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Abstract

Topics in Survival Analysis

by

Lucia Catherine Petito

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Nicholas P. Jewell, Chair

This dissertation covers three distinct topics in survival analysis: 1) current status data
in the context of group testing subject to misclassification; 2) marginal structural modeling
of a safety outcome from clinical trial data; and 3) the relationship between preterm birth
and weight gain in pregnancy. Abstracts for each chapter separately are presented below.

Chapter 2. Group testing, introduced by Dorfman (1943), has been used to reduce
costs when estimating the prevalence of a binary characteristic based on a screening test
of k groups that include n independent individuals in total. If the unknown prevalence is
low, and the screening test suffers from misclassification, it is also possible to obtain more
precise prevalence estimates than those obtained from testing all n samples separately (Tu
et al., 1994). In some applications, the individual binary response corresponds to whether
an underlying time-to-event variable T is less than an observed screening time C, a data
structure known as current status data. Given sufficient variation in the observed Cs, it is
possible to estimate the distribution function, F , of T nonparametrically, at least at some
points in its support, using the pool-adjacent-violators algorithm (Ayer et al., 1955). Here,
we consider nonparametric estimation of F based on group tested current status data for
groups of size k where the group tests positive if and only if any individual’s unobserved T is
less than its corresponding observed C. We investigate the performance of the group-based
estimator as compared to the individual test nonparametric maximum likelihood estimator,
and show that the former can be more precise in the presence of misclassification for low
values of F (t). Potential applications include testing for the presence of various diseases from
pooled samples where interest focuses on the age at incidence distribution rather than overall
prevalence. We apply this estimator to the age-at-incidence curve for hepatitis C infection
in a sample of U.S. women who gave birth to a child in 2014, where group assignment is
done at random and based on maternal age. We discuss the relationship to other work in
the literature, and potential extensions.
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Chapter 3. Marginal structural modeling was first developed to address time-dependent
confounding in studies where the effect of a time-varying exposure on an outcome is of in-
terest. This chapter begins by introducing the reader to the concept of time-dependent con-
founding, and describes inverse probability weighting estimators for parameters of marginal
structural models. The second part of chapter 3 contains an application of marginal struc-
tural modeling in a drug safety study. Studies in pharmacoepidemiology are often conducted
in rich data sources, such as clinical trials or administrative databases, where large quanti-
ties of information are collected repeatedly over time. These data sources can and should
be exploited, but traditional methods often cannot incorporate all available data, and fail to
take time-dependent confounding into account. Marginal structural modeling and weighted
estimators, tools often used in observational studies, can help to alleviate these challenges.

Our objective in this study was to estimate the relation between rheumatoid arthritis
(RA) disease activity, cholesterol levels, and major adverse cardiovascular events (MACE) in
patients with moderate to severe rheumatoid arthritis who are currently prescribed tocilizumab,
accounting for the presence of time-dependent confounding, such as other inflammatory
markers, lipid levels, and rheumatoid arthritis disease measures. We studied 3,986 patients
enrolled in one of five clinical trials used to study tocilizumab, who then joined one of three
long-term extension studies. We used a weighted logistic regression model to explore asso-
ciations between pre-treatment levels of RA disease activity and cholesterol on the 5-year
risk of MACE. We then used a logistic marginal structural model to explore causal relations
between pre- and post-treatment RA disease activity and cholesterol levels, and 5-year risk
of MACE, adjusting for time-dependent confounders. We did not find evidence that pre-
or post-treatment levels of RA disease activity, HDL cholesterol, and LDL cholesterol were
associated with increased risk of MACE in patients with moderate to severe rheumatoid
arthritis taking tocilizumab, once time-dependent confounding from inflammatory markers
and other lipid levels was taken into account. After adjustment for time dependent con-
founding, traditional markers of disease activity and cholesterol were not associated with an
increased risk of cardiac events among RA patients treated with tocilizumab.

Chapter 4. The relationship between weight gain in pregnancy and preterm birth is
still contested due to their inherent dependence. In the first part of Chapter 4, we wanted to
quantify the relationship between pregnancy weight gain with early and late preterm birth
and evaluate whether associations differed between non-Hispanic (NH) black and NH white
women. We analyzed a retrospective cohort of all live births to NH black and NH white
women in the U.S. 2011-2015 (n = 10,714,983). We used weight gain z-scores in multi-
ple logistic regression models, stratified by prepregnancy body mass index (BMI) and race,
to calculate population attributable risks (PAR) and PAR percentages for early and late
preterm birth. We found that both low and high pregnancy weight gain were related to
preterm birth, but these associations varied by BMI and race, and differed from associations
with late preterm birth. For high weight gain and early preterm birth, the PAR percent-
age ranged from 8-10% in NH black women and from 6-8% in NH white women. Racial
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differences were small or nonexistent for late preterm birth, with PAR percentages ranging
from 2-7% in NH black women and from 3-7% in NH white women. We conclude that these
findings add to evidence that moderate gestational weight gain could help prevent preterm
birth, and suggest that the impact may be greatest for early preterm birth in NH black
women.

The second part of Chapter 4 is a preliminary analysis assessing the variety of measures
of weight gain in pregnancy and their relationship with preterm birth. Serial GWG mea-
surements provide ideal data, but are rarely available in population health datasets. The
electronic medical records from 160,635 women in Sweden have been compiled to be the
largest dataset in the world that contains repeated weight gain measures through pregnancy.
Here, we describe the pattern of weight gain in pregnancy in 103,661 Swedish pregnancies,
and assess whether the observed pattern before 37 weeks’ gestation differs between preterm
and term pregnancies.
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Chapter 1

Introduction

1.1 Terms and Quantities in Survival Analysis

Survival analysis is the branch of statistics concerned with making inference about “time-to-
event” distributions. Specifically, the time until an event occurs from a pre-specified starting
time is the quantity of interest. Some common examples of questions that survival analysis
addresses that arise in epidemiology are: what is the median age of death in the general
population? What is the median life expectancy after an individual has been infected with
human immunodeficiency virus (HIV)? What is the median age at onset of Altzheimer’s
disease? What is the proportion of patients with breast cancer that will survive 5 years after
treatment ends?

In order to define a random variable T that represents a time-to-event, three elements
must be carefully and explicitly specified [1, 2]. The first is the terminating event. This
event is the focus of the analysis, and is commonly death, disease occurrence, disease recov-
ery, or the level of biological marker surpassing a threshold (e.g. cluster of differentiation 4
(CD4) count first dropping below 200 cells/mm3). The next quantity to be defined is the
initiating event. Initiating events are usually milestone events such as birth or initiation of
treatment (e.g. anti-retro viral therapy initiation for HIV patients, date of hip replacement
surgery). The last element is the scale used to measure ‘time’ elapsed between the initiating
and terminating events. Absolute time is frequently used, but occasionally measuring time
in terms of number of risky events can be more helpful in understanding the process. For
example, the number of sexual contacts may be a better time scale to use when studying
the time to contracting HIV than absolute time.

Broadly speaking, the distribution, F , of the random variable T , the time of event, is the
quantity of interest [1, 2]. F is a cumulative distribution function, defined as F (t) = Pr(T ≤
t), which gives the probability that the event occurs at or before time t. The random variable
T also has an associated survival function, which, not surprisingly, is most commonly used
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in survival analysis. This survival function represent the probability that the event occurs
after time t, and is written as:

S(t) = Pr(T > t) =

∫ ∞
t

f(u)du = 1− F (t).

The survival function S has several properties that are worth mentioning. Survival functions
are always monotonically decreasing, meaning that at no point is S(u) < S(u + δ), for any
u ∈ [0,∞) and δ > 0. Also, it is assumed that at time 0, no events have occurred yet,
meaning that S(0) = 1. The survival function S is strictly positive - S(u) > 0∀u ∈ [0,∞)
- although S(t) approaches 0 as t approaches ∞. Finally, if S is differentiable, then its
derivative (the associated density function) can be defined as:

s(t) = S ′(t) =
d

dt
S(t) =

d

dt

∫ ∞
t

f(u)du =
d

dt
[1− F (t)] = −f(t)

The hazard function of T , generally denoted λ(t), is the event rate at time t conditional
on survival until time t or later [1, 2]. We can define λ more precisely as

λ(t) = lim
dt→0

Pr(t ≤ T < t+ dt)

dt · S(t)
=
f(t)

S(t)
= −S

′(t)

S(t)
.

The hazard function is nonnegative (λ(t) ≥ 0∀t ∈ [0,∞)), and integrates to ∞. It is oth-
erwise unconstrained - it can be increasing, decreasing, or discontinuous unlike the survival
function. It has an associated cumulative hazard function, defined as:

Λ(t) =

∫ t

0

λ(u)du,

which represents the accumulation of hazard from the beginning until time t. Λ can also be
written in terms of the survival function:

Λ(t) = − logS(t) =⇒ S(t) = exp(−Λ(t)).

This relation is the basis for many developments in survival analysis.

One of the main challenges that differentiates survival analysis from traditional statistical
methods is incompleteness in the data [1, 2]. In a perfect world, T would be observable for
all individuals. However, the observation of T is often obscured by the presence of censoring,
C. There are three main types of censoring: interval censoring, left censoring, and right
censoring. Interval censoring occurs when the event of interest occurs between two points
of observation; for example, when cholesterol levels cross a threshold between primary care
physician visits, but the precise moment in time when that threshold was achieved is un-
known. Left censoring exists when the random variable T is known to have happened on the
interval [0, t]. This case is rare; it exists only when subjects in a study have been enrolled
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but experienced the event in question at an unknown time before the study begins, e.g. a
mild cardiovascular event.

If it is only known that the random variable T may have occurred after some time t, that
observation is considered to be right-censored at time t [1, 2]. This type of censoring can
occur for several reasons. First, the study design may contribute to the right censoring of
participants. For example, a study end follow-up of individuals before all of the individuals
have experienced the event of interest. Also, the study may have been funded to detect a
certain number of events (e.g. cardiovascular events), and may stop follow-up of individuals
once that threshold has been reached. Individuals may also be right-censored “randomly,”
in that they may voluntarily choose to leave the study early due to unrelated health compli-
cations, needing to move away from the study site, or other personal reasons. Typically, all
types of censoring C are assumed to be independent of the event time T .

Another case where T is unobservable for certain individuals is called truncation [1, 2].
When individuals are censored, they are still available in the study design process to be
recruited as a participant. When individuals are truncated, they are unable to be a part
of the sampling pool used to recruit study participants. Individuals can be either left or
right truncated. Left truncation occurs most often in cross-sectional study designs, where
individuals who, for example, died before study recruitment were necessarily ineligible to
be a part of the study. Right truncation exists in scenarios when the variable T has an
upper bound, so individuals with large values of T cannot be recruited. For example, right
truncation can occur in studies that were conducted over a fixed time interval. Consider
a study of individuals who contracted HIV after January 1, 1980 and developed AIDS by
December 31, 1989. If the variable T we are studying is time to onset of AIDS, individuals
who contracted HIV after January 1, 1980 but who took longer than the study duration to
develop AIDS were not eligible to participate in the study. Although statistically there is
not much we can do about truncation, as researchers, we can be aware of the biases that it
potentially introduces into our studies.

Statisticians have developed methods to estimate F , or its complement S = 1−F , in the
presence of censoring. The initial development in this field was the Kaplan-Meier estimator,
which allows for the nonparametric estimation of the survival function S over the range of
times when having the event is possible, even in the presence of censoring [3]. Kaplan-Meier
works by dividing the range over which T is defined into intervals, and within each interval
calculating the survival probability as the number of individuals surviving to the end of
the interval divided by the number of individuals at risk for the event at the beginning of
the interval. In a setting with no censoring or truncation, the Kaplan-Meier reduces to the
complement of the empirical cumulative distribution function, F̂ . The Kaplan-Meier curve
is the non-parametric maximum likelihood estimator for right-censored data, and can be
computed in subgroups to assess possible differences in survival [3, 4].
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The most cited statistical paper of all time, which as of May 1, 2017 has been cited
44,880 times according to Google Scholar, derives the Cox proportional hazards (PH) model
[5]. Instead of directly modeling the survival function S, Cox suggests modeling the hazard
function because it is related to the survival function as described above. Specifically, the
Cox proportional hazards model allows for the adjustment of measured covariate information
in a similar manner to linear regression. If each individual has k covariates measured, say
X = {X1, . . . , Xk}, then a Cox PH model estimates β = {β1, . . . , βk} in the following
equation:

λ(t | X) = λ0(t) exp(β1X1 + · · ·+ βkXk) = λ0(t) exp(X · β).

This model assumes that the hazard changes multiplicatively with the covariates. Cox PH
models do not require the specification of a functional form for the baseline hazard, making
them attractive to researchers who do not want to impose extra assumptions. Extensions
of the Cox PH models exist to accommodate many special cases, including time-varying
covariates and multiple events per individual [6]. Other types of parametric models, such as
accelerated failure time models [7] and additive hazards models [8] have been developed to
estimate the hazard in the presence of covariate information.

1.2 Organization of Dissertation

This dissertation is organized into three chapters, each of which concerns an extension of
typical survival analysis required when other properties of the data must also be addressed.

Chapter 2 concerns a special case of interval censored data, misclassified group tested
current status data. Interval censored data exists when the only available information about
the random variable T is that it exists on an interval. Current status data is the extreme
form of this censoring, where the only information is about whether T occurred on the inter-
val [0, t], or whether it could occur after time t. Group tested current status data consists of
the observation times t1, . . . , tk for each individual in a group of size k, but only contains one
test result Y ∗ for each group, as opposed to the individual test results y1, . . . , yk. Here, we
propose a non-parametric maximum likelihood estimator for F , the cumulative distribution
function of T , in group tested current status data, where each test result is subject to a fixed
misclassification rate.

Another issue that arises in survival analysis, or generally any longitudinal analysis, is
time-dependent confounding. In longitudinal studies, when the effect of a time-varying ex-
posure on an outcome is the parameter of interest, time-dependent confounding exists when
there is a time-varying covariate that influences the outcome, and both influences future
levels of the exposure and is influenced by past levels of the exposure. Chapter 3 begins
by presenting inverse probability weighting methods to estimate parameters of a marginal
structural model. Then, we apply marginal structural modeling with inverse probability
weights to the joint estimation of the effects of pre- and post-treatment initiation levels of
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rheumatoid arthritis disease activity, high-density lipoprotein cholesterol, and low-density
lipoprotein cholesterol on the risk of major adverse cardiovascular events in a sample of pa-
tients with moderate to severe rheumatoid arthritis who are taking a regimen of tocilizumab,
a drug used to treat rheumatoid arthritis.

Chapter 4 addresses the study of weight gain in pregnancy and preterm birth. In human
pregnancy, gestational duration is generally 37 to 42 weeks. Preterm births are defined
as pregnancies where gestational duration only lasts between viability (22 weeks) and 37
weeks. This can be considered a special case of survival analysis, where we are interested
in survival at a particular point on the survival curve, S(37). The relation between weight
gain in pregnancy and preterm birth is difficult because a dependence on time is inherently
built into the measurement of weight gain in pregnancy. In this chapter, we first review the
epidemiology of and statistical issues arising when studying preterm birth and gestational
weight gain. Then, we present a study of the relation between gestational weight gain and
the black-white disparity in preterm birth rates in the U.S. birth certificate data from 2011-
2015. Finally, we consider different ways of incorporating weight gain in pregnancy into
statistical analyses of the overall relation between pregnancy weight gain and preterm birth
in a cohort of Swedish births from 2008-2014.
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Chapter 2

Misclassified Group Tested Current
Status Data

2.1 Introduction

Group testing of a binary response has once again become a topic of great interest in the
last decade [9–11]. The idea was first introduced in 1943 as a potential cost-saving measure
for the detection of syphilis in U.S. army recruits [12]. Group testing reduces the number of
tests by allocating, randomly or otherwise, n individuals into J groups of equal size k, and
only testing each pooled group once, in order to provide an estimate of the prevalence of a
binary characteristic in a population.

More recent work has considered potential issues with group testing, such as dilution
effects, non-random group assignment, and misclassification [13–16]. Tu et al. (1994) [17]
suggest that if the unknown prevalence of a binary characteristic is sufficiently low and the
screening test suffers from misclassification, more precise estimates of the prevalence can be
obtained from J group tests than from testing all n individuals separately. The intuition
behind this finding is complex. When a test has a rate of misclassification independent of the
number of individuals in the pooled sample, performing fewer tests could increase precision
of the prevalence estimate due to fewer tests being performed, and thereby leading to less
noise in the observations. This is particularly the case when the prevalence is sufficiently
small, making it uncommon that two positives will occur in the same group.

The data structure where an individual’s binary response corresponds to an underlying
time-to-event variable T occurring before an observed screening time C is known as current
status data, or interval censoring type I [18, 19]. The nonparametric maximum likelihood
estimator of the distribution function, F , of T , for current status data is the pool-adjacent-
violators algorithm, although it is only possible to use this estimator if there is sufficient
variation in the observed Cs [20, 21].
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In this paper, we develop a simple algorithm to compute a nonparametric maximum like-
lihood estimator of F for group tested current status data, and extend it to settings where
the test is subject to misclassification. When misclassification is present, we hypothesize that
there will sometimes be substantial gains in precision for values of T at which the prevalence
is sufficiently small, as described in Tu et al. (1994) [17] in the case of estimating a single
fixed prevalence.

2.2 Notation and Likelihood Function

We assume that the underlying data (prior to grouping) arise from n independent real-
izations of a bivariate random variable, Φ = {1(T < C), C}, where the survival random
variable T and screening random variable C follow distribution functions F and G respec-
tively. Throughout, we assume that T and C are independent. The observed data are based
on grouping these realizations at random into blocks of size k, where for convenience we
assume that n/k is an integer. It is trivial to extend all the results below to situations where
block sizes may vary. Thus each original unit corresponds to the jth individual in the ith

group, where i = 1, . . . , n/k and j = 1, . . . , k. The group tested result from the ith group,
∆i, is the only test result available, whereas individual screening times, Cij, are observed
for all participants. Specifically, ∆i = 0 if and only if Φij = 0 for all j = 1, . . . , k, and
∆i = 1 otherwise. The group test detects the presence of one or more positives in the group,
but cannot distinguish between a single, or several, positive Φijs. The immediate goal is to
estimate the distribution function F .

Due to the assumed independence of T and C we can focus on the conditional likelihood
of the data given the observed screening times {Cij : i = 1, . . . , n/k; j = 1, . . . , k}. Since

pr(∆i = 0 | Cij : j = 1, . . . , k) =
∏k

j=1 pr(Φij = 0 | Cij), this conditional likelihood is given
by

CL =
∏n/k

i=1 {S(ci1)× · · · × S(cik)}1−δi {1− S(ci1)× · · · × S(cik)}δi , (2.1)

where S = 1−F is the survival function of T . This conditional likelihood applies to differing
methods for selecting the screening times C and assigning the observations to groups for
testing. At one extreme, the C values in each group are selected completely at random; at
the other end of the spectrum, individuals with common values of C are assigned to the
same group. The latter sampling scheme is only fully feasible if the distribution function G
is discrete. While the estimation strategy pursued here applies generally, estimation is much
simpler with common C values in each group, and asymptotic properties of the estimator
are more easily derived. For example, with common values of C in each grouping, with fixed
group size k, the likelihood (1) simplifies to that for the standard current status data prob-
lem with underlying survival function Sk(ci) = S(ci)

k. Estimates, and inference, regarding
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Sk can then be immediately translated to corresponding statements regarding S itself.

In practice, with a continuous G, it may be advantageous to group individuals with
approximately the same value of C. This development assumes a perfect screening test of
whether the true group test result was positive, ∆i = 1, or not. We can extend these ideas
to permit misclassification of the test results, which we now denote by Y to distinguish the
potentially misclassified test result from the true result ∆. Assume that the test has known
sensitivity and specificity, independent of both the screening times, C, and group size, given
by α = pr(Y = 1 | ∆ = 1) and β = pr(Y = 0 | ∆ = 0) with the assumption that α + β > 1.
Then, the conditional likelihood of the potentially misclassified data, given the observed
screening times {Cij : i = 1, . . . , n/k; j = 1, . . . , k}, can be written as

CL(α, β) =
∏n/k

i=1 {1− α + γS(ci1)× · · · × S(cik)}1−yi {α− γS(ci1)× · · · × S(cik)}yi ,(2.2)

where γ = α + β − 1.

2.3 An expectation-maximization-pool-

adjacent-violators algorithm

Development of the Algorithm

Group tested current status data can be formulated as a missing data problem. First con-
sider the setting without misclassification of test results. While the full set of screening
times Cij are observed, only group tested results, ∆i, are available, whereas a complete data
set would include all individual test results, Φij. This missing information setting naturally
allows use of the expectation-maximization algorithm (Dempster et al., 1977).

