
UCLA
UCLA Electronic Theses and Dissertations

Title
Deep Representation Learning on Complex Graphs

Permalink
https://escholarship.org/uc/item/89p1c84n

Author
Zheng, Cheng

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/89p1c84n
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Deep Representation Learning on Complex Graphs

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Cheng Zheng

2020

© Copyright by

Cheng Zheng

2020

ABSTRACT OF THE DISSERTATION

Deep Representation Learning on Complex Graphs

by

Cheng Zheng

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Wei Wang, Co-Chair

Professor Jonathan Chau-Yan Kao, Co-Chair

Graph representation learning serves as the core of many important tasks on graphs, ranging

from friendship recommendation, name disambiguation, drug discovery, and fraud detection.

Recently, deep learning has revolutionized various domains such as computer vision, natural

language processing, speech recognition, etc. Inspired by the success of deep neural networks,

there has been an increasing interest to learn graph representations with deep learning mod-

els such as autoencoders, convolutional neural networks, etc. However, graphs in real-life

applications usually have complex structures such as sparse connections, task-irrelevant in-

formation, and rapidly evolving structures. The complexity poses great challenges to the

existing frameworks, such as network embedding models with random walks and graph neu-

ral networks based on the neighborhood aggregation.

In this dissertation, we propose several deep learning frameworks to tackle the aforemen-

tioned problems of graph representation learning on complex graphs. We propose a novel

model to learn network representations with adversarially regularized autoencoders to over-

come the sparse sampling issue of random walks on graphs. To resolve the task-irrelevant

ii

noise, we propose a general framework that is trained to simultaneously select task-relevant

edges and learn graph representations by the feedback signals from downstream tasks. To

learn from the dynamic evolving graphs, we propose to extract local features by perform-

ing convolutions in nodes’ neighborhoods defined in joint temporal-structural space. The

methodologies presented in these frameworks span different research areas, including deep

network embedding, graph representation learning, temporal graph modeling, and node clas-

sification on graphs. As a result, these methodologies not only tackle specific challenges in

the graph learning tasks mentioned above but also shed light on other applications like social

network analysis.

iii

The dissertation of Cheng Zheng is approved.

Yizhou Sun

Vwani P. Roychowdhury

Jonathan Chau-Yan Kao, Committee Co-Chair

Wei Wang, Committee Co-Chair

University of California, Los Angeles

2020

iv

To my wife Yingze, for her

inspiration, support and love.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Scope of the Research . 1

1.2 Contribution . 4

1.3 Overview . 7

2 Related Work . 8

2.1 Network Embedding . 8

2.2 Graph Neural Networks . 9

2.3 Graph Sparsification . 10

2.4 Temporal Graph Modeling . 11

2.5 Adversarial Regularization . 12

3 Network Embedding with Adversarial Regularization 13

3.1 Background . 13

3.2 Preliminaries . 16

3.2.1 Autoencoder Neural Networks . 16

3.2.2 Generative Adversarial Networks . 17

3.2.3 Network Embedding . 18

3.3 The NetRA Model . 18

3.3.1 Random Walk Generator . 19

3.3.2 Embedding with Adversarially regularized Autoencoders 20

3.4 Evaluation . 26

vi

3.4.1 Datasets . 26

3.4.2 Comparing Algorithms . 27

3.4.3 Visualization . 29

3.4.4 Link Prediction . 30

3.4.5 Network Reconstruction . 32

3.4.6 Multi-label Classification . 34

3.4.7 Parameter Sensitivity . 35

3.5 Summary . 37

4 Robust Graph Representation Learning via Neural Sparsification 38

4.1 Background . 38

4.2 Proposed Method: NeuralSparse . 40

4.3 Sparsification Network . 43

4.4 Evaluation . 47

4.4.1 Datasets . 48

4.4.2 Experimental Setup . 49

4.4.3 Experimental Results . 51

4.5 Summary . 57

5 Temporal Graph Modeling with Temporal Structural Convolution . . . 58

5.1 Background . 58

5.2 TSNet Overview . 60

5.2.1 A Two-step Framework . 61

5.2.2 Architecture . 62

vii

5.3 Sparsification network . 62

5.3.1 Design Goals . 62

5.3.2 Edge Representations . 63

5.3.3 Sampling Sparsified Subgraphs . 63

5.3.4 Making Samples Differentiable . 64

5.4 Temporal-Structural Convolutional Network 66

5.4.1 Temporal-structural Neighborhood 67

5.4.2 Temporal-structural Convolutional Layer 67

5.4.3 Network Architecture . 68

5.5 Evaluation . 69

5.5.1 Datasets . 69

5.5.2 Baseline Methods . 72

5.5.3 Experimental Settings . 73

5.5.4 Experimental Results . 75

5.6 Summary . 81

6 Applications in Social Network Analysis . 83

6.1 Social Media User Geolocation via Hybrid Attention 83

6.1.1 Introduction . 83

6.1.2 Hybrid-attentive User Geolocation 85

6.1.3 Experiments . 89

6.1.4 Summary . 92

6.2 On-demand Influencer Discovery on Social Media 94

6.2.1 Introduction . 94

viii

6.2.2 on-Demand Influencer Discovery . 96

6.2.3 Experiments . 100

6.2.4 Summary . 104

7 Conclusion . 105

7.1 Conclusion . 105

ix

LIST OF FIGURES

3.1 Illustration of the adversarially regularized autoencoders 15

3.2 Sparsity of network sampling. 20

3.3 Visualization results of the compared methods on JDK dependency network. . . 29

3.4 Link prediction using vertex representation on UCI and JDK. 30

3.5 Link prediction using vertex representation on BLOG and DBLP. 31

3.6 Network reconstruction results on UCI and BLOG 33

3.7 Multi-label classification on PPI and Wikipedia 34

3.8 Parameter sensitivity analysis . 35

3.9 Performance on different λ1 for LLE . 36

3.10 Performance on different NetRA architectures 36

4.1 Example of task-irrelevant edges in graphs. 41

4.2 The overview of NeuralSparse . 42

4.3 Performance vs hyper-parameters . 52

4.4 Graph visualizations with orginal and sparsified graphs. 53

4.5 Convergence analysis . 55

4.6 Node classification performance when adding noise to graph structure. 56

4.7 Impact from hyper-parameter k on validation and testing on the Transaction

dataset . 57

5.1 An example of node classification in a temporal graph from the financial domain. 59

5.2 The frameworks of TSNet. 61

5.3 An illustration of the proposed sparsification network. 64

x

5.4 Accuracy vs hyper-parameter k . 77

5.5 Accuracy vs hyper-parameter l on DBLP-3 and DBLP-5 78

5.6 One-hop neighborhood of Thomas S. Huang in DBLP-5. 79

5.7 Classification accuracy vs ratio of nodes in training set. 82

6.1 The overview of the proposed framework, HUG. 85

6.2 Attention weight analysis. 93

6.3 Hashtag distribution of 1% US English Tweets in 11/01/2019-12/31/2019. . . . 95

6.4 The overview of the proposed framework, DID 96

6.5 Seed user pool size and specificity impact. 103

xi

LIST OF TABLES

3.1 Statistics of the real-world network datasets . 27

3.2 AUC score of link prediction . 32

4.1 Dataset statistics . 48

4.2 Node classification performance . 50

4.3 Node classification performance with κ-NN graphs 52

4.4 Percentage of edges connecting nodes of the same labels 54

4.5 Node classification performance with complete graphs 56

5.1 Dataset statistics . 70

5.2 Node classification performance . 73

6.1 Dataset statistics. 90

6.2 Twitter user geolocation prediction performance. 91

6.3 Ablation study on Twitter-US. 91

6.4 Dataset statistics. 100

6.5 Topic-specific influencer detection performance. 101

6.6 Ablation study on HIV. 101

6.7 Influencers detected in US-English dataset. 104

xii

ACKNOWLEDGMENTS

It has been a wonderful experience to have my graduate studies in UCLA ScAi lab. I would

love to especially thank my advisor, Prof. Wei Wang, for her continuous guidance, support,

and encouragement in my Ph.D. research. She has been leading me to this fascinating field

of deep graph learning, guiding me to overcome the various difficulties in the research and

inspiring me to come up with better ideas. I have learned a lot from Prof. Wang about

the philosophy of managing the team and collabrating with different people, which would

benefit deeply for my future career.

I also own my sincere gratitude to my departmental advisor Prof. Jonathan Kao for his

continuous help during my Ph.D. program. His deep learning course in the ECE department

has inspired me to continue exploring the challenging problems in graph mining fields with

deep learning techniques. I also would like to acknowledge Prof. Vwani Roychowdhury and

Prof. Yizhou Sun for serving as my doctoral committee members and giving me insightful

comments and advice that greatly help me improve my work.

I am deeply grateful to my outstanding collaborators for their indispensable support and

contribution to my research work. In particular, I would like to thank Dr. Bo Zong, Dr.

Wei Cheng, and Dr. Wenchao Yu at NEC Labs for their substantial support. I acknowledge

Dr. Qin Zhang at the University of Technology Sydney for collaboration in social network

analysis projects. The discussions with Dr. Dongjin Song, Dr. Jingchao Ni, and Dr. Haifeng

Chen have also provided me a different scientific mindset.

I have the great pleasure to work with many talented students in ScAi Lab at UCLA. I

would like to thank Ruirui Li, Chelsea Ju, Yichao Zhou, Jyun-yu Jiang, Zeyu Li, Guangyu

Zhou, Junheng Hao, Xiusi Chen, and Yu Yan for their help and support through this journey.

I am grateful to work with them together which left me with precious memories.

Last but not least, to the most important people in my life, my wife (Yingze Qu) and

my parents (Qingfu Zheng and Jingwen Wei). There are no other words in the world to

xiii

express my deepest gratitude to my family who supports, encourages, and helps me to break

through anything even seemingly impossible.

In this dissertation, Chapter 3 is based on our paper titled ”Learning Deep Network

Representations with Adversarially Regularized Autoencoders”. Chapter 4 is based on our

paper titled ”Robust Graph Representation Learning via Neural Sparsification”. Chapter

5 is based on our paper titled ”Node Classification in Temporal Graphs through Stochastic

Sparsification and Temporal Structural Convolution”. Chapter 6 is based on our papers

titled ”Social Media User Geolocation via Hybrid Attention” and ”On-demand Influencer

Discovery on Social Media”.

xiv

VITA

2011-2015 B.S. in Physics, Tsinghua University, Beijing, China

2017-2018 M.S. in Computer Science, UCLA, Los Angeles, California

2018 Summer Research Assistance, NEC Laboratories America, Princeton, New

Jersey

2019 Software Engineer Intern, Facebook, Menlo Park, California

2020 Software Developer Intern, Google, Remotely in Vancouver, British

Columbia, Canada

2015-2017 Graduate Student Researcher, Electrical and Computer Engineering De-

partment, UCLA, Los Angeles, California

2017-2020 Graduate Student Researcher, Computer Science Department, UCLA, Los

Angeles, California

PUBLICATIONS

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng

Chen, Wei Wang. Robust Graph Representation Learning via Neural Sparsification. In

International Conference on Machine Learning (ICML 2020).

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng

Chen, Wei Wang. Node Classification in Temporal Graphs through Stochastic Sparsification

xv

and Temporal Structural Convolution. In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases (ECML-PKDD 2020).

Cheng Zheng, Qin Zhang, Sean D. Young, Wei Wang. On-demand Influencer Discovery

on Social Media. In Proceedings of the 29th ACM International Conference on Information

and Knowledge Management (CIKM 2020).

Cheng Zheng, Jyun-Yu Jiang, Yichao Zhou, Sean D. Young, Wei Wang. Social Media User

Geolocation via Hybrid Attention. In Proceedings of the 43rd International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR 2020).

Cheng Zheng, Qin Zhang, Guodong Long, Chengqi Zhang, Sean D. Young, Wei Wang.

Measuring Time-Sensitive and Topic-Specific Influence in Social Networks with LSTM and

Self-Attention. In IEEE Access 2020.

Wenchao Yu, Cheng Zheng, Wei Cheng, Charu C Aggarwal, Dongjin Song, Bo Zong,

Haifeng Chen, Wei Wang. Automatic Speaker Recognition with Limited Data. In Proceed-

ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining (KDD 2018).

Yabin Fan, Qiming Shao, Lei Pan, Xiaoyu Che, Qinglin He, Gen Yin, Cheng Zheng, et al.

Unidirectional magneto-resistance in modulation-doped magnetic topological insulators. In

Nano letters 2019.

Qiming Shao, Guoqiang Yu, Yann-Wen Lan, Yumeng Shi, Ming-Yang Li, Cheng Zheng,

et al. Strong Rashba-Edelstein Effect-Induced Spin–Orbit Torques in Monolayer Transition

Metal Dichalcogenide/Ferromagnet Bilayers. In Nano Letters 2016.

xvi

CHAPTER 1

Introduction

1.1 Scope of the Research

As a kind of data structure that models a set of objects (nodes) and their relationships

(edges) [46], graphs can be used as the denotation of a large number of systems across various

areas including social science [165], physical systems [62], biology [144], knowledge graphs [28]

and many others. The central problem in machine learning on graphs is finding a way to

incorporate information of graph structure into the machine learning frameworks. Utilizing

machine learning on graphs is important and ubiquitous for applications [115, 109, 104, 157]

ranging from friendship recommendation in social networks, name disambiguation in citation

networks, drug discovery, and so on. The primary challenge in this domain is to find the

most effective and efficient way to learn the representations that can encode the structural

information about the graph. Traditional approaches [49, 120, 9, 98] rely heavily on summary

graph statistics (e.g. node degrees or clustering coefficients), kernel functions, or carefully

engineered features to compare local neighborhood structures. However, these approaches

are limited since the hand-engineered features cannot generalize to most of the real-life graphs

that are evolving fast and have complex structures.

In recent years, deep learning has revolutionized many machine learning domains [38],

ranging from computer vision, natural language processing, speech recognition, to name a

few. The data in these tasks are typically represented in the Euclidean space. More recently,

there has been an increasing interest to learn graph representations with deep learning mod-

els such as autoencoder [122], convolutional neural network (CNN) [64], recurrent neural

networks (RNN) [73], graph neural networks (GNNs) [165, 46, 132]. However, there are a

large number of graphs from real-life applications that are constructed with complex prop-

1

erties, such as sparse graphs, over-densified graphs, dynamically evolving graphs, etc. The

complexity of graph data has imposed significant challenges on existing machine learning

algorithms.

• The problem of network representation learning, also known as network embedding [40],

arises in many machine learning tasks assuming that there exist a small number of

variabilities in the vertex representations which can capture the semantics of the orig-

inal network structure. Most existing network embedding models [86, 104, 41], with

shallow or deep architectures, learn vertex representations from the sampled vertex

sequences such that the low-dimensional embeddings preserve the locality property

and/or global reconstruction capability. The resultant representations, however, are

difficult for model generalization due to the intrinsic sparsity of sampled sequences

from the input network. As such, an ideal approach to address the problem is to gen-

erate vertex representations by learning a probability density function over the sampled

sequences. However, in many cases, such a distribution in a low-dimensional manifold

may not always have an analytic form.

• Although representation learning has been in the center of machine learning tasks on

graphs, the underlying motivation why two nodes get connected may have no relation

to a target downstream task, and such task-irrelevant edges could hurt neighborhood

aggregation as well as the performance of GNNs. When task-irrelevant edges are mixed

into neighborhood aggregation, the trained GNN fails to learn better representations,

and it becomes difficult to learn a subsequent classifier with strong generalization

power. Conventional methods, such as graph sparsification [75, 67, 99], are unsuper-

vised such that the resulting sparsified graphs may not favor downstream tasks. Several

other works focus on downsampling under predefined distributions [152, 45, 22]. As

the predefined distributions may not well adapt to subsequent tasks, such methods

could suffer suboptimal prediction performance. Multiple recent efforts strive to make

use of supervision signals to remove noise edges [125]. However, the proposed methods

2

are either transductive with difficulty to scale [34] or of high gradient variance bringing

increased training difficulty [96].

• Temporal graphs, as a data structure that carries both temporal and structural in-

formation from real-world data, has been widely adopted in applications from various

domains. Here, we focus on the problem of node classification in temporal graphs [135]:

Given a set of nodes with rich features and a temporal graph that records historical

activities between nodes, the goal is to predict the label of every node. Consider the

following application scenario. While node representation lies at the core of this prob-

lem, we face two main challenges from temporal graphs. Temporal graphs from real-life

applications are large with high complexity. Local features in the temporal-structural

domain are the key to node classification in temporal graphs. Although existing tech-

niques have investigated how to build convolutional operators to automatically learn

and extract local features from either temporal domain [7] or structural domain [117],

a näıve method that simply stacks temporal and structural operators could lead to

suboptimal performance. An effective method that learns and extracts local features

from joint temporal-structural space is still missing.

• Determining user geolocation is vital to various real-world applications on the internet,

such as online marketing and event detection. To identify the geolocations of users,

their behaviors on social media like published posts and social interactions can be

strong evidence. However, most of the existing social media based approaches individ-

ually learn from text contexts and social networks. This separation can not only lead

to sub-optimal performance but also ignore the distinct importance of two resources

for different users. In another problem, identifying influencers on social media, such

as Twitter, has played a central role in many applications, including online market-

ing and political campaigns. Compared with social media celebrities, domain-specific

influencers are less expensive to hire and more engaged in spreading messages such

as new treatment or timely prevention for HIV. However, most of the existing topic

3

modeling based approaches fail to identify influencers who are dedicated to the rare

yet important topics such as HIV and suicide.

1.2 Contribution

In this dissertation, we propose the following deep learning frameworks to tackle the problem

of graph representation learning in complex graphs, including learning network embedding

with adversarial regularization, robust graph representation via neural sparsification, and

temporal graph modeling with temporal-structural convolution. We detail the contributions

of these research projects as follows.

The first research issue comes from the unrepresentative sampled vertex sequences by the

random walk on graphs, which fail to preserve the locality property and/or global reconstruc-

tion capability. To address these challenges we propose a novel model to learn the network

representations with adversarially regularized autoencoders (NetRA). NetRA jointly min-

imizes network locality-preserving loss and the reconstruction error of autoencoder which

utilizes a long short-term memory network (LSTM) as an encoder to map the input se-

quences into a fixed-length representation. The joint embedding inference is encapsulated in

a generative adversarial training process to circumvent the requirement of an explicit prior

distribution. The model employs a discrete LSTM autoencoder to learn continuous vertex

representations with sampled sequences of vertices as inputs. In this model, besides mini-

mizing the reconstruction error in the LSTM autoencoder, the locality-preserving loss at the

hidden layer is also minimized simultaneously. Meanwhile, the continuous space generator

is also trained by constraining to agree in distribution with the encoder. The generative ad-

versarial training can be regarded as a complementary regularizer to the network embedding

process. We present experimental results to show the embedding capability of NetRA on

a variety of tasks, including network reconstruction, link prediction, and multi-label classi-

fication.

4

The second research work addresses how to utilize supervision signals to remove task-

irrelevant edges to achieve robust graph representation learning. We propose Neural Spar-

sification (NeuralSparse), a general framework that simultaneously learns to select task-

relevant edges and graph representations by feedback signals from downstream tasks. The

NeuralSparse consists of two major components: sparsification network and GNN. For the

sparsification network, we utilize a deep neural network to parameterize the sparsification

process: how to select edges from the one-hop neighborhood given a fixed budget. In the

training phase, the network learns to optimize a sparsification strategy that favors down-

stream tasks. In the testing phase, the network sparsifies input graphs following the learned

strategy, instead of sampling subgraphs from a predefined distribution. Unlike conventional

sparsification techniques, our technique takes both structural and non-structural informa-

tion as input and optimizes the sparsification strategy by feedback from downstream tasks,

instead of using (possibly irrelevant) heuristics. For the GNN component, the NeuralSparse

feeds the sparsified graphs to GNNs and learns graph representations for subsequent predic-

tion tasks. Under the NeuralSparse framework, by the standard stochastic gradient descent

and backpropagation techniques, we can simultaneously optimize graph sparsification and

representations. Experimental results on both public and private datasets demonstrate that

NeuralSparse consistently provides improved performance for existing GNNs on node classi-

fication tasks, yielding up to 7.2% improvement.

The third research work focuses on the node classification problem in temporal graphs.

We propose Temporal Structural Network (TSNet), a deep learning framework that per-

forms supervised node classification in sparsified temporal graphs. TSNet also leverage the

supervised sparsification technique and consists of two major sub-networks: sparsification

network and temporal-structural convolutional network. The sparsification network aims to

sparsify input temporal graphs by sampling edges from the one-hop neighborhood follow-

ing a distribution that is learned from the subsequent supervised classification tasks. The

temporal-structural convolutional network takes sparsified temporal graphs as input and

5

extracts local features by performing convolution in nodes’ neighborhoods defined in joint

temporal-structural space. As both sub-networks are differentiable, we can leverage stan-

dard stochastic gradient descent and backpropagation techniques to iteratively learn better

parameters to sparsify temporal graphs and extract node representations. Experimental re-

sults on both public and private datasets show that TSNet can offer competitive performance

on node classification tasks. Using a case study, we demonstrate the potential of TSNet to

improve model interpretation and visualization of temporal graphs.

We also demonstrate the applications of deep graph representation learning on social

network analysis problems. We propose a novel end-to-end framework, Hybrid-attentive

User Geolocation (HUG), to jointly model post texts and user interactions in social media.

The hybrid attention mechanism is introduced to automatically determine the importance of

texts and social networks for each user while social media posts and interactions are modeled

by a graph attention network and a language attention network. Extensive experiments con-

ducted on three benchmark geolocation datasets using Twitter data demonstrate that HUG

significantly outperforms competitive baseline methods. The in-depth analysis also indicates

the robustness and interpretability of HUG. For the topic-specific influencer detection prob-

lem, we investigate an on-Demand Influencer Discovery (DID) framework that is able to

identify influencers on any subject depicted by a few user-specified keywords, regardless of

its popularity on social media. The DID model employs an iterative learning process that

integrates the language attention network as a subject filter and the influence convolution

network built on user interactions. Comprehensive evaluations on Twitter datasets show

that the DID model can reliably identify influencers even on rare subjects such as HIV and

suicide, outperforming existing topic-specific influencer detection models.

6

1.3 Overview

The rest of the dissertation is organized as follows: Chapter 2 summarizes the relevant works

for each research problem. Chapter 3 describes our method of utilizing generative regular-

ized autoencoders to learn smoothly regularized vertex representations that well capture the

network structure. Chapter 4 presents our work on the supervised graph sparsification tech-

nique that improves generalization power by learning to remove potentially task-irrelevant

edges from input graphs. Chapter 5 discusses our proposed methods to jointly learns tem-

poral and structural features for node classification from the sparsified temporal graphs.

Chapter 6 presents two models that utilize the deep graph representation learning to study

social network analysis problems. Chapter 7 concludes this dissertation with a summary of

our work.

7

CHAPTER 2

Related Work

2.1 Network Embedding

Matrices are the most straightforward representation of a network. Earlier work has fo-

cused on the factorization of different matrix representations, including but not limited to

adjacency matrix [98], Laplacian matrix [107], and transition probability matrix [16]. Ma-

trix factorization approaches usually have the time complexity of O(|V |2), which restricts

their applications. Thus one challenge facing matrix factorization is its poor scalability as

the data volume explodes with time, as demonstrated in [164] on a real-world network of

Alibaba Group, which has 290 million vertices and 18 billion edges.

Recently, we have witnessed the emergence of random walk based methods [30, 86, 41],

inspired by the success of natural language processing [86]. These models build connections

between network structure and natural language. The training input of these algorithms

changes from matrices to sentence-like vertex sequences generated by random walks among

connected vertices. The skip-gram algorithm [81] maximizes the co-occurrence probability

among the vertices within a certain window in a random walk. DeepWalk [86] obtains

effective embeddings using truncated random walks. Node2vec [41] extends the model with

flexibility between homophily and structural equivalence [153]. These last two methods

motivate the study of network embedding taking advantage of language models.

Deep learning embedding models [110, 17, 122] have also been applied to solve the net-

work embedding problem. Autoencoder based approaches [122, 17] were proposed, utilizing

its ability to learn highly non-linear properties. By carefully constructing the learning objec-

tive, [122] preserves the first and second proximity of networks which delivers state-of-the-art

performance. Recent works on graph convolutional networks [27, 64] have demonstrated ef-

8

fective convolution operation on network data. There are multiple recent works [45, 118] to

train unsupervised network embedding models with the neighborhood aggregation technique.

2.2 Graph Neural Networks

Driven by the success of convolutional neural networks in the computer vision and natural

language processing domains, graph neural networks (GNNs) are proposed to automate node

representation learning in both supervised and unsupervised settings. The basic idea behind

the GNNs to perform the convolution by aggregating the neighbor nodes’ information in the

neighborhood.

Under the supervised setting, early studies [27, 13] investigate convolutional filters in

graph spectral domain under transductive settings. Since that time, there have been in-

creasing improvements, extensions, and approximations on spectral-based graph convolu-

tional networks [156, 167]. However, as the spectral methods usually handle the whole graph

simultaneously and are difficult to parallel or scale to large graphs, convolutional filters in

graph domain are proposed [101, 83, 64, 137]. Veličković et al. [117] proposes the graph atten-

tional network which performs the neighborhood aggregations based on the attention weights

among the node neighborhood. There are also a few studies [45, 66] explore how to differ-

entiate neighborhood filtering by sequential models. Multiple recent studies [134, 151, 145]

explore other types of aggregation approaches under the graph neural network framework.

Under the unsupervised setting, graph neural networks aims to learn node representa-

tions that best preserve local proximity [17, 104, 45, 58]. The learned node representations

can serve as an important source of features for prediction tasks, such as node classifica-

tion [86, 20, 41], link prediction [72, 122], and community detection [93]. Veličković et al.

[118] maximizes the mutual information between patch representations and corresponding

high-level summaries of graphs which is applicable to both transductive and inductive learn-

ing setups. Kipf and Welling [63] introduces a framework for unsupervised learning on

9

graph-structured data based on the variational auto-encoder (VAE). To some extent, the

deep learning approaches for network embedding at the same time belong to graph neural

networks, which include graph autoencoder-based algorithms [122] and graph convolution

neural networks with unsupervised training [45].

2.3 Graph Sparsification

Real-world graphs are usually large and noisy, rendering problems from the perspectives of

overfitting risk, interpretable visualization, and scalability. The goal of graph sparsification

is to find small subgraphs from input large graphs that best preserve desired properties. Ex-

isting techniques are mainly unsupervised and deal with simple graphs without node/edge

attributes for preserving predefined graph metrics [52], information propagation traces [80],

graph spectrum [3, 14, 99, 19, 2], node degree distribution [31, 121], node distance distribu-

tion [67], or clustering coefficient [78]. Importance based edge sampling has also been studied

in a scenario where we could predefine the importance of edges [158, 22]. The detailed dis-

cussion on graph sparsification can be found in [75, 154]. SPINE proposed by Mathioudakis

et al. [80] sparsifies social graphs by maximizing the likelihood of observing information

propagation traces. Spectral sparsification methods discover reduced subgraphs that best

approximate the spectrum of original graphs [3, 14, 99, 19, 102, 2]. Graph sampling meth-

ods extract small subgraphs that approximates statistic information in graphs, such as node

degree distribution [71, 31, 121], node distance distribution [67, 92], and clustering coeffi-

cient [78].

Besides the spectral graph sparsification approaches, there are multiple recent works

exploring downsampling the graphs in GNNs under predefined distributions [152, 45, 22].

Chen et al. [22] proposes the importance sampling method in graph convolutional networks

for efficient training and better generalization. As the predefined distributions may not well

adapt to subsequent tasks, such methods could suffer suboptimal prediction performance.

10

Multiple recent efforts strive to make use of supervision signals to remove noise edges [125].

However, the proposed methods are either transductive with difficulty to scale [34] or of high

gradient variance bringing increased training difficulty [96].

2.4 Temporal Graph Modeling

Temporal graphs are commonly defined in two ways: snapshot sequences [69] and times-

tamped graph [114]. The snapshot sequence is a collection of evolving graph snapshots at

multiple discrete time steps and the timestamped graph is a single graph with continuous-

valued timestamped links. In this dissertation, we focus on the representation learning over

graph snapshots.

The traditional approaches uses matrix factorization to extract features in a sequence

of graphs [68, 108, 97, 148]. Yu et al. [148] proposes the structural factorization model

which fully characterizes the structure of the network over time or directly express the

network structure as a function of time, once the features have been extracted. This fully

parameterized model can be used to reconstruct the approximate future structure in the

network at any point in time.

Recent studies also attempts to model dynamics in temporal graphs using generative

methods [36] and other deep learning approaches [65, 138, 146]. The model in [146] fused

the sequential and spatial graph convolution in a ”sandwich” structure, which is yet depen-

dent on the convolution order of sub-structures [133]. The ST-GCN model in [138] learned

both spatial and temporal patterns by adding all temporally connected nodes into temporal

kernels and conduct similar convolution as GCN [64] on skeleton graph with static topology.

There are recent works [100, 44] based on the recurrent neural networks to capture tempo-

ral dynamics by maintaining hidden states to summarize historical snapshots, and achieve

state-of-the-art results on dynamic link prediction. However, the computation cost of the

recurrent methods is the main bottleneck to be applied to the large scale real-world graphs.

11

2.5 Adversarial Regularization

The rapid advances in deep learning research in the last decades have provided novel methods

for studying highly non-linear data like natural language or graphs. One such model is the

Generative adversarial networks (GANs) [39] which has achieved great success in generating

and learning the latent presentation of high dimensional data, such images [88]. The success

of GANs on images has led many researchers to consider applying GANs to discrete data such

as text and discrete images. Although there have been several successful attempts [43, 91, 59],

using GANs to learn the representation of discrete contents like natural languages and social

networks remains a challenging problem due to the difficulty in back-propagation through

discrete random variables.

Another notable technique is adversarial autoencoders (AAE) [79] which attempt to

imbue the model a more flexible prior implicitly through adversarial training. Recent work

on Wasserstein autoencoders [112] provides a theoretical foundation for the AAE and shows

that AAE minimizes the Wasserstein distance between the data/model distributions. Recent

work on GANs such as GraphGAN [124] and ANE [25] for discrete data is either through

the use of discrete structures [147, 21] or the improved autoencoders.

12

CHAPTER 3

Network Embedding with Adversarial Regularization

3.1 Background

Network analysis has been attracting many research interests with its enormous potential

in mining useful information which benefits the downstream tasks such as link prediction,

community detection and anomaly detection on social network [115], biological networks [109]

and language networks [104], to name a few.

To analyze network data, one fundamental problem is to learn a low-dimensional vector

representation for each vertex, such that the network structure is preserved in the learned

vector space [86]. For this problem, there are two major challenges: (1) preservation of

complex structure property. The objective of network embedding is to train a model to “fit”

the training networks, that is, to preserve the structure property of networks [86, 94]. How-

ever, the latent structure of the network is too complex to be portrayed by an explicit form

of probability density which can capture both the local network neighborhood information

and global network structure. (2) sparsity of network sampling. Current research on network

embedding employs network sampling techniques, including random walk sampling, breadth-

first search etc., to derive vertex sequences as training datasets. However the sampled data

represent only a small proportion of all the vertex sequences. An alternative approach is to

encode these discrete structures in a continuous code space [122]. Unfortunately, learning

continues latent representations of discrete networks remains a challenging problem since in

many cases, the prior distribution may not exist in a low dimensional manifold [94].

Recent work on network embedding has shown fruitful progress in learning vertex repre-

sentations of complex networks [86, 94, 122]. These representations employ nonlinear trans-

formations to capture the “semantics” of the original networks. Most existing methods first

13

employ a random walk technique to sample a bunch of vertex sequences from the input net-

work, then feed a learning model with these sequences to infer the optimal low-dimensional

vertex embeddings. However, the sampling strategy suffers from the data sparsity problem

since the total amount of vertex sequences is usually very large in real networks and it is

often intractable to enumerate all. Subsequently, learning on a sparse sample set tends to

produce an overly complex model to explain the sampled dataset, which eventually causes

overfitting. Though autoencoders are adopted to encode the inputs into continuous latent

representations [122], regularizations are still desirable to force the learned representations

remain on the latent manifold. Ideally we could generate the continuous vertex represen-

tations with a prior distribution. However, in many cases, it is difficult, if not impossible,

to pre-define an explicit form of the prior distribution in a low-dimensional manifold. For

example, Dai et al. [25] proposed to train a discriminator to distinguish samples generated

from a fixed prior distribution and the input encoding, and thereby pushing the embedding

distribution to match the fixed prior. While this gives more flexibility, it suffers from the

mode-collapse problem [59]. Moreover, most network embedding models with deep architec-

tures usually do not consider the order of the vertices in the sampled vertex sequences [122].

Thus, the information of proximity orders cannot be well considered.

To address the aforementioned challenges, in this study, we propose a novel model to learn

the network representations with adversarially regularized autoendoers (NetRA). NetRA

jointly minimizes network locality-preserving loss and the reconstruction error of autoencoder

which utilizes a long short-term memory network (LSTM) as an encoder to map the input

sequences into a fixed length representation. The joint embedding inference is encapsulated

in a generative adversarial training process to circumvent the requirement of an explicit

prior distribution. As visually depicted in Figure 3.1, our model employs a discrete LSTM

autoencoder to learn continuous vertex representations with sampled sequences of vertices as

inputs. In this model, besides minimizing the reconstruction error in the LSTM autoencoder,

the locality-preserving loss at the hidden layer is also minimized simultaneously. Meanwhile,

14

Input

2

Encoding of
each vertex

3~5(0,7)

2

1

4

3
Network

5

1

Discriminator
>?(@)

Generator
AB(3)

LSTM Decoder
ℎD(@)

LSTM Encoder
,E (F)

Adversarial regularization

Walk
Positive samples

Negative samples

−

+

Locality constraint

F~ℙJKLK(F)

Reconstruction error

Figure 3.1: Illustration of the adversarially regularized autoencoders

the continuous space generator is also trained by constraining to agree in distribution with the

encoder. The generative adversarial training can be regarded as a complementary regularizer

to the network embedding process.

NetRA exhibits desirable properties that a network embedding model requires: 1) struc-

ture property preservation, NetRA leverages LSTM as an encoder to capture the neighbor-

hood information among vertices in each sequence sampled from the network. Additionally,

the model is also trained simultaneously with the locality-preserving constraint. 2) gen-

eralization capability, the generalization capability requires a network embedding model to

generalize well on unseen vertex sequences which follow the same distribution as the pop-

ulation. The generative adversarial training process enables the proposed model to learn

smoothly regularized representations without pre-defining an explicit density distribution

which overcomes the sparsity issue from the input sequences of vertices. We present experi-

mental results to show the embedding capability of NetRA on a variety of tasks, including

network reconstruction, link prediction and multi-label classification. To summarize, the

15

main contributions of this work are as follows:

• We propose a novel deep network embedding model with adversarially regularized

autoencoders, NetRA, to learn vertex representations by jointly minimizing locality-

preserving loss and global reconstruction error using generative adversarial training

process. The resultant representations are robust to the sparse inputs derived from the

network.

• NetRA learns an adversarially regularized LSTM encoder that can produce useful

vertex representations from discrete inputs, without a pre-defined explicit latent-space

prior.

• We conduct extensive experiments on tasks of network reconstruction, link prediction

and multi-label classification using real-world information networks. Experimental

results demonstrate the effectiveness and efficiency of NetRA.

The rest of this chapter is organized as follows. In Section 3.2, we review the prelim-

inary knowledge of autoencoders, generative adversarial networks and network embedding

algorithms. In Section 3.3, we describe NetRA framework of learning a low dimensional

mapping with generative adversarial training process. In Section 3.4, we demonstrate the

performance of NetRA by adapting this joint learning framework on tasks of network recon-

struction, link prediction and multi-label classification. Finally, in Section 3.5 we conclude

this study and mention several directions for future work.

3.2 Preliminaries

3.2.1 Autoencoder Neural Networks

An autoencoder neural network is trained to set the target values to be equal to the inputs.

The network consists of two parts: an encoder fφ(·) that maps inputs (x ∈ Rn) to latent

16

low-dimensional representations and a decoder hψ(·) that produces a reconstruction of the

inputs. Specifically, given a data distribution Pdata, from which x is drawn from, i.e., x ∼

Pdata(x), we want to learn representations fφ(x) such that the output hypotheses hψ(fφ(x))

is approximately equal to x. The learning process is described simply as minimizing a cost

function

minEx∼Pdata(x)[dist(x, hψ(fφ(x)))], (3.1)

where dist(·) is some similarity metric in the data space. In practice, there are many options

for the distance measure. For example, if we use `2 norm to measure the reconstruction error,

then the objective function can be defined as LAE(φ, ψ; x) = Ex∼Pdata(x)‖x− hψ(fφ(x))‖2.

Similarly the objective function for cross-entropy loss can be defined as,

−Ex∼Pdata(x)[x log hψ(fφ(x)) + (1− x) log(1− hψ(fφ(x)))] (3.2)

The choice of encoder fφ(·) and decoder hψ(·) may vary across different tasks. In this

chapter, we use LSTM autoencoders [103] which are capable of dealing with sequences as

inputs.

3.2.2 Generative Adversarial Networks

The Generative Adversarial Networks (GANs) [39] build an adversarial training platform for

two players, namely generator gθ(·) and d iscriminator dw(·), to play a minimax game.

min
θ

max
w

E
x∼Pdata(x)

[log dw(x)] + E
z∼Pg(z)

[log (1− dw(gθ(z)))] (3.3)

The generator gθ(·) tries to map the noise to the input space as closely as the true data,

while the discriminator dw(x) represents the probability that x came from the data rather

than the noise. It aims to distinguish real data distribution Pdata(x) and fake sample distri-

bution Pg(z), e.g. z ∼ N (0, I). Wasserstein GANs [5] overcome unstable training problem

by replacing Jensen-Shannon divergence with Earth-Mover (Wasserstein-1) distance, which

17

considers solving the problem

min
θ

max
w∈W

E
x∼Pdata(x)

[dw(x)]− E
z∼Pg(z)

[dw(gθ(z))]. (3.4)

The Lipschitz constraint W on discriminator has been kept by clipping the weights of the

discriminator within a compact space [-c, c].

