
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Compilers and Software Security: Opportunities and Challenges

Permalink
https://escholarship.org/uc/item/89f7c0j7

Author
Yang, Zhaomo

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/89f7c0j7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Compilers and Software Security: Opportunities and Challenges

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Zhaomo Yang

Committee in charge:

Professor Kirill Levchenko, Chair
Professor Farinaz Koushanfar
Professor Sorin Lerner
Professor Stefan Savage
Professor Hovav Shacham

2019

Copyright

Zhaomo Yang, 2019

All rights reserved.

The Dissertation of Zhaomo Yang is approved, and it is acceptable in quality and

form for publication on microfilm and electronically:

Chair

University of California San Diego

2019

iii

DEDICATION

Dedicated to my family.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

List of Listings . x

Acknowledgements . xi

Vita . xii

Abstract of the Dissertation . xiii

Introduction . 1

Chapter 1 Opportunities . 4
1.1 Introduction . 5
1.2 Background . 7

1.2.1 C++ Basics . 7
1.2.2 Dynamic Dispatch Hijacking . 12
1.2.3 Virtual Call CFI . 13

1.3 Our Advanced Scheme . 17
1.3.1 Deployment Model . 18
1.3.2 Threat Model . 19
1.3.3 Overview . 20
1.3.4 Preparation . 21
1.3.5 VTable Object Ordering . 24
1.3.6 VTable Object Interleaving . 32
1.3.7 Check Instrumentation . 37

1.4 Implementation . 39
1.5 Evaluation . 40

1.5.1 Chromium . 41
1.5.2 SPEC 2006 . 43
1.5.3 PX4 . 44

1.6 Related Work . 45
1.7 Conclusion . 48

Chapter 2 Challenges . 50
2.1 Introduction . 50

v

2.2 Background . 52
2.3 Existing Approaches . 53

2.3.1 Platform-Supplied Functions . 54
2.3.2 Disabling Optimization . 56
2.3.3 Hiding Semantics . 57
2.3.4 Forcing Memory Writes . 61
2.3.5 Discussion . 65

2.4 Case Studies . 65
2.4.1 OpenVPN . 69
2.4.2 Kerberos . 70
2.4.3 Tor . 71
2.4.4 OpenSSL . 72
2.4.5 NSS . 72
2.4.6 Libsodium . 73
2.4.7 Tarsnap . 73
2.4.8 Libgcrypt . 74
2.4.9 Crypto++ . 75
2.4.10 Bitcoin . 76
2.4.11 OpenSSH. 76
2.4.12 Discussion . 76

2.5 Universal Scrubbing Function . 77
2.6 Scrubbing-Safe DSE . 78

2.6.1 Inhibiting Scrubbing DSE . 78
2.6.2 Performance . 79

2.7 Discussion . 80
2.8 Related Work . 81
2.9 Conclusion . 82

Chapter 3 Conclusion . 84

Appendix A The current version of secure memzero . 86

Bibliography . 92

vi

LIST OF FIGURES

Figure 1.1. The running example in C++ . 7

Figure 1.2. The low level code for the virtual call in Figure 1.1c 11

Figure 1.3. The vtable objects of the running example in Figure 1.1 after the vtable
object of C has been split . 14

Figure 1.4. The decomposed type hierarchies of Figure 1.1b . 15

Figure 1.5. The vtable objects of the running example in Figure 1.1 sorted by the BKL
scheme . 16

Figure 1.6. The interleaved layout of the running example generated by the BKL scheme 18

Figure 1.7. The work flow of building a link unit. 19

Figure 1.8. The initial setup of our advanced scheme for the running example in
Figure 1.1 . 21

Figure 1.9. The vtables in VTO-C2 after preparation . 22

Figure 1.10. The updated setup of our advanced scheme for the running example in
Figure 1.1 after preparation . 24

Figure 1.11. The partition algorithm . 26

Figure 1.12. The build-tree algorithm . 27

Figure 1.13. The vtable layout inheritance trees of the running example in Figure 1.1 . . 28

Figure 1.14. The traverse algorithm. 29

Figure 1.15. The vtable objects of the running example in Figure 1.1 sorted by our
advanced scheme . 30

Figure 1.16. The unique entry groups for the running example in Figure 1.1 30

Figure 1.17. A virtual diamond example in which the virtual base A is not compatible
with every vtable object in its range . 32

Figure 1.18. Example to illustrate the difference between the decomposed type hierarchy
and the vtable layout inheritance tree . 33

Figure 1.19. The interleave algorithm . 34

vii

Figure 1.20. The interleaved layout of the running example generated by our advanced
scheme . 35

Figure 1.21. The percentage performance slowdown and space overhead of LLVM
CFI-VCall, the BKL scheme, and our advanced scheme 41

Figure 2.1. A removed scrubbing operation in OpenVPN 2.3.12. 70

Figure 2.2. A removed scrubbing operation in Kerberos release krb5-1.14.4. 71

Figure 2.3. A removed scrubbing operation in Tor 0.2.2.8. 72

Figure 2.4. A removed scrubbing operation in NSS 3.27.1. 73

Figure 2.5. A removed scrubbing operation in Tarsnap 1.0.37. 74

Figure 2.6. A removed scrubbing operation in Libgcrypt 1.7.3. 75

Figure 2.7. A removed scrubbing operation in Crypto++ 5.6.4. 76

viii

LIST OF TABLES

Table 1.1. The mapping between the types and the vtable objects in which they have
address points from the example in Figure 1.1. 24

Table 1.2. The comparison of space overheads introduced by LLVM CFI-VCall, the
BKL scheme, and the advanced scheme to PX4. 44

Table 2.1. Summary of open source projects’ removed scrubbing operations and the
scrubbing techniques they use. 68

ix

LIST OF LISTINGS

Listing A.1. Current version of secure memzero. 86

x

ACKNOWLEDGEMENTS

I would like to acknowledge all of my thesis committee members for their help and time.

Especially, I would like to thank my adviser Prof. Kirill Levchenko for his support and guidance

in the past few years, Prof. Sorin Lerner for his great compiler class, which has significant

influence on this dissertation, and Prof. Hovav Shacham for his inspirations.

I would also like to acknowledge my friends and collaborators in the CSE department. It

is their support that helped me in an immeasurable way. I would like to especially acknowledge

Vector Lee and Nishant Bhaskar for their generous help at my defense.

Chapter 1, in part, is currently being prepared for submission for publication of the

material. Yang, Zhaomo; Collingbourne, Peter; Levchenko, Kirill. The dissertation author was

the primary investigator and author of this material.

Chapter 2 is an adpated reprint of the material as it appears in Dead Store Elimination

(Still) Considered Harmful in USENIX Security 2017. Yang, Zhaomo; Johannesmeyer, Brian;

Olesen, Anders T.; Lerner, Sorin; Levchenko, Kirill., Proceedings of the USENIX Security, 2017.

The dissertation author was the primary investigator and author of this paper.

xi

VITA

2011 Bachelor of Science, Beijing University of Technology, Beijing, China

2013 Masters of Science, University of California, San Diego, USA

2014–2019 Research Assistant, University of California, San Diego, USA

2019 Doctor of Philosophy, University of California, San Diego, USA

xii

ABSTRACT OF THE DISSERTATION

Compilers and Software Security: Opportunities and Challenges

by

Zhaomo Yang

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Kirill Levchenko, Chair

Compilers play a critical role in software security. On the one hand, compilers are an ideal

place to secure software against some classes of vulnerabilities due to their knowledge of the

programs under protection and little developer efforts they require. Exploiting this opportunity,

I designed and implemented a highly efficient compiler-based Control-Flow Integrity (CFI)

scheme for C++ virtual calls. My scheme introduces minimal performance and space overhead

even for programs that use virtual calls heavily, which makes it more likely to be deployed to

real-world programs that have strict requirements on performance and code size.

On the other hand, compilers can also be detrimental to software security. Dead Store

Elimination (DSE) is a well-known compiler optimization that may weaken the security of a

xiii

program by accidentally removing memory scrubbing operations for sensitive data. Security-

savvy developers have long been aware of this phenomenon and have devised ways to prevent

the compiler from eliminating these data scrubbing operations. To understand the current state of

this problem, I examined the existing techniques found in the wild to circumvent the elimination

of scrubbing operations and investigated eleven security-critical open source projects on this

issue. The results are surprising: even for such a known issue, only three out of eleven open

source projects I surveyed had a reliable scrubbing method and used it consistently.

xiv

Introduction

Compilers are a fundamental part of software development. In the process of translating

a high-level programming language into a lower-level format, the compiler has significant impact

on many qualities of the generated code such as correctness, performance, size, and security. In

this dissertation, We explore the impact compilers have (or may have) on software security.

On the one hand, compilers could have great positive impact on software security. From

a security engineer’s perspective, the compiler presents great opportunities to implement security

mechanisms because it has access to the program under protection, and many built-in program

analyses (e.g. points-to analyses) of the compiler are useful for implementing and optimizing

security mechanisms. Also, from the software developer’s perspective, compiler-based security

schemes are attractive because they are easy to use: they can often be enabled with simple

compiler flags and offer complete protection against certain types of vulnerabilities. Compiler-

based security schemes have been particularly popular for programs written in memory-unsafe

languages such as C and C++ where a simple out-of-bounds write vulnerability may allow the

attacker to take complete control of the program. For example, stack canaries, a mechanism to

ensure that the return address has not been corrupted before a function returns, was first proposed

about 20 years ago, and today more than 80% of the top 20 packages with the most reverse

dependencies on Ubuntu 18.04 are built with stack canaries [18]. Control-Flow Integrity (CFI) is

another popular security mitigation for control-flow hijacking in C and C++. At a high-level,

CFI restricts targets of indirect jumps and returns to a small set of allowed targets. CFI is

becoming increasingly popular, with some variant of CFI integrated into GCC and LLVM [58].

Today, Google, for example, uses CFI to secure Chrome and multiple system components of

1

Android [10] [30]. However, not all programs can enjoy the advances in compiler-based security

mechanisms. Because compiler-based mechanisms tend to be optimized for performance at the

cost of space overhead, programs running on resource-constrained systems cannot always take

advantage of them. At the same time, more and more resource-constrained systems running

software written in C and C++ are coming to our lives, so there is an urgent need to secure

them. In Chapter 1, we investigate the opportunities to harden software on resource-constrained

systems. Particularly, we focus on virtual calls in C++, a unique type of dynamic control transfer

in C++ that is subject to control-flow hijacking. Virtual calls are normally implemented using

a data structure called virtual table (vtable), which contains metadata and function pointers.

Inspired by the work of Bounov et al. [39] that creatively secures virtual calls by interleaving

vtables together, we developed and implemented a highly efficient CFI scheme for virtual calls.

Unlike the original work [39], our scheme interleaves C++ vtables at the vtable entry level, which

can keep more properties in the interleaved layout. This makes our scheme more compatible

with the existing programs and libraries. In addition, interleaving vtables at a finer granularity

further drives down space overhead, because the scheme can eliminate unused vtable entries and

virtual functions. In fact, our scheme can often even reduce the size of a program, making it

possible to enable additional space-consuming security schemes. Moreover, our scheme inserts

more efficient CFI checks and has higher protection precision.

Compilers may also impact software security negatively. In the famous Turing award

lecture “Reflections on Trusting Trust” [57], Ken Thompson warned that a malicious compiler

could stealthily inject backdoors into victim programs. Setting aside malicious and bug-ridden

compilers, benign correctly-implemented compilers may still surprise the developer by undermin-

ing security-related code she puts in place. For example, researchers have found that compilers

may weaken the security of programs by undefined behaviours [59] or destroy the constant-time

property of the code [38]. In Chapter 2, we examine the current state of a well-known issue

of this category. Due to the concerns over memory disclosure vulnerabilities in C and C++

programs, security application developers explicitly scrub sensitive data from memory after use.

2

However, compiler optimizations such Dead Store Elimination (DSE) may deem such scrubbing

operations useless since the values they set are never used and thus remove them. Security-savvy

developers have long been aware of this phenomenon and have devised ways to prevent the

compiler from eliminating these data scrubbing operations. To understand the current state of

the problem, in Chapter 2 I examined the existing techniques found in the wild to circumvent the

elimination of scrubbing operations and investigated eleven security-critical open source projects

on this issue. The results are surprising: even for such a known issue, only three out of eleven

open source projects we surveyed had a reliable scrubbing method and used it consistently.

The remaining dissertation is organized as follows. In Chapter 1, we describe a highly

efficient compiler-based security scheme for protecting dynamic dispatch in C++ programs. In

Chapter 2, we present a systematic analysis of the scrubbing problem, including an in-depth

analysis of the existing techniques to prevent scrubbing removal and a case study of open source

security programs on this issue. Finally, we conclude the dissertation in Chapter 3 and discuss

future directions of research.

3

Chapter 1

Opportunities

Resource-constrained systems like Internet-of-Things (IoT) devices are increasingly

common in our lives. C++ is a popular programming language for such resource-constrained

systems due to its powerful features and the availability of the libraries and frameworks in

C++. However, C++ is not a memory-safe language, and thus many of these systems are

potentially subject to memory corruption, or even control-flow hijacking when an attacker

manages to manipulate control data. C++ programs make control-flow hijacking easier due to

the proliferation of virtual calls, whose control data is stored in writable memory.

Many security schemes have been proposed to mitigate control-flow hijacking via virtual

calls. However, most of the schemes are optimized for performance overhead at the cost of space

overhead, making them unusable for resource-constrained systems where storage space is very

limited. Inspired by the original interleaving scheme of Bounov et al. [39], we designed and

implemented an advanced virtual vtable interleaving scheme that interleaves only necessary table

entries together and does efficient CFI checking for virtual calls. Compared with the original

interleaving scheme, our scheme has lower space overhead, better compatibility with existing

programs and libraries, and higher protection precision.

4

1.1 Introduction

The recent years have witnessed the rapid growth of resource-constrained systems

including mobile devices and Internet-of-Things (IoT) devices. C++ is one of the most popular

programming languages for these systems thanks to its speed and object-oriented features. From

popular apps on smartphones, to simple programs running in smart sensors and actuators, to

complex IoT gateways, C++ is everywhere.

Deploying C++ at such a scale, however, has serious security implications. Since C++

is not memory-safe, memory corruption bugs are not uncommon. Also, C++ programs often

contain many computed control transfers that rely on control data in writable memory to compute

the transfer destination. Computed control transfers can be divided into two categories: forward

transfers (e.g. transfers via function pointers) and backward transfers (e.g. transfers via ret

instructions). If the attacker manages to corrupt the control data of a computed transfer by, for

example, exploiting a memory-safety bug, they can hijack the control flow of the program.

Researchers have long been aware of the danger of control-flow hijackings in memory-

unsafe languages and have thus proposed numerous security mitigations including DEP [17]

and ASLR [26] for general mitigation, stack canaries [41] and shadow stacks [34] for protecting

backward transfers, and control-flow integrity (CFI) [37] for forward transfers. These techniques

have been gaining popularity due to their efficacy and ease of use. They have not only become

available in major compilers like GCC and LLVM, but are also deployed to secure important

real-world software. For example, more than 80% of the top 20 packages with the most reverse

dependencies on Ubuntu 18.04 are built with stack canaries [18], and Google builds some

components of Android [30] and the Linux version of Chrome [10] with CFI enabled by default.

However, the advances in the control-flow hijacking mitigations have not fully bene-

fited resource-constrained systems. A major obstacle for deploying existing mitigations on

resource-constrained systems is their space overhead. Existing security mitigations, especially

CFI schemes, are optimized for performance at the cost of space overhead. This approach is

5

reasonable and effective for environments where memory and storage space are sufficient, but

makes the mitigations non-starters for resource-constrained systems. With the ever-growing

number of mobile and IoT devices running C++ programs, there is an urgent need for security

mitigations optimized for both performance overhead and space overhead.

In this chapter, we focus on protecting virtual calls, a type of forward computed transfer

unique to C++. Previously, Bounov et al. [39] proposed a novel CFI scheme for virtual calls

that achieves both low performance overhead and low space overhead by interleaving virtual

tables (vtables) of a program together. Inspired by this work, we push the interleaving idea a step

further: instead of interleaving whole vtables in a program, we only interleave vtable entries that

are actually used. This allows us to further drive down the space overhead significantly, making

it usable for resource-constrained systems and potentially enabling other security mitigations

that require space. What’s more, interleaving vtables at a finer granularity allows us to keep more

properties in the interleaved layout, which makes our scheme more compatible with the existing

programs and libraries. In addition, our scheme offers better protection precision and uses more

efficient checks compared to the original interleaving scheme due to our more advanced vtable

ordering algorithm. In this chapter, we:

* present an in-depth analysis of the relationship between C++ types and their vtable layouts

and a new structure called vtable layout inheritance tree that accurately captures this

relationship among types.

* present a fine-grained vtable interleaving algorithm, which can be used alone as an

optimization pass to eliminate unused vtable entries and virtual member functions.

* present an efficient CFI scheme for virtual calls in CFI based on the interleaved layout that

our interleaving algorithm generates.

* evaluate our scheme on popular real-world C++ applications running on multiple platforms

with different resource constraints, showing our scheme’s efficacy and applicability to a

6

1 struct A {
2 int a;

3 virtual void f0();

4 };
5

6 struct B {
7 int b;

8 virtual void g0();

9 virtual void g1();

10 };
11

12 struct C : A, virtual B {
13 int c;

14 virtual void f0();

15 virtual void g1();

16 };
17

18 struct D : A {
19 int d;

20 virtual void f1();

21 virtual void f2();

22 };
23

24 struct E : D {
25 int e;

26 virtual void f0();

27 virtual void f2();

28 };

(a) Class Definitions

(b) Class Type Hierarchy

A * ptr = ...

...

ptr->f0();

(c) Virtual Call Example

(d) The layout of a complete object of C and its vtable
object

Figure 1.1. The running example in C++

broad range of C++ applications.

1.2 Background

This section covers the related background of this work. We will first review C++

basics including inheritance and dynamic dispatch, from both the language perspective and the

implementation perspective, and discuss the security implications of dynamic dispatch in C++.

Then, we will look at how CFI schemes protect dynamic dispatch in general with a special focus

on the original vtable interleaving scheme [39] that inspired our work.

1.2.1 C++ Basics

Inheritance and dynamic dispatch are two important features of C++ that are closely

related to our work, so for these two features we will review the language-level semantics. We

7

will also describe how they are implemented at the binary level, which helps one to see the

potential attacks C++ programs are subject to and to understand our scheme operating at the

same level. There are two major C++ ABIs: the Itanium C++ ABI and the Microsoft Visual C++

ABI. For the rest of the paper, we will assume the use of the Itanium C++ ABI since that is the

ABI our implementation currently supports. However, our scheme should be applicable to the

Microsoft Visual C++ ABI without significant changes.

