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Abstract of the Dissertation
A Nonlinear Approach To Learning From An Inconsistent Source

(with some applications)

By

Timmy Ma

Doctor of Philosophy in Mathematics

University of California, Irvine, 2018

Professor Natalia Komarova, Chair

Learning in natural environments is often characterized by a degree of incon-

sistency from an input. These inconsistencies occur e.g. when learning from

more than one source, or when the presence of environmental noise distorts in-

coming information; as a result, the task faced by the learner becomes ambiguous.

In this study we present a new interpretation of existing algorithms to model and

investigate the process of a learner learning from an inconsistent source. Our

model allows us to analyze and present a theoretical explanation of a frequency

boosting property, whereby the learner surpasses the fluency of the source by in-

creasing the frequency of the most common input. We then focus on two applica-

tions of our model. One is using our model to describe the “Object-Label-Order”

effect. The other is to describe the evolution of the first word.

x



0Introduction
“Education’s purpose is to replace an empty mind

with an open one.”

Malcolm Forbes

0.1 Regularization

From the development of the Nicaraguan Sign Language [67], whereby younger

cohorts of children in schools of Western Nicaragua in the 1970s and 1980s learned

and improved upon the “home-signing” system of their older cohorts, to the cre-

olization of pidgin languages [1], where languages that have basic and inconsistent

foundation evolve to acquire a complex and consistent system, to the discussion

of the plural allomorphs in English [8], the examples of language regularization

by learners are abundant.

The ability of humans to improve on and modify the linguistic input they

receive is a natural occurrence of language learning. A prime example of such a

phenomenon is reported by Elissa Newport and colleagues [27]. They analyzed

the language of a deaf boy (named Simon) who received all of his linguistic input

from his parents, who were not fluent in American Sign Language (ASL) since

they learned it after the age of 15. Due to the parents’ late introduction to ASL,

they served as an “inconsistent source” that Simon received as an ASL learner.

Amazingly, comparing Simon to his parents and children who were native speak-

ers of ASL, Newport reported that Simon greatly outperformed his parents when

being tested on ASL, and in many aspects did as well as native speakers’ children
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of similar age.

Newport and her colleagues used the term frequency boosting to describe the

margin of regularization of learning that is exhibited by learners upon the lan-

guage of the source. Suppose that the source of linguistic input, such as a teacher

(or parents in the case of Simon) is inconsistent. By “inconsistent”, we mean that

there is a probabilistic element of using a particular form of a certain rule. Such as

two ways to pronounce “po-tay-toe” or “po-ta-toe”, or two variations of gesturing

the letter “J” in ASL. Frequency boosting is the ability of a language learner to in-

crease the frequency usage of a particular form compared to the source. Frequency

matching happens when the learner reproduces the same frequency of usage as

the source. In [27] it is reported that (i) children are more prone to frequency

boosting than adults, and (ii) adults can also frequency boost, depending on the

structure of input.

0.2 Learning algorithms

Previously [34, 58] we proposed a class of simple reinforcement learning algo-

rithms (see e.g. [42, 45, 75] for background on reinforcement learning) that can

exhibit frequency boosting behavior. These algorithms are based on the classic

Bush-Mosteller algorithm [11], which we explain here to motivate the subsequent

development. Let us suppose that a learner is receiving input on the usage of two

possible, alternative forms of a rule. In this process, the learner develops a certain

propensity of using form 1 or form 2. We will denote that learner’s probability

to use form 1 as x, where 0 ≤ x ≤ 1. The learner’s state is thus uniquely charac-

terized by the value of x, such that x = 1 means that form 1 has been completely
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learned, and x = 0 corresponds to the learner never using form 1. Bush-Mosteller

algorithm postulates that the state of the learner changes in a sequence of updates,

each update following one bit of the source’s input. If the source uses form 1, this

will increase the propensity of the learner to use form 1: x → x+Δx. It is further

postulated that the size of the increment, Δx, is a linear function of the “novelty”

or “surprise” effect: the farther the current state, x, is from 1, the larger the incre-

ment. Mathematically this is expressed as Δx = a(1−x), where a is some constant.

Since its introduction, Bush-Mosteller type learning algorithms have been

used in the literature to describe a wide variety of learning behaviors, both in

biological and behavioral sciences [9, 10, 43]. Some of the context include mod-

eling the response of phenological traits, such as timing of breeding, to climatic

conditions [48]; voting behavior of individuals in a population [6, 23], conflict

resolution in humans [22], and the role of innovations and change in human lan-

guage [41]. In the context of experiments with human subjects, several authors

have used simple reinforcement learning models to successfully explain and pre-

dict behavior in a wide range of experiments [18, 38, 39, 60].

A central assumption of the Bush-Mosteller algorithm, and subsequently, the

influential Rescorla-Wagner algorithm [53, 54, 55], is the notion that learning hap-

pens more quickly if an element of surprise is present. This principle has been

studied in the neurophysiological literature [21, 57, 63]). For example, [62] dis-

covered that neurons “show reward activations only when the reward occurs un-

predictably and fail to respond to well-predicted rewards, and their activity is de-

pressed when the predicted reward fails to occur”. Further empirical background

for models of the Bush-Mosteller type is provided by [5, 13, 17, 26].
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The class of algorithms presented in [34, 58] is consistent with the central as-

sumption of the Bush-Mosteller and Rescorla-Wagner models, that the speed of

learning is positively correlated with “novelty”, but instead of assuming that the

increment of learning is a linear function of the “novelty”, it uses more general,

and possibly nonlinear, non-decreasing functions. In [34, 58] we demonstrate the

existence of the boosting property of the algorithm for several interesting cases.

It however remains unclear under what circumstances can one expect to see the

boosting property.

In chapter 1, we introduce an alternative and more elegant mathematical frame-

work that allows us to model language regularization in the context of a teacher-

learner pair. The advantage of the novel approach is that it allows us to develop

and provide a mathematical proof of sufficient conditions in which frequency

boosting can occur.

0.3 Learning with noise

One aspect of learning concerns inconsistencies, or “noise”, in the input. Typi-

cally, input consists of exemplars that become a basis for our internal associations

and concept formation. In natural situations, these exemplars are often contradic-

tory. For instance, if learning from more than one teacher, such contradictions

are inevitable. Another reason for inconsistencies can simply be the noise inher-

ent in any information sharing exercise. How do we deal with internal contradic-

tions in the source? To explore this issue experimentally and theoretically, in this

paper we restrict ourselves with a comparatively simplistic learning environment,

where a student is exposed to a series of images, each combined with a specific

utterance. The input is intentionally contradictory, such that different utterances
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may accompany the same image and different images can co-occur with the same

utterance. The objective is to create a mental map of image-utterance associations.

0.4 Object-Label-Ordering effect

In the following study, we explore the possibility that the learner may have an eas-

ier time dealing with the source’s inconsistency, depending on the way the input

is presented. Namely, we vary the order in which the image and corresponding

utterance are received (that is, whether an utterance is followed by an object or

the other way around).

The order of presentation has been studied by other groups in the context of

the so called Feature-Label-Order (FLO) effect, see e.g. [3, 30, 49]. For example,

Ramscar and colleagues studied the difference between two types of symbolic

learning procedures: the Feature-Label (FL) and the Label-Feature (LF) process

[49]. Under the FL process, when learning images and utterances, images (“fea-

tures”) are shown first, and then the label is heard. Under the LF process, the

order is reversed. To investigate whether FLO made a difference, a series of exper-

iments were performed where each exemplar had one non-discriminating and

one discriminating feature. A non-discriminating feature occurred in multiple

categories, thus making the objects difficult to correlate to one particular cate-

gory. Each discriminating feature only occurred with one category but at differ-

ent frequencies. Using human subjects as well as computer simulations based on

the Rescorla-Wagner type model, the authors found that FL learners were able

to identify and discriminate both high and low frequency categories at a higher
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accuracy than LF learners.

Inspired by these studies, we hypothesize that the order in which images and

utterances are received by the learner may make a difference in how efficiently

the learners handle inconsistencies of the source. There are two important differ-

ences between our concept and the FLO effect described above. In FLO studies,

objects that appeared in the learning tasks possessed different “features”. Some

features were shared among two or more objects, thus making the task of label

assignment difficult. In our study, the objects are “holistic” and do not share fea-

tures. Instead, what makes the learners’ task difficult/ambiguous in our study is

the presence of noise, or inconsistencies, of the source. In order to avoid con-

fusion between the two experimental and conceptual settings (the setting with

shared features by [49], and the present setting with inconsistencies in the source),

we refer to our framework as “Object-Label-Order” (OLO) effect.

In chapter 2, we investigate the interplay between the Object-Label-Order ef-

fect on the one hand, and regularization as a way of processing noisy, inconsistent

source of learning, on the other. In [33, 34, 58], we developed a new mathemati-

cal approach to describe learning from an inconsistent source and, in particular,

to explain the regularization phenomenon. Here, we extend our framework to

study how learners process inconsistencies of the source in the OL and the LO

learning environments. Does OLO make a difference in how the inconsistency is

processed? What is a better way of setting up the learning task? Chapter 2 explores

these questions both by theory and experiment.

Apart from regularization and noisy language learning, there are several other

broad areas of application for this work. First is symbolic learning, where one ex-
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amines how symbols are represented and used as tools of learning [49]. Another

important area is categorization and concept learning, which is regarded as a pro-

cess of determining how and which objects are grouped together or separately

[4, 20, 77]. More details are presented in section 2.4.

0.5 Language evolution: Zipf’s Law of Abbreviation

Language is a fundamental feature of human behavior. Its evolution has puzzled

and caused controversy across many disciplines [15, 16, 29, 64]. Both real-life be-

havioral data and theoretical modeling have thus far provided the scientific com-

munity tools to approach language evolution. The emergence of the first word,

however, has remained unexplored. In hindsight, the “first word” may have never

occurred in one particular event but instead could be a result of a process that

occurred over generations. How does the first word emerge in a population of

social individuals? With the complexity of the new word, is there a more likeli-

hood that the word will be forgotten? Can we say then that, from the evolution

of more complex words, the “simpler” words would be used less frequently?

In chapter 3 we explore our theoretical modeling from chapter 1 and use regu-

larization to describe the formation of the first word. In addition, we use language

evolution to explore Zipf’s Law of Abbreviation. This law states that frequently

used words tend to be shorter [78, 79]. In [7], they studied a sample of 1263 texts

written in 986 different languages of 80 different families show a negative cor-

relation between word frequency and word length. However, with our theoreti-

cal model and the concepts of learning with noise, regularization, and symbolic

learning, we explore a potential environment which will be in violation of Zipf’s

Law of Abbreviation.
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1Student-Learner-Pair
“Intelligence is the ability to adapt to change.”

Stephen Hawking

In this chapter we introduce two algorithms, which exhibit frequency boost-

ing presented e.g. by [27]. We first describe the algorithm that was developed in

[58]. We discuss some of its basic properties and the role it takes in describing

the frequency boosting property. The second algorithm is new; we describe the

formulation and discuss the advantages it provides.

1.1 The Variable Increment algorithm

This section is to highlight the basic algorithm discussed in [58]. Let us suppose

that a certain rule has 2 forms, or variants. A learner is characterized by 2 positive

numbers, (x1, x2) such that x1 + x2 = 1 (a generalization to n forms is described

in [58]). We will use the same terminology as in [58] for consistency. Note that

x1 uniquely defines the state of the learner, and the quantity x1 (x2) represents the

probability of the learner to use form 1 (form 2).

The learning process is modeled as a sequence of steps, which are responses

of the learner to the source’s input. The changes in x1 at each step are defined by

(i) the input from the source, which will be described as a probability ν to utter

form 1, and (ii) the state of the learner, through a given response function. If the

source’s input is form 1, then the learner will update its frequencies according to
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the following update rules:

x1 →

 x1 + F+(x1), if form 1 is received,

x1 − F−(x1), if form 2 is received,
(1.1)

where F+ and F− are some functions of one variable on [0, 1]. The rules above can

be rewritten for the probability to utter form 2, x2 = 1 − x1:

x2 →

 x2 − F+(x2), if form 1 is received,

x2 + F−(x2), if form 2 is received.
(1.2)

Because of symmetry considerations, we can argue that F−(x1) = F+(1 − x1) ≡

F(x1), such that the superscripts can be omitted. We will refer to the function F

as the update function. Note that because x1, x2 ∈ [0, 1], we must require that

F(x) ≤ x. (1.3)

Fig. 1.1(a) provides a schematic of this simple algorithm.

Figure 1.1: A schematic illustration of the learning algorithms in the case of n = 2
forms. (a) The VIM. (b) The MCM.

We will call this model the Variable Increment Method (VIM). While it cap-

tures the phenomena described in [27, 58], it has some shortcomings. (i) The

9



model has a non-constant increment. We can see in Fig. 1.1 that as the learner’s

propensity to use form 1 increases (x moves to the right), that the size of posi-

tive updates must become smaller (see requirement (1.3)). This puts a restriction

on the types of functions that one can use in conjunction with this algorithm.

Practically, for a given function f(z), one can simply set

F(z) =

 f(z), f(z) ≤ z,

z, otherwise.

(ii) The second shortcoming of the VIM is its analytical intractability. In the next

section we introduce a different algorithm where the theory of Markov Chains

can be used to study its properties.

1.2 The Markov Chain algorithm

For this method, which we call the Markov Chain Method (MCM), we assume

that the state of the learner is defined by positive integers, X1 and X2, that takes

values 0, 1, . . . , L, with X1 +X2 = L. We will refer to parameter L as the discretiza-

tion parameter. Then Xi/L = xi is the probability that the learner uses form i.

At each time step, the learner’s value of Xi may move up or down by 1 with the

probability defined by the source’s input and the learner’s current position. This

gives rise to a Markov chain with the following transition matrix, P = {Pi,j}:

Pi,i+1 = νF(1 − i/L), Pi,i−1 = (1 − ν)F(i/L), (1.4)

Pi,i = 1 − Pi,i+1 − Pi,i−1, 0 < i < L, (1.5)

P0,1 = νF(1), P0,0 = 1 − νF(1), (1.6)

PL,L−1 = (1 − ν)F(1), PL,L = 1 − (1 − ν)F(1), (1.7)

with the rest of the elements being zero. Here, the function F is defined on [0, 1]

and has the meaning of probability. Although the value F(0) does not appear

10



in the transition matrix, we formally assume that F(0) = 0, because the factor

F(0) multiplies the probability to reduce X upon receiving form 2 from the in-

put, when X = 0, and this quantity should be zero. A schematic of this method

is presented in Fig. 1.1(b).

