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ABSTRACT 
 
This paper investigates the dynamic response of shallow foundations on linear and 
nonlinear soil medium using finite element method. The study was motivated by the need 
to develop macroscopic foundation models that can realistically capture the nonlinear 
behavior and energy dissipation mechanism of shallow foundations. An infinitely long 
strip foundation resting on soil half-space is analyzed in depth to evaluate the dependence 
of its dynamic responses on various parameters, e.g. foundation width, material 
properties, input motion amplitude and frequency etc. Special attentions are paid to 
choose appropriate domain scale, mesh size and boundary conditions so as to minimize 
the often observed numerical oscillations when the outgoing waves are contaminated by 
the reflecting waves at boundaries. Such judicious choice results in an excellent 
agreement between the finite element analysis and the analytical solution of strip 
foundation on linear soil half-space. Closed-form formulas are developed to describe the 
frequency-dependent linear dynamic stiffness of strip foundation along both horizontal 
and vertical directions. Various nonlinear constitutive models of soil, which exhibit the 
yielding and kinematic hardening behavior of soil, are implemented in this study to 
evaluate the dynamic stiffness of strip foundation sitting on nonlinear soil medium. The 
finite element analyses reveal the strong dependency of response on input motion 
amplitude, frequency and yielding of soil. A nonlinearity indicator is developed to 
incorporate the combined effects of initial elastic stiffness, yielding stress and excitation 
amplitude. The numerical analyses presented here provide improved understanding on the 
nonlinear behavior and energy dissipation mechanism of shallow foundations under 
dynamic loads.   
 
INTRODUCTION 
 
It is recognized that the dynamic responses of structures with flexible foundations are 
affected by the nonlinear dynamic behavior of individual components as well as the 
interaction between them, i.e. the soil-structure interaction effects. These interaction 
effects are often characterized by changing stiffness and energy dissipation through either 
hysteretic or radiation damping [1]. They can be represented by frequency dependent 
dynamic stiffness, which subsequently provides information on equivalent spring and 
dashpot constants of foundations.  



Various analytical models are available to describe the dynamic stiffness of shallow 
foundations of different shapes on elastic soil medium, e.g. strip foundation on elastic 
half-space [2,3] and on visco-elastic soil layer [4,5], circular foundation on elastic half-
space [6,7] and on visco-elastic half-space [8], rectangular foundation on elastic half-
space or layered medium [9,10], and cylindrical and rectangular embedded foundations 
[11]. Gazetas [12] and Mylonakis et al. [13] compiled an extensive set of graphs and 
tables for dynamic stiffness of foundations with a variety of geometries and linear soil 
conditions. Despite the abundance of analytical solutions for shallow foundations on 
linear soil medium, very limited work has been reported on the dynamic stiffness of 
shallow foundations on nonlinear soil medium [13]. The nonlinearity of soil has caused 
reduced stiffness and modified energy dissipation mechanism. As pointed out by Borja 
and his co-workers [14,15], the local yielding in an otherwise homogeneous elastic soil 
half-space tends to reduce the radiation damping and create resonance frequencies.  

In this study, finite element method is adopted to compute the dynamic response of an 
infinitely long strip foundation resting on an elastic and inelastic half-space. Numerical 
results from finite element method are compared with the theoretical solution of strip 
foundation on elastic half-space so as to provide guidance on choosing appropriate 
domain scale, mesh size and boundary condition for correct modeling of the wave 
propagation in a half-space. Closed-form formulas are developed to describe the 
frequency-dependent linear dynamic stiffness of strip foundation along both horizontal 
and vertical directions. Subsequently, the strip foundation on nonlinear soil medium is 
analyzed. Nonlinear soil models that exhibit yielding and kinematic hardening are 
implemented based on a simple procedure derived from widely available shear modulus 
reduction curves. The dynamic stiffness is evaluated and effects of foundation width, 
input motion amplitude and frequency, and development of soil nonlinearity are 
quantified by a newly developed nonlinearity indicator. The numerical results showed 
here revealed that the energy dissipation through radiation damping of nonlinear soil is 
significantly reduced due to localized yielding zone in soil.  
 