To implement the expectation-maximization algorithm, we calculate the expected value
of the true individual test result, Φij, given the observed value of the group tested result,
∆i, based on a current estimate of F . These calculations are straightforward when there is
no misclassification:

E(Φij | ∆i = 0, Ci1 = ci1, . . . , Cik = cik) = 0, (2.3)

E(Φij | ∆i = 1, Ci1 = ci1, . . . , Cik = cik) = F (cij){1− S(ci1)× · · · × S(cik)}−1. (2.4)

For misclassified data with sensitivity α and specificity β, computing the expected value
of an individual true disease status Φij given the potentially misclassified observed group
test result Yi becomes slightly more complicated, see Supplementary Material. Letting γ =
α + β − 1 this step becomes:

E(Φij | Yi = 1, Ci1 = ci1, . . . , Cik = cik) = αF (cij){α− γS(ci1)× · · · × S(cik)}−1,(2.5)

E(Φij | Yi = 0, Ci1 = ci1, . . . , Cik = cik) =
(1− α)F (cij)

(1− α) + γS(ci1)× · · · × S(cik)
. (2.6)
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For the maximization step, we simply use a weighted version of the pool-adjacent-
violators algorithm on the full data set φij, where φij = 0 with weight 1 if δi = 0, per
(3). On the other hand, per (4), if δi = 1, φij = 1 with weight given by the right-hand side
of (4), together with additional observations φij = 0 with weight given by one minus the
right-hand side of (4). The complete algorithm is thus described as follows:

Step 1. Initialize values of f
(0)
ij = F̂ (0)(cij) for each individual and set a threshold τ for

convergence.

Step 2. Expectation. For each individual j ∈ {1, . . . , k} in group i, calculate the probability
that each individual tested positive, f ∗ij, given their group’s test result. For perfectly classified
results, δi, use

f ∗ij =

{
f

(0)
ij

{
1−

∏k
J=1(1− f (0)

iJ )
}−1

, δi = 1,

0, δi = 0.
(2.7)

For group tested results subject to misclassification, yi, with sensitivity α and specificity β
such that γ = α + β − 1, use

f ∗ij =

 αf
(0)
ij

{
α− γ

∏k
J=1(1− f (0)

iJ )
}−1

, yi = 1,

(1− α)f
(0)
ij

{
1− α + γ

∏k
J=1(1− f (0)

iJ )
}−1

, yi = 0.
(2.8)

Step 3. Maximization. Use the group tested results, δi or yi, as the observations for each
individual, and the probabilities from step 2 as the weights in the weighted pool-adjacent-
violators algorithm to calculate updated estimates of f

(1)
ij = F̂ (1)(cij).

Step 4. Repeat steps 2 and 3 using the estimate of F̂ from step 3 as initial values for step
2 until convergence, for example until

n/k∑
i=1

k∑
j=1

{
F̂ (t+1)(cij)− F̂ (t)(cij)

}2

< τ.

It is important to run the algorithm under several choices of starting values, not only
to reduce the possibility of converging to a local extrema, but also to discover different
non-unique versions of the nonparametric maximum likelihood estimator. We recommend
choosing a large set of random starting values of F at the observed set of Cijs by generating
random Uniform(0, 1) values ordered so that the starting values are monotonically increasing
with Cijs.
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Comments Regarding Asymptotics

Asymptotic results for standard current status data are non-standard. The nonparametric
maximum likelihood estimator is known to be consistent, although converging only at the
rate n1/3, but with a non-Gaussian limiting distribution known as Chernoff’s distribution
[21] for situations where the monitoring time distribution, G, is continuous; Banerjee (2012)
[22] provides a concise discussion of this result. Rather than using Wald-type pointwise
confidence intervals derived from this limit, Banerjee & Wellner [23, 24] suggest the use of a
likelihood ratio approach to construct confidence bands.

On the other hand, when G has finite support, the likelihood is parametric, since F can
then only be estimated at this finite number of support points: the observed censoring times.
As expected from this observation, the nonparametric maximum likelihood estimator now
converges to a Gaussian limit at rate n1/2 with the asymptotic variance at a specific mon-
itoring time C0 given simply by F (C0){1 − F (C0)}{g(C0)}−1, which is straightforward to
estimate using the obvious plug-in estimates [25, 26]. The hybrid problem where the number
of support points grows with the sample size is discussed beautifully in Tang, Banerjee &
Kosorok (2012) [27]. Sal y Rosas & Hughes (2011) [28] describe the inversion of a likelihood
ratio test to obtain pointwise confidence intervals for F when the data are subject to mis-
classification.

These results can only be directly applied to the group testing scenario in the simplest
situations. For the extreme situation with only one monitoring time, estimation of F (C0)
reduces to the simple estimation of prevalence. This scenario has been studied extensively in
the group testing literature with misclassification; for example, Tu et al. (1994) [17]provides
asymptotically normal confidence intervals with convergence rate n1/2. Generalizing slightly,
the situation with a finite support for C, and with no misclassification, simplifies to the
case considered by Yu et al. (1998) [25] if individuals within a group all share a common
value of C. In this case, pr(∆ = 1 | C) = 1 − S(C)k so that asymptotic results for the
nonparametric maximum likelihood estimator applied to the group tested data immediately
apply to the plug-in estimator for S, or F , at the finite number of screening times C using
the delta method. We anticipate that this will extend straightforwardly in the presence of
misclassification and also suggest that the use of the bootstrap will be effective here.

Even with a finite number of monitoring times, the situation becomes more complex
when screening times are randomly assigned to the groups. This is clear even with only two
monitoring times and pair groupings at random. Further, there are as yet no known asymp-
totic results for the nonparametric maximum likelihood estimator of §2.3 with a continuous
screening time distribution, although we anticipate that convergence will remain at rate n1/3.
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2.4 Elementary Example

An Analytic Solution

For illustration, consider a simple example in a setting without misclassified test results,
where there are two groups each containing two individuals; that is, n = 4 and k = 2.
There are twelve possible combinations of group assignments and test results, corresponding
to three different possible sets of pair assignments with each pair having two possible test
outcomes. Consideration of the conditional likelihood (1) reveals a simple solution in all but
one of these cases; we focus on the remaining case with the grouping as shown in Figure 2.1
with ∆1 = 1 and ∆2 = 0.

The conditional likelihood (1) in this setting is:

CL4 = {1− S(c1)S(c3)}S(c2)S(c4).

It is immediate that the nonparametric maximum likelihood estimator must have Ŝ(c1) =
Ŝ(c2) and Ŝ(c3) = Ŝ(c4). Thus, the nonparametric maximum likelihood estimator is not
unique but achieved by any set of {Ŝ(c1), . . . , Ŝ(c4)} with Ŝ(c1) = Ŝ(c2), Ŝ(c3) = Ŝ(c4), and
Ŝ(c2)Ŝ(c3) = 0.5. We show how the expectation-maximization-pool-adjacent-violators algo-
rithm converges to one such solution, the specific value depending directly on the starting
values for F̂ (0)(ci) = 1− Ŝ(0)(ci).

Given an initial set of probabilities: F̂ (0)(C1) = f1, F̂ (0)(C2) = f2, F̂ (0)(C3) = f3, and
F̂ (0)(C4) = f4 such that f1 ≤ f2 ≤ f3 ≤ f4, the first step of the algorithm calculates the
expectation of each of the initial conditional probabilities, f ∗i for i = 1, . . . , 4, as given in (7)
and (8); that is the probability that an individual was positive given the known group tested
result. For two of these probabilities, in a setting without misclassification, this calculation
is trivial: the pair tested negative so neither of the individuals was positive. Thus we can
set f ∗2 = f ∗4 = 0. For the pair that tested positive, this calculation follows directly from (7):

f ∗1 = pr(T1 ≤ C1 | ∆1 = 1) = f1{1− (1− f1)(1− f3)}−1 = f1{f1 + f3 − f1f3}−1,

f ∗3 = pr(T3 ≤ C3 | ∆1 = 1) = f3{1− (1− f1)(1− f3)}−1 = f3{f1 + f3 − f1f3}−1.

The next step of the algorithm is to make these f ∗j s monotonic, recalling that f ∗2 = f ∗4 = 0,
using the pool-adjacent-violators algorithm. This yields the updated estimates of F :

F̂ (1)(C1) = F̂ (1)(C2) = f ∗1 /2 = f1{2(f1 + f3 − f1f3)}−1, (2.9)

F̂ (1)(C3) = F̂ (1)(C4) = f ∗3 /2 = f3{2(f1 + f3 − f1f3)}−1. (2.10)

These steps are then iterated until a determination of convergence based on comparing,
say, the sum of the squared differences between F̂ (m) and F̂ (m+1) at each observed C to a
pre-specified threshold τ .
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Multiple Convergence Values

As we demonstrated in §2.4, the initial values for the pair who tested negative, f2 = F̂ (0)(C2)
and f4 = F̂ (0)(C4), are not relevant to the update step in our expectation-maximization-pool-
adjacent-violators algorithm. Therefore, when discussing convergence of the algorithm we
will only consider initial values for F̂ (0)(C1) = f1 and F̂ (0)(C3) = f3.

In all settings where f1 = f3 = f , the update step given by (9) and (10) becomes

F̂ (1)(C1) = F̂ (1)(C3) = f̂ = 1{2(2− f)}−1.

Thus, at convergence, f = {2(2 − f)}−1, so that the algorithm converges to f = 1 − 2−1/2,
the only solution in [0,1]. This is, of course, also expressed as Ŝ(Cj) = 2−1/2 for j = 1, . . . , 4.

For any other set of starting values, the ratio of f1/f2 remains unchanged by the iterations.
We can thus write f1 = rf3 where 0 < r < 1, and r remains fixed as determined by the
starting values for f1 and f3 . At convergence, equation (9) then simplifies to

f3 = f3

{
2
(
rf3 + f3 − rf 2

3

)}−1
.

Convergence thus occurs when rf3 +f3−rf 2
3 = 1/2. After an application of the quadratic

formula, this simplifies to

f3 =
{
r + 1−

(
r2 + 1

)1/2
}

(2r)−1, (2.11)

the only feasible solution. It immediately follows that at convergence,

f1 =
{
r + 1− (r2 + 1)

1/2
}
/2, to respect (1− f1)(1− f3) = 0.5, as noted in §2.4.

This simple case demonstrates the non-uniqueness of the nonparametric maximum like-
lihood estimator, with the algorithm converging to a specific solution for F̂ determined by
the ratio of the starting values of the F at C1 and C3. When using this algorithm in an
applied setting, we suggest repeating it many times, using a different set of randomly drawn
starting values each time, and then computing the likelihood function to identify as many
different unique solutions to the optimization as possible.

2.5 Simulations

Design of Simulations

We carry out two series of simulations to examine the behavior of the expectation- maximization-
pool-adjacent-violators algorithm for group tested data as it compares to the pool-adjacent-
violators algorithm, the nonparametric maximum likelihood estimator for individual-level
current status data [29]. We consider two scenarios, one where the tests are subject to
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no misclassification, and a second, where the test is subject to misclassification with known,
constant error rates. In the latter case, the comparative estimator for misclassified individual-
level current status data was derived by McKeown & Jewell (2010) [30]. We consider both
continuous and discrete independent screening times. The former are described and dis-
cussed below whereas the latter are available in Supplementary Material.

Each simulation is characterized by a set of fixed parameters: n, the number of individ-
uals; k, the group size; and α and β, the sensitivity and specificity of the screening test,
respectively. We set α = β = 1 in scenarios without misclassification. We first simulate tra-
ditional current status data for each individual from the distribution of the true event times,
F , and the censoring distribution, G. Each run of the simulations begins by simulating data
of sample size n at the individual level, and subsequently assigning individuals to groups
randomly.

The distribution F of the event times T is Weibull with shape and scale parameters 4
and 25 respectively; here F has mean 22.7 and variance 40.4. For the perfectly classified
test simulations, the screening distribution G for C is Uniform(0, 36), allowing almost all
of the distribution F to be identified. The necessary binary datum Φ is then determined
from the generated individual values of T and C. The values of ∆, the group tested results,
follow immediately from the values of Φ from each individual in the group, as described in
§2.2. Each simulation is performed 1,000 times in 6 different settings - n = (1000, 5000) and
groupings of sizes k = (2, 5, 10).

For misclassified test results, we are most interested in examining performance of the
expectation-maximization-pool-adjacent-violators estimator in the left tail of F , where false
positive test results could have the largest effect on the estimate of F (Tu et al., 1994). Thus,
while F remains the same Weibull distribution, we now take C to be Uniform (0, 14) to en-
sure that F (t) ≤ 10%. Here we select a single sample size n = 5,000 in 12 different settings
with group sizes k in {2, 5, 10} and misclassification rates of α = β in {0.8, 0.9, 0.95, 0.99}.
In these simulations, the observed misclassified data are obtained by subjecting first each
individual test result Φ to misclassification under the specified test characteristics; second
the group tested outcome Y is separately generated by misclassifying the corresponding
group test result ∆. Here we have used the same test classification probabilities, assuming
independence between the group size and the error rates of the testing procedure.

In each run of both simulations, perfectly classified versus misclassified data, we com-
pute both the appropriate expectation-maximization-pool-adjacent-violators algorithm for
the group tested data and the appropriate pool-adjacent-violators algorithm for individual
data. To select initial values for the expectation-maximization-pool-adjacent-violators algo-
rithm, we first draw n values uniformly on the range [0, 1] and sort them from smallest to
largest. We then order the observations so the Cs are monotonically increasing, and match
the ordered initial probabilities to the ordered data. Although we noted earlier that for a
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specific application we recommend examining multiple starting values, here we opt to only
randomly select one set of initial values for each simulated dataset, thereby only achieving
one of potentially many possible nonparametric maximum likelihood estimate.

The averages of the estimates of F from each algorithm over the 1,000 runs are calcu-
lated for each t in the support of G. To calculate the estimate of F at a value of C not
observed in a specific simulation, we assume left-continuity of both estimators in situations
where this is not imposed by monotonicity. To provide a sense of the variability of each
estimator, we also calculate the 2.5th and 97.5th quantiles of the estimates over the 1,000
simulations. For the second set of simulations, we use these quantities to compute a mea-
sure of pseudo-relative efficiency, the ratio of the widths of these 95% Monte Carlo quantile
intervals: {(q97.5 − q2.5)(group) } / {(q97.5 − q2.5)(individual)}. It is less relevant to focus on
variances of the simulated estimates since we hypothesize this estimator does not converge
to a Gaussian distribution, nor at rate n1/2.

The Supplementary Material contains results from two simulations in samples of size
n = 10,000, with 10 fixed, equal frequency screening times, C, and true event probabilities
at each screening time fixed at {0.005, 0.01, . . . , 0.05}. In the first simulation, we randomly
group individuals within values of C to allow for the presentation of asymptotically normal
confidence intervals, as described in §2.3, and in the second, we group across screening times
and again present the widths of the 95% Monte Carlo quantile intervals.

Results: Perfectly Classified Data

Figure 2.2 displays the results from applying the expectation-maximization-pool-adjacent-
violators algorithm and the pool-adjacent-violators algorithm to data generated in the six
simulations where there is no misclassification of the test results. These simulations show
that the finite sample bias is small except perhaps when the group size is large, e.g. k = 10,
and F (t) is small. Even then, this bias declines systematically as the sample size increases.
As anticipated, in all situations, the bias is also smaller for the estimator based on individ-
ual test results. Similarly, and also to be expected, the latter is also more precise, though
the gain decreases for larger sample sizes and smaller k. This being said, the group tested
estimator stands up remarkably well given that the screening costs are reduced by 50%, 80%
and 90% when k = 2, 5, 10, respectively, assuming that costs are proportional to the number
of tests.

Because the asymptotic properties of this expectation-maximization-pool-adjacent-violators
algorithm are currently unknown, to demonstrate variability in the estimates we present the
95% Monte Carlo quantile interval as dashed and dotted lines in Fig. 2.2. The width of this
interval for the pool-adjacent-violators algorithm from individual data is always smaller than
that from the expectation-maximization-pool-adjacent-violators algorithm applied to group
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tested data. This is to be expected, as there is no misclassification in these simulations.
Smaller grouping sizes k in the expectation-maximization-pool-adjacent-violators algorithm
provide 95% quantile intervals more similar to those estimated from individual data, and as
n increases for fixed k, the width of the 95% quantile interval decreases. Overall, Fig. 2
demonstrates that the expectation-maximization-pool-adjacent-violators algorithm provides
an unbiased estimate of the true underlying distribution, F .

Results: Misclassified Data

Figures 2.3 and 2.4 present results from the twelve simulations in settings with n = 5,000
individuals and varying group sizes and misclassification rates. Figure 2.3 demonstrates
that the percent relative bias of both of these estimators in these finite samples is large, e.g.
greater than 100%, for estimates of F (t) that are very small, e.g. less than 0.002, and very
close to 0 for estimates of F (t) that are greater than 0.02, even at large group sizes with high
misclassification rates. Although the individual-based estimator is less biased at small group
sizes and low misclassification rates, we do see similar or lower amounts of bias from the
group testing estimator at higher misclassification rates, e.g., α = β = 0.8, 0.9, particularly
with the larger grouping sizes k = 5, 10 and at lower values of T . Ultimately, the shapes of
the finite sample relative bias curves for both of these estimators are very similar so, at the
very least, grouping does not introduce substantial amounts of additional bias.

With regard to variability, the comparison of the the widths of the 95% Monte Carlo
quantile intervals associated with both estimators, as shown in Fig. 2.4, demonstrates con-
siderable advantage for our estimator from group tested data at low t and high levels of
misclassification. For example, T = 10 corresponds to a true prevalence of 2.5%. If a test is
subject to 10% misclassification, α = β = 0.9, then test results from data grouped into pools
of size 10 will provide a more or equally precise estimate of F (t) for T < 10 than data from
individual tests. This implies that if the cumulative failure rate in question is less than 2.5%,
a testing procedure that involves groups of size 10 will cost 90% less than testing everyone
individually, and will result in a less-biased and more precise estimate of F (t) in this range.
In general, the specific threshold t below which such precision gains can be expected depends
on both the group size and missclassification rate as suggested by Tu et. al (1994) [17] for
estimation of a single fixed prevalence.

Supplementary Material includes results from simulations of group tested current status
on a grid, with grouping done solely within common observation times, which more easily
ensures a sufficiently small maximum value of F . As seen in Tu et. al (1994) [17], we see a
reduction in the size of 95% confidence intervals as the group size increases, and separately
a reduction in the size of the 95% confidence intervals as the misclassification rates decrease.
Additionally, there appears to be no substantial increase in bias as group size increases.
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2.6 Application to Hepatitis C Data

To investigate the performance of our estimator in a practical setting, we use publicly avail-
able data from the 2014 U.S. Birth Data File, created by the National Center for Health
Statistics, to investigate the age-at-incidence distribution for Hepatitis C in non-Hispanic
white women of childbearing age. These data include all such women of ages 13-40 who gave
birth in 2014. We are thus making the tacit assumption that women who gave birth are a
representative sample of women of the same ages that could have given birth with regard
to their risk of infection with hepatitic C. This is not exactly correct but seems to present
a reasonable approximation, at least for sexually active women. Of the 1,981,521 eligible
women, we randomly sampled 10%, creating our sample of N = 197,840 observations, for
greater ease of illustration and computation. The data include the mother’s age in years,
and her Hepatitis C status at the birth of her child. Of the N = 197,840 women in our illus-
tration, only 901 of them tested positive for Hepatitis C, a cumulative incidence of 0.46%.
When accounting for potential misclassification of these test results, we used the sensitivity,
α = 0.987 and specificity, β = 0.999, associated with the most commonly used test for
Hepatitis C: an enzyme immunoassay test. Although hepatitis C can be spread through
sexual contact, it is primarily transferred through blood transmission, and an increase in the
incidence of hepatitis C after age 25 would imply that people are beginning to or continuing
to engage in risky drug behavior.

These data are based on individual blood testing of each mother separately. To illus-
trate the methods here, we consider group testing of pooled blood samples, representing
a potentially enormous savings of test costs depending on the size of the grouping used.
These savings persist even if specific infected individuals need to be identified. As discussed
above, given the low misclassification results we anticipate some loss of accuracy in esti-
mating the prevalence that may nonetheless be worth the considerable cost reduction. We
created artificial group test results two ways: 1) by assigning the data into groups of sizes 2,
5, and 10 within values of mother’s age, and 2) by randomly assigning the data into groups
of sizes 2, 5, and 10. Then, each group test was assigned a positive result if at least one
individual test was positive. For grided group assignments, we computed point estimates
and 95% confidence intervals adjusted for misclassification using the method described in
§2.3. For random group assignments, we computed the adjusted pool-adjacent violators al-
gorithm on the individual test results, and, for comparison, the expectation-maximization
pool-adjacent-violators algorithm on the group tested results.

Figure 2.5 displays the results from the estimates from individual and group tested results
with groups of sizes 2, 5, and 10 in a setting where group assignment is done with women
who are the same age. These results are satisfying, as they lead to the same public health
implications. Although the estimates are slightly different, they increase with group size,
the major jumps in the estimates occur at ages 19 and 21 in each of these group sizes. Here
we can be fairly certain that any public health intervention to potentially reduce the pub-



CHAPTER 2. MISCLASSIFIED GROUP TESTED CURRENT STATUS DATA 17

lic health burden due to Hepatitis C infection would best occur during adolescence, ideally
before risky behaviors such as drug use and unprotected sexual activity begin. In this exam-
ple, major cost reductions could occur, assuming costs proportional to number of tests, by
reducing the number of tests performed, without changing the conclusions from the analysis.

Figure 2.6 displays the results of the estimates from individual and group tested results
with groups of sizes 2, 5, and 10 in a setting where group assignment is done completely
at random. Unlike the estimates in Fig. 2.5 from data grouped according to maternal age,
here the estimates from data in each group size provide slightly different implications. The
results from the individual tests suggest an essentially flat cumulative incidence of hepatitis
C after age 21 having reached a cumulative incidence of approximately 0.38%. This has
significant implications for a public health intervention, potentially indicating, for example,
that any future hepatitis C vaccination would be most effective if implemented during even
late adolescence; no vaccine currently exists although several candidates are under develop-
ment. The group tested results from groups of size 2 also support this conclusion, although
they suggest that the cumulative incidence does not increase after age 19. However, the re-
sults from groups of both sizes 5 and 10 tell a slightly different story. While these estimates
increase to a cumulative incidence of roughly 0.4% before age 20, they then both continue to
increase with age to somewhere between 0.45–0.55% by age 40, suggesting that a substantial
fraction of hepatitis C infections occur post-adolescence.

