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REVIEW ARTICLE

Microbiome interactions and their ecological 
implications at the Salton Sea
Future studies of the Salton Sea should aim to characterize both the structural similarities and 
differences of the playa, sea and aeolian microbiomes.

by Hannah Freund*, Mia R. Maltz*, Mark P. Swenson, Talyssa M. Topacio, Vanessa A. Montellano, William Porter and Emma L. Aronson

Online: https://doi.org/10.3733/ca.2022a0002

Abstract 
Although the Salton Sea was once a thriving destination for humans 
and wildlife, it has now degraded to the point of ecosystem collapse. 
Increases in local dust emissions have introduced aeolian (wind-blown) 
microorganisms that travel, along with contaminants and minerals, into 
the atmosphere, detrimentally impacting inhabitants of the region. 
Proliferation of certain microbial groups in regions of the Sea may have 
a disproportionate impact on local ecological systems. Yet, little is 
known about how the biogeochemical processes of this drying lakebed 
influence microbial community composition and dispersal. To elucidate 
how these microorganisms contribute, and adapt, to the Sea’s volatile 
conditions, we synthesize research on three niche-specific microbiomes 
— exposed lakebed (playa), the Sea, and aeolian — and highlight modern 
molecular techniques, such as metagenomics, coupled with physical 
science methodologies, including transport modeling, to predict how 
the drying lakebed will affect microbial processes. We argue that an 
explicit consideration of microbial groups within this system is needed 
to provide vital information about the distribution and functional roles 
of ecologically pertinent microbial groups. Such knowledge could help 
inform regulatory measures aimed at restoring the health of the Sea’s 
human and ecological systems.

Wetlands in the Sonny Bono 
Salton Sea National Wildlife 
Refugue. To better understand 
the Salton Sea ecosystem, 
more research is needed on the 
interaction between the playa, 
sea and aeolian microbiomes. 
Photo: Jonathan Nye.

As impacts of climate change and pollution 
worsen in the Salton Sea region, there is an ur-
gent need to predict the Sea’s ecosystem health 

and stability in response to water influx changes (e.g., 
increased evaporation, reduced inflow, and agricultural 
runoff irregularities). Although there is increasing 
evidence about the harmful effects of environmental 
degradation on wildlife within the Salton Sea, less is 
known about how microorganisms respond to mount-
ing degradation throughout the region (California 
Natural Resources Agency 2020; Jones and Fleck 2020; 
Kjelland and Swannack 2018; Marti-Cardona et al. 
2008; Moreau et al. 2007). Microorganisms and their 
respective communities (i.e., microbiomes) are ubiq-
uitous, and the foundation of nutrient cycling within 
ecosystems (Falkowski et al. 2008). Research indicates 
that microorganisms are sensitive to natural and an-
thropogenic perturbations, and thus may serve as use-
ful indicators of ecosystem productivity (Karimi et al. 
2017; Maltz et al. 2017). 

Without an explicit consideration of environmental 
microorganisms and their stress-response tactics, we 
may undermine our ability to respond to changing 
environmental and regulatory measures. For instance, 
policy decisions, plummeting water quality, and 
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reduced Sea levels may have varying effects on micro-
organisms within this novel and vulnerable ecosystem. 
Moreover, understanding how the degraded environ-
ment surrounding the Salton Sea influences microbial 
processes, interactions and biogeochemical cycling is 
particularly important for assessing microbial contri-
butions to overall ecosystem functionality, as well as for 
illuminating connections between policy- and climate-
driven environmental changes and the health of nearby 
human and ecological systems.

Agricultural runoff, dust emissions 
The implementation of the Quantification Settlement 
Agreement (QSA) in 2003 diverted water from the 
Colorado River to other areas, which massively reduced 
inflows to the Salton Sea (California Natural Resources 
Agency 2020). The New, Alamo and Whitewater rivers 
feed the Salton Sea with agricultural runoff containing 
pesticides, metals, salts and other elements (Vogl and 
Henry 2002). Specifically, copper, arsenic, manganese 
and selenium have been detected at levels above the 
U.S. Environmental Protection Agency threshold in 
water and sediment samples (Moreau et al. 2007; Xu et 
al. 2016). Selenium is of particular concern due to its 
consistently high concentrations in local fish (i.e., tila-
pia), at levels surpassing Aquatic Life Criteria standards 
(Xu et al. 2016). Federally banned pesticides including 
polychlorinated biphenyls (PCBs), dichlorodiphenyl-
trichloroethane (DDT) and dichlorodiphenylethane 
(DDE) have also been detected in in the muscle tissue 
of local fish species (Moreau et al. 2007; Riedel et al. 
2002; Sapozhnikova et al. 2004; Xu et al. 2016) and in 
water, exposed lakebed (playa), and submerged playa 
samples (Sapozhnikova et al. 2004; Wang et al. 2012; 
Xu et al. 2016). Selenium, DDT and other pollutants 
accumulate in detritus, and are introduced into the 
Salton Sea’s trophic network when consumed by algae, 
invertebrates and fish (Saiki et al. 2012). While the ac-
cumulation of these contaminants are detrimental to 
animal biodiversity (Canton and Van Derveer 1997; 
Köhler and Triebskorn 2013; Riedel et al. 2002), the ex-
tent to which pollution alters the Sea’s trophic structure 
warrants further study.

