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Abstract

Tropical and non-Archimedean curves

by

Ralph Elliott Morrison

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Tropical geometry is young field of mathematics that connects algebraic geometry and
combinatorics. It considers “combinatorial shadows” of classical algebraic objects, which
preserve information while being more susceptible to discrete methods. Tropical geometry
has proven useful in such subjects as polynomial implicitization, scheduling problems, and
phylogenetics. Of particular interesest in this work is the application of tropical geometry
to study curves (and other varieties) over non-Archimedean fields, which can be tropicalized
to tropical curves (and other tropical varieties).

Chapter 1 presents background material on tropical geometry, and presents two perspec-
tives on tropical curves: the embedded perspective, which treats them as balanced polyhedral
complexes in Euclidean space, and the abstract perspective, which treats them as metric
graphs. This chapter also presents the background on curves over non-Archimedean fields
necessary for the rest of this work, including the moduli space of curves of a given genus and
the Berkovich analytic space associated to a curve.

Chapters 2 and 3 study tropical curves embedded in the plane. Chapter 2 deals with
tropical plane curves that intersect non-transversely, and opens with a result on which con-
figurations of points in such an intersection can be lifted to intersection points of classical
curves. It then moves on to present a joint work with Matthew Baker, Yoav Len, Nathan
Pflueger, and Qingchun Ren that builds up a theory of bitangents of smooth tropical plane
quartic curves in parallel to the classical theory.

Chapter 3 presents joint work with Sarah Brodsky, Michael Joswig, and Bernd Sturmfels,
and is a study of which metric graphs arise as skeletons of smooth tropical plane curves. We
begin by defining the moduli space of tropical plane curves, which is the tropical analog of
Castryck and Voight’s space of nondegenerate curves in [CV09]. The first main theorem is
that our space is full-dimensional inside of the tropicalization of the corresponding classical
space, a result proved using honeycomb curves. The chapter proceeds to a computational
study of the moduli space of tropical plane curves, and explicitly computes the spaces for
genus up to 5. The chapter closes with both theoretical and computational results on tropical
hyperelliptic curves that can be embedded in the plane.
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Chapter 4 presents joint work with Qingchun Ren and is an algorithmic treatment of a
special family of curves over a non-Archimedean field called Mumford curves. These are of
particular interest in tropical geometry, as they are the curves whose tropicalizations can
have genus-many cycles. We build up a family of algorithms, implemented in sage [S+13],
for computing many objects associated to such a curve over the field of p-adic numbers,
including its Jacobian, its Berkovich skeleton, and points in its canonical embedding.

Chapter 5 is joint work with Ngoc Tran, and is a departure from studying tropical
curves. It considers what it means for matrix multiplication to commute tropically, both in
the context of tropical linear algebra and by considering the tropicalization of the classical
commuting variety, whose points are pairs of commuting matrices. We give necessary and
sufficient conditions for small matrices to commute, and illustrate three different tropical
spaces, each of which has some claim to being “the” space of tropical commuting matrices.
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Chapter 1

Introduction

In this chapter we review the basics of tropical geometry, focusing on tropical curves from
both embedded and abstract viewpoints. We also review background on curves over non-
Archimedean fields and the associated Berkovich spaces. For more background, see [BPR12]
and [MS15].

1.1 Tropical geometry

Tropical geometry is concerned with polynomials over the tropical semiring (R,⊕,�). Here,
R is the usual real numbers together with an element ∞, defined to be greater than any
element of R. The binary operations are defined by a ⊕ b := min{a, b} and a � b := a + b,
where a⊕∞ =∞⊕ a = a and a�∞ =∞� a =∞ for any a ∈ R. This algebra is called
a semiring since it has all the structure of a ring except there are no additive inverses. In
fact, apart from additive inverses, it has all the structure of a field: 0 is the multiplicative
identity, and any a in R has −a as a multiplicative inverse.

A polynomial in n variables over this semiring can be interpreted as a function from Rn

to R given by the minimum of linear forms, one for each monomial of the polynomial. For
instance, the polynomial

1� x�2 ⊕ x� y ⊕ 1� y�2 ⊕ x⊕ y ⊕ 1

can be thought of as a map from R2 to R sending (x, y) to min{1 + 2x, x+ y, 1 + 2y, x, y, 1}.
Let f be a tropical polynomial in n variables. The tropical vanishing locus V (f) is the

set of all points in Rn where the minimum in f is attained at least twice. This defines a
tropical hypersurface. The combinatorics of the tropical hypersurface can be found from a
subdivision of the Newton polytope of f . If f is the tropical quadric above, then V (f) is
the tropical plane curve pictured in Figure 1.1. The curve divides R2 into six unbounded
regions, one for each of the six monomials in the polynomial achieving the minimum. The
tropical curve consists of four vertices (at (0, 0), (−1, 0), (0,−1), and (1, 1)), three bounded
edges, and six rays.
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1
x

y

1� x�2

1� y�2

x� y

Figure 1.1: A tropical quadric curve in R2

More generally, a tropical prevariety is the intersection of a finite number of tropical
hypersurfaces. We will momentarily see that some tropical prevarieties arise from classical
varieties, in which case we call them tropical varieties. A tropical variety has the structure
of a weighted, balanced polyhedral complex. In Figure 1.1, this “balanced” property means
that the sum at each vertex of the outgoing slopes, when written as primitive integer vectors,
is equal to 0.

An alternate description of tropical geometry connects it with varieties over non-Archimedean
fields. Let K be an algebraically closed field with non-trivial non-Archimedean valuation
val : K∗ → R. A common example throughout this work will be K = C{{t}}, the field of
Puiseux series over the complex numbers with indeterminate t. This is the algebraic closure
of the field of Laurent series over C, and can be defined as

C{{t}} =

{ ∞∑
i=k

ait
i/n : ai ∈ C, n, k ∈ Z, n > 0

}
,

with val
(∑∞

i=k ait
i/n
)

= k/n if ak 6= 0. In particular, val(t) = 1. Other important examples
of non-Archimedean fields are the p-adic numbers Qp, where p is a prime number, and the
complex p-adic numbers Cp, a complete and algebraically closed field containing Qp. These
are featured in Chapter 4.

The tropicalization map trop : (K∗)n → Rn sends points in the n-dimensional torus over
K into Euclidean space under coordinate-wise valuation:

trop : (a1, . . . , an) 7→ (val(a1), . . . , val(an)).

For a variety X ⊂ (K∗)n, the tropicalization of X, denoted Trop(X), is the Euclidean closure
of the image ofX under this map. Such a subset of Euclidean space is called a tropical variety.
The tropicalization of a variety very much depends on its embedding.
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The following theorem connects the two definitions of a tropical variety. For f =∑
v aix

v ∈ K[x1, . . . , xn], let the tropicalization of f be the tropical polynomial trop(f) :=⊕
v val(ai)� x�v.

Theorem 1.1.1 (The Fundamental Theorem of Tropical Geometry). Let I ⊂ k[x1, . . . , xn]
be an ideal, and let X = V (I) ∩ (K∗)n. Then

Trop(X) =
⋂
f∈I

V (trop(f)).

This result was proven in an unpublished manuscript by Mikhail Kapranov in the case
of hypersurfaces. See [MS15, Theorem 3.2.5] for a proof of the general result.

If the intersection in Theorem 1.1.1 can be taken over a finite subset of I, we call that
finite collection of polynomials a tropical basis for Trop(X). Every tropical variety has a
tropical basis, although it may contain more elements than a basis for the classical ideal I
(see Section 5.2 for an example). It follows that a tropical variety is a tropical prevariety as
defined above.

A one-dimensional tropical variety is called a tropical curve. Throughout this work, we
will consider these objects at varying levels of abstraction. When we refer to an embedded
tropical curve (Section 1.2), we are considering a one-dimensional balanced polyhedral com-
plex sitting in some Rn. When we refer to an abstract tropical curve (Section 1.3), we are
considering the underlying metric graph.

A common theme throughout this work is a phenomenon that the tropicalization of a
classical object might differ from the most natural tropical analog of that classical object.
In Chapter 2, we see that curves with finitely many intersection points can correspond to
tropical curves with infinitely many intersection points, even though the classical intersection
tropicalizes to a finite set. In Chapter 3, we see that the moduli space of smooth plane quartic
curves tropicalizes to a bigger set than the moduli space of tropical smooth plane quartic
curves. And in Chapter 5, we study the difference between tropical commuting matrices
and tropicalizations of commuting matrices. An important task in tropical geometry is to
identify these discrepancies, and when possible to understand the underlying structure of
them.

1.2 Embedded tropical curves

We will focus in this section on the special case of tropical curves that are embedded in the
plane. Such a tropical curve C is a tropical hypersurface in R2, defined by a single tropical
polynomial

f(x, y) =
⊕

(i,j)∈S
hij � xi � yj,
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where S ⊂ Z2 is a finite index set and no hij is ∞. Let P denote the Newton polygon of
f , which is the convex hull of S, and write A = P ∩ Z2 for the set of lattice points of the
lattice polygon P . Note that S ⊂ A. Associated to the tropical polynomial f is a height
function h : A → R, defined by h(i, j) = hi,j (where h(i, j) = ∞ if there is no (i, j)th term
in f). As described in the previous section, the tropical curve C defined by this min-plus
polynomial consists of all points (x, y) ∈ R2 for which the minimum among the quantities
i · x+ j · y + h(i, j) is attained at least twice as (i, j) runs over A.

The curve C is dual to the regular subdivision ∆ of A induced by h, which we now
describe. Lift each lattice point a ∈ A to the height h(a), then take the lower convex hull of
the lifted points in R3. We project back to R2 by omitting the height, thereby obtaining ∆.
This is illustrated in Figure 1.2. The duality between the subdivision and the tropical curve
is more easily seen by turning the tropical curve upside-down.

1 x x2

xy

y2

y

Figure 1.2: Inducing a subdivision on a Newton polygon, dual to a tropical curve

Each line segment making up C has rational slope and therefore a natural lattice length
with respect to the lattice Z2 ⊂ R2. If a line segment intersects Z2 exactly at its two
endpoints, it has lattice length 1; all other lengths are determined by scaling and translating
such segments. Equivalently, a line segment with slope p/q, where p and q are relatively
prime integers, has length equal to the Euclidean length of the edge divided by

√
p2 + q2.

For an alternate definition of the length of edges in a tropical curve, see Equation (3.3.1)
in Section 3.3. Whenever we speak of length or metrics with respect to embedded tropical
curves, we are referring to lattice length.

By no means does the subdivision ∆ uniquely determine the tropical curve: different
height functions can induce the same triangulation, and will give different lengths to the
edges of the tropical curve even though the combinatorics will be the same. For instance,
the tropical quadric curves in Figures 1.2 and 1.1 are dual to the same ∆, but are drawn
with different lengths on the bounded edges. The set of all height functions h which induce
the same subdivision ∆ is a relatively open polyhedral cone in RA. Its closure is called
the secondary cone and is denoted Σ(∆). The collection of all secondary cones Σ(∆) is a
complete polyhedral fan in RA, which is called the secondary fan of A.
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Figure 1.3: A non-regular triangulation of a polygon

A subdivision ∆ is a triangulation if all maximal cells are triangles. The maximal cones
in the secondary fan Σ(∆) correspond to the regular triangulations ∆ of A. We say the
regular triangulation ∆ of P is unimodular if each triangle in ∆ has area 1/2, or equivalently
that the subdivision contains the maximal number of cells possible. We say the tropical
curve C is smooth if the corresponding subdivision of the Newton polygon is a unimodular
triangulation ∆. It is worth noting that there are some triangulations of polygons that
are not regular, meaning that they are not induced by any height function h, and have
no corresponding tropical curve. See [DLRS10] for more background, and Figure 1.3 for a
non-regular triangulation.

The genus of any tropical curve is its genus as a topological space, i.e. its first Betti
number. In the case of a smooth tropical plane curve C with Newton polygon P , the genus
g = g(C) is the number of interior lattice points of P . The curve C contains a subdivision
of a metric graph of genus g with vertices of valency ≥ 3 as in [BPR12], and this subdivision
is unique for g ≥ 2. The underlying graph G is planar and has g distinguished cycles, one
for each interior lattice point of P . We call G the skeleton of C. It is the smallest subspace
of C to which C admits a deformation retract. Although the metric on G depends on C,
the graph is determined by ∆. Abstract metric graphs will be discussed in more detail in
Section 1.3.

For an illustration, see Figure 1.4, where the tropical curve is drawn upside-down to
highlight the duality. The triangulation ∆ on the left defines a family of smooth tropical
plane curves of degree four. Such a curve has genus g = 3. Its skeleton G is shown on the
right.

1.3 Abstract tropical curves

Following the conventions of [GK08], a graph for us means a finite and connected multigraph
where loops are allowed. Given a graph Γ, the sets of edges and vertices are denoted E(Γ)
and V (Γ), respectively, and val(P ) denotes the valence of a vertex P ∈ V (Γ). When we refer
to the genus g(Γ) of the graph, we mean its genus as a topological space, i.e. the dimension
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Figure 1.4: Unimodular triangulation, tropical quartic, and skeleton

of H1(Γ,R). We say Γ is n-connected if there do not exist n− 1 edges that if deleted would
disconnect the graph. If removing a single edge disconnects a graph, that edge is called a
bridge, and a graph with no bridges is called bridgeless. By definition, a graph is 2-connected
if and only if it is bridgeless.

A metric graph is a pair (Γ, `), where Γ is a graph and ` is a length function ` : E(Γ)→
R+. A abstract tropical curve is a metric graph with unbounded ends allowed; in this case, `
maps to R+ ∪ {∞}. For instance, any tropical curve as defined in Section 1.2 is an abstract
tropical curve, with the metric ` coming from the lattice length of the edges. See Figure 1.5
for some examples of abstract tropical curves.

Figure 1.5: Three abstract tropical curves, of genus 1, 3, and 0

Abstract tropical curves behave analogously to classical algebraic curves, which are Rie-
mann surfaces, in many ways. Of particular interest to us is a divisor theory that works
on these metric graphs, which we will now describe; see [GK08, MZ08] for more details. A
divisor D on a metric graph Γ is an element of the free abelian group on Γ, i.e., a finite
formal sum of points

D = a1 · p1 + . . .+ an · pn,
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where all pi’s are distinct. We say the degree of D at pi is ai, and the degree of D is
a1 + . . .+ an. The divisor D is said to be effective if all the ai are non-negative.

A rational function on Γ is a continuous piecewise linear function (with finitely many
“pieces”) with integer slopes. To a rational function f we associate a divisor div(f) whose
degree at each point p is the sum of the outgoing slopes of f at p. A divisor of this form is
called principal. Note that the degree of a principal divisor is always zero. Sometimes we
will write f trop instead of f to remind the reader that the function is on an abstract tropical
curve.

2

1

3

0

1

Γ

f trop(Γ)

Figure 1.6: The graph of a rational function f trop on an abstract tropical curve Γ.

As an example, consider Figure 1.6. Here Γ consists of four vertices and three edges
arranged in a Y-shape, and the image of Γ under a rational function f is illustrated lying
above it. The leftmost vertex is a zero of order 2, since there is an outgoing slope of −2 and
no other outgoing slopes. The next kink in the graph is a pole of order 1, since the outgoing
slopes are 2 and −1 and 2+(−1) = 1. Moving along in this direction we have a pole of order
4, a zero of order 4, at one endpoint a pole of order 1, and at the other endpoint no zeros
or poles. Note that, counting multiplicity, there are six zeros and six poles. The numbers
agree, as in the classical case.

Two divisors D and D′ are said to be linearly equivalent if D − D′ = div(f) for some
rational function f . A divisor D has rank r if for every effective divisor E of degree r, D−E
is linearly equivalent to an effective divisor (and r is the largest integer with this property).

A canonical divisor on Γ is any divisor linearly equivalent to

KΓ :=
∑
v∈Γ

(valence(v)− 2) · v.

Its degree is 2g − 2, where g is the genus of Γ. A helpful result in Section 2.3 will be the
tropical Riemann-Roch theorem [BN07], which asserts that if Γ is a metric graph and D is
any divisor on Γ, then

rank(D) + rank(KΓ −D) = deg(D) + 1− g.
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Divisor theory on an abstract tropical curve Γ is sometimes phrased in the language of
chip-firing [HMY12]. An effective divisor D =

∑
ai · pi is referred to as a chip configuration,

and we say that there are ai chips at the point pi ∈ Γ. Let ` be a positive real number
and Γ′ ⊂ Γ a (not necessarily connected) subgraph. The corresponding chip firing move
CF (Γ′, `) is the tropical rational function −min(`, d(p,Γ′)), where d measures the distance
from p to Γ′. This function is equal to 0 on Γ′, has slope −1 away from Γ′ within ` of Γ′,
and is equal to −` on the rest of the graph. The boundary points of Γ′ are the zeros of the
tropical rational function, and the other bend points are the poles. This means that CF (Γ′, `)
witnesses the linear equivalence of these two sets of points. We can think of CF (Γ′, `) as
“firing chips” from the boundary points of Γ′, which end up at the other set of points. An
example is illustrated in Figure 1.7. Here, Γ is a line segment of length 6, Γ′ is the union
of the two endpoints, ` is 1, and the graph of CF (Γ′, `) is illustrated as a dashed line. The
two endpoints “fire” to the points labelled with crosses, and the corresponding divisors are
linearly equivalent.

1 14

Figure 1.7: A graph with endpoints “firing” to a linearly equivalent pair of points

Many definitions made for abstract tropical curves are analogous to classical definitions.
For instance, a metric graph Γ is hyperelliptic if it has a divisor of degree 2 and rank 1 [BN09].
This is equivalent to a graph having a degree 2 harmonic morphism to a tree [Cha13], just as
classical hyperelliptic curves have a degree 2 morphism to the projective line. An embedded
version of hyperelliptic graphs will be discussed in Sections 3.5 and 3.6.

We will now assume that our graphs have genus g ≥ 2, and will only consider triva-
lent, leafless, connected graphs. Such a graph has 2g − 2 vertices and 3g − 3 edges,
and the number of such trivalent graphs (up to homeomorphism) for g = 2, 3, . . . , 10 is
2, 5, 17, 71, 388, 2592, 21096, 204638, 2317172; see [Bal76] and [Cha12, Prop. 2.1]. Any triva-
lent abstract tropical curve will admit a deformation retract onto such a graph, and there is
a unique such minimal graph; this is the skeleton described in Section 1.2.

We will let Mg denote the moduli space of metric graphs of genus g. This moduli space
is obtained by gluing together finitely many orthants Rm

≥0, where m ≤ 3g−3, one for each
combinatorial type of graph, modulo the identifications corresponding to graph automor-
phisms. These automorphisms endow the moduli space Mg with the structure of a stacky
fan. We refer to [BMV11, Cha12] for the complete definition of Mg, combinatorial details,
and applications in algebraic geometry. The maximal cones of Mg correspond to trivalent
graphs of genus g. Since each of these graphs has 3g−3 edges, Mg is pure of dimension 3g−3.
It is the tropical analogue of the classical moduli space of curves of genus g, a connection
that will be fleshed out in the following section.

Inside Mg is a stacky subfan Mg,hyp, which consists of all graphs in Mg that are hyper-
elliptic. Unlike Mg, it is not pure dimensional; for instance, M3,hyp has maximal cells of
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dimension 6 and dimension 5. However, the subfan consisting of 2-connected graphs inside
Mg,hyp is pure of dimension 2g − 1, and each 2-connected hyperelliptic graph can be con-
structed as follows [Cha13]. Let T be a metric tree with at most trivalent nodes. Let T ′ be
a copy of T , and connect corresponding vertices v ∈ T and v′ ∈ T ′ by 3− valence(v) edges.
The resulting graph G will be 2-connected and hyperellpitic. A graph that arises from this
construction is called a ladder, and all 2-connected hyperelliptic graphs are ladders. This
fact will be crucial in Section 3.5.

1.4 Curves over non-Archimedean fields

Let K be an algebraically closed field that is complete with respect to a surjective non-
Archimedean valuation val : K∗ → R. Let C be a smooth curve of genus g over K.
Associated to the algebraic curve C is the Berkovich analytification Can [Ber90]. As a set,
Can is the collection of multiplicative seminorms | · | on the coordinate ring of C extending
the usual norm on K, and it is endowed with the weakest topology such that the map
f 7→ |f | is continuous. There is a natural metric on Can \ C, with the points of C thought
of as being infinitely far away. Moreover, the space Can is path-connected (in contrast to
C, which is totally disconnected in the non-Archimedean topology). The space Can contains
a finite metric graph Σ called the minimal Berkovich skeleton of C, onto which there is a
deformation retract of Can. The genus of Σ is at most g. If the genus of Σ is equal to g,
we call C a Mumford curve [Mum72b]. Such curves are the subject of Chapter 4, which will
also describe the Berkovich analytic line (P1)an in detail.

More generally, one can define the analytification of any variety over K. Payne showed
that the Berkovich analytification of an affine variety X is the inverse limit of all tropical-
izations of X [Pay09]. More precisely, given an embedding ι : X → Am, write Trop(X, ι)
for the tropicalization of X under this embedding. Given another embedding ι′ : X → An

and an equivariant morphism ϕ : Am → An such that ι′ = ϕ ◦ ι, we have that Trop(ϕ) maps
Trop(X, ι) into Trop(X, ι′). Then

Xan ∼= lim
←

Trop(X, ι),

where the inverse limit is in the category of topological spaces and is taken over all affine
embeddings ι of X and all such maps Trop(ϕ). The map from Xan to a particular Trop(X, ι)
is given by mapping a multiplicative seminorm | · | to (− log |f1|, . . . ,− log |fm|), where
f1, . . . , fm are the rational functions giving the embedding ι : X → Am.

This means we can view tropical geometry as studying snapshots of Berkovich analytic
spaces. In general, the more information a tropical curve preserves about the Berkovich
analytic curve and the Berkovich skeleton Σ, the more helpful that tropicalization is. In
particular, we say a tropicalization is faithful if Σ is mapped homeomorphically and isomet-
rically onto its image. In the case of faithful tropicalizations, all uses of the term skeleton
in this chapter agree. Baker, Payne, and Rabinoff gave criteria in [BPR12] for when a
tropicalization is faithful; for instance, for tropical plane curves it suffices that the curve is
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smooth. They also proved that every curve C has a faithful tropicalization in some dimen-
sion, which was later improved to 3 dimensions in [BR13] (at the cost of possibly allowing
non-embeddings). The question of which curves admit faithful tropicalizations in the plane
is a major focus of Chapter 3.

Let Mg denote the moduli space of smooth curves of genus g, where g ≥ 2. By our
hypotheses on the field K, every metric graph G of genus g arises as the Berkovich skeleton
from some curve C over K. This defines a surjective tropicalization map from (the K-valued
points in) the moduli space of smooth curves of genus g to the moduli space of metric graphs
of genus g:

trop : Mg → Mg. (1.4.1)

Both spaces have dimension 3g − 3 for g ≥ 2. It was shown by Abramovich, Caporaso, and
Payne [ACP14] that this tropicalization agrees with “naive set-theoretic tropicalization”,
and is faithful.

Consider a plane curve defined by a Laurent polynomial f =
∑

(i,j)∈Z2 cijx
iyj ∈ K[x±, y±]

with Newton polygon P . For τ a face of P we let f |τ =
∑

(i,j)∈τ cijx
iyj, and say that the

curve cut out by f is non-degenerate if for all faces τ of P , the curve defined by f |τ has
no singularities in (K∗)2. Non-degenerate curves are useful for studying many subjects in
algebraic geometry, including singularity theory [Kou76], the theory of sparse resultants
[GKZ08], and real algebraic curves in maximal condition [Mik00].

Let P be any lattice polygon in R2 with g interior lattice points. We write MP for the
Zariski closure (inside Mg) of the set of curves that appear as non-degenerate plane curves
over K with Newton polygon P . This space was introduced by Koelman [Koe91]. Consider
the union over all relevant polygons:

Mnd
g :=

⋃
P

MP . (1.4.2)

This moduli space was introduced and studied by Castryck and Voight in [CV09]. In Chapter
3 we introduce and study the tropical analogues of MP and Mnd

g .
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Chapter 2

Non-proper tropical intersections

In this chapter we consider tropical varieties that intersect in components that are higher
dimensional than expected. In Section 2.1 we consider pairs of plane curves that intersect
in one-dimensional components, and prove constraints on where classical points can map
to within these intersections. Section 2.2 presents explicit examples of these non-proper
intersections. Section 2.3 studies the non-proper intersections of smooth plane tropical quar-
tic curves with their bitangents, and provides a natural segue for the following chapter on
moduli of smooth plane tropical curves.

Sections 2.1 and 2.2 are based on the single-author paper “Tropical images of intersection
points” [Mor15], appearing in Collectanea Mathematica. Section 2.3 is based on the paper
“Bitangents of tropical plane quartic curves” [BLM+14], coauthored with Matthew Baker,
Yoav Len, Nathan Pflueger, and Qingchun Ren.

2.1 Intersections of plane curves

Let K be an algebraically closed non-Archimedean field with a nontrivial valuation val :
K∗ → R, such as the Puiseux series C{{t}}. Consider two plane curves X, Y ⊂ (K∗)2

intersecting in a finite number of points. We are interested in the image of the intersection
points under tropicalization; that is, in Trop(X ∩ Y ) inside of Trop(X) ∩ Trop(Y ) ⊂ R2.
It was shown in [OP13, Theorem 1.1] that if Trop(X) ∩ Trop(Y ) is zero-dimensional in a
neighborhood of a point in the intersection, then that point is in Trop(X∩Y ). More generally,
they showed this for varieties X and Y under the assumption that Trop(X) ∩ Trop(Y )
has codimension codim X + codim Y in a neighborhood of the point. It follows that if
Trop(X) ∩ Trop(Y ) is a finite set, then Trop(X ∩ Y ) = Trop(X) ∩ Trop(Y ).

It is possible for Trop(X) ∩ Trop(Y ) to have higher dimensional components, namely
finite unions of line segments and rays. It was shown in [OR11] that if Trop(X) ∩ Trop(Y )
is bounded, then each connected component of Trop(X) ∩ Trop(Y ) has the “right” number
of images of points in X ∩ Y , counted with multiplicity. They further showed that the
theorem holds for components of Trop(X) ∩ Trop(Y ) that are unbounded, after a suitable
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compactification. In this context, the “right” number is the number of points in the stable
tropical intersection of that connected component, which is defined as limε→0(Trop(X) + ε ·
v) ∩ Trop(Y ), where v is a generic vector and ε is a real number [OR11, 4]. For instance,
in Figure 2.1, two tropical plane curves intersect in a line segment, but have stable tropical
intersection equal to the union of the two endpoints of the line segment; this is the limit of
the transverse intersection of the curves under generic translation. The stable intersection
divisor of such a pair of intersecting curves is the formal sum of points in the stable tropical
intersection, with coefficients recording intersection multiplicity.

We offer the following example to illustrate this higher-dimensional component phe-
nomenon. This will motivate the main question of this section: as we vary X and Y over
curves with the same tropicalizations, how does the set Trop(X ∩Y ) vary inside of the fixed
set Trop(X) ∩ Trop(Y )?

Example 2.1.1. Let K = C{{t}} and let f, g ∈ K[x, y] be f(x, y) = c1 + c2x + c3y and
g(x, y) = c4x+ c5xy + tc6y, where ci ∈ K and val(ci) = 0 for all i. Let X, Y ⊂ (K∗)2 be the
curves defined by f and g, respectively.

Trop(Y )

Trop(Y )

Trop(X) Trop(X)

(0, 0)

(1, 0)

Figure 2.1: Trop(X) and Trop(Y ), before and after a small shift of Trop(Y )

Regardless of our choice of ci, Trop(X) and Trop(Y ) will be as pictured in Figure 2.1,
with Trop(X) and Trop(Y ) intersecting in the line segment L from (0, 0) to (1, 0). However,
X and Y only intersect in two points (or one point with multiplicity 2). The natural question
is: as we vary the coefficients while keeping valuations (and thus tropicalizations) fixed, what
are the possible images of the two intersection points within L?

A reasonable guess is that the intersection points map to the stable tropical intersection
{(0, 0), (1, 0)}, and indeed this does happen for a generic choice of coefficients c1, . . . , c6.
However, as shown in Example 2.2.1, one can choose coefficients such that the intersection
points map to any pair of points in L of the form (r, 0) and (1 − r, 0), where 0 ≤ r ≤ 1

2
.

These possible configurations are illustrated in Figure 2.2.

The main result of this section is that the points Trop(X∩Y ) inside of Trop(X)∩Trop(Y )
must be linearly equivalent to the stable tropical intersection via particular tropical rational
functions. To distinguish tropical rational functions from classical rational functions in this
section, they will be written as f trop, gtrop, or htrop instead of f , g, or h. At times we will
refer to the support of a tropical rational function f trop, which we will denote supp[f trop]. In
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(0, 0) (1, 0) (r, 0) (1− r, 0) (1/2, 0)

2

Figure 2.2: Possible images of X ∩ Y in Trop(X) ∩ Trop(Y ).

all the examples discussed in Section 2.2, essentially every such configuration is achievable.
Conjecture 2.1.8 expresses our hope that this always holds.

Theorem 2.1.2. Let X, Y ⊂ (K∗)2 where X ∩ Y is equal to the multiset {p1, . . . , pn}. Let
E be the stable intersection divisor of Trop(X) and Trop(Y ), and let D be

D =
∑
i

trop(pi).

Then there exists a tropical rational function htrop on Trop(X) such that (htrop) = D − E
and supp[htrop] ⊂ Trop(X) ∩ Trop(Y ).

This result is an instance of understanding the difference between a tropical object and
a tropicalization. The tropicalization of the intersection is a zero-dimensional, and the
tropical intersection is one-dimensional; however, the finite set sits inside the larger set in a
very particular way.

We will present two proofs of Theorem 2.1.2, the first using some additional assumptions
on Trop(X). Although the result in that case is weaker, it illustrates connections to Berkovich
theory, which seems to be a better context for proving a reverse direction. We also present an
alternate argument using tropical modifications, which proves the full scope of the theorem.

Example 2.1.3. Let X and Y be as in Example 2.1.1. We will consider tropical rational
functions on Trop(X) ∩ Trop(Y ) such that

(i) the stable intersection points are the poles (possibly canceling with zeros), and

(ii) the tropical rational function takes on the same value at every boundary point of
Trop(X) ∩ Trop(Y ).

If we insist that the “same value” in condition (ii) is 0, we may extend these tropical rational
functions to all of Trop(X) by setting them equal to 0 on Trop(X) \ Trop(Y ). This yields
tropical rational functions on Trop(X) with supp[htrop] ⊂ Trop(X)∩Trop(Y ), as in Theorem
2.1.2. Instances of the types of such tropical rational functions on L = Trop(X) ∩ Trop(Y )
from our example are illustrated in Figure 2.3.

As asserted by Theorem 2.1.2, all possible image intersection sets in Trop(X)∩Trop(Y )
arise as the zero set of such a tropical rational function. Equivalently, the stable intersection
divisor and the image of intersection divisor are linearly equivalent via one of these functions.



CHAPTER 2. NON-PROPER TROPICAL INTERSECTIONS 14

(0, 0) (1, 0) (r, 0) (1− r, 0) (1/2, 0)

2

Figure 2.3: Graphs of tropical rational functions on Trop(X) ∩ Trop(Y )

Remark 2.1.4. It is not quite the case that the zero set of every such tropical rational
function (from Example 2.1.3) is attainable as the image of the intersections of X and Y
(with changed coefficients). For instance, such a tropical rational function could have zeros

at (
√

2
2
, 0) and (1 −

√
2

2
, 0), which cannot be the coordinate-wise valuations of any points

on X and Y since they have irrational coordinates. However, if we insist that the tropical
rational functions have zeros at points with rational coefficients (since Q = val(K∗)), all zero
sets can be achieved as the images of intersections. This is the content of Conjecture 2.1.8.
Alternatively, we could base-change to a larger field whose value group is R, and then all
zero sets are indeed achieved as images of intersections in our examples.

Since we can tropicalize a curve to obtain a tropical curve, we would like to tropicalize a
rational function on a curve and obtain a tropical rational function on a tropical curve. Let
h be a rational function on a curve X. Näıvely, we might try to define the “tropicalization of
h”, denoted trop(h), as follows. For every point w in the image of X \{zeros and poles of h}
under tropicalization, lift that point to p ∈ X, and define

trop(h)(w) = val(h(p)).

Extend this function to all of Trop(X) by continuity.
Unfortunately this is not quite well-defined, because val(h(p)) depends on which lift p of

w we choose. However, as suggested by Matt Baker, this definition can be made rigorous
if at least one of the two tropicalizations is suitably faithful in a Berkovich sense. Let h
be a rational function on X, and assume that there is a canonical section s to the map
Xan → Trop(X), where Xan is the analytification of X. For w ∈ Trop(X), define

trop(h)(w) = log |h|s(w),

where | · |s(w) is the seminorm corresponding to the point s(w) in Xan. This rational function
has the desired properties.