Inheritance

As C++ is an object-oriented programming language, inheritance is a crucial feature that

allows developers to create derived object types based on base object types. The C++ standard

requires that each instance of a derived type contains a copy of every base type in the inheritance

hierarchy above it; such a copy is called a subobject. An object that is not a subobject of any

other object is a complete object. Henceforth, we will use X-in-Y to refer to the subobject

of a base type X in a complete object of a derived type Y, Complete-X to refer to a complete

object of type X, and object to refer to both a complete object and a subobject, unless we need

to differentiate them. C++ also allows for more complex forms of inheritance such as multiple

inheritance and virtual inheritance. Multiple inheritance is when a type inherits directly from

multiple base types. For example, type C inherits from A and B in Figure 1.1. Virtual inheritance

is a feature to ensure that a base type T1 has exactly one subobject in an object of the derived

type T2, even when there is more than one base type of T2 virtually inheriting T1. Type B in

Figure 1.1 is a virtual base of C.

At the binary level, in a complete object of a derived type T, the Itanium C++ ABI

overlaps the subobjects for T’s base type(s) that share data fields and lays out objects that cannot

be overlapped linearly. The memory layout of a complete object of C in Figure 1.1 is shown in

Figure 1.1d. We say type T1 and type T2 are aligned if an object of T1 and an object of T2 start

at the same address. A complete object may have several groups of aligned types. For example,

in a complete object of C, types A and C are in the same group while B is in its own group. We

8

call such a group an aligned group. The types in an aligned group form a linear hierarchy. For

Complete-C in Figure 1.1d, types A and C are in the same aligned group, and the inheritance

hierarchy between them is A→ C. If a complete object of a type has multiple aligned groups,

we say this type is a complex type. Virtual inheritance makes the layout more complex. Due

to the semantics of virtual inheritance, the Itanium C++ ABI only allocates one subobject for a

virtual base in each complete object of a derived type. This implies that the subobject of a virtual

base may be “floating” in the complete objects of its derived types. That is, the distance between

the subobject of a virtual base T and the object of a derived type of T may change, depending

on what the complete object is. For the example in Figure 1.17, in a complete object of C, the

distance between the object of C and the subobject of A is zero. However, in a complete object of

D, a deriver of C, the distance between the subobject of C and the subobject of A is no longer zero,

as is shown in Figure 1.17d.

Dynamic Dispatch

Polymorphism is fundamental to object-oriented programming languages like C++. One

way polymorphism manifests itself is through dynamic types, which are types that define or

inherit at least one virtual member function. Polymorphic behaviors appear when a virtual

member function is called via a pointer or reference to a dynamic type. Such a call is called a

virtual call. For example, line 3 in Figure 1.1c is a virtual call to f0 via a pointer ptr to dynamic

type A. Because the pointer or reference may point to Complete-A or any A-in-X, where X is a

deriver of A, and C++ requires a virtual call to invoke the final overrider of the virtual member

function, the virtual call in Figure 1.1c may invoke A::f0, C::f1, or E::f1, depending on what

object ptr actually points to. Since in general the actual type of the object pointed to by ptr

cannot be determined at compile-time, the call dispatch has to delay until run-time. This run-time

dispatch is called dynamic dispatch.

A common way to implement dynamic dispatch in C++ is using virtual tables (vtables).

The two most popular C++ ABIs, the Itanium C++ ABI and the Microsoft Visual C++ ABI,

9

use this approach. For the Itanium C++ ABI, every object (including complete objects and

subobjects) Obj of a dynamic type T has a vtable. A vtable contains two kinds of entries:

metadata entries and function pointer entries. Metadata entries, located at the upper part of a

vtable, are used to find related objects and data structures of Obj. For example, the offset-to-top

entry can be used to locate the start of the complete object that contains Obj when Obj is a

subobject; the Run-Time-Type-Information (RTTI) entry points to the TypeInfo object of Obj,

providing the type information of the complete object containing Obj. Function pointer entries,

located at the lower part of a vtable, point to the final overriders of virtual member functions of

T.

In this work, we make a clear distinction between a vtable and a vtable object. We use

vtable to refer to the logical structure that enables dynamic dispatch and vtable object to refer

to the physical storage of vtable(s). Every object of a dynamic type has a vtable. For all the

complete objects of a dynamic type T, the Itanium C++ ABI creates a single vtable object that

contains all the vtables for T itself and the subobjects of T. The layout of vtables in the vtable

object of T is closely related to the layout of a complete object of T. Specifically, the vtables of an

aligned group overlap so that the vtable of a less derived type is embedded in a vtable of a more

derived type. The vtable of the most derived type of each group of aligned types contains all

the vtables of this group. The Itanium C++ ABI combines the representative vtables of different

aligned groups together to form the vtable object for T. For example, Figure 1.1d shows the

layout of the vtable object for C. The upper half of the vtable object is for the group of aligned

types A and C, while the lower half is for the group of type B. For the first aligned group, A’s

vtable is embedded inside of C’s vtable.

We want to emphasize that the way we use the term vtable is different from the way

the Itanium C++ ABI uses it, and this difference manifests itself with complex types. For a

complex type T, the Itanium C++ ABI refer to the whole vtable object created for Complete-T

as T’s vtable. For example, type C in Figure 1.1 is a complex type, and in the Itanium C++

ABI’s terminology, the vtable object in Figure 1.1d is a vtable for C. However, we call the upper

10

%vptr = load %ptr

%f1_ptr = load (%vptr + 0)

call %f1_ptr

Figure 1.2. The low level code for the virtual call in Figure 1.1c

part of this vtable object (marked in Figure 1.1d) a vtable for C because that is the part used

for dynamic dispatch on C. Our notion of vtable helps us to map a clear relationship between

types and their vtable layouts, as we will see later in Section 1.3. Let vtable object VTO be the

vtable object created for complete objects of T. We say that the vtable of T allocated in VTO is the

standard vtable of T, and the layout of this vtable the standard layout of T. From “Chapter 2:

Data Layout” of the Itanium C++ ABI, we can derive that every vtable of T inherits the standard

layout of T.

An object connects to its vtable via a virtual pointer (vptr), which is the first element of

the object data structure in memory. The vptr of an object points to the first virtual function

pointer in the vtable. When the vptr of an object (complete object or subobject) of type T points

to offset bytes into a vtable object VTO, we say that VTO has a compatible address point for T

denoted (T, offset). If a vtable object contains more than one address point, this vtable object

has a vtable group. For example, the vtable object of C in Figure 1.1d has a vtable group. Note

that a static type T may have multiple compatible address points because objects of T contained in

different complete objects have different vtables located in different vtable objects. For example,

in Figure 1.1 Complete-A, A-in-C, A-in-D, and A-in-E all have different vtables, so A has

four compatible address points.

With vtables, at a virtual call site, the Itanium C++ ABI first loads the vptr of the object,

calculates the address of the pointer to the virtual function to be called by adding its constant

offset from the address point to vptr, then loads the function pointer, and finally invokes it.

The pseudo LLVM IR code of the virtual function call in Figure 1.1c is shown in Figure 1.2 to

illustrate this process.

11

Knowing how dynamic dispatch is implemented, we can represent a dynamic dispatch by

a (Type, Offset) pair, where Type is the static type of the dispatch and Offset is the offset

of the used vtable entry from the address point pointed by the vptr. For example, the virtual

call in Figure 1.1c can be represented as (A, 0) because function f0 is the first virtual member

function located at offset zero. Note that such a dynamic dispatch may happen to any object

of Type, therefore the vtable used by this dispatch may be any vtable of Type. For example,

the dynamic dispatch (A, 0) may use the vtable of Complete-A, A-in-C, A-in-D, or A-in-E.

We call the list of vtable entries that may be used by a dynamic dispatch its entry group. The

entry group for (A, 0) contains the entries at offset zero from the address points in the four

aforementioned vtables.

1.2.2 Dynamic Dispatch Hijacking

Dynamic dispatch in C++ is a powerful mechanism. At the same time, it presents a great

opportunity for the attacker to hijack the control flow of C++ programs. For a dynamic dispatch,

there is a static type and a run-time type. The static type is the type of the pointer or reference

from which the virtual call is invoked, while the run-time type is defined by the address point

pointed by the vptr, as the pointed vtable decides the dynamic behaviors. For example, the

run-time behaviors of the virtual function call to f0 in Figure 1.1c are decided by the vptr in the

object pointed by ptr; different objects’ vptrs point to different vtables, which contain function

pointers to different versions of f0. Attacks on dynamic dispatch often start with creating a

mismatch between the static type and the run-time type. This can be done by corrupting the

vptr using an out-of-bounds write or by an invalid type casting. For example, consider:

1 void foo(void * vp) {

2 T1 * ptr = (T1 *) vp;

3 ptr->bar();

4 }

The function foo above expects a void pointer pointing to an object of type T1. If the attacker

12

manages to pass a vp pointing to an object of type T2, which may either be an unrelated type or

a base type of T1, then a mismatch is created.

With such a mismatch, the attacker could access out-of-bounds memory if the size of

T1 is greater than the size of T2, or, even worse, hijack the control flow when a virtual call is

invoked via ptr. If the mismatch is created by type casting, the attacker may invoke a powerful

virtual member function from an unrelated type. If the mismatch is created by corrupting the

vptr and the address of a target function is stored somewhere in memory, the attacker may point

the vptr to an address such that after calculation the address of the target function is used as the

function pointer to virtual member function bar.

To mitigate attacks on dynamic dispatch, we need to detect the exploitation of such a

mismatch between the static type and the run-time type.

1.2.3 Virtual Call CFI

Control-Flow Integrity (CFI) [37] is a general security mechanism to mitigate control-

flow hijacking by restricting dynamic transfers to a small set of allowed targets. As virtual

calls are also dynamic transfers, researchers have developed CFI schemes to specifically protect

them. Because the corruptible control data for a virtual call is the vptr, virtual call CFI can be

enforced by checking the validity of the vptr before it is used. Specifically, when a virtual call

CFI scheme is enabled, the virtual call in Figure 1.1c will be instrumented as follows:

1 %vptr = load %ptr

2 call check_ptr(%vptr)

3 %f1_ptr = load (%vptr + 0)

4 call %f1_ptr

Here the function check vptr checks the validity of vptr before it is used. If the check

fails, the execution of the program terminates. What is a valid value for the vptr depends on

the design of the CFI scheme. Generally, the vptr may legally point to any address point of the

virtual call’s static type. For instance, the vptr in Figure 1.1c may point to A ’s address points

13

(a) TVO-A (b) TVO-B (c) TVO-C1 (d) TVO-C2 (e) TVO-D (f) TVO-E

Figure 1.3. The vtable objects of the running example in Figure 1.1 after the vtable object of C
has been split

in the vtable objects of A, C, D, and E. Since the addresses of these vtable objects are normally

arbitrary, so are their address points, which means that check ptr requires an expensive set

membership check. To lower the performance impact, prior work used strategies including

moving vtable objects and allocating additional data structures. For example, LLVM CFI-

VCall [16] aggregates the vtable objects of each type hierarchy together and allocates a bitset

encoding compatible address points for each dynamic type. Assuming there are N vtable entries

in total, for each dynamic type the scheme allocates a bitset of N (a string of N bits) in which each

set bit indicates that the address of the corresponding entry in the aggregated vtable object is a

compatible address point for the type. Although there are a number of optimizations to reduce

the size of bitsets, this strategy to speed up check ptr still introduces a high space overhead,

which is a serious problem for resource-constrained platforms (more in Section 1.5). For a virtual

call CFI implementation to be usable on those platforms, it has to have low space overhead as

well.

Bounov, Kici, and Lerner proposed a novel CFI scheme for virtual calls that is optimized

for both performance and space overhead [39]. Throughout the rest of this dissertation, we refer

to this as the BKL scheme. The core idea is rearranging vtable objects and reassign address points

so that for any type T, the compatible address points for it are normally placed consecutively in

memory. This means that the function check vptr normally can be implemented as an efficient

range check. The first step of the BKL scheme is sorting vtable objects so that for any type T,

the vtable objects containing compatible address points for T are consecutive. The insight behind

this step is that for any type T, the compatible address points are only in the vtable objects of

T and T’s derived types (because only those vtable objects contain a vtable for T). Intuitively,

14

Figure 1.4. The decomposed type hierarchies of Figure 1.1b

a depth-first traversal of the type hierarchy would achieve this. However, this does not work

when there are complex types. As we mentioned above, for any complex type, the Itanium C++

ABI glues the vtable objects of different aligned groups together. For example, the vtable object

for C in Figure 1.1d contains address points for both A and B, which are two unrelated types, so

it is impossible to sort vtable objects so that for both A and B, the vtable objects containing a

compatible address point for them are consecutive. To solve this, the BKL scheme decomposes

complex types into multiple sub-types, each of which corresponds to one aligned group. For

example, type C in Figure 1.1 is split into C1 and C2, representing the aligned group of A and C

and the aligned group of B, respectively. Similarly, the vtable objects of complex types are also

split so that every vtable object corresponds to exactly one aligned group. For example, C’s vtable

object in Figure 1.1d will be split into two vtable objects: the upper half becomes the vtable

object for C1 and the lower half becomes the vtable object for C2. After these two steps, every

type corresponds to exactly one vtable object, which has exactly one address point. The vtable

objects of Figure 1.1 after decomposition are shown in Figure 1.3. Also, a decomposed type

hierarchy, the type hierarchy with the complex types replaced by the newly created sub-types,

is normally a tree (more in Section 1.3.5). For example, the decomposed type hierarchies of

Figure 1.1 are shown in Figure 1.4. Then, the scheme orders the vtable objects by a depth-first

traversal of the decomposed type hierarchies. For the hierarchies in Figure 1.4, the sorted vtable

object lists are shown in Figure 1.5.

In the sorted lists, for any type T in a decomposed type hierarchy, the vtable objects

that have compatible address points for T are normally consecutive (more in Section 1.3.5).

15

Figure 1.5. The vtable objects of the running example in Figure 1.1 sorted by the BKL scheme.
The vtable objects are shown in Figure 1.3. The range of compatible vtable objects of each type
is marked.

For example, for type D, the vtable objects that contain compatible address points are VTO-D,

VTO-E, and they are consecutive in the first list. However, this property by itself does not make

implementing check vptr much easier since vtable objects may have different sizes, so the

locations for address points are still arbitrary. The next key insight from the BKL scheme is that

dynamic dispatch works as long as all the entries of the same kind have the same offset from

their respective address points. For example, all the entries for f0 have offset 0 from the address

points in VTO-A, VTO-C1, VTO-D, and VTO-E in Figure 1.3. In addition, the absolute value of this

offset does not matter as long as all the entries have the same offset from the address points.

Taking advantage of this insight, the BKL scheme interleaves vtable objects together by a simple

algorithm: it picks a vtable entry from a vtable object in the order computed previously and

puts it in the interleaved layout until no entries are left in any vtable objects. Table 1.6 is the

interleaved layout of vtable objects of the type hierarchy on the left in Figure 1.4. Note that

interleaving only changes the physical layout of vtable objects. After interleaving, the number of

vtable objects does not change, and these vtable objects still function independently. For each

vtable object, the BKL scheme reassigns the address point to the first function pointer in the

16

object. For example, the address points in the interleaved layout in Table 1.6 are at the entries

for function f0. An important property of the interleaved layout is that the vtable entries of

the same kind (for the same metadata or function) are consecutive. Because all the entries for

f0 are consecutive, the address points (which are placed at the f0 entries) are consecutive too.

In the interleaved layout, the address points are consecutive, and entries for the same virtual

member function or metadata are consecutive, so entries for the same virtual member function or

metadata have the same offset from the corresponding address points, ensuring that dynamic

dispatch still works. For example, entries for function f2 are at offsets 0x80 and 0x88 and their

address points are at 0x58 and 0x60. Since the offset of any entry for function f2 is 0x28 bytes

from its address point, dynamic dispatch for function f2 works with the interleaved layout. In

addition, because for a type T, the vtable objects that have compatible address points are normally

consecutive in the sorted vtable object list, and the vtable objects’ address points are located in

the same order as their containing vtable objects in the interleaved layout, the compatible address

points for T are normally consecutive (more in Section 1.3.5). For example, type A’s range of

compatible address points are from 0x48 to 0x60. To check the validity of a vptr for the static

type T, the scheme normally only needs to check if the vptr points to one of the address points

in T’s compatible address point range. However, the authors do point out that in certain occasions

they have to insert checks for multiple ranges, which we will discuss more in Section 1.3 where

we compare our design with the BKL scheme.

1.3 Our Advanced Scheme

In this section, we will introduce the design of the advanced vtable interleaving scheme,

which is inspired by the BKL scheme [39], but has a number of important improvements. We

start off this section with the deployment model of general CFI schemes for C++ dynamic

dispatch. Our advanced scheme achieves low space overhead by exploiting the assumptions of

this model. We then describe our threat model and provide an overview of our scheme with an

17

Offset VTO-A VTO-C1 VTO-D VTO-E
0x00 vbase offset
0x08 offset-to-top
0x10 offset-to-top
0x18 offset-to-top
0x20 offset-to-top
0x28 A::RTTI
0x30 C::RTTI
0x38 D::RTTI
0x40 E::RTTI
0x48 (Addr Pt for VTO-A) A::f0
0x50 (Addr Pt for VTO-C1) C::f0
0x58 (Addr Pt for VTO-D) A::f0
0x60 (Addr Pt for VTO-E) E::f0
0x68 C::g1
0x70 D::f1
0x78 D::f1
0x80 D::f2
0x88 E::f2

Figure 1.6. The interleaved layout generated by the BKL scheme of the vtable objects VTO-A,
VTO-C1, VTO-D, and VTO-E in Figure 1.3

emphasis on what our scheme does differently and its advantages. After that, we dive into the

details of our scheme, focusing on two core components: how we order vtable objects and how

we interleave vtable objects.

1.3.1 Deployment Model

Figure 1.7 shows the standard work flow of building a link unit, which is an executable

or dynamic shared object. Compiler-based CFI schemes are normally implemented at the Link-

Time Optimization (LTO) phase, which provides a global view over the program under protection.

We call the set of compilation units passed into the LTO phase the LTO unit of the program,

which is also the part of the program under protection. In addition, for CFI schemes protecting

C++ dynamic dispatch, we denote by Typesp the C++ types under protection. Typesp must be

a set of closed C++ types defined in the LTO unit—for any type T in Typesp, T and any of the

base types or derived types of T are also in Typesp, and T is only referenced in the LTO unit. In

18

Figure 1.7. The work flow of building a link unit.

addition, we denote by VTOp the set of vtable objects related to Typesp—for any vtable object

VTO in VTOp, there is at least one type in Typesp that has a compatible address point in VTO.

Note that VTOp may not contain all the vtable objects that contain compatible address points of

Typesp in the program due to common compiler optimizations that remove unused functions and

global variables (e.g. dead code elimination). The existing schemes [39] [16] achieve efficient

vptr checking for dynamic dispatch on Typesp by rearranging the layout of vtable objects in

VTOp. One key idea of our scheme is that we add another ingredient to the scheme: the instances

of dynamic dispatch on Typesp. This allows our advanced scheme to know all the dynamic

dispatch instances that it needs to protect, and thus also knows which parts of vtable objects in

VTOp are actually in use. Specifically, we denote by DDp the set of all the instances of dynamic

dispatch on Typesp in the LTO unit.

Our observation is that this deployment model fits standalone C++ programs very well,

because their LTO units normally contain all the types that the programs reference. For example,

Typesp of Chromium on Linux contains all the C++ types in it, including types in the std name

space.