The MCM formulation does not require function F to satisfy condition (1.3).

Further, as will be demonstrated below, this Markov chain formulation allows

for easy proofs of some of the algorithm’s important properties.

In order to satisfy the requirements of the psychologically and physiologi-

cally based Bush-Mosteller and Rescorla-Wagner models, the function F used in

our formulation(s) must satisfy certain requirements. We will require that (i)

F(0) = 0, and (ii) F(x) is nondecreasing.

To compare the two algorithms, suppose that function F satisfies inequality

(1.3), and calculate the expected increments in the state of the learner, given that

the frequency of the source is ν. Suppose further that the current state is given by

x1 for VIM and X1 = Lx1 for MCM. It is easy to check that the expected increment

both in VIM and MCM is given by

Δ = νF(1 − x1)− (1 − ν)F(x1).

Note however that while in VIM, x1 → x1 + Δ, and this increment translates di-

rectly to the increment in the learner’s probability to utter form 1, in MCM we

have X1 → X1 + Δ, and thus the corresponding increment in the learner’s proba-

bility to utter form 1 is given by Δ/L. To make the two methods commensurate,

one has to scale the function F used in MCM by a factor of L.
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In section A.1 we present a detailed numerical investigation of the two meth-

ods’ behavior, including convergence and applications to the setting described

in [58]. To reproduce the results in [27], we had to introduce two parameters in

VIM to capture an asymmetric aspect in the model as dicussed in [58]. We do

the same for MCM to complete our comparison of the two methods. We call the

asymmetric versions of VIM (and MCM) the AVIM (and the AMCM). A detailed

comparison of AVIM and AMCM is presented in section A.1.2. In summary, the

two algorithms coincide as the discretization parameter, L, of MCM (AMCM)

increases to infinity.

1.2.1 Generalization of the MCM algorithm to N forms

For the general N form update, suppose that the state of the learner is given by

(X1,X2, . . . ,XN),

where Xi is an integer from 0 to L for i = 1, . . . ,N and that
∑N

i Xi = L for an

integer L. Suppose that the source utters form i, then for each j ̸= i, the following

update occurs: with probability F(Xj/L),

Xj → Xj − 1, Xi → Xi + 1, (1.8)

For example, whenN = 3, suppose that the source utters form 1, then each X2 and

X3 have a chance to update (negatively), matched with positive update in X1. If X2

decreases (with probability F(X2/L)), then X1 increases. Similarly, if X3 decreases

(which happens with probability F(X3/L)), then X1 increases.

1.3 The Frequency Boosting Effect

In [34], an observation was made about “frequency boosting” for power functions.

Here, we will discuss this effect in more generality. In particular, we will describe
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a class of functions that exhibit boosting behavior. Let us remind ourselves of the

conditions that must be met to satisfy the Bush-Mostellar and Rescorla-Wagner

models: (i) F(0) = 0, and (ii) F(x) is nondecreasing. Examples of functions that

satisfy these conditions are linear functions F(x) = ax or power functions such as

F(x) = axα, where α is any real number. The theory presented below is however

more general and includes a very large family of functions.

1.3.1 The Frequency Boosting Theorem

Frequency boosting is the event where the frequency of the learner to use the most

frequent form surpasses that of the source. If we denote by ν the frequency of the

source to use its most frequent from, and by νlearn the frequency of the learner to

use the same form, frequency boosting is simply νlearn > ν.

Fig. 1.2 gives an example of this behavior from MCM with F(X/L) = (X/L)0.4

and L = 100. The source in this example will use form 1 60% of the time (ν = 0.6)

and form 2 40% of the time. As the learner is being exposed to the source’s usage

of forms 1 and 2, over time, the learner’s frequency of usage of form 1 increases

from its initial value and even surpasses 60%. Eventually, the learner will reach

a quasi-steady state and oscillate close to 70%. This is the frequency boosting

behavior, where the learner decreases the source’s inconsistency by increasing the

usage of the more frequent form.

Formally, for the two-form example, if ν and νlearn denote the frequency of

form 1 for the source and the learner respectively, then the frequency boosting
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Figure 1.2: Stochastic simulation with MCM illustrating the Frequency Boosting
Property. Two forms are used by the source, with ν = 0.6. The frequency of the
learner is plotted as a function of time (updates). The resulting quasi-steady state
is characterized by the average frequency that exceeds the frequency of the source
for the more frequent form.

property is equivalent to

νlearn


> ν, if ν > 1

2 ,

< ν, if ν < 1
2 ,

= ν, if ν = 1
2 .

Fig. 1.3 shows two examples, one of the boosting property and the other as

a non-example. Fig. 1.3(a) is the plot of MCM with F(X/L) = (X/L)0.2, and it

shows that as long as ν > 0.5, the resulting frequency of the learner, νlearn, ex-

ceeds, ν. Thus we can see that the given function exhibits boosting property.

In Fig. 1.3(b), we used a different function, F(X/L) = (X/L)1.5. It can be seen

that in this case, there is no frequency boosting property, and an opposite trend
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Figure 1.3: Plot of MCM with functions (a) F(X/L) = (X/L)0.2 and (b) F(X/L) =
(X/L)1.5, with L = 100. Average probability of the learner to use form 1 is plotted
against the probability of the source to use form 1.

seems to take place (we refer to this effect as frequency demotion or under-matching).

An example of frequency matching is when the learner’s frequency of using

form 1 matches that of the source. A function that produces this result is F(X/L) =

aX/L, a linear function, which is shown in Fig. 1.4.

Figure 1.4: Algorithm MCM with function F(X/L) = X/L; L = 100.

After hypothesizing various nonlinear functions, we conjectured that a suffi-

cient types of function that exhibits frequency boosting are nonlinear functions
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that are concave down, that is, at least some of secant lines are below the graph

of F. In other words, F is concave down on interval I if for all x, y, z ∈ I such that

x < z < y,
F(z)− F(x)

z− x
≥ F(y)− F(x)

y− x
,

and the inequality is strict for at least some points.

We now formalize this in the following theorem:

Frequency Boosting Theorem. Suppose that the source uses two forms, and ν > 1
2

is the frequency of the source to use form 1. Further, suppose that the learner operates

according to MCM with an update function F and discretization parameter L. Denote

by νlearn the limiting average frequency of the learner to use form 1 (corresponding to

the number of updates increasing to infinity). Then the learner will exhibit the boosting

property, that is, νlearn > ν, if the function F has the following properties on a set of

discrete points {0, 1/L, 2/L, . . . , 1} for some integer L:

1. F(0) = 0,

2. F is non-decreasing,

3. F ≤ 1,

4. F is concave down in the sense explained above.

The proof of the theorem is presented in A.2.

1.3.2 The frequency of the learner – an analytical expression

At each time step, the MCM learner can move up or down the Markov walk by

1 with a probability defined by the source’s input and the learner’s current posi-

tion, according to the transition matrix P defined by (1.4-1.7). Stochastic matrix
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P has eigenvalues 1 = λ0 ≥ λ1 ≥ . . . ≥ λN. The steady state of the learner is

characterized by the left eigenvector, Y = (Y0, . . . , YL), of the transition matrix P

that corresponds to the unit eigenvalue, λ0 = 1:

YP = Y.

The eigenvector Y can be found explicitly, for a general function F. Let us define

the notation

Ck
n =

∏n
i=1 F(i/L)∏k

i=1 F(i/L)
∏n−k

i=1 F(i/L)
. (1.9)

We also formally define
∏0

i=1 F(i/L) = 1 (in analogy with the definition of 0!).

Note that in the case where F(j/L) = aj/L, we simply have

Ck
n =

 n

k

 ,

so one can think of the quantities Ck
n as a generalization of the binomial coeffi-

cients to the nonlinear functions F. The entries of the eigenvector Y are given

by

Yi = Ci
Lν

i(1 − ν)L−i, 0 ≤ i ≤ L,

and the expected frequency of the learner is simply

νlearn =

∑L
i=0 Yii

L
∑L

i=0 Yi
. (1.10)

The speed of convergence to the steady state is defined by the quantity 1 − λ1,

where λ1 is the second largest eigenvalue of P.

1.3.3 Power functions and other examples

There are several important examples that we will use to illustrate the above the-

ory.
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Simonmodel. This example comes from [34, 58] and corresponds to F(i/L) = a,

a constant. In this case,

Ck
n = 1, Yi = ν i(1 − ν)L−i,

and

νlearn =
ν

L
(1 − ν)L+1 + νL(2νL− L+ ν − 1)

(2ν − 1)(νL+1 − (1 − ν)L+1)
, (1.11)

which is the same as obtained from the VIM in [34]. Certainly λ0 = 1 is an

eigenvalue for the transition matrix P. It is possible to show that the next largest

eigenvalue, λ1, has the property

lim
L→∞

(1 − λ1) = a(1 − 2
√

ν(1 − ν)).

This quantity is related to the speed of convergence of the learning algorithm. It

follows that for a given value ν, the speed of convergence is defined by the quan-

tity a, the increment of the learner. This result coincides with the one reported

in [34] for the VIM.

It is also instructive to find the limit of expression (1.11) as L → ∞. If we denote

κ =
1 − ν

ν
, (1.12)

the expression in (1.11) can be rewritten as

νlearn =
νκL+1

L + (2ν − 1)− 1−ν
L

(2ν − 1)(1 − κL+1)
.

If ν < 1
2 , then κ > 1 and limL→∞ κL+1 = ∞. In this case, the expression above

behaves as ν/L/(1−2ν) → 0 as L → ∞. On the other hand, if ν > 1
2 , then κ < 1

and limL→∞ κL+1 = 0, such that the expression for νlearn tends to 1. Therefore we

have

lim
L→∞

νlearn =

 0, ν < 1
2 ,

1, ν > 1
2 .

(1.13)
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The power function model. Let us suppose that F(x) = axα, with α ≥ 0. In this

case, we have

Ck
n =

(
n!

k!(n− k)!

)α

=

 n

k


α

.

Implementing formula (1.10), we obtain

νlearn = Lα−1 ν

1 − ν

αFα−1(1 − L, . . . , 1 − L; 2, . . . , 2;− ν
1−ν

)

αFα−1(−L, . . . ,−L; 1, . . . , 1;− ν
1−ν

)
. (1.14)

In the particular case where α = 1, the expressions simplify and we obtain from

(1.10),

νlearn = ν.

In other words, the linear function F leads to frequency matching behavior, as

was already illustrated by example of Fig. 1.4. The speed of convergence can be

found for the linear functions. The eigenvalues of the stochastic matrix are given

by

λi = 1 − ai/L, 0 ≤ i ≤ L,

and the speed of convergence is then given by 1 − λ1 = a/L.

Frequency matching solutions. We would like to ask the question: apart from

the linear function, what functions, F(i/L), 0 ≤ i ≤ L, lead to the frequency

matching behavior? Using expression (1.10), we can consider the equation

νlearn − ν = 0.

This equation has to be satisfied for all values of ν ∈ [0, 1], and is equivalent to an

algebraic system of L equations for F(1/L), F(2/L), . . . , F(L/L). These equations

are obtained by equating the coefficients of the powers 1, 2, . . . , L of ν to zero.
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Figure 1.5: An example of function F(i/L) that satisfies equation (1.16) and thus
yields νlearn = ν for all ν. This function was created by taking F(i/L) = F((i −
1)/L) + βiξi, for 0 ≤ i ≤ L/2, and applying equation (1.15). Here L = 10, βi =

F
( i−1

L
) ( i(L+2−i)

(L−i+1)(i−1) − 1
)

, and ξi is a uniformly distributed random number in [0, 1].
The choice of βi guarantees that the function F is nondecreasing.

They can be solved iteratively, starting from the equation for the first power. The

solution reads:

F
(
L+ 1 − k

L

)
= F

(
k
L

)
L+ 1 − k

k
, k ∈ Z, 1 ≤ k ≤ L+ 1

2
. (1.15)

If L is odd, the equation for F
(L+1

2L

)
turns into an identity. The above equation

can be rewritten as

kF
(
L+ 1 − k

L

)
= (L+ 1 − k)F

(
k
L

)
. (1.16)

This equation defines an infinite family of sequences {F(k/L)} that has the fre-

quency matching property. One possible solution is, of course, the linear func-

tion, F(X) = aX. Fig. 1.5 shows a different example of a function F that yields

frequency matching behavior.

Let us denote X = k/L. Then, in the limit L → ∞, equation (1.16) becomes

XF(1 − X) = (1 − X)F(X). (1.17)

We will encounter this limiting case in the next section, when talking about al-

ternative methods of finding the frequency of the learner.
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1.3.4 The mean approximation

While for the examples presented above it was possible to use formula (1.10) di-

rectly, the expressions do not simplify easily for a wider class of functions F(X).

In this case we can use an alternative method. At the equilibrium state, X, we as-

sume that the probability of a positive increment exactly balances the probability

of the negative increment. This leads to the following simple equation:

νF(1 − X) = (1 − ν)F(X). (1.18)

In particular, for frequency matching, where X = ν, the function F(X) has to

satisfy

νF(1 − ν) = (1 − ν)F(ν), (1.19)

which is the same as equation (1.17) obtained as a limit of the discrete Markov

process as L → ∞. It is clear that the function F(X) = aX satisfies this equation.

As was mentioned above, this is only one of many functions that yield frequency

matching.

Suppose that F(X) = aXα. We will focus on valuesα ≥ 0 because this function

has to be nondecreasing and bounded on [0, 1]. First of all we note that equation

(1.19) restricted to power functions becomes(
1 − ν

ν

)α−1

= 1,

which holds for all 0 < ν < 1 − ν only if α = 1. Therefore, among the power

functions, the linear function is the only one that leads to frequency matching.

Further, we can find the equilibrium value νlearn = X by solving equation (1.18).

We obtain

νlearn =
1

1 +
(1−ν

ν

)1/α . (1.20)
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Manipulating this expression we can see that

1 − νlearn
νlearn

=

(
1 − ν

ν

)1/α

, or κlearn = κ1/α,

see definition (1.12). Let us first assume that ν > 1
2 , κ < 1. In this case, κ1/α > κ

if α > 1 and κ1/α < κ if α < 1. This is equivalent to the statement that νlearn < ν

if α > 1 and νlearn > ν if α < 1. Repeating this argument for the case of ν < 1
2 ,

we obtain the following result. For the power functions F(X) = aXα,

• 0 < α < 1 corresponds to frequency boosting,

• α = 1 to frequency matching, and

• α > 1 to frequency “demotion”.

