
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Liquid Haskell: Haskell as a Theorem Prover

Permalink
https://escholarship.org/uc/item/8dm057ws

Author
Vazou, Niki

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8dm057ws
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Liquid Haskell: Haskell as a Theorem Prover

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Niki Vazou

Committee in charge:

Professor Ranjit Jhala, Chair
Professor Samuel R. Buss
Professor Cormac Flanagan
Professor Sorin Lerner
Professor Daniele Micciancio

2016

Copyright

Niki Vazou, 2016

All rights reserved.

The Dissertation of Niki Vazou is approved and is acceptable in quality and form

for publication on microfilm and electronically:

Chair

University of California, San Diego

2016

iii

DEDICATION

For my mother, father, and sister.

iv

EPIGRAPH

Simplicity is the ultimate sophistication.

Leonardo Da Vinci

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . x

List of Tables . xi

Acknowledgements . xii

Vita . xv

Abstract of the Dissertation . xvi

Introduction . 1

Chapter 1 Refinement Types in Practice . 5
1.1 LIQUID HASKELL . 6

1.1.1 Specifications . 8
1.1.2 Verification . 9
1.1.3 Measures . 10
1.1.4 Refined Data Types . 12
1.1.5 Refined Type Classes . 12

1.2 Totality . 14
1.2.1 Specifying Totality . 14
1.2.2 Verifying Totality . 15
1.2.3 Case Studies . 17

1.3 Termination . 18
1.4 Memory Safety . 22

1.4.1 Bytestring . 23
1.4.2 Text . 27

1.5 Functional Correctness Invariants . 30
1.5.1 Red-Black Trees . 31
1.5.2 Stack Sets in XMonad . 33

1.6 Evaluation . 36
1.6.1 Results . 37
1.6.2 Limitations . 38

Chapter 2 Soundness Under Lazy Evaluation . 40
2.1 Overview . 41

2.1.1 Standard Refinement Types: From Subtyping to VC 42

vi

2.1.2 Lazy Evaluation Makes VCs Unsound . 44
2.1.3 Semantics, Subtyping & Verification Conditions . 46
2.1.4 Our Answer: Implicit Reasoning About Divergence 50
2.1.5 Verification With Stratified Types . 51
2.1.6 Measures: From Integers to Data Types . 55

2.2 Declarative Typing: λU . 59
2.2.1 Syntax . 59
2.2.2 Operational Semantics . 60
2.2.3 Types . 60
2.2.4 Type Checking . 63

2.3 Algorithmic Typing: λ D . 64
2.3.1 Refinement Logic: QF-EUFLIA . 65
2.3.2 Stratified Types . 67
2.3.3 Verification With Stratified Types . 71

2.4 Implementation in LIQUID HASKELL . 73
2.4.1 Termination . 73
2.4.2 Non-termination . 77
2.4.3 User Specifications and Type Inference . 77

2.5 Evaluation . 78
2.6 Conclusions & Alternative Approaches . 80

Chapter 3 Abstract Refinement Types . 84
3.1 Overview . 86

3.1.1 Parametric Invariants . 86
3.1.2 Index-Dependent Invariants . 89
3.1.3 Recursive Invariants . 93
3.1.4 Inductive Invariants . 95

3.2 Syntax and Semantics . 97
3.2.1 Syntax . 97
3.2.2 Static Semantics . 98
3.2.3 Soundness . 101
3.2.4 Refinement Inference . 102

3.3 Evaluation . 104
3.4 Conclusion . 107

Chapter 4 Bounded Refinement Types . 109
4.1 Overview . 110

4.1.1 Preliminaries . 111
4.1.2 Bounded Refinements . 112
4.1.3 Bounds for Higher-Order Functions . 114
4.1.4 Implementation . 117

4.2 Formalism . 120
4.2.1 Syntax of λP . 120
4.2.2 Syntax of λB . 122
4.2.3 Translation from λB to λP . 123

vii

4.2.4 Soundness . 126
4.2.5 Inference . 126

4.3 A Refined Relational Database . 127
4.3.1 Rows and Tables . 128
4.3.2 Relational Algebra . 132

4.4 A Refined IO Monad . 134
4.4.1 The RIO Monad . 135
4.4.2 Floyd-Hoare Logic in the RIO Monad . 137

4.5 Capability Safe Scripting via RIO . 140
4.5.1 Privilege Specification . 141
4.5.2 File System API Specification . 141
4.5.3 Client Script Verification . 143

4.6 Conclusion . 145

Chapter 5 Refinement Reflection . 146
5.1 Overview . 148

5.1.1 Refinement Types . 148
5.1.2 Refinement Reflection . 151
5.1.3 Structuring Proofs . 153
5.1.4 Case Study: Deterministic Parallelism . 156

5.2 Refinement Reflection . 160
5.2.1 Syntax . 161
5.2.2 Operational Semantics . 162
5.2.3 Types . 162
5.2.4 Refinement Reflection . 163
5.2.5 The SMT logic λ S . 163
5.2.6 Transforming λ R into λ S . 164
5.2.7 Typing Rules . 167
5.2.8 Soundness . 169

5.3 Reasoning About Lambdas . 169
5.3.1 Equivalence . 170
5.3.2 Extensionality . 171

5.4 Evaluation . 173
5.4.1 Arithmetic Properties . 174
5.4.2 Algebraic Data Properties . 175
5.4.3 Typeclass Laws . 176
5.4.4 Functional Correctness . 179

5.5 Verified Deterministic Parallelism . 180
5.5.1 LVish: Concurrent Sets . 181
5.5.2 Monad-par: n-body simulation . 182
5.5.3 DPJ: Parallel Reducers . 183

5.6 Conclusion . 184

Chapter 6 Case Study: Parallel String Matcher . 185
6.1 Proofs as Haskell Functions . 188

viii

6.1.1 Reflection of data types into logic. 188
6.1.2 Reflection of Haskell functions into logic. 189
6.1.3 Specification and Verification of Monoid Laws . 190

6.2 Verified Parallelization of Monoid Morphisms . 193
6.2.1 Chunkable Monoids . 193
6.2.2 Parallel Map . 194
6.2.3 Monoidal Concatenation . 195
6.2.4 Parallel Monoidal Concatenation . 197
6.2.5 Parallel Monoid Morphism . 198

6.3 Correctness of Parallel String Matching . 200
6.3.1 Refined Strings are Chunkable Monoids . 200
6.3.2 String Matching Monoid . 201
6.3.3 String Matching Monoid Morphism . 210
6.3.4 Parallel String Matching . 213

6.4 Evaluation: Strengths & Limitations . 214
6.5 Conclusion . 216

Chapter 7 Related Work . 218
7.1 Refinement Types . 218
7.2 SMT-Based Verification . 219
7.3 Dependent Type Systems . 221
7.4 Haskell Verifiers . 223

Chapter 8 Conclusion . 225

Bibliography . 226

ix

LIST OF FIGURES

Figure 1.1. LIQUID HASKELL Workflow. 7

Figure 2.1. Summary of Informal Notation. 42

Figure 2.2. Syntax of Measures. 55

Figure 2.3. Syntax and Operational Semantics of λU . 59

Figure 2.4. Type checking of λU . 62

Figure 2.5. Syntax of λ D. 64

Figure 2.6. Type checking of λ D. 65

Figure 3.1. Syntax of λP. 98

Figure 3.2. Type checking of λP. 99

Figure 4.1. Stratified Syntax of λP. 121

Figure 4.2. Extending Syntax of λP to λB. 122

Figure 4.3. Translation Rules from λB to λP. 124

Figure 4.4. Privilege Specification. 140

Figure 5.1. Syntax of λ R. 161

Figure 5.2. Syntax of λ S. 164

Figure 5.3. Type checking of λ R. 167

Figure 5.4. Ackermann Properties verified using LIQUID HASKELL. 175

Figure 5.5. Parallel speedup for PureSet and SLSet. 181

Figure 5.6. Parallel speedup for n-body simulation and array reduction. 183

Figure 6.1. Proof Operators and Types. 191

Figure 6.2. Mappend indices of String Matcher. 203

Figure 6.3. Associativity of String Matching. 209

x

LIST OF TABLES

Table 1.1. A quantitative evaluation of LIQUID HASKELL . 37

Table 2.1. A quantitative evaluation of Termination Analysis. 79

Table 3.1. A quantitative evaluation of Abstract Refinements. 104

Table 4.1. Example entries for Movies Database. 128

Table 5.1. Summary of Refinement Reflection Case Studies. 173

Table 5.2. Typeclass Laws verified using LIQUID HASKELL. 177

xi

ACKNOWLEDGEMENTS

I want to thank Ranjit Jhala for being such a great supervisor. It is his unique way to

interpret, simplify, and beautify my thoughts and his strong willingness and enthusiasm to do

useful work that directed my research and influenced the way I am thinking.

A big thanks to my committee members Sam Buss, Cormac Flanagan, Sorin Lerner, and

Daniele Micciancio for their interest and insights in my work.

Next, I want to thank all my labmates in the UCSD programming languages group and

specifically my collaborators Eric Seidel, Alexander Bakst, Pat Rondon, and Valentin Robert for

providing a supportive, friendly, and inspiring working environment.

I own a big thanks all these people who hosted me in my internships. The Opa group in

Paris who foresaw that types can help industrial development. Dimitrios Vytiniotis and Simon

Peyton-Jones at Microsoft Research Cambridge who were the first Haskellers who believed in

LIQUID HASKELL and have been still supporting both the project and me personally. I want

to thank Jeff Polakow, Gabriel Gonzalez, and all the people at Awake Networks for giving me

the opportunity to spend an awesome summer in Mountain View and use LIQUID HASKELL

in real world development code. A huge thanks to the two main people responsible for my

great summer at Microsoft Research Redmond. Rustan Leino who is the innovator in automatic

software verification and yet is always open to discuss, in his unique friendly and humble manner,

how Dafny and LIQUID HASKELL could be further improved and influenced from one another.

Last but not least, I want to thank my amazing internship host Daan Leijen for mentoring me

during my internship and since then, sharing with me all his insightful knowledge and experience

about research and life in general.

Thanks to all the Haskell community for the enthusiasm and support expressed for

LIQUID HASKELL from its earliest stages. I am so proud to be a member of this supportive,

friendly, and respectful community! I want to thank those who introduced me to Haskell and

Computer Science in general, Nikolaos Papaspyrou and Stathis Zachos.

Next, I want to thank all my San Diego friends who were next to me during times of both

joy and sorrow and who turned this beautiful place into my second home. Sincere thanks to all

xii

my women friends Sohini, Minu, Augusta, Margherita, Marta, and Karyn who kept me sane and

happy during my male dominated Ph.D.. I want to thank Andreas, Dimos, Vasilis, Konstantinos,

Andreas and the rest of the Greeks in San Diego who help me keep my culture and roots while

so far away from my country. Finally, a great thanks to the crew and friends in Pappalecco, the

coffee place where most of the LIQUID HASKELL code and papers were written in.

Last but not least, I want to thank my family and friends, around the world, who supported

me throughout this journey. All the people I met in my numerous trips in these five years, that

made me realize how knowledge unites people from different parts of the globe. All my friends

and family in Greece that despite the distance, always welcome me during my escapes in my

home country. Specifically, my parents Voula and Nikos and my sister Marianna who stayed up

all these Sunday nights for our online calls.

It is great that the destination is reached, but after all, it is the journey that matters.

Niki Vazou

December 2016

xiii

Chapter 1 contains material adapted from the following publication: N. Vazou, E. Seidel,

and R. Jhala, “LiquidHaskell: Experience with Refinement Types in the Real World”, Haskell,

2014.

Chapter 2 contains material adapted from the following publication: N. Vazou, E. Seidel,

R. Jhala, D. Vytiniotis, and S. Peyton-Jones, “Refinement Types for Haskell”, ICFP, 2014.

Chapter 3 contains material adapted from the following publication: N. Vazou, P. Rondon,

and R. Jhala, “Abstract Refinement Types”, ESOP, 2013.

Chapter 4 contains material adapted from the following publication: N. Vazou, A. Bakst,

and R. Jhala, “Bounded Refinement Types”, ICFP, 2015.

Chapter 5 has been submitted for publication of the material as it may appear in PLDI

2017: Vazou, Niki; Choudhury, Vikraman; Scott, Ryan G.; Newton, Ryan R.; Jhala, Ranjit.

“Refinement Reflection: Parallel Legacy Languages as Theorem Provers”.

Chapter 6 has been submitted for publication of the material as it may appear in ESOP

2017: Vazou, Niki; Polakow, Jeff. “Verified Parallel String Matching in Haskell”.

The dissertation author was the primary investigator and author of these papers.

xiv

VITA

2010 Diploma in Computer Software, National Technical University of Athens

2016 Ph.D. in Computer Science, University of California, San Diego

PUBLICATIONS

N. Vazou, M. Papakyriakou, and N. Papaspyrou, “Memory Safety and Race Freedom in Concur-
rent Programming with Linear Capabilities”, FedCSIS, 2011.

N. Vazou, P. Rondon, and R. Jhala, “Abstract Refinement Types”, ESOP, 2013.

N. Vazou, E. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones, “Refinement Types for Haskell”,
ICFP, 2014.

N. Vazou, E. Seidel, and R. Jhala, “LiquidHaskell: Experience with Refinement Types in the Real
World”, Haskell, 2014.

E. Seidel, N. Vazou, and R. Jhala, “Type Targeted Testing”, ESOP, 2015.

N. Vazou, A. Bakst, and R. Jhala, “Bounded Refinement Types”, ICFP, 2015.

N. Vazou, and D. Leijen, “From Monads to Effects and Back”, PADL 2016.

xv

ABSTRACT OF THE DISSERTATION

Liquid Haskell: Haskell as a Theorem Prover

by

Niki Vazou

Doctor of Philosophy in Computer Science

University of California, San Diego, 2016

Professor Ranjit Jhala, Chair

Code deficiencies and bugs constitute an unavoidable part of software systems. In safety-

critical systems, like aircrafts or medical equipment, even a single bug can lead to catastrophic

impacts such as injuries or death. Formal verification can be used to statically track code

deficiencies by proving or disproving correctness properties of a system. However, at its current

state formal verification is a cumbersome process that is rarely used by mainstream developers,

mostly because it targets non general purpose languages (e.g., Coq, Agda, Dafny).

We present LIQUID HASKELL, a usable program verifier that aims to establish formal

verification as an integral part of the development process. LIQUID HASKELL naturally integrates

the specification of correctness properties as logical refinements of Haskell’s types. Moreover, it

xvi

uses the abstract interpretation framework of liquid types to automatically check correctness of

specifications via Satisfiability Modulo Theories (SMT) solvers requiring no explicit proofs or

complicated annotations. Finally, the specification language is arbitrary expressive, allowing the

user to write general correctness properties about their code, thus turning Haskell into a theorem

prover.

Transforming a mature language — with optimized libraries and highly tuned parallelism

— into a theorem prover enables us to verify a wide variety of properties on real world applications.

We used LIQUID HASKELL to verify shallow invariants of existing Haskell code, e.g. memory

safety of the optimized string manipulation library ByteString. Moreover, we checked deep,

sophisticated properties of parallel Haskell code, e.g. program equivalence of a naı̈ve string

matcher and its parallelized version. Having verified about 20K of Haskell code, we present how

LIQUID HASKELL serves as a prototype verifier in a future where formal techniques will be used

to facilitate, instead of hinder, software development.

xvii

Introduction

Code deficiencies and bugs constitute an unavoidable part of software systems. In safety-

critical systems, like aircrafts or medical equipment, even a single bug can lead to catastrophic

impacts such as injuries or death. Even in less critical code, programs use various runtime

assertions to establish correctness properties. Formal verification can be used to statically

discharge assertions and track code deficiencies by proving or disproving correctness properties

of a system. However, at its current state formal verification is a cumbersome process that is

rarely used by mainstream developers.

We present LIQUID HASKELL, a usable program verifier that aims to establish formal

verification as an integral part of the development process. A usable verifier naturally integrates

the specification of correctness properties in the development process. Moreover, verification

should be automatic, requiring no explicit proofs or complicated annotations. At the same time,

the specification language should be expressive, allowing the user to write arbitrary correctness

properties. Finally, a usable verifier should be tested in real-world programs.

LIQUID HASKELL is a verifier for Haskell programs that takes as input Haskell source

code, annotated with correctness specifications in the form of refinement types and checks whether

the code satisfies the specifications. We designed LIQUID HASKELL in such a way as to satisfy

most of the aforementioned criteria of a usable verifier.

Natural Integration of correctness specifications comes by our choice of the functional pro-

gramming language Haskell as a target language. Haskell’s first class functions lead to modular

specifications. The lack of mutations and side-effects allows a direct correspondence between

source code and logic. Correctness specifications are naturally added to Haskell’s expressive type

system as refinement types, i.e. types annotated with logical predicates. As an example, the type

1

http://goto.ucsd.edu/~rjhala/liquid/haskell/blog/about/

2

type NonZero = {v:Int | 0 6= v}

describes a value v which is an integer and the refinement specifies that this value is not zero. The

specification language is simple as most programmers are familiar with both its ingredients, i.e.

Haskell types and logical formulas.

Real World Applications have been verified using LIQUID HASKELL. We proved critical safety

and functional correctness of more that 10K lines of popular Haskell libraries (Chapter 1) with

minimal amount of annotations. We verified correctness of array-based sorting algorithm

(Vector-Algorithms), preservation of binary search tree properties (Data.Map, Data.Set),

preservation of uniqueness invariants (XMonad), low-level memory safety (Bytestring, Text),

and even found and fixed a subtle correctness bug related to unicode handling in Text. In

the above libraries we automatically proved totality and termination of all interface functions.

Even though most of Haskell’s features facilitate verification, lazy semantics rendered standard

refinement typing unsound.

Soundness Under Lazy Evaluation (Chapter 2) describes how we adjusted refinement

typing to soundly verify Haskell’s lazy programs. Refinement types were introduced in 1991

and since then have been successfully applied to many eager languages. When checking an

expression, such type systems implicitly assume that all the free variables in the expression are

bound to values. This property is trivially guaranteed by eager evaluation, but does not hold in a

lazy setting. Thus, to be sound and precise, a refinement type system for Haskell must take into

account which subset of binders actually reduces to values. To track potentially diverging binders,

we built a termination checker whose correctness is recursively checked by refinement types.

Automatic Verification comes by constraining refinements in specifications to decidable

logics. Program verification checks that the source code satisfies a set of specifications. A trivial

example is to specify that the second argument of a division operator is different than zero, by

writing the following specification: div :: Int → NonZero → Int. To check whether an

expression with type {v:Int | 0 < v} is a safe argument to the division operator, the system

checks whether 0 < v implies 0 6= v. By constraining all predicates to be drawn from decidable

logics, such implications can be automatically checked via an Satisfiability Modulo Theories

3

(SMT) solver. Liquid Types [47] are a subset of refinement types that achieve automation and

type inference by constraining the language of the logical predicates to quantifier-free decidable

logics, including logical formulas, linear arithmetic and uninterpreted functions.

Expressiveness of the specifications is critically hindered by our choice to constrain

the language of predicates to decidable logics. Liquid types specifications are naturally used

to describe first order properties but prevent modular, higher order specifications. Consider

a function that sorts lists of integers, with type sort :: [Int] → [Int]. Using LIQUID

HASKELL we can specify that sorting positive numbers returns a list of positive numbers, but

we cannot give a modular specification accounting for all different kinds of numbers sort will

be invoked. We developed “Abstract” and “Bounded” refinement types to allow for modular

specifications while preserving SMT decidability.

In Abstract Refinement Types (Chapter 3) we parameterize a type over its refinements

allowing modular specifications while preserving SMT-based decidable type checking. As an

example, since sort preserves the elements of the input list, we can use abstract refinements to

specify that for every refinement p on integers, sort takes a list of integers that satisfy p and

returns a list of integers that satisfy the same refinement p.

sort :: ∀ <p :: Int → Bool >. [{v:Int | p v}] → [{v:Int | p v}]

With this modular specification, we can prove that sort preserves the property that all the input

numbers satisfy, for any property, ranging from being positive numbers to being numbers that are

safe keys for a security protocol. We used abstract refinements to describe modular properties of

recursive data structures. With such abstractions we simultaneously reasoned about challenging

invariants such as sortedness and uniqueness of lists or preservation of red-black invariants or

heap properties on trees. Without abstract refinements reasoning about each of these invariants

would require a special purpose analysis. Crucially, abstractions over refinements preserve

SMT-based decidability, simply by encoding refinement parameters as uninterpreted propositions

within the ground refinement logic.

Bounded Refinement Types (Chapter 4) constrain and relate abstract refinement and let

us express even more interesting invariants while preserving SMT-decidability. As an example, we

4

used bounds on refinement types to reason about stateful computations. We expressed the pre- and

post-conditions of the computations with two abstract refinements, p and q respectively and used

bounds to impose constraints upon them. For instance, when sequencing two computation we

bound the first post-condition q1 to imply the second pre-condition p2. We implemented the above

idea in a refined Haskell IO state monad that encodes Floyd-Hoare logic state transformations

and used this encoding to track capabilities and resource usage. Moreover, we encoded safe

database access using abstract refinements to encode key-value properties and bounds to express

the constraints imposed by relational algebra operators, like disjointedness, union etc.. Bounds

are internally translated to “ghost” functions, thus the increased expressiveness comes while

preserving the automated and decidable SMT-based type checking that makes liquid typing

effective in practice. Abstract and Bounded refinement types do allow modular higher order

specifications, but the expressiveness of the specifications is crucially restricted by the fact that, for

automatic verification, arbitrary, Haskell functions are not allowed to appear in the refinements.

Refinement Reflection (Chapter 5) allows arbitrary, terminating, Haskell functions to

appear into the specifications as uninterpreted functions thus preserving automatic and decidable

type checking. The key idea is to reflect the code implementing a user-defined function into

the function’s (output) refinement type. As a consequence, at uses of the function, the function

definition is unfolded into the refinement logic in a precise and predictable manner. With Refine-

ment Reflection, the user can write arbitrarily expressive (fully dependent type) specifications

expressing theorems about the code, but to prove such theorems the user needs to manually

provide appropriate proof terms. We used reflection to verify that many widely used instances of

the Monoid, Applicative, Functor and Monad typeclasses satisfy key algebraic laws needed to

making the code using the typeclasses safe. Finally, transforming a mature language—with highly

tuned parallel runtime—into a theorem prover enables us to build parallel applications, like an

efficient String Matcher (Chapter 6), and prove it equivalent with its naı̈ve, sequential version.

In short, LIQUID HASKELL is a usable verifier for real world Haskell applications as it

allows for natural integration of expressive, type based specifications that can be automatically

verified using SMT solvers.

Chapter 1

Refinement Types in Practice

Everything should be made as simple as possible, but no simpler.

– Albert Einstein

Refinement types enable specification of complex invariants by extending the base type

system with refinement predicates drawn from decidable logics. For example,

type Nat = {v:Int | 0 ≤ v}

type Pos = {v:Int | 0 < v}

are refinements of the basic type Int with a logical predicate that states the values v being

described must be non-negative and postive respectively. We can specify contracts of functions

by refining function types. For example, the contract for div

div :: n:Nat → d:Pos → {v:Nat | v ≤ n}

states that div requires a non-negative dividend n and a positive divisor d and ensures that the

result is less than the dividend. If a program (refinement) type checks, we can be sure that div

will never throw a divide-by-zero exception.

Refinement types [20, 81] have been implemented for several languages like ML [106, 7,

79], C [19, 80], TypeScript [102], Racket [49] and Scala [82]. Here we present LIQUID HASKELL,

a refinement type checker for Haskell. In this chapter we start with an example driven informal

and practical overview of LIQUID HASKELL. In particular, we try to answer the following

questions:

5

6

1. What properties can be specified with refinement types?

2. What inputs are provided and what feedback is received?

3. What is the process for modularly verifying a library?

4. What are the limitations of refinement types?

We attempt to investigate these questions, by using the refinement type checker LIQUID

HASKELL, to specify and verify a variety of properties of over 10,000 lines of Haskell code from

popular libraries, including containers, hscolor, bytestring, text, vector-algorithms

and xmonad.

• First (§ 1.1), we present a high-level overview of LIQUID HASKELL, through a tour of its

features.

• Second, we present a qualitative discussion of the kinds of properties that can be checked –

ranging from generic application independent criteria like totality (§ 1.2), i.e. that a function

is defined for all inputs (of a given type) and termination, (§ 1.3) i.e. that a recursive function

cannot diverge, to application specific concerns like memory safety (§ 1.4) and functional

correctness properties (§ 1.5).

• Finally (§ 1.6), we present a quantitative evaluation of the approach, with a view towards

measuring the efficiency and programmer’s effort required for verification, and we discuss

various limitations of the approach which could provide avenues for further work.

1.1 LIQUID HASKELL

We start with a short description of the LIQUID HASKELL workflow, summarized in

Figure 1.1 and continue with an example driven overview of how properties are specified and

verified using the tool.

Source LIQUID HASKELL can be run from the command-line1 or within a web-browser2. It
1https://hackage.haskell.org/package/liquidhaskell
2http://goto.ucsd.edu/liquid/haskell/demo/

https://hackage.haskell.org/package/liquidhaskell
http://goto.ucsd.edu/liquid/haskell/demo/

7

Figure 1.1. LIQUID HASKELL Workflow.

takes as input: (1) a single Haskell source file with code and refinement type specifications

including refined datatype definitions, measures (§ 1.1.3), predicate and type aliases, and function

signatures; (2) a set of directories containing imported modules (including the Prelude) which

may themselves contain specifications for exported types and functions; and (3) a set of predicate

fragments called qualifiers, which are used to infer refinement types. This set is typically empty

as the default set of qualifiers extracted from the type specifications suffices for inference.

Core LIQUID HASKELL uses GHC to reduce the source to the Core IL [87] and, to facilitate

source-level error reporting, creates a map from Core expressions to locations in the Haskell

source.

Constraints Then, it uses the abstract interpretation framework of Liquid Typing [79], modified to

ensure soundness under lazy evaluation 2 and extended with Abstract 3 and Bounded 4 Refinement

Types and Refinement Reflection 5, to generate logical constraints from the Core IL.

Solution Next, it uses a fixpoint algorithm (from [79]) combined with an SMT solver to solve the

constraints, and hence infers a valid refinement typing for the program. LIQUID HASKELL can

use any solver that implements the SMT-LIB2 standard [4], including Z3 [24], CVC4 [3], and

MathSat [11].

Types & Errors If the set of constraints is satisfiable, then LIQUID HASKELL outputs SAFE,

meaning the program is verified. If instead, the set of constraints is not satisfiable, then LIQUID

HASKELL outputs UNSAFE, and uses the invalid constraints to report refinement type errors at

the source positions that created the invalid constraints, using the location information to map the

8

invalid constraints to source positions. In either case, LIQUID HASKELL produces as output a

source map containing the inferred types for each program expression, which, in our experience,

is crucial for debugging the code and the specifications.

LIQUID HASKELL is best thought of as an optional type checker for Haskell. By optional

we mean that the refinements have no influence on the dynamic semantics, which makes it easy

to apply LIQUID HASKELL to existing libraries. To emphasize the optional nature of refinements

and preserve compatibility with existing compilers, all specifications appear within comments of

the form {-@ ... @-}, which we omit below for brevity.

1.1.1 Specifications

A refinement type is a Haskell type where each component of the type is decorated with

a predicate from a (decidable) refinement logic. We use the quantifier-free logic of equality,

uninterpreted functions and linear arithmetic (QF-EUFLIA) [69]. For example,

{v:Int | 0 ≤ v ∧ v < 100}

describes Int values between 0 and 100.

Type Aliases For brevity and readability, it is often convenient to define abbreviations for particular

refinement predicates and types. For example, we can define an alias for the above predicate

predicate Btwn Lo N Hi = Lo ≤ N ∧ N < Hi

and use it to define a type alias

type Rng Lo Hi = {v:Int | Btwn Lo v Hi}

We can now describe the above integers as (Rng 0 100).

Contracts To describe the desired properties of a function, we need simply refine the input and

output types with predicates that respectively capture suitable pre- and post-conditions. For

example,

range :: lo:Int → hi:{Int | lo ≤ hi} → [(Rng lo hi)]

states that range is a function that takes two Ints respectively named lo and hi and returns a

list of Ints between lo and hi. There are three things worth noting. First, we have binders to

9

name the function’s inputs (e.g. lo and hi) and can use the binders inside the function’s output.

Second, the refinement in the input type describes the pre-condition that the second parameter

hi cannot be smaller than the first lo. Third, the refinement in the output type describes the

post-condition that all returned elements are between the bounds of lo and hi.

1.1.2 Verification

Next, consider the following implementation for range:

range lo hi

| lo ≤ hi = lo : range (lo + 1) hi

| otherwise = []

When we run LIQUID HASKELL on the above code, it reports an error at the definition of range.

This is unpleasant! One way to debug the error is to determine what type has been inferred for

range, e.g. by hovering the mouse over the identifier in the web interface. In this case, we see

that the output type is essentially:

[{v:Int | lo ≤ v ∧ v ≤ hi}]

which indicates the problem. There is an off-by-one error due to the problematic guard. If we

replace the second ≤ with a < and re-run the checker, the function is verified.

Holes It is often cumbersome to specify the Haskell types, as those can be gleaned from the

regular type signatures or via GHC’s inference. Thus, LIQUID HASKELL allows the user to leave

holes in the specifications. Suppose rangeFind has type

(Int → Bool) → Int → Int → Maybe Int

where the second and third parameters define a range. We can give rangeFind a refined

specification:

_ → lo:_ → hi:{Int | lo ≤ hi} → Maybe (Rng lo hi)

where the _ is the unrefined Haskell type for the corresponding position in the type.

Inference Next, consider the implementation

rangeFind f lo hi = find f $ range lo hi

10

where find from Data.List has the (unrefined) type

find :: (a → Bool) → [a] → Maybe a

LIQUID HASKELL uses the abstract interpretation framework of Liquid Typing [79] to infer

that the type parameter a of find can be instantiated with (Rng lo hi) thereby enabling the

automatic verification of rangeFind.

Inference is crucial for automatically synthesizing types for polymorphic instantiation

sites – note there is another instantiation required at the use of the apply operator $ – and to

relieve the programmer of the tedium of specifying signatures for all functions. Of course, for

functions exported by the module, we must write signatures to specify preconditions – otherwise,

the system defaults to using the trivial (unrefined) Haskell type as the signature i.e., checks the

implementation assuming arbitrary inputs.

1.1.3 Measures

So far, the specifications have been limited to comparisons and arithmetic operations on

primitive values. We use measure functions, or just measures, to specify inductive properties of

algebraic data types. For example, we define a measure len to write properties about the number

of elements in a list.

measure len :: [a] → Int

len [] = 0

len (x:xs) = 1 + (len xs)

Measure definitions are not arbitrary Haskell code but a very restricted subset 2.1.6. Each measure

has a single equation per constructor that defines the value of the measure for that constructor.

The right-hand side of the equation is a term in the restricted refinement logic. Measures are

interpreted by generating refinement types for the corresponding data constructors. For example,

from the above, LIQUID HASKELL derives the following types for the list data constructors:

[] :: {v:[a]| len v = 0}

(:) :: _ → xs:_ → {v:[a]| len v = 1 + len xs}

11

Here, len is an uninterpreted function in the refinement logic. We can define multiple measures

for a type; LIQUID HASKELL simply conjoins the individual refinements arising from each

measure to obtain a single refined signature for each data constructor.

Using Measures We use measures to write specifications about algebraic types. For example, we

can specify and verify that:

append :: xs:[a] → ys:[a]

→ {v:[a]| len v = len xs + len ys}

map :: (a → b) → xs:[a]

→ {v:[b]| len v = len xs}

filter :: (a → Bool) → xs:[a]

→ {v:[a]| len v ≤ len xs}

Propositions Measures can be used to encode sophisticated invariants about algebraic data

types. To this end, the user can write a measure whose output has a special type Prop denoting

propositions in the refinement logic. For instance, we can describe a list that contains a 0 as:

measure hasZero :: [Int] → Prop

hasZero [] = false

hasZero (x:xs) = x == 0 || hasZero xs

We can then define lists containing a 0 as:

type HasZero = {v : [Int] | hasZero v }

Using the above, LIQUID HASKELL will accept

xs0 :: HasZero

xs0 = [2,1,0,-1,-2]

but will reject

xs ′ :: HasZero

xs ′ = [3,2,1]

12

1.1.4 Refined Data Types

Often, we require that every instance of a type satisfies some invariants. For example,

consider a CSV data type, that represents tables:

data CSV a = CSV { cols :: [String]

, rows :: [[a]] }

With LIQUID HASKELL we can enforce the invariant that every row in a CSV table should have

the same number of columns as there are in the header

data CSV a = CSV { cols :: [String]

, rows :: [ListL a cols] }

using the alias

type ListL a X = {v:[a]| len v = len X}

A refined data definition is global in that LIQUID HASKELL will reject any CSV-typed expression

that does not respect the refined definition. For example, both of the below

goodCSV = CSV ["Month", "Days"]

[["Jan" , "31"]

, ["Feb , "28"]

, ["Mar" , "31"]]

badCSV = CSV ["Month", "Days"]

[["Jan" , "31"]

, ["Feb , "28"]

, ["Mar"]]

are well-typed Haskell, but the latter is rejected by LIQUID HASKELL. Like measures, the global

invariants are enforced by refining the constructors’ types.

1.1.5 Refined Type Classes

Next, let us see how LIQUID HASKELL allows verification of programs that use ad-hoc

polymorphism via type classes. While the implementation of each typeclass instance is different,

there is often a common interface that all instances should satisfy.

13

Class Measures As an example, consider the class definition

class Indexable f where

size :: f a → Int

at :: f a → Int → a

For safe access, we might require that at’s second parameter is bounded by the size of the

container. To this end, we define a type-indexed measure, using the class measure keyword

class measure sz :: a → Nat

Now, we can specify the safe-access precondition independent of the particular instances of

Indexable:

class Indexable f where

size :: xs:_ → {v:Nat | v = sz xs}

at :: xs:_ → {v:Nat | v < sz xs} → a

Instance Measures For each concrete type that instantiates a class, we require a corresponding

definition for the measure. For example, to define lists as an instance of Indexable, we require

the definition of the sz instance for lists:

instance measure sz :: [a] → Nat

sz [] = 0

sz (x:xs) = 1 + (sz xs)

Class measures work just like regular measures in that the above definition is used to refine the

types of the list data constructors. After defining the measure, we can define the type instance as:

instance Indexable [] where

size [] = 0

size (x:xs) = 1 + size xs

(x:xs) 8 at 8 0 = x

(x:xs) 8 at 8 i = index xs (i-1)

LIQUID HASKELL uses the definition of sz for lists to check that size and at satisfy the refined

class specifications.

14

Client Verification At the clients of a type-class we use the refined types of class methods.

Consider a client of Indexables:

sum :: (Indexable f) ⇒ f Int → Int

sum xs = go 0

where

go i | i < size xs = xs 8 at 8 i + go (i+1)

| otherwise = 0

LIQUID HASKELL proves that each call to at is safe, by using the refined class specifications of

Indexable. Specifically, each call to at is guarded by a check i < size xs and i is increasing

from 0, so LIQUID HASKELL proves that xs 8at 8 i will always be safe.

1.2 Totality

Well typed Haskell code can go very wrong:

*** Exception: Prelude.head: empty list

As our first application, let us see how to use LIQUID HASKELL to statically guarantee the absence

of such exceptions, i.e., to prove various functions total.

1.2.1 Specifying Totality

First, let us see how to specify the notion of totality inside LIQUID HASKELL. Consider

the source of the above exception:

head :: [a] → a

head (x:_) = x

Most of the work towards totality checking is done by the translation to GHC’s Core, in which

every function is total, but may explicitly call an error function that takes as input a string that

describes the source of the pattern-match failure and throws an exception. For example head is

translated into

head d = case d of

x:xs → x

[] → patError "head"

15

Since every core function is total, but may explicitly call error functions, to prove that the

source function is total, it suffices to prove that patError will never be called. We can specify

this requirement by giving the error functions a false pre-condition:

patError :: {v:String | False } → a

The pre-condition states that the input type is uninhabited and so an expression containing a call

to patError will only type check if the call is dead code.

1.2.2 Verifying Totality

The (core) definition of head does not typecheck as is; but requires a pre-condition that

states that the function is only called with non-empty lists. Formally, we do so by defining the

alias

predicate NonEmp X = 0 < len X

and then stipulating that

head :: {v : [a] | NonEmp v} → a

To verify the (core) definition of head, LIQUID HASKELL uses the above signature to check the

body in an environment

d :: {0 < len d}

When d is matched with [], the environment is strengthened with the corresponding refinement

from the definition of len, i.e.,

d :: {0 < (len d) ∧ (len d) = 0}

Since the formula above is a contradiction, LIQUID HASKELL concludes that the call to patError

is dead code, and thereby verifies the totality of head. Of course, now we have pushed the burden

of proof onto clients of head – at each such site, LIQUID HASKELL will check that the argument

passed in is indeed a NonEmp list, and if it successfully does so, then we, at any uses of head, can

rest assured that head will never throw an exception.

Refinements and Totality While the head example is quite simple, in general, refinements make

it easy to prove totality in complex situations, where we must track dependencies between inputs

and outputs. For example, consider the risers function from [65]:

16

risers [] = []

risers [x] = [[x]]

risers (x:y:zs)

| x ≤ y = (x:s) : ss

| otherwise = [x] : (s:ss)

where

s:ss = risers (y:etc)

The pattern match on the last line is partial; its core translation is

let (s, ss) = case risers (y:etc) of

s:ss → (s, ss)

[] → patError "..."

What if risers returns an empty list? Indeed, risers does, on occasion, return an empty list

per its first equation. However, on close inspection, it turns out that if the input is non-empty,

then the output is also non-empty. Happily, we can specify this as:

risers :: l:_ → {v:_ | NonEmp l ⇒ NonEmp v}

LIQUID HASKELL verifies that risers meets the above specification, and hence that

the patError is dead code as at that site, the scrutinee is obtained from calling risers with a

NonEmp list.

Non-Emptiness via Measures Instead of describing non-emptiness indirectly using len, a user

could a special measure:

measure nonEmp :: [a] → Prop

nonEmp (x:xs) = True

nonEmp [] = False

predicate NonEmp X = nonEmp X

After which, verification would proceed analagous to the above.

Total Totality Checking patError is one of many possible errors thrown by non-total functions.

Control.Exception.Base has several others including recSelError, irrefutPatError,

etc. which serve the purpose of making core translations total. Rather than hunt down and

17

specify False preconditions one by one, the user may automatically turn on totality checking

by invoking LIQUID HASKELL with the --totality command line option, at which point the

tool systematically checks that all the above functions are indeed dead code, and hence, that all

definitions are total.

1.2.3 Case Studies

We verified totality of two libraries: HsColour and Data.Map, earlier versions of which

had previously been proven total by catch [65].

Data.Map is a widely used library for (immutable) key-value maps, implemented as balanced

binary search trees. Totality verification of Data.Map was quite straightforward. We had already

verified termination and the crucial binary search invariant 3. To verify totality it sufficed to

simply re-run verification with the --totality argument. All the important specifications were

already captured by the types, and no additional changes were needed to prove totality.

This case study illustrates an advantage of LIQUID HASKELL over specialized provers

(e.g., catch [65]): it can be used to prove totality, termination and functional correctness at the

same time, facilitating a nice reuse of specifications for multiple tasks.

HsColour is a library for generating syntax-highlighted LATEX and HTML from Haskell source

files. Checking HsColour was not so easy, as in some cases assumptions are used about the

structure of the input data: For example, ACSS.splitSrcAndAnnos handles an input list of

Strings and assumes that whenever a specific String (say breakS) appears then at least two

Strings (call them mname and annots) follow it in the list. Thus, for a list ls that starts with

breakS the irrefutable pattern (_:mname:annots) = ls should be total. Though possible, it is

currently it is somewhat cumbersome to specify such properties. As an easy and practical solution,

to prove totality, we added a dynamic check that validates that the length of the input ls exceeds

2.

In other cases assertions were imposed via monadic checks, e.g. HsColour.hs reads the

input arguments and checks their well-formedness using

when (length f > 1) $ errorOut "..."

18

Currently LIQUID HASKELL does not support monadic reasoning that allows assuming that

(length f ≤ 1) holds when executing the action following the when check. Finally, code

modifications were required to capture properties that are cumbersome to express with LIQUID

HASKELL. For example, trimContext checks if there is an element that satisfies p in the list

xs; if so it defines ys = dropWhile (not . p) xs and computes tail ys. By the check we

know that ys has at least one element, the one that satisfies p. Due to the complexity of this

property, we preferred to rewrite the specific code in a more verification friendly version.

On the whole, while proving totality can be cumbersome (as in HsColour) it is a nice

side benefit of refinement type checking and can sometimes be a fully automatic corollary of

establishing more interesting safety properties (as in Data.Map).

1.3 Termination

Program divergence is, more often than not, a bug rather than a feature. To account for

the common cases, by default, LIQUID HASKELL proves termination of each recursive function.

Fortunately, refinements make this onerous task quite straightforward. We need simply associate

a well-founded termination metric on the function’s parameters, and then use refinement typing to

check that the metric strictly decreases at each recursive call. In practice, due to a careful choice

of defaults, this amounts to about a line of termination-related hints per hundred lines of source.

In Chapter 2 we prove soundness of our refinement type based termination checker and also we

explain how soundness of LIQUID HASKELL crucially depends on the termination checker. Here,

we provide an overview on how one can use LIQUID HASKELL to prove termination.

Simple Metrics As a starting example, consider the fac function

fac :: n:Nat → Nat / [n]

fac 0 = 1

fac n = n * fac (n-1)

The termination metric is simply the parameter n; as n is non-negative and decreases at the

recursive call, LIQUID HASKELL verifies that fac will terminate. We specify the termination

metric in the type signature with the /[n].

19

Termination checking is performed at the same time as regular type checking, as it

can be reduced to refinement type checking with a special terminating fixpoint combinator 2.

Thus, if LIQUID HASKELL fails to prove that a given termination metric is well-formed and

decreasing, it will report a Termination Check Error. At this point, the user can either debug

the specification, or mark the function as non-terminating.

Termination Expressions Sometimes, no single parameter decreases across recursive calls, but

there is some expression that forms the decreasing metric. For example recall range lo hi

(from § 1.1.2) which returns the list of Ints from lo to hi:

range lo hi

| lo < hi = lo : range (lo+1) hi

| otherwise = []

Here, neither parameter is decreasing (indeed, the first one is increasing) but hi-lo decreases

across each call. To account for such cases, we can specify as the termination metric a (refinement

logic) expression over the function parameters. Thus, to prove termination, we could type range

as:

lo:Int → hi:Int → [(Btwn lo hi)] / [hi-lo]

Lexicographic Termination The Ackermann function

ack m n

| m == 0 = n + 1

| n == 0 = ack (m-1) 1

| otherwise = ack (m-1) (ack m (n-1))

is curious as there exists no simple, natural-valued, termination metric that decreases at each

recursive call. However ack terminates because at each call either m decreases or m remains

the same and n decreases. In other words, the pair (m,n) strictly decreases according to a

lexicographic ordering. Thus LIQUID HASKELL supports termination metrics that are a sequence

of termination expressions. For example, we can type ack as:

ack :: m:Nat → n:Nat → Nat / [m, n]

20

At each recursive call LIQUID HASKELL uses a lexicographic ordering to check that the sequence

of termination expressions is decreasing (and well-founded in each component).

Mutual Recursion The lexicographic mechanism lets us check termination of mutually recursive

functions, e.g. isEven and isOdd

isEven 0 = True

isEven n = isOdd $ n-1

isOdd n = not $ isEven n

Each call terminates as either isEven calls isOdd with a decreasing parameter, or isOdd calls

isEven with the same parameter, expecting the latter to do the decreasing. For termination, we

type:

isEven :: n:Nat → Bool / [n, 0]

isOdd :: n:Nat → Bool / [n, 1]

To check termination, LIQUID HASKELL verifies that at each recursive call the metric of the caller

is less than the metric of the callee. When isEven calls isOdd, it proves that the caller’s metric,

namely [n,0] is greater than the callee’s [n-1,1]. When isOdd calls isEven, it proves that the

caller’s metric [n,1] is greater than the callee’s [n,0], thereby proving the mutual recursion

always terminates.

Recursion over Data Types The above strategies generalize easily to functions that recurse over

(finite) data structures like arrays, lists, and trees. In these cases, we simply use measures to

project the structure onto Nat, thereby reducing the verification to the previously seen cases. For

example, we can prove that map

map f (x:xs) = f x : map f xs

map f [] = []

terminates, by typing map as

(a → b) → xs:[a] → [b] / [len xs]

i.e., by using the measure len xs, from § 1.1.3, as the metric.

21

Generalized Metrics Over Datatypes In many functions there is no single argument whose

measure provably decreases. Consider

merge (x:xs) (y:ys)

| x < y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

from the homonymous sorting routine. Here, neither parameter decreases, but the sum of their

sizes does. To prove termination, we can type merge as:

xs:[a] → ys:[a] → [a] / [len xs + len ys]

Putting it all Together The above techniques can be combined to prove termination of the

mutually recursive quick-sort (from [105])

qsort (x:xs) = qpart x xs [] []

qsort [] = []

qpart x (y:ys) l r

| x > y = qpart x ys (y:l) r

| otherwise = qpart x ys l (y:r)

qpart x [] l r = app x (qsort l) (qsort r)

app k [] z = k : z

app k (x:xs) z = x : app k xs z

qsort (x:xs) calls qpart x xs to partition xs into two lists l and r that have elements less

and greater or equal than the pivot x, respectively. When qpart finishes partitioning it mutually

recursively calls qsort to sort the two list and appends the results with app. LIQUID HASKELL

proves sortedness as well [98] but let us focus here on termination. To this end, we type the

functions as:

qsort :: xs:_ → _

/ [len xs , 0]

qpart :: _ → ys:_ → l:_ → r:_ → _

/ [len ys + len l + len r, 1 + len ys]

22

As before, LIQUID HASKELL checks that at each recursive call the caller’s metric is less than

the callee’s. When qsort calls qpart the length of the unsorted list len (x:xs) exceeds the

len xs + len [] + len []. When qpart recursively calls itself the first component of the

metric is the same, but the length of the unpartitioned list decreases, i.e. 1 + len y:ys exceeds

1 + len ys. Finally, when qpart calls qsort we have len ys + len l + len r exceeds

both len l and len r, thereby ensuring termination.

Automation: Default Size Measures The qsort example illustrates that while LIQUID HASKELL

is very expressive, devising appropriate termination metrics can be tricky. Fortunately, such

patterns are very uncommon, and the vast majority of cases in real world programs are just

structural recursion on a datatype. LIQUID HASKELL automates termination proofs for this

common case, by allowing users to specify a default size measure for each data type, e.g. len

for [a]. Now, if no explicit termination metric is given, by default LIQUID HASKELL assumes

that the first argument whose type has an associated size measure decreases. Thus, in the above,

we need not specify metrics for fac or map as the size measure is automatically used to prove

termination. This heuristic suffices to automatically prove 67% of recursive functions terminating.

Disabling Termination Checking In Haskell’s lazy setting not all functions are terminating.

LIQUID HASKELL provides two mechanisms the disable termination proving. A user can disable

checking a single function by marking that function as lazy. For example, specifying lazy

repeat tells the tool to not prove repeat terminates. Optionally, a user can disable termination

checking for a whole module by using the command line argument --no-termination for the

entire file.