1.3.2 Threat Model

We assume that the attacker cannot corrupt non-writable regions of a program where

instructions and constant variables, including vtable objects, are stored. Further, we assume

19

that the attacker cannot manipulate the values in registers or register spills on stack, otherwise

the attacker could change the vptr in register after it was loaded from memory and passed

the checking. Other than these exceptions, we assume that the attacker can corrupt vptrs by

casting or out-of-bound writes. The attacker’s goal is to subvert the control flow of the program

by exploiting dynamic dispatch. Our scheme detects the exploitation of type confusion by

making sure the run-time type of a pointer or reference is valid for the static type. Specifically,

we ensure that the address point pointed by the underlying vptr is compatible with the static

type. Compared with the BKL scheme, our scheme has higher protection precision (more in

Section 1.3.7).

1.3.3 Overview

The core idea of the BKL scheme [39] is rearranging the storage layout of all the

vtable objects of a program to allow faster vptr validity checking while maintaining some

important layout properties to ensure that dynamic dispatch still works. In this work, we take

the interleaving idea a step further: instead of meshing all the vtable objects in VTOp together,

our scheme meshes only the used vtable entries in VTOp together. Interleaving vtables at a finer

granularity not only further drives down the space overhead, which is crucial for the deployment

of a compiler-based security scheme on resource-constrained platforms, but also allows us to

maintain additional layout properties specified by the Itanium C++ ABI that the BKL scheme

loses, making our scheme more compatible with the existing C++ programs. In addition, our

scheme also provides higher protection precision because of our advanced vtable ordering and

arrangement algorithms.

Our scheme consists of four parts: preparation, vtable ordering, vtable interleaving, and

check instrumentation. For the rest of this section, we will describe each part in detail. To better

illustrate our scheme, we continue to use the running example in Figure 1.1 for the rest of this

section. Specifically, we assume the setup for our scheme in Figure 1.8. In this setup, all the

types defined in Figure 1.1 are under protection. VTOp contains all the vtable objects created for

20

Typesp = {A,B,C,D,E}
V TOp = {V TO-A,V TO-B,V TO-C,V TO-D,V TO-E}
DDp = {(A,0),(B,−3),(B,1),(C,0),(D,1),(E,2)}

Figure 1.8. The initial setup of our advanced scheme for the running example in Figure 1.1

the types A, B, C, D, and E. DDp contains the dynamic dispatch instances on Typesp, which only

use a subset of vtable entries in VTOp.

1.3.4 Preparation

Our advanced scheme relies on the relationship between C++ types and vtable object

layouts. However, vtable objects generated by compilers normally make it hard to uncover this

relationship so first we need to normalize the vtable objects in the program. As we mentioned in

Section 1.2, for a complex type T, the Itanium C++ ABI combines vtable objects for different

aligned groups of T together to form a vtable group, which obscures the clear relationship

between types and vtable objects’ layouts. As the first step of normalization, we split vtable

objects that contain vtable groups into individual vtable objects. Note that the BKL scheme

also does this splitting as part of its decomposition process. For example, the vtable object of

C in Figure 1.1d will be split into two objects: the upper half becomes vtable object VTO-C1 in

Figure 1.3c, and the lower half becomes the vtable object VTO-C2 in Figure 1.3d. Note that this

splitting does not affect the compatibility with the Itanium C++ ABI since the ABI explicitly

states that the relative positions of individual vtables in a vtable group do not matter. After the

splitting, each vtable object has exactly one address point and corresponds to exactly one aligned

group. Since there is only one address point in each vtable object, we say a vtable object VTO

and a type T are compatible if the address point in VTO is compatible for T. After this step, VTOp

for the running example in Figure 1.1 contains the vtable objects shown in Figure 1.3.

An important difference between our scheme and the BKL scheme is how vtable objects

are associated with types. For any vtable object created for complete objects of a non-complex

type T, the BKL scheme associates the vtable object with T. For example, A is a non-complex type

21

Figure 1.9. The vtables in VTO-C2 after preparation. VTO-C2 was the lower half of the vtable
object for C in Figure 1.1d

in the running example in Figure 1.1 so VTO-A, the vtable object for Complete-A, is associated

with A. For any vtable object that is split from a vtable group of a complex type, the BKL scheme

associates it with the corresponding pseudo-type created during the decomposition. For example,

VTO-C2 in Figure 1.3 is split from the lower half of the vtable object for C in Figure 1.1d, and it

is associated with the pseudo-type C2. On the other hand, our advanced scheme associates each

vtable object VTO with the most derived type T that is compatible with VTO, and we say that VTO

is owned by T. For example, VTO-C2 in Figure 1.3 is owned by type B because B is the only type

that has an address point in it. Furthermore, we have the following property about vtable objects:

Property 1. If a vtable object VTO is owned by a type T, then T’s vtable allocated in VTO occupies

VTO completely.

Proof. Because VTO is owned by T, then T is the most derived type whose vtable is allocated in

VTO. All other types that are compatible with VTO are base types of T and their vtables allocated

in VTO are embedded inside T’s vtable in VTO. Therefore, T’s vtable allocated in VTO occupies

VTO completely.

As we mentioned in Section 1.2, all the vtables of the same type T inherit the standard

layout of T. In fact, most of vtables for T generated by the Itanium C++ ABI have exactly the

standard layout of T except for vtables for T-in-S, where T is a virtual base of S. For any virtual

base T of a derived type S, the Itanium C++ ABI adds a vcall offset entry for every function

defined in T to the vtable for T-in-S. For example, in Figure 1.1, B is a virtual base of C, and B

22

has two virtual functions (g0 and g1), so in the vtable for B-in-C in Figure 1.1d, there are two

vcall offset entries. We want all the vtables of the same type T to have the standard layout of

T, so we introduce a pseudo-derived type T.vbase for every virtual base type T. When a type

S virtually inherits T, effectively S virtually inherits T.vbase, which in turn inherits T. With

such pseudo-types, we can redefine vtables for virtual base type T and its pseudo-derived type

T.vbase. For example, the vtable object VTO-C2, which was the lower part of the vtable object

created for C in Figure 1.1d before splitting, now contains a vtable for C.vbase and a vtable

for C, as they are shown in Figure 1.9. Note that the vtable for C.vbase includes the entries

for vcall offset but the vtable for C does not. Since vtables for C no longer contain vcall

offset entries, we also change dynamic dispatch instances to access vcall offset entries.

For example, (B, -3) is a dynamic dispatch instance to access the vcall offset entry for

function g1. We changed such a dynamic dispatch to (B.vbase, -3) because only vtables of

B.vbase contain vcall offset entries. After this normalization step, we have the following

property:

Property 2. All of the vtables for the same type T have the standard layout of T.

Combined with Property 1, we can prove the following property:

Property 3. All of the vtable objects owned by T have the standard layout of T.

Proof. For any vtable object VTO that is owned by T, with Property 1, we know that the vtable

for T allocated in VTO has the same layout as VTO does. With Property 2, we know that all of the

vtables for T have the standard layout of T, so VTO has the standard layout of T.

After this step, the ownership of vtable objects in VTOp is shown in Table 1.1. VTO-C2 is

owned by the pseudo-type B.vbase as it is the vtable for B-in-C where B is a virtual base for C.

In addition, Typesp, VTOp, and DDp are also updated and are shown in Figure 1.10.

23

Table 1.1. The mapping between the types and the vtable objects in which they have address
points from the example in Figure 1.1. The vtable objects have been split and are shown in
Figure 1.3. The asterisk (*) indicates that the vtable object is owned by the type.

Type VTable Objects

A VTO-A*, VTO-C1, VTO-D, VTO-E
B VTO-B*, VTO-C2
B.vbase VTO-C2*
C VTO-C1*
D VTO-D*, VTO-E
E VTO-E*

Typesp = {A,B,B.vabse,C,D,E}
V TOp = {V TO-A,V TO-B,V TO-C1,V TO-C2,V TO-D,V TO-E}
DDp = {(A,0),(B.vbase,−3),(B,1),(C,0),(D,1),(E,2)}

Figure 1.10. The updated setup of our advanced scheme for the running example in Figure 1.1
after preparation

1.3.5 VTable Object Ordering

The goal of the vtable object ordering phase is ordering vtable objects in VTOp so that for

every dynamic dispatch (type, offset) in DDp, the vtable objects containing a vtable entry

for this dispatch are consecutive. In other words, we want to arrange vtable objects having the

same layout (the same kinds of vtable entries) consecutively in this order. To order vtable objects

in VTOp, we rely on the following properties of vtable objects, which are derived from “Chapter

2: Data Layout” of the Itanium C++ ABI and the discussions from Section 1.2 and Section 1.3.4.

Property 4. If T1 and T2 are compatible with the same vtable object VTO in VTOp, then T1 and

T2 are aligned.

Proof. Because T1 and T2 are compatible with the same vtable object VTO, an object of T1 and

an object of T2 share the same vptr pointing to VTO. Since vptr is the first element of any object

data structure in memory, the object of T1 and the object of T2 start at the same address, thus T1

and T2 are aligned.

24

In addition, we say that type T1 is an aligned base of type T2 if T1 is a base type of T2,

and there exist at least one vtable object in VTOp that both T1 and T2 are compatible with. For

aligned bases, we have the following properties:

Property 5. If T1 is an aligned base of T2, then in Complete-T2, T1-in-T2 starts at the

beginning of the object.

Property 5 can be derived from “Chapter 2: Data Layout” of the Itanium C++ ABI.

With this property, we can prove the following property about vtable object layout inheritance

relationship among types and their aligned bases:

Property 6. If type T1 is an aligned base for type T2, the standard layout of T2 inherits the

standard layout of T1.

Proof. Because T1 is an aligned base of T2, with Property 5, we know that Complete-T2 and

T1-in-T2 share the same vptr pointing to the same vtable object VTO. Since VTO is created for

Complete-T2, T2 is the most derived type that has a compatible address point in VTO, thus VTO

is owned by T2. With Property 3, we know that VTO has the standard layout of T2. Since VTO

contains the vtable for T1-in-T2, which has the standard layout of T1, thus the standard layout

of T2 inherits the standard layout of T1.

These important properties of vtable layout inspire us to unravel a hidden type hierarchy

called the vtable layout inheritance tree, which accurately captures the vtable layout inheritance

relationship among types. A vtable layout inheritance tree is a tree of types in which each node T

is an aligned base for any of its children node D. Due to the existence of multiple inheritance and

virtual inheritance, a C++ program may have multiple vtable layout inheritance trees, each of

which corresponds to a disjoint vtable inheritance lineage. To build vtable layout inheritance trees

of a program, we first need to partition Typesp and VTOp into equivalence classes, each of which

corresponds to a separate vtable layout inheritance tree. Our partition algorithm partition,

shown in Figure 1.11, initializes every element in Typesp and VTOp as a separate class. For each

25

1 partition (DDp):

2 // Set of equivalence classes of types

3 // and compatible vtable objects.

4 EC = { }
5

6 for (Type, Offset) : DDp
7 ClassId = EC.createClass(Type)

8 for VT : getCompatibleVTables(Type)

9 if (EC.hasClass(VT))

10 EC.merge(getClass(VT), ClassId)

11 else

12 EC.add(VT, ClassId)

13

14 return EC

Figure 1.11. The algorithm to partition Typesp and VTOp into equivalence classes, each of which
forms a vtable layout inheritance tree.

type in Typesp, partition merges its class with the class of every compatible vtable object in

VTOp. Note that some types in Typesp may not have any compatible vtable objects in VTOp. For

a type T, if T and T’s derived types are never instantiated in a program, the vtable objects that

have a compatible address point for T will be removed by dead code elimination because they

are not referenced. This means that some types in Typesp may not appear in any class. Such

types are not important as far as our scheme is concerned because they are never used in any

dynamic dispatch. The classes created by partition have the following properties:

Property 7. For any class C and any type T in C, any type S for which T is an aligned base is

also in the class C.

Proof. For any type S that T serves as an aligned base, there exists an vtable object in VTOp that

both T and S are compatible with. Because partition merges the class of each vtable object in

VTOp with the class of every type that it is compatible with it, it is guaranteed that S and T are in

the same class after partition finished.

Property 8. For any class C, all the vtable objects in VTOp that are compatible with the types in

C are also in C.

26

1 build tree (TypeSet):

2 // Map each vtable obj to the

3 // last seen type compatible with it.

4 LastType = { }
5 // Map each type to its children types.

6 TypeChildren = { }
7 // Map each type to the vtable objects

8 // it owns.

9 TypeOwnedVTO = { }
10

11 sort(TypeSet)

12 for Type : TypeSet

13 for VTO : getCompatibleVTableObjs(Type)

14 if (!LastType[VTO])

15 TypeOwnedVTO[Type].add(VTO)

16 else

17 TypeChildren[Type].add(LastType[VTO])

18 LastType[VTO] = Type

19

20 return (TypeChildren, TypeOwnedVTO)

Figure 1.12. The algorithm to build vtable layout inheritance tree of each equivalence class.

Proof. For any type T in a class C, partition merges the class of every compatible vtable object

of T in VTOp with C, so after partition finished, C must contain all compatible vtable objects of

T in VTOp.

Each generated class corresponds to a disjoint vtable layout inheritance tree of the

program. Property 7 ensures that each class contains all the types of the corresponding vtable

layout inheritance tree, while Property 8 ensures that each class contains all the related vtable

objects owned by the types in the tree. For our running example in Figure 1.1, we have the

following two equivalence classes:

Class 1: A, C, D, E, VTO-A, VTO-C1, VTO-D, VTO-E

Class 2: B, B.vbase, VTO-B, VTO-C2

Next, we run the algorithm build tree in Figure 1.12 on each equivalence class to build

the vtable layout inheritance tree from bottom up and assign each vtable object to its owning

27

Figure 1.13. The vtable layout inheritance trees of the running example in Figure 1.1

type. The algorithm first sorts the types so that for each type, the derived types of it appear before

it. Then the algorithm uses a nested loop to iterate through all the compatible vtable objects

of every type in this order. For a type T, if a compatible vtable object of it has not been seen

before, then T must be the most derived type compatible with the vtable object, thus T owns

this vtable object. Otherwise, the vtable object is owned by some type T´. Since T´ and T are

compatible with the same vtable object, and T´ is more derived than T (because T´ has been

processed), we know that T is an aligned base for T´. Because we process types from the most

derived ones to the least derived ones, we know that T is the most derived aligned base for T´, so

we add T´ as a child node to T. After build tree finished, we have the vtable layout inheritance

tree corresponding to this equivalence class. The vtable layout inheritance trees for our running

example in Figure 1.1 are shown in Figure 1.13. Since we have two equivalence classes before

this step, build tree created two trees.

Finally, for each vtable layout inheritance tree, we traverse it in the pre-order to sort

the vtable objects owned by the types in the tree and collect entry groups needed for dynamic

dispatch in DDp. The traversal algorithm traverse in Figure 1.14 stores the ordered vtable

objects attached to the tree in SortedVTO. In addition, for each type T, traverse records

the range of vtable objects attached to the sub-tree rooted at T in SortedVTO. Specifically, at

each type T, traverse first records the current length of SortedVTO, which will be used as

the inclusive start index of T’s range in SortedVTO. Then traverse adds the owned vtable

objects of T to SortedVTO and traverses T’s children recursively. When the traversal of all the

descendants of T is done, traverse records the length of SortedVTO again as the exclusive end

28

1 traverse (Type, SortedVTO, TypeToRange,

2 DD, UniqueGroups, [byval] UsedOffsets):

3 Start = SortedVTO.length

4 SortedVTO.append(Type.getOwnedVTObjs())

5

6 for Off : DD[Type]

7 if Off not in UsedOffsets

8 UniqueGroups.add(Type, Off)

9 UsedOffsets.add(Off)

10

11 for T : Type.children

12 traverse(T, SortedVTO, TypeToRange,

13 DD, UniqueGroups, UsedOffsets)

14 End = SortedVTO.length

15 TypeToRange.add(Type, Start, End)

16

17 return

Figure 1.14. The algorithm to traverse the vtable layout inheritance tree to sort the related vtable
objects and collect necessary entry groups.

index of T’s range in SortedVTO. For our running example in Figure 1.1, the sorted vtable lists

are shown in Figure 1.15.

In addition, traverse collects the unique entry groups for dynamic dispatch on the

types in the tree. Note that for two instances of dynamic dispatch (T1, offset) and (T2,

offset), if T1 is an ancestor of T2 in a vtable layout inheritance tree, then the entry group of

(T2, offset) is a subset of the entry group of (T1, offset) because the range of vtable

objects of T2 is within the range of T1. To collect the unique set of entry groups, for a type T, we

need to keep track of the entry groups of T’s ancestors that we have collected and only add (T,

offset) if none of T’s ancestors have dynamic dispatch on offset. To achieve this, traverse

uses UsedOffsets, a pass-by-value parameter, to keep track of the collected entry groups of

the ancestors. For our running example in Figure 1.1, the unique entries groups UniqueGroups

of each vtable layout inheritance tree are shown in Figure 1.16. Note that (C, 0) in DDp in

Figure 1.10 is omitted because C is a child node of A in Figure 1.13, thus the entry group of (C,

0) is a subset of the entry group of (A, 0). After traverse finished, the sorted vtable object

29

Figure 1.15. The vtable objects of the running example in Figure 1.1 sorted by our advanced
scheme. The vtable objects are shown in Figure 1.3. The range of compatible vtable objects of
each type is marked.

UniqueGroups for the tree of A, C, D and E = {(A,0),(D,1),(E,2)}
UniqueGroups for the tree of B and B.vbase = {(B.vbase,−3),(B,1)}

Figure 1.16. The unique entry groups for the running example in Figure 1.1

list SortedVTO has the following two properties:

Lemma 1. For any dynamic dispatch (T, Off), for any vtable object VTO in the range of T,

VTO contains an entry at offset Off from its address point for this dynamic dispatch.

Proof. All the vtable objects in the range of T are owned by the types in the sub-tree rooted at T

in the vtable layout inheritance tree. For any vtable object VTO in the range, if it is owned by T,

then it must have an entry at Off for this dynamic dispatch because Property 3 ensures that every

vtable object owned by T has the same layout; otherwise, VTO’s most derived type is D, a derived

type of T. Assume that the path between T and D is M1, M2, ..., Mn. Since every type in this path is

an aligned base for the next one, by Property 6, we know that the standard vtable layout of every

type in the path inherits the standard vtable layout of the type before. In addition, Property 3

ensures that all of the vtable objects owned by the same type T have the standard layout of T,

thus VTO inherits the standard layout of T, which means that at offset Off of VTO there is an entry

30

for this dynamic dispatch.

Lemma 2. For any type T, all the compatible vtable objects of T in VTOp are in T’s range.

Proof. The algorithm partition ensures that all the compatible vtable objects of T are in the

same equivalence class as T. The algorithm build tree ensures that all the compatible vtable

objects of T are attached to the types within the sub-tree rooted at T. Since the range of vtable

objects of T are the vtable objects owned by the sub-tree rooted at T, it must contain all the

compatible vtable objects of T in VTOp.