In addition to pollutants, agricultural effluent deliv-
ers excess nutrients to the Salton Sea, leading to eutro-
phication and subsequent die-offs of aerobic organisms 
(Beman et al. 2005; Chaffin and Bridgeman 2014; 
Heisler et al. 2008). Nutrient enrichment leads to harm-
ful algal blooms as these algae consume a majority of 
the Sea’s dissolved oxygen. Eventually, these algae die 
off in the absence of sufficient oxygen, as other micro-
organisms decompose detritus and deplete the remain-
ing dissolved oxygen (Qin et al. 2013). Additionally, 
strong winds during spring and summer seasons create 
upwellings of anoxic water and sulfide from the lake 
bottom to the surface (Marti-Cardona et al. 2008; 
Reese et al. 2008). 

Algal blooms and gypsum blooms coupled with 
persisting anoxic conditions contribute to ongoing loss 
of wildlife, with particularly high mortality in local 
and migratory birds such as eared grebes (Podiceps ni-
gricollis), fish such as Mozambique tilapia (Oreochromis 
mossambicus) and invertebrates such as pileworms 
(Neanthes succinea; Anderson et al. 2007; Carmichael 
and Li 2006; Marti-Cardona et al. 2008). Microbial 
pathogens, including Pasteurella multocida, cyanotox-
ins and botulinum toxin, have all been associated with 
mass die-off events (Carmichael and Li 2006; Meteyer 
et al. 2004; Nol et al. 2004); however, not all die-off 
events have been linked to heightened concentrations 
of these particular pathogens or toxins.

As required by the QSA, the volume of inflow 
will be reduced by 40% over the next decade, and the 
volume of the Sea itself will be reduced by more than 
60% (Cohen 2014). Ongoing shrinkage of the Salton 
Sea not only increases salinity in the Sea and the playa 
(California Natural Resources Agency 2020), but also 
exposes additional lakebed sediment, leading to height-
ened dust emissions — dust production, wind erosion 
of sediment, etc. — in the area (Frie et al. 2017). These 
emissions are expected to contribute to already high 
levels of background particulate matter (Frie et al. 
2017; Frie et al. 2019; US Fish and Wildlife 2014). Wet 
playas like the Salton Sea are vulnerable to erosion as 
capillary action in the sediment brings groundwater to 
the playa surface (Buck et al. 2011), softening sediment 
and stimulating groundwater evaporation (Reynolds 
et al. 2007). Playa emissions and aerosolized Sea spray 
contribute to the composition of the dust, which con-
sists of minerals (e.g., selenium, sodium and sulfate), 
metals (e.g., cadmium and chromium; Buck et al. 2011; 
Frie et al. 2017; Frie et al. 2019) and dust-associated 
microorganisms, along with their respective microbial 
metabolites. These contributed materials, particulate 

Agricultural runoff (left) entering the Alamo River. Photo: Caroline Hung.

Without 
an explicit 
consideration of 
environmental 
microorganisms 
and their 
stress-response 
tactics, we may 
undermine our 
ability to respond 
to changing 
environmental 
and regulatory 
measures.
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matter size, and strong winds collectively influence 
dust composition, reduce local air quality and threaten 
downwind niches upon deposition. 

Dust emissions disperse microbial components 
from dust to surrounding locations (Frie et al. 2017; 
Griffin 2007), and the harsh, arid climate of the Salton 
Sea provides habitat for microorganisms acclimated to 
these inhospitable conditions (Paul and Mormile 2017). 
Salinity, nutrient availability, pH, oxygen concentration 
and temperature collectively affect microbial composi-
tion and functional trait diversity. Most microorgan-
isms are able to regenerate rapidly and transfer genes 
horizontally, which permits uptake of DNA from the 
environment as well as the sharing of DNA with other 
microbial species or viruses (Johnston et al. 2014). 
Altogether, these abilities allow microorganisms to 
easily adapt to the unique selective pressures of their 
environment. 

