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Abstract

Combining Biochemical Signaling and Mechanics to Understand Yeast Mating

Morphogenesis

by

Michael D. Trogdon

How biological systems are able to form and maintain such a wide variety of patterns

and structures is one of the central questions in science. In this dissertation we focus on

one example of pattern formation and morphogenesis found in yeast cells. Specifically,

we present our work related to understanding how yeast cells are able to change their

physical structure and form projections during mating. This is an interesting example of

a problem that deals with both intracellular protein signaling and cell mechanics. One

issue that has become increasingly important to understanding the dynamics of proteins

inside of single cells is the inherent randomness or stochasticity of biochemical reactions.

As mathematical modeling and computational techniques have become essential tools

in systems biology over the last half century, we first mention our software framework

for the efficient simulation of spatial stochastic reaction-diffusion problems which can

leverage high-performance computing and cloud infrastructure. This work serves as the

basis for our investigation into yeast mating morphogenesis.

The first step of yeast mating projection growth is the localization (or polarization) of

proteins on the cell membrane. This is a well-studied, yet not fully understood, example of

pattern formation in biology. In this dissertation we discuss several mathematical models

of polarization and their various properties. When a yeast cell forms a mating projection

the cell shape naturally changes in time. To deal with this from a mathematical modeling

standpoint, we have developed a novel algorithm for the simulation of spatial stochastic

ix



dynamics on moving domains. These technical advances have led to new insight into the

biology of yeast mating morphogenesis. In particular, we have elucidated the effects that

complex geometries can have on current models of polarization.

While polarization is certainly necessary for yeast mating morphogenesis, it is not

the whole story. Yeast cells have a cell wall that is responsible for defining cell shape and

providing mechanical integrity. To further explore mating projection growth, we have

developed methods to couple models of polarization with physically based models for the

mechanics of the cell wall. This coupling of biochemical signaling and mechanics allows

for a more systems level understanding of yeast mating morphogenesis. We conclude

by summarizing our findings about the coupling of polarization and mechanics, and

discussing which biological links between the two are important from a mathematical

modeling perspective.
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Chapter 1

Introduction

How biological systems are able to form such a variety of shapes and patterns is one of

the central questions in science. While most life starts as a nearly homogenous single cell,

development inevitably leads to a wide array of heterogeneous and beautiful structures.

Understanding the physical mechanisms behind these “pattern forming” systems is a rich

field of research in both physics and biology. As is often the case in science, focusing on

a simple model system, such as how a yeast cell changes shape, can yield insight into

broader questions of pattern formation and morphogenesis in biology.

Mathematical modeling and computational methods have become a critical tool in

systems biology research in the last half century. The localization (or polarization)

of proteins on the membrane during the mating of Saccharomyces cerevisiae is a well-

studied, yet not fully understood, example of pattern formation in biology where much

work has been done in both mathematical modeling and experimental investigation to

understand the physical mechanisms at play. One key feature that has only recently been

addressed is the effects that stochasticity due to intrinsic noise can have on polarization,

with some studies having shown that it can be critical for certain models of polarization

[1, 2, 3].
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Introduction Chapter 1

Stochastic dynamics at the intracellular signaling level has become a standard model-

ing paradigm in many areas of biology. There are numerous cases where deterministic or

mean-field techniques do not capture the relevant dynamics of biological systems [4, 5, 6].

Stochasticity is critical particularly when the copy number of a key chemical species is

very small, as is often the case within single cells. Many methods exist to numerically

simulate stochastic biochemical networks, the most common of which is the Stochastic

Simulation Algorithm (SSA) or Gillespie algorithm [7, 8]. One assumption of the SSA

is that the system is well-mixed, meaning that the reactants are assumed to be equally

likely to be anywhere in the spatial domain. This assumption clearly does not apply

in many systems, including our system of interest: polarization in yeast mating. The

spatial nature of our system necessitates the use of spatial stochastic methods, of which

there are many. One common approach relies on the Reaction-Diffusion Master Equation

(RDME) formalism [9, 10, 11, 12]. Using RDME techniques, we have studied the protein

signaling network involved in polarization in previous works [13, 14]. In particular, we

are interested in understanding how these protein signaling networks interact with cell

mechanics to yield morphogenetic change, such as the growth of the mating projection.

When the coupling of mechanics and biochemistry in this system is considered, the

physical domain of the numerical simulations necessarily becomes time-dependent as the

cell changes shape over time. To address this, we have developed an algorithm to simulate

spatial stochastic reactions on time-dependent domains using the RDME formalism [14].

Many existing models [15, 16, 3, 2] treat polarization as a Partial Differential Equation

(PDE) in simple 1 or 2 dimensional geometries (such as a line or circle). A key feature

that is lost in these simulations is the effect that a more realistic geometry can have on

these reaction networks. Our work has shown that there is a significant and biologically

relevant impact of cell geometry during mating projection growth on current models of

polarization [17]. Specifically, there seems to be a clear bias away from the tip of projec-
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Introduction Chapter 1

tion shaped geometries for a number of models tested. This is important when considered

in the context of mating projection growth in yeast. When growing a mating projection,

the cell establishes a spatial localization of proteins on the membrane, ultimately leading

to actin cable formation and vesicle transport. The vesicles carry, among other proteins,

cell wall modifying enzymes that change the material properties of the cell wall, leading

to projection growth. During the growth of the projection in vivo, it is critical that the

polarization cap remains at the tip of the projection to direct growth. However, our simu-

lations suggest that current models of polarization could fail to capture this behavior due

to a previously under-appreciated or unacknowledged effect of geometry on the dynamics

of these polarization models. As a first attempt to address this issue, we present a model

that contains a direct mechanical feedback on the dynamics of polarization. This model

is shown to increase the stability of polarization in the case of growing projections and

is based on a plausible biological mechanism.

In this dissertation, we present work that is guided by the overarching goal of un-

derstanding how biochemical signaling and cell mechanics interact to yield stable mor-

phogenesis during mating projection growth in yeast. En route to this larger goal, we

first mention our work on new software for efficient spatial stochastic simulation. We also

present a novel algorithm for simulating spatial stochastic reaction-diffusion dynamics on

moving domains. These technical contributions in turn led to new biological insight to

our problem of interest. Specifically, we present work that addresses a previously under-

appreciated effect of geometry on the dynamics of polarization. Lastly, we propose a new

model for the maintenance of polarization during mating projection growth, via a direct

mechanical feedback. This model is then used to fully couple a detailed model of polar-

ization with a physically based model of mechanics, to provide a complete simulation of

stable projection growth.

3
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1.1 Outline

The remainder of this dissertation is organized as follows: in Chapter 2 we give a

background of current models of polarization in both budding and mating. We also give

details on the current methods for spatial stochastic simulation that will be referenced

throughout the dissertation. Next, we mention our work on the development of new

software for efficient spatial stochastic simulation (published in [13]). Lastly, we discuss

theoretical work that shows that mechanical feedback can coordinate cell wall expansion

and assembly during mating projection growth (published in [18]) and give more back-

ground on the role of the cell wall in yeast morphogenesis. In Chapter 3 we present our

work on a novel algorithm to simulate spatial stochastic dynamics on moving domains

(published in [14]). In Chapter 4 we present our work that provided insight into the

biologically relevant effect that cell geometry can have on the dynamics of polarization

(under review in [17]). Lastly, in Chapter 5 we present work on a new model for the

maintenance of polarization during mating projection growth via a direct mechanical

feedback, and couple detailed models of polarization with a physically based model of

mechanics to simulate mating projection growth (in preparation in [19]). We conclude

by summarizing our results and discussing future directions.
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Chapter 2

Background

2.1 Models of Polarization in Yeast Budding and

Mating

2.1.1 Pattern formation in reaction-diffusion systems

The ability of biological systems to form heterogeneous structures with near homoge-

neous initial conditions is one of the hallmarks of life and development. This “symmetry

breaking” can be seen everywhere in nature, from the stripes on a tiger to the structure of

a leaf. But exactly how these patterns are formed and what are the physical mechanisms

behind them, has remained elusive. One model system where progress has been made is

that of reaction-diffusion dynamics.

Reaction-diffusion systems are a classic instance of pattern formation in physics and

biology. Turing was the first to mathematically formalize the idea of instabilities in

reaction-diffusion systems in his groundbreaking 1952 paper [20]. What has now become

known as Turing stability analysis refers to treating the reaction and diffusion of different

chemical species as a partial differential equation (PDE) and performing linear stability

5



Background Chapter 2

analysis on the homogeneous steady state. This analysis has shown that it is possible

to create a variety of patterns, such as spots and stripes, by considering the interaction

of two diffusing and reacting “morphogens”, or chemical species. Since Turing’s seminal

work, much effort has been put towards trying to understand the pattern forming ability

of reaction-diffusion systems and which, if any, biological systems utilize these types of

mechanisms for development.

One extension to the work of Turing came from Gierer and Meinhardt in 1972 [21].

This work showed that simple molecular mechanisms could lead to pattern formation

in reaction-diffusion systems. In particular, it was shown that short range activation

and long range inhibition are sufficient for stable pattern formation. The long range

inhibition can also be replaced by a substrate depletion mechanism. In the case of

substrate depletion, a particular chemical species that is critical for activation can become

depleted throughout the domain, leading to the possibility of pattern formation.

Throughout this dissertation, we will see that simple mechanisms for pattern forma-

tion such as those discussed here will be relevant to more complex models of polarization

in yeast. Another mechanism that has not been studied extensively in the literature, but

is nonetheless relevant to our work later on in this dissertation, is that of the interac-

tion between the inherent stochasticity in biochemical reactions and pattern formation.

An intriguing result presented in [22] showed that pattern formation can extend well

beyond the parameter region predicted by Turing type analysis when stochastic effects

are considered for a specific model problem (the Brusselator model). These patterns

were referred to as stochastic Turing patterns. To come to this conclusion, the au-

thors used the van Kampen perturbative development for the probability distribution of

the fluctuations [23], which led to predictions for the power spectra of the fluctuations

and predicted spatial order in regions of parameter space for which there is no order in

the Turing paradigm. Another interesting result from this study was that the domains

6
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yielding stochastic Turing patterns were different for each of the species in the model,

which is something not seen in the mean-field theory. In fact, there were regions ob-

served with spatial order for one species and a homogeneous distribution for the other.

In another study [24] it was shown there can be noise-induced temporal dynamics in

Turing systems. Specifically, one spatiotemporal behavior that was observed in stochas-

tic reaction-diffusion systems, even when the deterministic analogue has a stable steady

state, was polarity switching. Essentially, this means that when a pattern has formed,

peaks can switch to troughs and the pattern remains as time progresses. This notion of

polarity switching, which is observed only in stochastic systems, was distinct from the

phenomena of oscillating patterns which can be predicted deterministically. The study

looked in detail at only Schnakenberg kinetics [25] in one dimension but predicted similar

results in other systems.

Another body of work has examined the robustness of patterns in a stochastic en-

vironment and suggested domain growth as a possible mechanism for the stability of

pattern formation [26]. Most of the studies mentioned here use a combination of analytic

results and stochastic simulation. Stochastic simulation of reaction-diffusion systems can

be done in many ways. The most typical is the mesoscopic approach of the Reaction

Diffusion Master Equation (RDME), which involves partitioning the space into discrete

voxels and treating diffusion as an event between voxels (this will be discussed in detail

in Section 2.2). Some of the issues that can arise when studying pattern formation using

compartment based methods such as the RDME are described in [27].

Lastly, there have been several interesting studies looking at pattern formation in real

biological systems. The system that has arguably been studied in the most quantitative

depth is that of the oscillation of Min proteins in E. coli [28]. One study in particu-

lar claimed that the full range of phenotypic behavior could not be captured unless a

stochastic model was used [9]. Another fascinating study experimentally showed that the

7
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Min proteins themselves formed surface waves in vitro, and quantitatively characterized

the reactions responsible [29]. In the next section, we will discuss the current state of

understanding with regard to our particular system of interest: polarization in yeast.

2.1.2 Standard models of polarization in yeast

The polarization of proteins during the mating of Saccharomyces cerevisiae is a well-

studied, yet not fully understood, example of pattern formation in biology. During the

mating process, haploid yeast cells respond to a gradient of mating pheromone via a

cascade of intracellular protein reactions, culminating in a localization of key proteins

on the membrane that facilitate actin cable formation and vesicle transport [30]. Many

quantitative models exist, at varying levels of mathematical complexity, for the different

levels of polarization in both budding and mating. Broadly, the majority of models have

been developed to study the dynamics of the main polarity regulator, the Rho GTPase

Cdc42 [15, 2, 16], the formation of actin cables and the polarisome [3, 31, 32], or the

interaction between the two [33, 31, 34]. Reviews of polarization models can be found

in [35, 36, 37, 38]. The literature for models of polarization in yeast is vast and often

contains conflicting results regarding the role of different mechanisms.

There are several existing models of the polarization of the main polarity regulator

Cdc42. A common type of model for the reaction-diffusion dynamics of Cdc42 involves

what is known as a guanosine nucleotide dissociation inhibitor (GDI) [15, 16]. These

relatively detailed mechanistic models of polarization are formalized as PDEs and rely

on a mechanism in which GDI is thought to preferentially lead to the detachment of the

inactive, GDP-bound form of Cdc42 from the membrane to the cytoplasm [15, 16] (see

Chapter 4 for more details). The difference in diffusion rates between the cytoplasm and

the membrane (diffusion in the cytoplasm is typically much faster), and thus between

8
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the active and inactive forms of Cdc42, is what leads to a Turing type mechanism for

polarization. Even within this class of models there are differences in the dynamics of

polarization and disagreement about which mechanisms are more biologically relevant.

For example, the model presented in [16] was developed to form one, and only one, broad

polarization cap that eventually narrows as time progresses. This is in contrast to the

model presented in [15] in which multiple polarization sites initially form and ultimately

compete to form one distinct polarization site. Another important consideration is the

experimental work presented in [39] which calls into question the necessity of the GDI

mechanism for polarization. Specifically, the authors in [39] suggest that a difference in

diffusion rates on the membrane may be sufficient to provide polarization, as opposed

to the GDI mechanism which relies on the transfer of species from the membrane to the

cytoplasm (although there haven’t been any serious modeling efforts to understand how

this might work from a mathematical perspective).

In addition to the more detailed, mechanistic models of Cdc42 polarization, there

are several simplified, phenomenological models that can provide very useful insight.

The most well known of the simple motif models is presented in [1]. This model has

only a membrane bound and cytoplasmic version of Cdc42 along with three reactions:

attachment and detachment from the membrane and recruitment of cytoplasmic species

by the membrane bound species (see Chapter 4 for more details). Interestingly, this

model has been shown to exhibit clustering behavior only when modeled stochastically, as

opposed to deterministically (at least for the parameters considered). Another simplified

model of polarization is the so called “wave-pinning” model of polarization presented in

[40]. Intriguingly, recent work has shown that the displacement of local equilibria by

lateral mass redistribution is in fact the key mechanism of pattern formation in mass-

conserved systems, and unites models that were previously thought distinct (such as the

Turing type and the wave-pinning mechanism for example) under one mechanism [41].

9
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While this work is certainly a step towards more fully understanding the mechanisms

underlying biological pattern formation in reaction-diffusion systems, there is still a lot

that is not well understood. Some very recent work has stated that stochastic dynamics

can expand the regions of parameter space that yields polarization, and can result in faster

polarization than deterministic models, for certain detailed models of Cd42 polarization

[42].

As mentioned above, in addition to models describing the dynamics of Cdc42, there is

a substantial literature dealing with the formation of actin cables and vesicle traffic. One

model, presented in [3], dealt with the dynamics of actin and two key proteins related to

actin cable formation (Spa2 and Bni1) as a reaction-diffusion system. This study showed

that stochastic dynamics can more robustly reproduce two fundamental characteristics of

polarization observed in wild-type cells: a highly polarized phenotype via a mechanism

that the authors referred to as spatial stochastic amplification, and the ability of the

polarisome to track a moving pheromone input. One key physical aspect of actin cable

formation that is often left out of current models is the extended nature of the cables.

The fact that actin cables are actually one dimensional structures embedded in three

dimensional space makes the resultant dynamics very difficult to simulate with standard

modeling approaches. While there are techniques for doing this in a rigorous fashion (see

[43]) it is not common. We will discuss some of these issues in more detail in Chapter 4.

The conclusions about the interaction of the two parallel pathways of reaction-diffusion

Cdc42 polarization and actin-mediated vesicle transport are also disputed. For exam-

ple, one major question is whether vesicle delivery provides positive [33] or negative [31]

regulation of polarization. Work presented in [32] provides evidence for a mechanism of

polarization dependent on the dynamics of endocytosis and exocytosis which leads to a

corralling of key polarization proteins throughout the cell cycle. A central difficulty in

understanding polarization is the role of each pathway in the establishment and main-
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tenance of the polarization site. It is likely that the diversity of opinion about the role

of actin cables arises because of the vastly different ways in which vesicle transport is

modeled mathematically. Throughout this dissertation we will consider various models of

polarization from the literature, as well as present some novel models of certain aspects

of polarization.