We want to point out that for any type T, although all the vtable objects in T’s range

inherit the standard layout of T, some of them may not be compatible with T. This happens when

T is a virtual base in a virtual diamond and T does not have any non-static data fields1. For

example, in Figure 1.17, type A is an aligned base of C in a complete object of C (Figure 1.17c),

thus C is a child node of A in the vtable layout inheritance tree, which means that all the vtable

objects owned by C are in the range of A. The original vtable object for type D is shown in

Figure 1.17d. After splitting, the lower half becomes a vtable object owned by C, so it is in the

range of A, but it is not compatible with A. Note that the BKL scheme always assumes that all

the vtable objects in the range of type T are compatible with T, which leads to lower protection

precision as we shall see later in Section 1.3.7.

Comparison with the BKL scheme

As we mentioned in Section 1.2, to order vtable objects, the BKL scheme does a depth-

first traversal of the decomposed type hierarchy, which is created by splitting complex types

and their vtable objects. Compared to our vtable layout inheritance tree, the decomposed type

hierarchy has less precision of capturing the relationship between vtable object layouts and

types. For example, for the types in Figure 1.18, the type hierarchy, shown in Figure 1.18b, and

the decomposed type hierarchy are the same because none of the types can be split. However,

1In the Itanium C++ ABI’s terminology, T is a nearly empty virtual base.

31

1 struct A {
2 virtual void foo1();

3 };
4

5 struct B : virtual A {
6 int b;

7 virtual void foo2();

8 };
9

10 struct C : virtual A {
11 int c;

12 int d;

13 virtual void foo1();

14 };
15

16 struct D : B, C {
17 virtual void foo1();

18 };
19

20 void D::foo1() {
21 // access b, c, and d

22 }

(a) Type Definitions

(b) Type Hierarchy
(c) The layout of a com-
plete object of C

(d) The layout of a complete object of D and its vtable
object

Figure 1.17. A virtual diamond example in which the virtual base A is not compatible with every
vtable object in its range

because type C has more than one parent type, the BKL scheme has to remove the edge between

B and C to break the cycle and keeps two ranges for type B. The vtable layout inheritance tree of

this case, on the other hand, captures precisely the linear vtable layout inheritance relationship

among the three types, as is shown in Figure 1.18c. In addition, the BKL scheme is also subject

to the incomplete range problem shown in Figure 1.17.

1.3.6 VTable Object Interleaving

The scheme next interleaves the vtable objects owned by the types in the same vtable

layout inheritance tree together. We want to stress that interleaving is a process of rearranging the

physical layout of related vtable objects. After interleaving, we have the same number of vtable

objects that function independently. If an object points to a vtable object, then after interleaving,

the object still points to the same vtable object, although the address point of the vtable object

32

1 struct A {
2 virtual void foo1();

3 };
4

5 struct B : virtual A {
6 virtual void foo2();

7 };
8

9 struct C : virtual A, B {
10 int c;

11 virtual void foo3();

12 };

(a) Type Definitions
(b) The type hierarchy of Fig-
ure 1.18a

(c) The vtable layout inheri-
tance tree of Figure 1.18a

Figure 1.18. Example to illustrate the difference between the decomposed type hierarchy and
the vtable layout inheritance tree

may move. To ensure that vtable interleaving does not break existing programs, our algorithm

needs to maintain the following two layout properties in the vtables:

• Offset-to-top and RTTI entries layout property: The Itanium C++ ABI specifies that

offset-to-top and RTTI entries appear consecutively at the offsets behind the corresponding

address point.

• Entry group layout property: For the entry group of each dynamic dispatch (Type,

Offset), the distance between a vtable entry of this group and the corresponding address

point is always the same. This property ensures that dynamic dispatch functions properly

after interleaving.

Our interleaving algorithm interleave, shown in Figure 1.19, is designed to maintain

the two properties above after interleaving. A common operation of interleave is collecting

the entries of each unique entry group in Figure 1.16 from the ordered vtable object list in

Figure 1.15. Specifically, for an entry group (Type, Offset), we iterate through Type’s vtable

object range and collect the entry at offset Offset of every vtable object. For example, for the

entry group (A, 0), A’s vtable object range consists of VTO-A, VTO-C1, VTO-D, and VTO-E, thus

the entry group is (A::f0, C::f0, A::f0, E::f0), where each entry is at offset zero in the

33

1 interleave (SortedVTO, TypeToRange, Groups):

2 Result = []

3 Wl1 = []

4 Wl2 = []

5

6 for VTO : SortedVTO

7 // collect offset-to-top entries

8 Wl1.append(VTO[-2])

9 // collect RTTI entries

10 Wl2.append(VTO[-1])

11

12 // sort Groups in the order of

13 // decreasing size

14 sortBySize(Groups)

15

16 CurList = Worlist1

17 for (Type, Offset) : Groups

18 for I : TypeToRange[Type]

19 CurList.append(SortedVTO[I][Offset])

20 CurList = (size(Wl1) <= size(Wl2)) ?

21 Wl1 : Wl2

22

23 while size(Wl1) != size(Wl2)

24 CurList.append(0)

25

26 for I : [0, size(Wl1))

27 Result.append(Wl1[I])

28 Result.append(Wl2[I])

29

30 return Result

Figure 1.19. The algorithm to interleave the vtable objects associated with the same vtable
layout inheritance tree

34

Offset VTO-A VTO-C1 VTO-D VTO-E
0x00 offset-to-top
0x08 A::RTTI
0x10 (Addr Pt for VTO-A) offset-to-top
0x18 C::RTTI
0x20 (Addr Pt for VTO-C1) offset-to-top
0x28 D::RTTI
0x30 (Addr Pt for VTO-D) offset-to-top
0x38 E::RTTI
0x40 (Addr Pt for VTO-E) A::f0
0x48 D::f1
0x50 C::f0
0x58 D::f1
0x60 A::f0
0x68 E::f2
0x70 E::f0
0x78 padding entry

Figure 1.20. The interleaved layout generated by the advanced scheme of the vtable objects
VTO-A, VTO-C1, VTO-D, and VTO-E in Figure 1.3

corresponding vtable object. Note that the Itanium C++ ABI requires that the offset-to-top and

RTTI entries appear in every vtable, so interleave collects these two kinds of entries from

every vtable object even if they are not used. In the algorithm, we first create two work lists

WL1 and WL2, which are initialized with the entry groups of offset-to-top and RTTI, respectively.

After sorting the unique entry groups UniqueGroups in Figure 1.16 in the order of decreasing

size, interleave collects the entries of each entry group and adds them to the shorter work

list. If the two lists have different lengths after all the entry groups are processed, interleave

pads the shorter one with zeros so that they are of the same length. Finally, interleave merges

the two work lists together by moving, in an alternating fashion, the current head of each list

to the final interleaved layout. The address point of each vtable object is the next index of the

vtable object’s RTTI entry in the interleaved layout. For the ith vtable object in the sorted vtable

object list, the byte offset of its address point in the interleaved layout is (2i+1)*entry size

where entry size is the size of a vtable entry. The interleaved layout for the first vtable layout

inheritance tree in Figure 1.13 is shown in Figure 1.20. Compared with the layout generated by

35

the BKL scheme in Figure 1.6, in the layout generated by our scheme, offset-to-top and RTTI

entries of each vtable object are located immediately above the corresponding address point,

which means that the offset-to-top and RTTI entries layout property is preserved. In addition,

because of our advanced scheme’s ability to remove unnecessary vtable entries, this layout

contains fewer entries, which shows the lower space overhead of our scheme.

Correctness

A vtable interleaving algorithm is correct if the interleaved layout it produces always

satisfies the two properties mentioned above. It is straightforward to see that the interleaved

layout always maintains the offset-to-top and RTTI entries layout property because of how the

two work lists are merged and how address points are set. For the entry group layout property,

we need to show that:

• The entry group of a dynamic dispatch (T, Off) contains all the vtable entries that may

be used.

• All the entries in an entry group have the same distance from their address points in the

interleaved layout.

The first property can be restated as: the entry group of a dynamic dispatch (T, Off)

contains all the vtable entries at offset Off from the address points of the vtable objects compatible

with type T, which is guaranteed to be true by Lemma 2. For the second property, let us assume

that the ordered list of vtable objects as VTO1, ..., VTOn. For any dynamic dispatch (T, Off), let

us assume that the range for T in the ordered vtable object list is VTOi, VTOi+1, ..., VTOi+k where

1 <= i <= i+ k <= n. Suppose that the index of the address point of VTOi is p and the index of

the entry for this dynamic dispatch in VTOi is q. For any vtable object VTOi+t in the range of T

where 0 <= t <= n, the index of its address point in the interleaved layout is p+2∗ i (we have

two times the index of the vtable object because the address points are two entry size apart due

to the merge of the two work lists) and the index of the entry for this dynamic dispatch (the entry

36

at offset Off) is q+2∗ i, so the offset of this entry in the interleaved layout is q− p. Since the

distance does not depend on i, we know that the distance is the same for all the entries in the

entry group of this dynamic dispatch, thus the second property holds in the interleaved layout.

Comparison with the BKL scheme

The BKL scheme does not maintain the offset-to-top and RTTI layout property in the

interleaved layout. However, this layout property is commonly assumed by low-level support

libraries. For example, libsupc++ and libc++abi are the low-level support libraries for GCC’s and

LLVM’s C++ standard libraries, respectively, and they both assume this property. This means

that the BKL scheme does not work with any programs that access the offset-to-top or the RTTI

entries (e.g. by using the dynamic cast operator or exceptions) and built by GCC and LLVM,

which significantly restricts its applicability.

1.3.7 Check Instrumentation

At each dynamic dispatch site for a static type T, the check instrumentation phase inserts

a check to ensure that the vptr to be used points to a valid address point for T. Depending on

whether T is compatible with all the vtable objects in its range, this phase may instrument one of

two kinds of checks:

Full Range Check

When T is compatible with all the vtable objects in its range, we only need the following

range check to ensure the validity of the vptr.

1 $diff = sub $vptr, $first_ap

2 $index = rol $diff, $align

3 cmp $index, $max_index

4 jgt FAIL

5 ... // check passed

First, the code extracts the index of the address point the vptr points to by substracting

first ap, the address of the first address point in T’s range, from vptr and rotating difference

37

to right by the alignment of address points, which is log2(entry size∗2) (address points are two

times entry size apart). The result index is the index of the address point pointed by vptr. Since

T is compatible with all the vtable objects in the range, we compare index with the biggest index

max index for this range. If index is greater than max index, the check fails. Note that the

rotate instruction at line 2 also ensures that vptr is properly aligned because the lower bits will

be fed into the higher bits. If vptr is not aligned, the unaligned lower bits will appear at higher

bits in index, which is guaranteed to be greater than max index.

Incomplete Range Check

We adopt the bit vector technique used by LLVM CFI-VCall [16] to check types having

incomplete ranges. Specifically, we store a bit vector for every type that has an incomplete

range. A set bit in the bit vector indicates that the type is compatible with the corresponding

vtable object (address point) in the type’s range. In the check, we first use the same sequence of

instructions for the full range check to ensure that the index of the address point pointed by vptr

is in range, then check if this address point’s corresponding bit is set in the bit vector.

Comparison with the BKL scheme

As we mentioned in Section 1.3.5, due to the limitation of its vtable ordering algorithm,

the BKL scheme may have multiple ranges for a type. When the BKL scheme instruments a

dynamic dispatch on such a type, it needs to instrument one check for each range.

In addition, the original scheme does not account for the scenario when a type is not

compatible with all the vtable objects in its range, leading to lower protection precision. For the

example in Figure 1.17, when the BKL scheme is enabled, the address point pointed by C-in-D

in Figure 1.17d would be considered valid for type A because in the decomposed type hierarchy

of the original scheme, C is a child of A and thus any address points valid for C are also valid for

A. Suppose that in the program a pointer ptr of type A points to an object of B and later virtual

member function foo1 is invoked via ptr as is shown in the code snippet below.

38

1 A * ptr = new B();

2 // manipulate the vptr pointed by ptr

3 ptr->foo1();

On a little-endian machine, if the attacker has the ability to overwrite only the first few

bytes (low order bytes) of the vptr pointed by ptr, they could likely make vptr point to the

address point of C-in-D in Figure 1.17d, because after interleaving, address points are located

closely. The check inserted by the BKL scheme would allow ptr->foo1() to run, which would

access field d, but the object pointed by ptr does not have such a field. In this way, a modest

memory bug is amplified by the imprecision of the original scheme, giving the attacker ability to

access more out-of-bounds memory. Our advanced scheme, on the other hand, does not consider

the address point pointed by C-in-D valid for A, and will disallow calling foo1 in this scenario.

1.4 Implementation

We implemented our design on top of the LLVM compiler infrastructure (Rev. 971cb8b6).

Our implementation consists of a modified Clang front-end and a vtable interleaving pass as

part of the LLVM Link-Time Optimization (LTO). Because the existing LLVM VCall does a

similar job, we reuse a significant amount of code from it. Users can enable our scheme by

passing the -vtable-interleaving flag to the compiler driver at both the compile stage and

the linking stage. Our implementation supports protecting both virtual calls and type casting in

C++ with the existing LLVM flags -fsantize=cfi-vcall, -fsanitize=cfi-derived-cast

and fsanitize=cfi-unrelated-cast. For the rest of this section, we will briefly describe the

components that make up our advanced scheme.

Components in the front-end

The front-end components are intended to keep necessary information for the interleaving

pass in LTO. Specifically, they do the following things:

* Marking address points in vtable objects: mark each vtable with its address points in the

39

form of (type, offset) where offset is the byte offset from the start of the vtable

object. We reuse the existing code for this.

* Inserting vptr check placeholder: at each dynamic dispatch site where vptr is used, the

front-end instruments a vptr check. We reuse the existing code for this.

* Creating pseudo-types: as part of Section 1.3.4, in the codegen part of Clang, for each

vtable that is compatible with a virtual base T and has vcall offset entries for T, we insert

an address point for the pseudo sub-type T.vbase of T.

* Intercepting vtable accesses: a vtable access can be represented as a (static type,

offset) pair. The modified front-end intercepts every vtable access (static type,

offset) and uses a placeholder for the offset. Such a placeholder will be replaced once

the interleaved layout is determined.

Components in the LTO phase

* The vtable splitting pass: before interleaving vtables, we first split vtable groups as we

discussed in Section 1.3.4. An existing pass named GlobalSplit2 already does this.

* The interleaving pass: we implemented the algorithms described in Section 1.3 in a

transformation pass named InterleaveVTables at the LTO stage.

1.5 Evaluation

To show the applicability of our advanced interleaving scheme, we evaluated it with some

popular C++ programs and benchmarks. We tried to keep the default compilation setup of the

programs to better illustrate the performance and space overhead our scheme would introduce in

real-world setting. To put the performance numbers of our scheme into perspective, for each

benchmark we also evaluated the LLVM CFI-VCall, which is the state-of-art CFI scheme for
2https://llvm.org/doxygen/GlobalSplit 8cpp source.html

40

https://llvm.org/doxygen/GlobalSplit_8cpp_source.html

4 3 2 1 0 1 2 3 4
Performance Slowdown (%)

483.xalancbmk

473.astar

471.omnetpp

453.povray

450.soplex

447.dealII

445.namd

Octane (Android)

Octane (Linux)
Be

nc
hm

ar
ks

LLVM
BKL
Advanced

(a) Performance slowdown compared to version
without dynamic dispatch protection

6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Space Overhead (%)

483.xalancbmk

473.astar

471.omnetpp

453.povray

450.soplex

447.dealII

445.namd

Chrome (Android)

Chrome (Linux)

Be
nc

hm
ar

ks

LLVM
BKL
Advanced

(b) Space overhead compared to version without
dynamic dispatch protection

Figure 1.21. The percentage performance slowdown and space overhead of LLVM CFI-VCall,
the BKL scheme, and our advanced scheme

dynamic dispatch, and the BKL scheme that inspired our work. To provide a fair comparison

between our scheme and the original scheme, we implemented the BKL scheme on the same

LLVM base. The BKL scheme’s vtable ordering algorithm is not fully integrated into the LLVM

code base, so in our implementation of this scheme, we used our vtable ordering algorithm,

which should have no impact on the space overhead and strictly lower performance overhead

since it does not need to instrument multiple range checks for any dynamic dispatch. We used an

Ubuntu 18.04 machine (AMD Ryzen 5 Pro 2400GE, 32GB RAM) for the desktop tests and a

Google Pixel G-2PW4100 (Android 9) for the mobile tests. Since all three schemes only affect

static regions (instructions and constant global variables) of a program, we evaluated the space

overhead of a scheme by the increase in code size compared with the baseline build. We took the

size of a binary after it had been stripped.

1.5.1 Chromium

Chromium is the open-source version of the popular Google Chrome browser that does

not include Google’s proprietary components. Chromium is a complex C++ program with

extensive use of dynamic dispatch. We evaluated the Linux version and the Android version

41

of Chromium built from the same revision of the code base. These two versions are different

in two aspects. First, the Linux version, by default, is built with LLVM CFI-VCall while the

Android version is not, due to the space overhead of the scheme3. Second, LLVM CFI-VCall is

applied to different scopes in the two versions. Specifically, in the Linux version of Chromium,

ICU and libc++—the only two libraries that use RTTI—are also protected by LLVM CFI-VCall,

whereas in the Android version they are not. As we mentioned in Section 1.3.6, the BKL scheme

does not support RTTI, so it cannot be used as a drop-in replacement for LLVM CFI-VCall for

the Linux version. One possible way to enable the BKL scheme on the Linux version to leave

out ICU and libc++, but that would mean all the types in the std namespace and in ICU are no

longer protected.

Methodology

We built the Linux and the Android versions of Chromium with the default settings using

our advanced scheme, the BKL scheme, and LLVM CFI-VCall. The BKL scheme cannot build

the Linux version of Chromium due to the aforementioned reasons. We use the popular browser

benchmark Octane 2.0 [21] to evaluate the performance overhead of the three schemes. The

documentation of Octane 2.0 suggests running the benchmark multiple times and reporting the

best result; we followed this advice and ran the benchmark with each build ten times.

Results

The results of performance tests are shown in Figure 1.21a and the comparison of space

overhead is in Figure 1.21b. Our scheme introduces less than 1% performance overhead to the

Linux version and the Android version of Chromium, better than both the BKL scheme and

LLVM CFI-VCall. As for the space overhead, our scheme introduces only 1.37% and 2.53% to

the Linux version and the Android version, respectively, outperforming the other schemes on

both platforms. The results show that our scheme is a potential solution to protect the Android

version of Chromium, which is currently not protected by any CFI scheme.

3LLVM CFI-VCall can be manually enabled for the Android version.

42

1.5.2 SPEC 2006

We also evaluated our scheme on the SPEC 2006 benchmark suite. Because of the

popularity of SPEC 2006 for compiler-related research, this evaluation helps compare our scheme

with other compiler-based mitigation schemes. Since our scheme protects C++ programs, here

we focus on the C++ benchmarks in SPEC 2006: 444.namd, 447.dealII, 450.soplex, 453.povray,

471.omnetpp, 473.astar, and 483.xalancbmk.

Methodology

We built the C++ benchmarks with our scheme, the BKL scheme, and LLVM CFI-VCall.

