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Behavioral/Cognitive

Spaced Learning Enhances Episodic Memory by Increasing
Neural Pattern Similarity Across Repetitions

X Kanyin Feng,1 Xiao Zhao,1 Jing Liu,1 X Ying Cai,1 X Zhifang Ye,1 Chuansheng Chen,2 and X Gui Xue1

1State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875,
China, and 2Department of Psychological Science, University of California, Irvine, California 92697

Spaced learning has been shown consistently to benefit memory compared with massed learning, yet the neural representations and
processes underlying the spacing effect are still poorly understood. In particular, two influential models (i.e., the encoding variability
hypothesis and the study-phase retrieval hypothesis) could both model behavioral performance very well, but they make opposite
hypotheses regarding the spacing effect’s neural mechanisms. The present study attempted to provide empirical neural evidence to
adjudicate these competing hypotheses. Using spatiotemporal pattern similarity (STPS) analysis of EEG data, this study investigated
whether and how repetition lags (massed/short-spaced/long-spaced) modulated the STPS’s contribution to episodic memory encoding in
male and female human participants. The results revealed that greater item-specific STPS in the right frontal electrodes at 543–727 ms
after stimulus onset was associated with better memory performance. More importantly, this STPS was larger under the spaced-learning
condition than the massed-learning condition and partially mediated the spacing effect on memory performance. In addition, we found
that massed learning was associated with stronger repetition suppression in the N400 component that reflected momentary retrieval
strength, but reduced activity in the late positive component that was associated with memory retrieval. These results suggest that spaced
learning improves long-term memory by increasing retrieval effort and enhancing the pattern reinstatement of prior neural representa-
tions, which may be achieved by reducing the momentary retrieval strength as the extended repetition lags might help to eliminate the
residual representation in working memory.
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Introduction
One of the most robust and fundamental phenomena in learning
and memory is the spacing effect (Ebbinghaus, 1964; Toppino
and Gerbier, 2014). Compared with restudying the material in

immediate succession (i.e., massed learning), interleaving repe-
titions with time or other materials (i.e., spaced learning) benefits
memory. The spacing effect has been observed across diverse
learning tasks and various learning materials in human and non-
human species (Cepeda et al., 2006; Gerbier and Toppino, 2015;
Smolen et al., 2016). Although many cognitive theories and com-
putational models have been proposed to account for the spacing
effect, whether and how the neural representations contribute to
it remain unknown.

Among these models, the encoding variability hypothesis
makes specific predictions regarding the representational mech-
anisms of the spacing effect. In particular, it assumes that greater
variability across learning repetitions provides more routes to
effective retrieval (Estes, 1959). Due to contextual drift over time
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Significance Statement

As one of the most ubiquitous and fundamental phenomena in the history of memory research, the spacing effect provides an
important window into understanding how enduring memory is formed in the brain and how different practice strategies could
modulate these mechanisms to affect memory performance. By leveraging the neural representational analysis on scalp EEG data,
the current study provides the first empirical data to show that spaced learning enhances memory by improving the spatiotem-
poral similarity that occurs at a late time window. Our results support the study-phase retrieval hypothesis but not the encoding
variability hypothesis and emphasize the role of neural pattern reinstatement in strengthening memory via repeated study.
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(Glenberg, 1979), longer inter-repetition intervals (IRIs) would
lead to greater contextual change and thus more variable encod-
ing, resulting in better memory performance. Consistent with
this hypothesis, introducing variations across massed repetitions
has been found to improve memory performance (Paivio et al.,
1988; Appleton-Knapp et al., 2005). Nevertheless, variations un-
der the spaced-learning condition are not beneficial and some-
times are even detrimental to memory performance (Verkoeijen
et al., 2004; Toppino and Gerbier, 2014).

To account for such results, the study-phase retrieval hypoth-
esis proposes that each repetition serves as a retrieval cue to reac-
tivate and then strengthen the representation of the prior
experience (Thios and D’Agostino, 1976). Spacing could reduce
the momentary retrieval strength, thus creating greater difficulty
in memory retrieval and benefiting later memory (Bjork, 1988).
Consistently, items that were not recognized at the second pre-
sentation were recalled poorly (Madigan, 1969). Still, the intro-
duction of variations in the spaced condition could lead to
retrieval failure and impair memory (Johnston and Uhl, 1976;
Verkoeijen et al., 2004).

Studies examining the neural representational mechanisms of
memory encoding might help to test these competing hypothe-
ses. The encoding variability hypothesis predicts that better
memory is achieved when the representations were more dissim-
ilar across repetitions, and that spacing the repetitions enhances
memory by further increasing the dissimilarity. Contrary to these
predictions, however, studies using fMRI and representational
similarity analysis have found that greater similarity rather than
dissimilarity in neural representations across repetitions was as-
sociated with better subsequent memory (Xue et al., 2010; Ward
et al., 2013; Hasinski and Sederberg, 2016; Zheng et al., 2018).
Other studies have further demonstrated that reactivations of
prior representations during subsequent learning contribute to
successful memory encoding (Kuhl et al., 2010; Lu et al., 2015;
Koen and Rugg, 2016).

Two questions remain to be addressed. First, because no study
has compared the neural representations under the spaced- and
massed-learning conditions, it is still unclear whether spacing
could enhance neural pattern reinstatement to improve subse-
quent memory. Second, although massed learning was associated
with larger neural repetition suppression (Wagner et al., 2000;
Callan and Schweighofer, 2010; Xue et al., 2011), stronger
momentary retrieval strength, and less retrieval processing
(Appleton-Knapp et al., 2005; Zhao et al., 2015), the relationships
among momentary retrieval strength, retrieval processing, and
neural pattern similarity have yet to be established.