1.4 Memory Safety

The terms “Haskell” and “pointer arithmetic” rarely occur in the same sentence, yet

many Haskell programs are constantly manipulating pointers under the hood by way of using the

Bytestring and Text libraries. These libraries sacrifice safety for (much needed) speed and are

natural candidates for verification through LIQUID HASKELL.

23

1.4.1 Bytestring

The single most important aspect of the Bytestring library, our first case study, is

its pervasive intermingling of high level abstractions like higher-order loops, folds, and fusion,

with low-level pointer manipulations in order to achieve high-performance. Bytestring is

an appealing target for evaluating LIQUID HASKELL, as refinement types are an ideal way to

statically ensure the correctness of the delicate pointer manipulations, errors in which lie below

the scope of dynamic protection.

The library spans 8 files (modules) totaling about 3,500 lines. We used LIQUID HASKELL

to verify the library by giving precise types describing the sizes of internal pointers and bytestrings.

These types are used in a modular fashion to verify the implementation of functional correctness

properties of higher-level API functions which are built using lower-level internal operations.

Next, we show the key invariants and how LIQUID HASKELL reasons precisely about pointer

arithmetic and higher-order codes.

Key Invariants A (strict) ByteString is a triple of a payload pointer, an offset into the memory

buffer referred to by the pointer (at which the string actually “begins”) and a length corresponding

to the number of bytes in the string, which is the size of the buffer after the offset, that corresponds

to the string. We define a measure for the size of a ForeignPtr’s buffer, and use it to define the

key invariants as a refined datatype

measure fplen :: ForeignPtr a → Int

data ByteString = PS

{ pay :: ForeignPtr Word8

, off :: {v:Nat | v ≤ fplen pay }

, len :: {v:Nat | off + v ≤ fplen pay } }

The definition states that the offset is a Nat no bigger than the size of the payload’s buffer, and

that the sum of the offset and non-negative length is no more than the size of the payload buffer.

Finally, we encode a ByteString’s size as a measure.

measure bLen :: ByteString → Int

bLen (PS p o l) = l

24

Specifications We define a type alias for a ByteString whose length is the same as that of

another, and use the alias to type the API function copy, which clones ByteStrings.

type ByteStringEq B = {v:ByteString | (bLen v) = (bLen B)}

copy :: b:ByteString → ByteStringEq b

copy (PS fp off len)

= unsafeCreate len $ \p →

withForeignPtr fp $ \f →

memcpy len p (f 8 plusPtr 8 off)

Pointer Arithmetic The simple body of copy abstracts a fair bit of internal work. memcpy

sz dst src, implemented in C and accessed via the FFI is a potentially dangerous, low-level

operation, that copies sz bytes starting from an address src into an address dst. Crucially, for

safety, the regions referred to be src and dst must be larger than sz. We capture this requirement

by defining a type alias PtrN a N denoting GHC pointers that refer to a region bigger than N

bytes, and then specifying that the destination and source buffers for memcpy are large enough.

type PtrN a N = {v:Ptr a | N ≤ (plen v)}

memcpy :: sz:CSize → dst:PtrN a siz

→ src:PtrN a siz

→ IO ()

The actual output for copy is created using the internal function unsafeCreate which

is a wrapper around.

create :: l:Nat → f:(PtrN Word8 l → IO ())

→ IO (ByteStringN l)

create l f = do

fp <- mallocByteString l

withForeignPtr fp $ \p → f p

return $! PS fp 0 l

The type of f specifies that the action will only be invoked on a pointer of length at least

l, which is verified by propagating the types of mallocByteString and withForeignPtr. The

fact that the action is only invoked on such pointers is used to ensure that the value p in the body

25

of copy is of size l. This, and the ByteString invariant that the size of the payload fp exceeds

the sum of off and len, ensures safety of the memcpy call.

Interfacing with the Real World The above illustrates how LIQUID HASKELL analyzes code

that interfaces with the “real world” via the C FFI. We specify the behavior of the world via a

refinement typed interface. These types are then assumed to hold for the corresponding functions,

i.e. generate pre-condition checks and post-condition guarantees at usage sites within the Haskell

code.

Higher Order Loops mapAccumR combines a map and a foldr over a ByteString. The function

uses non-trivial recursion, and demonstrates the utility of abstract-interpretation based inference.

mapAccumR f z b = unSP $ loopDown (mapAccumEFL f) z b

To enable fusion [23] loopDown uses a higher order loopWrapper to iterate over the buffer with

a doDownLoop action:

doDownLoop f acc0 src dest len = loop (len -1) (len -1) acc0

where

loop :: s:_ → _ → _ → _ / [s+1]

loop s d acc

| s < 0

= return (acc :*: d+1 :*: len - (d+1))

| otherwise

= do x <- peekByteOff src s

case f acc x of

(acc ′ :*: NothingS) →

loop (s-1) d acc ′

(acc ′ :*: JustS x ′) →

pokeByteOff dest d x ′

>> loop (s-1) (d-1) acc ′

The above function iterates across the src and dst pointers from the right (by repeatedly

decrementing the offsets s and d starting at the high len down to -1). Low-level reads and writes

are carried out using the potentially dangerous peekByteOff and pokeByteOff respectively.

To ensure safety, we type these low level operations with refinements stating that they are only

26

invoked with valid offsets VO into the input buffer p.

type VO P = {v:Nat | v < plen P}

peekByteOff :: p:Ptr b → VO p → IO a

pokeByteOff :: p:Ptr b → VO p → a → IO ()

The function doDownLoop is an internal function. LIQUID HASKELL, via abstract

interpretation [79], infers that (1) len is less than the sizes of src and dest, (2) f (here,

mapAccumEFL) always returns a JustS, so (3) both the source and the destination offsets satisfy

0≤ s,d< len, (4) the generated IO action returns a triple (acc :*: 0 :*: len), thereby

proving the safety of the accesses in loop and verifying that loopDown and the API function

mapAccumR return a Bytestring whose size equals its input’s.

To prove termination, we add a termination expression s+1 which is always non-negative

and decreases at each call.

Nested Data group splits a string like "aart" into the list ["aa","r","t"], i.e. a list of

(a) non-empty ByteStrings whose (b) total length equals that of the input. To specify these

requirements, we define a measure for the total length of strings in a list and use it to define the

list of non-empty strings whose total length equals that of another string:

measure bLens :: [ByteString] → Int

bLens ([]) = 0

bLens (x:xs) = bLen x + bLens xs

type ByteStringNE = {v:ByteString | bLen v > 0}

type ByteStringsEq B = {v:[ByteStringNE] | bLens v = bLen b}

LIQUID HASKELL uses the above to verify that

group :: b:ByteString → ByteStringsEq b

group xs

| null xs = []

| otherwise = let x = unsafeHead xs

xs ′ = unsafeTail xs

(ys , zs) = spanByte x xs ′

in (y 8 cons 8 ys) : group zs

27

The example illustrates why refinements are critical for proving termination. LIQUID HASKELL

determines that unsafeTail returns a smaller ByteString than its input and that each element

returned by spanByte is no bigger than the input, concluding that zs is smaller than xs, hence

checking the body under the termination-weakened environment.

To justify the output type, let’s look at spanByte, which splits strings into a pair:

spanByte c ps@(PS x s l)

= inlinePerformIO $ withForeignPtr x $

\p → go (p 8 plusPtr 8 s) 0

where

go :: _ → i:_ → _ / [l-i]

go p i

| i ≥ l = return (ps , empty)

| otherwise = do

c ′ <- peekByteOff p i

if c /= c ′

then let b1 = unsafeTake i ps

b2 = unsafeDrop i ps

in return (b1, b2)

else go p (i+1)

Via inference, LIQUID HASKELL verifies the safety of the pointer accesses, and determines

that the sum of the lengths of the output pair of ByteStrings equals that of the input ps. go

terminates as l-i is a well-founded decreasing metric.

1.4.2 Text

Next we present a brief overview of the verification of Text, which is the standard

library used for serious unicode text processing. Text uses byte arrays and stream fusion to

guarantee performance while providing a high-level API. In our evaluation of LIQUID HASKELL

on Text,we focused on two types of properties: (1) the safety of array index and write operations,

and (2) the functional correctness of the top-level API. These are both made more interesting by

the fact that Text internally encodes characters using UTF-16, in which characters are stored

in either two or four bytes. Text is a vast library spanning 39 modules and 5,700 lines of code,

28

however we focus on the 17 modules that are relevant to the above properties. While we have

verified exact functional correctness size properties for the top-level API, we focus here on the

low-level functions and interaction with unicode.

Arrays and Texts A Text consists of an (immutable) Array of 16-bit words, an offset into the

Array, and a length describing the number of Word16s in the Text. The Array is created and

filled using a mutable MArray. All write operations in Text are performed on MArrays in the ST

monad, but they are frozen into Arrays before being used by the Text constructor. We write a

measure for the size of an MArray and use it to type the write and freeze operations.

measure malen :: MArray s → Int

predicate EqLen A MA = alen A = malen MA

predicate Ok I A = 0 ≤ I < malen A

type VO A = {v:Int| Ok v A}

unsafeWrite :: m:MArray s

→ VO m → Word16 → ST s ()

unsafeFreeze :: m:MArray s

→ ST s {v:Array | EqLen v m}

Reasoning about Unicode The function writeChar (abbreviating the function unsafeWrite

from UnsafeChar) writes a Char into an MArray. Text uses UTF-16 to represent characters

internally, meaning that every Char will be encoded using two or four bytes (one or two Word16s).

writeChar marr i c

| n < 0x10000 = do

unsafeWrite marr i (fromIntegral n)

return 1

| otherwise = do

unsafeWrite marr i lo

unsafeWrite marr (i+1) hi

return 2

where n = ord c

m = n - 0x10000

lo = fromIntegral

29

$ (m 8 shiftR 8 10) + 0xD800

hi = fromIntegral

$ (m .&. 0x3FF) + 0xDC00

The UTF-16 encoding complicates the specification of the function as we cannot simply require i

to be less than the length of marr; if i were malen marr - 1 and c required two Word16s, we

would perform an out-of-bounds write. We account for this subtlety with a predicate that states

there is enough Room to encode c.

predicate OkN I A N = Ok (I+N-1) A

predicate Room I A C = if ord C < 0x10000

then OkN I A 1

else OkN I A 2

type OkSiz I A = {v:Nat | OkN I A v}

type OkChr I A = {v:Char | Room I A v}

Room i marr c says “if c is encoded using one Word16, then i must be less than malen marr,

otherwise i must be less than malen marr - 1.” OkSiz I A is an alias for a valid number of

Word16s remaining after the index I of array A. OkChr specifies the Chars for which there is

room (to write) at index I in array A. The specification for writeChar states that given an array

marr, an index i, and a valid Char for which there is room at index i, the output is a monadic

action returning the number of Word16 occupied by the char.

writeChar :: marr:MArray s

→ i:Nat

→ OkChr i marr

→ ST s (OkSiz i marr)

Bug Thus, clients of writeChar should only call it with suitable indices and characters. Using

LIQUID HASKELL we found an error in one client, mapAccumL, which combines a map and a fold

over a Stream, and stores the result of the map in a Text. Consider the inner loop of mapAccumL.

outer arr top = loop

where

loop !z !s !i =

30

case next0 s of

Done → return (arr , (z,i))

Skip s ′ → loop z s ′ i

Yield x s ′

| j ≥ top → do

let top ′ = (top + 1) 8 shiftL 8 1

arr ′ <- new top ′

copyM arr ′ 0 arr 0 top

outer arr ′ top ′ z s i

| otherwise → do

let (z ′ ,c) = f z x

d <- writeChar arr i c

loop z ′ s ′ (i+d)

where j | ord x < 0x10000 = i

| otherwise = i + 1

Let’s focus on the Yield x s′ case. We first compute the maximum index j to which we will

write and determine the safety of a write. If it is safe to write to j we call the provided function

f on the accumulator z and the character x, and write the resulting character c into the array.

However, we know nothing about c, in particular, whether c will be stored as one or two Word16s!

Thus, LIQUID HASKELL flags the call to writeChar as unsafe. The error can be fixed by lifting

f z x into the where clause and defining the write index j by comparing ord c (not ord x).

LIQUID HASKELL (and the authors) readily accepted our fix.

1.5 Functional Correctness Invariants

So far, we have considered a variety of general, application independent correctness

criteria. Next, let us see how we can use LIQUID HASKELL to specify and statically verify critical,

application specific correctness properties, using two illustrative case studies: red-black trees and

the stack-set data structure introduced in the xmonad system.

31

1.5.1 Red-Black Trees

Red-Black trees have several non-trivial invariants that are ideal for illustrating the

effectiveness of refinement types and contrasting with existing approaches based on GADTs [45].

The structure can be defined via the following Haskell type:

data Col = R | B

data Tree a = Leaf

| Node Col a (Tree a) (Tree a)

However, a Tree is a valid Red-Black tree only if it satisfies three crucial invariants:

• Order: The keys must be binary-search ordered, i.e. the key at each node must lie between

the keys of the left and right subtrees of the node,

• Color: The children of every red Node must be colored black, where each Leaf can be

viewed as black,

• Height: The number of black nodes along any path from each Node to its Leafs must be

the same.

Red-Black trees are especially tricky as various operations create trees that can temporar-

ily violate the invariants. Thus, while the above invariants can be specified with singletons and

GADTs, encoding all the properties (and the temporary violations) results in a proliferation of

data constructors that can somewhat obfuscate correctness. In contrast, with refinements, we can

specify and verify the invariants in isolation (if we wish) and can trivially compose them simply

by conjoining the refinements.

Color Invariant To specify the color invariant, we define a black-rooted tree as:

measure isB :: Tree a → Prop

isB (Node c x l r) = c == B

isB (Leaf) = True

and then we can describe the color invariant simply as:

measure isRB :: Tree a → Prop

isRB (Leaf) = True

32

isRB (Node c x l r) = isRB l ∧ isRB r ∧

c = R ⇒ (isB l ∧ isB r)

The insertion and deletion procedures create intermediate almost red-black trees where the color

invariant may be violated at the root. Rather than create new data constructors we define almost

red-black trees with a measure that just drops the invariant at the root:

measure almostRB :: Tree a → Prop

almostRB (Leaf) = True

almostRB (Node c x l r) = isRB l ∧ isRB r

Height Invariant To specify the height invariant, we define a black-height measure:

measure bh :: Tree a → Int

bh (Leaf) = 0

bh (Node c x l r) = bh l + if c = R then 0 else 1

and we can now specify black-height balance as:

measure isBal :: Tree a → Prop

isBal (Leaf) = true

isBal (Node c x l r) = bh l = bh r

∧ isBH l ∧ isBH r

Note that bh only considers the left sub-tree, but this is legitimate, because isBal will ensure the

right subtree has the same bh.

Order Invariant We refine the data definition of Tree to encode the ordering property:

data Tree a

= Leaf

| Node { c :: Col

, key :: a

, lt :: Tree {v:a | v < key }

, rt :: Tree {v:a | key < v } }

Composing Invariants Finally, we can compose the invariants and define a Red-Black tree with

the alias:

type RBT a = {v:Tree a | isRB v ∧ isBal v}

33

An almost Red-Black tree is the above with isRB replaced with almostRB, i.e. does not require

any new types or constructors. If desired, we can ignore a particular invariant simply by replacing

the corresponding refinement above with true. Given the above – and suitable signatures LIQUID

HASKELL verifies the various insertion, deletion and rebalancing procedures for a Red-Black

Tree library.

1.5.2 Stack Sets in XMonad

xmonad is a dynamically tiling X11 window manager that is written and configured in

Haskell. The set of windows managed by XMonad is organized into a hierarchy of types. At the

lowest level we have a set of windows a represented as a Stack a

data Stack a = Stack { focus :: a

, up :: [a]

, down :: [a] }

The above is a zipper [40] where focus is the “current” window and up and down the windows

“before” and “after” it. Each Stack is wrapped inside a Workspace that also has information

about layout and naming:

data Workspace i l a = Workspace

{ tag :: i

, layout :: l

, stack :: Maybe (Stack a) }

which is in turn, wrapped inside a Screen:

data Screen i l a sid sd = Screen

{ workspace :: Workspace i l a

, screen :: sid

, screenDηil :: sd }

The set of all screens is represented by the top-level zipper:

data StackSet i l a sid sd = StackSet

{ cur :: Screen i l a sid sd

, vis :: [Screen i l a sid sd]

, hid :: [Workspace i l a]

34

, flt :: M.Map a RationalRect }

Key Invariant: Uniqueness of Windows The key invariant for the StackSet type is that each

window a should appear at most once in a StackSet i l a sid sd. That is, a window should

not be duplicated across stacks or workspaces. Informally, we specify this invariant by defining a

measure for the set of elements in a list, Stack, Workspace and Screen, and then we use that

measure to assert that the relevant sets are disjoint.

Specification: Unique Lists To specify that the set of elements in a list is unique, i.e. there are no

duplicates in the list we first define a measure denoting the set using Z3’s [24] built-in theory of

sets:

measure elts :: [a] → Set a

elts ([]) = emp

elts (x:xs) = cup (sng x) (elts xs)

Now, we can use the above to define uniqueness:

measure isUniq :: [a] → Prop

isUniq ([]) = true

isUniq (x:xs) = notIn x xs ∧ isUniq xs

where notIn is an abbreviation:

predicate notIn X S = not (mem X (elts S))

Specification: Unique Stacks We can use isUniq to define unique, i.e., duplicate free, Stacks

as:

data Stack a = Stack

{ focus :: a

, up :: {v:[a] | Uniq1 v focus}

, down :: {v:[a] | Uniq2 v focus up} }

using the aliases

predicate Uniq1 V X = isUniq V ∧ notIn X V

predicate Uniq2 V X Y = Uniq1 V X ∧ disjoint Y V

predicate disjoint X Y = cap (elts X) (elts Y) = emp

35

i.e. the field up is a unique list of elements different from focus, and the field down is additionally

disjoint from up.

Specification: Unique StackSets It is straightforward to lift the elts measure to the Stack and

the wrapper types Workspace and Screen, and then correspondingly lift isUniq to [Screen]

and [Workspace]. Having done so, we can use those measures to refine the type of StackSet

to stipulate that there are no duplicates:

type UniqStackSet i l a sid sd

= {v: StackSet i l a sid sd | NoDups v}

using the predicate aliases

predicate NoDups V

= disjoint3 (hid V) (cur V) (vis V)

∧ isUniq (vis V) ∧ isUniq (hid V)

predicate disjoint3 X Y Z

= disjoint X Y ∧ disjoint Y Z ∧ disjoint X Z

LIQUID HASKELL automatically turns the record selectors of refined data types to measures that

return the values of appropriate fields, hence hid x (resp. cur x, vis x) are the values of the

hid, cur and vis fields of a StackSet named x.

Verification LIQUID HASKELL uses the above refined type to verify the key invariant, namely,

that no window is duplicated. Three key actions of the, eventually successful, verification process

can be summarized as follows:

• Strengthening library functions. xmonad repeatedly concatenates the lists of a Stack. To

prove that for some s:Stack a, (up s ++ down s) is a unique list, the type of (++)

needs to capture that concatenation of two unique and disjoint lists is a unique list. For

verification, we assumed that Prelude’s (++) satisfies this property. But, not all arguments

of (++) are unique disjoint lists: "StackSet" ++ "error" is a trivial example that does

not satisfy the assumed preconditions of (++) thus creating a type error. Currently, LIQUID

HASKELL does not support intersection types, thus we used an unrefined (++.) variant of

(++) for such cases.

36

• Restrict the functions’ domain. modify is a maybe-like function that given a default value

x, a function f, and a StackSet s, applies f on the Maybe values inside s.

modify :: x:{v:Maybe (Stack a) | isNothing v}

→ (y:Stack a → Maybe {v:Stack a | SubElts v y})

→ UniqStackSet i l a s sd

→ UniqStackSet i l a s sd

Since inside the StackSet s each y:Stack a could be replaced with either the default value

x or with f y, we need to ensure that both these alternatives will not insert duplicates. This

imposes the curious precondition that the default value should be Nothing.

• Code inlining Given a tag i and a StackSet s, view i s will set the current Screen to the

screen with tag i, if such a screen exists in s. Below is the original definition for view in

case when a screen with tag i exists in visible screens

view :: (Eq s, Eq i) ⇒ i

→ StackSet i l a s sd

→ StackSet i l a s sd

view i s

| Just x <- find ((i==).tag.workspace) (visible s)

= s { current = x

, visible = current s

: deleteBy (equating screen) x (visible s) }

Verification of this code is difficult as we cannot suitably type find. Instead we inline the

call to find and the field update into a single recursive function raiseIfVisible i s

that in-place replaces x with the current screen.

Finally, xmonad comes with an extensive suite of QuickCheck properties, that were

formally verified in Coq [89]. In future work 8, it would be interesting to do a similar verification

with LIQUID HASKELL, to compare the refinement types to proof-assistants.

1.6 Evaluation

We now present a quantitative evaluation of LIQUID HASKELL.

37

Table 1.1. A quantitative evaluation of our experiments. Version is version of the checked library.
LOC is the number of non-comment lines of source code as reported by sloccount. Mod is the
number of modules in the benchmark and Fun is the number of functions. Specs is the number (/
line-count) of type specifications and aliases, data declarations, and measures provided. Annot is
the number (/ line-count) of other annotations provided, these include invariants and hints for the
termination checker. Qualif is the number (/ line-count) of provided qualifiers. Time (s) is the
time, in seconds, required to run LIQUID HASKELL.

Module Version LOC Mod Fun Specs Annot Qualif Time (s)
GHC.LIST 7.4.1 309 1 66 29 / 38 6 / 6 0 / 0 15
DATA.LIST 4.5.1.0 504 1 97 15 / 26 6 / 6 3 / 3 11
DATA.MAP.BASE 0.5.0.0 1396 1 180 125 / 173 13 / 13 0 / 0 174
DATA.SET.SPLAY 0.1.1 149 1 35 27 / 37 5 / 5 0 / 0 27
HSCOLOUR 1.20.0.0 1047 16 234 19 / 40 5 / 5 1 / 1 196
XMONAD.STACKSET 0.11 256 1 106 74 / 213 3 / 3 4 / 4 27
BYTESTRING 0.9.2.1 3505 8 569 307 / 465 55 / 55 47 / 124 294
TEXT 0.11.2.3 3128 17 493 305 / 717 52 / 54 49 / 97 499
VECTOR-ALGORITHMS 0.5.4.2 1218 10 99 76 / 266 9 / 9 13 / 13 89
Total 11512 56 1879 977 / 1975 154 / 156 117 / 242 1336

1.6.1 Results

We have used the following libraries as benchmarks:

• GHC.List and Data.List, which together implement many standard list operations; we

verify various size related properties,

• Data.Set.Splay, which implements a splay-tree based functional set data type; we verify

that all interface functions terminate and return well ordered trees,

• Data.Map.Base, which implements a functional map data type; we verify that all interface

functions terminate and return binary-search ordered trees [98],

• HsColour, a syntax highlighting program for Haskell code, we verify totality of all func-

tions (§ 1.2),

• XMonad, a tiling window manager for X11, we verify the uniqueness invariant of the core

datatype, as well as some of the QuickCheck properties (§ 1.5.2),

• Bytestring, a library for manipulating byte arrays, we verify termination, low-level

memory safety, and high-level functional correctness properties (§ 1.4.1),

38

• Text, a library for high-performance unicode text processing; we verify various pointer

safety and functional correctness properties (§ 1.4.2), during which we find a subtle bug,

• Vector-Algorithms, which includes a suite of “imperative” (i.e. monadic) array-based

sorting algorithms; we verify the correctness of vector accessing, indexing, and slicing etc..

Table 1.1 summarizes our experiments, which covered 56 modules totaling 11,512 non-

comment lines of source code and 1,975 lines of specifications. The results are on a machine with

an Intel Xeon X5660 and 32GB of RAM (no benchmark required more than 1GB.) The upshot is

that LIQUID HASKELL is very effective on real-world code bases. The total overhead due to hints,

i.e. the sum of Annot and Qualif, is 3.5% of LOC. The specifications themselves are machine

checkable versions of the comments placed around functions describing safe usage and behavior,

and required around two lines to express on average. While there is much room for improving the

running times, the tool is fast enough to be used interactively, verify a handful of API functions

and associated helpers in isolation.

1.6.2 Limitations

Our case studies also highlighted several limitations of LIQUID HASKELL. In most cases,

we could alter the code slightly to facilitate verification.

Ghost parameters are sometimes needed in order to materialize values that are not needed for the

computation, but are necessary to prove various specifications. For example, the piv parameter in

the append function for red-black trees (§ 1.5.1). Bounded Refinement Types (Chapter 4) provide

a complete, but unfortunately not elegant way to eliminated ghost parameters.

Fixed-width integer and floating-point numbers LIQUID HASKELL uses the theories of linear

arithmetic and real numbers to reason about numeric operations. In some cases this causes us to

lose precision, e.g. when we have to approximate the behavior of bitwise operations. We could

address this shortcoming by using the theory of bit-vectors to model fixed-width integers, but we

are unsure of the effect this would have on LIQUID HASKELL’s performance.

Functions as Data Several libraries like Text encode data structures like (finite) streams using

functions, in order to facilitate fusion. Currently, it is not possible to describe sizes of these

39

structures using measures, as this requires describing the sizes of input-output chains starting at

a given seed input for the function. In future work, it will be interesting to extend the measure

mechanism to support multiple parameters (e.g. a stream and a seed) in order to reason about

such structures.

Lazy binders sometimes get in the way of verification. A common pattern in Haskell code is to

define all local variables in a single where clause and use them only in a subset of all branches.

LIQUID HASKELL flags a few such definitions as unsafe, not realizing that the values will only

be demanded in a specific branch. Currently, we manually transform the code by pushing binders

inwards to the usage site. This transformation could be easily automated.

Assumes which can be thought of as “hybrid” run-time checks, had to be placed in a couple of

cases where the verifier loses information. One source is the introduction of assumptions about

mathematical operators that are currently conservatively modeled in the refinement logic (e.g. that

multiplication is commutative and associative). These may be removed by using more advanced

non-linear arithmetic decision procedures.

Error messages are a crucial part of any type-checker. Currently, we report error locations in the

provided source file and output the failed constraint(s). In the future errors should be reported

using an interactive interface with features including code and type completion and counter

example drive error explanation.

Acknowledgments The material of this chapter are adapted from the following publication: N.

Vazou, E. Seidel, and R. Jhala, “LiquidHaskell: Experience with Refinement Types in the Real

World”, Haskell, 2014.

Chapter 2

Soundness Under Lazy Evaluation

Laziness may appear attractive, but work gives satisfaction.

– Anne Frank

When we started the LIQUID HASKELL project, we built on the theory of standard

refinement types as implemented for example for ML [106, 7, 79]. Standard refinement types were

developed for the eager, call-by-value languages, but we presumed that the order of evaluation

would surely prove irrelevant and that the soundness guarantees would translate to Haskell’s lazy,

call-by-need regime. We were wrong.

• We start this chapter by showing that standard refinement systems crucially rely on a

property of eager languages: when analyzing any term, one can assume that all the free

variables appearing in the term are bound to values. This property lets us check each term

in an environment where the free variables are logically constrained according to their

refinements. Unfortunately, this property does not hold for lazy evaluation, where free

variables can be lazily substituted with arbitrary (potentially diverging) expressions, which

breaks soundness (§2.1).

The two natural paths towards soundness are blocked by challenging problems. The first

path is to conservatively ignore free variables except those that are guaranteed to be values

e.g. by pattern matching, seq or strictness annotations. While sound, this leads to a drastic

loss of precision. The second path is to explicitly reason about divergence within the

40

41

refinement logic. This would be sound and precise – however it is far from obvious to us

how to re-use and extend existing SMT machinery for this purpose. (§2.6)

• Next, we present a novel approach that enables sound and precise checking with existing

SMT solvers, using a stratified type system that labels binders as potentially diverging or

not (§2.3). While previous stratified systems [20] would suffice for soundness, we show

how to recover precision by using refinement types to develop a notion of terminating

fixpoint combinators that allows the type system to automatically verify that a wide variety

of recursive functions actually terminate (§2.4).

• Finally, we provide an extensive empirical evaluation of our approach on more than 10,000

lines of widely used complex Haskell libraries. We have implemented our approach

in LIQUID HASKELL, and use it to prove termination of libraries verified in Chapter 1.

LIQUID HASKELL is able to prove 96% of all recursive functions terminating, requiring

a modest 1.7 lines of termination annotations per 100 lines of code, thereby enabling the

sound, precise, and automated verification of functional correctness properties of real-world

Haskell code (§2.5).

2.1 Overview

We start with an informal overview of a sound refinement type system for Haskell. After

recapitulating the basics of refinement types we illustrate why the classical approach based on

verification conditions (VCs) is unsound due to lazy evaluation. Next, we step back to understand

precisely how the VCs arise from refinement subtyping and how subtyping is different under

eager and lazy evaluation. In particular, we demonstrate that under lazy, but not eager, evaluation,

the refinement type system, and hence the VCs, must account for divergence. Consequently,

we develop a type system that accounts for divergence in a modular and syntactic fashion and

illustrate its use via several small examples. Finally, we show how a refinement-based termination

analysis is used to improve precision, yielding a highly effective SMT-based verifier for Haskell.

42

Refinements r ::= . . .varies . . .

Basic Types b ::= {v:Int | r} | . . .
Types τ ::= b | x:τ → τ

Environment Γ ::= /0 | x:τ,Γ

Subtyping Γ ` τ1 � τ2

Abbreviations
x:{r} .

= x:{x:Int | r}
{x | r} .

= {x:Int | r}
{r} .

= {v:Int | r}
{x:{y:Int | ry} | rx}

.
= {x:Int | rx∧ ry [x/y]}

Translation
(|Γ ` b1 � b2|)

.
= (|Γ|)⇒ (|b1|)⇒ (|b2|)

(|{x:Int | r}|) .
= r

(|x:{v:Int | r}|) .
= “x is a value”⇒ r [x/v]

(|x:(y:τy→ τ)|) .
= True

(|x1:τ1, . . . ,xn:τn|)
.
= (|x1:τ1|)∧ . . .∧ (|xn:τn|)

Figure 2.1. Informal Notation: Types, Subtyping, and VCs.

2.1.1 Standard Refinement Types: From Subtyping to VC

First, let us see how standard refinement type systems [79, 51] will use the aforementioned

refinement type aliases Pos and Nat and the specification for div to accept good and reject bad.

We use the syntax of Figure 2.1, where r is a refinement expression, or just refinement for short.

We will vary the expressiveness of the language of refinements in different parts of this document.

good :: Nat → Nat → Int

good x y = let z = y + 1 in x 8 div 8 z

bad :: Nat → Nat → Int

bad x y = x 8 div 8 y

Refinement Subtyping To analyze the body of bad, the refinement type system will check that

the second parameter y has type Pos at the call to div; formally, that the actual parameter y is a

43

subtype of the type of div’s second input, via a subtyping query:

x:{x:Int | x≥ 0}, y:{y:Int | y≥ 0} ` {y:Int | y≥ 0} � {v:Int | v> 0}

We use the Abbreviations of Figure 2.1 to simplify the syntax of the queries. So the above query

simplifies to:

x:{x≥ 0}, y:{y≥ 0} ` {v≥ 0} � {v> 0}

Verification Conditions To discharge the above subtyping query, a refinement type system gener-

ates a verification condition (VC), a logical formula that stipulates that under the assumptions

corresponding to the environment bindings, the refinement in the sub-type implies the refinement

in the super-type. We use the translation (| · |) shown in Figure 2.1 to reduce a subtyping query to

a verification condition. The translation of a basic type into logic is the refinement of the type.

The translation of an environment is the conjunction of its bindings. Finally, the translation of a

binding x:τ is the embedding of τ guarded by a predicate denoting that “x is a value”. For now,

let us ignore this guard and see how the subtyping query for bad reduces to the classical VC:

(x≥ 0)∧ (y≥ 0) ⇒ (v≥ 0)⇒ (v> 0)

Refinement type systems are carefully engineered (§2.3) so that (unlike with full dependent types)

the logic of refinements precludes arbitrary functions and only includes formulas from efficiently

decidable logics, e.g. the quantifier-free logic of linear arithmetic and uninterpreted functions

(QF-EUFLIA). Thus, VCs like the above can be efficiently validated by SMT solvers [24]. In

this case, the solver will reject the above VC as invalid meaning the implication, and hence, the

relevant subtyping requirement does not hold. So the refinement type system will reject bad.

On the other hand, a refinement system accepts good. Here, +’s type exactly captures its

behaviour into the logic:

(+) :: x:Int → y:Int → {v:Int | v = x + y}

Thus, we can conclude that the divisor z is a positive number. The subtyping query for the

44

argument to div is

x:{x≥ 0}, y:{y≥ 0}, z:{z= y+1} ` {v= y+1} � {v> 0}

which reduces to the valid VC

(x≥ 0)∧ (y≥ 0)∧ (z= y+1)⇒ (v= y+1)⇒ (v> 0)

2.1.2 Lazy Evaluation Makes VCs Unsound

To generate the classical VC, we ignored the “x is a value” guard that appears in the

embedding of a binding (|x:τ|) (Figure 2.1). Under lazy evaluation, ignoring this “is a value”

guard can lead to unsoundness. Consider

diverge :: Int → {v:Int | false}

diverge n = diverge n

The output type captures the post-condition that the function returns an Int satisfying false.

This counter-intuitive specification states, in essence, that the function does not terminate, i.e.

does not return any value. Any standard refinement type checker (or Floyd-Hoare verifier like

Dafny [54]) will verify the given signature for diverge via the classical method of inductively

assuming the signature holds for diverge and then guaranteeing the signature [39, 70]. Next,

consider the call to div in explode:

explode :: Int → Int

explode x = let {n = diverge 1; y = 0}

in x 8 div 8 y

To analyze explode, the refinement type system will check that y has type Pos at the call to div,

i.e. will check that

n:{False}, y:{y= 0} ` {v= 0} � {v> 0} (2.1)

45

In the environment, n is bound to the type corresponding to the output type of diverge and y is

bound to the type stating y equals 0. In this environment, we must prove that actual parameter’s

type – i.e. that of y – is a subtype of Pos. The subtyping, using the embedding of Figure 2.1 and

ignoring the “is a value” guard, reduces to the VC:

False∧y= 0 ⇒ (v= 0)⇒ (v> 0) (2.2)

The SMT solver proves this VC valid using the contradiction in the antecedent, thereby unsoundly

proving the call to div safe!

Eager vs. Lazy Verification Conditions We pause to emphasize that the problem lies in the fact

that the classical technique for encoding subtyping (or generally, Hoare’s “rule of consequence”

[39]) with VCs is unsound under lazy evaluation. To see this, observe that the VC (2.2) is

perfectly sound under eager (strict, call-by-value) evaluation. In the eager setting, the program

is safe in that div is never called with the divisor 0, as it is not called at all! The inconsistent

antecedent in the VC logically encodes the fact that, under eager evaluation, the call to div is

dead code. Of course, this conclusion is spurious under Haskell’s lazy semantics. As n is not

required, the program will dive headlong into evaluating the div and hence crash, rendering the

VC meaningless.

The Problem is Laziness Readers familar with fully dependently typed languages, for instance

Cayenne [2], Agda [71], Coq [8], and Idris [13], may be tempted to attribute the unsoundness

to the presence of arbitrary recursion and hence non-termination (e.g. diverge). While it is

possible to define a sound semantics for dependent types that mention potentially non-terminating

expressions [51], it is not clear how to reconcile such semantics with decidable type checking.

Refinement type systems avoid this situation by carefully restricting types so that they

do not contain arbitrary terms (even through substitution), but rather only terms from restricted

logics that preclude arbitrary user-defined functions [106, 26, 88]. Very much like previous

work, for now, we enforce the same restriction with a well-formedness condition on refinements

(WF-BASE-D in Fig. 2.6). In Chapter 5 we present how our logic is extended with provably

46

terminating arbitrary terms, while preserving both soundness and decidability.

However, we show that restricting the logic of refinements is plainly not sufficient for

soundness when laziness is combined with non-termination, as binders can be bound to diverging

expressions. Unsurprisingly, in a strongly normalizing language the question of lazy or strict

semantics is irrelevant for soundness, and hence an “easy” way to solve the problem would be

to completely eliminate non-termination and rely on the soundness of previous refinement or

dependent type systems! Instead, we show here how to recover soundness for a lazy language

without imposing such a drastic requirement.

2.1.3 Semantics, Subtyping & Verification Conditions

To understand the problem, let us take a step back to get a clear view of the relationship

between the operational semantics, subtyping, and verification conditions. We use the formulation

of evaluation-order independent refinement subtyping developed for λ H [51] in which refinements

r are arbitrary expressions e from the source language. We define a denotation for types and use

it to define subtyping declaratively.

Denotations of Types and Environments Recall the type Pos defined as {v:Int | 0 < v}.

Intuitively, Pos denotes the set of Int expressions which evaluate to values greater than 0. We

formalize this intuition by defining the denotation of a type as:

[[{x:τ | r}]] .
= {e | /0 ` e : τ, if e ↪→∗ v then r [v/x] ↪→∗ True}

That is, the type denotes the set of expressions e that have the corresponding base type τ which

diverge or reduce to values that make the refinement reduce to True. The guard e ↪→∗ v is crucially

required to prove soundness in the presence of recursion. Thus, quoting [51], “refinement types

specify partial and not total correctness”.

An environment Γ is a sequence of type bindings and a closing substitution θ is a sequence

of expression bindings:

Γ
.
= x1:τ1, . . .xn:τn θ

.
= x1 7→ e1, . . . ,xn 7→ en

47

Thus, we define the denotation of Γ as the set of substitutions:

[[Γ]]
.
= {θ | ∀x:τ ∈ Γ.θ(x) ∈ [[θ(τ)]]}

Declarative Subtyping Equipped with interpretations for types and environments, we define the

declarative subtyping �-BASE (over basic types b, shown in Figure 2.1) to be containment

between the types’ denotations:

∀θ ∈ [[Γ]]. [[θ({v:B | r1})]]⊆ [[θ({v:B | r2})]]
Γ ` {v:B | r1} � {v:B | r2}

� -BASE

Let us revisit the explode example from §2.1.2; recall that the function is safe under eager

evaluation but unsafe under lazy evaluation. Let us see how the declarative subtyping allows us to

reject in the one case and accept in the other.

Declarative Subtyping with Lazy Evaluation Let us revisit the query (2.1) to see whether it holds

under the declarative subtyping rule �-BASE. The denotation containment

∀θ ∈[[n:{False}, y:{y= 0}]].[[θ {v= 0}]]⊆ [[θ {v> 0}]] (2.3)

does not hold. To see why, consider a θ that maps n to any diverging expression of type Int and y

to the value 0. Then, 0 ∈ [[θ {v= 0}]] but 0 6∈ [[θ {v> 0}]], thereby showing that the denotation

containment does not hold.

Declarative Subtyping with Eager Evaluation Since denotational containment (2.3) does not

hold, λ H cannot verify explode under eager evaluation. However, Belo et al. [6] note that under

eager (call-by-value) evaluation, each binder in the environment is only added after the previous

binders have been reduced to values. Hence, under eager evaluation we can restrict the range

of the closing substitutions to values (as opposed to expressions). Let us reconsider (2.3) in this

new light: there is no value that we can map n to, so the set of denotations of the environment is

empty. Hence, the containment (2.3) vacuously holds under eager evaluation, which proves the

program safe. Belo’s observation is implicitly used by refinement types for eager languages to

48

prove that the standard (i.e. call-by-value) reduction from subtyping to VC is sound.

Algorithmic Subtyping via Verification Conditions The above subtyping (�-BASE) rule allows

us to prove preservation and progress [51] but quantifies over evaluation of arbitrary expressions,

and so is undecidable. To make checking algorithmic we approximate the denotational contain-

ment using verification conditions (VCs), formulas drawn from a decidable logic, that are valid

only if the undecidable containment holds. As we have seen, the classical VC is sound only under

eager evaluation. Next, let us use the distinctions between lazy and eager declarative subtyping,

to obtain both sound and decidable VCs for the lazy setting.

Step 1: Restricting Refinements To Decidable Logics Given that λ H refinements can be arbitrary

expressions, the first step towards obtaining a VC, regardless of evaluation order, is to restrict the

refinements to a decidable logic. We choose the quantifier free logic of equality, uninterpreted

functions and linear arithmetic (QF-EUFLIA). Our typing rules ensure that for any valid derivation,

all refinements belong in this restricted language.

Step 2: Translating Containment into VCs Our goal is to encode the denotation containment

antecedent of �-BASE

∀θ ∈ [[Γ]]. [[θ({v:B | r1})]]⊆ [[θ({v:B | r2})]] (2.4)

as a logical formula, that is valid only when the above holds. Intuitively, we can think of the

closing substitutions θ as corresponding to assignments or interpretations (|θ |) of variables X

of the VC. We use the variable x to approximate denotational containment by stating that if x

belongs to the type {v:B | r1} then x belongs to the type {v:B | r2}:

∀X ∈ dom(Γ),x.(|Γ|)⇒ (|x:{v:B | r1}|)⇒ (|x:{v:B | r2}|)

where (|Γ|) and (|x:τ|) are respectively the translation of the environment and bindings into logical

formulas that are only satisfied by assignments (|θ |) as shown in Figure 2.1. Using the translation

49

of bindings, and by renaming x to v, we rewrite the condition as

∀X ∈ dom(Γ),v.(|Γ|)⇒ (“v is a value”⇒ r1)⇒ (“v is a value”⇒ r2)

Type refinements are carefully chosen to belong to the decidable logical sublanguage QF-EUFLIA,

so we directly translate type refinements into the logic. Thus, what is left is to translate into

logic the environment and the “is a value” guards. We postpone translation of the guards as we

approximate the above formula by a stronger, i.e. sound with respect to 2.4, VC that just omits

the guards:

∀X ∈ dom(Γ),v.(|Γ|)⇒ r1⇒ r2

To translate environments, we conjoin their bindings’ translations:

(|x1:τ1, . . . ,xn:τn|)
.
= (|x1:τ1|)∧ . . .∧ (|xn:τn|)

However, since types denote partial correctness, the translations must also explicitly account for

possible divergence:

(|x:{v:Int | r}|) .
= “x is a value”⇒ r [x/v]

That is, we cannot assume that each x satisfies its refinement r; we must guard that assumption

with a predicate stating that x is bound to a value (not a diverging term).

The crucial question is: how can one discharge these guards to conclude that x indeed

satisfies r? One natural route is to enrich the refinement logic with a predicate that states that

“x is a value”, and then use the SMT solver to explicitly reason about this predicate and hence,

divergence. Unfortunately, we show in §2.6, that such predicates lead to three-valued logics,

which fall outside the scope of the efficiently decidable theories supported by current solvers.

Hence, this route is problematic if we want to use existing SMT machinery to build automated

verifiers for Haskell.

50

2.1.4 Our Answer: Implicit Reasoning About Divergence

One way forward is to implicitly reason about divergence by eliminating the “x is a value”

guards (i.e. value guards) from the VCs.

Implicit Reasoning: Eager Evaluation Under eager evaluation the domain of the closing sub-

stitutions can be restricted to values [6]. Thus, we can trivially eliminate the value guards, as

they are guaranteed to hold by virtue of the evaluation order. Returning to explode, we see that

after eliminating the value guards, we get the VC (2.2) which is, therefore, sound under eager

evaluation.

Implicit Reasoning: Lazy Evaluation However, with lazy evaluation, we cannot just eliminate

the value guards, as the closing substitutions are not restricted to just values. Our solution is to

take this reasoning out of the hands of the SMT logic and place it in the hands of a stratified type

system. We use a non-deterministic β -reduction (formally defined in §2.2) to label each type

as: A Div-type, written τ , which are the default types given to binders that may diverge, or, a

Wnf-type, written τ↓, which are given to binders that are guaranteed to reduce, in a finite number

of steps, to Haskell values in Weak Head Normal Form (WHNF). Up to now we only discussed

Int basic types, but our theory supports user-defined algebraic data types. An expression like

0 : repeat 0 is an infinite Haskell value. As we shall discuss, such infinite values cannot be

represented in the logic. To distinguish infinite from finite values, we use a Fin-type, written τ⇓,

to label binders of expressions that are guaranteed to reduce to finite values with no redexes. This

stratification lets us generate VCs that are sound for lazy evaluation. Let B be a basic labelled

type. The key piece is the translation of environment bindings:

(|x:{v:B | r}|) .
=


True, if B is a Div type

r [x/v] , otherwise

That is, if the binder may diverge, we simply omit any constraints for it in the VC, and otherwise

the translation directly states (i.e. without the value guard) that the refinement holds. Returning to

51

explode, the subtyping query (2.1) yields the invalid VC

True⇒ v= 0⇒ v> 0

and so explode is soundly rejected under lazy evaluation.

As binders appear in refinements and binders may refer to potentially infinite computa-

tions (e.g. [0..]), we must ensure that refinements are well defined (i.e. do not diverge). We

achieve this via stratification itself, i.e. by ensuring that all refinements have type Bool⇓. By

Corollary 1, this suffices to ensure that all the refinements are indeed well-defined and converge.

2.1.5 Verification With Stratified Types

While it is reassuring that the lazy VC soundly rejects unsafe programs like explode,

we demonstrate by example that it usefully accepts safe programs. First, we show how the basic

system – all terms have Div types – allows us to prove “partial correctness” properties without

requiring termination. Second, we extend the basic system by using Haskell’s pattern matching

semantics to assign the pattern match scrutinees Wnf types, thereby increasing the expressiveness

of the verifier. Third, we further improve the precision and usability of the system by using a

termination checker to assign various terms Fin types. Fourth, we close the loop, by illustrating

how the termination checker can itself be realized using refinement types. Finally, we use the

termination checker to ensure that all refinements are well-defined (i.e. do converge).

Example: VCs and Partial Correctness The first example illustrates how, unlike Curry-Howard

based systems, refinement types do not require termination. That is, we retain the Floyd-Hoare

notion of “partial correctness” and can verify programs where all terms have Div-types. Consider

ex1 which uses the result of collatz as a divisor.

ex1 :: Int → Int

ex1 n = let x = collatz n in 10 8 div 8 x

collatz :: Int → {v:Int | v = 1}

collatz n

| n == 1 = 1

52

| even n = collatz (n / 2)

| otherwise = collatz (3*n + 1)

The jury is still out on whether the collatz function terminates1, but it is easy to verify that its

output is a Div Int equal to 1. At the call to div the parameter x has the output type of collatz,

yielding the subtyping query:

x:{v:Int | v= 1} ` {v= 1} � {v> 0}

where the sub-type is just the type of x. As Int is a Div type, the above reduces to the VC

(True⇒ v= 1⇒ v> 0) which the SMT solver proves valid, verifying ex1.

Example: Improving Precision By Forcing Evaluation If all binders in the environment have

Div-types then, effectively, the verifier can make no assumptions about the context in which a

term evaluates, which leads to a drastic loss of precision. Consider:

ex2 = let {x = 1; y = inc x} in 10 8 div 8 y

inc :: z:Int → {v:Int | v > z }

inc = \z → z + 1

The call to div in ex2 is obviously safe, but the system would reject it, as the call yields the

subtyping query:

x:{x:Int | x= 1}, y:{y:Int | y> x} ` {v> x} � {v> 0}

Which, as x is a Div type, reduces to the invalid VC:

True⇒ v> x⇒ v> 0

We could solve the problem by forcing evaluation of x. In Haskell the seq operator or a bang-

pattern can be used to force evaluation. In our system the same effect is achieved by the case-of

primitive: inside each case the matched binder is guaranteed to be a Haskell value in WHNF. This
1 Collatz Conjecture: http://en.wikipedia.org/wiki/Collatz conjecture

http://en.wikipedia.org/wiki/Collatz_conjecture

53

intuition is formalized by the typing rule (T-CASE-D), which checks each case after assuming

the scrutinee and the match binder have Wnf types.