Microbial metabolic functions may be more depen-
dent on environmental pressures than on evolutionary 
or phylogenetic relationships (Allison and Martiny 
2008; Louca et al. 2017; Shade et al. 2012). Likewise, 
pollutants, excess nutrients and geophysical processes 
may alter the collection of microorganisms found 
within the Salton Sea’s sub-ecosystems (fig. 1). The 
sub-ecosystem microbiomes include the playa, seawater 
and the wind-driven microorganisms that travel along 
with dust throughout the atmosphere (i.e., the aeolian 
microbiome). Interactions between environmental mi-
crobiomes and the ecosystem regulate the availability 
and accumulation of certain minerals. For example, 

anaerobic microorganisms in extreme environments 
akin to the Salton Sea can use selenate (SeO4

2−) or 
selenite (SeO3

2−) as electron acceptors; this reduces it 
to elemental selenium (Nancharaiah and Lens 2015), 
which accumulates in sediment. Other anaerobes can 
reduce sulfate to hydrogen sulfide, which consumes 
dissolved oxygen and yields harmful gypsum blooms, 
which are somewhat analogous to algal blooms (Ma et 
al. 2020). Clarifying how these microbiomes contribute 
to the trophic structures and chemical cycling within 
the Salton Sea is crucial to promoting the long-term 
sustainability and functionality of this ecosystem.

Playa microbiome
Because of their intimate associations within the Salton 
Sea, the biogeochemical interactions of the playa and 
the sediment beneath the lake are challenging to dif-
ferentiate. Similar to microorganisms in Salton Sea 
water, anaerobes and extremophiles have a selective 
advantage in this niche due to the extremely high con-
centration of sulfate and salt in the sediments, which 
is compounded by the lack of oxygen and phosphorus 
resources (Swan et al. 2007).

Sediment depth gradients have been shown to dif-
ferentially structure microbial communities. Most 
Archaea have been observed with equal abundance 
across lakebed sediment depths (Swan et al. 2010). 
However, Crenarchaeaota (i.e., Archaea phylum) 
and bacterial communities consistently exhibit 
similar abundances with depth. Likewise, the relative 

FIG. 1. Interactions among Salton Sea’s dynamic sub-ecosystems. There are three environmental microbiomes: (1) 
playa, (2) seawater and (3) aeolian; sea spray and playa dust contribute to the aeolian microbiome. As the Salton Sea 
recedes, lakebed sediment is exposed and concurrently transforms into playa. Playa emits loose particulates that entrain 
microorganisms, chemicals and sediment into the atmosphere, which travel throughout the region via surface winds.
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abundance of certain bacterial classes, includ-
ing Betaproteobacteria, Gammaproteobacteria and 
Clostridia, correspond with both increased depth and 
salinity in the Salton Sea.

Several taxa found in Salton Sea playa have also 
been identified in marine sediments (Dillon et al. 2009; 
Swan et al. 2010) as well as haloalkaline lake sediments 
and salt flats (McGonigle et al. 2019; Rojas et al. 2018; 
Yang et al. 2016). Saline concentration has been identi-
fied as one of the most important factors in structur-
ing microbial communities across ecosystem types 
(Lozupone and Knight 2007). These findings indicate 
that salinity and oxygen availability are crucial envi-
ronmental drivers of microbial assembly in the Salton 
Sea playa.

Although the microbial composition beneath playa 
crusts has been studied to some extent (Dillon et al. 
2009; Swan et al. 2010), the microorganisms of the su-
perficial playa have largely been neglected. Increased 
playa exposure directly corresponds to greater dust 
fluxes in the region (Buck et al. 2011; Frie et al. 2019; 
Parajuli and Zender 2018), entraining both chemical 
and microbial components into dispersing dust (fig. 1). 
Heightened playa emissions correspond to salt precipi-
tation on the playa surface (Buck et al. 2011), driving 
the microbial community structure at this playa–dust 
interface. Considering that playa surfaces are global 
dust contributors (Abuduwaili et al. 2010; Kandakji et 
al. 2020; Reheis et al. 2002; Reynolds et al. 2007; Ziyaee 
et al. 2018), characterizing and quantifying the impact 
of dispersing playa microorganisms on surrounding 
ecosystems and inhabitants of the region may be par-
ticularly important. Moreover, integrating these puta-
tive impacts into our understanding of wind-driven 
playa erosion may greatly advance our assessment 
of the vulnerability and toxicity of playa particulate 
matter. To understand the influence of both sediment 
and playa on dust composition — as well as associated 
exposure and deposition risks for downstream niches 
— the phylogenetic structure, functional diversity and 
seasonal variation of the playa microbiome must be 
investigated.