Because these estimates seem to imply public health interventions at different times in
life, it is important to consider which estimate is most reliable in this particular setting.
As noted, there is very little misclassification in the testing procedure so that we would ex-
pect that the results from the adjusted pool-adjacent violators algorithm based on individual
data would be more accurate, albeit obtained at significantly higher cost. However, the pool-
adjacent-violators algorithm adjusted for misclassification has a limitation - it automatically
estimates cumulative incidences that are less than 1 − β as 0. Because the cumulative in-
cidences at the early ages are very low - less than 0.5%, if we had set β ≤ 0.995 in this
application, our estimate from the individual data adjusted for misclassification would have
been 0 at all ages. This suggests a potential issue with individual test results that may not
be as present in group tested results.

2.7 Discussion

In this paper we propose a modified expectation-maximization algorithm to estimate a dis-
tribution function from data obtained by group tested current status screening with test
misclassification. Simulations show that the estimator based on group tested data adds rela-
tively little additional small-sample bias compared to an estimator based on individual data,
at far lower cost, although this conclusion necessarily requires a larger n as the grouping size
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k increases. Additionally, when substantial misclassification is present, and F (t) is low, esti-
mates from the expectation-maximization-pool-adjacent-violators algorithm done in groups
of size 5 or larger may be less biased with improved precision, although inferential properties
for this procedure need further development. This raises the option that a significantly less
expensive testing procedure might result in a less biased and more precise estimate for the
left tail of F .

In the presence of misclassification, these observations suggest possible hybrid grouping
strategies that may improve precision at low values of F (t) and maintain perfomance at
higher levels, all in comparison to individual tests whose costs are far greater. That is, if
possible, if the screening times are known in advance of pooling, it will likely be advanta-
geous to first group individuals according to the observed Cs, and then use larger group sizes
at the smaller values of C and decrease the group size as C increases, even to individual
tests. Simulations to examine variations of these possibilties are currently underway. As
noted earlier, when individuals in a group have similar C values, it is possible to also use an
approximate individual group tested current status estimator by treating all C values in the
group as the same.

There are a number of important extensions to these results. As noted, the pool-adjacent-
violators estimator for classic current status data converges at a rate of n1/3 [21] with a
non-standard asymptotic limit. We conjecture that the same asymptotics will hold for the
group tested estimator, although this remains to be established. In practice, in a setting with
misclassified individual current status data, the m-out-of-n bootstrap [30] has been shown
to provide one method of obtaining valid inference procedures. We look forward to further
theoretical progress in this area.

It is natural to anticipate that misclassification rates may depend on the group size. This
may occur, for example, if the screening test is more sensitive to detecting a positive group
when there are more individual positives in the pool, related to the so-called dilution effect
[13, 31]. Second, covariate-adjusted regression analysis has been a primary focus of the sta-
tistical literature on group testing [32–35]. In addition, in many applications, interest focuses
on regression effects or group comparisons of time-to-event properties rather than estimation
of the underlying distribution function itself, often through use of standard multiplicative or
additive regression models. Such regression models has been widely studied for individual
current status data (see [19]). Future work will examine the use of additive hazard regression
models for group tested current status data.



CHAPTER 2. MISCLASSIFIED GROUP TESTED CURRENT STATUS DATA 19

Figures

c1

c2

c3

c4

∆1 = 1

∆2 = 0

Figure 2.1: Elementary example of data configuration with two groups, each of size 2, where
the first group has tested positive and the second group has tested negative.
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Figure 2.2: Results from six simulations of estimation of F , with 1,000 runs each, showing
results for varying sample sizes n and group sizes k. The black lines are the average estimates
of F̂ (t) over the 1,000 simulations with the solid line representing the true cumulative dis-
tribution function, Weibull(4, 25), and the dashed and dotted lines respectively representing
the estimates from the pool-adjacent-violators algorithm and the expectation-maximization-
pool-adjacent-violators algorithm. The grey lines are the 2.5th and 97.5th quantiles from the
simulation runs for each estimator, using the same line types.
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Figure 2.3: Graphical representation of the finite sample percent relative bias from twelve
simulations replicated 1,000 times with 5,000 individuals each, based on varying group sizes
k and misclassification rates (α, β), the latter denoted on the right hand column. The
solid black line displays results for the expectation-maximization-pool-adjacent-violators al-
gorithm for group tests, and the dashed black line represents the pool-adjacent-violators
algorithm for misclassified individual test data. The dashed grey line represents the refer-
ence of zero percent bias.
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Figure 2.4: Log of the pseudo-relative efficiency of the expectation-maximization-pool-
adjacent-violators algorithm and the adjusted pool-adjacent-violators algorithm from twelve
simulations with 1,000 runs with 5,000 individuals each, based on varying grouping sizes k
and misclassification rates (α, β), the latter denoted on the right hand y-axis. The solid
black line is a lowess curve showing the overall trend in pseudo-relative efficiency as t in-
creases. The dashed black line represents equal width 95% Monte Carlo quantile intervals for
reference; if the solid black line is below 0, the width of the expectation-maximization-pool-
adjacent-violators 95% Monte Carlo quantile interval is smaller than that from the individual
test pool-adjacent-violators algorithm.
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Figure 2.5: Four estimates of the cumulative incidence of hepatitis C in non-Hispanic white,
child-bearing women ages 13-40 living in the U.S. in 2014 when grouping is assigned within
common values of age. Grouping sizes considered were k = 1, 2, 5, and 10 The solid black
line is the estimate from the individual or group tested results, and the solid grey lines
represent the upper and lower bounds for 95% confidence intervals.
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Figure 2.6: Four estimates of the cumulative incidence of hepatitis C in non-Hispanic white,
child-bearing women ages 13-40 living in the U.S. in 2014 when group testing assigned at
random. The solid line is the pool-adjacent violators estimate from the individual test results,
and the dotted, short dashed, and long dashed lines are the estimates from the expectation-
maximization pool-adjacent-violators algorithm from artificially grouping the individual test
results into groups of sizes 2, 5, and 10, respectively.
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Supplementary material

Derivation of Expectation Step under Misclassification

In this section, we derive the expectation step for the expectation-maximization-pool-adjacent-
violators algorithm if the group testing procedure is subject to misclassification. Assume that
the group assignment algorithm generates groups of size k, and that the sensitivity and speci-
ficity, α and β, of the test are known and constant, regardless of group size. The misclassified
group tested result Yi is known, and we want to know what the probability is of an individual
in the group being a true positive, pr[Φij = 1 | Yi, ci1, . . . , cik].

Statement. Define γ = α + β − 1 for α, β > 0.5. The expected value of a true individual
test result Φij given the potentially misclassified group tested result Yi and the individual
censoring times ci1, . . . , cik is:

E(Φij | Yi = 1, ci1, . . . , cik) =
αF (cij)

α− γS(ci1)× · · · × S(cik)

E(Φij | Yi = 0, ci1, . . . , cik) =
(1− α)F (cij)

(1− α) + γS(ci1)× · · · × S(cik)
.

Here, if we substitute α = β = 1 into these equations, we get the “E” step from perfectly
classified data, as seen as (3) and (4) in the main paper.

Derivation. Here we only consider one group, so we will omit the “i” subscripts everywhere.
We begin with the case where Yi = 1:

E(Φj | Y = 1, c1, . . . , ck) = pr(Φj = 1 | Y = 1, c1, . . . , ck)

=
pr(Y = 1 | Φj = 1, c1, . . . , ck)pr(Φj = 1 | c1, . . . , ck)

pr(Y = 1 | c1, . . . , ck)

Breaking this into smaller pieces, we first see that the conditional individual probability
of a true positive, by definition is pr(Φj = 1 | c1, . . . , ck) = F (cj), and the probability of a
positive misclassified group test result, given that one individual in the group is positive is
simply the sensitivity, pr(Y = 1 | Φj = 1, c1, . . . , ck) = pr(Y = 1 | ∆ = 1, c1, . . . , ck) = α.
Remember that Φj is the true individual test result, and ∆ is the true grouped test result,
or ∆ = 1− 1(Φ1 = · · · = Φk = 0).

The probability of a positive misclassified test becomes a bit trickier:

pr(Y = 1 | c1, . . . , ck) = pr(Y = 1 | ∆ = 1, c1, . . . , ck)pr(∆ = 1 | c1, . . . , ck)

+ pr(Y = 1 | ∆ = 0, c1, . . . , ck) + pr(∆ = 0 | c1, . . . , ck)

= α{1− S(c1)× · · · × S(ck)}+ (1− β)S(c1)× · · · × S(ck)
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Putting it all together,

E(Φij | Yi = 1, ci1, . . . , cik) =
αF (cj)

α{1− S(c1)× · · · × S(ck)}+ (1− β)S(c1)× · · · × S(ck)

=
αF (cj)

α− γS(c1)× · · · × S(ck)

where γ = α + β − 1.
The case where Yi = 0 is very similar. We again begin by cleverly applying Bayes rule:

E(Φj | Y = 0, c1, . . . , ck) = pr(Φj = 1 | Y = 0, c1, . . . , ck)

=
pr(Y = 0 | Φj = 1, c1, . . . , ck)pr(Φj = 1 | c1, . . . , ck)

Pr(Y = 0 | c1, . . . , ck)

and realize that all the quantities in the expression are identical to or clear complements of
quantities calculated in the case where Yi = 1.

– pr(Φj = 1 | c1, . . . , ck) = F (cj)

– pr(Y = 0 | Φj = 1, c1, . . . , ck) = 1− pr(Y = 1 | Φj = 1, c1, . . . , ck) = 1− α

– pr(Y = 0 | c1, . . . , ck) = 1− pr(Y = 1 | c1, . . . , ck) = (1− α) + γS(c1)× · · · × S(ck)

Thus,

E(Φj | Yi = 0, c1, . . . , ck) =
(1− α)F (cj)

1− α + γS(c1)× · · · × S(ck)
.

Results from Simulations with Fixed Censoring Times and
Random Grouping Structure

Tables 1-3 contain the results from the simulations with fixed censoring times described in
§5.1 of the main paper. All results are directly comparable to conclusions drawn from the
simulations with random censoring times.
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T 1 2 3 4 5 6 7 8 9 10
F(T) 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

(α, β) = (0.8, 0.8)
Group Estimator

bias -1.4 -1.7 -1.5 -1.1 -0.6 -0.2 -0.2 0.3 -1.3 -6.1
width 2.11 2.59 2.97 3.18 3.37 3.47 3.70 4.06 4.73 6.29

Individual Estimator
bias 0.1 0.2 0.1 0.5 0.4 0.1 0.2 -0.6 -1.9 -6.6
width 2.54 3.04 3.58 4.06 4.21 3.98 4.49 4.61 5.13 6.40

(α, β) = (0.9, 0.9)
Group Estimator

bias -0.3 -0.5 -0.2 -0.2 0.1 0.4 0.1 0.3 -0.5 -3.2
width 1.82 2.08 2.32 2.51 2.82 2.83 2.79 2.97 3.52 3.93

Individual Estimator
bias 0.0 0.3 0.3 0.0 0.2 0.4 0.3 0.2 -1.5 -3.9
width 1.94 2.46 2.88 2.81 2.91 3.06 3.02 3.13 3.54 4.31

(α, β) = (0.95, 0.95)
Group Estimator

bias 0.2 -0.0 0.2 0.6 0.4 0.4 -0.1 -0.4 -0.9 -3.3
width 1.49 1.82 2.14 2.19 2.25 2.40 2.39 2.62 2.99 3.54

Individual Estimator
bias 0.2 0.1 0.0 -0.1 -0.1 0.2 -0.2 -0.3 -0.7 -2.7
width 1.53 2.11 2.15 2.31 2.31 2.44 2.52 2.56 2.89 3.44

(α, β) = (0.99, 0.99)
Group Estimator

bias 0.5 0.5 0.4 0.4 0.1 -0.1 0.0 0.1 0.0 1.8
width 1.27 1.60 1.71 1.96 1.92 2.05 2.06 2.18 2.33 2.86

Individual Estimator
bias 0.3 0.3 0.3 0.2 -0.1 -0.1 0.2 0.3 0.2 -1.2
width 1.16 1.38 1.53 1.68 1.80 1.81 1.80 1.99 2.15 2.55

Table 2.1: Results from the expectation-maximization-pool-adjacent-violators algorithm in
groups of size two and the pool-adjacent-violators algorithm for individuals in a setting
with n =10,000 individuals on 10 fixed censoring times for several fixed, equal and constant
specificity and sensitivity. Grouping was done across the Cs, although there were 1,000
individuals at each C. Here we present the bias of each estimator (compared to F (T ))
multiplied by 1,000 (for example, a reported bias of 1.4 corresponds to a true bias of 0.0014)
and the width of the 95% Monte Carlo quantile intervals, multiplied by 100 (e.g. a reported
width of 1.53 corresponds to an actual width of 0.0153).
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T 1 2 3 4 5 6 7 8 9 10
F(T) 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

(α, β) = (0.8, 0.8)
Group Estimator

bias 1.7 2.0 2.2 2.3 1.7 1.6 0.7 -1.1 -3.6 -9.9
width 1.90 2.33 2.82 3.23 3.32 3.67 3.87 4.30 4.85 6.45

Individual Estimator
bias -0.3 0.1 0.1 0.4 0.3 0.1 -0.5 -1.2 -2.6 -7.5
width 2.50 3.11 3.58 4.17 4.33 4.25 4.50 4.42 4.89 6.21

(α, β) = (0.9, 0.9)
Group Estimator

bias 1.4 1.8 1.8 1.6 0.9 0.4 0.1 -0.8 -2.2 -6.6
width 1.79 2.25 2.56 2.78 2.94 2.87 3.05 3.36 3.62 5.01

Individual Estimator
bias -0.2 0.2 0.2 0.9 0.4 0.0 -0.2 -0.2 -1.1 -4.2
width 1.96 2.42 2.81 2.95 2.90 3.04 3.13 3.06 3.33 4.26

(α, β) = (0.95, 0.95)
Group Estimator

bias 1.4 1.4 1.2 0.7 0.6 0.4 -0.3 -0.4 -1.0 -4.0
width 1.59 2.03 2.43 2.61 2.72 2.72 2.85 2.93 3.28 4.34

Individual Estimator
bias 0.4 0.3 0.1 0.1 0.3 -0.1 -0.5 -0.3 -0.7 -2.5
width 1.56 2.17 2.33 2.22 2.35 2.42 2.38 2.44 2.61 3.33

(α, β) = (0.99, 0.99)
Group Estimator

bias 1.0 1.1 1.1 0.7 0.4 0.3 -0.1 -0.3 -1.4 -3.7
width 1.60 1.96 2.32 2.38 2.47 2.42 2.52 2.63 2.91 3.69

Individual Estimator
bias 0.0 0.1 0.3 0.1 0.1 0.2 0.1 -0.1 -0.4 -1.6
width 1.12 1.43 1.60 1.68 1.68 1.94 1.94 1.94 2.14 2.55

Table 2.2: Results from the expectation-maximization-pool-adjacent-violators algorithm in
groups of size five and the pool-adjacent-violators algorithm for individuals in a setting
with n =10,000 individuals on 10 fixed censoring times for several fixed, equal and constant
specificity and sensitivity. Grouping was done across the Cs, although there were 1,000
individuals at each C. Here we present the bias of each estimator (compared to F (T ))
multiplied by 1,000 (for example, a reported bias of 1.4 corresponds to a true bias of 0.0014)
and the width of the 95% Monte Carlo quantile intervals, multiplied by 100 (e.g. a reported
width of 1.53 corresponds to an actual width of 0.0153).
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T 1 2 3 4 5 6 7 8 9 10
F(T) 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

(α, β) = (0.8, 0.8)
Group Estimator

bias 2.4 3.5 3.8 3.7 3.3 2.2 0.4 -1.8 -5.7 -13.7
width 1.59 2.52 3.03 3.45 3.55 4.07 4.07 4.54 5.14 7.62

Individual Estimator
bias -0.0 0.9 0.9 0.9 0.8 0.2 0.1 -0.4 -1.6 -6.4
width 2.38 2.98 3.50 3.97 4.28 4.15 4.39 4.64 5.11 6.64

(α, β) = (0.9, 0.9)
Group Estimator

bias 1.8 2.5 2.6 2.6 2.1 1.3 0.3 -1.0 -3.2 -9.5
width 1.96 2.50 2.77 3.00 3.22 3.36 3.49 3.68 4.40 5.99

Individual Estimator
bias 0.4 0.7 0.8 0.2 0.2 0.5 -0.0 -0.2 -0.9 -3.6
width 1.87 2.41 2.91 3.06 3.00 3.00 3.12 3.28 3.50 4.25

(α, β) = (0.95, 0.95)
Group Estimator

bias 1.6 2.3 2.5 2.0 1.2 0.3 -0.3 -1.0 -2.4 -7.5
width 1.73 2.16 2.68 2.99 3.11 3.12 3.21 3.37 3.84 5.33

Individual Estimator
bias 0.2 0.2 0.5 0.1 0.1 -0.0 -0.0 -0.3 -0.8 -2.8
width 1.56 2.11 2.28 2.22 2.44 2.34 2.45 2.56 2.70 3.30

(α, β) = (0.99, 0.99)
Group Estimator

bias 1.7 1.9 2.0 1.2 1.0 0.6 -0.1 -0.6 -1.6 -6.2
width 1.66 2.20 2.56 2.72 2.80 3.04 3.01 3.22 3.51 5.23

Individual Estimator
bias 0.2 0.3 0.4 0.2 0.3 0.3 0.3 0.2 -0.1 -1.2
width 1.16 1.43 1.53 1.74 1.73 1.84 1.84 2.04 2.14 2.59

Table 2.3: Results from the expectation-maximization-pool-adjacent-violators algorithm in
groups of size ten and the pool-adjacent-violators algorithm for individuals in a setting with
n =10,000 individuals on 10 fixed censoring times for several fixed, equal and constant
specificity and sensitivity. Grouping was done across the Cs, although there were 1,000
individuals at each C. Here we present the bias of each estimator (compared to F (T ))
multiplied by 1,000 (for example, a reported bias of 1.4 corresponds to a true bias of 0.0014)
and the width of the 95% Monte Carlo quantile intervals, multiplied by 100 (e.g. a reported
width of 1.53 corresponds to an actual width of 0.0153).
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Results from Simulations with Fixed Censoring Times and
Grouping Within Grid Points

To calculate the prevalence of a disease from grouped test results with sensitivity α and

specificity β, Tu et al. suggest calculating p = 1−{(α− P )(α + β − 1)−1}1/k
, where k is the

group size and P is the maximum likelihood estimate of the prevalence from the grouped
test results. They also suggest getting inference for this parameter using

V ar(p) =
(α− P )2/k−2P (1− P )

nk2(α + β − 1)2/k

In the case of grided current status data, we can adapt this formula to estimate the
prevalence at each point on the grid. First, we use the pool-adjacent-violators algorithm
on the grouped test results to get an estimate of P (t) for each t in the grid. We transform

back to the individual test results using F (t) = 1 − [{α− P (t)}(α + β − 1)−1]
1/k

. We can
calculate confidence intervals using

V ar{f(t)} =
{α− P (t)}2/k−2P (t){1− P (t)}

nk2(α + β − 1)2/k
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Figure 2.7: Results from simulations done on a grid of ten possible censoring times with
n = 1, 000 individuals observed at each censoring time. Grouping was done within the grid
points. Groups of sizes 1, 2, 5, and 10, and misclassification rates of 0, 1%, 5%, 10%, and
20% were examined. Estimates and variances were calculated as described in Section 4 of
the supplemental information. Points represent the estimates and confidence bars represent
asymptotically normal 95% confidence intervals.

Code to Replicate Simulations

Code to replicate the simulations presented in this chapter is available at

www.github.com/lpetito/groupedcs.
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Chapter 3

An Application of Marginal
Structural Modeling

3.1 Gentle Introduction to Marginal Structural

Models

Introduction

Often in medical studies, researchers aim to isolate the effect of an exposure or treatment
A on an outcome Y . They may ask questions like “Does drinking coffee cause pancre-
atic cancer?”, “Does prepregnancy hypertension impact risk of preeclampsia?”, or “Does a
particular treatment decrease AIDS-related morbidity/mortality?” These questions can be
difficult to answer due to the presence of confounding factors, W , variables that are related
both to the exposure A and the outcome Y . Failing to account for such factors can produce
biased estimates of the desired effect. For instance, maternal age (say, being over 40) is a
confounding factor when studying the relationship between prepregnancy hypertension and
preeclampsia (see figure 3.1). This is a classic example of a confounder because older women
are at greater risk of both preeclampsia and prepregnancy hypertension. We are more likely
to see hypertension in older women, which in turn implies that we are more likely to see
more cases of preeclampsia since it is more common in older women. This conclusion can be
reached independently of prepregnancy hypertension - confounding the relationship between
prepregnancy hypertension and preeclampsia.