2.2 Stochastic Simulation of Biochemical Reactions

Recent advances in biology have shown that proteins and genes often interact prob-

abilistically. The resulting effects that arise from these stochastic dynamics differ sig-

nificantly from traditional deterministic formulations, and have biologically significant

ramifications. This has led to the development of discrete stochastic computational

models of the biochemical pathways found in living organisms. These include spatial

stochastic models, where the physical extent of the domain plays an important role. For

mesoscopic models, similar to popular solution frameworks for partial differential equa-

tions (PDEs), the computational domain is discretized with a computational mesh, but

unlike PDEs, the reaction-diffusion dynamics are modeled by a Markov process where

diffusion and reactions are discrete stochastic events. The dynamics of a spatially inho-

mogeneous stochastic system modeled by such a Markov process formalism are governed

by the Reaction-Diffusion Master Equation (RDME) [44].

The RDME extends the classical well-mixed Markov process model [45] to the spa-

tial case by introducing a discretization of the domain into K non-overlapping vox-

els. Molecules are point particles and the state of the system is the discrete number of

molecules of each of the species in each of the voxels on Cartesian grids or unstructured

triangular and tetrahedral meshes. The RDME is the forward Kolmogorov equation

governing the time evolution of the probability density of the system. For brevity of no-
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tation, we define p(x, t) = p(x, t|x0, t0) as the probability that the system can be found

in state x at time t, conditioned on the initial condition x0 at time t0. For a general

reaction-diffusion system, the RDME can be written as

∂p(x, t)

∂t
= Rp(x, t) +Dp(x, t)

Rp(x, t) =
K∑
i=1

M∑
r=1

air(x− νir)p(x− νir, t)

−air(x)p(x, t)

Dp(x, t) =
N∑
s=1

K∑
i=1

K∑
j=1

dsij(x− µsij)p(x− µsij, t)

−dsij(x)p(x, t)

where xi· denotes the i-th row and x·j denotes the j-th column of the K×S state matrix

x, and S is the number of chemical species. The functions air(xi) define the propen-

sity functions of the M chemical reactions, and νir are stoichiometry vectors associated

with the reactions. The propensity functions are defined such that air(x)∆t gives the

probability that reaction r occurs in a small time interval of length ∆t. The stoichiom-

etry vector νir defines the rules for how the state changes when reaction r is executed.

dijk(xi) are propensities for the diffusion jump events, and µijk are stoichiometry vectors

for diffusion events. µijk has only two non-zero entries, corresponding to the removal

of one molecule of species Xk in voxel i and the addition of a molecule in voxel j. The

propensity functions for the diffusion jumps, dijk, are selected to provide a consistent and

local discretization of the diffusion equation, or equivalently the Fokker-Planck equation

for Brownian motion. It is important to note, as will be discussed in depth in Chapter 3,

that this formalism is defined for a physical domain that is static in time. We will relax

this assumption with our method to accommodate time-dependent domains.

In most cases, the RDME is too high-dimensional to solve directly. Thus, algorithms
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have been developed that generate exact realizations of the Markov process described by

the RDME, in a Monte Carlo fashion. One particularly efficient algorithm that we focus

on for our implementation is the Next Subvolume Method (NSM) [11]. In this algorithm,

the time to the next event in each voxel (either a chemical reaction or diffusion event)

calculated by the Direct Method formulation of the SSA [7]. To identify in which voxel

the event occurs, the algorithm uses the Next Reaction Method formulation of the SSA

[46]. If it was a chemical reaction event that occurred, then only the voxel in which the

event occurred needs to be updated, while if a diffusion event occurs, both the voxel where

the molecule started and the voxel where the molecule ended up need to be updated.

The key to the efficiency of the NSM is the use of an event priority queue which gives a

scaling of O(log2(K)) where K is the number of voxels in the mesh [11].

The use of unstructured meshes allows for complicated geometries in 3D to be more

easily accommodated, such as the curved surfaces of cell membranes. For the theoretical

details of how to obtain mesoscopic diffusion constants on unstructured meshes, see [47].

Using the finite element package DOLFIN [48] we obtain the diffusion matrix for the

system, from which we get the jump coefficients for individual voxels.The flexibility of

simulating on unstructured meshes allows our method to handle complex time-dependent

domains in 3D.

Despite the large computational cost, mesoscopic simulation with the RDME, when

applicable, is typically orders of magnitude faster than alternatives such as reactive Brow-

nian dynamics. Individual realizations can be feasibly sampled for fairly complex mod-

els in complicated geometries on commodity computational resources such as laptops

and workstations. However, since the models are stochastic, single realizations are not

sufficient. Rather, large ensembles of independent samples of the process need to be

generated to form a basis for statistical analysis. Furthermore, key parameters of the

biological process may be known only to an order of magnitude or two, thus necessitat-
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ing an exploration of parameter space and/or parameter estimation. The need for an

infrastructure to manage the computation and data has motivated the development of

specialized software platforms for efficient stochastic simulation.

The ability to easily, efficiently and reproducibly simulate spatial stochastic models

with appropriate software is crucial. To address this issue, we have developed a software

framework, PyURDME, meant for the design, implementation and simulation of spatial

stochastic models in Python. We have also developed MOLNs, a cloud computing appli-

ance that allows for spatial stochastic simulation on different cloud and high-performance

computing architectures. This work was done in close collaboration with Brian Drawert

and Andreas Hellander and was originally published in [13]. All of the spatial stochastic

simulations presented in the remainder of this dissertation were performed using PyUR-

DME and MOLNs.

2.3 Role of the Cell Wall in Morphogenesis

Up to this point we have discussed the importance of understanding how yeast cells

can localize key proteins during the mating process. This is an interesting problem from

both the mathematical and biological perspective. We have mentioned several exist-

ing mathematical models of polarization and methods for simulating reaction-diffusion

dynamics when taking into account the inherent stochasticity present in biochemical re-

actions. While the physical mechanisms responsible for polarization are an important

piece of morphogenesis during yeast mating, they are certainly not the whole story. In

particular, yeast cells, along with plant and bacterial cells, have a rigid cell wall that

defines their shape. This is in contrast to animal cells in which the cytoskeleton is the

main structural component of the cell. An understanding of how polarization and the

mechanics of the cell wall interact to yield stable projection growth is our main goal in
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this dissertation. In this section we will give a brief overview of the cell wall itself and

how it relates to morphogenesis.

The yeast cell wall is a polymer network constructed mostly of β 1,3-glucan chains

to which β 1,6-glucan, chitin and a number of mannoproteins are attached [49, 50, 51].

Maintaining the structural integrity of the cell wall throughout the cell cycle is critical.

The cell wall has four main functions among others: maintain stable internal osmotic

conditions, protect against physical stress, maintain cell shape and act as a scaffold for

proteins [49]. These factors allow walled cells to maintain a large, isotropic internal

turgor pressure. In budding yeast, the Cell Wall Integrity (CWI) pathway is known

to help the cell prevent loss of cell wall mechanical integrity [51]. Five transmembrane

proteins, namely Wsc1, Wsc2, Wsc3, Mid2, and Mtl1, are thought to act as stress sensors

and relay information about the mechanical state of the cell wall to multiple intracellular

processes via the activation of Rho1 GTPases [52, 53]. Growth of a cell is then a delicate

balance between expansion and cell wall assembly. If the cell wall expands too much

without proper assembly of new material, the cell will lose structural integrity and lyse.

In the case of mating projection growth we are interested particularly in highly localized

changes of cell shape. There are several theoretical descriptions in the literature that

have attempted to model different parts of these processes in walled cells.

Many studies have focused either on cell wall assembly [54, 55] or cell wall mechan-

ics [56, 57] separately. More recent work has dealt with both cell wall assembly and

mechanics but assumed these two processes to be independent [58, 59, 60, 61]. In work

presented in [18] (conceived of by and done in collaboration with Otger Campàs, Samhita

P. Banavar, Tau-Mu Yi and Carlos Lopez), we showed by directly solving the dynamics

of cell wall assembly and expansion that treating these two processes as independent

always leads to unstable cell wall expansion and lysis. This work then went on to show

that a mechanical feedback coordinating cell wall assembly and expansion is essential
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to sustain mating projection growth in yeast. The model presented in [18] will be our

basis for combining polarization and mechanics to simulate mating projection growth in

Chapter 5 of this dissertation.

In [18] the cell wall is treated as a thin viscous shell building on previous work in

tip-growing cells [61] and the expansion of thin viscous shells [62]. The expansion of the

cell wall is driven by the high internal turgor pressure of the cell. Once the yeast cell

has become polarized and established actin cables, vesicles are delivered to the cite of

polarization that contain, among other proteins, cell wall degrading enzymes (glucanases)

[63]. Thus the cell wall of the growing mating projection is assumed to behave as an

inhomogeneous viscous fluid with a spatially varying viscosity which is minimal at the

apex and increasing away from it. To sustain this localized, pressure-driven expansion

the cell wall requires constant assembly of new cell wall in the expanding region. Cell

wall assembly occurs through synthesis of the primary component of the wall, β 1,3-

glucan [49], by transmembrane β 1,3-glucan synthases Fks1/2, which localize at the

apical, growing region of the mating projection [64, 65]. While only inactive Fks1/2

molecules, unable to synthesize glucans, are incorporated into the plasma membrane

through exocytosis, Fks1/2 can be activated by Rho1 once at the plasma membrane [66].

The activated form of Fks1/2 synthases extrudes β 1,3-glucan chains into the extracellular

space, thereby assembling new cell wall onto the preexisting wall [67]. The dynamics of

active and inactive Fks1/2 are then characterized by rates on and off the membrane

dictated by exo- and endocytosis. The activation of inactive Fks1/2 is mediated by the

GTPase Rho1 through the CWI pathway, providing a direct coupling between the local

mechanical state of the wall and the local cell wall synthesis machinery via the Fks1/2

activation rate [68, 53, 69]. This coupling between the activation of Fks1/2 (responsible

for the assembly of new cell wall) and the mechanical state of the cell (relayed by stress

sensors such as Mid2 and Wsc1 via Rho1) provides a direct mechanical feedback of cell
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wall mechanics on cell wall assembly and leads to stable projection growth.

The theoretical model described above from [18] was then used to generate predictions

about the characteristics of mating projection growth. Specifically, the model is formal-

ized as a partial differential equation (PDE) in the axisymmetric, curved geometry of the

cell. To numerically simulate this model we discretized the spatial domain and used the

method of lines (MOL) technique to generate a system of differential algebraic equations

(DAE) describing the expansion and assembly of the wall. This system of DAEs was

numerically approximated with custom Python code that made use of the SUNDIALS

library of nonlinear and differential solvers [70]. In the absence of mechanical feedback,

numerical integration revealed that mating projection growth was unstable for all pa-

rameter values. Unstable growth was either an unbounded thinning or thickening of the

cell wall, depending on the parameters. In the presence of mechanical feedback, numer-

ical integration revealed stable projection growth for a wide range of model parameter

values. A key prediction of the model was that the shape of the mating projection was

largely insensitive to variations in the mechanical feedback strength, while the radius of

the mating projection increased linearly with the size of the exocytosis region. These

predictions were then explored experimentally through various genetic mutants. For ex-

ample, the prediction that mating projection shape was independent of feedback strength

and dependent on the size of the exocytosis region was confirmed by various deletions of

the key stress sensors in the cell (Mid2 and Wsc1) which lowered the feedback strength

and deletion of Spa2 which increases the size of the exocytosis region.

The work described in this section was key in showing that coordination between cell

wall expansion and assembly via a direct mechanical feedback on the activation of Fks1/2

is critical for stable mating projection growth. In Chapter 5 of this dissertation we will

combine models of polarization described in Section 2.1 and the mechanics described

here to explore further the interactions of biochemical signaling and mechanics during
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projection growth. Specifically, we will propose a new mechanism whereby a direct

mechanical feedback on the dynamics of polarization can stabilize the polarization cap

during projection growth.
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Chapter 3

Spatial Stochastic Simulation on

Moving Domains

As mentioned above, the main goal of this dissertation is to understand how the interplay

between biochemical signaling and mechanics leads to morphogenesis in yeast mating pro-

jection growth. We have also noted that spatial stochastic dynamics are often critical to

faithfully capturing the biologically relevant features of polarization. In this chapter, we

present a novel algorithm for simulating spatial stochastic dynamics on moving domains.

This work was done in close collaboration with Brian Drawert and Stefan Hellander and

was originally published in [14].

3.1 Introduction

Stochastic simulation of biochemical reactions has become an essential part of systems

biology. Many examples exist where mean-field or deterministic analysis is insufficient to

capture the relevant dynamics of real biological systems [4, 5, 6]. In particular, systems

in which the copy number of any relevant species is small will often be more accurately
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modeled with stochastic simulation. There exist several methods to model biochemical

reactions stochastically, the most popular of which is the Stochastic Simulation Algo-

rithm (SSA), also known as the Gillespie algorithm [8]. This algorithm assumes that the

system is spatially homogeneous, or well-mixed, which is not the case in many interesting

biological problems.

Polarization in yeast [30] and neutrophils [71], Min oscillations during cell division of

E. coli [9, 72], and development [21] are a few examples where the well-mixed assump-

tion does not apply. There are several different methods for modeling spatial stochastic

biochemical reactions, which can be broadly grouped into two categories. First are the

particle-tracking, or free-space based on the Brownian dynamics formalism [73], methods

that resolve the system on a microscopic scale [74, 75, 76]. These methods are more

accurate but can be quite difficult to simulate in an efficient manner. The other group

of methods works on the mesoscopic scale and is based on the reaction-diffusion master

equation (RDME) formalism [10, 11, 9, 12]. These methods discretize the domain into

spatially homogeneous subvolumes (or voxels). Reactions within a voxel are modeled

with the SSA algorithm, while diffusion between voxels is modeled as events occurring

at intensities chosen to be consistent with the diffusion equation. The RDME is signifi-

cantly faster to simulate than microscopic methods, with some sacrifice in accuracy. A

more detailed background on these methods was given in Section 2.2. An assumption

that underlies all of these methods is that the physical domain is static in time. This is

often not the case in biology.

Shmoo growth during the mating of yeast [77], tip growth in fungal hyphae [78],

chemotaxis in neutrophils [71], cell migration [79] and cell division [9, 72] are some ex-

amples where the physical domain of the cell is changing in time. There has also been

recent work dealing with the critical role that geometry can play in fundamental bi-

ological processes, such as polarization [80]. In this chapter, we present a method to
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efficiently model stochastic reaction-diffusion systems in complicated, three dimensional

(3D), time-dependent geometries using the RDME framework. Previous work to model

stochastic reaction-diffusion systems in time-dependent domains has focused on particle-

based approaches [81]. While these methods are viable in some settings, it is generally

accepted that particle-tracking methods become prohibitively expensive as the system

size grows large. An efficient implementation of the RDME on time-dependent domains

can effectively handle complex geometries as well as large reaction networks, while still

being practical in terms of simulation time. Previous work has dealt with particle mi-

gration on 1D growing domains using the RDME formalism, where results have been

compared to those of partial differential equation (PDE) models [82, 83, 84]. Addition-

ally, we note that the particle-based software Smoldyn [74] has capabilities to change the

size of domain during simulation.

A key problem that our method addresses arises in systems where the biochemical

reaction network is fully coupled to cell mechanics. We seek to model the growth of

the mating projection in yeast. In this system, enzymes modify the material properties

of the cell wall, softening it, and as a result the force of the internal turgor pressure

deforms the cell. At the same time, cell wall construction proteins strengthen the cell

wall and slow the movement. A diagram of this process is illustrated in Figure 3.1.

Our method does not propose to solve arbitrary mechanics of the model system under

consideration. Instead, we integrate an external function or software that models and

solves the equations governing the mechanics of the system, which will take as input

the state of our biochemical system, and provide as output the instantaneous velocity of

the boundary of the domain. It is important to note however, that this is simply one

possible problem that can be handled by our proposed algorithm. In general, the function

that moves the boundary does not need to be defined by mechanics (e.g. a constantly

expanding sphere). The only requirement is that there is a velocity field provided to
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move the boundary, which can be empirically or theoretically derived.

P P

Cell wall modifying enzyme

Figure 3.1: Illustration of how the yeast mating projection grows. Cell wall modifying
enzymes (yellow) are localized to the polarized region of the cell membrane. These
enzymes soften the cell wall. The internal turgor pressure pushes on the cell wall,
deforming it and creating the mating projection.

It is important to note that in our method it is necessary to have a separation of

timescales between the diffusion of the biochemical species and the movement of the

boundary. It is critical that diffusion is faster than the boundary velocity to accurately

simulate the system. In Sections 3.3.1 and 3.3.2 we characterize the error our method

incurs and how it relates to the difference in timescales of diffusion and the velocity of

the boundary. Essentially, it is possible to find a time step small enough to satisfy a user

specified error tolerance if there is in fact a separation of timescales.

In this chapter we present a method to efficiently simulate stochastic reaction-diffusion

models coupled to time-dependent domains using the RDME formalism. An outline

for the rest of this chapter is as follows: in Section 3.2, we present our method and

discuss implementation and theoretical considerations. Next, in Section 3.3, we present

three examples that demonstrate the convergence properties and accuracy of the method
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along with its applicability to biologically relevant problems. Specifically, in Section

3.3.1, we compare the results of our method to a microscale implementation of a single

species diffusing within an expanding 1D line that can react with the boundary. This

example serves to demonstrate the accuracy and convergence (in the spatial distribution

of molecules) of our method compared with a microscale implementation over a range

of expansion velocities and time steps. To accurately compare these different scales of

simulation, we also derived the relationship between mesoscale and microscale reaction

rates (see [14] for details). Next, in Section 3.3.2, we present a more biologically relevant,

yet still theoretically tractable, model of polarization in yeast, introduced in [35]. This

model contains a density dependent switch for polarization which we explore through an

expanding and contracting sphere and compare to theoretical steady state results from

[35]. Lastly, in Section 3.3.3 we present a model in which the state of the biochemical

system dictates the movement of the boundary. In particular, we present a new model

for the polarization of Cdc42 in mating yeast and qualitatively compare to experimental

data. Finally, we end the chapter in Section 3.4 with a discussion of the method and our

results.