Remark 2.1.5. In [BPR12, §6] one can find conditions to guarantee that there exists a canon-
ical section s to the map Xan → Trop(X). For instance, if Trop(X) is smooth in the sense
that it comes from a unimodular triangulation of its Newton polygon, such a section will
exist.

We are ready to prove Theorem 2.1.2 with the additional assumption that Trop(X) has
a canonical section s to Xan.
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Proof of Theorem 2.1.2 when there is a canonical section s : Trop(X)→ Xan. Let f and g
be the defining equations of X and Y , respectively. Let g′ ∈ K[x, y] have the same tropical
polynomial as g, and let Y ′ be the curve defined by g′. We have that Trop(Y ) = Trop(Y ′),
and for generic g′ we have that Trop(X ∩ Y ′) is the stable tropical intersection of Trop(X)
and Trop(Y ). (Here “generic” means chosen with coefficients so that no leading terms of
coefficients cancel in the resultant of f and g′.)

Recall that p1, . . . , pn denote the intersection points of X and Y , possibly with repeats.
Let p′1, . . . , p

′
m denote the intersection points of X and Y ′, with duplicates in the case of

multiplicity.
Consider the rational function h = g

g′
onX, which has zeros at the intersection points ofX

and Y and poles at the intersection points of X and Y ′. Since the section s : Trop(X)→ Xan

exists, we may tropicalize h. This gives a tropical rational function trop(h) on Trop(X) with
divisor

(trop(h)) = trop(p1) + . . .+ trop(pn)− trop(p′1)− . . .− trop(p′m) = D − E.

We claim that trop(h) is the desired htrop from the statement of the theorem. All that
remains to show is that supp(trop(h)) ⊂ Trop(X) ∩ Trop(Y ). If w ∈ Trop(X) \ Trop(Y ),
then |g|s(w) = |g′|s(w) because g and g′ both have bend locus Trop(Y ), and w is away from
Trop(Y ). This means that trop(h)(w) = |h|s(w) = |g|s(w)−|g′|s(w) = 0 on Trop(X)\Trop(Y ).
This completes the proof.

Remark 2.1.6. Since we have our result in terms of linear equivalence, we get as a corollary
that the configurations of points differ by a sequence of chip-firing moves on the graph
Trop(X) ∩ Trop(Y ) by [HMY12]. Any chip-firing must take place within this graph, so
boundary points cannot “fire” into Trop(X) \ Trop(Y ) or Trop(Y ) \ Trop(X).

Remark 2.1.7. If Trop(X) ∩ Trop(Y ) is unbounded (for instance, if Trop(X) = Trop(Y )),
then it is possible to have zeros of the rational function “at infinity.” This is OK, and can be
made sense of using a compactifying fan as in [OR11, S3]. See Example 2.2.3 for an instance
of this phenomenon.

An alternate approach to understanding the images of intersection points is by using
tropical modifications [Mik06], [BLdM12, §4], which can be thought of as a tropical version
of the classical algebro-geometric process of “blowing up” varieties in codimension 1. For a
general hypersurface, the process works as follows. Let F (z) be a polynomial in n variables
over the field K, and let Y = (K∗)n \ V (F ). We can emebed Y into (K∗)n+1 by the map
Φ : z 7→ (z, F (z)). The image Φ(Y ) is cut out by zn+1−F (z1, . . . zn) = 0. The tropical variety
W = Trop(Φ(Y )) is then called the tropical modification of Rn defined by F (z). It is defined
by the tropical polynomial zn+1⊕trop(F )(z1, . . . zn). Projecting onto the first n-coordinates,
we obtain a surjective map π : W → Rn, which is one-to-one above Rn \ Trop(V (F )) with
π−1(p) a half ray in the direction (0, . . . , 0,−1) for p ∈ Trop(V (F )).

We now give a proof for the full version of Theorem 2.1.2.
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Proof of Theorem 2.1.2 using tropical modifications. Let X, Y , f , g, g′, D, and E be as in
the previous proof. Let gtrop and (g′)trop be the tropical polynomials defined by g and g′,
respectively.

Let g(X) ⊂ (K∗)2 × K be the curve that is the closure of {(p, g(p) | p ∈ X}. Its trop-
icalization Trop(g(X)) is contained in the tropical hypersurface in R3 determined by the
polynomial z = gtrop, and projects onto Trop(X). Call this projection π. Note that outside
of Trop(Y ), π is one-to-one, and Trop(g(X)) agrees with Trop(g′(X)).

By [BLdM12, Lemma 4.4], the infinite vertical rays in π−1(Trop(X) ∩ Trop(Y )) corre-
spond to the intersection points of X and Y , and so lie above the support of the divisor
D on Trop(X). Delete the vertical rays from π−1(Trop(X) ∩ Trop(Y )), and decompose the
remaining line segments into one or more layers, where each layer gives the graph of a piece-
wise linear function on Trop(X)∩Trop(Y ). (If deleting the vertical rays makes π a bijection,
there will be only one layer.) Call these piecewise linear functions `1, . . . , `k. The tropical
rational function

htrop :=
k∑
i=1

(`i − (g′)trop)

has value 0 outside of Trop(X) ∩ Trop(Y ) because of the agreement of Trop(g(X)) and
Trop(g′(X)), and has divisor D − E. This is our desired tropical rational function.

Theorem 2.1.2 places a constraint on the configurations of images of intersection points
mapping into tropicalizations. The following conjecture posits that essentially all these
configurations are attainable.

Conjecture 2.1.8. Assume we are given Trop(X) and Trop(Y ) and a tropical rational
function htrop on Trop(X) with simple poles precisely at the stable tropical intersection points
and zeros in some configuration (possibly canceling some of the poles) with coordinates in
the value group of K, such that supp[htrop] ⊂ Trop(X) ∩ Trop(Y ). Then there exist classical
curves X and Y with the given tropicalizations such that trop(p1), . . . , trop(pn) are the zeros
of htrop.

Proof Strategy. We consider the space of all configurations of zeros of rational functions on
Trop(X) ∩ Trop(Y ) satisfying the given properties. This forms a polyhedral complex.

• First, we will prove that we can achieve the configurations corresponding to the vertices
of this complex.

• Next, let E be an edge connecting V and V ′, where the configuration given by V is
achieved by X and Y and the configuration given by V ′ is achieved by X ′ and Y ′. We
will prove that we can achieve any configuration along the edge by deforming (X, Y ) to
(X ′, Y ′). This deformation will consist of varying higher-order terms in the coefficients
of the defining polynomials of X and Y . This will show that all points on edges of the
complex correspond to achievable configurations.
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• We will continue this process (vertices giving edges, edges giving faces, etc.) to show
that all points in the complex correspond to achievable configurations.

For an illustration of this process, see Example 2.2.2 and Figure 2.6.

2.2 Examples of non-proper intersections

In these examples we consider curves X and Y over the field of Puiseux series K = C{{t}}.
Example 2.2.1. Let f and g be as in Example 2.1.1. Treating them as elements of (K[x])[y],
their resultant is

−c2c5x
2 + (c3c4 − c1c5 − tc2c6)x− tc1c6.

The two roots of this quadratic polynomial in x, which are the x-coordinates of the two
points in X ∩Y , have valuations equal to the slopes of the Newton polygon of the resultant.
Assuming no cancellation in the coefficient of x, the valuations of the coefficients are 0, 0,
and 1, giving slopes 0 and 1. For any rational number r > 0 we may choose c1 = 1− tr − t
and all other ci = 1, giving val(c3c4 − c1c5 − tc2c6) = val(tr) = r. If r ≤ 1

2
, then the two line

segments of the Newton polygon have slopes of r and 1 − r; and if r ≥ 1
2
, then the slopes

are both 1
2
. These cases are illustrated in Figure 2.2 and correspond to rational functions

illustrated in Figure 2.3. This means all possible images of intersections allowed by Theorem
2.1.2 with rational coordinates are achievable, so Conjecture 2.1.8 holds for this example.

Example 2.2.2. Consider conic curves X and Y cut out the polynomials f(x, y) = c1x+c2y+
c3xy and g(x, y) = c4x + c5y + c6xy + t(c7x

2 + c8y
2 + c9) respectively, where val(ci) = 0 for

all i. The tropicalizations of X and Y are shown in Figure 2.4, and intersect in three line
segments joined at a point.

Trop(Y )

Trop(Y )

Trop(X) Trop(X)

(0, 0)

(1, 0)

Trop(Y )

Trop(Y )

Trop(X) Trop(X)

(0, 0)

(1, 0)

Trop(Y )

Trop(X)
(0, 0)

(1, 1)

(0,−1)

(−1, 0)

Trop(Y )

Trop(Y )

Trop(X) Trop(X)

(0, 0)

(1, 0)

Trop(Y )

Trop(Y )

Trop(X) Trop(X)

(0, 0)

(1, 0)

Trop(Y )

Trop(X)

Figure 2.4: Trop(X) and Trop(Y ), before and after a small shift of Trop(Y )
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The stable tropical intersection consists of four points: (−1, 0), (0,−1), (1, 1), and (0, 0).
The possible images of Trop(X ∩ Y ) must be linearly equivalent to these via a rational
function equal to 0 on the three exterior points. (If viewed as a rational function on Trop(X),
this function it must be 0 on all of Trop(X)\Trop(Y ) in addition to the three extreme points.)
This gives us intersection configurations of three possible types:

(i) {(−(p− r), 0), (0,−p), (p, p), (−r, 0)} where 0 ≤ r ≤ p/2;

(ii) {(−p, 0), (0,−(p− r)), (p, p), (0,−r)} where 0 ≤ r ≤ p/2; and

(iii) {(−p, 0), (0,−p), (p− r, p− r), (r, r)} where 0 ≤ r ≤ p/2.

To achieve a type (i) configuration, set f(x, y) = x+ y + xy and g(x, y) = (1 + 2t1−p+r)x+
(1 + t1−p)y + xy + t(x2 + y2 + 1); if r > 0, the 2 can be omitted from the coefficient of x in
g. The Newton polygons of two polynomials, namely the resultants of f and g with respect
to x and with respect to y, show that Trop(X ∩ Y ) = {(−(p− r), 0), (0,−p), (p, p), (−r, 0)}.
Type (ii) and (iii) are achieved similarly, so Conjecture 2.1.8 holds for this example.

For instance, if f(x, y) = x + y + xy and g(x, y) = (1 + t1/2)x + (1 + t1/3)y + xy +
t(x2 + y2 + 1), then Trop(X ∩ Y ) = {(2/3, 2/3), (0,−2/3), (−1/2, 0), (−1/6, 0)}. The formal
sum of these points is linearly equivalent to the stable intersection divisor, as illustrated
by the rational function in Figure 2.5. This is the tropicalization of the rational function

h(x, y) = (1+t1/2)x+(1+t1/3)y+xy+t(x2+y2+1)
2x+4y+xy+t(x2+y2+1)

, where g′(x, y) := 2x+ 4y + xy + t(x2 + y2 + 1) was

chosen so that Trop(X) ∩ Trop(V (g′)) is the stable tropical intersection of Trop(X) and
Trop(Y ).

Figure 2.5: The graph of trop(h) on Trop(X) ∩ Trop(Y ), with zeros at the dots and poles
at the x’s

We can also consider this example in view of the outlined method of proof for Conjecture
2.1.8. Considering each intersection configuration as a point in R8 (since we have four points
in R2), we obtain a moduli space M for the possible tropical images of X ∩Y . The structure
of this space is related to the notion of tropical convexity, as discussed in [Luo13]. As
illustrated in Figure 2.6, M consists of three triangles glued along one edge. The hope is
that if vertices like A and E can be achieved, then it is possible to slide along the edge and
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Figure 2.6: A moduli space of intersection configurations, with seven examples

achieve points like D. For instance, if we set

fA(x, y) = fE(x, y) = fAE,r = x+ y + xy

gA = (1 + t0)x+ 4y + xy + t(x2 + y2 + 1)

gE = (1 + t1/2)x+ 4y + xy + t(x2 + y2 + 1)

gAE,r = (1 + tr)x+ 4y + xy + t(x2 + y2 + 1),

then fA and gA give configuration A, fE and gE give configuration E, and fAE,r and gAE,r
give all configurations along the edge AE as r varies from 0 to 1

2
.

Example 2.2.3. Let X and Y be distinct lines defined by f(x, y) = c1 + c2x + c3y and
g(x, y) = c6 + c4x + c5y with val(ci) = 0 for all i. These lines tropicalize to the same
tropical line centered at the origin, with stable tropical intersection equal to the single point
(0, 0). Any point on Trop(X) = Trop(X) ∩ Trop(Y ) is linearly equivalent to (0, 0) via a
tropical rational function on Trop(X), so Theorem 2.1.2 puts no restrictions on the image
of p = X ∩ Y under tropicalization. As predicted by Conjecture 2.1.8, all possibilities can
be achieved:

(i) For trop(p) = (r, 0), let f(x, y) = 1 + x+ y, g(x, y) = (1 + tr) + x+ y.

(ii) For trop(p) = (0, r), let f(x, y) = 1 + x+ y, g(x, y) = 1 + (1 + tr)x+ y.

(iii) For trop(p) = (−r,−r), let f(x, y) = 1 + x+ y, g(x, y) = 1 + x+ (1 + tr)y.

The point (0, 0) is also linearly equivalent to points at infinity, as witnessed by rational
functions with constant slope 1 on an entire infinite ray. Mapping p “to infinity” means that
X and Y cannot intersect in (K∗)2, so we can choose equations for X and Y that give p a
coordinate equal to 0, such as x+ y + 1 = 0 and x+ 2y + 1 = 0.
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Example 2.2.4. Let X and Y be the curves defined by

f(x, y) = xy + t(c1x+ c2y
2 + c3x

2y)

g(x, y) = xy + t(d1x+ d2y
2 + d3x

2y)

respectively, where val(ci) = val(di) = 0 for all i. This means Trop(X) and Trop(Y ) are the
same, and are as pictured in Figure 2.7.

Figure 2.7: Trop(X) = Trop(Y ) = Trop(X∩Y ), with vertices at (−1, 1), (2, 1), and (−1,−2)

The resultant of f and g with respect to the variable y is

t4(c2
2d

2
1 − 2c1c2d1d2 + c2

1d
2
2)x2 + t2(c1c2 − c2d1 − c1d2 + d1d2)x3

+ t3(−c2c3d1 − c1c3d2 + 2c3d1d2 + 2c1c2d3 − c2d1d3 − c1d2d3)x4

+ t4(c2
3d1d2 − c2c3d1d3 − c1c3d2d3 + c1c2d

2
3)x5,

and the resultant of f and g with respect to the variable x is

t4(c2c3d
2
1 − c1c3d1d2 − c1c2d1d3 + c2

1d2d3)y3

+ t3(2c2c3d1 − c1c3d2 − c3d1d2 − c1c2d3 − c2d1d3 + 2c1d2d3)y4

+ t2(c2c3 − c3d2 − c2d3 + d2d3)y5 + t4(c2
3d

2
2 − 2c2c3d2d3 + c2

2d
2
3)y6.

The stable tropical intersection consists of the three vertices of the triangle. Let us con-
sider possible configurations of the three intersection points that have all three intersection
points lying on the triangle, rather than on the unbounded rays. These are the configurations
of zeros of rational functions with poles precisely at the three vertices; let htrop be such a
function. Label the vertices clockwise starting with (−1, 1) as v1, v2, v3. Starting from v1

and going clockwise, label the poles of htrop as w1, w2, w3. Let δi denote the signed lattice
distance between vi and wi, with counterclockwise distance negative. Then a necessary con-
dition for the wi’s to be the poles of htrop is δ1 +δ2 +δ3 = 0: otherwise the value of htrop would
have a nonzero net change in one rotation around the cycle. In fact this condition is sufficient
to guarantee the existence of such an htrop. It follows that the wi’s cannot be in all different
or all the same line segment of triangle, as all different would have δ1 + δ2 + δ3 > 0 and all
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the same would have δ1 + δ2 + δ3 6= 0. Hence we need only show that each configuration with
exactly two wi’s on the same edge satisfying δ1 + δ2 + δ3 = 0 is achievable.

There are six cases to handle, since there are three choices for the edge with a pair of
points and then two choices for the edge with the remaining point point. We will focus
on the case where w1 and w2 are on the edge connecting v1 and v2, and w3 is on the edge
connecting v2 and v3, as shown in Figure 2.8. Let δ1 = r and δ2 = −s, where r, s > 0, and
2− s ≥ −1 + r. It follows that δ3 = −(r − s), and that r > s by the position of w3.

v1 v2

v3

w1 w2

w3

Figure 2.8: The desired configuration of intersection points, where δ1 = r > 0, δ2 = −s < 0,
and δ3 = −(r − s) < 0.

To achieve the configuration specified by r and s, set

c1 = 3 + tr, c2 = 3, c3 = 1, d1 = 3, d2 = 3 + 2tr−s, d3 = 2.

The valuations of the coefficients of the resultant polynomial with x terms are 4 + 2(r − s)
for x2, 2 + 2r − 3 for x3, 3 + r − s for x4, and 4 for x5. It follows that the valuations of
the x-coordinates are 2 − s, −1 + r, and −1 − s + r. When coupled with rational function
restrictions, this implies that the intersection points of X and Y tropicalize to (−1 + r, 1),
(2−s, 1), and (−1−s+r,−2−s+r), which are indeed the points w1, w2, and w3 we desired.

The five other cases with all three intersection points in the triangle are handled similarly,
and the cases with one or more intersection point on an infinite ray are even simpler.

These examples provide not only a helpful check of Theorem 2.1.2, but also evidence that
all possible intersection configurations can in fact be achieved. Future work towards proving
this might be of a Berkovich flavor, or may have more to do with tropical modifications, as
highlighted in the two proofs of Theorem 2.1.2. Regardless of the approach, future investiga-
tions should not only look towards proving Conjecture 2.1.8, but also towards algorithmically
lifting tropical intersection configurations to curves yielding them.

2.3 Bitangents of tropical plane quartic curves

In classical algebraic geometry, smooth plane quartics are the simplest examples of algebraic
curves that are not hyperelliptic, as well as the simplest examples of canonically embedded
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curves. The study of the enumerative geometry of these curves dates back to at least 1834,
when Plücker [Plü34] showed that a smooth plane quartic curve over C has 28 bitangent
lines. The main results in this section are the following two theorems, which show that
smooth tropical plane quartics behave similarly to their algebraic counterparts:

Theorem 2.3.1. Every smooth tropical plane quartic curve admits exactly 7 equivalence
classes of bitangent lines.

(See Definitions 2.3.4 and 2.3.11 for the precise meaning of bitangent lines and equivalence
classes thereof.)

Theorem 2.3.2. Every smooth tropical plane quartic curve is nonhyperelliptic.

Many classical arguments regarding smooth algebraic plane quartic curves break down
in the tropical setting because smooth tropical quartics are not canonically embedded in the
strongest possible sense: while the stable intersection with any tropical line gives a canonical
divisor (cf. Lemma 2.3.6), it is not the case that every canonical divisor arises in this way.
For example, the standard representative of the canonical divisor of a smooth tropical plane
quartic (when viewed as a metric graph) does not generally lie on a tropical line. Thus
many standard algebro-geometric arguments are invalid tropically. However, a combination
of geometric results and case-by-case analysis will allow us to combine the embedded and
abstract theories of tropical curves and prove Theorems 2.3.1 and 2.3.14.

A smooth tropical plane quartic curve is obtained as a dual graph of a unimodular tri-
angulation of the lattice points of the triangle T4 = conv{(0, 0), (0, 4), (4, 0)}. Since T4 has
three interior lattice points, the genus of the tropical curve (i.e., the genus of its skeleton
considered as a metric graph) is three. The skeleton of such a curve is then a trivalent, con-
nected, leafless graph of genus 3. There are exactly five such graphs up to homeomorphism,
illustrated in Figure 2.9. We name each graph (`bc), where ` is the number of loops, b is the
number of bi-edges, and c is the number of cut-edges (also known as bridges). This labelling
uniquely identifies the five graphs.

(000) (020) (111) (212) (303)

Figure 2.9: The five trivalent graphs of genus 3

Of these five combinatorial types of graph, only (000), (020), (111), and (212) occur as
the skeleton of a smooth plane quartic curve. The graph (303) is ruled out by Proposition
3.5.4, and also by an enumeration of all unimodular triangulations of T4 as performed in
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Figure 2.10: Smooth tropical plane quartic curves and the dual triangulations. The skeletons
are highlighted.

Section 3.4. Examples of smooth tropical plane quartic curves with skeletons of the other
four types are illustrated in Figure 2.10.

As usual, the skeleton of a smooth plane tropical curve can be viewed as a metric graph by
letting the length of an edge be its lattice length. In the same way, we can (more generally)
consider any connected compact subset of a smooth tropical plane curve as a metric graph.

The definition of the metric on a smooth tropical plane curve is justified in part by the
following result:

Lemma 2.3.3. Let C be a smooth tropical plane curve and let L1, L2 be tropical lines. Sup-
pose that Σ is a connected subgraph of C that contains the skeleton and the stable intersections
L1 · C and L2 · C. Then L1 · C and L2 · C are linearly equivalent as divisors on Σ.

Proof. For i = 1, 2, let fi be the pullback to C of the defining piecewise-linear equation of
the tropical line Li, and let ϕi be the rational function on Σ obtained by restricting fi to Σ.

By [AR10], the divisor div(fi) on C is exactly the stable intersection divisor of Li and C.
For a point x in the interior of Σ, we see from the definitions that div(ϕi)(x) coincides with
div(fi)(x). For x on the boundary of Σ, the difference between div(fi)(x) and div(ϕi)(x)
equals the outgoing slope of fi on the infinite edge of C emanating from x. If x is on an
edge pointing in the (1, 1) direction, then since we are assuming that the intersection of Li
and C is contained in Σ, it follows that x is not in the region spanned by the two rays of Li
pointing in the (−1, 0) and (0,−1) directions. Therefore, the slope of fi on the infinite edge
emanating from x is 1. Similarly, if x is on an infinite edge pointing in a different direction,
the slope of fi is zero on that edge.

Therefore, div(ϕi) is the divisor obtained from div(fi)(x) by subtracting a chip from
every boundary point of Σ on an infinite edge pointing in the (1, 1) direction. It follows that
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ϕ1−ϕ2 is a rational function on Σ whose associated principal divisor is exactly C ·L1−C ·L2,
as required.

Definition 2.3.4. A tropical line L is said to be bitangent to a smooth tropical plane quartic
curve C if L ∩ C consists of two components each with stable intersection multiplicity 2,
or one component with stable intersection multiplicity 4. A tropical bitangent line is called
skeletal if its intersection with the tropical curve is contained in the skeleton.

An outline of a classical proof that there are 28 bitangent lines is as follows. Every
smooth algebraic plane quartic curve X is canonically embedded, so any line section is a
canonical divisor. It follows that bitangent lines correspond bijectively to linear equivalence
classes of effective divisors D of degree two such that 2D is a canonical divisor (since X
is not hyperelliptic, one can in fact remove the phrase “linear equivalence classes”). Such
divisors are called effective theta characteristics. The set of all theta characteristics (effective
or not) is canonically a torsor for Jac(X)[2], which has order 64. Via a non-trivial analysis of
bilinear forms in characteristic 2 as in [DO88, Ch. VIII.2], one proves that there are exactly
28 effective theta characteristics, obtaining the desired result.

One can define theta characteristics for a metric graph in the same way:

Definition 2.3.5. A theta characteristic on a metric graph Γ is a linear equivalence class
of divisors D such that 2D is linearly equivalent to the canonical divisor on Γ. A theta
characteristic is called effective if one can choose D to be an effective divisor.

Zharkov [Zha10] proves that a metric graph Γ of genus g has 2g theta characteristics, of
which exactly 2g − 1 are effective. The fact that there are 2g theta characteristics (instead
of 22g as in the classical case) comes from the fact that Jac(Γ) is a real (rather than com-
plex) torus of dimension g. In both the classical and tropical situations, the set of theta
characteristics is naturally a torsor for the 2-torsion in the Jacobian. Zharkov’s proof that
all but one of the theta characteristics on Γ is effective does not seem to have an algebraic
analogue; for the reader’s convenience we summarize some of the ideas behind Zharkov’s
proof in Lemma 2.3.7 below.

Zharkov’s theorem implies that an abstract metric graph Γ of genus 3 has exactly 7
effective theta characteristics. However, unlike the classical case, it is not obvious (and in
fact not true) that bitangent lines to a smooth tropical plane quartic Γ are in bijection with
effective theta characteristics. In fact, it is not even completely obvious a priori how to
define a tropical bitangent line. With our definition (which seems to be the only reasonable
one), there are examples of smooth tropical plane quartics with infinitely many bitangent
lines; see Example 2.3.8. (This is reminiscent of Vigeland’s example of cubic surfaces with
infinitely many lines rather than 27 [Vig10]; a possible relationship between tropical plane
quartic curves and tropical cubic surfaces warrants further investigation.) Moreover, unlike
the classical case, it appears to be subtle to prove that for every effective theta characteristic
[D], there is a tropical line L and a divisor D′ ∼ D such that L ·C = 2D′. We will prove this
via a case-by-case analysis of the different possible smooth tropical plane quartic curves.
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First, however, we show that while tropical plane quartics are not canonically embedded,
it is still true that every line section belongs to the class of the canonical divisor. We thank
Yang An for suggesting the following proof:

Lemma 2.3.6. For a smooth tropical plane quartic curve C and a tropical line L, the stable
intersection divisor L · C is canonical.

Proof. By Lemma 2.3.3, any two divisors obtained as line sections of C are linearly equiv-
alent. Now let L be a tropical line, and let D be the divisor L · C. By Bézout’s Theorem
[RGST05], the degree of D is 4, and by the tropical Riemann-Roch theorem, it is canonical
if and only if its rank is 2. Let Γ be a compact subset of C containing the support of D,
considered as a metric graph. Choose a loopless model G for Γ, and let E be any effective
divisor of degree 2 supported on the vertices of G.

If E consists of two distinct vertices u and v, let L′ be a tropical line passing through
them. Since u and v are vertices, they are contained in the stable intersection L′ · C (even
when the intersection is not transversal). By the argument above, L ·C is linearly equivalent
to L′ · C, and so D is equivalent to a divisor containing E.

Otherwise, E consists of a double point at some vertex w of G. Let L be a tropical line
with a vertex at w. Suppose first that, locally at w, Γ is parallel to L, i.e. Γ is trivalent at
w with edges pointing towards (−1, 0), (0,−1), (1, 1). Since C is not a line, at least one of
these edges is finite and the stable intersection contains a point at w and at the vertices at
the end of those edges. By chip-firing the complement of a neighborhood of w, we obtain a
divisor containing at least two chips at w. If, on the other hand, L is not parallel to Γ at w,
the stable intersection is easily seen to have multiplicity 2 at w.

Since the vertices of G are a rank-determining set by [Luo11], the rank of D is at least
2, and therefore D is canonical.

We now describe Zharkov’s algorithm for finding the theta characteristics of a metric
graph Γ (see 2.3.8 for an example). Place a nonzero (Z/2Z)-flow on the graph; equivalently,
choose a subset of the edges so that around each vertex, the number of selected edges equals
0 modulo 2. Let S be the support of the flow. Orient the edges of Γ−S indicating movement
away from S. At the points where the orientations conflict, place a number of chips equal
to #{incoming edges} − 1. For generic lengths on the graph, these points are the local
minimizers of distance to the set S.

Lemma 2.3.7 (Zharkov). Let Γ be a metric graph of genus g. Then:

1. Each of the 2g − 1 divisors constructed as above is an effective theta characteristic.

2. Different choices of (Z/2Z)-flows yield non-linearly equivalent divisors.

3. The remaining theta characteristic on Γ is non-effective.

We refer the reader to [Zha10] for an explicit description of the non-effective theta char-
acteristic, which will not be needed for this work.
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Example 2.3.8. Consider the genus 3 metric graph Σ in Figure 2.11. (We have not included
lengths, since it will not affect the combinatorics of this example.) Place a nonzero (Z/2Z)-
flow on it, and let P +Q be the corresponding effective theta characteristic for Σ.

We then consider a tropical curve C which has Σ as its minimal skeleton. Drawing a line
through P and Q does indeed give a bitangent to C, as shown in Figure 2.11 (showing the
tropical curve without its exterior branches). One component of the intersection, containing
P , is a line segment with stable tropical intersection number 2. The other component, the
point Q, is a tropical intersection of multiplicity 2. Hence L · C = 2P + 2Q.

Note that the bitangent line in Figure 2.11 can be translated horizontally while remaining
bitangent, leaving P alone but moving Q. This gives an infinite family of bitangents whose
intersection divisors with C are linearly equivalent. This behavior can be seen already in
the metric graph Σ: there are effective divisors linearly equivalent to P + Q, namely those
leaving P fixed and moving Q along the edge containing it.





 

 

Figure 2.11: The construction of a theta characteristic, and a corresponding bitangent line

We used Zharkov’s algorithm to compute the 7 effective theta characteristics for each of
the first four graphs in Figure 2.9, and summarize the output in Figure 2.16. The computa-
tion depends slightly on the relative lengths of certain edges, but is made easier by the fact
that smooth plane quartic curves are not hyperelliptic (Theorem 2.3.14).

We will now show that each effective theta characteristic on a smooth tropical plane
quartic curve is represented by a bitangent line:

Proposition 2.3.9. Let P+Q be an effective theta characteristic for a smooth tropical plane
quartic curve C, and let L be a tropical line connecting P and Q. Then L is a bitangent line
to C.

In the course of proving this, we will split into three possible cases:

(i) P +Q is rigid, i.e., not linearly equivalent to any other effective divisor.
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(ii) One or both of P and Q is flexible, i.e., can be moved independently of the other while
maintaining linear equivalence.

(iii) P + Q is linearly equivalent to effective divisors obtainable only by moving the two
points in tandem.

The most difficult case ends up being (iii). Before proving Proposition 2.3.9, we will
prove the following lemma to help with this case.

Lemma 2.3.10. Let P and Q be two distinct points of Γ such that P +Q is not rigid, and
neither P nor Q is flexible (as defined in Proposition 2.3.9). Then Γ\{P,Q} is disconnected.

Proof. Let ϕ be a non-constant rational function such that P +Q+ div(ϕ) is effective, and
let M be the global maximum of ϕ. Then div(ϕ) < 0 on any boundary point of ϕ−1(M)
of valency greater than 1. Therefore, the global maximum of ϕ is obtained at P and Q,
and any other point where the global maximum is obtained is an interior point of ϕ−1(M).
Moreover, since div(ϕ) is −1 at P and Q, the slope of ϕ is −1 on a single edge leaving P,Q,
and 0 on the others.

Let x be a point on an edge leaving P where the slope is 0, and y a point on an edge
leaving Q where the slope is −1. Then x is in ϕ−1(M), and y is not, so any path between
x and y passes through the boundary of M , namely through either P or Q. Therefore, by
removing P and Q, the graph becomes disconnected.

We are now ready to prove that effective theta characteristics give rise to bitangent lines.

Proof of Proposition 2.3.9. First, if the stable tropical intersection L ·C does not contain P
or Q, we can move the divisor L·C within L∩C to a linearly equivalent divisor P+Q+R+S,
with all four points still in L ∩ C. We wish to show that P +Q+R + S = 2P + 2Q.

By the definition of a theta divisor, we know that 2P + 2Q is canonical, and by Lemma
2.3.6, L ·C is canonical for any line L. Thus 2P+2Q ∼ P+Q+R+S, and so P+Q ∼ R+S.
There are three cases to deal with. See Figure 2.16 and the preceding discussion for examples.

(i) P +Q is rigid. In this case, it follows immediately that P +Q = R + S.

(ii) One or both of P and Q is flexible. In this case, we claim that it suffices to show
that the intersection multiplicity of L with C at each flexible point is 2. Indeed, if the
multiplicity at P is 2, and Q cannot move independently, then L ·C = 2P +Q+S ∼ K
together with 2P + 2Q ∼ K implies that Q ∼ S. Since we assumed that Q cannot
move independently, we obtain Q = S, namely L · C = 2P + 2Q.

To see that the multiplicity at each flexible point is 2, we notice that, by [BN07,
Corollary 4.7], a chip can only move independently when it is on a bridge edge. This
can only occur for a curve with skeleton (111) or (212). The slopes of the bridge edges
in these curves are always either −2 or −1

2
. By the exhaustive search illustrated in
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Figure 2.16, the (212) graph has at most four theta characteristics with a chip on a
bridge, and the (111) graph has as most three such theta characteristics (depending
on the edge lengths). Moreover, the chip on a bridge with slope −2 is always obtained
by intersection with the edge of a tropical line pointing in the (−1, 0) direction, and
the chip on an edge with slope −1

2
is obtained by intersection with an edge pointing

in the (0,−1) direction. Either way, the intersection is of multiplicity 2.