Randomized controlled trials (RCTs) are experimental studies that aim to estimate the
effect of an intervention A on an outcome Y by randomly allocating individuals to the in-
tervention A = 1 or to the control group (generally a placebo accompanied by standard of
care) A = 0. By randomly assigning individuals to their treatment group, RCTs address
confounding from both measured and unmeasured factors by essentially breaking any associ-
ation that may exist between those factors and the intervention. However, it is worth noting
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Preeclampsia
(Y )

Figure 3.1: Directed acyclic graph representing the confounding process assumed in the
prepregnancy hypertension - preeclampsia example.

that due to random chance, it is possible that some measured or unmeasured confounders
may not be balanced between the intervention and control groups. Despite the advantages
of conducting RCTs, in certain situations they can be prohibitively costly, not practical, or
unethical. For example, RCTs cannot be used to study of the effects of childhood abuse on
later-in-life morbidities for ethical reasons, as well as the very large cost of running a trial
for decades. RCTs also cannot address questions such as “Does high cholesterol increase the
risk of heart attack?”, as an individual’s cholesterol level cannot be randomly assigned.

Instead, researchers have turned to observational data sources to answer these kinds of
questions. As individuals in observational data sources have chosen their own treatment, as
opposed to randomly being assigned to an intervention, these data must be analyzed more
carefully, as there are almost certainly factors present that have affected an individual’s
treatment choice as well as their resulting outcome. In the case of an RCT, the effect of A
on Y is usually estimated simply, as E[Y | A = 1]− E[Y | A = 0]. Confounding factors are
not considered as they are considered to be balanced between the treatment groups, though
this practice of presenting unadjusted statistics is still debated in the statistics community
(cite some people like Mark, Michael Rosenbloom). However, most statisticians agree that
in observational studies, adjusting for confounding factors is needed. There are two classes
of estimator that can adjust for these confounders: conditional estimators and marginal es-
timators.

The conditional approach is the more common approach taken in statistical practice.
It works by first estimating E(Y | A,W ) for every possible combination of A and W ,
and then for a fixed level A = a, averaging those predicted values over the observed dis-
tribution of W . (Note that this is just amounts to the tower property of expectations:
E(Y | A) = E[EW (Y | A,W )]).) The estimation of E(Y | A,W ) can be done either
nonparametrically or parametrically. The most common nonparametric technique is called
stratification (cite Mark I think?), where the data are divided into subsets based on the
observed confounders W , and then the relationship E(Y |A) is assessed within each strata.
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Going back to our preeclampsia example, this amounts to estimating the relationship be-
tween prepregnancy hypertension and preeclampsia separately in women who are over or
under 40 years old, and then creating a weighted average of our two estimates based on the
proportion of women in the study who are over or under 40 years old. The largest barrier
to using this technique is as the number of confounding factors W increases, the number
of strata can become prohibitively large. Other nonparametric techniques, such as random
forest and SuperLearner (add citations), are also available to use, and can be more adept at
handling larger sets of covariates.

Parametric modeling is more commonly used to estimate the conditional quantity E(Y |
A,W ), as the set of confounding factors W is often too large for nonparametric techniques, or
it contains too many continuous variables. Parametric modeling estimates the joint distribu-
tion directly, most simply as a main-terms linear regression model E[Y |A,W ] = α+βA+γW ,
though the model can be specified in many more ways (adding quadratic terms, cubic splines,
interactions, etc.). There are two major limitations to this technique: model specification
and model overfitting. The most difficult aspect to directly modeling this joint distribu-
tion is that the model must be correctly specified in order for the effect of interest β to be
interpreted as the true effect of A on Y . This property is almost certainly untestable in
practice, though there are theoretical properties of some model-fitting techniques that allow
statisticians to be more sure of their final model (cite oracle inequality for SuperLearner).
Additionally, as the number of covariates W approaches the sample size in the data, the
final model can become increasingly overfit to the particular dataset used in the modeling
process. Overfitting models is not desirable because it reduces the external generalizability
of the estimates. k-fold cross-validation is a tool that has been developed to prevent the
overfitting of a model, though it is not yet widely used in epidemiologic practice.

When estimating the effect of a treatment A on the outcome Y , the marginal approach
is less commonly used than the conditional approach. The guiding philosophical principle
for randomized controlled trials is the same principle that grounds the marginal approach
to calculate effect estimates from observational data: if the treated and control groups are
the same in every way except their treatment regimen, any differences researchers see in
the outcome between the two groups can be attributed to the treatment. Matched selection
is a type of marginal approach, which can be found in perfectly balanced RCTs as well as
matched case-control studies (cite Jack and Paul’s Impact Eval book), but here we focus on
data reweighting, a technique first studied in the context of surveys done with non-random
sampling (cite something about surveys - Thomas Lumley). This data reweighting approach
works by creating a set of weights such that when a dataset is reweighted, the observed
covariate distribution in each treatment group is the same, and then estimating the effect of
the treatment A on the outcome Y in the reweighted sample.

A major advantage of the marginal approach is the ability of the model to incorporate
information from many confounding factors without worrying about model overfitting. Incor-
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porating all covariates will overfit the model in when conditionally estimating E[Y | A,W ],
whereas the reweighting of the sample allows covariates to be included in the model for the
weights but not the final weighted average, E[Y | A]. This advantage is especially helpful in
situations where the outcome of interest is rare. Nonetheless, there are several limitations
to the marginal approach. First, we can only balance the data on measured confounding
factors; unmeasured confounding cannot be addressed. Second, the model for the creation
of the weights must be properly specified. The same concerns stated about model fitting in
conditional estimation also apply here. Last, there can be large variability in the weights,
which may lead to certain individuals having undue influence on the effect estimate.

Inverse Probability Weighting

Inverse probability weighting (IPW) is a marginal approach to estimating the effect of an
exposure A on an outcome Y while still accounting for potential confounding factors W by
weighting the data to balance the representation of each strata of W within each exposure
group. It is most commonly used in observational studies, as an attempt to approximate the
conditions of an RCT by breaking any association between observed confounding factors and
the exposure. Practically, each observation is weighted by the reciprocal of the predicted
probability of being in the covariate subgroup that was observed for each patient. The process
is briefly outlined below using our maternal age/prepregnancy hypertension/preeclampsia
example.

1. Create the weight model. Use a logistic regression model to estimate the probability
of prepregnancy hypertension A in each maternal age strata W (< 40 vs. ≥ 40):

logit[Pr(A = 1)|W ] = β0 + β1W.

[Note in this case, a logistic regression model will provide the same answer as stratified
estimation.]

2. Create individual weights. From the model in step 1, predict the probability of prepreg-
nancy hypertension for each individual, as

p(w) = Pr(A = 1|W = w) =
1

1 + exp[−(β0 + β1w)]
.

Then the weight for each individual who experienced prepregnancy hypertension be-
comes ωi = 1/p(wi), and the weight for each individual who did not experience prepreg-
nancy hypertension becomes ωi = 1/(1− p(wi)), where wi is that individual’s age.

3. Calculate the effect estimate by simply taking the weighted average

E[Y | A = 1]− E[Y | A = 0] =
n∑
i=1

ωiYi[I(Ai = 1)− I(Ai = 0)].
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There are three primary concerns throughout the weight-creation process: is “balance”
achieved, what is the population of interest, and how big are the weights. First, achieving bal-
ance is important because it limits bias in the effect estimate. Balance in this scenario refers
to the similarity in the distribution of confounding factors needed between treatment and
control groups. For example, once the exposed and unexposed groups have been weighted, if
we have achieved balance we would expect to see the same (or similar) proportion of females
in each group. It is worth noting that when comparing the distributions of confounding
factors between strata of A that the magnitude of the difference seen is more important
than the statistical significance. Second, defining the population of interest, and specifically
knowledge about the distribution of confounding factors in that population, is essential to
the weight-creation process because it speaks to the generalizability of the effect estimates.
Last, the size of the weights directly impacts how much influence an individual has on the
final effect estimate. For example, an individual with a weight of 5 is 4 times less important
than a person with a weight of 20.

The presence of multiple confounding factors makes the development of weights more
difficult. Instead of being able to estimate the probability of exposure in each strata of a
covariate, we have to develop models (generally linear or logistic regression) to smooth over
the parameter space so we can extrapolate weights from each individual’s unique covariate
pattern. To ensure that the weights are really taking care of potential confounding only,
statisticians decided to stabilize the weights by dividing the weight defined in step 2 above
by the probability of exposure. This process reduces the number of individuals who have
extreme weights, but these weights are not directly interpretable anymore. They no longer
have to be ≥ 1, which implies that they are no longer simply the inverse of the probability
of exposure. When using IPW, users should perform checks to ensure that the mean of the
weights is close to 1; if not, the model specification for the weight model (step 2) is probably
incorrect, or another essential assumption has been violated.

Another method to deal with extreme weight values is truncation. Commonly, the ex-
treme weights (<1st percentile or >99th percentile) are reset them to the 1st percentile or
99th percentile, although some people advocate for using the 5th and 95th percentiles as the
cutoffs. This practice is a classic example of bias-variance trade off, as resetting the weights
could induce bias into the point estimate, but will reduce the variability in the final results.

Marginal Structural Modeling

Now that we understand IPW in the context of a cross-sectional study, we can begin to con-
ceptualize how we might approach questions of a longitudinal nature. These are inherently
more difficult to answer, as defining the question can be half the battle. Are the researchers
interested in the effect of a time-varying treatment on an outcome at a specific point in time,
e.g. 5 year survival? Are they interested in the average effect of a time-varying treatment
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on a time-varying outcome?

Marginal structural models (MSM) were developed to address the presence of time-
dependent confounding when studying the effects of a time-varying exposure on an outcome.
A time-dependent confounder behaves slightly differently than a traditional confounder in
a cross-sectional analysis. Because the both the exposure and the confounder vary with
time, future levels of the confounder are affected by prior levels of the exposure, meaning
that the time-dependent confounder is a part of the causal pathway between the exposure
and the outcome. Simply adjusting for this time-varying confounder would not allow us to
detangle the direct effect of the exposure on the outcome. However, not adjusting for this
time-varying confounder would also yield invalid results, as the confounder could be indica-
tive of a preference in future levels of the exposure.

Using IPW to estimate the parameters in MSMs allows us to re-weight the data at each
point in time during the study follow-up to balance the covariate distributions in the treat-
ment groups. This approach breaks the effect that the time-varying covariate has on the
exposure and the outcome by essentially randomizing the covariate at each point in time.
We can consider this a “marginal” approach because the balancing of the sample at each
time point happens before the estimation of the parameter of interest. IPW can also be
used in MSMs to address issues in follow-up through the study duration. These “censoring”
weights can be used to re-weight the data so that it approximates what the data would have
been had each individual been followed through the whole study period.

In order to interpret the results from an MSM as causal, several assumptions must be
either empirically verified or taken on faith. The first and most important assumption is
called exchangeability, which is also referred to as the assumption of no unmeasured con-
founding. This assumption cannot be verified from available data, but rather must be well
thought-out before the study begins, so researchers can collect the relevant data.

Another required assumption is called consistency. This assumption comes from the coun-
terfactual framework. Each individual has a set of counterfactual outcome that corresponds
to a possible treatment level. A particular counterfactual outcome, Ya for an individual is
their outcome in a world where, possibly contrary to fact, the exposure has been set to a par-
ticular level, A = a. Consistency mandates that we must assume that the world of observed
data is “consistent” with the counterfactual world. This means that for a given individual
who experiences exposure at level a, the outcome we see for them in the real world is the
same outcome we would have seen for them in their counterfactual outcome set.

The experimental treatment assumption, or positivity, is an assumption that requires a
non-zero probability of being in a particular treatment group for every possible covariate
pattern observed. An example of a theoretical violation of positivity is including women in
a prostate cancer trial. Because women do not have a prostate, their probability of being
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treated for prostate cancer is 0. Although this violation is contrived for purposes of demon-
stration, often theoretical positivity violations can be addressed through more careful study
design.

The positivity assumption can also be violated practically through the existence of “ran-
dom zeros.” A random zero occurs when there are many available covariates. In this scenario,
the number of strata within which to estimate weights approaches the number of people in
the study, so there exist strata where all individuals have been assigned to one particular
treatment group. This assumption can be checked empirically, although it may be time-
consuming. If positivity is found to be practically violated, there are several ways to correct
it. First, the number of strata can be reduced by collapsing covariate levels. Additionally,
covariates that have a “weak” association with the exposure and the outcome can be ex-
cluded, as the likelihood of a random zero decreases with the number of covariates. Finally,
parametric models can be imposed to smooth over the choppy covariate space.

Although MSMs provide a suitable way to address time-dependent confounding in lon-
gitudinal studies, they have a few drawbacks. MSMs can be very time consuming. Fitting
each of the models for the exposure, censoring, and outcome can be prohibitive, especially if
the user chooses machine-learning methods to create each model. Additionally, when using
IPW to estimate the parameters in a MSM, the variances that are estimated are typically
20% higher than the unadjusted estimated variances. This implies that MSMs require a
larger sample size to have the same power as unadjusted analyses.

In section 3.2, we apply marginal structural modeling to a dataset to assess the joint
effect of three time-varying exposures on an outcome in the context of time-dependent con-
founders. We then further discuss the marginal structural modeling framework in the context
of counterfactuals in section 3.3. Material presented in section 3.1 summarizes and reframes
work presented in [36], [37], [38], and [39].
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3.2 Using marginal structural modeling to evaluate

the roles of lipid levels, inflammatory markers,

and rheumatoid arthritis disease activity in

assessing risk of cardiovascular events

Introduction

Rheumatoid arthritis (RA) is an autoimmune disorder affecting approximately 1.5 million
people in the United States that primarily causes swelling, warmth, and pain in the mem-
branes surrounding joints [40–42]. Moreover, in moderate to severe cases, it can cause in-
flammation around the heart and lungs [42]. RA patients are at increased risk of myocardial
infarction (MI), cardiovascular disease, stroke, and cardiovascular disease-related mortality
compared with the general population; however, this increased risk may not be due solely to
established risk factors (family history of CVD, diabetes, hypertension, dyslipidemia), but
rather to other comorbidities associated with RA (higher erythrocyte sedimentation rates
(ESRs), vasculitis, pulmonary disease) [43, 44]. Contrary to expectation, researchers previ-
ously found that low cholesterol patients were at increased risk of cardiovascular disease in
a cohort of RA patients with high ESRs [45].

Characteristics of rheumatoid arthritis disease activity have been found to affect cardio-
vascular event occurrence. Studies have reported that patient response to treatment may be
indicative: cardiovascular events occurred less frequently in 1) patients who received nonbi-
ologic disease-modifying antirheumatic drugs (DMARDs) and 2) those who responded to a
biologic DMARD compared with those who did not [46, 47]. Moreover, interleukin-6 (IL-6),
one of the primary drivers of RA-related inflammation, has been linked with the development
of coronary heart disease in both patients with RA and the general population [48–53].

Tocilizumab (Actemra) is a humanized monoclonal antibody against the IL-6 receptor
that was developed by Genentech/Roche/Chugai and first approved by the Food and Drug
Administration (FDA) to treat moderate to severe rheumatoid arthritis (RA) in January
2010 [54]. Although tocilizumab has an approved regulatory label for inadequate responders
to one or more DMARDs (DMARD-IR), it came at a time where tumor necrosis factor
(TNF)-α inhibitors had already been on the market for a decade, thus relegating it to sec-
ond or third line use. Tocilizumab aims to reduce inflammation and decelerate the rate of
articular damage in patients with RA.

When patients with chronic inflammation are placed on anti-inflammatory drug regimens,
an elevation in their lipid levels is typically seen that persists through their treatment. This
elevation could be due to the regulatory integration the drugs into metabolic and inflam-
matory molecular networks [55–57]. Patients taking tocilizumab specifically see a greater
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magnitude of elevation in their lipid levels, particularly low-density lipids, than patients on
other anti-inflammatory agents, e.g. TNF-α blockers, although the implications of these
elevations are still under study [51, 52, 56, 57].

In patients with moderate to severe RA who are taking tocilizumab, the independent
contributions of pre-treatment versus post-treatment levels of RA disease activity, HDL
cholesterol, and LDL cholesterol to the risk of major adverse cardiac events (MACE) are
unknown. Detangling the effects of these measures before treatment and post-treatment will
allow us to attribute the risk of MACE to measures that are representative of chronic levels
versus acute changes in these levels. Furthermore, it is important to evaluate whether inflam-
matory markers simply confound the relation between RA disease activity, HDL cholesterol,
LDL cholesterol, and MACE or if they are an integral part of the causal pathway, partially
mediating these relationships as a time-dependent confounder. Time-dependent confounders
(TDC) behave as traditional confounders - the TDC affects both the outcome and the ex-
posure of interest, but additionally, previous levels of the exposure influence future levels of
the TDC.

In this paper, we address the problems of time-dependent confounding implicit in this
analysis by applying marginal structural modeling to 1) estimate the effect of pre-treatment
levels of RA disease activity and HDL and LDL cholesterol on the risk of MACE and 2) esti-
mate the effect of post-treatment levels of RA disease activity and HDL and LDL cholesterol
independent of pre-treatment levels on risk of MACE.

Methods

Study population

This study population has been described in detail previously (see [58] for more details).
Between 2007 and 2011, Roche conducted five clinical trials (OPTION, AMBITION, RA-
DIATE, TOWARD, and LITHE) and enrolled participants into corresponding long-term
extension (LTE) studies (GROWTH95, GROWTH96, and LITHE) to study tocilizumab.
For this post-hoc analysis, we used the available data on 3,986 individuals who partici-
pated in both a clinical trial and LTE study. These individuals received at least 1 dose of
tocilizumab intravenously every 4 weeks, either as their only RA treatment or in combination
with other drugs, through April 1, 2011. Each individual was followed for up to 60 months
after beginning their tocilizumab treatment (for clinical trial participants who were controls,
this period began during the long-term extension study). MACE and censoring times were
recorded as they occurred through the 60-month follow-up period. Demographic and general
health status data were collected at the beginning of the study, as was information on con-
comitant medication usage. Laboratory values were collected three times: pre-tocilizumab
treatment initiation, six months after treatment initiation, and twelve months after treat-
ment initiation.
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Study variables

The occurrence of a major adverse cardiac event (MACE), defined as at least one of def-
inite nonfatal MI, nonfatal stroke, or death caused by CVD, was the primary outcome in
this study. All MACE events were confirmed by an independent cardiologist with experi-
ence serving on MACE adjudication panels. More details on this process can be found in [58].

The exposures of interest were RA disease activity and HDL and LDL cholesterol levels,
all patient characteristics that are used to determine treatment courses for RA. The RA
Disease Activity Score in 28 joints (RA-DAS28) was used to assess the severity of rheuma-
toid arthritis in each patient. Although subscales of the RA-DAS28, swollen joint count
and tender joint count, were also available, they were not used in analyses due to their high
correlation with RA-DAS28 (0.69 and 0.82 respectively).

Both time-independent and time-dependent covariates were chosen a priori from theory-
based causal diagrams (figures 3.2 and 3.3) [59]. They included demographic and health sta-
tus characteristics (age, sex, body mass index, family history of cardiac disorders, personal
history of cardiac disorders, blood pressure, smoking status, and RA duration), laboratory
values that included inflammatory markers (interleukin-6 receptor, erythrocyte sedimen-
tation rate, C3, C4, C-reactive protein, albumin, haptoglobin, absolute neutrophil count,
platelet count) and other lipid levels (total cholesterol, apolipoprotein A-I, apolipoprotein
B, Lp(a), serum amyloid A), and use of concomitant medications (oral steroids, statins,
NSAIDs, methotrexate). Baseline demographic and health status characteristics and con-
comitant medication usage were considered time-independent confounders (figure 3.3). All
inflammatory markers and lipid levels were considered potential time-dependent confounders.
Triglycerides were excluded as a covariate as it is a linear combination of total, HDL, and
LDL cholesterol.

Statistical Analysis

Exploratory analysis

We first described the characteristics of the sample at each time point they were measured,
as well as the distribution of the exposures and prevalence of MACE. We then assessed the
censoring pattern observed in the data.

Cross-sectional analysis

We used a weighted logistic regression model to estimate the (not causal) association be-
tween pre-treatment levels of RA disease activity, HDL cholesterol, and LDL cholesterol on
the 5-year odds of MACE. Because our outcome was so rare and the number of potential
confounders was so large, traditional methods to adjust for all measured confounders would
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have substantially over-fit the model. The inverse probability weighting (IPW) [36, 37, 60]
estimator allows us to re-weight our sample to balance covariate distributions across our
exposures, thereby approximating conditions in a randomized controlled trial as closely as
possible.

IPW estimators require the specification of two models: a summary model and a model
to create weights. As our exposures of interest are continuous, we cannot enumerate all
possible exposures, and are forced to pre-specify an un-saturated summary model. In this
analysis, the summary model was chosen to be a logistic regression model that included as
main terms each exposure, as well as age and personal history of cardiac disorders, which
were the covariates that were most strongly associated with MACE [58].

Another consequence of having continuous exposures of interest was modeling conditional
densities instead of modeling the probability of observing a particular exposure. We opted
to estimate each of the three conditional densities of interest via linear regression, assuming
a normal kernel. All covariates measured at or before treatment initiation (demographic and
health status, concomitant medications, and laboratory values), as well as pre-treatment
initiation levels of the exposures of interest, were incorporated as covariates in the three
linear regression models used to create the weights. To address loss to follow-up, we used
a logistic regression model to estimate the probability of completing all follow-up time (five
years), adjusting for all covariates measured at or before treatment initiation, as well as the
three exposures of interest. Each of the four weights was stabilized [61], and their product
was used to fit the summary weighted logistic regression model used to estimate the odds of
MACE. The mean weight was 1.13, and the range was truncated to 0.01-30. As confidence
intervals reported from standard software are known to be too conservative [36], we used a
nonparametric bootstrap with 1,000 resamples to estimate robust standard errors.