3.2.3 Network Embedding

Network embedding approaches seek to learn representations that encode structural infor-

mation about the network. These approaches learn a mapping that embeds vertices as

points into a low-dimensional space. Given the encoded vertex set {x(1), ...,x(n)}, finding an

embedding fφ(x(i)) of each x(i) can be formalized as an optimization problem [149, 129]

min
φ

∑
1≤i<j≤n

L(fφ(x(i)), fφ(x(j)), ϕij), (3.5)

where fφ(x) ∈ Rd is the embedding result for a given input x. L(·) is the loss function

between a pair of inputs. ϕij is the weight between x(i) and x(j).

We consider the Laplacian Eigenmaps (LE) that well fits the framework. LE enables the

embedding to preserve the locality property of network structure. Formally, the embedding

can be obtained by minimizing the following objective function

LLE(φ; x) =
∑

1≤i<j≤n

‖fφ(x(i))− fφ(x(j)‖2ϕij. (3.6)

3.3 The NetRA Model

In this section, we present NetRA, a deep network embedding model using adversarially reg-

ularized autoencoders, to learn smoothly regularized vertex representations with sequences

of vertices as inputs. The resultant representations can be used in the downstream tasks,

such as link prediction, network reconstruction and multi-class classification.

18

3.3.1 Random Walk Generator

Given network G(V,E), the random walk generator in DeepWalk [86] is utilized to obtain

truncated random walks (i.e. sequences of vertices) rooted on each vertex v ∈ V in G(V,E).

A walk is sampled randomly from the neighbors of the last visited vertex until the preset

maximum length is reached.

The random walk sampling technique is widely adopted in network embedding research [41,

86, 122]. However, it suffers from the sparsity problem in network sampling. For each vertex

in given network, if we assume that the average node degree is d̄, the walk length is l and

the number of samples is k, then the sampling fraction of walks can be calculated by

pfrac ∝
|V | × k
|V | × d̄l

=
k

d̄l
× 100%. (3.7)

The effect of the sampling fraction is presented in Figure 3.2. In the example, DeepWalk is

used to perform link prediction task on the UCI message network described in Section 3.4.1.

Figure 3.2(a) and Figure 3.2(b) show that if the walk length or the average vertex degree

increases, the performance decreases dramatically1. According to Eq. (3.7), obviously, when

l or d̄ increases, the sampling fraction of walks is getting smaller. Thereby, the trained

model is prone to overfitting because of the sparse inputs. On the contrary, if the number of

samples k increases, the performance is getting better as shown in Figure 3.2(c). However,

more sampled walks also call for more computing burden on model training. Therefore, it

is desirable to develop effective models with better capabilities of generalization on sparsely

sampled network walks.

1In Figure 3.2(a), the window size of DeepWalk is set to be equal to the walk length. The reason is that,
if the window size is set to a small value against a long walk length, it turns out to be equivalent to increase
the samples per vertex with a short walk length. In Figure 3.2(b), we reduce the degree of the dataset by
removing vertices with large degrees [11].

19

5 10 15 20
Length of Walks

0.74

0.76

0.78

0.80

0.82

0.84

0.86

AU
C

Sc
or

e

(a) Walk length

12 13 14
Average Vertex Degree

0.88

0.89

0.90

0.91

0.92

0.93

0.94

AU
C

Sc
or

e
(b) Vertex degree

10 20 30 40
Number of Walks Per Vertex

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

AU
C

Sc
or

e

(c) Number of samples

Figure 3.2: Sparsity of network sampling.

3.3.2 Embedding with Adversarially regularized Autoencoders

In this chapter, we propose NetRA, a network embedding model with adversarially regu-

larized autoencoders, to address the sparsity problem. Autoencoders are popularly used for

data embedding, such as images and documents. It provides informative low dimensional

representations of input data by mapping the them to the latent space. Unfortunately, if

the encoder and decoder are allowed too much capacity, the autoencoder can learn to per-

form the copying task without extracting useful information about the distribution of the

data [38]. We proposed to use a generative adversarial training process as a complementary

regularizer. The process has two advantages. On one hand, the regularizer can guide the

extraction of useful information about data [38]. On the other hand, the generative ad-

versarial training provides more robust discrete-space representation learning that can well

address the overfitting problem on sparsely sampled walks [79]. Specifically, in NetRA, the

discriminator updates by comparing the samples from the latent space of the autoencoder

with the fake samples from the generator, as shown in Figure 3.1. The latent space of au-

toencoder provides optimal embedding for the vertices in the network with the simultaneous

update of encoder and discriminator. In this study, we use the LSTM as the encoder and

decoder networks [103] because it takes the order information of the sampled walks into

consideration.

20

This joint architecture requires dedicated training objective for each part. The autoen-

coder can be trained individually by minimizing the negative log-likelihood of reconstruction,

which is indicated by cross entropy loss in the implementation

LAE(φ, ψ; x) = −Ex∼Pdata(x)[dist(x, hψ(fφ(x)))], (3.8)

where dist(x,y) = x log y + (1 − x) log(1 − y). Here x is the sampled batch from training

data. fφ(x) is embedded latent representation of x, which is also the positive samples for

discriminator, indicated by the arrow with “+” in Figure 3.1. φ and ψ are parameters of the

encoder and decoder functions, respectively. In the training iteration of autoencoder, not

only the encoder and decoder are updated, the locality-preserving loss (Eq. (3.6)) is jointly

minimized.

As depicted in Figure 3.1, NetRA minimizes the distributions between the learned

representations from the encoder function fφ(x) ∼ Pφ(x), and the representations from the

continuous generator model gθ(z) ∼ Pθ(z). The dual form of the Earth Mover distance

between Pφ(x) and Pθ(z) can be described as follows [5]

W (Pφ(x),Pθ(z)) = sup
‖d(·)‖L≤1

Ey∼Pφ(x)[d(y)]− Ey∼Pθ(z)[d(y)] (3.9)

where ‖d(·)‖L≤1 is the Lipschitz continuity constraint (with Lipschitz constant 1). If we have

a family of functions {dw(·)}w∈W that are all K-Lipschitz for some K, then we have

W (Pφ(x),Pθ(z)) ∝ max
w∈W

E
x∼Pdata(x)

[dw(fφ(x))]− E
z∼Pg(z)

[dw(gθ(z))] (3.10)

We can separate the training of generator and discriminator. As for the generator, the

cost function can be defined as,

LGEN(θ; x, z) = Ex∼Pdata(x)[dw(fφ(x))]− Ez∼Pg(z)[dw(gθ(z))] (3.11)

and the cost function for discriminator is,

LDIS(w; x, z) = −Ex∼Pdata(x)[dw(fφ(x))] + Ez∼Pg(z)[dw(gθ(z))] (3.12)

21

NetRA learns smooth representations by jointly minimizing the autoencoder reconstruc-

tion error and the locality-preserving loss in an adversarial training process. Specifically, we

consider solving the joint optimization problem with objective function

LNetRA(φ, ψ, θ, w) = LAE(φ, ψ; x) + λ1LLE(φ; x) + λ2W (Pφ(x),Pθ(z)) (3.13)

Theorem 1. Let Pφ(x) be any distribution. Let Pθ(z) be the distribution of gθ(z) with z

being a sample drawn from distribution Pg(z) and gθ(·) being a function satisfying the local

Lipschitz constants Ez∼Pg(z)[L(θ, z)] < +∞. Then we have

∇θLNetRA = −λ2∇θEz∼Pg(z)[dw(gθ(z))] (3.14)

∇wLNetRA = −λ2∇wEx∼Pdata(x)[dw(fφ(x))]

+λ2∇wEz∼Pg(z)[dw(gθ(z))] (3.15)

∇φLNetRA = λ1∇φ

∑
1≤i<j≤n

‖fφ(x(i))− fφ(x(j))‖2ϕij

−∇φEx∼Pdata(x)[dist(x, hψ(fφ(x)))]

+λ2∇φEx∼Pdata(x)[dw(fφ(x))] (3.16)

∇ψLNetRA = −∇ψEx∼Pdata(x)[dist(x, hψ(fφ(x)))] (3.17)

Proof. Let X ⊆ Rn be a compact set, and

V (d̃, θ) = Ey∼Pφ(x)[d̃(y)]− Ey∼Pθ(z)[d̃(y)]

= Ey∼Pφ(x)[d̃(y)]− Ez∼Pg(z)[d̃(gθ(z))] (3.18)

where d̃ lies in D = {d̃ : X → R, d̃ is continuous and bounded, ‖d̃‖ ≤ 1}. Since X is

compact, we know by the Kantorovich-Rubinstein duality [5] that there exists a d ∈ D that

attains the value

W (Pφ(x),Pθ(z)) = sup
d̃∈D

V (d̃, θ) = V (d, θ) (3.19)

and D∗(θ) = {d ∈ D : V (d, θ) = W (Pφ(x),Pθ(z))} is non-empty. According to the envelope

theorem [82], we have

∇θW (Pφ(x),Pθ(z)) = ∇θV (d, θ) (3.20)

22

for any d ∈ D∗(θ). Then we get

∇θW (Pφ(x),Pθ(z)) = ∇θV (d, θ)

= ∇θEy∼Pφ(x)[d(y)]− Ez∼Pg(z)[d(gθ(z))]

= −∇θEz∼Pg(z)[dw(gθ(z))] (3.21)

Therefore, we have ∇θLNetRA = −λ2∇θEz∼Pg(z)[dw(gθ(z))].

Eq.(3.15)-(3.17) are straightforward applications of the derivative definition.

We now have all the derivatives needed. To train the model, we use a block coordinate

descent to alternate between optimizing different parts of the model: (1) locality-preserving

loss and autoencoder reconstruction error (update φ and ψ), (2) the discriminator in the

adversarial training process (update w), and (3) the generator (update θ). Pseudocode of

the full approach is given in Algorithm 1.

The training process of NetRA consists of the following steps: Firstly, given a network

G(V,E), we run random walk generator acquiring random walks of length l. Then, one hot

representation x(i) of each vertex is taken as input to LSTM cells. We pass the random walks

through encoding layers and obtain the vector representations of vertices. After the decoder

network, the vertex representations will be transformed back into n dimensions. Cross-

entropy loss is calculated between the inputs and outputs by minimizing the reconstruction

error in autoencoder operation. Meanwhile, locality-preserving constraint ensures that the

adjacent vertices are in close proximity (Step 2-7 in Algorithm 1). The latent representation

of encoder and the output of generator will be fed into discriminator to get adversarial loss

(Step 10-17). Additionally, the generator transforms Gaussian noise into the latent space as

closely as the true data, by passing through multilayer perceptron (Step 20-23). After the

training of NetRA, we obtain the vertex representations fφ(x) of the network by passing

the input walks through the encoder function.

Optimality Analysis. NetRA, as illustrated in Figure 3.1, can be interpreted as

minimizing the divergence between two distributions, namely Pφ(x) and Pθ(z). We provide

23

Algorithm 1 NetRA Model Training

Require: the walks generated from input graph, maximum training epoch nepoch, the number of discrimi-

nator training per generator iteration nD.

1: for epoch = 0; epoch < nepoch do

2: Minimizing LLE(φ;x) with autoencoder LAE(φ, ψ;x)

3: Sample {x(i)}Bi=1 ∼ Pdata(x) a batch from the walks

4: Compute latent representation fφ(x(i))

5: Compute reconstruction output hψ(fφ(x(i)))

6: Compute LAE(φ, ψ) and LLE(φ) using Eq.(3.8) and Eq.(3.6)

7: Backpropagate loss and update φ and ψ using Eq.(3.16)-(3.17)

8:

9: Discriminator training

10: for n = 0, n < nD do

11: Sample {x(i)}Bi=1 ∼ Pdata(x) a batch from the walks

12: Sample {z(i)}Bi=1 ∼ Pg(z) a batch from the noise

13: Compute representations fφ(x(i)) and gθ(z
(i))

14: Compute LDIS(w) using Eq.(3.12)

15: Backpropagate loss and update w using Eq.(3.15)

16: clip the weight w within [−c, c]

17: end for

18:

19: Generator training

20: Sample {z(i)}Bi=1 ∼ Pg(z) a batch from the noise

21: Compute the representation gθ(z
(i))

22: Compute LGEN(θ) using Eq.(3.11)

23: Backpropagate loss and update θ using Eq.(3.14)

24: end for

24

the following proposition which shows that under our parameter settings, if the Wasser-

stein distance converges, the encoder distribution fφ(x) ∼ Pφ(x) converges to the generator

distribution gθ(z) ∼ Pθ(z).

Proposition 1. Let P be a distribution on a compact set X , and (Pn)∈N be a sequence of

distributions on X . Considering W (Pn,P) → 0 as n → ∞, the following statements are

equivalent:

1. Pn
D
 P where

D
 represents convergence in distribution for random variables.

2. Ex∼Pn [F (x)]→ Ex∼P[F (x)], where F (x) = Πn
i=1x

pi
i ,x ∈ Rn,

∑n
i=1 pi = k, k > 1, k ∈ N.

Proof. (1) As shown in [119], Pn converges to P is equivalent to W (Pn,P)→ 0.

(2) According to the Portmanteau Theorem [119], Ex∼Pn [F (x)] → Ex∼P[F (x)] holds if

F : Rn → R is a bounded continuous function. Our encoder fφ(·) is bounded as the inputs

are normalized to lie on the unit sphere, and our generator gθ(·) is also bounded to lie in

(−1, 1)n by tanh function. Therefore, F (x) = Πn
i=1x

pi
i is a bounded continuous function for

all pi > 0, and

Ex∼Pn [Πn
i=1x

pi
i]→ Ex∼P[Πn

i=1x
pi
i] (3.22)

such that
∑n

i=1 pi = k,∀k > 1, k ∈ N.

Computational Analysis. Given a network G(V,E), where |V | = n, |E| = m, accord-

ing to the definition in Eq.(3.6), the overall complexity of Laplacian Eigenmaps embedding is

O(n2). In our implementation, we only consider the vertex pairs (x(i),x(j)) that have edges

between them, thus the size of the sampled pairs is O(m), which is much smaller than O(n2)

because real networks are sparse in real settings.

The computational complexity of learning LSTM autoencoders is proportional to the

number of parameters |φ| and |ψ| in each iteration. Therefore, the learning computational

complexity for LSTM autoencoders is O(nepoch × (|φ| + |ψ|)). Similarly, for the generator

25

and discriminator, each invocation of backpropagation is typically linear in the number

of parameters O(|θ|) and O(|w|). Thus the computational complexity for generator and

discriminator is O(nepoch× (nD×|w|+ |θ|)). It is basically quadratic if the input and hidden

layers are of roughly the same size. However, if we set the size of embedding layers much

less than that of the inputs, the time complexity reduces to O(n).

3.4 Evaluation

We evaluate the performance of our model with extensive experiments on tasks including net-

work reconstruction, link prediction and multi-label classification, using a variety of network

datasets.

3.4.1 Datasets

To verify the performance of the proposed network embedding model, we conduct experi-

ments on a variety of networks from different domains including the social network, software

dependency network, biological network and language network, as summarized in Table 3.1.

• UCI message (UCI) [84] is a directed communication network containing sent messages

(edges) between the users (vertices) of an online community of students from the

University of California Irvine.

• JDK dependency (JDK)2 is the software class dependency network of the JDK 1.6.0.7

framework. The network is directed, with vertices representing Java classes and an edge

between two vertices indicating there exists a dependency between the two classes.

• Blogcatalog (BLOG) [106] is an undirected social network from BlogCatalog website

which manages the bloggers and their blogs. The vertices represent users and edges

2http://konect.uni-koblenz.de/networks/subelj jdk

26

Table 3.1: Statistics of the real-world network datasets

Dataset |V | |E| Avg. degree #label Type

UCI 1,899 27,676 14.57 - Directed

JDK 6,434 53,892 8.38 - Directed

BLOG 10,312 333,983 32.96 - Undirected

DBLP 180,768 382,732 4.23 - Undirected

PPI 3,890 76,584 19.69 50 Directed

WIKI 4,777 184,812 38.69 40 Directed

represent friendship between users.

• DBLP3 is an undirected collaboration graph of authors from the DBLP computer

science bibliography. The vertices in this network represent the authors, and the edges

represent the co-authorships between two authors.

• Wikipedia (WIKI) [41] is a directed word network. Vertex labels represent the Part-

of-Speech (POS) tags inferred using the Stanford POS-Tagger [113].

• Protein-Protein Interactions (PPI) [12] is a subgraph of the PPI network for Homo

Sapiens, which is a network depicting interactions between human proteins. The vertex

label indicates biological states of proteins.

3.4.2 Comparing Algorithms

To evaluate the performance of our network embedding model, the competitors used in this

chapter are summarized as follows.

• Spectral Clustering (SC) [107]: SC is an approach based on matrix factorization, gen-

erating the vertex representation with the smallest d eigenvectors of the normalized

3http://dblp.uni-trier.de/xml

27

Laplacian matrix of the graph.

• DeepWalk [86]: DeepWalk is a skip-gram [81] based model which learns the graph

embedding with truncated random walks.

• node2vec [41]: This approach combines the advantage of breadth-first traversal and

depth-first traversal algorithms. The random walks generated by node2vec can better

represent the structural equivalence.

• Structural Deep Network Embedding (SDNE) [122]: SDNE is a deep learning based

network embedding model which uses autoencoder and locality-preserving constraint

to learn vertex representations that capture the highly non-linear network structure.

• Adversarial Network Embedding (ANE) [25]:ANE proposes to train a discriminator to

push the embedding distribution to match the fixed prior.

For fair comparison [70], we run each algorithm to generate 300 dimensional vertex rep-

resentations on different datasets, unless noted otherwise. The number of walks per vertex

in DeepWalk and node2vec is set to 10 with walk length 30, which is the same as the

random walk generation step of NetRA. The window size of DeepWalk and node2vec is

optimized to 10. node2vec is optimized with grid search over its return and in-out param-

eters (p, q) ∈ {0.25, 0.50, 1, 2, 4}. For SDNE, we utilize the default parameter setting as

described in [122]. For NetRA, the gradient clipping is performed in every training itera-

tion to avoid the gradient explosion, and we use stochastic gradient descent as the optimizer

of autoencoder networks. The multilayer perceptron (MLP) is used in the generator and

discriminator. The evaluation of different algorithms is based on applying the embeddings

they learned to the downstream tasks, such as link prediction, network reconstruction, and

multi-label classification as will be illustrated in the subsequent sections.

28

30 15 0 15 30
30

15

0

15

30

(a) Spectral Clustering

20 10 0 10 20
20

10

0

10

20

(b) DeepWalk

20 10 0 10 20
20

10

0

10

20

(c) node2vec

40 20 0 20 40

20

10

0

10

20

(d) SDNE

30 15 0 15 30
30

15

0

15

30

(e) ANE

40 20 0 20 40
40

20

0

20

40

(f) NetRA

Figure 3.3: Visualization results of the compared methods on JDK dependency network.

The red points belong to class org.omg ; the green points belong to class org.w3c; the blue

points belong to class java.beans.

3.4.3 Visualization

In order to demonstrate how well key properties of network structure are captured by the

network embedding models, we visualize the embeddings of each compared method. We

run different embedding algorithms described in Section 3.4.2 to obtain low dimensional

representations of each vertex and map vertex vectors onto a two dimensional space using

t-SNE [116]. With vertex colored by its label, we perform the visualization task on JDK

dependency network, as shown in Figure 3.3.

As observed in Figure 3.3, three classes are presented: red points for org.omg, green

points for org.w3c and blue points for java.beans. It can be seen that the eigenvector-based

method Spectral Clustering cannot effectively identify different classes. Other baselines can

29

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

SC
DeepWalk
node2vec
SDNE
ANE
NetRA

(a) ROC Curve on UCI

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

SC
DeepWalk
node2vec
SDNE
ANE
NetRA

(b) ROC Curve on JDK

1 2 3 4 5 6
Training Epochs

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

Sc
or

e

DeepWalk
node2vec
SDNE
ANE
NetRA

(c) UCI

1 2 3 4 5 6
Training Epochs

0.725

0.750

0.775

0.800

0.825

0.850

0.875

AU
C

Sc
or

e

DeepWalk
node2vec
SDNE
ANE
NetRA

(d) JDK

Figure 3.4: Link prediction using vertex representation on UCI and JDK.

Evaluated with AUC ROC score versus training epochs.

detect the classes to varying extents. NetRA performs best as it can separate these three

classes with large boundaries, except for a small overlap between green and red vertices.

3.4.4 Link Prediction

The objective of link prediction task is to infer missing edges given a network with a certain

fraction of edges removed. We randomly remove 50% of edges from the network, which serve

as positive samples, and select an equal number of vertex pairs without linkage between them

30

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

SC
DeepWalk
node2vec
SDNE
ANE
NetRA

(a) ROC Curve on BLOG

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

SC
DeepWalk
node2vec
SDNE
ANE
NetRA

(b) ROC Curve on DBLP

1 2 3 4 5 6
Training Epochs

0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850

AU
C

Sc
or

e

DeepWalk
node2vec
SDNE
ANE
NetRA

(c) BLOG

1 2 3 4 5 6
Training Epochs

0.78

0.80

0.82

0.84

0.86

0.88

AU
C

Sc
or

e

DeepWalk
node2vec
SDNE
ANE
NetRA

(d) DBLP

Figure 3.5: Link prediction using vertex representation on BLOG and DBLP.

Evaluated with AUC ROC score versus training epochs.

as negative samples. With vertex representation learned by network embedding algorithms,

we obtain the edge feature from the `2 norm of two vertex vectors, and use it directly to pre-

dict missing edges. Because our focus is network embedding model, this simple experimental

setup can evaluate the performance based on the assumption that the representations of two

connected vertices should be closer in the Euclidean space. We use the area under curve

(AUC) score for evaluation on link prediction task. The results are shown in Table 3.2.

Obviously, we observe that NetRA outperforms the baseline algorithms across all datasets

31

Table 3.2: AUC score of link prediction

Method UCI JDK BLOG DBLP

SC 0.6128 0.6686 0.6014 0.5740

DeepWalk 0.6880 0.8506 0.7936 0.8605

node2vec 0.6040 0.8667 0.8105 0.8265

SDNE 0.7806 0.7226 0.6621 0.7712

ANE 0.6402 0.7409 0.7025 0.7935

NetRA 0.8879 0.8913 0.8627 0.8902

by a large margin. It can be seen that NetRA achieves 3% to 32% improvement based on

the AUC score on the four datasets. By comparing NetRA, node2vec and DeepWalk, which

all use random walks as inputs, we can see the effectiveness of generative adversarial regular-

ization for improving the generalization performance in NetRA model. With same random

walk sequences, NetRA can overcome the sparsity issue from the sampled sequences of

vertices.

We also plot the ROC curve of these four datasets, as shown in Figure 3.4(a)-(d). The

ROC curve of NetRA dominates other approaches and is very close to the (0, 1) point. We

train the NetRA model with different epochs for different datasets and embed the vertices

to get representations after each training epoch. The results are shown in Figure 3.5(a)-(d).

Generally, we can observe that NetRA converges pretty fast with high AUC score almost

after the first epoch. When comparing with Deepwalk, node2vec, SDNE and ANE, we can

clearly see the better performance of NetRA on these datasets.

3.4.5 Network Reconstruction

Network embeddings are considered as effective representations of the original network. The

vertex representations learned by networking embedding maintain the edge information for

32

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k ×103

0.6

0.7

0.8

0.9

1.0
pr

ec
isi

on
@

k

DeepWalk
node2vec
SDNE
ANE
NetRA

(a) UCI

0.0 0.2 0.4 0.6 0.8 1.0
k ×105

0.5

0.6

0.7

0.8

0.9

1.0

pr
ec

isi
on

@
k

DeepWalk
node2vec
SDNE
ANE
NetRA

(b) BLOG

Figure 3.6: Network reconstruction results on UCI and BLOG

network reconstruction. We randomly select vertex pairs as edge candidates and calculate

the Euclidean distance between the vertices. We use the precision@k, the fraction of correct

predictions in the top k predictions, for evaluation.

precision@k =
1

k
× |Epred(1 : k) ∩ Eobs|, (3.23)

where Epred(1 : k) represents the top k predictions and Eobs represents observed edges in

original network. In the evaluation, the UCI message and Blogcatalog datasets have been

utilized to illustrate the performance of NetRA, with results shown in Figure 3.6.

As it can be seen from the precision@k curves, the NetRA model achieves higher pre-

cision in the network reconstruction task. The total number of edge candidates selected

in this task is 8k for UCI message and 300k for Blogcatalog. The reconstruction given by

NetRA is very accurate in predicting most positive samples (results on JDK and DBLP

datasets show similar trends which haven’t been included here). DeepWalk and node2vec

can give reasonable reconstruction but the results are worse than NetRA for most k’s.

By learning smoothly regularized vertex representations using generative adversarial train-

ing process [39], our model well integrates the locality-preserving and global reconstruction

constraints to learn embeddings that capture the “semantic” information.

33

0.1 0.2 0.3 0.4 0.5
Percentage

0.12

0.14

0.16

0.18

0.20
M

icr
o-

F1
 sc

or
e

DeepWalk
node2vec
SDNE
ANE
NetRA

(a) PPI

0.1 0.2 0.3 0.4 0.5
Percentage

0.32

0.34

0.36

0.38

0.40

M
icr

o-
F1

 sc
or

e

DeepWalk
node2vec
SDNE
ANE
NetRA

(b) WIKI

Figure 3.7: Multi-label classification on PPI and Wikipedia

3.4.6 Multi-label Classification

The task of predicting vertex labels with representations learned by network embedding

algorithms is widely used in recent studies for performance evaluation [86, 41, 122]. An

effective network embedding algorithm should capture network topology and extract most

useful features for downstream machine learning tasks. In this section, we use vertex features

as input to a one-vs-rest logistic regression using the LIBLINEAR [33] package to train the

classifiers. For the Wikipedia and PPI datasets, we randomly sample 10% to 50% of the

vertex labels as the training set and use the remaining vertices as the test set. We report

Micro-F1 [122]as evaluation metrics. Each result is averaged by five runs, as shown in Figure

3.7.

It is evident from the figure that NetRA outperforms the state-of-the-art embedding

algorithms on multi-label classification task. In the PPI dataset, NetRA achieves higher

Micro-F1 scores than the baseline models by over 10% in all experiment settings. In the

Wikipedia dataset, NetRA model performs better even with lower percentage training set.

This well illustrates the good generalization performance when the training set is sparse. The

multi-label classification task shows that, with adversarially regularized LSTM autoencoders,

34

50 60 70 80 90
Training Percentages (%)

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90
AU

C
Sc

or
e

NetRA

(a) Edge percentage for training

50128 300 500 1000
Embedding Dimensions

0.8800

0.8825

0.8850

0.8875

0.8900

0.8925

0.8950

0.8975

0.9000

AU
C

Sc
or

e

NetRA

(b) Embedding dimensions

Figure 3.8: Parameter sensitivity analysis

the neighborhood information can be well captured by the low dimensional representations.

3.4.7 Parameter Sensitivity

In this section, we investigate the parameter sensitivity in NetRA for link prediction. We

study how the training set size, embedding dimension and locality-preserving constraint

parameter λ1 will affect the performance of link prediction. Also by changing the architecture

of the NetRA model, we can investigate roles of different components in NetRA. Note that

similar observations can be made on multi-label classification and network reconstruction

tasks.

In Figure 3.8(a), we vary the training percentage of edges in the UCI message network.

As it can be seen, the performance increases as the training ratio increases. Comparing

with other algorithms, NetRA can capture the network topology even with a small propor-

tion of edges for training, which demonstrates the generalization capability of the NetRA

model. In Figure 3.8(b), we vary the embedding dimension from 50 to 1000. The prediction

performance gets saturated as the dimension increases. Considering that the embedding

dimension is related to the parameter volume in NetRA, there exists a trade off between

35

1 2 3 4 5 6
Training Epoch

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900
AU

C
Sc

or
e

NetRA (1 = 50)
NetRA (1 = 10)
NetRA (1 = 5)
NetRA (1 = 0)

Figure 3.9: Performance on different λ1 for

LLE

1 2 3 4 5 6
Training Epoch

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

AU
C

Sc
or

e

NetRA
NetRA LE

NetRA LSTM

NetRA GAN

Figure 3.10: Performance on different Ne-

tRA architectures

the performance and the efficiency during model training.

The parameter λ1 is defined by the relative strength between locality-preserving con-

straint and autoencoder constraint. The higher the λ1, the larger the gradient comes from

the locality-preserving constraint. As observed from the Figure 3.9, a higher λ1 enhances

the link prediction performance on the UCI message network, indicating the important role

of local proximity.

We also include three variants of NetRA to demonstrate the importance of individual

components in NetRA, including NetRA−LE, NetRA−LSTM, and NetRA−GAN. NetRA−LE

and NetRA−GAN remove the locality-preserving constraint LLE and adversarial regulariza-

tion W (Pφ(x),Pθ(z)), respectively. As for NetRA−LSTM, we replace LSTM with multilayer

perceptron. It’s evident from Figure 3.10 that LSTM autoencoder, locality-preserving con-

straint, and adversarial regularization play important roles in NetRA model. The overfitting

becomes obvious in the training of NetRA−LSTM and NetRA−GAN.

36

3.5 Summary

In this study we proposed NetRA, a deep network embedding model for encoding each ver-

tex in a network as a low-dimensional vector representation with adversarially regularized

autoencoders. Our model demonstrated the ability of generative adversarial training pro-

cess in extracting informative representations. The proposed model has better generalization

capability, without requiring an explicit prior density distribution for the latent represen-

tations. Specifically, we leveraged LSTM autoencoders that take the sampled sequences of

vertices as input to learn smooth vertex representations regularized by locality-preserving

constraint and generative adversarial training process. The resultant representations are ro-

bust to the sparse vertex sequences sampled from the network. Empirically, we evaluated the

learned representations with a variety of network datasets on different tasks such as network

reconstruction, link prediction and multi-label classification. The results showed substantial

improvement over the state-of-the-art network embedding competitors.

37

CHAPTER 4

Robust Graph Representation Learning via Neural

Sparsification

4.1 Background

Representation learning has been in the center of many machine learning tasks on graphs,

such as name disambiguation in citation networks [157], spam detection in social networks [4],

recommendations in online marketing [143], and many others [150, 74, 162]. As a class

of models that can simultaneously utilize non-structural (e.g., node and edge features)

and structural information in graphs, Graph Neural Networks (GNNs) construct effective

representations for downstream tasks by iteratively aggregating neighborhood information

[73, 45, 64]. Such methods have demonstrated state-of-the-art performance in classification

and prediction tasks on graph data [117, 22, 136, 142].

Meanwhile, the underlying motivation why two nodes get connected may have no rela-

tion to a target downstream task, and such task-irrelevant edges could hurt neighborhood

aggregation as well as the performance of GNNs. Consider the following example shown

in Figure 4.1. Blue and Red are two classes of nodes, whose two-dimensional features are

generated following two independent Gaussian distributions, respectively. As shown in Fig-

ure 4.1(a), the overlap between their feature distributions makes it difficult to find a good

boundary that well separates the Blue and Red nodes by node features only. Blue and Red

nodes are also inter-connected forming a graph. For each node (either Blue or Red), it ran-

domly selects 10 nodes as its one-hop neighbors, and the resulting edges may not be related

to node labels. On such a graph, we train a two-layer GCN [64], and the node representations

output from the two-layer GCN is illustrated in Figure 4.1(b). When task-irrelevant edges

38

are mixed into neighborhood aggregation, the trained GCN fails to learn better represen-

tations, and it becomes difficult to learn a subsequent classifier with strong generalization

power.

In this chapter, we study how to utilize supervision signals to remove task-irrelevant

edges in an inductive manner to achieve robust graph representation learning. Conventional

methods, such as graph sparsification [75, 154, 67, 99, 121], are unsupervised such that

the resulting sparsified graphs may not favor downstream tasks. Several works focus on

downsampling under predefined distributions [152, 45, 22]. As the predefined distributions

may not well adapt to subsequent tasks, such methods could suffer suboptimal prediction

performance. Multiple recent efforts strive to make use of supervision signals to remove

noise edges [125]. However, the proposed methods are either transductive with difficulty to

scale [34] or of high gradient variance bringing increased training difficulty [96].

Present work. We propose Neural Sparsification (NeuralSparse), a general framework

that simultaneously learns to select task-relevant edges and graph representations by feed-

back signals from downstream tasks. The NeuralSparse consists of two major components:

sparsification network and GNN. For the sparsification network, we utilize a deep neural

network to parameterize the sparsification process: how to select edges from the one-hop

neighborhood given a fixed budget. In the training phase, the network learns to optimize

a sparsification strategy that favors downstream tasks. In the testing phase, the network

sparsifies input graphs following the learned strategy, instead of sampling subgraphs from a

predefined distribution. Unlike conventional sparsification techniques, our technique takes

both structural and non-structural information as input and optimizes the sparsification

strategy by feedback from downstream tasks, instead of using (possibly irrelevant) heuris-

tics. For the GNN component, the NeuralSparse feeds the sparsified graphs to GNNs and

learns graph representations for subsequent prediction tasks. Under the NeuralSparse frame-

work, by the standard stochastic gradient descent and backpropagation techniques, we can

simultaneously optimize graph sparsification and representations. As shown in Figure 4.1(d),

39

with task-irrelevant edges automatically excluded, the node representations learned from the

NeuralSparse suggest a clearer boundary between Blue and Red with promising generaliza-

tion power, and the sparsification learned by NeuralSparse could be more effective than the

regularization provided by layer-wise random edge dropping [96] shown in Figure4.1(c).

Experimental results on both public and private datasets demonstrate that NeuralSparse

consistently provides improved performance for existing GNNs on node classification tasks,

yielding up to 7.2% improvement.

4.2 Proposed Method: NeuralSparse

In this section, we introduce the core idea of our method. We start with the notations that

are frequently used in this chapter. We then describe the theoretical justification behind

NeuralSparse and our architecture to tackle the supervised node classification problem.

Notations. We represent an input graph of n nodes as G = (V,E,A): (1) V ∈ Rn×dn

includes node features with dimensionality dn; (2) E ∈ Rn×n is a binary matrix where

E(u, v) = 1 if there is an edge between node u and node v; (3) A ∈ Rn×n×de encodes input

edge features of dimensionality de. Besides, we use Y to denote the prediction target in

downstream tasks (e.g., Y ∈ Rn×dl if we are dealing with a node classification problem with

dl classes).

Theoretical justification. From the perspective of statistical learning, the key of a

defined prediction task is to learn P (Y | G), where Y is the prediction target and G is

an input graph. Instead of directly working with original graphs, we would like to leverage

sparsified subgraphs to remove task-irrelevant information. In other words, we are interested

in the following variant,

P (Y | G) ≈
∑
g∈SG

P (Y | g)P (g | G), (4.1)

where g is a sparsified subgraph, and SG is a class of sparsified subgraphs of G.

40

(a) Node Features (b) With Task-irrelevant Edges (d) By NeuralSparse(c) By DropEdge

(a) Node Features (b) With Task-irrelevant Edges (d) By NeuralSparse(c) By DropEdge

Figure 4.1: Example of task-irrelevant edges in graphs.

Top: Samples of graphs. Bottom: Visualization of node representations that are (a) input

two-dimensional node features. (b) learned from a two-layer GCN on top of graphs with

task irrelevant edges. (c) learned from DropEdge. (d) learned from NeuralSparse.

41

Graph 𝐺 Sparsification Network
𝑄# 𝑔 𝐺

Graph Neural Networks
𝑄% 𝑌 𝑔Sparsified Graph 𝑔 Classification Results 𝑌 '

Loss 𝐿

𝜕𝐿
𝜕𝜃

𝜕𝐿
𝜕𝜙

	𝑖

	𝑗

	𝑖

	𝑗 𝑉0

𝑉1 𝐴′10

𝐴10 GNN	𝑖

	𝑗

	𝑖

	𝑗

MLP

Figure 4.2: The overview of NeuralSparse

In general, because of the combinatorial complexity in graphs, it is intractable to enumer-

ate all possible g as well as estimate the exact values of P (Y | g) and P (g | G). Therefore,

we approximate the distributions by tractable functions,

∑
g∈SG

P (Y | g)P (g | G) ≈
∑
g∈SG

Qθ(Y | g)Qφ(g | G) (4.2)

where Qθ and Qφ are approximation functions for P (Y | g) and P (g | G) parameterized by

θ and φ, respectively.

Moreover, to make the above graph sparsification process differentiable, we employ repa-

rameterization tricks [53] to make Qφ(g | G) directly generate differentiable samples, such

that ∑
g∈SG

Qθ(Y | g)Qφ(g | G) ∝
∑

g′∼Qφ(g|G)

Qθ(Y | g′) (4.3)

where g′ ∼ Qφ(g | G) means g′ is a random sample drawn from Qφ(g | G).

To this end, the key is how to find appropriate approximation functions Qφ(g | G) and

Qθ(Y | g).

Architecture. In this chapter, we propose Neural Sparsification (NeuralSparse) to im-

plement the theoretical framework discussed in Equation 4.3. As shown in Figure 4.2, Neu-

ralSparse consists of two major components: the sparsification network and GNNs.

42

• The sparsification network is a multi-layer neural network that implements Qφ(g | G):

Taking G as input, it generates a random sparsified subgraph of G drawn from a learned

distribution.

• GNNs implement Qθ(Y | g) that takes the sparsified subgraph as input, extracts node

representations, and makes predictions for downstream tasks.

Algorithm 2 Training algorithm for NeuralSparse

1: Input: graph G = (V,E,A), integer l, and training labels Y .

2: while stop criterion is not met do

3: Generate sparsified subgraphs {g1, g2, · · · , gl} by sparsification network (Section 4.3);

4: Produce prediction {Ŷ1, Ŷ2, · · · , Ŷl} by feeding {g1, g2, · · · , gl} into GNNs;

5: Calculate loss function J ;

6: Update φ and θ by descending J

7: end while

As the sparsified subgraph samples are differentiable, the two components can be jointly

trained using the gradient descent based backpropagation techniques from a supervised loss

function, as illustrated in Algorithm 2. While the GNNs have been widely investigated in

recent works [64, 45, 117], we focus on the practical implementation for the sparsification

network in the remaining of this chapter.

4.3 Sparsification Network

Following the theory discussed above, the goal of the sparsification network is to generate

sparsified subgraphs for input graphs, serving as the approximation function Qφ(g | G).

Therefore, we need to answer the following three questions in the sparsification network. i).

What is SG in Equation 4.1, the class of subgraphs we focus on? ii). How to sample sparsified

subgraphs? iii). How to make the sparsified subgraph sampling process differentiable for

43

the end-to-end training? In the following, we address the questions one by one.

k-neighbor subgraphs. We focus on k-neighbor subgraphs for SG [99]: Given an input

graph, a k-neighbor subgraph shares the same set of nodes with the input graph, and each

node in the subgraph can select no more than k edges from its one-hop neighborhood. Al-

though the concept of the sparsification network is not limited to a specific class of subgraphs,

we choose k-neighbor subgraphs for the following reasons.