The present study used EEG and spatiotemporal pattern sim-
ilarity analysis (Lu et al., 2015) to address these questions. We
chose EEG instead of fMRI for two main reasons. First, due to the
temporal autocorrelation of the BOLD response, the neural pat-
tern similarity between two trials is affected by their temporal
distance (Mumford et al., 2014), which seriously confounds the
spacing effect. Second, EEG provides higher temporal resolu-
tion to differentiate 350 – 450 ms component reflecting re-
trieval strength (Rugg and Curran, 2007; Zhao et al., 2015),
and the 500 –700 ms component containing the neural pattern
similarity that supports later memory (Lu et al., 2015). By
comparing the neural processes and neural pattern similarity
for trials under the massed, short-spaced, and long-spaced
conditions and linking them to memory performance, our
results could help to achieve a deeper mechanistic under-
standing of the spacing effect in learning.

Materials and Methods
Participants. Thirty-three healthy Chinese college students (19 females;
mean age � 19.8 � 1.8 years, range 17–25) completed the experiment.
All participants were right-handed, had a normal or corrected-to-normal
vision, and no history of neurological or psychiatric diseases. Six addi-
tional subjects were recruited but excluded from final analysis due to
their high rate of “no response” trials (one subject) or noisy EEG data
(five subjects). The study was approved by the Institutional Review
Board of the State Key Laboratory of Cognitive Neuroscience and Learn-
ing at Beijing Normal University.

Materials. We used 288 pictures of Chinese faces in the learning phase
and another 288 faces as foils in the recognition memory test. To mini-
mize the primacy and recency effects, 12 additional faces (four for each
run) were added at the beginning and the end of the study lists, but were
not tested in the recognition task. All faces were unfamiliar to the subjects
and were drawn from the CAS-PEAL face database (Gao et al., 2008).
They were presented in the same size (180 � 240 pixels) in the center of
the computer screen on a gray background.

Procedure and design. During the encoding phase, participants were
asked to make an age judgment (older or younger than 30 years old) on
each presented face by pressing one of two buttons. They were not told
about the subsequent memory task. All faces were presented twice within
a run, with one-third under the massed (MA) learning condition (i.e., the
IRI was 0 –1 trials), one-third under the short-spaced (SS) learning con-
dition (i.e., the IRI was 4 – 8 trials), and the rest under the long-spaced
(LS) learning condition (i.e., the IRI was 94 –96 trials) (Fig. 1A). The
materials used in the three conditions were fully counterbalanced across
participants. Each trial started with a fixation cross lasting 500 – 800 ms
(randomly jittered), followed by the presentation of the stimulus for
1000 ms and a blank screen for 2500 ms. Participants were allowed to
respond within 2000 ms after stimulus onset. The encoding phase con-
sisted of three runs, each lasting 10 min.

A recognition memory test was conducted after a 30 min visual change
detection task that was used as a distractor. During the recognition phase,
participants were asked to judge whether they had studied each face
earlier on a 6-point scale, with 1 indicating “definitely new” and 6 indi-
cating “definitely old.” In total, 576 faces (288 old faces and 288 new
faces) were pseudorandomly mixed and presented one by one over three
runs, with the constraint that the numbers of old and new faces were
matched within each run. Each trial started with a fixation cross lasting
500 – 800 ms (randomly jittered), followed by the presentation of the face
for up to 3000 ms unless a response was made. A blank screen was then
presented until the next trial (Fig. 1B). We used a fixed intertrial interval
(ITI) of 4000 ms in the recognition phase so that the total duration of this
phase was not affected by participants’ response time, which could help
to discourage the participants from making hasty responses.

Behavioral data analysis. For memory performance, the old faces rec-
ognized with high confidence (scored 5 or above) were defined as re-
membered items and those scored 3 or below were defined as forgotten
items. These cutoffs were chosen so that there were approximately equal
numbers of remembered (42.59%) and forgotten items (40.82%). Both
the hit rate and discriminability (d�) were analyzed by condition. Re-
sponse time (RT) and response consistency (i.e., the rate of same re-
sponse between two repetitions) in the age judgment task during the
encoding phase were analyzed by spacing condition (MA, SS, and LS),
subsequent memory (remembered vs forgotten), and, for RT only, by
repetition (first vs second presentation). Repeated-measures ANOVA
and paired-sample t test were conducted to examine the spacing effect in
the encoding task and memory performance.

EEG recording and preprocessing. Participants were seated �100 cm
away from the computer screen in a soundproof, light-adjustable room.
Continuous EEG data were recorded with a sampling rate of 1024 Hz
using the 64-channel ActiveTwo EEG system (Biosemi). Ag-AgCl elec-
trodes were mounted according to the 10 –20 system.

EEG data preprocessing was implemented using MATLAB-based
toolbox Fieldtrip (RRID:SCR_004849) (Oostenveld et al., 2011) and in-
house MATLAB (RRID:SCR_001622) scripts. EEG data were re-
referenced to the average of all electrodes, downsampled to the rate of 256
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Hz, and filtered with a band-pass filter of 0.5– 40 Hz. Eye movements,
blinks, and muscle artifacts were identified and corrected using the
independent components analysis algorithm. The continuous data
were then segmented into epochs from �200 to 1000 ms with regard
to stimulus onset. The prestimulus interval (�200 to 0 ms) was used
as the baseline for baseline removal procedure. Trials contaminated
by any remaining eye movement, blink, or muscle activity were re-
jected by visual inspection.