3.2 Computational Method for Spatial Stochastic Sim-

ulation with a Moving Boundary

In this section we develop a computational method for simulation of spatial stochastic

systems defined by the RDME formalism on domains with moving boundaries. Our

method utilizes the timescale separation between the diffusion of the biochemical species

in the RDME system and the movement of the boundary of the domain. The method

is formulated for systems where diffusion is faster than boundary movement. In this
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context we use operator splitting to decouple the reaction-diffusion operator from the

domain movement operator, solving each operator sequentially over the same time step.

In the formulation of the RDME, the spatial domain is discretized into volume units

known as voxels. For example, in our PyURDME software package [13] the 3D domain

is discretized using tetrahedral elements. Since the RDME is formulated to be solved on

a static domain, we cannot directly adapt it to a moving domain. Instead, we employ

an operator splitting style simulation, by first solving the RDME for a small time τ (the

splitting time step) on a static mesh. Then we use the state of the biochemistry to find

the velocity of the boundary of the domain through a function specified by the user, and

evolve the the mesh over the same time step τ . Finally, the state of the biochemical

system is transformed to the newly evolved mesh. A sequence of these steps are taken

until the simulation reaches the final time.

The algorithm for moving the mesh has four components. Figure 3.2 illustrates these

components and the process flow between them. The first component is the simulation

of the biochemical system for a time τ on a specific mesh (denoted as Ωa) starting from

an initial state xa(t) to a final state xa(t+ τ):

xa(t+ τ) = RDME(xa(t),Ωa, τ).

The second component is the computation of the velocity field v at the boundary of the

domain, as a function the state of the biochemical system. In our motivating example of

the growth of the yeast mating projection, the internal turgor pressure pushes uniformly

on the cell wall, but the wall expands preferentially where it has been softened by the

enzymes. Thus, the instantaneous velocity field of the growing mating projection is a

function of the spatial distribution of the cell wall modifying enzymes within cell. See

Section 3.3.3 for more details, and Figure 3.7 for an illustration.
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Transfer
State to

New Mesh

Figure 3.2: Diagram illustrating the process flow of the moving mesh algorithm.
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This is the component that couples the biochemical simulation with the moving do-

main. This function is part of the model being simulated, and is thus provided by the

user as input to the method. The function can be of only the final state of the biochemical

system, xa(t+ τ), or of some aggregate of all previous states, xa(0 : t+ τ):

v =
dΩ

dt

∣∣∣∣
t+τ

= f∆Ω(xa(0 : t+ τ)).

The third component is the evolution of the mesh over the simulation time step τ .

Using the domain boundary velocity calculated previously, a new mesh is created by

evolving the mesh linearly over the time step. This is done by moving each mesh point

according to the velocity field at that point, via the forward Euler method. In our

software implementation, this is done via the FEniCS/Dolfin package [48].

Ωb = Ωa + τ v

The final component of the algorithm is the method for transferring the state of the

biochemical system from the current mesh, Ωa to the newly created mesh, Ωb. On each

step of the moving mesh simulation the x, y, z position of each particle is sampled on Ωa.

An assumption of the RDME is that particles are uniformly distributed within each voxel.

Consequently, the position of the particle is sampled uniformly from its containing voxel’s

volume. Since the boundaries of a voxel are often difficult to compute on an unstructured

mesh, we make an approximation and sample the position from a sphere with a volume

equivalent to that of the containing voxel. It is important to note that this assumption

induces a spatial error that is proportional to the mesh resolution and the quality of the

mesh. That is, the more elongated the tetrahedrons are, the more error is induced in the

sampled particle’s spatial position. Implementations of this algorithm must ensure that
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the mesh is of sufficient quality throughout the simulation. Next, the particle is assigned

to the closest voxel new mesh, Ωb (minimizing Euclidian distance) to the sampled x, y, z

position. Often in systems biology models, biochemical species are required to remain in

specific subdomains of the system. For example, membrane bound proteins must remain

on the membrane, which is modeled as the voxels on the boundary of the mesh. If the

species of a particle is restricted to a subdomain in this way, then it is moved to the

closest voxel that is within that subdomain. If the sampled position of a particle falls

outside the domain Ωb, then it is placed at the closest voxel (that is of an appropriate

subdomain) within Ωb. See Figure 3.3 for an illustration. This procedure is repeated for

each particle within the system, thus the biochemical state of the system is transferred

from Ωa to Ωb, which we denote as

xb(t) = ParticleRedistribution(xa(t),Ωa,Ωb).

The iterative algorithm is described in Algorithm 1.

Algorithm 1 Spatial Stochastic Simulation for a Domain with a Moving Boundary

Require: Ω0, f∆Ω, τsplit, x0(0), tfinal, and the Biochemical Reaction Network

Ensure: [Ω0 · · ·Ωn], [x0 · · ·xn]

1: i = 0, t = 0, τ = τsplit

2: while t < tfinal do

3: xi(t : t+ τ) = RDME(xi(t),Ωi, τ)

4: v = f∆Ω(xi(t : t+ τ))

5: Ωi+1 = v τ + Ωi

6: xi+1(t+ τ) = ParticleRedistribution(xi(t+ τ),Ωi,Ωi+1)

7: i = i+ 1, t = t+ τ

8: end while
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Sampled volume

Old Mesh Ωa New Mesh Ωb 

Figure 3.3: Diagram illustrating the particle redistribution process. On each step of
the moving mesh simulation the state of the biochemical system is transferred from
the old mesh (left) to the new mesh (right). The x, y, z position of each particle is
sampled on the old mesh (uniformly from within the volume of the containing voxel),
the particle is assigned to the voxel in the new mesh that is closest to that sampled
position . If the species of a particle is restricted to a subdomain (e.g. membrane-bound
proteins), then it is moved to the closest voxel in that subdomain.
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3.2.1 Rejection-based step size selection

We extend the method presented in Algorithm 1 to include an adaptive method for

error control. We will see in Example 2 that the error our method incurs will depend

on the velocity of the domain and the operator splitting time step. To implement our

adaptive error control time stepping scheme, we define a new input dmax as the maximum

distance any given point on the boundary is allowed to move in any single time step. In

each step, if the magnitude of any component of the velocity multiplied by the time step

τ is greater than dmax, then that step is rejected, the time step is set to half its previous

value, and the state is recomputed over the new time step. The accepted time step will

then be used for the next step of the algorithm. Finally, if the step is accepted on the

first pass (no rejection) and the time step had been previously reduced (τ is less than

τsplit), then the time step for the subsequent step, τnext, is increased to double the current

time step size. See Algorithm 2 for details. Note that, as the simulation of the RDME by

the NSM algorithm is a continuous operator, we are able to sample at any specified time

within the interval [t, t + τ ]. This allows us to avoid recomputing the biochemical state

when a step is rejected, leading to a more efficient implementation. In our simulations,

for each invocation of the NSM operator we sample the state of the RDME at [t + τ
8
,

t+ τ
4
, t+ τ

2
, t+τ ]. This allow us to halve the timestep three times without recomputation

of the biochemical system. It should be noted that to avoid biased simulations, the state

of the random number generator must be preserved when the step is rejected and the

step restarted with the same state.
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Algorithm 2 Adaptive Spatial Stochastic Simulation for a Moving Boundary Domain

Require: Ω0, f∆Ω, dmax, τsplit, x0(0), tfinal, and the Biochemical Reaction Network

Ensure: [Ω0 · · ·Ωn], [x0 · · ·xn]

1: i = 0, t = 0, τ = τsplit

2: while t < tfinal do

3: xi(t : t+ τ) = RDME(xi(t),Ωi, τ)

4: v = f∆Ω(xi(t : t+ τ))

5: d = ||v||∞τ

6: if d > dmax then

7: repeat

8: τ = τ/2

9: v = f∆Ω(xi(t : t+ τ))

10: d = ||v||∞τ

11: τnext = τ

12: until d ≤ dmax

13: else if τ < τsplit then

14: τnext = 2τ

15: end if

16: Ωi+1 = v τ + Ωi

17: xi+1(t+ τ) = ParticleRedistribution(xi(t+ τ),Ωi,Ωi+1)

18: i = i+ 1, t = t+ τ , τ = τnext

19: end while

3.3 Results

Here we present three examples to verify and to demonstrate the utility of our method.

30



Spatial Stochastic Simulation on Moving Domains Chapter 3

3.3.1 Example 1

In our first example, we demonstrate numerically that our method converges in dis-

tribution as the time step decreases. In a general problem the error depends on multiple

factors, such as the time step, the mesh resolution, and the quality of the mesh. To

isolate the error induced by the time step selection, we consider a 1D domain Ω of width

R−L, where R is the right endpoint and L the left endpoint. A single species S diffuses

(with D = 1), associates with and dissociates from the left boundary. We let Ω expand

to the left; thus L is a function of time t. Specifically we let

L(t) = −vt,

where v is the constant speed of the expansion.

The domain is discretized intoNvox voxels, each of width h. We denote the microscopic

association rate by kr and the microscopic dissociation rate by kd. The mesoscopic rates,

kmeso
a and kmeso

d , are then given by kmeso
a = ka/h and kmeso

d = kd, as shown in [14]. We set

L = 0 and R = 1 initially.

To show that our method is accurate, we simulate the system until the final time T =

1, and compare the spatial distribution of particles to the spatial distribution obtained

with a more detailed Brownian dynamics method [73]. The error will be a function

of the speed of expansion v, the time step ∆tsplit, the number of voxels Nvox, and the

reaction rates kr and kd. We expect the error to be larger for a large v, as the boundary

moves more during each time step. For small enough Nvox the spatial resolution will be

insufficient, and the error will consequently be large. To demonstrate these effects we

ran simulations with ∆tsplit varying from 0.01 to 0.2 with Nvox ∈ {5, 20, 50}.

We simulated 106 molecules and computed the Kolmogorov-Smirnov distance between

the spatial distributions of unbound particles at the final time point T (with the domain
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expanding at constant velocity, convergence at the final time point implies convergence

throughout). In Figure 3.4 we show that, as expected, the error decreases with decreasing

time step ∆tsplit.

3.3.2 Example 2: Density Dependent Switch for Polarization

in an Expanding and Contracting Sphere

In our second example, we verify the accuracy of our method by comparing against

the analytical solution of a biochemical model found in the literature. To demonstrate

the applicability of our method to biologically relevant problems, we have implemented

a simple model of polarization in yeast on a moving domain. In particular, we focus

on a model of polarization presented in [35] that relies on a minimal positive feedback

circuit. This model is particularly interesting, as it has been shown to polarize only

when modeled stochastically, opposed to deterministically. The yeast cell is modeled as

a sphere with a membrane on the surface of the sphere. The model has three reactions

between two species: cytosolic Cdc42 spontaneously attaches to the membrane with rate

kon (Eq. 3.1), membrane-bound Cdc42 likewise spontaneously detaches with rate koff

(Eq. 3.2), and finally membrane-bound Cdc42 recruits cytosolic Cdc42 to the membrane

at rate kfb, to close the positive feedback loop (Eq. 3.3).

Cdc42c
kon−−→ Cdc42m (3.1)

Cdc42m
koff−−→ Cdc42c (3.2)

Cdc42c + Cdc42m
kfb−−→ 2Cdc42m (3.3)

The cytosolic and membrane-bound species can diffuse at rates Dcyt and Dmem respec-

tively (the diffusion of the membrane-bound Cdc42 being restricted to the membrane).
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Figure 3.4: Error in distribution as a function of the size of the time step for a
1D moving domain with an absorbing/desorbing boundary for three different reactive
rates (columns), and three different spatial discretizations (rows). Our mesoscopic
method was compared a Brownian dynamics microscopic simulation of 106 molecules.
We define the error as the Kolmogorov-Smirnov distance between the spatial distri-
butions of unbound particles at the end time (1s). As we can see by comparing the
middle three panels to the bottom three panels, the error is similar with Nvox = 20
and Nvox = 50, meaning that the problem is spatially well-resolved already with
Nvox = 20, while for Nvox = 5 we can see that the system is not fully resolved for the
case of ka = 50 and kd = 1.0. As expected, the larger the speed v of the expansion,
the larger the error, but as the splitting time step ∆tsplit decreases, so does the error.
For v = 0.05, the domain is expanding so slowly that the stochastic error dominates,
and no difference is seen as ∆tsplit varies between 0.01 and 0.2.

33



Spatial Stochastic Simulation on Moving Domains Chapter 3

Δ tsplit= 5 Δ tsplit= 10 Δ tsplit= 20 Δ tsplit= 50 Δ tsplit= 100 Δ tsplit= 5 Δ tsplit= 10 Δ tsplit= 20 Δ tsplit= 50 Δ tsplit= 100

v = 25

v=
5

v=
10

v=
20

v=
50

v=
2.

5
v=

5
v=

10
v=

25

v = 10
v = 5
v = 2.5v = 5

v = 10
v = 20
v = 50

Figure 3.5: Comparison of our method to theoretical results from the literature. As
expected, the error for our method decreases with the velocity of the boundary and
the time step. A: Relative error in 2-norm for a variety of expansion velocities (v)
and operator-split timesteps for an expanding sphere. B: Relative error in 2-norm for
a variety of contraction velocities (v) and operator-split timesteps for a contracting
sphere. C: 95% confidence intervals for three trajectories at a variety of expansion
velocities (v) and operator-split timesteps (∆tsplit) for an expanding sphere, along with
the theoretical value (dashed red). D: 95% confidence intervals for three trajectories
at a variety of contraction velocities (v) and operator-split timesteps (∆tsplit) for a
contracting sphere, along with the theoretical value (dashed red).
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Figure 3.6: A: Time series of heatmaps showing the number of membrane-bound
molecules on the surface of an expanding sphere (note that the radii are not to scale
and by 740 seconds there are no molecules on the membrane). B: An example of
a single trajectory showing the number of cytoplasmic molecules versus time for an
expanding sphere along with the theoretical value as calculated from [35]. Note that
for each parameter value, multiple realizations were run and averaged before being
compared to the theoretical value.

This model was shown in [35] to have a density dependent switch. That is, there is

a critical range for polarization of molecules on the membrane. This range is from a

lower critical density necessary to facilitate polarization to an upper density above which

molecules become essentially homogeneous on the membrane (i.e. not polarized). From

[35] it is also possible to calculate theoretically the steady state ratio of molecules in the

cytoplasm for any given density, which we will use as a comparison for our simulations.

To test our moving boundary algorithm, we implemented the model described above

in an expanding and contracting sphere for a fixed number of total molecules. For

the expanding sphere case, the initial radius was set below the theoretical switch value

calculated from [35]. Specifically, the critical radius can be calculated as follows

4

3
πr3

crit = N
kfb
koff

(3.4)
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where N is the total number of molecules (cytosolic and membrane-bound) and rcrit is

the critical radius. Here we set N = 1000 and
kfb
koff

= 0.9, thus from Eq. 3.4 we have

rcrit = 6.425µm. From the initial radius (below the critical radius), the radius of the

sphere expands at a constant velocity to a final value which is greater than the critical

radius. The error incurred by our operator split method is dependent on both the speed

at which the sphere expands and the operator split time step that is chosen. Again, the

error here is defined as the relative error between the number of cytosolic molecules in

the simulation and the theoretical steady state value calculated from [35]. We calculated

this error over a range of expansion velocities and operator split time steps to investigate

the convergence behavior for our method. A similar test was performed for a contracting

sphere which starts at a radius just below the critical value and decreases at a constant

velocity to some final radius. The results of these convergence studies are shown in

Fig. 3.5. As expected, the larger the velocity of radial expansion, the more error the

method will generate for both the expanding (Fig. 3.5A) and contracting (Fig. 3.5B)

sphere cases. The same trend can be seen for large time steps (Fig. 3.5A,B). Note

that for each parameter value multiple realizations were run and averaged before being

compared to the theoretical value. The 95% confidence interval for three realizations of

the number of cytosolic molecules at each parameter value is shown for the expanding

sphere in Fig. 3.5C and for the contracting sphere in Fig. 3.5D. An example time series

of heatmaps showing the number of membrane bound molecules on the surface of an

expanding sphere can be seen in Fig. 3.6A, with red being a higher number of molecules

and blue a lower value. Also, a sample trajectory of the expanding sphere simulation

can be seen in comparison to the theoretical steady state solution in Fig. 3.6B (here

with parameter values of dr
dt

= 10nm/s and tsplit = 20s). Again, the purpose of this

example problem is to characterize the error incurred by our method as compared to

theoretical results in the literature and specifically, to elucidate how this error depends
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on the velocity of the boundary and the time step. This example also demonstrates the

utility of our method for studying problems of biological relevance.

