA ’00, pages 128–136, Philadelphia, PA, USA, 2000. Society for Industrial and
Applied Mathematics.

[85] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combina-
torica, 19(3):403–435, 1999.

[86] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth.
Journal of the ACM, 39(3):736–744, 1992.

[87] Alexander A. Razborov. Lower bounds on the monotone complexity of some boolean
functions. Soviet Mathematics Doklady, 31(2):354–357, 1985.

[88] Alexander A. Razborov. Lower bounds for deterministic and nondeterministic branch-
ing programs. In Lothar Budach, editor, FCT, volume 529 of Lecture Notes in Com-
puter Science, pages 47–60. Springer, 1991.

[89] Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, aug 1997.

BIBLIOGRAPHY 68

[90] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM,
55:17:1–17:24, September 2008.

[91] Walter Larry Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 22(3):365–383, jun 1981.

[92] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, apr 1970.

[93] Grant Schoenebeck. Linear level lasserre lower bounds for certain k-CSPs. pages
593–602. IEEE, oct 2008.

[94] Ravi Sethi. Complete register allocation problems. SIAM Journal on Computing,
4(3):226–248, sep 1975.

[95] Grigori Samuilovich Tseitin. On the complexity of derivation in propositional calcu-
lus. In Anatol Oles’evich Slisenko, editor, Studies in Constructive Mathematics and
Mathematical Logic, Part 2, pages 115–125. Consultants Bureau, New York, 1970.

[96] Madhur Tulsiani. CSP gaps and reductions in the lasserre hierarchy. In Proceedings of
the 41st annual ACM symposium on Theory of computing, STOC ’09, pages 303–312,
New York, NY, USA, 2009. ACM.

[97] Alasdair Urquhart. The complexity of propositional proofs. The Bulletin of Symbolic
Logic, 1(4):425–467, dec 1995.

[98] Alasdair Urquhart. The depth of resolution proofs. Studia Logica, 99(1):349–364, 2011.

[99] H. Venkateswaran and Martin Tompa. A new pebble game that characterizes parallel
complexity classes. SIAM Journal on Computing, 18(3):533–549, jun 1989.

[100] Emanuele Viola and Avi Wigderson. One-way multiparty communication lower bound
for pointer jumping with applications. Combinatorica, 29(6):719–743, 2009.

[101] Dustin Wehr. Lower bound for deterministic semantic-incremental branching programs
solving GEN. CoRR, abs/1101.2705, 2011.

[102] Ryan Williams. Space-efficient reversible simulations. Technical report, 2000.

[103] Ryan Williams. Parallelizing time with polynomial circuits. In Proceedings of the
seventeenth annual ACM symposium on Parallelism in algorithms and architectures,
SPAA ’05, page 171175, New York, NY, USA, 2005. ACM.

	Contents
	Introduction
	Computational Complexity
	Pebble Games
	Our Results in Pebble Games
	Combinatorial Models of Computation
	Our Results in Computational Complexity
	Proof Complexity
	Our Results in Proof Complexity
	Our Results in Space Complexity of Pebble Costs and Depth of Resolution Refutations
	Techniques
	Organization

	Preliminaries
	Equivalence of Pebble Games
	Dymond–Tompa Game
	Raz–McKenzie Pebble Game
	Reversible Pebble Game
	When Dymond–Tompa meet Raz–McKenzie
	When Raz–McKenzie meet Bennett

	DAG Evaluation Problem
	Karchmer–Wigderson Game
	Thrifty and Output-Relevant Circuits
	Upper Bound for Evaluation
	Adversary Argument: when Raz–McKenzie meet Karchmer–Wigderson
	Recursive Lower Bound

	Resolution Refutations
	Size Lower Bound from Depth
	Tight Bounds for Tree-Like Resolution

	Space Complexity of Pebble Games
	Gadgets

	Some Related Approaches
	Future Directions
	Bounds on Information
	Figures
	Bibliography