We used optimization level O2 for both compile-time optimization and link-time optimization for

all the builds, including the baseline. For each scheme, we used the SPEC 2006’s built-in utility

to conduct a reportable run, which is suitable for public reporting according to SPEC 2006’s

documentation. We had to remove the invalid type casting in 483.xalancbmk where a pointer to

the base type Grammar is cast to a derived type SchemaGrammar, but the pointer may point to an

object of a sibling type of SchemaGrammar. In fact, this is exactly the kind of type confusion that

virtual call CFI schemes aim to protect from. All of the three schemes terminated the program

when the invalid SchemaGrammar was used for dynamic dispatch. Benchmarks 447.dealII and

471.omnetpp use the dynamic cast operator in C++. As we discussed in Section 1.3.6, the

BKL scheme does not support RTTI-related operations thus cannot build these two benchmarks.

Results

Figure 1.21a shows the performance and space overheads of the three schemes on C++

benchmarks in SPEC 2006. Across benchmarks, the advanced schemes introduces no more

than 2% performance overhead. In general, the advanced scheme has similar performance

overhead as the BKL scheme does, and is more efficient than the LLVM CFI-VCall, especially

on benchmarks like 71.omnetpp and 483.xalancbmk, where virtual calls are extensively used.

The results for two benchmarks do not follow this pattern. For 447.dealII LLVM CFI-VCall

outperforms all other builds including the baseline, and for 450.soplex the BKL scheme is

43

Table 1.2. The comparison of space overheads introduced by LLVM CFI-VCall, the BKL
scheme, and the advanced scheme to PX4.

Build Space Overhead (%)

LLVM 1.41
BKL 1.24
Advanced -0.88

slower than LLVM CFI-VCall. We believe this is caused by the effects of caching or alignment,

as all the three schemes change the memory layout in a unique way. As for space overhead,

our scheme outperforms the other two schemes significantly. Particularly, for benchmarks like

483.xalancbmk and 450.soplex, our scheme does not introduce significant space overhead like

the BKL scheme and LLVM CFI-VCall do, but even reduces the binary size due to its ability

to pick out necessary vtable entries. This again shows the potential of our scheme to protect

programs on resource-constrained systems where storage space is highly precious.

1.5.3 PX4

PX4 [28] is a popular open source flight control firmware framework for unmanned

vehicles (e.g. drones, boats, and submarines) written in C++. PX4 comes with a set of standard

functionalities but also allows users to customize it by adding additional modules, which will

be built as static libraries by default. As it is written in C++, PX4 is potentially subject to

control-flow hijacking. However, enabling compiler-based security mitigations poses a challenge

because unmanned vehicles like drones may have a limited program memory. For example,

Pixhawk 3 Pro [27] has 2MB flash and Omnibus F4 SD [22] only has 1MB.

Methodology

We built the standard PX4 v1.9.2 for the simulator target with the three schemes. We

used O2 optimization level for both compile-time optimization and link-time optimization for all

the builds, including the baseline. Note that the target-dependent code in PX4 is mostly in C, so

our results in this section should reflect the space overhead of the three schemes for other targets.

44

Results

Table 1.2 shows the comparison of the sizes generated by the three schemes along with

the baseline build. Both the BKL scheme and the LLVM CFI-VCall introduce significant space

overhead to PX4, which may be too expensive for a user who also wants to add additional

modules to PX4. Our advanced scheme, on the other hand, actually manages to reduce the

overhead by eliminating unnecessary vtable entries and virtual member functions. Our scheme

not only secures dynamic dispatch in PX4, but also frees up space for additional modules or other

hardening schemes that requires additional space. For example, we could further secure PX4

by enabling LLVM CFI-ICall [16], a CFI scheme that protects dynamic transfers via function

pointers by allocating jump tables.

1.6 Related Work

The devastating consequences of control-flow hijacking have spurred extensive research

on countermeasures. In this section, we will focus on practical solutions that may be used

to protect C++ programs on resource-constrained systems, examining them in three aspects:

performance overhead, space overhead, and protection precision.

LLVM’s CFI-VCall [16] is the state-of-art mitigation for dynamic dispatch in C++. For

every type used in dynamic dispatch, the scheme allocates a bit vector indicating the compatible

address points, and at each dynamic dispatch site, this bit vector is used to determine whether the

vptr to be used is compatible with the static type. As you can see in Section 1.5, this scheme

introduces slightly higher overhead on SPEC 2006 and Chromium than our scheme due to its less

efficient validity checks. In addition, storing bit vectors leads to much higher space overhead. As

we have seen in Figure 1.21b, this scheme constantly introduces higher space overhead than our

scheme. For example, for 483.xalancbmk that has an extensive use of virtual calls, it introduces

more than 12% space overhead.

Like LLVM’s VCall CFI, SAFEDISPATCH [46] also stores the set of valid address points

45

for each type in additional data structures. This leads to its more than 7% space overhead on

Chromium. Also, when the program is about to access a vtable at runtime, the scheme checks

the validity of the vptr by a linear search in the set of valid address points. This naive way of

checking membership of a vtable leads to high performance overhead. For example, Chromium

built with SAFEDISPATCH experiences about 8% slowdown on the Octane benchmark.

VTrust [62] presents two layers of defense against control-flow hijacking of virtual calls.

The first layer is Virtual Function Type Enforcement, which, at each virtual call site, checks if

the actual called function has the same hash signature of the function name and argument list as

the virtual function. The protection precision is much lower than our scheme since it does not

use the type hierarchy at all. The second layer, VTable Pointer Sanitization, encodes each vptr

as an index into the array of VTables and decodes it before using it to access a VTable. This

protection precision is still low since it cannot prevent the attacker to point vptr to a vtable of a

completely irrelevant type. Also, the performance overhead of VTable Pointer Sanitization for

483.xalancbmk, the C++ benchmark that uses virtual calls extensively in SPEC 2006, is 7.9%,

which indicates that this solution may not be efficient enough for programs that have a heavy use

of virtual calls.

Vip [45] uses static analysis to reduce possible candidate destinations at each virtual

call site, which in some cases make Vip more precise than our scheme. However, such target

reduction can be achieved by running optimizations like devirtualization, which we consider as

orthogonal to our scheme. Also, to achieve fast validity checking at virtual call site, Vip relies

on validity vectors, which significantly increases its space overhead. For example, the authors

reported 6.5% overhead for 483.xalancbmk in SPEC 2006 whereas our scheme reduces the size

of it by 0.99%.

All of the schemes that we have mentioned rely on the availability of the source code of

the program under protection. There are also proposals that protect dynamic dispatch when only

the binary is available. VTint [63] is a scheme that aims to secure vtable integrity of binaries. It

detects vtables in the binary, allocates them in the read-only memory consecutively, and adds an

46

identical label at the start of every page that contains vtables. Note that this label is guaranteed

not to appear in any page that does not have vtables. Then at each detected virtual call site, it

inserts checks to ensure that the vtable to be used is in read-only memory and the page has the

special label. Because VTint does not have information of the type hierarchy, the protection

precision is very low.

Another scheme that operates on binaries, vfGuard [53], improves upon VTint by re-

constructing C++ type hierarchy and inserting checks before (possible) dynamic dispatch sites

based on the reconstructed hierarchy. However, since the reconstructed type hierarchy is an

over-estimation of the actual hierarchy, the protection precision is lower than our scheme. Also,

the authors report that it incurs an average 18.2% performance overhead on Internet Explorer’s

modules. Such a high overhead makes it unlikely to be used in practice.

PITTYPAT [43] goes further by enforcing path-sensitive CFI. To collect path information

efficiently, PITTYPAT relies on Processor Tracing, a feature available in recent Intel processors,

which prevents the scheme to be deployed where such a feature is not available. Also, since

PITTYPAT computes the valid destination set online, the performance overhead is significant.

For example, PITTYPAT introduced a 27.5% performance overhead for 450.soplex in SPEC

2006. In comparison, our scheme does not slow down this benchmark at all. PITTYPAT has

higher precision than our scheme, but the high performance overhead makes it unlikely to be

adopted widely.

Another approach to prevent control-flow hijacking in C++ programs is protecting vptrs

from being corrupted, as is used by CPI and CPS from [47]. CPI and CPS work similarly

– they allocate sensitive objects in a special safe region and accesses to the safe region are

sandboxed unless they can statically be proved to be safe. CPI and CPS differ in what are

considered as sensitive objects. In the context of C++, they both consider objects that contain

vptrs sensitive, but only CPI considers pointers to such objects sensitive. This means that the

attacker may corrupt vptrs via indirection even with CPS in place. Both CPI and CPS introduce

signicantly higher performance overhead than our scheme. For example, CPI and CPS introduce

47

about 43% and 17% performance overhead respectively for 471.omnetpp in SPEC 2006 due to

471.omnetpp’s heavy use of virtual calls. The authors of [47] do not mention the space overhead

of CPI and CPS. We expect CPI to introduce significant space overhead due to the spatial and

temporal metadata for sensitive pointers it keeps (which CPS does not) and the instrumented

sandboxing code for every potentially unsafe memory access to the safe region.

CFIXX [40] is another scheme based on this approach. For every allocated object of

some dynamic type (a type that has vtables), CFIXX stores the mapping from the start address

of this object to its vtable object in the safe region. At each virtual call site, the vptr is loaded

from the safe region, ensuring that the used vtable is legal for the underlying object. However,

at each virtual call site, CFIXX does not check the relationship between the static type (the

type of the pointer or reference used for the dynamic dispatch) and the runtime type (the type

of the underlying object), which means the attacker may make a pointer to type T point an

irrelevant type T´, and hijack the control flow when this pointer is used for dynamic dispatch.

In terms of performance, CFIXX introduces much higher overhead. For 483.xalancbmk and

471.omnetpp from SPEC 2006, it introduces over 8% and 6% overhead, respectively. Due to

needing to keep track of the mapping between every object and its vtable, [40] reports a 79%

increase in memory usage in practice when CFIXX is enabled, which is normally not affordable

for resource-constrained platforms.

1.7 Conclusion

There is an urgent need for highly efficient mitigation schemes for C++ as the trend of

edge-computing pushes increasingly more C++ programs into resource-constrained systems.

Dynamic dispatch in C++ is a convenient target for attackers to take over the program, in this

paper we presented an advanced vtable interleaving algorithm and a highly efficient CFI scheme

based on it. Compared with the original work that inspired our scheme, ours yields an interleaved

layout that is fully compatible with the Itanium C++ ABI, has better protection precision, and

48

much lower space overhead without sacrificing the performance. Because of the low performance

and space overhead of our scheme, it can be a potential solution to protect C++ programs running

on resource-constrained systems, where all of the existing CFI schemes are considered too

expensive to be deployed.

Acknowledgements

Chapter 1, in part, is currently being prepared for submission for publication of the

material. Yang, Zhaomo; Collingbourne, Peter; Levchenko, Kirill. The dissertation author was

the primary investigator and author of this material.

49

Chapter 2

Challenges

2.1 Introduction

Concerns over memory disclosure vulnerabilities in C and C++ programs have long led

security application developers to explicitly scrub sensitive data from memory. A typical case

might look like the following:

char * password = malloc(PASSWORD_SIZE);

// ... read and check password

memset(password, 0, PASSWORD_SIZE);

free(password);

The memset is intended to clear the sensitive password buffer after its last use so that a memory

disclosure vulnerability could not reveal the password. Unfortunately, compilers perform an

optimization—called dead store elimination (DSE)—that removes stores that have no effect on

the program result, either because the stored value is overwritten or because it is never read again.

In this case, because the buffer is passed to free after being cleared, the compiler determines

that the memory scrubbing memset has no effect and eliminates it.

Removing buffer scrubbing code is an example of what D’Silva et al. [44] call a “cor-

rectness–security gap:” From the perspective of the C standard, removing the memset above is

allowed because the contents of unreachable memory are not considered part of the semantics

of the C program. However, leaving sensitive data in memory increases the damage posed

50

by memory disclosure vulnerabilities and direct attacks on physical memory. This leaves gap

between what the standard considers correct and what a security developer might deem correct.

Unfortunately, the C language does not provide a guaranteed way to achieve what the program-

mer intends, and attempts to add a memory scrubbing function to the C standard library have

not seen mainstream adoption. Security-conscious developers have been left to devise their own

means to keep the compiler from optimizing away their scrubbing functions, and this has led to a

proliferation of “secure memset” implementations of varying quality.

The aim of this chapter is to understand the current state of the dead store elimination and

programmers’ attempts to circumvent it. We begin with a survey of existing techniques used to

scrub memory found in open source security projects. Among more than half a dozen techniques,

we found that several are flawed and that none are both universally available and effective. Next,

using a specially instrumented version of the Clang compiler, we analyzed eleven high-profile

security projects to determine whether their implementation of a scrubbing function is effective

and whether it is used consistently within the project. We found that only three of the eleven

projects did so.

To aid the current state of affairs, we developed a single best-of-breed scrubbing function

that combines the effective techniques we found in our survey. We have shared our implementa-

tion with developers of the projects we surveyed that lacked a reliable scrubbing function and

have made it available to the public. While not a perfect solution, we believe ours combines

the best techniques available today and offers a developers a ready-to-use solution for their own

projects.

We also developed a scrubbing-aware dead store elimination optimization pass based

on Clang. Our pass protects scrubbing operations by inhibiting dead store elimination in case

where a store operation may have been intended as a scrubbing operation by the programmer.

Our solution does not completely disable DSE, minimizing the performance impact of our

mechanism. Our performance evaluation shows that our scrubbing-safe DSE introduces virtually

no performance penalty.

51

In total, our contributions are as follows:

* We survey scrubbing techniques currently found in the wild, scoring each in terms of its

availability and reliability. In particular, we identify several flawed techniques, which we

reported to developers of projects relying on them.

* We present a case study of eleven security projects that have implemented their own

scrubbing function. We found that no two projects’ scrubbing functions use the same set

of techniques. We also identify common pitfalls encountered in real projects.

* We develop and make publicly available a best-of-breed scrubbing function that combines

the most reliable techniques found in use today.

* We develop a scrubbing-safe dead store elimination optimization that protects memory

writes intended to scrub sensitive data from being eliminated. Our mechanism has negligi-

ble performance overhead and can be used without any source code changes.

The rest of the chapter is organized as follows. Section 2.2 provides background for the

rest of the paper. Section 2.3 surveys the existing techniques that are used to implement reliable

scrubbing functions. Section 2.4 examines the reliability and usage of scrubbing functions of

eleven popular open source applications. Section 2.5 describes our secure memzero implemen-

tation. Section 2.6 describes our secure DSE implementation and evaluates its performance.

Section 2.7 discusses our results. Section 2.8 describes the related work. Section 2.9 concludes

the chapter.

2.2 Background

The negative effects of DSE are not new to many developers. Bug reports are littered

with incidents of DSE negatively affecting program security, as far back as 2002 from Bug

8537 in GCC titled “Optimizer Removes Code Necessary for Security” [2], to January 2016

when OpenSSH patched CVE-2016-0777 which allowed a malicious server to read private SSH

52

keys by combining a memory disclosure vulnerability with errant memset and bzero memory

scrubs [8]; or February 2016 when OpenSSL changed its memory scrubbing technique after

discussion in Issue 445 [29]; or Bug 751 in OpenVPN from October 2016 about secret data

scrubs being optimized away [35].

Despite developers’ awareness of such problems, there is no uniformly-used solution.

The CERT C Secure Coding Standard [54] recommends SecureZeroMemory as a Windows

solution, memset s as a C11 solution, and the volatile data pointer technique as a C99 solution.

Unfortunately, each of these solutions has problems. The Windows solution is not cross-

platform. For the recommended C11 memset s solution, to the best of our knowledge, there

is no standard-compliant implementation. Furthermore, while the CERT solution for C99

solution may prevent most compilers from removing scrubbing operations, the standard does not

guarantee its correctness [52]. Furthermore, another common technique, using a volatile function

pointer, is not guaranteed to work according to the standard because although the standard

requires compilers to access the function pointer, it does not require them to make a call via that

pointer [51].

2.3 Existing Approaches

Until recently, the C standard did not provide a way to ensure that a memset call is not

removed, leaving developers who wanted to clear sensitive memory were left to devise their

own techniques. Here we survey eleven security-related open source projects to determine what

techniques developers were using to clear memory. In this section, we present the results of

our survey. For each technique, we describe how it is intended to work, its availability on

different platforms, and its effectiveness at ensuring that sensitive data is scrubbed. We rate the

effectiveness of a technique on a three-level scale:

* Effective. Guaranteed to work (barring flaws in implementation).

* Effective in practice. Works with all compilation options and on all the compilers we

53

tested (GCC, Clang, and MSVC), but is not guaranteed in principle.

* Flawed. Fails in at least one configuration.

The scrubbing techniques we found can be divided into four groups based on how to they attempt

to force memory to be cleared:

* Rely on the platform. Use a function offered by the operating system or a library that

guarantees memory will be cleared.

* Disable optimization. Disable the optimization that removes the scrubbing operation.

* Hide semantics. Hide the semantics of the clearing operation, preventing the compiler

from recognizing it as a dead store.

* Force write. Directly force the compiler to write to memory.

In the remainder of this section, we describe and discuss each technique in detail and conclude

with a performance evaluation of each technique. While performance is not the primary consider-

ation when choosing a technique, it is, nevertheless, interesting to observe the wide performance

disparity of each.

2.3.1 Platform-Supplied Functions

The easiest way to ensure that memory is scrubbed is to call a function that guarantees

that memory will be scrubbed. These deus ex machina techniques rely on a platform-provided

function that guarantees the desired behavior and lift the burden of fighting the optimizer from

the developers’ shoulders. Unfortunately, these techniques are not universally available, forcing

developers to come up with backup solutions.

Windows SecureZeroMemory

On Windows, SecureZeroMemory is designed to be a reliable scrubbing function even

in the presence of optimizations. This is achieved by the support from the Microsoft Visual

54

Studio compiler, which never optimizes out a call to SecureZeroMemory. Unfortunately, this

function is only available on Windows.

Used in: Kerberos’s zap, Libsodium’s sodium memzero, Tor’s memwipe.

Availability: Windows platforms.

Effectiveness: Effective.

OpenBSD explicit bzero

Similarly OpenBSD provides explicit bzero, a optimization-resistant analogue of the

BSD bzero function. The explicit bzero function has been available in OpenBSD since

version 5.5 and FreeBSD since version 11. Under the hood, explicit bzero simply calls

bzero, however, because explicit bzero is defined in the C standard library shipped with the

operating system and not in the compilation unit of the program using it, the compiler is not aware

of this and does not eliminate the call to explicit bzero. As discussed in Section 2.3.3, this

way of keeping the compiler in the dark only works if definition and use remain separate through

compilation and linking. This is the case with OpenBSD and FreeBSD, which dynamically link

to the C library at runtime.

Used in: Libsodium’s sodium memzero, Tor’s memwipe, OpenSSH’s explicit bzero.

Availability: FreeBSD and OpenBSD.

Effectiveness: Effective (when libc is a shared library).