If we force x’s evaluation, using the case primitive, the call to div yields the subtyping

query:

x:{x:Int↓ | x= 1}, y:{y:Int | y> x} ` {v> x} � {v> 0} (2.5)

As x is Wnf, we accept ex2 by proving the validity of the VC:

x= 1⇒ v> x⇒ v> 0 (2.6)

Example: Improving Precision By Termination While forcing evaluation allows us to ensure that

certain environment binders have non-Div types, it requires program rewriting using case-splitting

or the seq operator which leads to non-idiomatic code.

Instead, our next key optimization is based on the observation that in practice, most

terms don’t diverge. Thus, we can use a termination analysis to aggressively assign terminating

expressions Fin types, which lets us strengthen the environment assumptions needed to prove the

VCs. For example, in the ex2 example the term 1 obviously terminates. Hence, we type x as

Int⇓, yielding the subtyping query for div application:

x:{x:Int⇓ | x= 1}, y:{y:Int | y> x} ` {v> x} � {v> 0} (2.7)

As x is Fin, we accept ex2 by proving the validity of the VC:

x= 1⇒ v> x⇒ v> 0 (2.8)

Example: Verifying Termination With Refinements While it is straightforward to conclude that

the term 1 does not diverge, how do we do so in general? For example:

ex4 = let {x = f 9; y = inc x} in 10 8 div 8 y

54

f :: Nat → {v:Int | v = 1}

f n = if n == 0 then 1 else f (n-1)

We check the call to div via subtyping query (2.7) and VC (2.8), which requires us to prove that

f terminates on all Nat⇓ inputs.

We solve this problem by showing how refinement types may themselves be used to prove

termination, by following the classical recipe of proving termination via decreasing metrics [93]

as embodied in sized types [41, 105]. The key idea is to show that each recursive call is made

with arguments of a strictly smaller size, where the size is itself a well founded metric, e.g. a

natural number.

We formalize this intuition by type checking recursive procedures in a termination-

weakened environment where the procedure itself may only be called with arguments that are

strictly smaller than the current parameter (using terminating fixpoints of §2.3.2). For example, to

prove f terminates, we check its body in an environment

n : Nat⇓, f : {n′:Nat⇓ | n′ < n}→ {v= 1}

where we have weakened the type of f to stipulate that it only be (recursively) called with Nat

values n′ that are strictly less than the (current) parameter n. The argument of f exactly captures

these constraints, as using the Abbreviations of Figure 2.1 the argument of f is expanded to

{n′:Int⇓ | n′ < n∧n′ >= 0}. The body type-checks as the recursive call generates the valid VC:

0≤ n∧¬(0 = n)⇒ v= n−1⇒ (0≤ v< n)

Example: Diverging Refinements Finally, we discuss why refinements should always converge

and how we statically ensure convergence. Consider the invalid specification

diverge 0 :: {v:Int | v = 12}

that states that the value of a diverging integer is 12. The above specification should be rejected, as

the refinement v= 12 does not evaluate to True (diverge 0= 12 6↪→∗ True), instead it diverges.

55

Definition def ::= measure f :: τ

eq1 . . .eqn

Equation eq ::= f (D x) = r

Equation to Type (| f (D x) = r|) .
= D :: x:τ →{v:τ | f v= r}

Figure 2.2. Syntax of Measures.

We want to check the validity of the formula v= 12 under a model that maps v to the

diverging integer diverge 0. Any system that decides this formula to be true will be unsound,

i.e. the VCs will not soundly approximate subtyping. For similar reasons, the system should not

decide that this formula is false. To reason about diverging refinements one needs three valued

logic, where logical formulas can be solved to true, false, or diverging. Since we want to discharge

VC using SMT solvers that currently do not support three valued reasoning, we exclude diverging

refinements from types. To do so, we restrict = to finite integers

(=) :: Int⇓→ Int⇓→ Bool⇓

and we say that {v:B | r} is well-formed iff r has a Bool⇓ type (Corollary 1). Thus the initial

invalid specification will be rejected as non well-formed.

2.1.6 Measures: From Integers to Data Types

So far, all our examples have used only integer and boolean expressions in refinements.

To describe properties of algebraic data types, we use measures, introduced in prior work on

Liquid Types [47]. Measures are inductively defined functions that can be used in refinements

and provide an efficient way to axiomatize properties of data types. For example, emp determines

whether a list is empty:

measure emp :: [Int] → Bool

emp [] = true

emp (x:xs) = false

The syntax for measures deliberately looks like Haskell, but it is far more restricted, and should

56

really be considered as a separate language. A measure has exactly one argument and is defined

by a list of equations, each of which has a simple pattern on the left hand side (Figure 2.2). The

right-hand side of the equation is a refinement expression r. Measure definitions are typechecked

in the usual way; we omit the typing rules which are standard. (Our metatheory does not support

type polymorphism, so here we simply reason about lists of integers; however, our implementation

supports polymorphism).

Denotational semantics The denotational semantics of types in λ H in §2.1.3 is readily extended

to support measures. In λ H a refinement r is an arbitrary expression and calls to a measure are

evaluated in the usual way by pattern matching. For example, with the above definition of emp it

is straightforward to show that

[1,2,3] :: {v:[Int] | not (emp v)} (2.9)

as the refinement not (emp ([1, 2, 3])) evaluates to True.

Measures as Axioms How can we reason about invocations of measures in the decidable logic

of VCs? A natural approach is to treat a measure like emp as an uninterpreted function and add

logical axioms that capture its behaviour. This looks easy: each equation of the measure definition

corresponds to an axiom, thus:

emp [] = True

∀x,xs.emp (x : xs) = False

Under these axioms the judgement 2.9 is indeed valid.

Measures as Refinements in Types of Data Constructors Axiomatizing measures is precise;

that is, the axioms exactly capture the meaning of measures. Alas, axioms render SMT solvers

inefficient, and render the VC mechanism unpredictable, as one must rely on various brittle

syntactic matching and instantiation heuristics [25].

Instead, we use a different approach that is both precise and efficient. The key idea is

57

this: instead of translating each measure equation into an axiom, we translate each equation into

a refined type for the corresponding data constructor [47]. This translation is given in Figure 2.2.

For example, the definition of the measure emp yields the following refined types for the list data

constructors:

[] :: {v:[Int] | emp v= true}

: :: x:Int→ xs:[Int]→{v:[Int] | emp v= false}

These types ensure that: (1) each time a list value is constructed, its type carries the appropriate

emptiness information. Thus our system is able to statically decide that (2.9) is valid and (2) each

time a list value is matched, the appropriate emptiness information is used to improve precision

of pattern matching, as we see next.

Using Measures As an example, we use the measure emp to provide an appropriate type for the

head function:

head :: {v:[Int] | not (emp v)} → Int

head xs = case xs of

(x:_) → x

[] → error "yikes"

error :: {v:String | false} → a

error = undefined

head is safe as its input type stipulates that it will only be called with lists that are not [], and so

error "..." is dead code. The call to error generates the subtyping query

xs:{xs:[Int]↓ | ¬(emp xs)}, b:{b:[Int]↓ | (emp xs) = true} ` {True} � {False}

The match-binder b holds the result of the match [87]. In the [] case, we assign it the refinement

of the type of [] which is (emp xs) = True. Since the call is done inside a case-of expressions

both xs and b are in WHNF, thus they have Wnf types.

58

The verifier accepts the program as the above subtyping reduces to the valid VC:

¬(emp xs)∧ ((emp xs) = True)⇒ True⇒ False

Thus, our system supports idiomatic Haskell, e.g. taking the head of an infinite list:

ex x = head (repeat x)

repeat :: Int → {v:[Int] | not (emp v)}

repeat y = y : repeat y

Multiple Measures If a type has multiple measures, we simply refine each data constructor’s type

with the conjunction of the refinements from each measure. For example, consider a measure that

computes the length of a list:

measure len :: [Int] → Int

len ([]) = 0

len (x:xs) = 1 + len xs

Using the translation of Figure 2.2, we get the following types for list’s data constructors.

[] :: {v:[Int] | len v= 0}

: :: x:Int→ xs:[Int]→{v:[Int] | len v= 1+(len xs)}

The final types for list data are the conjunction of the refinements from len and emp:

[] :: {v:[Int] | emp v= true∧len v= 0}

: :: x:Int→ xs:[Int]→{v:[Int] | emp v= false∧len v= 1+(len xs)}

59

Constants c ::= 0,1,−1, . . . | True,False
| +,−, . . . | =,<, . . . | Crash

Values v ::= c | λx.e | D e

Expressions e ::= v | x | e e | let x = e in e
| case (x = e) of {D x → e}

Refinements r ::= e

Basic Types B ::= Int | Bool | T
Types τ ::= {v:B | r} | x:τ → τ

Contexts C ::= • | C e | c C | D e C e
| case (x =C) of {D y → e}

Reduction e ↪→ e

C[e] ↪→ C[e′] if e ↪→ e′

c v ↪→ δ (c,v)
(λx.e) ex ↪→ e [ex/x]

let x = ex in e ↪→ e [ex/x]
case (x = D j e) of {Di yi → ei} ↪→ e j [D j e/x] [e/y j]

Figure 2.3. Syntax and Operational Semantics of λU .

2.2 Declarative Typing: λU

Next, we formalize our stratified refinement type system, in two steps. First, we present

a core calculus λU , with a general β -reduction semantics. We describe the syntax, operational

semantics, and sound but undecidable declarative typing rules for λU . Second, in §2.3, we

describe QF-EUFLIA, a subset of λU that forms a decidable logic of refinements and use it to

obtain λ D with decidable SMT-based algorithmic typing.

2.2.1 Syntax

Figure 2.3 summarizes the syntax of λU , which is essentially the calculus λ H [51] without

the dynamic checking features (like casts), but with the addition of data constructors. In λU , as

in λ H , refinement expressions r are not drawn from a decidable logical sublanguage, but can be

arbitrary expressions e (hence r ::= e in Figure 2.3). This choice allows us to prove preservation

60

and progress, but renders typechecking undecidable.

Constants The primitive constants of λU include True, False, 0, 1, −1, etc., and arithmetic

and logical operators like +, −, ≤,/, ∧, ¬. In addition, we include a special untypable constant

Crash that models “going wrong”. Primitive operations return a Crash when invoked with inputs

outside their domain, e.g. when / is invoked with 0 as the divisor or when assert is applied to

false.

Data Constructors We encode data constructors as special constants. Each data type has an arity

Arity(T) that represents the exact number of data constructors that return a value of type T . For

example the data type [Int], which represents lists of integers, has two data constructors: [] and :,

i.e. has arity 2.

Values & Expressions The values of λU include constants, λ -abstractions λx.e, and fully applied

data constructors D that wrap expressions. The expressions of λU include values, as well as

variables x, applications e e, and the case and let expressions.

2.2.2 Operational Semantics

Figure 2.3 summarizes the small step, contextual β -reduction semantics for λU . We

allow for reductions under data constructors, and thus, values may be further reduced. We write

e ↪→ j e′ if there exist e1, . . . ,e j such that e is e1, e′ is e j and ∀i, j,1 ≤ i < j, we have ei ↪→ ei+1.

We write e ↪→∗ e′ if there exists a (finite) j such that e ↪→ j e′.

Constants Application of a constant requires the argument to be reduced to a value; in a single

step the expression is reduced to the output of the primitive constant operation. For example,

consider =, the primitive equality operator on integers. We have δ (=,n) .
= =n where δ (=n,m)

equals True iff m is the same as n.

2.2.3 Types

λU types include basic types, which are refined with predicates, and dependent function

types. Basic types B comprise integers, booleans, and a family of data-types T (representing lists,

trees etc.). For example, the data type [Int] represents lists of integers. We refine basic types

61

with predicates (boolean valued expressions e) to obtain basic refinement types {v:B | e}. Finally,

we have dependent function types x:τx→ τ where the input x has the type τx and the output τ may

refer to the input binder x.

Notation We write B to abbreviate {v:B | True} and τx→ τ to abbreviate x:τx→ τ if x does not

appear in τ . We use for unused binders. We write {v:Natl | r} to abbreviate {v:Intl | 0≤ v∧ r}.

Denotations Each type τ denotes a set of expressions [[τ]], that are defined via the dynamic

semantics [51]. Let bτc be the type we get if we erase all refinements from τ and e:bτc be the

standard typing relation for the typed lambda calculus. Then, we define the denotation of types

as:

[[{x:B | r}]] .
= {e | e:B, if e ↪→∗ w then r [w/x] ↪→∗ True}

[[x:τx→ τ]]
.
= {e | e:bτx→ τc,∀ex ∈ [[τx]]. e ex ∈ [[τ [ex/x]]]}

Constants For each constant c we define its type Ty(c) such that c ∈ [[Ty(c)]], e.g.

Ty(3) .
= {v:Int | v= 3}

Ty(+)
.
= x:Int→ y:Int→{v:Int | v= x+y}

Ty(/)
.
= Int→{v:Int | v> 0}→ Int

Ty(errorτ)
.
= {v:Int | False}→ τ

So, by definition we get the constant typing lemma.

Lemma 1. [Constant Typing] For every constant c, c ∈ [[Ty(c)]].

Thus, if Ty(c) .
= x:τx → τ , then for every value w ∈ [[τx]], we require that δ (c,w) ∈

[[τ [w/x]]]. For every value w 6∈ [[τx]], it suffices to define δ (c,w) as Crash, a special untyped

value.

Data Constructors The types of data constructor constants are refined with predicates that track

the semantics of the measures associated with the data type. For example, as discussed in §2.1.6

62

Well-Formedness Γ `U τ

Γ,v:B `U r : Bool
Γ `U {v:B | r}

WF-BASE
Γ `U τx Γ,x:τx `U τ

Γ `U x:τx→ τ
WF-FUN

Subtyping Γ `U τ1 � τ2

∀θ ∈ [[Γ]].[[θ({v:B | r1})]]⊆ [[θ({v:B | r2})]]
Γ `U {v:B | r1} � {v:B | r2}

�-BASE

Γ `U τ ′x � τx Γ,x:τ ′x `U τ � τ ′

Γ `U x:τx→ τ � x:τ ′x→ τ ′
�-FUN

Typing Γ `U e : τ

(x,τ) ∈ Γ

Γ `U x : τ
T-VAR

Γ `U c : Ty(c)
T-CON

Γ `U e : τ ′ Γ `U τ ′ � τ Γ `U τ

Γ `U e : τ
T-SUB

Γ,x:τx `U e : τ Γ `U τx

Γ `U λx.e : (x:τx→ τ)
T-FUN

Γ `U e1 : (x:τx→ τ) Γ `U e2 : τx

Γ `U e1 e2 : τ [e2/x]
T-APP

Γ `U ex : τx Γ,x:τx `U e : τ Γ `U τ

Γ `U let x = ex in e : τ
T-LET

Γ `U e : {v:T | r} Γ `U τ

∀i.Ty(Di) = y j:τ j→{v:T | ri} Γ,y j:τ j,x:{v:T | r∧ ri} `U ei : τ

Γ `U case (x = e) of {Di y j → ei} : τ
T-CASE

Figure 2.4. Type checking of λU .

we use emp to refine the list data constructors’ types:

Ty([])
.
= {v:[Int] | emp v}

Ty(:) .
= Int→ [Int]→{v:[Int] | ¬(emp v)}

By construction it is easy to prove that Lemma 1 holds for data constructors. For example, emp []

goes to True.

63

2.2.4 Type Checking

Next, we present the type-checking judgments and rules of λU .

Environments and Closing Substitutions A type environment Γ is a sequence of type bindings

x1:τ1, . . . ,xn:τn. An environment denotes a set of closing substitutions θ which are sequences of

expression bindings: x1 7→ e1, . . . ,xn 7→ en such that:

[[Γ]]
.
= {θ | ∀x:τ ∈ Γ.θ(x) ∈ [[θ(τ)]]}

Judgments We use environments to define three kinds of rules: Well-formedness, Subtyping,

and Typing [51, 7]. A judgment Γ `U τ states that the refinement type τ is well-formed in the

environment Γ. Intuitively, the type τ is well-formed if all the refinements in τ are Bool-typed

in Γ. A judgment Γ `U τ1 � τ2 states that the type τ1 is a subtype of τ2 in the environment Γ.

Informally, τ1 is a subtype of τ2 if, when the free variables of τ1 and τ2 are bound to expressions

described by Γ, the denotation of τ1 is contained in the denotation of τ2. Subtyping of basic

types reduces to denotational containment checking. That is, for any closing substitution θ in the

denotation of Γ, for every expression e, if e ∈ [[θ(τ1)]] then e ∈ [[θ(τ2)]]. A judgment Γ `U e : τ

states that the expression e has the type τ in the environment Γ. That is, when the free variables

in e are bound to expressions described by Γ, the expression e will evaluate to a value described

by τ .

Soundness In [101], we use the (undecidable) �-BASE to prove that each step of evaluation

preserves typing and that if an expression is not a value, then it can be further evaluated:

• Preservation: If /0 `U e : τ and e ↪→ e′, then /0 `U e′ : τ .

• Progress: If /0 `U e : τ and e 6= w, then e ↪→ e′.

We combine the above to prove that evaluation preserves typing and that a well typed term will

not Crash.

Theorem 1. [Soundness of λU]

64

Expressions, Values, Constants, Basic types: see Figure 2.3

Types τ ::= {v:B | r} | {v:Bl | r}
| x:τ → τ

Labels l ::= ↓ | ⇓
Refinements r ::= p

Predicates p ::= p = p | p < p | p∧ p | ¬p
| n | x | f p | p⊕ p
| True | False

Measures f ,g,h

Operators ⊕ ::= + | − | . . .
Integers n ::= 0 | 1 | −1 | . . .
Domain d ::= n | cw | D d | True | False

Model σ ::= x1 7→ d1, . . . ,xn 7→ dn

Lifted Values w⊥ ::= c | λx.e | D w⊥ | ⊥

Figure 2.5. Syntax of λ D.

• Type-Preservation: If /0 `U e : τ , e ↪→∗ w then /0 `U w : τ .

• Crash-Freedom: If /0 `U e : τ then e 6↪→∗ Crash.

We prove the above following the overall recipe of [51]. Crash-freedom follows from

type-preservation, as Crash has no type. The Substitution Lemma, in particular, follows from a

connection between the typing relation and type denotations:

Lemma 2. [Denotation Typing] If /0 `U e : τ then e ∈ [[τ]].

2.3 Algorithmic Typing: λ D

While λU is sound, it cannot be implemented thanks to the undecidable denotational

containment rule �-BASE (Figure 2.4). Next, we go from λU to λ D, a core calculus with sound,

SMT-based algorithmic type-checking in four steps. First, we show how to restrict the language

of refinements to an SMT-decidable sub-language QF-EUFLIA (§2.3.1). Second, we stratify the

types to specify whether their inhabitants may diverge, must reduce to values, or must reduce to

65

All rules as in Figure 5.3 except as follows:
Well-Formedness Γ `D τ

Γ,v:B `D p : Bool⇓

Γ `D {v:B | p}
WF-BASE-D

Subtyping Γ `D τ1 � τ2

(|Γ,v : B|)⇒ (|p1|)⇒ (|p2|) is valid
Γ `D {v:B | p1} � {v:B | p2}

�-BASE-D

Typing Γ `D e : τ

Γ `D e1 : (x:τx→ τ) Γ `D y : τx

Γ `D e1 y : τ [y/x]
T-APP-D

l 6∈ {⇓,↓}⇒ τ is Div Γ `D e : {v:T l | r} Γ `D τ

∀i.Ty(Di) = y jτ j→{v:T | ri} Γ,y j:τ j,x:{v:T ↓ | r∧ ri} `D ei : τ

Γ `D case (x = e) of {Di y j → ei} : τ
T-CASE-D

Figure 2.6. Type checking of λ D.

finite values (§2.3.2). Third, we show how to enforce the stratification by encoding recursion using

special fixpoint combinator constants (§2.3.2). Finally, we show how to use QF-EUFLIA and

the stratification to approximate the undecidable �-BASE with a decidable verification condition

�-BASE-D, thereby obtaining the algorithmic system λ D (§2.3.3).

2.3.1 Refinement Logic: QF-EUFLIA

Figure 2.5 summarizes the syntax of λ D. Refinements r are now predicates p, drawn from

QF-EUFLIA, the decidable logic of equality, uninterpreted functions and linear arithmetic [69].

Predicates p include linear arithmetic constraints, function application where function symbols

correspond to measures (as described in §2.1.6), and boolean combinations of sub-predicates.

Well-Formedness For a predicate to be well-formed it should be boolean and arithmetic operators

should be applied to integer terms, measures should be applied to appropriate arguments (i.e.

emp is applied to [Int]), and equality or inequality to basic (integer or boolean) terms. Further-

more, we require that refinements, and thus measures, always evaluate to a value. We capture

66

these requirements by assigning appropriate types to operators and measure functions, after which

we require that each refinement r has type Bool⇓ (rule WF-BASE-D in Figure 2.6).

Assignments Figure 2.5 defines the elements d of the domain D of integers, booleans, and data

constructors that wrap elements from D . The domain D also contains a constant cw for each value

w of λU that does not otherwise belong in D (e.g. functions or other primitives). An assignment

σ is a map from variables to D .

Satisfiability & Validity We interpret boolean predicates in the logic over the domain D . We write

σ |= p if σ is a model of p. We omit the formal definition for space. A predicate p is satisfiable

if there exists σ |= p. A predicate p is valid if for all assignments σ |= p.

Connecting Evaluation and Logic To prove soundness, we need to formally connect the notion

of logical models with the evaluation of a refinement to True. We do this in several steps,

briefly outlined for brevity (the detailed proof is in [101]). First, we introduce a primitive bottom

expression ⊥ that can have any Div type, but does not evaluate. Second, we define lifted values

w⊥ (Figure 2.5), which are values that contain ⊥. Third, we define lifted substitutions θ⊥, which

are mappings from variables to lifted values. Finally, we show how to embed a lifted substitution

θ⊥ into a set of assignments (|θ⊥|) where, intuitively speaking, each ⊥ is replaced by some

arbitrarily chosen element of D . Now, we can connect evaluation and logical satisfaction:

Theorem 2. If /0 `D θ⊥(p) : Bool⇓, then θ⊥(p) ↪→∗ True iff ∀σ ∈ (|θ⊥|).σ |= p.

Restricting Refinements to Predicates Our goal is to restrict �-BASE so that only predicates

from the decidable logic QF-EUFLIA (not arbitrary expressions) appear in implications (|Γ|)⇒

{v:b | p1}⇒ {v:b | p2}. Towards this goal, as shown in Figures 2.5 and 2.6, we restrict the syntax

and well-formedness of types to contain only predicates and we convert the program to ANF after

which we can restrict the application rule T-APP-D to applications to variables, which ensures

that refinements remain within the logic after substitution [79]. Recall, that this is not enough to

ensure that refinements do converge, as under lazy evaluation, even binders can refer to potentially

divergent values.

67

2.3.2 Stratified Types

The typing rules for λ D are given in Figure 2.6. Instead of explicitly reasoning about

divergence or strictness in the refinement logic, which leads to significant theoretical and practical

problems, as discussed in §2.6, we choose to reason implicitly about divergence within the type

system. Thus, the second critical step in our path to λ D is the stratification of types into those

inhabited by potentially diverging terms, terms that only reduce to values, and terms which reduce

to finite values. Furthermore, the stratification crucially allows us to prove Theorem 2, which

requires that refinements do not diverge (e.g. by computing the length of an infinite list) by

ensuring that inductively defined measures are only applied to finite values. Next, we describe

how we stratify types with labels and then type the various constants, in particular the fixpoint

combinators, to enforce stratification.

Labels We specify stratification using two labels for types. The label ↓ (resp. ⇓) is assigned to

types given to expressions that reduce (using β -reduction from Figure 2.3) to a value w (resp.

finite value, i.e. an element of the inductively defined D). Formally,

Wnf types [[{v:B↓ | r}]] .
= [[{v:B | r}]]∩{e | e ↪→∗ w} (2.10)

Fin types [[{v:B⇓ | r}]] .
= [[{v:B | r}]]∩{e | e ↪→∗ d} (2.11)

Unlabelled types are assigned to expressions that may diverge. Note that for any B and refinement

r we have

[[{v:B⇓ | r}]]⊆ [[{v:B↓ | r}]]⊆ [[{v:B | r}]]

The first two sets are equal for Int and Bool, and unequal for (lazily) constructed data types T .

We need not stratify function types (i.e. they are Div types) as binders with function types do not

appear inside the VC, and are not applied to measures.

Enforcing Stratification We enforce stratification in two steps. First, the T-CASE-D rule uses the

operational semantics of case-of to type-check each case in an environment where the scrutinee x

is assumed to have a Wnf type. All the other rules, not mentioned in Figure 2.6, remain the same

68

as in Figure 2.4. Second, we create stratified variants for the primitive constants and separate

fixpoint combinator constants for (arbitary, potentially non-terminating) recursion (fix) and

bounded recursion (tfix).

Stratified Primitives First, we restrict the primitive operators whose output types are refined

with logical operators, so they are only invoked on finite arguments (so that the corresponding

refinements are guaranteed to not diverge).

Ty(n) .
= {v:Int⇓ | v = n}

Ty(=)
.
= x:T-VAR-BASE⇓→ y:T-VAR-BASE⇓→{v:Bool⇓ | v⇔ x = y}

Ty(+)
.
= x:Int⇓→ y:Int⇓→{v:Int⇓ | v = x+ y}

Ty(∧) .
= x:Bool⇓→ y:Bool⇓→{v:Bool⇓ | v⇔ x∧ y}

It is easy to prove that the above primitives respect their stratification labels, i.e. belong in the

denotations of their types.

Note that the above types are restricted in that they can only be applied to finite arguments.

In future work 8, we could address this issue with unrefined versions of primitive types that

soundly allow operation on arbitrary arguments. For example, with the current type for +, addition

of potentially diverging expressions is rejected. Thus, we could define an unrefined signature

Ty(+)
.
= x:Int→ y:Int→ Int

and allow the two types of + to co-exist (as an intersection type), where the type checker would

choose the precise refined type if and only if both of +’s arguments are finite.

Diverging Fixpoints (fixτ) Next, note that the only place where divergence enters the picture

is through the fixpoint combinators used to encode recursion. For any function or basic type

τ
.
= τ1→ . . .→ τn, we define the result to be the type τn.

For each τ whose result is a Div type, there is a diverging fixpoint combinator fixτ , such

69

that

δ (fixτ , f) .
= f (fixτ f)

Ty(fixτ)
.
= (τ → τ)→ τ

i.e., fixτ yields recursive functions of type τ . Of course, fixτ belongs in the denotation of its

type [78] only if the result type is a Div type (and not when the result is a Wnf or Fin type). Thus,

we restrict diverging fixpoints to functions with Div result types.

Indexed Fixpoints (tfixn
τ) For each type τ whose result is a Fin type, we have a family of

indexed fixpoints combinators tfixn
τ :

δ (tfixn
τ , f) .

= λm. f m (tfixm
τ f)

Ty(tfixn
τ)

.
= (n:Nat⇓→ τn→ τ)→ τn

where, τn
.
= {v:Nat⇓ | v < n}→ τ

τn is a weakened version of τ that can only be invoked on inputs smaller than n. Thus, we enforce

termination by requiring that tfixn
τ is only called with m that are strictly smaller than n. As the

indices are well-founded Nats, evaluation will terminate.

Terminating Fixpoints (tfixτ) Finally, we use the indexed combinators to define the terminating

fixpoint combinator tfixτ as:

δ (tfixτ , f) .
= λn. f n (tfixn

τ f)

Ty(tfixτ)
.
= (n:Nat⇓→ τn→ τ)→ Nat⇓→ τ

Thus, the top-level call to the recursive function requires a Nat⇓ parameter n that acts as a

starting index, after which, all “recursive” calls are to combinators with smaller indices, ensuring

termination.

70

Example: Factorial Consider the factorial function:

fac
.
= λn.λ f .case = (n = 0) of

 True→ 1

→ n× f (n−1)


Let τ

.
= Nat⇓. We prove termination by typing

/0 `D tfixτ fac : Nat⇓→ τ

To understand why, note that tfixn
τ is only called with arguments strictly smaller than n

tfixτ fac n ↪→∗ fac n (tfixn
τ fac)

↪→∗ n× (tfixn
τ fac (n−1))

↪→∗ n× (fac (n−1) (tfixn−1
τ fac))

↪→∗ n×n−1× (tfixn−1
τ fac (n−2))

↪→∗ n×n−1× . . .× (tfix1
τ fac 0)

↪→∗ n×n−1× . . .× (fac 0 (tfix0
τ fac))

↪→∗ n×n−1× . . .×1

Soundness of Stratification To formally prove that stratification is soundly enforced, it suffices

to prove that the Denotation Lemma 2 holds for λ D. This, in turn, boils down to proving that each

(stratified) constant belongs in its type’s denotation, i.e. each c ∈ [[Ty(c)]] or that the Lemma 1

holds for λ D. The crucial part of the above is proving that the indexed and terminating fixpoints

inhabit their types’ denotations.

Theorem 3. [Fixpoint Typing]

• fixτ ∈ [[Ty(fixτ)]],

• ∀n.tfixn
τ ∈ [[Ty(tfixn

τ)]],

71

• tfixτ ∈ [[Ty(tfixτ)]].

With the above we can prove soundness of Stratification as a corollary Denotation

Lemma 2, given the interpretations of the stratified types.

Corollary 1. [Soundness of Stratification]

1. If /0 `D e : τ⇓, then evaluation of e is finite.

2. If /0 `D e : τ↓, then e reduces to WHNF.

3. If /0 `D e : {v:τ | p}, then p cannot diverge.

Finally, as a direct implication the well-formedness rule WF-BASE-D we conclude 3, i.e.

that refinements cannot diverge.

2.3.3 Verification With Stratified Types

We can put the pieces together to obtain an algorithmic implication rule �-BASE-D

instead of the undecidable �-BASE (from Figure 2.4). Intuitively, each closing substitution θ will

correspond to a set of logical assignments (|θ |). Thus, we will translate Γ into logical formula

(|Γ|) and denotation inclusion into logical implication such that:

• θ ∈ [[Γ]] iff all σ ∈ (|θ |) satisfy (|Γ|), and

• θ{v:B | p1} ⊆ θ{v:B | p2} iff all σ ∈ (|θ |) satisfy p1⇒ p2.

Translating Refinements & Environments To translate environments into logical formulas, recall

that θ ∈ [[Γ]] iff for each x:τ ∈ Γ, we have θ(x) ∈ [[θ(τ)]]. Thus,

(|x1:τ1, . . . ,xn:τn|)
.
= (|x1:τ1|)∧ . . .∧ (|xn:τn|)

How should we translate a single binding? Since a binding denotes

[[{x:B | p}]] .
= {e | if e ↪→∗ w then p [w/x] ↪→∗ True}

72

a direct translation would require a logical value predicate Val(x), which we could use to obtain

the logical translation

(|{x:B | p}|) .
= ¬Val(x)∨ p

This translation poses several theoretical and practical problems that preclude the use of existing

SMT solvers (as detailed in §2.6). However, our stratification guarantees (cf. (2.10), (2.11)) that

labeled types reduce to values and so we can simply conservatively translate the Div and labeled

(Wnf, Fin) bindings as:

(|{x:B | p}|) .
= True (|{x:Bl | p}|) .

= p

Soundness We prove soundness by showing that the decidable implication �-BASE-D approxi-

mates the undecidable �-BASE.

Theorem 4. If (|Γ|)⇒ p1⇒ p2 is valid then Γ `U {v:B | p1} � {v:B | p2}.

To prove the above, let VC .
= (|Γ|)⇒ p1⇒ p2. We prove that if the VC is valid then

Γ `U {v:b | p1} � {v:b | p2}. This fact relies crucially on a notion of tracking evaluation which

allows us to reduce a closing substitution θ to a lifted substitution θ⊥, written θ ↪→∗⊥ θ⊥, after

which we prove:

Lemma 3. [Lifting] θ(e) ↪→∗ c iff ∃θ ↪→∗⊥ θ⊥ s.t. θ⊥(e) ↪→∗ c.

We combine the Lifting Lemma and the equivalence Theorem 2 to prove that the

validity of the VC demonstrates the denotational containment ∀θ ∈ [[Γ]].[[θ({v:B | p1})]] ⊆

[[θ({v:B | p2})]]. The soundness of algorithmic typing follows from Theorems 4 and 1:

Theorem 5. [Soundness of λ D]

• Approximation: If /0 `D e : τ then /0 `U e : τ .

• Crash-Freedom: If /0 `D e : τ then e 6↪→∗ Crash.

73

To prove approximation we need to prove that Lemma 1 holds for each constant, and

thus it holds for data constructors. In the metatheory we assume a stronger notion of validity

that respects the measure axioms. However, since our implementation does not use axioms and

instead, without loss of precision, treats measures as uninterpreted during SMT validity checking,

we omit further discussion of axioms for clarity.

2.4 Implementation in LIQUID HASKELL

We have implemented λ D in LIQUID HASKELL. In § 1.3 we saw real world termination

checks. Here claim soundness of LIQUID HASKELL’s termination checker, as the checker derives

as a the transition from λ D to Haskell.

2.4.1 Termination

Haskell’s recursive functions of type Nat⇓→ τ are represented, in GHC’s Core [87] as

let rec f = λn.e that is operationally equivalent to let f = tfixτ (λn.λ f .e). Given the type

of tfixτ , checking that f has type Nat⇓→ τ reduces to checking e in a termination-weakened

environment where

f :{v:Nat⇓ | v < n}→ τ

Thus, LIQUID HASKELL proves termination just as λ D does: by checking the body in the above

environment, where the recursive binder is called with Nat inputs that are strictly smaller than n.

Default Metric For example, LIQUID HASKELL proves that

fac n = if n == 0 then 1 else n * fac (n-1)

has type Nat⇓→ Nat⇓ by typechecking the body of fac in a termination-weakened environment

fac : {v:Nat⇓ | v< n}→ Nat⇓. The recursive call generates the query:

n:{0≤ n},¬(n= 0) `D {v= n−1} � {0≤ v∧v< n}

74

Which reduces to the valid VC:

0≤ n∧¬(n= 0)⇒ (v= n−1)⇒ (0≤ v∧v< n)

proving that fac terminates, in essence because the first parameter forms a well-founded decreas-

ing metric.

Refinements Enable Termination Consider Euclid’s GCD:

gcd :: a:Nat → {v:Nat | v < a} → Nat

gcd a 0 = a

gcd a b = gcd b (a 8 mod 8 b)

Here, the first parameter is decreasing, but this requires the fact that the second parameter is

smaller than the first and that mod returns results smaller than its second parameter. Both facts are

easily expressed as refinements, but elude non-extensible checkers [36].

Explicit Termination Metrics The indexed-fixpoint combinator technique is easily extended to

cases where some parameter other than the first is the well-founded metric. For example, consider:

tfac :: Nat → n:Nat → Nat / [n]

tfac x n | n == 0 = x

| otherwise = tfac (n*x) (n-1)

We specify that the last parameter is decreasing by specifying an explicit termination metric

/ [n] in the type signature. LIQUID HASKELL desugars the termination metric into a new

Nat-valued ghost parameter d whose value is always equal to the termination metric n:

tfac :: d:Nat → Nat → {n:Nat | d = n} → Nat

tfac d x n | n == 0 = x

| otherwise = tfac (n-1) (n*x) (n-1)

Type checking, as before, checks the body in an environment where the first argument of tfac is

weakened, i.e., requires proving d > n-1. So, the system needs to know that the ghost argument

d represents the decreasing metric. We capture this information in the type signature of tfac

where the last argument exactly specifies that d is the termination metric n, i.e., d = n. Note

75

that since the termination metric can depend on any argument, it is important to refine the last

argument, so that all arguments are in scope, with the fact that d is the termination metric.

To generalize, desugaring of termination metrics proceeds as follows. Let f be a recursive

function with parameters x and termination metric µ(x). Then LIQUID HASKELL will

• add a Nat-valued ghost first parameter d in the definition of f ,

• weaken the last argument of f with the refinement d = µ(x),

• at each recursive call of f e, apply µ(e) as the first argument.

Explicit Termination Expressions Let us now apply the previous technique in a function where

none of the parameters themselves decrease across recursive calls, but there is some expression

that forms the decreasing metric. Consider range lo hi (as in § 1.3), which returns the list of

Ints from lo to hi: We generalize the explicit metric specification to expressions like hi-lo.

LIQUID HASKELL desugars the expression into a new Nat-valued ghost parameter whose value

is always equal to hi-lo, that is:

range :: lo:Nat → {hi:Nat | hi ≥ lo} → [Nat] / [hi-lo]

range lo hi

| lo < hi = lo : range (lo + 1) hi

| _ = []

Here, neither parameter is decreasing (indeed, the first one is increasing) but hi-lo decreases

across each call. We generalize the explicit metric specification to expressions like hi-lo.

LIQUID HASKELL desugars the expression into a new Nat-valued ghost parameter whose value

is always equal to hi-lo, that is:

range lo hi = go (hi -lo) lo hi

where

go :: d:Nat → lo:Nat → {hi:Nat | d = hi - lo} → [Nat]

go d lo hi

| lo < hi = l : go (hi -(lo+1)) (lo+1) hi

| _ = []

76

After which, it proves go terminating, by showing that the first argument d is a Nat that decreases

across each recursive call (as in fac and tfac).

Recursion over Data Types The above strategy generalizes easily to functions that recurse over

(finite) data structures like arrays, lists, and trees. In these cases, we simply use measures to

project the structure onto Nat, thereby reducing the verification to the previously seen cases. For

each user defined type, e.g.

data L [sz] a = N | C a (L a)

we can define a measure

measure sz :: L a → Nat

sz (C x xs) = 1 + (sz xs)

sz N = 0

We prove that map terminates using the type:

map :: (a → b) → xs:L a → L b / [sz xs]

map f (C x xs) = C (f x) (map f xs)

map f N = N

That is, by simply using (sz xs) as the decreasing metric.

Generalized Metrics Over Datatypes Finally, in many functions there is no single argument

whose (measure) provably decreases. For example, consider:

merge :: xs:L a → ys:L a → L a / [sz xs + sz ys]

merge (C x xs) (C y ys)

| x < y = x 8 C 8 (merge xs (y 8 C 8 ys))

| otherwise = y 8 C 8 (merge (x 8 C 8 xs) ys)

from the homonymous sorting routine. Here, neither parameter decreases, but the sum of their

sizes does. As before LIQUID HASKELL desugars the decreasing expression into a ghost parameter

and thereby proves termination (assuming, of course, that the inputs were finite lists, i.e. L⇓ a).

Automation: Default Size Measures Structural recursion on the first argument is a common

pattern in Haskell code. LIQUID HASKELL automates termination proofs for this common case,

by allowing users to specify a size measure for each data type, (e.g. sz for L a). Now, if no

77

termination metric is given, by default LIQUID HASKELL assumes that the first argument whose

type has an associated size measure decreases. Thus, in the above, we need not specify metrics

for fac or gcd or map as the size measure is automatically used to prove termination. This simple

heuristic allows us to automatically prove 67% of recursive functions terminating.

2.4.2 Non-termination

By default, LIQUID HASKELL checks that every function is terminating. We show in §2.5

that this is in fact the overwhelmingly common case in practice. However, annotating a function

as lazy deactivates LIQUID HASKELL’s termination check (and marks the result as a Div type).

This allows us to check functions that are non-terminating, and allows LIQUID HASKELL to

prove safety properties of programs that manipulate infinite data, such as streams, which arise

idiomatically with Haskell’s lazy semantics. For example, consider the classic repeat function:

repeat x = x 8 C 8 repeat x

We cannot use the tfix combinators to represent this kind of recursion, and hence, use the

non-terminating fix combinator instead. I LIQUID HASKELL, we use the lazy keyword to

denote potentially diverging definitions defined using the non-terminating fix combinator.

2.4.3 User Specifications and Type Inference

In program verification it is common that the user provides functional specification

that the code should satisfy. In LIQUID HASKELL these specifications can be provided as type

signatures for let-bound variables. Consider the typechecking rules of Figure 5.3 that is used by

λ D.
Γ ` ex : τx Γ,x:τx ` e : τ Γ ` τ

Γ ` let x = ex in e : τ
T-LET

Note that T-LET guesses an appropriate type τx for ex and binds it to x to typecheck e.

LIQUID HASKELL allows the user to specify the type τx for top level bindings. For every

binding let x = ex in . . . , if the user provides a type specification τx, LIQUID HASKELL checks

using the appropriate environment (1) that the specified type is well-formed and (2) that the

expression ex typechecks under the specification τx. For the other top level bindings, i.e. those

78

without user-provided specifications, as well as all local bindings, LIQUID HASKELL uses the

Liquid Types [79] framework to infer refinement types, thus greatly reducing the number of

annotations required from the user.

2.5 Evaluation

Our goal is to build a practical and effective SMT & refinement type-based verifier for

Haskell. We have shown that lazy evaluation requires the verifier to reason about divergence;

we have proposed an approach for implicitly reasoning about divergence by eagerly proving

termination, thereby optimizing the precision of the verifier. Next, we describe an experimental

evaluation of our approach that uses LIQUID HASKELL to prove termination on the already

verified libraries from Chapter 1. Our evaluation seeks to determine whether our approach is

suitable for a lazy language (i.e. do most Haskell functions terminate?), precise enough to capture

the termination reasons (i.e. is LIQUID HASKELL able to prove that most functions terminate?),

usable without placing an unreasonably high burden on the user in the form of explicit termination

annotations, and effective enough to enable the verification of functional correctness properties.

Benchmarks As benchmarks, we used the following famous Haskell libraries: GHC.List

and Data.List, which implement many standard list operations, Data.Set.Splay, which

implements an splay functional set, Data.Map.Base, which implements a functional map,

Vector-Algorithms, which includes a suite of “imperative” array-based sorting algorithms,

Bytestring, a library for manipulating byte arrays, and Text, a library for high-performance

Unicode text processing. The verification of functional correctness on our benchmarks is already

discussed in § 1.6. Here we focus only on the extra proof obligations required to reason about

function termination.

Results Table 1.1 summarizes our experiments, which covered 39 modules totaling 10,209 non-

comment lines of source code. The results were collected on a machine with an Intel Xeon

X5600 and 32GB of RAM (no benchmark required more than 1GB). Timing data was for runs

that performed full verification of safety and functional correctness properties in addition to

termination.

79

Table 2.1. A quantitative evaluation of our experiments. LOC is the number of non-comment
lines of source code as reported by sloccount. Fun is the total number of functions in the library.
Rec is the number of recursive functions. Div is the number of functions marked as potentially
non-terminating. Hint is the number of termination hints, in the form of termination expressions,
given to LIQUID HASKELL. Time is the time, in seconds, required to run LIQUID HASKELL.

Module LOC Fun Rec Div Hint Time
GHC.List 309 66 34 5 0 14
Data.List 504 97 50 2 6 11
Data.Map.Base 1396 180 94 0 12 175
Data.Set.Splay 149 35 17 0 7 26
Bytestring 3505 569 154 8 73 285
Vector-Algorithms 1218 99 31 0 31 85
Text 3128 493 124 5 44 481
Total 10209 1539 504 20 173 1080

• Suitable: Our approach of eagerly proving termination is in fact, highly suitable: of the 504

recursive functions, only 12 functions were actually non-terminating (i.e. non-inductive).

That is, 97.6% of recursive functions are inductively defined.

• Precise: Our approach is extremely precise, as refinements provide auxiliary invariants and

extensibility that is crucial for proving termination. We successfully prove that 96.0% of

recursive functions terminate.

• Usable: Our approach is highly usable and only places a modest annotation burden on

the user. The default metric, namely the first parameter with an associated size measure,

suffices to automatically prove 65.7% of recursive functions terminating. Thus, only 34.3%

require explicit termination metric, totaling about 1.7 witnesses (about 1 line each) per 100

lines of code.

• Effective: Our approach is extremely effective at improving the precision of the overall

verifier (by allowing the VC to use facts about binders that provably reduce to values).

Without the termination optimization, i.e. by only using information for matched-binders

(thus in WHNF), LIQUID HASKELL reports 1,395 unique functional correctness warnings –

about 1 per 7 lines. With termination information, this number goes to zero.

80

2.6 Conclusions & Alternative Approaches

Our goal is to use the recent advances in SMT solving to build automated refinement

type-based verifiers for Haskell. In this paper, we have made the following advances towards the

goal. First, we demonstrated how the classical technique for generating VCs from refinement

subtyping queries is unsound under lazy evaluation. Second, we have presented a solution that

addresses the unsoundness by stratifying types into those that are inhabited by terms that may

diverge, those that must reduce to Haskell values, and those that must reduce to finite values, and

have shown how refinement types may themselves be used to soundly verify the stratification.

Third, we have developed an implementation of our technique in LIQUID HASKELL and have

evaluated the tool on a large corpus comprising 10KLOC of widely used Haskell libraries. Our

experiments empirically demonstrate the practical effectiveness of our approach: using refinement

types, we were able to prove 96% of recursive functions as terminating, and to crucially use this

information to prove a variety of functional correctness properties.

Limitations While our approach is demonstrably effective in practice, it relies critically on

proving termination, which, while independently useful, is not wholly satisfying in theory, as

adding divergence shouldn’t break a safety proof. Our system can prove a program safe, but if

the program is modified by making some functions non-deterministically diverge, then, since we

rely on termination, we may no longer be able to prove safety. Thus, in future work, it would

be valuable to explore other ways to reconcile laziness and refinement typing. We outline some

routes and the challenging obstacles along them.

A. Convert Lazy To Eager Evaluation One alternative might be to translate the program from lazy

to eager evaluation, for example, to replace every (thunk) e with an abstraction λ ().e, and every

use of a lazy value x with an application x (). After this, we could simply assume eager evaluation,

and so the usual refinement type systems could be used to verify Haskell. Alas, no. While sound,

this translation doesn’t solve the problem of reasoning about divergence. A dependent function

type x:Int→{v:Int | v > x} would be transformed to x:(()→ Int)→{v:Int | v > x ()}. The

transformed type is problematic as it uses arbitrary function applications in the refinement logic!

81

The type is only sensible if x () provably reduces to a value, bringing us back to square one.

B. Explicit Reasoning about Divergence Another alternative is to enrich the refinement logic

with a value predicate Val(x) that is true when “x is a value” and use the SMT solver to explicitly

reason about divergence. (Note that Val(x) is equivalent to introducing a ⊥ constant denoting

divergence, and writing (x 6= ⊥).) Unfortunately, this Val(x) predicate takes the VCs outside the

scope of the standard efficiently decidable logics supported by SMT solvers. To see why, recall

the subtyping query from good. With explicit value predicates, this subtyping reduces to the VC:

(Val(x)⇒ x≥ 0), (Val(y)⇒ y≥ 0)⇒ (v = y+1)⇒ (v > 0) (2.12)

To prove the above valid, we require the knowledge that (v = y+1) implies that y is a value, i.e.

that Val(y) holds. This fact, while obvious to a human reader, is outside the decidable theories of

linear arithmetic of the existing SMT solvers. Thus, existing solvers would be unable to prove

(2.12) valid, causing us to reject good.