Sea microbiome
For decades, studies on the microbial composition of 
the Salton Sea have focused heavily on Cyanobacteria. 
Cyanotoxins — specifically microcystin — contribute 
to the high frequency of avian mortality events occur-
ring at the Sea (Carmichael and Li 2006; Meteyer et al. 
2004). Additionally, Cyanobacteria and other phyto-
plankton taxa form microbial mats that sit above the 
water surface (Wood et al. 2002) and thus are easy to 
investigate. Nevertheless, these studies have failed to 
capture the microbial diversity that persists below the 
Sea surface. 

The Salton Sea is characterized by hypersaline, al-
kaline and anoxic conditions where anaerobes and ex-
tremophiles (i.e., microorganisms that inhabit extreme 

environments) prevail (González et al. 1998; Reese et al. 
2008). These extremophiles include halophiles, or salt-
loving microorganisms, and alkaliphiles, which thrive 
in conditions with a pH of 8 or greater (Andrei et al. 
2012; Mesbah and Wiegel 2008). 

To date, only two studies have examined microbial 
phylogenetic diversity in Salton Sea water (Dillon et al. 
2009; Hawley et al. 2014; table 1). In contrast to previ-
ous work, these studies showed that Cyanobacteria 
compose less than 5% of the total taxa found in Sea 
water samples (Dillon et al. 2009; Hawley et al. 2014); 
instead, they detected high abundances of microor-
ganisms from both Proteobacteria and Bacteroidetes 
phyla. Beyond Cyanobacteria, Dillon et al. (2009) 
observed seasonal shifts in the relative abundance 
of Gammaproteobacteria and Alphaproteobacteria 
classes, and the Bacteroidetes phylum.

Proteobacteria are likely the most abundant phy-
lum detected in Salton Sea water (Hawley et al. 2014). 
Rhodobacterales, an order within Alphaproteobacteria, 
was highly abundant within the summer months 
(Dillon et al. 2009). Rhodobacterales is composed 
primarily of photoautotrophs, which are capable of 
anaerobic photosynthesis, and haloalkaliphiles, which 
have been identified globally in saline, alkaline lakes 
(Kopejtka et al. 2017). Further determining which taxa 
within the Proteobacteria are most common and abun-
dant would be a promising area for future research, as 
finer taxonomic resolution from this abundant phylum 
has rarely been reported. Given that a majority of these 
analyses about Salton Sea water capture microbial di-
versity only at the Sea surface, and neglect to character-
ize the microbial diversity of the water column, future 
work assessing microbiome structure below the water 
surface would be particularly valuable. For example, 

Microbial mat accumulation on the margin of Obsidian Butte during the warm summer 
months. Photo: Caroline Hung.
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exploring the taxonomic diversity of microorganisms 
within the Sea’s water column, particularly during 
seasonal upwellings and eutrophication events, would 
identify microorganisms responsible for depleting dis-
solved oxygen supplies via detritus consumption or 
sulfate reduction (Reese et al. 2008); classifying these 
microorganisms could improve predictions of anoxic 
periods within the Salton Sea and similar ecosystems.  

Aeolian microbiome
In addition to minerals and trace metals, microorgan-
isms can become entrained in both playa dust and Sea 
spray, along with their microbial toxins, which may 
be capable of withstanding turbulent conditions and 
long-distance transport (fig. 1; Tang et al. 2017). Mi-
croorganisms persisting among and on dust compose 
the aeolian microbiome, which includes all bacteria, 
archaea, fungi and viruses that circulate in the atmo-
sphere. Some fungal spores and bacteria are capable 
of surviving within — or atop — dust as single cells or 
filaments, moving freely or attaching to individual par-
ticles (Samake et al. 2017).

Dust microorganisms have adapted to a unique 
set of environmental stressors including wind stress, 
ultraviolet radiation, humidity, temperature and nutri-
ent availability. These microorganisms are equipped 
with a particular combination of traits, such as mela-
nin production (Grishkan 2011) or biofilm formation 
(Aalismail et al. 2019), which enables their survival 
within this inhospitable airborne environment 

(Grishkan 2011). Several studies have reported higher 
microbial abundance on large dust particles at higher 
temperatures or low relative humidity (Lighthart and 
Shaffer 1997; Polymenakou et al. 2008; Yamaguchi et al. 
2012), which are common features of the Salton Basin. 
Increased microbial burden also often correlates with 
enriched organic matter and minerals in dust (Tang et 
al. 2017). Collectively, these results suggest that larger 
dust particles shelter, sustain and protect microorgan-
isms to ensure their dispersion and survival. 