3.3.3 Example 3: Formation of the Yeast Mating Projection

Velocity)Field)Example)(1))Find)normal)vector)at)point)
of)maximum)polariza7on)

(2))Calculate)amplitude)of)
velocity)based)on)Gaussian)
decay)of)distance)from)point)
of)max)polariza7on)

(4))Transfer)
biochemical)state)
by)redistribu7on)
of))proteins)

(3))Deform)mesh:)Direc7on)
of)normal,)amplitude)based)
on)distance)from)center)

Figure 3.7: Diagram describing the process where polarization of the yeast model
(spatial profile of protein concentration) is used to calculate the deformation of the
domain. At each time step of the algorithm the following process is repeated. First
the biochemical system is simulated using the spatial stochastic solvers in PyURDME
for a length of ∆t. Next the point of maximum polarization is found and the normal
vector calculated at that point. Then, the velocity of the surface is calculated using the
normal vector as the direction, with the amplitude calculated from a Gaussian function
centered at the maximum polarization point (empirically parameterized). The mesh
is then deformed by the application of the velocity field. Finally, the biochemical state
of the system is transferred to the new mesh.

In our third example, we show the use of our method on a biologically relevant
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of our simulation results, projected onto a plane containing the origin and the point of
greatest polarization. Column E shows the 3D visualization of the simulated growing yeast
cell, where the color map shows the concentration of active Cdc42 on the membrane (red
corresponds to the highest concentration, and blue to the least). The frames (rows) in
column A-C are separated by 50 minute intervals. In this simulation, the state of the
biochemical system and the movement of the boundary are fully coupled.

4.3 Formation of the Yeast Mating Projection

Yeast Mating projection (Shmoo) is formed when the Polarisome organelle localizes to the
area of the yeast cell that is closes to a nearby mating partner. The yeast cell determines
this by sensing the gradient of mating pheromone in the environment. The Polarisome
coordinates the formation of the mating projection. We model this process by giving a
constant input of mating pheromone and model the formation of the polarisome using
the biochemical network from [?] and extend the model to 3D with a deforming domain
determined by the location of the polarisome.

Figure 2: Simulations of the growing yeast mating projection

5 Conclusions

References

5

A B C D E

t=150 min

t=100 min

t=50 min

t=0 min

Figure 8: Comparison between microscopy images of yeast cells during polarized growth
and simulations of the growing yeast mating projection. (A) Fluorescent microscopy time-
lapse images of yeast cells during exposure to mating pheromone (↵-factor). Cells are
tagged with Mid2-GFP (see Supplement for experimental details). (B) Manual cell shape
extraction overlaid on microscopy images for a single cell. (C) Enlarged cell shape without
microscopy image. (D) Scatter plot of the voxel centers of our simulation results projected
onto a plane containing the origin and the point of greatest polarization. (E) 3D visual-
ization of the simulated growing yeast cell, where the color map shows the concentration
of active Cdc42 on the membrane (red corresponds to the highest concentration, and blue
to the least).

17

Figure 3.8: Comparison between microscopy images of yeast cells during polar-
ized growth and simulations of the growing yeast mating projection. A: Fluorescent
microscopy time-lapse images of yeast cells during exposure to mating pheromone
(α-factor). Cells are tagged with Mid2-GFP (see Section 3.5 for experimental de-
tails). B: Manual cell shape extraction overlaid on microscopy images for a single
cell. C: Enlarged cell shape without microscopy image. D: Scatter plot of the voxel
centers of our simulation results projected onto a plane containing the origin and the
point of greatest polarization. E: 3D visualization of the simulated growing yeast cell,
where the color map shows the concentration of active Cdc42 on the membrane (red
corresponds to the highest concentration, and blue to the least).
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system that couples the biochemical reactions with the moving boundary. Our motivating

problem is the polarization of proteins during mating of Saccharomyces cerevisiae, and

the resulting growth of the mating projection.

Yeast cells sense mating pheromone in their extra-cellular environment, and determine

the direction of their mating partner by sensing the chemical gradient. The chemical

gradient of pheromone induces polarization of the yeast cell, localizing proteins and

actin cables to the region of the yeast cell that is closest to a nearby mating partner. The

mating projection starts to form when the polarisome organelle is formed at the site of

polarization. The polarisome acts to coordinate the formation of the mating projection

via the transport of cell wall cutting enzymes as well as cell wall material and synthase

proteins. As these processes work together, the yeast cell changes shape from a spheroid

to grow a projection.

To simulate this process we present a new spatial stochastic biochemical model of

yeast polarization, centered around the polarization of the protein Cdc42. This model

is a novel combination of reactions published in [16] and [85]. As these models were

originally presented deterministically, for use with this method we have converted the

reactions to a mechanistic and stochastic formulation. The key component from [16] is

what is known as a GDI reaction which preferentially moves the inactive form of Cdc42

from the membrane to the cytosol. Diffusion is much faster in the cytosol than on the

membrane and this difference in diffusion is what leads to a Turing-type mechanism for

pattern formation, as originally discussed in [15]. The essential components from [85] are

a negative feedback mechanism through the protein Cla4 and recruitment of Cdc24 to the

membrane by Gbg (the βγ subunit of the heterotrimeric G-protein which is activated in

response to pheremone during yeast mating). Both [16] and [85] originally modeled their

respective reactions using deterministic PDE models. Here we take certain key reactions

from both models and model them mechanistically using the RDME formalism.
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To present a simplified model of polarization, we omit the dynamics of the receptor-

ligand binding (presented elsewhere [86, 87]) and take as input to the model a time-

constant spatially varying concentration of the activated G-protein (beta-gamma sub-

unit). A detailed description of this model can be seen in Figure 4.1 and the S1 Model

in Section 4.5. The biochemistry determines the moving boundary by expanding the

sphere at the point of greatest polarization, in the direction of the normal at that loca-

tion. The other points on the boundary of the domain are moved in a parallel direction,

with the magnitude attenuated by a Gaussian of the distance to the point of maximum

polarization. This is illustrated in Figure 3.7.

Figure 3.8 shows a comparison between our yeast polarization simulation results

(columns D and E) and microscopy images of a polarizing yeast cell (columns A-C).

Column B shows the outline of the yeast cells overlaid on the microscopy images, and

column C shows just the outline of these cells. Column D shows a scatter plot of the

voxel centers of our simulation results, projected onto a plane containing the origin and

the point of greatest polarization. Column E shows the 3D visualization of the simulated

growing yeast cell, where the color map shows the concentration of active Cdc42 on the

membrane (red corresponds to the highest concentration, and blue to the least). The

frames (rows) in column A-C are separated by 50 minute intervals. In this simulation,

the state of the biochemical system and the movement of the boundary are fully coupled.

This figure shows a qualitative match between a real cell phenotype and our biochemical

model simulated via our method.

3.4 Conclusions

We have developed a method for simulating stochastic biochemical reactions on time-

dependent domains using the RDME formalism. This method involves the following
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steps: simulating the RDME on a fixed geometry for a given time step, using the state of

the biochemical system as input to a function that moves the boundary in a user-specified

manner, over that same time step, redistributing the molecules in the system to the

new geometry and then repeating until a specified end time. Our method simulates the

RDME on unstructured meshes, which enables it to easily handle the complex geometries

that often show up in biological applications. We have shown, through various example

problems, that the error our method will incur depends on a few key factors, including the

specified time step, the speed of the moving domain, the diffusion constants of the species

and the reaction rates of the system. We have also demonstrated the potential usefulness

of such a method by simulating the biologically relevant problem of shmoo formation

during the mating of yeast, a problem where spatial stochastic effects are important and

the geometry is changing in time as a result of the state of the biochemical system.

We have implemented this method in our spatial stochastic modeling and simulation

software package PyURDME [13]: the Python package for simulation of Unstructured

mesh Reaction-Diffusion Master Equation models. The reaction-diffusion biochemical

model system has been extended to allow the inclusion of a movement of the mesh,

as well as inspection of the resulting mesh quality and adaptive mesh refinement are

accomplished via integration of the open source finite element package FEniCS/Dolfin

[48]. The software package, along with instructive examples, are available from our code

repositories on Github.

This method is generally applicable to problems arising in systems biology where

spatial and stochastic effects are critical and the physical geometry is changing in time.

In particular, this method is applicable to the common case in systems biology where

the movement of the boundary of a cell is directly determined by the state of certain

biochemical species. The error will be more manageable for systems where there is some

separation of timescales between the movement of the boundary and the diffusion rate

41



Spatial Stochastic Simulation on Moving Domains Chapter 3

of the biochemical system. In the future, we hope to extend our analysis of biologically

relevant problems with coupled biochemistry and domain movement, such as in shmoo

formation in yeast mating. Other specific systems where this method could be useful

include: tip growth in fungal hyphae [78], chemotaxis in neutrophils [71], cell migration

[79] and cell division [9, 72]. Another future direction is to develop a method that more

closely couples the dynamics of the moving boundary and the biochemistry thus avoiding

the error involved in splitting the two, but this is a considerably more involved problem.

3.5 Experimental Details

Time-lapse imaging was performed on Mid2-GFP cells adhered to glass slides using

concanavalin A in standard yeast-peptone-dextrose (YPD) media with the stage heated

to 30◦C. Both fluorescent and bright-field images were taken at 10 minute intervals over

a three hour period using a Nikon TE-2000 inverted microscope with an ORCA-2 CCD

camera controlled by MetaMorph software. The yeast strain was constructed by fusing

GFP onto the C-terminal end of MID2 using genomic integration of a W303-1A strain

that is bar1∆ (RJD863).
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Chapter 4

The Effect of Cell Geometry on

Polarization in Budding Yeast

In the previous chapter, we presented a method for simulating spatial stochastic dynamics

on moving domains. Ultimately we will use this method for simulating both polarization

and mechanics to yield mating projection growth. One issue that has previously not

been considered in depth in the polarization literature is what the effect of non-spherical

geometries (such as those produced during projection growth) on the dynamics of po-

larization can be. In this chapter, we present work that more thoroughly investigates

the effect that complex, tip-shaped geometries can have on the dynamics of polarization.

This work was done in close collaboration with Brian Drawert, Carlos Gomez, Samhita

P. Banavar, Tau-Mu Yi and Otger Campàs and was originally published in [17].

4.1 Introduction

The polarization of proteins during the mating of Saccharomyces cerevisiae is a well-

studied, yet not fully understood, example of pattern formation in biology. During the
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mating process, haploid yeast cells respond to a gradient of mating pheromone via a

cascade of intracellular protein reactions, culminating in a localization of key proteins

on the membrane that facilitate actin cable formation and vesicle transport [30]. Many

quantitative models exist, at varying levels of mathematical complexity, for the different

levels of polarization in both budding and mating. Broadly, the majority of models have

been developed to study the dynamics of the main polarity regulator, the Rho GTPase

Cdc42 [15, 2, 16], the formation of actin cables and the polarisome [3, 31, 32], or the

interaction between the two [33, 31, 34]. Reviews of polarization models can be found

in [35, 36, 37, 38]. The literature for models of polarization in yeast is vast and often

contains conflicting results regarding the role of different mechanisms. One key feature

that has only recently been addressed is the effect of stochasticity, with some studies

having shown that it can be critical for certain models [3, 2]. In particular, stochastic

dynamics can more robustly reproduce a highly polarized phenotype and track a moving

pheromone input [3].

Stochastic dynamics at the intracellular signaling level has become a standard model-

ing paradigm in many areas of biology. There are numerous cases where deterministic or

mean-field techniques do not capture the relevant dynamics of biological systems [4, 5, 6].

Stochasticity is critical particularly when the copy number of a key chemical species is

very small, as is often the case within single cells. Many methods exist to numerically

simulate stochastic biochemical networks, the most common of which is the Stochastic

Simulation Algorithm (SSA) or Gillespie algorithm [7, 8]. One assumption of the SSA

is that the system is well-mixed, meaning that the reactants are assumed to be equally

likely to be anywhere in the spatial domain. This assumption clearly does not apply

in many systems, including our system of interest, polarization in yeast mating. The

spatial nature of our system necessitates the use of spatial stochastic methods, of which

there are many. One common approach relies on the Reaction-Diffusion Master Equation
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(RDME) formalism [9, 10, 11, 12]. Using RDME techniques, we have studied the protein

signaling network involved in polarization in previous works [3, 13, 14]. In particular, we

are interested in understanding how these protein signaling networks interact with cell

mechanics to yield morphogenetic change, such as the growth of the mating projection.

When the coupling of mechanics and biochemistry in this system is considered, the

physical domain of the numerical simulations necessarily becomes time-dependent as the

cell changes shape over time. We have previously developed an algorithm to simulate

spatial stochastic reactions on time-dependent domains using the RDME formalism [14].

Many existing models [15, 16, 3, 2] treat polarization as a Partial Differential Equation

(PDE) in simple 1 or 2 dimensional geometries (such as a line or circle). One key feature

that is lost in these simulations is the effect that a more realistic geometry can have on

these reaction networks. Although recent work has noted a qualitative effect of geometry

on simplified models of polarization in yeast mating [88], a thorough characterization of

these effects on more complex reaction networks and geometries has yet to be performed.

In this chapter, we investigate the effect of cell geometry during mating projection growth

on recently developed models of polarization in yeast mating. In particular, we simulate

3D spatial stochastic models of polarization in tip-shaped geometries obtained from simu-

lations of the mechanics of the yeast cell wall. We show that this effect is meaningful and

needs to be studied further to more deeply understand how biochemistry and mechanics

interact to create morphogenetic change, such as the growth of a mating projection.

The effect of geometry on biochemical reaction networks, and in particular on the

spatial localization of such models, has been studied in other contexts. Notably, a model

of protein localization and cell division in E. coli showed that the geometry of the cell

can induce pattern formation even in networks with no dynamic instability [80]. The

effect of complex geometries on models of polarization for different systems has also been

studied and shown to be important [89, 90, 91, 92, 93, 94, 95]. For example, cell shape
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and elongation were shown to be critical for polarization in cell chemotaxis and the speed

of response to chemical gradients [89, 90, 95]. Another study revealed that an interaction

between cell shape and biochemical regulatory loops with negative regulators can help

explain information flow in neurons [94]. Most models of polarization in cells contain both

membrane bound and cytoplasmic species, with reactions taking place on the membrane.

A critical feature mentioned in the above studies is the surface area to volume ratio of

different shapes. This will no doubt have an effect on models of this type, but exactly

what the effect will be for a given nonlinear network of reactions is not known.

To address these issues in the context of yeast mating, it is our goal to study the effect

of realistic, 3D tip-shaped geometries on current spatial stochastic models of polarization

in yeast. To this end, we use computational studies to generate predictions of the effects

of geometry on polarization during yeast mating, and compare to experimental results.

These simulations have been performed in our software PyURDME [13] which can sim-

ulate spatial stochastic dynamics on complex, 3D and time-dependent geometries. Our

results certainly do not encompass all current models of polarization or even attempt

to quantify all of the possible effects different geometries can have on these models, but

rather demonstrate that realistic geometries can have major effects on a general class of

polarization models and thus needs to be considered more thoroughly in modeling mov-

ing forward. We also raise the question of what mechanisms the cell uses to overcome

the apparent destabilizing effect of cell geometry on the location of the polarization cap

in vivo, and provide some plausible answers.
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4.2 Results

4.2.1 Effect of geometry on models of Cdc42 polarization

To study the effect of realistic geometries on the dynamics of models of Cdc42 po-

larization, we first needed to create computational meshes of such realistic geometries.

To do this, we extracted shapes from a model that combines cell wall mechanics and as-

sembly to determine the shape of the cell during projection growth [18]. This model was

critical in showing that a feedback between growth and mechanics is needed to stabilize

mating projection growth in such systems. Since the timescales of cell wall expansion

and growth (cell shape changes) are much longer than the timescales of the molecular

reactions involved in cell polarization, we simulate molecular polarization models in a

fixed geometry. Our first test was to run a relatively detailed, mechanistic model of

Cdc42 polarization adapted from the budding literature [16] (see Figure 4.1A and the S1

Model in Section 4.5 for details) with polarized initial conditions in a typical tip-shaped

geometry. A detailed description of the models and parameters used in this chapter can

be found in Section 4.5, along with a more detailed description of the computational

methods in the Materials and Methods section. As seen in Figure 4.1B, the polarization

of active Cdc42 can be seen “drifting” out of the tip over the course of 700 seconds. The

top panel of Figure 4.1B shows a time series of a histogram of active Cdc42 density on the

surface versus arc-length away from the tip, while the bottom panel shows the same time

series with a plot of the full 3D surface concentration of active Cdc42. The polarization

cap can be seen to start in the tip of the projection and then drift out (while staying

as an intact cap) as time goes on. This model of polarization is known to be stable in

time for spherical geometries (see results below and [16]) so this drifting behavior would

seem to indicate that there is some clear destabilizing effect on the location of the cap

by the geometry itself. This is a crucial result because during mating projection growth,
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polarization of key proteins must stay in the tip of the projection for proper growth. It

is important to note that Figure 4.1B represents results from only one stochastic realiza-

tion. To further characterize and understand this result we have run multiple realizations

of similar simulations for different geometries, which we discuss further below.