Spatiotemporal pattern similarity analysis (STPS). We constructed spa-
tiotemporal feature vectors from the single-trial epoch data and con-
ducted the spatiotemporal pattern similarity analysis (Lu et al., 2015).
The spatial features were scalp voltages from one of the six regions for
better spatial specificity (15 channels per region) (Fig. 2A), and the tem-
poral features were selected using a 100 ms sliding window (26 time
points) from the epoch data, with a step size of one time point. The
similarity between trials was calculated using Pearson correlation. The
correlation coefficients were then converted to Fisher’s Z scores for sub-
sequent statistical analysis.

The within-item (WI) STPS was obtained by calculating the similarity
between two repetitions of the same item. To determine whether the WI
similarity reflected item-specific representations or common cognitive
processes, we calculated the similarity for between-item (BI) pairs that
matched the WI pairs in terms of their memory performance, spacing
condition, number of repetitions (one or two), and IRI. Specifically, for a
WI pair, we selected a BI pair in which the two trials were from the same
spacing condition and showed the same subsequent memory perfor-
mance as those in the WI pair. In addition, one trial of the pair was the
first repetition of an item and the other trial was the second repetition of
another item. Finally, the ITI between BI pairs and WI pairs were
matched as closely as possible, although we did not find a significant
effect of ITI on the pattern similarity of BI pairs (��1	

2 � 0.21, p � 0.65). A
greater WI similarity than BI similarity should reflect item-specific
encoding.

In the current study, we aimed to examine the neural representational
mechanisms underlying the spacing effect in enhancing episodic mem-

ory. As a result, we were particularly interested in the neural differences
between spaced and massed condition that were associated with subse-
quent memory effect. In other words, although there could be many
neural differences between the spaced and massed conditions, they might
reflect different cognitive functions such as sensory processing or motor
control, but such similarities are not theoretically (directly) related to the
condition differences in memory performance. Instead, only the condi-
tion differences in neural pattern similarity that are linked to successful
memory encoding would explain the spacing effect in memory. As a
result, we needed first to localize the memory related neural patterns and
then test whether spacing modulated them.

To achieve this goal, we did the following hypothesis-driven statistical
analyses. First, we located the spatiotemporal windows where the item-
specific representation was associated with subsequent memory perfor-
mance. The WI STPS and BI STPS were separately grouped and averaged
across pairs according to the status of subsequent memory performance
and spacing condition, separately for each individual participant.
Whole-brain three-way ANOVAs were conducted, with spacing condi-
tion (MA, SS, and LS), subsequent memory performance (remembered/
forgotten), and item specificity (WIs/BIs) as within-subject factors. We
particularly focused on the contrast of subsequent memory by item spec-
ificity interaction, which should be orthogonal to the spacing effect. In
other words, although there were more remembered items in the spaced
learning conditions than massed learning condition, the spacing effect
should not bias the subsequent memory effect since the remembered and
forgotten items were separately averaged within each learning condition
before the three-way ANOVA. To make sure that the subsequent mem-
ory effect was consistent across spacing conditions, we also examined the
subsequent memory by spacing interaction as well as the three-way in-
teraction. Focusing on the time windows showing significant item-
specific subsequent memory effects (i.e., significant item specificity by
subsequent memory interaction, but no three-way interaction or mem-
ory by spacing interaction), we conducted post hoc comparisons to
determine whether remembered items showed greater item-specific
representations.

Figure 1. Experimental paradigm and behavioral results. A, Each novel Chinese face was presented twice under one of the three IRI conditions: MA (0 –1 trials), SS (4 – 8 trials), and LS (94 –96
trials). Participants were asked to perform an age judgment task during learning. B, A surprising recognition task was conducted 30 min after the encoding task. Participants were asked to decide
whether they recognized each face on a 6-point scale, with 1 indicating “definitely new” and 6 indicating “definitely old.” Spaced learning enhanced memory performance as measured by both high
confidence (scored 5 or above) hit rate and d� (C), reduced repetition priming effect as measured by RT (D), and lower response consistency between the two presentations (E). F, RT was not
associated with subsequent memory effect. Error bars indicate within-subject SE. *p 
 0.05; ***p 
 0.001.
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To determine the representational mechanisms of the spacing effect
on subsequent memory, we then focused on those windows where the
item-specific pattern similarity predicted subsequent memory perfor-
mance to further investigate how spacing affected item-specific represen-
tations. In this analysis, the remembered items and forgotten items in
each learning condition were pooled together and then averaged, which
would allow for a better examination of the spacing effect than would
separate averages of remembered and forgotten trials because there were
different numbers of remembered items in different spacing conditions.
We then conducted item specificity by spacing ANOVA. Focusing on the
clusters showing item specificity by spacing interactions, we conducted
post hoc comparisons to determine whether spacing could enhance item-
specific pattern similarity.

Univariate event-related potential (ERP) analysis. To detect the ERP
components showing the subsequent memory effect, we averaged the
EEG responses according to subsequent memory performance, spacing
condition, and repetition separately for each individual participant. Sim-
ilar to the STPS analysis, we first conducted a whole-brain three-way
ANOVA, with spacing condition (MA, SS, and LS), subsequent memory
performance (remembered/forgotten), and repetition (Rep1/Rep2) as
within-subject factors. The ERP components associated with subsequent
memory performance were defined as those showing a significant main
effect of subsequent memory and no significant interaction with other
two factors.