• We are able to adjust the estimation on the amount of task-relevant graph data by tuning

the hyper-parameter k. Intuitively, when k is an under-estimate, the amount of task-

relevant graph data accessed by GNNs could be inadequate, leading to inferior performance.

When k is an over-estimate, the downstream GNNs may overfit the introduced noise or

irrelevant graph data, resulting in sub-optimal performance. It could be difficult to set a

golden hyper-parameter that works all the time, but one has the freedom to choose the k

that is the best fit for a specific task.

• k-neighbor subgraphs are friendly to parallel computation. As each node selects its edges

independently from its neighborhood, we can utilize tensor operations in existing deep

learning frameworks, such as tensorflow [1], to speed up the sparsification process for k-

neighbor subgraphs.

Sampling k-neighbor subgraphs. Given k and an input graph G = (V,E,A), we

obtain a k-neighbor subgraph by repeatedly sampling edges for each node in the original

graph. Without loss of generality, we sketch this sampling process by focusing on a specific

node u in graph G. Let Nu be the set of one-hop neighbors of the node u.

1. v ∼ fφ(V (u), V (Nu),A(u)), where fφ(·) is a function that generates a one-hop neighbor

v from the learned distribution based on the node u’s attributes, node attributes of u’s

neighbors V (Nu), and their edge attributes A(u). In particular, the learned distribution

is encoded by parameters φ.

44

2. Edge E(u, v) is selected for the node u.

3. The above two steps are repeated k times.

Note that the above process performs sampling without replacement. Given a node u, each

of its adjacent edges is selected at most once. Moreover, the sampling function fφ(·) is shared

among nodes; therefore, the number of parameters φ is independent of the input graph size.

Making samples differentiable. While conventional methods are able to generate

discrete samples [99], these samples are not differentiable such that it is difficult to utilize

them to optimize sample generation. To make samples differentiable, we propose a Gumbel-

Softmax based multi-layer neural network to implement the sampling function fφ(·) discussed

above.

To make the discussion self-contained, we briefly discuss the idea of Gumbel-Softmax.

Gumbel-Softmax is a reparameterization trick used to generate differentiable discrete samples

[53, 77]. Under appropriate hyper-parameter settings, Gumbel-Softmax is able to generate

continuous vectors that are as ”sharp” as one-hot vectors widely used to encode discrete

data.

Without loss of generality, we focus on a specific node u in a graph G = (V,E,A). Let

Nu be the set of one-hop neighbors of the node u. We implement fφ(·) as follows.

1. ∀v ∈ Nu,

zu,v = MLPφ(V (u), V (v),A(u, v)), (4.4)

where MLPφ is a multi-layer neural network with parameters φ.

2. ∀v ∈ Nu, we employ a softmax function to compute the probability to sample the edge,

πu,v =
exp(zu,v)∑

w∈Nu exp(zu,w)
(4.5)

3. Using Gumbel-Softmax, we generate differentiable samples

xu,v =
exp((log(πu,v) + εv)/τ)∑

w∈Nu exp((log(πu,w) + εw)/τ)
(4.6)

45

where xu,v is a scalar, εv = − log(− log(s)) with s randomly drawn from Uniform(0, 1),

and τ is a hyper-parameter called temperature which controls the interpolation between

the discrete distribution and continuous categorical densities.

Note that when we sample k edges, the computation for zu,v and πu,v only needs to be

performed once. For the hyper-parameter τ , we discuss how to tune it as follows.

Discussion on temperature tuning. The behavior of Gumbel-Softmax is governed by

a hyper-parameter τ called temperature. In general, when τ is small, the Gumbel-Softmax

distribution resembles the discrete distribution, which induces strong sparsity; however, small

τ also introduces high-variance gradients that block effective backpropagation. A high value

of τ cannot produce expected sparsification effect. Following the practice in [53], we adopt

the strategy by starting the training with a high temperature and anneal to a small value

with a guided schedule.

Sparsification algorithm and its complexity. As shown in Algorithm 3, given hyper-

parameter k, the sparsification network visits each node’s one-hop neighbors k times. Let

m be the total number of edges in the graph. The complexity of sampling subgraphs by

the sparsification network is O(km). When k is small in practice, the overall complexity is

O(m).

Comparison with multiple related methods. Unlike FastGCN [22], GraphSAINT

[152] and DropEdge [96] that incorporate layer-wise node samplers to reduce the complexity

of GNNs, NeuralSparse samples subgraphs before applying GNNs. As for the computation

complexity, the sparsification in NeuralSparse is more friendly to parallel computation than

the layer-conditioned approaches such as AS-GCN. Compared with the graph attentional

models [117], the NeuralSparse can produce sparser neighborhoods, which effectively remove

task-irrelevant information on original graphs. Unlike LDS [34], NeuralSparse learns graph

sparsification under inductive setting, and its graph sampling is constrained by input graph

topology.

46

Algorithm 3 Sampling subgraphs by sparsification network

1: Input: graph G = (V,E,A) and integer k.

2: Edge set H = ∅

3: for u ∈ V do

4: for v ∈ Nu do

5: zu,v ← MLPφ(V (u), V (v),A(u, v))

6: end for

7: for v ∈ Nu do

8: πu,v ← exp(zu,v)/
∑

w∈Nu exp(zu,w)

9: end for

10: for j = 1, · · · , k do

11: for v ∈ Nu do

12: xu,v ← exp((log(πu,v)+εv)/τ)∑
w∈Nu exp((log(πu,w)+εw)/τ)

13: end for

14: Add the edge represented by vector [xu,v] into H

15: end for

16: end for

4.4 Evaluation

In this section, we evaluate our proposed NeuralSparse on the node classification task with

both inductive and transductive settings. The experimental results demonstrate that Neu-

ralSparse achieves superior classification performance over state-of-the-art GNN models.

Moreover, we provide a case study to demonstrate how the sparsified subgraphs generated

by NeuralSparse could improve classification compared against other sparsification baselines.

47

Table 4.1: Dataset statistics

Reddit PPI Transaction Cora Citeseer

Task Inductive Inductive Inductive Transductive Transductive

Nodes 232,965 56,944 95,544 2,708 3,327

Edges 11,606,919 818,716 963,468 5,429 4,732

Features 602 50 120 1,433 3,703

Classes 41 121 2 7 6

Training Nodes 152,410 44,906 47,772 140 120

Validation Nodes 23,699 6,514 9,554 500 500

Testing Nodes 55,334 5,524 38,218 1,000 1,000

4.4.1 Datasets

We employ five datasets from various domains and conduct the node classification task

following the settings as described in Hamilton et al. [45] and Kipf and Welling [64]. The

dataset statistics are summarized in Table 4.1.

Inductive datasets. We utilize the Reddit and PPI datasets and follow the same setting

in Hamilton et al. [45]. The Reddit dataset contains a post-to-post graph with word vectors

as node features. The node labels represent which community Reddit posts belong to. The

protein-protein interaction (PPI) dataset contains graphs corresponding to different human

tissues. The node features are positional gene sets, motif gene sets, and immunological

signatures. The nodes are multi-labeled by gene ontology.

Graphs in the Transaction dataset contains real transactions between organizations in two

years, with the first year for training and the second year for validation/testing. Each node

represents an organization and each edge indicates a transaction between two organizations.

Node attributes are side information about the organizations such as account balance, cash

48

reserve, etc. On this dataset, the objective is to classify organizations into two categories:

promising or others for investment in the near future. Under the inductive experimental

setting, We use the 47,772 organization data of the year 2014 for training and remaining

data are hidden from the model. The 9,554 organizations are used for validation and 38,218

for testing. Validation and testing node sets are from the year 2015 and are not connected to

the nodes in the training set. Like the PPI dataset, models need to generalize to the unseen

graph when testing on the Transaction dataset.

In the inductive setting, models can only access training nodes’ attributes, edges, and

labels during training. In the PPI and Transaction datasets, the models have to generalize

to completely unseen graphs.

Transductive datasets. We use two citation benchmark datasets in Yang et al. [140]

and Kipf and Welling [64] with the transductive experimental setting. The citation graphs

contain nodes corresponding to documents and edges as citations. Node features are the

sparse bag-of-words representations of the documents and node labels indicate the topic

class of the documents. In transductive learning, the training methods have access to all

node features and edges, with a limited subset of node labels.

4.4.2 Experimental Setup

Baseline models. We incorporate four state-of-the-art methods as the base GNN compo-

nents, including GCN [64], GraphSAGE [45], GAT [117], and GIN [136]. Besides evaluating

the effectiveness and efficiency of NeuralSparse against base GNNs, we leverage three other

categories of methods in the experiments: (1) We incorporate the two unsupervised graph

sparsification models, the spectral sparsifier [SS, 99] and the Rank Degree [RD, 121]. The

input graphs are sparsified before sent to the base GNNs for node classification. (2) We

compare against the random layer-wise sampler DropEdge [96]. Similar to the Dropout

trick [48], DropEdge randomly removes connections among node neighborhood in each GNN

layer. (3) We also incorporate LDS [34], which works under a transductive setting and learns

49

Table 4.2: Node classification performance

Sparsifier Method
Reddit PPI Transaction Cora Citeseer

Micro-F1 Micro-F1 AUC Accuracy Accuracy

N/A

GCN 0.922 ± 0.041 0.532 ± 0.024 0.564 ± 0.018 0.810 ± 0.027 0.694 ± 0.020

GraphSAGE 0.938 ± 0.029 0.600 ± 0.027 0.574 ± 0.029 0.825 ± 0.033 0.710 ± 0.020

GAT - 0.973 ± 0.030 0.616 ± 0.022 0.821 ± 0.043 0.721 ± 0.037

GIN 0.928 ± 0.022 0.703 ± 0.028 0.607 ± 0.031 0.816 ± 0.020 0.709 ± 0.037

GCN 0.912 ± 0.022 0.521 ± 0.024 0.562 ± 0.035 0.780 ± 0.045 0.684 ± 0.033

SS/ GraphSAGE 0.907 ± 0.018 0.576 ± 0.022 0.565 ± 0.042 0.806 ± 0.032 0.701 ± 0.027

RD GAT - 0.889 ± 0.034 0.614 ± 0.044 0.807 ± 0.047 0.686 ± 0.034

GIN 0.901 ± 0.021 0.693 ± 0.019 0.593 ± 0.038 0.785 ± 0.041 0.706 ± 0.043

DropEdge

GCN 0.961 ± 0.040 0.548 ± 0.041 0.591 ± 0.040 0.828 ± 0.035 0.723 ± 0.043

GraphSAGE 0.963 ± 0.043 0.632 ± 0.031 0.598 ± 0.043 0.821 ± 0.048 0.712 ± 0.032

GAT - 0.851 ± 0.030 0.604 ± 0.043 0.789 ± 0.039 0.691 ± 0.039

GIN 0.931 ± 0.031 0.783 ± 0.037 0.625 ± 0.035 0.818 ± 0.044 0.715 ± 0.039

LDS GCN - - - 0.831 ± 0.017 0.727 ± 0.021

GCN 0.966 ± 0.020 0.651 ± 0.014 0.610 ± 0.022 0.837 ± 0.014 0.741 ± 0.014

Neural GraphSAGE 0.967 ± 0.015 0.696 ± 0.023 0.649 ± 0.018 0.841 ± 0.024 0.736 ± 0.013

Sparse GAT - 0.986 ± 0.015 0.671 ± 0.018 0.842 ± 0.015 0.736 ± 0.026

GIN 0.959 ± 0.027 0.892 ± 0.015 0.634 ± 0.023 0.838 ± 0.027 0.738 ± 0.015

Bernoulli variables associated with individual edges.

Temperature tuning. We anneal the temperature with the schedule defined as τ =

max(0.05, exp(−rp)), where p is the training epoch and r ∈ 10{−5,−4,−3,−2,−1}. τ is updated

every N steps and N ∈ {50, 100, ..., 500}. Compared with the MNIST VAE model in Jang

et al. [53], smaller hyper-parameter τ fits NeuralSparse better in practice.

Metrics. We evaluate the performance on the transductive datasets with accuracy [64].

For inductive tasks on the Reddit and PPI datasets, we report micro-averaged F1 scores

[45]. Due to the imbalanced classes in the Transaction dataset, models are evaluated with

AUC value [51]. The results show the average of 10 runs.

50

4.4.3 Experimental Results

Classification Performance

Table 4.2 summarizes the classification performance of NeuralSparse and the baseline

methods on all datasets. For Reddit, PPI, Transaction, Cora, and Citeseer, the hyper-

parameter k is set as 30, 15, 10, 5, and 3 respectively. The hyper-parameter l is set as

1. Note that the result of GAT on Reddit is missing due to the out-of-memory error and

LDS only works under the transductive setting. For simplicity, we only report the better

performance with SS or RD sparsifiers.

Overall, NeuralSparse is able to help GNN techniques achieve competitive generalization

performance with sparsified graph data. We make the following observations. (1) Compared

with basic GNN models, NeuralSparse can enhance the generalization performance on node

classification tasks by utilizing the sparsified subgraphs from the sparsification network,

especially in the inductive setting. Indeed, large neighborhood size in the original graphs

could increase the chance of introducing noise into the aggregation operations, leading to sub-

optimal performance. (2) With different GNN options, the NeuralSparse can consistently

achieve comparable or superior performance, while other sparsification approaches tend to

favor a certain GNN structure. (3) Compared with DropEdge, NeuralSparse achieves up to

13% of improvement in terms of accuracy with lower variance. (4) In comparison with the

two NeuralSparse variants SS-GNN and RD-GNN, NeuralSparse outperforms because it can

effectively leverage the guidance from downstream tasks.

In the following, we discuss the comparison between NeuralSparse and LDS [34] on the

Cora and Citeseer datasets. Note that the row labeled with LDS in Table 4.2 presents the

classification results on original input graphs. In addition, we adopt κ-nearest neighbor

(κ-NN) graphs suggested in [34] for more comprehensive evaluation. In particular, κ-NN

graphs are constructed by connecting individual nodes with their top-κ similar neighbors in

terms of node features, and κ is selected from {10, 20}. In Table 4.3, we summarize the

51

Table 4.3: Node classification performance with κ-NN graphs

Dataset(κ) LDS NeuralSparse

Cora(10) 0.715 ± 0.035 0.723 ± 0.025

Cora(20) 0.703 ± 0.029 0.719 ± 0.021

Citeseer(10) 0.691 ± 0.031 0.723 ± 0.016

Citeseer(20) 0.715 ± 0.026 0.725 ± 0.019

classification accuracy of LDS (with GCN) and NeuralSparse (with GCN). On both original

and κ-NN graphs, NeuralSparse outperforms LDS in terms of classification accuracy. As

each edge is associated with a Bernoulli variables, the large number of parameters for graph

sparsification could impact the generalization power in LDS.

Sensitivity to Hyper-parameters and the Sparsified Subgraphs

5 10 15
Hyper-parameter k

0.62

0.64

0.66

0.68

AU
C

NeuralSparse-GAT
NeuralSparse-GraphSAGE

(a) Hyperparameter k

1 2 3 4 5
Hyper-parameter l

0.645

0.650

0.655

0.660

0.665

0.670

0.675

AU
C

NeuralSparse-GAT
NeuralSparse-GraphSAGE

(b) Hyperparameter l

Figure 4.3: Performance vs hyper-parameters

Figure 4.3(a) demonstrates how classification performance responds when k increases on

the Transaction dataset. There exists an optimal k that delivers the best classification AUC

score. The similar trend on the validation set is also observed. When k is small, NeuralSparse

52

Promising Organizations
Other Organizations

(a) Original

Promising Organizations
Other Organizations

(b) NeuralSparse

Promising Organizations
Other Organizations

(c) Spectral Sparsifier

Promising Organizations
Other Organizations

(d) RD Sparsifier

Figure 4.4: Graph visualizations with orginal and sparsified graphs.

(a) Original graph from the Transaction dataset and sparsified subgraphs by (b)

NeuralSparse, (c) Spectral Sparsifier, and (d) RD Sparsifier.

can only make use of little relevant structural information in feature aggregation, which

leads to inferior performance. When k increases, the aggregation convolution involves more

complex neighborhood aggregation with a higher chance of overfitting noise data, which

negatively impacts the classification performance for unseen testing data. Figure 4.3(b)

shows how hyper-parameter l impacts classification performance on the Transaction dataset.

When l increases from 1 to 5, we observe a relatively small improvement in classification

AUC score. As the parameters in the sparsification network are shared by all edges in the

53

Table 4.4: Percentage of edges connecting nodes of the same labels

Reddit PPI Transaction Cora Citeseer

Original 53.1% 55.0% 67.3% 82.2% 73.1%

SS 50.9% 52.8% 62.8% 79.8% 75.6%

RD 49.8% 53.5% 63.4% 84.8% 72.3%

NeuralSparse 59.6% 61.5% 76.8% 93.1% 87.4%

graph, the estimation variance from random sampling could already be mitigated to some

extent by a number of sampled edges in a sparsified subgraph. Thus, when we increase the

number of sparsified subgraphs, the incremental gain could be small.

In Figure 4.4(a), we present a sample of the graph from the Transaction dataset which

consists of 38 nodes (promising organizations and other organizations) with an average node

degree 15 and node feature dimension 120. As shown in Figure 4.4(b), the graph sparsified

by the NeuralSparse has lower complexity with an average node degree around 5. In Figure

4.4(c, d), we also present the sparsified graphs output by the two baseline methods, SS and

RD.

By comparing the four plots in Figure 4.4, we make the following observations: First, the

NeuralSparse sparsified graph tends to select edges that connect nodes of identical labels,

which favors the downstream classification task. The observed clustering effect could further

boost the confidence in decision making. Second, instead of exploring all the neighbors, we

can focus on the selected connections/edges, which could make it easier for human experts

to perform model interpretation and result visualization.

Convergence Analysis

We analyze the convergence properties of NeuralSparse and DropEdge on Citeseer. The

results, as shown in Figure 4.5, demonstrate that NeuralSparse converges faster and achieves

better performance than DropEdge.

54

0 50 100 150 200
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

J

DropEdge-Train
DropEdge-Val
NeuralSparse-Train
NeuralSparse-Val

Figure 4.5: Convergence analysis

More Empirical Comparison between NeuralSparse and LDS

We further compare NeuralSparse and LDS [34] on the node classification tasks where

original graph structure is available but more random edges are introduced as noise. Starting

from the original graphs, we add edges by randomly sampling two nodes u, v from node set

V and connecting them.

The results are shown in Figure 4.6. In both datasets, NeuralSparse achieves better

performance compared with LDS as the noise level goes beyond 200%. When the amount of

noise increases, the classification accuracy of LDS drops significantly. This result confirms

our conjecture that NeuralSparse is more robust to random edges, compared to LDS.

We compare the NeuralSparse and LDS in the case of complete graphs suggested in [34].

As shown in Table 4.5, we observe that NeuralSparse consistently performs better.

Validation Performance as hyper-parameter k Changes

In this section, we demonstrate how the hyper-parameter k impacts the performance

of NeuralSparse-GAT and NeuralSparse-GraphSAGE in both validation and testing on the

Transaction dataset. In terms of validation, as shown in Figure 4.7, the validation perfor-

mance increases when k ranges from 2 to 10 with more available graph data. After k exceeds

55

100% 200% 300% 400% 500%
Total Edges / Original Edges

0.5

0.6

0.7

0.8
Ac

cu
ra

cy

GCN
LDS
NeuralSparse-GCN

(a) Cora

100% 200% 300% 400% 500%
Total Edges / Original Edges

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

GCN
LDS
NeuralSparse-GCN

(b) Citeseer

Figure 4.6: Node classification performance when adding noise to graph structure.

Table 4.5: Node classification performance with complete graphs

Cora Citeseer

GCN 0.580 ± 0.037 0.493 ± 0.026

LDS 0.684 ± 0.029 0.656 ± 0.039

NeuralSparse-GCN 0.691 ± 0.016 0.679 ± 0.033

10, the increase in validation performance slows down and turns to be saturated. In terms

of testing performance, it shares a similar trend when k ranges from 2 to 10. Meanwhile,

the testing performance drops more after k exceeds 10.

Quantitative Edge Sampling Evaluation

We qualitatively demonstrate the difference by Figure 4.4(a) original graph, (b) Neu-

ralSparse, (c) SS, and (d) RD. In addition, we provide quantitative analysis in Table 4.4,

where we report the percentage of edges that connect nodes of same class labels in sparsified

graphs. Both qualitative and quantitative results suggest a common trend: NeuralSparse

prefers to select neighbors with the same labels compared with the baseline methods.

56

3 6 9 12 15 18
Hyper-parameter k

0.62

0.64

0.66

0.68

AU
C

NeuralSparse-GAT in Testing
NeuralSparse-GAT in Validation
NeuralSparse-GraphSAGE in Testing
NeuralSparse-GraphSAGE in Validation

Figure 4.7: Impact from hyper-parameter k on validation and testing on the Transaction

dataset

4.5 Summary

In this chapter, we propose Neural Sparsification (NeuralSparse) to address the noise brought

by the task-irrelevant information on real-life large graphs. NeuralSparse consists of two

major components: (1) The sparsification network sparsifies input graphs by sampling edges

following a learned distribution; (2) GNNs take sparsified subgraphs as input and extract

node representations for downstream tasks. The two components in NeuralSparse can be

jointly trained with supervised loss, gradient descent, and backpropagation techniques. The

experimental study on real-life datasets shows that the NeuralSparse consistently renders

more robust graph representations, and yields up to 7.2% improvement in accuracy over

state-of-the-art GNN models.

57

CHAPTER 5

Temporal Graph Modeling with Temporal Structural

Convolution

5.1 Background

Temporal graphs, as a data structure that carries both temporal and structural information

from real-world data, has been widely adopted in applications from various domains, such as

online social media [160], biology [135], action recognition [138], and so on. In this chapter,

we study the problem of node classification in temporal graphs [135]: Given a set of nodes

with rich features and a temporal graph that records historical activities between nodes, the

goal is to predict the label of every node. Consider the following application scenario.

Example. In the financial domain, investors are eager to know which companies are

promising for investment. As shown in Figure 5.1, companies and their historical transactions

naturally form a temporal graph, shown as a sequence of graph snapshots. Each snapshot

encodes companies as nodes and transactions as edges within a month. The side information

of companies (e.g., industry sector and cash reserve) and transactions (e.g., transaction

amount) is represented by the node and edge attributes, respectively. In this task, we aim to

predict each company’s label: promising or others for future investment, with interpretable

evidence for domain experts.

While node representation lies at the core of this problem, we face two main challenges

from temporal graphs.

Temporal graph sparsification. Temporal graphs from real-life applications are large

with high complexity. For example, the social graph on Facebook [23] and the financial

transaction graph on Venmo [155] are densely connected with average node degrees of 500

58

Figure 5.1: An example of node classification in a temporal graph from the financial domain.

Nodes are companies, and edges indicate monthly transactions. The goal is to predict

which companies are promising for investment in the near future.

and 111, respectively. Such complexity poses a high overfitting risk to existing machine

learning techniques [80, 76], and makes it difficult for domain experts to interpret and vi-

sualize learned models. While graph sparsification [75] suggests a promising direction to

reduce graph complexity, existing methods perform sparsification by sampling subgraphs

from predefined distributions [67, 45, 22, 150]. The sparsified graphs may miss important

information for classification because the predefined distributions could be irrelevant to sub-

sequent tasks. Several recent efforts [34, 96, 163] strive to utilize supervision signals to remove

noise edges and regularize the graph model training. However, the proposed methods are

either transductive with difficulty to scale or of high gradient variance bringing increased

training difficulty.

Temporal-structural convolution. Local features in the temporal-structural domain

are the key to node classification in temporal graphs. Although existing techniques have

investigated how to build convolutional operators to automatically learn and extract local

features from either temporal domain [7] or structural domain [117], a näıve method that

59

simply stacks temporal and structural operators could lead to suboptimal performance. An

effective method that learns and extracts local features from joint temporal-structural space

is still missing.

Our contribution. We propose Temporal Structural Network (TSNet), a deep learn-

ing framework that performs supervised node classification in sparsified temporal graphs.

TSNet consists of two major sub-networks: sparsification network and temporal-structural

convolutional network.

1. The sparsification network aims to sparsify input temporal graphs by sampling edges from

the one-hop neighborhood following a distribution that is learned from the subsequent

supervised classification tasks.

2. The temporal-structural convolutional network takes sparsified temporal graphs as input

and extracts local features by performing convolution in nodes’ neighborhood defined in

joint temporal-structural space.

As both sub-networks are differentiable, we can leverage standard stochastic gradient

descent and backpropagation techniques to iteratively learn better parameters to sparsify

temporal graphs and extract node representations. Experimental results on both public

and private datasets show that TSNet can offer competitive performance on node classifi-

cation tasks. Using a case study, we demonstrate the potential of TSNet to improve model

interpretation and visualization of temporal graphs.

5.2 TSNet Overview

In this section, we start with a theoretical overview of the proposed TSNet.

60

Temporal Graph 𝐺

Sparsification
Network
𝑄# 𝑔 𝐺

Temporal-Structural
Convolutional Network 𝑄% 𝑌 𝑔

i

Sparsified Graph 𝑔
Classification Results 𝑌 '

i-1 i+1

Loss 𝐿

Ground Truth 𝑌
	𝑢

i-1 i

i+1

ii-1 i+1

	𝑢

i-1

i

i+1

𝑾𝜽-𝟏

𝑾𝜽𝟎

𝑾𝜽0𝟏

𝑯 𝒑 (𝒊,𝒖)

	𝑢

Temporal-Structural
Neighborhood

Temporal-Structural
Convolution

	𝑢

		𝑣9

		𝑣:

𝑣;

		𝑣<

		𝑣= 		𝑣>

		𝑣9 		𝑣:

𝑣; 		𝑣<

		𝑣= 		𝑣>

Figure 5.2: The frameworks of TSNet.

We utilize the two-step formulation of node classification problem. The sparsification

network takes the temporal graph as input and generates sparsified subgraphs drawn from

a learned distribution. The temporal-structural network extracts temporal and structural

features simultaneously with the sparsified subgraph as input.

5.2.1 A Two-step Framework

Given input temporal graph G and node label matrix Y , our objective is to learn P (Y |

G). Current Graph Neural Networks (GNNs) [64, 45, 117] learn node representation by

aggregating node neighborhood features. However, in large and complex temporal graphs,

node neighborhood tends to be dense with much noise which introduces high overfitting risk

to existing approaches. To tackle the challenge, we leverage the two-step framework proposed

in [163] to break node classification problem down into two steps: graph sparsification step

and representation learning step.

P (Y | G) ≈
∑
g∈SG

P (Y | g)P (g | G) ≈
∑
g∈SG

Qθ(Y | g)Qφ(g | G) (5.1)

where g is a sparsified subgraph, and SG is a class of sparsified subgraphs of G. We ap-

proximate the distributions by tractable functions Qθ and Qφ. With reparameterization

tricks [42], we could differentiate the graph sparsification step to make efficient backprop-

agation. In the following, we will introduce our framework to find approximation function

Qφ(g | G) and Qθ(Y | g).

61

5.2.2 Architecture

As shown in Figure 5.2, the proposed TSNet consists of two major sub-networks: sparsifi-

cation network and temporal-structural convolutional network.

• The sparsification network is a multi-layer neural network that implements Qφ(g | G):

Taking temporal graph G as input, it generates a random sparsified subgraph of G drawn

from a learned distribution.

• The temporal-structural convolutional network implements Qθ(Y | g) that takes a

sparsified subgraph as input, extracts node representations by convolutional filtering on

the temporal-structural neighborhood of each node, and makes predictions on node labels.

With differentiable operations in both sub-networks, our TSNet is an end-to-end supervised

framework, which is trainable using gradient-based optimization.

5.3 Sparsification network

In this section, we present the sparsification network, which optimizes temporal graph spar-

sification for subsequent node classification tasks.

5.3.1 Design Goals

The goal of sparsification network is to generate sparsified subgraphs for temporal graphs,

serving as the approximation function Qφ(g | G). Therefore, we need to answer the following

three questions in the sparsification network.

1. As the essence of sparsification is to sample a subset of edges, how should we represent

each edge so that we can differentiate edges for edge sampling?

2. What is the class of sparsified subgraphs SG? How to sample such sparsified subgraphs?

62

3. How to make sparsified subgraphs differentiable for end-to-end training?

5.3.2 Edge Representations

Given a temporal graph G = (V,V,E,A), an expected edge representation could consist of

its edge attributes and certain information from the two connected nodes. Let Nu,i be the

set of one-hop neighbors with respect to node u’s incoming edges at time i. The expected

edge representation X(i, u, v) for the edge from v to u at time i is calculated as follows.

X(i, u, v) = V′(i, u)||V′(i, v)||A(i, u, v) (5.2)

where || indicates vector concatenation and A(i, u, v) denotes edge attributes. V′(i, u)

(V′(i, v)) is the representation of node u (v), which we calculate with mean aggregation [45]

to capture both attribute and structural information,

V′(i, u) = σ(Wφ1 · V(i, u)||MEAN(V(i, u′),∀u′ ∈ Nu,i)) (5.3)

where Wφ1 is the weights to be learned and σ is a nonlinear activation function.

5.3.3 Sampling Sparsified Subgraphs

We focus on k-neighbor subgraphs for SG. The concept of k-neighbor subgraph is originally

proposed in the context of spectral sparsification for static graphs [99]: Given an input

graph, each node of a k-neighbor subgraph can select no more than k edges from its one-hop

neighborhood. In this work, we extend the concept of k-neighbor subgraph to temporal

graphs: Given a temporal graph G, each node of a k-neighbor subgraph can select no more

than k incoming edges from its one-hop neighborhood in each graph snapshot of G. Without

loss of generality, we sketch this sampling process by focusing on a specific node u in graph

snapshot at time i. Let Nu,i be the set of one-hop neighbors with respect to u’s incoming

edges at time i and the cardinality of Nu,i is d.

1. For v ∈ Nu,i, ruv = fφ2(X(i, u, v)), where ruv is a scalar denoting the ranking score of the

63

Neighbors of
Node 𝑢 at time 𝑖

	𝑢 	𝑣

	

	

𝑽′(𝑖, 𝑢)

𝑽′(𝑖, 𝑣)
	𝐀(𝑖,𝑢,𝑣) 	

	

𝑿(𝑖, 𝑢, 𝑣)
𝑟-. 𝑃01234

⋯
⋮ ⋱ ⋮

⋯

Sample	𝑢 	𝑣

	

	

Sparsified Subgraph

𝑓9:

Candidate Edge Features

Figure 5.3: An illustration of the proposed sparsification network.

In this example, we focus on the node u at time i with 3 neighbor nodes and set k as 2.

Edge representations consist of both edge attributes and node representations. We

implement the sparsification by a continuous relaxation of sorting and top-k important

incoming edge sampling.

edge from node v to u at time i, and fφ2 is a feedforward neural network (parameterized

by φ2) that generates the score based on the edge representation X(i, u, v).

2. We sort the incoming edges based on their ranking scores, and select the top-k edges with

the largest ranking scores.

3. The above two steps are repeated for each node in each graph snapshot.

The parameters in fφ2 are shared among all nodes in all graph snapshots; therefore, the

number of parameters is independent to the size of temporal graphs.

5.3.4 Making Samples Differentiable

The conventional sorting operators are not differentiable such that it is difficult to utilize

them for parameter optimization. To make sorting differentiable, we propose to implement

the subgraph sampling based on the continuous relaxation of sorting operator [42]. Without

loss of generality, we focus on a specific node u at time i in a temporal graph G. We

implement the subgraph sampling in Section 5.3.3 as follows.

64

1. Let Nu,i be the set of one-hop neighbors with respect to u’s incoming edges at time i. We

apply the reparameterization trick and introduce a fixed source of randomness [42] to the

ranking score ruv, ∀v ∈ Nu,i,

πuv = log ruv + guv (5.4)

where πuv is a reparameterized scalar indicating the importance of the edge from node

v to u. guv is a sample drawn from Gumbel(0, 1) and guv = − log(− log(u)) with u ∼

Uniform(0, 1). The reparameterization trick refines the stochastic computational graph

for smooth gradient backward pass.

2. We relax the permutation matrix of the edge sorting operator P̂sort ∈ Rd×d for node u at

time i, and its j-th row is

P̂sort(j, :)(τ) = softmax[((d+ 1− 2j)πu: − Aπ1)/τ] (5.5)

where d is the cardinality of Nu,i and 1 denotes the column vector of all ones. Aπ is

the matrix of absolute pairwise differences of the elements in {v ∈ Nu,i | πuv}, and the

element at x-row and y-column is Aπ(x, y) = |πux − πuy|. τ is a hyper-parameter called

temperature which controls the interpolation between discrete distribution and continuous

categorical densities.

3. Before sparsification, the feature tensor of Nu,i is VU(i, u) = {V(i, u, u′1), . . . ,V(i, u, u′d)},

where E(i, u, u′j) = 1 and VU(i, u) ∈ Rd×dn . By applying the relaxed sort operator P̂sort

to the unsparsified node features VU(i, u), we then select first k rows as the output

VS(i, u) = [P̂sortVU(i, u)](: k, :) (5.6)

If |Nu,i| ≤ k for node u, we will skip its sparsification and take all in VU(i, u).

We sketch the full algorithm of sparsification network in a combinatorial manner in

Algorithm 4. Let d̄ be the average degree, n be the total number of nodes in a temporal

graph, and t be the number of snapshots. The sparsification network visits each node’s

65

Algorithm 4 Sampling subgraphs by sparsification network

Require: Temporal graph G = (V,V,E,A) and integer k.

1: for i = 1, · · · , t do

2: for u ∈ V do

3: if |Nu,i| > k then

4: for v ∈ Nu,i do

5: compute X(i, u, v) by Equation (5.2)

6: compute πuv by Equation (5.4)

7: end for

8: compute P̂sort by Equation (5.5)

9: compute VS(i, u) by Equation (5.6)

10: end if

11: end for

12: end for

one-hop neighborhood and makes d̄2 calculations. The complexity of sampling subgraphs by

the sparsification network is O(d̄2nt).

5.4 Temporal-Structural Convolutional Network

As discussed in Section 5.2.1, the goal of the temporal-structural convolutional network

(TSCN) is to serve as Qθ(Y | g): it extracts node representations from the sparsified sub-

graphs generated by the sparsification network and leverages the vector representations to

perform node classification. Inspired by the success of convolutional aggregation in the graph

domain [45, 64, 22, 117], the core idea behind the temporal-structural convolutional network

is to simultaneously extract local temporal and structural features for node representations

by convolutional aggregation in individual nodes’ temporal-structural neighborhood.

66

5.4.1 Temporal-structural Neighborhood

Unlike the neighborhood defined in static graphs that only tells “who are close to me”,

temporal-structural neighborhood stores information about ”who and when are close to

me”. To accomplish this, we extend the notion of neighborhood to the temporal domain by

aggregating the structural neighborhood across several preceding and/or subsequent snap-

shots of any given snapshot. Given a node u at time i, its temporal-structural neighborhood

can be represented by a matrix Fu,i ∈ Rt×n, where Fu,i(j, v) = 1 if node v is in u’s (struc-

tural) neighborhood at time j; otherwise, Fu,i(j, v) = 0. In this work, we focus on the

first-order temporal-structural neighborhood in the sparsified subgraphs. In other words,

we have Fu,i(j, v) = 1 if the following two conditions hold: (1) |i− j| = 1, and (2) at time j,

there is an incoming edge from node v to u in the sparsified temporal graph. Note that node

u at time i is also in its own temporal-structural neighborhood, that is, Fu,i(i, u) = 1. With

the notion of the temporal-structural neighborhood, we are ready to introduce the design of

a temporal-structural convolutional layer.

5.4.2 Temporal-structural Convolutional Layer

A temporal-structural convolutional layer performs feature aggregation in individual nodes’

temporal-structural neighborhood. One could stack multiple convolutional layers to extract

higher-order temporal-structural features.

Without loss of generality, we discuss the technical details of temporal-structural convo-

lutional layer by focusing on a specific node u at time i in the p-th convolutional layer. The

input is a temporal graph G = (V,V,E,A), node representations H(p−1) ∈ Rt×n×d(p−1)
n and a

relaxed sort operator P̂sort from Section 5.3.4. With the same sort operator in Equation 5.6

that sparsifies the node features of the first convolution layer, we obtain the sparsified node

features of the p-th convolutional layer as

V(p)
U (i, u) = {H(p−1)(i, u, u′1), . . . ,H

(p−1)(i, u, u′d)} (5.7)

67

V(p)
S (i, u) = [P̂sortV

(p)
U (i, u)](: k, :) (5.8)

The temporal-structural convolution performs as follows.

H(p)(i, u) = σ(
∑

{(j,v)|Fu,i(j,v)=1}

V(p)
S (j, u, v)W

(p)
i,u,j,v) (5.9)

where σ(·) is a non-linear activation function, H(p) ∈ Rt×n×d(p)n is the output node represen-

tations, and W
(p)
i,u,j,v ∈ Rd

(p−1)
n ×d(p)n is a customized convolution filter generated by

W
(p)
i,u,j,v = MLP

θ
(p)
i−j

(V(p)
S (i, u),V(p)

S (j, v),A(j, u, v)) (5.10)

where MLP
θ
(p)
i−j

(·) is a multi-layer neural network with parameters θ
(p)
i−j that generates cus-

tomized convolutional filters based on node and edge features. In other words, in the case

of first-order temporal-structural neighborhood, we utilize three networks MLP
θ
(p)
−1

, MLP
θ
(p)
0

,

and MLP
θ
(p)
1

to model the temporal impacts from the temporal-structural neighborhood.

Note that {θ(p)−1, θ
(p)
0 , θ

(p)
1 } are the only parameters in this convolutional layer and are shared

by all nodes; therefore, the number of parameters in a temporal-structural convolutional

layer is independent of the number of nodes, edges, or time points in a temporal graph.

As described in Equation 5.9 and 5.10, for a single node, the computational cost is

determined by the MLP structure as a fixed number (c). Therefore, the complexity of

convolution layer is O(cdtn) and is generally proportional to the number of nodes (n).

5.4.3 Network Architecture

Now we present the full temporal-structural convolutional network.

• Convolutional layer. As discussed in Section 5.4.2, one could stack multiple convolutional

layers to hierarchically explore high-order temporal-structural neighborhood.