Of course, the first of these results is a direct consequence of the Frequency Boost-

ing Theorem.

Finally, we would like to investigate the case α = 0. Taking the limit α → 0

in expression (1.20), we obtain exactly the same result as predicted from the exact

model with L+ 1 discrete states, formula (1.13).

1.4 Discussion

In this chapter we presented an alternate and simpler version of the mathemati-

cal model that was able to capture several findings of Hudson Kam & Newport

in their work with adult and children’s learning [27]. From their discussion on

frequency boosting, it was possible for us to examine the properties of the phe-

nomena in [58] with an algorithm, which in the present chapter is called VIM.

With the formulation of the novel algorithm, MCM, we can also provide a rigor-

ous and general mathematical framework of frequency boosting to supplement
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this discussion.

The main results obtained from this chapter can be formulated as follows:

• The novel stochastic nonlinear reinforcement learning algorithm is formu-

lated. Its advantage is analytical tractability, and the fact that it coincides

with the old algorithm in the limit where the discretization of the grid be-

comes more refined.

• With the new algorithm, the frequency of the learner is calculated analyt-

ically. The expressions are quite simple in several important cases, such

as the linear (Bush-Mosteller) algorithm, “Simon” algorithm [34, 58], and

power law algorithm.

• The new formulation also allows for a straightforward evaluation of the

speed of convergence.

• A set of sufficient conditions was formulated, which defines update func-

tions that exhibit frequency boosting property: the function is required to

be non-decreasing and concave down.

Situations for which our theory is applicable provide a certain idealization of

the real problem of language learning. More precisely, we only concentrate on a

relatively small sub-task of language learning, while ignoring a set of other aspects

of this grandiose task. For example, we assume that a learner’s input is a string,

and the learner is able to extract (segment), from all the utterances received, the

correct mutually exclusive forms of the rule under investigation. This in itself is

a challenge studied in the literature, see e.g. [37, 61, 66]. We will not address this

pre-processing step in the present manuscript.
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By following this reductionist approach, we try to shed light on one aspect of

language learning; a similar philosophy was used by others in the literature, see

e.g. [24, 32, 44, 46, 72]). It is therefore important to realize that our modeling

approach may be constructive in certain circumstances, while being insufficient

in others. For example, our modeling approach has been useful in describing the

experiments of [19] and [27] (see [58]). In the next chapter, we can further apply

our model to the ideas of [49], providing a possible explanation of the feature-

label order effect in the given type of setting.

On the other hand, other circumstances require more complex models com-

pared to the ones studied here. In those cases, our models have to be amended

and expanded, to handle more complex experimental settings. In particular, here

we will mention the phenomenon of implicit negative evidence that was studied

in particular in [49]. In this paper it was demonstrated that negative learning

and cue competition are necessary to explain the learning process under a range

of realistic conditions. To this end, two novel experiments were described. One

was presenting a group of adult learners with a set of objects to test how the fre-

quency of objects can affect the discrimination of features. The other study was to

consider the feature-label phenomena associating with children’s word learning,

particularly with learning color words. Further study of the feature-label order

effect and way to model it with MCM is subject of the next chapter.
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2Object-Label-Order Effect

“It doesn’t matter how beautiful your theory is…If

it doesn’t agree with experiment, it’s wrong.”

Ricard P. Feynman

In this chapter, we will briefly begin with the Markov Chain Method (MCM)

algorithm and the frequency boosting effect as it was formulated in the last chap-

ter. Then we will describe the concept of object-object and label-label interactions

and the related phenomenon of negative evidence, which will allow us to adapt

the MCM model to describe learning from an inconsistent source.

As mentioned before, in section 0.4 , in contrast to [49] and other papers by

Ramscar’s group, we will not be distinguishing between individual features of

the objects of learning. In our setup, the objects are treated “holistically” and

they do not share features. Therefore, to avoid confusion, we call our learners

“object-label” and “label-object” learners.

2.1 Theory

This section will review the MCM model from section 1.2 and describe a new

novel approach to explain negative feedback.

2.1.1 MCM framework

The MCM model gives a mathematical framework to describe the interaction of a

teacher (a source) and a learner. It is a nonlinear generalization of the Mosteller-
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Bush and Rescorla-Wagner models [12, 56], and in particular, allows one to de-

scribe the frequency boosting effect.

If the source of information uses rule variant 1, the learner updates X → X+1

with probability 1 − F(X), where we use the updating function

F(X/L) = c(X/L)r,

where c > 0 and r ≥ 0 are some constants. If the source uses rule variant 2,

then the learner updates X → X − 1 with probability F(X/L). After a number

of updates, the learner converges to a certain statistical equilibrium, where the

mean learner frequency characterizes the learned behavior. It has been proven

in section 1.3.4 that this model exhibits different properties depending on the

parameter r:

• In the special case where r = 1, we have the usual Bush Mosteller algorithm,

and the limiting mean frequency of the learner is exactly equal to the fre-

quency of the source. This is the phenomenon of frequency matching.

• If r < 1, the phenomenon of frequency boosting (or regularization) takes

place where the limiting frequency of the learner is larger than ν in the case

where ν > 1
2 , and it is smaller than ν if ν < 1

2 . In other words, the learner

uses the preferred form of the source more frequently than the source.

• Finally, if r > 1, we have the phenomenon of “undermatching”, where the

frequency of usage of both forms becomes closer to 1
2 (in other words, differ-

ences in usage between more frequent and less frequent variants diminish).

There is a key difference between our MCM model and, for example, the

Mosteller-Bush model. The MCM can be viewed as a generalization of the Mosteller-

Bush, which includes a (possibly nonlinear) update function, F. We hypothesize
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that different types of learners (such as OL and LO learners) are characterized by

differences in their update function. If we can identify the differences in func-

tion F using our model, then we can explain the contrasting behaviors of the two

learners. These key parameters responsible for the differences in behavior can be

identified by fitting our model to the empirical data that we collect.

2.1.2 Negative evidence: the matrix model

In the very simple model described above, only one rule is being learned at a

time. It is not unreasonable to assume however that when several rules are learned

simultaneously, there may be a certain degree of interaction among them. For

example, consider two labels, Lab1 and Lab2, “competing” to be the primary

label for a given object (say, Obj1). This is an example of the one-to-many learning

process [20]. Suppose that Lab1 is used exclusively with Obj1 (X instances of

usage), and Lab2 is used with the same object but also with another object, Obj2,

Y1 and Y2 times respectively. Let us further assume that Y1 > X. The input thus

described is summarized in the following table:

Obj1 Obj2
Lab1 X 0
Lab2 Y1 Y2

If we only focus on choosing the label for Obj1 and ignore associations with

Obj2, then it would seem that Lab2 is a better candidate for Obj1’s label. If how-

ever we consider possible interactions between Obj1 and Obj2, we will immedi-

ately see that Lab2 is shared between the objects, and Lab1 is reserved only for

Obj1. The fact that Lab2 co-occurs with Obj2 will weaken its association with

Obj1, which could actually make Lab1 a better choice as the label of Obj1. Note

that label-label interactions can be set up in a similar manner, when learning for
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the best object described by a given label.

This type of object-object and label-label interaction brings us to the concept

of implicit negative evidence in learning . In [51] the importance of implicit neg-

ative evidence is illustrated by using the example of plural noun learning. A sim-

ilar idea is explored in [50], where the concept of “informativity” in learning was

studied. In this section we present a very simple method to incorporate implicit

negative evidence in a learning model. Later on (in section 2.1.3), we create a

more sophisticated, stochastic model of learning which uses similar ideas.

In the experiment described in [50], three different objects (A, B, and C) were

used. Objects A and B appeared simultaneously, accompanied by the word “dax”,

then objects B and C appeared simultaneously, accompanied by the word “pid”.

These are examples of the many-to-one learning process [20]. This was repeated

a number of times (N times). This table describes the input:

Objects
A B C

dax N N 0
pid 0 N N

The subjects were asked to find the object that was described by words “dax”

and “pid”, along with a new word, “wug”. The experiments were performed sepa-

rately with a group of adults and with a group of children. While both children

and adults mostly agreed that “dax” was A and that “pid” was C, the two groups

showed a different response for “wug” : the majority of adults picked object “B”,

but about half of the children picked A and the other half, C. To explain this, the
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authors evoked the concept of informativity.

Indeed, object B was present every time “dax” or “pid” were uttered. This sug-

gests that B is some background object that is not informative for “dax” or “pid”.

On the other hand, A and C are informative about “dax” and “pid” respectively

(these objects only appeared together with those words). Therefore, most sub-

jects paired A with “dax” and C with “pid”. Then, the children extrapolated the

non-informativity of B and therefore chose one of the two informative objects, A

or C, to describe a new word, “wug”.¹ In what follows, we describe one simple

way to implement the concept of negative evidence.

First we will model the simpler part of the experiment, where the participants

were asked to identify objects that are called “dax” and “pid”. In principle, “dax”

could be either A or B, and “pid” could be either B or C. We need to make the

objects “compete” based on their informativity. Therefore, we normalize the in-

put matrix column by column (that is, we divide each element by the sum of the

elements in its column):

Objects
A B C

dax 1 1
2 0

pid 0 1
2 1

Since object B appears more often than objects A and C, the entries corre-

sponding to B in the above matrix are lowered as a result of the normalization.

We can see that if A and B compete to be the object for “dax”, A should have an

advantage, because it has exclusively appeared with “dax”, while B appeared both
¹Interestingly, adults used a different algorithm. They used the fact that objects A and C

were already taken by the two words, and therefore they assigned B to mean “wug”, which was
interpreted as a “logical” component of adult learning.
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with “dax” and with “pid”. Therefore, to choose the best candidate for “dax”, we

simply find the largest element in the appropriate row, which corresponds to A.

Similar procedure is performed for “pid”. We obtain the following result, which

coincides with the subject’s responses:

Objects
A B C

dax *
pid *

Next, we extend the model to predict the response to the question about an

unknown word “wug”. We expand the association matrix to include this word,

and insert small nonzero elements instead of zeros:

Objects
A B C

dax N N ϵ1
pid ϵ2 N N
wug ϵ3 ϵ4 ϵ5

The values ϵi stand for “noise”. A subject may have a shade of doubt whether

a certain word has been associated with an object. Now, we follow the same

procedure as before, that is, normalize column by column, and then pick the

largest entries in each row:

A B C

dax N N ϵ1

pid ϵ2 N N

wug ϵ3 ϵ4 ϵ5

⇒

A B C

dax 1 1
2

ϵ1
N

pid ϵ2
N

1
2 1

wug ϵ3
N

ϵ4
2N

ϵ5
N

⇒

A B C

dax ∗

pid ∗

wug ∗ ∗

Note that in the middle matrix obtained by normalizing the columns, we as-

sumed that ϵi ≪ 1 (and ϵi/ϵj ∼ 1, that is, the values ϵi are of the same order of
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magnitude), and only kept the highest order terms in all the expressions. In the

rightmost matrix, if the values ϵ3 ≈ ϵ4 ≈ ϵ5, then the first or the last entry of the

third row could be the winner. Therefore, the “wug” row contains two stars. We

can see that the result is consistent with the response of children. More examples

demonstrating the versatility of the matrix method are presented in section A.3.

The simple method demonstrated here is an example of how interaction be-

tween different “rules” can be quantified. The procedure used here is a way to

implement implicit negative evidence in learning. A drawback of this approach

is that it belongs to the well studied, but cognitively unrealistic “batch learner”

models, in that it operates on the whole body of the input information received

by the learner (and thus theoretically, it possesses an infinite memory capacity)

[46]. In a more realistic scenario explored in the next section, information is re-

ceived gradually, and the learner’s internal representation of reality is modified

accordingly.

2.1.3 Stochastic model of learning with negative evidence

To create a model that studies the OLO effect in learning from an inconsistent

source, we combine the concept of stochastic learning with the mechanisms of

implicit negative evidence. To describe the algorithm, we will use a three-object,

three-label system. We assume that a learner stores object-label associations in the

form of two 3 × 3 matrices with nonnegative integer entries, that we call P and

Q; as before, the rows correspond to labels and columns to objects. The matrix P
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is the “object matrix”,

P =


α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

 , (2.1)

where we assume that the columns sum up to L. This matrix characterizes the

learner’s answer to “what is object?” questions. For example, the probability for

the learner to answer “label 1” to “what is object 1?” question is given by α1/L.

The fact that the entries in each column sum up to a fixed number represents the

competition of different labels to represent a given object. The matrix Q is the

“label matrix”,

Q =


x1 x2 x3

y1 y2 y3

z1 z2 z3

 , (2.2)

and its rows sum up to L, which represents the competition of different objects

to associate with a given label. This matrix characterizes the learner’s answer to

“what is label?” questions, for instance, the probability for the learner to answer

“object 1” to “what is label 1?” question is given by x1/L. In our framework the

two matrices are kept and developed separately; this resembles an earlier model

used by [28] in the evolutionary theory of mutual indelibility of linguistic agents.

The learning procedure is set up as follows. The source produces object-label

pairs, and the learner updates entries of its P and Q matrices. In the absence of

negative evidence, the evolution of the columns of matrix P and the rows of ma-

trix Q is completely described by the MCM algorithm. For example, after hearing

an “Obj1 – Lab2” pair, the learner will be updating the 1st column of the P matrix

and the 2nd row of the Q matrix.
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In the presence of negative evidence, interactions among columns of matrix P

and rows of matrix Q must be taken into account. We will illustrate the procedure

of negative update by using the columns of matrix P; the procedure is similar with

the rows of matrix Q. In the case where a positive update took place, we assume

that negative updates occur with probability μ, where 0 ≤ μ ≤ 1. Once the

learner determines that the update will occur, then the learner will decide which

of the remaining columns of matrix Pwill be updated negatively. Since the learner

updated positively on β1, then the learner will negatively update column i with

probability:

Pi =
β−1
i

β−1
2 + β−1

3
, i ∈ {2, 3},

that is, the probability of negative update is larger for weaker entries correspond-

ing to the label in question. Note that if either β2 or β3 are zero, then the learner

will choose the non-zero βi to update. If they are both zero, then no negative up-

date occurs. Suppose that the learner chose to negatively update column 2, that

is [α2, β2, γ2]. The learner will then perform the following update:

β2 → β2 − 1 with probability F(β2/L). (2.3)

Finally, to keep the column elements on the simplex, the learner performs

α2 → α2 + 1 with probability α2
α2+γ2

,

γ2 → γ2 + 1 otherwise.