Figure 4.1: Schematic of Cdc42 model and drifting of Cdc42 cap for one
realization. A: Schematic of the detailed, mechanistic model of Cdc42 polarization.
Adapted from [16]. Here a uniform input of Gbg is used to model the effect of mating
pheromone. B: Visualization of the active Cdc42 polarization cap drifting away from
the tip during one realization. The top panel is a plot of the surface density of active
Cdc42 versus the distance away from the tip along the perimeter of the shape for
various time points (to get a 1D plot, the 3D profile was averaged along the surface of
the shape). The bottom panel shows the corresponding 3D visualization of the active
Cdc42 distribution. The drifting shown here took place in a matter of 700 seconds.

To more fully characterize the effect of geometry on the dynamics of this model of

Cdc42 polarization, we have run similar simulations to that presented in Figure 4.1B on

a variety of shapes. Specifically, we look at four shapes chosen to roughly approximate
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the different shapes a yeast cell can take during the formation of a mating projection.

The computational meshes (again obtained from a simulation of the mechanics of the cell

wall [18]) can be seen in Figure 4.2B. The first set of experiments is equivalent to that

of Figure 4.1B. Namely, we start the simulation with the species polarized in the “tip”

of the geometry (for the sphere there is obviously no tip but the polarization is simply

started in the same place for each realization) and run multiple realizations for each

geometry in Figure 4.2B. To quantify the end result of each realization, we record the

center of the polarization cap (see Figure 4.2A for visualization) in spherical coordinates

after 1000 seconds of simulation. The results of these simulations can be seen in Figure

4.3 where the spherical coordinates for the center of polarization of active Cdc42 after

1000 seconds are plotted for 800 realizations. The tip of the shape is set to be at θ = 90◦

and φ = 180◦ and the dashed red lines in Figure 4.3 represent ±10◦ from the tip. For the

spherical geometry, the active Cdc42 polarization cap is very stable for the duration of

the simulation, while for the other tip-shaped geometries the cap can be seen to drift to

a manifold away from the tip (as visualized for one realization in Figure 4.1B). Moreover,

the polarization cap ends on a different manifold for each of the tip-shaped geometries

(each realization ends in a ring that is much larger for the “Slight Deform” geometry

than for the “Projection” geometries, for example). These results add evidence to the

observation that the dynamics of the polarization cap are being significantly impacted by

the geometries. Moreover, the polarization cap appears to be stable in a region bounded

away from the tip for these projection geometries.

One key feature of the models of polarization that we are using is that they can

spontaneously polarize from random initial conditions. To further test the effect of

tip-shaped geometries on the dynamics of polarization, we have run a similar set of

experiments as those presented in Figures 4.1B and 4.3, but start with random initial

conditions rather than polarized. Again, the center of the polarization cap was recorded
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Figure 4.2: Diagram of angles and geometries used in subsequent simula-
tions. Visualization of the geometries and computational meshes used throughout
this study. A: Shown here is an example of the relevant geometry and angle defini-
tions that will be used in later analysis. The green ellipse is meant to symbolize the
active Cdc42 polarization cap. The vector c is drawn from an origin on the x-axis
through the center of the polarization cap and the vector p is the projection of c onto
the xy-plane. The angle θ is defined in the usual way in spherical coordinates and
is the angle from the z-axis to the vector c and is between 0 and 180 degrees. The
angle φ is defined as between the x-axis and p and is between 0 and 360 degrees. In
this way we can quantify the position of the polarization cap. B: The four computa-
tional meshes that will be used throughout this study. They are meant to represent
yeast mating projections at different stages of formation. To solve for these shapes, a
mechanics solver from [18] was used.

after 1000 seconds and the results of several realizations can be seen in Figure S1. In

the spherical geometry, the polarization cap is distributed randomly over the sphere

for several realizations (as expected, as the model has no preference or external bias

and polarizes spontaneously) while, again, for the tip-shaped geometries the polarization

caps cluster in a manifold away from the tip. Moreover, these polarization sites are the

same as those seen in Figure 4.3, meaning that the polarization cap is stabilizing in the

same place for both polarized and random initial conditions. This result adds evidence

to the claim that these locations in the tip-shaped geometries are globally stable for
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Figure 4.3: Spherical coordinates of the center of active Cdc42 polarization
for multiple realizations with polarized initial conditions. Here the center of
the polarization cap is tracked for four different shapes with 800 realizations each.
Plotted is the θ and φ coordinates (explained in Figure 4.2A) of the center of the
polarization cap after 1000 seconds of simulation starting from polarized initial con-
ditions at the tip (θ = 90◦ and φ = 180◦). Each point represents the result of one
stochastic realization. We can see that for the three irregular tip shapes the polariza-
tion cap has drifted away from the tip, whereas for the sphere the cap is stable. The
dashed red lines delineate a region of ±10◦ from the tip, with the red square in the
center representing the tip of the projection. The four plots correspond to the four
domains shown in Figure 4.2B.

this particular model of Cdc42 polarization. Again, this is critical in that it implies

that simply changing the geometry of the domain can drastically affect the dynamics of

polarization. There is clearly an interplay between the geometry, diffusion in the bulk

and on the membrane, and the reactions that is leading to this effect on the location of

the polarization cap, which we will discuss more later.
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In addition to the more detailed mechanistic models of Cdc42 polarization studied

above, there are many simplified models of Cdc42 polarization that are simpler math-

ematically and preserve some of the key features of polarization. We have also looked

at the effect of tip geometries on these simplified models of polarization. In particu-

lar, we studied the effect of geometry on the simplified model presented in [1, 2]. This

model contains only the membrane bound and cytoplasmic versions of Cdc42 with three

reactions: attachment and detachment from the membrane and recruitment of cytoplas-

mic species by membrane bound species (see Figure 4.4A and the S2 Model in Section

4.5 for details). Interestingly, this model has been shown to exhibit clustering behavior

only when modeled stochastically, as opposed to deterministically. Again, the advan-

tage to this model is that it is much simpler in the number of species and reactions,

while the disadvantage is that it does not fully capture the polarization dynamics seen

in cells. Specifically, this model will lead to sporadic clusters that are not stable in time

but rather form and break up dynamically and indefinitely. Thus, a different metric is

needed to quantify the effect of geometry than was used for previous models. For this

reason, we have run the S2 Model in the same four geometries presented in Figure 4.2B

for 10, 000 seconds and simply averaged the amount of membrane bound Cdc42 in each

voxel over time. The results can be seen in Figure 4.4 below. Again, there is a clear

qualitative effect of these geometries on the dynamics of this simplified model. Namely,

the clusters are seen in Figure 4.4C-E to systematically stay out of the projection. The

overall effect of some negative interaction between the tip geometry and polarization is

preserved. Both of these models show that there is a clear effect of geometry on the

dynamics of polarization, and more specifically that there is a tendency for polarization

to avoid the projection in these geometries. This further raises the question of how cells

overcome this effect in vivo, which we will explore below.
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Figure 4.4: Effect of geometry on a simplified model of Cdc42 polarization.
A: Schematic of the simplified model of Cdc42 polarization. Adapted from [1, 2].
B-E: The normalized time average of the concentration of membrane bound species
for each voxel is shown for four different geometries. The model presented in [2] and
the S2 Model was run for 100,000 seconds for each geometry in Figure 4.2B with a
total of 200 realizations for each. As mentioned above, this model exhibits stochastic
clustering that is dynamic in time, with clusters forming and breaking up. A clear
bias can be seen, with stochastic clusters systematically staying out of the tip of the
projection, which is qualitatively similar to the results presented in Figure 4.3.
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4.2.2 Effect of large deformations and changes in density on

models of Cdc42 polarization

In addition to the geometries studied in the previous section, we investigated the effect

of geometry on the same reaction-diffusion models, for more pathological geometries.

Specifically, we simulated the Cdc42 polarization model on geometries with projections

much longer than those seen in WT cells. We will discuss the physical relevance of

these shapes when comparing to experimental results in the next section. We first ran

a computational experiment similar to that presented in Figure 4.3, but on the long

projection geometry. The results of this simulation can be seen below in Figure 4.5.

Surprisingly, when starting with the model polarized in the tip of the projection, the

polarization cap was in fact more stable in the tip of the projection. This is in contrast

to the results presented above with much shorter projections. Presumably, this is due to

the fact that there are multiple meta-stable points for the polarization cap throughout

the geometry. In the case of the short projection, the size of the polarization cap (set by

the specific reactions and diffusion rates of the model) is on the same order as the spatial

distance between the tip and the more stable position (the neck of the projection in this

particular case). While for the longer projection, the size of the polarization cap is much

smaller than the length of the projection. We will discuss these results further below.

A related, yet quite distinct, issue to changes in geometry is changes in volume of

the cell and density of the species. It is well known that these models, in general, can

have very different dynamics with varying density of some or all of the species. In fact,

the model presented originally in [2] and above in Figure 4.4A was shown specifically to

be a density dependent switch. That is, stochastic clustering fails to occur below some

critical density due to all of the molecules being in the cytoplasm at steady state, yet

there exists a range of critical densities that exhibit clustering. Eventually, if the density
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Figure 4.5: Effect of long projection on Cdc42 polarization. Visualization
of effect of a long projection geometry on Cdc42 polarization. A: Time series for
one realization of Cdc42 polarization starting from polarized initial conditions. The
polarization cap can be seen to drift slightly away from the tip but still stay in the
projection. B: Summary of where the polarization cap ends up starting with polarized
initial conditions for 400 realizations after 1000 seconds, similar to previous results.
The cap can be seen here to be much more stable in the projection compared to the
shorter projection geometry results presented above.

is increased enough, clustering is lost because so many molecules will be on the membrane

at steady state that it effectively creates a uniform distribution. The key challenge here

is to isolate the effect of geometry from the effects of changes in density. To investigate

the role of density in the polarization of Cdc42 for the S1 Model, we ran a series of

simulations on spheres of different radii keeping either the number of molecules, or the

density, constant. The results of these simulations can be seen below in Figure 4.6. For

the constant molecule simulations there seems to be a consistent result. Namely, there

appears to be one (and only one) polarization cap with an associated length scale or size.

For the small sphere, the size of the polarization cap is larger than the sphere itself thus

it appears uniform. For the constant density simulations, there is a variety of behaviors.
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Notably, the larger sphere has two distinct polarization sites. This is surprising in that

the original model in [16], from which the S1 Model is adapted, explicitly noted that, at

the base values, it is important that only one broad polarization site formed and then

narrowed, as opposed to some other models that show competition between clusters (for

example in [15]). This shows that in addition to cell geometry, whether the cell fixes

density or number of molecules also affects polarization. As for the results presented

above in Figures 4.3 and 4.4, these geometries deviated only 10 − 15% in volume from

the sphere, as opposed to the large scale changes seen in Figure 4.6 and were run with a

constant number of molecules as opposed to a constant density. For completeness, these

simulations were also run with a constant density and the overall results were similar

(see Figure S4 for details). As mentioned above, the density of molecules throughout the

spatial domain can have an important effect on these models. To look at the effects of

changes in density independently from changes in overall shape we have run a series of

simulations on spheres of different radii. The results in Figure 4.3 and Figure S4, which

deal specifically with the effect of changes in overall shape, and the results in Figure

4.6, which deal with the effects of changes in density without changes in overall shape,

combine to try and disentangle these two related issues. We will discuss these issues

further below. These results also raise some interesting questions about how the cell

regulates polarization processes to achieve certain functions. For example, a previous

work has looked into the possibility of the cell using changes in density to sense cell

size or trigger cell cycle transitions [96]. It might be reasonable to ask if the cell uses

geometry effects to its advantage in any way.

Our results show that there is an important and noticeable interaction between cell

geometry and the models we have considered here. This is important because typically,

more realistic geometries have not been considered when models of polarization have

been proposed. One interesting prediction here is the difference in stability of an already

56



The Effect of Cell Geometry on Polarization in Budding Yeast Chapter 4

formed polarization cap for different geometries. Namely, the polarization cap is stable

in the sphere, unstable in a short projection and stable in a long projection (long as

compared to the length scale of the polarization cap itself). This is a result that we

attempted to observe experimentally. Prompted by these simulation results, we wanted

to see to what extent this phenomenon could be observed in vivo. We describe our

experimental set up and comparison to our results in the next section.

4.2.3 Comparing to experiments

While the main thrust of this work is to elucidate the effect of different geometries

on various mathematical models of polarization, we wanted to test some of the overall

predictions experimentally. To this end, we devised an experiment that attempts to repli-

cate the conditions in the modeling results presented in Figure 4.3. The main prediction

we are testing is that, in the absence of vesicle transport, the Cdc42 polarization cap will

be stable in a sphere, unstable in a short projection and stable in a long projection. To

achieve long projections, we constructed a cla4∆ strain. Cla4 is present in some models

of Cdc42 polarization and is thought to negatively regulate Cdc24 via phosphorylation

[97, 98]. As a result, some cla4∆ cells possess elongated projections, whereas others adopt

a more typical morphology. To observe the three different shapes of interest, we allowed

cla4∆ cells marked with Ste20-GFP (a reporter for active Cdc42) to grow in α-factor for

varying amounts of time and form different length projections (Materials and Methods).

Once the mating projection was formed, the cells were treated with latrunculin A (LAT-

A) to depolymerize actin cables. This, presumably, leaves the cells with only the Cdc42

polarization pathway for polarization in a tip-shaped geometry, analogous to the models.

The GFP-tagged polarization site was then tracked over 30 minutes. We observed cells

of each shape: spherical, short projection and long projection. For each group, we cate-
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gorized the polarization site as either stable (i.e. it stayed in the same spatial location

after the addition of LAT-A) or unstable (i.e. it polarized in a different location after

the addition of LAT-A). The results of this experiment can be seen in Figure 4.7.

As predicted, the polarization site was more stable in spherical and long projection

geometries when compared to shorter projections. While overall this is a qualitative

result, it does suggest an interesting interaction between the dynamics of Cdc42 polar-

ization and the shape of the cell in both simulations and experiment. It is difficult to

completely isolate the effect of geometry on polarization, as many processes are disrupted

in the absence of actin cables, but we think that looking at three different shapes of cells

under similar circumstances provides evidence for an effect of geometry on the dynamics

of polarization. It should be noted that the experimental results for the spherical cells are

not as stable as the simulation and there are multiple possibilities for why this is the case.

It could be simply due to the fact that even cells that were categorized as spherical in

the experiment were not perfectly spherical as in the model, but in fact ellipsoid which,

based on our previous results, could have some effect on the stability of polarization.

Despite these potential issues, the experimental results observed for the three classes of

cells are consistent with the model simulations. Overall, there is a complex interaction

between the nonlinear reaction-diffusion process and the geometry. It is plausible that

there is some bias away from the tip for shorter projections due to the length scale of the

polarization cap being on the same order as the projection length. This is an interesting

result because it raises the question of how the cell overcomes this effect in vivo. We

explore some possibilities in the next section.
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4.2.4 Possible mechanisms to overcome the effect of cell geom-

etry

The results above raise one seemingly important biological question for the interaction

of geometry and a variety of reaction-diffusion models of Cdc42 polarization: how does the

cell overcome the bias of the Cdc42 cap away from the tip during projection growth? This

effect was observed simply by simulating various models of Cdc42 polarization in realistic

geometries. A clear first hypothesis is that it is somehow the actin network and vesicle

transport that is overcoming this effect. This is relatively difficult to test in a meaningful

way simply because the methodology for modeling actin cable formation and vesicle

transport in the literature is so diverse. The conclusions about the interaction of the

two parallel pathways of reaction-diffusion Cdc42 polarization and actin-mediated vesicle

transport are disputed. For example, one major question is whether vesicle delivery

provides positive [33] or negative [31] regulation of polarization. The main issue pertains

to the role of each pathway in the establishment and maintenance of the polarization site.

It is likely that the diversity of opinion arises because of the vastly different ways in which

vesicle transport is modeled mathematically. Nonetheless, to try to test this hypothesis,

at least initially, we have coupled the previously discussed model of Cdc42 polarization

to a model of actin dynamics presented in [3] (see the S3 Model in Section 4.5 for details).

The key to this model of polarization is that it is mechanistic and relies on stochasticity

to faithfully replicate biological data from mating yeast cells. This combination of a fully

dynamic model of Cdc42 polarization and a model of the polarisome is novel.