We also ran an unweighted main-terms logistic regression model, to provide a comparison
to our weighted model. Robust standard errors are reported to address model misspecifica-
tion.

Longitudinal analysis

We implemented a logistic marginal structural model (MSM) to estimate the causal effects
of post-treatment changes in RA disease activity, HDL cholesterol, and LDL cholesterol on
the MACE outcome described above. Since many of the inflammatory markers are part of
the postulated causal pathway between RA disease activity and HDL/LDL cholesterol and
MACE (see figure 3.3), adjusting for these factors by simply adding them as time-dependent
variables in a classic logistic regression model would produce non-interpretable, non-causal
effect estimates [36, 37]. Instead, we opted to use a logistic MSM to model the exposure-
specific effects on MACE conditional on the history of exposures and covariates outlined in
the Study variables section. We used the IPW estimator to estimate the parameters in
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our MSM, so time-dependent confounders and other factors on the causal pathway were only
incorporated in the process of creating the exposure model weights.

There were two parts to the modeling process: choosing a summary model, and weight
creation. We chose to use the following summary model:

logit(Pr[Y (t) = 1|A(t), V ]) = α + βA(0) + γ[A(0)− A(t)] + δV,

which incorporates age and personal history of CHD as covariates (V ). Here, β = (β1, β2, β3)
represent the effects of pre-treatment levels of RA disease activity, HDL cholesterol, and LDL
cholesterol on the log odds of occurrence of a MACE at time t, γ = (γ1, γ2, γ3) represent the
effects of post-treatment changes in RA disease activity, HDL cholesterol, and LDL choles-
terol on the log odds of occurrence of a MACE at time t, and δ = (δ1, δ2) represent the
effects of age and personal history of CHD, respectively, on the log odds of occurrence of a
MACE at time t.

To create an appropriate set of weights, we first needed to determine which time-varying
variables acted as time-dependent confounders. Thus, all laboratory values (inflammatory
markers and lipid levels) were examined to determine if they satisfied the criteria for time-
dependent confounding by separately examining the unadjusted association between each
exposure at time (t − 1) and each the confounder at time (t). As all potential confounders
were continuous, linear regression models were used, with robust (sandwich) standard errors
to account for repeated measurements on each individual. All variables for which the asso-
ciation had P < 0.2 were retained for use as time-dependent confounders in the creation of
weights to use in the marginal structural model, as shown in Table 3.1.

To create the exposure weights, we estimated each of the three conditional densities using
linear regression assuming a normal kernel. These models controlled for all pre-treatment
variables as well as the time-varying confounders listed in Table 3.1. We also created a set of
inverse probability of censoring weights using main-terms logistic regression models, control-
ling for all time-independent and time-dependent confounders as listed in Study Variables,
as individuals who were censored might not have been representative of the whole cohort.
Each of these weights was stabilized, and their product was used to fit the summary weighted
regression model to estimate the risk of MACE. Again, the mean weight was 1.13, and the
range was truncated to 0.01 − 30.0. We used a nonparametric bootstrap with 1,000 resam-
ples to estimate robust standard errors for the MSM.

After completing our MSM, we also performed an associational unweighted logistic regres-
sion model in the same form as the summary model detailed above for practical comparison.
Robust standard errors were computed using a sandwich estimator in this unweighted model.
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For more details about the assumptions underlying and implementation of the MSM,
please see section 3.3.

Further details

Missing data at baseline was imputed 50 times using multiple imputation by chained
equations [62], with a burn-in period of 20 iterations for each imputed dataset [63]. Please
see table 3.2 for details about data missingness and truncation values used. Any missing-
ness seen in time-varying covariates after the pre-treatment measurement was imputed using
carry-forward imputation. All estimates were adjusted for the imputation process according
to rules presented in [64]. All statistical analyses were conducted in R version 3.3.2.

Results

Sample description

Our study included 3,986 patients with moderate to severe RA (average duration 9.3
years upon study entry) taking a course of tocilizumab (Table 3.3). A majority of patients
were female, and were taking a course of oral steroids, NSAIDs, and/or methotrexate con-
comitantly with their tocilizumab treatment. About half of patients had abnormal blood
pressure at treatment initiation. Fewer than twenty percent of patients were current smok-
ers, had a personal or family history of cardiac disorders, or were currently using statins.

Once patients began using tocilizumab, they saw a sharp decline in their DAS28 in the
first 6 months (mean decrease of 2.8 points), and then a tapering in the following 6 months
(mean decrease of 0.5 points) (Table 3.4). The LDL and total cholesterol levels rose in the
first six months of treatment (mean increases of 0.4 and 0.7 respectively), and then stabi-
lized. In contrast, there was little variation in the mean HDL cholesterol level over the first
year of tocilizumab treatment. Most other laboratory values saw a more substantial change
in the first six months of treatment, and then stabilized.

Fifty individuals (1.25%) had major adverse cardiac events during the 5-year follow-up
(Table 3.5). Of those events, 5 occurred between 0 and 6 months post-treatment initiation,
9 occurred between 6 and 12 months post-treatment initiation, and 36 occurred between 12
months and 5 years post-treatment initiation. Although there was a fair amount of censoring
during follow-up (10% during the first year, and an additional 60% in the next four years
before the study end), most of those remained in follow-up at least through 48 months.

Cross-sectional results
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The estimates of the association between pre-treatment levels of RA disease activity,
HDL cholesterol, LDL cholesterol, and five-year odds of MACE, adjusted only for other
pre-treatment measurements, are presented in table 3.6. The unweighted regression analysis
suggests a 36% increase (95% CI: 1.07, 1.74) in five-year odds of MACE for each 1-point
increase in RA disease activity, adjusting for HDL cholesterol, LDL cholesterol, age, and
personal history of cardiac disorders. However, in the results from the weighted regression
analysis, this association is attenuated to a non-statistically significant increase of 11% (95%
CI: 0.58, 2.11). The association between LDL cholesterol and five-year odds of MACE is
also attenuated from the unweighted model to the weighted model, though in both models
the association is not statistically significant. The association between HDL cholesterol and
five-year odds of MACE changes direction when the weights are added - the association
for a one-unit increase in HDL cholesterol decreases the odds of MACE in the unweighted
model (OR: 0.61), but not in the weighted model where a one-unit increase in HDL increases
the odds of MACE (OR: 1.22). All reported confidence intervals are wider in the weighted
analysis than in the unweighted analysis.

Longitudinal results

Table 3.7 presents odds ratios to summarize the effects of post-treatment initiation
changes in levels of RA disease activity score, HDL cholesterol, and LDL cholesterol on
MACE. The unweighted model suggests a 14% increase (95% CI: 1.00, 1.31) in odds of
MACE for each 1-point increase in change in RA disease activity scores, controlling for pre-
treatment RA disease activity score, pre- and post-treatment initiation levels of HDL and
LDL cholesterol, age, and personal history of cardiac disorders. (Note: this implies that
patients who see greater decreases in their RA disease activity score are at lower risks of
MACE.) The pre-treatment RA disease activity score and LDL cholesterol are also associ-
ated with 29% and 32% increases in odds of MACE.

However, once we applied the marginal structural model to estimate causal odds ratios,
reweighting our sample so both pre-treatment and post-treatment covariates were random-
ized with respect to all three exposures, we did not identify any statistically significant
effects. In fact, the effects of each of the post-treatment initiation changes in each exposure
flipped direction. Most notably, the effect of each 1-point increase in change in RA disease
activity score on odds of MACE changed from a 14% increase to a 23% decrease (95% CI:
0.50, 1.21). Additionally, the point estimates for the pre-treatment levels of each exposure
were substantially farther from the null in the MSM than in the unweighted model; however
the confidence intervals in the MSM were much wider rendering all of the estimates not
statistically significant, despite the smaller effects identified by the unweighted model being
significant.

Overall, the models that did not adjust for time-dependent confounding showed a statis-
tically significant increase in risk of MACE for every unit-change post-treatment initiation
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in RA-DAS28. However, the MSM that accounted for time-dependent confounding showed
no significant effects, but the point estimates for post-treatment initiation levels of each ex-
posure trended towards a decrease in risk of MACE.

Discussion

Implications and Comparison to Previous Work

In this methodological study, we did not find evidence that pre- and post-treatment levels
of RA disease activity, HDL cholesterol, and LDL cholesterol were associated with increased
risk of major adverse cardiac events in patients with moderate to severe rheumatoid arthritis
taking tocilizumab, once time-dependent confounding from inflammatory markers and other
lipid levels was taken into account.

Previously, researchers explored the relationship between post-treatment levels of RA dis-
ease activity, lipid levels, and inflammatory markers in this dataset; however, time-dependent
confounding was not able to be captured by their models [58]. After applying a MSM to
take into account potential time dependent confounding, we found that the results presented
in [58] were similar to our estimate of the association of post-treatment changes in HDL
and LDL cholesterol with odds of MACE (HR of 0.56 versus OR of 0.63, and HR of 1.07
versus OR of 1.10, respectively), though all estimates were not statistically significant. The
variability surrounding these estimates was also similar, though the variability was higher
in the MSM, which is to be expected due to the variability added by the weighting process.
However, the point estimate from our MSM for RA disease activity is substantially different
from that in [58] (HR of 1.29 versus OR of 0.77). Although the confidence intervals overlap
a bit, the point estimates from each model are not contained within the confidence interval
from the other model. This change in direction can almost certainly be attributed to the
presence of at least one time-dependent confounder. Time-dependent confounders can bias
the effects of time-varying exposures on risk of MACE, as they provide alternate pathways
between the exposure and the outcome that are not accounted for in traditional analyses.
We therefore conclude that this result in [58] is artificially inflated, and that there is not
evidence to conclude that post-treatment changes in RA disease activity score are causally
related to MACE.

It is worth noting that the effects of pre-treatment levels of RA disease activity, HDL
cholesterol, and LDL cholesterol estimated from the cross-sectional model as in Table 3.6 are
not directly comparable to those seemingly same effects in the marginal structural model,
as in Table 3.7. The marginal structural model separates the pre-treatment effects from the
post-treatment changes, thereby approximating true cross-sectional and longitudinal effects.
As the effects of post-treatment initiation changes are different from the pre-treatment effects
seen in Table 3.7, we can conclude that the associations seen in the cross-sectional analysis
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3.6 may be a muddled combination of both the cross-sectional and longitudinal effects. Of
course, as all weighted results are not statistically significant, directionality of all effect es-
timates should not be interpreted with too much certainty.

The observed lipid profiles of the patients in this study did change over the study duration,
but the changes were not extreme, as has been found in previous studies [57]. Our results
suggest that these acute changes were not large enough in this study to be influential on the
risk of MACE. However, here we found that the pre-treatment LDL levels were more strongly
associated with risk of MACE, agreeing with past literature that suggests that chronic levels
of LDL cholesterol are associated with risk of MACE.

Strengths

A major strength of this study is the data quality. Clinical trial data, though not often avail-
able for secondary data analyses, are a rich resource for tracked clinical changes over time,
especially as collection is exhaustive. A wide variety of information is collected repeatedly
over a substantial period of time, which could be invaluable in post hoc longitudinal studies
of other patient characteristics in populations that are on a particular drug regimen.

Other major strengths of this analysis were the ability of marginal structural models
to account for confounding by indication and additional time-dependent confounding [36,
37]. Because safety outcomes are so rare, statistically addressing confounding by indication
becomes more difficult as we are concerned about over-fitting - that is, if we include as many
covariates in the model as there are individuals in our dataset, our regression model will be
able to perfectly predict all of the outcomes for the individuals in the dataset, but will not
be generalizable to external datasets. As MSMs rebalance the covariate distribution across
exposure groups, we can incorporate all of the available covariate data into the exposure
models, while limiting the covariate inclusion in the summary model.

Limitations

This study had several limitations. First, as there were only 50 individuals who experienced
a MACE in this dataset, we worry about the generalizability of our findings to the patient
population taking tocilizumab. Should another study on tocilizumab be undertaken to eval-
uate the different patient characteristics between those who experience a MACE versus those
who do not, we recommend a retrospective case-control study, to ensure sufficient power to
detect differences.

Second, all three of our exposures of interest were continuous, which poses several method-
ological concerns. We are forced to use a non-saturated summary model in our marginal
structural modeling, which extrapolates from the observed data when there is an exposure
history in the model space that has not been observed. Additionally, although the summary
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model does not need to be correctly specified, to interpret the coefficients as causal effects,
the model used to generate the weights must be correctly specified [39]. As we used a main-
terms regression model, it is highly possible that our weight model was incorrectly specified.
Future work could involve more non-parametric, data-adaptive methods to estimate these
conditional densities; however, they involve prohibitive amounts of intensive computation
[65]. Finally, despite the wealth of information these data offer, we almost surely are in vio-
lation of one of the assumptions needed to interpret these results as causal: the exchangeable
treatment assumption (ETA). The ETA requires that each exposure history was observed
for each type of individual in the dataset. Because our exposures are continuous, the ETA
is never possible in practice. Nonetheless, because we have satisfied this assumption the-
oretically, we can be assured that we have approximated the causal effects as closely as
possible.

Conclusions

In the presence of time-varying confounders, marginal structural models should be consid-
ered as an analytic option, even if the exposures of interest are not binary. Though the
assumptions required to make them causally interpretable seem arduous, the same assump-
tions (no unmeasured confounding, correctly specified model, and noninformative censoring)
are needed in standard statistical models to causally interpret the effects of time-independent
exposures on outcomes.
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Table 3.1: Variables included in exposure models used to create weights for longitudinal
marginal structural model

Exposure Exposure Exposure
(RA Disease Activity) (HDL Cholesterol) (LDL Cholesterol)

Exposures of Interest
RA disease activity RA disease activity RA disease activity

(t− 1, t0) (t, t0) (t, t0)
HDL cholesterol (t, t0) HDL cholesterol (t− 1, t0) HDL cholesterol (t, t0)
LDL cholesterol (t, t0) LDL cholesterol (t, t0) LDL cholesterol (t− 1, t0)

Laboratory Values
Apolipoprotein A−I (t, t0) Apolipoprotein A−I (t, t0) Apolipoprotein A−I (t, t0)
Apolipoprotein B (t0) Apolipoprotein B (t, t0) Apolipoprotein B (t, t0)
C3 (t, t0) C3 (t, t0) C3 (t0)
C4 (t, t0) C4 (t, t0) C4 (t, t0)
Total Cholesterol (t, t0) Total cholesterol (t, t0) Total cholesterol (t, t0)
C-reactive protein (t0) C-reactive protein (t0) C-reactive protein (t0)
ESR (t0) ESR (t0) ESR (t0)
Interleukin-6 Interleukin-6 Interleukin-6

receptor (t, t0) receptor (t, t0) receptor (t, t0)
Lp(a) (t, t0) Lp(a) (t0) Lp(a) (t, t0)
Serum amyloid A (t0) Serum amyloid A (t0) Serum amyloid A (t0)
Albumin (t0) Albumin (t0) Albumin (t0)
Haptoglobin (t, t0) Haptoglobin (t, t0) Haptoglobin (t, t0)
Absolute neutrophil Absolute neutrophil Absolute neutrophil

count (t, t0) count (t, t0) count (t, t0)
Platelet count (t, t0) Platelet count (t, t0) Platelet count (t, t0)

Other variables included in all three models were pre-treatment (t0) measurements of age,
sex, body mass index, personal history of cardiac disorders, family history of cardiovascular
disease, smoking status, abnormal blood pressure, RA duration, statin use, steroid use,
NSAID use, and methotrexate use.
RA: Rheumatoid Arthritis; HDL: high-density lipoprotein; LDL: low-density lipoprotein
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Table 3.2: Description of imputed data at baseline

Variable N (%) Truncation [min, max]

Demographics and health status
Family history of CHD 4 (0.1) −−−
Body mass index 21 (0.5) −−−

Disease status
Disease activity score (DAS28) 19 (0.5) [0, 10]

Laboratory values
HDL cholesterol 262 (6.6) [0, 4]
LDL cholesterol 285 (7.2) [0, 11]
Total cholesterol 203 (5.1) [2, 14]
Apolipoprotein A−I 27 (0.7) [0, 4]
Apolipoprotein B 27 (0.7) [0, 4]
C3 125 (3.1) [0, 4]
C4 213 (5.3) [0, 2]
Haptoglobin 45 (1.1) [0, 7.5]
Interleukin-6 receptor 295 (7.4) [10, 1000]
Lp(a) 26 (0.7) [5, 300]
Absolute neutrophil count 5 (0.1) [0.25, 20]
Platelet 14 (0.4) [3.5, 91]

CHD: cardiovascular disease; HDL: high-density lipoprotein; LDL: low-density lipoprotein
All imputations were truncated to observed ranges of covariate values.



CHAPTER 3. AN APPLICATION OF MARGINAL STRUCTURAL MODELING 49

Table 3.3: Description of pre-treatment patient characteristics

N (%)

Demographics and Health Status
Duration of RA, mean (SD) 9.3 (8.5)
Body mass index, mean (SD) 27.6 (6.3)
Age, mean (SD) 52 (12.5)
Female 3,286 (82.4)
Family history of CHD 528 (13.2)
History of cardiac disorders 349 (8.8)
Abnormal blood pressure 1,901 (47.7)
Current smoker 715 (17.9)
Concomitant medication use
Oral steroids 2,307 (57.9)
Statins 356 (8.9)
NSAIDs 2,864 (71.9)
Methotrexate 3,165 (79.4)

RA: rheumatoid arthritis; SD: standard deviation; CHD: coronary heart disease; NSAIDs:
non-steroidal anti-inflammatory drugs
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Table 3.4: Description of time-varying patient characteristics

t0 t1 t2
(n = 3,986) (n = 3,899) (n = 3,558)
X̄ (SD) X̄ (SD) X̄ (SD)

Disease Characteristics
RA DAS28 6.4 (1.3) 3.6 (1.6) 3.1 (1.5)

Laboratory values
HDL cholesterol 1.5 (0.4) 1.6 (0.5) 1.6 (0.5)
LDL cholesterol 3.0 (0.9) 3.4 (1.1) 3.5 (1.1)
Total cholesterol 5.1 (1.1) 5.8 (1.3) 5.8 (1.3)
Apolipoprotein A−I 1.5 (0.3) 1.7 (0.3) 1.6 (0.3)
Apolipoprotein B 1.1 (0.3) 1.2 (0.4) 1.2 (0.4)
Lp(a) 33.8 (33.5) 22.5 (24.3) 21.4 (24.3)
C3 1.4 (0.3) 1.1 (0.3) 1.1 (0.3)
C4 0.3 (0.1) 0.2 (0.1) 0.2 (0.1)
C-reactive protein 2.4 (2.9) 0.5 (1.3) 0.4 (1.3)
Erythrocyte sedimentation rate 46.1 (26.8) 13.3 (16.0) 11.0 (16.0)
Interleukin-6 receptor 45.7 (57.2) 429.6 (238.4) 472.4 (238.4)
Albumin 38.1 (3.8) 41.8 (3.5) 41.8 (3.5)
Haptoglobin 2.1 (0.9) 0.7 (0.6) 0.6 (0.6)
Absolute neutrophil count 5.8 (2.4) 4.2 (2.2) 4.0 (2.2)
Platelet count 33.3 (10.0) 24.2 (6.8) 23.4 (6.8)

t0 corresponds to pre-treatment measurements, t1 corresponds to measurements taken 6
months post-treatment initiation, and t2 corresponds to measurements taken 12 months
post-treatment initiation.
SD: Standard deviation; RA DAS28: Rheumatoid Arthritis Disease Activity Score out of
28; HDL: high-density lipoprotein; LDL: low-density lipoprotein

Table 3.5: Description of censoring observed in dataset

[t0, t1) [t1, t2) [t2, t3)

N at risk at beginning of interval 3,986 (100%) 3,899 (97.8%) 3,558 (89.3%)
Number of MACE in interval 5 (0.1%) 9 (0.2%) 36 (0.9%)
N censored during interval 82 (2.1%) 332 (8.3%) 2,364 (59.3%)

t0 is treatment initiation, t1 is 6 months post-treatment initiation, t2 is 12 months post-
treatment initiation, and t3 is the end of the study period, 5 years post-treatment initiation.
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Table 3.6: Odds Ratios (95% Confidence Intervals) from weighted and unweighted logis-
tic regression models for the pre-treatment effects of rheumatoid arthritis disease activity
score, HDL-cholesterol, and LDL-cholesterol on major adverse cardiac events in patients
with moderate to severe RA taking tocilizumab.

Weighted Unweighted
Model Model

OR (95% CI) OR (95% CI)

RA DAS28 1.11 (0.58, 2.11) 1.36 (1.07, 1.74)
(Pre-treatment)

HDL Cholesterol 1.22 (0.24, 6.19) 0.61 (0.30, 1.24)
(Pre-treatment)

LDL Cholesterol 1.08 (0.68, 1.71) 1.29 (0.97, 1.70)
(Pre-treatment)

Age 1.02 (0.98, 1.06) 1.06 (1.04, 1.09)
(Pre-treatment)

Personal History of CD 3.33 (0.56, 19.79) 2.03 (1.06, 3.90)
(Pre-treatment)

RA DAS28: rheumatoid arthritis disease activity score out of 28; HDL: high density lipopro-
tein; LDL: low density lipoprotein; CD: cardiac disorder
Statistically significant (p<0.05) results are denoted in bold.
Weights incorporate all demographic and health status, concomitant medication, and labo-
ratory values.
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Table 3.7: Odds Ratios (95% Confidence Intervals) from marginal structural model and
unweighted regression model for the post-treatment effects of RA Disease Activity Score,
HDL Cholesterol, and LDL Cholesterol on Major Adverse Cardiac Events in patients with
moderate to severe RA taking tocilizumab.