Focusing on these components, we then investigated whether spacing
would modulate these components. Again, the remembered items and
forgotten items in each learning condition were pooled together and then
averaged. Since spacing could only modulate the EEG response evoked
by the second repetition, we separately compared MA versus SS, MA
versus LS, and SS versus LS on the ERP evoked by the second repetition.
In an exploratory analysis, we also investigated whether spacing could
modulate the repetition priming effect by a whole-brain spacing by rep-
etition ANOVA.

Nonparametric cluster-based permutation test. Corrections for multiple
comparisons were performed using a nonparametric statistical method
based on cluster-level permutation tests implemented in Fieldtrip tool-
box. Statistical testing was performed for every time window, and the
time windows whose statistical value was larger than a threshold ( p �
0.05) were selected and clustered into connected sets on the basis of
temporal adjacency. The observed cluster-level statistics were calculated
by taking the sum of the statistical values within a cluster. Then, condi-
tion labels were permuted 10,000 times based on their exchangeability,
and the maximum cluster statistic over all six regions in each permuta-
tion was chosen to construct a distribution of the cluster-level statistics
under the null hypothesis. The nonparametric statistical test was ob-
tained by calculating the proportion of randomized test statistics that
exceeded the observed cluster-level statistics. For the spacing effect, the
permutation test was conducted within the pre-defined window showing
subsequent memory effect. For univariate analyses on ERPs, the proce-
dures were the same except that the cluster was set on the basis of tem-
poral and spatial adjacency. When pairwise comparisons between the
three spacing conditions were conducted, the cluster-level tests were
further corrected for multiple comparisons using Bonferroni correction.

Mixed-effects model. The mixed-effects model is useful for modeling
the influence of predictors at multiple levels of variables simultaneously
and for jointly modeling both discrete and continuous variables (Gelman
and Hill, 2006). It has been used in sophisticated fMRI designs (Ward et
al., 2013; Xiao et al., 2017) and single-trial ERP analyses (Valente et al.,
2014; Payne et al., 2015). In this study, the mixed-effects model was
implemented with lme4 (Bates et al., 2015) in R (RRID:SCR_001905).
Participants were included as a random effect. We used the likelihood
ratio test to compare the models (with vs without the predictor) to de-
termine the effect of the predictor.

Controlling the effect of univariate ERP amplitude on STPS. To deter-
mine whether our key findings of pattern similarity were due to differ-
ences in univariate amplitude, we constructed linear mixed-effects
models to examine the subsequent memory effect and spacing effect, by
including the amplitude as covariate. In the model for the subsequent
memory effect, memory strength (1– 6) was used as the dependent vari-

able; the WI pattern similarity in the spatiotemporal clusters showing
subsequent memory effect was used as the predictor, and the corre-
sponding mean EEG amplitude was included as the confounding factor.
In the model for the spacing effect, the mean WI pattern similarity was
used as the dependent variable, the spacing condition was used as the
predictor, and the mean EEG amplitude was included as the confounding
factor. Participants were included as a random effect.

Mediation analysis. We performed the mediation effect test to further
investigate whether the spacing effect on memory was mediated by the
WI pattern similarity, which was related to both spacing condition and
subsequent memory performance. Mixed-effects models as imple-
mented by lme4 (Bates et al., 2015) in R (RRID:SCR_001905) were used
to test the relationship between spacing and memory strength (1– 6 con-
fidence responses were used to index memory strength) (Y � a1

� b1X � �1; (2) spacing and WI similarity (M � a2 � b2X � �2);
(3) spacing and memory strength with a mediator (Y � a3 � b3X
� bM � �3). In those equations, Y is the dependent variable, X is the
predictor, and M is the mediator. The indirect effect was estimated as b2

� b. We used distribution-of-the-product method to compute the con-
fidence interval (CI).

Results
Spaced learning was associated with better memory
Consistent with previous observations, the current study re-
vealed a significant spacing effect on subsequent memory perfor-
mance (Fig. 1C) (hit rate: F(2,64) � 6, p � 0.004; d�: F(2,64) � 8.63,
p � 0.0005). The mean hit rate with high confidence (5 or above)
for MA, SS, and LS were 40.08%, 42.94%, and 44.75%, respec-
tively. Compared with MA, the hit rate was significantly higher
under SS (t(32) � 2.5, p � 0.02) and LS (t(32) � 3.39, p � 0.002).
Similarly, the d� was also higher under SS (0.53, t(32) � 3.96, p �
0.0004) or LS (0.55, t(32) � 3.46, p � 0.002) than MA (0.41). No
significant difference between SS and LS was found for either hit
rate (t(32) � �1.18, p � 0.25) or d� (t(32) � �0.63, p � 0.53).