To investigate the hypothesis that actin-mediated vesicle transport could possibly

overcome the negative effect of tip-shaped geometries, we have run similar simulations to

those presented in Figure 4.3. Namely, we ran the fully coupled Cdc42 and polarisome

model with polarized initial conditions and tracked the polarization cap of both active
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Cdc42 and Spa2 in the four shapes shown in Figure 4.2B. The results can be seen in

Figure S2 and Figure S3. Again, as with the Cdc42 polarization above, the polarization

cap tends to end away from the tip in these geometries, while it is relatively stable

in the sphere. To test this conclusion in an even stronger setting, we fixed the active

Cdc42 profile as polarized in each geometry and simulated the polarisome model with

this fixed input. Even in this case, with the Cdc42 input fixed and polarized throughout

the simulation, the polarisome can be seen localizing away from the tip (see Figure S5 for

details). We were able to stabilize Spa2 polarization in the tip by increasing the rate of

recruitment of Bni1 by active Cdc42 in this fixed Cdc42 distribution setting (see Figure

S7 for details). Taken together, these results would seem to indicate, at least for this

particular model, that actin dynamics are largely insufficient to overcome the effect of

the tip-shaped geometry. In this case, there is again a critical interaction between cell

shape and the dynamics of a model of polarization, this time with the addition of actin

dynamics.
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Figure 4.6: Effect of constant density versus constant molecule count for
various spheres. Visualization of effect (for one stochastic realization) of having
either a constant density or a constant number of molecules for spheres of varying
radii. A: Simulations on spheres with radii r = 0.5, 1.0, 2.0, 4.0µm are run for 1000
seconds (starting with randomly scattered initial conditions) each with a constant
number of molecules, set to be the same number of molecules as the base simulation
(for a sphere of r = 2.0µm with molecule counts given in the S1 Model in section 4.5).
For each sphere there is consistently one polarization cap with a certain associated
length scale. For the small sphere this length scale is bigger than the sphere itself,
thus it appears uniform. For the other spheres there is one polarization cap. B: Here
the density is held constant (equal to that of the base simulation) rather than the
molecule count. Interestingly, different dynamics can be seen. For example, the large
sphere has two fully formed polarization sites as opposed to one. Presumably, the
increase in the size of the domain and the number of molecules leads to the possibility
of two (or more) polarization sites that will possibly compete and merge given enough
time.
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Figure 4.7: Experimental observations of stability of polarization for differ-
ent geometries. A: cla4∆ cells were exposed to α-factor for varying amounts of time
to observe a series of shapes of projections: spherical (n=26 cells), short projection
(n=31 cells) and long projection (n=34 cells). Cells were then characterized as either
stable or unstable by comparing the spatial location of the polarization cap immedi-
ately after the application of LAT-A and 30 minutes after. If the polarization cap was
in the same location after 30 minutes with no actin cables (due to the LAT-A) then the
cell was characterized as stable, otherwise it was unstable. The trend of spherical cells
and long projection cells being more stable than shorter projection cells is in line with
our theoretical prediction. The differences in the percentage of stable polarizations
in the short projection cells versus the spherical (p < 0.05) and long projection (p <
0.001) cells were statistically significant by the chi-square test. B: DIC and Fluores-
cent images of GFP tagged Ste20 right after the application of LAT-A (t=0min) and
30 min after for a representative cell of each shape. The spherical and long projection
cells here show that the polarization cap stays in the same spatial location throughout
the experiment while the short projection cell re-polarizes in a different location. We
predict that this instability of the shorter projection cells is due to an interaction
between the geometry and the dynamics of the Cdc42 polarization network. All scale
bars here represent 2 µm.
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4.3 Discussion

In this chapter we have shown that there can be a noticeable effect of geometry on the

dynamics of certain reaction-diffusion models of polarization in yeast. Specifically, there

seems to be a clear bias away from the tip of projection shaped geometries for a number

of models tested. This is important when considered in the context of mating projection

growth in yeast. When growing a mating projection, the cell establishes a spatial lo-

calization of proteins on the membrane, ultimately leading to actin cable formation and

vesicle transport. The vesicles carry, among other proteins, cell wall modifying enzymes

that change the material properties of the cell wall, leading to projection growth. During

the growth of the projection in vivo, it is critical that the polarization cap stays at the

tip of the projection to direct growth. However, our simulations suggest that current

models of polarization could fail to capture this behavior due to a previously under-

appreciated or unacknowledged effect of geometry on the dynamics of these polarization

models. The main goal of this chapter has been to quantify this effect for a variety of

different polarization models and geometries.

We first demonstrated the effect complex geometries can have by simulating two

different polarization models on realistic, tip-shaped geometries. For a mechanistic and

detailed biochemical model of Cdc42 polarization, we showed that even when starting

with polarized initial conditions in the tip of the projection, there is a tendency for the

polarization cap to drift away from the tip (see Figure 4.3). This effect was further shown

by running a simpler model of polarization on these same geometries and noticing again

a bias away from the projection (see Figure 4.4). Typically, these models of polarization

have been formulated as PDEs in simple geometries such as a line or sphere, thus the

effect of complex geometry on the dynamics of the model has not appeared.

To understand this phenomenon further, we ran these models on a variety of tubular
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geometries in addition to the canonical projection geometries mentioned above. Interest-

ingly, when simulated in a projection that was much longer than typically seen in WT

yeast cells, the polarization cap would in fact stay close to the tip of the projection. This

suggests there may be an interaction of length scales present in the problem. Namely,

the polarization cap has a certain size in any given geometry. While currently it is not

possible to a priori know the size of the polarization cap for an arbitrary geometry, the

size of the polarization cap for a variety of shapes can be seen in Figures 4.1, 4.5 and

4.6. The size of the polarization cap will certainly be affected by the rates of reactions

and diffusion in the model and the geometry itself. What is clear for the shorter pro-

jection geometries, seen in Figure 4.1, is that the polarization cap is of comparable size

to the length of the projection. Whereas with longer projections, seen in Figure 4.5, the

polarization cap is much smaller than the length of the projection. This is one possible

explanation for the difference in stability between the two shapes. Specifically, it ap-

pears as though there are multiple metastable spatial locations for polarization in any

geometry and the size of the polarization cap (which is related to the rates of reactions

and diffusion) relative to these points may determine stability for a given initial site of

polarization. Our simulations suggest that there is a complex interaction between the

size of the polarization cap and the size of local features present in the geometry of the

domain, for example the local radius of curvature or the length of the projection. Another

related, yet distinct, phenomenon we considered here is the effect of changes in volume

and density. We ran a model of Cdc42 polarization on a series of spheres of varying size,

keeping either the number of molecules in the simulation or the density constant (see

Figure 4.6). These results show that for large changes in volume and density, there can

be significantly different dynamics for these models. The purpose of simulating polar-

ization in spheres of varying radii was to understand the effects of changes in density

independently from changes in overall shape. While a general theory for the stability of
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a given polarization model in an arbitrary domain is beyond the scope of this work, the

results we have presented already raise interesting biological questions.

While the main thrust of this work is to elucidate the effects that complex geometries

can have on mathematical models of polarization in yeast, we were curious to see whether

similar effects could be observed experimentally. The main prediction we set out to test

was that of the polarization of Cdc42 being spatially stable in a sphere, unstable in a

short projection and stable in a long projection. To do this, we focused on a mutant

cell line cla4∆. These mutant cells can grow abnormally long projections, as Cla4 plays

a vital role in septin formation. In an attempt to isolate the effect of geometry on

Cdc42 polarization in the absence of actin cables and vesicle transport, the cells were

grown in α-factor for varying times to achieve different lengths of projection growth and

then LAT-A was added to disrupt actin cable formation, leaving the cells solely with

Cdc42 reaction-diffusion dynamics for polarization. Next, cells were categorized as either

spherical, short projection or long projection and fluorescent Ste20 (a reporter for active

Cdc42) was monitored in time. As predicted by our simulations, the polarization cap was

seen to be much more spatially stable in the spherical and long projection cells than in

the shorter projection cells. While overall this is a qualitative result, it does suggest that

current models of polarization could be lacking elements when more complex geometries

are considered.

Based on our simulation and experimental results, one of the first questions that

comes to mind is: how does the cell overcome this effect in vivo? The first natural thought

might be that it is the actin cable network and vesicle transport that is providing the

necessary reinforcement. As mentioned above, this is actually quite a difficult hypothesis

to test computationally simply due to the wide range of approaches in the literature

for mathematically modeling this process. We merged one model of actin polarization

with a model of Cdc42 polarization to test if this could provide the necessary feedback
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to overcome the effect of geometry (see Figure S2 and Figure S3). Our results suggest

that, at least for these particular models, actin dynamics are unlikely to overcome this

effect of geometry. Again, as there are a wide variety of methods for modeling vesicle

transport, it is still very possible that in vivo actin is contributing to overcoming the

effect of geometry. One key feature that is typically neglected in models of actin cable

formation is that the cables are in fact 1D structures embedded in a 3D space. Because

the actin cables have a physical extent, they can be constrained by the geometry of

the cell, providing a possible mechanism to overcome geometry effects. While there are

methods to model such systems rigorously (see [43]), it is not common. In addition to

actin though, there are other possibilities, which we will discuss in the next chapter.

This discussion raises a broader issue. Polarization is an essential part of many

biological processes in a wide variety of cell types. Often, when modeling polarization,

the effects that complex geometry can have on polarization dynamics are not taken into

account. Our results suggest not only that there is a qualitative and important effect

on certain models of polarization, but also that these interactions can lead to valuable

insights into the relevant biology that might have been overlooked otherwise. Moving

forward, it may be necessary to consider the effect of geometry on reaction-diffusion

dynamics when models of a given polarization process are being built.

4.4 Materials and methods

4.4.1 Computational setup

All models and simulation results presented in this work were built and performed

using PyURDME and MOLNs [13]. Computational meshes for each geometry consisted

of a discretization of both the cytoplasm and the membrane (the surface of the shape),
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allowing for diffusion both in the cytoplasm and on the membrane as required by the

models used in this study. All reactions take place in voxels on the membrane for each

geometry. These meshes were generated using Gmsh [99]. Sets of stochastic realizations

for each model were run in parallel on a cluster of 64 machines. For simulations with

polarized initial conditions (such as those in Figure 4.3), 20 realizations were run for a

variety of different initial conditions. This is due to the fact that the specific configuration

of the initial conditions could bias the dynamics of the model. To eliminate this bias

and explore the full behavior of the model, initial conditions were rotated about the

axis of symmetry (resulting in the apparent 4-fold symmetry in Figure 4.3 for example).

What is important is that for any given polarized initial condition, there was a clear

bias away from the tip of the projection, as discussed in the main text. One major

difference in the simulation details and data analysis mentioned above is between the

more detailed, mechanistic models of polarization (the S1 Model and the S3 Model) and

the simplified Altschuler model (the S2 Model). This is due to a fundamental difference

in dynamics between the two classes of models. While the mechanistic models reliably

create one stable polarization cap (in the standard spherical geometry they were built

for) the Altschuler model is more dynamic in time with clusters forming and breaking

up. This is the main reason for the difference in simulation time for the two classes of

models. All of the mechanistic model simulation results (found in Figures 4.3, 4.5 and

4.6 and all figures in Section 4.5) were run for the same amount of time (1000s) as this is

significantly longer than these models take to come to steady state while the Altschuler

model simulation results (found in Figure 4) were run for much longer (100,000s) as,

again, it is more dynamic in time and does not come to a steady state with one stable,

fixed polarization cap. As far as the number of realizations is concerned, we ran enough

realizations to clearly show the trend for each model. For example, the results in Figure

4.3 were run for 800 realizations to clearly show the manifold where the polarization
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caps were ending up while the results in Figure 4.5 were run for 400 realizations as the

manifold was much easier see with fewer realizations.

Lastly, it is important to note we have no reason to believe that the effect of geome-

try on these models of polarization is an inherently stochastic phenomenon. That said,

it is critical to note that two of the models used here (namely the simplified model of

Cdc42 polarization, the S2 model, and the model of actin polarization, the S3 model)

have been previously shown to rely on stochastic effects [1, 3]. Specifically, the simpli-

fied model from [1] was shown to only exhibit clustering (or polarization) when modeled

stochastically as opposed to deterministically (at least for the parameters studied). Also,

the model of actin polarization used, adapted from [3] was shown to replicate the ex-

perimental data of actin polarization better than the deterministic analog of the model

through an effect that was dubbed “spatial stochastic amplification” in [3]. Thus, for

these two models specifically it was necessary to model them stochastically for both the

spherical and projection shaped geometries to faithfully replicate the dynamics of the

model. As mentioned previously, though we don’t have any reason to believe that this

effect of geometry on the dynamics of these models is itself a stochastic effect, we are

showing an effect of geometry on models that rely on stochasticity. The other model used

is the paper (the mechanistic model of Cdc42 polarization, the S1 model, adapted from

[16]) was the one model used that was originally formulated as a deterministic model. In

theory, using a stochastic method to model the same set of reactions as a deterministic

model will not be “missing” any important dynamics. Namely, the stochastic model will

either replicate directly the deterministic results or there will be differences due to some

stochastic effect (in which case the stochastic model will be more accurate if formulated

correctly). For this particular case, our stochastic results for the spherical geometry

do match the deterministic results from [16] well (although our models are not exactly

equivalent as mentioned previously). One major concern with using stochastic methods
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is computational efficiency. Namely, the need to run several realizations can often in-

crease the computational requirements of the simulation. We are uniquely positioned to

deal with these issues as we have developed software to efficiently simulate stochastic

models and leverage cloud computing infrastructure in the process [13]. With all of this

in consideration, we found it more straightforward to simulate all of our models using

stochastic methods for consistency. It would be interesting to replicate our experiments

in a deterministic setting to see if there are any differences in behavior but it is non-

trivial to solve these reaction-diffusion models as three-dimensional partial differential

equations on irregular domains and we do not currently have a framework for doing this

efficiently. In summary, while we have no reason to believe at this moment that the

effect of geometry is a stochastic effect in itself, two of the models we have considered

rely directly on stochastic effects and in theory modeling any of these reaction-diffusion

systems stochastically will not miss any important dynamics. It will be interesting going

forward to replicate our simulations in a deterministic setting and compare the results.

4.4.2 Experimental setup

All yeast strains were derivatives of W303-1A and contained the bar1∆ mutation

that prevents α-factor degradation by deletion of the Bar1 protease. Genetic techniques

were performed per standard methods. All strains were cultured in YPD (yeast extract-

peptone-dextrose) media supplemented with adenine. GFP-tagging was constructed by

genomic integration using vectors amplified and targeted by PCR primers.

To experimentally test the computational predictions, we treated the STE20-GFP

cla4∆ yeast strain CGY-021 with LAT-A (Invitrogen). LAT-A at a concentration of 50

µM was added to cells exposed to α-factor (1 µM) for 30 minutes (for spherical cells)

or 90 minutes (for tip projected cells). These cells were imaged on slides for 30 minutes
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every 2 minutes after the addition of LAT-A. Images were acquired with a Nikon TE-300

inverted microscope using a 60x objective (NA = 1.4). Image analysis was manually

performed using ImageJ.

The genotype of the strain CGY-021 is MATa, can1-100, ade2-1, leu2-3,-112, his3-

11,-15, trp1-1, ura3-1, bar1::hisG, ste20∆::STE20-GFP-HIS5, cla4∆::KANR
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4.5 Model details and supporting figures

Figure S1 Spherical coordinates of the center of active Cdc42 polarization

for multiple realizations with random initial conditions. Here, the center of

the polarization cap is tracked for four different shapes. Plotted is the theta and phi

coordinates (explained in Figure 4.2) of the center of the polarization cap after 1000

seconds of simulation starting from randomly scattered initial conditions. Each point

represents the result of one stochastic realization. The points of polarization for the

sphere are completely random, as expected from these polarization models. In contrast,

the cap is forming in a similar pattern to where the caps in Figure 4.1B drifted to for

the three irregular shapes, hinting at a globally stable position for the polarization cap

in these geometries. Interestingly, the last shape of a longer projection actually seems

to be in between randomly polarized in the cell body and preferentially polarized at the

neck of the projection. The dashed red lines here are a region of ±10◦ from the tip with

the red square in the center representing the tip of the projection.
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Figure S2 Spherical coordinates of the center of active Cdc42 polarization

for multiple realizations with polarized initial conditions, for the combined

Cdc42 and polarisome model. To initially test the hypothesis that the actin network

and vesicle traffic could overcome the negative effect of the tip shaped geometry, we sim-

ulated a combined model of Cdc42 and actin polarization. As with previous simulations,

starting from a polarized initial condition in the tip of the projection, the Cdc42 cap is

seen to drift away from the tip. This is even with the added positive feedback from the

polarisome to Cdc42. It should also be noted that the length scale of actin and Spa2

polarization is smaller than for Cdc42. While this isn’t definitive proof that actin isn’t

helping to keep the polarization cap in the tip of the projection, it does show that for

these reaction-diffusion models of Cdc42 and actin polarization, there is a persistent bias

away from the tip.
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Figure S3 Spherical coordinates of the center of Spa2 polarization for mul-

tiple realizations with polarized initial conditions, for the combined Cdc42

and polarisome model. These are the corresponding centers of Spa2 polarization for

the results shown in Figure S2.
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Figure S4 Spherical coordinates of the center of active Cdc42 polarization

for multiple realizations with random initial conditions, with constant density

rather than constant molecule count. Here, we tested our results presented in Figure

S1 by adjusting the molecule count to keep a constant density for each geometry (opposed

to a constant molecule count). For these relatively small changes in total volume, the

overall behavior of a bias away from the tip is preserved for both constant molecule and

constant density.
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Figure S5 Spherical coordinates of the center of Spa2 polarization for mul-

tiple realizations with polarized initial conditions, for the polarisome model

with a fixed Cdc42 distribution as input. These results are to be compared to the

results presented in Figure S2 and Figure S3. Here the Cdc42 profile is fixed and polar-

ized in the tip of the geometry, rather than fully dynamic as above. This, presumably,

would make it more likely for Spa2 to polarize in the tip as geometry is no longer having

an effect on the Cdc42 dynamics yet the geometry still appears to have an effect on the

polarisome. This further supports our general result of geometry having a significant

impact on the dynamics of polarization.
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Figure S6 Spherical coordinates of the center of active Cdc42 polarization

for multiple realizations with polarized initial conditions and one visualization

of drifting with diffusion in the cytoplasm Dc = 10 µm2s−1. Here, we investigate

the role of cytoplasmic diffusion on polarization in different geometries. Specifically,

in addition to the cytoplasmic diffusion coefficient of Dc = 50 µm2s−1 we have tested

a variety of other diffusion coefficients and in particular here show results for Dc =

10 µm2s−1 [100]. While there is a difference in the stability for the slightly deformed

geometry, the bias away from the tip for projection shaped geometries is still clear.
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Figure S7 Spherical coordinates of the center of Spa2 polarization for mul-

tiple realizations with scattered initial conditions and a fixed active Cdc42

distribution as input and one visualization of the stabilization of polarization

in a tip shaped geometry. These results are to be compared to the results presented

in Figure S2, Figure S3 and Figure S5. Here the active Cdc42 profile is fixed and polar-

ized in the tip of the geometry, rather than fully dynamic as above. To investigate the

possibility of stabilizing Spa2 polarization, we have increased the parameter Bon (which

is the recruitment of Bni1 by active Cdc42) by a factor of 100. We see that this is in

fact enough to stabilize Spa2 polarization in the tip of projection shaped geometries.
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S1 Model Mechanistic model of Cdc42 polarization. Below are the reactions

and parameters for one model of Cdc42 polarization used in the main text. This set

of reactions is adapted from a model of polarization during budding presented in [16]

to account for the mating pheromone present during mating (through the presence of a

uniform Gbg field) and a small negative feedback from Cla4.