(iii) P + Q is linearly equivalent to effective divisors obtainable only by moving the two
points in tandem. By Lemma 2.3.10, this can only occur when P and Q form a 2-edge-
cut. By the classification in Figure 2.16, this happens only for the graphs (020) and
(212).

Figure 2.12: The divisor D1 on (020), and the divisor D2 on (212).

We begin with the graph (020). From the combinatorial type of C, we know that the
corresponding Newton subdivision has exactly two edges between the interior points
(1, 1), (2, 1), and (1, 2). By symmetry, we may assume that (1, 1) is connected to
the two other points, giving a Newton subdivision of the form shown on the left side
of Figure 2.13. The simple cycle γ ⊂ C containing the support of the divisor D1

is determined by which other points connect to (1, 1) in the triangulation, with all
possibilities for the edges and a corresponding cycle shown in Figure 2.13. The relevant
points are labelled by i with 1 ≤ i ≤ 9, and the edges are labelled by ei, where ei is dual
to the edge connecting point i to (1, 1). Although not all triangulations will have all
of the edges, each triangulation will have some subset of them making up the cycle γ.

Let LE be a Euclidean line with slope 1 passing through the midpoint of the edge of
C dual to the segment connecting (1, 1) and (2, 2). The line LE must pass through
exactly one more point of the cycle γ, and this point must in fact be contained in
e4 ∪ e5 ∪ e6; this is because the edges e1, e2, and e3 have slopes ≥ 0 and ≤ 1, and the
edges e7, e8, and e9 have slopes ≥ 1 , making it impossible for LE to pass through
them due to the position of the edges.

We claim that the tropical line L defined by placing the vertex at the point pE =
LE ∩ (e4 ∪ e5 ∪ e6) is bitangent to C. It will certainly pass through the edge of C dual
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Figure 2.13: Triangulations for the (020) combinatorial type, and the middle cycle.

to the segment connecting (1, 1) and (2, 2) with multiplicity 2. We must show that the
other component of C ∩L also has multiplicity 2. We can handle this in several cases:

1. If p is the interior of e4, then C ∩L contains the vertical line segment below p on
e4, which will have multiplicity 2. A similar argument holds if p is in the interior
of e6.

2. If p is in the interior of e5, then p is an isolated intersection point of C and L,
and will have multiplicity 2 due to slopes.

3. If p = e4 ∩ e5, then that component of C ∩ L is a horizontal ray in the direction
(−1, 0). A small perturbation will put us in one of the previous two cases (or give
two intersection points), meaning it is an intersection of multiplicity 2. A similar
argument holds if p = e5 ∩ e6.

4. If p = e4 ∩ e6 (meaning there is no e5), a small perturbation will give either a
vertical line segment contained in e4, a horizontal line segment contained in e6,
a diagonal line segment dual to the edge connecting points 4 and 6, or a pair of
points. This too will be an intersection of multiplicity 2.

Hence L is indeed a bitangent line to C. To verify that it corresponds to the theta
characteristic D1, note that it must correspond to some theta characteristic, and D1

is the only one with both points on the middle cycle.

The proof for the (212) case is nearly identical. Due to the combinatorial type, we
know there are no edges between the three interior points in the triangulation, and by
symmetry we may assume the point (1, 1) corresponds to the middle cycle. This means
there is an edge connecting (1, 1) to (2, 2). At first glance, the other points (1, 1) may
connect to are the points 1, . . . , 9 as in the previous proof; in fact, constraints on the
triangulation narrow the points down to 4, 5, 6. If we consider a Euclidean line through
the midpoint of the edge corresponding to the edge connecting (1, 1) to (2, 2), it must
(as in the previous case) pass through e4∪e5∪e6. Letting L be the tropical line having
a vertex at that point, we once again argue that it is bitangent to C, and find that it
corresponds to the theta characteristic D2.
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We have shown that effective theta characteristics give rise to bitangent lines. However,
we have seen (cf. Example 2.3.8) that a smooth tropical plane quartic curve can have
infinitely many bitangent lines, and so we wish to define a notion of equivalence for tropical
bitangents so that if one bitangent can be moved to another while preserving the bitangency
condition, then the two are equivalent.

Definition 2.3.11. Two bitangent lines are equivalent if they correspond to linearly equiv-
alent theta characteristics.

We are now ready to prove Theorem 2.3.1, that every smooth tropical plane quartic curve
admits exactly 7 equivalence classes of bitangent lines.

Proof of Theorem 2.3.1. First we note that any bitangent line is equivalent to a skeletal
bitangent line. To see this, suppose that a tropical line intersects C at the points P and
Q with multiplicity 2, and that either of them is on the infinite branches and not on the
skeleton Σ of the curve. Then, since the infinite branches are leaf edges, the theta divisor
P + Q is linearly equivalent to a divisor P ′ + Q′ on the skeleton. By Proposition 2.3.9, the
line passing through P ′ +Q′ is a bitangent line.

By Lemma 2.3.7, there are exactly seven classes of effective theta characteristic on the
skeleton of a tropical quartic curve C. By Proposition 2.3.9 each theta characteristic gives rise
to a skeletal bitangent line, and by definition the classes of theta characteristics correspond
to classes of bitangent lines. Hence there are at least seven bitangent lines up to equivalence.
For a bitangent line L to C, the stable intersection L · C is linearly equivalent to a theta
characteristic by Lemma 2.3.6, meaning that there are at most seven bitangent lines up to
equivalence. This completes the proof.

If X is a smooth plane quartic for which Trop(X) is tropically smooth, it is natural to
guess that the 28 bitangents on X specialize in groups of 4. This has been proven in the case
that Trop(X) is a smooth tropical curve with skeleton (000) by Melody Chan and Pakawut
Jiradilok [CJ15].

Conjecture 2.3.12. Let X be a smooth plane quartic and assume that Trop(X) is tropically
smooth. Then each odd theta characteristic of Γ is the specialization of four effective theta
characteristics of X (counted with multiplicity).

As is well known, a smooth algebraic plane quartic curve is never hyperelliptic. We now
prove a tropical analogue of this statement. This is a useful result in computing theta char-
acteristics for genus 3 graphs, as it put restrictions on possible edge lengths (cf. Figure 2.16).

We will use the following necessary condition for hyperellipticity.

Lemma 2.3.13. Let Γ be a metric graph with a 2-edge-cut. If Γ is hyperelliptic, then the
two edges of the cut are of equal length.
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Proof. Let e1 and e2 be the two edges of the cut, and let Γ′ and Γ′′ be the two connected
components of Γ \ {e1 ∪ e2}. By the metric graph analogue of [BN09, Corollary 5.10], we
may assume that Γ is leafless with no bridge edges. Let D = p + q be a divisor of degree 2
and rank 1 on Γ. Since D has positive rank, we may assume that p is on the intersection
between e1 and Γ′.

We will begin by showing that q is on e1 ∪ e2. Assume for the sake of contradiction that
it is not, and choose some point x in the interior of e2. Then one easily checks that D is x-
reduced, contradicting the fact that D has rank 1. Moreover, q has to be on the intersection
between Γ′ and e2. Otherwise, choose a point y in Γ′. Then again, D is y-reduced, and we
arrive at a contradiction.

Now, move p and q along the cut while preserving linear equivalence, until one of them
reaches Γ′′. By the same argument as before (switching the roles of Γ′ and Γ′′, and of p and
q if necessary), both p and q must reach Γ′′ together. It follows that e1 and e2 have the same
length.

Let C be a smooth tropical plane quartic, so that its skeleton must have one of the first
four combinatorial types depicted in Figure 2.9. According to [Cha13], out of these four,
only the ones shown in Figure 2.14 have hyperelliptic metric realizations. The following
theorem shows that none of these realizations occur for the skeleton of a smooth tropical
plane quartic curve.

Figure 2.14: The three combinatorial types of graphs realizable as trivalent hyperelliptic
metric graphs of genus 3, and the same graphs with lengths making them nonhyperelliptic

Theorem 2.3.14. Every smooth tropical plane quartic curve is nonhyperelliptic.

Proof. By Lemma 2.3.13, whenever a hyperelliptic metric graph contains a 2-edge-cut, that
cut consists of two edges of equal length. As we will see, this never occurs for smooth tropical
plane quartic curves.

Consider a unimodular triangulation of the standard triangle with vertices (0, 0), (4, 0), (0, 4),
corresponding to a tropical curve C. There are four possible combinatorial types of the skele-
ton Γ of C, namely the first four pictured in Figure 2.9. The graph (000) is never hyperelliptic
[Cha13], regardless of the length of the edges. The other three can be hyperelliptic if given
the appropriate lengths. We will show that such lengths are never achieved by Γ.
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Figure 2.15: Edges coming from (1, 1), and the corresponding cycle.

Without loss of generality, we may assume that the point (1, 1) corresponds to the large
cycle γ in the middle as in the second row of Figure 2.14. Each edge emanating from (1, 1)
in the triangulation corresponds to an edge of the cycle. Figure 2.15 shows all possibilities
for such edges and the corresponding cycle.

In the three combinatorial types in question, the 2-edge-cut consists of certain edges of
the cycle γ. The first edge, which we will denote e1, is dual to the edge connecting (1,1)
with (2,2) in the triangulation. The other edge of the cut, denoted e2, comes from the edges
in the triangulation emanating from (1,1) with angles strictly between π

4
and 2π. While a

triangulation does not uniquely determine the lattice lengths of the edges in a tropical curve,
we claim that the data of the slopes of the edges suffices to conclude that e2 must be longer
than e1. We will show this for each of the three combinatorial types separately. Let `1 and
`2 be the lengths of the edges e1 and e2.

1. (020). In this case, the cycle γ decomposes as e1-eh-e2-ev, where eh and ev are horizontal
and vertical edges with lengths `h and `v, respectively. Consider the line segments in
e2 that are dual to edges in the triangulation connecting (1, 1) with points on the
horizontal edge of the Newton polygon. The sum of the horizontal widths of these
segments must be at least the sum of the horizontal widths of e1 and eh: otherwise the
cycle γ would not be closed. Since these line segments in e2 have integer slopes, each
of them has lattice length equal to horizontal width. The same holds for e1 and eh,
implying `2 ≥ `1 + `h > `1.

2. (111). In this case, without loss of generality the cycle γ decomposes as e1-eh-e2, where
eh is a horizontal edge of length `h. The same argument from the (020) case holds,
giving `2 ≥ `1 + `h > `1.

3. (212). In this case, e1 and e2 form the whole cycle γ. Since edges must separate (1, 1)
from (1, 2) and (2, 1) in the triangulation, there are very few possibilities for the form
of e2. Either e2 consists of a vertical segment and a horizontal segment, which implies
`2 = 2`1, or e2 consists of a vertical, a diagonal, and a horizontal segment with lengths
`v, `d, and `h. In this latter case, `v = `h and `d = `1 − `v, so `2 = `v + `d + `h =
`v + (`1 − `v) + `v = `v + `1 > `1.
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This proves the claim, and hence the theorem.

We close this section by filling in some details in the proof of Proposition 2.3.9. In
particular, we made use of knowledge about the 7 theta characteristics of each of the four
graphs arising as the skeleton of a smooth plane quartic curve. In Figure 2.16, we illustrate
all the theta characteristics for the four types of genus 3 graphs relevant to us. Each graph
has the support of a nonzero (Z/2Z)-flow in bold, and in most cases the corresponding theta
characteristic is illustrated as a pair of circular points. In the cases where edge lengths
might change the combinatorial position of the points of the theta characteristic, the other
possibility is illustrated by a pair of crosses. There are degenerate cases where one of these
moves to a vertex, but this will not affect our arguments. We have also taken advantage of
Theorem 2.3.14, which allows us to assume asymmetry for the middle cycle in the second,
third, and fourth columns.

Labeling the columns 1, 2, 3, and 4 and the rows A, B, C, D, E, F, and G, we have
the following classification of these 28 theta characteristics by cases (i), (ii), and (iii) of
Proposition 2.3.9:

(i) The 20 not falling into cases (ii) or (iii).

(ii) The 6 theta characteristics 3E, 3F, 3G, 4D, 4F, 4G.

(iii) The 2 theta characteristics 2E, 4E.
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Figure 2.16: The 7 theta characteristics for each type of graph
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Chapter 3

Smooth tropical plane curves

This chapter seeks to answer the question: when is a metric graph the skeleton of a plane
tropical curve? In Section 3.1 we define Mplanar

g , the moduli space of graphs of genus g
that arise in this way. We prove the dimension of this space is 2g + 1 for g > 3 and
g 6= 7 using honeycomb curves in Section 3.2. In Section 3.3 we discuss methodology for
algorithmically computing Mplanar

g for a fixed g, which we then carry out up to genus 5
in Section 3.4 for nonhyperelliptic tropical plane curves. We close the chapter with two
sections on hyperelliptic curves, with Section 3.5 focusing on theory and Section 3.6 focusing
on computations.

Except for the majority of Section 3.5, this chapter’s content comes from the paper “Mod-
uli of tropical plane curves” [BJMS15], coauthored with Michael Joswig, Sarah Brodsky, and
Bernd Sturmfels and appearing in Research in the Mathematical Sciences.

3.1 The moduli space of tropical plane curves

Let K be an algebraically closed field that is complete with respect to a surjective non-
Archimedean valuation val : K∗ → R, and let g ≥ 2. As discussed in Section 1.4, there is
a surjective tropicalization map from (the K-valued points in) the moduli space of smooth
curves of genus g to the moduli space of metric graphs of genus g:

trop : Mg → Mg. (3.1.1)

Both spaces have dimension 3g − 3 for g ≥ 2. Inside of Mg is Mnd
g , the locus of non-

degenerate plane curves over K of genus g. This moduli space was introduced by Castryck
and Voight in [CV09]. It has dimension 2g + 1, and admits a decomposition

Mnd
g :=

⋃
P

MP (3.1.2)

by Newton polygons P , where each P has g interior lattice points.
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We now define tropical spaces analogous to MP and Mnd
g , and throughout this chapter

perform a computational study of these new spaces. Fix a (convex) lattice polygon P with
g = #(int(P )∩Z2). Let MP be the closure in Mg of the set of metric graphs that are realized
as the skeletons of smooth tropical plane curves with Newton polygon P . For a fixed regular
unimodular triangulation ∆ of P , let M∆ be the closure of the cone of metric graphs that are
skeletons of smooth tropical curves dual to ∆. These curves all have the same skeleton G,
and M∆ is a convex polyhedral cone in the orthant R3g−3

≥0 of metrics on G. Working modulo
automorphisms of G, we identify M∆ with its image in the stacky fan Mg.

Now fix the graph of the skeleton G but vary the triangulation. The resulting subset of
R3g−3
≥0 is a finite union of closed convex polyhedral cones, so it can be given the structure of

a polyhedral fan. Moreover, by appropriate subdivisions, we can choose a fan structure that
is invariant under the symmetries of G, and hence the image in the moduli space Mg is a
stacky fan:

MP,G :=
⋃

∆ triangulation of P
with skeleton G

M∆. (3.1.3)

We note that MP is represented inside Mg by finite unions of convex polyhedral cones:

MP =
⋃

G trivalent graph
of genus g

MP,G =
⋃

∆ regular unimodular
triangulation of P

M∆. (3.1.4)

The moduli space of tropical plane curves of genus g is the following stacky fan inside Mg:

Mplanar
g :=

⋃
P

MP . (3.1.5)

Here P runs over isomorphism classes of lattice polygons with g interior lattice points. The
number of such classes is finite by Proposition 3.3.2.

Write Pint for the convex hull of the g interior lattice points of P . This is called the
interior hull of P . If the dimension of Pint is 1, we say P is a hyperelliptic polygon, and if
the dimension of Pint is 2, we say P is a nonhyperelliptic polygon. It is sometimes helpful to
decompose Mplanar

g as

Mplanar
g = Mplanar

g,hyp ∪Mplanar
g,nonhyp,

where
Mplanar

g,hyp :=
⋃

P hyperelliptic

MP , Mplanar
g,nonhyp :=

⋃
P nonhyperelliptic

MP

and both unions only include polygons with g interior lattice points. These two spaces are
not disjoint, although it will be shown in Section 3.5 that the overlap only arises from taking
closures of the dense subsets of achievable graphs.
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We summarize the objects discussed so far in a diagram of surjections and inclusions:

MP ⊆ Mnd
g ⊆ Mg

↓ ↓ ↓
trop(MP ) ⊆ trop(Mnd

g ) ⊆ trop(Mg)

⊆ ⊆ =

M∆ ⊆ MP,G ⊆ MP ⊆ Mplanar
g ⊆ Mg

(3.1.6)

By the Structure Theorem for Tropical Varieties [MS15, section 3.3], the dimensions of
MP and Mnd

g are preserved under the tropicalization map (3.1.1). The images trop(MP )
and trop(Mnd

g ) are stacky fans that live inside Mg = trop(Mg) and have the expected
dimension. Furthermore, all maximal cones in trop(MP ) have the same dimension since
MP is irreducible (in fact, unirational).

Our first result reveals that Mplanar
g is full dimensional inside of trop(Mnd

g ):

Theorem 3.1.1. For all g ≥ 2 there exists a lattice polygon P with g interior lattice points
such that MP has the dimension expected from classical algebraic geometry, namely,

dim(Mplanar
g ) = dim(MP ) =


3 if g = 2,

6 if g = 3,

16 if g = 7,

2g + 1 otherwise.

(3.1.7)

In each case, the cone M∆ of honeycomb curves supported on P attains this dimension.

Honeycomb curves are introduced in Section 3.2, which also gives the proof of Theorem
3.1.1. Whenever we speak about the “dimension expected from classical algebraic geometry”,
as we do in Theorem 3.1.1, this refers to the formulas for dim(MP ) and dim(Mnd

g ) that were
derived by Castryck and Voight [CV09].

For g ≥ 3, the inclusions between the second row and the third row in (3.1.6) are strict,
by a wide margin. Once again, we see a difference between a tropicalization and a tropical
analog, namely between tropicalizations of plane curves and tropical plane curves. One main
objective of this chapter is to understand how the latter sit inside the former.

For example, consider g = 3 and T4 = conv{(0, 0), (0, 4), (4, 0)}. Disregarding the hyper-
elliptic locus, equality holds in the second row:

trop(MT4) = trop(Mnd
3 ) = trop(M3) = M3. (3.1.8)

This is the stacky fan in [Cha12, Figure 1]. The space MT4 = Mplanar
3,nonhyp of tropical plane

quartics is also six-dimensional, but it is smaller. It fills up less than 30% of the curves in
M3; see Corollary 3.4.2. Most metric graphs of genus 3 do not come from plane quartics.

For g = 4, the canonical curve is a complete intersection of a quadric surface with a cubic
surface. If the quadric is smooth then we get a curve of bidegree (3, 3) in P1 × P1. This



CHAPTER 3. SMOOTH TROPICAL PLANE CURVES 38

leads to the Newton polygon R3,3 = conv{(0, 0), (3, 0), (0, 3), (3, 3)}. Singular surfaces lead
to families of genus 4 curves of codimension 1 and 2 that are supported on two other polygons
[CV09, section 6]. As we shall see in Theorem 3.4.3, MP has the expected dimension for each
of the three polygons P . Furthermore, Mplanar

4 is strictly contained in trop(Mnd
4 ). Detailed

computations that reveal our spaces for g = 3, 4, 5 are presented in Section 3.4.

We close this section with a consideration of classical algebraic geometry. Let Tg denote
the trigonal locus in the moduli space Mg. It is well known that Tg is an irreducible
subvariety of dimension 2g+1 when g ≥ 5. For a proof see [FL08, Proposition 2.3]. A recent
theorem of Ma [Ma14] states that Tg is a rational variety for all g.

We note that Ma’s work, as well as the classical approaches to trigonal curves, are based
on the fact that canonical trigonal curves of genus g are realized by a certain special polygon
P . This is either the rectangle in (3.2.3) or the trapezoid in (3.2.4). These polygons appear
in [CV09, Section 12], where they are used to argue that Tg defines one of the irreducible
components ofMnd

g , namely,MP . The same P appear in the next section, where they serve
to prove one inequality on the dimension in Theorem 3.1.1. The combinatorial moduli space
MP is full-dimensional in the tropicalization of the trigonal locus. The latter space, denoted
trop(Tg), is contained in the space of trigonal metric graphs, by Baker’s Specialization Lemma
[Bak08, section 2].

In general,Mnd
g has many irreducible components other than the trigonal locus Tg. As a

consequence, there are many skeletons in Mplanar
g that are not trigonal in the sense of metric

graph theory. This is seen clearly in the top dimension for g = 7, where dim(T7) = 15 but
dim(Mnd

7 ) = 16. The number 16 comes from the family of trinodal sextics in [CV09, §12].

3.2 Honeycomb curves

In this section we prove Theorem 3.1.1. This will be done using the special family of hon-
eycomb curves, which are tropical curves dual to honeycomb triangulations. The polygons
admitting such a triangulation are given by four integer parameters a, b, c and d that satisfy
the constraints

0 ≤ c ≤ a, b ≤ d ≤ a+ b. (3.2.1)

To such a quadruple (a, b, c, d), we associate the polygon

Ha,b,c,d =
{

(x, y) ∈ R2 : 0 ≤ x ≤ a and 0 ≤ y ≤ b and c ≤ x+ y ≤ d
}
.

If all six inequalities in (3.2.1) are non-redundant then Ha,b,c,d is a hexagon. Otherwise it
can be a pentagon, quadrangle, triangle, segment, or just a point. The number of lattice
points is

#(Ha,b,c,d ∩ Z2) = ad+ bd− 1

2
(a2 + b2 + c2 + d2) +

1

2
(a+ b− c+ d) + 1,

and, by Pick’s Theorem [DLRS10, Theorem 9.3.5], the number of interior lattice points is

g = #((Ha,b,c,d)int ∩ Z2) = ad+ bd− 1

2
(a2 + b2 + c2 + d2)− 1

2
(a+ b− c+ d) + 1.
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The honeycomb triangulation ∆ subdivides Ha,b,c,d into 2ad+ 2bd− (a2 + b2 + c2 + d2) unit
triangles. It is obtained by slicing Ha,b,c,d with the vertical lines {x = i} for 0 < i < a, the
horizontal lines {y = j} for 0 < j < b, and the diagonal lines {x + y = k} for c < k < d.
The tropical curves dual to ∆ look like honeycombs, as in Figure 3.1. The corresponding
skeletons G are called honeycomb graphs.

Figure 3.1: The honeycomb triangulation of H5,4,2,5, the tropical curve, and its skeleton

If P = Ha,b,c,d, then its interior hull Pint is a honeycomb polygon as well: a translate of
Pint can be obtained from P by decreasing the values of a, b, c, d by an appropriate amount.
For instance, if P = H5,4,2,5 is the polygon in Figure 3.1 then its interior hull is Pint =
H3,3,1,2 + (1, 1).

Lemma 3.2.1. Let ∆ be the honeycomb triangulation of P = Ha,b,c,d. Then

dim(M∆) = #(Pint ∩ Z2) + #(∂Pint ∩ Z2) + #vertices(Pint) − 3.

Proof. The honeycomb graph G consists of g = #(Pint ∩ Z2) hexagons. The hexagons
associated with lattice points on the boundary of Pint have vertices that are 2-valent in
G. Such 2-valent vertices get removed, so these boundary hexagons become cycles with
fewer than six edges. In the orthant R3g−3

≥0 of all metrics on G, we consider the subcone of
metrics that arise from P . In addition to the non-negativity constraints, this convex cone is
defined by

(a) one linear inequality for each vertex of Pint;

(b) one linear equation for each lattice point in the relative interior of an edge of Pint;

(c) two linear equations for each lattice point in the interior of Pint.

These inequalities and equations can be seen as follows. Let `1, `2, `3, `4, `5, `6 denote the
lengths of the edges (labeled cyclically) of a hexagon in a honeycomb curve. Then

`1 + `2 = `4 + `5, `2 + `3 = `5 + `6, and `3 + `4 = `6 + `1.

These three equations are linearly dependent, and they give rise to the inequalities in (a)
and to the equations in (b) and (c). The linear equations (b) and (c), when taken over all
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hexagons, have a triangular structure. These linear equations are thus linearly independent.
This implies that the codimension of the cone M∆ inside the orthant R3g−3

≥0 equals

codim(M∆) =
(
#(∂Pint ∩ Z2) − #vertices(Pint)

)
+ 2 ·#(int(Pint) ∩ Z2). (3.2.2)

This expression can be rewritten as

g + #(int(Pint) ∩ Z2) − #vertices(Pint) = 2g − #(∂Pint ∩ Z2) − #vertices(Pint).

Subtracting this codimension from 3g − 3, we obtain the desired formula.

Proof of Theorem 3.1.1. For the classical moduli space Mnd
g , formula (3.1.7) was proved

in [CV09]. That dimension is preserved under tropicalization. The inclusion Mplanar
g ⊆

trop(Mnd
g ) in (3.1.6) shows that the right-hand side in (3.1.7) is an upper bound on the

dimension of Mplanar
g .

To prove the lower bound, we choose P to be a specific honeycomb polygon with hon-
eycomb triangulation ∆. The form of the polygon depends on the parity of the genus g. If
g = 2h is even then we take the rectangle

R3,h+1 = H3,h+1,0,h+4 = conv{(0, 0), (0, h+ 1), (3, 0), (3, h+ 1)}. (3.2.3)

The interior hull of R3,h+1 is the rectangle

(R3,h+1)int = conv{(1, 1), (1, h), (2, 1), (2, h)} ∼= R1,h−1.

All g = 2h lattice points of this polygon lie on the boundary. From Lemma 3.2.1, we see
that dim(M∆) = g + g + 4− 3 = 2g + 1. If g = 2h+ 1 is odd then we take the trapezoid

H3,h+3,0,h+3 = conv{(0, 0), (0, h+ 3), (3, 0), (3, h)}. (3.2.4)

The convex hull of the interior lattice points in H3,h+3,0,h+3 is the trapezoid

(H3,h+3,0,h+3)int = conv{(1, 1), (1, h+ 1), (2, 1), (2, h)}.

All g = 2h+1 lattice points of this polygon lie on its boundary, and again dim(M∆) = 2g+1.
For all g ≥ 4 with g 6= 7, this matches the upper bound obtained from [CV09]. We

conclude that dim(MP ) = dim(Mg) = 2g + 1 holds in all of these cases. For g = 7 we take
P = H4,4,2,6. Then Pint is a hexagon with g = 7 lattice points. From Lemma 3.2.1, we find
dim(M∆) = 7 + 6 + 6− 3 = 16, so this matches the upper bound. Finally, for g = 3, we will
see dim(MT4) = 6 in Section 3.4, and also follows from Proposition 3.2.2. The case g = 2
follows from the discussion in Example 3.3.4.

The honeycomb polygons and triangulations used in the above proof are illustrated in
Figure 3.2. Shown in order are polygons for genus 2, 3, 7, 5, and 6, with the polygons for
genus 5 and 6 generalizing to higher genus.
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Figure 3.2: Honeycomb triangulations from the proof of Theorem 3.1.1

We close this section by considering two special families of honeycomb curves: those
arising from the triangles Td for d ≥ 4 and rectangles Rd,e for d, e ≥ 3. The triangle Td
corresponds to curves of degree d in the projective plane P2. Their genus is g = (d− 1)(d−
2)/2. The case d = 4, g = 3 of smooth plane quartics will be the first topic in Section
3.4. The rectangle Rd,e corresponds to curves of bidegree (d, e) in P1 × P1. Their genus is

g = (d− 1)(e− 1). The case d = e = 3 appears in our computation of Mplanar
4 in Section 3.4.

Proposition 3.2.2. Let P be the triangle Td with d ≥ 4 or the rectangle Rd,e with d, e ≥ 3.
The moduli space MP of tropical plane curves has the expected dimension inside Mg, namely,

dim(MTd) =
1

2
d2 +

3

2
d− 8 and codim(MTd) = (d− 2)(d− 4), whereas

dim(MRd,e
) = de+ d+ e− 6 and codim(MRd,e

) = 2(de− 2d− 2e+ 3).

In particular, the honeycomb triangulation defines a cone M∆ of this maximal dimension.

Proof. For our standard triangles and rectangles, the formula (3.2.2) implies

codim(MTd) = 3(d− 3) − 3 + 2 · 1
2
(d− 4)(d− 5),

codim(MRd,e
) = 2((d− 2) + (e− 2)) − 4 + 2 · (d− 3)(e− 3).

Subtracting from 3g − 3 = dim(Mg), we get the desired formulas for dim(MP ).

The above dimensions are those expected from algebraic geometry. Plane curves with
Newton polygon Td form a projective space of dimension 1

2
(d + 2)(d + 1) − 1 on which the

8-dimensional group PGL(3) acts effectively, while those with Rd,e form a space of dimension
(d+ 1)(e+ 1)− 1 on which the 6-dimensional group PGL(2)2 acts effectively. In each case,
dim(MP ) equals the dimension of the family of all curves minus the dimension of the group.

3.3 Computational methods

In this section we present algorithms and initial examples for computing the space Mplanar
g .

For additional background on geometric combinatorics, the reader is referred to the book by
De Loera, Rambau, and Santos [DLRS10].

Let P be a lattice polygon, and let A = P ∩ Z2 be the set of lattice points in P . Recall
from Section 1.2 that height functions h : A → R are identified with tropical polynomials,



CHAPTER 3. SMOOTH TROPICAL PLANE CURVES 42

and that the tropical plane curve defined by such a polynomial is dual to the subdivision
∆ of P induced by h. The secondary cone Σ(∆) of ∆ is the closure of the relatively open
polyhedral cone in RA consisting of the set of all height functions inducing ∆, and the the
secondary fan of A is the complete polyhedral fan in RA consisting of all secondary cones
Σ(∆).

We now derive an inequality representation for the secondary cone Σ(∆) as follows.
Consider any four points a = (a1, a2), b = (b1, b2), c = (c1, c2) and d = (d1, d2) in A such
that the triples (c, b, a) and (b, c, d) are clockwise-oriented triangles of ∆. Then we require

det


1 1 1 1
a1 b1 c1 d1

a2 b2 c2 d2

h(a) h(b) h(c) h(d)

 ≥ 0. (3.3.1)

This is a linear inequality for h ∈ RA. It can be viewed as a “flip condition”, determining
which of the two diagonals of a quadrilateral are in the subdivision. We have one such
inequality for each interior edge bc of ∆. The set of solutions to these linear inequalities
is the secondary cone Σ(∆). From this it follows that the lineality space Σ(∆) ∩ −Σ(∆)
of the secondary cone is 3-dimensional. It is the space Lin(A) of functions h ∈ RA that
are restrictions of affine-linear functions on R2. We usually identify Σ(A) with its image in
RA/Lin(A), which is a pointed cone of dimension #A − 3. That pointed cone has finitely
many rays and we represent these by vectors in RA.

Suppose that ∆ has E interior edges and g interior vertices. We consider two linear maps

RA λ−→ RE κ−→ R3g−3. (3.3.2)

The map λ takes h and outputs the vector whose bc-coordinate equals (3.3.1). This deter-
minant is nonnegative: it is precisely the (lattice) length of the edge of the tropical curve
C that is dual to bc. Hence λ(h) is the vector whose #E coordinates are the lengths of the
bounded edges of C.

Each edge e of the skeleton G is a concatenation of edges of C. The second map κ
adds up the corresponding lengths. Thus the composition (3.3.2) is the linear map with eth

coordinate

(κ ◦ λ)(h)e =
∑

bc : the dual of bc
contributes to e

λ(h)bc for all edges e of G.

By definition, the secondary cone is mapped into the nonnegative orthant under λ. Hence

Σ(∆)
λ−→ RE

≥0
κ−→ R3g−3

≥0 . (3.3.3)

Note that κ(λ(h)) is the vector whose #E coordinates are the lengths of the edges of G.
Our discussion implies the following result on the cone of metric graphs arising from ∆:
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Proposition 3.3.1. The cone M∆ is the image of the secondary cone Σ(∆) under κ ◦ λ.

Given any lattice polygon P , we seek to compute the moduli space MP via the decom-
positions in (3.1.4). Our line of attack towards that goal can now be summarized as follows:

1. compute all regular unimodular triangulations of A = P ∩ Z2 up to symmetry;

2. sort the triangulations into buckets, one for each trivalent graph G of genus g;

3. for each triangulation ∆ with skeleton G, compute its secondary cone Σ(∆) ⊂ RA;

4. for each secondary cone Σ(∆), compute its image M∆ in the moduli space Mg via
(3.3.3);

5. merge the results to get the fans MP,G ⊂ R3g−3 in (3.1.3) and the moduli space MP

in (3.1.4).