Possible Fix: Explicit Reasoning With Axioms? One possible fix for the above would be to

specify a collection of axioms that characterize how the value predicate behaves with respect to

the other theory operators. For example, we might specify axioms like:

∀x,y,z.(x = y+ z) ⇒ (Val(x)∧Val(y)∧Val(z))

∀x,y.(x < y) ⇒ (Val(x)∧Val(y))

etc.. However, this is a non-solution for several reasons. First, it is not clear what a complete set

of axioms is. Second, there is the well known loss of predictable checking that arises when using

axioms, as one must rely on various brittle, syntactic matching and instantiation heuristics [25]. It

is unclear how well these heuristics will work with the sophisticated linear programming-based

algorithms used to decide arithmetic theories. Thus, proper support for value predicates could

require significant changes to existing decision procedures, making it impossible to use existing

SMT solvers.

82

Possible Fix: Explicit Reasoning With Types? Another possible fix would be to encode the

behavior of the value predicates within the refinement types for different operators, after which

the predicate itself could be treated as an uninterpreted function in the refinement logic [12]. For

instance, we could type the primitives:

(+) :: x:Int → y:Int → {v | v = x + y ∧ Val x ∧ Val y}

(<) :: x:Int → y:Int → {v | v ⇔ x < y ∧ Val x ∧ Val y}

While this approach requires no changes to the SMT machinery, it makes specifications complex

and verbose. We cannot just add the value predicates to the primitives’ specifications. Consider

choose b x y = if b then x+1 else y+2

To reason about the output of choose we must type it as:

choose :: Bool → x:Int → y:Int → {v|(v > x ∧ Val x)||(v > y ∧ Val y)}

Thus, the value predicates will pervasively clutter all signatures with strictness information,

making the system unpleasant to use.

Divergence Requires 3-Valued Logic Finally, for either “fix”, the value predicate poses a model-

theoretic problem: what is the meaning of Val(x)? One sensible approach is to extend the universe

with a family of distinct ⊥ constants, such that Val(⊥) is false. These constants lead inevitably

into a three-valued logic (in order to give meaning to formulas like ⊥ = ⊥). Thus, even if we

were to find a way to reason with the value predicate via axioms or types, we would have to

ensure that we properly handled the 3-valued logic within existing 2-valued SMT solvers.

Future Work Thus, in future work it would be worthwhile to address the above technical and

usability problems to enable explicit reasoning with the value predicate. This explicit system

would be more expressive than our stratified approach, e.g. would let us check

let x = collatz 10 in 12 8 div 8 x + 1

by encoding strictness inside the logic. Nevertheless, we suspect such a verifier would use

stratification to eliminate the value predicate in the common case. At any rate, until these hurdles

are crossed, we can take comfort in stratified refinement types and can just eagerly use termination

to prove safety for lazy languages.

83

Acknowledgments The material of this chapter are adapted from the following publication: N.

Vazou, E. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones, “Refinement Types for Haskell”,

ICFP, 2014.

Chapter 3

Abstract Refinement Types

The purpose of abstraction is not to be vague,
but to create a new semantic level in which one can be absolutely precise.

– Edsger W. Dijkstra

We have presented LIQUID HASKELL, a refinement type checker to Haskell adjusted

(using a termination checker) to ensure soundness under Haskell’s lazy evaluation. Following

standard refinement typing, LIQUID HASKELL reduces refinement type checking to subtyping

queries of the form Γ ` {τ :ν | p} � {τ :ν | q}, where p and q are refinement predicates. These

subtyping queries reduce to logical validity queries of the form [[Γ]]∧ p⇒ q, which can be

automatically discharged using SMT solvers [24].

Unfortunately, the automatic verification offered by refinements has come at a price. To

ensure decidable checking with SMT solvers, the refinements are quantifier-free predicates drawn

from a decidable logic. This significantly limits expressiveness by precluding specifications that

enable abstraction over the refinements (i.e. invariants). For example, consider the following

higher-order for-loop where set i x v returns the vector v updated at index i with the value x.

for :: Int → Int → a → (Int → a → a) → a

for lo hi x body = loop lo x

where loop i x

| i < hi = loop (i+1) (body i x)

| otherwise = x

84

85

initUpto :: Vec a → a → Int → Vec a

initUpto a x n = for 0 n a (\i → set i x)

We would like to verify that initUpto returns a vector whose first n elements are equal

to x. In a first-order setting, we could achieve the above with a loop invariant that asserted that at

the ith iteration, the first i elements of the vector were already initalized to x. However, in our

higher-order setting we require a means of abstracting over possible invariants, each of which can

depend on the iteration index i. Higher-order logics like Coq and Agda permit such quantification

over invariants. Alas, validity in such logics is well outside the realm of decidability, precluding

automatic verification.

In this chapter, we present abstract refinement types which enable abstraction (quan-

tification) over the refinements of data- and function-types. Our key insight is that we can

preserve SMT-based decidable type checking by encoding abstract refinements as uninterpreted

propositions in the refinement logic. This yields several contributions:

• First, we illustrate how abstract refinements yield a variety of sophisticated means for

reasoning about high-level program constructs (§3.1), including: parametric refinements

for type classes, index-dependent refinements for key-value maps, recursive refinements

for data structures, and inductive refinements for higher-order traversal routines.

• Second, we demonstrate that type checking remains decidable (§3.2) by showing a fully

automatic procedure that uses SMT solvers, or to be precise, decision procedures based on

congruence closure [69] to discharge logical subsumption queries over abstract refinements.

• Third, we show that the crucial problem of inferring appropriate instantiations for the

(abstract) refinement parameters boils down to inferring (non-abstract) refinement types

(§3.2), which we have previously automated via the abstract interpretation framework of

Liquid Types [79].

• Finally, we have implemented abstract refinements in LIQUID HASKELL. We present

experiments using LIQUID HASKELL to concisely specify and verify a variety of correctness

86

properties of several programs ranging from microbenchmarks to some widely used libraries

(§3.3).

3.1 Overview

We start with a high level overview of abstract refinements, by illustrating how they can

be used to uniformly specify and automatically verify various kinds of invariants.

3.1.1 Parametric Invariants

Parametric Invariants via Type Polymorphism Suppose we had a generic comparison (≤) ::

a → a → Bool as in OCAML. We could use it to write:

max :: a → a → a

max x y = if x ≤ y then y else x

maximum :: [a] → a

maximum (x:xs) = foldr max x xs

In essence, the type given for maximum states that for any a, if a list of a values is passed into

maximum, then the returned result is also an a value. Hence, for example, if a list of prime

numbers is passed in, the result is prime, and if a list of even numbers is passed in, the result is

even. Thus, we can use refinement types [79] to verify

type Even = {v:Int | v % 2 = 0 }

maxEvens :: [Int] → Even

maxEvens xs = maximum (0 : xs ′)

where xs ′ = [x | x <- xs , x 8 mod 8 2 == 0]

Here the % represents the modulus operator in the refinement logic [24] and we type the primi-

tive mod :: x:Int → y:Int → {v: Int | v = x % y}. Verification proceeds as follows.

Given that xs :: [Int], the system has to verify that maximum (0 : xs′) :: Even. To this

end, the type parameter of maximum is instantiated with the refined type Even, yielding the

instance:

87

maximum :: [Even] → Even

Then, maximum’s argument should be proved to have type [Even]. So, the type parameter of (:)

is instantiated with Even, yielding the instance:

(:) :: Even → [Even] → [Even]

Finally, the system infers that 0 :: Even and xs ′ :: [Even], i.e. the arguments of (:) have

the expected types, thereby verifying the program. The refinement type instantiations can be

inferred, from an appropriate set of logical qualifiers, using the abstract interpretation framework

of Liquid Types [79]. Here, once v%2 = 0 is added to the set of qualifiers, either manually or

(as done by our implementation) by automatically scraping predicates from refinements appearing

in specification signatures, the refinement type instantiations and hence verification, proceed

automatically. Thus, parametric polymorphism offers an easy means of encoding second-order

invariants, i.e. of quantifying over or parametrizing the invariants of inputs and outputs of

functions.

Parametric Invariants via Abstract Refinements Instead, suppose that the comparison operator

was monomorphic and only worked for Int values. The resulting (monomorphic) signatures

max :: Int → Int → Int

maximum :: [Int] → Int

preclude the verification of maxEvens (i.e. typechecking against the signature shown earlier).

This is because the new type of maximum merely states that some Int is returned as output and

not necessarily one that enjoys the properties of the values in the input list. This is a shame, since

the property clearly still holds. We could type

max :: ∀ t � Int. t → t → t

but this route would introduce the complications that surround bounded quantification which

could render checking undecidable [75].

To solve this problem, we introduce abstract refinements which let us quantify or param-

eterize a type over its constituent refinements. For example, we can type max as

max :: ∀ <p :: Int → Bool >. Int <p> → Int <p> → Int <p>

88

where Int<p> is an abbreviation for the refinement type {v:Int | p v}. Intuitively, an abstract

refinement p is encoded in the refinement logic as an uninterpreted function symbol, which

satisfies the congruence axiom [69]

∀X ,Y : (X = Y)⇒ P(X) = P(Y)

Thus, it is trivial to verify, with an SMT solver, that max enjoys the above type: the input types

ensure that both p x and p y hold and hence the returned value in either branch satisfies the

refinement {v:Int | p v}, thereby ensuring the output type. By the same reasoning, we can

generalize the type of maximum to

maximum :: ∀ <p :: Int → Bool >. [Int <p>] → Int <p>

Consequently, we can recover the verification of maxEvens. Now, instead of instantiating a

type parameter, we simply instantiate the refinement parameter of maximum with the concrete

refinement {\v → v % 2 = 0}, after which type checking proceeds as usual [79]. Later, we

show how to retain automatic verification by inferring refinement parameter instantiations via

liquid typing (§ 3.2.4).

Parametric Invariants and Type Classes The example above regularly arises in practice, due to

type classes. In Haskell, the functions above are typed

(≤) :: (Ord a) ⇒ a → a → Bool

max :: (Ord a) ⇒ a → a → a

maximum :: (Ord a) ⇒ [a] → a

We might be tempted to ignore the typeclass constraint and treat maximum as [a] → a. This

would be quite unsound, as typeclass predicates preclude universal quantification over refinement

types. Consider the function sum :: (Num a) ⇒ [a] → a which adds the elements of a list.

The Num class constraint implies that numeric operations occur in the function, so if we pass sum

a list of odd numbers, we are not guaranteed to get back an odd number.

Thus, how do we soundly verify the desired type of maxEvens without instantiating class

predicated type parameters with arbitrary refinement types? First, via the same analysis as the

89

monomorphic Int case, we establish that

max :: ∀ <p :: a → Bool >. (Ord a) ⇒ a<p> → a<p> → a<p>

maximum :: ∀ <p :: a → Bool >. (Ord a) ⇒ [a<p>] → a<p>

Next, at the call-site for maximum in maxEvens we instantiate the type variable a with Int and

the abstract refinement p with {\v → v % 2 = 0} after which, the verification proceeds as

described earlier (for the Int case). Thus, abstract refinements allow us to quantify over invariants

without relying on parametric polymorphism, even in the presence of type classes.

3.1.2 Index-Dependent Invariants

Next, we illustrate how abstract invariants allow us to specify and verify index-dependent

invariants of key-value maps. To this end, we develop a small library of extensible vectors

encoded, for purposes of illustration, as functions from Int to some generic range a. Formally,

we specify vectors as

data Vec a <dom :: Int → Bool , rng :: Int → a → Bool >

= V (i:Int <dom > → a <rng i>)

Here, we are parameterizing the definition of the type Vec with two abstract refinements, dom and

rng, which respectively describe the domain and range of the vector. That is, dom describes the

set of valid indices and r specifies an invariant relating each Int index with the value stored at

that index.

Creating Vectors We can use the following basic functions to create vectors:

empty :: ∀ <p :: Int → a → Bool >.Vec <{_ → False}, p> a

empty = V (_ → error "Empty Vec")

create :: x:a → Vec <{_ → True}, {_ v → v = x}> a

create x = V (_ → x)

The signature for empty states that its domain is empty (i.e. is the set of indices satisfying the

predicate False) and that the range satisfies any invariant. The signature for create, instead,

defines a constant vector that maps every index to the constant x.

90

Accessing Vectors We can write the following get function for reading the contents of a vector

at a given index:

get :: ∀ <d :: Int → Bool , r :: Int → a → Bool >

i:Int <d> → Vec <d, r> a → a<r i>

get i (V f) = f i

The signature states that for any domain d and range r, if the index i is a valid index, i.e. is of

type, Int<d> then the returned value is an a that additionally satisfies the range refinement at the

index i. The type for set, which updates the vector at a given index, is even more interesting, as

it allows us to extend the domain of the vector:

set :: ∀ <d :: Int → Bool , r :: Int → a → Bool >

i:Int <d>

→ a<r i>

→ Vec <d ∧ {\k → k 6= i}, r> a

→ Vec <d, r> a

set i v (V f) = V (\k → if k == i then v else f k)

The signature for set requires that (a) the input vector is defined everywhere at d except the index

i and (b) the value supplied must be of type a<r i>, i.e. satisfy the range relation at the index

i at which the vector is being updated. The signature ensures that the output vector is defined

at d and each value satisfies the index-dependent range refinement r. Note that it is legal to call

get with a vector that is also defined at the index i since, by contravariance, such a vector is a

subtype of that required by (a).

Initializing Vectors Next, we can write the following function, init, that “loops” over a vector,

to set each index to a value given by some function.

initialize :: ∀ <r :: Int → a → Bool >.

(z: Int → a<r z>)

→ i: {v: Int | v ≥ 0}

→ n: Int

→ Vec <{\v → 0 ≤ v ∧ v < i}, r> a

→ Vec <{\v → 0 ≤ v ∧ v < n}, r> a

91

initialize f i n a

| i ≥ n = a

| otherwise = initialize f (i+1) n (set i (f i) a)

The signature requires that (a) the higher-order function f produces values that satisfy the range

refinement r and (b) the vector is initialized from 0 to i. The function ensures that the output

vector is initialized from 0 through n. We can thus verify that

idVec :: Vec <{\v → 0 ≤ v ∧ v<n}, {\i v → v=i}> Int

idVec n = initialize (\i → i) 0 n empty

i.e. idVec returns a vector of size n where each key is mapped to itself. Thus, abstract refinement

types allow us to verify low-level idioms such as the incremental initialization of vectors, which

have previously required special analyses [37, 44, 22].

Null-Terminated Strings We can also use abstract refinements to verify code which manipulates

C-style null-terminated strings, represented as Char vectors for ease of exposition. Formally, a

null-terminated string of size n has the type

type NullTerm n

= Vec <{\v → 0 ≤ v<n}, {\i v → i=n-1 ⇒ v= ′ \0 ′ }> Char

The above type describes a length-n vector of characters whose last element must be a null

character, signalling the end of the string. We can use this type in the specification of a function,

upperCase, which iterates through the characters of a string, uppercasing each one until it

encounters the null terminator:

upperCase :: n:{v: Int| v>0} → NullTerm n → NullTerm n

upperCase n s = ucs 0 s

where

ucs i s = case get i s of

′ \0 ′ → s

c → ucs (i + 1) (set i (toUpper c) s)

Note that the length parameter n is provided solely as a “witness” for the length of the string s,

which allows us to use the length of s in the type of upperCase; n is not used in the computation.

In order to establish that each call to get accesses string s within its bounds, our type system

92

must establish that, at each call to the inner function ucs, i satisfies the type {v: Int | 0

≤ v ∧ v < n}. This invariant is established as follows. First, the invariant trivially holds on

the first call to ucs, as n is positive and i is 0. Second, we assume that i satisfies the type

{v: Int | 0 ≤ v ∧ v < n}, and, further, we know from the types of s and get that c has

the type {v: Char | i = n - 1 ⇒ v = ′\0′}. Thus, if c is non-null, then i cannot be equal

to n - 1. This allows us to strengthen our type for i in the else branch to {v: Int | 0 ≤ v

∧ v < n - 1} and thus to conclude that the value i + 1 recursively passed as the i parameter

to ucs satisfies the type {v: Int | 0 ≤ v ∧ v < n}, establishing the inductive invariant and

thus the safety of the upperCase function.

Memoization Next, let us illustrate how the same expressive signatures allow us to verify memo-

izing functions. We can specify to the SMT solver the definition of the Fibonacci function via an

uninterpreted function fib and an axiom:

measure fib :: Int → Int

axiom: ∀ i. (fib i) = if i ≤ 1 then 1 else fib (i-1) + fib (i-2)

Next, we define a type alias FibV for the vector whose values are either 0 (i.e. undefined) or equal

to the Fibonacci number of the corresponding index.

type FibV = Vec <{_→ True},{\i v→ v 6= 0 ⇒ v = fib i}> Int

Finally, we can use the above alias to verify fastFib, an implementation of the Fibonacci

function, which uses a vector memoize intermediate results

fastFib :: n:Int → {v:Int | v = fib(n)}

fastFib n = snd $ fibMemo (create 0) n

fibMemo :: FibV → i:Int → (FibV , {v: Int | v = fib(i)})

fibMemo t i

| i ≤ 1 = (t, 1)

| otherwise = case get i t of

0 → let (t1 , n1) = fibMemo t (i-1)

(t2, n2) = fibMemo t1 (i-2)

n = n1 + n2

in (set i n t2, n)

93

n → (t, n)

Thus, abstract refinements allow us to define key-value maps with index-dependent refinements

for the domain and range. Quantification over the domain and range refinements allows us to

define generic access operations (e.g. get, set, create, empty) whose types enable us establish

a variety of precise invariants.

3.1.3 Recursive Invariants

Next, we turn our attention to recursively defined datatypes and show how abstract

refinements allow us to specify and verify high-level invariants that relate the elements of a

recursive structure. Consider the following refined definition for lists:

data [a] <p :: a → a → Bool > where

[] :: [a]<p>

(:) :: h:a → [a<p h>]<p> → [a]<p>

The definition states that a value of type [a]<p> is either empty ([]) or constructed from a

pair of a head h::a and a tail of a list of a values each of which satisfies the refinement (p

h). Furthermore, the abstract refinement p holds recursively within the tail, ensuring that the

relationship p holds between all pairs of list elements.

Thus, by plugging in appropriate concrete refinements, we can define the following

aliases, which correspond to the informal notions implied by their names:

type IncrList a = [a]<{\h v → h ≤ v}>

type DecrList a = [a]<{\h v → h ≥ v}>

type UniqList a = [a]<{\h v → h 6= v}>

That is, IncrList a (resp. DecrList a) describes a list sorted in increasing (resp. decreasing)

order and UniqList a describes a list of distinct elements, i.e. not containing any duplicates.

We can use the above definitions to verify

[1, 2, 3, 4] :: IncrList Int

[4, 3, 2, 1] :: DecrList Int

[4, 1, 3, 2] :: UniqList Int

More interestingly, we can verify that the usual algorithms produce sorted lists:

94

insertSort :: (Ord a) ⇒ [a] → IncrList a

insertSort [] = []

insertSort (x:xs) = insert x (insertSort xs)

insert :: (Ord a) ⇒ a → IncrList a → IncrList a

insert y [] = [y]

insert y (x:xs)

| y ≤ x = y : x : xs

| otherwise = x : insert y xs

Thus, abstract refinements allow us to decouple the definition of the list from the actual invariants

that hold. This, in turn, allows us to conveniently reuse the same underlying (non-refined) type to

implement various algorithms unlike, say, singleton-type based implementations which require

up to three different types of lists (with three different “nil” and “cons” constructors [84]). This,

makes abstract refinements convenient for verifying complex sorting implementations like that of

Data.List.sort which, for efficiency, use lists with different properties (e.g. increasing and

decreasing).

Multiple Recursive Refinements We can define recursive types with multiple parameters. For

example, consider the following refined version of a type used to encode functional maps

(Data.Map):

data Tree k v <l :: k → k → Bool , r :: k → k → Bool >

= Bin { key :: k

, value :: v

, left :: Tree <l, r> (k <l key >) v

, right :: Tree <l, r> (k <r key >) v }

| Tip

The abstract refinements l and r relate each key of the tree with all the keys in the left and right

subtrees of key, as those keys are respectively of type k <l key> and k <r key>. Thus, if we

instantiate the refinements with the following predicates

type BST k v = Tree <{\x y → x> y},{\x y→ x< y}> k v

type MinHeap k v = Tree <{\x y → x ≤ y},{\x y→ x ≤ y}> k v

95

type MaxHeap k v = Tree <{\x y → x ≥ y},{\x y→ x ≥ y}> k v

then BST k v, MinHeap k v and MaxHeap k v denote exactly binary-search-ordered, min-

heap-ordered, and max-heap-ordered trees (with keys and values of types k and v). We demon-

strate in (§ 3.3) how we use the above types to automatically verify ordering properties of complex,

full-fledged libraries.

3.1.4 Inductive Invariants

Finally, we explain how abstract refinements allow us to formalize some kinds of struc-

tural induction within the type system.

Measures First, let us formalize a notion of length for lists within the refinement logic. To do so,

we define a special len measure by structural induction

measure len :: [a] → Int

len [] = 0

len (x:xs) = 1 + len(xs)

We use the measures to automatically strengthen the types of the data constructors 2.1.6:

data [a] where

[] :: {v:[a] | len v = 0}

(:) :: a → xs:[a] → {v:[a]| len v = 1 + len xs}

Note that the symbol len is encoded as an uninterpreted function in the refinement logic, and

is, except for the congruence axiom, opaque to the SMT solver. The measures are guaranteed,

by construction, to terminate and so we can soundly use them as uninterpreted functions in the

refinement logic. Notice also, that we can define multiple measures for a type; in this case we

simply conjoin the refinements from each measure when refining each data constructor.

With these strengthened constructor types, we can verify, for example, that append

produces a list whose length is the sum of the input lists’ lengths:

append :: l:[a] → m:[a] → {v:[a]| len v = len l + len m}

append [] zs = zs

append (y:ys) zs = y : append ys zs

However, consider an alternate definition of append that uses foldr

96

append ys zs = foldr (:) zs ys

where foldr :: (a → b → b) → b → [a] → b. It is unclear how to give foldr a (first-

order) refinement type that captures the rather complex fact that the fold-function is “applied” all

over the list argument, or, that it is a catamorphism. Hence, hitherto, it has not been possible to

verify the second definition of append.

Typing Folds Abstract refinements allow us to solve this problem with a very expressive type

for foldr whilst remaining firmly within the boundaries of SMT-based decidability. We write a

slightly modified fold:

foldr :: ∀ <p :: [a] → b → Bool >.

(xs:[a] → x:a → b <p xs> → <p (x:xs) >)

→ b<p []>

→ ys:[a]

→ b<p ys>

foldr op b [] = b

foldr op b (x:xs) = op xs x (foldr op b xs)

The trick is simply to quantify over the relationship p that foldr establishes between the input list

xs and the output b value. This is formalized by the type signature, which encodes an induction

principle for lists: the base value b must (1) satisfy the relation with the empty list, and the

function op must take (2) a value that satisfies the relationship with the tail xs (we have added the

xs as an extra “ghost” parameter to op), (3) a head value x, and return (4) a new folded value that

satisfies the relationship with x:xs. If all the above are met, then the value returned by foldr

satisfies the relation with the input list ys. This scheme is not novel in itself [8] — what is new is

the encoding, via uninterpreted predicate symbols, in an SMT-decidable refinement type system.

Using Folds Finally, we can use the expressive type for the above foldr to verify various

inductive properties of client functions:

length :: zs:[a] → {v: Int | v = len zs}

length = foldr (_ _ n → n + 1) 0

append :: l:[a] → m:[a] → {v:[a]| len v = len l + len m}

97

append ys zs = foldr (_ → (:)) zs ys

The verification proceeds by just (automatically) instantiating the refinement parameter p of

foldr with the concrete refinements, via Liquid typing:

{\xs v → v = len xs} -- for length

{\xs v → len v = len xs + len zs} -- for append

3.2 Syntax and Semantics

Next, we present a core calculus λP that formalizes the notion of abstract refinements. We

start with the syntax (§ 3.2.1), present the typing rules (§ 3.2.2), show soundness via a reduction

to contract calculi [51, 6] (§ 4.2.4), and inference via Liquid types (§ 3.2.4).

3.2.1 Syntax

Figure 3.1 summarizes the syntax of our core calculus λP which is a polymorphic

λ -calculus extended with abstract refinements. We write b, {v : b | e} and b〈p〉 to abbreviate

{v : b〈True〉 | True}, {v : b〈True〉 | e}, and {v : b〈p〉 | True} respectively. We say a type or schema

is non-refined if all the refinements in it are True. We write z to abbreviate a sequence z1 . . .zn.

Expressions λP expressions include the standard variables x, primitive constants c, λ -abstraction

λx : τ.e, application e e, type abstraction Λα.e, and type application e [τ]. The parameter τ in the

type application is a refinement type, as described shortly. The two new additions to λP are the

refinement abstraction Λπ : τ.e, which introduces a refinement variable π (together with its type

τ), which can appear in refinements inside e, and the corresponding refinement application e [e].

Refinements A concrete refinement e is a boolean valued expression e drawn from a strict subset

of the language of expressions which includes only terms that (a) neither diverge nor crash and

(b) can be embedded into an SMT decidable refinement logic including the theory of linear

arithmetic and uninterpreted functions. An abstract refinement p is a conjunction of refinement

variable applications of the form π e.

Types and Schemas The basic types of λP include the base types Int and Bool and type variables

α . An abstract refinement type τ is either a basic type refined with an abstract and concrete

98

Expressions e ::= x | c | λx : τ.e | e e
| Λα.e | e [τ] | Λπ : τ.e | e [e]

Abstract Refinements p ::= True | p∧π e

Basic Types b ::= Int | Bool | α

Abstract Refinement Types τ ::= {v : b〈p〉 | e} | {v : (x : τ)→ τ | e}
Abstract Refinement Schemas σ ::= τ | ∀α.σ | ∀π : τ.σ

Figure 3.1. Syntax of Expressions, Refinements, Types and Schemas of λP.

refinements, {v : b〈p〉 | e}, or a dependent function type where the parameter x can appear in the

refinements of the output type. We include refinements for functions, as refined type variables

can be replaced by function types. However, typechecking ensures these refinements are trivially

true. Finally, types can be quantified over refinement variables and type variables to yield abstract

refinement schemas.

3.2.2 Static Semantics

Next, we describe the static semantics of λP by describing the typing judgments and

derivation rules. Most of the rules are standard [72, 79, 51, 7]; we discuss only those pertaining

to abstract refinements.

Judgments A type environment Γ is a sequence of type bindings x : σ . We use environments to

define three kinds of typing judgments.

Wellformedness judgments (Γ ` σ) state that a type schema σ is well-formed under environment

Γ, that is, the refinements in σ are boolean expressions in the environment Γ. The wellformedness

rules check that the concrete and abstract refinements are indeed Bool-valued expressions in the

appropriate environment. The key rule is WF-BASE, which checks, as usual, that the (concrete)

refinement e is boolean and additionally, that the abstract refinement p applied to the value v is

also boolean. This latter fact is established by WF-RAPP which checks that each refinement

variable application π e v is also of type Bool in the given environment.

Subtyping judgments (Γ ` σ1 � σ2) state that the type schema σ1 is a subtype of the type schema

σ2 under environment Γ, that is, when the free variables of σ1 and σ2 are bound to values

99

Well-Formedness Γ ` σ

Γ ` True(v)
WF-TRUE

Γ ` p(v) Γ ` π e v : Bool
Γ ` (p∧π e)(v)

WF-RAPP

Γ,v : b ` e : Bool Γ,v : b ` p(v) : Bool
Γ ` {v : b〈p〉 | e}

WF-BASE

Γ ` e : Bool Γ ` τx Γ,x : τx ` τ

Γ ` {v : (x : τx)→ τ | e}
WF-FUN

Γ,π : τ ` σ

Γ ` ∀π : τ.σ
WF-ABS-π

Γ,α ` σ

Γ ` ∀α.σ
WF-ABS-α

Subtyping Γ ` σ1 � σ2

SMT-Valid([[Γ]]∧ [[p1 v]]∧ [[e1]]⇒ [[p2 v]]∧ [[e2]])

Γ ` {v : b〈p1〉 | e1} � {v : b〈p2〉 | e2}
�-BASE

Γ ` τ2 � τ1 Γ,x2 : τ2 ` τ ′1 [x1 7→ x2]� τ ′2
Γ ` {v : (x1 : τ1)→ τ ′1 | e1} � {v : (x2 : τ2)→ τ ′2 | True}

�-FUN

Γ,π : τ ` σ1 � σ2

Γ ` ∀π : τ.σ1 � ∀π : τ.σ2
�-RVAR

Γ ` σ1 � σ2

Γ ` ∀α.σ1 � ∀α.σ2
�-POLY

Type Checking Γ ` e : σ

Γ ` e : σ2 Γ ` σ2 � σ1 Γ ` σ1

Γ ` e : σ1
T-SUB

Γ ` c : tc(c)
T-CONST

x : {v : b〈p〉 | e} ∈ Γ

Γ ` x : {v : b〈p〉 | e∧ v = x}
T-VAR-BASE

x : τ ∈ Γ

Γ ` x : τ
T-VAR

Γ,x : τx ` e : τ Γ ` τx

Γ ` λx : τx.e : (x : τx)→ τ
T-FUN

Γ ` e1 : (x : τx)→ τ Γ ` e2 : τx

Γ ` e1 e2 : τ [x 7→ e2]
T-APP

Γ,α ` e : σ

Γ ` Λα.e : ∀α.σ
T-GEN

Γ ` e : ∀α.σ Γ ` τ

Γ ` e [τ] : σ [α 7→ τ]
T-INST

Γ,π : τ ` e : σ Γ ` τ

Γ ` Λπ : τ.e : ∀π : τ.σ
T-PGEN

Γ ` e : ∀π : τ.σ Γ ` λx : τx.e′ : τ

Γ ` e [λx : τx.e′] : σ [π B λx : τx.e′]
T-PINST

Figure 3.2. Well-formedness, Subtyping and Type Checking of λP.

100

described by Γ, the set of values described by σ1 is contained in the set of values described by σ2.

The rules are standard except for �-VAR, which encodes the base types’ abstract refinements p1

and p2 with conjunctions of uninterpreted predicates [[p1 v]] and [[p2 v]] in the refinement logic as

follows:

[[True v]] .
= True

[[(p∧π e) v]] .
= [[p v]]∧π([[e1]], . . . , [[en]],v)

where π(e) is a term in the refinement logic corresponding to the application of the uninterpreted

predicate symbol π to the arguments e.

Typing judgments (Γ ` e : σ) state that the expression e has the type schema σ under environment

Γ, that is, when the free variables in e are bound to values described by Γ, the expression e will

evaluate to a value described by σ . The type checking rules are standard except for T-PGEN

and T-PINST, which pertain to abstraction and instantiation of abstract refinements. The rule

T-PGEN is the same as T-FUN: we simply check the body e in the environment extended with a

binding for the refinement variable π . The rule T-PINST checks that the concrete refinement is

of the appropriate (unrefined) type τ , and then replaces all (abstract) applications of π inside σ

with the appropriate (concrete) refinement e′ with the parameters x replaced with arguments at

that application. Formally, this is represented as σ [π B λx : τ.e′] which is σ with each base type

transformed as

{v : b〈p〉 | e}[π B z] .
=
{

v : b〈p′′〉 | e∧ e′′
}

where (p′′,e′′) .
= Apply(p,π,z,True,True)

101

Apply replaces each application of π in p with the corresponding conjunct in e′′, as

Apply(True, ·, ·, p′,e′) .
= (p′,e′)

Apply(p∧π
′ e,π,z, p′,e′) .

= Apply(p,π,z, p′∧π
′ e,e′)

Apply(p∧π e,π,λx : τ.e′′, p′,e′) .
= Apply(p,π,λx : τ.e′′, p′,e′∧ e′′ [x 7→ e,v])

In other words, the instantiation can be viewed as two symbolic reduction steps: first replacing the

refinement variable with the concrete refinement, and then “beta-reducing” concrete refinement

with the refinement variable’s arguments. For example,

{v : Int〈π y〉 | v > 10}[π B λx1 : τ1.λx2 : τ2.x1 < x2]
.
= {v : Int | v > 10∧ y < v}

3.2.3 Soundness

As hinted by the discussion about refinement variable instantiation, we can intuitively

think of abstract refinement variables as ghost program variables whose values are boolean-valued

functions. Hence, abstract refinements are a special case of higher-order contracts, that can be

statically verified using uninterpreted functions. (Since we focus on static checking, we don’t

care about the issue of blame.) We formalize this notion by translating λP programs into the

contract calculus FH of [6] and use this translation to define the dynamic semantics and establish

soundness.

Translation We translate λP schemes σ to FH schemes 〈|σ |〉 as by translating abstract refinements

into contracts, and refinement abstraction into function types:

〈|True v|〉 .
=True 〈|∀π : τ.σ |〉 .

=(π : 〈|τ|〉)→ 〈|σ |〉

〈|(p∧π e) v|〉 .
=〈|p v|〉∧π e v 〈|∀α.σ |〉 .

=∀α.〈|σ |〉

〈|{v : b〈p〉 | e}|〉 .
={v : b | e∧〈|p v|〉} 〈|(x : τ1)→ τ2|〉

.
=(x : 〈|τ1|〉)→ 〈|τ2|〉

Similarly, we translate λP terms e to FH terms 〈|e|〉 by converting refinement abstraction and

102

application to λ -abstraction and application

〈|x|〉 .
=x 〈|c|〉 .

=c

〈|λx : τ.e|〉 .
=λx : 〈|τ|〉.〈|e|〉 〈|e1 e2|〉

.
=〈|e1|〉 〈|e2|〉

〈|Λα.e|〉 .
=Λα.〈|e|〉 〈|e [τ] |〉 .

=〈|e|〉 〈|τ|〉

〈|Λπ : τ.e|〉 .
=λπ : 〈|τ|〉.〈|e|〉 〈|e1 [e2] |〉

.
=〈|e1|〉 〈|e2|〉

Translation Properties We can show by induction on the derivations that the type derivation rules

of λP conservatively approximate those of FH. Formally,

• If Γ ` τ then 〈|Γ|〉 `H 〈|τ|〉,

• If Γ ` τ1 � τ2 then 〈|Γ|〉 `H 〈|τ1|〉<: 〈|τ2|〉,

• If Γ ` e : τ then 〈|Γ|〉 `H 〈|e|〉 : 〈|τ|〉.

Soundness Thus rather than re-prove preservation and progress for λP, we simply use the fact that

the type derivations are conservative to derive the following preservation and progress corollaries

from [6]:

• Preservation: If /0 ` e : τ and 〈|e|〉 −→ e′ then /0 `H e′ : 〈|τ|〉

• Progress: If /0 ` e : τ , then either 〈|e|〉 −→ e′ or 〈|e|〉 is a value.

Note that, in a contract calculus like FH, subsumption is encoded as a upcast. However, if

subtyping relation can be statically guaranteed (as is done by our conservative SMT based

subtyping) then the upcast is equivalent to the identity function and can be eliminated. Hence, FH

terms 〈|e|〉 translated from well-typed λP terms e have no casts.

3.2.4 Refinement Inference

Our design of abstract refinements makes it particularly easy to perform type inference

via Liquid typing, which is crucial for making the system usable by eliminating the tedium

of instantiating refinement parameters all over the code. (With value-dependent refinements,

103

one cannot simply use, say, unification to determine the appropriate instantations, as is done

for classical type systems). We briefly recall how Liquid types work, and sketch how they are

extended to infer refinement instantiations.

Liquid Types The Liquid Types method infers refinements in three steps. First, we create

refinement templates for the unknown, to-be-inferred refinement types. The shape of the template

is determined by the underlying (non-refined) type it corresponds to, which can be determined

from the language’s underlying (non-refined) type system. The template is just the shape refined

with fresh refinement variables κ denoting the unknown refinements at each type position. For

example, from a type (x : Int)→ Int we create the template (x : {v : Int | κx})→{v : Int | κ}.

Second, we perform type checking using the templates (in place of the unknown types). Each

wellformedness check becomes a wellformedness constraint over the templates, and hence over

the individual κ , constraining which variables can appear in κ . Each subsumption check becomes

a subtyping constraint between the templates, which can be further simplified, via syntactic

subtyping rules, to a logical implication query between the variables κ . Third, we solve the

resulting system of logical implication constraints (which can be cyclic) via abstract interpretation

— in particular, monomial predicate abstraction over a set of logical qualifiers [33, 79]. The

solution is a map from κ to conjunctions of qualifiers, which, when plugged back into the

templates, yields the inferred refinement types.

Inferring Refinement Instantiations The key to making abstract refinements practical is a means

of synthesizing the appropriate arguments e′ for each refinement application e [e′]. Note that

for such applications, we can, from e, determine the non-refined type of e′, which is of the

form τ1→ . . .→ τn→ Bool. Thus, e′ has the template λx1 : τ1. . . .λxn : τn.κ where κ is a fresh,

unknown refinement variable that must be solved to a boolean valued expression over x1, . . . ,xn.

Thus, we generate a wellformedness constraint x1 : τ1, . . . ,xn : τn ` κ and carry out typechecking

with template, which, as before, yields implication constraints over κ , which can, as before, be

solved via predicate abstraction. Finally, in each refinement template, we replace each κ with its

solution eκ to get the inferred refinement instantiations.

104

Table 3.1. (LOC) is the number of non-comment Haskell source code lines as reported by
sloccount, (Specs) is the number of lines of type specifications, (Annot) is the number of lines of
other annotations, including refined datatype definitions, type aliases and measures, required for
verification, (Time) is the time in seconds taken for verification.

Program LOC Specs Annot Time (s)
Micro 32 19 4 2
Vector 56 56 2 14
ListSort 29 4 1 3
Data.List.sort 71 3 1 8
Data.Set.Splay 136 15 11 15
Data.Map.Base 1399 119 31 235
Total 1723 216 50 277

3.3 Evaluation

In this section, we empirically evaluate the expressiveness and usability of abstract

refinement types by implementing abstract refinement in LIQUID HASKELL as uninterpreted

functions. We use LIQUID HASKELL to typecheck a set of challenging benchmark programs.

(We defer the task of extending the metatheory to a call-by-name calculus to future work).

Benchmarks We have evaluated LIQUID HASKELL over the following list of benchmarks which,

in total, represent the different kinds of reasoning described in § 3.1. While we can prove, and

previously have proved [47], many so-called “functional correctness” properties of these data

structures using refinement types, in this work we focus on the key invariants which are captured

by abstract refinements.

• Micro, which includes several functions demonstrating parametric reasoning with base

values, type classes, and higher-order loop invariants for traversals and folds, as described

in § 3.1.1 and § 3.1.4;

• Vector, which includes the domain- and range-generic Vec functions and several “clients”

that use the generic Vec to implement incremental initialization, null-terminated strings,

and memoization, as described in § 3.1.2;

• ListSort, which includes various textbook sorting algorithms including insert-, merge-

and quick-sort. We verify that the functions actually produce sorted lists, i.e. are of type

105

IncrList a, as described in § 3.1.3;

• Data.List.sort, which includes three non-standard, optimized list sorting algorithms,

as found in the base package. These employ lists that are increasing and decreasing, as

well as lists of (sorted) lists, but we can verify that they also finally produce values of type

IncrList a;

• Data.Set.Splay, which is a purely functional, top-down splay set library from the

llrbtree package. We verify that all the interface functions take and return binary search

trees;

• Data.Map.Base, which is the widely-used implementation of functional maps from the

containers package. We verify that all the interface functions preserve the crucial binary

search ordering property and various related invariants.

Table 3.1 quantitatively summarizes the results of our evaluation. We now give a qualitative

account of our experience using LIQUID HASKELL by discussing what the specifications and

other annotations look like.

Specifications are usually simple In our experience, abstract refinements greatly simplify writing

specifications for the majority of interface or public functions. For example, for Data.Map.Base,

we defined the refined version of the Tree ADT (actually called Map in the source, we reuse the

type from § 3.1.3 for brevity), and then instantiated it with the concrete refinements for binary-

search ordering with the alias BST k v as described in § 3.1.3. Most refined specifications were

just the Haskell types with the Tree type constructor replaced with the alias BST. For example,

the type of fromList is refined from (Ord k) ⇒ [(k, a)] → Tree k a to (Ord k) ⇒

[(k, a)] → BST k a. Furthermore, intra-module Liquid type inference permits the automatic

synthesis of necessary stronger types for private functions.

Auxiliary Invariants are sometimes Difficult However, there are often rather thorny internal

functions with tricky invariants, whose specification can take a bit of work. For example,

the function trim in Data.Map.Base has the following behavior (copied verbatim from the

106

documentation): “trim blo bhi t trims away all subtrees that surely contain no values between

the range blo to bhi. The returned tree is either empty or the key of the root is between blo

and bhi.” Furthermore blo (resp. bhi) are specified as option (i.e. Maybe) values with Nothing

denoting −∞ (resp. +∞). Fortunately, refinements suffice to encode such properties. First, we

define measures

measure isJust :: Maybe a → Bool

isJust (Just x) = true

isJust (Nothing) = false

measure fromJust :: Maybe a → a

fromJustS (Just x) = x

measure isBin :: Tree k v → Bool

isBin (Bin _ _ _ _) = true

isBin (Tip) = false

measure key :: Tree k v → k

key (Bin k _ _ _) = k

which respectively embed the Maybe and Tree root value into the refinement logic, after which

we can type the trim function as

trim :: (Ord k) ⇒ blo:Maybe k

→ bhi:Maybe k

→ BST k a

→ {v:BST k a | bound(blo , v, bhi)}

where bound is simply a refinement alias

refinement bound(lo , v, hi)

= isBin(v) ⇒ isJust(lo) ⇒ fromJust(lo) < key(v)

∧ isBin(v) ⇒ isJust(hi) ⇒ fromJust(hi) > key(v)

That is, the output refinement states that the root is appropriately lower- and upper- bounded if

the relevant terms are defined. Thus, refinement types allow one to formalize the crucial behavior

as machine-checkable documentation.

107

Code Modifications On a few occasions we also have to change the code slightly, typically to

make explicit values on which various invariants depend. Often, this is for a trivial reason; a

simple re-ordering of binders so that refinements for later binders can depend on earlier ones.

Sometimes we need to introduce “ghost” values so we can write the specifications (e.g. the foldr

in § 3.1.4). Another example is illustrated by the use of list append in quickSort. Here, the

append only produces a sorted list if the two input lists are sorted and such that each element

in the first is less than each element in the second. We address this with a special append

parameterized on pivot

append :: pivot:a

→ IncrList {v:a | v < pivot}

→ IncrList {v:a | v > pivot}

→ IncrList a

append pivot [] ys = pivot : ys

append pivot (x:xs) ys = x : append pivot xs ys

3.4 Conclusion

We presented abstract refinement types which enable quantification over the refinements

of data- and function-types. Our key insight is that we can avail of quantification while preserving

SMT-based decidability, simply by encoding refinement parameters as uninterpreted propositions

within the refinement logic. We showed how this mechanism yields a variety of sophisticated

means for reasoning about programs, including: parametric refinements for reasoning with type

classes, index-dependent refinements for reasoning about key-value maps, recursive refinements

for reasoning about recursive data types, and inductive refinements for reasoning about higher-

order traversal routines. We implemented our approach in LIQUID HASKELL and present

experiments using our tool to verify correctness invariants of various programs.

As discussed in 3.3, verification many times required code modifications and definition

of “ghost” variables (e.g. to verify append), that is, extra arguments not used at run time but

required for specifications. In next chapter we raise this limitation by introducing Bounded

Refinement Types, that impose constrains in the abstract refinements to further increase the

108

expressiveness of decidable specifications. Abstract and Bounded Refinement Types lead to a

relatively complete [94] specification system, that is the system can express any specification

(relatively to the underlying logic) without the requirement of code modifications and “ghost”

variables.

Acknowledgments The material of this chapter are adapted from the following publication: N.

Vazou, P. Rondon, and R. Jhala, “Abstract Refinement Types”, ESOP, 2013.

Chapter 4

Bounded Refinement Types

Problems are hidden opportunities, and constraints can actually boost creativity.

– Martin Villeneuve

In this chapter we introduce Bounded Refinement Types which enable bounded quantifi-

cation over refinements. Previously (Chapter 3), we developed Abstract Refinement Types, a

mechanism for quantifying type signatures over abstract refinement parameters. We preserved

decidability of checking and inference by encoding abstractly refined types with uninterpreted

functions obeying the decidable axioms of congruence [69]. While useful, refinement quantifi-

cation was not enough to enable higher order abstractions requiring fine grained dependencies

between abstract refinements. In this chapter, we solve this problem by enriching signatures

with bounded quantification. The bounds correspond to Horn implications between abstract

refinements, which, as in the classical setting, correspond to subtyping constraints that must be

satisfied by the concrete refinements used at any call-site. This addition proves to be remarkably

effective.

• First, we demonstrate via a series of short examples how bounded refinements enable

the specification and verification of diverse textbook higher order abstractions that were

hitherto beyond the scope of decidable refinement typing (§ 4.1).

• Second, we formalize bounded types and show how bounds are translated into “ghost”

functions, reducing type checking and inference to the “unbounded” setting of chapter 3,

109

110

thereby ensuring that checking remains decidable. Furthermore, as the bounds are Horn

constraints, we can directly reuse the abstract interpretation of Liquid Typing [79] to

automatically infer concrete refinements at instantiation sites (§ 4.2).

• Third, to demonstrate the expressiveness of bounded refinements, we use them to build a

typed library for extensible dictionaries, to then implement a relational algebra library on

top of those dictionaries, and to finally build a library for type-safe database access (§ 4.3).

• Finally, we use bounded refinements to develop a Refined State Transformer monad for

stateful functional programming, based upon Filliâtre’s method for indexing the monad

with pre- and post-conditions [32]. We use bounds to develop branching and looping

combinators whose types signatures capture the derivation rules of Floyd-Hoare logic,

thereby obtaining a library for writing verified stateful computations (§ 4.4). We use this

library to develop a refined IO monad that tracks capabilities at a fine-granularity, ensuring

that functions only access specified resources (§ 4.5).

We have implemented Bounded Refinement Types in LIQUID HASKELL. The source

code of the examples (with slightly more verbose concrete syntax) is at [90]. While the construc-

tion of these verified abstractions is possible with full dependent types, bounded refinements

keep checking automatic and decidable, use abstract interpretation to automatically synthesize

refinements (i.e. pre- and post-conditions and loop invariants), and most importantly enable

retroactive or gradual verification as when erase the refinements, we get valid programs in the

host language. Thus, bounded refinements point a way towards both automated and expressive

verification.

4.1 Overview

We start with a high level overview of bounded refinement types. We first present a short

introduction to refinement type specifications, to make this chapter self contained. Then, we

introduce bounded refinements, and show how they permit modular higher-order specifications.

Finally, we describe how they are implemented via an elaboration process that permits automatic

111

first-order verification.

4.1.1 Preliminaries

Refinement Types let us precisely specify subsets of values, by conjoining base types with logical

predicates that constrain the values. We get decidability of type checking, by limiting these

predicates to decidable, quantifier-free, first-order logics, including the theory of linear arithmetic,

uninterpreted functions, arrays, bit-vectors and so on. For example, the refinement types

type Pos = {v:Int | 0 < v}

type IntGE x = {v:Int | x ≤ v}

specify subsets of Int corresponding to values that are positive or larger than some other value x

respectively. We can use refinement types to specify contracts like pre- and post-conditions by

suitably refining the input and output types of functions.