Note that both positive and negative updates tend to strengthen stronger associ-

ations and to weaken weaker associations.

2.2 Experiments

In the experiment described below we studied OL and LO learning in the pres-

ence of inconsistencies of the source, in a simple setting of two label/two object
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system plus a control. We explored the differences in the learning results of OL

and LO learners in the context of both “what is label?” and “what is object?” type

questions.

2.2.1 Participants

Two-hundred-fifty undergraduate students from a Southern California public uni-

versity participated. After filtering the results by using the criterium of correctly

identifying the control object/label pair (see below), we were left with one-hundred-

fifty-three learners.

2.2.2 Set up and procedures

Three fictional “animals” or objects were constructed for training, see Fig. 2.1.

Each of these objects had a corresponding fictional name (“yosh”, “wug”, and

“niz”). None of these objects shared any body shape or coloring and thus be-

came unique in order for participants to identify them.

Figure 2.1: The three objects used for experimentation. (a) Obj1 was given the
name “yosh”. (b) Obj2 was given he name “wug”. (c) Obj3 was given the name
“niz”. In this experiment, niz acted as control.

In order to train the participants, we created a training set that consisted of

10 yoshs, 10 wugs, and 10 nizzes. In addition, we also introduced 10 exemplars

where the objects were incorrectly named. Table 2.1 summarizes our training set.

Note that Obj3 and niz is the only consistent pair, and they served as control in
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Objects
Obj1 Obj2 Obj3

La
be

ls yosh 10 10 0
wug 0 10 0
niz 0 0 10

Table 2.1: Summary table of the training set. Participants were trained on learning
3 fictional objects (pictures are in Fig. 2.1) and three fictional labels.

our experiments. We expect participants to always correctly identify Obj3 and niz

and not confuse them with any of the other objects or labels.

Participants were randomly split into two groups, one for OL (85 participants

before filtering, 76 participants after filtering) and the other for LO (94 partic-

ipants before filtering, 77 after filtering). Each participant was trained through

a series of slides that showed the fictional objects followed by a correct or in-

correct label (OL) or the label followed by a correct or incorrect object (LO) as

outlined in table 2.1. The labels were both presented in writing and pronounced

by a recording of a native English speaking female. The training set consisted

of the 40 exemplars shown in a semi-randomized order. In particular, we made

sure that the order of the exemplars was the same in the OL and LO group. Fur-

ther, we never presented an incorrect pair following a correct pair for the same

object or for the same label. We always started the training with a control pair

and ended the training with a control pair; this set of restrictions prevented “first

impression” bias.

Fig. 2.2 demonstrates how objects and labels were presented to both groups.

Objects were presented for 175 ms to limit participants’ ability to strategize. La-

bels were presented with the sentence “this is a (label)” for the LO group or “that

was a (label)” for the OL group. Blank slides were presented for 150 ms between
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Figure 2.2: Diagram of the order of presentation. (a) is the OL scenario. (b) is the
LO scenario. The presentation’s slide duration is 150 ms for blank slides, 175 ms
for slides with objects, and 1000 ms for slides with labels.

each object/label pair. For the analysis, we filtered out the participants that failed

to identify correctly the non-ambiguous control pair. This left us with the total

of 153 participants, of which 76 were in the OL group and 77 in the LO group.

After training on all 40 examples, participants were asked six questions to iden-

tify the objects (three “what is object?” type questions) and labels (three “what is

label?” type questions). These were multiple choice questions and participants

were instructed to select exactly one answer per question. Fig. 2.3 is a diagram of

the test task. To enforce the OL and LO behavior, we minimized participants’ op-

portunities to collaborate or strategize by asking participants to not speak among

each other and to answer the questions to the best of their ability within the sev-

eral seconds allocated to each question.

2.2.3 Experimental results

For the analysis below, we define ambiguous and non-ambiguous questions. Non-

ambiguous questions are the questions where only one type of answer occurs in

the presentation. The non-ambiguous questions are “what is wug?” and “what is
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Figure 2.3: Diagram of the test task for the participants. (a) is the “what is object”
type question. (b) is the “what is label” type question.

Obj1?”. Ambiguous questions are characterized by multiple answers that are con-

sistent with (part of) the training data. Ambiguous questions are “what is yosh?”

and “what is Obj2?”.

From table 2.1 we note that in the learning procedures employed here, the

underlying source is extremely inconsistent. In fact, it is not immediately clear

what are the “correct” association pairs. We can see that while Obj1 is always yosh,

yosh can be both Obj1 and Obj2 with the same frequency. Similarly, while wug

is always Obj2, Obj2 can be yosh or wug with the same frequency. We can say

that Obj1 is a non-ambiguous object and wug is a non-ambiguous label. Seeing

that Obj1 is always yosh and wug is always Obj2, we can tentatively say that Obj1-

yosh and Obj2-wug are the “correct” associations and Obj2-yosh is “noise”. The

theoretical justification of this assignment (which does not alter our results) was

put forward by [50].

The extremely inconsistent source used here is motivated by our experience

gained from earlier attempts: (i) Experimentally, we determined that the length

of the training session should not be much longer than what is used here, which

limits the number of associations used, and (ii) Results of the experiments tended
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to have a high degree of inter-response variability. To minimize the impact of

participants who did not pay attention, we filtered out the responses of those

who failed to correctly identify the control pair. Even after this filtering, we still

wanted to maximize the experimental difference between ambiguous and non-

ambiguous objects and labels. This was achieved by the setting of table 2.1. Effects

of a subtler presence of source inconsistency could be simply masked by the nois-

iness of the experimental setup.

Results of the experiments are summarized in Fig. 2.4.

Figure 2.4: Experimental results. The percentages of participants giving the dif-
ferent answers to the multiple choice questions are presented for (a,b) “what is
object?” questions and (c,d) “what is label?” questions. In (a) and (c), participants
are from the OL group (n = 76). In (b) and (d), participants are from the LO
group (n = 77). The arrows in the upper left corners of the tables indicate the
direction in which the table entries sum up to 100%.
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We notice the following trends.

• The “correct” answers (as predicted by the informativity theory of [50]) cor-

respond to the largest percent of responses for all questions, for both learner

types. In other words, the diagonal elements in the tables of Fig. 2.4 are

larger than non-diagonal elements.

• OL learners provided a higher proportion of correct answers compared with

the LO learners. Using the Fisher test, we can calculate the p-value between

all the questions of comparing the number of OL learners versus the num-

ber of LO learners who answered the questions correctly.

– For the non-ambiguous object (“what is Obj1”) question, we have that

p = 0.058. Thus since the p-value is relatively small, then we can

conclude that OL learners perform better than LO learners.

– For the ambiguous object (“what is Obj2”) question, p = 0.3229; this

is the only question for which we cannot conclude here that OL learn-

ers perform better. More testing is needed.

– For the non-ambiguous label (“what is wug”) question (p = 0.0254)

and the ambiguous label (“what is yosh”) question (p = 0.005), we can

see that OL learners significantly answer these questions at a higher

accuracy than LO learners and thus the OLO effect is observed.

• For the “what is object” questions:

– For the OL learners 83% of participants correctly identified Obj1 as

yosh. 64% of participants correctly identified wug when answering

“what is Obj2” question. We can see that OL participants had diffi-

culty with identifying ambiguous objects’ labels. We used the Fisher
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test to see if the number of OL participants correctly answering the am-

biguous question was significantly lower than that for non-ambiguous

questions.The p-value is 0.016, suggesting that the difference between

the OL participants in identifying the two different types of objects is

statistically significant.

– For the LO learners, 69% answered yosh when asked “what is Obj1”,

56% answered wug when asked “what is Obj2”. When calculating the

p-value for the participants for these two questions, we have that p =

0.1341.

• For the “what is label” questions:

– Among the OL participants, 79% correctly answered Obj1 when asked

“what is yosh”, and 83% correctly answered Obj2 when asked “what is

wug”. The p-value here is 0.68 using the Fisher exact test on the number

of OL participants.

– With the LO learners, 57% correctly answered Obj1 when asked “what

is yosh” and 66% correctly answered Obj2 when asked “what is wug”

(p = 0.32).

Even though we can see that there is a higher percentage of learners cor-

rectly answering non-ambiguous “what is label” questions, the p-values are

not small enough to determine that there is a statistical significance to this

trend; more testing will be required.

It is interesting to make a connection between the setting of our experiments

and categorization/ concept learning literature, see e.g. [20]. The ambiguous

“what is label?” question that involves one label and two objects is an example

of the many-to-one category learning. The ambiguous “what is object?” question
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that involves one object and two labels is an example of the one-to-many category

learning. It has been argued that the many-to-one learning process is a stronger

mechanism of learning than the one-to-many learning process [20]. This is evi-

dent from our experimental results. We see that both learners perform better with

correctly answering ambiguous “what is label” questions (many-to-one) than the

ambiguous “what is object” questions (one-to-many).

In short, we observe that both OL and LO learners can identify non-ambiguous

associations better than ambiguous ones. In addition, both learners are able to

identify labels correlating to two or more objects better than objects correlating

to two or more labels. OL learners are also significantly better at identifying both

non-ambiguous and ambiguous associations compared to LO learners.

2.2.4 Comparison with the matrix method

Let us start with the matrix that records the input:

Objects
Obj1 Obj2 Obj3

La
be

ls yosh 10 10 0
wug 0 10 0
niz 0 0 10

We would like to assess to what extent the theoretical predictions of the matrix

method are consistent with the data presented in Fig. 2.4.

“What is object” questions. In the absence of negative evidence, we can obtain

the expected percentages of different answers to the questions by simply normal-

izing the input matrix over columns:
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No negative evidence:

Objects

Obj1 Obj2 Obj3

yosh 100% 50% 0

wug 0 50% 0

niz 0 0 100%

In order to account for possible negative evidence, recall from section 2.1.2 that

we can apply the matrix method to predict the responses of the participants. For

the “what is object” questions, we normalize over rows; in section 2.1.2, we then

simply picked the largest element in each column to predict the most typical

answer. Here we could take a step further and actually calculate the percentage of

responders giving different answers to the “what is object” questions. To do this,

we simply normalize over the columns:

With negative evidence:

Objects

Obj1 Obj2 Obj3

yosh 1
2

1
2 0

wug 0 1 0

niz 0 0 1

⇒

Objects

Obj1 Obj2 Obj3

yosh 100% 33% 0

wug 0 67% 0

niz 0 0 100%

“What is label” questions. For “what is label” questions, in the absence of neg-

ative evidence, we simply normalize the input matrix row by row:

No negative evidence:

Objects

Obj1 Obj2 Obj3

yosh 50% 50% 0

wug 0 100% 0

niz 0 0 100%
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To incorporate the influence of negative evidence, we normalize over columns

and then over rows, to obtain the predicted percentage of people giving different

answers to the “what is label” questions:

With negative evidence:

Objects

Obj1 Obj2 Obj3

yosh 1 1
2 0

wug 0 1
2 0

niz 0 0 1

⇒

Objects

Obj1 Obj2 Obj3

yosh 67% 33% 0

wug 0 100% 0

niz 0 0 100%

From the two resulting matrices, non-ambiguous questions (“what is Obj1?”

and “what is wug?”), 100% of the participants are expected to give correct answers.

For the ambiguous questions “what is Obj2?” and “what is yosh?”, the learners

should split in proportion 2 : 1. This is however not exactly what we see when

we compare these theoretical results with the experimental outcome in Fig. 2.4.

The first difference is that the correct answers to non-ambiguous questions are

given by fewer than 100% of the people (except for the control questions; there,

the correct answer is given 100% of the time because we discarded the responses

of the participants that failed to answer the control questions correctly). This re-

sult is expected because of the presence of inconsistencies and imperfections of

learning.

The second difference between the theoretical prediction of the matrix method

and reality becomes obvious when we compare the performance of the OL and
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LO learners in their answers to ambiguous questions. We can see that LO learners

produce the “correct” answers fewer than 67% of the time (namely, they answer

the “what is Obj2?” and “what is yosh?” questions correctly 56% and 57% of the

times, respectively). In comparison, OL learners do a lot better, and in the case of

the “what is wug?” question, they actually get it right 83% of the times, compared

to the predicted 67%.

These trends remind us of the phenomena of frequency boosting in the case

of OL learners, and frequency undermatching in the case of LO learners. We will

explore these by means of mathematical modeling in the next section.

2.3 Computational results

We implement a computation model of the experiments in order to identify the

key differences between the OL and LO learners that are responsible for the differ-

ent experimental outcomes. The objective is to come up with a minimal model

capable of capturing the patterns observed experimentally.

Using the stochastic learning model with negative evidence, we will focus on

two parameters. One comes from the update function F(x) = xr used in MCM.

The parameter r is responsible for the frequency boosting (and undermatching)

of the learner, as described in [33], see also Section 1.2. In particular, recall that

r = 1 corresponds to frequency matching, r < 1 to frequency boosting, and r > 1

to undermatching. We hypothesize that the two types of learners may differ in

quality and degree of frequency manipulation.

44



Further, we assume that the value of r may also depend on the type of question

that is being addressed. For example, an OL learner in the process of learning uses

objects to predict the labels, and thus, objects are competing with one another.

On the other hand, as LO learners are presented the material, they are predicting

objects given a label. As such, an LO learner is correlating the associations of ob-

jects to labels when answering a “what is label?” question. This simple argument

suggests that for an OL learner, a “what is object?” question may be processed

differently from a “what is label?” question, but in some sense more similar to

a “what is label?” question for an LO learner. We therefore conclude that there

could by up to four distinct r parameters describing the learners. We also hypoth-

esize that the magnitude ordering for the two pairs (r for OL for “what is object?”,

r for OL for “what is label?”) and (r for LO for “what is label?”, r for LO for “what

is object?”) is the same.

The second parameter that can affect learning is the strength of negative ev-

idence, μ. This parameter defines how often the learner processes negative asso-

ciations. To exhibit a difference between OL and LO learners, as well as the two

types of questions, we would need varying negative evidence values, giving an-

other 4 independent parameter values.