Spaced learning reduced repetition priming and
response consistency
Three-way (spacing condition, subsequent memory perfor-
mance, and repetition) repeated-measures ANOVA revealed no
significant main effect of subsequent memory (remembered vs
forgotten) on reaction time (F(1,32) � 0.21, p � 0.65), nor its
interactions with other two factors (all p � 0.066) (Fig. 1F). The
interaction between repetition (P1 vs P2) and spacing condition
(MA, SS, and LS) was significant (F(2,64) � 31.69, p 
 0.0001).
Further analyses showed that the RTs at the first presentation
were comparable across the three spacing conditions (MA: 787
ms, SS: 790 ms, LS: 793 ms; F(2,64) � 0.48, p � 0.62), but the RTs
at the second presentation were much shorter under the MA
condition (694 ms) than under the SS (766 ms, t(32) � �9.83, p 

0.0001) and LS conditions (781 ms, t(32) � �10.16, p 
 0.0001)
and slightly shorter under the SS condition than the LS condition
(t(32) � �2.19, p � 0.04) (Fig. 1D).

Two-way (spacing condition by subsequent memory perfor-
mance) repeated-measures ANOVA were then used to analyze
the response consistency between the two presentations. Results
revealed a significant main effect of spacing condition (F(2,64) �
25, p 
 0.0001), but no effect of subsequent memory perfor-
mance (F(1,32) � 1.64, p � 0.21) or the interaction between spac-
ing condition and subsequent memory performance (F(2,64) �
1.4, p � 0.25). Further paired sample t test revealed significantly
higher consistency for MA (82.65%) than SS (76.45%) (t(32) �
4.4, p � 0.0001) and LS (72.41%) (t(32) � 6.85, p 
 0.0001) and
for SS than LS (t(32) � 3.35, p � 0.0021) (Fig. 1E). These results
suggest that spaced learning was associated with weaker repeti-
tion priming and lower response consistency during learning, but
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these factors were not directly associated with subsequent mem-
ory performance.

Subsequently remembered items showed greater
item-specific STPS
The above analyses revealed a significant spacing effect on subse-
quent memory performance. To determine the underlying neural
mechanism, we tested the hypothesis that spaced learning would
enhance memory by increasing item-specific neural pattern sim-
ilarity that was associated with subsequent memory performance.
As the first step, we located the spatiotemporal windows in which
the item-specific STPS was associated with subsequent memory
performance, using the contrast of subsequent memory by item–
specificity interaction in the spacing by subsequent memory by
item specificity three-way ANOVA. This analysis revealed a 543–
727 ms cluster in right frontal region (region 2) showing a signif-
icant subsequent memory by item–specificity interaction
(F(1,32)max � 12.84, Fclustersum � 391.75, pcluster � 0.03; Fig.
2B,C). No cluster in the whole brain showed significant spacing

by subsequent memory interaction or spacing by subsequent
memory by item specificity interaction. Post hoc tests showed
significantly greater WI STPS for remembered items than forgot-
ten items (F(1,32) � 10.98, p � 0.002), but no difference in BI
STPS (F(1,32) � 0.34, p � 0.56). In addition, significantly greater
WI than BI STPS was only found for subsequently remembered
items (F(1,32) � 10.8, p � 0.003), but not for forgotten items
(F(1,32) � 1.81, p � 0.19) (Fig. 2D). The subsequent memory
effect in WI STPS remained significant after controlling the EEG
amplitude (��1	

2 � 7.99, p � 0.005). This finding replicated pre-
vious results from a study that used foreign characters as learning
stimuli (Lu et al., 2015).

Spaced learning was associated with greater
item-specific STPS
Having shown that remembered items were associated with
greater item-specific STPS in the late time window, we further
tested our core hypothesis that spaced learning improved mem-
ory performance by enhancing the item-specific STPS associated

Figure 2. Spaced learning was associated with greater item-specific STPS, which predicted better subsequent memory performance. A, The 64 electrodes were grouped into six regions for better
spatial specificity. B, Statistics (F value) of subsequent memory by item specificity (WI vs BI) interaction obtained under the framework of memory by item specificity by spacing three-way ANOVA.
The x-axis represents time and the y-axis represents the spatial regions. C, Plots of STPS differences between remembered and forgotten items as a function of WI and BI. The gray-shaded area
indicates the temporal cluster showing a significant subsequent memory by item specificity interaction. The cluster remained significant after correcting for multiple comparisons using the
cluster-based permutation test. D, Bar graph of the mean STPS in the corresponding temporal cluster in region 2 as a function of subsequent memory separately for WI and BI STPS. E, Plot of
item-specific representation (WI � BI) across three spacing conditions, within the cluster showing subsequent memory effect. The orange-shaded area marks the temporal cluster showing a
significant spacing (MA vs SS) by item specificity interaction after correcting for multiple comparisons using a cluster-based permutation test. F, Plot of the mean STPS in the shaded temporal cluster
in E as a function of item specificity separately for spacing conditions, with SS being associated with better item-specific representations than MA. Error bars indicate within-subject SE. *p 
 0.05;
**p 
 0.01; ***p 
 0.001.
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with memory performance. Focusing on
the right frontal cluster that showed
greater item-specific STPS for remem-
bered items than forgotten items, we
found a significant item specificity by
spacing (MA vs SS) interaction in the
606 – 652 ms time window (F(1,32)max �
13.52, Fclustersum � 123.89, pcluster �
0.016) (Fig. 2E,F). Post hoc tests revealed
that, compared with MA, SS showed sig-
nificantly greater WI STPS (t(32) � 2.43,
p � 0.02), but comparable BI STPS (t(32)

� 0.46, p � 0.66) (Fig. 2F). The difference
in WI STPS remained significant after
controlling the EEG amplitude (��1	

2 �
4.83, p � 0.028). We also found a 676 –710
ms time window that showed a spacing (SS vs LS) by item speci-
ficity interaction (F(1,32)max � 9.54, Fclustersum � 70.16, pcluster �
0.036), but it did not survive Bonferroni correction. There was no
time window showing significant difference in item specificity
between MA and LS.