DYNAMIC STIFFNESS OF STRIP FOUNDATION ON ELASTIC SOIL 
 
Consider an infinitely-long rigid strip foundation sitting on elastic soil half-space subject 
to harmonic excitations, as shown in Figure 1. Its dynamic stiffness can be obtained 
analytically [2,3]. Under a harmonic motion, the reacting forces are related to 
displacements by the general form shown below:  
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FIGURE 1 
 FOUNDATION GEOMETRY AND EXCITATION CONDITIONS
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where G is the shear modulus of soil, πG(c11+id11) and πG(c22+id22) are the dynamic 
stiffnesses in vertical and horizontal directions respectively. The force-displacement 
relationship in (1) is analogous to that of a spring-dashpot system with spring constant 
πGc11 (or πGc22) and dashpot coefficient πGd11/ω (or πGd22/ω). The dynamic stiffness 
parameters c11, d11, c22, d22 depend on both the frequency of excitation and soil properties 
and are often plotted against dimensionless frequency a0= ωb/vs for a given Poisson’s 
ratio with b as the half-width of strip foundation and vs as the shear wave velocity of soil. 

Finite element method is used in this study to conduct the dynamic analyses of strip 
foundation under harmonic displacement excitation in vertical and horizontal directions 
respectively. The soil half-space is represented by a finite domain where an absorbing 
boundary condition needs to be present to correctly model the outgoing waves of an 
infinite medium (Figure 2). Maximum element size, boundary conditions and scale of the 
finite domain dominate the accuracy of finite element analysis. Previous research [16,17] 
suggested that the maximum element size lmax should satisfy 
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where L is shear wave length. For a given finite element mesh, (2) equivalently puts an 
upper limit on the applicable dimensionless excitation frequency a0: 
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An absorbing boundary is also required to simulate the waves transmitting outward in 
a half-space. Either viscous damping boundary [18] or infinite element boundary [19] can 
be used for this purpose. However, their implementation in ABAQUS results in 
unexpected numerical oscillations as observed in Figure 3, where the dynamic stiffness 
parameters c11 and c22 are plotted for a finite domain of D=H=10b with absorbing 
boundaries. Similar oscillation has been observed for a even larger domain of D=H=20b. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
To eliminate the oscillation, a large finite domain is needed so that the steady state 

response can be achieved before the wave reflection at boundary contaminates the 
response [14]. For this purpose, the scale of the finite domain needs to satisfy 
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FIGURE 3 
DYNAMIC STIFFNESS OF STRIP FOUNDATION COMPUTED BY FEM (WITH NUMERICAL OSCILLATION) AND 
ANALYTICAL SOLUTION FOR HORIZONTAL (a) AND  VERTICAL (b) DIRECTIONS 



rp LnTv ≤  (4) 
where Lr is the length of the shortest wave reflection path within the finite domain, vp is 
the longitudinal wave velocity, T is the period of harmonic excitation,  n is the number of 
periods from beginning of excitation which includes one full cycle of steady state 
response. Substituting dimensionless frequency a0 into (4) for period T yields the lower 
bound on the applicable dimensionless excitation frequency 
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A finite mesh of H=250m, D=250m, lmax=1.25m (refer to Figure 2) was set up for a 
strip foundation of half-width b=1m on elastic soil medium of vs=201.5m/s, ν=0.25, 
ρ=1600kg/m3. Equation (5) gives lower bound of excitation frequency as a0≥0.04 while 
(3) gives upper bound of excitation frequency as a0≤1.0. For input frequency within this 
range, the numerical oscillation is well eliminated. Figure 4 compares the dynamic 
stiffness parameters computed by finite element and the theoretical solution given by 
Hryniewicz [3], where an excellent agreement is achieved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The dynamic stiffness of strip foundation depends on foundation width, Young’s 