Numerous microorganisms isolated from dust re-
main viable for long durations of time. Bacterial and 
fungal isolates from dust not only can be successfully 
grown in the laboratory environment (Maki et al. 2019; 
Yamaguchi et al. 2012), but also have been shown to be 
metabolically active while in transit (Tang et al. 2017). 
Additionally, airborne microorganisms can facilitate 
ice nucleation, promoting cloud formation and pre-
cipitation (Amato et al. 2015; Bowers et al. 2009; Failor 
et al. 2017; Gaston et al. 2017). Therefore, aeolian mi-
croorganisms may threaten downwind ecosystems by 
altering precipitation and temperature, or disturbing 
stable microbiomes upon deposition. Moreover, expo-
sure risks from airborne pathogenic microorganisms 
originating in the Salton Sea, and associated playa, may 
yield deleterious consequences for plants and animals, 
as well as human populations. Construction and farm 
workers may be particularly vulnerable to increased 
inhalation risks and exposure to dust-associated micro-
organisms, based on their occupational hazards (Gorris 
et al. 2018). 

TABLE 1. Microbial studies within the Salton Sea ecosystem

Study Sample type Microbial group Taxa resolution Methods

Chase et al. 2019 Leaf-litter Bacteria Strain 3

Chase et al. 2018 Leaf-litter Bacteria Strain 3, 4

Schilling et al. 2018 Sediment Bacteria NA 1, 4, 5

Zhou et al. 2017 Water Bacteria Species 1, 4, 5

Fradet et al. 2016 Sediment Bacteria, Archaea Species 1, 3

Hawley et al. 2014 Water Bacteria Phylum 3

VillaRomero et al. 2013 Water, sediment Bacteria NA 1, 4, 5

Saiki et al. 2012 Water, sediment Eukaryotes Species 4, 5

Swan et al. 2010 Sediment Bacteria, Archaea Class 2, 4

Van Ginkel et al. 2010 Water, sediment Bacteria Species 1, 2, 4

Dillon et al. 2009 Water, sediment Bacteria Genus 2, 4

Tiffany et al. 2007 Water Eukaryotes Species 5

Carmichael and Li 2006 Water, tissue Bacteria, Eukaryotes Genus 1, 2, 4, 5

Lange and Tiffany 2002 Water Eukaryotes Species 5

Okeke et al. 2002 Sediment Bacteria, Archaea Species 1, 2, 4, 5

Reifel et al. 2002 Water Eukaryotes Species 5

Wood et al. 2002 Water, sediment Bacteria, Eukaryotes Strain 1, 2, 5

Arnal 1961 Water, sediment Eukaryotes Species 4, 5

Arnal 1958 Sediment Eukaryotes Species 5 

Studies that focused on microorganisms within the Salton Sea, including which type of sample was collected in the study, as well as the type and taxonomic resolution of microorganisms identified. Each study has been 
assigned numeric codes, depending on methods used; numeric codes in ascending order correspond to: 1 = culture-based methods, 2 = chain termination sequencing (i.e., Sanger sequencing chemistry), 3 = next-
generation sequencing, 4 = biochemical assays, 5 = biomass and/or microscopic assays.
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Although the microorganisms inhabiting the 
seawater and sediment of the Salton Sea have been 
examined, the dust microbiome has yet to be charac-
terized. Given their remarkable ability to withstand 
environmental stress in the airborne environment, 
the aeolian microbiome could be dominated by either 
dormant or stress-resistant microorganisms. This resis-
tant aeolian microbiome within Salton Sea dust could 
contribute to the health impacts of air quality in the 
region, especially if microbial groups break dormancy 
or actively interact with plant, animal or human hosts 
upon deposition. Some microbial adaptations likely 
permit their survival in dust. For example, bacteria 
from the genus Bacillus, which have been identified in 
dust samples from across the globe (Tignat-Perrier et 
al. 2019), have the ability to form endospores, allow-
ing them to survive harsh environments via dormancy 
(Nicholson et al. 2000). Upon deposition, these dor-
mant and resistant microorganisms may perform vital 
ecosystem functions, or they may pose formidable 
threats to inhabitants of the region. Motile microor-
ganisms exhibiting chemotaxis may also be uniquely 
suited to explore porous environments and establish in 
favorable niches upon deposition (Scheidweiler et al. 
2020). Therefore, exploring the functional attributes 
and microbiome structure within dust surrounding the 
Salton Sea would clarify the contribution of the aeolian 
microbiome to either promoting ecosystem stability or 
exacerbating regional public health crises.

Methods for further study
Future examination of the Salton Sea must compre-
hensively explore the playa, seawater and aeolian mi-
crobiomes to characterize their structural similarities, 
as well as any differences among these communities. 
Temporal and compositional differences may influence 
the interactions between these microbiomes and their 
surrounding environment, as well as overall nutrient 
availability within the Salton Sea ecosystem. Common 
methodologies used in human and environmental 
microbiome research could be tailored to explore both 
the taxonomic and functional diversity of Salton Sea 
microbiomes.