C11 memset s

Annex K of the C standard (ISO/IEC 9899-2011) introduced the memset s function,

declared as

errno_t memset_s(void* s, rsize_t smax,

int c, rsize_t n);

Similar to memset, the memset s function sets a number of the bytes starting at address sto the

byte value c. The number of bytes written is the lesser of smax or n. By analogy to strncpy,

55

the intention of having two size arguments is prevent a buffer overflow when n is an untrusted

user-supplied argument; setting smax to the size allocated for s guarantees that the buffer will

not be overflowed. More importantly, the standard requires that the function actually write to

memory, regardless of whether or not the written values are read.

The use of two size arguments, while consistent stylistically with other s functions, has

drawbacks. It differs from the familiar memset function which takes one size argument. The use

of two arguments means that a programmer can’t use memset s as a drop-in replacement for

memset. It may also lead to incorrect usage, for example, by setting smax or n to 0, and thus,

while preventing a buffer overflow, would fail to clear the buffer as intended.

While memset s seems like the ideal solution, it’s implementation has been slow. There

may be several reasons for this. First, memset s is not required by the standard. It is part of

the optional Appendix K. C11 treats all the function in the Annex K as a unit. That is, if a C

library wants to implement the Annex K in a standard-conforming fashion, it has to implement

all of the functions defined in this annex. At the time of this writing, memset s is not provided

by the GNU C Library nor by the FreeBSD, OpenBSD, or NetBSD standard libraries. It’s poor

adoption and perceived flaws have led to calls for its removal from the standard [50].

Used in: Libsodium’s sodium memzero, Tor’s memwipe, OpenSSH’s explicit bzero, CERT’s

Windows-compliant solution [54].

Availability: No mainstream support.

Effectiveness: Effective.

2.3.2 Disabling Optimization

Since the scrubbing store elimination problem is caused by compiler optimization, it is

possible to prevent scrubbing stores from being eliminated by disabling compiler optimization.

Dead store elimination is enabled (on GCC and Clang) at optimization level -O1, so code com-

piled with no optimization would retain the scrubbing writes. However, disabling optimization

completely can significantly degrade performance, and is eschewed by developers. Alternatively,

56

some compilers allow optimizations to be enabled individually, so, in principle, a program could

be compiled with all optimizations except dead store elimination enabled. However, some opti-

mization passes work better when dead stores have already been eliminated. Also, specifying the

whole list of optimization passes instead of a simple optimization level like O2 is cumbersome.

Many compilers, including Microsoft Visual C, GCC and Clang, provide built-in versions

of some C library functions, including memset. During compilation, the compiler replaces

calls to the C library function with its built-in equivalent to improve performance. In at least

one case we found, developers attempted to preserve scrubbing stores by disabling the built-in

memset intrinsic using the -fno-builtin-memset flag. Unfortunately, while this may disable

the promotion of standard C library functions to intrinsics, it does not prevent the compiler from

understanding the semantics of memset. Furthermore, we find that the -fno-builtin-memset

flag does not not prevent the developer from calling the intrinsic directly, triggering dead store

elimination. In particular, starting with glibc 2.3.4 on Linux, defining FORTIFY SOURCE to be

an integer greater than 0 enables additional compile-time bounds checks in common functions

like memset. In this case, if the checks succeed, the inline definition of memset simply calls the

built-in memset. As a result, the -fno-builtin-memset option did not protect scrubbing stores

from dead store elimination.

Used in: We are not aware of any programs using this technique.

Availability: Widely available.

Effectiveness: Flawed (not working when newer versions of glibc and GCC are used and

optimization level is O2 or O3).

2.3.3 Hiding Semantics

Several scrubbing techniques attempt to hide the semantics of the scrubbing operation

from the compiler. The thinking goes, if the compiler doesn’t recognize that an operation is

clearing memory, it will not remove it.

57

Separate Compilation

The simplest way to hide the semantics of a scrubbing operation from the compiler is to

implement the scrubbing operation (e.g. by simply calling memset) in a separate compilation

unit. When this scrubbing function is called in a different compilation unit than the defining

one, the compiler cannot remove any calls to the scrubbing function because the compiler does

not know that it is equivalent to memset. Unfortunately, this technique is not reliable when

link-time optimization (LTO) is enabled, which can merge all the compilation units into one,

giving the compiler a global view of the whole program. The compiler can then recognize that the

scrubbing function is effectively a memset, and remove it. Thus, to ensure this technique works,

the developer needs to make sure that she has the control over how the program is compiled.

Weak Linkage

GCC and some compilers that mimic GCC allow developers to define weak definitions. A

weak definition of a symbol, indicated by the compiler attribute attribute ((weak)), is a

tentative definition that may be replaced by another definition at link time. In fact, the OpenBSD

explicit bzero function (Section 2.3.1) uses this technique also:

__attribute__((weak)) void

__explicit_bzero_hook(void *buf, size_t len) { }

void explicit_bzero(void *buf, size_t len) {

memset(buf, 0, len);

__explicit_bzero_hook(buf, len);

}

The compiler can not eliminate the call to memset because an overriding definition of

explicit bzero hook may access buf. This way, even if explicit bzero is used in the

same compilation unit where it is defined, the compiler will not eliminate the scrubbing opera-

tion. Unfortunately, this technique is also vulnerable to link-time optimization. With link-time

optimization enabled, the compiler-linker can resolve the final definition of the weak symbol,

58

determine that it does nothing, and then eliminate the dead store.

Used in: Libsodium’s sodium memzero, libressl’s explicit bzero [13].

Availability: Available on GCC and Clang.

Effectiveness: Flawed (defeated by LTO).

Volatile Function Pointer

Another popular technique for hiding a scrubbing operation from the compiler is to call

the memory scrubbing function via a volatile function pointer. OPENSSL cleanse of OpenSSL

1.0.2, shown below, is one implementation that uses this technique:

typedef void *(*memset_t)(void *,int,size_t);

static volatile memset_t memset_func = &memset;

void OPENSSL_cleanse(void *ptr, size_t len) {

memset_func(ptr, 0, len);

}

The C11 standard defines an object of volatile-qualified type as follows:

An object that has volatile-qualified type may be modified in ways unknown to
the implementation or have other unknown side effects. Therefore any expression
referring to such an object shall be evaluated strictly according to the rules of the
abstract machine, as described in 5.1.2.3. Furthermore, at every sequence point
the value last stored in the object shall agree with that prescribed by the abstract
machine, except as modified by the unknown factors mentioned previously. What
constitutes an access to an object that has volatile-qualified type is implementation-
defined.

The effect of declaring memset func as volatile means that the compiler must read its value

from memory each time its used because the value may have changed. The reasoning goes

that because the compiler does not know the value of memset func at compile time, it can’t

recognize the call to memset and eliminate it.

We have confirmed that this technique works on GCC, Clang and Microsoft Visual C,

and we deem it to be effective. It is worth noting, however, that while the standard requires the

59

compiler to read the value of memset func from memory, it does not require it to call memset if

it can compute the same result by other means. Therefore, a compiler would be in compliance if

it inlined each call to OPENSSL cleanse as:

memset_t tmp_fptr = memset_func;

if (tmp_fptr == &memset)

memset(ptr, 0, len);

else

tmp_fptr(ptr, 0, len);

If the memory pointed to by ptr is not read again, then the direct call to memset, the semantics

of which are known, could be eliminated, removing the scrubbing operation. We know of no

compiler that does this and consider such an optimization unlikely.

Used in: OpenSSL 1.0.2’s OPENSSL cleanse (also used in Tor and Bitcoin); OpenSSH’s

explicit bzero, quarkslab’s memset s [3].

Availability: Universally available.

Effectiveness: Effective in practice.

Assembly Implementation

Because optimizations often take place at compiler’s intermediate representation level,

it is possible to hide the semantics of a memory scrubbing operation by implementing it in

assembly language. In some cases, this may also be done as a way to improve performance,

however, our results indicate that the compiler’s built-in intrinsic memset performs as well as the

assembly implementation we examined. So long as the compiler does not perform assembly-level

link-time optimization, this technique is effective at ensuring scrubbing stores are preserved.

Used in: OpenSSL’s OPENSSL cleanse (also used by Tor and Bitcoin); Crypto++’s

SecureWipeBuffer.

Availability: Target-specific.

Effectiveness: Effective.

60

2.3.4 Forcing Memory Writes

The fourth set of techniques we found attempts to force the compiler to include the store

operation without hiding its nature.

Complicated Computation

Several related techniques attempt to force the compiler to overwrite sensitive data in

memory by forcing the compiler to carry out a computation. OPENSSL cleanse from OpenSSL

prior to version 1.0.2 is one example:

unsigned char cleanse_ctr = 0;

void OPENSSL_cleanse(void *ptr, size_t len) {

unsigned char *p = ptr;

size_t loop = len, ctr = cleanse_ctr;

if (ptr == NULL) return;

while (loop--) {

*(p++) = (unsigned char)ctr;

ctr += (17 + ((size_t)p & 0xF));

}

p = memchr(ptr, (unsigned char)ctr, len);

if (p) ctr += (63 + (size_t)p);

cleanse_ctr = (unsigned char)ctr;

}

This function reads and writes the global variable cleanse ctr, which provides varying garbage

data to fill the memory to be cleared. Because accesses to the global variable have a global

impact on the program, the compiler cannot determine that this function is useless without

extensive interprocedural analysis. Since such interprocedural analysis is expensive, the compiler

61

most likely does not perform it, thus it cannot figure out that OPENSSL cleanse is actually a

scrubbing function. However, this particular implementation is notoriously slow. OpenSSL gave

up this technique in favor of the volatile function pointer technique (Section 2.3.3) starting with

version 1.0.2.

Another way to scrub sensitive data is to simply rerun the computation that accesses

sensitive data again. This is used in the musl libc [19] implementation of bcrypt, which is a

popular password hashing algorithm. musl’s bcrypt implementation crypt blowfish calls

the hashing function BF crypt twice: the first time it passes the actual password to get the hash,

the second time it passes a test password. The second run serves two purposes. First, it is a

self-test of the hashing code. crypt blowfish compares the result of the second run with

the hardcoded hash value in the function. If they do not match, there is something wrong in

the hashing code. (In fact, the developers of musl libc found a bug in GCC that manifested in

their hashing code [9].) Second, the second run of BF crypt can also clear sensitive data left

on the stack or in registers by the first run. Since the same function is called twice, the same

registers will be used, thus the sensitive data left in registers will be cleared. Since the two calls

to BF crypt are in the same scope and the stack pointer points to the same position of the stack

before the two calls, the sensitive data left on the stack by the first run should be cleared by the

second run. The advantage of this solution is that it clears sensitive data not only on the stack but

also in registers.

While the complicated computation technique appears effective in practice, there is no

guarantee that a compiler will not someday see through the deception. This technique, especially

re-running the computation, has a particularly negative performance impact.

Used in: OPENSSL cleanse from OpenSSL 1.0.1 (also used in Tor and Bitcoin),

crypt blowfish from musl libc [19].

Availability: Universal.

Effectiveness: Effective in practice.

62

Volatile Data Pointer

Another way to force the compiler to perform a store is to access a volatile-qualified type.

As noted in Section 2.3.3, the standard requires accesses to objects that have volatile-qualified

types to be performed explicitly. If the memory to be scrubbed is a volatile object, the compiler

will be forced to preserve stores that would otherwise be considered dead. Cryptography Coding

Standard’s Burn is one of the implementations based on this idea:

void burn(void *v, size_t n) {

volatile unsigned char *p =

(volatile unsigned char *)v;

while(n--) *p++ = 0;

}

In the function above, the memory to be scrubbed is written via a pointer-to-volatile p in the while

loop. We have found that this technique is effective on GCC, Clang, and Microsoft Visual C.

Unfortunately, this behavior is not guaranteed by the C11 standard: “What constitutes an access

to an object that has volatile-qualified type is implementation-defined.” This means that, while

accessing an object declared volatile is clearly an “access to an object that has volatile-qualified

type” (as in the case of the function pointer that is a volatile object), accessing a non-volatile

object via pointer-to-volatile may or may not be considered such an access.

Used in: sodium memzero from Libsodium, insecure memzero from Tarsnap, wipememory

from Libgcrypt, SecureWipeBuffer from the Crypto++ library, burn from Cryptography Cod-

ing Standard [56], David Wheeler’s guaranteed memset [61], ForceZero from wolfSSL [36],

sudo memset s from sudo [31], and CERT’s C99-compliant solution [54].

Availability: Universal.

Effectiveness: Effective in practice.

63

Memory Barrier

Both GCC and Clang support a memory barrier expressed using an inline assembly

statement. The clobber argument "memory" tells the compiler that the inline assembly statement

may read or write memory that is not specified in the input or output arguments [1]. This indicates

to the compiler that the inline assembly statement may access and modify memory, forcing it to

keep stores that might otherwise be considered dead. GCC’s documentation indicates that the

following inline assembly should work as a memory barrier [1]:

__asm__ __volatile__("":::"memory")

Our testing shows the above barrier works with GCC, and since Clang also supports the same

syntax, one would expect that the barrier above would also work with Clang. In fact, it may

remove a memset call before such a barrier [5]. We found that Kerberos (more in Section 2.4.2)

uses this barrier to implement its scrubbing function, which may be unreliable with Clang. A

more reliable way to define memory barrier is illustrated by Linux’s memzero explicit below:

#define barrier_data(ptr) \

__asm__ __volatile__("": :"r"(ptr) :"memory")

void memzero_explicit(void *s, size_t count) {

memset(s, 0, count);

barrier_data(s);

}

The difference is the "r"(ptr) argument, which makes the pointer to the scrubbed memory

visible to the assembly code and prevents the scrubbing store from being eliminated.

Used in: zap from Kerberos, memzero explicit from Linux [15].

Availability: Clang and GCC.

Effectiveness: Effective in practice.

64

2.3.5 Discussion

Our survey of existing techniques indicates that there is no single best technique for

scrubbing sensitive data. The most effective techniques are those where the integrity of

scrubbing operation is guaranteed by the platform. Unfortunately, this means that creating a

scrubbing function requires relying on platform-specific functions rather than a standard C library

or POSIX function.

Of the remaining techniques, we found that the volatile data pointer, volatile function

pointer, and compiler memory barrier techniques are effective in practice with the compilers we

tested. The first two of these, relying on the volatile storage type, can be used with any compiler

but are not guaranteed by the standard. The memory barrier technique is specific to GCC and

Clang and its effectiveness may change without notice as it has done already.

2.4 Case Studies

To understand the use of memory scrubbing in practice, we examined the 11 popular

security libraries and applications listed in Table 2.1. Our choices were guided by whether or not

the code handled sensitive data (e.g. secret keys), availability of the source code and our own

judgement of the project’s relevance. For each project, we set out to determine whether a memory

scrubbing function is available, effective, and used consistently by the projects’ developers.

We used the latest stable version of each project as of October 9, 2016.

Availability

To determine whether a scrubbing function is available, we manually examined the

program source code. All 11 projects used one or more of the techniques described in Section 2.3

to clear sensitive data, and seven of them relied on a combination of at least two techniques.

If a project relied on more than one technique, it automatically chose and used the first

technique available on the platform in order of preference specified by the developer. Columns

under the Preference heading in Table 2.1 show the developer preference order for each technique,

65

with 1 being highest priority (first chosen if available). The scrubbing techniques listed under the

Preference heading are: Win is Windows’ SecureZeroMemory, BSD is BSD’s explicit bzero,

C11 is C11’s memset s, Asm. is a custom assembly implementation, Barrier is the memory

barrier technique, VDP is the volatile data pointer technique, VFP is the volatile function pointer

technique, Comp. is the complicated computation technique, WL is the weak linkage technique,

and memset is a call to plain memset. If a project used a function that can be one of many

techniques depending on the version of that function—for example, projects that use OpenSSL’s

OPENSSL cleanse, which may either be VFP or Comp. depending on if OpenSSL version

≥1.0.2 or <1.0.2 is used—the newer version is given a higher preference. An ∗ indicates an

incorrectly implemented technique.

For example, Tor uses Windows’ SecureZeroMemory if available, then BSDs’

explicit bzero if available, and so on. Generally, for projects that used them, all chose

a platform-supplied function (SecureZeroMemory, explicit bzero, or memset s) first before

falling back to other techniques. The most popular of the do-it-yourself approaches are the

volatile data pointer (VDP) and volatile function pointer (VFP) techniques, with the latter being

more popular with projects that attempt to use a platform-provided function first.

Effectiveness

To answer the second question—whether the scrubbing function is effective—we relied

on the manual analysis in Section 2.3. If a project used an unreliable or ineffective scrubbing

technique in at least one possible configuration, we considered its scrubbing function ineffective,

and scored it flawed, denoted # in the Score column. If the scrubbing function was effective and

used consistently, we scored it effective, denoted . If it was effective but not used consistently,

we scored it inconsistent, denoted G#.

Consistency

To determine whether a function was used consistently, we instrumented the Clang 3.9

compiler to report instances of dead store elimination where a write is eliminated because the

66

memory location is not used afterwards. We did not report writes that were eliminated because

they were followed by another write to the same memory location, because in this case, the data

would be cleared by the second write. Additionally, if sensitive data is small enough to be fit

into registers, it may be promoted to a register, which will lead to the removal of the scrubbing

store 1. Since the scrubbing store is not removed in the dead store elimination pass, our tool does

not report it. We would argue such removals have less impact on security since the sensitive

data is in a register. However, if that register spilled when the sensitive data in it, it may still

leave some sensitive data in memory. We compiled each project using this compiler with the

same optimization options as in the default build of the project. Then we examined the report

generated by our tool and manually identified cases of dead store elimination that removed

scrubbing operations.

Of the eleven projects we examined, all of them supported Clang. We note, however,

that our goal in this part of our analysis is to identify sites where a compiler could eliminate

a scrubbing operation, and thus identify sites where sensitive variables were not being cleared

as intended by the developer. We then examined each case to determine whether the memory

contained sensitive data, and whether dead store elimination took place because a project’s own

scrubbing function was not used or because the function was ineffective. If cases of the latter, we

determined why the function was not effective; these findings are reflected in the results reported

in Section 2.3. Columns under the heading Removed ops. in Table 2.1 show the number of cases

where a scrubbing operation was removed. The Total column shows the total number of sites

where an operation was removed. The Sensitive column shows the number of such operations

where we considered the data to be indeed sensitive. (In some cases, the scrubbing function was

used to clear data that we did not consider sensitive, such as pointer addresses.) The Heap, Stack,

and H/S columns indicate whether or not the cleared memory was allocated on the heap, on the

stack stack, or potentially on either heap or stack.

1For example, at the end of OpenSSH’s SHA1Transform function, “a=b=c=d=e=0;” is used to scrub sensitive
data. Because all the five variables are in virtual registers in the IR form, no store is eliminated in the DSE pass.

67

Ta
bl

e
2.