Marginal Structural Unweighted
Model Model

OR (95% CI) OR (95% CI)

RA DAS28 0.77 (0.50, 1.21) 1.14 (1.00, 1.31)
(Post-treatment change)

HDL Cholesterol 0.63 (0.21, 1.86) 1.13 (0.86, 1.49)
(Post-treatment change)

LDL Cholesterol 1.10 (0.65, 1.84) 0.95 (0.87, 1.04)
(Post-treatment change)

DAS28 1.60 (0.62, 4.15) 1.29 (1.02, 1.65)
(Pre-treatment)

HDL Cholesterol 0.51 (0.09, 2.91) 0.56 (0.28, 1.13)
(Pre-treatment)

LDL Cholesterol 1.77 (0.98, 3.21) 1.32 (1.00, 1.74)
(Pre-treatment)

Age 1.05 (0.99, 1.11) 1.07 (1.04, 1.09)
(Pre-treatment)

Personal History of CD 2.57 (0.32, 20.37) 2.14 (1.14, 4.03)
(Pre-treatment)

RA DAS28: rheumatoid arthritis disease activity score out of 28; HDL: high density lipopro-
tein; LDL: low density lipoprotein; CD: cardiac disorder
Statistically significant (p<0.05) results are denoted in bold.
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Figure 3.2: Directed acyclic graph representing the process assumed (when ignoring repeated
measures) for studying the risk of having a major adverse cardiovascular event before the
end of the study. The principal exposures of interest are shown in circles. Confounders (de-
mographics, health status, concomitant medication use, and pre-treatment initiation levels
of all laboratory values) are indicated by a square. Solid thick arrows denote the causal
paths of interest. Dashed thin arrows indicate potential pathways for confounding.
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Figure 3.3: Directed acyclic graph representing the hypothesized longitudinal process for ma-
jor adverse cardiovascular events. The principal exposures of interest are shown in circles.
Time independent confounders (e.g. demographics, health status, and concomitant medi-
cation use) and time dependent confounders (e.g. laboratory values) are shown in squares.
Solid thick arrows denote the causal paths of interest. Dashed thin arrows indicate potential
pathways for confounding. All confounders used in analyses are listed in table 3.1.
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3.3 Implementation of the Marginal Structural Model

from Longitudinal Data

Marginal structural models (MSMs) are based in a counterfactual framework, wherein each
individual has a set of potential outcomes − one for each possible exposure history. Given a
specific exposure history, a potential outcome is defined as a subject’s hypothetical outcome
if, possibly contrary to fact, they experienced that particular exposure history. Here, we
describe the implementation of a MSM to assess the effect of a particular exposure on an
outcome in non-randomized data structures.

Notation

Our observed data is O = {(V, L(t), A(t), Y (t) : t ∈ {0, 1, 2}}. A(t) is a vector of observed
rheumatoid arthritis disease activity score (DAS28), HDL cholesterol (HDL-c), and LDL
cholesterol (LDL-c) at time t. L(t) is a vector of time-dependent covariates including in-
flammatory markers, other cholesterol measures, and other disease activity measures. L(0)
is the vector of covariates measured at baseline, that includes both time-independent and
time-dependent covariates. V is a subset of the covariates measured at baseline, V ⊂ L(0).
Y (t) is an indicator of whether MACE occurred in the interval [t, t+ 1). Time 0 corresponds
with baseline measurements, time 1 corresponds with measurements 6 months from baseline,
and time 2 corresponds with measurements 12 months from baseline. The outcome Y (2) is
an indicator of MACE in the interval 12 months to 60 months from baseline.

The time ordering of the data are: {L(0), A(0), Y (0), L(1), A(1), Y (1), L(2), A(2), Y (2)}.
Specifically, we are assuming that the covariates L and the exposures A occur in time before
Y . We are also assuming that the covariates L are predictors of the exposure A.

Marginal Structural Model

We aim to evaluate a time-dependent process, (L(t), A(t), Y(t), observation times t = 0,
1, 2). We assume that the following theoretical model summarizes the relationship between
A(t) and Y(t):

logit(Pr[Y (t) = 1|A(t), L(t)]) = α0 + βA(0) + γ[A(0)− A(t)] + δL(t),

where β = (β1, β2, β3) are the parameter estimates of the adjusted effects of baseline rheuma-
toid arthritis DAS28, HDL cholesterol, and LDL cholesterol on the log odds of occurrence
of a MACE at time t, γ = (γ1, γ2, γ3) are the parameter estimates of the adjusted effects of
change from baseline rheumatoid arthritis DAS28, HDL cholesterol, and LDL cholesterol on
the log odds of occurrence of a MACE at time t, and δ is a vector of nuisance parameter
estimates for time-dependent covariates.
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To obtain causal estimates of the effects of the exposure variables on the log-odds of a
MACE in a time-dependent setting, we use the following counterfactual marginal structural
model:

logit(Pr[Yā(t) = 1|V ]) = β0 +
3∑
j=1

[β1jaj(0) + β2jcum(āj)] + β3V.

Here, ā = {āj} : j ∈ {1, 2, 3} is a particular exposure history (aj(0), aj(1), aj(2)) asso-
ciated with DAS28 (j = 1), HDL-c (j = 2), and LDL-c (j = 3). Each exposure history is
associated with a counterfactual outcome, Yā. cum(āj) is a summary measure of the counter-
factual cumulative exposure history, defined here to be the cumulative change from baseline
for each exposure. β21, β22, and β23 are our causal parameter estimates of the effects of the
cumulative change from baseline of DAS28, HDL-c, and LDL-c respectively on the log-odds
of having a major adverse cardiac event within strata of V , controlling for baseline levels of
DAS28, HDL-c, and LDL-c. We are interested in the marginal effect of the change in DAS28,
HDL-c, and LDL-c after beginning a course of tocilizumab, so therefore the βs represent the
average effect over time since enrolling in the study, controlling for pre-treatment levels.

Assumptions needed for Identifiability of MSM

• Positivity. Each treatment assignment at each time t, conditional on current covari-
ate, past exposure, and past outcome status, must exist with non-zero probability for
all individuals in the study. Formally,

Pr[A(t) = a | Ā(t− 1), L̄(t), Ȳ (t− 1)] > 0 ∀a ∈ {a(t) : a ∈ A, ā(t− 1) = Ā(t− 1)},

where A is the set of all possible exposures.

• Temporality. The time ordering of our data are:

{L(0), A(0), Y (0), L(1), A(1), Y (1), L(2), A(2), Y (2)}.

Most importantly, we assume that our covariates L and exposures A occur earlier in
time than the outcome Y , and that covariates L influence the exposure A.

• Link observed data to counterfactuals. We must assume that our observed data
can be linked to counterfactual data, that is data observed in individuals corresponds
to the counterfactual data we would have seen given the exposure observed. More
precisely,

(A(t), L(t), Y (t)) ≡ (A(t), LA(t), YA(t))

We note that needing covariates L to be predictors of A implies that Lā(t) = Lā(t−1)(t),
whereas A predicts Y so Yā(t) = Yā(t)(t).
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• Sequential randomization. We assume no unmeasured confounding of A(t), which
corresponds to

A(t) ⊥⊥ (Yā, Lā : ā ∈ A) | L̄(t− 1), Ā(t− 1)

Weight Creation

Probability of Exposure Weights

The stabilized subject- and time-specific probability of exposure weights are calculated as the
joint probability of exposure, where each exposure is indexed by {1, 2, 3}. For our analyses,
A1(·) refers to RA disease activity score, A2(·) refers to HDL cholesterol, and A3(·) refers to
LDL cholesterol.

SwT (t) =
t∏

k=0

Pr(A(k) | Ā(k − 1), V )

Pr(A(k) | Ā(k − 1), L̄(k − 1))
=

t∏
k=0

Pr(A1(k) ∩ A2(k) ∩ A3(k) | Ā(k − 1), V )

Pr(A1(k) ∩ A2(k) ∩ A3(k) | Ā(k − 1), L̄(k − 1))

=
t∏

k=0

Pr(A1(k) | Ā(k − 1), V )

Pr(A1(k) | Ā(k − 1), L̄(k − 1))
× Pr(A2(k) | A1(k), Ā(k − 1), V )

Pr(A2(k) | A1(k), Ā(k − 1), L̄(k − 1))

× Pr(A3(k) | A1(k), A2(k), Ā(k − 1), V )

Pr(A3(k) | A1(k), A2(k), Ā(k − 1), L̄(k − 1))

Because each of these exposures is on a continuous scale, we estimate the conditional
density of each exposure separately assuming a normal kernel, the mean of which is estimated
using main terms linear regression with fixed effects for time and study. The standard
deviation is calculated using the residuals from the fitted model.

Probability of Censoring Weights

The stabilized subject- and time-specific probability of censoring weights are calculated as:

SwC(t) =
t∏

k=0

Pr(C(k) = 0 | C(k − 1) = 0, Ā(k − 1), V )

Pr(C(k) = 0 | C(k − 1) = 0, Ā(k − 1), Ȳ (k − 1), L̄(k − 1))

where we note that each of the numerator and the denominator is the complement of the
probability of being lost to follow-up given a specific set of treatment and covariate history.
The numerator and denominator were modeled separately using pooled logistic regression,
again including fixed effects for time and study identifiers.

Final weights used in analysis

We first calculated for each individual the product of the stabilized exposure and censoring
weights, or

Swi(t) = SwiT (t)× SwiC(t).
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We truncated the weights in the range [0.1, 30]. Results appeared to be fairly stable to
other weight ranges.
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Chapter 4

Weight gain in pregnancy and
preterm birth

4.1 Introduction

Preterm birth is commonly defined as a birth occurring between viability (usually 22 weeks
gestation) and 37 weeks gestation [66], and affects more than one in ten infants born world-
wide [67]. It is indicative of the health of the infant at birth - infants born after 37 weeks’
gestation are more likely to have fully matured (especially their heart and lungs) than those
born before 37 weeks. As such, it remains the leading cause of perinatal and infant morbid-
ity and mortality in developed countries [67]. Prematurity is also associated with lifelong
health problems, including but not limited to neurological impairment (from mild executive
function disorders to moderate-severe developmental delay), visual and hearing impairment,
chronic lung and cardiovascular issues, and childhood obesity [68].

Biologically, the mechanisms that cause preterm birth are fairly well established [66, 69].
The best-understood risk factor for preterm birth is multiple births (twins, triplets, etc.),
which can be attributed to uterine overdistension and/or higher rates of pre-eclampsia or
other maternal or fetal distorders [69, 70]. Intrauterine infections may be responsible for 25-
40% of preterm births, though this may be a conservative estimate because these infections
are difficult to diagnose [69, 71, 72].

However, in most cases a precise mechanism cannot be identified, which has led re-
searchers to identify other risk factors with the goal of targeting possible interventions.
Women who have a history of prior preterm birth and/or miscarriages, or an interpregnancy
interval of <6 months are at greater risk of preterm birth. A current mechanistic hypothesis
is that the uterus requires sufficient time to return to its normal state before becoming occu-
pied again [69, 73, 74]. Risk of preterm birth also varies by race/ethnicity. In the U.S., black
women experience preterm birth at much higher rates than white women [67, 69, 75]. Other
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Figure 4.1: An illustration of when term versus preterm births occur. The blue rectangles
indicate weight gain that happens while women are still at risk for preterm birth, while the
red rectangle indicates weight gain that happens after a woman is not at risk of preterm
birth.

sociodemographic characteristics, such as high and low maternal age, low education, and low
socioeconomic status, are also associated with preterm birth, though the pathways through
which they operate are not well understood [67, 69]. Smoking tobacco during pregnancy is
also a risk factor for preterm birth. This mechanism is harder to detangle as there are many
chemicals present in smoke, but researchers hypothesize that it could operate through an
inflammatory pathway and/or through restricted uteroplacental blood flow, as both nicotine
and carbon dioxide are vasoconstrictors [67, 69, 76, 77]. Both extremes of prepregnancy
weight are also associated with preterm birth. In particular, one study found that under-
weight women are nearly four times more likely to have a preterm birth as compared to
heavier women [78]. In a Swedish cohort, extreme obesity (BMI ≥ 35) more than doubled
the odds of extremely early preterm birth compared to normal weight women [79].

Although prepregnancy underweight and obesity are known risk factors for preterm birth,
the relation between weight gain during pregnancy and preterm birth is still contested in the
literature. This confusion is partly due to difficulties measuring weight gain. Prepregnancy
weight, the baseline weight measure that is used as the referent weight for weight change
in pregnancy, is often measured by recall, as pregnancies can be unplanned. Additionally,
studies of gestational weight gain often do not have the resources to measure weight gain at
multiple points through pregnancy. Even if the study is sufficiently funded, the first prenatal
visit often occurs between 8 and 14 weeks gestation, so early pregnancy weight gain is often
unknown. Delivery weight is also poses difficulties, as weighing a woman who is in labor
is generally unadvisable. Instead, delivery weight is often collected by recall a day or two
after delivery, or a recorded weight from a prenatal visit within two weeks of delivery is used.

Aside from any unreliability in the measurement of gestational weight gain, there are
statistical concerns associated with assessing the relation between weight gain in pregnancy
and preterm birth. Weight gain in pregnancy and gestational duration form a joint process,
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so the question “does weight gain in pregnancy cause preterm birth?” must be carefully
specified. For example, studies have used total weight gain during pregnancy as their ges-
tational weight gain measure. These studies are predisposed to finding that low weight gain
is associated with preterm birth, as their weight gain measure for term births incorporates
weight that was gained after a women stopped being at risk for preterm birth (see Figure
4.1 for an illustration). Other studies have attempted to address how women gain weight in
pregnancy by using rate of weight gain, defined as total weight gain in pregnancy divided by
gestational duration. However, this measure assumes the rate of weight gain is the same in
all three trimesters, which has been established to be false - women gain weight differently
in the first trimester than in the later trimesters.

The best measure of total gestational weight gain proposed to date is weight gain-for-
gestational age z-scores [80, 81]. These z-scores represent the relation between a woman’s
total gestational weight gain at a particular week of gestation and a population-average ges-
tational weight gain trajectory. Although these z-scores attempt to remove the bias in the
relationship between GWG and gestational duration, this dependency is only removed when
the weight gain trajectory model is correctly specified.

Although it is expensive to measure weight at each week of pregnancy while conducting
a study, incorporating data on the whole pattern of weight gain is arguably the best way to
assess the relationship between gestational weight gain and gestational duration. A recent
paper proposes incorporating the repeated measurements of weight gain through pregnancy
as a time-varying covariate in a Cox model, to assess the overall hazard of birth for each
additional pound of weight [82]. Other people have proposed using latent class analysis to
group the women into classes that represent similar weight gain trajectories, and using those
classes to predict preterm birth (need reference).

This chapter includes two studies of weight gain in pregnancy and preterm birth. Sec-
tion 4.2 addresses the black-white disparity in rates of preterm birth in the United States.
Although preterm birth rates in the U.S. have been decreasing for the past decade, there are
still approximately 5 more preterm births per 100 live births born to black mothers compared
to any other race [83]. In our study, we use data from the 2011 to 2015 U.S. Birth Data Files
to determine if the association between gestational weight gain and preterm birth differs
by race using a novel measure of weight gain, weight gain-for-gestational age z-scores [80,
81]. Section 4.3 concerns the different ways gestational weight gain is measured and used in
epidemiological studies. Specifically, we incorporate measures of GWG that attempt to ad-
dress how and when women gain weight, in addition to the measures that only consider total
GWG. In a cohort of Swedish women, we create models to predict the occurrence of preterm
birth using seven measures of gestational weight gain separately, assess the predictive ability
of each model, and compare the agreement between models.
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4.2 Weight gain during pregnancy and the

black-white disparity in preterm birth

Introduction

In 2015, one in every eight non-Hispanic (NH) black infants in the U.S. was born preterm (<
37 weeks’ gestation) compared with one in every 11 NH white infants [83]. This difference
was even greater for early preterm birth; one in every 32 NH black infants was born < 32
weeks’ gestation compared with one in every 79 NH white infants [83]. The magnitude of
this black-white disparity in preterm birth has persisted throughout the past decade and is
not explained by socioeconomic factors [84–86].

Prepregnancy body mass index (BMI) and weight gain during pregnancy may be mod-
ifiable contributors to preterm birth and racial disparities in preterm birth rates. [87–89].
Higher rates of preterm birth have been consistently observed in women who are underweight
or obese before pregnancy as well as in women who gain little or no weight during pregnancy
[88–92]. Additionally, a higher proportion of women who identify as NH black or African
American begin pregnancy obese and, if underweight or normal weight, gain below the Insti-
tute of Medicine (IOM) gestational weight gain recommendations, compared with NH white
women [93, 94]. Previous studies of weight gain and preterm birth have been limited by the
methods available to account for the fact that women who deliver preterm have less time to
gain weight during pregnancy, and these studies have not focused on racial/ethnic differences
except in very limited study samples [95–97].

In this national study, we used gestational weight gain-for-gestational age z-scores to
assess, by prepregnancy BMI category: (1) if gestational weight gain is associated with early
and late preterm birth, and (2) if such associations differ between NH black and NH white
women.

Materials and Methods

Data and Study Design

We used data from the 2011 to 2015 U.S. Birth Data Files created by the National Center for
Health Statistics (NCHS). Of the 19,849,688 available birth records, we included those that
used the 2003 Revision of the U.S. Standard Certificate of Live Birth (n = 18,445,524) and
were live singletons born to NH black or NH white women (n = 11,770,568). We set extreme
values of gestational age (< 22 or > 42 week, n = 168,102), birthweight-for-gestational age
(following Alexander et al. [98], n = 38,999), and gestational weight gain z-scores (< -4 or
> 4 standard deviations (SD), n = 63,342) to missing. [80, 81].
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NCHS previously edited values outside the ranges of 100-400 lb. for maternal weight at
delivery, 75-375 lb. for prepregnancy weight, and 30-78 in. for height as missing. Addi-
tional exclusions include: those missing information on prepregnancy weight or height (n =
425,474), delivery weight (n = 213,790), and infant birthweight (n = 141,660). The final
study sample included 10,718,449 births. Because the data are completely de-identified and
publicly available, the study did not require ethics approval from an Institutional Review
Board.

Measures

We used obstetric estimates to categorize gestational age at delivery as early preterm (< 32
weeks), late preterm (≥ 32 weeks to < 37 weeks), and term (≥ 37 weeks to < 42 weeks),
following the World Health Organization guidelines.

Maternal race was self-reported as black (black or African American) or white and ethnic-
ity was self-reported as non-Hispanic (not Spanish/Hispanic/Latino) or other. Prepregnancy
BMI was calculated from self-reported prepregnancy weight and height (kg/m2) and cate-
gorized as underweight (< 18.5), normal weight (≥ 18.5 to < 25), overweight (≥ 25 to <
30), obese class I (≥ 30 to < 35), obese class II (≥ 35 to < 40), and obese class III (≥ 40).
Prepregnancy BMI and race (NH black and NH white) were effect modifiers of interest [88].

Gestational weight gain was the difference between maternal delivery weight and prepreg-
nancy weight. We converted maternal weight gain into weight gain-for-gestational age z-
scores using charts previously created by our team using serial prenatal weight measure-
ments from women in Pennsylvania with healthy, term, singleton births [80, 81]. The charts
are prepregnancy BMI-specific (separate charts for underweight through obesity class III
categories) because optimal weight gain varies by prepregnancy BMI [88]. We categorized
the continuous z-scores as < -1 standard deviation (SD) (low), -1 SD to +1 SD (moderate),
and > +1 SD (high) weight gain. For a normal-weight woman at 40 weeks’ gestation, these
categories are equivalent to < 11.2 kg, 11.2-23 kg, and > 23 kg, respectively [81]. The weight
gain equivalents to the categorized z-scores by week of pregnancy are provided in Figure 4.2.

Confounders were selected a priori using theory-based causal graphs [99] and included
sociodemographic characteristics (education level, age, marital status, acknowledgment of
paternity, method of payment, and calendar year) and health characteristics (pregestational
hypertension, pregestational diabetes, maternal height, trimester of entry to prenatal care,
interpregnancy interval < 6 months, average number of cigarettes smoked per day in preg-
nancy, and parity).



CHAPTER 4. WEIGHT GAIN IN PREGNANCY AND PRETERM BIRTH 64

Data Analysis

First, we descriptively analyzed prenatal characteristics and calculated crude rates of early
and late preterm birth by maternal race. We also calculated crude rates of early and late
preterm birth within each subgroup of maternal race, prepregnancy BMI, and pregnancy
weight gain.