In order to understand how these two parameters affect the learning outcome,

we implement the stochastic learning model with negative evidence on the train-

ing system (table 2.1), and analyze the behavior of the association of yosh-Obj1

and wug-Obj2, as parameters r and μ change. These two associations are of the

main interest throughout the experiments. Let us refer to the matrices P and Q

from (2.1) and (2.2). The values ofα1 and β2 determine the association of yosh and

wug to Obj1 and Obj2 respectively; similarly, the values of x1 and y2 determine
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Figure 2.5: Stochastic simulation results showing the associations of learners as
functions of parameters: (a) OL learners answering “what is object” questions;
(b) OL learners answering “what is label” questions; (c) LO learners answering
“what is object” questions and (d) LO learners answering “what is label” ques-
tions. The ambiguous (lines) and non-ambiguous (circles) associations are plot-
ted as functions of parameter μ (the strength of the negative evidence) for several
values of r (the frequency boosting/demotion parameter). Horizontal lines cor-
respond to the experimentally observed values. Vertical lines mark the strength
of negative feedback, where the stochastic learning model with negative evidence
and experimental values coincide for the same r.

the association of Obj1 and Obj2 to yosh and wug respectively. Further note that

α1 represents the value of a non-ambiguous label for Obj1, whereas β2 represents

the value of an ambiguous label for Obj2. Similarly, x1 represents the value of an

ambiguous object for yosh, whereas y2 represents the value of a non-ambiguous

object for wug.

Fig. 2.5 summarizes the results of the stochastic learning model with negative

evidence. Four graphs are presented, which differ by the learning type (OL in the

top row, LO in the bottom row) and the types of questions (“what is object” in the
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left column and “what is label” in the right column). The ambiguous association

is plotted by lines and the non-ambiguous association by connected circles. These

values are presented as functions of the strength of negative evidence (0 ≤ μ ≤ 1)

and are plotted for several different values of r. Note that we present results for

r < 1 for OL learners and r > 1 for LO learners. It was hypothesized in section

2.2.4 that OL learners exhibited features of frequency boosting, because the ex-

perimentally observed values for the correct associations were higher than those

obtained from the matrix method, indicating that r < 1. On the other hand, LO

learners had values smaller than those predicted by the matrix method, hinting

at the presence of “undermatching”, r > 1. The results of the fitting procedure

confirm that these are indeed the correct ranges for the two learning types.

We have the following observations of the graphs Fig. 2.5:

• Non-ambiguous associations are always higher (or equal) to the ambiguous

associations.

• In the absence of negative evidence (μ = 0), we have the ambiguous and

nonambiguous values at 1
2 and 1 respectively, as predicted by the matrix

theory, see section 2.1.2.

• As μ (the strength of negative updates) increases, ambiguous associations

increase and the non-ambiguous association decreases.

• When μ = 1, then values of the ambiguous and non-ambiguous associa-

tions coincide, as observed in section A.4.

• For a fixed μ value, as r decreases, the association of both ambiguous and

non-ambiguous values increases. This is due to the frequency boosting
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Figure 2.6: Plot of the (r, μ) pair where the non-ambiguous and ambiguous asso-
ciation values of the stochastic simulations (for LO learners in the “what is label”
question) intersect the experimental values as depicted by Fig. 2.5. Red is the
intersections of the non-ambiguous associations. Blue is the intersections of the
ambiguous associations. The (r, μ) pair where both of these plots coincide is the
parameter pair that best describes the experimental values from the simulations.

property. That is, as r decreases, then the update function of MCM exhibits

a stronger frequency boosting property and thus associations will increase.

In order to find the parameters r and μ that best describe the experimental

results, for each of the four situations of Fig. 2.5, we need to find a pair (r, μ)

such that both the ambiguous and the non-ambiguous association values coin-

cides with the ones obtained in the experiments. For example, in the case of

“what is label” questions for LO learners, the intersection of the ambiguous and

non-ambiguous associations with their observed values for r = 1.55 both occur

at μ = 0.56 and μ = 0.58. To refine our search to find one μ value, Fig. 2.6

shows the intersection for non-ambiguous and ambiguous association values of

the simulation with the experiments. We can see that r = 1.563 and μ = 0.556

is a pair where the intersection will exist. Using this procedure, we find the best

fitting values for all case, see table 2.2.
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r μ

O
L what is object 0.6976 0.5038

what is label 0.4765 0.8885

LO

what is object 1.5177 0.4333
what is label 1.5630 0.5575

Table 2.2: Parameters to fit the experimental data with the stochastic learning
model with negative evidence. OL learners have update functions, xr, with r < 1
while LO learners have r > 1.

Fig. 2.7-2.8 are bar graphs of the simulation with the parameters listed in

table 2.2 and the experimental data. Fig. 2.7 represents the percentage of correct

answers for the “what is object?” questions grouped into OL and LO answers.

Fig. 2.8 represents the percentage of the correct answers for the “what is label?”

questions, again grouped into OL and LO answers. We can see that the parameters

for the simulation match the experimental data.

Figure 2.7: Simulation versus experimental data for “what is object” questions.
We can see that the parameters of rows 1 and 3 of table 2.2 match the data.
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Figure 2.8: Simulation versus experimental data for “what is label” questions. We
can see that the parameters of rows 2 and 4 of table 2.2 match the data.

2.4 Discussion

In this chapter we studied the object-label-order effect in the context of noisy

learning, or learning from an inconsistent source. In our setting, during the learn-

ing phase, the same object can be paired with more than one label, and the same

label can be used to name multiple objects. The learners are facing the difficult

task of making sense of such inconsistent input, and creating associations that

can serve as a representation of reality that potentially can be useful in commu-

nication.

We combined novel experimental data with a theoretical model of learning.

The model’s most important components are (i) its ability to regularize the input

(and also to do the opposite!) and (ii) its ability to take account of interactions

(negative evidence) between objects (and labels) that are learned simultaneously.
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It turned out that these two components were necessary and sufficient to de-

scribe the experimental data obtained. It is important however to point out that

this work is not an exercise in parameter fitting. It is not hard to match 8 experi-

mental points with 8 parameters, and this was by far not the goal of this study. The

point was to deduce differences between the two learning mechanisms, OL and

LO. It appears that OL learners are performing frequency boosting (overmatch-

ing) while LO learners are performing an undermatching operation. It further

transpires that the negative evidence is necessary to account for the observed pat-

terns, and moreover, the strength of negative evidence appears to be somewhat

different in different learning scenarios, namely, “what is label?” questions seem

to evoke a stronger reaction to negative evidence compared to the “what is ob-

ject?” questions.

The value of mathematical modeling here is to test various hypotheses. By

looking at the learning data (such as those presented in Fig. 2.4), one may create

various scenarios that may intuitively explain the observations. It is however im-

possible to be sure that the assumptions can lead all the way to the conclusions

without using a systematic way of testing it. In this context, mathematical mod-

eling provides a tool that enables us to follow the hypotheses all the way through

to their logical outcomes. In the context of the questions posed in this paper, we

can say that OL and LO learners are characterized by different degrees of regular-

ization power, and they also utilize negative evidence to different degrees.

Regularization in language learning has been extensively studied in the liter-

ature because, among other factors, of its implications for language evolution.

Evidence of regularization in children is vast, and is considered at the core of lan-

guage dynamics, exemplified e.g. by Nicaraguan sign language creation [67, 68,
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69]. Although it has been argued that children have a higher tendency to reg-

ularize compared to adults [25], there is strong evidence of adult regularization

behavior in language learning [27]. In fact, it has been argued that under some cir-

cumstances, adults regularized as often or even more than children [40, 73, 76].

It has been proposed that creolization occurs due to cohorts of adult learners

[2, 35]. Regularization is at the basis of the iterated learning paradigm, in which

one learner’s output is given as input to the next learner, in a chain-like fashion.

It has been found that initial inconsistencies of language are slowly phased out

from the language [52, 71]. [47] suggests that in adults, “probability matching is

surprising and apparently irrational behavior.” She argues that regularization al-

lows for more efficient communication, as is established in learning theory and

decision making. The cases of frequency matching (which have also been docu-

mented extensively in adults) can be explained by rational, pragmatic reasoning

on the part of learning adults.

The second important aspect of our conceptual model is negative evidence

and how learners can incorporate it into their internal algorithm. First of all, it is

very clear from our experimental results that some sort of negative evidence plays

a significant role in the participants’ responses. For example, from the summary

of the training set, table 2.1, we can see that label “yosh” was used 10 times with

Obj1 and also 10 times with Obj1. In the absence of any information about the

the other labels, it would not be possible to determine whether “yosh” would be

chosen as the leading label for Obj1 or Obj2. So we would expect that about the

same percentage of people would think that “yosh” is Obj1 and Obj2. Examining

the experimental data in Fig. 2.4(c,d) we can see that 79% of OL learners and 57%

of LO learners identifies “yosh” as Obj1. It appears that in a sense, the presence

of “wug”-Obj2 associations serves as negative evidence to weaken the “yosh”-Obj2
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associations and thus to strengthen the complimentary, “yosh”-Obj1 associations.

A very informative discussion of the concept of negative evidence and its con-

troversies in language learning can be found in [49, 51]. In our work, by “negative

evidence” we always mean “implicit negative evidence”. This is in contrast to “ex-

plicit negative evidence”, such as direct statements obtained by the learner that a

certain construct (or association) is incorrect.² Implicit negative evidence is gener-

ally information that can be extracted from statistical properties of the stochastic

source [59, 65]. As was observed in [14], distributional information can provide “a

kind of ’negative evidence’”, when expectations are formed which can be subse-

quently violated. As pointed out in [31], “at least some cases, the so-called ‘logical

problems’ associated with the no negative evidence hypothesis may be solved by

admitting the stochastic information.” In our models, we account for this type of

negative evidence of statistical kind. It is interesting that according to our model,

it is utilized to a different extent by the two types of learners, OL and LO.

This work has implications to the general area of concept formation. We are

studying the learning process, by which information is acquired about the proba-

bilistic relationships between objects, and the process in which people predict and

categorize these objects. Several types of concept learning have been described

in the literature, such as relational, perceptual, associative [77]. In this paper we

are exploring associative concept learning, which is where objects share no phys-

ical features among each other, but still share functional properties [70]. This

type of learning is used in cognitive sciences to study symbolic processes of both

²Explicit negative evidence could also include the phenomenon of subtle or covert explicit
evidence, which can be observed in children learning a language, when a parent or a teacher has a
greater tendency to rephrase ungrammatical compared with grammatical utterances. Such types
of negative evidence are not part of our constructs.
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human and nonhuman cognition. Focusing on human cognition, we illustrate

that this type of learning occurs when matching objects to categories or labels,

creating conditional correlations involving unrelated features. These features can

be grouped by association to their categories in two ways. Many-to-one learning

process associates the one categorical response from two or more exemplars. This

type of association has been studied in depth [36, 49]. There is also the reverse,

one-to-many learning process, in which a common exemplar is associated with

two or more categories. It has been suggested that the one-to-many learning pro-

cess affects generalized categorization learning in a negative way or that it is not

as strong of a mechanism of learning as its counterpart, many-to-one correlation

[20]. In the context of our experiments, these two types of learning correspond

to the two types of ambiguous questions (“what is label?” and “what is object?”)

that appear in our experimental setting.

This study can be extended in a number of ways. For example, in the present

setting, the objects used in the training process did not share features (i.e. each

object presented a single cue dimension). It would be interesting to include fea-

ture variance/overlap in the training exemplars of the objects, and to study the

resulting cue competition, in addition to the source inconsistency effects, in the

two different types of learners. We further emphasize that the present study does

not give all the answers even for the simplified setting that it explores, but instead

proposes several questions that can be addressed by further research in cognitive

sciences, both in the experimental and computational terms. In particular, we

suggest the possibility that the two types of learners, OL and LO, regularize the

input and utilize implicit negative evidence to different extents. In the present

paper we show that this is consistent with the observed learning patterns. Future

experimentation will be able to test this hypotheses further.
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3Evolution of the first word
“One voice can change a room…your voice can

change the world.”

Barack H. Obama

In this chapter, we address how the first word emerges in a population. In

our environment, we assume that there is a qualitative difference between pre-

existing, innate vocalizations and the first word. In regards to our model, the new

word is more prone to be forgotten by individuals in our population since it is a

larger, complex combination of innate vocalizations (consonant-vowel syllable).

We assume that the emergence of this “language” is stored in a set of word-event

associations for each individual. These associations quantify how a given individ-

ual will use the new word in each context, as well as how likely they will interpret

an event or the new word. Let us consider two vocalizations: one that is innate

and simple such as “a” and the newly learned, syllable-like word “ba”. In addition

to “a” and “ba”, we will model their association to two events, E1 and E2, which

occur at different frequencies. Suppose that E1 is the more frequent of the two

and furthermore suppose that the majority of the population associates the innate

vocalization “a” with event E1. We explore whether there is a possibility that the

new, complex word can be learned by the population and can associate itself with

the most frequent event.

3.1 Set-up and patterns

To explore this scenario, we introduce an “inventor” of the new word, “ba”, into

a population of people who have only established using “a” and nothing else.
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The “inventor” uses both “ba” and “a” with a certain frequency in association

with event E1. Then the training scenario begins: Suppose that E1 occurs, then

a random individual in the population is chosen to utter something in associa-

tion with E1. The remaining individuals then update their association probabilis-

tically, strengthening their association of E1 with the uttered vocalization and

weakening their association of E1 to utterances that were expected but not heard.

The strengthening of associations is based on (possibly nonlinear versions of)

the Bush-Mosteller and Resocrla-Wagner models as discussed in chapter 1. We will

use the MCM model for our learning algorithm. Let us briefly remind ourselves

of the parameters that will characterizs our learning. First, we have the update

function,

F(X/L) = (X/L)r,

where r is the regularization parameter. In section 1.3.1 we discussed the differ-

ent types of regularization. When r = 1, we exhibit frequency matching; when

r < 1, we exhibit frequency boosting. Parameter L is the discretization parameter,

which characterizes the Markov walk in MCM. It will be noted in section 3.4 that

the size of L plays a role in describing the learning behavior. We introduce a new

parameter, p, which will measure the probability of forgetting; p = 0 means that

the word will not be forgotten.

We have performed extensive simulations of the learning system. The fol-

lowing two patterns were observed for a wide variety of initial conditions and

parameters:

• Shared, steady solution. After some time, the population converged to a

steady state characterized by a common, shared usage of the words, that
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is, the associations of the individuals oscillated around the same means (see

Fig. 3.1).