modulus and Poissson’s ratio of soil. The first two parameters can be incorporated by 
using dimensionless frequency a0. Simplified formulas are developed to characterize the 
effects of Poisson’s ratio as shown in (6) to (9). These simplified formulas showed 
excellent agreement with finite element results as shown in Figure 5, where the family of 
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FIGURE 4 
DYNAMIC STIFFNESS OF STRIP FOUNDATION FOR VERTICAL (a,b) AND HORIZONTAL DIRECTIONS (c,d)



curves corresponding to different Poisson’s ratio are plotted for vertical (Figures 5a and 
5b) and horizontal (Figures 5c and 5d) directions. 
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RADIATION DAMPING OF STRIP FOUNDATION ON NONLINEAR SOIL  
 
During strong earthquakes, soil often behaves nonlinearly. The plasticity experienced in 
soil reduces the energy dissipated through outgoing waves. As result, radiation damping 
of nonlinear soil is quite different from that of linear soil. Finite element method is the 
only effective way to reveal the amplitude and frequency dependent nature of the 
foundation-nonlinear soil system. 
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FIGURE 5 
EFFECT OF POISSON’S RATIO ON DYNAMIC STIFFNESS: VERTICAL (a, b) AND HORIZONTAL (c, d) DIRECTIONS 



It is recognized that an infinitely long strip foundation on nonlinear soil medium 
behaves differently under static cyclic loading than under dynamic harmonic excitation, 
as shown in Figure 6. The area within static loop accounts for hysteretic energy Wh, 
which is frequency independent. The equivalent hysteretic damping ratio of the nonlinear 
soil-foundation system can be defined as 
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where Ws represents the linear strain energy. On the other hand, the area within dynamic 
loop accounts for total dissipated energy Wd through both hysteretic and radiation 
damping, which depends on excitation frequency. The nonlinear radiation energy, Wr, can 
be expressed as the difference between total dissipated energy and hysteretic energy as 

hdr WWW −= . For elastic soil half-space, Wh=0 and Wd = Wr. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A simple procedure has been developed to generate cyclic shear behavior of different 

soil types. The stress-strain backbone curve for simple shear can be easily obtained from 
widely available shear modulus reduction curves. A cyclic loop (thick curve in Figure 7) 
can be obtained by applying the Masing rule [20] to the backbone curve using the soil 
type data of Painter Street Bridge [21]. It is compared with the cyclic loop generated by 
Bouc-Wen model [22] (line with circles in Figure 7). Excellent agreement can be 
achieved for both sand and clay samples with a set of model parameters of Bouc-Wen 
model after trial-and-error adjusting. Following this procedure, four material models 
(Cases A, B, C and D) were generated (Figure 8). Case A differs from Case B in yielding 
stress τy (3.0×104 N/m2 and 2.1×104 N/m2 respectively) while it differs from Case C in 
post-yielding stiffness (3.0×106 N/m2 and 4.2×106 N/m2 respectively). Cases A and D 
have different shear modulus G (6.0×107 N/m2 and 1.0×108 N/m2 respectively). Poisson’s 
ratio of 0.25 is specified for all the four soil material cases. 

An elasto-plastic constitutive model of von Mises yield criterion and nonlinear 
kinematic hardening rule in ABAQUS was selected to simulate nonlinear soil material. 
The model is defined by a few representative points on the steady-state cyclic loop given 
by Bouc-Wen model. As shown in Figure 9, the implemented model in ABAQUS is able 
to reproduce the intended cyclic behavior of soil.  