Within-item STPS partially mediated the spacing effect
on memory
The above results suggest that spaced learning could enhance the
item-specific STPS’s contribution to memory performance by
increasing the WI STPS. We further investigated whether the WI
STPS indeed mediated the spacing effect on memory. We focused
on the spacing effect between MA and SS because no significant
difference between MA and LS in item-specific STPS was found.
The WI STPS in the right frontal region (606 – 652 ms), which
was associated with both subsequent memory performance and
spacing effect, was averaged and used as the mediator. Mediation
analysis showed that the WI STPS partially mediated the spacing
effect on memory (indirect effect � 0.0047, 95% CI � 0.001–
0.0093) (Fig. 3).

LPC was associated with the spacing effect on memory
The above analysis tested and supported our hypothesis that
spaced learning could enhance memory by increasing item-
specific STPS. In addition to STPS, previous studies have found
several ERP components during encoding that were associated
with subsequent memory performance and were modulated by
repetition lags. To determine whether these ERP components
could also support the spacing effect in our study, we first com-
pared remembered items and forgotten items to identify
memory-related ERPs and further investigated whether those
ERPs were modulated by spacing condition. We found that a
500 – 844 ms response over the occipitoparietal electrodes (i.e.,
LPC) (Fig. 4A) showed a significant subsequent memory effect
(Fclustersum � 6097.4, pcluster � 0.01), with remembered items
evoking more positive-going waveforms than forgotten items
(Fig. 4D,E). We did not find any cluster showing significant spac-
ing by subsequent memory interaction or spacing by subsequent
memory by repetition interaction. Focusing on the LPC, we
found that on the second presentation, items under the MA con-
dition evoked less positive-going LPC than those under the SS
(672– 813 ms, tclustersum � �520.49, pcluster � 0.008) and LS con-
dition (613–766 ms, tclustersum � �703.71, pcluster � 0.002) (Fig.
4F,G). No cluster showed significant difference between SS and
LS (all pcluster � 0.13). These results showed that spacing could
modulate the LPC amplitudes that were associated with subse-
quent memory performance.

LPC reflected memory-related cognitive processes
To further probe the nature of neural representation encoded by
the LPC, which was associated with the spacing effect, we applied the
spatiotemporal pattern similarity analysis on this component; that
is, 672–766 ms time window over the occipitoparietal electrodes
(P1, CPz, Pz, POz, and P2). We found that, within this compo-
nent, there was a significant main effect of subsequent memory;
that is, remembered items showed greater pattern similarity than
forgotten items (F(1,32) � 6.26, p � 0.018), but no significant
effect of item specificity (F(1,32) � 1.97, p � 0.17) or subsequent
memory by item–specificity interaction (F(1,32) � 0.002, p �
0.96) (Fig. 4H). In addition, there was no significant main
effect of spacing (F(2,64) � 2.23, p � 0.12) or spacing by item–
specificity interaction (F(2,64) � 0.37, p � 0.69) (Fig. 4I ).
These results suggest that the LPC might not carry item-specific
representations, but rather may reflect general memory-related cog-
nitive processes.

The above results suggest that both the LPC that reflects gen-
eral cognitive processing and the item-specific STPS in the right
frontal region were associated with the spacing effect on memory.
Interestingly, they occurred at a similar time window but with
different topographic distributions. Does LPC response contrib-
ute to the neural pattern reinstatement? We conducted a mixed-
effects model analysis to determine the association between LPC
amplitude and the degree of STPS. The result revealed a strong
positive association between the LPC response of the second pre-
sentation and the WI STPS (��1	

2 � 128.16, p 
 0.0001). The
correlation remained significant (��1	

2 � 74.74, p 
 0.0001) after
controlling for the spacing condition, memory strength, and the
mean amplitude of right frontal region. These results suggest that
the LPC may contribute to the neural pattern reinstatement in
the right frontal region. Due to the exploratory nature of the
analysis on the relationship between ERP response and neural
representation, more investigations are required to replicate
these results and to further examine the nature of this correlation.

Spaced learning reduced the repetition effect on N400
In addition to more positive LPC, spaced learning also reduced
the repetition effect on N400 in the central region as revealed by
a significant interaction between spacing condition and repeti-
tion (300 – 484 ms, Fclustersum � 20845, pcluster � 0.0002) (Fig.
5A), though this cluster did not show a significant subsequent
memory effect. Post hoc t tests revealed a significant repetition
effect under the MA condition (t(32) � 6.79, p 
 0.0001), but not
under the SS condition (t(32) � 0.08, p � 0.94) or LS condition
(t(32) � 0.14, p � 0.89) (Fig. 5D,E). Moreover, mixed-effects
analysis suggested that the strength of N400 repetition suppres-

Figure 3. Within-item STPS partially mediated the spacing effect on memory. *p 
 0.05; ***p 
 0.001.
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sion could predict the behavioral repetition priming effect under
the MA condition (��1	

2 � 14.54, p 
 0.0001, � � 0.0047), but
could not predict subsequent memory performance (��1	

2 � 0.2,
p � 0.66).

We also conducted the STPS analyses for this component; that
is, a 300 – 484 ms time window over the central electrodes (FC1,
FCz, FC2, C1, Cz, C2, CP1, CPz, and CP2). We did not find any
significant main effects or interactions (all p � 0.17) (Fig. 5F,G).