Step 1 is based on computing the secondary fan of A. There are two different approaches
to doing this. The first, more direct, method is implemented in Gfan [Jen]. It starts out with
one regular triangulation of ∆, e.g. a placing triangulation arising from a fixed ordering of A.
This comes with an inequality description for Σ(∆), as in (3.3.1). From this, Gfan computes
the rays and the facets of Σ(∆). Then Gfan proceeds to an adjacent secondary cone Σ(∆′)
by producing a new height function from traversing a facet of Σ(∆). Iterating this process
results in a breadth-first-search through the edge graph of the secondary polytope of A.

The second method starts out the same. But it passes from ∆ to a neighboring tri-
angulation ∆′ that need not be regular. It simply performs a purely combinatorial re-
structuring known as a bistellar flip. The resulting breadth-first search is implemented in
TOPCOM [Ram02].

Neither algorithm is generally superior to the other, and sometimes it is difficult to
predict which one will perform better. The flip-algorithm may suffer from wasting time by
also computing non-regular triangulations, while the polyhedral algorithm is genuinely costly
since it employs exact rational arithmetic. The flip-algorithm also uses exact coordinates, but
only in a preprocessing step which encodes the point configuration as an oriented matroid.
Both algorithms can be modified to enumerate all regular unimodular triangulations up to
symmetry only. For our particular planar instances, we found TOPCOM to be more powerful.

We start Step 2 by computing the dual graph of a given ∆. The nodes are the triangles
and the edges record incidence. Hence each node has degree 1, 2 or 3. We then recursively
delete the nodes of degree 1. Next, we recursively contract edges which are incident with a
node of degree 2. The resulting trivalent graph G is the skeleton of ∆. It often has loops and
multiple edges. In this process we keep track of the history of all deletions and contractions.

Steps 3 and 4 are carried out using polymake [GJ00]. Here the buckets or even the
individual triangulations can be treated in parallel. The secondary cone Σ(∆) is defined
in RA by the linear inequalities λ(h) ≥ 0 in (3.3.1). From this we compute the facets and
rays of Σ(∆). This is essentially a convex hull computation. In order to get unique rays
modulo Lin(A), we fix h = 0 on the three vertices of one particular triangle. Since the
cones are rather small, the choice of the convex hull algorithm does not matter much. For
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details on state-of-the-art convex hull computations and an up-to-date description of the
polymake system see [AGH+14].

For Step 4, we apply the linear map κ ◦ λ to all rays of the secondary cone Σ(∆). Their
images are vectors in R3g−3 that span the moduli cone M∆ = (κ ◦ λ)(Σ(∆)). Via a convex
hull computation as above, we compute all the rays and facets of M∆.

The cones M∆ are generally not full-dimensional in R3g−3. The points in the relative
interior are images of interior points of Σ(∆). Only these represent smooth tropical curves.
However, it can happen that another cone M∆′ is a face of M∆. In that case, the metric
graphs in the relative interior of that face are also realizable by smooth tropical curves.

Step 5 has not been fully automatized yet, but we carry it out in a case-by-case manner.
This will be described in detail for curves of genus 3 in Sections 3.4 and 3.6.

We now come to the question of what lattice polygons P should be the input for Step 1.
Our point of departure towards answering that question is the following finiteness result.

Proposition 3.3.2. For every fixed genus g ≥ 1, there are only finitely many lattice polygons
P with g interior lattice points, up to integer affine isomorphisms in Z2.

Proof and Discussion. Scott [Sco76] proved that #(∂P ∩ Z2) ≤ 2g + 7, and this bound
is sharp. This means that the number of interior lattice points yields a bound on the
total number of lattice points in P . This result was generalized to arbitrary dimensions
by Hensley [Hen83]. Lagarias and Ziegler [LZ91] improved Hensley’s bound and further
observed that there are only finitely many lattice polytopes with a given total number of
lattice points, up to unimodular equivalence [LZ91, Theorem 2]. Castryck [Cas12] gave an
algorithm for finding all lattice polygons of a given genus, along with the number of lattice
polygons for each genus up to 30. We remark that the assumption g ≥ 1 is essential, as
there are lattice triangles of arbitrarily large area and without any interior lattice point.

Proposition 3.3.2 ensures that the union in (3.1.5) is finite. However, from the full list of
polygons P with g interior lattice points, only very few will be needed to construct Mplanar

g .
To show this, and to illustrate the concepts seen so far, we now discuss our spaces for g ≤ 2.

Example 3.3.3. For g = 1, only one polygon P is needed in (3.1.5), and only one triangulation
∆ is needed in (3.1.4). We take P = conv{(0, 0), (0, 3), (3, 0)}, since every smooth genus 1
curve is a plane cubic, and we let ∆ be the honeycomb triangulation from Section 3.2. The
skeleton G is a cycle whose length is the tropical j-invariant [BPR12, section 7.1]. We can
summarize this as follows:

M∆ = MP,G = MP = Mplanar
1 = M1 = R≥0. (3.3.4)

All inclusions in (3.1.6) are equalities for this particular choice of (P,∆).

Example 3.3.4. In classical algebraic geometry, all smooth curves of genus g = 2 are hyper-
elliptic, and they can be realized with the Newton polygon P = conv{(0, 0), (0, 2), (6, 0)}.
There are two trivalent graphs of genus 2, namely, the theta graph G1 = and the dumbbell
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Figure 3.3: The triangulations ∆1, ∆′1, and ∆2

graph G2 = . The moduli space M2 consists of two quotients of the orthant R3
≥0, one for

each graph, glued together. For nice drawings see Figures 3 and 4 in [Cha12]. Figure 3.3
shows three unimodular triangulations ∆1, ∆′1, and ∆2 of P such that almost all metric
graphs in M2 are realized by a smooth tropical curve C dual to ∆1, ∆′1, or ∆2. We say
“almost all” because here the three edges of G1 cannot have all the same length [CDMY14,
Proposition 4.7]. The triangulations ∆1 and ∆′1 both give G1 as a skeleton. If a ≥ b ≥ c
denote the edge lengths on G1, then the curves dual to ∆1 realize all metrics with a ≥ b > c,
and the curves dual to ∆′1 realize all metrics with a > b = c. The triangulation ∆2 gives G2

as a skeleton, and the curves dual to it achieve all possible metrics. Since our 3-dimensional
cones are closed by definition,(
M∆1 ∪ M∆′1

)
∪ M∆2 = MP,G1 ∪ MP,G2 = MP = Mplanar

2 = M2 = [Cha12, Figure 3].
(3.3.5)

In Section 3.6 we extend this analysis to hyperelliptic curves of g ≥ 3. The graphs G1 and
G2 represent the chains for g = 2. For more information on hyperelliptic metric graphs
see [Cha13].

With g = 1, 2 out of the way, we now assume g ≥ 3. We follow the approach of Castryck
and Voight [CV09] in constructing polygons P that suffice for the union (3.1.5).

Lemma 3.3.5. Let P ⊆ Q be lattice polygons with Pint = Qint. Then MP is contained in
MQ.

Proof. Every regular unimodular triangulation ∆ of P can be extended to a regular unimod-
ular triangulation ∆′ of Q. (This is a special property of planar triangulations: it does not
hold in higher dimensions.) This means that every tropical curve C dual to ∆ is contained
in a curve C ′ dual to ∆′, except for unbounded edges of C. The skeleton and its possible
metrics remain unchanged, since Pint = Qint. We conclude that M∆ = M∆′ . The unions for
P and Q in (3.1.4) show that MP ⊆MQ.

This lemma shows that we only need to consider maximal polygons, i.e. those P that are
maximal with respect to inclusion for fixed Pint. If Pint is 2-dimensional then this determines
P uniquely. Namely, suppose that Pint = {(x, y) ∈ R2 : aix + biy ≤ ci for i = 1, 2, . . . , s},
where gcd(ai, bi, ci) = 1 for all i. Let P be the polygon {(x, y) ∈ R2 : aix+biy ≤ ci+1 for i =
1, 2, . . . , s}. If P is a lattice polygon then it is a maximal lattice polygon. However, it can
happen that P has non-integral vertices. In that case, the given Pint is not the interior of
any lattice polygon.
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The maximal polygon P is not uniquely determined by Pint when Pint is a line segment.
For each g ≥ 2 there are g + 2 distinct hyperelliptic trapezoids to be considered. We shall
see in Theorem 3.6.1 that for our computational purposes it suffices to use the triangle
conv{(0, 0), (0, 2), (2g + 2, 0)}.

Here is the list of all maximal nonhyperelliptic polygons we use as input for the pipeline
described above.

Proposition 3.3.6. Up to isomorphism there are precisely 12 maximal polygons P such
that Pint is 2-dimensional and 3 ≤ g = #(Pint ∩ Z2) ≤ 6. For g = 3, there is a unique type,
namely, T4 = conv{(0, 0), (0, 4), (4, 0)}. For g = 4 there are three types:

Q
(4)
1 = R3,3 = conv{(0, 0), (0, 3), (3, 0), (3, 3)}, Q

(4)
2 = conv{(0, 0), (0, 3), (6, 0)},

Q
(4)
3 = conv{(0, 2), (2, 4), (4, 0)}.

For g = 5 there are four types of maximal polygons:

Q
(5)
1 = conv{(0, 0), (0, 4), (4, 2)}, Q

(5)
2 = conv{(2, 0), (5, 0), (0, 5), (0, 2)},

Q
(5)
3 = conv{(2, 0), (4, 2), (2, 4), (0, 2)}, Q

(5)
4 = conv{(0, 0), (0, 2), (2, 0), (4, 4)}.

For g = 6 there are four types of maximal polygons:

Q
(6)
1 = T5 = conv{(0, 0), (0, 5), (5, 0)}, Q

(6)
2 = conv{(0, 0), (0, 7), (3, 0), (3, 1)},

Q
(6)
3 = R3,4 = conv{(0, 0), (0, 4), (3, 0), (3, 4)}, Q

(6)
4 = conv{(0, 0), (0, 4), (2, 0), (4, 2)}.

The notation we use for polygons is as follows. We write Q
(g)
i for maximal polygons of

genus g, but we also use a systematic notation for families of polygons, including the triangles
Td = conv{(0, 0), (0, d), (d, 0)} and the rectangles Rd,e = conv{(0, 0), (d, 0), (0, e), (d, e)}.

Proposition 3.3.6 is found by exhaustive search, using Castryck’s method in [Cas12]. We
started by classifying all types of lattice polygons with precisely g lattice points. These are
our candidates for Pint. For instance, for g = 5, there are six such polygons. Four of them
are the interior hulls of the polygons Q

(5)
i with i = 1, 2, 3, 4. The other two are the triangles

conv{(1, 1), (1, 4), (2, 1)} and conv{(1, 1), (2, 4), (3, 2)}.

However, neither of these two triangles arises as Pint for any lattice polygon P .
For each genus g, we construct the stacky fans Mplanar

g by computing each of the spaces
M

Q
(g)
i

and then subdividing their union appropriately. This is then augmented in Section

3.6 by the spaces MP where Pint is not two-dimensional, but is instead a line segment.

3.4 Computations of Mplanar
g

In this section we explicitly compute the nonhyperelliptic part of Mplanar
3 , and perform similar

computations for genus 4 and 5.
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In classical algebraic geometry, all nonhyperelliptic smooth curves of genus 3 are plane
quartics. Their Newton polygon T4 = conv{(0, 0), (0, 4), (4, 0)} is the unique maximal non-
hyperelliptic polygon with g = 3 in Proposition 3.3.6. To compute Mplanar

3 , we must compute
MT4 , and along the way we will characterize the dense subset of metric graphs that are re-
alized as the skeleton of a smooth tropical quartic. The full moduli space for tropical plane
curves of genus 3 is then obtained as

Mplanar
3 = MT4 ∪ Mplanar

3,hyp . (3.4.1)

The space Mplanar
3,hyp is computed in Section 3.6. As expected from classical algebraic geometry,

dim(MT4) = 6 and dim(Mplanar
3,hyp ) = 5.
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Figure 3.4: The five trivalent graphs of genus 3, with letters labeling each graph’s six edges

The stacky fan M3 of all metric graphs of genus 3 has five maximal cones, as shown
in [Cha12, Figure 4]. These correspond to the five (leafless) trivalent graphs of genus 3,
pictured in Figure 3.4. As in Section 2.3, each graph is labeled by the triple (`bc), where `
is the number of loops, b is the number of bi-edges, and c is the number of cut-edges. Here,
`, b, and c are single digit numbers, so there is no ambiguity to this notation. Our labeling
and ordering is largely consistent with [Bal76].

Although MT4 has dimension 6, it is not pure due to the realizable metrics on (111).
It also misses one of the five cones in M3: the graph (303) cannot be realized in R2 by
Proposition 3.5.4. The restriction of MT4 to each of the other four cones is given by a
finite union of convex polyhedral subcones, characterized by the following piecewise-linear
formulas:

Theorem 3.4.1. A graph in M3 arises from a smooth tropical quartic if and only if it is
one of the first four graphs in Figure 3.4, with edge lengths satisfying the following, up to
symmetry:

• (000) is realizable if and only if max{x, y}≤u, max{x, z}≤v and max{y, z}≤w, where

– at most two of the inequalities can be equalities, and

– if two are equalities, then either x, y, z are distinct and the edge (among u, v, w)
that connects the shortest two of x, y, z attains equality, or max{x, y, z} is attained
exactly twice, and the edge connecting those two longest does not attain equality.
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• (020) is realizable if and only if v ≤ u, y ≤ z, and w + max{v, y} ≤ x, and if the last
inequality is an equality, then: v = u implies v < y < z, and y = z implies y < v < u.

• (111) is realizable if and only if w < x and

( v + w = x and v < u ) or ( v + w < x ≤ v + 3w and v ≤ u ) or
( v + 3w < x ≤ v + 4w and v ≤ u ≤ 3v/2 ) or

( v + 3w < x ≤ v + 4w and 2v = u ) or ( v + 4w < x ≤ v + 5w and v = u ).
(3.4.2)

• (212) is realizable if and only if w < x ≤ 2w.

To understand the qualifier “up to symmetry” in Theorem 3.4.1, it is worthwhile to read
off the automorphisms from the graphs in Figure 3.4. The graph (000) is the complete
graph on four vertices. Its automorphism group is the symmetric group of order 24. The
automorphism group of the graph (020) is generated by the three transpositions (u v), (y z),
(w x) and the double transposition (u y)(v z). Its order is 16. The automorphism group
of the graph (111) has order 4, and it is generated by (u v) and (w x). The automorphism
group of the graph (212) is generated by (u z)(v y) and (w x), and has order 4. The
automorphism group of the graph (303) is the symmetric group of order 6. Each of the five
graphs contributes an orthant R6

≥0 modulo the action of that symmetry group to the stacky
fan M3.

Table 3.1: Dimensions of the 1278 moduli cones M∆ within MT4

G \ dim 3 4 5 6 #∆’s

(000) 18 142 269 144 573
(020) 59 216 175 450
(111) 10 120 95 225
(212) 15 15 30

total 18 211 620 429 1278

Proof of Theorem 3.4.1. This is based on explicit computations as described in Section 3.3.
The symmetric group S3 acts on the triangle T4. We enumerated all unimodular triangu-
lations of T4 up to that symmetry. There are 1279 (classes of) such triangulations, and of
these precisely 1278 are regular. The unique non-regular triangulation is a refinement of
Figure 1.3. For each regular triangulation we computed the graph G and the polyhedral
cone M∆. Each M∆ is the image of the 12-dimensional secondary cone of ∆. We found
that M∆ has dimension 3, 4, 5 or 6, depending on the structure of the triangulation ∆. A
census is given by Table 3.1. For instance, 450 of the 1278 triangulations ∆ have the skeleton
G = (020). Among these 450, we found that 59 have dim(M∆) = 4, 216 have dim(M∆) = 5,
and 175 have dim(M∆) = 6.
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For each of the 1278 regular triangulations ∆ we checked that the inequalities stated
in Theorem 3.4.1 are valid on the cone M∆ = (κ ◦ λ)(Σ(∆)). This proves that the dense
realizable part of MT4 is contained in the polyhedral space described by our constraints.

For the converse direction, we need to go through the four cases and construct a planar
tropical realization of each metric graph that satisfies our constraints. We shall now do this.

Figure 3.5: A triangulation that realizes almost all realizable graphs of type (000)

All realizable graphs of type (000), except for lower-dimensional families, arise from a
single triangulation ∆, shown in Figure 3.5 with its skeleton. The cone M∆ is six-dimensional.
Its interior is defined by x < min{u, v}, y < min{u,w}, and z < min{v, w}. Indeed, the
parallel segments in the outer edges can be arbitrarily long, and each outer edge be as close
as desired to the maximum of the two adjacent inner edges. This is accomplished by putting
as much length as possible into a particular edge and pulling extraneous parts back.

Figure 3.6: Triangulations giving all metrics in the cases (i) through (v) for the graph (000)

There are several lower dimensional collections of graphs we must show are achievable:

(i) y < x = u, max{x, z} < v, max{y, z} < w; (dim = 5)
(ii) y = x = u, max{x, z} < v, max{y, z} < w; (dim = 4)

(iii) z < y < x < v, u = x, w = y; (dim = 4)
(iv) z < y < x < u, v = x, w = y; (dim = 4)
(v) z < y = x = v = w < u. (dim = 3)

In Figure 3.6 we show triangulations realizing these five special families. Dual edges are
labeled

(1, 1)
x
− (1, 2)

y
− (2, 1)

z
− (1, 1).
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Figure 3.7: A triangulation that realizes almost all realizable graphs of type (020)

Next, we consider type (020). Again, except for some lower-dimensional cases, all graphs
arise from single triangulation, pictured in Figure 3.7. The interior of M∆ is given by v < u,
y < z, and w + max{v, y} < x. There are several remaining boundary cases, all of whose
graphs are realized by the triangulations in Figure 3.8:

(i) v < u, y < z, w + max{v, y} = x; (dim = 5)
(ii) u = v, y < z, w + max{v, y} < x; (dim = 5)

(iii) u = v, y = z, w + max{v, y} < x; (dim = 4)
(iv) u = v, v < y < z, w + max{v, y} = x. (dim = 4)

Figure 3.8: Triangulations giving all metrics in the cases (i) through (iv) for the graph (020)

Type (111) is the most complicated. We begin by realizing the metric graphs that lie
in int(MT4,(111)). These arise from the second and third cases in the disjunction (3.4.2).

We assume w < x. The triangulation to the left in Figure 3.9 realizes all metrics on
(111) satisfying v + w < x < v + 3w and v < u . The dilation freedom of u, y, and z is
clear. To see that the edge x can have length arbitrarily close to v + 3w, simply dilate the
double-arrowed segment to be as long as possible, with some very small length given to the
next two segments counterclockwise. Shrinking the double-arrowed segment as well as the
vertical segment of x brings the length close to v + w. The triangulation to the right in
Figure 3.9 realizes all metrics satisfying v + 3w < x < v + 4w and v < u < 3v/2. Dilation
of x is more free due to the double-arrowed segment of slope 1/2, while dilation of u is more
restricted.

Many triangulations are needed in order to deal with low-dimensional case. In Figure 3.10
we show triangulations that realize each of the following families of type (111) graphs:

(i) v + w < x < v + 5w, v = u; (dim = 5)
(ii) v + w < x < v + 4w, 2v = u; (dim = 5)
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u

z

v
w

y
x

Figure 3.9: Triangulations of type (111) realizing v+w < x < v+ 2x and v < u (on the left)
and v + 3w < x < v + 4w and v < u < 3v/2 (on the right)

(iii) v + w = x, v < u; (dim = 5)
(iv) x = v + 3w, v < u; (dim = 5)
(v) x = v + 4w, v < u ≤ 3v/2; (dim = 5)
(vi) x = v + 5w, v = u; (dim = 4)

(vii) x = v + 4w, 2v = u. (dim = 4)

Figure 3.10: Triangulations of type (111) that realize the boundary cases (i) through (vii)

All graphs of type (212) can be achieved with the two triangulations in Figure 3.11.
The left gives all possibilities with w < x < 2w, and the right realizes x = 2w. The edges u,
v, y, z are completely free to dilate. This completes the proof of Theorem 3.4.1.

u

u

v

w
x y

z

Figure 3.11: Triangulations giving graphs of type (212) giving w < x < 2w and x = 2w

The space MT4 is not pure-dimensional because of the graphs (111) with u = v and
v+4w < x < v+5w. These appear in the five-dimensional M∆ where ∆ is the leftmost trian-
gulation in Figure 3.10, but M∆ is not contained in the boundary of any six-dimensional M∆′ .
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We close this section by suggesting an answer to the following question: What is the
probability that a random metric graph of genus 3 can be realized by a tropical plane quartic?

To examine this question, we need to endow the moduli space M3 with a probability
measure. Here we fix this measure as follows. We assume that the five trivalent graphs G are
equally likely, and all non-trivalent graphs have probability 0. The lengths on each trivalent
graph G specify an orthant R6

≥0. We fix a probability measure on R6
≥0 by normalizing so that

u+ v +w + x+ y + z = 1, and we take the uniform distribution on the resulting 5-simplex.
With this probability measure on the moduli space M3 we are asking for the ratio of volumes

vol(Mplanar
3 )/vol(M3). (3.4.3)

This ratio is a rational number, which we computed from our data in Theorem 3.4.1.

Corollary 3.4.2. The rational number in (3.4.3) is 31/105. This means that, in the measure
specified above, about 29.5% of all metric graphs of genus 3 come from tropical plane quartics.

Proof and Explanation. The graph (303) is not realizable, since none of the 1278 regular
unimodular triangulations of the triangle T4 has gives rise to it. So, its probability is zero.
For the other four trivalent graphs in Figure 3.4 we compute the volume of the realizable
edge lengths, using the inequalities in Theorem 3.4.1. The result of our computations is the
table

Graph (000) (020) (111) (212) (303)
Probability 4/15 8/15 12/35 1/3 0

A non-trivial point in verifying these numbers is that Theorem 3.4.1 gives the constraints
only up to symmetry. We must apply the automorphism group of each graph in order to
obtain the realizable region in its 5-simplex {(u, v, w, x, y, z) ∈ R6

≥0 : u+v+w+x+y+z = 1}.
Since we are measuring volumes, we are here allowed to replace the regions described in
Theorem 3.4.1 by their closures. For instance, consider type (020). After taking the closure,
and after applying the automorphism group of order 16, the realizability condition becomes

max
(
min(u, v),min(y, z)

)
≤ |x− w|. (3.4.4)

The probability that a uniformly sampled random point in the 5-simplex satisfies (3.4.4)
is equal to 8/15. The desired probability (3.4.3) is the average of the five numbers in the
table.

Notice that asking for those probabilities only makes sense since the dimension of the
moduli space agrees with the number of skeleton edges. In view of (3.1.7) this occurs for
the three genera g = 2, 3, 4. For g ≥ 5 the number of skeleton edges exceeds the dimension
of the moduli space. Hence, in these cases, the probability that a random metric graph
can be realized by a tropical plane curve must be 0. For g = 2 that probability is one; see
Example 3.3.4. For g = 4 that probability is less than 0.5% by Corollary 3.4.4 below.
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We will now compute the moduli space of tropical plane curves of genus 4. This is

Mplanar
4 = M

Q
(4)
1
∪ M

Q
(4)
2
∪ M

Q
(4)
3
∪ Mplanar

4,hyp ,

whereQ
(4)
i are the three genus 4 polygons in Proposition 3.3.6. They are shown in Figure 3.12.

Figure 3.12: The three nonhyperelliptic genus 4 polygons, and a triangulation

There are 17 trivalent genus 4 graphs, of which 16 are planar. These were first enumerated
in [Bal76], and are shown in Figure 3.14. All have 6 vertices and 9 edges. The labels (`bc)
are as before: ` is the number of loops, b the number of bi-edges, and c the number of cut-
edges. This information is enough to uniquely determine the graph with the exception of
(000), where “A” indicates the honeycomb graph and “B” the complete bipartite graph K3,3.
Although some of the names are the same as those for graphs of genus 3, this will not create
a conflict as for the remainder of the section the names will only refer to graphs of genus 4
unless we specify otherwise.

Up to their respective symmetries, the square Q
(4)
1 = R3,3 has 5941 unimodular triangu-

lations, the triangle Q
(4)
2 has 1268 unimodular triangulations, and the triangle Q

(4)
3 has 20

unimodular triangulations. We computed the cone M∆ for each triangulation ∆, and we ran
the pipeline of Section 3.3. We summarize our findings as the following result:

Theorem 3.4.3. Of the 17 trivalent graphs of genus 4, precisely 13 are realizable by tropical
plane curves. The moduli space Mplanar

4 is 9-dimensional, but it is not pure: the left decom-
position in (3.1.4) has components (3.1.3) of dimensions 7, 8 and 9. That decomposition is
explained in Table 3.2.

(000)A (010) (020) (021) (030)

Figure 3.13: Triangulations ∆ of Q
(4)
1 with dim(M∆) = 9
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(000)A (000)B (010) (020) (021)

(030) (101) (111) (121)

(122) (202) (212) (213)

(223) (303) (314) (405)

Figure 3.14: The 17 trivalent graphs of genus 4. All are planar except for (000)B.

The four non-realizable graphs are (000)B, (213), (314) and (405). This is obvious for
(000)B, because K3,3 is not planar. The other three are similar to the genus 3 graph (303),
and are ruled out by Proposition 3.5.4. The 13 realizable graphs G appear in the rows in
Table 3.2. The first three columns correspond to the polygons Q

(4)
1 , Q

(4)
2 and Q

(4)
3 . Each

entry is the number of regular unimodular triangulations ∆ of Q
(4)
i with skeleton G. The

entry is blank if no such triangulation exists. Six of the graphs are realized by all three
polygons, five are realized by two polygons, and two are realized by only one polygon. For
instance, the graph (303) comes from a unique triangulation of the triangle Q

(4)
3 , shown on

the right in Figure 3.12. Neither Q
(4)
1 nor Q

(4)
2 can realize this graph.

Our moduli space Mplanar
4 has dimension 9. We know this already from Proposition 3.2.2,

where the square Q
(4)
1 appeared as R3,3. In classical algebraic geometry, that square serves

as the Newton polygon for canonical curves of genus 4 lying on a smooth quadric surface.
In Table 3.2, we see that all realizable graphs except for (303) arise from triangulations
of R3,3. However, only five graphs allow for the maximal number of degrees of freedom.
Corresponding triangulations are depicted in Figure 3.13.
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Table 3.2: The number of triangulations for graphs of genus 4 and their moduli dimensions

G #∆
Q

(4)
1 ,G

#∆
Q

(4)
2 ,G

#∆
Q

(4)
3 ,G

dim(M
Q

(4)
1 ,G

) dim(M
Q

(4)
2 ,G

) dim(M
Q

(4)
3 ,G

)

(000)A 1823 127 12 9 8 7
(010) 2192 329 2 9 8 7
(020) 351 194 9 8
(021) 351 3 9 7
(030) 334 23 1 9 8 7
(101) 440 299 2 8 8 7
(111) 130 221 8 8
(121) 130 40 1 8 8 7
(122) 130 11 8 7
(202) 15 25 7 7
(212) 30 6 1 7 7 7
(223) 15 7
(303) 1 7

total 5941 1278 20

The last three columns in Table 3.2 list the dimensions of the moduli space M
Q

(4)
i ,G

,

which is the maximal dimension of any cone M∆ where ∆ triangulates Q
(4)
i and has skeleton

G. More detailed information is furnished in Table 3.3. The three subtables (one each for
i = 1, 2, 3) explain the decomposition (3.1.3) of each stacky fan M

Q
(4)
i ,G

. The row sums in

Table 3.3 are the first three columns in Table 3.2. For instance, the graph (030) arises in

precisely 23 of the 1268 triangulations ∆ of the triangle Q
(4)
2 . Among the corresponding

cones M∆, three have dimension six, twelve have dimension seven, and eight have dimension
eight.

Equipped with these data, we can now extend the probabilistic analysis of Corollary
3.4.2 from genus 3 to genus 4. As before, we assume that all 17 trivalent graphs are equally
likely and we fix the uniform distribution on each 8-simplex that corresponds to one of the
17 maximal cones in the 9-dimensional moduli space M4. The five graphs that occur with
positive probability are those with dim(M

Q
(4)
1 ,G

) = 9. Full-dimensional realizations were seen

in Figure 3.13. The result of our volume computations is the following table:

Graph (000)A (010) (020) (021) (030)
Probability 0.0101 0.0129 0.0084 0.0164 0.0336

In contrast to the exact computation in Corollary 3.4.2, our probability computations for
genus 4 rely on a Monte-Carlo simulation, with one million random samples for each graph.

Corollary 3.4.4. Less than 0.5% of all metric graphs of genus 4 come from plane tropical
curves. More precisely, the fraction is approximately vol(Mplanar

4 )/vol(M4) = 0.004788.
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Table 3.3: All cones M∆ from triangulations ∆ of the three polygons in Figure 3.12

Q
(4)
1 Q

(4)
2 Q

(4)
3

G\dim 5 6 7 8 9 5 6 7 8 4 5 6 7
(000) 103 480 764 400 76 5 52 60 10 1 6 3 2
(010) 38 423 951 652 128 7 113 155 54 1 1
(020) 3 32 152 128 36 53 100 41
(021) 3 32 152 128 36 1 2
(030) 45 131 122 36 3 12 8 1
(101) 15 155 210 60 19 122 128 30 1 1
(111) 10 80 40 52 126 43
(121) 35 65 30 8 20 12 1
(122) 10 80 40 1
(202) 15 25
(212) 15 15 4 2 1
(223) 15
(303) 1

By Theorem 3.6.1, Mplanar
4,hyp = M

E
(g)
g+2

. This space is 7-dimensional, with 6 maximal cones

corresponding to the chains (020), (021), (111), (122), (202), and (223). The graphs (213),
(314), and (405) are hyperelliptic if given the right metric, but beyond not being chain
graphs, these are not realizable in the plane even as combinatorial types by Proposition
3.5.4.

We will now consider the moduli space of tropical plane curves of genus 5. That space is

Mplanar
5 = M

Q
(5)
1
∪ M

Q
(5)
2
∪ M

Q
(5)
3
∪ M

Q
(5)
4
∪ Mplanar

5,hyp ,

where Q
(5)
1 , Q

(5)
2 , Q

(5)
3 , Q

(5)
4 are the four genus 5 polygons in Proposition 3.3.6. They are

shown in Figure 3.15. Modulo their respective symmetries, the numbers of unimodular
triangulations of these polygons are: 508 for Q

(5)
1 , 147908 for Q

(5)
2 , 162 for Q

(5)
3 , and 968 for

Q
(5)
4 .

Figure 3.15: The genus 5 polygons Q
(5)
1 , Q

(5)
2 , Q

(5)
3 and Q

(5)
4
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We applied the pipeline of Section 3.3 to all these triangulations. The outcome of our
computations is the following result which is the genus 5 analogue to Theorem 3.4.3.

Theorem 3.4.5. Of the 71 trivalent graphs of genus 5, precisely 38 are realizable by smooth
tropical plane curves. The four polygons satisfy dim(M

Q
(5)
i

) = 9, 11, 10, 10 for i = 1, 2, 3, 4.

These 38 realizable graphs are illustrated in Figure 3.16. All but one of them arises
from Q

(5)
1 or Q

(5)
2 . The remaining graph, realized only by a single triangulation of Q

(5)
4 , is

illustrated in Figure 3.17. This is reminiscent of the genus 4 graph (303), which was realized

only by the triangulation of Q
(4)
3 in Figure 3.12. The other 37 graphs are realized by at least

two of the polygons Q
(5)
1 , . . . , Q

(5)
4 , E

(5)
7 .

Figure 3.16: The 38 trivalent graphs of genus 5 appearing in Mplanar
5

Figure 3.17: A genus 5 graph, and the unique triangulation that realizes it

The other 33 trivalent graphs of genus 5 are pictured in Figure 3.18. Of these, 26 can
be quickly seen not to appear in Mplanar

5 . Four of the graphs are non-planar, fifteen are
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sprawling, and seven are crowded (these latter two properties will be defined in the next
section, which will also prove that any genus g graph with either property cannot appear in
Mplanar

g ). However, the remaining seven graphs are not ruled out by any yet-known concise
criteria, and at present have only been shown to be unrealizable in a tropical plane curve by
our massive computation. This contrasts the cases of genus 3 and 4, where all graphs not
appearing were either sprawling or nonplanar.

Figure 3.18: The 33 trivalent graphs of genus 5 not appearing in Mplanar
5 . The first four are

nonplanar, the next fifteen are sprawling, and the seven after that are crowded.