Preconditions are specified by refining input types. We specify that the function assert must

only be called with True, where the type TRUE contains only the singleton True:

type TRUE = {v:Bool | v ⇔ True}

assert :: TRUE → a → a

assert True x = x

assert False _ = error "Provably Dead Code"

We can specify post-conditions by refining output types. For example, a primitive Int comparison

operator leq can be assigned a type that says that the output is True iff the first input is actually

less than or equal to the second:

leq :: x:Int → y:Int → {v:Bool | v ⇔ x ≤ y}

Refinement Type Checking proceeds by checking that at each application, the types of the actual

arguments are subtypes of those of the function inputs, in the environment (or context) in which

the call occurs. Consider the function:

checkGE :: a:Int → b:IntGE a → Int

checkGE a b = assert cmp b

where cmp = a 8 leq 8 b

112

To verify the call to assert we check that the actual parameter cmp is a subtype of TRUE, under

the assumptions given by the input types for a and b. Via subtyping [100] the check reduces to

establishing the validity of the verification condition (VC)

a ≤ b ⇒ (cmp ⇔ a ≤ b) ⇒ v = cmp ⇒ (v ⇔ true)

The first antecedent comes from the input type of b, the second from the type of cmp obtained

from the output of leq, the third from the actual input passed to assert, and the goal comes

from the input type required by assert. An SMT solver [69] readily establishes the validity of

the above VC, thereby verifying checkGE.

4.1.2 Bounded Refinements

Refinement types hit various expressiveness walls, as for decidability, refinements are

constraint to first order, decidable logics. Consider the following example from [94]. find

takes as input a predicate q, a continuation k and a starting number i; it proceeds to compute

the smallest Int (larger than i) that satisfies q, and calls k with that value. ex1 passes find a

continuation that checks that the “found” value equals or exceeds n.

ex1 :: (Int → Bool) → Int → ()

ex1 q n = find q (checkGE n) n

find q k i

| q i = k i

| otherwise = find q k (i + 1)

Verification fails as there is no way to specify that k is only called with arguments greater than n.

First, the variable n is not in scope at the function definition so we cannot refer to it. Second, we

could try to say that k is invoked with values greater than or equal to i, which gets substituted

with n at the call-site. Alas, due to the currying order, i too is not in scope at the point where k’s

type is defined so the type for k cannot depend upon i.

Can Abstract Refinements Help? Lets try to use Abstract Refinements, from chapter 3, to

abstract over the refinement that i enjoys, and assign find the type:

find :: (Int → Bool) → (Int <p> → a) → Int <p> → a

113

which states that for any refinement p, the function takes an input i which satisfies p and hence

that the continuation is also only invoked on a value which trivially enjoys p, namely i. At the

call-site in ex1 we can instantiate

p 7→ λv→ n≤ v (4.1)

This instantiated refinement is satisfied by the parameter n and is sufficient to verify, via function

subtyping, that checkGE n will only be called with values satisfying p, and hence larger than n.

The function find is ill-typed as the signature requires that at the recursive call site, the value i+1

also satisfies the abstract refinement p. While this holds for the example we have in mind (4.1), it

does not hold for all p, as required by the type of find! Concretely, {v:Int | v = i + 1} is

in general not a subtype of Int<p>, as the associated VC

...⇒ p i⇒ p (i+1) (4.2)

is invalid – the type checker thus (soundly!) rejects find.

We must Bound the Quantification of p to limit it to refinements satisfying some constraint,

in this case that p is upward closed. In the dependent setting, where refinements may refer to

program values, bounds are naturally expressed as constraints between refinements. We define

a bound, UpClosed which states that p is a refinement that is upward closed, i.e. satisfies

∀ x. p x ⇒ p (x+1), and use it to type find as:

bound UpClosed (p :: Int → Bool)

= \x → p x ⇒ p (x+1)

find :: (UpClosed p) ⇒ (Int → Bool)

→ (Int <p> → a)

→ Int <p> → a

This time, the checker is able to use the bound to verify the VC (4.2). We do so in a way that

refinements (and thus VCs) remain quantifier free and hence, SMT decidable (§ 4.1.4).

At the call to find in the body of ex1, we perform the instantiation (4.1) which generates the

114

additional VC n ≤ x ⇒ n ≤ x+1 by plugging in the concrete refinements to the bound

constraint. The SMT checks the validity of the VC and hence this instantiation, thereby statically

verifying ex1, i.e. that the assertion inside checkGE cannot fail.

4.1.3 Bounds for Higher-Order Functions

Next, we show how bounds expand the scope of refinement typing by letting us write

precise modular specifications for various canonical higher-order functions.

Function Composition

First, consider compose. What is a modular specification for compose that would let us

verify that ex2 enjoys the given specification?

compose f g x = f (g x)

type Plus x y = {v:Int | v = x + y}

ex2 :: n:Int → Plus n 2

ex2 = incr 8 compose 8 incr

incr :: n:Int → Plus n 1

incr n = n + 1

The challenge is to chain the dependencies between the input and output of g and the input and

output of f to obtain a relationship between the input and output of the composition. We can

capture the notion of chaining in a bound:

bound Chain p q r = \x y z →

q x y ⇒ p y z ⇒ r x z

which states that for any x, y and z, if (1) x and y are related by q, and (2) y and z are related by

p, then (3) x and z are related by r.

We use Chain to type compose using three abstract refinements p, q and r, relating the

arguments and return values of f and g to their composed value. (Here, c<r x> abbreviates

{v:c | r x v}).

115

compose :: (Chain p q r) ⇒ (y:b → c<p y>)

→ (x:a → b<q x>)

→ (w:a → c<r w>)

To verify ex2 we instantiate, at the call to compose,

p, q `> \x v → v = x + 1

r `> \x v → v = x + 2

The above instantiation satisfies the bound, as shown by the validity of the VC derived from

instantiating p, q, and r in Chain:

y = x + 1 ⇒ z = y + 1 ⇒ z == x + 2

and hence, we can check that ex2 implements its specified type.

List Filtering

Next, consider the list filter function. What type signature for filter would let us

check positives?

filter q (x:xs)

| q x = x : filter q xs

| otherwise = filter q xs

filter _ [] = []

positives :: [Int] → [Pos]

positives = filter isPos

where isPos x = 0 < x

Such a signature would have to relate the Bool returned by f with the property of the x that it

checks for. Typed Racket’s latent predicates [91] account for this idiom, but are a special construct

limited to Bool-valued “type” tests, and not arbitrary invariants. Another approach is to avoid

the so-called “Boolean Blindness” that accompanies filter by instead using option types and

mapMaybe.

We overcome blindness using a witness bound:

bound Witness p w = \x b → b ⇒ w x b ⇒ p x

116

which says that w witnesses the refinement p. That is, for any boolean b such that w x b holds, if

b is True then p x also holds.

We can give filter a type that says that the output values enjoy a refinement p as long as the

test predicate q returns a boolean witnessing p:

filter :: (Witness p w) ⇒ (x:a → Bool <w x>)

→ List a

→ List a<p>

To verify positives we infer the following type and instantiations for the abstract refinements p

and w at the call to filter:

isPos :: x:Int → {v:Bool | v ⇔ 0 < x}

p `> \v → 0 < v

w `> \x b → b ⇔ 0 < x

List Folding

Next, consider the list fold-right function. Suppose we wish to prove the following type

for ex3:

foldr :: (a → b → b) → b → List a → b

foldr op b [] = b

foldr op b (x:xs) = x 8 op 8 foldr op b xs

ex3 :: xs:List a → {v:Int | v == len xs}

ex3 = foldr (_ → incr) 0

where len is a logical or measure function used to represent the number of elements of the list in

the refinement logic 2.1.6:

measure len :: List a → Nat

len [] = 0

len (x:xs) = 1 + len xs

We specify induction as a bound. Let (1) inv be an abstract refinement relating a list xs and the

result b obtained by folding over it and (2) step be an abstract refinement relating the inputs x, b

117

and output b ′ passed to and obtained from the accumulator op respectively. We state that inv is

closed under step as:

bound Inductive inv step = \x xs b b ′ →

inv xs b ⇒ step x b b ′ ⇒ inv (x:xs) b ′

We can give foldr a type that says that the function outputs a value that is built inductively over

the entire input list:

foldr :: (Inductive inv step)

⇒ (x:a → acc:b → b<step x acc >)

→ b<inv []>

→ xs:List a

→ b<inv xs>

That is, for any invariant inv that is inductive under step, if the initial value b is inv-related to

the empty list, then the folded output is inv-related to the input list xs.

We verify ex3 by inferring, at the call to foldr

inv `> \xs v → v == len xs

step `> \x b b ′ → b ′ == b + 1

The SMT solver validates the VC obtained by plugging the above into the bound. Instantiating

the signature for foldr yields precisely the output type desired for ex3.

Previously, 3 describes a way to type foldr using abstract refinements that required the

operator op to have one extra ghost argument. Bounds let us express induction without ghost

arguments.

4.1.4 Implementation

To implement bounded refinement typing, we must solve two problems. Namely, how

do we (1) check and (2) use functions with bounded signatures? We solve both problems via an

insight inspired by the way typeclasses are implemented in Haskell.

1. A Bound Specifies a function type whose inputs are unconstrained and whose output is

some value that carries the refinement corresponding to the bound’s body.

118

2. A Bound is Implemented by a ghost function that returns True, but is defined in a context

where the bound’s constraint holds when instantiated to the concrete refinements at the

context.

We elaborate bounds into ghost functions satisfying the bound’s type. To check bounded func-

tions, we need to call the ghost function to materialize the bound constraint at particular values

of interest. Dually, to use bounded functions, we need to create ghost functions whose outputs

are guaranteed to satisfy the bound constraint. This elaboration reduces bounded refinement

typing to the simpler problem of unbounded abstract refinement typing. The formalization of

our elaboration is described in § 4.2. Next, we illustrate the elaboration by explaining how it

addresses the problems of checking and using bounded signatures like compose.

We Translate Bounds into Function Types called the bound-type where the inputs are uncon-

strained, and the outputs satisfy the bound’s constraint. For example, the bound Chain used to

type compose in § 4.1.3, corresponds to a function type, yielding the translated type for compose:

type ChainTy p q r

= x:a → y:b → z:c → {v:Bool | q x y ⇒ p y z ⇒ r x z}

compose :: (ChainTy p q r)

→ (y:b → c<p y>)

→ (x:a → b<q x>)

→ (w:a → c<r w>)

To Check Bounded Functions we view the bound constraints as extra (ghost) function parameters

(cf. type class dictionaries), that satisfy the bound-type. Crucially, each expression where a

subtyping constraint would be generated (by plain refinement typing) is wrapped with a “call” to

the ghost to materialize the constraint at values of interest. For example we elaborate compose

into:

compose $chain f g x =

let t1 = g x

t2 = f t1

_ = $chain x t1 t2 -- materialize

119

in t2

In the elaborated version $chain is the ghost parameter corresponding to the bound. As is

standard [79], we perform ANF-conversion to name intermediate values, and then wrap the

function output with a call to the ghost to materialize the bound’s constraint. Consequently, the

output of compose, namely t2, is checked to be a subtype of the specified output type, in an

environment strengthened with the bound’s constraint instantiated at x, t1 and t2. This subtyping

reduces to a quantifier free VC:

q x t1

⇒ p t1 t2

⇒ (q x t1 ⇒ p t1 t2 ⇒ r x t2)

⇒ v = t2 ⇒ r x v

whose first two antecedents are due to the types of t1 and t2 (via the output types of g and f

respectively) and the third comes from the call to $chain. The output value v has the singleton

refinement that states it equals to t2 and finally the VC states that the output value v must be

related to the input x via r. An SMT solver validates this decidable VC easily, thereby verifying

compose.

Our elaboration inserts materialization calls for all variables (of the appropriate type)

that are in scope at the given point. This could introduce upto nk calls where k is the number of

parameters in the bound and n the number of variables in scope. In practice (e.g. in compose)

this number is small (e.g. 1) since we limit ourselves to variables of the appropriate types.

To preserve semantics we ensure that none of these materialization calls can diverge,

by carefully constraining the structure of the arguments that instantiate the ghost functional

parameters.

At Uses of Bounded Functions our elaboration uses the bound-type to create lambdas with

appropriate parameters that just return true. For example, ex2 is elaborated to:

ex2 = compose (_ _ _ → true) incr incr

This elaboration seems too naı̈ve to be true: how do we ensure that the function actually satisfies

the bound type?

120

Happily, that is automatically taken care of by function subtyping. Recalling the translated

type for compose, the elaborated lambda (_ _ _ → true) is constrained to be a subtype of

ChainTy p q r. In particular, given the call site instantiation

p 7→ \ y z → z == y + 1

q 7→ \ x y → y == x + 1

r 7→ \ x z → z == x + 2

this subtyping constraint reduces to the quantifier-free VC:

[[Γ]]⇒ true⇒ (z == y + 1)⇒ (y == x + 1)⇒ (z == x + 2)

where Γ contains assumptions about the various binders in scope. The above VC is easily proved

valid by an SMT solver, thereby verifying the subtyping obligation defined by the bound, and

hence, that ex2 satisfies the given type.

4.2 Formalism

Next we formalize Bounded Refinement Types by defining a core calculus λB and showing

how it can be reduced to λP, the core language of Abstract Refinement Types 3. We start by

defining the syntax and semantics of λP (§ 4.2.1) and the syntax of λB (§ 4.2.2). Next, we provide

a translation from λB to λP (§ 4.2.3). Then, we prove soundness by showing that our translation is

semantics preserving (§ 4.2.4). Finally, we describe how type inference remains decidable in the

presence of bounded refinements (§ 4.2.5).

4.2.1 Syntax of λP

We build our core language on top of λP, the language of Abstract Refinement Types3.

Figure 4.1 summarizes the syntax of λP, a polymorphic λ -calculus extended with abstract

refinements. For an easier transition to the syntax of Bounded Refinement Types, we rewrite the

syntax of λP as initially presented in Figure 3.1 by stratifying type schemata to include bounded

types, that for now, are plain types.

The Expressions of λP include the usual variables x, primitive constants c, λ -abstraction λx : t.e,

121

Expressions e ::= x | c | λx : t.e | e x | let x : t = e in e
| Λα.e | e [t]Λπ : t.e | e [φ]

Constants c ::= True | False | Crash | 0 | 1 | −1 | . . .
Parametric Refinements φ ::= r | λx : b.φ

Predicates p ::= c | ¬p | p = p | . . .
Atomic Refinements a ::= p | π x

Refinements r ::= a | a∧ r | a⇒ r
Basic Types b ::= Int | Bool | a

Types t ::= {v : b | r} | {v : (x : t)→ t | r}
Bounded Types ρ ::= t

Schemata σ ::= ρ | ∀α.σ | ∀π : t.σ

Figure 4.1. Stratified Syntax of λP.

application e e, let bindings let x : t = e in e, type abstraction Λα.e, and type application e [t]. (We

add let-binders to λP from Figure 3.1 as they can be reduced to λ -abstractions in the usual way).

The parameter t in the type application is a refinement type, as described shortly. Finally, λP

includes refinement abstraction Λπ : t.e, which introduces a refinement variable π (with its type

t), which can appear in refinements inside e, and the corresponding refinement application e [φ]

that substitutes an abstract refinement with the parametric refinement φ , i.e. refinements r closed

under lambda abstractions.

The Primitive Constants of λP include True, False, 0, 1, -1, etc.. In addition, we include a

special untypable constant Crash that models “going wrong”. Primitive operations return a crash

when invoked with inputs outside their domain, e.g. when / is invoked with 0 as the divisor or

when an assert is applied to False.

Atomic Refinements a are either concrete or abstract refinements. A concrete refinement p is a

boolean valued expression (such as a constant, negation, equality, etc.) drawn from a strict subset

of the language of expressions which includes only terms that (a) neither diverge nor crash and

(b) can be embedded into an SMT decidable logic including the quantifier free theory of linear

arithmetic and uninterpreted functions [100]. An abstract refinement π x is an application of a

refinement variable π to a sequence of program variables. A refinement r is either a conjunction

or implication of atomic refinements. To enable inference, we only allow implications to appear

122

Bounded Types ρ ::= t | {φ}⇒ ρ

Expressions e ::= . . . | Λ{φ}.e | e{φ}

Figure 4.2. Extending Syntax of λP to λB.

within bounds φ (§ 4.2.5).

The Types of λP, written t, include basic types, dependent functions and schemata quantified

over type and refinement variables α and π respectively. A basic type is one of Int, Bool, or a

type variable α . A refined type t is either a refined basic type {v : b | r}, or a dependent function

type {v : (x : t)→ t | r} where the parameter x can appear in the refinements of the output type.

(We include refinements for functions, as refined type variables can be replaced by function types.

However, typechecking ensures these refinements are trivially true). In λP bounded types ρ are

just a synonym for types t. Finally, schemata quantify bounded types over type and refinement

variables.

4.2.2 Syntax of λB

Figure 4.2 shows how we obtain the syntax for λB by extending the syntax of λP with

bounded types.

The Types of λB extend those of λP with bounded types ρ , which are the types t guarded by

bounds φ .

The Expressions of λB extend those of λP with abstraction over bounds Λ{φ}.e and application

of bounds e{φ}. Intuitively, if an expression e has some type ρ then Λ{φ}.e has the type {φ}⇒ ρ .

We include an explicit bound application form e{φ} to simplify the formalization; these applied

bounds are automatically synthesized from the type of e, and are of the form λx : ρ.True.

Notation. We write b, b〈π x〉, and {v : b〈π x〉 | r} to abbreviate {v : b | True}, {v : b | π x v}, and

{v : b | r∧π x v} respectively. We say a type or schema is non-refined if all the refinements in it

123

are True. We get the shape of a type t (i.e. the System-F type) by the function Shape(t) defined:

Shape({v : b | r}) .
= b

Shape({v : (x : t1)→ t2 | r})
.
= Shape(t1)→ Shape(t2)

4.2.3 Translation from λB to λP

Next, we show how to translate a term from λB to one in λP. We assume, without loss

of generality that the terms in λB are in Administrative Normal Form (i.e. all applications are to

variables).

Bounds Correspond To Functions that explicitly “witness” the fact that the bound constraint

holds at a given set of “input” values. That is we can think of each bound as a universally

quantified relationship between various (abstract) refinements; by “calling” the function on a set

of input values x1, . . . ,xn, we get to instantiate the constraint for that particular set of values.

Bound Environments Φ are used by our translation to track the set of bound-functions (names)

that are in scope at each program point. These names are distinct from the regular program

variables that will be stored in Variable Environments Γ. We give bound functions distinct names

so that they cannot appear in the regular source, only in the places where calls are inserted by our

translation. The translation ignores refinements entirely; both environments map their names to

their non-refined types.

The Translation is formalized in Figure 4.3 via a relation Γ;Φ ` e e′ that translates the

expression e in λB into e′ in λP. Most of the rules in figure 4.3 recursively translate the sub-

expressions. Types that appear inside expressions are syntactically restricted to not contain

bounds, thus types inside expressions do not require translation. Here we focus on the three

interesting rules:

1. At bound abstractions Λ{φ}.e we convert the bound φ into a bound-function parameter of

a suitable type,

2. At variable binding sites i.e. λ - or let-bindings, we use the bound functions to materialize

124

Variable Environment Γ ::= /0 | Γ,x :τ

Bound Environment Φ ::= /0 | Φ,x :τ

Translation Γ;Φ ` e e

Γ;Φ ` x x
VAR

Γ;Φ ` c c
CON

Γ′ = Γ,x :Shape(t) Γ′;Φ ` e e′

Γ;Φ ` λx : t.e λx : t.Inst(Γ′,Φ,e′)
FUN

Γ;Φ ` ex e′x Γ′ = Γ,x :Shape(t) Γ′;Φ ` e e′

Γ;Φ ` let x : t = ex in e let x :τ = e′x in Inst(Γ′,Φ,e′)
LET

Γ;Φ ` e1 e′1 Γ;Φ ` e2 e′2
Γ;Φ ` e1 e2 e′1 e′2

APP

Γ;Φ ` e e′

Γ;Φ ` Λα.e Λα.e′
TABS

Γ;Φ ` e e′

Γ;Φ ` e [t] e′ [t]
TAPP

Γ;Φ ` e e′

Γ;Φ ` Λπ : t.e Λπ : t.e′
PABS

Γ;Φ ` e1 e′2 Γ;Φ ` e1 e′2
Γ;Φ ` e1 [e2] e′1 [e

′
2]

PAPP

fresh f Γ;Φ, f :Shape(〈|φ |〉) ` e e′

Γ;Φ ` Λ{φ}.e λ f : 〈|φ |〉.e′
CABS

Γ;Φ ` e e′

Γ;Φ ` e{φ} e′ Const(φ)
CAPP

Figure 4.3. Translation Rules from λB to λP.

the bound constraints for all the variables in scope after the binding,

3. At bound applications e{φ} we provide regular functions that witness that the bound

constraints hold.

1. Rule CABS translates bound abstractions Λ{φ}.e into a plain λ -abstraction. In the translated

expression λ f : 〈|φ |〉.e′ the bound becomes a function named f with type 〈|φ |〉 defined:

〈|λx : b.φ |〉 .
= (x : b)→ 〈|φ |〉

〈|r|〉 .
= {v : Bool | r}

That is, 〈|φ |〉 is a function type whose final output carries the refinement corresponding to the

constraint in φ . Note that the translation generates a fresh name f for the bound function (ensuring

125

that it cannot be used in the regular code) and saves it in the bound environment Φ to let us

materialize the bound constraint when translating the body e of the abstraction.

2. Rules FUN and LET materialize bound constraints at variable binding sites (λ -abstractions

and let-bindings respectively). If we view the bounds as universally quantified constraints over the

(abstract) refinements, then our translation exhaustively and eagerly instantiates the constraints

at each point that a new binder is introduced into the variable environment, over all the possible

candidate sets of variables in scope at that point. The instantiation is performed by Inst(Γ,Φ,e)

Inst(Γ,Φ,e) .
= Wrap(e, Instances(Γ,Φ))

Wrap(e,{e1, . . . ,en})
.
= let t1 = e1 in . . . let tn = en in e

where ti are fresh Bool binders

Instances(Γ,Φ)
.
= { f x | f :τ ←Φ, x : ← Γ, Γ, f :τ `B f x :Bool }

The function takes the environments Γ and Φ, an expression e and a variable x of type t and uses

let-bindings to materialize all the bound functions in Φ that accept the variable x. Here, Γ `B e :τ

is the standard typing derivation judgment for the non-refined System F and so we elide it for

brevity.

3. Rule CAPP translates bound applications e{φ} into plain λ abstractions that witness that the

bound constraints hold. That is, as within e, bounds are translated to a bound function (parameter)

of type 〈|φ |〉, we translate φ into a λ -term that, via subtyping must have the required type 〈|φ |〉.

We construct such a function via Const(φ) that depends only on the shape of the bound, i.e. the

non-refined types of its parameters (and not the actual constraint itself).

Const(r) .
= True

Const(λx : b.φ) .
= λx : b.Const(φ)

This seems odd: it is simply a constant function, how can it possibly serve as a bound? The

answer is that subtyping in the translated λP term will verify that in the context in which the above

constant function is created, the singleton True will indeed carry the refinement corresponding to

126

the bound constraint, making this synthesized constant function a valid realization of the bound

function. Recall that in the example ex2 of the overview (§ 4.1.4) the subtyping constraint that

decides if the constant True is a valid bound reduces to the equation 4.3 that is a tautology.

4.2.4 Soundness

The Small-Step Operational Semantics of λB are defined by extending a similar semantics for

λP which is a standard call-by-value calculus where abstract refinements are boolean valued

functions. Let ↪→P denote the transition relation defining the operational semantics of λP and ↪→?
P

denote the reflexive transitive closure of ↪→P. We obtain the transition relation ↪→B:

(Λ{φ}.e){φ} ↪→B e e ↪→B e′, if e ↪→P e′

Let ↪→?
B denote the reflexive transitive closure of ↪→B.

The Translation is Semantics Preserving in the sense that if a source term e of λB reduces to a

constant then the translated variant of e′ also reduces to the same constant (as show in [95]):

Lemma 1 (Semantics Preservation). If /0; /0 ` e e′ and e ↪→?
B c then e′ ↪→?

P c.

The Soundness of λB follows by combining the above Semantics Preservation Lemma with the

soundness of λP.

To Typecheck a λB program e we translate it into a λP program e′ and then type check e′ using

the rules of Figure 3.2; if the latter check is safe, then we are guaranteed that the source term e

will not crash:

Theorem 1 (Soundness). If /0; /0 ` e e′ and /0 ` e′ : σ then e 6↪→?
B Crash.

4.2.5 Inference

A critical feature of bounded refinements is that we can automatically synthesize instantia-

tions of the abstract refinements by: (1) generating templates corresponding to the unknown types

where fresh variables κ denote the unknown refinements that an abstract refinement parameter

127

π is instantiated with, (2) generating subtyping constraints over the resulting templates, and

(3) solving the constraints via abstract interpretation.

Inference Requires Monotonic Constraints. Abstract interpretation only works if the constraints

are monotonic [21], which in this case means that the κ variables, and correspondingly, the

abstract refinements π must only appear in positive positions within refinements (i.e. not under

logical negations). The syntax of refinements shown in Figure 4.1 violates this requirement via

refinements of the form π x⇒ r.

We restrict implications to bounds i.e. prohibit them from appearing elsewhere in type specifica-

tions. Consequently, the implications only appear in the output type of the (first order) “ghost”

functions that bounds are translated to. The resulting subtyping constraints only have implications

inside super-types, i.e. as:

Γ ` {v:b | a} �
{

v:b | a1⇒ ··· ⇒ an⇒ aq
}

By taking into account the semantics of subtyping, we can push the antecedents into the environ-

ment, i.e. transform the above into an equivalent constraint in the form:

Γ,x1 :,
{

x1:b1 | a′1
}

:, . . . ,xn :,
{

xn:bn | a′n
}

:̀
{

v:b | a′
}
�
{

v:b | a′q
}

where all the abstract refinements variables π (and hence instance variables κ) appear positively,

ensuring that the constraints are monotonic, hence permitting inference via Liquid Typing [79].

4.3 A Refined Relational Database

Next, we use bounded refinements to develop a library for relational algebra, which we

use to enable generic, type safe database queries. A relational database stores data in tables, that

are a collection of rows, which in turn are records that represent a unit of data stored in the table.

The tables’s schema describes the types of the values in each row of the table. For example, the

table in Figure 4.1 organizes information about movies, and has the schema:

Title:String , Dir:String , Year:Int , Star:Double

128

Table 4.1. Example entries for Movies Database.

Title Director Year Star
“Birdman” “Iñárritu” 2014 8.1
“Persepolis” “Paronnaud” 2007 8.0

First, we show how to write type safe extensible records that represent rows, and use

them to implement database tables (§ 4.3.1). Next, we show how bounds let us specify type safe

relational operations and how they may be used to write safe database queries (§ 4.3.2).

4.3.1 Rows and Tables

We represent the rows of a database with dictionaries, which are maps from a set of keys

to values. In the sequel, each key corresponds to a column and the mapped value corresponds to a

valuation of the column in a particular row.

A dictionary Dict <r> k v maps a key x of type k to a value of type v that satisfies the property

r x

type Range k v = k → v → Bool

data Dict k v <r :: Range k v> = D {

dkeys :: [k]

, dfun :: x:{k | x ∈ elts dkeys} → v <r x>

}

Each dictionary d has a domain dkeys i.e. the list of keys for which d is defined and a function

dfun that is defined only on elements x of the domain dkeys. For each such element x, dfun

returns a value that satisfies the property r x.

Propositions about the theory of sets can be decided efficiently by modern SMT solvers. Hence

we use such propositions within refinements as demonstrated in chapter 1. The measures (logical

functions) elts and keys specify the set of keys in a list and a dictionary respectively:

elts :: [a] → Set a

elts ([]) = /0

elts (x:xs) = {x} ∪ elts xs

129

keys :: Dict k v → Set k

keys d = elts (dkeys d)

Domain and Range of dictionaries. In order to precisely define the domain (e.g. columns) and

range (e.g. values) of a dictionary (e.g. row), we define the following aliases:

type RD k v <dom :: Dom k v, rng :: Range k v>

= {v:Dict <rng > k v | dom v}

type Dom k v = Dict k v → Bool

We may instantiate dom and rng with predicates that precisely describe the values contained with

the dictionary. For example,

RD < \d → keys d = {"x"}, \k v→ 0 < v> String Int

describes dictionaries with a single field "x" whose value (as determined by dfun) is stricly

greater than 0. We will define schemas by appropriately instantiating the abstract refinements

dom and rng.

An empty dictionary has an empty domain and a function that will never be called:

empty :: RD <emptyRD , rFalse > k v

empty = D [] (\x → error "calling empty")

emptyRD = \d → keys d == /0

rFalse = \k v → false

We define singleton maps as dependent pairs x := y which denote the mapping from x to y:

data P k v <r :: Range k v>

= (:=) {pk :: k, pv :: v <r pk >}

Thus, key := val has type P <r> k v only if r key val.

A dictionary may be extended with a singleton binding (which maps the new key to its new

value).

130

(+=) :: bind:P<r> k v

→ dict:RD <pTrue , r> k v

→ RD <addKey (pk bind) dict , r> k v

(k := v) += (D ks f)

= D (k:ks) (\i → if i == k then v else f i)

addKey = \k d d ′ → keys d ′ == {k} ∪ keys d

pTrue = _ → True

Thus, (k := v) += d evaluates to a dictionary d ′ that extends d with the mapping from k to v.

The type of (+=) constrains the new binding bind, the old dictionary dict and the returned value

to have the same range invariant r. The return type states that the output dictionary’s domain is

that of the domain of dict extended by the new key (pk bind).

To model a row in a table i.e. a schema, we define the unrefined (Haskell) type Schema, which is a

dictionary mapping Strings, i.e. the names of the fields of the row, to elements of some universe

Univ containing Int, String and Double. (A closed universe is not a practical restriction; most

databases support a fixed set of types).

data Univ = I Int | S String | D Double

type Schema = RD String Univ

We refine Schema with concrete instantiations for dom and rng, in order to recover precise

specifications for a particular database. For example, MovieSchema is a refined Schema that

describes the rows of the Movie table in Figure 4.1:

type MovieSchema = RD <md, mr> String Univ

md = \d → keys d={"year","star","dir","title"}

mr = \k v →

(k = "year" ⇒ isI v ∧ 1888 < toI v)

∧ (k = "star" ⇒ isD v ∧ 0 ≤ toD v ≤ 10)

∧ (k = "dir" ⇒ isS v)

∧ (k = "title" ⇒ isS v)

131

isI (I _) = True

isI _ = False

toI :: {v: Univ | isI v} → Int

toI (I n) = n

The predicate md describes the domain of the movie schema, restricting the keys to exactly

"year", "star", "dir", and "title". The range predicate mr describes the types of the values

in the schema: a dictionary of type MovieSchema must map "year" to an Int, "star" to a

Double, and "dir" and "title" to Strings. The range predicate may be used to impose

additional constraints on the values stored in the dictionary. For instance, mr restricts the year to

be not only an integer but also greater than 1888.

We populate the Movie Schema by extending the empty dictionary with the appropriate pairs of

fields and values. For example, here are the rows from the table in Figure 4.1

movie1 , movie2 :: MovieSchema

movie1 = ("title" := S "Persepolis")

+= ("dir" := S "Paronnaud")

+= ("star" := D 8)

+= ("year" := I 2007)

+= empty

movie2 = ("title" := S "Birdman")

+= ("star" := D 8.1)

+= ("dir" := S "Inarritu")

+= ("year" := I 2014)

+= empty

Typing movie1 (and movie2) as MovieSchema boils down to proving that keys movie1 =

{"year", "star", "dir", "title"} and that each key is mapped to an appropriate value

as determined by mr. For example, declaring movie1’s year to be I 1888 or even misspelling

"dir" as "Dir" will cause the movie1 to become ill-typed. As the (sub)typing relation depends

on logical implication (unlike in HList based approaches [50]) key ordering does not affect

132

type-checking; in movie1 the star field is added before the director, while movie2 follows the

opposite order.

Database Tables are collections of rows, i.e. collections of refined dictionaries. We define a type

alias RT s (Refined Table) for the list of refined dictionaries from the field type String to the

Universe.

type RT (s :: {dom::TDom , rng:: TRange })

= [RD <s.dom , s.rng > String Univ]

type TDom = Dom String Univ

type TRange = Range String Univ

For brevity we pack both the domain and the range refinements into a record s that describes the

schema refinement; i.e. each row dictionary has domain s.dom and range s.rng.

For example, the table from Figure 4.1 can be represented as a type MoviesTable which

is an RT refined with the domain and range md and mr described earlier (§ 4.3.1):

type MoviesTable = RT {dom = md, rng = mr}

movies :: MoviesTable

movies = [movie1 , movie2]

4.3.2 Relational Algebra

Next, we describe the types of the relational algebra operators which can be used to

manipulate refined rows and tables. For space reasons, we show the types of the basic relational

operators; their (verified) implementations can be found online [90].

union :: RT s → RT s → RT s

diff :: RT s → RT s → RT s

select :: (RD s → Bool) → RT s → RT s

project :: ks:[String] → RTSubEqFlds ks s

→ RTEqFlds ks s

product :: (Disjoint s1 s2 , Union s1 s2 s

, Range s1 s, Range s2 s)

⇒ RT s1 → RT s2 → RT s

133

Union and diff compute the union and difference, respectively of the (rows of) two tables. The

types of union and diff state that the operators work on tables with the same schema s and

return a table with the same schema.

select takes a predicate p and a table t and filters the rows of t to those which that satisfy p. The

type of select ensures that p will not reference columns (fields) that are not mapped in t, as the

predicate p is constrained to require a dictionary with schema s.

project takes a list of String fields ks and a table t and projects exactly the fields ks at each row

of t. project’s type states that for any schema s, the input table has type RTSubEqFlds ks s

i.e. its domain should have at least the fields ks and the result table has type RTEqFlds ks s, i.e.

its domain has exactly the elements ks.

type RTSubEqFlds ks s = RT s{dom = \z → elts ks ⊆ keys z}

type RTEqFlds ks s = RT s{dom = \z → elts ks = keys z}

The range of the argument and the result tables is the same and equal to s.rng.

product takes two tables as input and returns their (Cartesian) product. It takes two Refined

Tables with schemata s1 and s2 and returns a Refined Table with schema s. Intuitively, the

output schema is the “concatenation” of the input schema; we formalize this notion using bounds:

(1) Disjoint s1 s2 says the domains of s1 and s2 should be disjoint, (2) Union s1 s2 s says

the domain of s is the union of the domains of s1 and s2, (3) Range s1 s (resp. Range s2 s2)

says the range of s1 should imply the result range s; together the two imply the output schema s

preserves the type of each key in s1 or s2.

bound Disjoint s1 s2 = \x y →

s1.dom x ⇒ s2.dom y ⇒ keys x ∩ keys y == /0

bound Union s1 s2 s = \x y v →

s1.dom x ⇒ s2.dom y

⇒ keys v == keys x ∪ keys y

⇒ s.dom v

134

bound Range si s = \x k v →

si.dom x ⇒ k ∈ keys x ⇒ si.rng k v ⇒ s.rng k v

Thus, bounded refinements enable the precise typing of relational algebra operations.

They let us describe precisely when union, intersection, selection, projection and products can be

computed, and let us determine, at compile time the exact “shape” of the resulting tables.

We can query Databases by writing functions that use the relational algebra combinators. For

example, here is a query that returns the “good” titles – with more than 8 stars – from the movies

table 1

good_titles = project ["title"] $ select (\d →

toDouble (dfun d $ "star") > 8

) movies

Finally, note that our entire library – including records, tables, and relational combinators

– is built using vanilla Haskell i.e. without any type level computation. All schema reasoning

happens at the granularity of the logical refinements. That is if the refinements are erased from

the source, we still have a well-typed Haskell program but of course, lose the safety guarantees

about operations (e.g. “dynamic” key lookup) never failing at run-time.

4.4 A Refined IO Monad

Next, we illustrate the expressiveness of Bounded Refinements by showing how they

enable the specification and verification of stateful computations. We show how to (1) implement

a refined state transformer (RIO) monad, where the transformer is indexed by refinements

corresponding to pre- and post-conditions on the state (§ 4.4.1), (2) extend RIO with a set

of combinators for imperative programming, i.e. whose types precisely encode Floyd-Hoare

style program logics (§ 4.4.2), and (3) use the RIO monad to write safe scripts where the type

system precisely tracks capabilities and statically ensures that functions only access specific

resources (§ 4.5).

1More example queries can be found online [90]

135

4.4.1 The RIO Monad

The RIO data type describes stateful computations. Intuitively, a value of type RIO a denotes a

computation that, when evaluated in an input World produces a value of type a (or diverges) and

a potentially transformed output World. We implement RIO a as an abstractly refined type (as

described in [98])

type Pre = World → Bool

type Post a = World → a → World → Bool

data RIO a <p :: Pre , q :: Post a> = RIO {

runState :: w:World <p> → (x:a, World <q w x>)

}

That is, RIO a is a function World→ (a, World), where World is a primitive type that repre-

sents the state of the machine i.e. the console, file system, etc. This indexing notion is directly

inspired by the method of [32] (also used in [68]).

Our Post-conditions are Two-State Predicates that relate the input- and output- world (as in [68]).

Classical Floyd-Hoare logic, in contrast, uses assertions which are single-state predicates. We

use two-states to smoothly account for specifications for stateful procedures. This increased

expressiveness makes the types slightly more complex than a direct one-state encoding which is,

of course also possible with bounded refinements.

An RIO computation is parameterized by two abstract refinements: (1) p :: Pre, which is a

predicate over the input world, i.e. the input world w satisfies the refinement p w; and (2) q

:: Post a, which is a predicate relating the output world with the input world and the value

returned by the computation, i.e. the output world w ′ satisfies the refinement q w x w′ where

x is the value returned by the computation. Next, to use RIO as a monad, we define bind and

return functions for it, that satisfy the monad laws.

The return operator yields a pair of the supplied value z and the input world unchanged:

return :: z:a → RIO <p, ret z> a

return z = RIO $ \w → (z, w)

136

ret z = \w x w ′ → w ′ == w ∧ x == z

The type of return states that for any precondition p and any supplied value z of type a, the

expression return z is an RIO computation with precondition p and a post-condition ret z.

The postcondition states that: (1) the output World is the same as the input, and (2) the result

equals to the supplied value z. Note that as a consequence of the equality of the two worlds and

congruence, the output world w ′ trivially satisfies p w′ .

The bind Operator is defined in the usual way. However, to type it precisely, we require bounded

refinements.

(>>=) :: (Ret q1 r, Seq r q1 p2 , Trans q1 q2 q)

⇒ m:RIO <p, q1 > a

→ k:(x:a<r> → RIO <p2 x, q2 x> b)

→ RIO <p, q> b

(RIO g) >>= f = RIO $ \x →

case g x of { (y, s) → runState (f y) s }

The bounds capture various sequencing requirements (c.f. the Floyd-Hoare rules of consequence).

First, the output of the first action m, satisfies the refinement required by the continuation k;

bound Ret q1 r = \w x w ′ → q1 w x w ′ ⇒ r x

Second, the computations may be sequenced, i.e. the postcondition of the first action m implies

the precondition of the continuation k (which may be dependent upon the supplied value x):

bound Seq q1 p2 = \w x w ′ → q1 w x w ′ ⇒ p2 x w ′

Third, the transitive composition of the two computations, implies the final postcondition:

bound Trans q1 q2 q = \w x w ′ y w ′ ′ →

q1 w x w ′ ⇒ q2 x w ′ y w ′ ′ ⇒ q w y w ′ ′

Both type signatures would be impossible to use if the programmer had to manually

instantiate the abstract refinements (i.e. pre- and post-conditions). Fortunately, Liquid Type

inference generates the instantiations making it practical to use LIQUID HASKELL to verify

stateful computations written using do-notation.

137

4.4.2 Floyd-Hoare Logic in the RIO Monad

Next, we use bounded refinements to derive an encoding of Floyd-Hoare logic, by

showing how to read and write (mutable) variables and typing higher order ifM and whileM

combinators.

We Encode Mutable Variables as fields of the World type. For example, we might encode a

global counter as a field:

data World = { ... , ctr :: Int , ... }

We encode mutable variables in the refinement logic using McCarthy’s select and update

operators for finite maps and the associated axiom:

select :: Map k v → k → v

update :: Map k v → k → v → Map k v

∀ m, k1 , k2 , v.

select (update m k1 v) k2

== (if k1 == k2 then v else select m k2 v)

The quantifier free theory of select and update is decidable and implemented in modern SMT

solvers [4].

We Read and Write Mutable Variables via suitable “get” and “set” actions. For example, we can

read and write ctr via:

getCtr :: RIO <pTrue , rdCtr > Int

getCtr = RIO $ \w → (ctr w, w)

setCtr :: Int → RIO <pTrue , wrCtr n> ()

setCtr n = RIO $ \w → ((), w { ctr = n })

Here, the refinements are defined as:

pTrue = \w → True

rdCtr = \w x w ′ → w ′ == w ∧ x == select w ctr

wrCtr n = \w _ w ′ → w ′ == update w ctr n

138

Hence, the post-condition of getCtr states that it returns the current value of ctr, encoded

in the refinement logic with McCarthy’s select operator while leaving the world unchanged.

The post-condition of setCtr states that World is updated at the address corresponding to ctr,

encoded via McCarthy’s update operator.

The ifM combinator takes as input a cond action that returns a Bool and, depending upon the

result, executes either the then or else actions. We type it as:

bound Pure g = \w x v → (g w x v ⇒ v == w)

bound Then g p1 = \w v → (g w True v ⇒ p1 v)

bound Else g p2 = \w v → (g w False v ⇒ p2 v)

ifM :: (Pure g, Then g p1 , Else g p2)

⇒ RIO <p , g> Bool -- cond

→ RIO <p1 , q> a -- then

→ RIO <p2 , q> a -- else

→ RIO <p , q> a

The abstract refinements and bounds correspond exactly to the hypotheses in the Floyd-Hoare

rule for the if statement. The bound Pure g states that the cond action may access but does

not modify the World, i.e. the output is the same as the input World. (In classical Floyd-Hoare

formulations this is done by syntactically separating terms into pure expressions and side effecting

statements). The bound Then g p1 and Else g p2 respectively state that the preconditions of

the then and else actions are established when the cond returns True and False respectively.

We can use ifM to implement a stateful computation that performs a division, after checking the

divisor is non-zero. We specify that div should not be called with a zero divisor. Then, LIQUID

HASKELL verifies that div is called safely:

div :: Int → {v:Int | v 6= 0} → Int

ifTest :: RIO Int

ifTest = ifM nonZero divX (return 10)

where nonZero = getCtr >>= return . (6= 0)

divX = getCtr >>= return . (div 42)

139

Verification succeeds as the post-condition of nonZero is instantiated to _ b w → b ⇔

select w ctr 6= 0 and the pre-condition of divX’s is instantiated to \w → select w ctr

6= 0, which suffices to prove that div is only called with non-zero values.

The whileM combinator formalizes loops as RIO computations:

whileM :: (OneState q, Inv p g b, Exit p g q)

⇒ RIO <p, g> Bool -- cond

→ RIO <pTrue , b> () -- body

→ RIO <p, q> ()

As with ifM, the hypotheses of the Floyd-Hoare derivation rule become bounds for the signature.

Given a condition with pre-condition p and post-condition g and body with a true precondition

and post-condition b, the computation whileM cond body has precondition p and post-condition

q as long as the bounds (corresponding to the Hypotheses in the Floyd-Hoare derivation rule)

hold. First, p should be a loop invariant; i.e. when the condition returns True the post-condition

of the body b must imply the p:

bound Inv p g b = \w w ′ w ′ ′ →

p w ⇒ g w True w ′ ⇒ b w ′ () w ′ ′ ⇒ p w ′ ′

Second, when the condition returns False the invariant p should imply the loop’s post-condition

q:

bound Exit p g q = \w w ′ →

p w ⇒ g w False w ′ ⇒ q w () w ′

Third, to avoid having to transitively connect the guard and the body, we require that the loop

post-condition be a one-state predicate, independent of the input world (as in Floyd-Hoare logic):

bound OneState q = \w w ′ w ′ ′ →

q w () w ′ ′ ⇒ q w ′ () w ′ ′

We can use whileM to implement a loop that repeatedly decrements a counter while it is positive,

and to then verify that if it was initially non-negative, then at the end the counter is equal to 0.

whileTest :: RIO <posCtr , zeroCtr > ()

whileTest = whileM gtZeroX decr

140

where gtZeroX = getCtr >>= return . (> 0)

posCtr = \w → 0 ≤ select w ctr

zeroCtr = _ _ w ′ → 0 == select w ctr

Where the decrement is implemented by decr with type:

decr :: RIO <pTrue , decCtr > ()

decCtr = \w _ w ′ → w ′ == update w ctr ((select ctr w) - 1)

LIQUID HASKELL verifies that at the end of whileTest the counter is zero (i.e. the post-condition

zeroCtr) by instantiating suitable (i.e. inductive) refinements for this particular use of whileM.

4.5 Capability Safe Scripting via RIO

pread, pwrite, plookup, pcontents,

pcreateD, pcreateF, pcreateFP :: Priv → Bool

active :: World → Set FH

caps :: World → Map FH Priv

pset p h = \w → p (select (caps w) h) ∧ h ∈ active w

Figure 4.4. Privilege Specification.

Next, we describe how we use the RIO monad to reason about shell scripting, inspired by

the Shill [66] programming language.

Shill is a scripting language that restricts the privileges with which a script may execute by using

capabilities and dynamic contract checking [66] . Capabilities are run-time values that witness

the right to use a particular resource (e.g. a file). A capability is associated with a set of privileges,

each denoting the permission to use the capability in a particular way (such as the permission to

write to a file). A contract for a Shill procedure describes the required input capabilities and any

output values. The Shill runtime guarantees that system resources are accessed in the manner

described by its contract.

In this section, we turn to the problem of preventing Shill runtime failures. (In general,

141

the verification of file system resource usage is a rich topic outside the scope of this paper).

That is, assuming the Shill runtime and an API as described in [66], how can we use Bounded

Refinement Types to encode scripting privileges and reason about them statically?

We use RIO types to specify Shill’s API operations thereby providing compile-time guarantees

about privilege and resource usage. To achieve this, we: connect the state (World) of the RIO

monad with a privilege specification denoting the set of privileges that a program may use (§ 4.5.1);

specify the file system API in terms of this abstraction (§ 4.5.2); and use the above to specify and

verify the particular privileges that a client of the API uses (§ 4.5.3).

4.5.1 Privilege Specification

Figure 4.4 summarizes how we specify privileges inside RIO. We use the type FH to

denote a file handles, analogous to Shill’s capabilities. An abstract type Priv denotes the sets

of privileges that may be associated with a particular FH.

To connect Worlds with Privileges we assume a set of uninterpreted functions of type Priv →

Bool that act as predicates on values of type Priv, each denoting a particular privilege. For

example, given a value p :: Priv, the proposition pread p denotes that p includes the “read”

privilege. The function caps associates each World with a Map FH Priv, a table that associates

each FH with its privileges. The function active maps each World to the Set of allocated FHs.

Given x:FH and w:World, pwrite (select (caps w) x) denotes that in the state w, the file

x may be written. This pattern is generalized by the predicate pset pwrite x w.

4.5.2 File System API Specification

A privilege tracking file system API can be partitioned into the privilege preserving

operations and the privilege extending operations.