• Pooling layer. Let H(p) ∈ Rt×n×d(p)n be the output node representations from the p-th

convolutional layers. The pooling layer performs another round of aggregation in temporal

68

domain by H = Pooling(H(p)) , where H ∈ Rn×d(p)n . Possible pooling operations include

max, average, and sum [45].

• Output layer. This layer employs a multi-layer neural network and the final output of

TSNet is Ŷ = MLPθo(H), where θo denotes the parameters.

• Objective function. To handle the estimation variance brought by random sampling,

the sparsification network generates l sparsified subgraphs and we optimize the parameters

in TSNet by minimizing the average loss from the l samples. In particular, the objective

function is formulated as follows.

J =
1

l

l∑
i=1

L(Y, Ŷi) (5.11)

The function L is defined by cross entropy loss.

5.5 Evaluation

In this section, we evaluate the performance of TSNet using real-life temporal graph datasets

from multiple domains. In particular, we compare TSNet with state-of-the-art techniques in

terms of classification accuracy and analyze its sensitivity to to the amount of training labels

as well as the hyper-parameters. Moreover, we provide a case study to demonstrate how

sparsified subgraphs generated by TSNet could improve visualization. The supplementary

material contains more detailed information.

5.5.1 Datasets

We employ four temporal graph datasets from different domains, including collaboration

network, online social media, and financial marketing. The dataset statistics are summarized

in Table 5.1.

DBLP-3. This temporal graph records co-author relationships between authors in the

69

Table 5.1: Dataset statistics

DBLP-3 DBLP-5 Reddit Finance

nodes 1,662 5,994 128,858 45,542

edges 33,808 113,062 29,009,401 661,586

snapshots / # in training 10/5 10/5 31/16 36/18

time granularity 1 Year 1 Year 1 Day 1 Month

node attributes 5 1,000 20 5

edge attributes 1 1 1 2

classes 3 5 10 2

DBLP computer science bibliography1 from 2001 to 2010, where nodes represent active

computer science researchers and edges denote co-author relationships between authors.

There are 10 graph snapshots and each snapshot stores co-author relationships within one

year. To generate the attributes for each node in one snapshot, we aggregate titles and

abstracts of the corresponding author’s papers published in that year into one document,

represent this document by the bag-of-words model, and then reduce the dimensionality to 5

by PCA [131]. Otherwise, if the author has no paper in one snapshot, we initialize the node

attribute with random initialization. The prediction task of this dataset is to classify authors

into three academic areas: data mining, computer vision, and computer architectures. Only

the first 5 snapshots are in Gtrain.

DBLP-5. This temporal graph also records co-author relationships from 2001 to 2010.

For node attributes, we represent the documents with the bag-of-words feature vectors

from the most frequent 1,000 words, aiming to evaluate the model’s ability to handle high-

dimensional sparse features. On this dataset, we aim to classify authors into five academic

1https://www.aminer.cn/citation

70

areas: data mining, computer vision, computer architectures, computer networks, and theo-

retical computer science.

Reddit. Reddit is a large online forum, where users contribute original posts or make

comments/upvotes to existing posts. We extract posts and comments in 10 mid-sized sub-

reddits in May 2015 2. Following the procedure in [45], we build a post-to-post temporal

graph, where nodes are posts, and two posts become connected if they are both commented

by at least one identical user. For node attributes, we aggregate the post and comment

texts in each day into one document, represent it by the bag-of-words model, and reduce the

dimensionality to 20 by PCA. On this dataset, our goal is to classify each post into one of

the 10 subreddit categories. Only the first 16 snapshots are in Gtrain. To sample posts in

communities, we rank subreddits by their total number of posts and select communities that

are ranked [11, 20]. We skip the top 10 subreddits to avoid the skewed class distribution. In

this dataset, our goal is to classify each post into one of the 10 subreddit categories. The

selected subreddits are DestinyTheGame, worldnews, soccer, DotA2, AdviceAnimals, WTF,

GlobalOffensive, hockey, movies, SquaredCircle.

Finance. This private dataset contains temporal graphs that record transaction history

between companies from April 2014 to March 2017. Each node represents a company and

each edge indicates a transaction between two companies. Node attributes are side infor-

mation about the companies such as industry sector, account balance, cash reserve, etc.,

which may change from year to year. In this dataset, we aim to classify companies into two

categories: promising or unpromising for investment in the near future. We put the first 18

snapshots in Gtrain.

2https://www.reddit.com/r/datasets/comments/3bxlg7/i have every publicly available
reddit comment/

71

5.5.2 Baseline Methods

We implement four categories of baselines: (1) node classification methods for static graphs,

(2) stacking structural and temporal feature learning models, (3) temporal graph learning

models, and (4) variants of the proposed TSNet models which employ a conventional graph

sparsification method followed by the temporal-structural convolutional network.

• GCN (Graph Convolutional Networks) [64] is a deep method that supports node classifi-

cation on static graphs.

• GraphSAGE [45] classifies nodes in static graphs by randomly sampling and aggregating

features from the local neighborhood.

• GAT [117] aggregates node local neighborhood feature with weighted mean and coefficients

are learned by attention mechanism.

• LDS [34] simultaneously learns the graph structure and the parameters of GCNs by learning

Bernoulli variables associated with individual edges.

• TempCNN-GCN first extracts temporal features with temporal CNN [7] and then trains

GCN model on the static graphs for structural feature extraction. This baseline is fully

supervised in both steps.

• GCN-TempCNN first extracts structural features by GCN in the individual snapshots,

and then makes use of temporal CNN to aggregate structural features in temporal domain.

• Deepwalk-LSTM extracts structure features by DeepWalk [86], and then leverages LSTM

to learn temporal features.

• DynamicTriad [166] is an unsupervised model that learns node embedding for temporal

graphs.

72

Table 5.2: Node classification performance

DBLP-3 DBLP-5 Reddit Finance

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GCN 0.862 0.859 0.679 0.678 0.357 0.290 0.480 0.464

GraphSAGE 0.850 0.847 0.814 0.814 0.399 0.336 0.496 0.448

GAT 0.875 0.863 0.821 0.830 - - 0.509 0.495

LDS 0.876 0.869 0.797 0.794 - - 0.499 0.474

TempCNN-GCN 0.851 0.857 0.720 0.710 0.411 0.340 0.532 0.548

GCN-TempCNN 0.676 0.691 0.720 0.711 0.384 0.313 0.440 0.397

DeepWalk-LSTM 0.913 0.913 0.772 0.777 0.370 0.303 0.493 0.446

DynamicTriad 0.753 0.745 0.713 0.717 0.393 0.324 0.419 0.430

STAR 0.908 0.908 0.811 0.815 0.439 0.367 0.541 0.502

TSCN 0.942 0.929 0.850 0.845 0.466 0.406 0.559 0.537

SS-TSCN 0.839 0.835 0.807 0.805 0.418 0.351 0.465 0.445

DE-TSCN 0.875 0.888 0.801 0.792 0.391 0.343 0.538 0.487

TSNet 0.954 0.955 0.859 0.860 0.475 0.416 0.630 0.610

• STAR [135] is a spatio-temporal GRU with dual attention model for node classification in

temporal graphs.

• TSCN is a variant of TSNet that only uses temporal-structural convolutional network

without sparsification network.

• SS-TSCN is a variant of TSNet that utilizes a state-of-the-art spectral sparsification tech-

nique [99] to generate sparsified subgraphs, and then we train TSCN using the sparsified

subgraphs.

• DE-TSCN is a variant of TSNet that employs DropEdge [96] as graph sampling method

to generate subgraphs.

5.5.3 Experimental Settings

TSNet. We implement the proposed TSNet in tensorflow framework [1] for efficient GPU

computation. The hyper-parameter k is searched between 3 and 15 for the optimal per-

73

formance. For the temporal-structural convolutional network, it starts with two temporal-

structural convolutional layers, with an internal single-layer feedforward network to generate

convolutional filters. Then the output features pass a max-pooling layer over time and a

non-linear layer which produces the logit for label prediction. We employ cross-entropy to

formulate the loss function and apply Adam [60] optimizer for training. The learning rate of

Adam optimizer is initially set to be α = 1.0 × 10−3. We initial the weight matrices in the

proposed TSNet model with Xavier initialization [37].

Baseline methods. For fair comparison, we compare against the baseline methods

by tuning hyper-parameters and network structures for their best performance. For GCN,

We stack two graph convolutional layers with hidden unit dimensions of 5, 128, 10, and

5, for DBLP-3, DBLP-5, Reddit, and Finance, respectively. In GraphSAGE, we select the

max-pooling aggregation with 2-hop neighborhood of sample sizes 25. We fix the number

of attention heads for GAT to 8. For GCN-TempCNN, the temporal CNN is implemented

by 1-D convolution with kernel size 3 followed by a max-pooling layer. For LSTM, its

hidden dimension is set to 3 for all the datasets. For DynamicTriad, we enumerate choices

of β0 ∈ {0.01, 0.1, 1, 10} and β1 ∈ {0.01, 0.1, 1, 10} using grid search as suggested in [166].

For spectral sparsifier in SS-TSCN, ε is set to 0.4 for all the datasets. For the Rank Degree

algorithm [121] in RD-TSCN, we select 1% of nodes as the initial seeds and adopt ρ ∈

{0.1, 0.2, · · · , 0.8} for the best results.

Temperature tuning. In the sparsification network, the temperature τ in Equation 5.5

controls the smoothness of sort operator relaxation. In general, when τ is small, the relaxed

sort operator P̂sort resembles the discrete operator, which induces strong sparsity; however,

small τ introduces high variance gradient that blocks effective backpropagation. A high

value of τ cannot produce expected sparsification effect. Following the practice in [42, 53],

we adopt the strategy by starting the training with a high temperature and anneal to a small

value with a guided schedule. In particular, we anneal the temperature with the schedule

τ = max(1, 4× exp(−βs)), where s is the training epoch and β ∈ {1× 10−3, 5× 10−3}. τ is

74

updated every 50 epochs during the training.

Dataset split and accuracy metrics. We prepare the training and testing temporal

graphs following the similar setting in [45]. We split the snapshots of temporal graphs into

Gtrain and Gtest: test graphs remain unseen during training. We randomly sample 80% nodes

in Gtrain as the training nodes and provide their labels to the models. The validation set

consists of the other 10% of the nodes in Gtrain. We evaluate the performance of the models

with all nodes in Gtest. By monitoring the model performance on the validation set for each

epoch, we execute early stopping if the validation loss does not decrease for 10 consecutive

epochs. We evaluate the classification accuracy using macro-F1 and micro-F1 scores3. The

results show the average of 10 runs with random initializations.

5.5.4 Experimental Results

Classification accuracy

Table 5.2 summarizes the classification performance of TSNet and the baseline methods

on all datasets. For DBLP-3, DBLP-5, Reddit, and Finance, the hyper-parameter k is set

as 8, 9, 10, and 5, respectively. The hyper-parameter l is set as 1 in this experiment. Note

some results on Reddit is missing due to the out-of-memory error.

Overall, TSNet consistently outperforms all of the baseline methods in terms of macro-F1

and micro-F1 over all of the datasets. We make the following observations. (1) Compared

with the deep learning techniques for static graphs, including GCN, GraphSAGE and GAT,

TSNet achieves better performance by effectively utilizing temporal features in graphs. (2)

In GCN-TempCNN and Deepwalk-LSTM, structural and temporal features are extracted

from separate components: temporal features are extracted based on the structural features

obtained from graph convolution [64] or skip-gram [86]. Because of the inter-component

dependency, it becomes harder to adjust the parameters in structural feature learning than

3http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1 score.html

75

in temporal feature learning. Similarly, in TempCNN-GCN, parameters in temporal feature

learning are harder to get trained. With temporal-structural convolution, TSNet can si-

multaneously adjust parameters for temporal and structural feature learning, and generate

more effective features for better classification accuracy. (3) In comparison with the two

TSNet variants SS-TSCN and RD-TSCN, TSNet outperforms because of the automatically

learned graph sparsification, which highlights the importance of sparsification network in

TSNet. (4) The comparison with TSCN is interesting: using the sparsified subgraphs from

the sparsification network, it is easier to make TSCN generalized to unseen testing data with

improved classification performance. Indeed, large neighborhood size in the original temporal

graphs significantly increases the complexity of the convolutional operations, which brings

a higher risk of overfitting. (5) Compared with DynamicTriad, TSNet is more effective in

node representations customized by the end-to-end supervised training.

Sensitivity to hyper-parameters

In this section, we investigate how hyper-parameter k (i.e., number of sampled edges

per node) and l (i.e., number of sparsified subgraphs) impact the classification accuracy in

TSNet.

Figure 5.4 demonstrates how classification accuracy responds when k increases from 3.

Over the four datasets, we observe a common phenomenon: there exists an optimal k that

delivers the best classification accuracy. When k is small, TSNet can only make use of little

structural information in temporal-structural convolution, which leads to suboptimal per-

formance. When k gets larger, the temporal-structural convolution involves more complex

neighborhood aggregation with higher overfitting risk, which negatively impacts the classifi-

cation performance for unseen testing data. By comparing across datasets, we observe that

the optimal k is associated with the average node degrees of the temporal graphs: higher k

in dense Reddit graph and lower k in sparse Finance graph.

Figure 5.5 shows how hyper-parameter l impacts classification accuracy on DBLP-3 and

DBLP-5. When l increases from 1 to 5, we observe a relatively small improvement in

76

4 6 8 10
Hyper-parameter k

0.85

0.90

0.95
F1

 S
co

re

Macro-F1
Micro-F1

(a) DBLP-3

4 6 8 10 12
Hyper-parameter k

0.80

0.82

0.84

0.86

F1
 S

co
re

Macro-F1
Micro-F1

(b) DBLP-5

3 6 9 12 15
Hyper-parameter k

0.350

0.375

0.400

0.425

0.450

0.475

F1
 S

co
re

Macro-F1
Micro-F1

(c) Reddit

4 6 8 10
Hyper-parameter k

0.56

0.58

0.60

0.62

0.64
F1

 S
co

re

Macro-F1
Micro-F1

(d) Finance

Figure 5.4: Accuracy vs hyper-parameter k

classification accuracy. As the parameters in the sparsification network are shared by all

edges in the temporal graphs, the estimation variance from random sampling could already

be mitigated to some extent by a number of sampled edges in a sparsified subgraph. Thus,

when we increase the number of sparsified subgraphs, the incremental gain could be small.

Case Study

In this section, we present a case study to demonstrate the potential of TSNet in enhanc-

ing model interpretation and visualization. As proof of concept, we focus on a specific node

77

1 2 3 4 5
Hyper-parameter l

0.86

0.88

0.90

0.92

0.94

0.96

0.98

F1
 S

co
re Macro-F1-DBLP-3

Micro-F1-DBLP-3
Macro-F1-DBLP-5
Micro-F1-DBLP-5

Figure 5.5: Accuracy vs hyper-parameter l on DBLP-3 and DBLP-5

in the DBLP-5 temporal graph. Figure 5.6 visualizes the one-hop neighborhood of Thomas

S. Huang with k set as 7, and we only present snapshots from 2005, 2007, 2008, and 2010 due

to space limitation. In the figure, node colors indicate node labels from the ground truth,

solid red edges are ones selected by the sparsification network, and the remaining dotted

edges also appear in the original temporal graph.

We make the following observations from Figure 5.6. First, the central author is from the

area of computer vision, and all selected edges also connect to authors from computer vision.

This selection seems reasonable from the perspective of feature learning. When neighbors

share identical labels consistently over time, temporal-structural features could boost the

confidence of making classification decision. Second, instead of exploring all the neighbors,

we can only focus on a subset of selected neighbors, which could make it easier for human

experts to conduct the effort on model interpretation and result visualization.

Implementations of TSNet

We implement the proposed TSNet in tensorflow framework for efficient GPU compu-

tation. In particular, the multi-layer neural network (Equation 5.4) in the sparsification

network is implemented by two-layer feed-forward neural networks in all experiment, where

78

Figure 5.6: One-hop neighborhood of Thomas S. Huang in DBLP-5.

The visualization presents snapshots from (a) 2005, (b) 2007, (c) 2008, and (d) 2010. Node

colors indicate node labels from ground truth. Sparsification network selects edges with

solid red lines. The sparsified graph supports downstream classification as well as model

interpretation.

the hyper-parameter k is searched between 3 and 15 for the optimal performance. For the

temporal-structural convolutional network, it starts with two temporal-structural convolu-

tional layers, with an internal single-layer feedforward network to generate convolutional

filters. Then the output features pass a max-pooling layer over time and a non-linear layer

which produces the logit for label prediction. We employ cross-entropy to formulate the loss

79

function and apply Adam optimizer for training. The learning rate of Adam optimizer is

initially set to be α = 1.0 × 10−3. We initial the weight matrices in the proposed TSNet

model with Xavier initialization.

In the following, we detail the network structures of TSNet used on individual datasets.

FC(a, b, f) means a fully-connected layer with a input neurons and b output neurons ac-

tivated by function f (none means no activation function is used). TSC(a, b, c, d × e, f)

means a temporal-structural convolutional layer with input dimension a, output dimension

b, c input neurons for the convolution generator, convolution filter size d× e and activation

function f .

DBLP-3 The sparsification network runs with: FC(10, 5, ReLU)-FC(5, 1, Gumbel-

Softmax). The structure of TSCN sub-network is TSC(5, 5, 10, 5× 5, ReLU)-TSC(5, 3, 10,

5× 3, ReLU)-MaxPool-FC(3, 3, softmax).

DBLP-5 The sparsification network runs with: FC(2000, 128, ReLU)-FC(128, 1, Gumbel-

Softmax). The structure of TSCN sub-network is TSC(1000, 10, 2000, 1000 × 10, ReLU)-

TSC(10, 5, 20, 10× 5, ReLU)-MaxPool-FC(5, 5, softmax).

Reddit The sparsification network runs with: FC(40, 10, ReLU)-FC(10, 1, Gumbel-

Softmax). The structure of TSCN sub-network is TSC(20, 10, 40, 20× 10, ReLU)-TSC(10,

10, 20, 10× 10, ReLU)-MaxPool-FC(10, 10, softmax).

Finance The sparsification network runs with: FC(11, 5, ReLU)-FC(5, 1, Gumbel-

Softmax). The structure of TSCN sub-network is TSC(5, 5, 11, 5× 5, ReLU)-TSC(5, 2, 11,

5×2, ReLU)-MaxPool-FC(2, 2, softmax). Note that there is one-dimensional edge attribute

in this dataset.

Temperature tuning In the sparsification network, the temperature τ in Equation 5.5

controls the smoothness of sort operator relaxation. In general, when τ is small, the relaxed

sort operator P̂sort resembles the discrete operator, which induces strong sparsity; however,

small τ introduces high variance gradient that blocks effective backpropagation. A high

80

value of τ cannot produce expected sparsification effect. Following the practice in [42], we

adopt the strategy by starting the training with a high temperature and anneal to a small

value with a guided schedule. In particular, we anneal the temperature with the schedule

τ = max(1, 4× exp(−βs)), where s is the training epoch and β ∈ {1× 10−3, 5× 10−3}. τ is

updated every 50 epochs during the training.

Sensitivity to ratio of nodes in training set

In this set of experiments, we study how the ratio of nodes in training set impacts the

classification performance of TSNet over all datasets. As shown in Figure 5.7, we vary the

ratio of nodes in the training set from 10% to 90% of each dataset and plot the average of

F-1 scores. TSNet and its baseline methods share a common trend: classification accuracy

increases with more labels in the training process. Compared with the baselines, TSNet

consistently provides the most robust classification performance, even when the training

ratio is small, which means TSNet is more useful in real practice with sparse labels in

temporal graphs.

5.6 Summary

In this chapter, we propose Temporal Structural Network (TSNet) for node classification

in temporal graphs. TSNet consists of two major sub-networks: (1) the sparsification net-

work sparsifies input temporal graphs by sorting and sampling edges following a learned

distribution; (2) the temporal-structural convolutional network performs convolution on the

sparsified graphs to extract local features from the joint temporal-structural space. As an

end-to-end model, the two sub-networks in TSNet are trained jointly and iteratively with su-

pervised loss, gradient descent, and backpropagation techniques. In the experimental study,

TSNet demonstrates superior performance over four categories of baseline models on public

and private benchmark datasets. The qualitative case study suggests a promising direction

for the interpretability of temporal graph learning.

81

0.2 0.4 0.6 0.8
Training Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ac

ro
 F

1

DBLP-3

0.2 0.4 0.6 0.8
Training Ratio

0.5

0.6

0.7

0.8

M
ac

ro
 F

1

DBLP-5

0.2 0.4 0.6 0.8
Training Ratio

0.25

0.30

0.35

0.40

0.45

M
ac

ro
 F

1

Reddit

0.2 0.4 0.6 0.8
Training Ratio

0.3

0.4

0.5

0.6

M
ac

ro
 F

1

Finance

0.2 0.4 0.6 0.8
Training Ratio

0.5

0.6

0.7

0.8

0.9

1.0

M
icr

o
F1

0.2 0.4 0.6 0.8
Training Ratio

0.4

0.5

0.6

0.7

0.8

M
icr

o
F1

0.2 0.4 0.6 0.8
Training Ratio

0.20

0.25

0.30

0.35

0.40

M
icr

o
F1

0.2 0.4 0.6 0.8
Training Ratio

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
icr

o
F1

GCN GraphSAGE GAT LDS TempCNN-GCN GCN-TempCNN DW-LSTM DT STAR TSCN SS-TSCN DE-TSCN TSNet

0.2 0.4 0.6 0.8
Training Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ac

ro
 F

1

DBLP-3

0.2 0.4 0.6 0.8
Training Ratio

0.5

0.6

0.7

0.8

M
ac

ro
 F

1

DBLP-5

0.2 0.4 0.6 0.8
Training Ratio

0.25

0.30

0.35

0.40

0.45

M
ac

ro
 F

1

Reddit

0.2 0.4 0.6 0.8
Training Ratio

0.3

0.4

0.5

0.6

M
ac

ro
 F

1

Finance

0.2 0.4 0.6 0.8
Training Ratio

0.5

0.6

0.7

0.8

0.9

1.0

M
icr

o
F1

0.2 0.4 0.6 0.8
Training Ratio

0.4

0.5

0.6

0.7

0.8

M
icr

o
F1

0.2 0.4 0.6 0.8
Training Ratio

0.20

0.25

0.30

0.35

0.40

M
icr

o
F1

0.2 0.4 0.6 0.8
Training Ratio

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
icr

o
F1

GCN GraphSAGE GAT LDS TempCNN-GCN GCN-TempCNN DW-LSTM DT STAR TSCN SS-TSCN DE-TSCN TSNet

0.2 0.4 0.6 0.8
Training Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ac

ro
 F

1

DBLP-3

0.2 0.4 0.6 0.8
Training Ratio

0.5

0.6

0.7

0.8

M
ac

ro
 F

1

DBLP-5

0.2 0.4 0.6 0.8
Training Ratio

0.25

0.30

0.35

0.40

0.45

M
ac

ro
 F

1

Reddit

0.2 0.4 0.6 0.8
Training Ratio

0.3

0.4

0.5

0.6

M
ac

ro
 F

1

Finance

0.2 0.4 0.6 0.8
Training Ratio

0.5

0.6

0.7

0.8

0.9

1.0

M
icr

o
F1

0.2 0.4 0.6 0.8
Training Ratio

0.4

0.5

0.6

0.7

0.8

M
icr

o
F1

0.2 0.4 0.6 0.8
Training Ratio

0.20

0.25

0.30

0.35

0.40

M
icr

o
F1

0.2 0.4 0.6 0.8
Training Ratio

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
icr

o
F1

GCN GraphSAGE GAT LDS TempCNN-GCN GCN-TempCNN DW-LSTM DT STAR TSCN SS-TSCN DE-TSCN TSNet

Figure 5.7: Classification accuracy vs ratio of nodes in training set.

82

CHAPTER 6

Applications in Social Network Analysis

6.1 Social Media User Geolocation via Hybrid Attention

6.1.1 Introduction

Nowadays, social media has become one of the most powerful tools for myriad real-world

applications, such as online marketing [61, 161] and event detection [127]. To facilitate those

applications, the geolocations of social media users are usually required. For example, online

marketing needs to decide the target audience based on their locations. A real-world event

may be only related to the users within a certain geographical region. However, there are

only a limited amount of social media posts annotated with posting geolocations because

position sensors and services can be unavailable or prevented. In addition, most of the social

media users also do not denote their locations in the user profiles due to the data privacy

issue. Hence, it is important to identify user geolocations with only their behaviors on social

media.

One of the most intuitive approaches for user geolocation is to analyze the natural lan-

guages utilized in social media posts. Users can mention specific entities or events related to

geolocations and people living in a certain region may reveal noticeable habits or patterns

in their languages. For example, Rahimi et al. [89] extract bag-of-words features from user

posts; Wing and Baldridge [130] estimate the word distributions for different regions; Han

et al. [47] conduct feature selection to discover location indicative words. However, user

language usage sometimes can be too vague and ambiguous to recognize their locations,

especially in social media posts with only limited and noisy texts. Several less active users

that rarely publish posts may also have insufficient data for geolocation.

83

In addition to social media posts published by users, social interactions with other users

can also be applied to user geolocation. More precisely, a user can be more likely to reach out

to the users living in closer areas. For instance, Davis Jr et al. [26] and Jurgens [55] exploit

label propagation and rely on the location redundancy through user relationships. Wang

et al. [123] derive node embeddings of social networks and location networks as features for

user geolocation. Nevertheless, the sparsity of social networks can still lead to unsatisfactory

performance. Social connections can be relationships with users living in other locations.

Although previous studies utilize text frequency in social networks [90] and train machine

learning models with heterogeneous features [29], conventional approaches are significantly

affected by the network structures. Moreover, the importance of social networks can be

distinct across different users.

In this section, the framework, Hybrid-attentive User Geolocation (HUG), is proposed to

tackle the above issues. Social media posts of each user are first encoded by a hierarchical

language attention network. The social network of users is modeled by a graph attention

network so that the relations between users can be leveraged in representation learning.

Finally, the hybrid attention mechanism is applied to automatically decide the individual

importance scores of user posts and the social network for each user, thereby identifying

her geolocation. To improve the prediction performance of tail locations, we also propose a

novel location regularizer that leverages the knowledge from other locations. In the end, we

conduct extensive experiments to show the effectiveness of HUG with in-depth analysis. We

also demonstrate the interpretability of HUG with several concrete examples.

In the literature, social media user geolocation has attracted increasing attention in recent

years. Some of the conventional methods focus on modeling social media posts [130, 61, 89],

while several studies rely on social network information [6, 26, 55, 123, 90]. Although some

approaches [29, 90, 50] simultaneously consider language and network knowledge, texts and

social networks are individually and evenly modeled without considering distinct importance

for different users. To the best of our knowledge, this work is the first study that dynamically

84

us
<latexit sha1_base64="Cf9+yR/ig18XLNI8YrqmhTTPT0M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbpYOM5Pnw2rNrbsLkHXiFaQGBVrD6tdgFLM04gqZpMb0PTdBP6MaBZM8rwxSwxPKpnTM+5YqGnHjZ4tzc3JhlREJY21LIVmovycyGhkziwLbGVGcmFVvLv7n9VMMb/xMqCRFrthyUZhKgjGZ/05GQnOGcmYJZVrYWwmbUE0Z2oQqNgRv9eV10rmqe27de7iuNW+LOMpwBudwCR40oAn30II2MJjCM7zCm5M4L86787FsLTnFzCn8gfP5A/bxj/c=</latexit><latexit sha1_base64="Cf9+yR/ig18XLNI8YrqmhTTPT0M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbpYOM5Pnw2rNrbsLkHXiFaQGBVrD6tdgFLM04gqZpMb0PTdBP6MaBZM8rwxSwxPKpnTM+5YqGnHjZ4tzc3JhlREJY21LIVmovycyGhkziwLbGVGcmFVvLv7n9VMMb/xMqCRFrthyUZhKgjGZ/05GQnOGcmYJZVrYWwmbUE0Z2oQqNgRv9eV10rmqe27de7iuNW+LOMpwBudwCR40oAn30II2MJjCM7zCm5M4L86787FsLTnFzCn8gfP5A/bxj/c=</latexit><latexit sha1_base64="Cf9+yR/ig18XLNI8YrqmhTTPT0M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbpYOM5Pnw2rNrbsLkHXiFaQGBVrD6tdgFLM04gqZpMb0PTdBP6MaBZM8rwxSwxPKpnTM+5YqGnHjZ4tzc3JhlREJY21LIVmovycyGhkziwLbGVGcmFVvLv7n9VMMb/xMqCRFrthyUZhKgjGZ/05GQnOGcmYJZVrYWwmbUE0Z2oQqNgRv9eV10rmqe27de7iuNW+LOMpwBudwCR40oAn30II2MJjCM7zCm5M4L86787FsLTnFzCn8gfP5A/bxj/c=</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="1o9NBQnie+8Fs+cEynzUsuNuaxU=">AAAB43icbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhScOOygm2FdiiZ9E4bmskMyR2hDPMQblwo4ju5821MfxbaeiDwcU5C7j1RpqQl3//2KlvbO7t71f3aQf3w6LhxUu/aNDcCOyJVqXmKuEUlNXZIksKnzCBPIoW9aHo3z3vPaKxM9SPNMgwTPtYyloKTs3pFPixsWQ4bTb/lL8Q2IVhBE1ZqDxtfg1Eq8gQ1CcWt7Qd+RmHBDUmhsKwNcosZF1M+xr5DzRO0YbEYt2QXzhmxODXuaGIL9/eLgifWzpLI3Uw4Tex6Njf/y/o5xTdhIXWWE2qx/CjOFaOUzXdnI2lQkJo54MJINysTE264INdQzZUQrK+8Cd2rVuC3ggcfqnAG53AJAVzDLdxDGzogYAov8AbvXua9eh/LuireqrdT+CPv8wfClo6e</latexit><latexit sha1_base64="1o9NBQnie+8Fs+cEynzUsuNuaxU=">AAAB43icbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhScOOygm2FdiiZ9E4bmskMyR2hDPMQblwo4ju5821MfxbaeiDwcU5C7j1RpqQl3//2KlvbO7t71f3aQf3w6LhxUu/aNDcCOyJVqXmKuEUlNXZIksKnzCBPIoW9aHo3z3vPaKxM9SPNMgwTPtYyloKTs3pFPixsWQ4bTb/lL8Q2IVhBE1ZqDxtfg1Eq8gQ1CcWt7Qd+RmHBDUmhsKwNcosZF1M+xr5DzRO0YbEYt2QXzhmxODXuaGIL9/eLgifWzpLI3Uw4Tex6Njf/y/o5xTdhIXWWE2qx/CjOFaOUzXdnI2lQkJo54MJINysTE264INdQzZUQrK+8Cd2rVuC3ggcfqnAG53AJAVzDLdxDGzogYAov8AbvXua9eh/LuireqrdT+CPv8wfClo6e</latexit><latexit sha1_base64="zUHmJpmHcPG2A8PD2j1veEH+LaI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m86LHoxWMF0xbaUDbbSbt0swm7G6GE/AgvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ncrG5tb2TnW3trd/cHhUPz7p6CRTDH2WiET1QqpRcIm+4UZgL1VI41BgN5zezf3uEyrNE/loZikGMR1LHnFGjZW6eTbMdVEM6w236S5A1olXkgaUaA/rX4NRwrIYpWGCat333NQEOVWGM4FFbZBpTCmb0jH2LZU0Rh3ki3MLcmGVEYkSZUsaslB/T+Q01noWh7YzpmaiV725+J/Xz0x0E+RcpplByZaLokwQk5D572TEFTIjZpZQpri9lbAJVZQZm1DNhuCtvrxOOldNz216D26jdVvGUYUzOIdL8OAaWnAPbfCBwRSe4RXenNR5cd6dj2VrxSlnTuEPnM8f9bGP8w==</latexit><latexit sha1_base64="Cf9+yR/ig18XLNI8YrqmhTTPT0M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbpYOM5Pnw2rNrbsLkHXiFaQGBVrD6tdgFLM04gqZpMb0PTdBP6MaBZM8rwxSwxPKpnTM+5YqGnHjZ4tzc3JhlREJY21LIVmovycyGhkziwLbGVGcmFVvLv7n9VMMb/xMqCRFrthyUZhKgjGZ/05GQnOGcmYJZVrYWwmbUE0Z2oQqNgRv9eV10rmqe27de7iuNW+LOMpwBudwCR40oAn30II2MJjCM7zCm5M4L86787FsLTnFzCn8gfP5A/bxj/c=</latexit><latexit sha1_base64="Cf9+yR/ig18XLNI8YrqmhTTPT0M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbpYOM5Pnw2rNrbsLkHXiFaQGBVrD6tdgFLM04gqZpMb0PTdBP6MaBZM8rwxSwxPKpnTM+5YqGnHjZ4tzc3JhlREJY21LIVmovycyGhkziwLbGVGcmFVvLv7n9VMMb/xMqCRFrthyUZhKgjGZ/05GQnOGcmYJZVrYWwmbUE0Z2oQqNgRv9eV10rmqe27de7iuNW+LOMpwBudwCR40oAn30II2MJjCM7zCm5M4L86787FsLTnFzCn8gfP5A/bxj/c=</latexit><latexit sha1_base64="Cf9+yR/ig18XLNI8YrqmhTTPT0M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbpYOM5Pnw2rNrbsLkHXiFaQGBVrD6tdgFLM04gqZpMb0PTdBP6MaBZM8rwxSwxPKpnTM+5YqGnHjZ4tzc3JhlREJY21LIVmovycyGhkziwLbGVGcmFVvLv7n9VMMb/xMqCRFrthyUZhKgjGZ/05GQnOGcmYJZVrYWwmbUE0Z2oQqNgRv9eV10rmqe27de7iuNW+LOMpwBudwCR40oAn30II2MJjCM7zCm5M4L86787FsLTnFzCn8gfP5A/bxj/c=</latexit><latexit sha1_base64="Cf9+yR/ig18XLNI8YrqmhTTPT0M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbpYOM5Pnw2rNrbsLkHXiFaQGBVrD6tdgFLM04gqZpMb0PTdBP6MaBZM8rwxSwxPKpnTM+5YqGnHjZ4tzc3JhlREJY21LIVmovycyGhkziwLbGVGcmFVvLv7n9VMMb/xMqCRFrthyUZhKgjGZ/05GQnOGcmYJZVrYWwmbUE0Z2oQqNgRv9eV10rmqe27de7iuNW+LOMpwBudwCR40oAn30II2MJjCM7zCm5M4L86787FsLTnFzCn8gfP5A/bxj/c=</latexit><latexit sha1_base64="Cf9+yR/ig18XLNI8YrqmhTTPT0M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbpYOM5Pnw2rNrbsLkHXiFaQGBVrD6tdgFLM04gqZpMb0PTdBP6MaBZM8rwxSwxPKpnTM+5YqGnHjZ4tzc3JhlREJY21LIVmovycyGhkziwLbGVGcmFVvLv7n9VMMb/xMqCRFrthyUZhKgjGZ/05GQnOGcmYJZVrYWwmbUE0Z2oQqNgRv9eV10rmqe27de7iuNW+LOMpwBudwCR40oAn30II2MJjCM7zCm5M4L86787FsLTnFzCn8gfP5A/bxj/c=</latexit><latexit sha1_base64="Cf9+yR/ig18XLNI8YrqmhTTPT0M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbpYOM5Pnw2rNrbsLkHXiFaQGBVrD6tdgFLM04gqZpMb0PTdBP6MaBZM8rwxSwxPKpnTM+5YqGnHjZ4tzc3JhlREJY21LIVmovycyGhkziwLbGVGcmFVvLv7n9VMMb/xMqCRFrthyUZhKgjGZ/05GQnOGcmYJZVrYWwmbUE0Z2oQqNgRv9eV10rmqe27de7iuNW+LOMpwBudwCR40oAn30II2MJjCM7zCm5M4L86787FsLTnFzCn8gfP5A/bxj/c=</latexit>

uw
<latexit sha1_base64="2KsOLGd14awtMj2WGo8fnULLF18=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0swm7G6WE/AgvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7j6g0j+WDmSboR3QkecgZNVbqZOkge8rzQbXm1t05yCrxClKDAs1B9as/jFkaoTRMUK17npsYP6PKcCYwr/RTjQllEzrCnqWSRqj9bH5uTs6sMiRhrGxJQ+bq74mMRlpPo8B2RtSM9bI3E//zeqkJr/2MyyQ1KNliUZgKYmIy+50MuUJmxNQSyhS3txI2pooyYxOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH/0Jj/s=</latexit><latexit sha1_base64="2KsOLGd14awtMj2WGo8fnULLF18=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0swm7G6WE/AgvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7j6g0j+WDmSboR3QkecgZNVbqZOkge8rzQbXm1t05yCrxClKDAs1B9as/jFkaoTRMUK17npsYP6PKcCYwr/RTjQllEzrCnqWSRqj9bH5uTs6sMiRhrGxJQ+bq74mMRlpPo8B2RtSM9bI3E//zeqkJr/2MyyQ1KNliUZgKYmIy+50MuUJmxNQSyhS3txI2pooyYxOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH/0Jj/s=</latexit><latexit sha1_base64="2KsOLGd14awtMj2WGo8fnULLF18=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0swm7G6WE/AgvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7j6g0j+WDmSboR3QkecgZNVbqZOkge8rzQbXm1t05yCrxClKDAs1B9as/jFkaoTRMUK17npsYP6PKcCYwr/RTjQllEzrCnqWSRqj9bH5uTs6sMiRhrGxJQ+bq74mMRlpPo8B2RtSM9bI3E//zeqkJr/2MyyQ1KNliUZgKYmIy+50MuUJmxNQSyhS3txI2pooyYxOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH/0Jj/s=</latexit><latexit sha1_base64="2KsOLGd14awtMj2WGo8fnULLF18=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbSbt0swm7G6WE/AgvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7j6g0j+WDmSboR3QkecgZNVbqZOkge8rzQbXm1t05yCrxClKDAs1B9as/jFkaoTRMUK17npsYP6PKcCYwr/RTjQllEzrCnqWSRqj9bH5uTs6sMiRhrGxJQ+bq74mMRlpPo8B2RtSM9bI3E//zeqkJr/2MyyQ1KNliUZgKYmIy+50MuUJmxNQSyhS3txI2pooyYxOq2BC85ZdXSfui7rl17/6y1rgp4ijDCZzCOXhwBQ24gya0gMEEnuEV3pzEeXHenY9Fa8kpZo7hD5zPH/0Jj/s=</latexit>