The process we have carried out for genus g = 3, 4, and 5 can be continued for g ≥ 6. As
the genus increases so does computing time, so it may be prudent to limit the computations
to special cases of interest. For g = 6 we might focus on the triangle Q

(6)
1 = T5. This is of

particular interest as it is the Newton polygon of a smooth plane quintic curve. This triangle
has 561885 regular unimodular triangulations up to symmetry.

Although T5 is interesting as the Newton polygon of plane quintics, it has the downside
that MT5 is not full-dimensional inside Mplanar

6 . Proposition 3.2.2 implies that dim(MT5) = 12,
while dim(Mplanar

6 ) = 13, and this dimension is attained by the rectangle R3,4 as in (3.2.3).
This might lead us to focus on full-dimensional polygons of genus g. By this we mean

polygons P whose moduli space MP has the dimension in (3.1.7). For each genus from 3
to 5, our results show that there is a unique full-dimensional polygon, namely, T4, R3,3, and

Q
(5)
2 . The proof of Theorem 3.1.1 furnishes an explicit example for each genus g ≥ 6: take

the rectangle in (3.2.3) or the trapezoid in (3.2.4) if g 6= 7, or the hexagon H4,4,2,6 if g = 7.
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Preliminary calculations show that there are exactly two full-dimensional maximal polygons
for g = 6, namely, Q

(6)
3 = R3,4 and Q

(6)
4 from Proposition 3.3.6.

3.5 Tropical hyperelliptic curves in the plane: theory

Recall that a polygon P of genus g is hyperelliptic if Pint is a line segment of length g − 1.
The moduli space of hyperelliptic tropical plane curves of genus g is

Mplanar
g,hyp :=

⋃
P

MP ,

where the union is over all hyperelliptic polygons P of genus g.
It is reasonable to ask about the relationship between Mplanar

g,hyp and Mg,hyp, the locus of all
hyperelliptic graphs in Mg. The easier direction is that the first is contained in the second:
assuming Pint is a horizontal line segment, a 2-to-1 map from a tropical curve (dual to a
subdivision of P ) to a line is given by vertical projection and bridge-dilating. This section
will be spent proving the following theorem, which shows that the relationship is as nice as
can be hoped for.

Theorem 3.5.1. If a smooth tropical plane curve with Newton polygon P has a hyperelliptic
skeleton, then P is a hyperelliptic polygon.

This means that, at least before taking closures,

Mplanar
g,hyp = Mg,hyp ∩Mplanar

g .

This is a generalization of Theorem 2.3.14, which proved the result for genus 3.
The space Mplanar

g,hyp is contained in the moduli space of chains Mchain
g , which we now define.

Start with a line segment on g − 1 nodes where the g − 2 edges have arbitrary non-negative
lengths. Double each edge so that the resulting parallel edges have the same length, and
attach two loops of arbitrary lengths at the endpoints. Now, each of the g − 1 nodes is
4-valent. There are two possible ways to split each node into two nodes connected by an
edge of arbitrary length. Any metric graph arising from this procedure is called a chain of
genus g. Although there are 2g−1 possible choices in this procedure, some give isomorphic
graphs. There are 2g−2 + 2b(g−2)/2c combinatorial types of chains of genus g. In genus 3 the
chains are (020), (111), and (212) in Figure 3.4, and in genus 4 they are (020), (021), (111),
(122), (202), and (223) in Figure 3.14.

By construction, there are 2g − 1 degrees of freedom for the edge lengths in a chain of
genus g, so each such chain defines an orthant R2g−1

≥0 . We write Mchain
g for the stacky subfan

of Mg consisting of all chains. Note that Mchain
g is strictly contained in the space Mg,hyp of all

hyperelliptic metric graphs. Hyperelliptic graphs arise by the same construction from any
tree with g − 1 nodes, whereas for chains that tree must be a line segment.
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Our strategy for proving Theorem 3.5.1 is as follows. We will define two types of graphs,
sprawling and crowded, which we will show are never the skeletons of smooth tropical plane
curves. In Proposition 3.5.11 we will use these criteria to show that a hyperelliptic graph
that is a smooth tropical plane curve’s skeleton must be a chain. It will then suffice to show
that if a polygon gives rise to a hyperelliptic chain, it must be a hyperelliptic polygon.

Definition 3.5.2. A connected, trivalent, leafless graph G is called sprawling if there exists
a vertex s of G such that G\{s} consists of three distinct components.

Remark 3.5.3. Each component of G\{s} must have genus at least one; otherwise G would
not have been leafless. The vertex s need not be unique. The genus 3 graph (303) in
Figure 3.4 is sprawling, as are the genus 4 graphs (213), (314), and (405) in Figure 3.14.

Lemma 3.5.4. Sprawling graphs are never the skeletons of smooth tropical plane curves.

This was originally proven in [CDMY14, Prop. 4.1]. We present our own proof for
completeness.

Proof. Suppose for the sake of contradiction that the skeleton of a smooth tropical plane
curve C is a sprawling graph G with separating vertex s. After a change of coordinates, we
may assume that the directions emanating from s are (1, 1), (0,−1), and (−1, 0). The curve
C is dual to a unimodular triangulation ∆ of a polygon P ⊂ R2. Let T ∈ ∆ be the triangle
dual to s. We may take T = conv{(0, 0), (0, 1), (1, 0)} after an appropriate translation of P .
Let P1, P2, P3 be the subpolygons of P corresponding to the components of G\{s}. After
relabeling, we have P1 ∩ P2 = {(0, 1)}, P1 ∩ P3 = {(0, 0)}, and P2 ∩ P3 = {(1, 0)}. Each Pi
has at least one interior lattice point, since each component of G\{s} must have genus at
least 1.

α

β

γ

δ
T

P1

P2

P3

Figure 3.19: The triangle T with angles formed between it and the boundary edges of P

Let α, β, γ, δ be angles between the triangle T and the boundary edges of P emanating
from the vertices of T , as pictured in Figure 3.19. Since P is convex, we know α+β ≤ 3π/4,
γ < π/2, and δ < 3π/4. As P1 contains at least one interior lattice point, and γ < π/2, we
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must also have that α > π/2; otherwise P1 ⊂ (∞, 0] × [0, 1], which has no interior lattice
points. Similarly, as P2 has at least one interior lattice point and δ < 3π/4, we must have
that β > π/4. But we now have that α+ β > π/2 + π/4 = 3π/4, a contradiction. Thus, the
skeleton of C cannot be a sprawling graph, as originally assumed.

Definition 3.5.5. A planar embedding of a connected, trivalent, leafless planar graph G is
called crowded if either: there exist two bounded faces sharing at least two edges; or, there
exists a bounded face sharing an edge with itself. If all planar embeddings of such a G are
crowded, we say that G is crowded.

Lemma 3.5.6. Crowded graphs are never the skeletons of smooth plane tropical curves.

Proof. Suppose the skeleton of a smooth plane tropical curve is a planar embedding of a
crowded graph G. If the embedding has two bounded faces F and F ′ sharing at least two
edges, let p and p′ be the corresponding interior lattice points of the tropical curve’s Newton
polygon. Since F and F ′ share at least two edges, p and p′ must be connected by at least
two edges in the corresponding triangulation of the Newton polygon. This is impossible,
since the only possible edge between p and p′ is the unique line segment connecting them.
A similar argument holds if the embedding of G has a bounded face sharing an edge with
itself. These contradictions prove the claim.

It is relatively simple to check that a graph is sprawling, but checking that a graph is
crowded is a priori difficult, since a condition must hold over all planar embeddings of a
graph. The following criterion lets us check for crowdedness from a single planar embedding.
We will use the fact that since G is trivalent, the dual graph G∗ on g + 1 vertices is well-
defined, independent of the embedding of G.

Proposition 3.5.7. Let G be a connected, planar, leafless, trivalent graph, and let M ∈
N(g+1)×(g+1) be the adjacency matrix of the dual graph G∗. Let M[i] denote the submatrix of
M obtained by deleted the ith row and the ith column. Then G is crowded if and only if for
all i, M[i] has either an entry ≥ 2, or a diagonal entry ≥ 1.

Proof. Assume G is crowded. Embed G on a sphere, and project to obtain a planar embed-
ding with the ith face unbounded. Then M[i] is the adjacency matrix of the subgraph of G∗

obtained by deleting the vertex corresponding to the ith face and all adjacent edges. Either
some pair of the bounded faces must share at least two edges, and so M[i] must have some
entry ≥ 2; or a bounded face shares an edge with itself, and so M[i] must have some diagonal
entry ≥ 1.

Now assume that for all i, either M[i] has an entry ≥ 2, or a diagonal entry ≥ 1. Let k
be the index corresponding to the unbounded face. If ` is the index of the unbounded face
of G, we have that either (M[`])j,k ≥ 2 for some j, k or (M[`])i,i for some i. In the former
case, the jth and kth faces are bounded and share at least two edges. By the invariance of
M up to relabeling rows and columns, this will hold for all planar embeddings of G, so G is
crowded. A similar argument holds for the latter case.
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In the following results we will refer to a 2-connected component of a graph G. This is a
subgraph of G that is a connected component of the graph obtained by deleting all bridges
from G and smoothing over 2-valent vertices. Note that a 2-connected component will be
a 2-edge connected graph. If G is sprawling, then the vertex that witnesses this property
will be a 2-connected component. A nontrivial 2-connected component is one that is not a
vertex.

Lemma 3.5.8. Let G′ be a 2-connected component of a planar graph G. If G′ is crowded
then so is G.

Proof. Embed G, then delete everything that is not part of G′, smoothing over the resulting
2-valent vertices. Label the (bounded and unbounded) faces F1, . . . , Fk. Now add back in
the rest of G. Since G′ is a 2-connected component of G, the faces F1, . . . , Fk are preserved as
faces (without being split), and the number of edges shared by pairs (not necessarily distinct)
amongst F1, . . . , Fk have either remained the same or increased. Applying Proposition 3.5.7
shows that G is crowded.

Remark 3.5.9. It is possible for a graph to have a crowded subgraph without being crowded,
as long as that subgraph is not a 2-connected component. See Figure 3.20 for an example.

Figure 3.20: A graph that isn’t crowded, but has a crowded subgraph

Proposition 3.5.10. If a hyperelliptic graph is 2-connected, either it is a chain or it is
crowded.

Proof. Let G be a 2-connected hyperelliptic graph of genus g. By [Cha13, Theorem 4.9], G
is a ladder over tree with g − 1 nodes, each with valency at most three. Note that G is the
2-connected chain of genus g if and only if the tree is a line segment. Assume G is not a
chain. Then the tree must contain a trivalent vertex v, which we will label v′ in the second
copy of T used to obtain G. This means G is of the form shown in Figure 3.21, where each
unknown box contains at least one bi-edge. This means that each pair of faces amongst the
faces F1, F2, F3 shares two edges. It follows that the adjacency matrix of the dual graph
begins 

0 2 2 · · ·
2 0 2 · · ·
0 2 2 · · ·
...

...
...

. . .

 .
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Proposition 3.5.7 implies that G is crowded.

v′

v

? ? ?F2 F3

F1

Figure 3.21: A non-chain 2-connected hyperelliptic graph with three faces labeled.

Proposition 3.5.11. If G is the hyperelliptic skeleton of a smooth tropical plane curve, then
G is a chain.

Our proof of this proposition will show something even stronger: that if a graph is the
skeleton of a smooth tropical plane curve, and there exists some metric on that graph that
makes it hyperelliptic (not necessarily the metric given by that embedding), then that graph
must be a chain under that new metric.

Proof. Let G be such a hyperelliptic skeleton, meaning it comes with a given embedding
into the plane which cannot be a crowded embedding. Each 2-connected component of G
must be hyperelliptic and not crowded by Lemma 3.5.8, and so by Proposition 3.5.10 each
2-connected component of G must be either a chain or just a vertex.

Let G′ be a nontrivial 2-connected component of G, from which G′ inherits a non-crowded
embedding into the plane. Since G′ is a chain, it must be embedded in the standard chain
embedding in Figure 3.22: any other embedding is crowded, as can be read off from the
adjacency matrix of a dual graph. The only edges that could possibly connect G′ to the rest
of G are an edge from the middle of e0 and an edge from the middle of eg. This is because a
2-connected component connecting to G from any other ei (or with multiple edges from e0 or
from eg) would make a bounded face of G share an edge with itself, meaning the embedding
was crowded.

It follows that each 2-connected component of G has at most one incoming and one
outgoing edge. As with any graph, shrinking the 2-connected components down to nodes
yields a tree T . Lemma 3.5.4 implies that T must be a line segment: if T had any trivalent
nodes, the corresponding 2-connected component would have to be a vertex, and so G
would be sprawling. Considering the structure of each nontrivial 2-connected component,
we conclude that G must be a chain.
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e0 e1 e2 e3 eg−2 eg−1 eg

Figure 3.22: The standard embedding of a chain, with vertical edges labelled e0 to eg

This proposition implies that Mplanar
g ∩ Mg,hyp ⊂ Mplanar

g ∩ Mchain
g . However, it is not

immediately clear that there is no contribution from nonhyperelliptic polygons, which could
in principle give rise to hyperelliptic chains. The following proposition rules this out, and is
the last ingredient we need in order to prove Theorem 3.5.1.

Proposition 3.5.12. Let G be the skeleton of a smooth tropical plane curve with nonhy-
perelliptic Newton polygon P . If G is combinatorially a chain, then the metric on G is not
hyperelliptic.

In the proof of this proposition, when we say “G is a chain”, we mean that G is a chain
combinatorially, possibly without a hyperelliptic metric.

Proof. Let ∆ be the unimodular triangulation of P dual to the smooth plane tropical curve
with skeleton G. The order on the distinguished cycles c1, . . . , cg of G induces a natural
ordering on the interior lattice points of P , which we will call p1, . . . , pg. Since P is nonhy-
perelliptic, there exists some triple pi, pi+1, pi+2 of these interior lattice points that are not
collinear. We will assume that the cycle ci+1 shares an edge with ci and an edge with ci+2;
the other cases with at least one bridge coming from ci+1 are handled similarly. Dually, this
means that ∆ contains the line segments pipi+1 and pi+1pi+2. After a change of coordinates
we may assume pi = (0, 1), pi+1 = (0, 0), and pi+2 = (1, 0).

Since G is a chain, the triangulation ∆ does not contain the line segment pipi+2. This
means that some line segment in ∆ containing pi+1 must separate pi and pi+2. By the
convexity of P , this means that the point q = (1, 1) is contained in P , and in fact pi+1q is a
line segment in ∆. Since G is a chain, it follows that q is a boundary point of P . Since P
is convex, there is no segment in ∆ containing pi+1 that separates pi from q, or pi+2 from q.
It follows that piq and pi+2q are both segments in the triangulation ∆. In the dual tropical
curve, let eh be dual to pipi+1; ev be dual to pi+1pi+2; e1 be dual to pi+1q; and e2 be the
remainder of the cycle ci+1. This is illustrated in Figure 3.23. Let `h, `v, `1, and `2 denote
the lengths of these edges, respectively.

Let q1, q2, . . . , qn denote the lattice points of P that ∆ connects to pi+1, ordered coun-
terclockwise starting with q (so that q1 = q, q2 = pi and qn = pi+2). Write these points in
coordinates as qj = (aj, bj). For 3 ≤ j ≤ n − 1, at least one of aj and bj must be negative
due to the placement of pi and pi+2. In fact, for all j, at least one of aj and bj is −1: if not,
convexity of P would imply the existence of a new interior lattice point that is connected to
pi+1 by a segment ∆, which is impossible as G is a chain.
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pi

pi+1

pi+2

q e1eh

ev
e2

ci

ci+1 ci+2

Figure 3.23: A portion of the triangulation ∆ of P , and part of the dual tropical curve

In the tropical embedding of the graph G, the edge e2 is made up of line segments that
are dual to q3, q4, . . . , qn−1. Consider the line segments in e2 dual to qi’s of the form (ai,−1).
The sum of the horizontal widths of these segments must be at least the sum of the horizontal
widths of e1 and eh: otherwise the cycle ci+1 would not be closed. Since these line segments
in e2 have slopes in Z, each of them has lattice length equal to horizontal width. The same
holds for e1 and eh, implying `2 ≥ `1 + `h > `1. This means G has edges of a two-cut with
different lengths, namely e1 and e2 with lengths `1 6= `2. By Lemma 2.3.13, the metric on G
cannot be hyperelliptic. This completes the proof.

It is worth remarking that it is not immediately obvious from Figure 3.23 that e2 is longer
than e1, since we are considering lattice length rather than Euclidean length. For instance,
if `1 = `v = 1, `h = 2, and e2 consists of a single line segment with slope 2/3, then `1 = `2.
This is ruled out by constraints on the lattice polygon P , but the result does require more
work than it might initially seem.

The results of this section now allow us to prove that if hyperelliptic smooth tropical
plane curves only come from hyperelliptic Newton polygons.

Proof of Theorem 3.5.1. Let C be a smooth plane tropical curve with Newton polygon P
and a hyperelliptic skeleton G. By Proposition 3.5.11, the graph G must be a chain. If
P were not a hyperelliptic polygon, then by Proposition 3.5.12 the chain G could not be
hyperelliptic as assumed. We conclude that P must be a hyperelliptic polygon.

3.6 Tropical hyperelliptic curves in the plane:

computation

We will now consider how to compute Mplanar
g,hyp , which is the union of all MP ’s with P hyper-

elliptic with g interior lattice points. Unlike when the interior hull Pint is two-dimensional,
there does not exist a unique maximal hyperelliptic polygon P with given Pint. However,
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there are only finitely many such polygons up to isomorphism. These are

E
(g)
k := conv{(0, 0), (0, 2), (g + k, 0), (g + 2− k, 2)} for 1 ≤ k ≤ g + 2.

These hyperelliptic polygons interpolate between the rectangle E
(g)
1 = Rg+1,2 and the triangle

E
(g)
g+2. The five maximal hyperelliptic polygons for genus g = 3 are pictured in Figure 3.24.

Figure 3.24: The five maximal hyperelliptic polygons of genus 3

At first, it seems that to compute Mplanar
g,hyp one must compute M

E
(g)
k

for all k, and take the

union. By [KZ03, Proposition 3.4], all triangulations of hyperelliptic polygons are regular,
so we need not worry about non-regular triangulations arising in the TOPCOM computations
described in Section 3.3. We next show that it suffices to consider the triangle:

Theorem 3.6.1. For each genus g ≥ 2, the hyperelliptic triangle E
(g)
g+2 satisfies

M
E

(g)
g+2

= Mplanar
g,hyp . (3.6.1)

The equality holds even before taking closures of the spaces of realizable graphs.

To prove Theorem 3.6.1 we must show that any metric graph arising from a maximal
hyperelliptic polygon E

(g)
k also arises from the hyperelliptic triangle E

(g)
g+2. Given a triangu-

lation ∆ of E
(g)
k , our proof constructs a triangulation ∆′ of E

(g)
g+2 that gives rise to the same

collection of metric graphs, so that M∆ = M∆′ , with equality holding even before taking
closures of the spaces of realizable graphs. Before our proof, we illustrate this construction
with the following example.

Example 3.6.2. Let ∆ be the triangulation of R4,2 pictured on the left in Figure 3.25 along
with a metric graph G arising from it. We claim there exists a triangulation ∆′ of the
hyperelliptic triangle E

(3)
5 that gives rise to the exact same set of metric graphs. This

triangulation is also pictured in Figure 3.25. We will explain why these triangulations give
the same metric graphs, and then explain how to construct ∆′ algorithmically from ∆.

The possible metrics on G are determined by the slopes of the line segments emanating
from the vertical edges. For instance, consider the constraints on v and y imposed by the
width w (which equals x). If most of the w and x edges are made up of the segments
emanating from v, we find y close to v+ 2w. If instead most of the w and x edges are made
up of the segments emanating from y, we find y close to v − 2w. Interpolating gives graphs
achieving v−2w < y < v+ 2w. This only depends on the difference of the slopes emanating
either left or right from the edges v and y: the same constraints would be imposed if the
slopes emanating from v to the right were 2 and 0 rather than 1 and −1. Boundary behavior
determines constraints on u and z, namely v < u and y < z.
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Figure 3.25: Triangulations of R4,2 and E
(3)
5 , giving rise to skeletons with the same possible

metrics.

The skeleton G′ arising from ∆′ has the same combinatorial type as G. Moreover, each
vertical edge in G′ has outgoing edges to the left and to the right, whose slope differences
are the same as in G. For instance, from the vertical edge v, both graphs have the first
segment of w and the first segment in x emanating to the right. Although the slopes of
these segments are different in the two graphs, the difference in the slopes is 2 for both. This
slope similarity, combined with similar boundary behavior, this shows that G and G′ have
the exact same achievable metrics. In other words, M∆ = M∆′ , with equality even before
taking closures of the realizable graphs.

We now explain how to construct ∆′ from ∆, an algorithm spelled out explicitly in
the proof of Theorem 3.6.1. We start by adding edges from (0, 2) to the interior lattice

points (since any unimodular triangulation of E
(3)
5 must include these edges), and then add

additional edges based on the combinatorial type of ∆, as pictured in Figure 3.26.

Figure 3.26: The start of the construction of the triangulation ∆′

Next we add edges connecting the interior lattice points to the lower edge of the triangle.
We will ensure that the outgoing slopes from the vertical edges in the Γ′ have the same
difference as in Γ. For i = 1, 2, 3, we will connect (i, 1) to all points between (2i+ ai, 0) and
(2i + bi, 0) where ai is the difference between the reciprocals of the slopes of the leftmost
edges from (i, 1) to the upper and lower edges of R4,2 in ∆, and bi is defined similarly but
with the rightmost edges. Here we take the reciprocal of ∞ to be 0. In the dual tropical
curve, this translates to slopes emanating from vertical edges in the tropical curve having
the same difference as from ∆.

We compute a1 = 1
−1
− 1

1
= −2 and b1 = 1

∞ − 1
∞ = 0. Since 2 · 1 + a1 = 0 and

2 · 1 + b1 = 2, we add edges from (1, 1) to (0, 0), to (0, 2), and to all points in between, in
this case just (0, 1). We do similarly for the other two interior lattice points, as pictured in
the first three triangles in Figure 3.27. The fourth triangle includes the edges (0, 1)− (1, 1)
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and (3, 1)− (4, 1), which ensures the same constraints as from ∆ on the first and third loops
of the corresponding metric graph.

Figure 3.27: Several steps leading up to ∆′, on the right

Proof of Theorem 3.6.1. We need to prove M
E

(g)
g+2

= Mplanar
g,hyp . Given any triangulation ∆ of

a hyperelliptic polygon E
(g)
k , we shall construct a triangulation ∆′ of T := E

(g)
g+2 such that

M∆ = M∆′ . Our construction will show that the equality even holds before taking the
closure of the sets of achievable metrics on the skeletons.

Before we define ∆′, we will need to define several numbers attached to a triangulation
of a maximal hyperelliptic polygon, and describe the corresponding realizable dual graphs.

Let ∆ be a triangulation of E
(g)
k = conv{(0, 0), (0, 2), (g + k, 0), (g + 2 − k, 2)}, where

1 ≤ k ≤ g + 2. For each i, let

• σNW
i be the slope of the leftmost edge from (i, 1) to the top edge of E

(g)
k ,

• σNE
i be the slope of the rightmost edge from (i, 1) to the top edge of E

(g)
k ,

• σSW
i be the slope of the leftmost edge from (i, 1) to the bottom edge of E

(g)
k , and

• σSE
i be the slope of the rightmost edge from (i, 1) to the bottom edge of E

(g)
k .

Each (possibly infinite) number is well-defined as no edge of ∆ can separate (i, 1) from the

top or the bottom edge of E
(g)
k . It is possible for σNW

i = σNE
i or σSW

i = σSE
i . See Figure 3.28

for an example with σNW
2 = −1

2
, σNE

2 =∞, σSW
2 = 1, and σSE

2 = −1
3
.

σNW
2 σNE

2

σSE
2

σSW
2

sNW
2

sNE
2

sNW
2

sNW
2

Figure 3.28: A triangulation ∆ highlighting the point (2, 1), with the corresponding σ’s in
∆ and s’s in the dual tropical cycle.

Let sNW
i = −1/σNW

i , so that in a tropical curve dual to ∆, sNW
i is the slope of the edge

dual to the edge that determines σNW
i . We define sNE

i , sSW
i , and sSE

i similarly. See Figure
3.28 for an example with sNW

2 = 2, sNE
2 = 0, sSW

2 = −1, and sSE
2 = 3. Based on the vertices

of E
(g)
k , we have the bounds

i+ k − (g + 2) ≤ sNE
i ≤ sNW

i ≤ i
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and
−i ≤ sSW

i ≤ sSE
i ≤ g + k − i.

Define dW
i = sNW

i − sSW
i and dE

i = sNE
i − sSE

i . We’ll call d(∆) = (dW
1 , d

E
1 , d

W
2 , d

E
2 , . . . , d

W
g , d

E
g )

the d-vector of ∆. The bounds on the slopes imply

2i− (2g + 2) ≤ dE
i ≤ dW

i ≤ 2i.

We also have sNW
i+1 = sNE

i + 1 and sSW
i = sSE

i − 1, so dW
i+1 = dE

i + 2. If there is ever any
ambiguity as to which triangulation an si or a di is coming from, we will use such notation
as sSW

i (∆).
To describe the lengths on a planar chain graph dual to ∆, we will use the following

notation for edge lengths:

• `1 and `g for leftmost and rightmost edges.

• wi with 2 ≤ i ≤ g − 1 for the width of the ith loop.

• hi,i+1 for the length of an edge shared by the ith and (i + 1)th loops (taken to be 0 if
these cycles do not share an edge).

• bi,i+1 for the length of a cut-edge connecting the ith and (i+ 1)th loops (taken to be 0
if these cycles are not connected by a cut-edge).

Figure 3.29 illustrates these labels for a particular chain graph with g = 6.

h12

w2 w3 w4 w5

h23 h34 h56`1 `6
b45

Figure 3.29: A labelled skeleton of a chain tropical curve with g = 6.

Let us now describe the metric chain graphs achieved in the plane dual to ∆ with a given
d-vector, regardless of which polygon Eg

k is triangulated by ∆. By the convexity of each loop,
any tropical curve dual to ∆ must have edge lengths satisfying

dE
i ≤ (hi−1,i − hi,i+1)/wi ≤ dW

i .

Moreover, these inequalities fail to be strict if and only if dE
i = dW

i (which by convexity
means sNWi = sNEi and sSWi = sNEi ). If dE

i 6= dW
i , then all lengths between dE

i and dW
i are
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achievable. Since any nonzero bi,i+1 can be made an arbitrary length, we conclude that the d-
vector d(∆) determines the set of all graphs achievable by ∆, except for possible constraints
on `1 and `g; namely, we can have exactly the choices of wi’s and hi,i+1’s compatible with{

dE
i < (hi−1,i − hi,i+1)/wi < dW

i if dE
i 6= dW

i ,

dE
i = (hi−1,i − hi,i+1)/wi = dW

i otherwise.

We now have the necessary machinery to define the unimodular triangulation ∆′ of T
and prove it has the desired properties. It may be helpful to refer to Example 3.6.2, where
an example of ∆′ is constructed explicitly. First, ∆′ contains the edges connecting (0, 2) to
(i, 1) for 1 ≤ i ≤ g, as these edges must be present in any unimodular triangulation of T .
Next, if ∆ includes the edge from (i, 1) to (i + 1, 1), then this edge is in ∆′; if not then ∆′

includes the edge from (0, 2) to (2i + 1, 0). This ensures that the combinatorial type of the
dual graph of ∆′ will be the same as that of ∆.

For each i from 1 to g, ∆′ contains the edges connecting (i, 1) to (2i − dW
i (∆), 0), to

(2i− dE
i (∆), 0), and to any points in between. These points are in T since

0 = 2i− 2i ≤ 2i− dW
i (∆) ≤ 2i− dE

i (∆) ≤ 2i− (2i− (2g + 2)) = 2g + 2.

Suppose there is a conflict in these edges preventing a coherent triangulation, say coming
from the points (i, 1) and (i + 1, 1). Then we know that 2i − dE

i (∆) < 2(i + 1) − dW
i+1(∆),

which can be rewritten as dW
i+1(∆) < dE

i (∆) + 2. But we know that dW
i+1(∆) = dE

i + 2(∆), a
contradiction. Hence there can be no conflict in the edges.

To complete the definition of ∆′, we must define what is happening in the vicinity of
(1, 1) and (g, 1). By symmetry, it will suffice to describe the case for (1, 1). Let (n, 0) be the
leftmost point of the bottom edge of T connected to (1, 1).

(i) If n = 0, let ∆′ include the edge (0, 1)− (1, 1).

(ii) If n ≥ 2, let ∆′ include the edge (0, 1) − (1, 1) and all edges (0, 1) − (0,m) with
0 ≤ m ≤ n.

(iii) If n = 1 and ∆ contains the edge (0, 1)− (1, 1), let ∆′ include the edges (0, 1)− (1, 1)
and (0, 1)− (1, 0).

(iv) If n = 1 and ∆ contains the edge (0, 1) − (1, 1), let ∆′ contain (0, 2) − (1, 0) and
(0, 1)− (1, 0).

It’s worth noting that in cases (i) and (ii), we completed ∆′ in the vicinity of (1, 1) in the
only way possible. A symmetric definition in the vicinity of (g, 1) completes the definition
of ∆′.

To show that ∆′ and ∆ give rise to the same set of metric graphs, we first show that
d(∆) = d(∆′). We have sNW

i (∆′) = sNE
i (∆′) = i, sSW

i (∆′) = (2i − dW
i (∆)) − i, and sSE

i =
(2i− dE

i (∆))− i, so
dW
i (∆′) = i− (2i− dW

i (∆))− i) = dW
i (∆)
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and
dE
i (∆′) = i− (2i− dE

i (∆))− i) = dE
i (∆),

as desired.
Since d(∆) = d(∆′), we know that ∆ and ∆′ give rise to the same set of graphs up to

perhaps having different constraints on `1 and `g. It is enough to show the constraints on `1

are the same for the two triangulations, as symmetry will show the same holds for `g. We
will focus on case (iii), wherein n = 1 and ∆ does not contain (0, 1)− (1, 1). The other three
cases are similar.

Considering the edges emanating from (1, 1) in ∆′, the constraints on `1 are h12 < `1

if ∆′ contains (1, 1) − (2, 0), and h12 < `1 < 2h12 otherwise. The exact same is true of ∆:
if ∆′ contains (1, 1) − (2, 0), then dE

1 (∆) = dE
1 (∆′) ≤ 1 − 1 = 0, which allows for arbitrary

scaling of `1 that can be truncated by the edge (1, 0) − (1, 1). And if ∆′ does not contain
(1, 1)− (2, 0), then dE

1 (∆) = dE
1 (∆′) = −1. The total length of `1 is then twice the width w

of `1 plus the height of the edge dual to (1, 0)− (1, 1), which will be at most h12−w. As all
lengths must be positive, we know 0 < w < h12, which leads to the bound of h12 < `1 < 2h12.
As all such graphs are realizable, the constraints on `1 are the same for both triangulations.

We have shown that the metric graphs arising from ∆′ are exactly the same as the metric
graphs arising from ∆. This gives a containment M

E
(g)
k
⊂ MT , true even before taking

closures. This completes the proof.

We will now compute Mplanar
3,hyp . By (3.4.1) and Theorem 3.6.1, it suffices to compute

the 5-dimensional space M
E

(g)
g+2

. As in Section 3.4 this will require exhibiting particular

triangulations giving rise to families of metric graphs. For the purposes of presenting such
details, the hyperelliptic triangle is not especially user-friendly, as the triangulations become
hard to parse visually. An explicit computation as in Section 3.3 reveals that the rectangle
E

(3)
1 = R4,2 realizes precisely the same metric graphs as the triangle E

(3)
5 . With this, Theorem

3.6.1 implies Mplanar
3,hyp = MR4,2 . To complete the computation of Mplanar

3 begun in Section 3.4,
it thus suffices to analyze the more user-friendly rectangle R4,2.

Table 3.4: Dimensions of the moduli cones M∆ for R4,2 and E
(3)
5

R4,2 E
(3)
5

G \ dim 3 4 5 #∆’s 3 4 5 #∆’s
(020) 42 734 1296 2072 42 352 369 763
(111) 211 695 906 90 170 260
(212) 127 127 25 25
total 42 945 2118 3105 42 442 564 1048

It follows from Theorem 2.3.14 that MR4,2 and MT4 have disjoint interiors. Moreover,
MR4,2 is not contained in MT4 . This highlights a crucial difference between (3.1.8) and (3.4.1).
The former concerns the tropicalization of classical moduli spaces, so the hyperelliptic locus
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lies in the closure of the nonhyperelliptic locus. The analogous statement is false for tropical
plane curves. To see that MT4 does not contain MR4,2 consider the (020) graph with all edge
lengths equal to 1. By Theorems 3.4.1 and 3.6.3, this metric graph is in MR4,2 but not in
MT4 . What follows is the hyperelliptic analogue to the nonhyperelliptic Theorem 3.4.1.