1.
Su

m
m

ar
y

of
op

en
so

ur
ce

pr
oj

ec
ts

’
re

m
ov

ed
sc

ru
bb

in
g

op
er

at
io

ns
an

d
th

e
sc

ru
bb

in
g

te
ch

ni
qu

es
th

ey
us

e.
R

em
ov

ed
op

s.
co

lu
m

ns
sh

ow
th

e
to

ta
ln

um
be

ro
fr

em
ov

ed
sc

ru
bs

,t
he

nu
m

be
ro

fr
em

ov
ed

sc
ru

bs
de

al
in

g
w

ith
se

ns
iti

ve
da

ta
,a

nd
th

e
lo

ca
tio

ns
of

m
em

or
y

th
at

fa
ile

d
to

be
sc

ru
bb

ed
.P

re
fe

re
nc

e
co

lu
m

ns
sh

ow
th

e
de

ve
lo

pe
rp

re
fe

re
nc

e
or

de
rf

or
ea

ch
te

ch
ni

qu
e,

w
ith

1
be

in
g

hi
gh

es
t

pr
io

rit
y

(fi
rs

tc
ho

se
n

if
av

ai
la

bl
e)

.T
he
∗

in
th

e
ro

w
fo

rK
er

be
ro

s
in

di
ca

te
s

th
at

its
ba

rr
ie

rt
ec

hn
iq

ue
w

as
no

ti
m

pl
em

en
te

d
co

rr
ec

tly
;s

ee
Se

ct
io

n
2.

3.
4

fo
rd

is
cu

ss
io

n.
A

pr
oj

ec
t’s

Sc
or

e
sh

ow
s

w
he

th
er

its
sc

ru
bb

in
g

im
pl

em
en

ta
tio

n
is

fla
w

ed
(#

),
in

co
ns

is
te

nt
(G#

),
or

ef
fe

ct
iv

e
(

).

R
em

ov
ed

op
s.

P
re

fe
re

nc
e

Sc
or

e

P
ro

je
ct

To
tal

Se
ns

itiv
e

Hea
p

Sta
ck

H/S

Win

BSD

C11

Asm
.

Bar
rie

r
VDP

VFP

Com
p.

WL

mem
set

N
SS

15
9

3
12

0
-

-
-

-
-

-
-

-
-

1
#

O
pe

nV
PN

8
8

2
6

0
-

-
-

-
-

-
-

-
-

1
#

K
er

be
ro

s
10

2
9

0
1

1
-

-
-

2*
-

-
-

-
3

#
L

ib
so

di
um

0
0

0
0

0
1

3
2

-
-

5
-

-
4

-
#

Ta
rs

na
p

11
10

10
1

0
-

-
-

-
-

1
-

-
-

-
G#

L
ib

gc
ry

pt
2

2
0

2
0

-
-

-
-

-
1

-
-

-
-

G#
C

ry
pt

o+
+

1
1

0
1

0
-

-
-

1
-

2
-

-
-

-
G#

To
r

4
0

4
0

0
1

2
3

4
-

-
5

6
-

-
G#

B
itc

oi
n

0
0

0
0

0
-

-
-

1
-

-
2

3
-

-

O
pe

nS
SH

0
0

0
0

0
-

1
2

-
-

-
3

-
-

-

O
pe

nS
SL

0
0

0
0

0
-

-
-

1
-

-
2

3
-

-

68

Of the eleven projects examined, four had an effective scrubbing function but did not

use it consistently, resulting in a score of inconsistent, denoted G# in Table 2.1. As the results in

Table 2.1 show, only three of the eleven projects had a scrubbing function that was effective

and used consistently.

We notified the developers of each project that we scored flawed or inconsistent. For our

report to the developers, we manually verified each instance where a scrubbing operation was

removed, reporting only valid cases to the developers. Generally, as described below, developers

acknowledged our report and fixed the problem. Note that none of the issues resulted in CVEs

because to exploit, they must be used in conjunction with a separate memory disclosure bug and

these types of bugs are outside the scope of this work.

In the remainder of this section, we report on the open source projects that we analyzed.

Our goal is to identify common trends and understand how developers deal with the problem of

compilers removing scrubbing operations.

2.4.1 OpenVPN

OpenVPN is an TLS/SSL-based user-space VPN [25]. We tested version 2.3.12. Open-

VPN 2.3.12 does not have a reliable memory scrubbing implementation since it uses a CLEAR

macro which expands to memset. We found 8 scrubbing operations that were removed, all

of which deal with sensitive data. Each of the removed operations used CLEAR, which is not

effective.

Sample case

Function key method 1 read in Figure 2.1 is used in OpenVPN’s key exchange function

to process key material received from an OpenVPN peer. However, the CLEAR macro fails to

scrub the key on the stack since it is a call to plain memset.

69

Developer response

The issues were reported, although OpenVPN developers were already aware of the

problem and had a ticket on their issue tracker for it that was opened 12 days prior to our

notification [35]. The patch does not change the CLEAR macro since it is used extensively

throughout the project, but it does replace many CLEAR calls with our recommended fix discussed

in Section 2.5 [6].

1 /* From openvpn-2.3.12/src/openvpn/basic.h */

2 #define CLEAR(x) memset(&(x), 0, sizeof(x))

3

4 /* From openvpn-2.3.12/src/openvpn/ssl.c */

5 static bool key_method_1_read (struct buffer *buf, struct

6 tls_session *session) {
7

8 struct key key;

9 /* key is allocated on stack to hold TLS session key */

10 ...

11 /* Clean up */

12 CLEAR (key);

13 ks->authenticated = true;

14 return true;

15 }

Figure 2.1. A removed scrubbing operation in OpenVPN 2.3.12.

2.4.2 Kerberos

Kerberos is a network authentication protocol that provides authentication for client/server

applications by using secret-key cryptography [11]. We tested Kerberos release krb5-1.14.4. The

Kerberos memory scrubbing implementation, zap, is unreliable. First, it defaults to Windows’

SecureZeroMemory, which is effective. Otherwise it uses a memory barrier that may not

prevent the scrubbing operation from being removed when the code is compiled with Clang (see

Section 2.3.4). Finally, if the compiler is not GCC, it uses a function that calls memset. While

this is more reliable than a macro, memset may be removed if LTO is enabled (see Section 2.3.3).

Furthermore, even though zap is available (and reliable on Windows), plain memset is still used

throughout the code to perform scrubbing. We found 10 sites where scrubbing was done using

memset, which is not effective; 2 of these sites deal with sensitive data.

70

Sample case

Function free lucid key data in Figure 2.2 is used in Kerberos to free any storage

associated with a lucid key structure (which is typically on the heap) and to scrub all of its

sensitive information. However it does so with a call to plain memset, which is then removed by

the optimizer.

Developer response

The issues have been patched with calls to zap. In addition, zap has been patched

according to our recommended fix discussed in Section 2.5.

1 static void free_lucid_key_data(gss_krb5_lucid_key_t *key) {
2 if (key) {
3 if (key->data && key->length) {
4 memset(key->data,0,key->length);

5 xfree(key->data);

6 memset(key,0,sizeof(gss_krb5_lucid_key_t));

7 }
8 }
9 }

Figure 2.2. A removed scrubbing operation in Kerberos release krb5-1.14.4.

2.4.3 Tor

Tor provides anonymous communication via onion routing [33]. We tested version 0.2.8.8.

Tor defines memwipe, which reliably scrubs memory: it uses Windows’ SecureZeroMemory

if available, then RtlSecureZeroMemory if available, then BSD’s explicit bzero, then

memset s, and then OPENSSL cleanse, which is described below. Despite the availability

of memwipe, Tor still uses memset to scrub memory in several places. We found 4 scrubbing

operations that were removed, however none dealt with sensitive data.

Sample case

Function MOCK IMPL in Figure 2.3 is used to destroy all resources allocated by a process

handle. However, it scrubs the process handle object with memset, which is then removed by the

optimizer.

71

Developer response

The bugs were reported and have yet to be patched.

1 MOCK_IMPL(void, tor_process_handle_destroy,(process_handle_t

2 *process_handle, int also_terminate_process)) {
3

4 /* process_handle is passed in and allocated on heap to

5 * hold process handle resources */

6 ...

7 memset(process_handle, 0x0f, sizeof(process_handle_t));

8 tor_free(process_handle);

9 }

Figure 2.3. A removed scrubbing operation in Tor 0.2.2.8.

2.4.4 OpenSSL

OpenSSL is a popular TLS/SSL implementation as well as a general-purpose crypto-

graphic library [24]. We tested version 1.1.0b. OpenSSL uses OPENSSL cleanse to reliably

scrub memory. OPENSSL cleanse defaults to its own assembly implementations in various

architectures unless specified otherwise by the no-asm flag at configuration. Otherwise, starting

with version 1.0.2, it uses the volatile function pointer technique to call memset. Prior to version

1.0.2, it used the complicated computation technique. We found no removed scrubbing operations

in version 1.1.0b.

2.4.5 NSS

Network Security Services (NSS) is an TLS/SSL implementation that traces its origins

to the original Netscape implementation of SSL [20]. We tested version 3.27.1. NSS does not

have a reliable memory scrubbing implementation since it either calls memset or uses the macro

PORT Memset, which expands to memset. We found 15 scrubbing operations that were removed,

9 of which deal with sensitive data. Of the 15 removed operations, 6 were calls to PORT Memset

and 9 were calls to plain memset.

72

Sample case

Function PORT ZFree is used throughout the NSS code for freeing sensitive data and

is based on function PORT ZFree stub in Figure 2.4. However PORT ZFree stub’s call to

memset fails to scrub the pointer it is freeing.

Developer response

The bugs have been reported and Mozilla Security forwarded them to the appropriate

team, however they have not yet been patched.

1 extern void PORT_ZFree_stub(void *ptr, size_t len) {
2 STUB_SAFE_CALL2(PORT_ZFree_Util, ptr, len);

3 memset(ptr, 0, len);

4 return free(ptr);

5 }

Figure 2.4. A removed scrubbing operation in NSS 3.27.1.

2.4.6 Libsodium

Libsodium is a cross-platform cryptographic library [14]. We tested version 1.0.11.

Libsodium defines sodium memzero, which does not reliably scrub memory. First, it defaults to

Windows’ SecureZeroMemory, then memset s, and then BSD’s explicit bzero if available,

which are all reliable. Then if weak symbols are supported, it uses a technique based on weak

linkage, otherwise it uses the volatile data pointer technique. Techniques based on weak linkage

are not reliable, because they can be removed during link-time optimization. All memory

scrubbing operations used sodium memzero, and since Libsodium is not compiled with link-

time optimization, no scrubbing operations using sodium memzero were removed.

2.4.7 Tarsnap

Tarsnap is a online encrypted backup service whose client source code is avail-

able [32]. We tested version 1.0.37. Tarsnap’s memory scrubbing implementation,

called insecure memzero, uses the volatile data pointer scrubbing technique. Although

73

insecure memzero is an effective scrubbing function, Tarsnap does not use it consistently.

We found 10 cases where memset was used to scrub memory instead of insecure memzero in

its keyfile.c, which handles sensitive data.

Sample case

Function read encrypted in Figure 2.5 attempts to scrub a buffer on the heap containing

a decrypted key. It is used throughout the project for reading keys from a Tarsnap key file.

However, instead of using insecure memzero, it uses plain memset, and is thus removed by the

optimizer.

Developer response

Out of the 11 reported issues, the 10 in keyfile.c were already patched on July 2, 2016

but were not in the latest stable version. The one non-security issue does not require a patch,

since the removed memset was redundant as insecure memzero is called right before it.

1 static int read_encrypted(const uint8_t * keybuf, size_t

2 keylen, uint64_t * machinenum, const char * filename,

3 int keys) {
4

5 uint8_t * deckeybuf;

6 /* deckeybuf is allocated on heap to hold decrypted key */

7 ...

8 /* Clean up */

9 memset(deckeybuf, 0, deckeylen);

10 free(deckeybuf);

11 free(passwd);

12 free(pwprompt);

13 return (0);

14 }

Figure 2.5. A removed scrubbing operation in Tarsnap 1.0.37.

2.4.8 Libgcrypt

Libgcrypt is a general purpose cryptographic library used by GNU Privacy Guard, a

GPL-licensed implementation of the PGP standards [12]. We tested version 1.7.3. Libgcrypt

defines wipememory, which is a reliable way of scrubbing because it uses the volatile data pointer

technique. However, despite wipememory’s availability and reliability, memset is still used to

74

scrub memory in several places. We found 2 cases where scrubs were removed, and for both,

memset is used to scrub sensitive sensitive data instead of wipememory.

Sample case

Function invert key in Figure 2.6 is used in Libgcrypt’s IDEA implementation to invert

a key for its key setting and block decryption routines. However, invert key uses memset to

scrub a copy of the IDEA key on the stack, which is removed by the optimizer.

Developer response

The bugs have been patched with calls to wipememory.

1 static void invert_key(u16 *ek, u16 dk[IDEA_KEYLEN]) {
2 u16 temp[IDEA_KEYLEN];

3 /* temp is allocated on stack to hold inverted key */

4 ...

5 memcpy(dk, temp, sizeof(temp));

6 memset(temp, 0, sizeof(temp));

7 }

Figure 2.6. A removed scrubbing operation in Libgcrypt 1.7.3.

2.4.9 Crypto++

Crypto++ is a C++ class library implementing several cryptographic algorithms [7].

We tested version 5.6.4. Crypto++ defines SecureWipeBuffer, which reliably scrubs mem-

ory by using custom assembly if the buffer contains values of type byte, word16, word32,

or word64; otherwise it uses the volatile data pointer technique. Despite the availability of

SecureWipeBuffer, we found one scrubbing operation dealing with sensitive data that was

removed because it used plain memset rather than its own SecureWipeBuffer.

Sample case

The UncheckedSetKey function, shown in Figure 2.7, sets the key for a CAST256 object.

UncheckedSetKey uses plain memset to scrub the user key on the stack, which is removed by

the optimizer.

75

Developer response

The bug was patched with a call to SecureWipeBuffer.

1 void CAST256::Base::UncheckedSetKey(const byte *userKey,

2 unsigned int keylength, const NameValuePairs &) {
3

4 AssertValidKeyLength(keylength);

5 word32 kappa[8];

6 /* kappa is allocated on stack to hold user key */

7 ...

8 memset(kappa, 0, sizeof(kappa));

9 }

Figure 2.7. A removed scrubbing operation in Crypto++ 5.6.4.

2.4.10 Bitcoin

Bitcoin is a cryptocurrency and payment system [4]. We tested version 0.13.0 of the

Bitcoin client. The project defines memory cleanse, which reliably scrubs memory by using

OPENSSL cleanse, described below. The source code uses memory cleanse consistently; we

found no removed scrubbing operations.

2.4.11 OpenSSH

OpenSSH is a popular implementation of the SSH protocol [23]. We tested version 7.3.

OpenSSH defines its own explicit bzero, which is a reliable way of scrubbing memory: it

uses BSD’s explicit bzero if available, then memset s if available. If neither are available,

it uses the volatile function pointer technique to call bzero. We found no removed scrubbing

operations.

2.4.12 Discussion

Our case studies lead us to two observations. First, there is no single accepted scrub-

bing function. Each project mixes its own cocktail using existing scrubbing techniques, and

there is no consensus on which ones to use. Unfortunately, as we discussed in Section 2.3, some

of the scrubbing techniques are flawed or unreliable, making scrubbing functions that rely on

76

such techniques potentially ineffective. To remedy this state of affairs, we developed a single

memory scrubbing technique that combines the best techniques into a single function, described

in Section 2.5.

Second, even when the project has reliable scrubbing function, developers do not use

their scrubbing function consistently. In 4 of the 11 projects we examined, we found cases

where developers called memset instead of their own scrubbing function. To address this, we

developed a scrubbing-safe dead-store elimination pass that defensively compile bodies of code,

as discussed in Section 2.6.

2.5 Universal Scrubbing Function

As we saw in Section 2.3, there is no single memory scrubbing technique that is both

universal and guaranteed. In the next section, we propose a compiler-based solution based on

Clang, that protects scrubbing operations from dead-store elimination. In many cases, however,

the developer can’t mandate a specific compiler and must resort to imperfect techniques to

protect scrubbing operations from the optimizer. To aid developers in this position, we developed

our own scrubbing function, called secure memzero, that combines the best effective scrubbing

techniques in a simple implementation. Specifically, our implementation supports:

* Platform-provided scrubbing functions (SecureZeroMemory and memset s) if available,

* The memory barrier technique if GCC or Clang are used to compile the source, and

* The volatile data pointer technique and the volatile function pointer technique.

Our secure memzero function is implemented in a single header file secure memzero.h that

can be included in a C/C++ source file. The developer can specify an order of preference in which

an implementation will be chosen by defining macros before including secure memzero.h. If

the developer does not express a preference, we choose the first available implementation in the

order given above: platform-provided function if available, then memory barrier on GCC and

77

Clang, then then volatile data pointer technique. Our defaults reflect what we believe are the best

memory scrubbing approaches available today.

We have released our implementation into the public domain, allowing developers to use

our function regardless of their own project license. We plan to keep our implementation updated

to ensure it remains effective as compilers evolve. The current version of secure memzero.h is

available at https://compsec.sysnet.ucsd.edu/secure memzero.h and is shown in Appendix A.1.

2.6 Scrubbing-Safe DSE

While we have tested our secure memzero function with GCC, Clang, and Microsoft

Visual C, by its very nature it cannot guarantee that a standard-conforming compiler will not

remove our scrubbing operation. To address these cases, we implemented a scrubbing-safe dead

store elimination option in Clang 3.9.0.

2.6.1 Inhibiting Scrubbing DSE

Our implementation works by identifying all stores that may be explicit scrubbing

operations and preventing the dead store elimination pass from eliminating them. We consider

a store, either a store IR instruction, or a call to LLVM’s memset intrinsic, to be a potential

scrubbing operation if

* The stored value is a constant,

* The number of bytes stored is a constant, and

* The store is subject to elimination because the variable is going be out of scope without

being read.

The first two conditions are based on our observation how scrubbing operations are performed

in the real code. The third allows a store that is overwritten by a later one to the same location

before being read to be eliminated, which improves the performance. We note that our techniques

78

https://compsec.sysnet.ucsd.edu/secure_memzero.h

preserves all dead stores satisfying the conditions above, regardless of whether the variables

is considered sensitive or not. This may introduce false positives, dead stores to non-sensitive

variables in memory that are preserved because they were considered potential scrubbing oper-

ations by our current implementation. We discuss the performance impact of our approach in

Section 2.6.2.

It is worth considering an alternative approach to ensuring that sensitive data is scrubbed:

The developer could explicitly annotate certain variables as secret, and have the compiler

ensure that these variables are zeroed before going out of scope. This would automatically

protect sensitive variables without requiring the developer to zero them explicitly. It would also

eliminate potential false positives introduced by our approach, because only sensitive data would

be scrubbed. Finally, it could also ensure that spilled registers containing sensitive data are

zeroed, something our scrubbing-safe DSE approach does not do (see Section 2.7 for a discussion

of this issue).

We chose our approach because it does not require any changes to the source code. Since

developers are already aware of the need to clear memory, we rely on scrubbing operations

already present in the code and simply ensure that they are not removed during optimization.

Thus, our current approach is compatible with legacy code and can protect even projects that do

not use a secure scrubbing function, provided the sensitive data is zeroed after use.