Next, we estimated associations of categorized weight gain z-scores with early and late
preterm birth using multiple logistic regression models. Risk of early preterm birth was
calculated over all live births and risk of late preterm birth was calculated over live births ≥
32 weeks’ gestation. We used inverse probability weighting with stabilized weights to correct
for missing covariate data because 11.2% of the sample was missing information on at least
one covariate [100]. Covariate missingness ranged from 0-4% (median 0.7%). We carried out
analyses in Stata version MP 14.1. Population attributable risks (PAR) were calculated with
the final multiple logistic regression models by the module “regpar” and PAR percentages
were calculated with the same models by the module “punaf” [101, 102]. Because of the
large sample size, clinical significance was determined by the magnitude of effect estimates
and width of confidence intervals in addition to p-values [103].

Results

The crude early preterm birth rate was 2.5 per 100 live births among NH black women, and
0.9 among NH white women. The crude late preterm birth rate was 11.6 per 100 live births
in NH black women and 7.2 in NH white women. Two-thirds of NH black women and nearly
three-quarters of NH white women gained weight within the moderate range (Table 4.1). A
higher proportion of NH black women were overweight or obese prepregnancy, delivered as
adolescents, did not have private health insurance, and had a high school education or less,
compared to NH white women. A higher proportion of NH white women smoked during
pregnancy.

Tables 4.2 and 4.3 display the crude rates of early and late preterm birth, respectively,
stratified by race, prepregnancy BMI, and weight gain. The early preterm birth rate was
lowest (0.6%) in NH white women who were normal weight prepregnancy and gained weight
within the moderate range (equivalent to 7-15 kg at 28 weeks and 11-23 kg at 40 weeks) and
highest (5.8%) in NH black women with class III obesity and high weight gain (equivalent
to > 13 kg at 28 weeks and > 21 kg at 40 weeks) (Table 4.2). The late preterm birth
rate was also lowest (6.2%) in normal-weight, NH white women with moderate weight gain
and highest (17.7% and 18.5%, respectively) in obese class III, NH black women with high
weight gain and underweight, NH black women with low weight gain (equivalent to < 7 kg
at 28 weeks and at 40 weeks) (Table 4.3). For every combination of prepregnancy BMI and
gestational weight gain, early and late preterm birth rates were higher in NH black women
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than in NH white women.

In adjusted analyses, the PAR and PAR percentages for early preterm birth were signif-
icant for high - but not low - weight gain during pregnancy among both NH black and NH
white women who were obese prepregnancy (Table 4.4). High and low weight gain conferred
increased population risks of early preterm birth in non-obese women, but low weight gain
was most important among underweight women and high weight gain was most important
among overweight women. For high weight gain in all BMI groups, the PAR and PAR
percentages were higher in NH black women than in NH white women. Among NH black
women, the PAR for high gain ranged from 1.9 to 3.0 and the PAR percentage ranged from
7.8% to 10.2%. That is, if 100 NH black women gained moderate pregnancy weight instead
of gaining high, a reduction of 2 to 3 - or 8% to 10% - of early preterm births could be
expected, depending on prepregnancy BMI. Among NH white women, the PAR for high
weight gain and early preterm birth ranged from 0.5 to 0.9 and the PAR percentage ranged
from 5.9% to 7.8%. For low weight gain and early preterm birth, the PAR percentage in
underweight women was higher in NH black than NH white women, but the PAR percent-
ages in normal-weight and overweight women were higher in NH white than NH black women.

Table 4.5 shows that low pregnancy weight gain in non-obese women and high weight
gain in all women were associated with late preterm birth. For all of these associations,
the PAR was higher in NH black women than in NH white women, but the black-white
differences in PAR percentages were small or nonexistent. The PAR for high weight gain
and late preterm birth ranged from 3.2 to 7.9 in NH black women and from 2.5 to 5.5 in
NH white women. The PAR percentage ranged from 2.4% to 6.5% in NH black women and
from 2.8% to 6.8% in NH white women.

Discussion

In this national study of more than 10 million recent live births to NH black and NH white
women in the U.S., moderate weight gain during pregnancy was associated with a signifi-
cantly lower risk of both early and late preterm birth in all BMI groups. Preventing high
pregnancy weight gain was estimated to have a greater impact on the population risk per-
centage of early, but not late, preterm birth in NH black women than in NH white women.

Our findings on the associations between gestational weight gain and preterm birth are
difficult to compare with prior evidence because almost every study has defined weight gain
differently [88, 89]. Most studies measure total weight gain, but using total gain in analysis
induces a biased association between low gain and preterm birth because women who deliver
preterm have less time to gain weight [97]. Some studies have used various approaches to
address this bias, the most common being the division of total gain by gestational age to
approximate weekly rate of gain [88–91]. However, this approach is still biased because it
over-attributes gain to the first trimester, when the rate of gain is lower [88, 97]. The weight
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gain-for-gestational age z-scores used in this study improve upon these past approaches by
standardizing weight gain for gestational age, similar to fetal weight z-scores [80, 81, 104].
Overall, our results using the z-scores in the U.S. population of NH black and NH white
women corroborate substantial evidence of an association between low gain and preterm
birth in underweight and normal-weight women [88, 89]. In addition, our study clarifies
prior mixed evidence that high weight gain is a risk factor for preterm birth in women of all
BMI groups and that low weight gain is not a risk factor in obese women [88–92, 105].

There is very limited previous knowledge on how weight gain during pregnancy may be
related to differences in preterm birth between NH black and NH white women [95, 96]. Pre-
viously, one study found low weight gain was more strongly associated with preterm birth
in NH white women than in NH black women [96], while another found the association to
be stronger in NH black women and that high weight gain was only associated with preterm
birth in NH black women [95]. However, both of these studies were conducted among rel-
atively small samples of non-obese women who delivered more than 15 years ago and did
not separately evaluate early and late preterm birth. Using population attributable risk
percentages, our study did not find evidence of the impact of weight gain on late preterm
birth differing between NH black and NH white women. We did, however, find that the es-
timated impact of high weight gain on early preterm birth was highest in NH black women.
Early, compared to late, preterm birth may be etiologically distinct, represents a much
larger black-white disparity, and accounts for a substantial proportion of infant deaths and
acquired developmental disabilities [83, 84]. Multiple hypotheses have been proposed, but
current evidence suggests that multiple proximal and distal factors - driven by interpersonal
and institutionalized racial discrimination -may interact to cause the black-white disparity
in early preterm birth [84–86]. In particular, chronic stress induced by social and economic
adversity throughout the life-course may cause dysfunction of the hypothalamic-pituitary-
adrenal axis, alter immune functions, and increase oxidative stress, leading to higher rates
of preterm birth in NH black women than in NH white women [84–86]. These factors could
compound effects of high weight gain during pregnancy or independently affect both weight
gain and preterm birth. In our study, we also found PAR percentages to be higher in NH
white women than in NH black women for early preterm birth in normal-weight and over-
weight women, which is unexplained but supports a similar finding by Hickey et al. [96] in
non-obese black and white women.

There are several limitations of this observational study. Because we only included NH
black and NH white women to focus on the black-white disparity in preterm birth, our results
are not generalizable to other races and ethnicities. Maternal BMI and weight gain may have
different effects on spontaneous and medically indicated preterm births [92, 95], but it was
not possible to validly distinguish these births using vital records [106]. We were also unable
to assess potential mediators of the association between weight gain and preterm birth, such
as pre-eclampsia, or exclude infants with congenital anomalies because of inconsistent report-
ing on the birth certificates [106]. Missing data and reporting errors are also weaknesses of
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the birth certificate data and self-reported prepregnancy weight and height may have resulted
in some misclassification of prepregnancy BMI and gestational weight gain. Results from
a recent systematic review suggest that misclassification due to self-report may have mini-
mal impact on study findings, but we did not test this assumption in the current study [107].

Birth certificate data allow the calculation of total gestational weight gain, but precluded
us from assessing pattern of weight gain or using time-to-event analysis [82, 96, 108]. Previ-
ous studies have reported mixed findings on the pattern of weight gain and preterm birth,
which will require further study in other datasets [82, 96, 108]. Recently, a multi-country,
prospective study found that weight gain z-scores in healthy pregnancies were similar across
populations [109], which suggests that the z-scores applied in our study - although developed
in a U.S. subpopulation - may be appropriate to use in other populations. However, we could
not test this assumption [110].

The limitations of this study are counterbalanced by a number of strengths. The study
sample was drawn from all births in the U.S. from 2011 to 2015, making the results highly
generalizable to the contemporary U.S. population of NH black and NH white women. The
size of the study sample also provided sufficient statistical power to study the associations
between a wide range of weight gain amounts and early and late preterm birth across six
categories of prepregnancy BMI in NH black and NH white women. Our use of weight
gain-for-gestational age z-scores accounted for the dependence of gestational weight gain on
gestational duration, which has previously prevented valid assessment of weight gain and
preterm birth [80].

In 2009, the IOM revised guidelines for weight gain during pregnancy to no longer recom-
mend higher weight gain in black women, and to include a specific, relatively narrow range
of recommended gain in obese women [88]. There were limited data to guide these recom-
mendations and the IOM report called for additional research. Our study responds to this
need and may be useful for future weight gain guidelines by investigating the relationships
between weight gain, maternal race, and prepregnancy BMI. Additionally, our results add
to evidence that improving maternal weight gain could reduce the risk of preterm birth [88,
89]. Although behavior change is challenging, there is growing evidence that moderate weight
gain can be promoted effectively [87, 111]. As a recent example, Herring et al. [112] found
in a pilot randomized clinical trial that socioeconomically disadvantaged, African-American
women who received a behavioral intervention were half as likely to gain weight above the
IOM guidelines as women who received usual prenatal care. In a similar study population,
Schulman and Kottke [113] reported that a pregnant woman’s accurate knowledge of her
recommended range of weight gain was associated with appropriate weight gain, but only
27% of women were aware of their recommended gain. Provider advice about gestational
weight gain has been strongly associated with actual weight gain, but the majority of preg-
nant women - particularly those with a low BMI - do not receive accurate advice on weight
gain [114, 115]. Moreover, the built and social environments in which women live and work
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are likely contributors to their ability to gain a healthy amount of weight in pregnancy [88,
115, 116]. Our study findings highlight the need for continued research to determine how
moderate weight gain during pregnancy can best be promoted at individual, community, and
policy levels. Although our results are not from an intervention, they suggest that women
achieving moderate weight gain could help meet the Healthy People 2020 goal of reducing
preterm birth in the U.S. by 10%, as well as reduce the gap in early preterm birth rates
between NH black and NH white women.
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Tables and Figures

Table 4.1: Characteristics of the study sample and rates of preterm birth by maternal race,
U.S. singleton pregnancies in non-Hispanic black and non-Hispanic white women (2011-2015)

Characteristic Non-Hispanic Black Non-Hispanic White
(n = 2,179,626) (n = 8,538,823)

Column Preterm births per Column Preterm births per
% 100 live births % 100 live births

Early Late Early Late

Preterm birth 2.5 11.6 0.9 7.2
Pregnancy weight gain
(z-score)

Low (<-1 SD) 22.5 2.5 12.4 17.1 1.1 8.0
Moderate (-1 to 1 SD) 66.4 2.3 10.9 72.6 0.8 6.6
High (>1 SD) 11.2 4.0 15.0 10.4 1.4 10.0

Prepregnancy BMI
(kg/m2)

Underweight (<18.5) 3.6 2.9 14.5 4.0 1.3 9.6
Normal weight (18.5-24.9) 36.2 2.4 11.9 50.3 0.8 6.8
Overweight (25-29.9) 26.9 2.4 11.1 23.8 0.8 7.0
Obese class I (30-34.9) 16.8 2.7 11.3 12.0 1.0 7.5
Obese class II (35.0-39.9) 8.9 2.8 11.5 5.9 1.1 7.9
Obese class III (≥ 40) 7.6 3.0 11.6 4.1 1.3 8.5

Maternal age (y)
10-19 10.8 2.6 12.6 5.1 1.4 9.2
20-24 31.3 2.3 11.2 20.2 1.0 7.7
25.29 26.7 2.4 10.9 30.5 0.8 6.7
30-34 19.3 2.6 11.5 29.1 0.7 6.5
≥ 35 11.9 3.3 13.5 15.2 1.0 8.0

Maternal education
Less than high 17.5 2.8 13.9 8.3 1.4 9.9

school
High school or 33.0 2.6 12.2 21.4 1.1 8.4

equivalent
Some college 34.4 2.5 10.9 31.4 0.9 7.4
College graduate 15.2 2.1 9.2 38.9 0.6 5.8

Average cigarettes smoked
smoked per day in pregnancy

None 93.1 2.5 11.4 87.8 0.8 6.7
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1-9 5.2 3.4 14.3 6.6 1.5 9.4
10-19 1.2 3.5 15.7 4.2 1.5 11.0
≥ 20 0.5 3.8 17.2 1.5 1.8 12.2

Marital status
Married 28.5 2.1 10.2 71.1 0.7 6.5
Not married 71.5 2.7 12.2 28.9 1.3 8.9

Source of payment
Private insurance 26.0 2.4 10.2 61.6 0.7 6.4
Other 74.0 2.6 12.1 38.5 1.1 8.5

Trimester of entry to
prenatal care

First 65.3 2.5 11.2 80.7 0.8 6.9
Second 25.4 2.3 11.9 15.3 1.0 7.7
Third or never 9.3 2.7 12.7 4.0 1.3 9.3
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Table 4.4: Population attributable risks and population attributable risk percentages for
early preterm birth (< 32 wk) due to low and high pregnancy weight gain, stratified by
race and prepregnancy BMI and adjusted for confounders, in U.S. singleton pregnancies in
non-Hispanic black and non-Hispanic white women (2011-2015)

Population Attributable Risks Population Attributable Risk
per 100 Live Births Percentages (95% CI)

Pregnancy Non-Hispanic Non-Hispanic Non-Hispanic Non-Hispanic
Weight Gain Black White Black White
Category

Underweight (BMI < 18.5 kg/m2)
Low 3.7 1.3 13.7 11.1

(2.8, 4.6) (1.1, 1.6) (10.4, 16.8) (9.1, 13.0)
Moderate Reference Reference Reference Reference
High 1.9 0.7 7.8 5.9

(1.2, 2.6) (0.5, 0.9) (4.9, 10.6) (3.9, 7.8)
Normal weight (BMI 18.5-24.9 kg/m2)

Low 1.2 0.8 5.7 11.6
(1.0, 1.5) (0.8, 0.9) (4.5, 7.0) (10.8, 12.3)

Moderate Reference Reference Reference Reference
High 2.0 0.5 9.3 7.3

(1.8, 2.2) (0.5, 0.5) (8.3, 10.3) (6.7, 8.0)
Overweight (BMI 25.0-29.9 kg/m2)

Low 0.1 0.4 0.5 5.0
(-0.1, 0.4) (0.3, 0.4) (-0.7, 1.8) (4.0, 5.9)

Moderate Reference Reference Reference Reference
High 2.1 0.5 8.8 7.2

(1.8, 2.3) (0.4, 0.6) (7.9, 9.7) (6.4, 8.0)
Obese Class I (BMI 30.0-34.9 kg/m2)

Low -0.2 0.0 -0.9 0.4
(-0.5, 0.1) (-0.1, 0.1) (-2.2, 0.3) (-0.7, 1.5)

Moderate Reference Reference Reference Reference
High 2.3 0.6 8.5 6.5

(2.0, 2.6) (0.5, 0.7) (7.4, 9.7) (5.4, 7.5)
Obese Class II (BMI 35.0-39.9 kg/m2)

Low -1.2 -0.2 -5.1 -2.2
(-1.5, -0.9) (-0.3, -0.1) (-6.2, -3.9) (-3.3, -1.1)

Moderate Reference Reference Reference Reference
High 2.9 0.9 10.2 7.8

(2.5, 3.4) (0.7, 1.0) (8.7, 11.7) (6.5, 9.1)
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Obese Class III (BMI ≥ 40.0 kg/m2)
Low 0.1 0.1 0.3 1.1

(-0.2, 0.4) (0.0, 0.3) (-0.7, 1.3) (6.5, 9.1)
Moderate Reference Reference Reference Reference
High 3.0 0.9 10.0 7.1

(2.5, 3.4) (0.7, 1.1) (8.6, 11.4) (5.8, 8.4)

BMI, body mass index; CI, confidence interval
All results are adjusted for maternal age, education level, marital status, acknowledgement
of paternity, method of payment for delivery, calendar year, pregestational hypertension,
pregestational diabetes, height, trimester of entry to prenatal care, interpregnancy interval
< 6 months, cigarettes smoked per day in pregnancy, and parity.
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Table 4.5: Population attributable risks and population attributable risk percentages for late
preterm birth (≥ 32 wk and < 37 wk) due to low and high pregnancy weight gain, stratified
by race and prepregnancy BMI and adjusted for confounders, in U.S. singleton pregnancies
in non-Hispanic black and non-Hispanic white women (2011-2015)

Population Attributable Risks Population Attributable Risk
per 100 Live Births Percentages (95% CI)

Pregnancy Non-Hispanic Non-Hispanic Non-Hispanic Non-Hispanic
Weight Gain Black White Black White
Category

Underweight (BMI < 18.5 kg/m2)
Low 11.2 5.7 7.6 6.1

(9.4, 13.0) (5.1, 6.3) (6.4, 8.8) (5.5, 6.7)
Moderate Reference Reference Reference Reference
High 3.2 2.5 2.4 2.8

(1.8, 4.7) (2.0, 3.1) (1.3, 3.4) (2.2, 3.4)
Normal weight (BMI 18.5-24.9 kg/m2)

Low 6.5 3.2 5.5 4.9
(5.9, 7.1) (3.0, 3.3) (5.0, 6.0) (4.6, 5.1)

Moderate Reference Reference Reference Reference
High 4.5 2.7 4.0 4.2

(4.1, 5.0) (2.6, 2.8) (3.6, 4.4) (4.0, 4.4)
Overweight (BMI 25.0-29.9 kg/m2)

Low 1.2 0.7 1.1 1.1
(0.6, 1.7) (0.6, 0.9) (0.5, 1.6) (0.8, 1.4)

Moderate Reference Reference Reference Reference
High 5.9 4.1 5.3 6.0

(5.5, 6.3) (4.0, 4.3) (4.9, 5.6) (5.8, 6.3)
Obese Class I (BMI 30.0-34.9 kg/m2)

Low -0.1 -0.1 -0.1 -0.1
(-0.7, 0.6) (-0.3, 0.2) (-0.6, 0.5) (-0.5, 0.3)

Moderate Reference Reference Reference Reference
High 6.1 4.0 5.3 5.3

(5.5, 6.7) (3.7, 4.3) (4.8, 5.8) (4.9, 5.6)
Obese Class II (BMI 35.0-39.9 kg/m2)

Low -1.5 -1.0 -1.4 -1.4
(-2.2, -0.9) (-1.3, -0.7) (-2.0, -0.8) (-1.8, -1.0)

Moderate Reference Reference Reference Reference
High 7.9 5.5 6.5 6.8

(7.1, 8.6) (5.1, 5.9) (5.9, 7.1) (6.4, 7.3)
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Obese Class III (BMI ≥ 40.0 kg/m2)
Low -0.1 -0.1 -0.1 -0.1

(-0.7, 0.4) (-0.4, 0.2) (-0.6, 0.4) (-0.5, 0.3)
Moderate Reference Reference Reference Reference
High 7.1 5.1 5.9 5.9

(6.3, 7.8) (4.7, 5.4) (5.3, 6.5) (5.5, 6.3)

BMI, body mass index; CI, confidence interval
All results are adjusted for maternal age, education level, marital status, acknowledgement
of paternity, method of payment for delivery, calendar year, pregestational hypertension,
pregestational diabetes, height, trimester of entry to prenatal care, interpregnancy interval
< 6 months, cigarettes smoked per day in pregnancy, and parity.
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Figure 4.2: Predicted gestational weight gain at each week of gestation at z-scores of -1
standard deviation (SD), 0 SD, and +1 SD
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4.3 Weight gain during pregnancy and preterm birth

in a Swedish Cohort

Biologically, gestational weight gain (GWG) and gestational duration (GD) are inextricably
linked. The longer a woman is pregnant, the greater opportunity she has to gain weight.
This dependence has provided many challenges, both practical and statistical, in quantifying
the effect GWG has on GD, resulting in an inconclusive body of literature [104, 108].

Statistically, studying gestational duration poses analytic challenges. As previously dis-
cussed in section 4.2, preterm birth is associated with infant mortality and infant and child-
hood morbidities. The interest of the medical community in this condition has turned a
continuous process, time until delivery, into a binary process, wherein instead of modeling
the whole “time-to-event” process, we model the chance a women carries to a certain week.
This binary approach has a major advantage - results from the models are more interpretable
- but at the same time, this approach does not incorporate all of the information available.
Other researchers advocate for using a survival model [82], where the hazard of giving birth
at each week of gestation is modeled, as opposed to the risk at one week of gestation.

Studying gestational weight gain in relation to gestational-time dependent outcomes re-
quires some thought. In an ideal scenario, data would be collected that contained serial
weight measurements on each woman throughout her pregnancy, thereby collecting the whole
trajectory. However, many studies do not have the resources to collect serial weight measure-
ments throughout pregnancy, and only contain the cumulative weight change. Historically,
cumulative weight gain in pregnancy has been used to study the relation between GWG and
preterm birth in two ways: 1) raw total weight gain, and 2) rate of weight gain = total
weight gain / total gestational duration. However, there are flaws with each of these mea-
sures. Raw total weight gain predisposes studies to finding that low gestational weight gains
are associated with preterm birth. Total rate of weight gain does not accurately capture
the pattern of GWG in most women - it assumes a linear rate of weight gain in the first
trimester, which we know to be not true.