Theorem 3.6.3. A graph in M3 arises from R4,2 if and only if it is one of the graphs (020),
(111), or (212) in Figure 3.4, with edge lengths satisfying the following, up to symmetry:

• (020) is realizable if and only if w = x, v ≤ u, v ≤ y ≤ z, and

(y < v + 2w ) or (y = v + 2w and y < z )
or (y < v + 3w and u ≤ 2v ) or (y = v + 3w and u ≤ 2v and y < z )
or (y < v + 4w and u = v ) or ( y = v + 4w and u = v and y < z ).

(3.6.2)

• (111) is realizable if and only if w = x and min{u, v} ≤ w.

• (212) is realizable if and only if w = x.

Proof. This is based on an explicit computation as described in Section 3.3. The hyperelliptic
rectangle R4,2 has 3105 unimodular triangulations up to symmetry. All triangulations are
regular. For each such triangulation we computed the graph G and the polyhedral cone M∆.
Each M∆ has dimension 3, 4, or 5, with census given on the left in Table 3.4. For each cone
M∆ we then checked that the inequalities stated in Theorem 3.6.3 are satisfied. This proves
that the dense realizable part of MR4,2 is contained in the polyhedral space described by our
constraints.

u v

w

x

y z

Figure 3.30: Triangulations giving all realizable hyperelliptic metrics for the graph (020)

For the converse direction, we construct a planar tropical realization of each metric graph
that satisfies our constraints. For the graph (020), we consider eleven cases:

(i) y < v + 2w, u 6= v, y 6= z; (dim = 5)
(ii) y = v + 2w, u 6= v, y 6= z; (dim = 5)

(iii) ( y < v + 3w, v < u < 2v, y 6= z ) or ( y < v + 2w, u 6= v, y < z < 2y ); (dim = 5)
(iv) ( y < v + 3w, u = 2v, y 6= z ) or ( y < v + 2w, u 6= v, z = 2y ); (dim = 4)
(v) ( y < v + 3w, v < u < 2v, y = z ) or ( y < v + 4w, u = v, y < z < 2z ); (dim = 4)
(vi) ( y < v + 3w, u = 2v, y = z ) or ( y < v + 4w, u = v, z = 2y ); (dim = 3)

(vii) y = v + 3w, v < u < 2v, y 6= z; (dim = 4)
(viii) y = v + 3w, u = 2v, y 6= z; (dim = 3)
(ix) ( y < v + 4w, u = v, y 6= z ) or ( y < v + 2w, y = z, u 6= v ); (dim = 3)
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(x) y < v + 4w, u = v, y = z; (dim = 3)
(xi) y = v + 4w, u = v, y 6= z. (dim = 3)

The disjunction of (i),(ii),. . . ,(xi) is equivalent to (3.6.2). Triangulations giving all metric
graphs satisfying each case are pictured in Figure 3.30. Next to the first triangulation is a
metric graph arising from it.

Next we deal with graph (111). Here we need two triangulations, one for u 6= v and one
for u = v. They are pictured in Figure 3.31. The left gives u 6= v, and the middle gives
u = v.

Figure 3.31: Triangulations realizing hyperelliptic metrics for the graphs (111) and (212)

Finally, for the graph (212), the single triangulation on the right in Figure 3.31 suffices.
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Chapter 4

Algorithms for Mumford curves

Since their initial appearance in the 1970s, a rich theory behind Mumford curves has been
developed, largely in the 1980s in such works as [GvdP80]. However, prior to the work pre-
sented here, there have been few numerical algorithms for working with them (an exception
being a treatment of hyperelliptic Mumford curves, mostly genus 2, in [Kad07] from 2007).
We have designed and implemented algorithms that accomplish Mumford curve-based tasks
over Qp previously absent from the realm of computation, and have made many seemingly
theoretical and opaque objects hands-on and tractable.

We begin in Section 4.1 with a brief review of the theory of Mumford curves, and a
summary of the goals of our algorithms. After discussing in Section 4.2 a technical hypothesis
(“good position”) for the input for our algorithms, we present our main algorithms in Section
4.3. In Section 4.4, we present an algorithm to achieve the “good position” hypothesis that
allows the other algorithms to run efficiently, which in doing so verifies that the input group
is Schottky (or proves that the group is not Schottky). This is in some ways the most
important result of this chapter, as the algorithms in Section 4.3 rely heavily upon it.

We made extensive use of the software package sage [S+13]. Supplementary files can be
found at http://math.berkeley.edu/~ralph42/mumford_curves_supp.html. There are
minor changes in the sage implementation from the description of the algorithms in this
chapter. The changes are made only for convenience in implementation, and they do not
affect the behavior of the algorithms.

This chapter’s content comes from the paper “Algorithms for Mumford curves” [MR15],
coauthored with Qingchun Ren and appearing in the Journal of Symbolic Computation.

4.1 The theory of Mumford curves

Let K be an algebraically closed field complete with respect to a nontrivial non-Archimedean
valuation. Unless otherwise stated, | · | will denote a choice of norm on K coming from this
valuation. Let R = {x ∈ K|val(x) ≥ 0} be the valuation ring of K. This is a local ring
with unique maximal ideal M = {x ∈ K|val(x) > 0}. Let k = R/M denote the residue field

http://math.berkeley.edu/~ralph42/mumford_curves_supp.html
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of K. We are most interested in the field of p-adic numbers Qp, which unfortunately is not
algebraically closed. (For this case, R = Zp, the ring of p-adic integers, and k = Fp, the
field with p elements.) Therefore for theoretical purposes we will often consider K = Cp,
the complete algebraic closure of Qp. (In this case R is much larger, and k is the algebraic
closure of Fp.) In most of this chapter, choosing elements of Cp that happen to be elements
of Qp as inputs for algorithms yields an output once again in Qp. This “Qp in, Qp out”
property means we may take K to be Qp for our algorithmic purposes, while still considering
K = Cp when more convenient for the purposes of theory. Much of the theory presented
here works for other non-Archimedean fields, such as the field of Puiseux series C{{t}}.

We recall some standard definitions and notation for p-adic numbers; for further back-
ground on the p-adics, see [Hol01]. For a prime p, the p-adic valuation valp : Q∗ → Z is
defined by valp

(
pv m

n

)
= v, where m and n are not divisible by p. The usual p-adic norm

| · |p on Q is defined for a ∈ Q∗ by |a|p = 1
pvalp(a) and for 0 by |0|p = 0. This means that large

powers of p are small in absolute value, and small powers of p are large in absolute value.
We will usually omit the subscript p from both | · |p and valp.

The completion of Q with respect to the p-adic norm is denoted Qp, and is called the
field of p-adic numbers. Each nonzero element b of Qp can be written uniquely as

b =
∞∑
n=v

anp
n,

where v ∈ Z, av 6= 0 and an ∈ {0, 1, . . . , p − 1} for all n. The p-adic valuation and norm
extend to this field, and such a sum will have val(b) = v and |b| = 1

pv
. In analog to decimal

expansions, we will sometimes write

b = . . . aNaN−1 . . . a3a2a1a0.a−1a−2 . . . av,

where the expression trails to the left since higher powers of p are smaller in p-adic absolute
value. We may approximate b ∈ Qp by a finite sum

b ≈
N∑
n=v

anp
n,

which will give an error of size at most 1
pN+1 .

Consider the group PGL(2, K), which acts on P1(K) by treating elements as column
vectors. That is, a matrix acts on the point (a : b) ∈ P1(K) by multiplication with the
vector ( ab ). Viewed on an affine patch, the elements of this group act as fractional linear
transformations. We are interested in the action of certain subgroups of PGL(2, K) called
Schottky groups, because a Schottky group minimally generated by g ≥ 2 elements will give
rise to a curve of genus g.

Definition 4.1.1. A 2×2 matrix over K is hyperbolic if it has two eigenvalues with different
valuations. A Schottky group Γ ≤ PGL(2, K) is a finitely generated subgroup such that every
non-identity element is hyperbolic.
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There are many equivalent definitions of Schottky groups, including the following useful
characterization.

Proposition 4.1.2. A subgroup of PGL(2, K) is Schottky if and only if it is free, discrete,
and finitely generated.

As remarked in the introduction of [Mum72b], if the matrices have entries in a locally
compact field (like Qp), the definition of Schottky is equivalent to asking that Γ has no
elements of finite order. So if we are working with generators in Q2×2

p , we may replace “free”
with “torsion free.” For an algorithm to test if a group is Schottky, see Section 4.4.

Let Γ be a Schottky group minimally generated by γ1, . . . , γg. The above proposition
implies that each element γ ∈ Γ can be written as a unique shortest product h1h2 · · ·hk,
where each hi ∈ {γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g }. This product is called the reduced word for γ.
Let Σ be the set of points in P1(K) that are fixed points of elements of Γ or limit points

of the fixed points. The group Γ acts nicely on Ω := P1(K) \ Σ; for this reason we will
sometimes refer to Σ as the set of bad points for Γ.

Theorem 4.1.3 (Mumford, [Mum72b]). Let Γ = 〈γ1, . . . , γg〉 and Ω be as above. Then Ω/Γ
is analytically isomorphic to a curve of genus g. We call such a curve a Mumford curve.

Mumford also showed that a curve is Mumford if and only if it is smooth with totally
degenerate reduction over the residue field. It follows that Mumford curves are precisely
those smooth curves of genus g whose Berkovich skeleton is a graph with genus g.

In a companion paper to [Mum72b] (see [Mum72a]), Mumford also considered abelian va-
rieties over non-Archimedean fields. He showed that these could be represented as (K∗)g/Q,
where Q ∈ (K∗)g×g is called a period matrix for the abelian variety, and represents the
multiplicative subgroup generated by its columns.

The algorithms in Section 4.3 accomplish the following tasks, where we denote Ω/Γ by C.
The first and third algorithms are numerical in nature, and so will only give an approximation
their outputs.

• Algorithm 4.3.3: Given a Schottky group Γ, find a period matrix Q for the abelian
variety Jac(C).

• Algorithm 4.3.9: Given a Schottky group Γ, find a triple (G, `, h), where

– G is a graph,

– ` is a length function on G such that the metric graph (G, `) is the skeleton of
Can (the analytification of C), and

– h is a natural equivalence h : Rg → G from the rose graph on g petals;

this data specifies a point in the tropical Teichmüller space described in [CMV13].

• Algorithm 4.3.13: Given a Schottky group Γ, find points in a canonical embedding of
the curve C into Pg−1.
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Our algorithms take advantage of a property that makes non-Archimedean valued fields
like Qp special: the ultrametric inequality |x+y| ≤ max{|x|, |y|}. As a result of this property,
errors do not accumulate in the computation. Thus we avoid a dangerous hazard present
in doing numerical computation over R or C. Nonetheless, our computational problems are
hard in nature. Efficient computation for similar problems is not common in the literature
even for genus 2 case. Our algorithms are capable of solving genus 2 and some genus 3
examples on a laptop in reasonable time (several minutes). However, they are less efficient
for larger genera. The reason is that the running time grows exponentially as the requirement
on the precision of the output (in terms of the number of digits) grows. A future goals is to
find a way to reduce the running time for the algorithms.

4.2 Good fundamental domains

This section introduces good fundamental domains and the notion of good position for gen-
erators of Schottky groups, both of which will play key roles in our algorithms for Mumford
curves. Our main algorithms in Section 4.3 require as input Schottky generators in good
position, without which the rate of convergence of approximations will drop drastically. For
our method of putting generators into good position, see Section 4.4.

We start with the usual projective line P1, then discuss the analytic projective line (P1)an.
Our treatment of good fundamental domains follows Gerritzen and van der Put [GvdP80].
The notion is also discussed by Kadziela [Kad07]. The introduction to the analytic projective
line follows Baker, Payne and Rabinoff [BPR12].

Definition 4.2.1. An open ball in P1 is either a usual open ball B(a, r) = {x ∈ K : |x−a| <
r} or the complement of a usual closed ball B(a, r)+ = {x ∈ K : |x− a| ≤ r}. A closed ball
is either a usual closed ball or the complement of a usual open ball.

The open balls generate a topology on P1. Both open balls and closed balls are simulta-
neously open and closed in this topology, as is the case for any non-Archimedean field due
to the ultrametric inequality |x+ y| ≤ max{|x|, |y|}. Let |K∗| denote the image of K∗ under
| · |. If r ∈ |K∗|, the open ball and the closed ball of radius r are distinguished by whether
there exist two points x, y in the ball such that |x−y| equals the diameter. The complement
of an open ball is a closed ball, and vice versa.

Definition 4.2.2. A good fundamental domain F ⊂ P1 corresponding to the generators
γ1, . . . , γg is the complement of 2g open balls B1, . . . , Bg, B

′
1, . . . , B

′
g, such that corresponding

closed balls B+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g are disjoint, and γi(P1\B′i) = B+

i and γ−1
i (P1\Bi) =

B′+i for all i. The interior of F is F ◦ = P1\(B+
1 ∪ · · · ∪B+

g ∪B′+1 ∪ · · · ∪B′+g ). The boundary
of F is F\F ◦.

The definition above implies that γi(P1\B′+i ) = Bi and γ−1
i (P1\B+

i ) = B′i for all i.
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Example 4.2.3. All the groups in this example are Schottky. This follows from the existence
of a good fundamental domain [GvdP80].

(1) Let K = C3 and Γ be the group generated by

γ1 =

[
−5 32
−8 35

]
, γ2 =

[
−13 80
−8 43

]
.

Both matrices have eigenvalues 27 and 3. The matrix γ1 has left eigenvectors ( 1
1 ) and ( 4

1 ),
and γ2 has left eigenvectors ( 2

1 ) and ( 5
1 ). We use the convention that (z1 : z2) = z1/z2.

Then, F = P1\(B1 ∪ B′1 ∪ B2 ∪ B′2) where B1 = B(4, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9),
B′2 = B(2, 1/9) is a good fundamental domain relative to the generators γ1 and γ2. This can
be verified as follows. First rewrite

γ1z =
−5z + 32

−8z + 35
= 4 +

27(z − 1)− 81

−8(z − 1) + 27
.

Suppose that z ∈ B′1 = B(1, 1/9). Then, val(27(z − 1)) = 3 + val(z − 1) ≥ 3 + 2 = 5,
and val(81) = 4. So val(27(z − 1) − 81) = 4. Also, val(−8(z − 1) + 27) ≥ min (val(8(z −
1)), val(27)) > min (2, 3) = 2. So,

|γ1z − 4| =
∣∣∣∣ 27(z − 1)− 81

−8(z − 1) + 27

∣∣∣∣ > 3−4

3−2
= 1/9.

So γ1(B′1) ⊂ P1\B+
1 . The other three conditions can be verified similarly.

(2) Let K = C3 and Γ be the group generated by

γ1 =

[
−79 160
−80 161

]
, γ2 =

[
−319 1600
−80 401

]
.

Both matrices have eigenvalues 81 and 1. The matrix γ1 has left eigenvectors ( 1
1 ) and ( 2

1 ),
and the matrix γ2 has left eigenvectors ( 4

1 ) and ( 5
1 ). Then, F = P1\(B1∪B′1∪B2∪B′2) where

B1 = B(2, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9), B′2 = B(4, 1/9) is a good fundamental
domain relative to the generators γ1 and γ2.

(3) Let K = C3, and let Γ be the group generated by

γ1 =

[
121 −120
40 −39

]
, γ2 =

[
121 −240
20 −39

]
, γ3 =

[
401 −1600
80 −319

]
.

All three generators have eigenvalues 1 and 34. The element γ1 has eigenvectors ( 1
1 ) and

( 3
1 ). The element γ2 has eigenvectors ( 2

1 ) and ( 6
1 ). The element γ3 has eigenvectors ( 4

1 ) and
( 5

1 ). Then, F = P1\(B1 ∪ B′1 ∪ B2 ∪ B′2 ∪ B3 ∪ B′3) where B1 = B(1, 1/9), B′1 = B(3, 1/9),
B2 = B(2, 1/9), B′2 = B(6, 1/9), B3 = B(4, 1/9), B′3 = B(5, 1/9) is a good fundamental
domain relative to the generators γ1, γ2 and γ3.

The following lemma follows from Definition 4.2.2 by induction (see [Kad07, Theorem
6.2]).
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Lemma 4.2.4. Let F and γ1, . . . , γg be as in Definition 4.2.2, and let γ ∈ Γ \ {( 1 0
0 1 )} and

b ∈ P1(K). Write the reduced word for γ as h1h2 · · ·hk, where k ≥ 1 and hi ∈ {γ±1 , . . . , γ±g }
for all i. Assume that b /∈ B′j if hk = γj and b /∈ Bj if hk = γ−1

j . Then we have

γb ∈
{
B+
i , if h1 = γi,

B′+i , if h1 = γ−1
i .

Proof. To simplify notation we will outline the proof for the case where hi ∈ {γ1, . . . , γg} for
all i, and then describe how to generalize to the case of hi ∈ {γ±1 , . . . , γ±g }.

Write hi = γai for each i. Since hk = γak , we know by assumption that b /∈ B′ak . By
Definition 4.2.2 we have γak(P1 \ B′ak) = B+

ak
, so hkb ∈ B+

ak
. By the disjointness of the

2g closed balls, we know that hkb /∈ B′ak−1
, and since γak−1

(P1 \ B′ak−1
) = B+

ak−1
, we have

hk−1hkb ∈ B+
ak−1

. We may continue in this fashion until we find that h1h2 · · ·hkb ∈ B+
a1

.

The only possible obstruction to the above argument in the case of hi ∈ {γ±1 , . . . , γ±g }
occurs if hi · · ·hkb ∈ B′+ai and hi−1 = γai (or, similarly, if hi · · ·hkb ∈ B+

ai
and hi−1 = γ−1

ai
),

since the above argument needs γai to act on P1\B′+ai . However, this situation arises precisely
when hi = γ−1

ai
= h−1

i−1, meaning that the word is not reduced. Since we’ve assumed h1 · · ·hk
is reduced, we have the desired result.

For a fixed set of generators of Γ, there need not exist a good fundamental domain. If
there exists a good fundamental domain for some set of free generators of Γ, we say that the
generators are in good position. Gerritzen and van der Put [GvdP80, §I.4] proved that there
always exists a set of generators in good position. They also proved the following desirable
properties for good fundamental domains.

Theorem 4.2.5. Let Γ be a Schottky group, Σ its set of bad points, and Ω = P1\Σ.

(1) There exists a good fundamental domain F for some set of generators γ1, . . . , γg of Γ.

(2) If γ 6= id, then γF ◦ ∩ F = ∅.

(3) If γ /∈ {id, γ1, . . . , γg, γ
−1
1 , . . . , γ−1

g }, then γF ∩ F = ∅.

(4) ∪γ∈ΓγF = Ω.

The statements (2), (3), and (4) imply that Ω/Γ can be obtained from F by gluing the
boundary of F . More specifically, B+

i \Bi is glued with B′+i \B′i via the action of γi. We have
designed the following subroutine, which takes any point p in Ω and finds a point q in F such
that they are equivalent modulo the action of Γ. This subroutine is useful in developing the
algorithms in Section 3 and 4.

Subroutine 4.2.6 (Reducing a point into a good fundamental domain).

Require: Matrices γ1, . . . , γg generating a Schottky group Γ, a good fundamental domain
F = P1\(B1 ∪ · · · ∪ Bg ∪ B′1 ∪ · · · ∪ B′g) associated to these generators, and a point
p ∈ Ω.
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Ensure: A point q ∈ F and an element γ ∈ Γ such that q = γp.
1: Let q ← p and γ ← id.
2: while q /∈ F do
3: If q ∈ B′i, let q ← γiq and γ ← γiγ.
4: Otherwise, if q ∈ Bi, let q ← γ−1

i q and γ ← γ−1
i γ.

5: end while
6: return q and γ.

Proof. The correctness of this subroutine is clear. It suffices to prove that the algorithm
always terminates. Given p ∈ Ω, if p /∈ F , by Theorem 4.2.5, there exists γ◦ = h1h2 · · ·hk ∈ Γ
(where each hj is γi or γ−1

i for some i) such that γ◦p ∈ F . Without loss of generality, we
may assume that γ◦ is chosen such that k is the smallest. Steps 3,4 and Lemma 4.2.4 make
sure that we always choose q ← hkq and γ ← hkγ. Therefore, this subroutine terminates
with γ = γ◦.

We can extend the definition of good fundamental domains to the analytic projective line
(P1)an. As discussed in Section 1.4, analytification of an algebraic variety is defined in terms
of multiplicative seminorms. For our special case (P1)an, there is a simpler description. As
detailed in [Bak07], the Berkovich projective line (P1)an consists of four types of points:

• Type 1 points are just the usual points of P1.

• Type 2 points correspond to closed balls B(a, r)+ where r ∈ |K×|.

• Type 3 points correspond to closed balls B(a, r)+ where r /∈ |K×|.

• Type 4 points correspond to equivalence classes of sequences of nested closed balls
B+

1 ⊃ B+
2 ⊃ · · · such that their intersection is empty.

There is a metric on the set of Type 2 and Type 3 points, defined as follows: let P1 and
P2 be two such points and let B(a1, r1)+ and B(a2, r2)+ be the corresponding closed balls.

(1) If one of them is contained in the other, say B(a1, r1)+ is contained in B(a2, r2)+, then
the distance d(P1, P2) is logp(r2/r1).

(2) In general, there is a unique smallest closed ball B(a3, r3)+ containing both of them.
Let P3 be the corresponding point. Then, d(P1, P2) is defined to be d(P1, P3)+d(P3, P2).

This metric makes (P1)an a tree with infinite branching, as we now describe. There is a
unique path connecting any two points P1 and P2. In case (1) above, the path is defined
by the isometry t 7→ B(a1, p

t)+, t ∈ [log (r1), log (r2)]. It is straightforward to check that
B(a1, r2)+ = B(a2, r2)+. In case (2) above, the path is the concatenation of the paths from
P1 to P3 and from P3 to P2. Then, Type 1 points become limits of Type 2 and Type 3 points
with respect to this metric. More precisely, if x 6= ∞, then it lies at the limit of the path
t 7→ B(x, p−t)+, t ∈ [0,+∞). Type 1 points behave like leaves of the tree at infinity. For any
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two Type 1 points x, y, there is a unique path in (P1)an connecting them, which has infinite
length.

Definition 4.2.7. Let Σ be a discrete subset in P1. The subtree of (P1)an spanned by Σ,
denoted T (Σ), is the union of all paths connecting all pairs of points in Σ.

An analytic open ball B(a, r)an is a subset of (P1)an whose set of Type 1 points is just
B(a, r) and whose Type 2, 3, and 4 points correspond to closed balls B(a′, r′)+ ⊂ B(a, r) and
the limits of sequences of such closed balls. An analytic closed ball is similar, with B(a, r)
replaced with B(a, r)+. Just as in the case of balls in P1, the analytic closed ball (B+)an

is not the closure of Ban in the metric topology of (P1)an. The complement of an analytic
open ball is an analytic closed ball, and vice versa. In an analytic closed ball (B(a, r)+)an

such that r ∈ |K×|, the Gaussian point is the Type 2 point corresponding to B(a, r)+. An
analytic annulus is B\B′, where B and B′ are analytic balls such that B′ $ B. If B is an
analytic open (resp. closed) ball and B′ is an analytic closed (resp. open) ball, then B\B′
is an analytic open annulus (resp. analytic closed annulus). A special case of analytic open
annulus is the complement of a point in an analytic open ball.

Any element of PGL(2, K) sends open balls to open balls and closed balls to closed balls.
Thus, there is a well defined action of PGL(2, K) on (P1)an.

Definition 4.2.8. A good fundamental domain F ⊂ (P1)an corresponding to the generators
γ1, . . . , γg is the complement of 2g analytic open balls Ban

1 , . . . , B
an
g , B

′an
1 , . . . , B′an

g , such that
the corresponding analytic closed balls (B+

1 )an, . . . , (B+
g )an, (B′+1 )an, . . . , (B′+g )an are disjoint,

and that γi((P1)an\B′an
i ) = (B+

i )an and γ−1
i ((P1)an\Ban

i ) = (B′+i )an. The interior of F is
F ◦ = (P1)an\((B+

1 )an ∪ . . . ∪ (B+
g )an ∪ (B′+1 )an ∪ . . . ∪ (B′+g )an). The boundary of F is F\F ◦.

Definition 4.2.8 implies that γi((P1)an\(B′+i )an) = Ban
i and γ−1

i ((P1)an\(B+
i )an) = B′an

i .
We now argue that there is a one-to-one correspondence between good fundamental do-

mains in P1 and good fundamental domains in (P1)an. (This fact is well-known, though
seldom explicitly stated in the literature; for instance, it’s taken for granted in the later
chapters of [GvdP80].) If P1\(B1 ∪ · · · ∪Bg ∪B′1 ∪ · · · ∪B′g) is a good fundamental domain
in P1, then (P1)an\(Ban

1 ∪ · · · ∪ Ban
g ∪ B′an

1 ∪ · · · ∪ B′an
g ) is a good fundamental domain in

(P1)an. Indeed, since the closed balls B+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g are disjoint, and the corre-

sponding analytic closed balls consist of points corresponding to closed balls contained in
B+

1 , . . . , B
+
g , B

′+
1 , . . . , B

′+
g and their limits, the analytic closed balls are also disjoint. Con-

versely, if (P1)an\(Ban
1 ∪ · · · ∪Ban

g ∪B′an
1 ∪ · · · ∪B′an

g ) is a good fundamental domain in (P1)an,
then P1\(B1 ∪ · · · ∪ Bg ∪ B′1 ∪ · · · ∪ B′g) is a good fundamental domain in P1, because the
classical statement can be obtained from the analytic statement by considering only Type
1 points. This correspondence allows us to abuse notation by not distinguishing the clas-
sical case and the analytic case. Theorem 4.2.5 is also true for analytic good fundamental
domains.

Another analytic object of interest to us is the (Berkovich) skeleton of the analytification
of the genus g curve Ω/Γ (a task that is part of Algorithm 4.3.9), so we close this section
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with background information on this object. The following definitions are taken from Baker,
Payne and Rabinoff [BPR12], with appropriate simplification.

Definition 4.2.9. (1) The skeleton of an open annulus B\B′ is the straight path between
the Gaussian point of B+ and the Gaussian point of B′+.

(2) Let C be a complete smooth curve over K. A semistable vertex set V is a finite set
of Type 2 points in Can such that Can\V is the disjoint union of open balls and open
annuli. The skeleton corresponding to V is the union of V with all skeletons of these
open annuli.

(3) If genus(C) ≥ 2, then Can has a unique minimal skeleton. The minimal skeleton is
the intersection of all skeletons. If genus(C) ≥ 2 and C is complete, then the minimal
skeleton is a finite metric graph. We call this minimal skeleton the Berkovich skeleton
of Can.

Definition 4.2.10. An algebraic semistable model of a smooth curve C over K is a flat and
proper scheme X over R whose generic fiber XK is isomorphic to C and whose special fiber
Xk satisfies

• Xk is a connected and reduced curve, and

• all singularities of Xk are ordinary double points.

Work towards algorithmic computation of semistable models is discussed in [AW12, §1.2]
and [BW14, §3.1], though such a computation is in general hard to carry out.

Semistable models are related to skeletons in the following way: take a semistable model
X of C. Associate a vertex for each irreducible component of Xk. For each ordinary inter-
section of two irreducible components in Xk, connect an edge between the two corresponding
vertices. The resulting graph is combinatorially a skeleton of Can.

4.3 Computations from good starting data

If we have a Schottky group Γ = 〈γ1, . . . , γg〉 in terms of its generators, there are many
objects we wish to compute for the corresponding curve Ω/Γ, such as the Jacobian of the
curve, the Berkovich skeleton of the curve, and a canonical embedding for the curve. In this
section we present algorithms for numerically computing these three objects, given the input
of a Schottky group with generators in good position. For an algorithm that puts arbitrary
generators of a Schottky group into good position, see Section 4.4.

Remark 4.3.1. Several results in this section are concerned with the accuracy of numerical
approximations. Most of our results will be of the form∣∣∣∣estimate

actual
− 1

∣∣∣∣ = size of error term ≤ a small real number of the form p−N ,
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where we think of N � 0. This is equivalent to

estimate

actual
− 1 = error term = a p-adic number of the form bpN ,

where |b| ≤ 1. So, since |pN | = p−N , the size of the error term is a small power of p, while
the error term itself is a large power of p (possibly with a constant that doesn’t matter
much).

Rearranging the second equation gives

estimate = actual + actual · bpN ,

meaning that we are considering not the absolute precision of our estimate, but rather the
relative precision. In this case we would say that our estimate is of relative precision O(pN).
So if we desire relative precision O(pN), we want the actual error term to be pN (possibly
with a constant term with nonnegative valuation), and the size of the error term to be at
most p−N .

Given a Schottky group Γ = 〈γ1, . . . , γg〉, we wish to find a period matrix Q so that
Jac(Ω/Γ) ∼= (K∗)g/Q. For previous work on this computation in the genus-2 case, see
[Tei88].

First we will set some notation. For any parameters a, b ∈ Ω, we introduce the following
analytic function in the unknown z, called a theta function:

Θ(a, b; z) :=
∏
γ∈Γ

z − γa
z − γb .

Note that if Γ is defined over Qp and a, b, z ∈ Qp, then Θ(a, b; z) ∈ Qp ∪ {∞}. (This is an
instance of “Qp in, Qp out.”) For any α ∈ Γ and a ∈ Ω, we can specialize to

uα(z) := Θ(a, αa; z).

It is shown in [GvdP80, II.3] that the function uα(z) is in fact independent of the choice of
a. This is because for any choice of a, b ∈ Ω we have

Θ(a, αa; z)

Θ(b, αb; z)
=
∏
γ∈Γ

(
z − γa
z − γαa

z − γαb
z − γb

)
=
∏
γ∈Γ

(
z − γa
z − γb

z − γαb
z − γαa

)
=
∏
γ∈Γ

z − γa
z − γb ·

∏
γ∈Γ

z − γαb
z − γαa =

∏
γ∈Γ

z − γa
z − γb ·

∏
γ∈Γ

z − γb
z − γa

= Θ(a, b; z) ·Θ(b, a; z) = 1.

From [GvdP80, VI.2] we have a formula for the period matrix Q of Jac(Ω/Γ):
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Theorem 4.3.2. The period matrix Q for Jac(Ω/Γ) is given by

Qij =
uγi(z)

uγi(γjz)
,

where z is any point in Ω.

As shown in [GvdP80, II.3], the choice of z does not affect the value of Qij.
Theorem 4.3.2 implies that in order to compute each Qij, it suffices to find a way to

compute Θ(a, b; z). Since a theta function is defined as a product indexed by the infinite
group Γ, approximation will be necessary. Recall that each element γ in the free group
generated by γ1, . . . , γg can be written in a unique shortest product h1h2 · · ·hk called the
reduced word, where each hi ∈ {γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g }. We can approximate Θ(a, b; z) by
replacing the product over Γ with a product over Γm, the set of elements of Γ whose reduced
words have length ≤ m. More precisely, we approximate Θ(a, b; z) with

Θm(a, b; z) :=
∏
γ∈Γm

z − γa
z − γb ,

where
Γm = {h1h2 . . . hk | 0 ≤ k ≤ m,hi ∈ {γ±1 , . . . γ±g }, hi 6= h−1

i+1 for any i}.
With this approximation method, we are ready to describe an algorithm for computing Q.

Algorithm 4.3.3 (Period Matrix Approximation).

Require: Matrices γ1, . . . γg ∈ Q2×2
p generating a Schottky group Γ in good position, and

an integer n to specify the desired relative precision.
Ensure: An approximation for a period matrixQ for Jac(Ω/Γ) up to relative precisionO(pn).
1: Choose suitable p-adic numbers a and z as described in Theorem 4.3.6.
2: Based on n, choose a suitable positive integer m as described in Remark 4.3.7.
3: for 1 ≤ i, j ≤ g do
4: Compute Qij = Θm(a, γi(a); z)/Θm(a, γi(a); γj(z))
5: end for
6: return Q.

The complexity of this algorithm is in the order of the number of elements in Γm, which
is exponential in m. The next issue is that to achieve certain precision in the final result,
we need to know how large m needs to be. Given a good fundamental domain F for the
generators γ1, . . . , γg, we are able to give an upper bound on the error in our estimation of Θ
by Θm. (Algorithm 4.3.3 would work even if the given generators were not in good position,
but would in general require a very large m to give the desired convergence. See Example
4.3.8(4).)