Cdc24c +Gbg
δ1−→ Cdc24m +Gbg

Bem1m + Cdc24c
δ1−→ Bem1m + Cdc24m

Cdc24m
δ2−→ Cdc24c

Cdc24m + Cdc42GDPm
α1−→ Cdc24m + Cdc42GTPm

Cdc42GTPm
α3−→ Cdc42GDPm

Bem1c + Cdc42GTPm
γ1−→ Bem1m + Cdc42GTPm

Bem1m
γ2−→ Bem1c

Cdc42GDPc
β2−→ Cdc42GDPm

Cdc42GDPm
β3−→ Cdc42GDPc

Cdc24m + Cdc42GDPc
β1−→ Cdc24m + Cdc42GTPm

Cdc24m + Cla4a
k24d−−→ Cdc24c + Cla4a

Cla4m + Cdc42GTPm
kCla4a−−−→ Cla4a + Cdc42GTPm

Cla4a
kCla4d−−−→ Cla4m
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Parameter Value Description Source
Dm 0.0053 µm2s−1 Diffusion constant on membrane [3]
Dc 50 µm2s−1 Diffusion constant in cytoplasm Fig S6
R 2 µm Radius of cell [3]
N42 3000 Total number of Cdc42 molecules [16]
NB 3000 Total number of Bem1 molecules [98]
N24 1000 Total number of Cdc24 molecules [16]
α1 0.2 µm2s−1 Activation of Cdc42 by Cdc24 (membrane) [16]
α3 1 s−1 Deactivation of Cdc42 [16]
β1 0.266 µm3s−1 Activation of Cdc42 by Cdc24 (cytoplasm) [16]
β2 0.28 µms−1 Attachment of Cdc42 to membrane [16]
β3 1 s−1 Detachment of Cdc42 from membrane [16]
γ1 0.2667 µm3s−1 Bem1 recruitment by Cdc42 [16]
γ2 0.35 s−1 Detachment of Bem1 from membrane [16]
δ1 0.00297 µm3s−1 Recruitment of Cdc24 by Gbg [16]
δ2 0.35 s−1 Detachment of Cdc24 from membrane [16]
k24d 0.000033 µm3s−1 Detachment of Cdc24 via Cla4 [98]
kCla4a 0.006 s−1 Activation of Cla4 by Cdc42 [98]
kCla4d 0.01 s−1 Deactivation of Cla4 [98]
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S2 Model. Simplified model of Cdc42 polarization. Below are the reactions and

parameters for a simplified model of Cdc42 polarization presented in [2].

Cdc42c
kon−−→ Cdc42m

Cdc42m
koff−−→ Cdc42c

Cdc42c + Cdc42m
kfb−−→ 2Cdc42m

Parameter Value Description Source
kon 0.0001/60 s−1 Spontaneous on rate [2]
koff 9.0/60 s−1 Spontaneous off rate [2]
kfb 10.0/60 µm3s−1 Feedback rate [2]
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S3 Model Mechanistic model of polarisome formation. Below are the reactions

and parameters for the model of actin dynamics adapted from [3] that was combined

with the S1 Model in the main text to investigate the possibility of actin dynamics

overcoming the effect of geometry on polarization. The model originally presented in [3]

was formulated on a 1D domain. We have adapted these parameters and fit them in a

similar way as was presented in [3] for a sphere.

Bni1c + Cdc42GTPm
Bon−−→ Bni1m + Cdc42GTPm

Bni1m
Boff−−−→ Bni1c

Actinc +Bni1m
Aon−−→ Actinm +Bni1m

Actinm
Aoff−−−→ Actinc

Spa2c + Actinm
Son−−→ Spa2m + Actinm

Spa2m
Soff−−→ Spa2c

Bni1c + Spa2m
Bfb−−→ Bni1m + Spa2m

Added feedback between Cdc42 polarization and polarisome:

Cdc42GDPc + Actinm
β1−→ Cdc42GTPm + Actinm

Cdc42GDPm + Actinm
β1−→ Cdc42GTPm + Actinm
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Parameter Value Description
Dm 0.0053 µm2s−1 Diffusion constant on membrane
Dc 50 µm2s−1 Diffusion constant in cytoplasm
R 2 µm Radius of cell
NB 1000 Total number of Bni1 molecules
NS 5000 Total number of Spa2 molecules
NA 40 Total number of Actin cables
Bon 0.000256 µm3s−1 Recruitment of Bni1 by Cdc42
Boff 22.5 s−1 Detachment of Bni1 from membrane
Son 4.55 µm3s−1 Recruitment of Spa2 by Actin
Soff 0.35 s−1 Detachment of Spa2 from membrane
Aon 0.197 µm3s−1 Recruitment of Actin by Bni1
Aoff 1.57 ∗ 500/(500 + Spa2m) Detachment of Actin from membrane
Bfb 0.0304 µm3s−1 Recruitment of Bni1 by Spa2
β1 0.266 µm3s−1 Recruitment of Cdc42 by Actin
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Chapter 5

Combined Model of Polarization and

Mechanics

As discussed in the previous chapters, we are interested in understanding how polarization

and the mechanics of the cell wall interact to yield mating projection growth in yeast.

Up to this point, we have introduced a novel algorithm for simulating spatial stochastic

dynamics on moving domains, and we have presented new insights into how the shape

of the cell during projection growth can influence polarization dynamics. We now look

to combine these contributions and couple models of polarization with mechanics to

simulate mating projection growth in a more holistic fashion. To address the issues of

polarization mislocalization at the tip of projections discussed in the last chapter, we

introduce a novel mechanical feedback mechanism to stabilize growth. This coupling of

signaling and mechanics was both a technical and modeling challenge. This work was

done in collaboration with Samhita P. Banavar, Brian Drawert, Tau-Mu Yi and Otger

Campàs and is currently in preparation for publication [19].
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5.1 Simplified model of polarization and mechanical

feedback

Our work in Chapter 4 has shown that there is a significant impact of cell shape on

the dynamics of several current models of polarization. In particular, there is consistently

a bias of the polarization cap away from the tip of projection shaped geometries for all

models tested. As discussed in Chapter 4, this is contrary to polarization dynamics in

vivo as it is critical for the polarization to remain at the tip of the projection to direct

growth. To combine polarization and mechanics in such a way that yields stable growth,

this issue had to be addressed. To this end, in this chapter we propose a direct mechanical

feedback on the dynamics of polarization. In Section 2.3 we discussed the details of the

cell wall and the role it plays in growth. Here we focus on a direct connection between

the cell wall stress sensors and proteins involved in polarization. In particular, it is

known that actin organization is controlled by Rho1 via the actin nucleating protein

Bni1 and also that Rho1 is activated by the so called stress sensors Mid2 and Wsc1

[53]. This provides a direct connection between the mechanical state of the cell wall and

polarization. Similar connections between polarity and mechanics have been observed in

yeast spores [101] but have not been considered fully in other models of yeast polarization.

As the biological details of how Rho1 interacts with Bni1 are not fully known, we propose

a generic mechanism by which the polymerization of actin has a direct dependence on

the strain rate present in the cell wall. Also, as it is computationally intensive to couple

a detailed model of polarization and mechanics we will start by focusing on a coarse

grained model of polarization that preserves many of the characteristics of more detailed

models. A schematic for the reactions we will consider can be seen below in Figure 5.1,

and the reactions themselves with relevant parameter values are given in Section 5.5.

This is a novel combination of reactions found in [16] and [3] along with our proposed
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mechanical feedback reaction.

Figure 5.1: A: Schematic of coarse grained model of Cdc42 and Actin polarization.

As a first attempt to couple the model of polarization presented above in Figure

5.1 with a description of the mechanics of the cell wall, we formulate both the reaction-

diffusion dynamics and the mechanics of the wall as a coupled system of partial differential

equations (PDEs). Following the formulation presented in [18] for the cell wall, we

describe the growth of the mating projection as the expansion of an axisymmetric thin

shell, parametrized by the arclength s from the projection apex and azimuthal angle

φ (see Figure 5.2). This growth is powered by the cell’s internal turgor pressure, P .

The shape of the projection is characterized by its local radius, r(s, t), and the principal

curvatures κs = ∂θ
∂s

and κφ = sin θ
r

, respectively, where θ(s, t) is the angle between the

local outward normal and the axis of growth (Figure 5.2). The coordinates (r, φ, z) are

standard cylindrical coordinates, and the angle θ and arclength s parameterize changes

in normal and tangential directions of the surface, n̂ and ŝ respectively [62, 61]. The time

evolution of the mating projection shape is governed by the mechanics and assembly of
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the cell wall, as described below.

Figure 5.2: A: Geometry of the system and definition of relevant variables. B: Sketch
depicting the increasing cell wall viscosity and decreasing cell wall assembly away from
the apex. The inset depicts local normal force balance at the cell wall. All variables
are defined in the main text.

Building on previous work combining cell wall mechanics and growth in tip-growing

cells [61], as well as on the expansion of thin viscous shells [62], we write the equations

governing the dynamics of the growing cell wall. Local normal force balance at the cell

wall is given by the following equations

σssκs + σφφκφ = P (5.1)

σssκφ = P/2 (5.2)

where σss(s, t) and σφφ(s, t) are the tensions along s and φ in the wall (Figure 5.2). The
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expansion of the cell wall during growth is caused by the tensions and depends on the

mechanical properties (rheology) of the cell wall, which govern the response of the cell

wall to applied stresses. As discussed in Section 2.3, we assume the cell wall of the

growing mating projection to behave as an inhomogeneous viscous fluid, with spatially

varying viscosity µ(s), minimal at the apex and increasing away from it (Figure 5.2).

The local tangential velocity u(s, t) of a cell wall with constant density ρw, or its strain

(expansion) rates ε̇s = ∂u
∂s

and ε̇φ = 1
r
dr
dt

equivalently, can be minimally related to the

tensions in the wall by [62, 61]

σss = 4µh[ε̇s + ε̇φ/2] (5.3)

σφφ = 4µh[ε̇s/2 + ε̇φ] (5.4)

As mentioned in Section 2.3 and [18], cell wall assembly occurs through the synthesis

of the primary wall component β1,3-glucan by the synthase Fks1. Accounting for these

events, mass conservation of the cell wall gives the following equation

∂t(rh) + ∂s(rhu) =
rmmkp
ρw

Am(s, t) (5.5)

where h(s, t) is the cell wall thickness, and mm and kp are the mass of a β1,3-glucan

monomer and the β1,3-glucan assembly rate by Fks1/2 synthases, respectively. For

simplicity, we assume that the assembly rate of new cell wall material is proportional to

the local surface density of actin Am, the dynamics of which are given by the reactions

in Figure 5.1. The dynamics of actin and Cdc42 can be written in the curved geometry

of the cell as follows
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∂t(rCc)−Dc∂s(r∂sCc) = r(−β2Cc + β3Cm − β1CcAm) (5.6)

∂t(rCm)−Dm∂s(r∂sCm) = r(β2Cc − β3Cm + α3Ca − β1CmAm) (5.7)

∂t(rCa)−Dm∂s(r∂sCa) = r(β1CcAm + β1CmAm − α3Ca) (5.8)

∂t(rAc)−Dc∂s(r∂sAc) = r(−AonAcCa − SAc[ε̇s + ε̇φ] + AoffAm) (5.9)

∂t(rAm) = r(AonAcCa + SAc[ε̇s + ε̇φ]− AoffAm) (5.10)

where Cc, Cm and Ca represent the concentrations of cytoplasmic, inactive membrane

bound, and active membrane bound Cdc42, and Ac and Am represent the concentrations

of cytoplasmic and membrane bound actin, respectively. Equations 5.1-5.10 define a

system of coupled PDEs describing the mechanics of the cell wall and polarization. To

initially test whether the coarse grained model of polarization given in Figure 5.1 with the

proposed mechanical feedback was able to polarize active Cdc42 and membrane bound

actin in a tip-shaped geometry, we fixed a geometry and strain rate profile from equations

5.1-5.5 and solved equations 5.6-5.10. The results of this simulation can be seen below

in Figure 5.3. As seen below, these coarse grained dynamics with a mechanical feedback,

starting with randomly distributed initial conditions for all species yield a polarized

steady state for active Cdc42 and membrane bound actin. This preliminary result shows

that these dynamics are in fact capable of localizing at the tip of projection shaped

geometries. Now that we have seen that this mechanical feedback mechanism can in fact

stabilize polarization at the tip of a curved geometry in the deterministic setting we look

to couple a three-dimensional spatial stochastic implementation of the model in Figure

5.1 with mechanics and grow a mating projection using the general method presented in

Chapter 3.
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Figure 5.3: A: Tip-shaped geometry and strain rate profile that are used as input to
the coarse grained polarization model. B: Randomly distributed initial conditions for
Cdc42 and actin in a curved geometry with a specified strain profile. C: Polarized
steady state for Cdc42 and actin in a curved geometry with a specified strain profile. In
both cases here the concentration of each species was normalized by the total amount
of Cdc42 or actin respectively. Also here the strain rate profile is scaled to share a
maximum with either Cdc42 or actin for plotting so that the profiles can be more
easily compared. The cooperatively of the mechanical feedback for these simulations
was S = 106.
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5.2 Effect of mechanical feedback on a three dimen-

sional spatial stochastic model of polarization

In addition to the PDE model presented above, we extended our analysis and investi-

gated the possibility of a mechanical feedback on polarization utilizing three-dimensional

spatial stochastic models of polarization. One reason this extension is particularly in-

teresting is that, as discussed in Chapter 4 and [17], we have shown that there can be a

significant impact of cell shape on the dynamics of polarization. Specifically, for several

three-dimensional reaction-diffusion models of polarization tested, there was a consistent

bias of the polarization cap away from the tip of projection shaped geometries. The me-

chanical feedback on the polymerization of actin cables via Rho1 presented above could

potentially provide a remedy for this bias away from the tip while the cell is growing

a mating projection. Namely, if the activation of Bni1 (and ultimately actin) via Rho1

is dependent on the strain rate present in the cell wall, then during mating projection

growth this preferential activation could in fact stabilize the polarization cap in the tip of

the projection. To first investigate this possibility we have fixed a tip-shaped geometry

and simulated the dynamics of the coarse grained model of polarization presented in Fig-

ure 5.1 both with and without mechanical feedback, similar to the results presented in

Figure 4.1. These results can be seen below in Figure 5.4. As with the models presented

in 4 and [17], with no mechanical feedback the polarization cap is unstable in the pro-

jection geometry (see Figure 5.4A). In contrast, when an exponential strain rate profile

is imposed via the mechanical feedback on the attachment of actin, the polarization cap

is stabilized in the tip of the projection (see Figure 5.4B). This is another demonstration

of the concept that a preferential activation of actin dependent on a strain rate profile

can in fact stabilize polarization in these projection geometries.
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Figure 5.4: A: Visualization of the active Cdc42 polarization cap drifting away from
the tip during one realization. The top panel is a plot of the surface density of active
Cdc42 versus the distance away from the tip along the perimeter of the shape for
various time points (to get a 1D plot, the 3D profile was averaged along the surface
of the shape). The bottom panel shows the corresponding 3D visualization of the
active Cdc42 distribution. The drifting shown here took place in a matter of 1000
seconds. This simulation was performed with no mechanical feedback (i.e. setting
S = 0.) B: Visualization of the stabilization of the active Cdc42 polarization cap with
the addition of mechanical feedback (S = 5000). The imposed strain rate profile is
shown in red.

5.3 Coupling polarization and mechanics to simulate

projection growth

In the previous sections we have presented a coarse grained model of polarization that

contains a novel mechanical feedback on the polymerization of actin. This mechanism

of preferential attachment is general and meant to stand in for the interaction between

the cell wall stress sensors, Rho1 and the formin Bni1. We have demonstrated that

92



Combined Model of Polarization and Mechanics Chapter 5

this model is capable of polarizing at the tip of projection shaped geometries for both

the deterministic 2D and stochastic 3D case. Now it is our goal to couple this spatial

stochastic model of polarization with equations 5.1-5.5 which describe the mechanics of

the cell wall. We will be using a similar operator splitting methodology to that which we

presented in Chapter 3 where instead of a domain that is changing in a predetermined

manner or governed by an ad-hoc model of growth, we utilize equations 5.1-5.5 to govern

the shape of the domain. A schematic for this approach can be seen below in Figure 5.5.