Discussion
The present study used EEG and representational analysis to de-
termine the representational mechanisms underlying the spacing
effect. Using novel faces as stimuli, the current study revealed that

the item-specific STPS that occurred at the 543–727 ms time
window over the right frontal scalp was greater for subsequently
remembered items than forgotten items. This result replicated pre-
vious findings using novel foreign characters (Lu et al., 2015), sug-
gesting that the role of STPS in memory is not affected by the choice
of learning stimulus. Together with fMRI studies (Xue et al., 2010;
Visser et al., 2013; Ward et al., 2013), existing evidence across various
stimulus types, experimental tasks, repetition lags, and imaging tech-
niques converges to emphasize the critical role of neural pattern
similarity in supporting durable memory (Xue, 2018).

More importantly, this memory-related STPS was larger un-
der the spaced learning condition than the massed learning con-

Figure 4. Spacing-enhanced LPC responses. A, Topographic map of mean ERP differences between subsequently remembered items and forgotten items during 500 – 844 ms. B, C, Topographic
maps of mean ERP differences between SS and MA (B) and LS and MA (C) on the second presentation during 672–766 ms. The asterisks (*) mark the channels that were used in the STPS analyses.
D, Plot of ERP at Pz electrode as a function of memory and repetition. The orange-shaded area marks the temporal cluster showing the subsequent memory effect, with subsequently remembered
items evoking more positive going LPC than forgotten items. E, Mean amplitudes of ERP response in the cluster showing the subsequent memory effect. F, Plot of ERP at PZ electrode as a function
of repetition and spacing condition. The red line and blue line represent the temporal clusters showing larger amplitude for SS than MA and LS than MA, respectively. G, Bar graph of the mean ERP
amplitudes in the cluster showing the spacing effect. H, Bar graph of the LPC STPS as a function of item specificity and subsequent memory. The LPC did not carry item-specific representation. I, Plot
of the LPC STPS as a function of item specificity and spacing condition. Error bars indicate within-subject SE. *p 
 0.05; **p 
 0.01.

Figure 5. Spacing reduced the repetition effect on N400. A, Topographic map of mean ERP differences between P2 and P1 under MA during 300 – 484 ms. B, C, Topographic maps of mean ERP
differences between SS and MA (B) and LS and MA (C) on the second presentation. The asterisks (*) mark the channels that were used in the STPS analyses. D, Plot of ERP at Cz electrode as a function
of spacing condition and repetition. The orange shaded area marks the temporal cluster showing a significant interaction between spacing condition and repetition. E, Mean amplitudes of N400
response as a function of repetition and spacing condition. F, Plot of WI and BI STPS in N400. G, STPS for remembered (Rem) and forgotten (Forg) items in the N400, which did not show any
subsequent memory effect. Error bars indicate within-subject SE. ***p 
 0.001.
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dition and it partially mediated the spacing effect on memory.
This contradicts the encoding variability hypothesis that greater
dissimilarity benefits memory. Given the temporal contextual
drift (Glenberg, 1979), how could spaced learning generate stron-
ger pattern similarity than massed learning? According to the
context maintenance and retrieval model (Polyn et al., 2009; Sie-
gel and Kahana, 2014), when the first presentation was retrieved,
its context could be reinstated (Manning et al., 2011). This con-
text reinstatement could partially counteract the temporal con-
text drift. Moreover, under the massed condition, the neural
representation of the first learning experience might be still acti-
vated in the short-term memory system when the IRI is short
(Raaijmakers, 2003; Van Strien et al., 2007). According to the new
theory of disuse (Bjork and Bjork, 1992; Bjork, 1999), an item in
memory can be characterized by two “strengths”: Storage
strength reflects how well an item is learned and retrieval strength
represents how accessible an item can be via recall or recognition.
Under the massed learning condition, items are readily accessible
and the strong momentary retrieval strength would reduce the
memory retrieval processes, resulting in less gain in storage
strength (Zhao et al., 2015).

By combining ERP and spatiotemporal pattern analysis, the
current study revealed three lines of neural evidence to support
the above hypotheses. First, consistent with many previous stud-
ies (Van Strien et al., 2007; Zhao et al., 2015; Manuel and
Schnider, 2016), we found greater behavioral repetition priming
effect and significant N400 repetition suppression under the
massed condition than under the short- or long-spaced condi-
tion. These results are also consistent with the fMRI evidence of
stronger neural repetition suppression in the sensory and fronto-
parietal regions under the MA learning condition (Callan and
Schweighofer, 2010; Xue et al., 2010, 2011). Consistent with a
previous fMRI study (Ward et al., 2013), we also found that the
N400 repetition effect could predict the behavioral repetition
priming, but not episodic memory performance.

Second, our results are consistent with previous studies show-
ing that the N400 increased with repetitions (Henson et al., 2003;
Schweinberger and Neumann, 2016) and reflected the momen-
tary retrieval strength (Zhao et al., 2015). In addition, previous
studies also suggested that the N400 supported the familiarity
judgment (Curran and Cleary, 2003; Rugg and Curran, 2007;
Kutas and Federmeier, 2011). The enhanced N400 response un-
der the massed condition suggested that massed learning was
associated with stronger momentary retrieval strength (Van
Strien et al., 2007).