To analyze the convergence of the infinite product

Θ(a, γi(a); z) =
∏
γ∈Γ

z − γa
z − γγia

,
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we need to know where γa and γγia lie. We can determine this by taking the metric of (P1)an

into consideration. Assume that∞ lies in the interior of F . Let S = {P1, . . . , Pg, P
′
1, . . . , P

′
g}

be the set of points corresponding to the set of closed balls {B+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g } from

the characterization of the good fundamental domain. Let c be the smallest pairwise distance
between these points. This distance c will be key for determining our choice of m in the
algorithm.

Proposition 4.3.4. Let F , S, and c be as above. Suppose the reduced word for γ is
h1h2 · · ·hk, where k ≥ 0. Then d(γPi, S) ≥ kc for all i unless hk = γ−1

i , and d(γP ′i , S) ≥ kc
unless hk = γi.

Proof. We will prove this proposition by induction. If k = 0, there is nothing to prove. Let
k > 0, and assume that the claim holds for all integers n with 0 ≤ n < k. Without loss
of generality, we may assume h1 = γ1. Let B+ be the closed disk corresponding to Pi. By
Lemma 4.2.4, we have γ(B+) ⊂ B1. This means P1 lies on the unique path from γPi to ∞.
Since we assumed ∞ ∈ F , p1 lies on the unique path from γPi to any point in S. Thus,

d(γPi, S) = d(γPi, P1)

= d(γ−1
1 γPi, γ

−1
1 P1)

= d(h2h3 · · ·hkPi, P ′1).

Let P = Pj if h2 = γj and P = P ′j if h2 = γ−1
j . By the same argument as above, P lies on the

unique path from h2h3 · · ·hkPi to P ′1. The reducedness of the word h1h2 . . . hk guarantees
that P 6= P ′1. So

d(γPi, S) = d(h2h3 · · ·hkPi, P ′1)

= d(h2h3 · · ·hkPi, P ) + d(P, P ′1)

≥ (k − 1)c+ c = kc.

The last step follows from the inductive hypothesis. The proof of the second part of this
proposition is similar.

Proposition 4.3.5. Let F , S, and c be as above. Let z ∈ F and a ∈ B′+i \B′i such that
a, z, and ∞ are distinct modulo the action of Γ. Suppose the reduced word for γ ∈ Γ is
h1h2 · · ·hk. If k ≥ 2 and hk 6= γ−1

i , then∣∣∣∣ z − γaz − γγia
− 1

∣∣∣∣ ≤ p−c(k−1).

Proof. Our choice of a guarantees that both a and γia are in F . Without loss of generality,
we may assume that hk = γ1. Then, both hka and hkγia are in B+

1 . So both γa and γγia
lie in h1h2 · · ·hk−1B

+
1 , which is contained in some B = Bj or B′j. By Proposition 4.3.4, the

points in (P1)an corresponding to the disks h1h2 · · ·hk−1B
+
1 and B+ have distance at least
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c(k− 1). This implies diam(h1h2 · · ·hk−1B
+
1 ) ≤ p−c(k−1)diam(B+). Therefore, |γa− γγia| ≤

p−c(k−1)diam(B+). On the other hand, since z /∈ B and γγia ∈ B, we have |z − γγia| ≥
diam(B+). This means that∣∣∣∣ z − γaz − γγia

− 1

∣∣∣∣ =

∣∣∣∣γγia− γaz − γγia

∣∣∣∣ ≤ p−c(k−1)diam(B+)

diam(B+)
= p−c(k−1),

as claimed.

We are now ready to prove our approximation theorem, which is a new result that allows
one to determine the accuracy of an approximation of a ratio of theta functions. It is similar
in spirit to [Kad07, Theorem 6.10], which is an approximation result for a particular subclass
of Schottky groups called Whittaker groups, corresponding to hyperelliptic Mumford curves.
Our result is more general, as there are many Schottky groups that are not Whittaker.

Theorem 4.3.6. Suppose that the given generators γ1, . . . , γg of Γ are in good position, with
corresponding good fundamental domain F and disks B1, . . . , Bg, B

′
1, . . . , B

′
g. Let m ≥ 1. In

Algorithm 4.3.3, if we choose a ∈ B′+i \B′i and z ∈ B′+j \B′j such that a 6= z, then∣∣∣∣Θm(a, γi(a); z)/Θm(a, γi(a); γj(z))

Θ(a, γi(a); z)/Θ(a, γi(a); γj(z))
− 1

∣∣∣∣ ≤ p−cm,

where c is the constant defined above.

Proof. Our choice of z guarantees that both z and γjz are in F . Thus, if ∞ lies in the
interior of F , then this theorem follows directly from Proposition 4.3.5. The last obstacle is
to remove the assumption on ∞. We observe that Qij is a product of cross ratios:

Θ(a, γia; z)

Θ(a, γia; γjz)
=
∏
γ∈Γ

(z − γa)(γjz − γγia)

(z − γγia)(γjz − γa)
.

Therefore, each term is invariant under any projective automorphism of P1. Under such an
automorphism, any point in the interior of F can be sent to ∞.

Remark 4.3.7. If we wish to use Algorithm 4.3.3 to compute a period matrix Q with rela-
tive precision O(pn) (meaning that we want p−cm ≤ p−n in Theorem 4.3.6), we must first
compute c. As above, c is defined to be the minimum distance between pairs of the points
P1, . . . , Pg, P

′
1, . . . , P

′
g ∈ (P1)an corresponding to the balls B1, . . . , Bg, B

′
1, . . . , B

′
g that charac-

terize our good fundamental domain. Once we have computed c (perhaps by finding a good
fundamental domain using the methods of Section 4.4), then by Theorem 4.3.6 we must
choose m such that cm ≥ n, so m = dn/ce will suffice.

As a special case of the approximation theorem, suppose that we want to compute the
period matrix for the tropical Jacobian of C, which is the matrix (val(Qij))g×g. We need
only to compute Qij up to relative precision O(1). Thus, setting m = 0 suffices. In this case,
each of the products Θm(a, γi(a); z), Θm(a, γi(a); γj(z)) has only one term.
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Example 4.3.8. (1) Let Γ be the Schottky group in Example 4.2.3(1). Choose the same
good fundamental domain, with B1 = B(4, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9), and
B′2 = B(2, 1/9). The four balls correspond to four points in the tree (P1)an. We need to find
the pairwise distances between the points P1, P ′1, P2, and P ′2 in (P1)an. Since the smallest ball
containing both B+

1 and B′+1 is B+(1, 1/3), both P1 and P ′1 are distance val((1/3)/(1/9)) =
val(3) = 1 from the point corresponding to B+(1, 1/3), so P1 and P ′1 are distance 2 from
one another. Similar calculations give distances of 2 between P2 and P ′2, and of 4 between
P1 or P ′1 and P2 or P ′2. In fact, the distance between Pi and P ′i equals the difference in the
valuations of the two eigenvalues of γi. This allows us to construct the subtree of (P1)an

spanned by P1, P2, P
′
1, P

′
2 as illustrated in Figure 4.1. The minimum distance between them

is c = 2. To approximate Q11, we take a = 10 and z = 19. To compute Q up to relative
precision O(p10), we need 2m ≥ 10 (this is the equation cm ≥ n from Remark 4.3.7), so
choosing m = 5 works. The output of the algorithm is Q11 = (. . . 220200000100)3. Similarly,
we can get the other entries in the matrix Q:

Q =

[
(. . . 220200000100)3 (. . . 0101010101)3

(. . . 0101010101)3 (. . . 220200000100)3

]
.

(2) Let Γ be the Schottky group in Example 4.2.3(2). Choose the same good fundamental
domain. Again, we need m = 5 for relative precision O(p10). The algorithm outputs

Q =

[
(. . . 12010021010000)3 (. . . 002000212200)3

(. . . 002000212200)3 (. . . 12010021010000)3

]
.

(3) Let Γ be the Schottky group in Example 4.2.3(3). Choose the same good fundamental
domain. The minimum distance between the corresponding points in (P1)an is 2, so we may
take m = 10/2 = 5 to have relative precision up to O(p10). Our algorithm outputs

Q =

(. . . 11201000010000)3 (. . . 12020022210)3 (. . . 20020002120)3

(. . . 12020022210)3 (. . . 10101010010000)3 (. . . 020201120.1)3

(. . . 20020002120)3 (. . . 020201120.1)3 (. . . 21010100010000)3

 .
(4) Let K = C3 and Γ be the group generated by

γ1 =

[
−5 32
−8 35

]
, γ2 = γ100

1

[
−13 80
−8 43

]
The group is the same as in part (1) of this set of examples, but the generators are not in
good position. To achieve the same precision, m needs to be up to 100 times greater than
in part (1), because the γ2 in part (1) now has a reduced word of length 101. Since the
running time grows exponentially in m, it is not feasible to approximate Q using Algorithm
4.3.3 with these generators as input.

We will now change gears and discuss finding the Berkovich skeleton of a Mumford
curve coming from a given Schottky group over K, together with some data on its homotopy
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group. This is a relatively easy task, assuming that the given generators γ1, . . . , γg are in good
position, and that we are also given a fundamental domain F = P1\(B1∩ · · · ∩Bg∩B′1∩ · · · ∩
B′g). Without loss of generality, we may assume that ∞ ∈ F ◦. Let P1, . . . , Pg, P

′
1, . . . , P

′
g ∈

(P1)an be the Gaussian points of the disks B+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g .

Let Rg be the rose graph on g leaves (with one vertex and g loops), and let r1, . . . , rg be
the loops. A homotopy equivalence h : Rg → G must map r1, . . . , rg to g loops of G that
generate π1(G), so to specify h it will suffice to label g such loops of G with {s1, . . . , sg} and
orientations. It is for this reason that we call h a marking of G.

Algorithm 4.3.9 (Berkovich Skeleton Construction).

Require: Matrices γ1, . . . γg ∈ Q2×2
p generating a Schottky group Γ, together with a good

fundamental domain F = P1\(B1 ∩ · · · ∩Bg ∩B′1 ∩ · · · ∩B′g).
Ensure: The triple (G, `, h) with (G, `) the Berkovich skeleton as a metric graph with h a

marking presented as g labelled oriented loops of G.
1: Construct the subtree in (P1)an spanned by P1, . . . , Pg, P

′
1, . . . , P

′
g, including lengths.

2: Label the unique shortest path from Pi to P ′i as si, remembering orientation.
3: Identify each Pi with P ′i , and declare the length of the new edge containing Pi = P ′i to

be the sum of the lengths of the edges that were joined to form it.
4: Define h by the labels si, with each si now an oriented loop.
5: return the resulting labeled metric graph (G, `, h).

Proof. The proof is essentially given in [GvdP80, I 4.3].

Remark 4.3.10. It’s worth noting that this algorithm can be done by hand if a good fun-
damental domain is known. If P1, P2 ∈ (P1)an are the points corresponding to the disjoint
closed balls B(a1, r1)+ and B(a2, r2)+, then the distance between P1 and P2 is just the sum of
their distances from P3 corresponding to B(a3, r3)+, where B(a3, r3)+ is the smallest closed
ball containing both a1 and a2. The distance between Pi and P3 is just val(r3/ri) for i = 1, 2.
Once all pairwise distances are known, constructing (G, `) is simple. Finding h is simply
a matter of drawing the orientation on the loops formed by each pair (Pi, P

′
i ) and labeling

that loop si. This process is illustrated three times in Example 4.3.12.

Remark 4.3.11. The space parameterizing labelled metric graphs (G, `, h) (identifying those
with markings that are homotopy equivalent) is called Outer space, and is denoted Xg. It
is shown in [CMV13] that Xg sits inside tropical Teichmüller space as a dense open set, so
Algorithm 4.3.9 can be viewed as computing a point in tropical Teichmüller space.

Example 4.3.12. (1) Let Γ be the Schottky group in Example 4.2.3(1). Choose the same
good fundamental domain, with B1 = B(4, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9), and
B′2 = B(2, 1/9). We have constructed the subtree of (P1)an spanned by P1, P2, P

′
1, P

′
2 as

illustrated in Figure 4.1 in Example 4.3.8(1). After identifying P1 with P ′1 and P2 with P ′2,
we get the “dumbbell” graph shown in Figure 4.1, with both loops having length 2 and the
connecting edge having length 2.

(2) Let Γ be the Schottky group in Example 4.2.3(2). Choose the same good fundamental
domain. The subtree of (P1)an spanned by P1, P2, P

′
1, P

′
2 is illustrated in Figure 4.2. After
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Figure 4.1: The tree in Example 4.3.12(1), and the Berkovich skeleton.
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Figure 4.2: The tree in Example 4.3.12(2), and the Berkovich skeleton.

1

4

2

5

P ′
2

P ′
1

P2

P1

1

1

1

1
2

s1

s2 2

2

2

s2

s1

identifying P1 with P ′1 and P2 with P ′2, we get the “theta” graph shown in Figure 4.2, with
two edges of length 2 and one edge of length 2.

(3) Let Γ be the Schottky group in Example 4.2.3(3). The subtree of (P1)an spanned by
P1, P2, P3, P

′
1, P

′
2, P

′
3 is illustrated in Figure 4.3. After identifying P1 with P ′1, P2 with P ′2 and

P3 with P ′3, we get the “honeycomb” graph shown in Figure 4.3, with interior edges of length
1 and exterior edges of length 2.

Our final algorithm of this section seeks to study the canonical embedding of a Mumford
curve coming from a given Schottky group Γ. From [GvdP80, VI.4], we have that

ωi(z) := wi(z)dz =
u′γi(z)

uγi(z)
dz

are g linearly independent analytic differentials on Ω that are invariant under the action of
Γ. Therefore, they define g linearly independent differentials on C = Ω/Γ. Gerritzen and
van der Put [GvdP80, VI.4] also state that these form a basis of the space of Γ-invariant
analytic differentials. Since the space of algebraic differentials on C has dimension g, it must
be generated by these g differentials. Therefore, the canonical embedding has the following
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Figure 4.3: The tree in Example 4.3.12(3), and the Berkovich skeleton.
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form:

C → Pg−1,

z 7→
(
u′γ1

(z)

uγ1(z)
: . . . :

u′γg(z)

uγg(z)

)
.

It therefore suffices to approximate the derivative u′α(z). A näıve approach is to consider
the approximation

u′α(z) ≈ uα(z + h)− uα(z)

h
.

We can do better by taking advantage of the product form of uα(z):

u′α(z) =
d

dz

∏
γ∈Γ

z − γa
z − γαa

=
∑
γ∈Γ

(
d

dz

(
z − γa
z − γαa

) ∏
γ′∈Γ,γ′ 6=γ

z − γ′a
z − γ′αa

)

= uα(z)
∑
γ∈Γ

d

dz

(
z − γa
z − γαa

)(
z − γa
z − γαa

)−1

= uα(z)
∑
γ∈Γ

γa− γαa
(z − γa)(z − γαa)

.

Algorithm 4.3.13 (Canonical Embedding).

Require: Matrices γ1, . . . , γg ∈ Q2×2
p generating a Schottky group Γ in good position, an

element z ∈ K, and an integer n to determine precision.
Ensure: An approximation for the image of z under the canonical embedding Ω/Γ→ Pg−1

determined by the choice of generators.
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1: Based on n, choose a suitable positive integer m as described in Remark 4.3.15.
2: for i = 1 to g do
3: Choose a suitable element a ∈ K as described in Proposition 4.3.14.
4: Compute

wi =
∑
γ∈Γm

γa− γγia
(z − γa)(z − γγia)

.

5: end for
6: return (w1 : · · · : wg).

With appropriate choice of a, we can provide a lower bound on the precision of the result
in terms of m. Fortunately, we can choose different values of a to approximate∑

γ∈Γ

γa− γγia
(z − γa)(z − γγia)

for different γi. As in Proposition 4.3.5, we choose a ∈ B′+i \B′i to ensure that both a and
γia are in F .

Proposition 4.3.14. If we choose a ∈ B′+i \B′i in Algorithm 4.3.13, and assuming z ∈ F ,
then ∣∣∣∣∣∑

γ∈Γm

γa− γγia
(z − γa)(z − γγia)

− u′γi(z)

uγi(z)

∣∣∣∣∣ ≤ p−mc−logp(d),

where c is the minimum pairwise distance between P1, . . . , Pg, P
′
1, . . . , P

′
g, and d is the mini-

mum diameter of B1, . . . , Bg, B
′
1, . . . , B

′
g.

Proof. Let γ ∈ Γ have reduced word γ = h1h2 · · ·hk. We have seen in the proof of Proposition
4.3.5 that |γa−γγia| ≤ p−(k−1)cdiam(B+), |z−γa| ≥ diam(B+) and |z−γγia| ≥ diam(B+),
where B is one of B1, . . . , Bg, B

′
1, . . . , B

′
g. Thus,∣∣∣∣ γa− γγia

(z − γa)(z − γγia)

∣∣∣∣ ≤ p−(k−1)cdiam(B+)

diam(B+)2

≤ p−(k−1)cd−1

= p−(k−1)c−logp(d).

Since the difference between our approximation and the true value is the sum over terms
where γ has reduced words of length ≥ m+ 1, we conclude that the error has absolute value
at most p−mc−logp(d).

In the last proposition, we assumed z ∈ F . If z /∈ F , we can do an extra step and replace
z by some γz such that γz ∈ F , with the help of Subroutine 4.2.6. This step does not change
the end result because the theta functions are invariant under the action of Γ.
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Remark 4.3.15. If we wish to use Algorithm 4.3.13 to compute the image of a point under
the canonical embedding with accuracy up to the nth p-adic digit, we must first compute c
and d. Recall that c is defined to be the minimum distance between pairs of the points
P1, . . . , Pg, P

′
1, . . . , P

′
g ∈ (P1)an corresponding to the balls B+

1 , . . . , B
+
g , B

′+
1 , . . . , B

′+
g that

characterize our good fundamental domain, and d is the minimum diameter of B1, . . . , Bg,
B′1, . . . , B

′
g. Once we have computed c and d, then by Proposition 4.3.14 we must choose m

such that p−mcd−1 ≤ p−n. We could also think of it as choosing m such that mc+logp(d) ≥ n.

Remark 4.3.16. As was the case with Algorithm 4.3.3, we may run Algorithm 4.3.13 even if
the input generators are not in good position, and it will approximate images of points in
the canonical embedding. However, we will not have control over the rate of convergence,
which will in general be very slow.

Example 4.3.17. Let Γ be the Schottky group in Example 4.2.3(3). Choose the same good
fundamental domain. We will compute the image of the field element 17 under the canonical
embedding (we have chosen 17 as it is in Ω for this particular Γ). The minimum diameter is
d = 1/9, and the minimum distance is c = 2. To get absolute precision to the order of p−10,
we need p−mcd−1 ≤ p−10, i.e. m ≥ 6. Applying Algorithm 4.3.13 with m = 6 gives us the
following point in P2:

((. . . 2100012121)3 : (. . . 2211022001.1)3 : (. . . 2221222111.1)3).

This point lies on the canonical embedding of the genus 3 Mumford curve Ω/Γ. Any
genus 3 curve is either a hyperelliptic curve or a smooth plane quartic curve. However, it is
impossible for a hyperelliptic curve to have the skeleton in Figure 4.3 (see [Cha12, Theorem
4.15]), so Ω/Γ must be a smooth plane quartic curve. Its equation has the form

C1x
4 + C2x

3y + C3x
3z + C4x

2y2 + C5x
2yz + C6x

2z2

+ C7xy
3 + C8xy

2z + C9xyz
2 + C10xz

3 + C11y
4 + C12y

3z + C13y
2z2 + C14yz

3 + C15z
4.

Using linear algebra over Q3, we can solve for its 15 coefficients by computing 14 points on
the curve and plugging them into the equation. The result is

C1 = 1, C2 = (. . . 11101)3, C3 = (. . . 00211)3,
C4 = (. . . 1020.2)3, C5 = (. . . 110.21)3, C6 = (. . . 1002.1)3,
C7 = (. . . 122)3, C8 = (. . . 222.02)3, C9 = (. . . 222.02)3,
C10 = (. . . 21101)3, C11 = (. . . 2122)3, C12 = (. . . 2201)3,
C13 = (. . . 0202.2)3, C14 = (. . . 10102)3, C15 = (. . . 01221)3.

For the Newton subdivision and tropicalization of this plane quartic, see the following dis-
cussion, in which we consider the interactions of the three algorithms of Section 4.3.

We close this section by checking that the three algorithms give results consistent with
one another and with some mathematical theory. We will use our running example of a genus
3 Mumford curve from Examples 4.3.8(3), 4.3.12(3), and 4.3.17, for which we have computed
a period matrix of the Jacobian, the Berkovich skeleton, and a canonical embedding.
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First we will look at the period matrix and the Berkovich skeleton, and verify that these
outputs are consistent. Recall that for the period matrix Q of Jac(Ω/Γ), we have

Qij =
uγi(z)

uγi(γjz)
.

Motivated by this, we define

Q : Γ× Γ→ K∗

(α, β) 7→ uα(z)

uα(βz)
,

where our choice of z ∈ Ω does not affect the value of Q(α, β). (Note that Qij = Q(γi, γj).)
As shown in [GvdP80, VI, 2], the kernel of Q is the commutator subgroup [Γ,Γ] of Γ, and Q

is symmetric and positive definite (meaning |Q(α, α)| < 1 for any α 6≡
[
1 0
0 1

]
mod [Γ,Γ]).

Moreover, the following theorem holds (see [vdP92, Theorem 6.4]).

Theorem 4.3.18. Let G be the Berkovich skeleton of Ω/Γ, and let π1(G) be its homotopy
group, treating G as a topological space. There is a canonical isomorphism ϕ : Γ → π1(G)
such that val(Q(γ, γ′)) = 〈ϕab(γ), ϕab(γ′)〉, where 〈p1, p2〉 denotes the shared edge length of
the oriented paths p1 and p2.

The map ϕ is made very intuitive by considering the construction of G in Algorithm 4.3.9:
a generator γi of Γ yields two points Pi, P

′
i ∈ (P1)an (corresponding to balls containing the

eigenvalues of γi), and these points are glued together in constructing G. So γi corresponds
to a loop around the cycle resulting from this gluing; after abelianization, this intuition is
made rigorous.

Consider the matrix Q computed in Example 4.3.8(3). Worrying only about valuations,
we have

val(Q) =

4 1 1
1 4 −1
1 −1 4

 .
For i = 1, 2, 3, let si be the oriented loop in G arising from gluing Pi and P ′i . In light of
Theorem 4.3.18, we expect to find shared edge lengths

〈s1, s1〉 = 〈s2, s2〉 = 〈s3, s3〉 = 4,

〈s1, s2〉 = 〈s1, s3〉 = 1,

and
〈s2, s3〉 = −1.

That is, each cycle length should be 4, and the common edge of each distinct pair of cycles
should have length 1, with the orientation of s1 agreeing with the orientation of s2 (re-
spectively, s3) on the shared edge and the orientation of s2 disagreeing with the orientation
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0 0 −1 0 0

0 −2 −2 0

−1 −2 −1

0 0

0

Figure 4.4: The Newton polygon of the plane quartic curve in Example 4.3.17, and the
corresponding tropical curve in R2 (drawn using the max convention). Each edge of infinite
length has weight 2, and all other edges have weight 1.

of s3 on the shared edge. This is indeed what we found in Example 4.3.12(3), with edge
lengths and orientations shown in Figure 4.3. This example has shown how the outputs of
Algorithms 4.3.3 and 4.3.9 can be checked against one another.

We will now consider the relationship between the Berkovich skeleton and the canonical
embedding for this example. In particular, we will compute a tropicalization of the curve
from the canonical embedding and see how well this represents the Berkovich skeleton.

We compute the tropicalization of the curve as outlined in Section 1.2, starting with the
tropical polynomial obtained by taking valuations of the coefficients in the quartic planar
equation computed in Example 4.3.17. The Newton polygon of this quartic is a triangle
with side length 4, and the coefficients give a subdivision of the Newton polygon as shown
in Figure 4.4. The tropicalization of the curve is combinatorially the dual graph of this
subdivision, and using the max convention of tropical geometry it sits in R2 as shown in
Figure 4.4, with the common point of the three cycles at (0, 0).

Let us compare the cycles in the tropicalization with the cycles in the Berkovich skeleton.
We know a priori from [BPR12, §6.23] that this tropicalization is faithful since all vertices
are trivalent and are adjacent to at least one edge of weight one. This means that lattice
lengths on the tropicalization must agree with lengths of the Berkovich skeleton, which we
now verify. Each cycle in the tropicalization is made up of five line segments, and for each
cycle two segments are length 1

2
and three are length 1. This gives a length of 4, as we’d

expect based on Example 4.3.12(3). Moreover, each shared edge has lattice length 1, as was
the case in the Berkovich skeleton. Thus we have checked the outputs of Algorithms 4.3.9
and 4.3.13 against one another.
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4.4 Finding good starting data

The previous section describes several algorithms that compute various objects from a set of
free generators of a Schottky group, assuming that the generators are in good position, and
(in Algorithm 4.3.9) that a good fundamental domain is given together with the generators.
This content of this section is what allows us to make this assumption. Algorithm 4.4.8 takes
an arbitrary set of free generators of a Schottky group and outputs a set of free generators
that are in good position, together with a good fundamental domain. This algorithm can be
modified as described in Remark 4.4.10 to perform a “Schottky test”; in particular, given a
set of g invertible matrices generating a group Γ, the modified algorithm will either

• return a set of g free generators of Γ in good position together with a good fundamental
domain, which is a certificate that Γ is Schottky;

• return a relation satisfied by the input matrices, which is a certificate that the gener-
ators do not freely generate the group; or

• return a non-hyperbolic, non-identity matrix γ ∈ Γ, which is a certificate that Γ is not
Schottky.

Before presenting Algorithm 4.4.8, we will first develop some theory for trees, and then define
useful subroutines. Our starting point is a remark in Gerritzen and van der Put’s book:

Proposition 4.4.1. [GvdP80, III 2.12.3] Let Γ be Schottky and Σ and Ω be as usual. Let
T (Σ) be the subtree of (P1)an spanned by Σ. Then the minimal skeleton of Ω/Γ is isomorphic
to T (Σ)/Γ.

This statement is essential for our algorithm, because it helps reducing problems involving
(P1)an to problems involving the much simpler tree T (Σ). Though T (Σ) is not finite, it is a
finitely branching tree: it consists of vertices and edges such that each vertex is connected
with finitely many edges. A good fundamental domain in (P1)an can be obtained from a good
fundamental domain in T (Σ), defined as follows:

Definition 4.4.2. A principal subtree T of T (Σ) is a connected component of T (Σ)\{e} for
some edge e of T (Σ). An extended principal subtree is T+ = T ∪ {e}.

Definition 4.4.3. A good fundamental domain S in T (Σ) for a set of free generators
γ1, . . . , γg of Γ is the complement of 2g principal subtrees T1, . . . , Tg, T

′
1, . . . , T

′
g, such that

T+
1 , . . . , T

+
g , T

′+
1 , . . . , T ′+g are disjoint, and that γi(T (Σ)\T ′+i ) = Ti and γ−1

i (T (Σ)\T+
i ) = T ′i .

The interior of S is S◦ = T (Σ)\(T+
1 ∪ · · · ∪ T+

g ∪ T ′+1 ∪ · · · ∪ T ′+g ). The boundary of S
is S\S◦.

In other words, S is a connected finite subtree of T (Σ) with 2g boundary edges (Ri, Qi)
and (R′i, Q

′
i), whereQi, Q

′
i /∈ S, such that γi(R

′
i, Q

′
i) = (Qi, Ri). Given this data, the principal

subtree Ti (resp. T ′i ) is the connected component of T (Σ)\(Ri, Qi) (resp. T (Σ\(R′i, Q′i)) that
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is disjoint from S. Given a good fundamental domain S in T (Σ), one can find a good
fundamental domain in (P1)an as follows. Without loss of generality, we may assume that
the retraction of ∞ to T (Σ) is in the interior of S. Then, Qi and Ri correspond to two
nested balls B(ai, ri)

+ ⊂ B(ai, Ri)
+. Define Bi = B(ai,

√
riRi). Define B′i similarly.

Proposition 4.4.4. Let Bi, B
′
i be as above. Then F = (P1)an\(B1∪ · · · ∪Bg∪B′1∪ · · · ∪B′g)

is a good fundamental domain.

Proof. Let Qi, Ri be as above. Let Pi be the midpoint of the segment of the boundary edge
(Qi, Ri). Then, Pi corresponds to the ball B+

i . Let π denote the retraction from (P1)an

to T (Σ). Again, we may assume that π(∞) is in the interior of S. For any P ∈ B+
i , the

unique path from P to ∞ passes through Pi. Therefore, π(P ) lies on the union of Ti with
the segment (Pi, Qi), which is a subset of T+

i . Hence, the condition that T+
i and T ′+i are

disjoint implies that the retraction of the B+
i and the B′+i are disjoint. Thus, the B+

i and
B′+i are disjoint.

Let (Q′i, R
′
i) be the boundary edge of T ′i , and let P ′i be its midpoint. Since γi(Q

′
i, R

′
i) =

(Ri, Qi), it sends the midpoint P ′i to Pi. Since B′i is a connected component in (P1)an\{P ′i},
the element γi must send B′i to a connected component of (P1)an\{Pi}. One of the connected
components in (P1)an\{Pi} is (P1)an\B+

i . Since γi sends Q′i ∈ B′i to Ri ∈ (P1)an\B+
i , it must

send B′i to (P1)an\B+
i . Similarly, γ−1

i sends Bi to (P1)an\B′+i . Thus F is a good fundamental
domain in (P1)an.

One can establish properties of S similar to Theorem 4.2.5. They can be derived either
combinatorially or from Proposition 4.4.4.

The following algorithm constructs a good fundamental domain S in T (Σ).

Subroutine 4.4.5 (Good Fundamental Domain Construction).

Require: An “agent” knowing all vertices and edges of T = T (Σ), and the map T (Σ) →
T (Σ)/Γ, where Γ is defined over Qp.

Ensure: A good fundamental domain S in T (Σ).
1: Choose a vertex P of T . Let P1, . . . , Pk be all neighbors of P in T .
2: Let V ← {P}, E ← ∅, O ← {(P, P1), . . . , (P, Pk)}, I ← ∅, A← ∅.
3: while O 6= ϕ do
4: Choose (Q,Q′) ∈ O, remove it from O and add it to E.
5: Let Q,Q1, . . . , Qk be all neighbors of Q′ in T .
6: Add Q′ to V .
7: for each Qk do
8: With the help of the “agent” in the input, determine if (Qk, Q

′) is conjugate to
some edge (R,R′) ∈ O, i.e. γQk = R and γQ′ = R′ for some γ ∈ Γ.

9: if so then
10: Remove (R,R′) from O.
11: Add (Q′, Qk), (R,R

′) to I.
12: Add γ to A.
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13: else
14: Add (Qk, Q

′) to O.
15: end if
16: end for
17: end while
18: return S = V ∪ E ∪ I. (The edges in I are the boundary edges, and A is a set of free

generators of Γ in good position.)

Proof. Consider the map from T (Σ) to G = T (Σ)/Γ. Let P be as in Step (1). Suppose that
a “fire” starts at P ∈ T (Σ) and the image of P in G. In each step, when we choose the edge
(Q,Q′) in Step (4) and add a vertex Q′ to V in Step (5), we “propagate” the fire from Q to
Q′, and “burn” Q′ together with halves of all edges connecting to Q′. Also, we “burn” the
corresponding part in G. Suppose two fires meet each other in G. In this case, both halves
of an edge in G are burned, but it corresponds to two half burned edges in T (Σ). If so, we
stop the fire by removing the edges from O and adding them to I (Step (9)). The algorithm
terminates when the whole graph G is burned. The burned part S ′ of T (Σ) is a lifting of G.
Then, V is the set of vertices of S ′, E is the set of whole edges in S ′, and I is the set of half
edges in S ′. The fact that they form a good fundamental domain follows from the method
in the proof of [GvdP80, I (4.3)].

This subroutine requires an “agent” knowing everything about T (Σ). It is hard to con-
struct such an “agent” because T (Σ) is infinite. Therefore, we approximate T (Σ) by a finite
subtree. One candidate is T (Σm), where Σm is the set of fixed points of elements of Γm. Re-
call that Γm is the set of elements of Γ whose reduced words in terms of the given generators
have lengths at most m. We go one step further: we approximate T (Σ) by T (Γma), where
a is any point in Σ.

Lemma 4.4.6. For any a ∈ K, we have T (Γa) ⊃ T (Σ). Furthermore, if a ∈ Σ, then
T (Γa) = T (Σ).

Proof. For any g ∈ Γ, the fixed point corresponding to the eigenvalue with larger absolute
value is the limit of the sequence a, ga, g2a, . . . . The other fixed point is the limit of the
sequence a, g−1a, g−2a, . . . . Therefore, every point in Σ is either in Γa or a limit point of Γa.
Therefore, T (Γa) ⊃ T (Σ). The second statement is clear.