To type the privilege preserving operations, we define a predicate eqP w w′ that says that the set

of privileges and active handles in worlds w and w ′ are equivalent.

eqP = \w _ w ′ → caps w == caps w ′ ∧ active w == active w ′

142

We can now specify the privilege preserving operations that read and write files, and list the

contents of a directory, all of which require the capabilities to do so in their pre-conditions:

read :: {- Read the contents of h -}

h:FH → RIO <pset pread h, eqp > String

write :: {- Write to the file h -}

h:FH → String → RIO <pset pwrite h, eqp > ()

contents :: {- List the children of h -}

h:FH → RIO <pset pcontents h, eqp > [Path]

To type the privilege extending operations, we define predicates that say that the output world is

suitably extended. First, each such operation allocates a new handle, which is formalized as:

alloc w′ w x = (x 6∈ active w) ∧ active w′ == {x} ∪ active w

which says that the active handles in (the new World) w ′ are those of (the old World) w extended

with the hitherto inactive handle x. Typically, after allocating a new handle, a script will want to

add privileges to the handle that are obtained from existing privileges.

To create a new file in a directory with handle h we want the new file to have the privileges

derived from pcreateFP (select (caps w) h) (i.e. the create privileges of h). We formalize

this by defining the post-condition of create as the predicate derivP:

derivP h = \w x w ′ →

alloc w ′ w x ∧

caps w ′ == store (caps w) x (pcreateFP (select (caps w)) h)

create :: {- Create a file -}

h:FH → Path → RIO <pset pcreateF h, derivP h> FH

Thus, if h is writable in the old World w (pwrite (pcreateFP (select (caps w) h))) and

x is derived from h (derivP w′ w x h both hold), then we know that x is writable in the new

World w′ (pwrite (select (caps w′) x)).

To lookup existing files or create sub-directories, we want to directly copy the privileges of the

parent handle. We do this by using a predicate copyP as the post-condition for the two functions:

143

copyP h = \w x w ′ →

alloc w ′ w x ∧

caps w ′ == store (caps w) x

(select (caps w) y)

lookup :: {- Open a child of h -}

h:FH→ Path→ RIO <pset plookup h, copyP h> FH

createDir :: {- Create a directory -}

h:FH→ Path→ RIO <pset pcreateD h, copyP h> FH

4.5.3 Client Script Verification

We now turn to a client script, the program copyRec that copies the contents of the

directory f to the directory d.

copyRec recur s d =

do cs <- contents s

forM_ cs $ \ p → do

x <- flookup s p

when (isFile x) $ do

y <- create d p

s <- fread x

write y s

when (recur ∧ (isDir x)) $ do

y <- createDir d p

copyRec recur x y

copyRec executes by first listing the contents of f, and then opening each child path p in f. If the

result is a file, it is copied to the directory d. Otherwise, copyRec recurses on p, if recur is true.

In a first attempt to type copyRec we give it the following type:

copyRec :: Bool → s:FH → d:FH →

RIO <copySpec s d, _ _ w → copySpec s d w> ()

copySpec h d = \w →

144

pset pcontents h w ∧ pset plookup h w ∧

pset pread h w ∧ pset pcreateFile d w ∧

pset pwrite d w ∧ pset pcreateF d w ∧

pwrite (pcreateFP (select (caps w) d)))

The above specification gives copyRec a minimal set of privileges. Given a source directory han-

dle s and destination handle d, the copyRec must at least: (1) list the contents of s (pcontents),

(2) open children of s (plookup), (3) read from children of s (pread), (4) create directories

in d (pcreateD), (5) create files in d (pcreateF), an (6) write to (created) files in d (pwrite).

Furthermore, we want to restrict the privileges on newly created files to the write privilege, since

copyRec does not need to read from or otherwise modify these files.

Even though the above type is sufficient to verify the various clients of copySpec it

is insufficient to verify copySpec’s implementation, as the postcondition merely states that

copySpec s d w holds. Looking at the recursive call in the last line of copySpec’s implementa-

tion, the output world w is only known to satisfy copySpec x y w (having substituted the formal

parameters s and d with the actual x and y), with no mention of s or d! Thus, it is impossible to

satisfy the postcondition of copyRec, as information about s and d has been lost.

Framing is introduced to address the above problem. Intuitively, because no privileges are ever

revoked, if a privilege for a file existed before the recursive call, then it exists after as well. We

thus introduce a notion of framing – assertions about unmodified state that hold before calling

copyRec must hold after copyRec returns. Solidifying this intuition, we define a predicate i to

be Stable when assuming that the predicate i holds on w, if i only depends on the allocated set

of privileges, then i will hold on a world w ′ so long as the set of priviliges in w ′ contains those in

w. The definition of Stable is derived precisely from the ways in which the file system API may

modify the current set of privileges:

bound Stable i = \x y w w ′ →

i w ⇒ (eqP w () w ′ || copyP y w x w ′ || derivP y w x w ′)

⇒ i w ′

We thus parameterize copyRec by a predicate i, bounded by Stable i, which precisely describes

the possible world transformations under which i should be stable:

145

copyFrame i s d = \w → i w ∧ copySpec s d w

copyRec :: (Stable i)

⇒ Bool → s:FH → d:FH

→ RIO <copyFrame i s d, _ _ w → copyFrame i s d w> ()

Now, we can verify copyRec’s body, as at the recursive call that appears in the last line of the

implementation, i is instantiated with \w → copySpec s d w.

4.6 Conclusion

We presented a notion of bounded quantification for refinement types and show how it

expands the expressiveness of refinement typing by using it to develop typed combinators for:

(1) relational algebra and safe database access, (2) Floyd-Hoare logic within a state transformer

monad equipped with combinators for branching and looping, and (3) using the above to imple-

ment a refined IO monad that tracks capabilities and resource usage. This leap in expressiveness

comes via a translation to “ghost” functions, which lets us retain the automated and decidable

SMT based checking and inference that makes refinement typing effective in practice.

With Bounded Refinement Types we get relatively complete expressiveness of specifi-

cation, that is we can use refinement types to express any property referring to the underlying

(decidable) logic. Thus our expressiveness power is still limited, we cannot use arbitrary Haskell

functions is the specifications. Next we see how to overcome this expressiveness limitation and

thus allow arbitrary Haskell expressions into the specifications while still preserving decidable

type checking.

Acknowledgments The material of this chapter are adapted from the following publication: N.

Vazou, A. Bakst, and R. Jhala, “Bounded Refinement Types”, ICFP, 2015.

Chapter 5

Refinement Reflection

Did you ever wonder if the person in the puddle is real,
and you’re just a reflection of him?

– Bill Watterson

In this chapter we introduce Refinement Reflection, a method to extend legacy languages—

with highly tuned libraries, compilers, and run-times—into theorem provers, by letting program-

mers specify and verify arbitrary properties of their code simply by writing programs in the legacy

language.

Refinement types, as presented so far, offer a form of programming with proofs that can

be retrofitted into a programming language. The retrofitting relies upon restricting refinements to

so-called “shallow” specifications that correspond to abstract interpretations of the behavior of

functions. For example, refinements make it easy to specify that the list returned by the append

function has size equal to the sum of those of its inputs. These shallow specifications fall within

decidable logical fragments, and hence, can be automatically verified using SMT based refinement

typing.

Refinements are a pale shadow of what is possible with dependently typed languages like

Coq, Agda and Idris which permit “deep” specification and verification. These languages come

equipped with mechanisms that represent and manipulate the exact descriptions of user-defined

functions. For example, we can represent the specification that the append function is associative,

and we can manipulate (unfold) its definition to write a small program that constructs a proof

146

147

of the specification. Dafny [54], F* [88] and Halo [103] take a step towards SMT-based deep

verification, by encoding user-defined functions as universally quantified logical formulas or

“axioms”. This axiomatic approach offers significant automation but relies heavily upon brittle

heuristics for “triggering” axiom instantiation, giving away decidable, and hence, predictable

verification [56].

In this chapter, we present a new approach to retrofitting deep verification into existing

languages. Our approach reconciles the automation of SMT-based refinement typing with

decidable and predictable verification, and enables users to reify pencil-and-paper proofs simply

as programs in the source language.

• We start this chapter by an overview of refinement reflection: the code implementing a

user-defined function can be reflected into the function’s (output) refinement type, thus

converting the function’s (refinement) type signature into a deep specification of the

functions behavior. This simple idea has a profound consequence: at uses of the function,

the standard rule for (dependent) function application yields a precise, predictable and

most importantly, programmer controllable means of instantiating the deep specification

that is not tethered to brittle SMT heuristics. Specifically, we show how to use ideas

for defunctionalization from the theorem proving literature which encode functions and

lambdas using uninterpreted symbols, to encode terms from an expressive higher order

language as decidable refinements, letting us use SMT-based congruence closure for

decidable and predictable verification (§ 5.2).

• Next, we present a library of combinators that lets programmers compose proofs from basic

refinements and function definitions. We show how to represent proofs simply as unit-values

refined by the proposition that they prove. We show how to build up sophisticated proofs

using a small library of combinators that permits reasoning in an algebraic or equational

style. Furthermore, since proofs are literally just programs, our proof combinators let us use

standard language mechanisms like branches (to encode case splits), recursion (to encode

induction), and functions (to encode auxiliary lemmas) to write proofs that look very much

like transcriptions of their pencil-and-paper analogues (§ 5.1).

148

• We implemented refinement reflection in LIQUID HASKELL [100], thereby converting

the legacy language Haskell into a theorem prover. We demonstrate the benefits of this

conversion by proving typeclass laws. Haskell’s typeclass machinery has led to a suite

of expressive abstractions and optimizations which, for correctness, crucially require

typeclass instances to obey key algebraic laws. We show how reflection can be used to

formally verify that many widely used instances of the Monoid, Applicative, Functor, and

Monad typeclasses actually satisfy the respective laws, making the use of these typeclasses

safe (§ 5.4).

• Finally, to showcase the benefits of retrofitting theorem proving onto legacy languages, we

perform a case study in deterministic parallelism. Existing deterministic languages place

unchecked obligations on the user to guarantee, e.g. the associativity of a fold. Violations

can compromise type soundness and correctness. Closing this gap requires only modest

proof effort—touching only a small subset of the application. But for this solution to be

possible requires a practical, parallel programming language that supports deep verification.

Before LIQUID HASKELL there was no such parallel language. We show how LIQUID

HASKELL lets us verify the unchecked obligations from benchmarks taken from three

existing parallel programming systems, and thus, paves the way towards high-performance

with correctness guarantees (§ 5.5).

5.1 Overview

We begin with an overview of refinement reflection and how it allows us to write proofs

of and by Haskell functions.

5.1.1 Refinement Types

First, we recall some preliminaries about refinement types and how they enable shallow

specification and verification.

Refinement types are the source program’s (here Haskell’s) types decorated with logical predicates

drawn from a(n SMT decidable) logic [20, 81]. For example, we can define the Nat type by

149

refining Haskell’s Int type with a predicate 0 ≤ v:

type Nat = { v:Int | 0 ≤ v }

Here, v names the value described by the type: the above can be read as the “set of Int values v

that are not less than 0”. The refinement is drawn from the logic of quantifier free linear arithmetic

and uninterpreted functions (QF-UFLIA [4]).

Specification & Verification We can use refinements to define and type the textbook Fibonacci

function as:

fib :: Nat → Nat

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

Here, the input type’s refinement specifies a pre-condition that the parameters must be Nat, which

is needed to ensure termination, and the output types’s refinement specifies a post-condition that

the result is also a Nat. Refinement type checking lets us specify and (automatically) verify the

shallow property that if fib is invoked with a non-negative Int, then it terminates and yields a

non-negative Int.

Propositions We can use refinements to define a data type representing propositions simply as an

alias for unit, a data type that carries no useful runtime information:

type Prop = ()

which can be refined with propositions about the code. For example, the following states the

proposition 2+2 equals 4.

type Plus_2_2_eq_4 = { v: Prop | 2 + 2 = 4 }

For clarity, we abbreviate the above type by omitting the irrelevant basic type Prop and variable

v:

type Plus_2_2_eq_4 = { 2 + 2 = 4 }

Function types encode universally quantified propositions:

type Plus_com = x:Int → y:Int → { x + y = y + x }

150

The parameters x and y refer to input values. Any inhabitant of the above type is a proof that Int

addition is commutative.

Proofs We prove the above theorems by providing inhabitants to type specifications in forms of

Haskell programs. To ease this task LIQUID HASKELL provides primitives to construct proof

terms by “casting” expressions to Prop.

data QED = QED

(**) :: a → QED → Prop

_ ** _ = ()

To resemble mathematical proofs, we make this casting post-fix. Thus, we write e ** QED to

cast e to a value of Prop. For example, we can prove the above propositions by writing

pf_plus_2_2 :: Plus_2_2_eq_4

pf_plus_2_2 = trivial ** QED

pf_plus_comm :: Plus_comm

pf_plus_comm = \x y → trivial ** QED

trivial = ()

Via standard refinement type checking, the above code yields the respective verification conditions

(VCs),

2+2 = 4

∀ x, y . x+ y = y+ x

which are easily proved valid by the SMT solver, allowing us to prove the respective propositions.

A Note on Bottom: Readers familiar with Haskell’s semantics may be feeling anxious about

whether the dreaded “bottom”, which inhabits all types, makes our proofs suspect. Fortunately, as

described in [100], LIQUID HASKELL ensures that all terms with non-trivial refinements provably

evaluate to (non-bottom) values, thereby making our proofs sound.

151

5.1.2 Refinement Reflection

Suppose we wish to prove properties about the fib function, e.g. fib 2 equals 1.

type fib2_eq_1 = { fib 2 = 1 }

Standard refinement type checking runs into two problems. First, for decidability and soundness,

arbitrary user-defined functions do not belong the refinement logic, i.e. we cannot refer to fib in

a refinement. Second, the only information that a refinement type checker has about the behavior

of fib is its shallow type specification Nat → Nat which is far too weak to verify fib2_eq_1.

To address both problems, we use the following annotation, which sets in motion the three steps

of refinement reflection:

reflect fib

Step 1: Definition The annotation tells LIQUID HASKELL to declare an uninterpreted function

fib :: Int → Int in the refinement logic. By uninterpreted, we mean that the logical fib is

not connected to the program function fib; in the logic, fib only satisfies the congruence axiom

∀n,m. n = m ⇒ fib n = fib m

On its own, the uninterpreted function is not terribly useful, as it does not let us prove fib2_eq_1

which requires reasoning about the definition of fib.

Step 2: Reflection In the next key step, LIQUID HASKELL reflects the definition into the refine-

ment type of fib by automatically strengthening the user defined type for fib to:

fib :: n:Nat → { v:Nat | fibP v n }

where fibP is an alias for a refinement automatically derived from the function’s definition:

fibP v n = v = if n = 0 then 0 else

if n = 1 then 1 else

fib(n-1) + fib(n-2)

Step 3: Application With the reflected refinement type, each application of fib in the code

automatically unfolds the fib definition once in the logic. We prove fib2_eq_1 by:

152

pf_fib2 :: { fib 2 = 1 }

pf_fib2 = let t0 = fib 0

t1 = fib 1

t2 = fib 2

in ()

We write f to denote places where the unfolding of f’s definition is important. Via refinement

typing, the above proof yields the following verification condition that is discharged by the SMT

solver, even though fib is uninterpreted:

(fibP (fib 0) 0) ∧ (fibP (fib 1) 1) ∧ (fibP (fib 2) 2) ⇒ (fib 2 = 1)

Note that the verification of pf_fib2 relies merely on the fact that fib was applied to (i.e.

unfolded at) 0, 1 and 2. The SMT solver automatically combines the facts, once they are in the

antecedent. The following is also verified:

pf_fib2 ′ :: { fib 2 = 1 }

pf_fib2 ′ = [fib 0, fib 1, fib 2] ** QED

Thus, unlike classical dependent typing, refinement reflection does not perform any type-level

computation.

Reflection vs. Axiomatization An alternative axiomatic approach, used by Dafny [54] and

F* [88], is to encode fib using a universally quantified SMT formula (or axiom):

∀n. fibP (fib n) n

Axiomatization offers greater automation than reflection. Unlike LIQUID HASKELL, Dafny will

verify the following by automatically instantiating the above axiom at 2, 1 and 0:

axPf_fib2 :: { fib 2 = 1 }

axPf_fib2 = trivial ** QED

The automation offered by axioms is a bit of a devil’s bargain, as axioms render checking

of the VCs undecidable. In practice, automatic axiom instantation can easily lead to infinite

153

“matching loops”. For example, the existence of a term fib n in a VC can trigger the above axiom,

which may then produce the terms fib (n−1) and fib (n−2), which may then recursively give

rise to further instantiations ad infinitum. To prevent matching loops an expert must carefully

craft “triggers” and provide a “fuel” parameter [1] that can be used to restrict the numbers of the

SMT unfoldings, which ensure termination, but can cause the axiom to not be instantiated at the

right places. In short, per the authors of Dafny, the undecidability of the VC checking and its

attendant heuristics makes verification unpredictable [56].

5.1.3 Structuring Proofs

In contrast to the axiomatic approach, with refinement reflection, the VCs are deliberately

designed to always fall in an SMT-decidable logic, as function symbols are uninterpreted. It is

up to the programmer to unfold the definitions at the appropriate places, which we have found,

with careful design of proof combinators, to be quite a natural and pleasant experience. To this

end, we have developed a library of proof combinators that permits reasoning about equalities

and linear arithmetic, inspired by Agda [67].

“Equation” Combinators We equip LIQUID HASKELL with a family of equation combinators op.

for each logical operator op in {=, 6=,≤,<,≥,>}, the operators in the theory QF-UFLIA. The

refinement type of op. requires that x� y holds and then ensures that the returned value is equal

to x. For example, we define =. as:

(=.) :: x:a → y:{a| x=y} → {v:a| v=x}

x =. _ = x

and use it to write the following “equational” proof:

eqPf_fib2 :: { fib 2 = 1 }

eqPf_fib2 = fib 2

=. fib 1 + fib 0

=. 1

** QED

“Because” Combinators Often, we need to compose “lemmata” into larger theorems. For example,

to prove fib 3 = 2 we may wish to reuse eqPf_fib2 as a lemma. To this end, LIQUID

154

HASKELL has a “because” combinator:

(∵) :: (Prop → a) → Prop → a

f ∵ y = f y

The operator is simply an alias for function application that lets us write x op. y ∵ p (instead

of (op.) x y p) where (op.) is extended to accept an optional third proof argument via

Haskell’s typeclass mechanisms. We use the because combinator to prove that fib 3 = 2 with a

Haskell function:

eqPf_fib3 :: { fib 3 = 2 }

eqPf_fib3 = fib 3

=. fib 2 + fib 1

=. 2 ∵ eqPf_fib2

** QED

Arithmetic and Ordering SMT based refinements let us go well beyond just equational reasoning.

Next, lets see how we can use arithmetic and ordering to prove that fib is (locally) increasing, i.e.

for all n, fib n≤ fib (n+1)

fibUp :: n:Nat → { fib n ≤ fib (n+1) }

fibUp n

| n == 0

= fib 0 <. fib 1

** QED

| n == 1

= fib 1 ≤. fib 1 + fib 0 ≤. fib 2

** QED

| otherwise

= fib n

=. fib (n-1) + fib (n-2)

≤. fib n + fib (n-2) ∵ fibUp (n-1)

≤. fib n + fib (n-1) ∵ fibUp (n-2)

≤. fib (n+1)

** QED

155

Case Splitting and Induction The proof fibUp works by induction on n. In the base cases 0

and 1, we simply assert the relevant inequalities. These are verified as the reflected refinement

unfolds the definition of fib at those inputs. The derived VCs are (automatically) proved as the

SMT solver concludes 0 < 1 and 1+0≤ 1 respectively. In the inductive case, fib n is unfolded

to fib (n-1) + fib (n-2), which, because of the induction hypothesis (applied by invoking

fibUp at n-1 and n-2) and the SMT solver’s arithmetic reasoning, completes the proof.

Higher Order Theorems Refinements smoothly accomodate higher-order reasoning. For example,

lets prove that every locally increasing function is monotonic, i.e. if f z ≤ f (z+1) for all z,

then f x ≤ f y for all x < y.

fMono :: f:(Nat → Int)

→ fUp:(z:Nat → {f z ≤ f (z+1)})

→ x:Nat

→ y:{x < y}

→ {f x ≤ f y} / [y]

fMono f inc x y

| x + 1 == y

= f x ≤. f (x+1) ∵ fUp x

≤. f y

** QED

| x + 1 < y

= f x ≤. f (y-1) ∵ fMono f fUp x (y-1)

≤. f y ∵ fUp (y-1)

** QED

We prove the theorem by induction on y, which is specified by the annotation / [y] which

states that y is a well-founded termination metric that decreases at each recursive call [100]. If

x+1 == y, then we use fUp x. Otherwise, x+1 < y, and we use the induction hypothesis i.e.

apply fMono at y-1, after which transitivity of the less-than ordering finishes the proof. We can

use the general fMono theorem to prove that fib increases monotonically:

fibMono :: n:Nat → m:{n<m} → {fib n ≤ fib m}

fibMono = fMono fib fibUp

156

5.1.4 Case Study: Deterministic Parallelism

One benefit of an in-language prover is that it lowers the barrier to small verification

efforts that touch only a fraction of the program, and yet ensure critical invariants that Haskell’s

type system cannot. Here we consider parallel programming, which is commonly considered

error prone and entails proof obligations on the user that typically go unchecked.

The situation is especially precarious with parallel programming frameworks that claim

to be determinstic and thus usable within purely functional programs. These include Determin-

istic Parallel Java (DPJ [10]), Concurrent Revisions for .NET [14], and Haskell’s LVish [52],

Accelerate [64], and REPA [48]. Accelerate’s parallel fold function, for instance, claims to be

deterministic—and its purely functional type means the Haskell optimizer will assume its refer-

ential transparency—but its determinism depends on an associativity guarantee which must be

assured by the programmer rather than the type system. Thus simply folding the minus function,

fold (-) 0 arr, is sufficient to violate determinism and Haskell’s pure semantics.

Likewise, DPJ goes to pains to develop a new type system for parallel programming, but

then provides a “commutes” annotation for methods updating shared state, compromising the

guarantee and going back to trusting the user. LVish has the same Achilles heel. Consider set

insertion:

insert :: Ord a ⇒ a → Set s a → Par s ()

Here insert returns an (effectful) Par computation, which can be run within a pure

function to produce a pure result. At first glance it would seem that trusting the implementation

of the concurrent set is sufficient to assure a deterministic outcome. Yet the interface has an Ord

constraint. This polymorphic function works with user-defined data types, and thus user-defined

orderings. What if the user fails to implement a total order? Then, even a correct implementation

of, e.g. a concurrent skiplist [34], can reveal different insertion orders due to concurrency.

In summary, parallel programs naturally need to communicate, but the mechanisms of

that communication—such as folds or inserts into a shared structure—typically carry additional

proof obligations. This in turn makes parallelism a liability. But we can remove the risk with

verification.

157

Verified typeclasses Our solution is simply to change the Ord constraint above to VerifiedOrd.

insert :: VerifiedOrd a ⇒ a → Set s a → Par s ()

This constraint changes the interface but not the implementation of insert. The additional

methods of the verified type class don’t add operational capabilities, but rather impose additional

proof obligations:

class Ord a ⇒ VerifiedOrd a where

antisym :: x:a → y:a → { x ≤ y ∧ y ≤ x ⇒ x = y }

trans :: x:a → y:a → z:a → { x ≤ y ∧ y ≤ z ⇒ x ≤ z }

total :: x:a → y:a → { x ≤ y || y ≤ x }

Similarly, we can extend the Monoid typeclass to a VerifiedMonoid, with refinements

expressing Monoid laws.

class Monoid a ⇒ VerifiedMonoid a where

lident :: x:a → { ε ♦ x = x }

rident :: x:a → { x ♦ ε = x }

assoc :: x:a → y:a → z:a → { x ♦ (y ♦ z) = (x ♦ y) ♦ z }

The VerifiedMonoid typeclass constraint requires the binary operation to be associative, thus

can be safely used to fold on an unknown number of processors.

Verified instances for primitive types VerifiedOrd instances for primitive types like Int,

Double are trivial to write; they just appeal to the SMT solver’s built-in theories. For example,

the following is a valid totality proof on Int.

totInt :: x:Int → y:Int → {x ≤ y || y ≤ x}

totInt _ _ = trivial ** QED

Verified instances for algebraic datatypes To prove the class laws for user defined algebraic

datatypes, refinement reflection allows for structurally inductive proof terms. For example, we

can inductively define Peano numerals

data Peano = Z | S Peano

We can compare two Peano numbers via

158

reflect leq :: Peano → Peano → Bool

leq Z _ = True

leq (S n) Z = False

leq (S n) (S m) = leq n m

In § 5.2 we will describe exactly how the reflection mechanism (illustrated via fibP) is extended

to account for ADTs like Peano. LIQUID HASKELL automatically checks that leq is total [100],

which lets us safely reflect it into the logic.

Next, we prove that leq is total on Peano numbers

totalPeano :: n:Peano → m:Peano → {leq n m || leq m n} / [toInt n + toInt m]

totalPeano Z m = leq Z m ** QED

totalPeano n Z = leq Z n ** QED

totalPeano (S n) (S m)

= leq (S n) (S m) || leq (S m) (S n)

=. leq n m || leq m n

=. True ∵ totalPeano m n

** QED

The proof goes by induction, splitting cases on whether the number is zero or non-zero. Conse-

quently, we pattern match on the parameters n and m, and furnish separate proofs for each case. In

the “zero” cases, we simply unfold the definition of leq. In the “successor” case, after unfolding

we (literally) apply the induction hypothesis by using the because operator. The termination

hint [toInt n + toInt m], where toInt maps Peano numbers to integers, is used to verify

well-formedness of the totalPeano proof term. LIQUID HASKELL’s termination and totality

checker use the hint to verify that we are in fact doing induction properly (§ 5.2).

Similarly to totalPeano, we can define the rest of the VerifiedOrd proof methods

and use them to create the verified instance.

instance Ord Peano where

(≤) = leq

instance VerifiedOrd Peano where

total = totalPeano

159

Proving all the four VerifiedOrd laws is a burden on the programmer. Since Peano is isomorphic

to Nats, next we present how to reduce the Peano proofs into the SMT automated integer proofs.

Isomorphisms In order to reuse proofs for a custom datatype, we provide a way to translate

verified instances between isomorphic types [5]. We design a typeclass Iso which witnesses the

fact that two types are isomorphic.

class Iso a b where

to :: a → b

from :: b → a

to◦from :: x:a → {to (from x) = x}

from◦to :: x:a → {from (to x) = x}

For two isomorphic types a and b we compare instances of b using a’s comparison method.

instance (Ord a, Iso a b) ⇒ Ord b where

x ≤ y = from x ≤ from y

Then, we prove that VerifiedOrd laws are closed under isomorphisms. For example, we prove

totality of comparison on bs using the VerifiedOrd totality on as

isoTotal :: (VerifiedOrd a, Iso a b) ⇒ x:b → y:b → {x ≤ y || y ≤ x}

isoTotal x y

= x ≤ y || y ≤ x

=. (from x) ≤ (from y) || (from y) ≤ (from x)

∵ total (from x) (from y)

** QED

We use isoTotal to create a verified instance on bs.

instance (VerifiedOrd a, Iso a b) ⇒ VerifiedOrd b where

total = isoTotal

With the above technique, and using Haskell’s instances, getting a VerifiedOrd instance for

Peano reduces to definition of an Iso Nat Peano.

Proof Composition via Products Finally, we present a mechanism to automatically reduce proofs

on product types to proofs of the product components. For example, lexicographic ordering

preserves the ordering laws. First, we use class instances to define lexicographic ordering.

160

instance (VerifiedOrd a, VerifiedOrd b) ⇒ Ord (a, b) where

(x1, y1) ≤ (x2, y2) = if x1 == x2 then y1 ≤ y2 else x1 ≤ x2

Then, we prove that lexicographic ordering preserves the ordering laws. For example, it preserves

totality.

prodTotal :: (VerifiedOrd a, VerifiedOrd b)

⇒ p:(a, b) → q:(a, b) → {p ≤ q || q ≤ p}

prodTotal p@(x1, y1) q@(x2, y2)

= p ≤ q || q ≤ p

=. if x1 == x2 then (y1 ≤ y2 || y2 ≤ y1) else True

∵ total x1 x2

=. if x1 == x2 then True else True

∵ total y1 y2

** QED

Finally, using the prodTotal proof method, we conclude that each instance defined via the

lexicographic ordering is indeed a verified instance.

instance (VerifiedOrd a, VerifiedOrd b) ⇒ VerifiedOrd (a, b) where

total = prodTotal

For example the type (Peano, Peano) is derived to be a VerifiedOrd instance.

In short, we can decompose an algebraic datatype into an isomorphic type using sums and

products to generate verified instances for arbitrary Haskell datatypes. This could be combined

with the Glasgow Haskell Compiler’s (GHC) support for generics [61] to automate the derivation

of verified instances for user datatypes. In §5.5, we use these ideas to develop fully safe interfaces

to LVish modules, as well as verifying programming patterns from DPJ.

5.2 Refinement Reflection

Next, we formalize refinement reflection via a core calculus λ R. We define a decidable

SMT language λ S to approximate the higher order, potentially diverging target language λ R and

present a decidable and sound type system for λ R.

161

Operators � ::= = | <
Constants c ::= ∧ | ¬ | � | +,−, . . . | True | False | 0,−1,1, . . .

Values w ::= c | λx.e | D w
Expressions e ::= w | x | e e | case x = e of {D x→ e}

Binders b ::= e | let rec x :τ = b in b
Program p ::= b | reflect x :τ = e in p

Basic Types B ::= Int | Bool | T
Refined Types τ ::= {v :B[⇓] | r} | x :τ → τ

Figure 5.1. Syntax of λ R.

5.2.1 Syntax

Figure 5.1 summarizes the syntax of λ R, which is essentially the calculus λU (from § 2.2)

with explicit recursion and a special reflect binding to denote terms that are reflected into the

refinement logic. The elements of λ R are layered into primitive constants, values, expressions,

binders and programs.

Constants The primitive constants of λ R include all the primitive logical operators �, here, the

set {=,<}. Moreover, they include the primitive booleans True, False, integers −1,0, 1, etc.,

and logical operators ∧, ∨, ¬, etc..

Data Constructors Data constructors are special constants. For example, the data type [Int],

which represents finite lists of integers, has two data constructors: [] (nil) and : (cons).

Values & Expressions The values of λ R include constants, λ -abstractions λx.e, and fully ap-

plied data constructors D that wrap values. The expressions of λ R include values, variables x,

applications e e, and case expressions.

Binders & Programs A binder b is a series of possibly recursive let definitions, followed by an

expression. A program p is a series of reflect definitions, each of which names a function that

is reflected into the refinement logic, followed by a binder. The stratification of programs via

binders is required so that arbitrary recursive definitions are allowed in the program but cannot be

inserted into the logic via refinements or reflection. (We can allow non-recursive let binders in

expressions e, but omit them for simplicity).

162

5.2.2 Operational Semantics

We define ↪→ to be the small step, call-by-name β -reduction semantics for λ R. We

evaluate reflected terms as recursive let bindings, with extra termination-check constraints

imposed by the type system:

reflect x :τ = e in p ↪→ let rec x :τ = e in p

We define ↪→? to be the reflexive, transitive closure of ↪→∗. Moreover, we define ≈β to be the

reflexive, symmetric, and transitive closure of ↪→∗.

Constants Application of a constant requires the argument be reduced to a value; in a single step,

the expression is reduced to the output of the primitive constant operation, i.e. c v ↪→ δ (c,v). For

example, consider =, the primitive equality operator on integers. We have δ (=,n) .
= =n where

δ (=n,m) equals True iff m is the same as n.

Equality We assume that the equality operator is defined for all values, and, for functions, is

defined as extensional equality. That is, for all f and f ′, (f = f ′) ↪→∗ True iff ∀v. f v ≈β f ′ v.

We assume source terms only contain implementable equalities over non-function types; while

function extensional equality only appears in refinements and is approximated by the underlying

logic.

5.2.3 Types

λ R types include basic types, which are refined with predicates, and dependent function

types. Basic types B comprise integers, booleans, and a family of data-types T (representing lists,

trees etc.). For example, the data type [Int] represents lists of integers. We refine basic types

with predicates (boolean-valued expressions e) to obtain basic refinement types {v :B | e}. We use

⇓ to mark provably terminating computations and use refinements to ensure that if e:{v :B⇓ | e′},

then e terminates (as in chapter 2). Finally, we have dependent function types x :τx→ τ where the

input x has the type τx and the output τ may refer to the input binder x. We write B to abbreviate

{v :B | True}, and τx→ τ to abbreviate x :τx→ τ if x does not appear in τ .

163

Constants For each constant c we define its type Ty(c), e.g.

Ty(3) .
= {v :Int | v = 3}

Ty(+)
.
= x :Int→ y :Int→{v :Int | v = x+ y}

Ty(≤) .
= x :Int→ y :Int→{v :Bool | v⇔ x≤ y}

5.2.4 Refinement Reflection

The key idea in our work is to strengthen the output type of functions with a refine-

ment that reflects the definition of the function in the logic. We do this by treating each

reflect-binder (reflect f :τ = e in p) as a let rec-binder with a reflected singleton type

(let rec f :Reflect(τ,e) = e in p) during type checking (rule T-REFLECT in Figure 5.3).

Reflection We write Reflect(τ,e) for the reflection of the term e into the type τ , defined by

strengthening τ as:

Reflect({v :B | r},e) .
= {v :B | r∧ v = e}

Reflect(x :τx→ τ,λy.e) .
= x :τx→ Reflect(τ,e[x/y])

As an example, recall from § 5.1 that the reflect fib strengthens the type of fib with the

refinement fibP.

Consequences for Verification Reflection has two consequences for verification. First, the

reflected refinement is not trusted; it is itself verified (as a valid output type) during type checking.

Second, instead of being tethered to quantifier instantiation heuristics or having to program

“triggers” as in Dafny [54] or F* [88], the programmer can predictably “unfold” the definition

of the function during a proof simply by “calling” the function, which, as discussed in § 5.4, we

have found to be a very natural way of structuring proofs.

5.2.5 The SMT logic λ S

λ R is a higher order, potentially diverging language that cannot be used for decidable

verification. Next, we describe λ S, a conservative, first order approximation of λ R where higher

order features are approximated with uninterpreted functions, yielding an SMT-based algorithmic

164

Predicates r ::= r⊕2 r | ⊕1r | n | b | x | D | x r
| if r then r else r

Integers n ::= 0,−1,1, . . .
Booleans b ::= True | False

Binary Operators ⊕2 ::= = | < | ∧ | + | − | . . .
Unary Operators ⊕1 ::= ¬ | . . .
Sort Arguments sa ::= Int | Bool | U | Fun sa sa

Sorts s ::= sa→ s

Figure 5.2. Syntax of λ S.

logic that enjoys soundness and decidability.

Syntax Figure 5.2 summarizes the syntax of λ S, the sorted (SMT-) decidable logic of quantifier-

free equality, uninterpreted functions and linear arithmetic (QF-EUFLIA) [69, 4]. The terms of

λ S include integers n, booleans b, variables x, data constructors D (encoded as constants), fully

applied unary ⊕1 and binary ⊕2 operators, and application x r of an uninterpreted function x. The

sorts of λ S include the built-in Int and Bool. The interpreted functions of λ S, e.g. the logical

constants = and <, have the function sort s→ s. Other functional values in λ R, e.g. reflected λ R

functions and λ -expressions, have the first-order uninterpreted sort Fun s s. The universal sort U

represents all other values.

5.2.6 Transforming λ R into λ S

A type environment Γ is a sequence of type bindings x1 :τ1, . . . ,xn :τn. We use the type

environment to define the judgment Γ ` e r that transforms a λ R term e into a λ S term r. Most

of the transformation rules are identity and can be found in [96]. Here we discuss the non-identity

ones.

Embedding Types We embed λ R types into λ S sorts as:

(|Int|) .
= Int (|T |) .

= U

(|Bool|) .
= Bool (|x :τx→ τ|) .

= Fun (|τx|) (|τ|)

165

Embedding Constants Elements shared on both λ R and λ S translate to themselves. These

elements include booleans, integers, variables, binary and unary operators. SMT solvers do not

support currying, and so in λ S, all function symbols must be fully applied. Thus, we assume that

all applications to primitive constants and data constructors are fully applied, e.g. by converting

source terms like (+ 1) to (\z → z+1).

Embedding Functions As λ S is a first-order logic, we embed λ -abstraction using the uninter-

preted function lam.

Γ,x :τx ` e r Γ ` (λx.e) : (x :τx→ τ)

Γ ` λx.e lam
(|τx|)
(|τ|) x r

T-FUN

The term λx.e of type τx→ τ is transformed to lamsx
s x r of sort Fun sx s, where sx and s are

respectively (|τx|) and (|τ|), lamsx
s is a special uninterpreted function of sort sx→ s→ Fun sx s,

and x of sort sx and r of sort s are the embedding of the binder and body, respectively. As lam

is an SMT-function, it does not create a binding for x. Instead, x is renamed to a fresh name

pre-declared in the SMT logic.

Embedding Applications Dually, we embed applications via defunctionalization [77] with the

uninterpreted app function.

Γ ` e′ r′ Γ ` e r Γ ` e : τx→ τ

Γ ` e e′ app
(|τx|)
(|τ|) r r′

T-APP

The term e e′, where e and e′ have types τx→ τ and τx, is transformed to appsx
s r r′ :s where s and

sx are (|τ|) and (|τx|), the appsx
s is a special uninterpreted function of sort Fun sx s→ sx→ s, and

r and r′ are the respective translations of e and e′.

Embedding Data Types We translate each data constructor to a predefined λ S constant sD of sort

(|Ty(D)|).

Γ ` D sD

For each datatype, we assume the existence of reflected functions that check the top-level con-

structor and select their individual fields. For example, for lists, we assume the existence of

166

measures:

isNil [] = True isCons (x:xs) = True

isNil (x:xs) = False isCons [] = False

sel1 (x:xs) = x sel2 (x:xs) = xs

Due to the simplicity of their syntax the above checkers and selectors can be automatically

instantiated in the logic (i.e. without actual calls to the reflected functions at source level) using

the measure mechanism (§ 2.1.6).

To generalize, let Di be a data constructor such that

Ty(Di)
.
= τi,1→ ·· · → τi,n→ τ

Then the check function isDi has the sort Fun (|τ|) Bool, and the select function selDi, j has the

sort Fun (|τ|) (|τi, j|).

We translate case-expressions of λ R into nested if terms in λ S, by using the check

functions in the guards, and the select functions for the binders of each case.

Γ ` e r Γ ` ei[selDi x/yi][e/x] ri

Γ ` case x = e of {Di yi→ ei} if app isD1 r then r1 else . . . else rn
T-CASE

For example, the body of the list append function

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

is reflected into the λ S refinement:

if isNil xs then ys else sel1 xs : (sel2 xs ++ ys)

We favor selectors to the axiomatic translation of HALO [103] to avoid universally quantified

formulas and the resulting instantiation unpredictability.

167

Typing Γ ` p : τ

x :τ ∈ Γ

Γ ` x : τ
T-VAR

Γ ` c : Ty(c)
T-CON

Γ ` p : τ ′ Γ ` τ ′ � τ

Γ ` p : τ
T-SUB

Γ ` e : {v :B | rr}
Γ ` e : {v :B | rr ∧ v = e}

T-EXACT

Γ,x :τx ` e : τ

Γ ` λx.e : x :τx→ τ
T-FUN

Γ ` e1 : (x :τx→ τ) Γ ` e2 : τx

Γ ` e1 e2 : τ
T-APP

Γ,x :τx ` bx : τx Γ,x :τx ` τx Γ,x :τx ` b : τ Γ ` τ

Γ ` let rec x :τx = bx in b : τ
T-LET

Γ ` let rec f :Reflect(τ f ,e) = e in p : τ

Γ ` reflect f :τ f = e in p : τ
T-REFLECT

Γ ` e : {v :T | er} Γ ` τ

∀i.Ty(Di) = y j :τ j→{v :T | eri} Γ,y j :τ j,x :{v :T | er ∧ eri} ` ei : τ

Γ ` case x = e of {Di yi→ ei} : τ
T-CASE

Well Formedness Γ ` τ

Γ,v :B ` e : Bool⇓

Γ ` {v :B | e}
WF-BASE

Γ ` τx Γ,x :τx ` τ

Γ ` x :τx→ τ
WF-FUN

Subtyping Γ ` τ1 � τ2

Γ′
.
= Γ,v :{v :B⇓ | e} Γ′ ` e′ r′ SmtValid((|Γ′|)⇒ r′)

Γ ` {v :B | e} � {v :B | e′}
�-BASE

Γ ` τ ′x � τx Γ,x :τ ′x ` τ � τ ′

Γ ` x :τx→ τ � x :τ ′x→ τ ′
�-FUN

Figure 5.3. Type checking of λ R.

5.2.7 Typing Rules

Next, we present the typing, well-formedness, and subtyping [51, 100] rules of λ R.

Typing A judgment Γ ` p : τ states that the program p has the type τ in the environment Γ. That

is, when the free variables in p are bound to expressions described by Γ, the program p will

evaluate to a value described by τ .

Rules All but two of the rules are standard [51, 100]. First, rule T-REFLECT is used to strengthen

168

the type of each reflected binder with its definition, as described previously in § 5.2.4. Second, rule

T-EXACT strengthens the expression with a singleton type equating the value and the expression

(i.e. reflecting the expression in the type). This is a generalization of the “selfification” rules from

[72, 51], and is required to equate the reflected functions with their definitions. For example, the

application (fib 1) is typed as {v :Int | fibP v 1∧ v = fib 1} where the first conjunct comes

from the (reflection-strengthened) output refinement of fib § 5.1 and the second comes from

rule T-EXACT.

Well-formedness A judgment Γ ` τ states that the refinement type τ is well-formed in the

environment Γ. Following chapter 2, the type τ is well-formed if all the refinements in τ are

Bool-typed, provably terminating expressions in Γ.

Subtyping A judgment Γ ` τ1 � τ2 states that the type τ1 is a subtype of τ2 in the environment

Γ. Informally, τ1 is a subtype of τ2 if the refinement of τ1 implies the refinement of τ2 under the

assumptions described by Γ. Subtyping of basic types reduces to implication checking.

Verification Conditions The implication or verification condition (VC) (|Γ|)⇒ r is valid only if

the set of values described by Γ, is subsumed by the set of values described by r. Γ is embedded

into logic by conjoining (the embeddings of) the refinements of provably terminating binders

(Chapter 2):

(|Γ|) .
=
∧
x∈Γ

(|Γ,x|)

where we embed each binder as

(|Γ,x|) .
=


r if Γ(x) = {v :B⇓ | e}, Γ ` e[x/v] r

True otherwise.

It is important to note that since λ S is carefully restricted to SMT-decidable theories, VC

checking, and thus type checking of λ R, is decidable.

169

5.2.8 Soundness

Following λU from chapter 2, in [96], we show that if validity checking respects the

axioms of β -equivalence, then λ R is sound.

We define the β -equivalence axioms on the uninterpreted function that represent λ -

abstraction (lam) and and application (app).

∀x y e.lam x e = lam y (e[y/x])

∀x ex e.(app (lam x e) ex) = e[ex/x]

We prove that when validity checking assumes the β -equivalence axioms, λ R is sound.

Theorem 6. [Soundness of λ R] Assuming the β -equivalence axioms, if /0 ` p : τ and p ↪→? w

then /0 ` w : τ .

Theorem 6 lets us interpret well typed terminating programs as proofs of propositions.

For example, in § 5.1 we verified that fibUp :: n :Nat→{fib n≤ fib (n+1)}. Via soundness

of λ R, we get runtime monotonicity of fib.

∀n.0≤ n ↪→? True⇒ fib n≤ fib (n+1) ↪→? True

Approximation of β -equivalence Though sound and precise, directly extending the logic with

β -equivalence axioms would render SMT validity checking undecidable. Next, we discuss an

incomplete, yet decidable, technique that allows the user to manually instantiate the β -equivalence

axioms when required for precise typing.

5.3 Reasoning About Lambdas

Soundness and precision of λ R relies on the β -equivalence and extensionality axioms that

are undecidable. Next, we present a decidable but incomplete way to approximate β -equivalence

by strengthening the VCs with equalities § 5.3.1, and extensionality by introducing a combinator

for safely asserting extensional equality § 5.3.2. In the rest of this section, for clarity we omit app

170

when it is clear from the context.

5.3.1 Equivalence

As soundness relies on axioms of β -equivalence we can safely instantiate the axioms

of α- and β -equivalence on any set of terms of our choosing and still preserve soundness. That

is, instead of checking the validity of a VC p⇒ q, we check the validity of a strengthened VC,

a⇒ p⇒ q, where a is a (finite) conjunction of equivalence instances derived from p and q, as

discussed below.

Representation Invariant The lambda binders, for each SMT sort, are drawn from a pool of

names xi where the index i = 1,2, When representing λ terms we enforce a normalization

invariant that for each lambda term lam xi e, the index i is greater than any lambda argument

appearing in e.

α-instances For each syntactic term lam xi e, and λ -binder x j such that i < j appearing in the

VC, we generate an α-equivalence instance predicate (or α-instance):

lam xi e = lam x j e[x j/xi]

The conjunction of α-instances can be more precise than De Bruijn representation, as

they let the SMT solver deduce more equalities via congruence. For example, consider the VC

needed to prove the applicative laws for Reader:

d = lam x1 (x x1)⇒ lam x2 ((lam x1 (x x1)) x2) = lam x1 (d x1)

The α instance lam x1 (d x1) = lam x2 (d x2) derived from the VC’s hypothesis, combined with

congruence immediately yields the VC’s consequence.

β -instances For each syntactic term app (lam x e) ex, with ex not containing any λ -abstractions,

appearing in the VC, we generate an β -equivalence instance predicate (or β -instance):

app (lam xi e) ex = e[ex/xi], s.t. ex is λ -free

171

We require the λ -free restriction as a simple way to enforce that the reduced term e[e′/xi] enjoys

the representation invariant.

For example, consider the following VC needed to prove that the bind operator for lists

satisfies the monadic associativity law.

(f x�= g) = app (lam y (f y�= g)) x

The right-hand side of the above VC generates a β -instance that corresponds directly to the

equality, allowing the SMT solver to prove the (strengthened) VC.

Normalization The combination of α- and β -instances is often required to discharge proof obli-

gations. For example, when proving that the bind operator for the Reader monad is associative,

we need to prove the VC:

lam x2 (lam x1 w) = lam x3 (app (lam x2 (lam x1 w)) w)

The SMT solver proves the VC via the equalities corresponding to an α and then β -instance:

lam x2 (lam x1 w) =α lam x3 (lam x1 w)

=β lam x3 (app (lam x2 (lam x1 w)) w)

5.3.2 Extensionality

Often, we need to prove that two functions are equal, given the definitions of reflected

binders. For example, consider

reflect id

id x = x

LIQUID HASKELL accepts the proof that id x = x for all x:

id_x_eq_x :: x:a → {id x = x}

id_x_eq_x = \x → id x =. x ** QED

172

as “calling” id unfolds its definition, completing the proof. However, consider this η-expanded

variant of the above proposition:

type Id_eq_id = {(\x → id x) = (\y → y)}

LIQUID HASKELL rejects the proof:

fails :: Id_eq_id

fails = (\x → id x) =. (\y → y) ** QED

The invocation of id unfolds the definition, but the resulting equality refinement {id x = x} is

trapped under the λ -abstraction. That is, the equality is absent from the typing environment at

the top level, where the left-hand side term is compared to \y → y. Note that the above equality

requires the definition of id and hence is outside the scope of purely the α- and β -instances.

An Exensionality Operator To allow function equality via extensionality, we provide the user

with a (family of) function comparison operator(s) that transform an explanation p which is a

proof that f x = g x for every argument x, into a proof that f = g.