• Inherent stochasticity. The steady shared solution reached by the population

may be different from simulation to simulation. Therefore, one can mea-

sure the frequency (or likelihood) of each outcome (see section 3.5).

Figure 3.1: Starting from random initial conditions for all learners in the popu-
lation, the individual trajectories for the “ba”-E1 association strength are shown
for the whole population. In this simulation, this association rose to dominance.
Convergence for “ba”-E2, “a”-E1, and “a”-E2 association strength is also observed.

3.2 Population learning algorithm

Suppose that the two events, E1 and E2, occur with frequencies Q1 and Q2 respec-

tively (Q2 = 1 − Q1). We assume that the first event is more frequent, that is

Q1 >
1
2 . Further, let us suppose that initially the majority of the population uses

“a” to describe both of the events, and introduce “ba” at a low frequency. We
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assume that “ba” is more complex, and if it is not heard by individuals during

training, it has a larger probability to be forgotten compared to “a”.

In a population of individuals, every person is equipped with a matrix of as-

sociations:

E1 E2

“ba” α β ϵ1

“a” γ δ ϵ2

where α is the association strength between “ba” and event E1. Associations are

stochastic variables that take integer values between 0 and L (here L is some integer

number), and change according to the Markov chain described by MCM. Note

that we assume

α + β + ϵ1 = L, γ + δ + ϵ2 = L.

The values ϵ1 and ϵ2 stand for the “empty” meanings of “ba” and “a” respectively.

For example, if an individual does not use “ba” at all and uses “a” equally for events

E1 and E2, their association matrix is given by

E1 E2

“ba” 0 0 L

“a” L/2 L/2 0

We can describe the training scenario with the association matrix in the fol-

lowing way. At each time-step an event occurs (E1 with probability Q1 and E2

with probability 1 − Q1). Then a random individual is drawn from the popula-

tion. This individual will then utter “ba” or “a” from corresponding to the event.

For example, if E1 occurred, then the individual selected will use their association

matrix and utter “ba” with probability α
α+γ

and utter “a” with probability γ
α+γ

.
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Then everyone else in the population will update their association according to

this input using the MCM algorithm.

At each step, only one (out of two) utterances is heard. We assume that the

word that was not heard may have a chance to be forgotten to a certain degree,

that is, its associations with events E1 and E2 are weakened. For example, if the

word “a” is heard, this means that “ba” is not heard, and everyone has a chance

p1 to weaken their “ba”-E1 and “ba”-E2 associations. Similarly, in the case that

“ba” was heard, the associations of “a” are weakened with probability p2. In the

analysis presented here, we will assume that p1 = p > 0 and p2 = 0, that is, the

word “ba” is forgotten with a finite probability, and the word “a” is not forgotten.

The forgetting routine is implemented in the following way. If word “ba” was not

heard, then if α > 0, we perform

α → α− 1, ϵ1 → ϵ1 + 1,

with probability p. Similarly, if β > 0, we perform

β → β − 1, ϵ1 → ϵ1 + 1,

with probability p.

3.3 Rise of the first word

It can be shown that even if the new word, “ba”, is initially used infrequently, the

population may establish a shared solution where the associations “ba”-E1 and

“a”-E2 dominate. Specifically, the new word “takes off,” and adopts the meaning

of the more frequent event E1, pushing the simple innate vocalization, “a” to (the

less frequent meaning) E2. Fig. 3.2 shows typical outcomes of multiple simula-

tions that show the mean population dynamics of different associations. Here
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Figure 3.2: Shown are numerical simulations of language dynamics, starting from
the initial condition where the usage of the composite word “‘ba” was uniformly
low. Plotted are the population mean association strengths for “ba”-E1 (red), “a”-
E2 (dark blue), “a”-E1 (cyan), and ‘ba”-E2 (yellow). The horizontal axes have the
meaning of time (iterations). Out of 25 runs presented here, 14 resulted in the
dominance of “ba”-E1 and “a”-E2. The parameters were: r = 0.55, p = 0.04.

associations “ba”-E1 and “a”-E2 are shown in red and dark blue respectively. We

can see that after initial dynamics, in 14 out of 25 cases, these two associations

come to dominate the language.

Examining the typical time-series of the word-context associations (Fig. 3.2)

we observe the existence of at least two different time scales. While the rise of the

“ba”-E1 association, if it happens, occurs relatively quickly (that is, “ba” starts be-

ing used for E1 only, and never for E2), the innate “a” continues to be used, with

similar probabilities for both E1 and E2. In other words, the association matrix at

this time contains a weaker synonym for E1 (“a”), and at this time “a” is also used
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as a homonym, to be associated both with E1 and E2. Only after a relatively long

time-span, the “a”-E2 association finally comes to dominance, displacing “a”-E1.

At this point, we can say that with respect to these two words, the population

has developed an unambiguous communication system. In the context of our

model, we observe the disambiguation of the meaning of “a” happens only for

the values of the regularization parameter, r, smaller than a threshold. In other

words, a certain degree of nonlinearity of the learning dynamics is required to see

the transition to efficient communication.

We further explored the behavior of a population where initially, most people

do not use the word “ba,” and only a minority of the population had the word “ba”

in their vocabulary (see Fig. 3.3(a), the association matrices on the left). For sim-

ulations presented in Fig. 3.3, one out of the 20 individuals used the innate “a” in

the same way as everyone else, but also used the new word “ba” to denote mostly

event E1. Starting with this configuration, the learning process was simulated

many times, until a steady state was reached by the population. The frequency of

different outcomes was recorded. We are particularly interested in the frequency

of the outcome where association “ba”-E1 is dominant. Fig. 3.3 shows a typical

simulation where the new word catches on. Trajectories of individual association

strength for “ba”-E1 are plotted.

We observe that for the parameters chosen for this simulation, the new word’s

association with the more frequent event spreads through the population, reach-

ing dominancy. Fig 3.3(b) shows the dependence on the forgetting parameter,

p, to have such an outcome (a more detailed study is presented in section 3.5).

Interestingly, the likelihood of the “ba”-E1 association dominating reaches a max-

imum for a nonzero forgetting parameter. In other words, it is beneficial for the
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system to have a certain probability of forgetting the learned, composite word,

in order for it to become linked with the more frequent event. In Fig. 3.4, we

observed that there is a forgetting p value for each regularizing parameter r where

the frequency of observed “ba”-E1 dominance reaches a maximum.

Figure 3.3: (a) Starting from the initial condition where only one individual (in-
ventor) uses the new word (left), the individual trajectories for the “ba”-E1 asso-
ciation strength are shown for the whole population. In this simulation, this
association rose to dominance. The parameters are r = 0.55 and p = 0.04 (b)
The probability for the “ba”-E1 association rises (for r = 0.55) to dominance as a
function of the forgetting parameter.

Intuitively, it is clear that if the probability to forget the word “ba” is too high,

this can destroy the word, resulting in the population only using the shorter word

“a”. On the other hand, zero forgetting can be inferior to a certain degree of for-
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getting as far as the “ba”-E1 association is concerned. Indeed, in the presence of

forgetting, association “ba”-E2 is unstable because E2 is an infrequent event, and if

the population only hears “ba” when E2 occurs, there are too many opportunities

for a negative, “forgetting” update for this word. On the other hand, the associ-

ation “ba”-E1 appears more stable because of the frequent “reminders” about the

longer word, which help maintain in it in the population.

Figure 3.4: The frequency of the shared solution with a dominant “ba”-E1 asso-
ciation, as a function of the regularization and forgetting parameter, out of 100
independent runs with the initial condition described in Fig. 3.3. The lighter
color corresponds to higher frequency of the association.

3.4 Talkative versus quiet speakers

We further explored the difference between quiet and talkative species. Which

of these two species is more readily associated with the rise of a new, learned,

utterance? In order to investigate this aspect of word dynamics we assumed that

in a “talkative” species frequent utterances inevitably result in more frequent, but

smaller, updates of the association values, while for the “quiet” species, the up-

dates are less frequent but are relatively large in value. The model suggests that for
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the “quiet” species, the dynamics are noisier (see also related study in [74]). At the

same time, the rise of the new, learned word occurs (i) at a higher probability, see

Fig. 3.5, and (ii) faster compared to that in the “talkative” species (given that the

rest of the parameters are equal between the two cases and the initial conditions

are equivalent), see Fig. 3.6. This holds in particular for small and large forgetting

rates. In Fig. 3.7, we can see that the intermediate forgetting rates that are optimal

for “talkative” species seem to be detrimental resulting in a lower probability of

adopting the compositional utterance, see Fig. 3.7.

It should be noted that since L, discretization parameter, is different for “talkative”

(L = 100) and “quiet” (L = 20) species that the initial conditions for each should

be scaled appropriately for comparison. For Fig. 3.5 - 3.7 the initial conditions for

L = 100 are the same as the initial conditions for Fig. 3.3. The initial conditions

for L = 20 are: 19 individuals with

E1 E2

“ba” 0 0 20

“a” 19 1 0

and 1 individual with

E1 E2

“ba” 19 1 0

“a” 19 1 0

Fig. 3.6 presents the histogram of simulated time that it took for a population

to have a stable, shared, dominant association strength for “ba”-E1. The time for

the new word dominance is significantly (p-value is 10−6 with T-test) larger for

the “talkative” species. Note that in these simulations, the talkative species were

assumed to produce utterances 5 times more frequently compared to the quiet
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species, and the physical time of learning was scaled accordingly. The final com-

parison between the “talkative” and “quiet” species was performed in the context

of disambiguation of the meaning of “a” after the new composite word has taken

root. We observe that transition to efficient communication occurs more readily

for quieter species. For example, for the parameters for Fig. 3.6, out of 50 popu-

lations of “talkative” learners simulated for 1, 000, 000 time-steps, none exhibited

the transition to unambiguous communication system. On the other hand, out

of 50 populations of “quiet” learners, 17 were able to disambiguate the usage of

“a”.

Figure 3.5: Frequency of shared solution with a dominant “ba”-E1 association as a
function of the regularization and forgetting parameters for (a) “talkative” species
(L = 100) and (b) “quiet” species (L = 20) with the initial conditions described
in Fig 3.3.
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Figure 3.6: The time to “ba”-E1 dominance (conditioned on the occurrence of this
event) for many independent simulations is shown in the form of histograms. The
yellow histogram is for “talkative” species (L = 100) while the blue histogram is
for the “quiet” species (L = 20). Other parameters are: r = 0.9, p = 0.

Figure 3.7: Frequency of shared solution with a dominant “ba”-E1 association for
r = 1, r = 0.9, r = 0.8, and r = 0.6 as a function of forgetting parameters.
“Talkative” species (L = 100) are in yellow and “quiet” (L = 20) are in blue.
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3.5 ODE approach

Consider the matrix of associations that represents the averaged associations of

the whole population:

E1 E2

“ba” α β ϵ1

“a” γ δ ϵ2

where

α + β + ϵ1 = 1, γ + δ + ϵ2 = 1,

(note that instead of using parameter L, we normalized the sum of associations

to 1). Suppose that the frequencies of events E1 and E2 are Q1 and Q2 respectively,

withQ1+Q2 = 1. The following ODEs describe the average population dynamics

of learning:

α̇ = Q1
α

α + γ
[βr + (1 − α− β)r]− Q2

β

β + δ
αr − pH(α)G, (3.1)

β̇ = Q2
β

β + δ
[αr + (1 − α− β)r]− Q1

α

α + γ
βr − pH(β)G, (3.2)

γ̇ = Q1
γ

α + γ
[δr + (1 − γ − δ)r]− Q2

δ

β + δ
γr, (3.3)

δ̇ = Q2
δ

β + δ
[γr + (1 − γ − δ)r]− Q1

γ

α + γ
δr, (3.4)

whereH(.) is the Heaviside function, andG =
(
Q1

γ
γ+α

+ Q2
δ

δ+β

)
. The right hand

side of these equations are the expected increments of the association strengths,

obtained by considering all the events that can influence them, with their respec-

tive probabilities. For example, the first equation describes changes in the asso-

ciation between “ba” and E1. This association can change under the following

circumstances:

• Event E1 happens (probability Q1) and word “ba” is uttered (probability
α

α+γ
), and in a two-step update, association “ba”-E2 is reduced (probability
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βr) and/or association “ba”-“nothing” is reduced (probability ϵr1 = (1−α−

β)r). In these cases, α is strengthened.

• Event E2 happens (probability Q2), word “ba” is uttered (probability β
β+δ

),

and association “ba”-E1 is reduced (probability αr). In this case, α is weak-

ened.

• Forgetting of word “ba”. This process reduces association “ba”-E1 if either

event E1 happens and “a” is used (probability Q1
γ

γ+α
) or E2 happens and “a”

is used (probability Q2
δ

δ+β
). Forgetting happens with probability p, only if

association α is nonzero (factor pH(α)).

The rest of the equations are constructed in a similar way.

If we use

F(z) = z,

that is, r = 1 as the regularization parameter, the ODEs that describe the learning

process are somewhat simplified:

α̇ = Q1
α

α + γ
(1 − α)− Q2

β

β + δ
α− pH(α)G, (3.5)

β̇ = Q2
β

β + δ
(1 − β)− Q1

α

α + γ
β − pH(β)G, (3.6)

γ̇ = Q1
γ

α + γ
(1 − γ)− Q2

δ

β + δ
γ, (3.7)

δ̇ = Q2
δ

β + δ
(1 − δ)− Q1

γ

α + γ
δ. (3.8)
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3.5.1 No forgetting

In the absence of forgetting (p = 0) we have the following steady states:

S(1)0 : α = Q1, β = 1 − Q1, γ = δ = 0, (3.9)

S(2)0 : α = β = 0, γ = Q1, δ = 1 − Q1, (3.10)

S1 : α = 1, β = 0, γ = 0, δ = 1, (3.11)

S2 : α = 0, β = 1, γ = 1, δ = 0, (3.12)

S3 : β = 1 − α, γ = 2Q1 − α, δ = 1 − 2Q1 + α. (3.13)

Solutions S(1)0 and S(2)0 are unstable. Solutions S1 and S2 are also unstable except

when Q1 = 1
2 , when they are neutrally stable. S3 is a neutral family of solutions

which is meaningful for

2Q1 − 1 < α < 2Q1,

since γ and δ cannot be negative. It has a zero eigenvalue, eigenvalue 1
2 of multi-

plicity 2, and eigenvalue

λ =
(α− Q1)

2 − Q1(1 − Q1)

2Q1(1 − Q1)
.