Figure 5.5: Schematic for operator split methodology utilized in the coupling of po-
larization and mechanics.

The first step of the coupled simulation was to solve the polarization dynamics on
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an initial geometry of a sphere with a radius r = 2µm for one time step, starting with

randomly scattered initial conditions for each species. In theory, throughout the sim-

ulation the time step can be chosen such that the shape of the cell does not change

dramatically over one time step. The inherent separation of time scales of this problem,

with polarization dynamics on the order of minutes and the growth of a mating projec-

tion on the order of hours, naturally lends itself to our operator splitting technique. For

the results presented in this section, our time step was chosen to be 10 minutes (or 600

seconds) unless otherwise noted. An example of the three dimensional actin distribution

after one time step can be seen below in Figure 5.6A. It should be noted that on the

initial step there is no strain profile so the mechanical feedback is effectively nonexistent.

All of the three dimensional, spatial stochastic simulation in this section was done using

PyURDME [13]. Next, the three dimensional actin distribution was fit with a Gaussian

along the arc length s and used as input to equation 5.5 describing the dynamics of cell

wall assembly in the mechanics equations. To do this, the arc length for each voxel in

the three dimensional mesh was calculated and each voxel was assigned to a histogram

bin along the arc length. This histogram of molecule counts versus s was then averaged

over the time step and divided by the appropriate surface area to yield a surface concen-

tration. An example of a fit actin concentration profile after one time step can be seen

below in Figure 5.6B.

The next step in the coupled simulation was to solve the mechanics equations 5.1-5.5

over the same time step with the initial geometry and actin profile as specified above. As

mentioned previously, these equations were solved by discretizing the arc length s which

yields a system of differential algebraic equations (DAEs) via the method of lines (MOL).

This system of DAEs was solved using the SUNDIALS package [70]. The result of solving

the mechanics equations is a change in shape. An example of the change in shape over

one time step can be seen below in Figure 5.7A. The new two dimensional shape was
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Figure 5.6: A: The three dimensional distribution and polarization of actin after one
time step. B: Corresponding two dimensional Gaussian fit for the actin profile versus
arc length.

then used to create the three dimensional, tetrahedral mesh for the stochastic simulation

of polarization over the next time step. To do this, the discretized two dimensional shape

was converted into a downsampled, three dimensional point cloud of the cell surface by

rotation using the software Meshlab [102] (an assumption of the mechanics formulation

is an axisymmetric cell shape). This point cloud was then converted into a tetrahedral

mesh using Gmsh [99]. Next, the biochemical state was transferred from the last mesh to

the new one using the technique from Figure 3.3 (see Figure 5.7C). The biochemical state

was then simulated over the next time step on the new geometry. Importantly, another

output of the mechanics equations is the current strain profile of the cell wall (see Figure

5.7B). This profile was rotated and converted into a three dimensional field and used to

assign each voxel in the computational mesh a strain rate. The strain rate in each voxel

then encodes the mechanical feedback on the attachment rate of actin presented in Figure

5.1. This iterative process then repeats for several time steps to yield the growth of a

mating projection. The input to the equations describing the mechanics of the cell wall is
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the distribution of actin from the polarization simulation which is used in 5.5 as a proxy

for the distribution of cell wall synthases. The mechanics then yield a new cell shape

and a resultant strain rate profile to be used in the coarse grained model of polarization.

It is in this way that a detailed model of polarization and a physically based model of

mechanics are coupled to yield stable projection growth. One example of the resultant

three dimensional growth of a projection (along with the actin distribution) can be be

seen below in Figure 5.7D.

5.4 Discussion

Understanding how walled cells are able to achieve stable morphogenesis and shape

change is an important question in biology. The cell wall is critical for maintaining the

shape and mechanical integrity of plant, bacterial and fungal cells. Any change in material

properties of the cell wall must be heavily regulated to avoid cell lysis. In yeast cells, the

growth of a mating projection presents a useful model problem for understanding this type

of morphogenesis. In Section 2.3 of this dissertation and [18] we presented a theoretical

model that showed that a mechanical feedback between cell wall expansion and assembly

is necessary for stable projection growth. Our goal in this chapter was to further explore

the connections between the biochemical signaling responsible for actin cable formation

and cell wall morphogenesis by presenting a fully coupled model of polarization and

mechanics.

During yeast mating, the cell responds to a extracellular gradient of mating pheromone

via an intracellular cascade of protein reactions. This cascade leads to polarization of

key proteins on the membrane and actin cable formation. In Chapter 4 we demonstrated

that cell shape can have a significant impact on the dynamics of polarization for a va-

riety of current reaction-diffusion models. Specifically, there seems to be a consistent
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Figure 5.7: A: Time evolution of the cell shape for one time step resulting from the
solution of equations 5.1-5.5. B: The resultant strain profile that is used to determine
the reaction rate for mechanical feedback on actin attachment as seen in Figure 5.1.
C. After each time step of the mechanics equations a new computational mesh is gen-
erated. The biochemical state is redistributed from the old mesh to the new one using
the method shown in Figure 3.3. D: One example of stable mating projection growth
from the coupled simulation described above. The cooperatively of the mechanical
feedback for these simulations was S = 5000.

bias of the polarization cap away from the tip of projection shaped geometries. This

is in contrast to what is seen in vivo where it is critical for polarization to remain at
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the tip of growing projections to direct growth. To address this issue in the context of

a coupled model of polarization and mechanics, we have proposed a direct mechanical

feedback on the dynamics of polarization (see Figure 5.1). In particular, we have im-

plemented this feedback as a strain rate dependent attachment of actin in our coarse

grained polarization model. This mechanism is representative of the known link between

the cell wall stress sensors (Mid2 and Wsc1) and the actin nucleator Bni1 via the protein

Rho1 [53]. While there is still experimental work to be done to establish the details

and validity of such a mechanism, we believe that this type of preferential activation by

strain rate is a general way to stabilize current reaction-diffusion models of polarization

during mating projection growth. In general, the details of the mechanisms responsible

for the establishment and maintenance of polarization are disputed and currently being

studied. Our proposed mechanical feedback is an elegant possible mechanism to aid in

the maintenance of polarization during mating projection growth.

To investigate the properties of our proposed coupled model of polarization and

mechanics, we first numerically solved the PDEs governing coarse grained polarization

(equations 5.6-5.10) in a curved geometry with a corresponding strain profile set by the

mechanics equations (equations 5.1-5.2). These results showed that, at least preliminar-

ily, this model was able to polarize in tip-shaped geometries (see Figure 5.3). Next we

tested this same model in a three dimensional spatial stochastic simulation. Specifically

we showed that in the absence of our proposed mechanical feedback, the polarization

cap was unstable in projection shaped geometries (see Figure 5.4A). The addition of an

imposed strain rate profile stabilized the polarization cap in the tip of the projection

shaped geometry (see Figure 5.4B). This polarization model was then used in a fully

coupled model of polarization and mechanics.

Simulating a fully coupled model of polarization and mechanics posed a technical

challenge. Part of this challenge was due to the different mathematical formulations of
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each component of the model. Specifically, the polarization dynamics are described by

a three dimensional, spatial stochastic reaction-diffusion system while the mechanics of

the cell wall are described by an axisymmetric PDE. This coupling was achieved using an

operator splitting methodology originally presented in Chapter 3. In each time step the

polarization dynamics are solved on a static geometry. This yields an actin profile which

is used as input to equation 5.5 which governs cell wall assembly. Next the mechanics

equations were solved over the time step to yield the new shape and strain rate profile

of the cell. This shape was converted into a computational mesh for the next stochastic

simulation and the strain rate profile was used in our proposed mechanical feedback

reaction. In this way the coupled dynamics were iterated for several time steps to yield

stable projection growth (see Figure 5.7D).

Overall the results presented in this chapter raise some intriguing possibilities about

the connections between cell wall mechanics and polarization during mating projection

growth. Our approach for coupling these different dynamics is general and could yield

insight into other systems where directed growth is essential. The traditional paradigm

of treating biochemical signaling and cell mechanics as separate might fail to capture key

biological mechanisms. In the future we hope to investigate experimentally the possible

influence of Rho1 on polarization during projection growth. We also hope to implement

our coupled model for more detailed models of polarization and more thoroughly charac-

terize the characteristics of projection growth for different parameter regimes. This could

lead to new insight about which mechanisms are important during projection growth and

lead to comparisons between experimental and modeled protein dynamics. Mechanical

feedback may very well be yet another mechanism involved in the maintenance of polar-

ization in yeast.
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5.5 Model details and parameter values

Model 1: Reactions for the coarse grained model of Cdc42 and actin polarization

presented in Figure 5.1.

Cdc42GDPc
β2−→ Cdc42GDPm

Cdc42GDPm
β3−→ Cdc42GDPc

Cdc42GDPc + Actinm
β1−→ Cdc42GTPm + Actinm

Cdc42GDPm + Actinm
β1−→ Cdc42GTPm + Actinm

Cdc42GTPm
α3−→ Cdc42GDPm

Actinc + Cdc42GTPm
Aon−−→ Actinm + Cdc42GTPm

Actinc
Sε̇−→ Actinm

Actinm
Aoff−−−→ Actinc

Parameter Value Description Source
Dm 0.0053 µm2s−1 Diffusion constant on membrane [3]
Da 0.0 µm2s−1 No actin diffusion on membrane [3]
Dc 10 µm2s−1 Diffusion constant in cytoplasm [100]
R 2 µm Radius of cell [3]
N42 3000 Total number of Cdc42 molecules [16]
NA 40 Total number of Actin cables [3]
α3 1 s−1 Deactivation of Cdc42 [16]
β1 0.266 µm3s−1 Activation of Cdc42 by Cdc24 [16]
β2 0.28 µms−1 Attachment of Cdc42 to membrane [16]
β3 1 s−1 Detachment of Cdc42 from membrane [16]
Aon 0.197 µm3s−1 Recruitment of Actin by Bni1 [3]
Aoff 785/(500 + Spa2m) Detachment of Actin from membrane [3]
S varied Cooperativity of mechanical feedback
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Chapter 6

Conclusions and Future Directions

The wide variety of structures and patterns found in the natural world is one of the hall-

marks of life. Understanding how these structures form and maintain themselves over

time is a classic problem in physics and biology. In this dissertation we have concerned

ourselves with the particular model system of morphogenesis during yeast mating. Specif-

ically, we have presented results related to the mathematical modeling of the biochemical

processes governing protein pattern formation during mating and how these dynamics

can yield cell shape change. In this problem, intercellular biochemical signaling and cell

mechanics are closely coupled.

Computational methods and mathematical modeling have become essential tools in

systems biology research over the last half century. One issue that has become increas-

ingly important to understanding intracellular signaling is the inherent stochasticity of

biochemical reactions. In Section 2.2 we discussed the current approaches for spatial

stochastic simulation. We also mentioned our work on PyURDME, a software frame-

work for the simulation of spatial stochastic reaction-diffusion systems. This framework

was designed to efficiently and reproducibly create, simulate and analyze these often com-

plex models. We also mentioned MOLNs, a computational platform that can leverage
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high-performance computing and cloud services to scale up simulations. These software

developments then served as the basis for our later biological inquires into yeast mating

projection growth.

The first step in the process of mating projection growth is the localization (or po-

larization) of proteins on the membrane of the cell. This is a well-studied, yet not fully

understood, example of pattern formation in biology. There are several models of polar-

ization at varying levels of mathematical complexity. In Section 2.1 we reviewed several of

these models and discussed some of the current issues in the field. As mentioned above,

our concern here was the growth of the mating projection, which inherently involves

geometries that are changing in time. In Chapter 3 we presented a novel method for

spatial stochastic simulation on moving domains. We first described the mathematical

details of the method and then validated it against other existing techniques. Next we

demonstrated the utility of the method with a variety of biologically relevant example

problems. The development of our method was motivated by our problem of interest in

yeast mating but is general for spatial stochastic dynamics on time-dependent domains.

Using the technical advances introduced above we went on to explore the biology of

the problem. One insight in particular that we gained was the effect that complex cell

geometries can have on the dynamics of polarization. In Chapter 4 we presented our

work elucidating the effects that tip-shaped geometries can have on current models of

polarization. Specifically, there seems to be a consistent bias of the polarization cap away

from the tip of projection shaped geometries. This is in contrast to what is seen in vivo

where it is critical for polarization to remain at the tip of growing projections to direct

growth. Our work raised questions about which mechanisms could possibly be missing

from current models of polarization to overcome such effects.

While polarization is certainly necessary for mating projection growth, it is not the

whole story. The cell wall is a critical structure in plant, bacterial and fungal cells
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responsible for defining cell shape and providing mechanical integrity. In Section 2.3 we

discussed the structure of the cell wall and how it is maintained. We also discussed work

that showed that a mechanical feedback between cell wall expansion and assembly is

necessary for stable projection growth. In Chapter 5 we finished by presenting a model

coupling the dynamics of polarization and cell wall mechanics. To stabilize polarization in

the tip of growing projections we proposed a novel mechanical feedback for polarization.

This coupled model was a technical challenge that ultimately led to a simulation of stable

mating projection growth from the initial polarization to the final projection.

There are still several questions that remain unanswered about the interaction of

polarization and cell mechanics. One interesting direction, building on the work we

presented in Chapter 5, is the experimental exploration of the effects of Rho1 on the sta-

bility of polarization during mating projection growth. These are difficult experiments

because Rho1 is a signaling hub that effects many proteins downstream. Another inter-

esting direction, as mentioned in Chapter 5, is to incorporate more detailed models of

polarization into our coupled simulation framework and to more thoroughly explore the

characteristics of these coupled models for different parameter regimes. These advances

could potentially lead to more quantitative comparisons between experiment and simu-

lation such as the spatial distribution of specific proteins during growth. This feedback

between simulation and experiment has been a mainstay of our approach throughout

this dissertation and has been shown to lead to useful biological insights. Our general

methodology for coupling polarization and mechanics could also be used to study other

model problems where cells are changing shape in time or growing projections such as

chemotaxis.

To conclude, understanding how biological structures form, maintain themselves over

time and change in response to stimuli is a formidable task. In this dissertation we focused

on the model problem of mating projection growth in yeast. Even in this seemingly
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simple example there are several issues that are not well understood. We have developed

software and computational techniques that have enabled us to gain new insight into

this problem. Moving forward we hope our work can help advance the understanding of

the interactions between biochemical pattern formation and the physical structure of the

cell.
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cell cycle inhibitor whi5 controls budding yeast cell size, Nature 526 (Oct, 2015)
268–272. 26390151[pmid].

[97] M.-P. Gulli, M. Jaquenoud, Y. Shimada, G. Niederhuser, P. Wiget, and M. Peter,
Phosphorylation of the cdc42 exchange factor cdc24 by the pak-like kinase cla4 may
regulate polarized growth in yeast, Molecular Cell 6 (2000), no. 5 1155 – 1167.

[98] C.-S. Chou, Q. Nie, and T.-M. Yi, Modeling robustness tradeoffs in yeast cell
polarization induced by spatial gradients, PLOS ONE 3 (09, 2008) 1–16.

[99] C. Geuzaine and J. Remacle, Gmsh: a three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities, International Journal for
NUmerical Methods in Engineering 79 (2009), no. 11 1309–1331.

112



[100] B. D. Slaughter, J. W. Schwartz, and R. Li, Mapping dynamic protein
interactions in map kinase signaling using live-cell fluorescence fluctuation
spectroscopy and imaging, Proceedings of the National Academy of Sciences 104
(2007), no. 51 20320–20325, [http://www.pnas.org/content/104/51/20320.full.pdf].

[101] D. Bonazzi, J.-D. Julien, M. Romao, R. Seddiki, M. Piel, A. Boudaoud, and
N. Minc, Symmetry breaking in spore germination relies on an interplay between
polar cap stability and spore wall mechanics, Developmental Cell 28 (2017/10/11,
2014) 534–546.

[102] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, MeshLab: an Open-Source Mesh Processing Tool, in Eurographics
Italian Chapter Conference (V. Scarano, R. D. Chiara, and U. Erra, eds.), The
Eurographics Association, 2008.

113

http://xxx.lanl.gov/abs/http://www.pnas.org/content/104/51/20320.full.pdf

	Curriculum Vitae
	Abstract
	Introduction
	Outline

	Background
	Models of Polarization in Yeast Budding and Mating
	Stochastic Simulation of Biochemical Reactions
	Role of the Cell Wall in Morphogenesis

	Spatial Stochastic Simulation on Moving Domains
	Introduction
	Computational Method for Spatial Stochastic Simulation with a Moving Boundary
	Results
	Conclusions
	Experimental Details

	The Effect of Cell Geometry on Polarization in Budding Yeast
	Introduction
	Results
	Discussion
	Materials and methods
	Model details and supporting figures

	Combined Model of Polarization and Mechanics
	Simplified model of polarization and mechanical feedback
	Effect of mechanical feedback on a three dimensional spatial stochastic model of polarization
	Coupling polarization and mechanics to simulate projection growth
	Discussion
	Model details and parameter values

	Conclusions and Future Directions
	Bibliography