=∀ :: f:(a → b) → g:(a → b)

→ exp:(x:a → {f x = g x})

→ {f = g}

Of course, =∀ cannot be implemented; its type is assumed. We can use =∀ to prove Id_eq_id by

providing a suitable explanation:

pf_id_id :: Id_eq_id

pf_id_id = (\y → y) =∀ (\x → id x) ∵ expl ** QED

where

expl = (\x → id x =. x ** QED)

The explanation is the second argument to ∵ which has the following type that syntactically fires

β -instances:

x:a → {(\x → id x) x = ((\x → x) x}

173

Table 5.1. Summary of Refinement Reflection Case Studies.

CATEGORY LOC
I. Arithmetic

Fibonacci § 5.1 48
Ackermann [92] , Fig. 5.4 280

II. Algebraic Data Types
Fold Universal [67] 105
Fold Fusion [67]

III. Typeclasses Table 5.2

Monoid Peano, Maybe, List 189
Functor Maybe, List, Id, Reader 296
Applicative Maybe, List, Id, Reader 578
Monad Maybe, List, Id, Reader 435

IV. Functional Correctness
SAT Solver [15] 133
Unification [85] 200

V. Deterministic Parallelism
Concurrent Sets § 5.5.1 906
n-body simulation § 5.5.2 930
Parallel Reducers § 5.5.3 55

TOTAL 4155

5.4 Evaluation

We have implemented refinement reflection in LIQUID HASKELL. In this section, we

evaluate our approach by using LIQUID HASKELL to verify a variety of deep specifications of

Haskell functions drawn from the literature and categorized in Table 5.1, totalling about 4000

lines of specifications and proofs. Next, we detail each of the first four classes of specifications,

illustrate how they were verified using refinement reflection, and discuss the strengths and

weaknesses of our approach. All of these proofs require refinement reflection, i.e. are beyond the

scope of shallow refinement typing.

Proof Strategies. Our proofs use three building blocks, that are seamlessly connected via refine-

174

ment typing:

• Un/folding definitions of a function f at arguments e1...en, which due to refinement

reflection, happens whenever the term f e1 ... en appears in a proof. For exposition,

we render the function whose un/folding is relevant as f;

• Lemma Application which is carried out by using the “because” combinator (∵) to instan-

tiate some fact at some inputs;

• SMT Reasoning in particular, arithmetic, ordering and congruence closure which kicks in

automatically (and predictably!), allowing us to simplify proofs by not having to specify,

e.g. which subterms to rewrite.

5.4.1 Arithmetic Properties

The first category of theorems pertains to the textbook Fibonacci and Ackermann func-

tions. The former were shown in § 5.1. The latter are summarized in Figure 5.4, which shows

two alternative definitions for the Ackermann function. We proved equivalence of the definition

(Prop 1) and various arithmetic relations between them (Prop 2 — 13), by mechanizing the proofs

from [92].

Monotonicity Prop 3. shows that An(x) is increasing on x. We derived Prop 4. by applying

fMono theorem from § 5.1 with input function the partially applied Ackermann Function An(?).

Similarly, we derived the monotonicity Prop 9. by applying fMono to the locally increasing Prop.

8 and Ah
n(?). Prop 5. proves that An(x) is increasing on the first argument n. As fMono applies to

the last argument of a function, we cannot directly use it to derive Prop 6. Instead, we define a

variant fMono2 that works on the first argument of a binary function, and use it to derive Prop 6.

Constructive Proofs In [92] Prop 12. was proved by constructing an auxiliary ladder that counts

the number of (recursive) invocations of the Ackermann function, and uses this count to bound

Ah
n(x) and An(x). It turned out to be straightforward and natural to formalize the proof just

by defining the ladder function in Haskell, reflecting it, and using it to formalize the algebra

from [92].

175

Ackermann’s Function

An(x)
.
=


x+2 , if n = 0
2 , if x = 0
An−1(An(x−1))

Ah
n(x)

.
=

{
x , if h = 0
An(Ah−1

n (x))

Properties

1. An+1(x) = Ax
n(2)

2. x+1 < An(x)
3. An(x) < An(x+1)
4. x < y ⇒ An(x) < An(y)
5. 0 < x ⇒ An(x) < An+1(x)
6. 0 < x,n < m ⇒ An(x) < Am(x)
7. Ah

n(x) < Ah+1
n (x)

8. Ah
n(x) < Ah

n(x+1)
9. x < y ⇒ Ah

n(x) < Ah
n(y)

10. ⇒ Ah
n(x) < Ah

n+1(x)
11. 0 < n, l−2 < x ⇒ x+ l < An(x)
12. 0 < n, l−2 < x ⇒ Al

n(x) < An+1(x)
13. Ax

n(y) < An+1(x+ y)

Figure 5.4. Ackermann Properties [92], ∀n,m,x,y,h, l ≥ 0

5.4.2 Algebraic Data Properties

The second category of properties pertain to algebraic data types.

Fold Univerality Next, we proved properties of list folding, such as the following, describing the

universal property of right-folds [67]:

foldr_univ

:: f:(a → b → b)

→ h:([a] → b)

→ e:b

→ ys:[a]

→ base:{h [] = e }

→ stp:(x:a → l:[a]→ {h(x:l) = f x (h l)})

→ {h ys = foldr f e ys}

Our proof foldr_univ differs from the one in Agda, in two ways. First, we encode Agda’s

universal quantification over x and l in the assumption stp using a function type. Second, unlike

176

Agda, LIQUID HASKELL does not support implicit arguments, so at uses of foldr_univ the

programmer must explicitly provide arguments for base and stp, as illustrated below.

Fold Fusion Let us define the usual composition operator:

reflect . :: (b → c) → (a → b) → a → c

f . g = \x → f (g x)

We can prove the following foldr_fusion theorem (that shows operations can be pushed inside

a foldr), by applying foldr_univ to explicit bas and stp proofs:

foldr_fusion

:: h:(b → c)

→ f:(a → b → b)

→ g:(a → c → c)

→ e:b → z:[a] → x:a → y:b

→ fuse: {h (f x y) = g x (h y)})

→ {(h . foldr f e) z = foldr g (h e) z}

foldr_fusion h f g e ys fuse

= foldr_univ g (h . foldr f e) (h e) ys

(fuse_base h f e)

(fuse_step h f e g fuse)

where fuse_base and fuse_step prove the base and inductive cases. For example the type of

fuse_base is the following theorem

fuse_base :: h:(b→ c) → f:(a→ b→ b) → e:b

→ {(h . foldr f e) [] = h e}

5.4.3 Typeclass Laws

We used LIQUID HASKELL to prove the Monoid, Functor, Applicative and Monad Laws,

summarized in Table 5.2, for various user-defined instances summarized in Table 5.1.

Monoid Laws A Monoid is a datatype equipped with an associative binary operator ♦ and an

identity element mempty. We use LIQUID HASKELL to prove that Peano (with add and Z),

Maybe (with a suitable ♦ and Nothing), and List (with append ++ and []) satisfy the monoid

177

Table 5.2. Typeclass Laws verified using LIQUID HASKELL.

Monoid
Left Ident. mempty x ♦ ≡ x

Right Ident. x ♦ mempty≡ x
Associativity (x ♦ y) ♦ z≡ x ♦ (y ♦ z)

Functor
Ident. fmap id xs≡ id xs

Distribution fmap (g◦ h) xs≡ (fmap g ◦ fmap h) xs

Applicative
Ident. pure id ~ v≡ v

Compos. pure (◦)~u~ v~w≡ u~ (v~w)
Homomorph. pure f ~ pure x≡ pure (f x)

Interchange u ~ pure y≡ pure ($ y) ~ u

Monad
Left Ident. return a�= f ≡ f a

Right Ident. m�= return ≡ m
Associativity (m�= f)�= g≡ m�= (λx→ f x�= g)

laws. For example, we prove that ++ (§ 5.4.3) is associative by reifying the textbook proof [42]

into a Haskell function, where the induction corresponds to case-splitting and recurring on the

first argument:

assoc :: xs:[a] → ys:[a] → zs:[a] → {(xs ++ ys) ++ zs = xs ++ (ys ++ zs)}

assoc [] ys zs = ([] ++ ys) ++ zs

=. [] ++ (ys ++ zs)

** QED

assoc (x:xs) ys zs = ((x: xs)++ ys) ++ zs

=. (x: (xs ++ ys))++ zs

=. x:((xs ++ ys) ++ zs)

=. x: (xs ++ (ys ++ zs))

∵ assoc xs ys zs

=. (x:xs) ++ (ys ++ zs)

** QED

Functor Laws A type is a functor if it has a function fmap that satisfies the identity and distribution

178

(or fusion) laws in Table 5.2. For example, consider the proof of the fmap distribution law for the

lists, also known as “map-fusion”, which is the basis for important optimizations in GHC [104].

We reflect the definition of fmap:

reflect map :: (a → b) → [a] → [b]

map f [] = []

map f (x:xs) = f x : fmap f xs

and then specify fusion and verify it by an inductive proof:

map_fusion :: f:(b → c) → g:(a → b) → xs:[a]

→ {map (f . g) xs = (map f . map g) xs}

Monad Laws The monad laws, which relate the properties of the two operators�= and return

(Table 5.2), refer to λ -functions, thus their proof exercises our support for defunctionalization

and η- and β -equivalence. For example, consider the proof of the associativity law for the list

monad. First, we reflect the bind operator:

reflect (>>=) :: [a] → (a → [b]) → [b]

(x:xs) >>= f = f x ++ (xs >>= f)

[] >>= f = []

Next, we define an abbreviation for the associativity property:

type AssocLaw m f g = {m >>= f >>= g = m >>= (\x → f x >>= g)}

Finally, we can prove that the list-bind is associative:

assoc :: m:[a] → f:(a →[b]) → g:(b →[c]) → AssocLaw m f g

assoc [] f g

= [] >>= f >>= g

=. [] >>= g

=. []

=. [] >>= (\x → f x >>= g) ** QED

assoc (x:xs) f g

= (x:xs) >>= f >>= g

=. (f x ++ xs >>= f) >>= g

=. (f x >>= g) ++ (xs >>= f >>= g)

179

∵ bind_append (f x) (xs >>= f) g

=. (f x >>= g) ++ (xs >>= \y → f y >>= g)

∵ assoc xs f g

=. (\y → f y >>= g) x ++ (xs >>= \y → f y >>= g)

∵ βeq f g x

=. (x:xs) >>= (\y → f y >>= g) ** QED

Where the bind-append fusion lemma states that:

bind_append :: xs:[a] → ys:[a] → f:(a → [b])

→ {(xs++ys) >>= f = (xs >>= f)++(ys >>= f)}

Notice that the last step requires β -equivalence on anonymous functions, which we get by

explicitly inserting the redex in the logic, via the following lemma with trivial proof

βeq :: f:_ → g:_ → x:_ → {bind (f x) g = (\y → bind (f y) g) x}

βeq _ _ _ = trivial

5.4.4 Functional Correctness

Finally, we proved correctness of two programs from the literature: a SAT solver and a

Unification algorithm.

SAT Solver We implemented and verified the simple SAT solver used to illustrate and evaluate

the features of the dependently typed language Zombie [15]. The solver takes as input a formula

f and returns an assignment that satisfies f if one exists.

solve :: f:Formula → Maybe {a:Asgn|sat a f}

solve f = find (8 sat 8 f) (assignments f)

Function assignments f returns all possible assignments of the formula f and sat a f returns

True iff the assignment a satisfies the formula f:

reflect sat :: Asgn → Formula → Bool

assignments :: Formula → [Asgn]

Verification of solve follows simply by reflecting sat into the refinement logic, and using

(bounded) refinements to show that find only returns values on which its input predicate yields

True from chapter 4.

180

find :: p:(a → Bool) → [a] → Maybe {v:a | p v}

Unification As another example, we verified the unification of first order terms, as presented

in [85]. First, we define a predicate alias for when two terms s and t are equal under a substitution

su:

eq_sub su s t = apply su s == apply su t

Now, we can define a Haskell function unify s t that can diverge, or return Nothing, or return

a substitution su that makes the terms equal:

unify :: s:Term → t:Term → Maybe {su| eq_sub su s t}

For the specification and verification we only needed to reflect apply and not unify; thus we

only had to verify that the former terminates, and not the latter.

As before, we prove correctness by invoking separate helper lemmas. For example to

prove the post-condition when unifying a variable TVar i with a term t in which i does not

appear, we apply a lemma not_in:

unify (TVar i) t2

| not (i Setmem freeVars t2)

= Just (const [(i, t2)] ∵ not_in i t2)

i.e. if i is not free in t, the singleton substitution yields t:

not_in :: i:Int

→ t:{Term | not (i Setmem freeVars t)}

→ {eq_sub [(i, t)] (TVar i) t}

5.5 Verified Deterministic Parallelism

Finally, we evaluate our deterministic parallelism prototypes. Aside from the lines of

proof code added, we evaluate the impact on runtime performance. Were we using a proof tool

external to Haskell, this would not be necessary. But our proofs are Haskell programs—they are

necessarily visible to the compiler. In particular, this means a proliferation of unit values and

functions returning unit values. Also, typeclass instances are witnessed at runtime by “dictionary”

181

0

0.5

1

1.5

2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 0

 1

 2

 3

 4

 5

 6

 7

 8

P
a

ra
lle

l
s
p

e
e

d
u

p
 (

re
la

ti
v
e

 t
o

 P
u

re
S

e
t)

P
a

ra
lle

l
s
p

e
e

d
u

p
 (

re
la

ti
v
e

 t
o

 S
L

S
e

t)

Threads

PureSet
Verified PureSet

SLSet
Verified SLSet

Figure 5.5. Parallel speedup for doing 1 million parallel inserts over 10 iterations, verified and
unverified, relative to the unverified version, for PureSet and SLSet.

data structures passed between functions. Layering proof methods on top of existing classes like

Ord (from § 5.1.4) could potentially add indirection or change the code generated, depending on

the details of the optimizer. In our experiments we find little or no effect on runtime performance.

Benchmarks were run on a single-socket Intel R© Xeon R© CPU E5-2699 v3 with 18 physical cores

and 64GiB RAM.

5.5.1 LVish: Concurrent Sets

First, we use the verifiedInsert operation (from § 5.1.4) to observe the runtime

slowdown imposed by the extra proof methods of VerifiedOrd. We benchmark concurrent

sets storing 64-bit integers. Figure 5.5 compares the parallel speedups for a fixed number of

parallel insert operations against parallel verifiedInsert operations, varying the number

of concurrent threads. There is a slight observable difference between the two lines because the

extra proof methods do exist at runtime. We repeat the experiment for two set implementations: a

concurrent skiplist (SLSet) and a purely functional set inside an atomic reference (PureSet) as

described in [52].

182

5.5.2 Monad-par: n-body simulation

Next, we verify deterministic behavior of an n-body simulation program that leverages

monad-par, a Haskell library which provides deterministic parallelism for pure code [62].

Each simulated particle is represented by a type Body that stores its position, velocity

and mass. The function accel computes the relative acceleration between two bodies:

accel :: Body → Body → Accel

where Accel represents the three-dimensional acceleration

data Accel = Accel Real Real Real

To compute the total acceleration of a body b we (1) compute the relative acceleration between

b and each body of the system (Vec Body) and (2) we add each acceleration component. For

efficiency, we use a parallel mapReduce for the above computation that first maps each vector

body to get the acceleration relative to b (accel b) and then adds each Accel value by pointwise

addition. mapReduce is only deterministic if the element is a VerifiedMonoid from § 5.1.4.

mapReduce :: VerifiedMonoid b 1⇒ (a1→b) 1→ Vec a 1→ b

To prove the determinism of an n-body simulation, we need to provide a VerifiedMonoid

instance for Accel. We can easily prove that (Real, +, 0.0) is a monoid. By product proof

composition, we get a verified monoid instance for

type Accel′ = (Real, (Real, Real))

which is isomorphic to Accel (i.e. Iso Accel′ Accel).

Figure 5.6 shows the results of running two versions of the n-body simulation with 2,048

bodies over 5 iterations, with and without verification, using floating point doubles for Real1.

Notably, the two programs have almost identical runtime performance. This demonstrates that

even when verifying code that is run in a tight loop (like accel), we can expect that our programs

will not be slowed down by an unacceptable amount.

1Floating point numbers notoriously violate associativity, but we use this approximation because Haskell does net
yet have an implementation of superaccumulators [18].

183

0

1

2

3

4

5

6

7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
P

a
ra

lle
l
s
p

e
e

d
u

p
 (

re
la

ti
v
e

 t
o

 u
n

v
e

ri
fi
e

d
)

Threads

Verified n-body
Unverified n-body

Verified reducer
Unverified reducer

Figure 5.6. Parallel speedup for doing a parallel n-body simulation and parallel array reduction.
The speedup is relative to the unverified version of each respective class of program.

5.5.3 DPJ: Parallel Reducers

The Deterministic Parallel Java (DPJ) project provides a deterministic-by-default seman-

tics for the Java programming language [10]. In DPJ, one can declare a method as commutative

and thus assert that racing instances of that method result in a deterministic outcome. For

example:

commutative void updateSum(int n) writes R

{ sum += n; }

But, DPJ provides no means to formally prove commutativity and thus determinism of parallel

reduction. In Liquid Haskell, we specified commutativity as an extra proof method that extends

the VerifiedMonoid class.

class VerifiedMonoid a ⇒ VerifiedComMonoid a where

commutes :: x:a → y:a → { x ♦ y = y ♦ x }

Provably commutative appends can be used to deterministically update a reducer variable, since

the result is the same regardless of the order of appends. We used LVish [52] to encode a reducer

variable with a value a and a region s as RVar s a.

newtype RVar s a

We specify that safe (i.e. deterministic) parallel updates require provably commutative appending.

184

updateRVar :: VerifiedComMonoid a ⇒ a → RVar s a → Par s ()

Following the DPJ program, we used updateRVar’s provably deterministic interface to compute,

in parallel, the sum of an array with 3x109 elements by updating a single, global reduction variable

using a varying number of threads. Each thread sums segments of an array, sequentially, and

updates the variable with these partial sums. In Figure 5.6, we compare the verified and unverified

versions of our implementation to observe no appreciable difference in performance.

5.6 Conclusion

We presented refinement reflection, a method to extend legacy languages—with highly

tuned libraries, compilers, and run-times—into theorem provers. The key idea is to reflect the

code implementing a user-defined function into the function’s (output) refinement type. As a

consequence, at uses of the function, the function definition is unfolded into the refinement logic

in a precise and predictable manner. We have implemented our approach in LIQUID HASKELL

thereby retrofitting theorem proving into Haskell. We showed how to use reflection to verify

that many widely used instances of the Monoid, Applicative, Functor and Monad typeclasses

actually satisfy key algebraic laws needed to making the code using the typeclasses safe. Finally,

transforming a mature language—with highly tuned parallel runtime—into a theorem prover

enables us to build the first deterministic parallelism library that verifies assumptions about

associativity and ordering—that are crucial for determinism but simply assumed by existing

systems.

Acknowledgments The material of this chapter have been submitted for publication as it may

appear in PLDI 2017: Vazou, Niki; Choudhury, Vikraman; Scott, Ryan G.; Newton, Ryan R.;

Jhala, Ranjit. “Refinement Reflection: Parallel Legacy Languages as Theorem Provers”.

Chapter 6

Case Study: Parallel String Matcher

The way the processor industry is going, is to add more and more cores,
but nobody knows how to program those things.

– Steve Jobs

In this chapter, we prove correctness of parallelization of a naı̈ve string matcher using

Haskell as a theorem prover. We use refinement types to specify correctness properties, Haskell

terms to express proofs – via Refinement Reflection from chapter 5– and LIQUID HASKELL to

check correctness of proofs.

Optimization of sequential functions via parallelization is a well studied technique [43, 9].

Paper and pencil proofs have been developed to support the correctness of the transformation [17].

However, these paper written proofs show correctness of the parallelization algorithm and do not

reason about the actual implementation that may end up being buggy.

Dependent Type Systems (like Coq [8] and Adga [71]) enable program equivalence

proofs for the actual implementation of the functions to be parallelized. For example, SyD-

PaCC [60] is a Coq extension that given a naı̈ve Coq implementation of a function, returns an

Ocaml parallelized version with a proof of program equivalence. The limitation of this approach

is that the initial function should be implemented in the specific dependent type framework and

thus cannot use features and libraries from one’s favorite programming language.

In chapter 5 we claimed that Refinement Reflection can turn any programming language

into a proof assistant. In this chapter we check our claim and use LIQUID HASKELL to prove

185

186

program equivalence. Specifically, we define in Haskell a sequential string matching function,

toSM, and its parallelization, toSMPar, using existing Haskell libraries; then, we prove in Haskell

that these two functions are equivalent; finally, we check our proofs using LIQUID HASKELL.

Theorems as Refinement Types Refinement Types refine types with properties drawn from

decidable logics. For example, the type {v:Int | 0 < v} describes all integer values v that are

greater than 0. We refine the unit type to express theorems, define unit value terms to express

proofs, and use LIQUID HASKELL to check that the proofs prove the theorems. For example,

LIQUID HASKELL accepts the type assignment () :: {v:()| 1+1=2}, as the underlying SMT

can always prove the equality 1+1=2. We write {1+1=2} to simplify the type {v:()| 1+1=2}

from the irrelevant binder v:().

Program Properties as Types The theorems we express can refer to program functions. As an

example, the type of assoc expresses that ♦ is associative.

assoc :: x:m → y:m → z:m → {x ♦ (y ♦ z) = (x ♦ y) ♦ z}

In § 6.1 we explain how to write Haskell proof terms to prove theorems like assoc by proving

that list append (++) is associative. Moreover, we prove that the empty list [] is the identity

element of list append and conclude that the list (with [] and (++), i.e. the triple ([a], [], (++)))

is provably a monoid.

Corectness of Parallelization In § 6.2, we define the type Morphism n m f that specifies that f

is a morphism between two monoids (n, η , �) and (m, ε , ♦), i.e. f :: n → m where f η = ε

and f (x � y) = f x ♦ f y.

A morphism f on a “chunkable” input type can be parallelized by:

• chunking up the input in j chunks (chunk j),

• applying the morphism in parallel to all chunks (pmap f), and

• recombining the mapped chunks via ♦, also in parallel (pmconcat i).

We specify correctness of the above transformation as a refinement type.

parallelismEq

187

:: f:(n → m) → Morphism n m f → x:n → i:Pos → j:Pos

→ {f x = pmconcat i (pmap f (chunk j x))}

§ 6.2 describes the parallelization transformation in details concluding with Correctness of

Parallelization Theorem 10 that proves correctness by a Haskell definition of parallelismEq

that satisfies the above type.

Case Study: Parallelization of String Matching We use the above theorem to parallelize string

matching. We define a string matching function toSM :: RString → toSM target from a

refined string to a string matcher. A refined string (§ 6.3.1) is a wrapper around the efficient string

manipulation library ByteString that moreover assumes various string properties, including the

monoid laws. A string matcher SM target (§ 6.3.2) is a data type that contains a refined string

and a list of all the indices where the type level symbol target appears in the input. We prove

that SM target is a monoid and toSM is a morphism, thus by the aforementioned Correctness of

Parallelization Theorem 10 we can correctly parallelize string matching.

To sum up, we present the first realistic proof that uses Haskell as a theorem prover:

correctness of parallelization on string matching. This chapter is summarized as follows

• We explain how theorems and proofs are encoded and machine checked in LIQUID

HASKELL by formalizing monoids and proving that lists are monoids (§ 6.1).

• We formalize morphisms between monoids and specify and prove correctness of paral-

lelization of morphisms (§ 6.2).

• We show how libraries can be imported as trusted components by wrapping ByteStrings

as refined strings which satisfy the monoid laws (§ 6.3.1).

• As an application, we prove that a string matcher is a morphism between the monoids of

refined strings and string matchers, thus we get provably correct parallelization of string

matching (§ 6.3).

• Based on our approximately 2K lines of code proof we evaluate the approach of using

Haskell as a theorem prover (§ 6.4).

188

6.1 Proofs as Haskell Functions

Refinement Reflection, as explained in chapter 5, is a technique that lets you write

Haskell functions that prove theorems about other Haskell functions and have your proofs

machine-checked by LIQUID HASKELL. As an introduction to Refinement Reflection, in this

section, we prove that lists are monoids by

• specifying monoid laws as refinement types,

• proving the laws by writing the implementation of the law specifications, and

• verifying the proofs using LIQUID HASKELL.

6.1.1 Reflection of data types into logic.

To start with, we define a List data structure and teach LIQUID HASKELL basic properties

about List, namely, how to check that proofs on lists are total and how to encode functions on

List into the logic.

The data list definition L is the standard recursive definition.

data L [length] a = N | C a (L a)

With the length annotation in the definition LIQUID HASKELL will use the length function

to check termination of functions recursive on Lists. We define length as the standard Haskell

function that returns natural numbers. We lift length into logic as a measure (§ 2.1.6), that is, a

unary function whose (1) domain is the data type and (2) body is a single case-expression over

the datatype.

type Nat = {v:Int | 0 ≤ v}

measure length :: L a → Nat

length N = 0

length (C x xs) = 1 + length xs

Finally, we teach LIQUID HASKELL how to encode functions on Lists into logic. The

flag "--exact-data-cons" automatically derives measures which (1) test if a value has a given

189

data constructor and (2) extract the corresponding field’s value. For example, LIQUID HASKELL

will automatically derive the following List manipulation measures from the List definition.

isN :: L a → Bool -- Haskell ′ s null

isC :: L a → Bool -- Haskell ′ s not . null

selC1 :: L a → a -- Haskell ′ s head

selC2 :: L a → L a -- Haskell ′ s tail

Next, we describe how LIQUID HASKELL uses the above measures to automatically reflect

Haskell functions on Lists into logic.

6.1.2 Reflection of Haskell functions into logic.

Next, we define and reflect into logic the two monoid operators on Lists. Namely, the

identity element ε (which is the empty list) and an associative operator (♦) (which is list append).

reflect ε

ε :: L a

ε = N

reflect (♦)

(♦) :: L a → L a → L a

N ♦ ys = ys

(C x xs) ♦ ys = C x (xs ♦ ys)

The reflect annotations lift the Haskell functions into logic in three steps. First, check that

the Haskell functions indeed terminate by checking that the length of the input list is decreasing,

as specified in the data list definition. Second, in the logic, they define the respective uninterpreted

functions ε and (♦). Finally, the Haskell functions and the logical uninterpreted functions are

related by strengthening the result type of the Haskell function with the definition of the function’s

implementation. For example, with the above reflect annotations, LIQUID HASKELL will

automatically derive the following strengthened types for the relevant functions.

ε :: {v:L a | v = ε ∧ v = N }

190

(♦) :: xs:L a → ys:L a

→ {v:L a | v = xs ♦ ys

∧ v = if isN xs then ys

else C (selC1 xs) (selC2 xs ♦ ys)

}

6.1.3 Specification and Verification of Monoid Laws

Now we are ready to specify the monoid laws as refinement types and provide their

respective proofs as terms of those type. LIQUID HASKELL will verify that our proofs are valid.

Note that this is exactly what one would do in any standard logical framework, like LF [38].

The type Proof is predefined as an alias of the unit type (()) in the LIQUID HASKELL’s

library ProofCombinators. We summarize all the definitions we use from ProofCombinators

in Figure 6.1. We express theorems as refinement types by refining the Proof type with appropri-

ate refinements. For example, the following theorem states the ε is always equal to itself.

trivial :: {ε = ε }

Where {ε = ε} is a simplification for the Proof type {v:Proof | ε = ε}, since the binder v

is irrelevant, and trivial is defined in ProofCombinators to be unit. LIQUID HASKELL will

typecheck the above code using an SMT solver to check congruence on ε .

Definition 1 (Monoid). The triple (m, ε , ♦) is a monoid (with identity element ε and associative

operator ♦), if the following functions are defined.

idLeftm :: x:m → {ε ♦ x = x}

idRightm :: x:m → {x ♦ ε = x}

assocm :: x:m → y:m → z:m → {x ♦ (y ♦ z) = (x ♦ y) ♦ z}

Using the above definition, we prove that our list type L is a monoid by defining Haskell

proof terms that satisfy the above monoid laws.

Left Identity is expressed as a refinement type signature that takes as input a list x:L a and

returns a Proof type refined with the property ε ♦ x = x

191

type Proof = ()

data QED = QED

trivial :: Proof

trivial = ()

(=.) :: x:a → y:{a | x = y} → {v:a | v = x}

x =. _ = x

(**) :: a → QED → Proof

_ ** _ = ()

(∴) :: (Proof → a) → Proof → a

f ∴ y = f y

Figure 6.1. Operators and Types defined in ProofCombinators.

idLeft :: x:L a → {ε ♦ x = x}

idLeft x

= ε ♦ x

=. N ♦ x

=. x

** QED

We prove left identity using combinators from ProofCombinators as defined in Figure 6.1. We

start from the left hand side ε ♦ x, which is equal to N ♦ x by calling ε thus unfolding the

equality ε = N into the logic. Next, the call N ♦ x unfolds into the logic the definition of (♦)

on N and x, which is equal to x, concluding our proof. Finally, we use the operators p ** QED

which casts p into a proof term. In short, the proof of left identity, proceeds by unfolding the

definitions of ε and (♦) on the empty list.

Right identity is proved by structural induction. We encode inductive proofs by case splitting on

the base and inductive case and enforcing the inductive hypothesis via a recursive call.

idRight :: x:L a → { x ♦ ε = x }

idRight N

= N ♦ empty

=. N

** QED

192

idRight (C x xs)

= (C x xs) ♦ empty

=. C x (xs ♦ empty)

=. C x xs ∴ idRight xs

** QED

The recursive call idRight xs is provided as a third optional argument in the (=.) operator to

justify the equality xs ♦ empty = xs, while the operator (∴) is merely a function application

with the appropriate precedence. Note that LiquiHaskell, via termination and totality checking, is

verifying that all the proof terms are well formed because (1) the inductive hypothesis is only

applying to smaller terms and (2) all cases are covered.

Associativity is proved in a very similar manner, using structural induction.

assoc :: x:L a → y:L a → z:L a → {x ♦ (y ♦ z) = (x ♦ y) ♦ z}

assoc N y z

= N ♦ (y ♦ z)

=. y ♦ z

=. (N ♦ y) ♦ z

** QED

assoc (C x xs) y z

= (C x xs) ♦ (y ♦ z)

=. C x (xs ♦ (y ♦ z))

=. C x ((xs ♦ y) ♦ z) ∴ associativity xs y z

=. (C x (xs ♦ y)) ♦ z

=. ((C x xs) ♦ y) ♦ z

** QED

As with the left identity, the proof proceeds by (1) function unfolding (or rewriting in paper and

pencil proof terms), (2) case splitting (or case analysis), and (3) recursion (or induction).

Since our list implementation satisfies the three monoid laws we can conclude that L a is

a monoid.

Theorem 7. (L a, ε , ♦) is a monoid.

193

Proof. L a is a monoid, as the implementation of idLeft, idRight, and assoc satisfy the

specifications of idLeftm, idRightm, and assocm, with m = L a.

6.2 Verified Parallelization of Monoid Morphisms

A monoid morphism is a function between two monoids which preserves the monoidal

structure; i.e. a function on the underlying sets which preserves identity and associativity. We

formally specify this definition using a refinement type Morphism.

Definition 2 (Monoid Morphism). A function f :: n → m is a morphism between the monoids

(m, ε , ♦) and (n, η , �), if Morphism n m f has an inhabitant.

type Morphism n m F

= x:n → y:n → {F η = ε ∧ F (x � y) = F x ♦ F y}

A monoid morphism can be parallelized when its domain can be cut into chunks and put

back together again, a property we refer to as chunkable and expand upon in § 6.2.1. A chunkable

monoid morphism is then parallelized by:

• chunking up the input,

• applying the morphism in parallel to all chunks, and

• recombining the chunks, also in parallel, back to a single value.

In the rest of this section we implement and verify to be correct the above transformation.

6.2.1 Chunkable Monoids

Definition 3 (Chunkable Monoids). A monoid (m, ε , ♦) is chunkable if the following four

functions are defined on m.

lengthm :: m → Nat

dropm :: i:Nat → x:MGEq m i → MEq m (lengthm x - i)

takem :: i:Nat → x:MGEq m i → MEq m i

194

takeDropPropm :: i:Nat → x:m → {x = takem i x ♦ dropm i x}

Where the type aliases MLeq m I (and MEq m I) constrain the monoid m to have

lengthm greater than (resp. equal) to I.

type MGEq m I = {x:m | I ≤ lengthm x}

type MEq m I = {x:m | I = lengthm x}

Note that the “important” methods of chunkable monoids are the take and drop, while

the length method is required to give pre- and post-condition on the other operations. Finally,

takeDropProp provides a proof that for each i and monoid x, appending take i x to drop

i x will reconstruct x.

Using takem and dropm we define for each chunkable monoid (m, ε , ♦) a function

chunkm i x that splits x in chunks of size i.

chunkm :: i:Pos → x:m → {v:L m | chunkResm i x v}

chunkm i x

| lengthm x ≤ i = C x N

| otherwise = takem i x 8 C 8 chunkm i (dropm i x)

chunkResm i x v

| lengthm x ≤ i = lengthm v == 1

| i == 1 = lengthm v == lengthm xs

| otherwise = lengthm v < lengthm xs

The function chunkm provably terminates as dropm i x will return a monoid smaller

than x, by the Definition of dropm. The definitions of both takem and dropm are also used from

Liquid Haskell to verify the lengthm constraints in the result of chunkm.

6.2.2 Parallel Map

We define a parallelized map function pmap using Haskell’s library parallel. Con-

cretely, we use the function Control.Parallel.Strategies.withStrategy that computes

its argument in parallel given a parallel strategy.

195

pmap :: (a → b) → L a → L b

pmap f xs = withStrategy parStrategy (map f xs)

The strategy parStrategy does not affect verification. In our codebase we choose the traversable

strategy.

parStrategy :: Strategy (L a)

parStrategy = parTraversable rseq

Parallelism in the Logic The function withStrategy is an imported Haskell library function,

whose implementation is not available during verification. To use it in our verified code, we make

the assumption that it always returns its second argument.

assume withStrategy :: Strategy a → x:a → {v:a | v = x}

Moreover, we need to reflect the function pmap and represent its implementation in the logic.

Thus, we also need to represent the function withStrategy in the logic. LiquidHaskell repre-

sents withStrategy in the logic as a logical function that merely returns its second argument,

withStrategy _ x = x, and does not reason about parallelism.

6.2.3 Monoidal Concatenation

The function chunkm allows chunking a monoidal value into several pieces. Dually, for

any monoid m, there is a standard way of turning L m back into a single m 1.

mconcat :: L m → m

mconcat N = ε

mconcat (C x xs) = x ♦ mconcat xs

For any chunkable monoid n, monoid morphism f :: n → m, and natural number i > 0 we

can write a chunked version of f as

mconcat . pmap f . chunk n i :: n → m.

Before parallelizing mconcat, we will prove that the previous function is equivalent to f.

1mconcat is usually defined as foldr mappend mempty

196

Theorem 8 (Morphism Distribution). Let (m, ε , ♦) be a monoid and (n, η , �) be a chunkable

monoid. Then, for every morphism f :: n → m, every positive number i and input x, f x =

mconcat (pmap f (chunkn i x)) holds.

morphismDistribution

:: f:(n → m) → Morphism n m f → x:n → i:Pos

→ {f x = mconcat (pmap f (chunk n i x))}

Proof. We prove the theorem by implementing morphismDistribution in a way that satisfies

its type. The proof proceeds by induction on the length of the input.

morphismDistribution f thm x i

| length n x ≤ i

= mconcat (pmap f (chunk n i x))

=. mconcat (map f (chunk n i x))

=. mconcat (map f (C x N))

=. mconcat (f x 8 C 8 map f N)

=. f is ♦ mconcat N

=. f is ♦ ε

=. f is ∴ idRightm (f is)

** QED

morphismDistribution f thm x i

= mconcat (pmap f (chunk n i x))

=. mconcat (map f (chunk n i x))

=. mconcat (map f (C takeX) (chunk n i dropX)))

=. mconcat (f takeX 8 C 8 map f (chunk n n dropX))

=. f takeX ♦ f dropX ∴ morphismDistribution f thm dropX i

=. f (takeX � dropX) ∴ thm takeX dropX

=. f x ∴ takeDropProp n i x

** QED

where

dropX = drop n i x

takeX = take n i x

In the base case we use rewriting and right identity on the monoid f x. In the inductive case, we

197

use the inductive hypothesis on the input dropX = dropn i x, that is provably smaller than x

as 1 < i. Then, the fact that f is a monoid morphism, as encoded by our assumption argument

thm takeX dropX we get basic distribution of f, that is f takeX ♦ f dropX = f (takeX

� dropX). Finally, we merge takeX � dropX to x using the property takeDropPropn of the

chunkable monoid n.

6.2.4 Parallel Monoidal Concatenation

We now parallelize the monoid concatenation by defining a pmconat i x function that

chunks the input list of monoids and concatenates each chunk in parallel.

We use the chunk function of § 6.2.1 instantiated to L m to define a parallelized version

of monoid concatenation pmconcat.

pmconcat :: Int → L m → m

pmconcat i x | i ≤ 1 || length x ≤ i

= mconcat x

pmconcat i x

= pmconcat i (pmap mconcat (chunk i x))

The function pmconcat i x calls mconcat x in the base case, otherwise it (1) chunks the list x

in lists of size i, (2) runs in parallel mconcat to each chunk, (3) recursively runs itself with the

resulting list. Termination of pmconcat holds, as the length of chunk i x is smaller than the

length of x, when 1 < i.

Next, we prove equivalence of parallelized monoid concatenation.

Theorem 9 (Correctness of Parallelization). Let (m, ε , ♦) be a monoid. Then, the parallel and

sequential concatenations are equivalent.

pmconcatEq :: i:Int → x:L m → {pmconcat i x = mconcat x}

Proof. We prove the theorem by providing a Haskell implementation of pmconcatEq that satisfies

its type. The details of the proof can be found in [97], here we provide the sketch of the proof.

First, we prove that mconcat distributes over list splitting

mconcatSplit

198

:: i:Nat → xs:{L m | i ≤ length xs}

→ {mconcat xs = mconcat (take i xs) ♦ mconcat (drop i xs)}

The proofs proceeds by structural induction, using monoid left identity in the base case and

monoid associativity associavity and unfolding of take and drop methods in the inductive step.

We generalize the above to prove that mconcat distributes over list chunking.

mconcatChunk

:: i:Pos → xs:L m

→ {mconcat xs = mconcat (map mconcat (chunk i xs))}

The proofs proceeds by structural induction, using monoid left identity in the base case and lemma

mconcatSplit in the inductive step.

Lemma mconcatChunk is sufficient to prove pmconcatEq by structural induction, using

monoid left identity in the base case.

6.2.5 Parallel Monoid Morphism

We can now replace the mconcat in our chunked monoid morphism in § 6.2.3 with

pmconcat from § 6.2.4 to provide an implementation that uses parallelism to both map the

monoid morphism and concatenate the results.

Theorem 10 (Correctness of Parallelization). Let (m, ε , ♦) be a monoid and (n, η , �) be a

chunkable monoid. Then, for every morphism f :: n → m, every positive numbers i and j,

and input x, f x = pmconcat i (pmap f (chunkn j x)) holds.

parallelismEq

:: f:(n → m) → Morphism n m f → x:n → i:Pos → j:Pos

→ {f x = pmconcat i (pmap f (chunk n j x))}

Proof. We prove the theorem by providing an implementation of parallelismEq that satisfies

its type.

parallelismEq f thm x i j

= pmconcat i (pmap f (chunk n j x))

=. mconcat (pmap f (chunk n j x))

199

∴ pmconcatEq i (pmap f (chunk n j x))

=. f x

∴ morphismDistribution f thm x j

** QED

The proof follows merely by application of the two previous Theorems 8 and 9.

A Basic Time Complexity analysis of the algorithm reveals that parallelization of morphism leads

to runtime speedups on monads with fast (constant time) appending operator.

We want to compare the complexities of the sequential f i and the two-level parallel

pmconcat i (pmap f (chunkn j x)). Let n be the size on the input x. Then, the sequential

version runs in time Tf (n) = O(n), that is equal to the time complexity of the morphism f on

input i.

The parallel version runs f on inputs of size n′ = n
j . Assuming the complexity of x ♦ y

to be T♦(max(|x|, |y|)), complexity of mconcat xs is O((length xs−1)T♦(maxxi∈xs(|xi|))).

Now, parallel concatenation, pmconcat i xs at each iteration runs ♦ on a list of size i. More-

over, at each iteration, divides the input list in chunks of size i, leading to log |xs|
log i iterations, and

time complexity (i−1)(log |xs|
log i)(T♦(m)) for some m that bounds the size of the monoids.

The time complexity of parallel algorithm consists on the base cost on running f at each

chunk and then parallel concatenating the n
j chunks.

O((i−1)(
logn− log j

log i
)T♦(m)+Tf (

n
j
)) (6.1)

Since time complexity depends on the time complexity of ♦ for the parallel algorithm to be

efficient time complexity of ♦ should be constant. Otherwise, if it depends on the size of the

input, the size of monoids can grow at each iteration of mconcat.

Moreover, from the complexity analysis we observe that time grows on bigger i and

smaller j. Thus, chunking the input in small chunks while splitting the monoid list in half leads

to more parallelism, and thus (assuming infinite processors and no caching) greatest speedup.

200

6.3 Correctness of Parallel String Matching

In § 6.2 we showed that any monoid morphism whose domain is chunkable can be

parallelized. We now apply that result to parallelize string matching. We start by observing that

strings are a chunkable monoid. We then turn string matching for a given target into a monoid

morphism from a string to a suitable monoid, SM target, defined in § 6.3.2. Finally, in § 6.3.4,

we parallelize string matching by a simple use of the parallel morphism function of § 6.2.5.

6.3.1 Refined Strings are Chunkable Monoids

We define a new type RString, which is a chunkable monoid, to be the domain of our

string matching function. Our type simply wraps Haskell’s existing ByteString.

data RString = RS BS.ByteString

Similarly, we wrap the existing ByteString functions we will need to show RString is a

chunkable monoid.

η = RS (BS.empty)

(RS x) � (RS y)= S (x 8 BS.append 8 y)

lenStr (RS x) = BS.length x

takeStr i (RS x) = RS (BS.take i x)

dropStr i (RS x) = RS (BS.take i x)

Although it is possible to explicitly prove that ByteString implements a chunkable monoid [99],

it is time consuming and orthogonal to our purpose. Instead, we just assume the chunkable

monoid properties of RString– thus demonstrating that refinement reflection is capable of doing

gradual verification.

For instance, we define a logical uninterpreted function � and relate it to the Haskell �

function via an assumed (unchecked) type.

assume (�) :: x:RString → y:RString → {v:RString | v = x � y}

Then, we use the uninterpreted function � in the logic to assume monoid laws, like associativity.

assume assocStr

201

:: x:RString → y:RString → z:RString

→ {x � (y � z) = (x � y) � z}

assocStr _ _ = trivial

Haskell applications of � are interpreted in the logic via the logical � that satisfies associativity

via theorem assocStr.

Similarly for the chunkable methods, we define the uninterpreted functions takeStr,

dropStr and lenStr in the logic, and use them to strengthen the result types of the respective

functions. With the above function definitions (in both Haskell and logic) and assumed type

specifications, Liquid Haskell will check (or rather assume) that the specifications of chunkable

monoid, as defined in the Definitions 1 and 3, are satisfied. We conclude with the assumption

(rather that theorem) that RString is a chunkable monoid.

Assumption 11 (RString is a Chunkable Monoid). (RString, η , �) combined with the methods

lenStr, takeStr, dropStr and takeDropPropStr is a chunkable monoid.

6.3.2 String Matching Monoid

String matching is determining all the indices in a source string where a given target

string begins; for example, for source string ababab and target aba the results of string matching

would be [0, 2].

We now define a suitable monoid, SM target, for the codomain of a string matching

function, where target is the string being looked for. Additionally, we will define a function

toSM :: RString → SM target which does the string matching and is indeed a monoid

morphism from RString to SM target for a given target.

String Matching Monoid

We define the data type SM target to contain a refined string field input and a list of

all the indices in input where the target appears.

data SM (target :: Symbol) where

SM :: input:RString

→ indices :[GoodIndex input target]

202

→ SM target

We use the string type literal 2 to parameterize the monoid over the target being matched. This

encoding allows the type checker to statically ensure that only searches for the same target can be

merged together. The input field is a refined string, and the indices field is a list of good indices.

For simplicity we present lists as Haskell’s built-in lists, but our implementation uses the reflected

list type, L, defined in § 6.1.

A GoodIndex input target is a refined type alias for a natural number i for which

target appears at position i of input. As an example, the good indices of "abcab" on

"ababcabcab" are [2,5].

type GoodIndex Input Target

= {i:Nat | isGoodIndex Input (fromString Target) i }

isGoodIndex :: RString → RString → Int → Bool

isGoodIndex input target i

= (subString i (lenStr target) input == target)

∧ (i + lenStr target ≤ lenStr input)

subString :: Int → Int → RString → RString

subString o l = takeStr l . dropStr o

Monoid Methods for String Matching

Next, we define the mappend and identity elements for string matching.

The identity element ε of SM t, for each target t, is defined to contain the identity

RString (η) and the identity List ([]).

ε :: ∀ (t :: Symbol). SM t

ε = SM η []

The Haskell definition of ♦, the monoid operation for SM t, is as follows.

(♦)::∀ (t:: Symbol). KnownSymbol t ⇒ SM t → SM t → SM t

(SM x xis) ♦ (SM y yis)

2Symbol is a kind and target is effectively a singleton type.

203

Figure 6.2. Mappend indices of String Matcher.

= SM (x � y) (xis ′ ++ xyis ++ yis ′)

where

tg = fromString (symbolVal (Proxy :: Proxy t))

xis ′ = map (castGoodIndexLeft tg x y) xis

xyis = makeNewIndices x y tg

yis ′ = map (shiftStringRight tg x y) yis

Note again that capturing target as a type parameter is critical, otherwise there is no way for the

Haskell’s type system to specify that both arguments of (♦) are string matchers on the same

target.

The action of (♦) on the two input fields is straightforward; however, the action on

the two indices is complicated by the need to shift indices and the possibility of new matches

arising from the concatenation of the two input fields. Figure 6.2 illustrates the three pieces of

the new indices field which we now explain in more detail.

1. Casting Good Indices If xis is a list of good indices for the string x and the target tg, then

xis is also a list of good indices for the string x � y and the target tg, for each y. To prove this

property we need to invoke the property subStrAppendRight on Refined Strings that establishes

substring preservation on string right appending.

assume subStrAppendRight

:: sl:RString → sr:RString → j:Int

→ i:{Int | i + j ≤ lenStr sl }

→ {subString sl i j = subString (sl � sr) i j}

The specification of subStrAppendRight ensures that for each string sl and sr and each integer

i and j whose sum is within sl, the substring from i with length j is identical in sl and in

(sl � sr). The function castGoodIndexLeft applies the above property to an index i to cast

204

it from a good index on sl to a good index on (sl � sr)

castGoodIndexLeft

:: tg:RString → sl:RString → sr:RString

→ i:GoodIndex sl tg

→ {v:GoodIndex (sl � sr) target | v = i}

castGoodIndexLeft tg sl sr i

= cast (subStrAppendRight sl sr (lenStr tg) i) i

Where cast p x returns x, after enforcing the properties of p in the logic

cast :: b → x:a → {v:a | v = x}

cast _ x = x

Moreover, in the logic, each expression cast p x is reflected as x, thus allowing random (i.e.

non-reflected) Haskell expressions to appear in p.