w21
<latexit sha1_base64="oKMesZsmPAs7PD8q5r1QZOxrgpc=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kUQY9FLx4r2A9ol5JNs21sNlmSrFKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fjm5nffmTacCXv7SRhQUyGkkecEuuk1lM/q+Fpv1zxq/4caJXgnFQgR6Nf/uoNFE1jJi0VxJgu9hMbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3TmlAGKlHYlLZqrvycyEhsziUPXGRM7MsveTPzP66Y2ugoyLpPUMkkXi6JUIKvQ7HU04JpRKyaOEKq5uxXREdGEWhdQyYWAl19eJa1aFftVfHdRqV/ncRThBE7hHDBcQh1uoQFNoPAAz/AKb57yXrx372PRWvDymWP4A+/zB0E2juc=</latexit><latexit sha1_base64="oKMesZsmPAs7PD8q5r1QZOxrgpc=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kUQY9FLx4r2A9ol5JNs21sNlmSrFKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fjm5nffmTacCXv7SRhQUyGkkecEuuk1lM/q+Fpv1zxq/4caJXgnFQgR6Nf/uoNFE1jJi0VxJgu9hMbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3TmlAGKlHYlLZqrvycyEhsziUPXGRM7MsveTPzP66Y2ugoyLpPUMkkXi6JUIKvQ7HU04JpRKyaOEKq5uxXREdGEWhdQyYWAl19eJa1aFftVfHdRqV/ncRThBE7hHDBcQh1uoQFNoPAAz/AKb57yXrx372PRWvDymWP4A+/zB0E2juc=</latexit><latexit sha1_base64="oKMesZsmPAs7PD8q5r1QZOxrgpc=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kUQY9FLx4r2A9ol5JNs21sNlmSrFKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fjm5nffmTacCXv7SRhQUyGkkecEuuk1lM/q+Fpv1zxq/4caJXgnFQgR6Nf/uoNFE1jJi0VxJgu9hMbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3TmlAGKlHYlLZqrvycyEhsziUPXGRM7MsveTPzP66Y2ugoyLpPUMkkXi6JUIKvQ7HU04JpRKyaOEKq5uxXREdGEWhdQyYWAl19eJa1aFftVfHdRqV/ncRThBE7hHDBcQh1uoQFNoPAAz/AKb57yXrx372PRWvDymWP4A+/zB0E2juc=</latexit><latexit sha1_base64="oKMesZsmPAs7PD8q5r1QZOxrgpc=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kUQY9FLx4r2A9ol5JNs21sNlmSrFKW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fjm5nffmTacCXv7SRhQUyGkkecEuuk1lM/q+Fpv1zxq/4caJXgnFQgR6Nf/uoNFE1jJi0VxJgu9hMbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3TmlAGKlHYlLZqrvycyEhsziUPXGRM7MsveTPzP66Y2ugoyLpPUMkkXi6JUIKvQ7HU04JpRKyaOEKq5uxXREdGEWhdQyYWAl19eJa1aFftVfHdRqV/ncRThBE7hHDBcQh1uoQFNoPAAz/AKb57yXrx372PRWvDymWP4A+/zB0E2juc=</latexit>

w22
<latexit sha1_base64="dsqxR5z0+1Y108bAQ0g5+UK6Qgs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+mfntR6oNU/LeThIaCjyULGYEWye1nvpZrTbtlyt+1Z8DrZIgJxXI0eiXv3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p11GJBTVhNr92is6cMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4KsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUAlF0Kw/PIqadWqgV8N7i4q9es8jiKcwCmcQwCXUIdbaEATCDzAM7zCm6e8F+/d+1i0Frx85hj+wPv8AUK7jug=</latexit><latexit sha1_base64="dsqxR5z0+1Y108bAQ0g5+UK6Qgs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+mfntR6oNU/LeThIaCjyULGYEWye1nvpZrTbtlyt+1Z8DrZIgJxXI0eiXv3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p11GJBTVhNr92is6cMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4KsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUAlF0Kw/PIqadWqgV8N7i4q9es8jiKcwCmcQwCXUIdbaEATCDzAM7zCm6e8F+/d+1i0Frx85hj+wPv8AUK7jug=</latexit><latexit sha1_base64="dsqxR5z0+1Y108bAQ0g5+UK6Qgs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+mfntR6oNU/LeThIaCjyULGYEWye1nvpZrTbtlyt+1Z8DrZIgJxXI0eiXv3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p11GJBTVhNr92is6cMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4KsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUAlF0Kw/PIqadWqgV8N7i4q9es8jiKcwCmcQwCXUIdbaEATCDzAM7zCm6e8F+/d+1i0Frx85hj+wPv8AUK7jug=</latexit><latexit sha1_base64="dsqxR5z0+1Y108bAQ0g5+UK6Qgs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4jmAckS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+mfntR6oNU/LeThIaCjyULGYEWye1nvpZrTbtlyt+1Z8DrZIgJxXI0eiXv3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p11GJBTVhNr92is6cMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4KsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUAlF0Kw/PIqadWqgV8N7i4q9es8jiKcwCmcQwCXUIdbaEATCDzAM7zCm6e8F+/d+1i0Frx85hj+wPv8AUK7jug=</latexit>

w2T
<latexit sha1_base64="Aoa6nqj7r8YGjC+rkbAeWI4dvIg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4j5CEkS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0dto1JNaIsorvR9hA3lTNKWZZbT+0RTLCJOO9H4ZuZ3Hqk2TMmmnSQ0FHgoWcwItk5qP/WzWnPaL1f8qj8HWiVBTiqQo9Evf/UGiqSCSks4NqYb+IkNM6wtI5xOS73U0ASTMR7SrqMSC2rCbH7tFJ05ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxVZgxmaSWSrJYFKccWYVmr6MB05RYPnEEE83crYiMsMbEuoBKLoRg+eVV0q5VA78a3F1U6td5HEU4gVM4hwAuoQ630IAWEHiAZ3iFN095L96797FoLXj5zDH8gff5A3Zljwo=</latexit><latexit sha1_base64="Aoa6nqj7r8YGjC+rkbAeWI4dvIg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4j5CEkS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0dto1JNaIsorvR9hA3lTNKWZZbT+0RTLCJOO9H4ZuZ3Hqk2TMmmnSQ0FHgoWcwItk5qP/WzWnPaL1f8qj8HWiVBTiqQo9Evf/UGiqSCSks4NqYb+IkNM6wtI5xOS73U0ASTMR7SrqMSC2rCbH7tFJ05ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxVZgxmaSWSrJYFKccWYVmr6MB05RYPnEEE83crYiMsMbEuoBKLoRg+eVV0q5VA78a3F1U6td5HEU4gVM4hwAuoQ630IAWEHiAZ3iFN095L96797FoLXj5zDH8gff5A3Zljwo=</latexit><latexit sha1_base64="Aoa6nqj7r8YGjC+rkbAeWI4dvIg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4j5CEkS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0dto1JNaIsorvR9hA3lTNKWZZbT+0RTLCJOO9H4ZuZ3Hqk2TMmmnSQ0FHgoWcwItk5qP/WzWnPaL1f8qj8HWiVBTiqQo9Evf/UGiqSCSks4NqYb+IkNM6wtI5xOS73U0ASTMR7SrqMSC2rCbH7tFJ05ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxVZgxmaSWSrJYFKccWYVmr6MB05RYPnEEE83crYiMsMbEuoBKLoRg+eVV0q5VA78a3F1U6td5HEU4gVM4hwAuoQ630IAWEHiAZ3iFN095L96797FoLXj5zDH8gff5A3Zljwo=</latexit><latexit sha1_base64="Aoa6nqj7r8YGjC+rkbAeWI4dvIg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQY9BLx4j5CEkS5idzCZj5rHMzCphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0dto1JNaIsorvR9hA3lTNKWZZbT+0RTLCJOO9H4ZuZ3Hqk2TMmmnSQ0FHgoWcwItk5qP/WzWnPaL1f8qj8HWiVBTiqQo9Evf/UGiqSCSks4NqYb+IkNM6wtI5xOS73U0ASTMR7SrqMSC2rCbH7tFJ05ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxVZgxmaSWSrJYFKccWYVmr6MB05RYPnEEE83crYiMsMbEuoBKLoRg+eVV0q5VA78a3F1U6td5HEU4gVM4hwAuoQ630IAWEHiAZ3iFN095L96797FoLXj5zDH8gff5A3Zljwo=</latexit>

s1
<latexit sha1_base64="FhhIGJ4rXe6fXrf7zblMRlZ9FXQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwa5NxtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfIno6n</latexit><latexit sha1_base64="FhhIGJ4rXe6fXrf7zblMRlZ9FXQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwa5NxtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfIno6n</latexit><latexit sha1_base64="FhhIGJ4rXe6fXrf7zblMRlZ9FXQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwa5NxtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfIno6n</latexit><latexit sha1_base64="FhhIGJ4rXe6fXrf7zblMRlZ9FXQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwa5NxtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wfIno6n</latexit>

s2
<latexit sha1_base64="jaehd5TLdyD6hKXF5c9qg/96iP0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwZ5Yzao1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w/KI46o</latexit><latexit sha1_base64="jaehd5TLdyD6hKXF5c9qg/96iP0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwZ5Yzao1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w/KI46o</latexit><latexit sha1_base64="jaehd5TLdyD6hKXF5c9qg/96iP0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwZ5Yzao1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w/KI46o</latexit><latexit sha1_base64="jaehd5TLdyD6hKXF5c9qg/96iP0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSbwZ5Yzao1ty6uwBZJ15BalCgNah+9YcJy2KukElqTM9zUwxyqlEwyWeVfmZ4StmEjnjPUkVjboJ8ceyMXFhlSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKObIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20G3XPrXsPV7XmbRFHGc7gHC7Bg2towj20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w/KI46o</latexit>

sL
<latexit sha1_base64="+1aENnBjGNSx/gUqecgeW6cQEo8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjultfWNza3ydmVnd2//oHp41DJJphn3WSIT3Qmp4VIo7qNAyTup5jQOJW+H49uZ337i2ohEPeIk5UFMh0pEglG0km/6+f20X625dXcOskq8gtSgQLNf/eoNEpbFXCGT1Jiu56YY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzYKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTMPicDoTlDObGEMi3srYSNqKYMbT4VG4K3/PIqaV3UPbfuPVzWGjdFHGU4gVM4Bw+uoAF30AQfGAh4hld4c5Tz4rw7H4vWklPMHMMfOJ8/8aWOwg==</latexit><latexit sha1_base64="+1aENnBjGNSx/gUqecgeW6cQEo8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjultfWNza3ydmVnd2//oHp41DJJphn3WSIT3Qmp4VIo7qNAyTup5jQOJW+H49uZ337i2ohEPeIk5UFMh0pEglG0km/6+f20X625dXcOskq8gtSgQLNf/eoNEpbFXCGT1Jiu56YY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzYKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTMPicDoTlDObGEMi3srYSNqKYMbT4VG4K3/PIqaV3UPbfuPVzWGjdFHGU4gVM4Bw+uoAF30AQfGAh4hld4c5Tz4rw7H4vWklPMHMMfOJ8/8aWOwg==</latexit><latexit sha1_base64="+1aENnBjGNSx/gUqecgeW6cQEo8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjultfWNza3ydmVnd2//oHp41DJJphn3WSIT3Qmp4VIo7qNAyTup5jQOJW+H49uZ337i2ohEPeIk5UFMh0pEglG0km/6+f20X625dXcOskq8gtSgQLNf/eoNEpbFXCGT1Jiu56YY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzYKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTMPicDoTlDObGEMi3srYSNqKYMbT4VG4K3/PIqaV3UPbfuPVzWGjdFHGU4gVM4Bw+uoAF30AQfGAh4hld4c5Tz4rw7H4vWklPMHMMfOJ8/8aWOwg==</latexit><latexit sha1_base64="+1aENnBjGNSx/gUqecgeW6cQEo8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDCVwqDrfjultfWNza3ydmVnd2//oHp41DJJphn3WSIT3Qmp4VIo7qNAyTup5jQOJW+H49uZ337i2ohEPeIk5UFMh0pEglG0km/6+f20X625dXcOskq8gtSgQLNf/eoNEpbFXCGT1Jiu56YY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzYKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTMPicDoTlDObGEMi3srYSNqKYMbT4VG4K3/PIqaV3UPbfuPVzWGjdFHGU4gVM4Bw+uoAF30AQfGAh4hld4c5Tz4rw7H4vWklPMHMMfOJ8/8aWOwg==</latexit>

v
<latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit>

words
<latexit sha1_base64="qZzi5y6GoVlTD5C7J/pDY16KFQU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wptKJvNpl262Q27E7WE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTAU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ITFMcMlayFGw+1QzkoSCdcLR9dTvPDBtuJJ3OE5ZkJCB5DGnBK3U6yF7wvxR6chM+tWaV/dmcJeJX5AaFGj2q1+9SNEsYRKpIMZ0fS/FICcaORVsUullhqWEjsiAdS2VJGEmyGc3T9wTq0RurLQtie5M/T2Rk8SYcRLazoTg0Cx6U/E/r5thfBnkXKYZMknni+JMuKjcaQBuxDWjKMaWEKq5vdWlQ6IJRRtTxYbgL768TNpndd+r+7fntcZVEUcZjuAYTsGHC2jADTShBRRSeIZXeHMy58V5dz7mrSWnmDmEP3A+fwDksZI6</latexit><latexit sha1_base64="qZzi5y6GoVlTD5C7J/pDY16KFQU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wptKJvNpl262Q27E7WE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTAU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ITFMcMlayFGw+1QzkoSCdcLR9dTvPDBtuJJ3OE5ZkJCB5DGnBK3U6yF7wvxR6chM+tWaV/dmcJeJX5AaFGj2q1+9SNEsYRKpIMZ0fS/FICcaORVsUullhqWEjsiAdS2VJGEmyGc3T9wTq0RurLQtie5M/T2Rk8SYcRLazoTg0Cx6U/E/r5thfBnkXKYZMknni+JMuKjcaQBuxDWjKMaWEKq5vdWlQ6IJRRtTxYbgL768TNpndd+r+7fntcZVEUcZjuAYTsGHC2jADTShBRRSeIZXeHMy58V5dz7mrSWnmDmEP3A+fwDksZI6</latexit><latexit sha1_base64="qZzi5y6GoVlTD5C7J/pDY16KFQU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wptKJvNpl262Q27E7WE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTAU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ITFMcMlayFGw+1QzkoSCdcLR9dTvPDBtuJJ3OE5ZkJCB5DGnBK3U6yF7wvxR6chM+tWaV/dmcJeJX5AaFGj2q1+9SNEsYRKpIMZ0fS/FICcaORVsUullhqWEjsiAdS2VJGEmyGc3T9wTq0RurLQtie5M/T2Rk8SYcRLazoTg0Cx6U/E/r5thfBnkXKYZMknni+JMuKjcaQBuxDWjKMaWEKq5vdWlQ6IJRRtTxYbgL768TNpndd+r+7fntcZVEUcZjuAYTsGHC2jADTShBRRSeIZXeHMy58V5dz7mrSWnmDmEP3A+fwDksZI6</latexit><latexit sha1_base64="qZzi5y6GoVlTD5C7J/pDY16KFQU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6LHoxWMF2wptKJvNpl262Q27E7WE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTAU36HnfTmlldW19o7xZ2dre2d2r7h+0jco0ZS2qhNL3ITFMcMlayFGw+1QzkoSCdcLR9dTvPDBtuJJ3OE5ZkJCB5DGnBK3U6yF7wvxR6chM+tWaV/dmcJeJX5AaFGj2q1+9SNEsYRKpIMZ0fS/FICcaORVsUullhqWEjsiAdS2VJGEmyGc3T9wTq0RurLQtie5M/T2Rk8SYcRLazoTg0Cx6U/E/r5thfBnkXKYZMknni+JMuKjcaQBuxDWjKMaWEKq5vdWlQ6IJRRtTxYbgL768TNpndd+r+7fntcZVEUcZjuAYTsGHC2jADTShBRRSeIZXeHMy58V5dz7mrSWnmDmEP3A+fwDksZI6</latexit>

softmax
<latexit sha1_base64="RdwXG5TrPEjGigIVyRuJ9onccwI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhtnJbDJkHstMryYs+Q8vHhTx6r9482+cJHvQxIKGoqqb7q4oEdyC7397K6tr6xubha3i9s7u3n7p4LBhdWooq1MttGlFxDLBFasDB8FaiWFERoI1o+HN1G8+MmO5VvcwTlgoSV/xmFMCTnroABtBZnUMkowm3VLZr/gz4GUS5KSMctS6pa9OT9NUMgVUEGvbgZ9AmBEDnAo2KXZSyxJCh6TP2o4qIpkNs9nVE3zqlB6OtXGlAM/U3xMZkdaOZeQ6JYGBXfSm4n9eO4X4Ksy4SlJgis4XxanAoPE0AtzjhlEQY0cINdzdiumAGELBBVV0IQSLLy+Txnkl8CvB3UW5ep3HUUDH6ASdoQBdoiq6RTVURxQZ9Ixe0Zv35L14797HvHXFy2eO0B94nz95N5Mh</latexit><latexit sha1_base64="RdwXG5TrPEjGigIVyRuJ9onccwI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhtnJbDJkHstMryYs+Q8vHhTx6r9482+cJHvQxIKGoqqb7q4oEdyC7397K6tr6xubha3i9s7u3n7p4LBhdWooq1MttGlFxDLBFasDB8FaiWFERoI1o+HN1G8+MmO5VvcwTlgoSV/xmFMCTnroABtBZnUMkowm3VLZr/gz4GUS5KSMctS6pa9OT9NUMgVUEGvbgZ9AmBEDnAo2KXZSyxJCh6TP2o4qIpkNs9nVE3zqlB6OtXGlAM/U3xMZkdaOZeQ6JYGBXfSm4n9eO4X4Ksy4SlJgis4XxanAoPE0AtzjhlEQY0cINdzdiumAGELBBVV0IQSLLy+Txnkl8CvB3UW5ep3HUUDH6ASdoQBdoiq6RTVURxQZ9Ixe0Zv35L14797HvHXFy2eO0B94nz95N5Mh</latexit><latexit sha1_base64="RdwXG5TrPEjGigIVyRuJ9onccwI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhtnJbDJkHstMryYs+Q8vHhTx6r9482+cJHvQxIKGoqqb7q4oEdyC7397K6tr6xubha3i9s7u3n7p4LBhdWooq1MttGlFxDLBFasDB8FaiWFERoI1o+HN1G8+MmO5VvcwTlgoSV/xmFMCTnroABtBZnUMkowm3VLZr/gz4GUS5KSMctS6pa9OT9NUMgVUEGvbgZ9AmBEDnAo2KXZSyxJCh6TP2o4qIpkNs9nVE3zqlB6OtXGlAM/U3xMZkdaOZeQ6JYGBXfSm4n9eO4X4Ksy4SlJgis4XxanAoPE0AtzjhlEQY0cINdzdiumAGELBBVV0IQSLLy+Txnkl8CvB3UW5ep3HUUDH6ASdoQBdoiq6RTVURxQZ9Ixe0Zv35L14797HvHXFy2eO0B94nz95N5Mh</latexit><latexit sha1_base64="RdwXG5TrPEjGigIVyRuJ9onccwI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhtnJbDJkHstMryYs+Q8vHhTx6r9482+cJHvQxIKGoqqb7q4oEdyC7397K6tr6xubha3i9s7u3n7p4LBhdWooq1MttGlFxDLBFasDB8FaiWFERoI1o+HN1G8+MmO5VvcwTlgoSV/xmFMCTnroABtBZnUMkowm3VLZr/gz4GUS5KSMctS6pa9OT9NUMgVUEGvbgZ9AmBEDnAo2KXZSyxJCh6TP2o4qIpkNs9nVE3zqlB6OtXGlAM/U3xMZkdaOZeQ6JYGBXfSm4n9eO4X4Ksy4SlJgis4XxanAoPE0AtzjhlEQY0cINdzdiumAGELBBVV0IQSLLy+Txnkl8CvB3UW5ep3HUUDH6ASdoQBdoiq6RTVURxQZ9Ixe0Zv35L14797HvHXFy2eO0B94nz95N5Mh</latexit>

loss
<latexit sha1_base64="1BAl1McS1UdONCi0Rprd6h2pr2o=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbSbt0kw27E7GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco0hxZXUuluyAxIkUALBUrophpYHErohOPbmd95BG2ESh5wkkIQs2EiIsEZWsnvITxhLpUx03615tbdOegq8QpSIwWa/epXb6B4FkOCXDJjfM9NMciZRsElTCu9zEDK+JgNwbc0YTGYIJ+fPKVnVhnQSGlbCdK5+nsiZ7Exkzi0nTHDkVn2ZuJ/np9hdB3kIkkzhIQvFkWZpKjo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7rl17/6y1rgp4iiTE3JKzolHrkiD3JEmaRFOFHkmr+TNQefFeXc+Fq0lp5g5Jn/gfP4AFBuRwg==</latexit><latexit sha1_base64="1BAl1McS1UdONCi0Rprd6h2pr2o=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbSbt0kw27E7GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco0hxZXUuluyAxIkUALBUrophpYHErohOPbmd95BG2ESh5wkkIQs2EiIsEZWsnvITxhLpUx03615tbdOegq8QpSIwWa/epXb6B4FkOCXDJjfM9NMciZRsElTCu9zEDK+JgNwbc0YTGYIJ+fPKVnVhnQSGlbCdK5+nsiZ7Exkzi0nTHDkVn2ZuJ/np9hdB3kIkkzhIQvFkWZpKjo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7rl17/6y1rgp4iiTE3JKzolHrkiD3JEmaRFOFHkmr+TNQefFeXc+Fq0lp5g5Jn/gfP4AFBuRwg==</latexit><latexit sha1_base64="1BAl1McS1UdONCi0Rprd6h2pr2o=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbSbt0kw27E7GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco0hxZXUuluyAxIkUALBUrophpYHErohOPbmd95BG2ESh5wkkIQs2EiIsEZWsnvITxhLpUx03615tbdOegq8QpSIwWa/epXb6B4FkOCXDJjfM9NMciZRsElTCu9zEDK+JgNwbc0YTGYIJ+fPKVnVhnQSGlbCdK5+nsiZ7Exkzi0nTHDkVn2ZuJ/np9hdB3kIkkzhIQvFkWZpKjo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7rl17/6y1rgp4iiTE3JKzolHrkiD3JEmaRFOFHkmr+TNQefFeXc+Fq0lp5g5Jn/gfP4AFBuRwg==</latexit><latexit sha1_base64="1BAl1McS1UdONCi0Rprd6h2pr2o=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPSUDbbSbt0kw27E7GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco0hxZXUuluyAxIkUALBUrophpYHErohOPbmd95BG2ESh5wkkIQs2EiIsEZWsnvITxhLpUx03615tbdOegq8QpSIwWa/epXb6B4FkOCXDJjfM9NMciZRsElTCu9zEDK+JgNwbc0YTGYIJ+fPKVnVhnQSGlbCdK5+nsiZ7Exkzi0nTHDkVn2ZuJ/np9hdB3kIkkzhIQvFkWZpKjo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7rl17/6y1rgp4iiTE3JKzolHrkiD3JEmaRFOFHkmr+TNQefFeXc+Fq0lp5g5Jn/gfP4AFBuRwg==</latexit>

location regularizer
<latexit sha1_base64="VP5MiGqI1ccndf/KjP3ka07LlAk=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQyCVbgTQcugjWUE8wHJEfY2c8mSvQ9258R4pLDxr9hYKGLrj7Dz37hJrtDEBwOP92aYmecnUmh0nG+rsLK6tr5R3Cxtbe/s7tn7B00dp4pDg8cyVm2faZAiggYKlNBOFLDQl9DyR1dTv3UHSos4usVxAl7IBpEIBGdopJ5d7iLcYybjuUAVDFLJlHgANenZFafqzECXiZuTCslR79lf3X7M0xAi5JJp3XGdBL2MKRRcwqTUTTUkjI/YADqGRiwE7WWzJyb02Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dJMbjwMhElKULE54uCVFKM6TQR2hcKOMqxIYwrYW6lfMgU42hyK5kQ3MWXl0nztOo6VffmrFK7zOMokjI5IifEJeekRq5JnTQIJ4/kmbySN+vJerHerY95a8HKZw7JH1ifPwf1mPc=</latexit><latexit sha1_base64="VP5MiGqI1ccndf/KjP3ka07LlAk=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQyCVbgTQcugjWUE8wHJEfY2c8mSvQ9258R4pLDxr9hYKGLrj7Dz37hJrtDEBwOP92aYmecnUmh0nG+rsLK6tr5R3Cxtbe/s7tn7B00dp4pDg8cyVm2faZAiggYKlNBOFLDQl9DyR1dTv3UHSos4usVxAl7IBpEIBGdopJ5d7iLcYybjuUAVDFLJlHgANenZFafqzECXiZuTCslR79lf3X7M0xAi5JJp3XGdBL2MKRRcwqTUTTUkjI/YADqGRiwE7WWzJyb02Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dJMbjwMhElKULE54uCVFKM6TQR2hcKOMqxIYwrYW6lfMgU42hyK5kQ3MWXl0nztOo6VffmrFK7zOMokjI5IifEJeekRq5JnTQIJ4/kmbySN+vJerHerY95a8HKZw7JH1ifPwf1mPc=</latexit><latexit sha1_base64="VP5MiGqI1ccndf/KjP3ka07LlAk=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQyCVbgTQcugjWUE8wHJEfY2c8mSvQ9258R4pLDxr9hYKGLrj7Dz37hJrtDEBwOP92aYmecnUmh0nG+rsLK6tr5R3Cxtbe/s7tn7B00dp4pDg8cyVm2faZAiggYKlNBOFLDQl9DyR1dTv3UHSos4usVxAl7IBpEIBGdopJ5d7iLcYybjuUAVDFLJlHgANenZFafqzECXiZuTCslR79lf3X7M0xAi5JJp3XGdBL2MKRRcwqTUTTUkjI/YADqGRiwE7WWzJyb02Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dJMbjwMhElKULE54uCVFKM6TQR2hcKOMqxIYwrYW6lfMgU42hyK5kQ3MWXl0nztOo6VffmrFK7zOMokjI5IifEJeekRq5JnTQIJ4/kmbySN+vJerHerY95a8HKZw7JH1ifPwf1mPc=</latexit><latexit sha1_base64="VP5MiGqI1ccndf/KjP3ka07LlAk=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQyCVbgTQcugjWUE8wHJEfY2c8mSvQ9258R4pLDxr9hYKGLrj7Dz37hJrtDEBwOP92aYmecnUmh0nG+rsLK6tr5R3Cxtbe/s7tn7B00dp4pDg8cyVm2faZAiggYKlNBOFLDQl9DyR1dTv3UHSos4usVxAl7IBpEIBGdopJ5d7iLcYybjuUAVDFLJlHgANenZFafqzECXiZuTCslR79lf3X7M0xAi5JJp3XGdBL2MKRRcwqTUTTUkjI/YADqGRiwE7WWzJyb02Ch9GsTKVIR0pv6eyFio9Tj0TWfIcKgXvan4n9dJMbjwMhElKULE54uCVFKM6TQR2hcKOMqxIYwrYW6lfMgU42hyK5kQ3MWXl0nztOo6VffmrFK7zOMokjI5IifEJeekRq5JnTQIJ4/kmbySN+vJerHerY95a8HKZw7JH1ifPwf1mPc=</latexit>

Graph Attention Network
<latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="sG55CNUTrvSrOk4eQQgYkbxKWrY=">AAAB/HicbVC7SgNBFL3rM8aoq60gg0GwCrs2WioWWkkE84BkCbOTSTJkdmeZuauGJZ2Nv2JjoYjfYeffOJuk0MQDFw7nzOOeEyZSGPS8b2dpeWV1bb2wUdwsbW3vuLululGpZrzGlFS6GVLDpYh5DQVK3kw0p1EoeSMcXuZ+455rI1R8h6OEBxHtx6InGEUrddyDNvJHzK40TQbkApHHuU5uOD4oPRx33LJX8SYgi8SfkTLMUO24X+2uYmlk32GSGtPyvQSDjGoUTPJxsZ0anlA2pH3esjSmETdBNskxJkdW6ZKe0nZiJBP1942MRsaMotCejCgOzLyXi/95rRR7Z0Em4iS1Adn0o14qCSqSl0K6QnOGcmQJZVrYXQkbUE0Z2uqKtgR/PvIiqZ9UfK/i33pQgH04hGPw4RTO4RqqUAMGT/ACb/DuPDuvzse0riVn1tse/IHz+QP8RJhQ</latexit><latexit sha1_base64="sG55CNUTrvSrOk4eQQgYkbxKWrY=">AAAB/HicbVC7SgNBFL3rM8aoq60gg0GwCrs2WioWWkkE84BkCbOTSTJkdmeZuauGJZ2Nv2JjoYjfYeffOJuk0MQDFw7nzOOeEyZSGPS8b2dpeWV1bb2wUdwsbW3vuLululGpZrzGlFS6GVLDpYh5DQVK3kw0p1EoeSMcXuZ+455rI1R8h6OEBxHtx6InGEUrddyDNvJHzK40TQbkApHHuU5uOD4oPRx33LJX8SYgi8SfkTLMUO24X+2uYmlk32GSGtPyvQSDjGoUTPJxsZ0anlA2pH3esjSmETdBNskxJkdW6ZKe0nZiJBP1942MRsaMotCejCgOzLyXi/95rRR7Z0Em4iS1Adn0o14qCSqSl0K6QnOGcmQJZVrYXQkbUE0Z2uqKtgR/PvIiqZ9UfK/i33pQgH04hGPw4RTO4RqqUAMGT/ACb/DuPDuvzse0riVn1tse/IHz+QP8RJhQ</latexit><latexit sha1_base64="in2yMCTJ3lNAGkKei5KTEoOGxcs=">AAACB3icbVC7TsMwFHXKq5RXgBEJWVRITFXCAmOBASZUJPqQ2qhyXKe16sSRfQNUUTcWfoWFAYRY+QU2/ganzQAtR7J0dM69ts/xY8E1OM63VVhYXFpeKa6W1tY3Nrfs7Z2GlomirE6lkKrlE80Ej1gdOAjWihUjoS9Y0x9eZH7zjinNZXQLo5h5IelHPOCUgJG69n4H2AOkl4rEA3wGwKJMx9cM7qUajrt22ak4E+B54uakjHLUuvZXpydpEpp7qCBat10nBi8lCjgVbFzqJJrFhA5Jn7UNjUjItJdOcozxoVF6OJDKnAjwRP29kZJQ61Hom8mQwEDPepn4n9dOIDj1Uh7FiQlIpw8FicAgcVYK7nHFKIiRIYQqbv6K6YAoQsFUVzIluLOR50njuOI6FffGKVfP8zqKaA8doCPkohNURVeohuqIokf0jF7Rm/VkvVjv1sd0tGDlO7voD6zPH5apmb4=</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit><latexit sha1_base64="UkAViDKsrBmmNDQSWJn5840AkvY=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdFl1oSupYB/QDiWTZtrQzGRI7qhl6M6Nv+LGhSJu/QV3/o2ZdhbaeiBwOOfeJOf4seAaHOfbmptfWFxaLqwUV9fWNzbtre26lomirEalkKrpE80Ej1gNOAjWjBUjoS9Ywx9cZH7jjinNZXQLw5h5IelFPOCUgJE69l4b2AOkl4rEfXwGwKJMx9cM7qUajDp2ySk7Y+BZ4uakhHJUO/ZXuytpEpp7qCBat1wnBi8lCjgVbFRsJ5rFhA5Ij7UMjUjItJeOc4zwgVG6OJDKnAjwWP29kZJQ62Hom8mQQF9Pe5n4n9dKIDj1Uh7FiQlIJw8FicAgcVYK7nLFKIihIYQqbv6KaZ8oQsFUVzQluNORZ0n9qOw6ZffmuFQ5z+sooF20jw6Ri05QBV2hKqohih7RM3pFb9aT9WK9Wx+T0Tkr39lBf2B9/gCX6ZnC</latexit>

Language Attention Network
<latexit sha1_base64="tJ+o4Fx+I9+tZFADTYWjdQQFy3I=">AAACCnicbVC7TsMwFHV4lvIKMLIYKiSmKkFIMBZYGBAqEn1IbVQ5rtNadZzIvgGqqDMLv8LCAEKsfAEbf4PTZoCWI1k6Ouc+fI8fC67Bcb6tufmFxaXlwkpxdW19Y9Pe2q7rKFGU1WgkItX0iWaCS1YDDoI1Y8VI6AvW8AcXmd+4Y0rzSN7CMGZeSHqSB5wSMFLH3msDe4D0isheQnoMnwEwmVn4msF9pAajjl1yys4YeJa4OSmhHNWO/dXuRjQJzRwqiNYt14nBS4kCTgUbFduJZjGhA7OuZagkIdNeOj5lhA+M0sVBpMyTgMfq746UhFoPQ99UhgT6etrLxP+8VgLBqZdyGSfmQDpZFCQCQ4SzXHCXK0ZBDA0hVHHzV0z7RBEKJr2iCcGdPnmW1I/KrlN2b45LlfM8jgLaRfvoELnoBFXQJaqiGqLoET2jV/RmPVkv1rv1MSmds/KeHfQH1ucP/RabEg==</latexit><latexit sha1_base64="tJ+o4Fx+I9+tZFADTYWjdQQFy3I=">AAACCnicbVC7TsMwFHV4lvIKMLIYKiSmKkFIMBZYGBAqEn1IbVQ5rtNadZzIvgGqqDMLv8LCAEKsfAEbf4PTZoCWI1k6Ouc+fI8fC67Bcb6tufmFxaXlwkpxdW19Y9Pe2q7rKFGU1WgkItX0iWaCS1YDDoI1Y8VI6AvW8AcXmd+4Y0rzSN7CMGZeSHqSB5wSMFLH3msDe4D0isheQnoMnwEwmVn4msF9pAajjl1yys4YeJa4OSmhHNWO/dXuRjQJzRwqiNYt14nBS4kCTgUbFduJZjGhA7OuZagkIdNeOj5lhA+M0sVBpMyTgMfq746UhFoPQ99UhgT6etrLxP+8VgLBqZdyGSfmQDpZFCQCQ4SzXHCXK0ZBDA0hVHHzV0z7RBEKJr2iCcGdPnmW1I/KrlN2b45LlfM8jgLaRfvoELnoBFXQJaqiGqLoET2jV/RmPVkv1rv1MSmds/KeHfQH1ucP/RabEg==</latexit><latexit sha1_base64="tJ+o4Fx+I9+tZFADTYWjdQQFy3I=">AAACCnicbVC7TsMwFHV4lvIKMLIYKiSmKkFIMBZYGBAqEn1IbVQ5rtNadZzIvgGqqDMLv8LCAEKsfAEbf4PTZoCWI1k6Ouc+fI8fC67Bcb6tufmFxaXlwkpxdW19Y9Pe2q7rKFGU1WgkItX0iWaCS1YDDoI1Y8VI6AvW8AcXmd+4Y0rzSN7CMGZeSHqSB5wSMFLH3msDe4D0isheQnoMnwEwmVn4msF9pAajjl1yys4YeJa4OSmhHNWO/dXuRjQJzRwqiNYt14nBS4kCTgUbFduJZjGhA7OuZagkIdNeOj5lhA+M0sVBpMyTgMfq746UhFoPQ99UhgT6etrLxP+8VgLBqZdyGSfmQDpZFCQCQ4SzXHCXK0ZBDA0hVHHzV0z7RBEKJr2iCcGdPnmW1I/KrlN2b45LlfM8jgLaRfvoELnoBFXQJaqiGqLoET2jV/RmPVkv1rv1MSmds/KeHfQH1ucP/RabEg==</latexit><latexit sha1_base64="tJ+o4Fx+I9+tZFADTYWjdQQFy3I=">AAACCnicbVC7TsMwFHV4lvIKMLIYKiSmKkFIMBZYGBAqEn1IbVQ5rtNadZzIvgGqqDMLv8LCAEKsfAEbf4PTZoCWI1k6Ouc+fI8fC67Bcb6tufmFxaXlwkpxdW19Y9Pe2q7rKFGU1WgkItX0iWaCS1YDDoI1Y8VI6AvW8AcXmd+4Y0rzSN7CMGZeSHqSB5wSMFLH3msDe4D0isheQnoMnwEwmVn4msF9pAajjl1yys4YeJa4OSmhHNWO/dXuRjQJzRwqiNYt14nBS4kCTgUbFduJZjGhA7OuZagkIdNeOj5lhA+M0sVBpMyTgMfq746UhFoPQ99UhgT6etrLxP+8VgLBqZdyGSfmQDpZFCQCQ4SzXHCXK0ZBDA0hVHHzV0z7RBEKJr2iCcGdPnmW1I/KrlN2b45LlfM8jgLaRfvoELnoBFXQJaqiGqLoET2jV/RmPVkv1rv1MSmds/KeHfQH1ucP/RabEg==</latexit>