Sampling and analysis strategies
Multiple sample types (e.g., dust, water, playa) should 
be collected, at a variety of time points, from a repli-
cated set of diverse locations within and around the 
Sea. As sample collection procedures will differ be-
tween media types (soil cores, dust collection, water 
samples), technological advances, such as the use of 
drones, water skimmers or seawater samplers (Xing et 
al. 2017), could be advantageous. Other valuable ap-
proaches may use semi-permanent passive samplers 
(Aciego et al. 2017; Frie et al. 2019), portable sampling 
platforms (Docherty et al. 2018) or active samplers, 
which collect all airborne cells and spores using filters 
from a known air volume (Frie et al. 2017). 

Sample processing procedures may include filtering 
dust suspensions and seawater, using sterile 0.2-μm 
filters to capture bacteria and other microorganisms 
on the filter, while allowing passage of water and other 
aqueous substances. From unfiltered suspensions, mi-
crobial biomass can be determined using flow cytom-
etry (Schmidt et al. 2020) or phospholipid fatty acids 
(PLFA; Buyer and Sasser 2012). 

Amplicon marker genes, such as the 16S rRNA gene 
in bacteria or the internal transcribed spacer (ITS) 
region of fungal rRNA (Knight et al. 2018; Nilsson et 
al. 2019), are selected for amplification or quantita-
tive polymerase chain reactions (qPCR; Manter and 
Vivanco 2007) to determine the taxonomic diversity 
and the relative abundance of important microbial 
groups across samples. Amplicon marker gene se-
quencing is currently the most cost-effective, high-
throughput next-generation sequencing (NGS) method 
for studying microbiome composition across ecosys-
tems (Liu et al. 2020).

Microbiome composition may be altered by both 
seasonal and agricultural geochemical fluxes within 
the Salton Sea, which also may select for metabolic 
strategies employed by these microbiomes. Sampling 
campaigns across time points at the same locations will 
capture temporal and seasonal variation, as upwelling 
events in the summer are known to change surface wa-
ter chemistry by increasing sulfide levels and reducing 
dissolved oxygen content (Reese et al. 2008; Watts et al. 
2001). Organo-chloride pesticides (OCPs) accumulate 
within previously underwater sediments, and may sub-
sequently volatilize or evaporate as polluted sediments 
are increasingly exposed. As these pesticide-laden 
sediments become entrained in dust, OCPs are likely 
transported throughout the region via increased wind 
speeds and storms (LeBlanc et al. 2002), exacerbating 
dust inhalation risks. Although microorganisms from 
the playa or aeolian microbiomes may be capable of 
metabolizing recalcitrant or labile components from 
polluted dust, ecophysiological assays and metabolic 
models would be required to quantify the extent to 
which these toxins can be transformed or biodegraded 
by extant microorganisms. Future work incorporating 
and altering model parameters would facilitate our 
ability to predict future fate and transport of toxic dust 
based on future water influx and climate change sce-
narios (D’Amato et al. 2008). 

Changes in geochemistry, such as total organic 
carbon concentrations, pH and nutrient levels, have 
pointed to detectable shifts in playa microbiomes in 
similar hypersaline water bodies (Hollister et al. 2010). 
Collecting soil core samples from the playa over a 
distance transect would help to elaborate how geo-
chemical variation impacts Salton Sea terrestrial mi-
crobiomes. Furthermore, as reductions in sea volume 
expand the exposed playa, these sampling strategies 
and subsequent analyses could clarify how microbi-
omes transition with their environments from moist to 
dry conditions.
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The impact of dust composition and evaporite 
minerals (e.g., magnesium, calcium, sulfate) on aeolian 
microbial metabolism and assembly could be studied 
via deploying dust collectors (Aarons et al. 2019; Frie 
et al. 2019). Dust samples can be analyzed using stable 
isotope ratios, such as 87Sr/86Sr and 143Nd/144Nd, to 
detail the provenance of the dust and its correspond-
ing microbial community (fig. 1; Aciego et al. 2017; 
Dastrup et al. 2018; Xie et al. 2020; Yan et al. 2020). 
Furthermore, Sr-Nd isotopic analyses of Salton Sea 
dust may reveal geochemical features of the dust’s 
provenance (i.e., the geography and climate) that may 
select for microbial migration from the Sea and the 
playa to the aeolian microbiome. Coupled with NGS 
technologies, this comprehensive analytical approach 
will explicate the dynamics within the playa, seawater 
and aeolian microbiomes, as well as their associated 
implications for microbial dispersal throughout the 
Salton Sea Basin. 