In 2013, Hutcheon et al. proposed another approach to studying GWG in relation to
preterm birth: prepregnancy BMI-specific weight gain-for-gestational age z-scores, devel-
oped in a reference population [81]. A z-score represents how many standard deviations
away from the population average weight gain trajectory a woman is for a given gestational
age. However, these z-scores are correct only if the population average weight gain trajec-
tory has been correctly modeled; otherwise, the relationship between GWG and gestational
duration will still be biased. To date, these z-scores have been developed in the Swedish
population [117], a sample in Pennsylvania [81], and in an international cohort [109].

Mitchell et al. object to all of these approaches in their 2015 paper ”It’s About Time”
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[82]. Their main objection is with the timing of the measurement of weight during pregnancy.
They state that women are only at risk for preterm birth before 37 weeks’ gestation, so in
order to establish an association between weight gain in pregnancy and preterm birth, the
weight measurement used should also be from when the women are at risk for preterm birth.
Although they allege that repeated measurements of weight gain over pregnancy should be
the “gold standard,” they also propose a method for using cumulative weight gain before 37
weeks to predict preterm birth.

Another part of their objection is statistical. If we view gestational duration as a random
variable, T, preterm birth can be viewed as a summary statistic:

PTB = 1(T < 37).

Mitchell et al. claim that we should be using a Cox model to estimate the instantaneous haz-
ard of delivering at any particular week of gestation due to a one-unit increase in gestational
weight gain. To approximate this quantity, the following model can be fit:

log − log[Pr(PTB|GWG,GA)] = α + βGWG+ γ
36∑
i=28

1(i = GA),

where the GWG measurement used is from the third trimester, taken before a woman leaves
the risk set (before 37 weeks’ gestation). If the relative risk or odds of preterm birth are
desired, then a log or logit model can be used instead of the complementary log-log model.

Is there a most valid measure of weight gain in pregnancy to use when studying the
relationship between gestational weight gain and risk of preterm birth? In this study, we 1)
describe the pattern of weight gain observed in a subset of the Swedish National Birth Reg-
istry Data; 2) create a model of preterm birth using several previously proposed gestational
weight gain measures; and 3) compare the predictive ability of each these models. As the
relationship between gestational weight gain and preterm birth differs by prepregnancy BMI,
and there are other covariate data we wish to include in our model, we use discrete Super-
Learner, a data-adaptive machine learning technique, to develop each model by minimizing
the cross-validated mean squared error while avoiding overfitting.

Methods

Sample description

Our study sample is a subset of all women who had singleton pregnancies born between
January 2008 and October 2014 whose prenatal clinic visits, delivery admissions, and post-
partum admissions data from electronic medical records were collected in the Stockholm-
Gotland Obstetric Database (n = 175,522) [117]. The cohort was then restricted to live
births with available early pregnancy (<14 wks) BMI with plausible gestational duration



CHAPTER 4. WEIGHT GAIN IN PREGNANCY AND PRETERM BIRTH 80

(22-42wk) and birthweight for gestational age [118] (n=148,667). We required women to
have at least 1 weight measurement in both the second and third trimesters for term births,
and at least 1 weight measurement in the second trimester for preterm births to minimize
interpolation for analyses that use pattern of weight gain. We further excluded women with-
out available covariate information, producing a final sample of 103,661 pregnancies. Figure
4.3 flow chart further detailing sample selection. This study did not require institutional
review board consent as the data are completely de-identified.

Study variables

Preterm birth, defined as any delivery occurring after 22 wks and before 37 wks gestation,
was the primary outcome in this study. Gestational age at birth was assessed using obstetric
estimates.

Prepregnancy weight measurements unfortunately were not available in this data. To
circumvent this problem, we instead used the earliest available first trimester weight mea-
surement (before 14 wks gestation), thereby assuming that there was negligible weight gain
the first trimester. This first weight measurement was used in conjunction with measured
height at the first visit to calculate early pregnancy BMI (kg/m2). Early pregnancy BMI was
then categorized as underweight (< 18.5), normal weight(18.5 - 24.9), overweight (25-29.9),
and obese (≥ 30).

Measurements of gestational weight gain were the primary exposure in this study. In Swe-
den, women are weighed as part of routine prenatal care, so the electronic medical records
contain serial weight gain measurements throughout pregnancy. The first prenatal visit typ-
ically occurs between 8 and 12 weeks, with follow-up appointments occurring around weeks
24, 28, 31-32, and then every other week until delivery [117]. Pregnancy weight gain at each
visit was calculated as the difference between a woman’s current weight and the measured
weight from her first prenatal visit (kg).

The following measures of weight gain were of interest in this study:

1. Overall Rate. The rate of gestational weight gain after the first trimester, defined as
kilograms gained after week 12 divided by the weeks of gestation after week 12 [90]

2. Trimester-specific rates. The rate of gestational weight gain in the second and third
trimesters separately. Second trimester rate was calculated as kilograms gained after
week 12 and before week 28 divided by 16 (total number of weeks gestation in second
trimester). Third trimester rate was defined as kilograms gained after week 27 divided
by the weeks of gestation after week 27.
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3. Z-scores. Total GWG, measured as weight gain-for-gestational age z-scores. Total
GWG used the weight measurement from the visit closest to delivery (either at delivery
or up to two weeks before) [81, 117]

4. Range of z-scores. Range of z-score was calculated by taking the difference between
the smallest measured z-score and the largest measured z-score (this is my idea: could
use this to assess the stability of the weight gain trajectory)

5. “Comparable” weight. In term pregnancies, use the most recent cumulative weight
gain measurement (kg) recorded before 37 weeks gestation that occurred in the third
trimester (after 27 weeks). In preterm pregnancies, use the total GWG measurement
(kg). [82]

6. Pattern. Used latent class analysis to group overall weight gain trajectories using all
weight gain measurements

7. Pattern28. Used latent class analysis to group weight gain trajectories using weight
gain measurements only up to 28 weeks gestation.

The rate measures of weight gains required interpolation of the weights between visits
to get measures of weight gain at exactly 28 weeks. These were assumed to be unchanging
in the first trimester, and then to change linearly between visits in the second and third
trimesters. The study sample was further restricted to births occurring between 28 and 41
weeks for the Trimester-specific rates GWG measure analyses.

Covariate data were prospectively collected in the electronic medical records, and included
maternal age at delivery, maternal height (cm), parity, cohabitation, prepregnancy diabetes,
prepregnancy hypertension, prepregnancy snus use, prepregnancy smoking status, and child
sex. As weight gain z-scores were developed separately in each prepregnancy BMI class,
early pregnancy BMI was treated as a necessary effect modifier for those analyses [117]. For
all other analysis, early pregnancy BMI was treated as a potential effect modifier.

Statistical Analysis

Exploratory analysis

To ensure we had not systematically excluded pregnancies, we compared the demographic
characteristics of our eligible sample to our final sample. We then began by describing the
demographic characteristics of the sample stratified by preterm birth. We then described
the probability of delivery at each week of gestation. (survival curve) We also graphed the
average weight gain at each week of gestation stratified by early pregnancy BMI and preterm
birth. To better understand the differences between these curves, we plotted their difference.
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Model Building

We built seven models to predict the probability that a woman gave birth preterm (ges-
tational age < 37 weeks), one for each measure of gestational weight gain described above,
using the following process.

1. First, we determined the best fit for the relationship between the GWG measure and
preterm birth. We used the Latent Class Analysis Stata plugin (cite LCA) to iden-
tify the weight gain trajectory groups for measures Pattern and Pattern28. These
trajectories are visualized in figures x and y. For the continuous measures (Overall
rate, Trimester-specific rates, Z-scores, Range of z-scores, and “Comparable”
weight), we fit logistic regression models incorporating the GWG measure as linear,
quadratic, piecewise linear splines with knots placed at 14w and 28w gestation, and
restricted cubic splines with 3, 4, and 5 knots terms, and then chose the model that
minimized the 10-fold cross-validated mean squared error (MSE).

2. Once the shape of the relation between the GWG measure and preterm birth had
been established, we then determined which covariates were confounders by adding
each covariate separately to the GWG-preterm model. To account for multiple testing,
covariates were considered significant at p < 0.006 (cite Bonferroni).

3. We then allowed for interaction between each confounder and the GWG measure, and
searched the covariate space for the combination of variables that minimizes the 10-fold
cross-validated MSE. This process was achieved by:

a) Splitting the data into 10 subsets.

b) Fitting a best subset logistic regression model in 9/10ths of the data, excluding
the data in the jth fold. This algorithm selects the logistic regression model that
maximizes the model R2. The covariate space this model searched contained the
GWG measure, each confounder determined in step 2, and the interaction between
the GWG measure and each confounder. The algorithm was further required to
keep the GWG measure

c) Predicting the probability of preterm birth ŷ in the remaining 1/10th of the data
(from fold j) using the model selected in the previous step. We then calculated
the squared error in fold j as

SSE(j) =
∑

i∈Fold(j)

(yi − ŷi)2

d) Repeating steps b) and c) for each fold of the data.

e) The final 10-fold cross-validated MSE was calculated as

MSE =
1

10

10∑
j=1

SSE(j)
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Model Comparison

Once we had built all seven models, we assessed the comparative validity of the models
with measures of calibration, discrimination, and classification agreement.

Calibration quantifies the accuracy of a prediction model by comparing the number of
observed cases to the number of expected cases predicted by the model. We assessed each
model’s calibration overall and within risk quintiles - five equally-sized groups of the val-
idation cohort ordered by risk. A score of 1 for the expected-to-observed ratio implies a
perfectly calibrated model, less than 1 is an underestimating model, and greater than 1
is an overestimating model. To quantify the calibration in terms of number of over- or
under-estimated preterm births, we also reported the expected-to-observed difference (0 is
a perfectly calibrated model, greater than 0 is an over-estimating model, less than 0 is
an under-estimating model). Confidence intervals for the expected-to-observed ratio and
expected-to-observed difference were computed based on Normal approximations to Poisson
distributions, as demonstrated below.

95% CI for
E

O
:

E

O
× exp

[
±1.96 ∗

√
1

O

]
95% CI for E −O : (E −O)± 1.96×

√
O

For discrimination, we calculated the area under the receiver operating characteristic
curve (AUC, also referred to as the c-statistic), which represents the probability that a
model will assign a higher risk to a randomly selected preterm birth than a randomly se-
lected term birth. Nonparametric binomial confidence intervals were calculated using the
Stata command “roctab”.

Classification agreement between models was assessed with a weighted Cohen’s κ statis-
tic, which takes a value between -1 and 1 (<0=no agreement, 1=perfect agreement) and
indicates moderate agreement above 0.4, substantial agreement above 0.6, and almost per-
fect agreement above 0.8. The κ statistic was applied to every pairwise model comparison
using the groups formed by each model’s risk quintiles, assigning an integer value to each
quintile group (1=lowest risk, 5=highest risk). We first assessed overall agreement between
the risk quintiles, and then agreement in only in the highest risk quintile.

Results

Descriptive Results

The rate of preterm birth was substantially higher in pregnancies included (5.2%) in our
study sample than in pregnancies we excluded (2.4%) (Table 4.6). The most striking differ-
ence was that excluded women had fewer weight measurements through pregnancy (76% of
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excluded women only had 3 weight measurements versus 13% of included women), although
they appeared to both have their first prenatal visit during their 9th week of pregnancy on
average. Women excluded from our sample had higher rates of snus use prepregnancy and
were more likely to be normal weight. A higher proportion of women included in our sample
were primiparous, had prepregnancy diabetes and/or hypertension, and smoked prepreg-
nancy. However, on average, early pregnancy weight, gestational age at the first visit, GWG
z-scores at delivery, maternal age, maternal height, and child birthweight were not substan-
tially different between included and excluded pregnancies.

In our final sample of 103,661 pregnancies, the differences between term and preterm
births were not extreme (table 4.7). A slightly higher proportion of women who had preterm
births were underweight, overweight, or obese, primiparous, had prepregnancy diabetes
and/or hypertension, and smoked prepregnancy. On average, the age of the mothers was
the same in the two groups, though mothers of preterm babies tended to be slightly shorter
than mothers of term babies. Although on average the GWG z-score at delivery was the
same between the two groups, the GWG (kg) at the last visit before 37 weeks was higher
on average in term births (11.8kg) than in preterm births (9.4kg). A greater proportion
of preterm births were male (54.2% versus 50.7%), and on average infants carried to term
weighed 1kg more than infants born prematurely.

Figure 4.4 illustrates the probability of not delivering at each week of gestation in our
sample. Overall, 5.2% of our sample gave birth before 37 weeks. 0.2% were extremely
preterm (< 28w), 0.4% were very preterm (28 to <32w), and 4.6% were moderate to late
preterm (32 to < 37w).

Figures 4.5 and 4.6 illustrate the average weight gain at each week of gestation stratified
by early pregnancy BMI and preterm birth. Figure 4.5 illustrates that the average weight
gain trajectories in underweight, normal weight, and overweight women are approximately
the same, while obese women gain less weight overall at a slower rate. This pattern is ap-
parent in both term and preterm births, although the trajectories in preterm births were
generally less stable than in term births. This instability is probably due to smaller sample
sizes. Figure 4.6 demonstrates that the average weight gain trajectories in term and preterm
births are approximately the same through 36 weeks’ gestation. However, figure 4.7 illus-
trates that there may be a trend in these small differences (the absolute range of difference
is <4kg). In overweight and obese women, as gestational age increases, preterm women tend
to gain more weight on average than term women. In normal weight women, there is no
substantial difference. In underweight women, preterm women tended to gain less weight
than term women in the second and third trimesters.

The results from the model building and model agreement analyses will be reported and
discussed at a later date.
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Conclusions

In this preliminary study of electronic medical record data from 103,661 Swedish women, we
found that there is not a strong relationship between gestational weight gain and preterm
birth. Specifically, the pattern of weight gain between term and preterm births appears to
be very similar. This preliminary finding confirms the results presented in Sharma et al.
(2015) [119]; however, we will still finish the project as proposed here.

Future work in this dataset will include the following:

• We will directly compare using z-scores as specified in Johansson et al. (2016) [117] to
the survival method proposed in Mitchell et al. (2015) [82]. We will do this separately
in spontaneous and indicated preterm births, and account for the measured covariates
available in this dataset.

• We will expand the model building portion of this project to include additional com-
monly used measures of gestational weight gain, such as overall rate of gestational
weight gain, trimester-specific rates, area-under-the-gestational-weight-gain-curve, and
latent class analysis.

• Gestational duration (GD) can be thought of as a random variable. We can then for-
mulate preterm birth as a current status random variable, where the only information
we have about a birth is whether GD happened before the censoring time C (GD
≤ C) or that it could happen after the censoring time (GD > C). This formulation
opens us up to the body of current status data literature, where both parametric and
nonparametric methods have been developed to assess the relation of a time-varying
covariate with a censoring variable. Specifically, we will investigate both proportional
and additive hazard models in this context.
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Tables and Figures

Singleton Pregnancies in the Stock-
holm Gotland Obstetric Database

(n = 175,522)

Excluded (n=14,887):
a) Lack of or implausible weight
data (>150kg or <30kg) (n=661)
b) Lack of early prepregnancy BMI
(before week 14) (n=14,226)

Available early pregnancy BMI
and gestational weight recordings

(n = 160,635)

Excluded (n=455):
a) Not live births (n = 455)

Live births
(n = 160,180)

Excluded (n=11,513):
a) Gestational duration <22wk or
>42wk (n=10,030)
b) Implausible birthweight for ges-
tational age (n=1,483)

Plausible gestational duration and
birthweight for gestational age

(n = 148,667)

Excluded (n=43,091):
a) At least 1 weight measurement in
the 2nd trimester (n=21,558)
b) At least 1 weight measurement
in the 3rd trimester before 37
weeks in term (≥37w) pregnancies
(n=21,533)

Sufficient Weight Measurements
(n = 105,576

Excluded(n=1,915):
a) Maternal age (n=21)
b) Cohabitation (n=1,123)
c) Prepregnancy smoking status
(n=802)

Included pregnancies
(n = 103,661)

Figure 4.3: Sample selection from all women who delivered singleton infants in the Stockholm
and Gotland regions of Sweden, 2008-2014
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Table 4.6: Comparison of characteristics of included and excluded women who delivered live,
singleton infants in the Stockholm and Gotland regions of Sweden, 2008-2014

Excluded Included p
births births

n = 45, 006 n = 103, 661

Preterm 1,073 (2.4) 5,419 (5.2) < 0.001
Weight characteristics
Early pregnancy weight, kg 65.7 ± 11.4 66.0 ± 12.3 < 0.001
Early pregnancy BMI, kg/m2 < 0.001

Underweight 1,272 (2.8) 3,330 (3.2)
Normal weight 31,298 (69.5) 68,745 (66.3)
Overweight 9,337 (20.8) 22,173 (21.4)
Obese 3,099 (6.9) 9,413 (9.1)

GWG Z-score at delivery 0.0 ± 0.9 0.0 ± 1.0 0.006
GWG at last visit before 37w 10.9 ± 4.8 11.7 ± 4.4 < 0.001
Maternal characteristics
Age, y 32.0 ± 4.9 31.4 ± 5.1 < 0.001
Height, cm 166.8 ± 6.5 166.1 ± 6.5 < 0.001
Primiparous 19,436 (43.2) 47,633 (46.0) < 0.001
Living with baby’s father 40,945 (94.4) 98,197 (94.7) 0.025
Prepregnancy diabetes 128 (0.3) 604 (0.6) < 0.001
Prepregnancy hypertension 294 (0.7) 1,040 (1.0) < 0.001
Prepregnancy snus use 1,397 (3.1) 2,777 (2.7) < 0.001
Prepregnancy smoker 4,558 (10.4) 13,844 (13.4) < 0.001
Gestational age at first visit, wk 9.7 ± 1.9 9.4 ± 2.0 < 0.001
Number of weight measurements
through pregnancy < 0.001
3 34,204 (76.0) 13,501 (13.0)
4 6,767 (15.0) 19,225 (18.6)
5 2,146 (4.8) 18,516 (17.9)
6 918 (2.0) 15,670 (15.1)
7 437 (1.0) 13,136 (12.7)
8 264 (0.6) 10,387 (10.0)
≥9 270 (0.6) 13,226 (12.8)

Child characteristics
Child sex 0.869

Female 22,934 (51.0) 52,775 (50.9)
Male 22,072 (49.0) 50,886 (49.1)

Child birthweight, kg 3.5 ± 0.5 3.5 ± 0.5 < 0.001
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Table 4.7: Characteristics of 103,661 women who delivered live, singleton infants in the
Stockholm and Gotland regions of Sweden, 2008-2014

Term births Preterm births
(GA 37-42w) (GA < 37w)
n = 98, 242 n = 5, 419

Weight characteristics
Early pregnancy weight, kg 66.0 ± 12.2 66.1 ± 13.0
Early pregnancy BMI, kg/m2

Underweight (BMI <18) 3,126 (3.2) 204 (3.8)
Normal weight (BMI 18-24.9) 65,349 (66.5) 3,396 (62.7)
Overweight (BMI 25.0-29.9) 20,973 (21.35) 1,200 (22.1)
Obese (BMI ≥ 30) 8,794 (9.0) 619 (11.4)

GWG Z-score at delivery 0.0 ± 1.0 0.0 ± 1.1
GWG at last visit before 37w 11.8 ± 4.4 9.9 ± 4.9
Gestational age at first visit, wk 9.4 ± 2.0 9.4 ± 2.0
Number of weight measurements
through pregnancy
3 11,269 (11.5) 2,232 (41.2)
4 18,246 (18.6) 979 (18.1)
5 17,674 (18.0) 842 (15.5)
6 15,016 (15.3) 654 (12.1)
7 12,728 (13.0) 408 (7.5)
8 10,234 (10.4) 153 (2.8)
≥9 13,075 (13.3) 151 (2.8)

Maternal characteristics
Age, y 31.4 ± 5.1 31.4 ± 5.3
Height, cm 166.1 ± 6.5 165.1 ± 6.6
Primiparous 44,649 (45.5) 2,984 (55.1)
Living with baby’s father 93,118 (94.8) 5,079 (93.7)
Prepregnancy diabetes 512 (0.5) 92 (1.7)
Prepregnancy hypertension 892 (0.9) 148 (2.7)
Prepregnancy snus use 2,635 (2.7) 142 (2.6)
Prepregnancy smoker 13,038 (13.3) 806 (14.9)
Child characteristics
Child sex

Female 49,838 (50.7) 2,937 (54.2)
Male 48,404 (49.3) 2,482 (45.8)

Child birthweight, g 3.5 ± 0.5 2.5 ± 0.6
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Figure 4.4: Kaplan-Meier curve describing probability of women remaining pregnant at each
week of gestation in 103,661 women who delivered live, singleton infants in the Stockholm
and Gotland regions of Sweden, 2008-2014. Note confidence intervals are present, but so
small they become negligible.
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Figure 4.5: Average weight gain at each week of pregnancy in term and preterm pregnancies,
stratified by early pregnancy BMI .
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Figure 4.6: Average weight gain at each week of pregnancy in each early pregnancy BMI
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Figure 4.7: The points represent differences in average weight gain between term and preterm
pregnancies at each weeks of gestation in each early pregnancy BMI group. The black line at
0kg represents no difference in average weight gain between term and preterm pregnancies.
The blue line is a lowess curve showing the smoothed trend in these residuals. Values below
0kg indicate higher average weight gain in preterm pregnancies.
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