Besides (3) and (5), the possible development of plasticity in soil medium should also 
be taken into account when set up finite element mesh for nonlinear dynamic analysis. 
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STATIC AND DYNAMIC RESPONSE OF NONLINEAR SOIL 
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d11 

Development of plasticity results in smaller wave velocity, which requires finer mesh in 
the yield zone. Two plane strain finite element meshes were set up for different excitation 
frequency ranges in order to satisfy all the requirements. Numerical results have shown 
that the soil density has minimum effect on dynamic stiffness (see Figure 10) while the 
amplitude of displacement excitation affects the development of nonlinearity in soil 
hence the nonlinear radiation damping. Figure 11 plots the nonlinear radiation damping 
for soil material Case A with density of ρ=1600kg/m3 and different combinations of 
foundation half-width b and displacement amplitude U0. Larger U0/b results in more 
nonlinearity in soil, which leads to smaller radiation damping due to outgoing waves. 
Analyses with soil material Cases B, C and D reveal the similar trend. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Besides the ratio U0/b, soil properties also affect the nonlinear behavior of strip 

foundation. Figure 12 shows the static responses of a strip foundation of b=2m under 
vertical harmonic displacement of amplitude 0.04m with soil material Cases A, B, C and 
D respectively.  
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Dynamic analyses were performed on a strip foundation with half-width of 2m sitting 
on different soil and subjected to different U0/b ratios. Its dynamic stiffness parameter, 
d11, is plotted in Figure 13. It is observed that none of the initial stiffness, yield stress and 
post-yielding stiffness dominates individually the global trend of the nonlinear radiation 
curve family. Instead of the material-level nonlinear properties, the extent of the 
nonlinearity developed in the foundation-soil system determines how far the radiation 
damping of the nonlinear soil differs from that of linear soil. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hysteretic damping ratio (as defined in (10)) is a possible choice to represent the 

development of material nonlinearity. The corresponding hysteretic damping ratios ξ for 
various combinations of soil cases and U0/b ratios used in Figure 13 are shown in Table 
1. Larger hysteretic damping ratio indicates more nonlinearity in soil. It can be concluded 
that the radiation damping decreases monotonically with the increase of hysteretic 
damping ratio, i.e. soil nonlinearity. Essentially, the hysteretic damping ratio represents 
the combined effects of U0/b and nonlinear soil properties at the global level. 

 U0/b=0.001 U0/b=0.005 U0/b=0.01 U0/b=0.02 

Soil Case A — 0.32 % 3.71 % 8.14 % 

Soil Case B — 1.30 % 6.09 % 10.14 % 

Soil Case C — 0.29 % 3.25 % 6.73 % 

Soil Case D 0.01 % 3.56 % 9.60 % 15.18 % 

TABLE 1 
HYSTERETIC DAMPING RATIO FOR DIFFERENT LOADING COMBINATIONS 
 

Based on the relationship between nonlinear radiation damping curves shown in 
Figure 13 and the corresponding hysteretic damping ratios in Table 1, a simple formula is 
suggested below to approximate dimensionless nonlinear radiation damping under 
vertical vibration:  
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where λ0 and μ0 is the slope and intersection of  d11–a0 curve of elastic soil and can be 
obtained by (7). Equation (11) is used to predict radiation damping of a strip foundation 
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sitting on a different soil material (La Cienega site) whose soil modulus reduction curve 
has been obtained experimentally [23]. Figure 14 shows the good agreement of simple 
shear behavior as predicted by ABAQUS and the experimental data. Figure 15 plots the 
predicted radiation damping using (11) and shows excellent agreement with the finite 
element results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CONCLUSIONS 
 
In this study, the dynamic stiffness of strip foundation on linear and nonlinear soil 
medium is analyzed by finite element method. The numerical results from FEM are 
compared well with the theoretical solution for elastic soil with judicious choices of 
appropriate domain scale, mesh size and boundary conditions. Closed-form formulas are 
then developed to describe the dynamic stiffness of linear soil as function of frequency, 
foundation width, Young’s modulus and Poisson’s ratio.  The numerical results of  
nonlinear soil show that the energy dissipation depends on amplitude and frequency of 
input motion and soil nonlinearity. The study investigated the effects of density, initial 
elastic stiffness, yielding stress and post-yielding stiffness and revealed that hysteretic 
damping ratio can be used as a global indicator to account for the reduction of radiation 
damping due to nonlinearity. An approximation formula is developed and showed 
excellent prediction when applied to different soil material.  
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