2. Creation of new indices The concatenation of two input strings sl and sr may create new

good indices. For instance, concatenation of "ababcab" with "cab" leads to a new occurence

of "abcab" at index 5 which does not occur in either of the two input strings. These new good

indices can appear only at the last lenStr tg positions of the left input sl. makeNewIndices

sl sr tg detects all such good new indices.

makeNewIndices

:: sl:RString → sr:RString → tg:RString

→ [GoodIndex {sl � sr} tg]

makeNewIndices sl sr tg

| lenStr tg < 2 = []

| otherwise = makeIndices (sl � sr) tg lo hi

where

lo = maxInt (lenStr sl - (lenStr tg - 1)) 0

hi = lenStr sl - 1

If the length of the tg is less than 2, then no new good indices are created. Otherwise, the call on

makeIndices returns all the good indices of the input sl � sr for target tg in the range from

205

maxInt (lenStr sl-(lenStr tg-1)) 0 to lenStr sl-1.

Generally, makeIndices s tg lo hi returns the good indices of the input string s for

target tg in the range from lo to hi.

makeIndices :: s:RString → tg:RString → lo:Nat

→ hi:Int → [GoodIndex s tg]

makeIndices s tg lo hi

| hi < lo = []

| isGoodIndex s tg lo = lo:rest

| otherwise = rest

where

rest = makeIndices s tg (lo + 1) hi

It is important to note that makeNewIndices does not scan all the input, instead only

searching at most lenStr tg positions for new good indices. Thus, the time complexity to create

the new indices is linear on the size of the target but independent of the size of the input.

3. Shift Good Indices If yis is a list of good indices on the string y with target tg, then we

need to shift each element of yis right lenStr x units to get a list of good indices for the string

x � y.

To prove this property we need to invoke the property subStrAppendLeft on Refined

Strings that establishes substring shifting on string left appending.

assume subStrAppendLeft

:: sl:RString → sr:RString

→ j:Int → i:Int

→ {subStr sr i j = subStr (sl � sr) (lenStr sl+i) j}

The specification of subStrAppendLeft ensures that for each string sl and sr and each integers

i and j, the substring from i with length j on sr is equal to the substring from lenStr sl + i

with length j on (sl � sr). The function shiftStringRight both shifts the input index i by

lenStr sl and applies the subStrAppendLeft property to it, casting i from a good index on

sr to a good index on (sl � sr)

206

Thus, shiftStringRight both appropriately shifts the index and casts the shifted index

using the above theorem:

shiftStringRight

:: tg:RString → sl:RString → sr:RString

→ i:GoodIndex sr tg

→ {v:(GoodIndex (sl � sr) tg) | v = i + lenStr sl}

shiftStringRight tg sl sr i

= subStrAppendLeft sl sr (lenStr tg) i 8 cast 8 i + lenStr sl

String Matching is a Monoid

Next we prove that the monoid methods ε and (♦) satisfy the monoid laws.

Theorem 12 (SM is a Monoid). (SM t, ε , ♦) is a monoid.

Proof. According to the Monoid Definition 1, we prove that string matching is a monoid, by

providing safe implementations for the monoid law functions. First, we prove left identity.

idLeft :: x:SM t → {ε ♦ x = xs}

idLeft (SM i is)

= (ε :: SM t) ♦ (SM i is)

=. (SM η []) ♦ (SM i is)

=. SM (η � i) (is1 ++ isNew ++ is2)

∴ idLeftStr i

=. SM i ([] ++ [] ++ is)

∴ (mapShiftZero tg i is ∧ newIsNullRight i tg)

=. SM i is

∴ idLeftList is

** QED

where

tg = fromString (symbolVal (Proxy :: Proxy t))

is1 = map (castGoodIndexRight tg i η) []

isNew = makeNewIndices η i tg

is2 = map (shiftStringRight tg η i) is

207

The proof proceeds by rewriting, using left identity of the monoid strings and lists, and

two more lemmata.

• Identity of shifting by an empty string.

mapShiftZero :: tg:RString → i:RString

→ is:[GoodIndex i target]

→ {map (shiftStringRight tg η i) is = is}

The lemma is proven by induction on is and the assumption that empty strings have length

0.

• No new indices are created.

newIsNullLeft :: s:RString → t:RString

→ {makeNewIndices η s t = []}

The proof relies on the fact that makeIndices is called on the empty range from 0 to -1

and returns [].

Next, we prove right identity.

idRight :: x:SM t → {x ♦ ε = x}

idRight (SM i is)

= (SM i is) ♦ (ε :: SM t)

=. (SM i is) ♦ (SM η [])

=. SM (i � η) (is1 ++ isNew ++ is2)

∴ idRightStr i

=. SM i (is ++ N ++ N)

∴ (mapCastId tg i η is ∧ newIsNullLeft i tg)

=. SM i is

∴ idRightList is

** QED

where

tg = fromString (symbolVal (Proxy :: Proxy t))

is1 = map (castGoodIndexRight tg i η) is

208

isNew = makeNewIndices i stringEmp tg

is2 = map (shiftStringRight tg i η) []

The proof proceeds by rewriting, using right identity on strings and lists and two more lemmata.

• Identity of casting is proven

mapCastId

:: tg:RString → x:RString → y:RString

→ is:[GoodIndex x tg] →

→ {map (castGoodIndexRight tg x y) is = is}

We prove identity of casts by induction on is and identity of casting on a single index.

• No new indices are created.

newIsNullLeft :: s:RString → t:RString

→ {makeNewIndices s η t = []}

The proof proceeds by case splitting on the relative length of s and t. At each case we

prove by induction that all the potential new indices would be out of bounds and thus no

new good indices would be created.

- Finally we prove associativity. For space, we only provide a proof sketch. The whole

proof is available online [97]. Our goal is to show equality of the left and right associative string

matchers.

assoc :: x:SM t → y:SM t → z:SM t

→ {x ♦ (y ♦ z) = (x ♦ y) ♦ z}

To prove equality of the two string matchers we show that the input and indices fields are

respectively equal. Equality of the input fields follows by associativity of RStrings. Equality of

the index list proceeds in three steps.

1. Using list associativity and distribution of index shifting, we group the indices in the five

lists shown in Figure 6.3: the indices of the input x, the new indices from mappending x to

y, the indices of the input y, the new indices from mappending x to y, and the indices of

the input z.

209

Figure 6.3. Associativity of String Matching.

2. The representation of each group depends on the order of appending. For example, if zis1

(resp. zis2) is the group zis when right (resp. left) mappend happened first, then we have

zis1 = map (shiftStringRight tg xi (yi � zi))

(map (shiftStringRight tg yi zi) zis)

zis2 = map (shiftStringRight tg (xi � yi) zi) zis

That is, in right first, the indices of z are first shifted by the length of yi and then by the

length of xi, while in the left first case, the indices of z are shifted by the length of xi �

yi. In this second step of the proof we prove, using lemmata, the equivalence of the different

group representations. The most interesting lemma we use is called assocNewIndices

and proves equivalence of all the three middle groups together by case analysis on the

relative lengths of the target tg and the middle string yi.

3. After proving equivalence of representations, we again use list associativity and distribution

of casts to wrap the index groups back in string matchers.

We now sketch the three proof steps, while the whole proof is available online [97].

assoc x@(SM xi xis) y@(SM yi yis) z@(SM zi zis)

-- Step 1: unwrapping the indices

= x ♦ (y ♦ z)

=. (SM xi xis) ♦ ((SM yi yis) ♦ (SM zi zis))

...

-- via list associativity and distribution of shifts

=. SM i (xis1 ++ ((xyis1 ++ yis1 ++ yzis1) ++ zis1))

-- Step 2: Equivalence of representations

210

=. SM i (xis2 ++ ((xyis1 ++ yis1 ++ yzis1) ++ zis1))

∴ castConcat tg xi yi zi xis

=. SM i (xis2 ++ ((xyis1 ++ yis1 ++ yzis1) ++ zis2))

∴ mapLenFusion tg xi yi zi zis

=. SM i (xis2 ++ ((xyis2 ++ yis2 ++ yzis2) ++ zis2))

∴ assocNewIndices y tg xi yi zi yis

-- Step 3: Wrapping the indices

...

-- via list associativity and distribution of casts

=. (SM xi xis ♦ SM yi yis) ♦ SM zi zis

=. (x ♦ y) ♦ z

** QED

where

i = xi � (yi � zi)

yzis1 = map (shiftStringRight tg xi (yi � zi)) yzis

yzis2 = makeNewIndices (xi � yi) zi tg

yzis = makeNewIndices yi zi tg

...

6.3.3 String Matching Monoid Morphism

Next, we define the function toSM :: RString → SM target which does the actual

string matching computation for a set target 3

toSM :: ∀ (target :: Symbol). (KnownSymbol target)

⇒ RString → SM target

toSM input = SM input (makeSMIndices input tg) where

tg = fromString (symbolVal (Proxy :: Proxy target))

makeSMIndices

:: x:RString → tg:RString → [GoodIndex x tg]

makeSMIndices x tg

3toSM assumes the target is clear from the calling context; it is also possible to write a wrapper function taking an
explicit target which gets existentially reflected into the type.

211

= makeIndices x tg 0 (lenStr tg - 1)

The input field of the result is the input string; the indices field is computed by calling the function

makeIndices within the range of the input, that is from 0 to lenStr input - 1.

We now prove that toSM is a monoid morphism.

Theorem 13 (toSM is a Morphism). toSM :: RString → SM t is a morphism between the

monoids (RString, η , �) and (SM t, ε , ♦).

Proof. Based on definition 2, proving toSM is a morphism requires constructing a valid inhabitant

of the type

type Morphism RString (SM t) toSM

= x:RString → y:RString

→ {toSM η = ε ∧ toSM (x � y) = toSM x ♦ toSM y}

We define the function distributestoSM :: Morphism RString (SM t) toSM to be the

required valid inhabitant.

The core of the proof starts from exploring the string matcher toSM x ♦ toSM y. This

string matcher contains three sets of indices as illustrated in Figure 6.2: (1) xis from the input x,

(2) xyis from appending the two strings, and (3) yis from the input y. We prove that appending

these three groups of indices together gives exactly the good indices of x � y, which are also

the value of the indices field in the result of toSM (x � y).

distributestoSM x y

= (toSM x :: SM target) ♦ (toSM y :: SM target)

=. (SM x is1) ♦ (SM y is2)

=. SM i (xis ++ xyis ++ yis)

=. SM i (makeIndices i tg 0 hi1 ++ yis)

∴ (mapCastId tg x y is1 ∧ mergeNewIndices tg x y)

=. SM i (makeIndices i tg 0 hi1 ++ makeIndices i tg (hi1 +1) hi)

∴ shiftIndicesRight 0 hi2 x y tg

=. SM i is

∴ mergeIndices i tg 0 hi1 hi

=. toSM (x � y)

212

** QED

where

xis = map (castGoodIndexRight tg x y) is1

xyis = makeNewIndices x y tg

yis = map (shiftStringRight tg x y) is2

tg = fromString (symbolVal (Proxy ::Proxy target))

is1 = makeSMIndices x tg

is2 = makeSMIndices y tg

is = makeSMIndices i tg

i = x � y

hi1 = lenStr x - 1

hi2 = lenStr y - 1

hi = lenStr i - 1

The most interesting lemma we use is mergeIndices x tg lo mid hi that states that for the

input x and the target tg if we append the indices in the range from to to mid with the indices in

the range from mid+1 to hi, we get exactly the indices in the range from lo to hi. This property

is formalized in the type of the lemma.

mergeIndices

:: x:RString → tg:RString

→ lo:Nat → mid:{Int | lo ≤ mid} → hi:{Int | mid ≤ hi}

→ { makeIndices x tg lo hi

= makeIndices x tg lo mid

++ makeIndices x tg (mid +1) hi}

The proof proceeds by induction on mid and using three more lemmata:

• mergeNewIndices states that appending the indices xis and xyis is equivalent to the

good indices of x � y from 0 to lenStr x - 1. The proof case splits on the relative

sizes of tg and x and is using mergeIndices on mid = lenStr x1 - lenStr tg in

the case where tg is smaller than x.

• mapCastId states that casting a list of indices returns the same list.

• shiftIndicesRight states that shifting right i units the indices from lo to hi is equiva-

213

lent to computing the indices from i + lo to i + hi on the string x � y, with lenStr

x = i.

6.3.4 Parallel String Matching

We conclude this section with the definition of a parallelized version of string matching.

We put all the theorems together to prove that the sequential and parallel versions always give the

same result.

We define toSMPar as a parallel version of toSM using machinery of section 6.2.

toSMPar :: ∀ (target :: Symbol). (KnownSymbol target)

⇒ Int → Int → RString → SM target

toSMPar i j = pmconcat i . pmap toSM . chunkStr j

First, chunkStr splits the input into j chunks. Then, pmap applies toSM at each chunk in parallel.

Finally, pmconat concatenates the mapped chunks in parallel using ♦, the monoidal operation

for SM target.

Correctness We prove correctness of toSMPar directly from Theorem 10.

Theorem 14 (Correctness of Parallel String Matching). For each parameter i and j, and input x,

toSMPar i j x is always equal to toSM x.

correctness :: i:Int → j:Int → x:RString

→ {toSM x = toSMPar i j x}

Proof. The proof follows by direct application of Theorem 10 on the chunkable monoid (RString,

η , �) (by Assumption 11) and the monoid (SM t, ε , ♦) (by Theorem 12).

correctness i j x

= toSMPar i j x

=. pmconcat i (pmap toSM (chunkStr j x))

=. toSM is

∴ parallelismEq toSM distributestoSM x i j

** QED

214

Note that application of the theorem parallelismEq requires a proof that its first argument toSM

is a morphism. By Theorem 8, the required proof is provided as the function distributestoSM.

Time Complexity Counting only string comparisons as the expensive operations, the sequential

string matcher on input x runs in time linear to n = lenStr x. Thus TtoSM(n) = O(n).

We get time complexity of toSMPar by the time complexity of two-level parallel algo-

rithms equation 6.1, with the time of string matching mappend being linear on the length of the

target t = lenStr tg, or T♦(SM) = O(t).

TtoSMPar(n, t, i, j) = O((i−1)(
logn− log j

log i
) t +

n
j
)

The above analysis refers to a model with infinite processor and no caching. To compare the

algorithms in practice, we matched the target ”the” in Oscar Wilde’s ”The Picture of Dorian Gray”,

a text of n = 431372 characters using a two processor Intel Core i5. The sequential algorithm

detected 4590 indices in 40 ms. We experimented with different parallization factors i and chunk

sizes j / n and observed up to 50% speedups of the parallel algorithm for parallelization factor 4

and 8 chunks. As a different experiment, we matched the input against its size t = 400 prefix, a

size comparable to the input size n. For bigger targets, mappend gets slower, as it has complexity

linear to the size of target. We observed 20% speedups for t=400 target but also 30% slow downs

for various sizes of i and j. In all cases the indices returned by the sequential and the parallel

algorithms were the same.

6.4 Evaluation: Strengths & Limitations

Verification of Parallel String Matching is the first realistic proof that uses (Liquid)

Haskell to prove properties about program functions. In this section we use the String Matching

proof to quantitatively and qualitatively evaluate theorem proving in Haskell.

215

Quantitative Evaluation. The Correctness of Parallel String Matching proof can be found

online [97]. Verification time, that is the time Liquid Haskell needs to check the proof, is 75 sec

on a dual-core Intel Core i5-4278U processor. The proof consists of 1839 lines of code. Out of

those

• 226 are Haskell “runtime” code,

• 112 are liquid comments on the “runtime” Haskell code,

• 1307 are Haskell proof terms, that is functions with Proof result type, and

• 194 are liquid comments to specify theorems.

Counting both liquid comments and Haskell proof terms as verification code, we conclude that the

proof requires 7x the lines of “runtime” code. This ratio is high and takes us to 2006 Coq, when

Leroy [58] verified the initial CompCert C compiler with the ratio of verification to compiler lines

being 6x.

Strengths. Though currently verbose, deep verification using Liquid Haskell has many benefits.

First and foremost, the target code is written in the general purpose Haskell and thus can use

advanced Haskell features, including type literals, deriving instances, inline annotations and

optimized library functions like ByteString. Even diverging functions can coexist with the

target code, as long as they are not reflected into logic [100].

Moreover, SMTs are used to automate the proofs over key theories like linear arithmetic

and equality. As an example, associativity of (+) is assumed throughout the proofs while shifting

indices. Our proof could be further automated by mapping refined strings to SMT strings and

using the automated SMT string theory. We did not follow this approach because we want to show

that our techinique can be used to prove any (and not only domain specific) program properties.

Finally, we get further automation via Liquid Type Inference [79]. Properties about

program functions, expressed as type specifications with unit result, often depend on program

invariants, expressed as vanilla refinement types, and vice versa. For example, we need the

invariant that all indices of a string matcher are good indices to prove associativity of (♦). Even

216

though Liquid Haskell cannot currently synthesize proof terms, it performs really well at inferring

and propagating program invariants (like good indices) via the abstract interpretation framework

of Liquid Types.

Limitations. There are severe limitations that should be addressed to make theorem proving in

Haskell a pleasant and usable technique. As mentioned earlier the proofs are verbose. There are a

few cases where the proofs require domain specific knowledge. For example, to prove associativity

of string matching x ♦ (y ♦ z) = (x ♦ y) ♦ z we need a theorem that performs case

analysis on the relative length of the input field of y and the target string. Unlike this case split

though, most proofs do not require domain specific knowledge and merely proceed by term

rewriting and structural inductuction that should be automated via Coq-like [8] tactics or/and

Dafny-like [54] heuristics. For example, synquid [76] could be used to automatically synthesize

proof terms.

Currently, we suffer from two engineering limitations. First, all reflected function should

exist in the same module, as reflection needs access to the function implementation that is unknown

for imported functions. This is the reason why we need to use a user defined, instead of Haskell’s

built-in, list. In our implementation we used CPP as a current workaround of the one module

restriction. Second, class methods cannot be currently reflected. Our current workaround is to

define Haskell functions instead of class instances. For example (append, nil) and (concatStr,

emptyStr) define the monoid methods of List and Refined String respectively.

Overall, we believe that the strengths outweigh the limitations which will be addressed in

the near future, rendering Haskell a powerful theorem prover.

6.5 Conclusion

We made the first non-trivial use of (Liquid) Haskell as a proof assistant. We proved

the parallelization of chunkable monoid morphisms to be correct and applied our parallelization

technique to string matching, resulting in a formally verified parallel string matcher. Our proof

uses refinement types to specify equivalence theorems, Haskell terms to express proofs, and

217

Liquid Haskell to check that the terms prove the theorems. Based on our 1839LoC sophisticated

proof we conclude that Haskell can be successfully used as a theorem prover to prove arbitrary

theorems about real Haskell code using SMT solvers to automate proofs over key theories like

linear arithmetic and equality. However, Coq-like tactics or Dafny-like heurestics are required to

ease the user from manual proof term generation.

Acknowledgments The material of this chapter have been submitted for publication as it may

appear in ESOP 2017: Vazou, Niki; Polakow, Jeff. “Verified Parallel String Matching in Haskell”.

Chapter 7

Related Work

LIQUID HASKELL combines ideas from four main lines of research areas. It is a

refinement type checker (§ 7.1) that enjoys SMT-based (§ 7.2) automated type checking. Via

Refinement Reflection we touch the expressiveness of fully dependently typed systems (§ 7.3),

getting an automated and expressive verifier for Haskell programs (§ 7.4).

7.1 Refinement Types

Standard Refinement Types Refinement Types were introduced by Freeman and Pfenning [35],

with refinements limited to restrictions on the structure of algebraic datatypes. Freeman and

Pfenning carefully designed the refinement logic to ensure decidable type inference via the notion

of predicate subtyping (PVS [81]). The goal of refinement types is to refine the type system of

an existing, general purpose, target language so that it rejects more programs as ill typed, unlike

dependent type systems, that aim to increase the expressiveness and alter the semantics of the

language.

Applications of Refinement Types Xi and Pfenning implemented DML [106] a refinement type

checker for ML where arrays are indexed by terms from Presburger arithmetic to statically

eliminate array bound checking. Since then, refinement types have been implemented for various

general purpose languages, including ML [7, 79], C [19, 80], Racket [49] and Scala [82] to prove

various correctness properties ranging from safe memory accessing to correctness of security

protocols. All the above systems operate under CBV semantics that implicitly assume that all

free variables are bound to values. This assumption, that breaks under Haskell’s lazy semantics,

218

219

turned out to be crucial for the soundness of refinement type checking. To restore soundness in

LIQUID HASKELL we use a refinement type based termination checker to distinguish between

provably terminating and potential diverging free variables.

Reconciliation between Expressiveness and Decidability Reluctant to give up decidable type

checking, many systems have pushed the expressiveness of refinement types within decidable

logics. Kawaguchi et al. [47] introduce recursive and polymorphic refinements for data structure

properties increasing the expressiveness but also the complexity of the underlying refinement

system. CATALYST [46] permits a form of higher order specifications where refinements are

relations which may themselves be parameterized by other relations. However, to ensure decidable

checking, CATALYST is limited to relations that can be specified as catamorphisms over inductive

types, precluding for example, theories like arithmetic. In the same direction, Abstract and

Bounded refinement types encode modular, higher order specifications using the decidable theory

of uninterpreted functions. All the above systems only allow for “shallow” specifications, where

the underlying solver can only reason about (decidable) abstractions of user defined functions and

not the exact description of the function implementations of the functions. Refinement Reflection,

on the other hand, reflects user defined function definitions into the logic, allowing for “deep”

program specifications but requiring the user to manually provide cumbersome proof terms.

7.2 SMT-Based Verification

Even though refinement type systems use SMT solvers to achieve decidable program

verification by highly constraining the expressiveness of specifications, SMT-based verification

has been extensively used for program verification without the decidability constraint. In such

verifiers the SMT solvers are used to decide validity of arbitrary (i.e. non strictly decidable) logics

leading to expressive specifications but undecidable and unpredictable verification. Unpredictable

verification, as described in [56], suffers from the butterfly effect as “a minor modification in one

part of the program source causes changes in the outcome of the verification in other, unchanged

and unrelated parts of the program”. Here we present three SMT-based verifiers that have highly

influenced the design decisions in LIQUID HASKELL and discuss the ways each one of them uses

220

to control the unpredictability of verification.

Sage [51] is a hybrid type checker. The specifications are expressed in the form of refinement

types that allow predicates to be arbitrary terms of the language being typechecked. It uses

the SMT solver Simplify [25] to statically discharge as many proof obligations as possible and

defers the rest to runtime casts. LIQUID HASKELL is a subset of Sage that provably requires no

runtime casts since predicates are carefully constrained to decidable logics. We used Knowles

and Flanagan’s formalism on denotational typing and correctness of Sage to formalize soundness

and semantics of LIQUID HASKELL.

F* [88] is a refinement type checker that allows predicates to be arbitrary terms and aims to

discharge all proof obligations via the SMT solver, leading to unpredictable verification. F*

allows the user to control the SMT decision procedures by exposing to the user SMT tactics that

can be used to direct verification in case of failure. Moreover, F* allows effectful computations

(e.g. state, exceptions, divergence and IO) and combines refinement types with a sophisticated

effect type system to reason about totality of programs. In (Liquid) Haskell all programs are pure,

thus reasoning about effectful computations has already been taken care of by Haskell’s basic (i.e.

unrefined) type system that requires effectful computations to be wrapped inside monads. The

only effects allowed in Haskell are exceptions and divergence that can be optionally tracked by

LIQUID HASKELL’s totality and termination checker respectively.

Dafny [54] is a prototype SMT-based verifier for imperative programs that allows arbitrarily ex-

pressive specifications in the form of pre- and post-conditions. Acknowledging the disadvantages

of unpredictable verification, Dafny aims to give to the user control over the underlying SMT

decision procedures via sophisticated trigger and fuel techniques. Dafny that verifies effectful,

imperative code via pre- and post-conditions is quite different from LIQUID HASKELL that

verifies the pure and functional Haskell via refinement types. Yet, the work of Leino and the

rest of Dafny developers has been a great inspiration for existing and future work on challenges

shared by both verifiers, including termination checking, coinduction [55], local calculations [57],

and error reporting [53].

221

7.3 Dependent Type Systems

Dependent Types Systems like Coq [8], Agda [71], Idris [13] and Isabelle/HOL [73]

express sophisticated theorems as types since they allow arbitrary terms to appear in the types.

Constructive proofs of such theorems are just programs that are either manually written by the

users or automatically generated via proof tactics and heuristics. However programs are not just

proofs, thus, unlike LIQUID HASKELL, these verification oriented, dependent type systems fail to

provide an environment for mainstream code development.

Expressiveness: Deep vs. Shallow Specifications Dependently typed languages permit deep

specification and verification. To express and prove theorems, these systems represent and

manipulate the exact descriptions of user-defined functions. For example, we can represent

the specification that the list append function is associative and we can manipulate (unfold) its

definition to write a small program that by reduction constructs a proof of the specification. On the

other hand, standard refinement types, including LIQUID HASKELL without refinement reflection,

restrict refinements to so-called shallow specifications that correspond to abstract interpretations

of the behavior of functions within decidable logical domains. For example, refinements make it

easy to specify that the list returned by the append function has size equal to the sum of those

of its inputs but in the logic the exact definition of append is not known. Refinement Reflection

reflects user defined functions into the logic allowing deep specifications. Verification still occurs

using the abstract interpretations of the functions, but with refinement reflection, the abstraction

of the function is exactly equal to its definition.

Proof Strategy: Type Level Computations vs. Abstract Interpretation Dependent type systems

use type level computations to construct proofs by evaluation. On the other hand, in refinement

type systems, safety proofs rely on validity of subtyping constraints that is checked externally by

an SMT solver. That is, the type system is unable to perform any proof by evaluation, as the only

information it has for each function is the abstraction that is described by its type. With refinement

reflection, we fake type level computations: the Haskell, value level, proof terms provide all the

required reduction steps that are then retrofitted as equality assertions to the SMT solver.

222

Automation: Tactics vs. SMT solvers Dependent type checking requires explicit proof terms to

be provided by the users. To help automate proof term generation, both built-in and user-provided

tactics and heuristics are used to attempt to discharge proof obligations; however, the user is

ultimately responsible for manually proving any obligations which the tactics are unable to

discharge. On the other hand, refinement type checking does not require explicit proof terms.

Verification proceeds by checking validity of subtyping constraints which reduces to implication

checking that is in turn decided using the power of SMT solvers. Many times the SMT solver fails

to prove validity of a subtyping constraint because the environment is too weak. In such cases the

user can strengthen the environment by instantiating axioms via function calls. For example, the

proof that () :: {v:() | fib 1 = 1} is valid under an environment that invokes fib on 1.

That is, to prove deep specifications we fake type level computations via value level proof terms,

but ultimately, we check validity using the power of SMTs which drastically simplifies proofs

over key theories like linear arithmetic and equality. In the future, we plan to investigate how to

simplify such proof terms by adapting the tactics and heuristics of dependently typed systems

into LIQUID HASKELL.

System Features: Theorem Prover vs. Legacy Programming Languages Dependent type sys-

tems are proof oriented systems, lacking features required for a general purpose language, like

diverging and effectful programs. Various systems extend theorem provers to support effectful

programs, for example Zombie [15, 85] and F* [88] allow dependent types to coexist with diver-

gent and effectful programs. Still, these systems are verification oriented and lack the optimized

libraries that come from the mainstream developers of a general purpose programming language.

On the other hand, LIQUID HASKELL retrofits verification in Haskell, a legacy programming lan-

guage with a long-standing developer community. With LIQUID HASKELL, Haskell programmers

can as use their favorite language for general purpose programming, and also prove specifications

without the need to use an external, verification specific, theorem prover.

223

7.4 Haskell Verifiers

LIQUID HASKELL belongs into the ongoing research of Haskell code verification that is

exploring techniques to verify properties about Haskell programs that the current type system

cannot specify. There are two main directions in this line of research. Some groups are building

external verifiers that analyze well typed Haskell programs, while others are enriching the

expressiveness of the Haskell’s type system.

Domain Specific Haskell Verifiers Various external Haskell analyzers have been proposed to

check correctness properties of Haskell code that is not expressible by Haskell’s type system.

Catch [65] is a fully automated tool that tracks incomplete patterns, like our totality analyzer.

AProVE [36] implements a powerful, fully-automatic termination analysis for Haskell based on

term-rewriting, like our termination analyzer. HERMIT [31] proves equalities by rewriting the

GHC core language, guided by user specified scripts, like our equality reasoning performed via

Refinement Reflection. All the above verifiers allow for a domain specific analysis, precluding

LIQUID HASKELL’s generalized functional correctness specifications, encoded via refinement

typing.

Static Contract Checking A generalized correctness analysis in Haskell is feasible via Haskell’s

static contract checking [107] that encodes arbitrary contracts in the form of refinement types

and checks them using symbolic execution to unroll procedures upto some fixed depth. Similarly,

Zeno [86] is an automatic Haskell prover that combines unrolling with heuristics for rewriting and

proof-search. Finally, the Halo [103] contract checker encodes Haskell programs into first-order

logic by directly modeling the code’s denotational semantics, again, requiring heuristics for

instantiating axioms describing functions’ behavior. All the above general purpose verifiers

allow specification of arbitrarily expressive contracts rendering verification undecidable and thus

impractical.

Dependent Types in Haskell Haskell itself is a dependently-typed language [27], as type level

computation is allowed via Type Families [63], Singleton Types[29], Generalized Algebraic

Datatypes (GADTs) [74, 83], type-level functions [16], and explicit type applications [30]. In

224

this line of work [28] Eisenberg et al. aim to allow fully dependent programming within Haskell,

by making “type-level programming ... at least as expressive as term-level programming”. Our

approach differs in two significant ways. First, while enriching expressiveness of the types allows

Haskell’s type system to accept more programs, we aim not to alter semantics of Haskell programs,

but by refining the checks performed by the type system to reject more programs as ill typed. As a

consequence, refinements are completely erased at run-time. As an advantage (resp. disadvantage),

refinements cannot degrade (resp. optimize) the performance of programs. Second, dependent

Haskell follows the classic dependent type verification by type level evaluation approach that turns

out to be quite painful [59]. On the other hand, LIQUID HASKELL enjoys SMT-aided verification,

which drastically simplifies proofs over key theories like linear arithmetic and equality. Despite

these differences, these two approaches target the same problem of lifting value level terms into

Haskell’s type system. In the future, we hope to unify these two techniques and allow a uniform

interface for lifting values inside the type specifications to create a dependent Haskell that enjoys

both SMT-based automation of verification and type driven runtime optimizations.

Chapter 8

Conclusion

We presented LIQUID HASKELL, an automatic, sound, and expressive verifier for Haskell

code. We started (Chapter 1) by porting standard refinement types to Haskell to verify more

than 10K lines of popular Haskell libraries. Then (Chapter 2), we observed that Haskell’s

lazy semantics render standard refinement type checking unsound and restored soundness via

a refinement type based termination checker. Next, we presented Abstract (Chapter 3) and

Bounded (Chapter 4) Refinement Types, that use uninterpreted functions to abstract and bound

over the refinements of the types. We used both these techniques to encode higher order, modular

specifications while preserving SMT based decidable and predictable type checking. Finally, we

presented Refinement Reflection (Chapter 5) a technique that reflects terminating, user defined,

Haskell functions into the logic, turning (Liquid) Haskell into an arbitrarily expressive theorem

prover. We used LIQUID HASKELL to prove correctness of sophisticated properties ranging from

safe memory indexing to code equivalence over parallelization (Chapter 6)

In short, we described how to turn Haskell into a theorem prover that enjoys both the

SMT-based automatic and predictable type checking of refinement types and the optimized

libraries and parallel runtimes of the mature, general purpose language Haskell.

In the future we plan to use LIQUID HASKELL as an interactive environment that, using

techniques of code synthesis and error diagnosis, will integrate formal verification into the

mainstream development process to aid, rather than complicate, code development.

225

Bibliography

[1] N. Amin, K. R. M. Leino, and T. Rompf. Computing with an SMT Solver. In TAP, 2014.

[2] L. Augustsson. Cayenne - A language with dependent types. In ICFP, 1998.

[3] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and
C. Tinelli. CVC4. In CAV, 2011.

[4] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0, 2010.

[5] G. Barthe and O. Pons. Type isomorphisms and proof reuse in dependent type theory. In
FoSSaCS. Springer, 2001.

[6] J. F. Belo, M. Greenberg, A. Igarashi, and B. C. Pierce. Polymorphic contracts. In ESOP,
2011.

[7] J. Bengtson, K. Bhargavan, C. Fournet, A. Gordon, and S. Maffeis. Refinement types for
secure implementations. In CSF, 2008.

[8] Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Constructions”. Springer
Verlag”, 2004”.

[9] G. E. Blelloch. Synthesis of Parallel Algorithms. Morgan Kaufmann Pub, 1993.

[10] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir. Parallel programming must be
deterministic by default. In HotPar, 2009.

[11] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Rossum, S. Schulz, and R. Sebas-
tiani. MathSAT: Tight integration of SAT and mathematical decision procedures. J. Autom.
Reason., 2005.

[12] A. Bradley and Z. Manna. The Calculus of Computation: Decision Procedures With
Application To Verification. Springer-Verlag, 2007.

[13] E. Brady. Idris: general purpose programming with dependent types. In PLPV, 2013.

[14] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent programming with revisions and
isolation types. In OOPSLA, 2010.

[15] C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and programs in a depen-
dently typed language. In POPL, 2014.

226

227

[16] M. T. Chakravarty, G. Keller, and S. L. Peyton-Jones. Associated type synonyms. In ICFP,
2005.

[17] M. Cole. Parallel programming, list homomorphisms and the maximum segment sum
problem. In Parco, 1993.

[18] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk. Full-Speed Deterministic Bit-
Accurate Parallel Floating-Point Summation on Multi- and Many-Core Architectures.
https://hal.archives-ouvertes.fr/hal-00949355, 2014.

[19] J. Condit, M. Harren, Z. R. Anderson, D. Gay, and G. C. Necula. Dependent types for
low-level programming. In ESOP, 2007.

[20] R. L. Constable and S. F. Smith. Partial objects in constructive type theory. In LICS, 1987.

[21] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static
analysis of programs. In POPL, 1977.

[22] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully
automatic and scalable array content analysis. In POPL, 2011.

[23] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: from lists to streams to nothing
at all. In ICFP, 2007.

[24] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. TACAS, 2008.

[25] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking.
J. ACM, 2005.

[26] J. Dunfield. Refined typechecking with Stardust. In PLPV, 2007.

[27] R. A. Eisenberg. Dependent types in haskell: Theory and practice. CoRR, 2016.

[28] R. A. Eisenberg and J. Stolarek. Promoting functions to type families in Haskell. In
Haskell, 2014.

[29] R. A. Eisenberg and S. Weirich. Dependently typed programming with singletons. In
Haskell, 2012.

[30] R. A. Eisenberg, S. Weirich, and H. G. Ahmed. Visible type application. In ESOP, 2016.

[31] A. Farmer, N. Sculthorpe, and A. Gill. Reasoning with the HERMIT: Tool support for
equational reasoning on GHC Core programs. In Haskell, 2015.

[32] J. Filliâtre. Proof of imperative programs in type theory. In TYPES, 1998.

[33] C. Flanagan, R. Joshi, and K. R. M. Leino. Annotation inference for modular checkers.
Information Processing Letters, 2001.

[34] M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In PODC, 2004.

[35] T. Freeman and F. Pfenning. Refinement types for ML. In PLDI, 1991.

https://hal.archives-ouvertes.fr/hal-00949355

228

[36] J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann. Automated
termination proofs for Haskell by term rewriting. TPLS, 2011.

[37] D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric analysis of array operationsd.
In POPL, 2005.

[38] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM, 1993.

[39] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In Symposium on
Semantics of Algorithmic Languages, 1971.

[40] G. P. Huet. The Zipper. J. Funct. Program., 1997.

[41] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized
types. In POPL, 1996.

[42] G. Hutton. Programming in Haskell. Cambridge University Press, 2007.

[43] J. JáJá. Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, 1992.

[44] R. Jhala and K. L. McMillan. Array abstractions from proofs. In CAV, 2007.

[45] S. Kahrs. Red-black trees with types. J. Funct. Program., 2001.

[46] G. Kaki and S. Jagannathan. A relational framework for higher-order shape analysis. In
ICFP, 2014.

[47] M. Kawaguchi, P. Rondon, and R. Jhala. Type-based data structure verification. In PLDI,
2009.

[48] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and B. Lippmeier. Regular,
shape-polymorphic, parallel arrays in haskell. In ICFP, 2010.

[49] A. M. Kent, D. Kempe, and S. Tobin-Hochstadt. Occurrence typing modulo theories. In
PLDI, 2016.

[50] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heterogeneous collections. In
Haskell, 2004.

[51] K. Knowles and C. Flanagan. Hybrid type checking. ACM TOPLAS, 2010.

[52] L. Kuper, A. Turon, N. R. Krishnaswami, and R. R. Newton. Freeze after writing: quasi-
deterministic parallel programming with lvars. In POPL, 2014.

[53] C. Le Goues, K. R. M. Leino, and M. Moskal. The boogie verification debugger (tool
paper). In Software Engineering and Formal Methods, 2011.

[54] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In LPAR,
2010.

[55] K. R. M. Leino and M. Moskal. Co-induction simply - automatic co-inductive proofs in a
program verifier. In Formal Methods, 2014.

229

[56] K. R. M. Leino and C. Pit-Claudel. Trigger selection strategies to stabilize program
verifiers. In CAV, 2016.

[57] K. R. M. Leino and N. Polikarpova. Verified calculations. In VSTTE, 2016.

[58] X. Leroy. Formal certification of a compiler back-end, or: programming a compiler with a
proof assistant. In POPL 06, 2006.

[59] S. Lindley and C. McBride. Hasochism: the pleasure and pain of dependently typed
Haskell programming. In Haskell, 2013.

[60] F. Loulergue, W. Bousdira, and J. Tesson. Calculating Parallel Programs in Coq using List
Homomorphisms. In International Journal of Parallel Programming, 2016.

[61] J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A generic deriving mechanism for
haskell. In Haskell, 2010.

[62] S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic parallelism. In
Haskell, 2011.

[63] C. McBride. Faking it: Simulating dependent types in Haskell. J. Funct. Program., 2002.

[64] T. L. McDonell, M. M. Chakravarty, G. Keller, and B. Lippmeier. Optimising purely
functional GPU programs. In ICFP, 2013.

[65] N. Mitchell and C. Runciman. Not all patterns, but enough - an automatic verifier for
partial but sufficient pattern matching. In Haskell, 2008.

[66] S. Moore, C. Dimoulas, D. King, and S. Chong. SHILL: A secure shell scripting language.
In OSDI, 2014.

[67] S.-c. Mu, H.-s. Ko, and P. Jansson. Algebra of Programming in Agda: Dependent Types
for Relational Program Derivation. J. Funct. Program., 2009.

[68] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: Dependent
types for imperative programs. In ICFP, 2008.

[69] G. Nelson. Techniques for program verification. Technical Report CSL81-10, Xerox Palo
Alto Research Center, 1981.

[70] T. Nipkow. Hoare logics for recursive procedures and unbounded nondeterminism. In CSL,
2002.

[71] U. Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers, 2007.

[72] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with dependent types. In
IFIP TCS, 2004.

[73] L. C. Paulson. Isabelle A Generic Theorem prover. Lecture Notes in Computer Science,
1994.

230

[74] S. L. Peyton-Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-based
type inference for GADTs. In ICFP, 2006.

[75] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[76] N. Polikarpova, I. Kuraj, and A. Solar-Lezama. Program synthesis from polymorphic
refinement types. In PLDI, 2016.

[77] J. C. Reynolds. Definitional interpreters for higher-order programming languages. In 25th
ACM National Conference, 1972.

[78] S. R. D. Rocca and L. Paolini. The Parametric Lambda Calculus, A Metamodel for
Computation. Springer Science and Business Media, 2004.

[79] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, 2008.

[80] P. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types. In POPL, 2010.

[81] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate subtyping in
pvs. IEEE TSE, 1998.

[82] G. S. Schmid and V. Kuncak. SMT-based Checking of Predicate-Qualified Types for Scala.
In Scala, 2016.

[83] T. Schrijvers, S. L. Peyton-Jones, M. Sulzmann, and D. Vytiniotis. Complete and decidable
type inference for GADTs. In ICFP, 2009.

[84] T. Sheard. Type-level computation using narrowing in omega. In PLPV, 2006.

[85] V. Sjöberg and S. Weirich. Programming up to congruence. POPL, 2015.

[86] W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: An automated prover for properties
of recursive data structures. In TACAS, 2012.

[87] M. Sulzmann, M. M. T. Chakravarty, S. L. Peyton-Jones, and K. Donnelly. System F with
type equality coercions. In TLDI, 2007.

[88] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan,
C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue, and S. Zanella-Béguelin.
Dependent types and multi-monadic effects in F*. In POPL, 2016.

[89] W. Swierstra. Xmonad in Coq (experience report): Programming a window manager in a
proof assistant. In Haskell, 2012.

[90] T. L. H. Team. github.com/ucsd-progsys/liquidhaskell/tree/master/benchmarks/icfp15.

[91] S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped languages. In ICFP, 2010.

[92] G. Tourlakis. Ackermanns Function. http://www.cs.yorku.ca/∼gt/papers/
Ackermann-function.pdf, 2008.

github.com/ucsd-progsys/liquidhaskell/tree/master/benchmarks/icfp15
http://www.cs.yorku.ca/~gt/papers/Ackermann-function.pdf
http://www.cs.yorku.ca/~gt/papers/Ackermann-function.pdf

231

[93] A. M. Turing. On computable numbers, with an application to the eintscheidungsproblem.
In LMS, 1936.

[94] H. Unno, T. Terauchi, and N. Kobayashi. Relatively complete verification of higher-order
functional programs. In POPL, 2013.

[95] N. Vazou, A. Bakst, and R. Jhala. Technical report: Bounded Refinement Types, 2015.
https://github.com/nikivazou/thesis/blob/master/techreps/icfp15.pdf.

[96] N. Vazou, V. Choudhury, R. G. Scott, R. Jhala, and R. R. Newton. Technical report:
Refinement Reflection: Parallel legacy languages as theorem provers, 2016. https://github.
com/nikivazou/thesis/blob/master/techreps/pldi16.pdf.

[97] N. Vazou and J. Polakow. Code for verified string indexing, 2016. https://github.com/
nikivazou/verified string matching.

[98] N. Vazou, P. Rondon, and R. Jhala. Abstract refinement types. In ESOP, 2013.

[99] N. Vazou, E. L. Seidel, and R. Jhala. Liquidhaskell: Experience with refinement types in
the real world. In Haskell Symposium, 2014.

[100] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Refinement Types for
Haskell. In ICFP, 2014.

[101] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Technical report:
Refinement Types for Haskell, 2014. https://github.com/nikivazou/thesis/blob/master/
techreps/icfp14.pdf.

[102] P. Vekris, B. Cosman, and R. Jhala. Refinement types for typescript. In PLDI, 2016.

[103] D. Vytiniotis, S. Peyton-Jones, K. Claessen, and D. Rosén. Halo: haskell to logic through
denotational semantics. In POPL, 2013.

[104] G. Wiki. GHC optimisations. https://wiki.haskell.org/GHC optimisations.

[105] H. Xi. Dependent types for program termination verification. In LICS, 2001.

[106] H. Xi and F. Pfenning. Eliminating array bound checking through dependent types. In
PLDI, 1998.

[107] D. N. Xu, S. L. Peyton-Jones, and K. Claessen. Static contract checking for haskell. In
POPL, 2009.

https://github.com/nikivazou/thesis/blob/master/techreps/icfp15.pdf
https://github.com/nikivazou/thesis/blob/master/techreps/pldi16.pdf
https://github.com/nikivazou/thesis/blob/master/techreps/pldi16.pdf
https://github.com/nikivazou/verified_string_matching
https://github.com/nikivazou/verified_string_matching
https://github.com/nikivazou/thesis/blob/master/techreps/icfp14.pdf
https://github.com/nikivazou/thesis/blob/master/techreps/icfp14.pdf
https://wiki.haskell.org/GHC_optimisations

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Refinement Types in Practice
	Liquid Haskell
	Specifications
	Verification
	Measures
	Refined Data Types
	Refined Type Classes

	Totality
	Specifying Totality
	Verifying Totality
	Case Studies

	Termination
	Memory Safety
	Bytestring
	Text

	Functional Correctness Invariants
	Red-Black Trees
	Stack Sets in XMonad

	Evaluation
	Results
	Limitations

	Soundness Under Lazy Evaluation
	Overview
	Standard Refinement Types: From Subtyping to VC
	Lazy Evaluation Makes VCs Unsound
	Semantics, Subtyping & Verification Conditions
	Our Answer: Implicit Reasoning About Divergence
	Verification With Stratified Types
	Measures: From Integers to Data Types

	Declarative Typing: LamU
	Syntax
	Operational Semantics
	Types
	Type Checking

	Algorithmic Typing: LamD
	Refinement Logic: QF-EUFLIA
	Stratified Types
	Verification With Stratified Types

	Implementation in Liquid Haskell
	Termination
	Non-termination
	User Specifications and Type Inference

	Evaluation
	Conclusions & Alternative Approaches

	Abstract Refinement Types
	Overview
	Parametric Invariants
	Index-Dependent Invariants
	Recursive Invariants
	Inductive Invariants

	Syntax and Semantics
	Syntax
	Static Semantics
	Soundness
	Refinement Inference

	Evaluation
	Conclusion

	Bounded Refinement Types
	Overview
	Preliminaries
	Bounded Refinements
	Bounds for Higher-Order Functions
	Implementation

	Formalism
	Syntax of lamP
	Syntax of lamB
	Translation from lamB to lamP
	Soundness
	Inference

	A Refined Relational Database
	Rows and Tables
	Relational Algebra

	A Refined IO Monad
	The RIO Monad
	Floyd-Hoare Logic in the RIO Monad

	Capability Safe Scripting via RIO
	Privilege Specification
	File System API Specification
	Client Script Verification

	Conclusion

	Refinement Reflection
	Overview
	Refinement Types
	Refinement Reflection
	Structuring Proofs
	Case Study: Deterministic Parallelism

	Refinement Reflection
	Syntax
	Operational Semantics
	Types
	Refinement Reflection
	The SMT logic lamS
	Transforming lamR into lamS
	Typing Rules
	Soundness

	Reasoning About Lambdas
	Equivalence
	Extensionality

	Evaluation
	Arithmetic Properties
	Algebraic Data Properties
	Typeclass Laws
	Functional Correctness

	Verified Deterministic Parallelism
	LVish: Concurrent Sets
	Monad-par: n-body simulation
	DPJ: Parallel Reducers

	Conclusion

	Case Study: Parallel String Matcher
	Proofs as Haskell Functions
	Reflection of data types into logic.
	Reflection of Haskell functions into logic.
	Specification and Verification of Monoid Laws

	Verified Parallelization of Monoid Morphisms
	Chunkable Monoids
	Parallel Map
	Monoidal Concatenation
	Parallel Monoidal Concatenation
	Parallel Monoid Morphism

	Correctness of Parallel String Matching
	Refined Strings are Chunkable Monoids
	String Matching Monoid
	String Matching Monoid Morphism
	Parallel String Matching

	Evaluation: Strengths & Limitations
	Conclusion

	Related Work
	Refinement Types
	SMT-Based Verification
	Dependent Type Systems
	Haskell Verifiers

	Conclusion
	Bibliography