Solution S3 is neutrally stable for

Q1 −
√

Q1(1 − Q1) < α < Q1 +
√

Q1(1 − Q1). (3.14)

We will assume that 1
2 ≤ Q1 ≤ 1. In this case condition (3.14) becomes

α > Q1 −
√

Q1(1 − Q1),

that is, the “ba”-E1 association has to be strong enough. Values of Q1 close to 1

correspond to solutions of type

∗ 0

∗ 0
.

69



Values of Q1 close to 1
2 correspond to solutions of type

α 1 − α

1 − α α
.

3.5.2 With forgetting

In the presence of forgetting p > 0, let us first assume that at the steady state,

α > 0 and β > 0. Then in system (3.5-3.8) the first two equations are modified to

α̇ = Q1
α

α+ γ
(1 − α)− Q2

β

β + δ
α− pG, (3.15)

β̇ = Q2
β

β + δ
(1 − β)− Q1

α

α + γ
β − pG. (3.16)

We have the following solution types:

• S(1)0 : α = Q1, β = 1 − Q1, γ = δ = 0. This solution is unstable as before.

• Two solutions corresponding to γ = 0, δ = 1. One of them becomes S1

for p = 0 but has a negative component for p > 0, Q1 > 1
2 . The other one

corresponds to S3 with α = 2Q1 and is meaningless for Q1 >
1
2 .

• Two solutions corresponding to γ = 1, δ = 0. One of them is given by (to

the first order of expansion in p)

SA =

 Q1p
2Q1−1 1 − Q1(3Q1−1)p

(1−Q1)(2Q1−1)

1 0

 .

It becomes S2 for p = 0, and can be stable for a subset of p ∈ [0, 1], Q1 ∈

[ 1
2 , 1]. The other corresponds to S3 with α = 2Q1 − 1 and can also be stable

for a subset of p ∈ [0, 1], Q1 ∈ [ 1
2 , 1]. Its first order expansion in p is given

by

SB =

 2Q1 − 1 − Q1p
2Q1−1 2 − 2Q1 +

(3Q1−2)p
2Q1−1

1 0

 .

70



• Two interior solutions. One of them corresponds to S(2)0 as p → 0 and is

unstable. The other one corresponds to S3 with α = 1
2 as p → 0 and can be

stable for a portion of the relevant domain. Its first order expansion in p is

given by

SC =

 1
2 − p 1

2 − p

2Q1 − 1
2 − (2Q1 − 1)p 3

2 − 2Q1 + (2Q1 − 1)p

 .

To systematically obtain all the equilibria, we need to consider three more

cases:

1. α = 0, β > 0. In this case we have system (3.5-3.8) with the first equation

replaced with equation (3.15). We have the following equilibria (we denoted

S =
√

1 − 4p):

SD1 =

 0 1
2(1 − S)

Q1
2 (3 − S) 1

2(2 + (−3 + S)Q1)

 ,

SD2 =

 0 1
2(1 + S)

Q1
2 (3 + S) 1

2(2 − (3 + S)Q1)

 ,

SD3 =

 0 1 − pQ1
1−Q1

1 0

 .

Let us perturb solution SD1 (denoted by α∗, β∗, γ∗, δ∗),

α = α∗ + ϵz1, . . . , δ = δ∗ + ϵz4,

where ϵ ≪ 1, expand equations (3.5-3.8) into Taylor series in ϵ, and in each

equation, only keep the terms up to the highest order in terms of the per-

turbation. The equation for z1 becomes

ż1 = − 2p
ϵ(3 − S)

+ O(ϵ0);
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the order ϵ−1 term on the right comes from H(α) = H(ϵz1) ∼ ϵ0. This

equation suggests that any positive perturbation of α will rapidly decay to

zero. Once it is zero, the term H(α) = 0, and the association strength will

no longer decay. Negative perturbations of association strength α = 0 are

not relevant. Because of these rapid dynamics of the first component, the

other three association strengths can be analyzed separately. Performing

the standard linear stability analysis (and setting α = 0), we obtain the

characteristic polynomial of the 3 × 3 Jacobian to be

P(λ) ∝
(
λ+

2
3 − S

)
(λ2 + c1λ+ c0),

where coefficients c0 and c1 satisfy

c0 = ĉ0(p,Q1)

(
Q1 −

2
3 − S

)
, c1 = ĉ1(p,Q1)

(
5 + S
6 + p

− Q1

)
,

and functions ĉ0(p,Q1) and ĉ1(p,Q1) are positive for 0 ≤ p < 1/4 and

1/2 < Q1 < 1. For stability, we require c0 > 0 and c1 > 0, which results in

the condition
2

3 − S
< Q1 <

5 + S
6 + p

, (3.17)

see figure 3.8. On the other hand, checking the positivity of the δ compo-

nent of solution SD1, we obtain condition

Q1 <
2

3 − S
,

which is incompatible with condition (3.17).

Similar analysis shows that solution SD2 is stable and positive if

Q1 <
2

3 + S
.
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Finally, solution QD3 is stable and positive in region

2
3 + S

< Q1 <
2

3 − S
.

The regions of stability for SD1, SD2, and SD3 are shown in figure 3.8.

Figure 3.8: Stability regions for solutions SD1, SD2, SD3.

2. α > 0, β = 0. In this case we have system (3.5-3.8) with the second equation

replaced with equation (3.16). We have the following equilibria:

SE1 =

 1
2(1 − S) 0

1
2(−1 + S+ (3 − S)Q1)

1
2(3 − S)(1 − Q1)

 ,

SE2 =

 1
2(1 + S) 0

1
2(−1 − S+ (3 + S)Q1)

1
2(3 + S)(1 − Q1)

 ,

SE3 =

 1 − p(1−Q1)
Q1

0

0 1

 .

Similar to the α = 0, β > 0 case, a positive perturbation of one of the com-

ponents (this time, the β association) has a negative ϵ−1 term in the right

hand side of the corresponding ODE, and rapidly decays to zero. The rest
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of the components can be analyzed separately by methods of standard lin-

ear analysis. We obtain that solutions SE1 and SE3 are unstable for Q1 > 1/2

and solution SE2 is stable for Q1 > 1/2.

In particular, solution SE3 has eigenvalues −(1 − Q1), −Q1, and

p(1 − Q1)
2 + Q1(2Q1 − 1)

Q1 − p(1 − Q1)
,

where the latter quantity is positive as long as Q1 > 1/2 and SE3 is posi-

tive (Q1 > p(1 − Q1)). Furthermore, the characteristic polynomial for the

Jacobian corresponding to solution SE1 is given by

P(λ) ∝
(
λ+

2
3 − S

)
(λ2 + c1λ+ c0),

where

c0 = ĉ0(p,Q1)

(
1 + 2p− S

4 + 2p
− Q1

)
,

and function ĉ0(p,Q1) is positive for 0 ≤ p < 1/4 and 1/2 < Q1 < 1. For

stability, we require c0 > 0 and c1 > 0, which results in a condition

Q1 <
1 + 2p− S

4 + 2p
,

which is violated for Q1 > 1/2. Finally, for SE2, we have

P(λ) ∝
(
λ+

2
3 − S

)
(λ2 + c1λ+ c0),

where

c0 = ĉ0(p,Q1)

(
Q1 −

1 + 2p+ S
4 + 2p

)
,

c1 = ĉ1(p,Q1)

(
Q1 −

1 + p+ S
6 + p

)
,

and functions ĉ0(p,Q1) and ĉ1(p,Q1) are positive for 0 ≤ p < 1/4 and

1/2 < Q1 < 1. For stability, we require c0 > 0 and c1 > 0, which results in
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conditions

Q1 >
1 + 2p+ S

4 + 2p
, Q1 >

1 + p+ S
6 + p

,

both of which are satisfied for Q1 > 1/2.

3. Finally, setting α = β = 0, we use system (3.15,3.16,3.7,3.8), to obtain solu-

tion S(2)0 :

S(2)0 :

 0 0

Q1 1 − Q1

 .

Stability analysis can be performed as follows. The first two equations are

(to the highest order):

ż1 = −p/ϵ+ O(ϵ0), ż2 = −p/ϵ+ O(ϵ0),

and the positive perturbations decay to zero. The remaining two compo-

nents satisfy a liner system with a double eigenvalue of −1. Therefore, so-

lution S(2)0 is stable.

It appears that depending on the value of parameter p, different solutions are

reached, see Fig. 3.9. For p = 0, solution S3 is observed (with the value α which

depends on the initial condition). As p increases, the symmetry is broken and

solution SE2 becomes stable. As p increases further, this solution loses stability and

we observe S(2)0 . These dynamics are also shown in Fig. 3.10, where we simulated

the ODEs up to a larger time t0, and plotted the resulting values of the functions

α (denoted as “ba”-E1) and δ (denoted as “a”-E2) as functions of the parameter p.

We can see that the “ba”-E1 association becomes dominant for an intermediate

region of p values, which corresponds to the SE2 stationary point.
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Figure 3.9: ODE simulations of the learning dynamics for different values of p:
(a) p = 0, (b) p = 0.01, (c) p = 0.1. In panels (b) and (c), horizontal dashed
lines show the values for components γ and δ of steady state solutions SE2 and
S(2)0 , respectively. Parameter Q1 = 0.71 and t0 = 2 × 105.

Figure 3.10: Long-term outcomes of the learning dynamics. The values α(t0) (de-
noted as “ba”-E1) and δ(t0) (denoted as “a”-E2), plotted as functions of the param-
eter p. Parameter t0 = 2 × 105, and the rest of the parameters are as in Fig. 3.9.

76



3.6 Discussion

In this chapter, we have used mathematical modeling to hypothesize the dynam-

ics of early communication. We established that under very modest assumptions

on the interactions of communicating individuals, a new, composite word can

rise from low numbers and displace a current innate vocalization for the usage in

a frequent context. Interestingly, a degree of increased forgetting of the composite

word (compared to the innate) can be beneficial in shaping the communication

system where the more complex word gets paired up with the more common

event.

It is worth nothing that the model employed in this study is intentionally

simplistic. The goal of this study was to identify the minimal number of assump-

tions (the simplest model) compatible with the possibility of a composite word

rising from low usage and displacing the old, innate vocalization. The model

used here does demonstrate this behavior, indicating that such scenario can per-

haps occur in the natural environment. This reductionist model however does

not take account of other numerous factors that may not be necessary for this

particular phenomenon, but shape other aspects of learning and communication

dynamics. For example, the process of disambiguation of the innate word(after

the new word has taken root) takes a relatively long time in our simulations. Such

dynamics are a consequence of the specific modeling choice made here. Many

other models used in the field contain penalty for inefficient communication im-

posed through various mechanisms. If we included such features in our model,

the long coexistence of two meanings for “a” (and thus a long stretch of inefficient

communication) could be significantly shortened. Therefore, we do not propose

that the present model realistically describes the timing of change. Instead, it can
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be used as a proof of principle, showing that under very minimal assumptions, a

new word can arise, and invade in the absence of any externally imposed “fitness”

advantage compared to the commonly used innate word.

The following summarizes the findings of this chapter:

• A simplistic model was developed using MCM to describe the evolution of

the first word.

– There are three parameters to describe the behavior of our learning en-

vironment: the regularization parameter, r, the forgetting parameter,

p, and the discretization parameter, L.

• “ba”-E1 (the association of the new word with the more frequent event)

occurs relatively quickly (if at all).

– Disambiguation (where “ba” is associated with with E1 and “a” is asso-

ciated with E2) occurs only for the values of the regularization param-

eter smaller than a threshold.

• The likelihood of “ba”-E1 association dominating reaches a maximum for a

nonzero forgetting parameter, p.

• Rise of the new word occurs faster and at a higher probability for “quiet”

species than “talkative” species.

In regards to Zipf’s Law of Abbreviation it is shown that the most frequent

word that occurs is the shortest word in terms of length [7, 78, 79]. However,

from our simplistic model and communication system described in section 3.3,

we can see that a population starts with an innate simple vocalization and then in-

herits a complex consonant-vowel word. The population even associates the new,
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complex word with the more frequent event. The likelihood of such a behavior is

dependent on a regularization factor as well as a forgetting characteristic. These

observations (although in a simplistic model) gives an example of a system that

violates Zipf’s law. More observation, experimentation, and analysis for a more

complex model is subject for future work.
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AAppendix

“Whatever it is that you do in this life, it’s not

legendary unless your friends are there to see it.”

Barney Stinson, How I Met Your Mother

A.1 Comparing the VIM and the MCM

This section will discuss the comparison of the two methods in two respects: sym-

metric and asymmetric.

A.1.1 Symmetric Algorithm

Figure A.1: Comparison of a) VIM and b) MCM where we ran them for 500, 000
time steps over various frequency of the source, ν, from 0 to 1, with F(X/L) =
(X/L)0.4. And L = 100. Plot of (c) relative error and (d) absolute error between
VIM and MCM.

To compare the symmetric version methods, we plot the average values of the

learner for various ν values from 0 to 1 in Fig. A.1. The average value is noted

as approximately the steady state of the learner. Power functions will be used for
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the remainder of the discussion.

In Fig. A.1, both methods produce similar shaped plots. The absolute error

for each ν between the methods are also plotted in Fig. A.1; note that the absolute

error is no more than 0.012 and that the relative error decreases as ν increases.

A.1.2 Asymmetric Algorithm

We now introduce an asymmetric version of VIM and MCM, where the incre-

ments and decrements are different depending on whether the source’s input

value matches the highest-propensity, or preferred form, of the learner.

Let F be defined as above in the formulation of VIM. Let us define the pre-

ferred form of the learner as form m, that is xm = maxi=1,2{xi}. Suppose that

xm = x1, if the source emits form 1, then we have the following updates for the

VIM version of the algorithm:

x1 →

 x1 + sF+(x1), if form 1 is received,

x1 − pF−(x1), if form 2 is received,
(A.1)

where F+ and F− are some functions of one variable on [0, 1]. The rules above can

be rewritten for the probability to utter form 2, x2 = 1 − x1:

x2 →

 x2 − sF+(x2), if form 1 is received,

x2 + pF−(x2), if form 2 is received,
(A.2)

where s and p are values between 0 and 1. The MCM asymmetric algorithm

is just the translation of the VIM asymmetric algorithm into a Markov walk as

described in section 1.2 with the transition matrix, P, and function F.
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Figure A.2: Plot of (a) AVIM and (b) AMCM, with ν = 0.8, and initial X =
[0.6, 0.4]. s, p ∈ [0.1, 0.2, . . . , 1]. Along with the plots of the (c) relative and (d)
absolute error between AVIM and AMCM.