Hybrid Attention
<latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="ywTv53sF33i/a+8MYdBhD7ft8Vk=">AAAB9XicbVC7SgNBFL0bXzFGXW0sbAaDYBV2bbRUbFJGMA9IljA7O5sMmX0wc1cMyzb+io2FIv6KnX/jbJJCEw9cOJxzLzPn+KkUGh3n26psbG5t71R3a3v1/YND+6je1UmmGO+wRCaq71PNpYh5BwVK3k8Vp5Evec+f3pV+75ErLZL4AWcp9yI6jkUoGEUjjeyTIfInzFszX4mA3CLyuDSKkd1wms4cZJ24S9KAJdoj+2sYJCyLzD2TVOuB66To5VShYJIXtWGmeUrZlI75wNCYRlx7+TxAQc6NEpAwUWZiJHP190VOI61nkW82I4oTveqV4n/eIMPw2stFnGYmGFs8FGaSYELKNkggFGcoZ4ZQpoT5K2ETqihD01nNlOCuRl4n3cum6zTdeweqcApncAEuXMENtKANHWBQwAu8wbv1bL1aH4u6Ktayt2P4A+vzB96nlXc=</latexit><latexit sha1_base64="ywTv53sF33i/a+8MYdBhD7ft8Vk=">AAAB9XicbVC7SgNBFL0bXzFGXW0sbAaDYBV2bbRUbFJGMA9IljA7O5sMmX0wc1cMyzb+io2FIv6KnX/jbJJCEw9cOJxzLzPn+KkUGh3n26psbG5t71R3a3v1/YND+6je1UmmGO+wRCaq71PNpYh5BwVK3k8Vp5Evec+f3pV+75ErLZL4AWcp9yI6jkUoGEUjjeyTIfInzFszX4mA3CLyuDSKkd1wms4cZJ24S9KAJdoj+2sYJCyLzD2TVOuB66To5VShYJIXtWGmeUrZlI75wNCYRlx7+TxAQc6NEpAwUWZiJHP190VOI61nkW82I4oTveqV4n/eIMPw2stFnGYmGFs8FGaSYELKNkggFGcoZ4ZQpoT5K2ETqihD01nNlOCuRl4n3cum6zTdeweqcApncAEuXMENtKANHWBQwAu8wbv1bL1aH4u6Ktayt2P4A+vzB96nlXc=</latexit><latexit sha1_base64="Nc8hiPI7iM7cEaBK22xXtekTtdI=">AAACAHicbVC7SgNBFL3rM8bXqoWFzWAQrMKujZZRm5QRzAOSJczOTpIhsw9m7ophSeOv2FgoYutn2Pk3ziZbaOKBgcM593LnHD+RQqPjfFsrq2vrG5ulrfL2zu7evn1w2NJxqhhvsljGquNTzaWIeBMFSt5JFKehL3nbH9/mfvuBKy3i6B4nCfdCOozEQDCKRurbxz3kj5jVJ74SAblG5FFuTPt2xak6M5Bl4hakAgUaffurF8QsDc0+k1Trrusk6GVUoWCST8u9VPOEsjEd8q6hEQ259rJZgCk5M0pABrEyL0IyU39vZDTUehL6ZjKkONKLXi7+53VTHFx5mYiS1ARj80ODVBKMSd4GCYTiDOXEEMqUMH8lbEQVZWg6K5sS3MXIy6R1UXWdqnvnVGo3RR0lOIFTOAcXLqEGdWhAExhM4Rle4c16sl6sd+tjPrpiFTtH8AfW5w9arpbe</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit><latexit sha1_base64="fHQ1CPbKSROxSdYrOUWcucasogc=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6qbLCvYBbSiTyaQdOnkwcyOGkI2/4saFIm79DHf+jZM2C209MHA4517unOPGgiuwrG+jsrK6tr5R3axtbe/s7pn7B10VJZKyDo1EJPsuUUzwkHWAg2D9WDISuIL13Olt4fcemFQ8Cu8hjZkTkHHIfU4JaGlkHg2BPULWSl3JPXwNwMLCyEdm3WpYM+BlYpekjkq0R+bX0ItoEuh9KohSA9uKwcmIBE4Fy2vDRLGY0CkZs4GmIQmYcrJZgByfasXDfiT1CwHP1N8bGQmUSgNXTwYEJmrRK8T/vEEC/pWT8TBOdDA6P+QnAkOEizawxyWjIFJNCJVc/xXTCZGEgu6spkuwFyMvk+55w7Ya9t1FvXlT1lFFx+gEnSEbXaImaqE26iCKcvSMXtGb8WS8GO/Gx3y0YpQ7h+gPjM8fW+6W4g==</latexit>

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

x3
<latexit sha1_base64="TQ33fRXyPFetK0LUClcfydpelNI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+qd98oVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEOuI2i</latexit><latexit sha1_base64="TQ33fRXyPFetK0LUClcfydpelNI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+qd98oVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEOuI2i</latexit><latexit sha1_base64="TQ33fRXyPFetK0LUClcfydpelNI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+qd98oVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEOuI2i</latexit><latexit sha1_base64="TQ33fRXyPFetK0LUClcfydpelNI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+qd98oVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEOuI2i</latexit>

x4
<latexit sha1_base64="AlKM6oMHVKv8OS4xnuSaxrc1A3Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3VKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAQPI2j</latexit><latexit sha1_base64="AlKM6oMHVKv8OS4xnuSaxrc1A3Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3VKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAQPI2j</latexit><latexit sha1_base64="AlKM6oMHVKv8OS4xnuSaxrc1A3Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3VKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAQPI2j</latexit><latexit sha1_base64="AlKM6oMHVKv8OS4xnuSaxrc1A3Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVD236t3VKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAQPI2j</latexit>

↵12
<latexit sha1_base64="BUqGKqtKl+lss8oPbbzXbB7KuW4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRF0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpNOo+17df7iqNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APG7kQQ=</latexit><latexit sha1_base64="BUqGKqtKl+lss8oPbbzXbB7KuW4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRF0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpNOo+17df7iqNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APG7kQQ=</latexit><latexit sha1_base64="BUqGKqtKl+lss8oPbbzXbB7KuW4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRF0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpNOo+17df7iqNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APG7kQQ=</latexit><latexit sha1_base64="BUqGKqtKl+lss8oPbbzXbB7KuW4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRF0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpNOo+17df7iqNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APG7kQQ=</latexit>

↵13
<latexit sha1_base64="/7azgbBnBhVS85N7pg9iaB8wFLI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFpKJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdiBgmuGQt5ChYN9WMJJFgnWh8N/M7T0wbruQjTlIWJmQoecwpQSsFPSLSEenn/uW0X615dW8Od5X4BalBgWa/+tUbKJolTCIVxJjA91IMc6KRU8GmlV5mWEromAxZYKkkCTNhPj956p5ZZeDGStuS6M7V3xM5SYyZJJHtTAiOzLI3E//zggzjmzDnMs2QSbpYFGfCReXO/ncHXDOKYmIJoZrbW106IppQtClVbAj+8surpH1R9726/3BVa9wWcZThBE7hHHy4hgbcQxNaQEHBM7zCm4POi/PufCxaS04xcwx/4Hz+APNAkQU=</latexit><latexit sha1_base64="/7azgbBnBhVS85N7pg9iaB8wFLI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFpKJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdiBgmuGQt5ChYN9WMJJFgnWh8N/M7T0wbruQjTlIWJmQoecwpQSsFPSLSEenn/uW0X615dW8Od5X4BalBgWa/+tUbKJolTCIVxJjA91IMc6KRU8GmlV5mWEromAxZYKkkCTNhPj956p5ZZeDGStuS6M7V3xM5SYyZJJHtTAiOzLI3E//zggzjmzDnMs2QSbpYFGfCReXO/ncHXDOKYmIJoZrbW106IppQtClVbAj+8surpH1R9726/3BVa9wWcZThBE7hHHy4hgbcQxNaQEHBM7zCm4POi/PufCxaS04xcwx/4Hz+APNAkQU=</latexit><latexit sha1_base64="/7azgbBnBhVS85N7pg9iaB8wFLI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFpKJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdiBgmuGQt5ChYN9WMJJFgnWh8N/M7T0wbruQjTlIWJmQoecwpQSsFPSLSEenn/uW0X615dW8Od5X4BalBgWa/+tUbKJolTCIVxJjA91IMc6KRU8GmlV5mWEromAxZYKkkCTNhPj956p5ZZeDGStuS6M7V3xM5SYyZJJHtTAiOzLI3E//zggzjmzDnMs2QSbpYFGfCReXO/ncHXDOKYmIJoZrbW106IppQtClVbAj+8surpH1R9726/3BVa9wWcZThBE7hHHy4hgbcQxNaQEHBM7zCm4POi/PufCxaS04xcwx/4Hz+APNAkQU=</latexit><latexit sha1_base64="/7azgbBnBhVS85N7pg9iaB8wFLI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+wFpKJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmltfWNzq7xd2dnd2z+oHh61jco0ZS2qhNLdiBgmuGQt5ChYN9WMJJFgnWh8N/M7T0wbruQjTlIWJmQoecwpQSsFPSLSEenn/uW0X615dW8Od5X4BalBgWa/+tUbKJolTCIVxJjA91IMc6KRU8GmlV5mWEromAxZYKkkCTNhPj956p5ZZeDGStuS6M7V3xM5SYyZJJHtTAiOzLI3E//zggzjmzDnMs2QSbpYFGfCReXO/ncHXDOKYmIJoZrbW106IppQtClVbAj+8surpH1R9726/3BVa9wWcZThBE7hHHy4hgbcQxNaQEHBM7zCm4POi/PufCxaS04xcwx/4Hz+APNAkQU=</latexit>

↵11
<latexit sha1_base64="Wnt2CZuqUF49iOSHUdBdjklrDmg=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0DJoYxnBxEByhL3NXrJk7/bYnRPCkZ9hY6GIrb/Gzn/jJrlCEx8MPN6bYWZemCpp0fe/vdLa+sbmVnm7srO7t39QPTxqW50ZLlpcK206IbNCyUS0UKISndQIFodKPIbj25n/+CSMlTp5wEkqgpgNExlJztBJ3R5T6Yj1c0qn/WrNr/tzkFVCC1KDAs1+9as30DyLRYJcMWu71E8xyJlByZWYVnqZFSnjYzYUXUcTFgsb5POTp+TMKQMSaeMqQTJXf0/kLLZ2EoeuM2Y4ssveTPzP62YYXQe5TNIMRcIXi6JMEdRk9j8ZSCM4qokjjBvpbiV8xAzj6FKquBDo8surpH1Rp36d3l/WGjdFHGU4gVM4BwpX0IA7aEILOGh4hld489B78d69j0VryStmjuEPvM8f8DaRAw==</latexit><latexit sha1_base64="Wnt2CZuqUF49iOSHUdBdjklrDmg=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0DJoYxnBxEByhL3NXrJk7/bYnRPCkZ9hY6GIrb/Gzn/jJrlCEx8MPN6bYWZemCpp0fe/vdLa+sbmVnm7srO7t39QPTxqW50ZLlpcK206IbNCyUS0UKISndQIFodKPIbj25n/+CSMlTp5wEkqgpgNExlJztBJ3R5T6Yj1c0qn/WrNr/tzkFVCC1KDAs1+9as30DyLRYJcMWu71E8xyJlByZWYVnqZFSnjYzYUXUcTFgsb5POTp+TMKQMSaeMqQTJXf0/kLLZ2EoeuM2Y4ssveTPzP62YYXQe5TNIMRcIXi6JMEdRk9j8ZSCM4qokjjBvpbiV8xAzj6FKquBDo8surpH1Rp36d3l/WGjdFHGU4gVM4BwpX0IA7aEILOGh4hld489B78d69j0VryStmjuEPvM8f8DaRAw==</latexit><latexit sha1_base64="Wnt2CZuqUF49iOSHUdBdjklrDmg=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0DJoYxnBxEByhL3NXrJk7/bYnRPCkZ9hY6GIrb/Gzn/jJrlCEx8MPN6bYWZemCpp0fe/vdLa+sbmVnm7srO7t39QPTxqW50ZLlpcK206IbNCyUS0UKISndQIFodKPIbj25n/+CSMlTp5wEkqgpgNExlJztBJ3R5T6Yj1c0qn/WrNr/tzkFVCC1KDAs1+9as30DyLRYJcMWu71E8xyJlByZWYVnqZFSnjYzYUXUcTFgsb5POTp+TMKQMSaeMqQTJXf0/kLLZ2EoeuM2Y4ssveTPzP62YYXQe5TNIMRcIXi6JMEdRk9j8ZSCM4qokjjBvpbiV8xAzj6FKquBDo8surpH1Rp36d3l/WGjdFHGU4gVM4BwpX0IA7aEILOGh4hld489B78d69j0VryStmjuEPvM8f8DaRAw==</latexit><latexit sha1_base64="Wnt2CZuqUF49iOSHUdBdjklrDmg=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFoNgFW5F0DJoYxnBxEByhL3NXrJk7/bYnRPCkZ9hY6GIrb/Gzn/jJrlCEx8MPN6bYWZemCpp0fe/vdLa+sbmVnm7srO7t39QPTxqW50ZLlpcK206IbNCyUS0UKISndQIFodKPIbj25n/+CSMlTp5wEkqgpgNExlJztBJ3R5T6Yj1c0qn/WrNr/tzkFVCC1KDAs1+9as30DyLRYJcMWu71E8xyJlByZWYVnqZFSnjYzYUXUcTFgsb5POTp+TMKQMSaeMqQTJXf0/kLLZ2EoeuM2Y4ssveTPzP62YYXQe5TNIMRcIXi6JMEdRk9j8ZSCM4qokjjBvpbiV8xAzj6FKquBDo8surpH1Rp36d3l/WGjdFHGU4gVM4BwpX0IA7aEILOGh4hld489B78d69j0VryStmjuEPvM8f8DaRAw==</latexit>

↵14
<latexit sha1_base64="P7gHn6CJBAAnjr8CFgl5tAM1tGY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpHNV9726/9CoNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APTFkQY=</latexit><latexit sha1_base64="P7gHn6CJBAAnjr8CFgl5tAM1tGY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpHNV9726/9CoNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APTFkQY=</latexit><latexit sha1_base64="P7gHn6CJBAAnjr8CFgl5tAM1tGY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpHNV9726/9CoNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APTFkQY=</latexit><latexit sha1_base64="P7gHn6CJBAAnjr8CFgl5tAM1tGY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPRi8cK9gPSUDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ETFMcMnayFGwXqoZSSLButHkbu53n5g2XMlHnKYsTMhI8phTglYK+kSkYzLI/cZsUK15dW8Bd534BalBgdag+tUfKpolTCIVxJjA91IMc6KRU8FmlX5mWErohIxYYKkkCTNhvjh55l5YZejGStuS6C7U3xM5SYyZJpHtTAiOzao3F//zggzjmzDnMs2QSbpcFGfCReXO/3eHXDOKYmoJoZrbW106JppQtClVbAj+6svrpHNV9726/9CoNW+LOMpwBudwCT5cQxPuoQVtoKDgGV7hzUHnxXl3PpatJaeYOYU/cD5/APTFkQY=</latexit>

↵v
<latexit sha1_base64="vL2217OcUUeGssLCorXxBVj2ajA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae2oUy2m3bpZhN2N4US+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38399oQpzWP5aKYJ8yMcSh5yisZKTz0UyQj72WTWL1fcqrsAWSdeTiqQo9Evf/UGMU0jJg0VqHXXcxPjZ6gMp4LNSr1UswTpGIesa6nEiGk/W1w8IxdWGZAwVrakIQv190SGkdbTKLCdEZqRXvXm4n9eNzXhjZ9xmaSGSbpcFKaCmJjM3ycDrhg1YmoJUsXtrYSOUCE1NqSSDcFbfXmdtK6qnlv1Hq4r9ds8jiKcwTlcggc1qMM9NKAJFCQ8wyu8Odp5cd6dj2VrwclnTuEPnM8f5jeRDQ==</latexit><latexit sha1_base64="vL2217OcUUeGssLCorXxBVj2ajA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae2oUy2m3bpZhN2N4US+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38399oQpzWP5aKYJ8yMcSh5yisZKTz0UyQj72WTWL1fcqrsAWSdeTiqQo9Evf/UGMU0jJg0VqHXXcxPjZ6gMp4LNSr1UswTpGIesa6nEiGk/W1w8IxdWGZAwVrakIQv190SGkdbTKLCdEZqRXvXm4n9eNzXhjZ9xmaSGSbpcFKaCmJjM3ycDrhg1YmoJUsXtrYSOUCE1NqSSDcFbfXmdtK6qnlv1Hq4r9ds8jiKcwTlcggc1qMM9NKAJFCQ8wyu8Odp5cd6dj2VrwclnTuEPnM8f5jeRDQ==</latexit><latexit sha1_base64="vL2217OcUUeGssLCorXxBVj2ajA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae2oUy2m3bpZhN2N4US+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38399oQpzWP5aKYJ8yMcSh5yisZKTz0UyQj72WTWL1fcqrsAWSdeTiqQo9Evf/UGMU0jJg0VqHXXcxPjZ6gMp4LNSr1UswTpGIesa6nEiGk/W1w8IxdWGZAwVrakIQv190SGkdbTKLCdEZqRXvXm4n9eNzXhjZ9xmaSGSbpcFKaCmJjM3ycDrhg1YmoJUsXtrYSOUCE1NqSSDcFbfXmdtK6qnlv1Hq4r9ds8jiKcwTlcggc1qMM9NKAJFCQ8wyu8Odp5cd6dj2VrwclnTuEPnM8f5jeRDQ==</latexit><latexit sha1_base64="vL2217OcUUeGssLCorXxBVj2ajA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae2oUy2m3bpZhN2N4US+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38399oQpzWP5aKYJ8yMcSh5yisZKTz0UyQj72WTWL1fcqrsAWSdeTiqQo9Evf/UGMU0jJg0VqHXXcxPjZ6gMp4LNSr1UswTpGIesa6nEiGk/W1w8IxdWGZAwVrakIQv190SGkdbTKLCdEZqRXvXm4n9eNzXhjZ9xmaSGSbpcFKaCmJjM3ycDrhg1YmoJUsXtrYSOUCE1NqSSDcFbfXmdtK6qnlv1Hq4r9ds8jiKcwTlcggc1qMM9NKAJFCQ8wyu8Odp5cd6dj2VrwclnTuEPnM8f5jeRDQ==</latexit>

↵u
<latexit sha1_base64="k+vanoIXztVkzEVezmensR/ydEc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCbbTbt0swm7G6GE/gsvHhTx6r/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt7nfeWJK81g+mGnC/AhHkoecorHSYx9FMsZBls4G1Zpbd+cgq8QrSA0KNAfVr/4wpmnEpKECte55bmL8DJXhVLBZpZ9qliCd4Ij1LJUYMe1n84tn5MwqQxLGypY0ZK7+nsgw0noaBbYzQjPWy14u/uf1UhNe+xmXSWqYpItFYSqIiUn+PhlyxagRU0uQKm5vJXSMCqmxIVVsCN7yy6ukfVH33Lp3f1lr3BRxlOEETuEcPLiCBtxBE1pAQcIzvMKbo50X5935WLSWnGLmGP7A+fwB5LKRDA==</latexit><latexit sha1_base64="k+vanoIXztVkzEVezmensR/ydEc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCbbTbt0swm7G6GE/gsvHhTx6r/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt7nfeWJK81g+mGnC/AhHkoecorHSYx9FMsZBls4G1Zpbd+cgq8QrSA0KNAfVr/4wpmnEpKECte55bmL8DJXhVLBZpZ9qliCd4Ij1LJUYMe1n84tn5MwqQxLGypY0ZK7+nsgw0noaBbYzQjPWy14u/uf1UhNe+xmXSWqYpItFYSqIiUn+PhlyxagRU0uQKm5vJXSMCqmxIVVsCN7yy6ukfVH33Lp3f1lr3BRxlOEETuEcPLiCBtxBE1pAQcIzvMKbo50X5935WLSWnGLmGP7A+fwB5LKRDA==</latexit><latexit sha1_base64="k+vanoIXztVkzEVezmensR/ydEc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCbbTbt0swm7G6GE/gsvHhTx6r/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt7nfeWJK81g+mGnC/AhHkoecorHSYx9FMsZBls4G1Zpbd+cgq8QrSA0KNAfVr/4wpmnEpKECte55bmL8DJXhVLBZpZ9qliCd4Ij1LJUYMe1n84tn5MwqQxLGypY0ZK7+nsgw0noaBbYzQjPWy14u/uf1UhNe+xmXSWqYpItFYSqIiUn+PhlyxagRU0uQKm5vJXSMCqmxIVVsCN7yy6ukfVH33Lp3f1lr3BRxlOEETuEcPLiCBtxBE1pAQcIzvMKbo50X5935WLSWnGLmGP7A+fwB5LKRDA==</latexit><latexit sha1_base64="k+vanoIXztVkzEVezmensR/ydEc=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCbbTbt0swm7G6GE/gsvHhTx6r/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt7nfeWJK81g+mGnC/AhHkoecorHSYx9FMsZBls4G1Zpbd+cgq8QrSA0KNAfVr/4wpmnEpKECte55bmL8DJXhVLBZpZ9qliCd4Ij1LJUYMe1n84tn5MwqQxLGypY0ZK7+nsgw0noaBbYzQjPWy14u/uf1UhNe+xmXSWqYpItFYSqIiUn+PhlyxagRU0uQKm5vJXSMCqmxIVVsCN7yy6ukfVH33Lp3f1lr3BRxlOEETuEcPLiCBtxBE1pAQcIzvMKbo50X5935WLSWnGLmGP7A+fwB5LKRDA==</latexit>

�21
<latexit sha1_base64="MYt0CpotA3AdV2kTj3XdVfc0Gt8=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlb1p71S2at4c7irxM9JGXLUe6Wvbj/maYSKuGTGdHwvoSBjmgSXOC12U4MJ42M2xI6likVogmx+8dQ9t0rfHcTaliJ3rv6eyFhkzCQKbWfEaGSWvZn4n9dJaXAdZEIlKaHii0WDVLoUu7P33b7QyElOLGFcC3ury0dMM042pKINwV9+eZU0qxXfq/j3l+XaTR5HAU7hDC7AhyuowR3UoQEcFDzDK7w5xnlx3p2PReuak8+cwB84nz8oBJCQ</latexit><latexit sha1_base64="MYt0CpotA3AdV2kTj3XdVfc0Gt8=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlb1p71S2at4c7irxM9JGXLUe6Wvbj/maYSKuGTGdHwvoSBjmgSXOC12U4MJ42M2xI6likVogmx+8dQ9t0rfHcTaliJ3rv6eyFhkzCQKbWfEaGSWvZn4n9dJaXAdZEIlKaHii0WDVLoUu7P33b7QyElOLGFcC3ury0dMM042pKINwV9+eZU0qxXfq/j3l+XaTR5HAU7hDC7AhyuowR3UoQEcFDzDK7w5xnlx3p2PReuak8+cwB84nz8oBJCQ</latexit><latexit sha1_base64="MYt0CpotA3AdV2kTj3XdVfc0Gt8=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlb1p71S2at4c7irxM9JGXLUe6Wvbj/maYSKuGTGdHwvoSBjmgSXOC12U4MJ42M2xI6likVogmx+8dQ9t0rfHcTaliJ3rv6eyFhkzCQKbWfEaGSWvZn4n9dJaXAdZEIlKaHii0WDVLoUu7P33b7QyElOLGFcC3ury0dMM042pKINwV9+eZU0qxXfq/j3l+XaTR5HAU7hDC7AhyuowR3UoQEcFDzDK7w5xnlx3p2PReuak8+cwB84nz8oBJCQ</latexit><latexit sha1_base64="MYt0CpotA3AdV2kTj3XdVfc0Gt8=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlb1p71S2at4c7irxM9JGXLUe6Wvbj/maYSKuGTGdHwvoSBjmgSXOC12U4MJ42M2xI6likVogmx+8dQ9t0rfHcTaliJ3rv6eyFhkzCQKbWfEaGSWvZn4n9dJaXAdZEIlKaHii0WDVLoUu7P33b7QyElOLGFcC3ury0dMM042pKINwV9+eZU0qxXfq/j3l+XaTR5HAU7hDC7AhyuowR3UoQEcFDzDK7w5xnlx3p2PReuak8+cwB84nz8oBJCQ</latexit>

�22
<latexit sha1_base64="efI6Zp/XiaOgC4gTeNBXRBPYvsY=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlatTnulslfx5nBXiZ+TMuSo90pf3X7M0wgVccmM6fheQkHGNAkucVrspgYTxsdsiB1LFYvQBNn84ql7bpW+O4i1LUXuXP09kbHImEkU2s6I0cgsezPxP6+T0uA6yIRKUkLFF4sGqXQpdmfvu32hkZOcWMK4FvZWl4+YZpxsSEUbgr/88ippViu+V/HvL8u1mzyOApzCGVyAD1dQgzuoQwM4KHiGV3hzjPPivDsfi9Y1J585gT9wPn8AKYmQkQ==</latexit><latexit sha1_base64="efI6Zp/XiaOgC4gTeNBXRBPYvsY=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlatTnulslfx5nBXiZ+TMuSo90pf3X7M0wgVccmM6fheQkHGNAkucVrspgYTxsdsiB1LFYvQBNn84ql7bpW+O4i1LUXuXP09kbHImEkU2s6I0cgsezPxP6+T0uA6yIRKUkLFF4sGqXQpdmfvu32hkZOcWMK4FvZWl4+YZpxsSEUbgr/88ippViu+V/HvL8u1mzyOApzCGVyAD1dQgzuoQwM4KHiGV3hzjPPivDsfi9Y1J585gT9wPn8AKYmQkQ==</latexit><latexit sha1_base64="efI6Zp/XiaOgC4gTeNBXRBPYvsY=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlatTnulslfx5nBXiZ+TMuSo90pf3X7M0wgVccmM6fheQkHGNAkucVrspgYTxsdsiB1LFYvQBNn84ql7bpW+O4i1LUXuXP09kbHImEkU2s6I0cgsezPxP6+T0uA6yIRKUkLFF4sGqXQpdmfvu32hkZOcWMK4FvZWl4+YZpxsSEUbgr/88ippViu+V/HvL8u1mzyOApzCGVyAD1dQgzuoQwM4KHiGV3hzjPPivDsfi9Y1J585gT9wPn8AKYmQkQ==</latexit><latexit sha1_base64="efI6Zp/XiaOgC4gTeNBXRBPYvsY=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laQIeix68VjBfmAbymY7bZduNmF3IpTQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWemxGyKxXlatTnulslfx5nBXiZ+TMuSo90pf3X7M0wgVccmM6fheQkHGNAkucVrspgYTxsdsiB1LFYvQBNn84ql7bpW+O4i1LUXuXP09kbHImEkU2s6I0cgsezPxP6+T0uA6yIRKUkLFF4sGqXQpdmfvu32hkZOcWMK4FvZWl4+YZpxsSEUbgr/88ippViu+V/HvL8u1mzyOApzCGVyAD1dQgzuoQwM4KHiGV3hzjPPivDsfi9Y1J585gT9wPn8AKYmQkQ==</latexit>

�2T
<latexit sha1_base64="qq1k+5Q4Ty5wrd3iavPqQXDDKik=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoMeiF48V+oVtKJvtpF262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7CxubW9U9wt7e0fHB6Vj0/aJk41hxaPZay7ATMghYIWCpTQTTSwKJDQCSZ3c7/zBNqIWDVxmoAfsZESoeAMrfTYDwDZIKs1Z4Nyxa26C9B14uWkQnI0BuWv/jDmaQQKuWTG9Dw3QT9jGgWXMCv1UwMJ4xM2gp6likVg/Gxx8YxeWGVIw1jbUkgX6u+JjEXGTKPAdkYMx2bVm4v/eb0Uwxs/EypJERRfLgpTSTGm8/fpUGjgKKeWMK6FvZXyMdOMow2pZEPwVl9eJ+1a1XOr3sNVpX6bx1EkZ+ScXBKPXJM6uScN0iKcKPJMXsmbY5wX5935WLYWnHzmlPyB8/kDXTOQsw==</latexit><latexit sha1_base64="qq1k+5Q4Ty5wrd3iavPqQXDDKik=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoMeiF48V+oVtKJvtpF262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7CxubW9U9wt7e0fHB6Vj0/aJk41hxaPZay7ATMghYIWCpTQTTSwKJDQCSZ3c7/zBNqIWDVxmoAfsZESoeAMrfTYDwDZIKs1Z4Nyxa26C9B14uWkQnI0BuWv/jDmaQQKuWTG9Dw3QT9jGgWXMCv1UwMJ4xM2gp6likVg/Gxx8YxeWGVIw1jbUkgX6u+JjEXGTKPAdkYMx2bVm4v/eb0Uwxs/EypJERRfLgpTSTGm8/fpUGjgKKeWMK6FvZXyMdOMow2pZEPwVl9eJ+1a1XOr3sNVpX6bx1EkZ+ScXBKPXJM6uScN0iKcKPJMXsmbY5wX5935WLYWnHzmlPyB8/kDXTOQsw==</latexit><latexit sha1_base64="qq1k+5Q4Ty5wrd3iavPqQXDDKik=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoMeiF48V+oVtKJvtpF262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7CxubW9U9wt7e0fHB6Vj0/aJk41hxaPZay7ATMghYIWCpTQTTSwKJDQCSZ3c7/zBNqIWDVxmoAfsZESoeAMrfTYDwDZIKs1Z4Nyxa26C9B14uWkQnI0BuWv/jDmaQQKuWTG9Dw3QT9jGgWXMCv1UwMJ4xM2gp6likVg/Gxx8YxeWGVIw1jbUkgX6u+JjEXGTKPAdkYMx2bVm4v/eb0Uwxs/EypJERRfLgpTSTGm8/fpUGjgKKeWMK6FvZXyMdOMow2pZEPwVl9eJ+1a1XOr3sNVpX6bx1EkZ+ScXBKPXJM6uScN0iKcKPJMXsmbY5wX5935WLYWnHzmlPyB8/kDXTOQsw==</latexit><latexit sha1_base64="qq1k+5Q4Ty5wrd3iavPqQXDDKik=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mKoMeiF48V+oVtKJvtpF262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXJFIYdN1vp7CxubW9U9wt7e0fHB6Vj0/aJk41hxaPZay7ATMghYIWCpTQTTSwKJDQCSZ3c7/zBNqIWDVxmoAfsZESoeAMrfTYDwDZIKs1Z4Nyxa26C9B14uWkQnI0BuWv/jDmaQQKuWTG9Dw3QT9jGgWXMCv1UwMJ4xM2gp6likVg/Gxx8YxeWGVIw1jbUkgX6u+JjEXGTKPAdkYMx2bVm4v/eb0Uwxs/EypJERRfLgpTSTGm8/fpUGjgKKeWMK6FvZXyMdOMow2pZEPwVl9eJ+1a1XOr3sNVpX6bx1EkZ+ScXBKPXJM6uScN0iKcKPJMXsmbY5wX5935WLYWnHzmlPyB8/kDXTOQsw==</latexit>

h21
<latexit sha1_base64="OLrqSudJYa75xSRhuDI0ko+IclA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sGkx7pbJf8ecgqyTISRly1Hulr25fszTmCpmk1nYCP8EwowYFk3xa7KaWJ5SN6ZB3HFU05jbM5tdOyblT+mSgjSuFZK7+nshobO0kjlxnTHFkl72Z+J/XSXFwHWZCJSlyxRaLBqkkqMnsddIXhjOUE0coM8LdStiIGsrQBVR0IQTLL6+SZrUS+JXg/rJcu8njKMApnMEFBHAFNbiDOjSAwSM8wyu8edp78d69j0XrmpfPnMAfeJ8/Ki+O2A==</latexit><latexit sha1_base64="OLrqSudJYa75xSRhuDI0ko+IclA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sGkx7pbJf8ecgqyTISRly1Hulr25fszTmCpmk1nYCP8EwowYFk3xa7KaWJ5SN6ZB3HFU05jbM5tdOyblT+mSgjSuFZK7+nshobO0kjlxnTHFkl72Z+J/XSXFwHWZCJSlyxRaLBqkkqMnsddIXhjOUE0coM8LdStiIGsrQBVR0IQTLL6+SZrUS+JXg/rJcu8njKMApnMEFBHAFNbiDOjSAwSM8wyu8edp78d69j0XrmpfPnMAfeJ8/Ki+O2A==</latexit><latexit sha1_base64="OLrqSudJYa75xSRhuDI0ko+IclA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sGkx7pbJf8ecgqyTISRly1Hulr25fszTmCpmk1nYCP8EwowYFk3xa7KaWJ5SN6ZB3HFU05jbM5tdOyblT+mSgjSuFZK7+nshobO0kjlxnTHFkl72Z+J/XSXFwHWZCJSlyxRaLBqkkqMnsddIXhjOUE0coM8LdStiIGsrQBVR0IQTLL6+SZrUS+JXg/rJcu8njKMApnMEFBHAFNbiDOjSAwSM8wyu8edp78d69j0XrmpfPnMAfeJ8/Ki+O2A==</latexit><latexit sha1_base64="OLrqSudJYa75xSRhuDI0ko+IclA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sGkx7pbJf8ecgqyTISRly1Hulr25fszTmCpmk1nYCP8EwowYFk3xa7KaWJ5SN6ZB3HFU05jbM5tdOyblT+mSgjSuFZK7+nshobO0kjlxnTHFkl72Z+J/XSXFwHWZCJSlyxRaLBqkkqMnsddIXhjOUE0coM8LdStiIGsrQBVR0IQTLL6+SZrUS+JXg/rJcu8njKMApnMEFBHAFNbiDOjSAwSM8wyu8edp78d69j0XrmpfPnMAfeJ8/Ki+O2A==</latexit>

h22
<latexit sha1_base64="axX+E2XIAakZ2t23X365RAwFhNk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sWp32SmW/4s9BVkmQkzLkqPdKX92+ZmnMFTJJre0EfoJhRg0KJvm02E0tTygb0yHvOKpozG2Yza+dknOn9MlAG1cKyVz9PZHR2NpJHLnOmOLILnsz8T+vk+LgOsyESlLkii0WDVJJUJPZ66QvDGcoJ45QZoS7lbARNZShC6joQgiWX14lzWol8CvB/WW5dpPHUYBTOIMLCOAKanAHdWgAg0d4hld487T34r17H4vWNS+fOYE/8D5/ACu0jtk=</latexit><latexit sha1_base64="axX+E2XIAakZ2t23X365RAwFhNk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sWp32SmW/4s9BVkmQkzLkqPdKX92+ZmnMFTJJre0EfoJhRg0KJvm02E0tTygb0yHvOKpozG2Yza+dknOn9MlAG1cKyVz9PZHR2NpJHLnOmOLILnsz8T+vk+LgOsyESlLkii0WDVJJUJPZ66QvDGcoJ45QZoS7lbARNZShC6joQgiWX14lzWol8CvB/WW5dpPHUYBTOIMLCOAKanAHdWgAg0d4hld487T34r17H4vWNS+fOYE/8D5/ACu0jtk=</latexit><latexit sha1_base64="axX+E2XIAakZ2t23X365RAwFhNk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sWp32SmW/4s9BVkmQkzLkqPdKX92+ZmnMFTJJre0EfoJhRg0KJvm02E0tTygb0yHvOKpozG2Yza+dknOn9MlAG1cKyVz9PZHR2NpJHLnOmOLILnsz8T+vk+LgOsyESlLkii0WDVJJUJPZ66QvDGcoJ45QZoS7lbARNZShC6joQgiWX14lzWol8CvB/WW5dpPHUYBTOIMLCOAKanAHdWgAg0d4hld487T34r17H4vWNS+fOYE/8D5/ACu0jtk=</latexit><latexit sha1_base64="axX+E2XIAakZ2t23X365RAwFhNk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1R72sWp32SmW/4s9BVkmQkzLkqPdKX92+ZmnMFTJJre0EfoJhRg0KJvm02E0tTygb0yHvOKpozG2Yza+dknOn9MlAG1cKyVz9PZHR2NpJHLnOmOLILnsz8T+vk+LgOsyESlLkii0WDVJJUJPZ66QvDGcoJ45QZoS7lbARNZShC6joQgiWX14lzWol8CvB/WW5dpPHUYBTOIMLCOAKanAHdWgAg0d4hld487T34r17H4vWNS+fOYE/8D5/ACu0jtk=</latexit>

h2T
<latexit sha1_base64="ktTWar0AuE+Vfyev64u2unqJ1OE=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r9AvapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvVNjY3NreKe6W9vYPDo/Kxydto1JNWYsqoXQ3JIYJLlnLcitYN9GMxKFgnXByN/c7T0wbrmTTThMWxGQkecQpsU5qjwdZrTkblCte1VsArxM/JxXI0RiUv/pDRdOYSUsFMabne4kNMqItp4LNSv3UsITQCRmxnqOSxMwE2eLaGb5wyhBHSruSFi/U3xMZiY2ZxqHrjIkdm1VvLv7n9VIb3QQZl0lqmaTLRVEqsFV4/joecs2oFVNHCNXc3YrpmGhCrQuo5ELwV19eJ+1a1feq/sNVpX6bx1GEMziHS/DhGupwDw1oAYVHeIZXeEMKvaB39LFsLaB85hT+AH3+AF9ejvs=</latexit><latexit sha1_base64="ktTWar0AuE+Vfyev64u2unqJ1OE=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r9AvapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvVNjY3NreKe6W9vYPDo/Kxydto1JNWYsqoXQ3JIYJLlnLcitYN9GMxKFgnXByN/c7T0wbrmTTThMWxGQkecQpsU5qjwdZrTkblCte1VsArxM/JxXI0RiUv/pDRdOYSUsFMabne4kNMqItp4LNSv3UsITQCRmxnqOSxMwE2eLaGb5wyhBHSruSFi/U3xMZiY2ZxqHrjIkdm1VvLv7n9VIb3QQZl0lqmaTLRVEqsFV4/joecs2oFVNHCNXc3YrpmGhCrQuo5ELwV19eJ+1a1feq/sNVpX6bx1GEMziHS/DhGupwDw1oAYVHeIZXeEMKvaB39LFsLaB85hT+AH3+AF9ejvs=</latexit><latexit sha1_base64="ktTWar0AuE+Vfyev64u2unqJ1OE=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r9AvapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvVNjY3NreKe6W9vYPDo/Kxydto1JNWYsqoXQ3JIYJLlnLcitYN9GMxKFgnXByN/c7T0wbrmTTThMWxGQkecQpsU5qjwdZrTkblCte1VsArxM/JxXI0RiUv/pDRdOYSUsFMabne4kNMqItp4LNSv3UsITQCRmxnqOSxMwE2eLaGb5wyhBHSruSFi/U3xMZiY2ZxqHrjIkdm1VvLv7n9VIb3QQZl0lqmaTLRVEqsFV4/joecs2oFVNHCNXc3YrpmGhCrQuo5ELwV19eJ+1a1feq/sNVpX6bx1GEMziHS/DhGupwDw1oAYVHeIZXeEMKvaB39LFsLaB85hT+AH3+AF9ejvs=</latexit><latexit sha1_base64="ktTWar0AuE+Vfyev64u2unqJ1OE=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqewWQY9FLx4r9AvapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvVNjY3NreKe6W9vYPDo/Kxydto1JNWYsqoXQ3JIYJLlnLcitYN9GMxKFgnXByN/c7T0wbrmTTThMWxGQkecQpsU5qjwdZrTkblCte1VsArxM/JxXI0RiUv/pDRdOYSUsFMabne4kNMqItp4LNSv3UsITQCRmxnqOSxMwE2eLaGb5wyhBHSruSFi/U3xMZiY2ZxqHrjIkdm1VvLv7n9VIb3QQZl0lqmaTLRVEqsFV4/joecs2oFVNHCNXc3YrpmGhCrQuo5ELwV19eJ+1a1feq/sNVpX6bx1GEMziHS/DhGupwDw1oAYVHeIZXeEMKvaB39LFsLaB85hT+AH3+AF9ejvs=</latexit>