Third, the LPC representation contained no item-specific in-
formation but was associated with memory performance. More-
over, the LPC showed reduced response with repetitions and its
amplitude was associated with the strength of memory-related
STPS. Previous studies have shown that LPC is related to recol-
lection (Rugg and Yonelinas, 2003; Rugg and Curran, 2007; Kap-
penman and Luck, 2012), in particular, the retrieval of complex
information about prior events. These results suggest that the
LPC is associated with general memory-retrieval processes that
contribute to pattern reinstatement. Due to the stronger momen-
tary retrieval strength under the massed condition, the require-
ment for memory retrieval of prior learning and the reactivation
of prior memory trace are impaired.

These results also suggest that the representations in early and
late time windows might carry distinct information and have a
differential effect on long-term memory formation. A recent
study combining MEG and fMRI suggests that, whereas the rep-
resentation in the early time window corresponded to the repre-

sentations in the early visual cortex, the representations in the
later time window corresponded to the representations in the
higher-order visual cortex (Cichy et al., 2014). Item-specific rep-
resentation in the visual cortex was only found during percep-
tion, whereas item-specific representation during memory
retrieval was found in the inferior parietal lobule (Xiao et al.,
2017; Favila et al., 2018) and its representation was more abstract
(Jeong and Xu, 2016; Ye et al., 2016) and more aligned to current
goals (Favila et al., 2018). Because perceptual details might decay
more rapidly than more abstract information such as semantics
(Craik and Tulving, 1975), the early pattern similarity might re-
flect more sensory information that did not predict later mem-
ory, whereas the later item-specific pattern similarity might
reflect more abstract information and contribute to long-term
memory. Future studies should further investigate the nature of
representation and their anatomical origins of the early and late
components, which would help to deepen our understanding of
the role of cortical representation in memory formation.

These findings could also well account for the differential ef-
fect of encoding variability on memory performance. According
to the differentiation model of memory (Kılıç et al., 2017), re-
peated exposure to an item results in the storage of additional
information in the single memory trace established during the
first exposure. As the memory trace is updated, its similarity to
other items decreases and becomes more distinguishable during
retrieval. Introducing variance in the massed repetitions could
reduce the momentary retrieval strength, enhance the retrieval of
later abstract representations, and improve memory. However,
introducing variance under the spaced condition could increase
the chance of retrieval failure (Verkoeijen et al., 2005; Cepeda et
al., 2006), in which case a new trace might be formed. When the
study-phase retrieval failed, the probability of retrieving the old
trace at the final test would be even lower. Therefore, the proba-
bility of recalling the item mostly depended on the new trace and
the performance is thus impaired (Raaijmakers, 2003). This
mechanism could also account for the inverted U-shaped rela-
tionship between lag and memory (Verkoeijen et al., 2005; Ce-
peda et al., 2006), as too long a lag could also result in retrieval
failure. Finally, it could also account for the superadditivity effect,
i.e., observed benefit of repetition on memory strength is higher
than that predicted by the encoding variability hypothesis, since
the representations for the two study events should not be con-
sidered as independent (Benjamin and Tullis, 2010).

The present study failed to replicate the detrimental effect of
long IRI. Some behavioral studies found that the spacing effect
could be effective in terms of days or months (Cepeda et al.,
2008). In addition, the optimal interval also varied in different
learning tasks, different repetition intervals, and different reten-
tion lags (Cepeda et al., 2006; Pashler et al., 2009; Toppino and
Gerbier, 2014). In the current study, we tried the longest possible
IRI with the constraint that trials from each condition were all
within one session (to avoid any cross-session differences). It
seems that this long-spaced interval might not be long enough to
bend the curve. In addition, this design unavoidably results in an
imbalance in the temporal distributions of repetitions under dif-
ferent spacing conditions, which might have some effect on
memory performance. Indeed, we found a significant spacing
(MA vs SS) by serial position interaction (F(3,96) � 2.74, p �
0.048). There were significant primacy and recency effects under
the MA learning condition; that is, trials studied in the first and
last quartiles of a run were remembered better than those studied
in the middle (t(32) � 2.33, p � 0.026). However, no such effect
was found in the SS condition (t(32) � 0.86, p � 0.4). This sug-
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gests that the serial position and spacing might interact to affect
memory performance, which could potentially confound the re-
sult. Future studies could use a multiday design to determine
whether pattern similarity plays a role in the inverted U-shaped
relationship of spacing and memory.

Although our results suggest that repetition priming might be
a result of residual working memory representation, which might
hinder later pattern reinstatement and impair memory, either
behavioral repetition priming or N400 repetition suppression
could not quantitatively predict memory performance. In fact,
many existing studies investigating this issue have found mixed
results (Zhao et al., 2015). Due to the fact that the repetition
priming is affected by the initial processing strength and the rep-
etition lag, and in turn, would affect the retrieval of prior repre-
sentation and further encoding, it would be difficult to establish a
direct association between repetition priming and memory
performance (Xue et al., 2011). Future studies should further
investigate the relationship among repetition priming, neural
repetition suppression, pattern reinstatement, and episodic
memory performance.

In conclusion, our study provides several lines of novel neural
evidence to advance our understanding of the mechanisms of
repeated studies in enhancing memory. Contrary to the encoding
variability hypothesis, better memory was associated with greater
STPS that occurred at a late time window and spacing enhanced
memory by increasing the STPS. This pattern similarity in the late
window might reflect the reinstatement of more abstract repre-
sentation, which was reduced under the massed condition due to
the strong momentary retrieval strength. These results highlight
the complex interactions of multiple memory processes and rep-
resentations in determining memory performance.
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