Meta-Omics analyses
Exploring diversity in Salton Sea microbiomes could 
leverage sophisticated molecular techniques (i.e., 
-omics), such as high-throughput NGS methods, shot-
gun metagenomics, metatranscriptomics or metapro-
teomics. Briefly, a shotgun metagenome describes the 
collection of genomic material from a particular eco-
system, including both eukaryotic and prokaryotic ge-
nomes (Quince et al. 2017). Metagenomics can be used 
to characterize taxon-level microbial diversity and cat-
egorize putative functions performed by the microbial 
community. Although metagenomics can identify the 
functional traits within a microbiome, metatranscrip-
tomics confirms which traits are actively expressed by 
the microbiome at a given time. A metatranscriptome 

includes the totality of gene (i.e., RNA) transcripts 
found within an environment (Shakya et al. 2019). Re-
cently, metaproteomics has been used to complement 
NGS methods, via classifying and quantifying pro-
teins produced by microbiomes (Hettich et al. 2013). 
Metagenomics has been used to study Salton Sea leaf 
litter (Chase et al. 2018; Chase et al. 2019; table 1) and 
seawater (Hawley et al. 2014), but these studies did not 
detail the functional diversity of their samples. Salton 
Sea playa and aeolian metagenomes have not been 
thoroughly described, nor have metatranscriptomic 
or metaproteomic approaches been employed yet for 
characterizing the activity of Salton Sea microbiomes. 
Because of the dearth of information on microbiome 
structure within the region, the Salton Sea presents 
a unique opportunity to utilize -omics techniques to 
study both microbial taxonomic and functional diver-
sity across sub-ecosystems, which compose the larger 
ecosystem (fig. 1). 

Metagenomic, metatranscriptomic and metapro-
teomic analyses have been performed on a wide variety 
of sample types, including the human gut (Long et 
al. 2020), soil (Romero-Olivares et al. 2019), deep-sea 
sediments (Mason et al. 2014), cloud water (Amato 
et al. 2019) and airborne dust particulates (Aalismail 
et al. 2019). These techniques allow for the compara-
tive analyses of microbial genomes, transcriptomes 
and proteomes from different systems and ultimately 
identifies both shared taxa and genes among micro-
biomes. Functional annotation of metagenomes and 
metatranscriptomes, using comprehensive databases 
such as the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (Kanehisa et al. 2016; Kanehisa et 
al. 2017; Kanehisa et al. 2019) and analytical tools like 
KoFamScan (Aramaki et al. 2020), detail the func-
tional traits that are differentially expressed under 
specific environmental conditions (Amato et al. 2019; 
Chung et al. 2020; Shakya et al. 2019). For instance, 
soil metatranscriptomes may indicate whether micro-
bial communities are actively allocating resources to 
stress response or proliferation (Romero-Olivares et 
al. 2019). Functional annotations can then guide the 
classification of proteins, such as microbial exudates, 
identified in metaproteomes (Hettich et al. 2013). 
Collectively, these analyses may further reveal meta-
bolic strategies that enable microbial persistence in 
harsh conditions (Brewer et al. 2019). Furthermore, 
understanding these associated metabolic processes 
may reveal mechanisms that drive microbiome-
resource interactions throughout this dynamic 
ecosystem.

Modeling dust emissions
Mineral dust advection, or dust transference by fluid 
flow, has been shown to be an important vector for the 
long-range transport of microbial organisms, espe-
cially in and around desert environments such as the 
Salton Basin. While smaller particulates have longer 
atmospheric lifetimes due to their slower deposition 

Lake sediment cores sampled from the Salton Sea by the Lyons lab at UC Riverside for 
trace metal contamination analysis. Photo: Caroline Hung.
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velocities, larger aerosols (> 5 μm) typical of desert 
surfaces are especially efficient vectors of microbial 
dispersal (Yamaguchi et al. 2012). Dust transport pat-
terns and ranges are thus dependent on both particle 
size and meteorology, with strong wind systems capa-
ble of relocating larger particles — along with any at-
tached microorganisms — across continental distances 
(Perry et al. 1997). The Salton Sea region is one of the 
dustiest in the United States, with both the Coach-
ella Valley and Imperial Valley regions consistently 
exceeding daily EPA standards for particulate matter 
(PM10). Moreover, these regions exhibit strong sea-
sonality and frequent wind storm–driven dust events 
(Evan 2019; US Environmental Protection Agency 
n.d.). This makes the patterns of dust emissions and 
transport, as driven by seasonal meteorology and 
sporadic dust storms, important for understanding 
regional sources and biogeographic patterns of local 
microorganisms.