h1
<latexit sha1_base64="xzhp7x9yuM3gSIT7z0jjmcXW+KM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSPx7k3mxQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppX9U9t+49XNeat0UcZTiDc7gEDxrQhHtogQ8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+3xo6c</latexit><latexit sha1_base64="xzhp7x9yuM3gSIT7z0jjmcXW+KM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSPx7k3mxQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppX9U9t+49XNeat0UcZTiDc7gEDxrQhHtogQ8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+3xo6c</latexit><latexit sha1_base64="xzhp7x9yuM3gSIT7z0jjmcXW+KM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSPx7k3mxQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppX9U9t+49XNeat0UcZTiDc7gEDxrQhHtogQ8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+3xo6c</latexit><latexit sha1_base64="xzhp7x9yuM3gSIT7z0jjmcXW+KM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSPx7k3mxQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppX9U9t+49XNeat0UcZTiDc7gEDxrQhHtogQ8MBDzDK7w5ynlx3p2PZWvJKWZO4Q+czx+3xo6c</latexit>

h2
<latexit sha1_base64="W2HhTDZkqxeq2FbbVos3QEhx9Es=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyx4O8MRtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+5S46d</latexit><latexit sha1_base64="W2HhTDZkqxeq2FbbVos3QEhx9Es=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyx4O8MRtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+5S46d</latexit><latexit sha1_base64="W2HhTDZkqxeq2FbbVos3QEhx9Es=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyx4O8MRtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+5S46d</latexit><latexit sha1_base64="W2HhTDZkqxeq2FbbVos3QEhx9Es=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyx4O8MRtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSbtQ9t+49XNWat0UcZTiDc7gED66hCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+5S46d</latexit>

hL
<latexit sha1_base64="pjBPvppy9pYqjb4b9/Fqj9Uz7rg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDvz20+oNE/ko5mkGMR0KHnEGTVW8kf9/H7ar9bcujsHWSVeQWpQoNmvfvUGCctilIYJqnXXc1MT5FQZzgROK71MY0rZmA6xa6mkMeognx87JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxE10HOZZoZlGyxKMoEMQmZfU4GXCEzYmIJZYrbWwkbUUWZsflUbAje8surpHVR99y693BZa9wUcZThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaS04xcwx/4Hz+AODNjrc=</latexit><latexit sha1_base64="pjBPvppy9pYqjb4b9/Fqj9Uz7rg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDvz20+oNE/ko5mkGMR0KHnEGTVW8kf9/H7ar9bcujsHWSVeQWpQoNmvfvUGCctilIYJqnXXc1MT5FQZzgROK71MY0rZmA6xa6mkMeognx87JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxE10HOZZoZlGyxKMoEMQmZfU4GXCEzYmIJZYrbWwkbUUWZsflUbAje8surpHVR99y693BZa9wUcZThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaS04xcwx/4Hz+AODNjrc=</latexit><latexit sha1_base64="pjBPvppy9pYqjb4b9/Fqj9Uz7rg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDvz20+oNE/ko5mkGMR0KHnEGTVW8kf9/H7ar9bcujsHWSVeQWpQoNmvfvUGCctilIYJqnXXc1MT5FQZzgROK71MY0rZmA6xa6mkMeognx87JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxE10HOZZoZlGyxKMoEMQmZfU4GXCEzYmIJZYrbWwkbUUWZsflUbAje8surpHVR99y693BZa9wUcZThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaS04xcwx/4Hz+AODNjrc=</latexit><latexit sha1_base64="pjBPvppy9pYqjb4b9/Fqj9Uz7rg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiwcPFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDvz20+oNE/ko5mkGMR0KHnEGTVW8kf9/H7ar9bcujsHWSVeQWpQoNmvfvUGCctilIYJqnXXc1MT5FQZzgROK71MY0rZmA6xa6mkMeognx87JWdWGZAoUbakIXP190ROY60ncWg7Y2pGetmbif953cxE10HOZZoZlGyxKMoEMQmZfU4GXCEzYmIJZYrbWwkbUUWZsflUbAje8surpHVR99y693BZa9wUcZThBE7hHDy4ggbcQRN8YMDhGV7hzZHOi/PufCxaS04xcwx/4Hz+AODNjrc=</latexit>

posts
<latexit sha1_base64="sXcnuJX0FW07jhx2mf70+vExv4c=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqeyKoMeiF48V7Ad0l5JNs21oNgnJrFiW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMv1oJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVmWGshZVQpluTCwTXLIWcBCsqw0jaSxYJx7fzvzOIzOWK/kAE82ilAwlTzgl4KQwBPYEuVYW7LRfrfl1fw68SoKC1FCBZr/6FQ4UzVImgQpibS/wNUQ5McCpYNNKmFmmCR2TIes5KknKbJTPb57iM6cMcKKMKwl4rv6eyElq7SSNXWdKYGSXvZn4n9fLILmOci51BkzSxaIkExgUngWAB9wwCmLiCKGGu1sxHRFDKLiYKi6EYPnlVdK+qAd+Pbi/rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St68zLvxXv3PhatJa+YOUZ/4H3+APPZkkQ=</latexit><latexit sha1_base64="sXcnuJX0FW07jhx2mf70+vExv4c=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqeyKoMeiF48V7Ad0l5JNs21oNgnJrFiW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMv1oJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVmWGshZVQpluTCwTXLIWcBCsqw0jaSxYJx7fzvzOIzOWK/kAE82ilAwlTzgl4KQwBPYEuVYW7LRfrfl1fw68SoKC1FCBZr/6FQ4UzVImgQpibS/wNUQ5McCpYNNKmFmmCR2TIes5KknKbJTPb57iM6cMcKKMKwl4rv6eyElq7SSNXWdKYGSXvZn4n9fLILmOci51BkzSxaIkExgUngWAB9wwCmLiCKGGu1sxHRFDKLiYKi6EYPnlVdK+qAd+Pbi/rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St68zLvxXv3PhatJa+YOUZ/4H3+APPZkkQ=</latexit><latexit sha1_base64="sXcnuJX0FW07jhx2mf70+vExv4c=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqeyKoMeiF48V7Ad0l5JNs21oNgnJrFiW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMv1oJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVmWGshZVQpluTCwTXLIWcBCsqw0jaSxYJx7fzvzOIzOWK/kAE82ilAwlTzgl4KQwBPYEuVYW7LRfrfl1fw68SoKC1FCBZr/6FQ4UzVImgQpibS/wNUQ5McCpYNNKmFmmCR2TIes5KknKbJTPb57iM6cMcKKMKwl4rv6eyElq7SSNXWdKYGSXvZn4n9fLILmOci51BkzSxaIkExgUngWAB9wwCmLiCKGGu1sxHRFDKLiYKi6EYPnlVdK+qAd+Pbi/rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St68zLvxXv3PhatJa+YOUZ/4H3+APPZkkQ=</latexit><latexit sha1_base64="sXcnuJX0FW07jhx2mf70+vExv4c=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqeyKoMeiF48V7Ad0l5JNs21oNgnJrFiW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMv1oJb8P1vr7S2vrG5Vd6u7Ozu7R9UD4/aVmWGshZVQpluTCwTXLIWcBCsqw0jaSxYJx7fzvzOIzOWK/kAE82ilAwlTzgl4KQwBPYEuVYW7LRfrfl1fw68SoKC1FCBZr/6FQ4UzVImgQpibS/wNUQ5McCpYNNKmFmmCR2TIes5KknKbJTPb57iM6cMcKKMKwl4rv6eyElq7SSNXWdKYGSXvZn4n9fLILmOci51BkzSxaIkExgUngWAB9wwCmLiCKGGu1sxHRFDKLiYKi6EYPnlVdK+qAd+Pbi/rDVuijjK6ASdonMUoCvUQHeoiVqIIo2e0St68zLvxXv3PhatJa+YOUZ/4H3+APPZkkQ=</latexit>

u
<latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit><latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit><latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit><latexit sha1_base64="HdrHs+9WrEY+c6wp70bq3BGtMmw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8A4a2M+Q==</latexit>

y
<latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit><latexit sha1_base64="l29WxoUb9DEbvmhLG7jHtZ0OU24=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68diC/YA2lM120q7dbMLuRgihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5m/mdJ1Sax/LBZAn6ER1JHnJGjZWa2aBSdWvuHGSVeAWpQoHGoPLVH8YsjVAaJqjWPc9NjJ9TZTgTOC33U40JZRM6wp6lkkao/Xx+6JScW2VIwljZkobM1d8TOY20zqLAdkbUjPWyNxP/83qpCW/8nMskNSjZYlGYCmJiMvuaDLlCZkRmCWWK21sJG1NFmbHZlG0I3vLLq6R9WfPcmte8qtZvizhKcApncAEeXEMd7qEBLWCA8Ayv8OY8Oi/Ou/OxaF1zipkT+APn8wfnvYz9</latexit>

�1
<latexit sha1_base64="yja+eRv2NjHstbWZeCWWFPU+5uw=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzEOSJcxOOsmQmdllplcIS77CiwdFvPo53vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaDg0ey9i0I2ZBCg0NFCihnRhgKpLQisa3M7/1BMaKWD/gJIFQsaEWA8EZOumxGwGyXhZMe+WKX/XnoKskyEmF5Kj3yl/dfsxTBRq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOaKbBhNj94Ss+c0qeD2LjSSOfq74mMKWsnKnKdiuHILnsz8T+vk+LgOsyETlIEzReLBqmkGNPZ97QvDHCUE0cYN8LdSvmIGcbRZVRyIQTLL6+S5kU18KvB/WWldpPHUSQn5JSck4BckRq5I3XSIJwo8kxeyZtnvBfv3ftYtBa8fOaY/IH3+QO0A5BU</latexit><latexit sha1_base64="yja+eRv2NjHstbWZeCWWFPU+5uw=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzEOSJcxOOsmQmdllplcIS77CiwdFvPo53vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaDg0ey9i0I2ZBCg0NFCihnRhgKpLQisa3M7/1BMaKWD/gJIFQsaEWA8EZOumxGwGyXhZMe+WKX/XnoKskyEmF5Kj3yl/dfsxTBRq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOaKbBhNj94Ss+c0qeD2LjSSOfq74mMKWsnKnKdiuHILnsz8T+vk+LgOsyETlIEzReLBqmkGNPZ97QvDHCUE0cYN8LdSvmIGcbRZVRyIQTLL6+S5kU18KvB/WWldpPHUSQn5JSck4BckRq5I3XSIJwo8kxeyZtnvBfv3ftYtBa8fOaY/IH3+QO0A5BU</latexit><latexit sha1_base64="yja+eRv2NjHstbWZeCWWFPU+5uw=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzEOSJcxOOsmQmdllplcIS77CiwdFvPo53vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaDg0ey9i0I2ZBCg0NFCihnRhgKpLQisa3M7/1BMaKWD/gJIFQsaEWA8EZOumxGwGyXhZMe+WKX/XnoKskyEmF5Kj3yl/dfsxTBRq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOaKbBhNj94Ss+c0qeD2LjSSOfq74mMKWsnKnKdiuHILnsz8T+vk+LgOsyETlIEzReLBqmkGNPZ97QvDHCUE0cYN8LdSvmIGcbRZVRyIQTLL6+S5kU18KvB/WWldpPHUSQn5JSck4BckRq5I3XSIJwo8kxeyZtnvBfv3ftYtBa8fOaY/IH3+QO0A5BU</latexit><latexit sha1_base64="yja+eRv2NjHstbWZeCWWFPU+5uw=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKoMegF48RzEOSJcxOOsmQmdllplcIS77CiwdFvPo53vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZwaDg0ey9i0I2ZBCg0NFCihnRhgKpLQisa3M7/1BMaKWD/gJIFQsaEWA8EZOumxGwGyXhZMe+WKX/XnoKskyEmF5Kj3yl/dfsxTBRq5ZNZ2Aj/BMGMGBZcwLXVTCwnjYzaEjqOaKbBhNj94Ss+c0qeD2LjSSOfq74mMKWsnKnKdiuHILnsz8T+vk+LgOsyETlIEzReLBqmkGNPZ97QvDHCUE0cYN8LdSvmIGcbRZVRyIQTLL6+S5kU18KvB/WWldpPHUSQn5JSck4BckRq5I3XSIJwo8kxeyZtnvBfv3ftYtBa8fOaY/IH3+QO0A5BU</latexit>

�2
<latexit sha1_base64="smYD3trzxiRYSB8Pr4DRIwp0Bkc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME85BkCbOTSTJkZnaZ6RXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bNk4N4w0Wy9i0I2q5FJo3UKDk7cRwqiLJW9H4dua3nrixItYPOEl4qOhQi4FgFJ302I040l5WnfZKZb/iz0FWSZCTMuSo90pf3X7MUsU1Mkmt7QR+gmFGDQom+bTYTS1PKBvTIe84qqniNszmB0/JuVP6ZBAbVxrJXP09kVFl7URFrlNRHNllbyb+53VSHFyHmdBJilyzxaJBKgnGZPY96QvDGcqJI5QZ4W4lbEQNZegyKroQguWXV0mzWgn8SnB/Wa7d5HEU4BTO4AICuIIa3EEdGsBAwTO8wptnvBfv3ftYtK55+cwJ/IH3+QO1iJBV</latexit><latexit sha1_base64="smYD3trzxiRYSB8Pr4DRIwp0Bkc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME85BkCbOTSTJkZnaZ6RXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bNk4N4w0Wy9i0I2q5FJo3UKDk7cRwqiLJW9H4dua3nrixItYPOEl4qOhQi4FgFJ302I040l5WnfZKZb/iz0FWSZCTMuSo90pf3X7MUsU1Mkmt7QR+gmFGDQom+bTYTS1PKBvTIe84qqniNszmB0/JuVP6ZBAbVxrJXP09kVFl7URFrlNRHNllbyb+53VSHFyHmdBJilyzxaJBKgnGZPY96QvDGcqJI5QZ4W4lbEQNZegyKroQguWXV0mzWgn8SnB/Wa7d5HEU4BTO4AICuIIa3EEdGsBAwTO8wptnvBfv3ftYtK55+cwJ/IH3+QO1iJBV</latexit><latexit sha1_base64="smYD3trzxiRYSB8Pr4DRIwp0Bkc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME85BkCbOTSTJkZnaZ6RXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bNk4N4w0Wy9i0I2q5FJo3UKDk7cRwqiLJW9H4dua3nrixItYPOEl4qOhQi4FgFJ302I040l5WnfZKZb/iz0FWSZCTMuSo90pf3X7MUsU1Mkmt7QR+gmFGDQom+bTYTS1PKBvTIe84qqniNszmB0/JuVP6ZBAbVxrJXP09kVFl7URFrlNRHNllbyb+53VSHFyHmdBJilyzxaJBKgnGZPY96QvDGcqJI5QZ4W4lbEQNZegyKroQguWXV0mzWgn8SnB/Wa7d5HEU4BTO4AICuIIa3EEdGsBAwTO8wptnvBfv3ftYtK55+cwJ/IH3+QO1iJBV</latexit><latexit sha1_base64="smYD3trzxiRYSB8Pr4DRIwp0Bkc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME85BkCbOTSTJkZnaZ6RXCkq/w4kERr36ON//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bNk4N4w0Wy9i0I2q5FJo3UKDk7cRwqiLJW9H4dua3nrixItYPOEl4qOhQi4FgFJ302I040l5WnfZKZb/iz0FWSZCTMuSo90pf3X7MUsU1Mkmt7QR+gmFGDQom+bTYTS1PKBvTIe84qqniNszmB0/JuVP6ZBAbVxrJXP09kVFl7URFrlNRHNllbyb+53VSHFyHmdBJilyzxaJBKgnGZPY96QvDGcqJI5QZ4W4lbEQNZegyKroQguWXV0mzWgn8SnB/Wa7d5HEU4BTO4AICuIIa3EEdGsBAwTO8wptnvBfv3ftYtK55+cwJ/IH3+QO1iJBV</latexit>

�L
<latexit sha1_base64="83b1OUoIWdWBm2fTPe0DIcVl+8k=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ERwcRIcoS9zSRZsrt37O4J4civsLFQxNafY+e/cZNcoYkPBh7vzTAzL0oEN9b3v73Cyura+kZxs7S1vbO7V94/aJo41QwbLBaxbkXUoOAKG5Zbga1EI5WRwIdodD31H55QGx6reztOMJR0oHifM2qd9NiJ0NJudjvplit+1Z+BLJMgJxXIUe+Wvzq9mKUSlWWCGtMO/MSGGdWWM4GTUic1mFA2ogNsO6qoRBNms4Mn5MQpPdKPtStlyUz9PZFRacxYRq5TUjs0i95U/M9rp7Z/GWZcJalFxeaL+qkgNibT70mPa2RWjB2hTHN3K2FDqimzLqOSCyFYfHmZNM+qgV8N7s4rtas8jiIcwTGcQgAXUIMbqEMDGEh4hld487T34r17H/PWgpfPHMIfeJ8/3QqQbw==</latexit><latexit sha1_base64="83b1OUoIWdWBm2fTPe0DIcVl+8k=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ERwcRIcoS9zSRZsrt37O4J4civsLFQxNafY+e/cZNcoYkPBh7vzTAzL0oEN9b3v73Cyura+kZxs7S1vbO7V94/aJo41QwbLBaxbkXUoOAKG5Zbga1EI5WRwIdodD31H55QGx6reztOMJR0oHifM2qd9NiJ0NJudjvplit+1Z+BLJMgJxXIUe+Wvzq9mKUSlWWCGtMO/MSGGdWWM4GTUic1mFA2ogNsO6qoRBNms4Mn5MQpPdKPtStlyUz9PZFRacxYRq5TUjs0i95U/M9rp7Z/GWZcJalFxeaL+qkgNibT70mPa2RWjB2hTHN3K2FDqimzLqOSCyFYfHmZNM+qgV8N7s4rtas8jiIcwTGcQgAXUIMbqEMDGEh4hld487T34r17H/PWgpfPHMIfeJ8/3QqQbw==</latexit><latexit sha1_base64="83b1OUoIWdWBm2fTPe0DIcVl+8k=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ERwcRIcoS9zSRZsrt37O4J4civsLFQxNafY+e/cZNcoYkPBh7vzTAzL0oEN9b3v73Cyura+kZxs7S1vbO7V94/aJo41QwbLBaxbkXUoOAKG5Zbga1EI5WRwIdodD31H55QGx6reztOMJR0oHifM2qd9NiJ0NJudjvplit+1Z+BLJMgJxXIUe+Wvzq9mKUSlWWCGtMO/MSGGdWWM4GTUic1mFA2ogNsO6qoRBNms4Mn5MQpPdKPtStlyUz9PZFRacxYRq5TUjs0i95U/M9rp7Z/GWZcJalFxeaL+qkgNibT70mPa2RWjB2hTHN3K2FDqimzLqOSCyFYfHmZNM+qgV8N7s4rtas8jiIcwTGcQgAXUIMbqEMDGEh4hld487T34r17H/PWgpfPHMIfeJ8/3QqQbw==</latexit><latexit sha1_base64="83b1OUoIWdWBm2fTPe0DIcVl+8k=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY2ERwcRIcoS9zSRZsrt37O4J4civsLFQxNafY+e/cZNcoYkPBh7vzTAzL0oEN9b3v73Cyura+kZxs7S1vbO7V94/aJo41QwbLBaxbkXUoOAKG5Zbga1EI5WRwIdodD31H55QGx6reztOMJR0oHifM2qd9NiJ0NJudjvplit+1Z+BLJMgJxXIUe+Wvzq9mKUSlWWCGtMO/MSGGdWWM4GTUic1mFA2ogNsO6qoRBNms4Mn5MQpPdKPtStlyUz9PZFRacxYRq5TUjs0i95U/M9rp7Z/GWZcJalFxeaL+qkgNibT70mPa2RWjB2hTHN3K2FDqimzLqOSCyFYfHmZNM+qgV8N7s4rtas8jiIcwTGcQgAXUIMbqEMDGEh4hld487T34r17H/PWgpfPHMIfeJ8/3QqQbw==</latexit>

avg
<latexit sha1_base64="Q59ilj1y7g0dcWwLDxWRp2wLRo4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDbbTbt0swm7k2IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/NebaiFg94CThfkQHSoSCUbTSYxf5E2Z0PJj2yhW36s5BVomXkwrkqPfKX91+zNKIK2SSGtPx3AT9jGoUTPJpqZsanlA2ogPesVTRiBs/m188JWdW6ZMw1rYUkrn6eyKjkTGTKLCdEcWhWfZm4n9eJ8Xw2s+ESlLkii0WhakkGJPZ+6QvNGcoJ5ZQpoW9lbAh1ZShDalkQ/CWX14lzYuq51a9+8tK7SaPowgncArn4MEV1OAO6tAABgqe4RXeHOO8OO/Ox6K14OQzx/AHzucPJA6RNQ==</latexit><latexit sha1_base64="Q59ilj1y7g0dcWwLDxWRp2wLRo4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDbbTbt0swm7k2IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/NebaiFg94CThfkQHSoSCUbTSYxf5E2Z0PJj2yhW36s5BVomXkwrkqPfKX91+zNKIK2SSGtPx3AT9jGoUTPJpqZsanlA2ogPesVTRiBs/m188JWdW6ZMw1rYUkrn6eyKjkTGTKLCdEcWhWfZm4n9eJ8Xw2s+ESlLkii0WhakkGJPZ+6QvNGcoJ5ZQpoW9lbAh1ZShDalkQ/CWX14lzYuq51a9+8tK7SaPowgncArn4MEV1OAO6tAABgqe4RXeHOO8OO/Ox6K14OQzx/AHzucPJA6RNQ==</latexit><latexit sha1_base64="Q59ilj1y7g0dcWwLDxWRp2wLRo4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDbbTbt0swm7k2IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/NebaiFg94CThfkQHSoSCUbTSYxf5E2Z0PJj2yhW36s5BVomXkwrkqPfKX91+zNKIK2SSGtPx3AT9jGoUTPJpqZsanlA2ogPesVTRiBs/m188JWdW6ZMw1rYUkrn6eyKjkTGTKLCdEcWhWfZm4n9eJ8Xw2s+ESlLkii0WhakkGJPZ+6QvNGcoJ5ZQpoW9lbAh1ZShDalkQ/CWX14lzYuq51a9+8tK7SaPowgncArn4MEV1OAO6tAABgqe4RXeHOO8OO/Ox6K14OQzx/AHzucPJA6RNQ==</latexit><latexit sha1_base64="Q59ilj1y7g0dcWwLDxWRp2wLRo4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDbbTbt0swm7k2IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/NebaiFg94CThfkQHSoSCUbTSYxf5E2Z0PJj2yhW36s5BVomXkwrkqPfKX91+zNKIK2SSGtPx3AT9jGoUTPJpqZsanlA2ogPesVTRiBs/m188JWdW6ZMw1rYUkrn6eyKjkTGTKLCdEcWhWfZm4n9eJ8Xw2s+ESlLkii0WhakkGJPZ+6QvNGcoJ5ZQpoW9lbAh1ZShDalkQ/CWX14lzYuq51a9+8tK7SaPowgncArn4MEV1OAO6tAABgqe4RXeHOO8OO/Ox6K14OQzx/AHzucPJA6RNQ==</latexit>

Wg
<latexit sha1_base64="4/EWhcHLUbM2YPGtGYbelaSgCJI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyO4N8NBtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSvqp7bt17uK41b4s4ynAG53AJHjSgCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz/vzI7B</latexit><latexit sha1_base64="4/EWhcHLUbM2YPGtGYbelaSgCJI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyO4N8NBtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSvqp7bt17uK41b4s4ynAG53AJHjSgCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz/vzI7B</latexit><latexit sha1_base64="4/EWhcHLUbM2YPGtGYbelaSgCJI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyO4N8NBtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSvqp7bt17uK41b4s4ynAG53AJHjSgCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz/vzI7B</latexit><latexit sha1_base64="4/EWhcHLUbM2YPGtGYbelaSgCJI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyO4N8NBtUa27dXYCsE68gNSjQGlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSvqp7bt17uK41b4s4ynAG53AJHjSgCffQAh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz/vzI7B</latexit>

Figure 6.1: The overview of the proposed framework, HUG.

adjusts the influence of different resources upon the model for social media user geolocation.

6.1.2 Hybrid-attentive User Geolocation

In this section, we first formally define the task of social media user geolocation and then

introduce our proposed approach, Hybrid-attentive User Geolocation (HUG).

Problem Statement. Suppose we have a set of social media users U and their social

network G. For each user k ∈ U , W k = {wkij} denotes the social media posts published by

the user, where wkij represents the j-th word of the i-th post in W k. The social network

G = (U,A) treats each user k ∈ U as a node and models their relations with an edge set

A ⊆ U × U that indicates the relations between users. Given the social media posts W k of

85

a user k and the social network G, the goal of this work is to predict the geolocation of the

user Lk ∈ L, where L is a set of candidate locations.

6.1.2.1 Multi-head Graph Attention Network

To learn the structural knowledge from social networks, we employ the graph attention

network [117] to derive node representations as user graph vectors.

Node Features. For each user k, the input node features xink are the node attributes such

as user profiles or bag-of-words features. We use a fully-connected layer to learn the hidden

node features as x0k = F(W 0xink), where W 0 is the weight matrix and F(·) is a nonlinear

activation function.

Multi-head Graph Attention Layer. The graph attention network consists of several

stacked graph attention layers passing node features xik on different levels. For the i-th layer,

the importance score sijk of each edge ajk ∈ A between the users j and k can be estimated

by the self-attention mechanism [165, 160] as sijk = 〈Qixi−1j ,Qixi−1k 〉, where Qi is the weight

matrix applied to every node. The node features in the i-th layer xik can then be obtained

as:

xik = σ

 ∑
j∈N (k)

αijkW ixi−1j

 , αijk =
exp(sijk)∑

j′∈N (k) exp(sij′k)

where N (k) indicates the neighbors of the user k in the social network; W i is a weight

matrix for feature projection; σ(·) is a nonlinear activation function. Specifically, we utilize

the multi-head attention mechanism to have a greater capability of modeling structural

knowledge by concatenating the features generated by different weight matrices Qiz andW i
z,

where 1 ≤ z ≤ H; H is the number of heads. Finally, in the last layer, we average the

multi-head features and delay the employment of the nonlinear activation to derive the user

graph vector uk as:

uk = σ

 1

H

H∑
z=1

∑
j∈N (k)

αNjk,zW i
zx

N−1
j

 ,

86

where N is the number of graph attention layers.

6.1.2.2 Language Attention Network

We use a hierarchical language attention network [141] to encode the textual features for

each user. The language attention model is composed of several parts, including a word

embedding layer, a post encoder, and a user encoder.

Word Embedding Layer. We convert each word wij into a one-hot encoding representa-

tion w̃ij and embed the words to vectors e with an embedding matrix E, where eij = E · w̃ij.

Post Encoder. For each post of a user, we feed the word embeddings to a bidirectional

Recurrent Neural Network (BiRNN) to learn a hidden state of each word with sequential

information as:

←−
h ij = GRU(

←−
h i,j+1, eij),

−→
h ij = GRU(

−→
h i,j−1, eij), hij = [

←−
h ij,
−→
h ij],

where GRU(·) is the recurrent neural unit of the BiRNN. Here we choose GRU instead

of LSTM because of its computational efficiency. To derive the post representation, we

introduce an attention layer to obtain a weighted sum of the hidden states from the BiRNN

layer. To be specific, we initialize a context vector uw and calculate the attention scores βij

for the words in the post as:

uij = tanh(Ww · hij + bw), βij =
exp(uTij · uw)∑
j exp(u

T
ij · uw)

, si =
∑
j

βij · hij,

where Ww and bw are the weight matrix and the bias to map each word into a hidden space

for estimating importance.

User Encoder. Similarly, we employ a BiRNN model using GRU units to derive the hidden

representations hi for the posts of each user according to their published times as:

←−
h i = GRU(

←−
h i+1, si),

−→
h i = GRU(

−→
h i−1, si), hi = [

←−
h i,
−→
h i].

The other context vector us is then learned to estimate the importance score βi for each post

87

and aggregate the post representations hi to form a user language vector v as follows:

ui = tanh(Wu · hi + bu), βi =
exp(uTi · us)∑
j exp(u

T
i · us)

, v =
∑
i

βi · hi,

where Wu and bu are the weight matrix and the bias.

6.1.2.3 Hybrid Attention

To dynamically adjust the importance of two resources for a certain user, we propose the

hybrid attention to jointly model texts and social networks. Precisely, a context vector ch is

applied to estimate the importance scores of graph and language user vectors as:

αv =
exp(ov · ch)

exp(ov · ch) + exp(ou · ch)
, αu =

exp(ou · ch)
exp(ov · ch) + exp(ou · ch)

,

where ov = tanh(Wh · v + bh); ou = tanh(Wh · u+ bh); Wh and bh are the weight matrix and

the bias for a nonlinear projection. Therefore, the ultimate feature vector produced by the

hybrid attention can be obtained as y = αv · v + αu · u.

6.1.2.4 Location-regularized User Geolocation

User Geolocation. Based on the feature vector y, we use a fully-connected hidden layer

without a bias to estimate the probability of being the geolocation of the user k for each

location i as:

P (Lk = i) = Softmax(Wgy),

where Wg is the weight matrix for the hidden layer.

Location-based Regularization. To leverage the knowledge across different locations,

we regularize the model weights Wg for inferring location probabilities by the corresponding

distances. Specifically, we have the location-based regularization loss LossR as:

LossR =
∑
j∈L

∑
k∈L−j

|Wg(j)−Wg(k)|2

D(j, k)
,

88

where D(j, k) denotes the distance between the locations j and k.

Learning and Optimization. Finally, the loss function of HUG for optimization can be

derived by the cross-entropy loss for classification and the location-based regularization loss

as:

Loss =
∑
i

1[Lk = i] · P (Lk = i) + γ · LossR,

where γ is the weight of regularization loss.

6.1.3 Experiments

6.1.3.1 Experimental Setup

Datasets. We employ three public Twitter user geolocation datasets: (1) GeoText [32],

(2) Twitter-US [95] and (3) Twitter-World [47]. The datasets are pre-partitioned

into training, development and test sets. In each dataset, user tweets are concatenated into

single documents. The social graphs are extracted with the mention relations between users,

where two users are connected if one mentions the other, or they co-mention a third user.

The node attributes in the social graphs are the bag-of-words and TFIDF features. The

labels are the discretized geographical coordinates of the training users using a k-d tree [95].

Dataset statistics are summarized in Table 6.1.

Baselines. We compare the proposed HUG against 6 baselines that are trained based on the

text and network features to determine user geolocations, including: (1) MLP + k-d tree [89],

a text-based multilayer perceptron model; (2) GCN-LP [90], a network-based model using

one-hot neighbor encoding as the node attributes; (3) MENET [29], a multiview neural

network model that utilize multi-entry data to infer users’ locations; (4) MLP-TXT+NET

[90], a multilayer perceptron model with the concatenation of text features and adjacent lists

as input; (5) GCN [90], a graph convolution network model [64] with the bag-of-words as

node attributes; (6) HLPNN [50], a feature fusion model with city and country objectives.

Evaluation. We evaluate the models with three commonly used metrics: (1) Acc@161,

89

Table 6.1: Dataset statistics.

GeoText Twitter-US Twitter-World

Users 9,475 449,200 1,386,766

Classes 129 256 930

Train 5,685 429,200 1,366,766

Dev 1,895 10,000 10,000

Test 1,895 10,000 10,000

the accuracy of predicting a user within 161km or 100 miles from the labeled location; (2)

Mean, the mean error between the predicted and labeled location; (3) Median, the median

error between the predicted and labeled location.

Implementation Details. We implement the proposed HUG in PyTorch framework for

efficient GPU computation. The language attention network has bidirectional GRUs with

hidden dimensions in {50, 100, 200} and the word embeddings are initialized with the Glove

vectors [85] pre-trained on the Twitter corpus. The entity-level aggregation network has two

layers with the hidden dimension De ∈ {64, 128, 256}. The number of heads in multi-head

graph attention is searched in {1, 2, 4, 8, 16}. We apply Adam optimizer for training and the

initial learning rate is set as 5.0× 10−4. The activation functions are ELU [24].

6.1.3.2 Experimental Results

Table 6.2 summarizes the model performance of Twitter user geolocation prediction on all

datasets. Overall, HUG is able to outperform other baselines across the three datasets on

all metrics. We make the following observations. (1) Compared with MLP + k-d tree [89]

and GCN-LP [90] that only utilizes a single source of data, e.g. text or network features,

HUG outperforms by simultaneously learning the important language features and network

90

Table 6.2: Twitter user geolocation prediction performance.

GeoText Twitter-US Twitter-World

Acc@161 ↑ Mean ↓ Median ↓ Acc@161 ↑ Mean ↓ Median ↓ Acc@161 ↑ Mean ↓ Median ↓

MLP + k-d tree 38% 844 389 54% 554 120 34% 1456 415

GCN-LP 58% 576 56 53% 653 126 45% 2357 279

MENET 62% 532 32 66% 433 45 53% 1044 118

MLP-TXT+NET 58% 554 58 66% 420 56 58% 1030 53

GCN 60% 546 45 62% 485 71 54% 1130 108

HLPNN - - - 71% 362 32 59% 828 60

HUG 64% 516 30 72% 359 31 62% 818 49

structure features. (2) As the feature fusion models, MENET [29], MLP-TXT+NET [90] and

HLPNN [50] incorporate the fixed network embeddings as features. In contrast, our proposed

HUG can adaptively fine-tune both attention models to favor the geolocation prediction by

the hybrid attention mechanism. (3) Compared with GCN [90], our attention-based approach

can better understand the hierarchical language features and assign different importance to

nodes of the same neighborhood. (4) We conduct the ablation study by removing the graph

attention, language attention and location-based regularization one by one at a time. As

the results on the Twitter-US dataset shown in Table 6.3, each module contributes to the

performance improvement and the proposed HUG benefits from the combination and the

hybrid attention mechanism.

Table 6.3: Ablation study on Twitter-US.

Acc@161 ↑ Mean ↓ Median ↓

HUG 72% 359 31

w/o graph attention 51% 531 57

w/o language attention 58% 612 63

w/o location regularization 59% 562 51

We further investigate the interpretability of the proposed HUG. Figure 6.2 shows the text

91

and graph examples from the GeoText dataset. In (a) and (b), we show the social media

posts of two users (A, B), whose hybrid attention weights for texts are αv = 0.643 and 0.794,

respectively. The blue blocks denote the tweet-level attention weights. The orange denotes

the word attention weights and our model can select the words with a strong indication of ge-

olocations like Louisville, LA, USC and West Hollywood. Figure 6.2 (c) and (d) demonstrate

two users (C, D) with the geolocations and attention weights of their one-hop neighbors. The

hybrid attention weights for graph vector are αu = 0.844 and 0.942 for user C and D, re-

spectively. We plot the geolocations of user C and D in red dots. The green dots are the

geolocations of the one-hop neighbors and the dot sizes denote the attention weights. Our

proposed HUG also works in terms of the graph attention and location-based regularization,

by assigning the higher weights to closer neighbors and lower weights to farther neighbors.

6.1.4 Summary

In this section, we propose a novel end-to-end framework, Hybrid-attentive User Geoloca-

tion (HUG), to jointly model the post texts and user interactions in social media and predict

user geolocations. We introduce the hybrid attention mechanism to automatically determine

the importance of texts and social networks while social media posts and interactions are

modeled by a graph attention network and a language attention network. The experimental

study on three benchmark geolocation datasets from Twitter shows that HUG consistently

renders superior prediction performance against baseline approaches. We also demonstrate

the interpretability of HUG with in-depth analysis of attention weights.

92

I just found out I’m doin 2 shows tonite in Louisville becuz the 1st show sold out thats
lol sorry I just saw your screen name and seen the area code! My bad for bothering u.
lol so why gon’ be in louisville tonight that’s gon’ be funny man!
yeah well r spr break actually start the 13 but we dnt leave til the 17th so I’ll
omg they got me weak everything they keep sayin and doin is sooo hilarious

(a) User A

I can’t wait to move bck to LA
thanks i did that one a few hours ago i havent had no sleep but there stil more
Why is everyone moving to culver city ugh I wanna move to west hollywood nxt omg 2morrow is
Live today like its the last don’t worry about thee future n don’t dwell in the past just
USC gon cost me $42,000 smhshyt there prices went down it use to be 55,000

(b) User B

(c) User C (d) User D

Figure 6.2: Attention weight analysis.

(a)-(b) Documents of users A and B. (c)-(d) Geolocations and attention weights of users C

and D with their one-hop neighbors.

93

6.2 On-demand Influencer Discovery on Social Media

6.2.1 Introduction

Social influence refers to the ability of a user to change the feelings, attitudes, or behaviors of

other users within a network [18]. Detecting influencers has become an essential task in many

fields such as online marketing and political campaigns [128, 160]. Many previous works have

studied the task by utilizing the rich text and user interactions on social media [10, 159, 139].

It is well accepted that the influence distribution is not homogeneous over topics. An

influencer on topics about politics may not have a huge impact on topics about HIV. Com-

pared with social media celebrities, domain-specific influencers are less expensive to hire

and more engaged in spreading messages such as new treatment or timely prevention for

HIV. However, these important topics are rarely discussed on social media, which is demon-

strated with an example from Twitter in Figure 6.3. We crawled 1% US English Tweets

during 11/01/2019 - 12/31/2019 and counted the occurrence of hashtags, with the top 5

frequent hashtags in blue and 5 rare but important hashtags on health subjects in orange.

Although topic-specific influencer detection algorithms [128, 10, 56, 8] have been proposed,

none of them focuses on identifying influencers for rare yet important topics like HIV and

suicide. While existing approaches trying to build filters with keywords [54], it is infeasible

to enumerate all keywords related to the topic (like #PrEP1).

Another key question in identifying topic-specific influencers is how to model the influence

propagation. Traditional influencer detection models rely on topic modeling [128, 56] and

probabilistic network diffusion [57, 139], which are not ideal for the sparse social network with

rare topics. Meanwhile, the recent progress on Graph Neural Networks (GNNs) [64, 136, 150]

demonstrates the effective representation learning in graph structures. With a proper design

of neighborhood aggregation and objective function, GNNs are capable of modeling the

1Pre-exposure prophylaxis (PrEP) is a prevention of HIV/AIDS.