For simplicity, we will refer to the asymmetric version of VIM and MCM as

AVIM and AMCM respectively. To compare AVIM and AMCM, we executed

each algorithm with a fixed s and p value, given function (x0.4) and calculated the

average learner values as we did with the symmetric case. Fig. A.2-A.3 are the

contour plots comparing both methods over various s and p values.

A.1.2.1 Observation: Differences in initial learner values

An important observation here is that updates occur more frequently for certain

values of s and p when the learner is reassured, otherwise updates occur less fre-

quently. Fig. A.2 is the plot of AVIM and AMCM where the learner and the

source both prefers form 1. We can see that when s ≫ p, the learner will experi-

ence frequency boosting to nearly 1. This is due to the fact that in the algorithm,

we use the “preferred” update when the source utters a form that coincides with

the preferred form of the learner; the learner is reassured and takes a much bigger

increment of update for its frequency of usage than it would otherwise.

Fig. A.3 is the plot of AVIM and AMCM when the learner and the source

prefers different forms. Again, we can see that when s ≫ p, updates are per-
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Figure A.3: Plot of (a) AVIM and (b) AMCM, with ν = 0.8, and initial X =
[0.3, 0.7]. s, p ∈ [0.1, 0.2, . . . , 1]. Along with plots of (c) relative and (d) absolute
errors of AVIM and AMCM.

formed when the learner is reassured that its preferred form is used by the source;

otherwise, the frequencies are updated by a significantly smaller amount.

A.1.2.2 Observation: Varying the value of L

The discretization parameter, L, has a role in the stochastic behavior of the updates

and ultimately determines when both methods are the same. Note that VIM

(and AVIM) algorithm is updating with Δx = F/L; which is L times slower than

MCM (and AMCM). Thus the updates for VIM and AVIM are relatively small

increments as opposed to the increments of MCM and AMCM. In Fig. A.4(a),

the plots of AVIM has small increments for updates of x1 and will oscillate around

0.38. The values for X1 however may oscillate around 0.4 in the early stages but

will eventually reach 0.5 given some random probability which then means that

the learner’s preferred form will be the same as the source and experience the

observations in section A.1.2.1. This is also the cause of the discrepancy in the

relative and absolute error seen in Fig. A.3.
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Figure A.4: Plot of AVIM and AMCM for s = 0.6, p = 0.1 over (a) 6000 time
steps with L = 100, and (b) 60000 time steps with L = 500.

Fig. A.4(b) is AVIM and AMCM with a bigger L value. Since L was increased

then X1 now updates with constant increments of a much smaller expectancy

than before, and thus the frequency stabilizes around the same value as what is

exhibited in AVIM.

Fig. A.5 is a plot of the max relative and absolute error of the results for AVIM

and AMCM when we vary L over all s, p ∈ [0, 1]. We see that as L increases, then

we have that the relative error between AVIM and AMCM decreases. Thus as

L → ∞, the resulting learner values from the two algorithms coincide.

Figure A.5: Plot of L versus (a) relative and (b) absolute error of AVIM and AMCM.
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A.2 Proof of Frequency Boosting Theorem

A.2.1 Proof of the theorem for a particular example

Here we set L = 2 and prove the Theorem in this simple case. The general proof

is provided in section A.2.2. We will use the convenient notation

λ =
ν

1 − ν
.

We want to show that νlearn > ν when ν > 1
2 . Thus with the notation above, it

suffices to show that νlearn > λ
1+λ

, when λ > 1. That is∑L
i=0 iλiCi

L

L
∑L

i=0 λ
iCi

L
>

λ

1 + λ
. (A.3)

For L = 2, the LHS of (A.3) becomes:

λ F(1)
F( 1

2 )
+ 2λ2

2(1 + λ F(1)
F( 1

2 )
+ λ2)

.

So we want to show that

λ F(1)
F( 1

2 )
+ 2λ2

2(1 + λ F(1)
F( 1

2 )
+ λ2)

>
λ

1 + λ
.

Which is true if and only if

F(1)
2F( 1

2 )
+ λ

(1 + λ F(1)
F( 1

2 )
+ λ2)

>
1

1 + λ
.

Which is equivalent to

(1 + λ)
( F(1)

2F( 1
2)

+ λ
)
> (1 + λ

F(2)
F(1)

+ λ2).

After some algebra, we can simplify the expression to

λ
(

1 − F(1)
2F( 1

2)

)
> 1 − F(1)

2F( 1
2)
. (A.4)
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Note that λ > 1, so it suffices to show that

1 − F(1)
2F( 1

2)
> 0. (A.5)

That is we want to show that

F( 1
2)

1
2

>
F(1)

1
. (A.6)

From the definition of a function that is concave down as was described in

section 1.3.1, we can conclude that we have (A.6) and thus (A.3) is true when L = 2.

A.2.2 The general case

Now to the proof of the Theorem for a general integer L.

Proof. Expanding out (A.3) we have that the frequency boosting property now

becomes
λC1

L + 2λ2C2
L + · · ·+ LλL

L(1 + λC1
L + λ2C2

L + · · ·+ λL)
>

λ

1 + λ
, (A.7)

which is equivalent to

(1 + λ)
(1
L
C1

L +
2
L
λC2

L + · · ·+ λL−1
)
> 1 + λC1

L + λ2C2
L + · · ·+ λL.

Simplifying we get,

1
L
C1

L+
2
L
λC2

L+ · · ·+λL−1+
1
L
λC1

L+
2
L
λ2C2

L+ · · ·+λL > 1+λC1
L+λ2C2

L+ · · ·+λL.

Combining like terms, we get,

L−1∑
k=1

λk
(k+ 1

L
Ck+1

L − Ck
L(1 − k

L
)
)
> 1 − C1

L

L
. (A.8)

For notation, let

αk+1 =
k+ 1
L

Ck+1
L − Ck

L

(
1 − k

L

)
=

k+ 1
L

Ck+1
L − L− k

L
Ck

L. (A.9)
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Note that 1− C1
L
L = (L−1)+1

L C(L−1)+1
L − L−(L−1)

L CL−1
L = α(L−1)+1 = αL. So then (A.8)

becomes
L−1∑
k=1

λkαk+1 > αL.

Since αL = 1 − C1
L
L , then by similar reasoning as in the L = 2 case, with x = 1

and y = L, in (A.6), we have that C1
L
L < 1, that is αL > 0.

Since λ > 1, and αL > 0, we have that λL−1αL > αL, thus to show (A.8), it

suffices to show

λα2 + λ2α3 + · · ·+ λL−2αL−1 > 0. (A.10)

We can make more simplifications to (A.10) with the notation of (1.9). Note that

CL−k
L = Ck

L, thus we have that (A.9) becomes

αk+1 =
k+ 1
L

CL−(k+1)
L − L− k

L
CL−k

L , (A.11)

which can also be written as

− αk+1 =
L− k
L

CL−k
L − L− (L− k− 1)

L
CL−k−1

L . (A.12)

From (A.9), by replacing the k+ 1 with L− k, we have that

αL−k =
L− k
L

CL−k
L − L− (L− k− 1)

L
CL−k−1

L . (A.13)

Thus

αL−k = −αk+1. (A.14)

Therefore, (A.10) simplifies into two cases, when L is even or odd.
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Suppose first that L = 2j for some integer j. Then using (A.14), we have that

(A.10) simplifies to showing that

α2(λ− λ2j−2) + α3(λ
2 − λ2j−3) + · · ·+ αj(λ

j−1 − λ2j−j) > 0.

Which is equivalent to showing

α2λ(1 − λ2j−3) + α3λ
2(1 − λ2j−5) + · · ·+ αjλ

j−1(1 − λ) > 0. (A.15)

Similarly when L = 2j+1 for some integer j. Then (A.10) simplifies to showing

that

α2(λ− λ2j−1) + α3(λ
2 − λ2j−2) + · · ·+ αj(λ

j−1 − λ2j−(j−1)) + αj+1λ
j > 0.

Note that since L = 2j+ 1, we have that αL−j = αj+1 and that αL−j = −αj+1 from

(A.14), thus αj+1 = 0. Thus for the odd case, (A.10) simplifies to showing that

α2λ(1 − λ2j−2) + α3λ
2(1 − λ2j−4) + · · ·+ αjλ

j−1(1 − λ2) > 0. (A.16)

Thus for either L is even or odd, from (A.15) and (A.16), it suffices to show that

αi < 0,

for i = 2, 3, . . . , j, since 1 − λm < 0 for any m, because 1 < λ.

From (1.9), we can also write

Ci
L = Ci−1

L
F(L−i+1

L )

F( i
L)

.

Thus after simplification we have that (A.9) becomes

αi = Ci−1
L

( iF(L−i+1
L )

LF( i
L)

− L− (i− 1)
L

)
.

Because F(x) > 0 for all x > 0, then Ci−1
L > 0, then it suffices to show that

iF(L−i+1
L )

LF( i
L)

− L− (i− 1)
L

< 0.
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That is, it suffices to show that

F(L−i+1
L )

L−i+1
L

<
F( i

L)
i
L

, (A.17)

for i = 2, 3, . . . , j, where L = 2j or L = 2j+ 1.

Using the same argument made in the L = 2 case, we have (A.17), and there-

fore can conclude that αi < 0, for i = 2, 3, . . . , j where L = 2j or L = 2j + 1, and

therefore can conclude (A.15)-(A.16), and thus have (A.10). Hence (A.3) is true

for any integer L and for a function F that satisfies the properties listed in section

1.3.1.

A.3 The matrix method: more examples

A.3.1 Frequency of usage

Now let us modify the experiment and assume that the A-B and B-C pairs appear

different numbers of times. Let us assume that A-B comes up N times and B-C

comes up M times, and M > N. The question again is to identify what is “dax”,

“pid”, and “wug”. We have the following algorithm:

A B C

dax N N ϵ1

pid ϵ2 M M

wug ϵ3 ϵ3 ϵ3

⇒

A B C

dax 1 N
N+M

ϵ1
M

pid ϵ2
N

M
N+M 1

wug ϵ3
N

ϵ3
N+M

ϵ3
M

⇒

A B C

dax ∗

pid ∗

wug ∗

We can see now that when it comes to identifying “wug”, object A wins because

it appears less often and thus is more informative than object C.
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A.3.2 More objects

Let us keep the rules the same as before, but among the responders’ choices, in-

clude an extra object, D, than has not appeared during the training sessions. Now

the result is slightly different:

A B C D

dax N N ϵ1 ϵ1

pid ϵ2 M M ϵ2

wug ϵ3 ϵ3 ϵ3 ϵ3

⇒

A B C D

dax 1 N
N+M

ϵ1
M

ϵ1∑
ϵi

pid ϵ2
N

M
N+M 1 ϵ2∑

ϵi

wug ϵ3
N

ϵ3
N+M

ϵ3
M

ϵ3∑
ϵi

⇒

A B C D

dax ∗

pid ∗

wug ∗

Note that in the third row of the middle matrix, the last element is always the

largest because it is ∼ 1, while the other elements are ∼ ϵi. We can see that given

a new object, the new word is naturally associated with that object.

A.3.3 Finding a label for an object

Finally, we change the task and assume that the responders are asked to produce

a word that describes a given object. Now, we have a different procedure because

labels are now competing for associations with objects. Therefore, the first step

is to normalize the matrix by rows, and then to pick the largest element in each

column.

A B C D

dax N N ϵ3 ϵ4

pid ϵ1 M M ϵ4

wug ϵ1 ϵ2 ϵ3 ϵ4

⇒

A B C D

dax 1
2

1
2

ϵ3
2N

ϵ4
2N

pid ϵ1
2M

1
2

1
2

ϵ4
2M

wug ϵ1∑
ϵi

ϵ2∑
ϵi

ϵ3∑
ϵi

ϵ4∑
ϵi
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⇒

A B C D

dax ∗ ∗

pid ∗ ∗

wug ∗

Again, in the rightmost column of the middle matrix, the largest element will

correspond to “wug”, because it is ∼ 1. We can see that when asked to match

an object to a given word, the subjects are expected to pick either “dax” or “pid”

for B. For the novel object D, the subjects are expected to choose the novel word

“wug”. If however this word is not among the possible choices, then the word

“dax” is expected to be chosen, because it has been heard fewer times (N < M).

If, as in the original experiment, N = M, then the words “dax” and “pid” will be

chosen to describe D an equal number of times.

A.4 Stochastic algorithm: additional properties

Let us consider the stochastic algorithm and the behavior of the matrices, for

different values of μ. As we have noted from our model in explaining the exper-

imental results, OL and LO learners utilize negative evidence in different ways

when trying to associate objects to labels versus labels to objects. According to

our model, varying μ values means varying occurrence of negative update. When

μ = 0, then the negative update will not occur and we are only performing the

basic MCM algorithm. When μ = 1, then negative update will always occur.

To describe what happens at different μ values, suppose the learner is acquiring

information from the following training matrix:N N

0 N

 . (A.18)
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This matrix details that the training set will contain N pairings of Obj1 with the

label A, N pairings of Obj2 with label A, and N pairings of Obj2 with label B.

If μ = 1, then the resulting normed P matrix after implementing the algo-

rithm will be:  δ 1 − δ

1 − δ δ

 , (A.19)

where δ is determined by the update function F of the stochastic learning model

with negative evidence.

We can see that for a 2 × 2 matrix P:α1 α2

β1 β2

 .

according to the algorithm described in section 2.1.3, if the learner sees object

2 and then hears label 1 then they will perform the following MCM update on

column 2,

α2 → α2 + 1,

β2 → β2 − 1.
(A.20)

Then, with the negative update on column 1, they will perform

α1 → α1 − 1,

β1 → β1 + 1.
(A.21)

That is, the diagonal entries of P (α1 and β2) update simultaneously, at the same

rate and magnitude. Similar examples have the same observation.

We can summarize the observations of this matrix:

• the diagonal entries of (A.19) are the same.
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• the resulting normed Q matrix will be the same as (A.19).

• Learners trying to answer “what is object” questions will give the same cor-

responding answer to “what is label” questions.

Note that as μ varies from 0 to 1, the first component of the resulting normed P

matrix will decrease from 1 to δ. This is due to the nature of the negative evidence

which will allow learners to classify more accurately objects to their labels and vice

versa.
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