Available tools for identifying sources of advected 
dust include trajectory or dispersion models such 
as the Hybrid Single Particle Lagrangian Integrated 
Trajectory Model (HYSPLIT; Stein et al. 2015). By 
combining local wind fields with physical dust deposi-
tion parameters, these models can run forwards (to 
estimate patterns of dust transportation and deposi-
tion from a given source) or generate backwards tra-
jectories (to assess likely emission sources for particles 
collected at a given receptor site). These methods have 
been used previously to examine long range transport 
patterns of source-specific microbial populations 
(Cáliz et al. 2018; Rosselli et al. 2015; Stres et al. 2013; 
Yamaguchi et al. 2012) and impacts of dust storms on 
downwind microbial communities (Hagh Doust et al. 
2017; Mazar et al. 2016).

Our group has generated backward trajectories to 
evaluate the wind patterns blowing from the Salton 
Sea and estimate relative contributions of particulates 
reaching our passive dust collectors over a finite time 
period. Furthermore, we have explored the distribu-
tion and elemental composition in the Salton Sea re-
gion (Frie et al. 2019), which provides valuable context 
for explaining how seasonally shifting dust patterns 
— along with chemicals, physical particulates and as-
sociated microbial transport — may influence local 
microbiomes.

Conservation and public health in 
the Sea
Characterizing the unique microbial communities of 
the Salton Sea will complement ongoing investigations 
of the impacts of pollution on local residents and wild-
life. Yet, many questions remain. For instance, how 
does the aeolian microbiome influence the lung micro-
biome? The aeolian microbiome may exacerbate respi-
ratory symptoms via incidentally inhaled aeroallergens 
and particulate matter, resulting in the disproportion-
ately higher rates of asthma and chronic respiratory 

disease detected in nearby communities (California 
Department of Public Health n.d.; Farzan et al. 2019). 
Can we explain long-term exposure effects of Salton 
Sea dust on the health of wildlife and local residents 
by comparing the Salton Sea microbial communities 
with unpolluted microbial communities, collected in 
analogous systems? The microorganisms themselves, 
in addition to their extracellular exudates (Chae et al. 
2017; Rolph et al. 2018), may serve as bioindicators of 
either eutrophication or pollution in soil, water or dust 
(Bouchez et al. 2016; Karimi et al. 2017; Schloter et 
al. 2018). Furthermore, historical exposure to pollut-
ants may select for microorganisms that are uniquely 
suited for tolerating — or even ameliorating — toxicity 
within these particular systems. 

In the interest of augmenting restoration efforts, 
how can we best deploy particular microbial taxa from 
the Salton Sea sub-ecosystems to remediate polluted 
systems via biodegradation or metal transformation 
(i.e., bioremediation; Kumar et al. 2019; Sher and 
Rehman 2019; Voica et al. 2016)? Novel opportunities 
for restoration may arise as human activities, such as 
mining and food production, increase apace with the 
shrinking of the Salton Sea. To illustrate one example, 
lithium mining of geothermal brines in the Salton 
Sea (Vikström et al. 2013), coupled with evapora-
tion, may provide opportunities to leverage endemic 
microorganisms for bioremediation. Yet, microbial 
bioremediation may not be sufficient to mitigate the 
environmental impacts and deleterious human health 
outcomes for inhabitants of the region exposed to air 
pollution; this pollution may be exacerbated by evapo-
rating novel brines, replete with toxic metals such as 
arsenic and manganese, which may cause neurologi-
cal issues in children (Dion et al. 2018). To promote 
community health and ecosystem stability, we must 
investigate the dynamic interactions among the playa, 
seawater and aeolian microbiomes throughout the re-
gion. Furthermore, a thorough characterization of the 
functional attributes of dust microbiomes is needed 
to inform holistic approaches for addressing regional 
public health crises throughout the Salton Sea Basin.

Conclusions
The Salton Sea crisis necessitates immediate action 
as conditions rapidly worsen. Reduced precipitation 
and increasing temperatures are drivers of drought 
throughout California (Luo et al. 2017), advancing the 
diminution of the Salton Sea. Playa erosion and result-
ing dust emissions are predicted to rise (Parajuli and 
Zender 2018), which could interfere with incoming 
radiation and induce subsequent changes to local cli-
mate (Von Schneidemesser et al. 2015). Fluctuations in 
nutrient availability as a result of climate shifts will se-
lect for specific microbial functions (Louca et al. 2017; 
Louca et al. 2018), altering the overall trophic structure 
in the Sea. To better understand ecosystem resilience 
in this unpredictable landscape, more research is 
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