94

#Job

#Veterans #IT
#NFL

#traffic#HIV
#AIDS

#Suicid
ePrevention

#PrEP
#suicid

e
10−6

10−5

10−4

10−3

Tw
ee

t P
er

ce
nt

ag
e

Top 5 Frequent #
Health-related #

Figure 6.3: Hashtag distribution of 1% US English Tweets in 11/01/2019-12/31/2019.

The top 5 frequent hashtags are shown along with 5 health-related hashtags.

influence propagation and identifying topic-specific influencers on social media.

To tackle the challenges of detecting on-demand topic-specific influencers, we propose a

new computational framework named on-Demand Influencer Discovery (DID) model. We

design an language attention network as a subject filter to iteratively select the social mes-

sages related to given keywords. To take full advantage of multiple interactions in social

networks, we integrate them with trainable weight functions. The influence propagation is

modeled by GNNs with a loss function considering neighborhood and topic concentration.

Comprehensive experiments show our approach significantly outperforms all comparative

baselines.

In the literature, influencer detection has attracted increasing attention in recent years.

Some of the existing methods focus on modeling the influence in all topics [111, 139, 15],

while several studies aim to identify topic-specific influencers [105, 128, 126]. Although

some approaches [8, 10, 56] also integrate topic discovery and social influence analysis, the

influencers are restricted to popular topics in social media only. To the best of our knowledge,

this work is the first study that can reliably identify topic-specific influencers even on rare

95

General Messages

Language Attention Network

On-Demand Influencer Discovery (DID) Framework

ii

Influence Convolution Network
1st Neighborhood 2nd Neighborhood

Post Stream

Subject	
Filter

Ranking
+ +

+

Seed User’s Pool

	𝑤#$ 	𝑤## 	𝑤#%

	ℎ## 	ℎ## 	ℎ#%

	𝑢(
𝛽#$

𝛽##
𝛽#%

	𝑠$ 	𝑠# 	𝑠+

Softmax

Words

Posts

Figure 6.4: The overview of the proposed framework, DID

but important subjects.

6.2.2 on-Demand Influencer Discovery

In this section, we formally define the problem statement and then introduce our proposed

approach, on-Demand Influencer Discovery (DID).

Problem Definition. Suppose we have a set of social media users U and their social

network G. For each user k ∈ U , W k = {wkij} denotes the social media posts published by

the user, where wkij represents the j-th word of the i-th post in W k. The social network

G = (U,A) treats each user k ∈ U as a node and models their relations with the adjacency

96

matrix A ∈ RN×N that indicates the relations between users. N is the total number of users

(|U | = N). Given the social media posts of users U and the social network G, the goal of

this work is to identify top-t influencers with the given keyword set K.

Framework Overview. Here we propose DID for the on-demand influencer detection as

shown in Figure 6.4. We design the language attention network that can select subject-

related social posts and get trained iteratively with minimum supervision. The influence

convolution network simulates the influence propagation in the social network and outputs

the topic-specific influence scores of users. Moreover, we integrate different types of social

interactions with weight functions that are trained with influence learning.

6.2.2.1 Language Attention Network

We propose the language attention network as a subject filter to select social posts related

to the given keyword set K. The language attention network is composed of several parts,

including a word embedding layer, a post encoder, and a subject classifier.

Word Embedding Layer. We convert each word wij into a one-hot encoding representa-

tion w̃ij and embed the words to vectors e with an embedding matrix E, where eij = E · w̃ij.

Post Encoder. For each post of the user, we feed the word embeddings to a bidirectional

Recurrent Neural Network (BiRNN) to learn a hidden state of each word with sequential

information as:

←−
h ij = GRU(

←−
h i,j+1, eij),

−→
h ij = GRU(

−→
h i,j−1, eij), hij = [

←−
h ij,
−→
h ij],

where GRU(·) is the recurrent neural unit of the BiRNN. Here we choose GRU instead

of LSTM because of its computational efficiency. To derive the post representation, we

introduce an attention layer to obtain a weighted sum of the hidden states from the BiRNN

layer. To be specific, we initialize a context vector uw and calculate the attention scores βij

97

for the words in the post as:

uij = tanh(Ww · hij + bw), βij =
exp(uTij · uw)∑
j exp(u

T
ij · uw)

, si =
∑
j

βij · hij,

where Ww and bw are the weight matrix and the bias to map each word into a hidden space

for estimating importance. With the post encoder, the i-th social post is represented as si.

Subject Classifier. As a subject filter, the language attention network aims to select social

posts related to the given keywords. We build a subject seed user pool to capture as much

subject-related information in the social posts. Subject seed users are defined as users who

are dedicated to the topic of given keywords. We initialize the pool by selecting the users

that have the highest ratio of posts containing keyword set K. Furthermore, as shown by

the right black arrow in Figure 6.4, we iteratively update the seed user pool and subject

classifier. More seed users are incorporated into the pool according to the rules: (1) the

user has a high ratio of subject-related posts; (2) the user is identified as an influencer.

For example in HIV subject on Twitter, the seed user pool is initialized with @iasociety

and @CDC HIVAIDS, who have the highest 73.4% and 79.5% of tweets containing keyword

HIV. As the training continues, we have 6 users in the final seed user pool. By collecting

posts from seed users as positive samples and general posts as negative samples, we train

the subject classifier and iteratively update the seed user pool. Based on the post encoding

si, we use a fully-connected hidden layer to estimate the probability of being the positive

sample of the i-th social post as

P = Softmax(Wcsi),

where Wc is the weight matrix for the subject classifier. With the subject classifier, we

obtain the subject-related posts and a vector c ∈ RN with ci = # related posts of i
total posts of i

, describing

user i’s concentration on topic K. Consequently, the filtered social network only includes

interactions from the subject-related posts.

98

6.2.2.2 Influence Convolution Network

Interaction Integration. Typically, the social network includes multiple types of interac-

tions, such as follow, mention, retweet and quote on Twitter. We assume there are L types

of interactional graph and the corresponding adjacency matrices are A(1), A(2), . . . , A(L). The

majority of existing works only consider a single graph or assign equal weights to different

interaction graphs [35]. Instead, we would like to integrate the multiple graphs in a sensi-

ble way by learning the weights of the integration. Specifically, we introduce L coefficients

{λl, l = 1, 2, . . . , L} to represent the weights for L adjacency matrices A(l). The integrated

adjacency matrix can be formulated as A =
∑L

l=1 λlA
(l), with λl to be learned.

Influence Convolution. On social media, users disseminate posts via multiple rounds

of social actions. Based on the closed world assumption [87], social actions are mostly

influenced by their near neighbors within the network. As a result, we propose to model the

influence propagation on social media with neighborhood aggregation technique from GNNs

[64], as shown in Figure 6.4. The post embedding s aggregated by user is the input node

representations H(0) to the first layer. The p-th influence convolution layer performs feature

aggregation on node i’s one-hop neighbors Ni:

H(p) = σ(
∑
j∈Ni

H
(p−1)
j W (p))

where H(p) ∈ RN×d(p)n is the output node representations, and W (p) ∈ Rd
(p−1)
n ×d(p)n is the

parameter matrix for this layer. The aggregated feature matrix H from the output of the

final layer represents the user influence after propagation. We consider three criteria for the

unsupervised objective function. First, users with a larger neighborhood should have a higher

influence score. Here we consider the neighborhood within two hops. Second, the higher

the concentration c in keyword topic K, the higher the influence score. Furthermore, we

add the third term in the objective function to regularize the weight matrices of P influence

convolution layers to prevent overfitting of the model.

99

maxL(W,λl) =
N∑

i,j=1

Aij(1 +
N∑
k=1

Ajk)H
2
i

+ζ1 cTH − ζ2
P∑
i=1

‖W (i)‖2

6.2.3 Experiments

6.2.3.1 Experimental Setup

Datasets. We employ three datasets from Twitter. For the quantitative assessment, we

create HIV and Suicide datasets. For HIV dataset, we select a sample of users who tweeted

about HIV and crawl all their tweets. We label the HIV-related influencers as the users (1)

who have more than 50% HIV-related tweets and (2) whose HIV-related tweets have the

highest number of retweets in the whole Twitter network. We adopt the same strategy

to create Suicide dataset focusing on the suicide-related topic. There are 20 and 15 topic-

specific influencers in the two labeled datasets. The US-English includes randomly sampled

1% US tweets in 11/01/2019 - 12/31/2019 and the hashtag distribution is shown in Figure

6.3. We intend to evaluate the scalability and efficiency with the unlabeled US-English

dataset. Dataset statistics are summarized in Table 6.4.

Table 6.4: Dataset statistics.

HIV Suicide US-English

Users 556 639 4,145,234

Tweets 341,167 471,625 75,546,211

Interactions 81,626 89,776 3,848,428

Influencers 20 15 -

100

Table 6.5: Topic-specific influencer detection performance.

Methods
HIV Suicide

F1 AUC NDCG MAP F1 AUC NDCG MAP

TAP 0.415 0.687 0.341 0.612 0.535 0.734 0.423 0.732

TwitterRank 0.212 0.585 0.081 0.578 0.374 0.659 0.186 0.742

TS-SRW 0.159 0.750 0.062 0.500 0.275 0.824 0.106 0.611

LAN-ReF 0.602 0.819 0.415 0.695 0.434 0.727 0.231 0.751

LAN+RR-LT 0.683 0.793 0.500 0.877 0.731 0.863 0.558 0.930

LAN+CoupledGNN 0.719 0.870 0.529 0.910 0.642 0.829 0.683 0.956

DID 0.882 0.912 0.771 0.970 0.859 0.936 0.739 0.996

Table 6.6: Ablation study on HIV.

F1 AUC NDCG MAP

DID 0.882 0.912 0.771 0.970

Non-iterative LAN 0.791 0.852 0.730 0.933

w/o interaction integration 0.823 0.862 0.749 0.942

w/o influence convolution 0.801 0.878 0.753 0.961

Baselines. We compare the proposed DID against six baselines that are trained based

on the text and network features. The first three baselines are topic-specific influencer

detection models: (1) TAP [105] a topical affinity propagation model built on a factor

graph to identify the topic-specific social influence; (2) TwitterRank [128], an extension

of PageRank algorithm with topic modeling; (3) TS-SRW [56], a topic-sensitive supervised

random walk model. The following three baselines combine the language attention network

(LAN) as a subject filter with general influencer detection models: (4) LAN+ReF [111],

a statistical and analytical model based on influence topology; (5) LAN+RR-LT [139], a

polling-based method with a sample of random reversely reachable sets to approximate user

101

influence; (6) LAN+CoupledGNN [15], two coupled graph neural networks to iteratively

model and predict user influence.

Evaluation. We evaluate our DID approach against the baselines with four commonly used

metrics: (1) F1; (2) Area Under Curve (AUC); (3) Normalized Discounted Cumulative Gain

(NDCG); (4) Mean Average Precision (MAP).

Implementation Details. The language attention network has bidirectional GRUs with

hidden dimensions in {50, 100, 200} and the word embeddings are initialized with the Glove

vectors [85] pre-trained on the Twitter corpus. We initialize the pool with 2 seed users

and the final size of seed user pool varies in [2, 8]. The influence convolution network is a

two-layer network.

6.2.3.2 Experimental Results

Table 6.5 summarizes the model performance of detecting top-t topic-specific influencers,

where t is the number of influencers in ground truth (t = 20 for HIV and t = 15 for Suicide).

Overall, DID is able to outperform other baselines across the two datasets on all metrics.

We make the following observations. (1) Compared with TAP [105], TwitterRank [128] and

TS-SRW that directly identify influencers in rare topics from the massive social messages,

DID outperforms by iteratively learning an accurate subject filter. (2) As combination mod-

els, Filter+ReF [111], Filter+RR-LT [139] and Filter+CoupledGNN [15] train the influencer

detection model with fixed social message filters. In contrast, our proposed DID can adap-

tively update the subject filter for better influencer detection performance. (3) We conduct

the ablation study of DID by training a non-iterative LAN, removing interaction integration,

and influence convolution one by one at a time. As the results on the HIV dataset shown in

Table 6.6, each module contributes to the performance improvement, and the proposed DID

benefits from iterative LAN, interaction integration and influence convolution. (4) We also

investigate how seed user pool size impacts the detection accuracy in DID, shown in Figure

6.5(a). Over the two datasets, we observe a common phenomenon: there exists an optimal

102

2 4 6 8
Final Seed User Pool Size

0.60

0.65

0.70

0.75

0.80

0.85
F1

HIV
Suicide

(a) User Pool Size

TAP

TwitterRank
TS-SRW

LAN-ReF

LAN+RR-LT

LAN+CoupledGNN DID
0.00

0.05

0.10

0.15

0.20

Re
la

te
d

Tw
ee

t R
at

io

HIV
Suicide

(b) Specificity

Figure 6.5: Seed user pool size and specificity impact.

(a) F1 vs. seed user pool final size. (b) The specificity evaluation.

size that delivers the best F1 score.

To confirm that the identified users indeed focus on the target rare topics, we conduct

an experiment on their followers’ tweets. With the output influencer set of each model, we

randomly select 100 followers for each influencer and crawl follower’s most recent 100 tweets.

Figure 6.5(b) shows the percentage of subject-related tweets to all tweets. The proposed

DID model has the highest ratio of related tweets in the two datasets, which indicates these

influencers can deliver specific influence to their followers.

To evaluate the scalability of the proposed DID, we show the top 10 topic-specific in-

fluencers on large scale US-English dataset in Table 6.7. Account names in bold are

topic-specific influencers in HIV or Suicide topic. The results show that DID is capable of

detecting these topic-specific influencers out of 3.8 million users in the US-English dataset.

103

Table 6.7: Influencers detected in US-English dataset.

Topic Output of DID model

HIV

CDC HIVAIDS, talkHIV, PEPFAR, iasociety,

blackaids, WHO, TheBodyDotCom,

HIV Insight, GlobalFund, GreaterThanAIDS

Suicide

MentallyAwareNG,afspnational,samaritans,80-

0273talk,Spreading L0ve,cspyyc,papyrus tweets

CarlDunnJr, depressionnote, CharitySANE

6.2.4 Summary

This section investigates the problem of detecting on-demand topic-specific influencers. We

introduce a computational framework, on-Demand Influencer Discovery model, based on the

language attention network and influence convolution network. Comprehensive evaluations

are conducted with three Twitter datasets and the results show promising performance of

the proposed model against comparative baselines.

104

CHAPTER 7

Conclusion

7.1 Conclusion

In this dissertation, we investigate the deep representation learning on complex graphs.

More specifically, we tackle the three issues of complex graph representation learning with the

proposed frameworks, including learning network embedding with adversarial regularization,

robust graph representation via neural sparsification, and temporal graph modeling with

temporal-structural convolution. We also demonstrate the applications in social network

analysis problems.

For the sparse sampling issue in random-walks, we proposed NetRA, a deep network

embedding model for encoding each vertex in a network as a low-dimensional vector repre-

sentation with adversarially regularized autoencoders. Our model demonstrated the ability

of generative adversarial training process in extracting informative representations. The pro-

posed model has better generalization capability, without requiring an explicit prior density

distribution for the latent representations. Specifically, we leveraged LSTM autoencoders

that take the sampled sequences of vertices as input to learn smooth vertex representations

regularized by locality-preserving constraint and generative adversarial training process. The

resultant representations are robust to the sparse vertex sequences sampled from the network.

Empirically, we evaluated the learned representations with a variety of network datasets on

different tasks such as network reconstruction, link prediction, and multi-label classification.

The experimental results showed substantial improvement over the state-of-the-art network

embedding competitors.

We propose Neural Sparsification (NeuralSparse) to address the noise brought by the

task-irrelevant information on real-life large graphs. NeuralSparse consists of two major

105

components: (1) The sparsification network sparsifies input graphs by sampling edges fol-

lowing a learned distribution; (2) GNNs take sparsified subgraphs as input and extract

node representations for downstream tasks. The two components in NeuralSparse can be

jointly trained with supervised loss, gradient descent, and backpropagation techniques. The

experimental study on real-life datasets shows that the NeuralSparse consistently renders

more robust graph representations, and yields up to 7.2% improvement in accuracy over

state-of-the-art GNN models.

To simultaneously extract features from the temporal-structural neighborhood in tem-

poral graphs, we propose Temporal Structural Network (TSNet) for node classification in

temporal graphs. TSNet also leverages our proposed supervised graph sparsification tech-

niques and extends the neighborhood to a broader temporal-structural neighborhood on

temporal graphs. The model consists of two major sub-networks: (1) the sparsification net-

work sparsifies input temporal graphs by sorting and sampling edges following a learned

distribution; (2) the temporal-structural convolutional network performs convolution on the

sparsified graphs to extract local features from the joint temporal-structural space. In the

experimental study, TSNet demonstrates superior performance over four categories of base-

line models on public and private benchmark datasets. The qualitative case study suggests

a promising direction for the interpretability of temporal graph learning.

For social media user geolocation problem, we propose a novel end-to-end framework,

Hybrid-attentive User Geolocation (HUG), to jointly model the post texts and user inter-

actions in social media and predict user geolocations. We introduce the hybrid attention

mechanism to automatically determine the importance of texts and social networks while

social media posts and interactions are modeled by a graph attention network and a language

attention network. The experimental study shows that HUG consistently renders superior

prediction performance and better interpretability. For topic-specific influencer detection

problem, we introduce a computational framework, on-Demand Influencer Discovery model,

based on the language attention network and influence convolution network. Comprehen-

106

sive evaluations are conducted with three Twitter datasets and the results show promising

performance of the proposed model against comparative baselines.

107

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Ten-

sorflow: a system for large-scale machine learning.. In OSDI.

[2] Bijaya Adhikari, Yao Zhang, Sorour E Amiri, Aditya Bharadwaj, and B Aditya

Prakash. 2018. Propagation-Based Temporal Network Summarization. TKDE (2018).

[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2013. Spectral sparsification

in dynamic graph streams. Approximation, Randomization, and Combinatorial Opti-

mization. Algorithms and Techniques (2013).

[4] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly

detection and description: a survey. Data mining and knowledge discovery (2015).

[5] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative

adversarial networks. In ICML. 214–223.

[6] Lars Backstrom, Eric Sun, and Cameron Marlow. 2010. Find me if you can: improving

geographical prediction with social and spatial proximity. In WWW.

[7] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation of

generic convolutional and recurrent networks for sequence modeling. arXiv preprint

arXiv:1803.01271 (2018).

[8] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. 2012. Topic-Aware Social

Influence Propagation Models. In ICDM.

[9] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. 2011. Node classification in

social networks. In Social network data analytics. Springer, 115–148.

108

[10] Bin Bi, Yuanyuan Tian, Yannis Sismanis, Andrey Balmin, and Junghoo Cho. 2014.

Scalable topic-specific influence analysis on microblogs. In WSDM.

[11] Peter Borg and Kurt Fenech. 2017. Reducing the maximum degree of a graph by

deleting vertices. Australasian Journal Of Combinatorics 69, 1 (2017), 29–40.

[12] Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly, et al. 2007. The BioGRID inter-

action database: 2008 update. Nucleic acids research 36, suppl 1 (2007), D637–D640.

[13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

networks and locally connected networks on graphs. In ICLR.

[14] Daniele Calandriello, Ioannis Koutis, Alessandro Lazaric, and Michal Valko. 2018.

Improved large-scale graph learning through ridge spectral sparsification. In ICML.

[15] Qi Cao, Huawei Shen, Jinhua Gao, Bingzheng Wei, and Xueqi Cheng. 2020. Popularity

Prediction on Social Platforms with Coupled Graph Neural Networks. In WSDM.

[16] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph representa-

tions with global structural information. In CIKM. ACM, 891–900.

[17] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep Neural Networks for Learning

Graph Representations.. In AAAI.

[18] Meeyoung Cha, Hamed Haddadi, Fabŕıcio Benevenuto, and P. Krishna Gummadi.

2010. Measuring User Influence in Twitter: The Million Follower Fallacy. In ICWSM.

[19] Alireza Chakeri, Hamidreza Farhidzadeh, and Lawrence O Hall. 2016. Spectral spar-

sification in spectral clustering. In ICPR.

[20] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and Thomas S

Huang. 2015. Heterogeneous network embedding via deep architectures. In KDD.

109

[21] Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, and

Yoshua Bengio. 2017. Maximum-likelihood augmented discrete generative adversarial

networks. arXiv preprint arXiv:1702.07983 (2017).

[22] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: fast learning with graph convo-

lutional networks via importance sampling. In ICLR.

[23] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi

Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale. VLDB

(2015).

[24] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and accu-

rate deep network learning by exponential linear units (elus). In ICLR.

[25] Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. 2017. Adversarial Network Em-

bedding. arXiv preprint arXiv:1711.07838 (2017).

[26] Clodoveu A Davis Jr, Gisele L Pappa, Diogo Rennó Rocha de Oliveira, and Filipe de

L. Arcanjo. 2011. Inferring the location of twitter messages based on user relationships.

Transactions in GIS (2011).

[27] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional

neural networks on graphs with fast localized spectral filtering. In NIPS.

[28] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.

Convolutional 2d knowledge graph embeddings. In Thirty-Second AAAI Conference

on Artificial Intelligence.

[29] Tien Huu Do, Duc Minh Nguyen, Evaggelia Tsiligianni, Bruno Cornelis, and Nikos

Deligiannis. 2017. Multiview deep learning for predicting twitter users’ location. arXiv

preprint arXiv:1712.08091 (2017).

110

[30] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable

representation learning for heterogeneous networks. In KDD. ACM, 135–144.

[31] Talya Eden, Shweta Jain, Ali Pinar, Dana Ron, and C. Seshadhri. 2018. Provable and

Practical Approximations for the Degree Distribution Using Sublinear Graph Samples.

In WWW.

[32] Jacob Eisenstein, Brendan O’Connor, Noah A Smith, and Eric P Xing. 2010. A latent

variable model for geographic lexical variation. In EMNLP.

[33] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

2008. LIBLINEAR: A library for large linear classification. JMLR 9, Aug (2008),

1871–1874.

[34] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. 2019. Learning

Discrete Structures for Graph Neural Networks. In ICML.

[35] Kiran Garimella, Ingmar Weber, and Munmun De Choudhury. 2016. Quote rts on

twitter: usage of the new feature for political discourse. In WebSci.

[36] Elahe Ghalebi, Baharan Mirzasoleiman, Radu Grosu, and Jure Leskovec. 2018. Dy-

namic Network Model from Partial Observations. In NIPS.

[37] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep

feedforward neural networks. In AISTATS.

[38] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep

learning. Vol. 1. MIT press Cambridge.

[39] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets.

In NIPS. 2672–2680.

111

[40] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,

and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.

[41] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for net-

works. In KDD. ACM, 855–864.

[42] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochastic opti-

mization of sorting networks via continuous relaxations. In ICLR.

[43] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron Courville. 2017. Improved training of wasserstein gans. arXiv preprint

arXiv:1704.00028 (2017).

[44] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield,

Mingyuan Zhou, and Xiaoning Qian. 2019. Variational graph recurrent neural net-

works. In Advances in neural information processing systems. 10701–10711.

[45] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning

on large graphs. In NIPS.

[46] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning on

graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).

[47] Bo Han, Paul Cook, and Timothy Baldwin. 2012. Geolocation prediction in social

media data by finding location indicative words. In COLING.

[48] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R

Salakhutdinov. 2012. Improving neural networks by preventing co-adaptation of feature

detectors. arXiv preprint arXiv:1207.0580 (2012).

[49] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. 2004. Spin: mining maximal frequent

subgraphs from graph databases. In KDD. ACM, 581–586.

112

[50] Binxuan Huang and Kathleen M Carley. 2019. A Hierarchical Location Prediction

Neural Network for Twitter User Geolocation. In EMNLP.

[51] Jin Huang and Charles X Ling. 2005. Using AUC and accuracy in evaluating learning

algorithms. TKDE (2005).

[52] Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahramani.

2008. Metropolis algorithms for representative subgraph sampling. In ICDM.

[53] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical reparameterization with

gumbel-softmax. In ICLR.

[54] Jyun-Yu Jiang, Xue Sun, Wei Wang, and Sean Young. 2019. Enhancing Air Quality

Prediction with Social Media and Natural Language Processing. In ACL.

[55] David Jurgens. 2013. That’s what friends are for: Inferring location in online social

media platforms based on social relationships. In ICWSM.

[56] Georgios Katsimpras, Dimitrios Vogiatzis, and Georgios Paliouras. 2015. Determining

influential users with supervised random walks. In WWW.

[57] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influ-

ence through a social network. In KDD.

[58] Junghwan Kim, Haekyu Park, Ji-Eun Lee, and U Kang. 2018. Side: representation

learning in signed directed networks. In WWW.

[59] Yoon Kim, Kelly Zhang, Alexander M Rush, Yann LeCun, et al. 2017. Adversar-

ially Regularized Autoencoders for Generating Discrete Structures. arXiv preprint

arXiv:1706.04223 (2017).

[60] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 (2014).

113

[61] Sheila Kinsella, Vanessa Murdock, and Neil O’Hare. 2011. ” I’m eating a sandwich in

Glasgow” modeling locations with tweets. In SMUC.

[62] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard

Zemel. 2018. Neural relational inference for interacting systems. arXiv preprint

arXiv:1802.04687 (2018).

[63] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv

preprint arXiv:1611.07308 (2016).

[64] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph

Convolutional Networks. In ICLR.

[65] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2018. Learning Dynamic Embeddings

from Temporal Interactions. arXiv preprint arXiv:1812.02289 (2018).

[66] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph classification using

structural attention. In KDD.

[67] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In KDD.

[68] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time: densi-

fication laws, shrinking diameters and possible explanations. In KDD.

[69] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution: Den-

sification and shrinking diameters. ACM transactions on Knowledge Discovery from

Data (TKDD) 1, 1 (2007), 2–es.

[70] Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similar-

ity with lessons learned from word embeddings. Transactions of the Association for

Computational Linguistics 3 (2015), 211–225.

[71] Rong-Hua Li, Jeffrey Xu Yu, Lu Qin, Rui Mao, and Tan Jin. 2015. On random walk

based graph sampling. In ICDE.

114

[72] Xiaoyi Li, Nan Du, Hui Li, Kang Li, Jing Gao, and Aidong Zhang. 2014. A deep

learning approach to link prediction in dynamic networks. In SDM.

[73] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated Graph

Sequence Neural Networks. In ICLR.

[74] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolutional

recurrent neural network: Data-driven traffic forecasting. In ICLR.

[75] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph Summarization

Methods and Applications: A Survey. Comput. Surveys (2018).

[76] Andreas Loukas and Pierre Vandergheynst. 2018. Spectrally approximating large

graphs with smaller graphs. In ICML.

[77] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2017. The concrete distribution:

A continuous relaxation of discrete random variables. In ICLR.

[78] Arun S Maiya and Tanya Y Berger-Wolf. 2010. Sampling community structure. In

WWW.

[79] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. 2016. Ad-

versarial Autoencoders. In ICLR.

[80] Michael Mathioudakis, Francesco Bonchi, Carlos Castillo, Aristides Gionis, and Antti

Ukkonen. 2011. Sparsification of influence networks. In KDD.

[81] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In NIPS.

3111–3119.

[82] Paul Milgrom and Ilya Segal. 2002. Envelope theorems for arbitrary choice sets. Econo-

metrica 70, 2 (2002), 583–601.

115

[83] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning convo-

lutional neural networks for graphs. In ICML.

[84] Tore Opsahl and Pietro Panzarasa. 2009. Clustering in weighted networks. Social

networks (2009), 155–163.

[85] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global

vectors for word representation. In EMNLP.

[86] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of

social representations. In KDD. ACM, 701–710.

[87] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. 2018.

DeepInf: Social Influence Prediction with Deep Learning. In KDD.

[88] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-

tion learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434 (2015).

[89] Afshin Rahimi, Trevor Cohn, and Timothy Baldwin. 2017. A Neural Model for User

Geolocation and Lexical Dialectology. In ACL.

[90] Afshin Rahimi, Trevor Cohn, and Timothy Baldwin. 2018. Semi-supervised User Ge-

olocation via Graph Convolutional Networks. In ACL.

[91] Sai Rajeswar, Sandeep Subramanian, Francis Dutil, Christopher Pal, and Aaron

Courville. 2017. Adversarial Generation of Natural Language. arXiv preprint

arXiv:1705.10929 (2017).

[92] Bruno Ribeiro and Don Towsley. 2010. Estimating and sampling graphs with multidi-

mensional random walks. In IMC.

[93] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:

Learning Node Representations from Structural Identity. In KDD.

116

[94] Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. 2017.

Struc2Vec: Learning Node Representations from Structural Identity. In KDD (Hal-

ifax, NS, Canada). ACM, 385–394.

[95] Stephen Roller, Michael Speriosu, Sarat Rallapalli, Benjamin Wing, and Jason

Baldridge. 2012. Supervised text-based geolocation using language models on an adap-

tive grid. In EMNLP.

[96] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge: To-

wards Deep Graph Convolutional Networks on Node Classification. In ICLR.

[97] Ryan A Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson. 2013. Mod-

eling dynamic behavior in large evolving graphs. In Proceedings of the sixth ACM

international conference on Web search and data mining. 667–676.

[98] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction by

locally linear embedding. science 290, 5500 (2000), 2323–2326.

[99] Veeru Sadhanala, Yu-Xiang Wang, and Ryan Tibshirani. 2016. Graph sparsification

approaches for laplacian smoothing. In AISTATS.

[100] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. 2018.

Structured sequence modeling with graph convolutional recurrent networks. In Inter-

national Conference on Neural Information Processing. Springer, 362–373.

[101] Martin Simonovsky and Nikos Komodakis. 2017. Dynamic Edge-Conditioned Filters

in Convolutional Neural Networks on Graphs. In CVPR.

[102] Daniel A Spielman and Nikhil Srivastava. 2011. Graph sparsification by effective re-

sistances. SIAM J. Comput. (2011).

[103] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. In NIPS. 3104–3112.

117

[104] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015.

Line: Large-scale information network embedding. WWW, 1067–1077.

[105] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. 2009. Social influence analysis in

large-scale networks. In KDD.

[106] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions. In

KDD. ACM, 817–826.

[107] Lei Tang and Huan Liu. 2011. Leveraging social media networks for classification.

Data Mining and Knowledge Discovery 23, 3 (2011), 447–478.

[108] Lei Tang, Huan Liu, Jianping Zhang, and Zohreh Nazeri. 2008. Community evolution

in dynamic multi-mode networks. In KDD.

[109] Athanasios Theocharidis, Stjin Van Dongen, Anton J Enright, and Tom C Freeman.

2009. Network visualization and analysis of gene expression data using BioLayout

Express3D. Nature protocols 4, 10 (2009), 1535–1550.

[110] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. 2014. Learning Deep

Representations for Graph Clustering.. In AAAI.

[111] Ramine Tinati, Leslie Carr, Wendy Hall, and Jonny Bentwood. 2012. Identifying

communicator roles in twitter. In WWW.

[112] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. 2017.

Wasserstein auto-encoders. arXiv preprint arXiv:1711.01558 (2017).

[113] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. 2003.

Feature-rich part-of-speech tagging with a cyclic dependency network. Association for

Computational Linguistics, 173–180.

118

[114] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-evolve: Deep

temporal reasoning for dynamic knowledge graphs. arXiv preprint arXiv:1705.05742

(2017).

[115] Tomasz Tylenda, Ralitsa Angelova, and Srikanta Bedathur. 2009. Towards time-aware

link prediction in evolving social networks. In Proceedings of the 3rd workshop on social

network mining and analysis. ACM, 9.

[116] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using t-SNE.

JMLR 9 (2008), 2579–2605.

[117] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,

and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[118] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and

R Devon Hjelm. 2019. Deep graph infomax. In ICLR.

[119] Cédric Villani. 2008. Optimal transport: old and new. Vol. 338. Springer Science &

Business Media.

[120] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borg-

wardt. 2010. Graph kernels. Journal of Machine Learning Research 11, Apr (2010),

1201–1242.

[121] Elli Voudigari, Nikos Salamanos, Theodore Papageorgiou, and Emmanuel J Yan-

nakoudakis. 2016. Rank degree: An efficient algorithm for graph sampling. In

ASONAM.

[122] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embedding.

In KDD.

[123] Fengjiao Wang, Chun-Ta Lu, Yongzhi Qu, and S Yu Philip. 2017. Collective geograph-

ical embedding for geolocating social network users. In PAKDD.

119

[124] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang,

Xing Xie, and Minyi Guo. 2018. GraphGAN: Graph Representation Learning with

Generative Adversarial Nets. AAAI (2018).

[125] Lu Wang, Wenchao Yu, Wei Wang, Wei Cheng, Wei Zhang, Hongyuan Zha, Xiaofeng

He, and Haifeng Chen. 2019. Learning Robust Representations with Graph Denoising

Policy Network. In ICDM.

[126] Wei Wei, Gao Cong, Chunyan Miao, Feida Zhu, and Guohui Li. 2016. Learning to find

topic experts in twitter via different relations. TKDE (2016).

[127] Jianshu Weng and Bu-Sung Lee. 2011. Event detection in twitter. In ICWSM.

[128] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. 2010. Twitterrank: finding topic-

sensitive influential twitterers. In WSDM.

[129] J. Weston, F. Ratle, and R. Collobert. 2008. Deep learning via semi-supervised em-

bedding. In ICML.

[130] Benjamin P Wing and Jason Baldridge. 2011. Simple supervised document geolocation

with geodesic grids. In ACL.

[131] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.

Chemometrics and intelligent laboratory systems (1987).

[132] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu

Philip. 2020. A comprehensive survey on graph neural networks. IEEE Transactions

on Neural Networks and Learning Systems (2020).

[133] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019. Graph

WaveNet for Deep Spatial-Temporal Graph Modeling. In IJCAI.

[134] Louis-Pascal AC Xhonneux, Meng Qu, and Jian Tang. 2019. Continuous Graph Neural

Networks. arXiv preprint arXiv:1912.00967 (2019).

120

[135] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Xiao Liu, and Xiang Zhang. 2019. Spatio-

temporal attentive rnn for node classification in temporal attributed graphs. In IJCAI.

[136] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are

Graph Neural Networks? ICLR (2019).

[137] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi,

and Stefanie Jegelka. 2018. Representation Learning on Graphs with Jumping Knowl-

edge Networks. In ICML.

[138] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial temporal graph convolutional

networks for skeleton-based action recognition. In AAAI.

[139] Yu Yang, Zhefeng Wang, Jian Pei, and Enhong Chen. 2017. Tracking Influential

Individuals in Dynamic Networks. TKDE (2017).

[140] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In ICML.

[141] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.

2016. Hierarchical attention networks for document classification. In NAACL.

[142] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.

GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks. In NIPS.

[143] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and

Jure Leskovec. 2018. Graph convolutional neural networks for web-scale recommender

systems. In KDD.

[144] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. 2018. Graph

convolutional policy network for goal-directed molecular graph generation. In Advances

in neural information processing systems. 6410–6421.

121

[145] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware graph neural net-

works. arXiv preprint arXiv:1906.04817 (2019).

[146] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Convolu-

tional Networks: a Deep Learning Framework for Traffic Forecasting. In IJCAI.

[147] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. SeqGAN: Sequence Gen-

erative Adversarial Nets with Policy Gradient. In AAAI. 2852–2858.

[148] Wenchao Yu, Charu C Aggarwal, and Wei Wang. 2017. Temporally factorized network

modeling for evolutionary network analysis. In WSDM.

[149] Wenchao Yu, Guangxiang Zeng, Ping Luo, Fuzhen Zhuang, Qing He, and Zhongzhi

Shi. 2013. Embedding with autoencoder regularization. In ECMLPKDD. Springer,

208–223.

[150] Wenchao Yu, Cheng Zheng, Wei Cheng, Charu Aggarwal, Dongjin Song, Bo Zong,

Haifeng Chen, and Wei Wang. 2018. Learning Deep Network Representations with

Adversarially Regularized Autoencoders. In KDD.

[151] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.

2019. Graph transformer networks. In Advances in Neural Information Processing

Systems. 11983–11993.

[152] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning Method. In

ICLR.

[153] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2016. Homophily, Struc-

ture, and Content Augmented Network Representation Learning. In ICDM. IEEE,

609–618.

[154] L-C Zhang and M Patone. 2017. Graph sampling. Metron (2017).

122

[155] Xinyi Zhang, Shiliang Tang, Yun Zhao, Gang Wang, Haitao Zheng, and Ben Y Zhao.

2017. Cold hard E-cash: Friends and vendors in the Venmo digital payments system.

In ICWSM.

[156] Yizhou Zhang, Yun Xiong, Xiangnan Kong, Shanshan Li, Jinhong Mi, and Yangyong

Zhu. 2018. Deep Collective Classification in Heterogeneous Information Networks. In

WWW.

[157] Yutao Zhang, Fanjin Zhang, Peiran Yao, and Jie Tang. 2018. Name Disambiguation

in AMiner: Clustering, Maintenance, and Human in the Loop.. In KDD.

[158] Peixiang Zhao. 2015. gSparsify: Graph Motif Based Sparsification for Graph Cluster-

ing. In CIKM.

[159] Cheng Zheng, Jyun-Yu Jiang, Yichao Zhou, Sean D Young, and Wei Wang. 2020.

Social Media User Geolocation via Hybrid Attention. In SIGIR.

[160] Cheng Zheng, Qin Zhang, Guodong Long, Chengqi Zhang, Sean D Young, and Wei

Wang. 2020. Measuring Time-Sensitive and Topic-Specific Influence in Social Networks

with LSTM and Self-Attention. IEEE Access (2020).

[161] Cheng Zheng, Qin Zhang, Sean D Young, and Wei Wang. 2020. On-demand Influencer

Discovery on Social Media. In CIKM.

[162] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng

Chen, and Wei Wang. 2020. Node Classification in Temporal Graphs through Stochas-

tic Sparsification and Temporal Structural Convolution. In ECML-PKDD.

[163] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng

Chen, and Wei Wang. 2020. Robust Graph Representation Learning via Neural Spar-

sification. In ICML.

123

[164] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable

Graph Embedding for Asymmetric Proximity.. In AAAI. 2942–2948.

[165] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun.

2018. Graph neural networks: A review of methods and applications. arXiv:1812.08434

(2018).

[166] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic

Network Embedding by Modeling Triadic Closure Process.. In AAAI.

[167] Chenyi Zhuang and Qiang Ma. 2018. Dual Graph Convolutional Networks for Graph-

Based Semi-Supervised Classification. In WWW.

124