We can construct a complete list of vertices and edges in T (Γma). Then, the map from
T (Γma) to T (Σ)/Γ can be approximated in the following way: for each pair of vertices P,Q
(resp. edges e, f in T (Γma) and each given generator γi, check if γiP = Q (resp. γie = f).
If so, then we identify them. Note that this method may not give the correct map, because
two vertices P and Q in T (Γma) may be conjugate via the action of some h1h2 · · ·hk ∈ Γ,
where some intermediate step hlhl+1 · · ·hkP /∈ T (Γma). Due to this flaw, we need a way to
certify the correctness of the output.

Subroutine 4.4.7 (Good Fundamental Domain Certification).
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Require: Generators γ1, . . . , γg ∈ Q2×2
p of a Schottky group Γ, and a quadruple (V,E, I, A),

where V is a set of vertices in T (Σ), E and I are sets of edges of T (Σ), I contains k pairs
of edges (Pi, Qi), (P

′
i , Q

′
i), where Pi, P

′
i ∈ V , Qi, Q

′
i /∈ V , and A contains k elements ai

in Γ.
Ensure: TRUE if S = V ∪ E ∪ I is a good fundamental domain in T (Σ) for the set of

generators A, and I is the set of boundary edges. FALSE otherwise.
1: If k 6= g, return FALSE.
2: If S is not connected, return FALSE.
3: If any element of I is not a terminal edge of S, return FALSE.
4: If any (Pi, Qi) 6= ai(Q

′
i, P

′
i ), return FALSE.

5: Choose P in the interior of S.
6: for h ∈ {γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g } do
7: Using a variant of Subroutine 4.2.6, find point P ′ ∈ S and group element γ ∈
〈a1, . . . , ak〉 such that P ′ = γ(hP ).

8: If P 6= P ′, return FALSE.
9: end for
10: return TRUE.

Proof. Steps 1–4 verify that S satisfies the definition of a good fundamental domain in T (Σ)
for the set of generators a1, . . . , ag. In addition, we need to verify that a1, . . . , ag generate
the same group as the given generators γ1, . . . , γg. This is done by Steps 5–9. If P = P ′ in
Step 8, then there exists γ ∈ 〈a1, . . . , ak〉 such that γhP = P . We are assuming ai ∈ Γ in
the input, so γh ∈ Γ. Since the action of Γ on (P1)an\Σ is free, we have γh = id. Thus,
h ∈ 〈a1, . . . , ak〉. If P = P ′ for all h, then Γ = 〈a1, . . . , ak〉.

Otherwise, if P 6= P ′ in Step 8 for some h, then there exists γ′ ∈ Γ such that γ′P = P ′.
For any γ ∈ 〈a1, . . . , ak〉 other than identity, we have γP ′ /∈ s◦ by a variant of Lemma 4.2.4.
Therefore, Γ 6= 〈a1, . . . , ak〉.

If the certification fails, we choose a larger m and try again, until it succeeds. We are
ready to state our main algorithm for this section:

Algorithm 4.4.8 (Turning Arbitrary Generators into Good Generators).

Require: Free generators γ1, . . . , γg ∈ Q2×2
p of a Schottky group Γ.

Ensure: Free generators a1, . . . , ag of Γ, together with a good fundamental domain F =
(P1)an\(B1 ∪ · · · ∪Bg ∪B′1 ∪ · · · ∪B′g) for this set of generators.

1: Let m = 1.
2: Let a be a fixed point of some γi.
3: Compute all elements in Γma.
4: Find all vertices and edges of T (Γma).
5: Approximate the map T (Γma)→ T (Σ)/Γ.
6: Use Subroutine 4.4.5 to construct a subgraph S = V ∪ E ∪ I of T (Γma) and a subset
A ⊂ Γ.
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7: Use Subroutine 4.4.7 to determine if S = V ∪ E ∪ I is a good fundamental domain in
T (Σ).

8: If not, increment m and go back to Step 2.
9: Compute Bi and B′i from S using the method in Proposition 4.4.4.
10: return generators A and good fundamental domain F = (P1)an\(B1 ∪ · · · ∪ Bg ∪ B′1 ∪
· · · ∪B′g).

Proof. The correctness of the algorithm follows from the proof of Subroutine 4.4.7. It suf-
fices to prove that the algorithm eventually terminates. Assume that we have the “agent”
in Subroutine 4.4.5. Since Subroutine 4.4.5 terminates in a finite number of steps, the com-
putation involves only finitely many vertices and edges in T (Σ). If m is sufficiently large,
T (Σm) will contain all vertices and edges involved in the computation. Moreover, for any
pair of vertices or edges in T (Σm) that are identified in T (Σ)/Γ, there exists a sequence
of actions by the given generators of Γ that sends one of them to the other, so there are
finitely many intermediate steps. If we make m even larger so that T (Σm) contains all these
intermediate steps, we get the correct approximation of the map T (Σ)→ T (Σ)/Γ. This data
is indistinguishable from the “agent” in the computation of Subroutine 4.4.5. Thus, it will
output the correct good fundamental domain.

Remark 4.4.9. The performance of the algorithm depends on how “far” the given generator
is from a set of generators in good position, measured by the lengths of the reduced words of
the good generators in terms of the given generators. If the given generators is close to a set
of generators in good position, then a relatively small m is sufficient for T (Γma) to contain
all relevant vertices. Otherwise, a larger m is needed. For example, in the genus 2 case,
this algorithm terminates in a few minutes for our test cases where each given generator
has a reduced word of length ≤ 4 in a set of good generators. However, the algorithm is
not efficient on Example 4.3.8 (4), where one of the given generators has a reduced word
of length 101. One possible way of speeding up the algorithm is to run the non-Euclidean
Euclidean algorithm developed by Gilman [Gil14] on the given generators.

Remark 4.4.10. We may relax the requirement that the input matrices freely generate a
Schottky group by checking that every element in Γm not coming from the empty word is
hyperbolic before Step 3 in Algorithm 4.4.8. If the group is Schottky and freely generated
by the input matrices, the algorithm will terminate with a good fundamental domain. Oth-
erwise, Step 7 will never certify a correct good fundamental domain, but the hyperbolic
test will eventually fail when a non-hyperbolic matrix is generated. In particular, if the
identity matrix is generated by a nonempty word, the generators are not free (though they
may or may not generate a Schottky group); and if a non-identity non-hyperbolic matrix is
generated, the group is not Schottky. Thus, Algorithm 4.4.8 is turned into a Schottky test
algorithm. Again, the non-Euclidean Euclidean algorithm in [Gil14] is a possible ingredient
for a more efficient Schottky test algorithm.
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Chapter 5

The tropical commuting variety

There are various ways to study the pairs of n × n matrices X and Y over a field K that
commute under matrix multiplication. Linear algebraically, one can ask for criteria to de-
termine commutativity. Algebro-geometrically, one can study the commuting variety, which
is cut out by the n2 polynomials (XY )ij − (Y X)ij. These perspectives and many other vari-
ants have been studied in the classical setting [OCV11, §5]. This chapter considers similar
questions for tropical and tropicalized matrices.

In Section 5.1, we present the necessary background on linear algebra over tropical semir-
ings, and give criteria for the commutativity of matrices over the tropical semiring. Section
5.2 presents three tropical spaces related to commuting spaces: the tropical commuting set,
the tropical commuting prevariety, and the tropical commuting variety. We determine the
containment relations for these three spaces, which are all distinct for n× n matrices when
n ≥ 3.

This chapter’s content comes from the paper “The tropical commuting variety” [MT15],
coauthored with Ngoc M. Tran.

5.1 Tropical linear algebra

As in Section 1.1, the tropical min-plus algebra (R,⊕,�) is defined by R = R ∪ {∞},
a⊕ b = min(a, b), and a� b = a + b. A pair of n× n tropical matrices A = (aij), B = (bij)
commute if A�B = B�A, where matrix multiplication takes place in the min-plus algebra.
Explicitly, this means that for all 1 ≤ i, j ≤ n,

min
s=1,...,n

ais + bsj = min
s=1,...,n

bis + asj.

Tropical linear algebra has extensive applications to discrete events systems [BCOQ92],
scheduling [But10], and pairwise ranking [Tra13], amongst others. However, the tropical
analogues of many fundamental results in classical linear algebra remain open. Commuta-
tivity of tropical matrices is one such example. Classically, if A,B ∈ Cn×n where A has n
distinct eigenvalues, then AB = BA if and only if B can be written as a polynomial in A
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[OCV11, §5]. Moreover, if B has n distinct eigenvalues, then AB = BA if and only if A
and B are simultaneously diagonalizable. In a similar spirit, we have the following crite-
rion for a special class of matrices called polytropes, defined in Definition 5.1.3, to commute
tropically. Here the Kleene star A∗ of an n × n polytrope A is the finite geometric sum
A⊕ A�2 ⊕ · · · ⊕ A�n. Our result states:

Theorem 5.1.1. Suppose A,B ∈ Rn×n are polytropes. If A⊕B = (A⊕B)∗, then A�B =
B � A. If A � B = B � A, then (A ⊕ B)�2 = (A ⊕ B)∗. In particular, for n = 2, 3,
A�B = B � A if and only if A⊕B = A�B.

Previous works on commuting tropical matrices have also focused on polytropes [KSS12,
LP12], due to their special role as the projection to the tropical eigenspace [KSS12, SSB09].
To the best of our knowledge, this is the first necessary and sufficient characterization of
commutativity for polytropes for n < 4.

Before proving Theorem 5.1.1, we will present some notation and basic facts in tropical
linear algebra. See [But10, §1-3] for more details.

If n is a positive integer, let [n] = {1, 2, . . . . n}. We will write tropical matrix multi-
plication as A � B to remind the reader of the min-linear nature of the algebra. Let I
denote the tropical identity matrix, with 0 on the diagonal and ∞ elsewhere. Let TPn−1 :=
Rn/R(1, . . . , 1) be tropical projective space. If C ⊂ Rn is closed under scalar tropical mul-
tiplication, we shall identify it with the set in TPn−1 obtained by normalizing the first
coordinate to be 0. The image of a matrix A, denoted im(A), is an example of such a set.
The tropical convex hull between two points x, y ∈ Rn is

[x, y] = {a� x⊕ b� y : a, b ∈ R}.

As a set in TPn−1, this is called the tropical line segment between x and y. A tropical
polytope, also known as tropical semi-module, is the tropical convex hull of finitely many
points. The image of an n× n matrix is a tropical polytope with at most n distinct vertices
in TPn−1. For an n × n matrix A with tropical eigenvalue 0, the Kleene star of A is the
matrix A∗ = I ⊕⊕∞

i=1A
�i. This is in fact equals to the finite sum I ⊕⊕n

i=1A
�i.

Geometrically, we can view a matrix A ∈ Rn2
as a map A : TPn−1 → TPn−1. Each of

the columns of A defines a point in TPn−1, and the image of A is the tropical convex hull of
these points.

Definition 5.1.2. A matrix A ∈ Rn×n is a premetric if Aii = 0, Aij > 0 for all i 6= j ∈ [n].

In this case, A has eigenvalue 0, and its image in TPn−1 is a full-dimensional tropical
simplex whose main cell has type (0, 1, . . . , n− 1) in the sense of [DS04].

Definition 5.1.3. A matrix A ∈ Rn×n is a polytrope if A is a premetric, and for all i, j, k ∈
[n], Aij ≤ Aik + Akj.
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There are many equivalent characterizations of polytrope, e.g., that it is a premetric and
A = A�2, or that it is a Kleene star of some matrix [But10, §4]. A polytrope A has eigenvalue
0, and the n columns of A are its n eigenvectors. If A is a polytrope, then the image of A
in TPn−1 is a full-dimensional tropical polytope that is also convex in the usual Euclidean
sense.

For any matrix A ∈ Rn2
and b ∈ im(A), we can consider its preimage under A, i.e. the

set of x ∈ Rn such that A� x = b [But10, §3.1-3.2]. If A is a polytrope, this preimage has a
simple and explicit form. We note that the following theorem is a special case of Theorem
3.1.1 in [But10], attributed to Cunninghame-Green (1960) and Zimmerman (1976). This
result was also independently re-discovered by Krivulin [Kri12].

Theorem 5.1.4. Let A ∈ Rn2
be a polytrope. Define I = {i1, . . . , ik} for some 1 ≤ k ≤ n.

Suppose that b ∈ im(A) has the form

b =
⊕
i∈I

ai � Ai = a1 � Ai1 ⊕ · · · ⊕ ak � Aik . (5.1.1)

Then A� x = b if and only if

x = b+
∑
j∈[n]\I

tjej, (5.1.2)

where tj ≥ 0, and ej is the j-th standard basis vector.

Figure 5.1: The action of a polytrope on TP2.

The above theorem implies that A is a projection of TPn−1 onto its image, which is the
tropical convex hull of the images of the vectors. This is illustrated in Figure 5.1 for a 3× 3
polytrope with the columns in TP2 as dots and their tropical convex hull in grey. As the
matrix acts on TP2, the three columns of the matrix are fixed, as is their tropical convex
hull. The remainder of the plane except for three rays is divided into three regions that are
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mapped in the directions (0,−1), (−1, 0), or (1, 1). This maps each point to an upside-down
tropical line with center at one of the three columns. The rays of these lines that are not in
the tropical convex hull are mapped to the point at the center of the tropical line.

Note that A�B = B �A means for each i = 1, . . . , n, the projection of the i-th column
of B onto the image of A equals the projection of the i-th column of A onto the image of
B. Thus, Theorem 5.1.4 gives an easy geometric check if two polytropes commute. We now
give explicit examples for n = 3, using three polytropes whose images are illustrated in the
first picture in Figure 5.2. Let A, B, and C have the images of their columns labelled by
circles, boxes, and crosses, respectively.

Figure 5.2: The images of three polytropes for n = 3, some commuting and some not

Example 5.1.5. The matrices A and B (with circles and boxes) commute. Consider im(A)∩
im(B), which is a hexagon. The vertices of the hexagon are the vertices of im(A � B); to
see this, simply map the columns of B to im(A) in the natural way. Similarly, the vertices
of the hexagon are the vertices of im(B � A). These vertices are illustrated as dots in the
second picture in Figure 5.2. It follows that A�B = B � A.

Example 5.1.6. The matrices A and C (with circles and crosses) do not commute. The
pentagon im(A) ∩ im(C) is not im(A � C) (or im(C � A)). For instance, the upper-right
cross vertex is not mapped to this intersection by the action of A. This is illustrated by dots
in the third picture in Figure 5.2. This means that A and C do not commute.

We now collect some useful facts about premetrics. Only the last two statements are
new, and they are needed for the proof of Theorem 5.1.1. Therefore, we only prove those
statements.

Lemma 5.1.7. If A,B ∈ Rn×n are premetrics, then the following hold:

1. A�B ≤ A⊕B.

2. A�(n−1) = A∗.
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3. A�2 = A if and only if A = A∗.

4. A� x = x if and only if x is in the image of A∗.

5. im((A�B)∗) = im((A⊕B)∗) = im(A∗) ∩ im(B∗).

6. (A�B)∗ = (B � A)∗ = (A⊕B)∗.

Proof. The last statement is the matrix multiplication version of the preceding statement,
so let us prove the latter. By one characterization of the Kleene star, [JK10]

im(A∗) = {x ∈ TPn−1 : xi − xj ≤ Aij}
im(B∗) = {x ∈ TPn−1 : xi − xj ≤ Bij}.

This implies

im(A∗) ∩ im(B∗) = {x ∈ TPn−1 : xi − xj ≤ min(Aij, Bij)} = im((A⊕B)∗).

Consider the first equality, that is, the claim that im((A�B)∗) = im((A⊕B)∗). As before,

im((A�B)∗) = {x ∈ TPn−1 : xi − xj ≤ (A�B)ij}

Now, (A�B)ij = mink Aik +Bkj = min{Aij, Bij,mink 6=i,j Aik +Bkj}. Thus

im((A�B)∗) ⊆ im((A⊕B)∗).

Conversely, suppose that x ∈ im(A∗) ∩ im(B∗). By the fourth statement of the lemma,

A�B � x = B � A� x = x,

therefore x ∈ im((A � B)∗). So im(A∗) ∩ im(B∗) ⊆ im((A � B)∗). This proves the desired
equality.

With these results, we are now ready to prove the main result of this section.

Proof of Theorem 5.1.1.
Suppose that A⊕B = (A⊕B)∗. By Lemma 5.1.7, A⊕B = (A⊕B)2. We have

A⊕B = A�2 ⊕B�2 ⊕ A�B ⊕B � A = A⊕B ⊕ A�B ⊕B � A.

This implies A⊕B ≤ A�B,B �A. By Lemma 5.1.7, A�B,B �A ≤ A⊕B. So we must
have

A�B,B � A = A⊕B,
which then implies A�B = B � A. Now, suppose that A�B = B � A. For any m ≥ 2,C

(A⊕B)�m =
m⊕
k=1

A�k �Bm−k =
m⊕
k=1

A�B = A⊕B ⊕ A�B = A�B

Therefore, (A⊕B)�2 = (A⊕B)∗.
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Corollary 5.1.8. For n = 3, A�B = B � A if and only if A⊕B = (A⊕B)∗.

Proof. The theorem supplies the “if” direction. For the converse, note that A�B = B �A
implies

(A⊕B)2 = A⊕B ⊕ A�B = A�B.
Now, suppose for the sake of contradiction that A�B is strictly smaller than A⊕B at some
coordinate, say, (1, 2). That is,

(A�B)12 = min{A11 +B12, A12 +B22, A13 +B32}
But A and B have zero diagonals, and so

(A�B)12 = min{B12, A12, A13 +B32}.
For strict inequality to occur, we necessarily have (A�B)12 = A13 +B32. But A and B are
polytropes, so

A12 ≤ A13 + A32, B12 ≤ B13 +B32.

Therefore,
A32 > B32, A13 < B13.

On the other hand, (A�B)12 = (B �A)12, and by the same argument, we necessarily have

(B � A)12 = B13 + A32 < B12 < B13 +B32,

which implies A32 < B32, a contradiction. Hence there is no coordinate (i, j) ∈ [3] × [3]
such that A � Bij < Aij ⊕ Bij. In other words, A � B = A ⊕ B, which then implies
A⊕B = (A⊕B)2.

Theorem 5.1.1 implies the set inclusion

{(A,B) : A⊕B = (A⊕B)∗} ⊆ {(A,B) : A�B = B�A} ⊆ {(A,B) : (A⊕B)2 = (A⊕B)∗}.
For n = 3, the corollary implies

{(A,B) : A⊕B = (A⊕B)∗} = {(A,B) : A�B = B � A}
⊂ {(A,B) : (A⊕B)2 = (A⊕B)∗} = R2n2

These inclusions are strict for n ≥ 4. Consider the following two examples for n = 4.

Example 5.1.9. [A�B = B � A but A⊕B > (A⊕B)∗]
Let

A =


0.00 4.10 3.43 0.95
4.94 0.00 1.20 5.89
3.74 4.44 0.00 4.69
3.39 6.92 2.48 0.00

 , B =


0.00 1.11 8.21 9.02
6.74 0.00 7.61 9.82
9.96 9.56 0.00 9.77
1.03 2.14 1.36 0.00

 .
One can check that A�B = B � A, but A⊕B differs from (A⊕B)2 in the (1, 2) entry:

(A⊕B)13 = 3.43 > (A⊕B)2
13 = 2.31.
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Example 5.1.10 ((A⊕B)2 = (A⊕B)∗ but A�B 6= B � A). Let

A =


0.00 1.09 4.02 3.33
6.77 0.00 2.93 3.47
7.77 8.00 0.00 6.20
3.30 1.85 1.39 0.00

 , B =


0.00 5.02 1.45 2.58
3.53 0.00 2.01 2.12
7.10 3.57 0.00 1.13
7.71 6.04 2.47 0.00

 .
The following is an example for n = 3 that shows that it is not sufficient to have A�B =

A⊕B: one needs A⊕B = (A�B)⊕ (B � A) for A and B to commute.

Example 5.1.11.

A =

 0.00 6.4 6.10
3.01 0.0 0.54
5.41 2.4 0.00

 , B =

 0.00 2.25 5.04
6.81 0.00 2.79
4.02 6.27 0.00

 .
In this case, A�B = A⊕B, but B�A 6= A⊕B. These two matrices differ in the (1, 3)

coordinate
(B � A)13 = 2.79 < (A⊕B)13 = 5.04,

so in particular, A�B 6= B � A.

5.2 Three tropical commuting spaces

Let K be an algebraically closed non-Archimedean field with non-trivial valuation, such as
the Puiseux series over C, and fix an integer n ≥ 2. Let Sn = K[{xij, yij}i,j∈{1,...,n}] and let
In ⊂ S be the ideal generated by the n2 elements of the form

n∑
k=1

xikykj −
n∑
`=1

x`jyi` (5.2.1)

where i, j ∈ {1, . . . , n}. We call the variety V (In) the n×n commuting variety over K. It is
irreducible and has dimension n2 + n [GS00, MT55]. Its classical points correspond to pairs
of matrices X, Y ∈ Kn×n that commute. The situation is more subtle tropically. In this
section, we consider three tropical spaces:

• The tropical commuting set T Sn, which is the collection of all pairs of n × n tropical
commuting matrices in R2n2

.

• The tropical commuting variety T Cn, which is the tropicalization of the commuting
variety.

• The tropical commuting prevariety Tpre,n, which is the tropical prevariety (as defined
in Section 1.1) cut out by the n2 equations in (5.2.1).
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The classical analogs of these three spaces are all identical. We will see that tropically,
all of them are different. The difference between the first two illustrates the discrepancy
between tropical commuting matrices and tropicalizations of commuting matrices.

As usual, the tropicalization of a variety over such a field can be defined as the Euclidean
closure of the image of the variety under coordinate-wise valuation. For completeness we
recall an alternate definition of a tropical variety: for ω = (ωx, ωy) ∈ Rn2×Rn2

, f ∈ R[xij, yij],
let inω(f) denote the initial form of f , and inw(In) := 〈inw(f) : f ∈ In〉 the initial ideal of
In. The tropical variety T (In) is the subcomplex of the Gröbner fan of In consisting of cones
Cω where inω(In) does not contain a monomial.

Our first result concerns the lineality space of T (In), denoted lin(In). This is the set of
ω ∈ R2n2

such that inω(In) = In. In our case, this set is a subspace of dimension n + 1,
which coincides with the lineality space of the Gröbner fan of In.

Proposition 5.2.1. Suppose n ≥ 3. For ω = (ωx, ωy) ∈ Rn2 × Rn2
, ω ∈ lin(In) if and only

if there exists a, b ∈ R and c ∈ Rn such that for all i, j ∈ [n]

ωxii = a, ωyjj = b, ωyij = ωxij − a+ b, and ωxij = ci − cj + a. (5.2.2)

In particular, lin(In) has dimension n + 1 for n ≥ 3. For n = 2, ω ∈ lin(I2) if and only if
there exist a, b ∈ R such that

ωx11 = ωx22 = a, ωy11 = ωy22 = b, ωy12 = ωx12 − a+ b, and ωy21 = ωx21 − a+ b. (5.2.3)

In particular, lin(I2) has dimension 4.

Proof. We shall prove that ω satisfies (5.2.2) if and only if inω(gij) = gij for all i, j ∈ [n].
Since the gij’s generate In, this then implies inω(In) = in(In).

Suppose ω is such that inω(gij) = gij. For each fixed i, j ∈ [n], the monomials xiiyij and
yijxjj have equal weights. Thus ωxii = ωxjj = a for all i, j ∈ [n]. Similarly, ωyii = ωyjj = b.
Now, xiiyij and xijyjj have equal weights. Thus

ωyij = ωxij − ωxii + ωyjj = ωxij − a+ b (5.2.4)

Consider a triple i, j, k ∈ [n] of distinct indices. The monomials xikykj and xijyjj have equal
weights. Thus

0 = ωxik + ωykj − (ωxij + b) = ωxik + (ωxkj − a+ b)− (ωxij + b) = ωxik + ωxkj − a− ωxij. (5.2.5)

Since this holds for all triples i, j, k ∈ [n], we necessarily have

ωxij = ci − cj + a (5.2.6)

for some c ∈ Rn. Thus, ω is of the form given in (5.2.2).
Finally, for n = 2, (5.2.4) still holds. So we have (5.2.3). Define ωx12 = c, ωx21 = d, we

see that lin(I2) is a linear subspace of R8 of dimension 4, parametrized by four parameters
a, b, c, d.
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We now consider the three tropical spaces for n = 2. The tropical variety T C2 lives in an
8-dimensional ambient space, corresponding to the four xij and the four yij coordinates. It
is 6-dimensional, with a 4-dimensional lineality space. Modding out by this lineality space
gives a 2-dimensional fan with f-vector

(
1 4 6

)
, meaning there are four rays and six 2-

dimensional cones, as illustrated in Figure 5.3, with the rays meeting at the origin. The
tropical variety is simplicial and pure.

Figure 5.3: The tropical variety T C2 modulo its lineality space

Computation with gfan [Jen] shows that the tropical prevariety equals the tropical variety.
In other words, the three polynomials

g11 = x12y21 − y12x21,

g12 = x11y12 + x12y22 − y11x12 − y12x22,

g21 = x21y11 + x22y21 − y21x11 − y22x21

form a tropical basis for T (I2). We summarize this and slightly more in the following
proposition.

Proposition 5.2.2. We have Tpre,2 = T C2 = T S2∩{a12 +b21 = a21 +b12}. The homogeneity
space is

ωx11 = ωx22 = a, ωy11 = ωy22 = b, ωy12 = ωx12 − a+ b, and ωy21 = ωx21 − a+ b.

Proof. We have proven everything except the relationship between T S2 and the other spaces.
If (A,B) ∈ T S2, then two of the generators of our tropical basis, namely g12 and g21, are
tropically satisfied. The final generator g11 is tropically satisfied if and only a12 + b21 =
a21 + b12, giving the claimed equality.

Example 5.2.3. Let K = C{{t}} be the field of Puiseux series over C with the usual valuation.
Proposition 5.2.2 tells us when commuting 2×2 tropical matrices with entries in val(K) can
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be lifted to commuting tropical matrices in K. Since the pair of matrices((
0 4
2 0

)
,

(
0 3
1 −1

))
satisfies 4 + 1 = 2 + 3, so they can be lifted, for instance to the pair of matrices((

1 + t t4

t2 2

)
,

(
1 t3

t t−1

))
.

T C2 = Tpre,2 T S2

Figure 5.4: The three spaces for n = 2

The relationship between the three spaces for n = 2 is illustrated in Figure 5.4. We now
give an example to demonstrate that the containment Tpre,2 ⊂ T S2 really is proper.

Example 5.2.4. Consider the pair of matrices

((
0 2
1 0

)
,

(
0 1
1 0

))
. These commute under

tropical matrix multiplication, but do not tropically satisfy the polynomial g11 = x12y21 −
y12x21. Thus, this pair of matrices is in T S2, but not in Tpre,2 = T C2.

For higher dimensions, the containment relation between the three sets is as pictured in
Figure 5.5. We will state and prove the result for n = 3. The proofs for cases with n > 3
are similar.

T Cn T SnTpre,n

Figure 5.5: The three spaces for n > 2

Proposition 5.2.5. We have T C3 ( Tpre,3 ∩ T S3, and neither Tpre,3 nor T S3 are contained
in one another.

Proof. To see that each region in Figure 5.5 is really nonempty, consider the following ex-
amples.
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(a) The pair of matrices A =

 0 2 0
2 0 8
0 4 0

 , B =

 12 0 1
0 2 0
1 0 6

 is in (Tpre,3 ∩ T S3)\T C3.

Indeed, direct computation shows that (A,B) ∈ Tpre,3 ∩T S3. Computations with gfan
show that the initial monomial ideal with this weight vector contains the monomial
x31y12y31y21. Thus, (A,B) does not lie in the tropical variety. The polynomial with
this leading term is given by

(XY − Y X)31y32y21 − (XY − Y X)32y31y21 − (XY − Y X)21y31y32. (5.2.7)

Each of the three terms (XY −Y X)31, (XY −Y X)32 and (XY −Y X)21 is a sum of six
monomials, two of which are initial monomials. This gives 18 monomials in total with
6 initial monomials. However, the six initial monomials come in three pairs, which are
cancelled out by the signs. So (5.2.7) has 12 monomials, and the weights are such that
there is a unique leading term.

(b) The pair of matrices C =

 0 1 4
1 0 4
4 4 0

 , D =

 0 2 4
1 0 4
4 4 0

 is in T S3 \ Tpre,3.

Indeed, direct computation shows that these matrices commute, and that containment
in Tpre,3 fails on the (1, 1) and the (2, 2) entries of the products.

(c) The pair of matrices E =

 0 1 0
3 0 1
0 3 0

 , F =

 1 0 3
0 1 0
1 0 3

 is in Tpre,3 \ T S3.

Indeed, direct computation shows that these matrices fail to commute in the (3, 3)
entry of the products, and that (E,F ) ∈ Tpre,3.

In summary, we have (A,B) ∈ (Tpre,3 ∩ T S3) \ T C3, (C,D) ∈ T S3 \ Tpre,3, and (E,F ) ∈
Tpre,3 \ T S3.

We close this section with a study of the geometry of T C3 and Tpre,3. The tropical variety
T C3 lives in an 18-dimensional ambient space, corresponding to the nine xij and the nine yij
coordinates. It is 12-dimensional, with a 4-dimensional lineality space. Modding out gives
us an 8-dimensional space. The f-vector is(

1 1658 23755 143852 481835 972387 1186489 808218 235038
)
,

which ranges from the 1658 rays to the 235,038 8-dimensional cones. The tropical variety is
pure, but not simplicial.

The tropical prevariety higher in dimension than the tropical variety. The prevariety is
neither pure nor simplicial. Modulo the lineality space, its largest cones are of dimension 10.
Its f -vector is(

1 146 2290 16322 66193 162886 241476 199030 71766 2397 58
)
.
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As shown in the proof of Proposition 5.2.5, apart from the generators of the prevariety,
the tropical basis for T C3 necessary contains the polynomial

(XY − Y X)31Y32Y21 − (XY − Y X)32Y31Y21 − (XY − Y X)21Y31Y32

and all of its permutations under S3×S2, by permuting the rows and columns of the matrices
simultaneously, and swapping X and Y . By a similar argument, another set of polynomials
in the tropical basis are all permutations of

(XY − Y X)12Y21 − (XY − Y X)21Y12.

However, these two sets of polynomials alone cannot account for the gap in the dimension
of the maximal cones between T C3 and Tpre,3. We suspect that the full tropical basis of
T C3 contains many more polynomials. Computing this basis explicitly is an interesting
computational challenge.

As a first step to computing the tropical basis of T C3, we study the analogue of Tpre,3 and
T C3 for pairs of commuting symmetric matrices, so that X = XT and Y = Y T . These live
in a 12-dimensional ambient space, corresponding to the six xij and the six yij coordinates.
The ideal Isym

3 is generated by the following three polynomials:

(XY )12 − (Y X)12 = x11y12 − y11x12 + x12y22 − y12x22 + x13y23 − y13x23

(XY )13 − (Y X)13 = x11y13 − y11x13 + x12y23 − y12x23 + x13y33 − y13x33

(XY )23 − (Y X)23 = x12y13 − y12x13 + x22y23 − y22x23 + x23y33 − y23x33.

The symmetric tropical commuting variety is 9-dimensional, with a 2-dimensional lineal-
ity space. Its f-vector is(

1 66 705 3246 7932 10878 8184 2745
)
.

The symmetric tropical commuting prevariety is only one dimension bigger. It has dimension
10, also with a 2-dimensional lineality space. Its f -vector is(

1 39 375 1716 4359 6366 5136 1869 6
)
.

Under the action of S3×S2, the six cones of dimension ten form three orbits. We name them
type I, II and III. Type I has orbit size 1, with initial monomials

x13y23 − x23y13, x12y23 − x23y12, x12y13 − x13y12.

Type II has orbit size 2, with initial monomials

x12y11 − x12y22, x13y11 − x13y33, x23y22 − x23y33.

Type III has orbit size 3, with initial monomials

x11y12 − x12y11, x11y13 − x13y11, x12y13 − x13y12.
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In theory, since there are three generators with six terms, there can be at most
(

6
2

)3
= 153

possible cones of the symmetric tropical commuting prevariety with maximal dimension. It
remains to be understood why only the above six cones are full-dimensional.

As has occurred throughout this work, we find a discrepancy between a tropicalization
and a natural tropical analog: the tropicalization of the commuting variety does not contain
all pairs of matrices that commute tropically. This is not to say that either object is the
wrong object to study: the tropicalization of the commuting variety has nicer geometric
properties and is more relevant for lifting to a non-Archimedean field, while the tropical
commuting set is more natural when working with min-plus linear algebra. They are both
relevant spaces in their own right, and an important goal is to understand the difference
between them, as with many objects in tropical geometry.
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