2.6.2 Performance

Dead store elimination is a compiler optimization intended to reduce code size and

improve performance. By preserving certain dead stores, we are potentially preventing a useful

optimization from improving the quality emitted code and improving performance. To determine

whether or not this the case, we evaluated the performance of our code using the SPEC 2006

benchmark. We compiled and ran the SPEC 2006 benchmark under four compiler configurations:

-O2 only, -O2 and -fno-builtin-memset, -O2 with DSE disabled, and -O2 with our scrubbing-

safe DSE. In each case, we used Clang 3.9.0, modified to allow us to disable DSE completely

79

or to selectively disable DSE as described above. Note that -fno-builtin-memset is not a

reliable means of protecting scrubbing operations, as discussed in Section 2.3.2. The benchmark

was run on a Ubuntu 16.04.1 server with an Intel Xeon Processor X3210 and 4GB memory.

Our results indicate that the performance if our scrubbing-safe DSE option is within

1% of the base case (-O2 only). This difference is well within the variation of the benchmark;

re-running the same tests yielded differences of the same order. Disabling DSE completely also

did not affect performance by more than 1% over base in all but one case (483.xalancbmk)

where it was within 2%. Finally, with the exception of the 403.gcc benchmark, disabling

built-in memset function also does not have a significant adverse effect on performance. For the

403.gcc benchmark, the difference was within 5% of base.

2.7 Discussion

It is clear that, while the C standard tries to help by defining memset s, in practice the

C standard does not help. In particular, memset s is defined in the optional Annex K, which

is rarely implemented. Developers are then left on their own to implement versions of secure

memset, and the most direct solution uses the volatile quantifier. But here again, the C standard

does not help, because the corner cases of the C standard actually give the implementation a

surprising amount of leeway in defining what constitutes a volatile access. As a result, any

implementation of a secure memset based on the volatile qualifier is guarantee to work with

every standard-compliant compiler.

Second, it’s very tricky in practice to make sure that a secure scrubbing function works

well. Because an incorrect implementation does not break any functionality, it cannot be caught

by automatic regression tests. The only reliable way to test whether an implentation is correct or

not is to manually check the generated binary, which can be time-consuming. What’s worse, a

seemingly working solution may turn out to be insecure under a different combination of platform,

compiler and optimization level, which further increases the cost to test an implementation. In

80

fact, as we showed in Section 2.4.2, developers did make mistakes in the implementing of secure

scrubbing functions. This is why we implemented secure memzero and tested it on Ubuntu,

OpenBSD and Windows with GCC and Clang. We released it into the public domain so that

developers can use it freely and collaborate to adapt it to future changes to the C standard,

platforms or compilers.

Third, even if a well-implemented secure scrubbing function is available, developers

will forget to use it, instead using the standard memset which is removed by the compiler. For

example, we found this happened in Crypto++ (Section 2.4.9). This observation makes compiler-

based solutions, for example the secure DSE, more attractive because they do not depend on

developers correctly calling the right scrubbing function.

Finally, it’s important to note that sensitive data may still remain in on the stack even

after its primary storage location when it is passed as argument or spilled (in registers) onto the

stack. Addressing this type of data leak requires more extensive support from the compiler.

2.8 Related Work

D’Silva et al. [44] use the term correctness-security gap to describe the gap between the

traditional notion of compiler correctness and the correctness notion that a security-conscious

developers might have. They found instances of a correctness-security gap in several optimiza-

tions, including dead store elimination, function inlining, code motion, common subexpression

elimination, and strength reduction.

Lu et al. [48] investigated an instance of this gap in which the compiler introduces

padding bytes in data structures to improve performance. These padding bytes may remain

uninitialized and thus leak data if sent to the outside world. By looking for such data leakage,

they found previously undiscovered bugs in the Linux and Android kernels.

Wang et al. [60] explored another instance of the correctness-security gap: compilers

sometimes remove code that has undefined behavior that, in some cases, includes security checks.

81

They developed a static checker called STACK that identifies such code in C/C++ programs and

they used it to uncover 160 new bugs in commonly deployed systems.

Laurent et al. [55] described a few instances of the correctness-security gap with a

focus on how compilers may affect constant-time selection code and sensitive data scrubbing

operations. The authors argued that adding explicit support to compilers is an effective way

to bridge the correctness-security gap. As examples, they implemented compiler supports for

preventing constant-time selection and stack sensitive erasure code from being tampered with on

the LLVM framwork.

While this chapter examines how programmers handle the correctness-security gap

introduced by aggressive dead store elimination, the soundness and security of dead store

elimination has been studied formally [64, 49]. However, even a provably-correct implementation

of dead store elimination may still undermine software security due to the correctness-security

gap.

Deng et al. [42] proposed a new secure dead store elimination algorithm on a simple toy

programming language and proved its correctness. Variables in this language are categorized into

high security variables and low security variables, and with the help of a taint tracking analysis,

the algorithm ensures that dead stores to tainted variables will not be removed if doing so leaks

information.

2.9 Conclusion

Developers have known that compiler optimizations may remove scrubbing operations

for some time. To combat this problem, many implementations of secure memset have been

created. In this paper, we surveyed the existing solutions, analyzing the assumptions, advantages

and disadvantages of them. Also, our case studies have shown that real world programs still

have unscrubbed sensitive data, due to incorrect implementation of secure scrubbing function

as well as from developers simply forgetting to use the secure scrubbing function. To solve

82

the problem, we implemented the secure DSE, a compiler-based solution that keeps scrubbing

operations while remove dead stores that have no security implications, and secure memzero, a

C implementation that have been tested on various platforms and with different compilers.

Acknowledgements

Chapter 2 is an adapted reprint of the material as it appears in Dead Store Elimination

(Still) Considered Harmful in USENIX Security 2017. Yang, Zhaomo; Johannesmeyer, Brian;

Olesen, Anders T.; Lerner, Sorin; Levchenko, Kirill., Proceedings of the USENIX Security, 2017.

The dissertation author was the primary investigator and author of this paper.

83

Chapter 3

Conclusion

As a crucial part of software development, compilers have significant impact on various

qualities of the generated code such as correctness, performance, size, and security. In this

dissertation, we examined the security impact of compilers from both the positive and negative

directions.

On the one hand, compilers present great opportunities to enhance software security.

Compiler-based security schemes have become increasingly popular in the recent years because

they can retrofit security policies into potentially vulnerable programs with low required devel-

opment efforts. In this dissertation, we explored the opportunity of using compilers to secure

C++ programs running on resource-constrained systems. Specifically, we pushed the vtable

interleaving idea originally from the BKL scheme [39] a step further to fit the space constraint of

resource-constrained systems: instead of interleaving whole vtables, we only interleave vtable

entries that may be used. In addition, our advanced scheme provides higher protection preci-

sion due to our advanced vtable ordering algorithms. Our scheme shows the great potential of

compiler-base security schemes to secure software when the special requirements of the targeted

software are taken into consideration.

On the other hand, even benign, correctly implemented compilers may harm software

security. On this front, we investigated the potential negative impact of Dead Store Elimination

(DSE) optimization. Although this phenomenon is considered well-known among developers, our

84

survey of the existing DSE-circumvention techniques and the case study of open source security

programs show that the general understanding of this problem was inadequate. Our results show

that the negative security impact of compilers, and the methods for circumventing them, are not

sufficiently studied. A good understanding of any negative security effect of compilers normally

requires a systematic analysis of the compiler internals, the language specifications, and the

nuances of different platforms and tool chains. However, due to the lack of research in this

area, when it comes to negative security impact of compilers, many developers have to resort

to anecdotes posted at question-and-answer sites like StackOverflow or brief technical blogs,

which often have incomplete, or even false, information. Clearly, there is a burgeoning need for

additional research in this area.

85

Appendix A

The current version of secure memzero

Listing A.1. Current version of secure memzero.

1 // secure_memzero.h version 1 (October 29, 2016)

2 //

3 // This code is released into the public domain.

4 //

5 // THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

6 // INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

7 // FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

8 // AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

9 // OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

10 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

11 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

12 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

13 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

14 // POSSIBILITY OF SUCH DAMAGE.

15

16 // The secure_memzero macro/function attempts to ensure that an optimizing

17 // compiler does not remove the intended operation if cleared memory is not

18 // accessed again by the program. There are several known ways of doing this,

19 // however no single one is both universally available and absolutely guranteed

20 // by the standard. The following code defines secure_memzero as a macro or

21 // function using one of the known alternatives. The choice of implementation

22 // can be controlled by defining a preprocessor macro of the form SMZ_impl,

23 // where <impl> is one of the defined implementation names. SMZ_impl should

24 // expand to an integer indicating the dgeree of preference for the

25 // implementation, where numerically higher values indicate greater preference.

26 // Defining SMZ_impl to be 0 disables the implementation even if it is

86

27 // available. Not defining any SMZ_impl will result in default (safe) behavior.

28 //

29 // The following implementations may be used.

30 //

31 // SMZ_SECUREZEROMEMORY

32 // Uses the SecureZeroMemory macro/function on Windows. Requires a Windows

33 // environment (_WIN32 must be defined).

34 //

35 // SMZ_ASM_BARRIER

36 // Uses a compiler memory barrier to force the results of a memset to be

37 // committed to memory. Has been tested to work on:

38 // - Clang 3.9.0 at all optimization levels.

39 // - GCC 6.2 at all optimization levels.

40 //

41 // SMZ_MEMSET_S

42 // Uses the C11 function memset_s. Currently not available on many platforms.

43 // Note that if you want this option, you have to set __STDC_WANT_LIB_EXT1__

44 // to 1 before including string.h or any file that includes string.h in a

45 // compilation unit that includes this header.

46 //

47 // SMZ_VDATAPTR

48 // Uses the volatile data pointer technique to zero one byte at a time. This is

49 // not guaranteed to work by the C standard, which does not require access to

50 // non-volatile objects via a pointer-to-volatile to be treated as a volatile

51 // access. However, it is known to work on the following compilers:

52 // - Clang 3.9.0 at all optimization levels.

53 // - GCC 6.2 at all optimization levels.

54 //

55 // SMZ_VFUNCPTR

56 // Uses the volatile function pointer technique to call memset. This is not

57 // guaranteed to work by the C standard, which does not require the pointed-to

58 // function to be called. However, it is known to work on the following

59 // compilers:

60 // - Clang 3.9.0 at all optimization levels.

61 // - GCC 6.2 at all optimization levels.

62

63 // The remainder of this file implements the selection logic using the

64 // specified compile-time preferences.

65

66 #ifndef _SECURE_MEMZERO_H_

87

67 #define _SECURE_MEMZERO_H_

68

69 // STEP 1. Set default preference for all implementations to 1.

70

71 #ifndef SMZ_SECUREZEROMEMORY

72 #define SMZ_SECUREZEROMEMORY 1

73 #endif

74

75 #ifndef SMZ_MEMSET_S

76 #define SMZ_MEMSET_S 1

77 #endif

78

79 #ifndef SMZ_ASM_BARRIER

80 #define SMZ_ASM_BARRIER 1

81 #endif

82

83 #ifndef SMZ_VDATAPTR

84 #define SMZ_VDATAPTR 1

85 #endif

86

87 #ifndef SMZ_VFUNCPTR

88 #define SMZ_VFUNCPTR 1

89 #endif

90

91 // STEP 2. Check which implementations are available and include any necessary

92 // header files.

93

94 #if SMZ_SECUREZEROMEMORY > 0

95 #ifdef _WIN32

96 #include <windows.h>

97 #else

98 #undef SMZ_SECUREZEROMEMORY

99 #define SMZ_SECUREZEROMEMORY 0

100 #endif

101 #endif

102

103 #if SMZ_MEMSET_S > 0

104 #if defined(__STDC_WANT_LIB_EXT1__) && (__STDC_WANT_LIB_EXT1__ != 1)

105 #undef SMZ_MEMSET_S

106 #define SMZ_MEMSET_S 0

88

107 #endif

108 #if SMZ_MEMSET_S > 0

109 #ifndef __STDC_WANT_LIB_EXT1__

110 // Must come before first include of string.h

111 #define __STDC_WANT_LIB_EXT1__ 1

112 #endif

113 #include <string.h>

114 #ifndef __STDC_LIB_EXT1__

115 #undef SMZ_MEMSET_S

116 #define SMZ_MEMSET_S 0

117 #endif

118 #endif

119 #endif

120

121 #if !defined(__GNUC__) && !defined(__clang__)

122 #undef SMZ_ASM_BARRIER

123 #define SMZ_ASM_BARRIER 0

124 #endif

125

126 #if SMZ_VFUNCPTR > 0

127 #include <string.h>

128 #endif

129

130 // STEP 3. Calculate highest preference.

131

132 #define SMZ_PREFERENCE 0

133

134 #if SMZ_PREFERENCE < SMZ_SECUREZEROMEMORY

135 #undef SMZ_PREFERENCE

136 #define SMZ_PREFERENCE SMZ_SECUREZEROMEMORY

137 #endif

138

139 #if SMZ_PREFERENCE < SMZ_MEMSET_S

140 #undef SMZ_PREFERENCE

141 #define SMZ_PREFERENCE SMZ_MEMSET_S

142 #endif

143

144 #if SMZ_PREFERENCE < SMZ_ASM_BARRIER

145 #undef SMZ_PREFERENCE

146 #define SMZ_PREFERENCE SMZ_ASM_BARRIER

89

147 #endif

148

149 #if SMZ_PREFERENCE < SMZ_VDATAPTR

150 #undef SMZ_PREFERENCE

151 #define SMZ_PREFERENCE SMZ_VDATAPTR

152 #endif

153

154 #if SMZ_PREFERENCE < SMZ_VFUNCPTR

155 #undef SMZ_PREFERENCE

156 #define SMZ_PREFERENCE SMZ_VFUNCPTR

157 #endif

158

159 // STEP 4. Make sure we have something chosen.

160

161 #if SMZ_PREFERENCE <= 0

162 #error No secure_memzero implementation available

163 #endif

164

165 // STEP 5. Use implementation with highest preference. Ties are broken in

166 // favor of implementations appearing first, below.

167

168 #if SMZ_PREFERENCE == SMZ_SECUREZEROMEMORY

169 #define secure_memzero(ptr,len) SecureZeroMemory((ptr),(len))

170

171 #elif SMZ_PREFERENCE == SMZ_MEMSET_S

172 #define secure_memzero(ptr,len) memset_s((ptr),(len),0,(len))

173

174 #elif SMZ_PREFERENCE == SMZ_ASM_BARRIER

175 #define secure_memzero(ptr,len) do { \

176 memset((ptr),0,(len)); \

177 __asm__ __volatile__("" ::"r"(ptr): "memory"); \

178 } while (0)

179

180 #elif SMZ_PREFERENCE == SMZ_VDATAPTR

181 static void secure_memzero(void * ptr, size_t len) {

182 volatile char * p = ptr;

183 while (len--) *p++ = 0;

184 }

185

186 #elif SMZ_PREFERENCE == SMZ_VFUNCPTR

90

187 static void * (* volatile _smz_memset_fptr)(void*,int,size_t) = &memset;

188 static void secure_memzero(void * ptr, size_t len) {

189 _smz_memset_fptr(ptr, 0, len);

190 }

191

192 #endif

193

194 #endif // _SECURE_MEMZERO_H_

91

Bibliography

[1] 6.45.2 Extended Asm - Assembler Instructions with C Expression Operands. https://gcc.
gnu.org/onlinedocs/gcc/Extended-Asm.html.

[2] 8537 – Optimizer Removes Code Necessary for Security. https://gcc.gnu.org/bugzilla/
show bug.cgi?id=8537.

[3] A glance at compiler internals: Keep my memset. http://blog.quarkslab.com/
a-glance-at-compiler-internals-keep-my-memset.html.

[4] Bitcoin: Open source P2P money. https://bitcoin.org/.

[5] Bug 15495 - dead store pass ignores memory clobbering asm statement. https://bugs.llvm.
org/show bug.cgi?id=15495.

[6] Changeset 009521a. https://community.openvpn.net/openvpn/changeset/
009521ac8ae613084b23b9e3e5dc4ebeccd4c6c8/.

[7] Crypto++ library. https://www.cryptopp.com/.

[8] CVE-2016-0777. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0777.

[9] GCC Bugzilla - Bug 26587. https://gcc.gnu.org/bugzilla/show bug.cgi?id=26587.

[10] Issue 464797: Deploy -fsanitize=cfi-vcall on linux. https://bugs.chromium.org/p/chromium/
issues/detail?id=464797. Accessed: 2019-08-22.

[11] Kerberos - The Network Authentication Protocol. https://web.mit.edu/kerberos/.

[12] Libgcrypt. https://www.gnu.org/software/libgcrypt/.

[13] Libressl. https://www.libressl.org/.

[14] libsodium - A modern and easy-to-use crypto library. https://github.com/jedisct1/libsodium.

[15] The linux kernel archives. https://www.kernel.org/.

[16] Llvm control flow integrity. https://clang.llvm.org/docs/ControlFlowIntegrity.html. Ac-
cessed: 2019-07-24.

92

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8537
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8537
http://blog.quarkslab.com/a-glance-at-compiler-internals-keep-my-memset.html
http://blog.quarkslab.com/a-glance-at-compiler-internals-keep-my-memset.html
https://bitcoin.org/
https://bugs.llvm.org/show_bug.cgi?id=15495
https://bugs.llvm.org/show_bug.cgi?id=15495
https://community.openvpn.net/openvpn/changeset/009521ac8ae613084b23b9e3e5dc4ebeccd4c6c8/
https://community.openvpn.net/openvpn/changeset/009521ac8ae613084b23b9e3e5dc4ebeccd4c6c8/
https://www.cryptopp.com/
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=26587
https://bugs.chromium.org/p/chromium/issues/detail?id=464797
https://bugs.chromium.org/p/chromium/issues/detail?id=464797
https://web.mit.edu/kerberos/
https://www.gnu.org/software/libgcrypt/
https://www.libressl.org/
https://github.com/jedisct1/libsodium
https://www.kernel.org/
https://clang.llvm.org/docs/ControlFlowIntegrity.html

[17] Memory protection technologies. https://docs.microsoft.com/en-us/previous-versions/
windows/it-pro/windows-xp/bb457155(v=technet.10). Accessed: 2019-08-22.

[18] Millions of binaries later: a look into linux hardening in the wild. https://capsule8.com/
blog/millions-of-binaries-later-a-look-into-linux-hardening-in-the-wild/. Accessed: 2019-
08-22.

[19] musl libc. https://www.musl-libc.org/.

[20] Network Security Services - Mozilla. https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/NSS.

[21] Octane 2.0 javascript benchmark. http://chromium.github.io/octane. Accessed: 2019-08-22.

[22] Omnibus f4 sd. https://docs.px4.io/v1.9.0/en/flight controller/omnibus f4 sd.html. Ac-
cessed: 2019-09-01.

[23] OpenSSH. http://www.openssh.com/.

[24] OpenSSL: Cryptography and SSL/TLS Toolkit. https://www.openssl.org/.

[25] OpenVPN - Open Source VPN. https://openvpn.net/.

[26] The pax team’s address space layout randomization. https://pax.grsecurity.net/docs/aslr.txt.
Accessed: 2019-08-22.

[27] Pixhawk 3 pro. https://docs.px4.io/v1.9.0/en/flight controller/pixhawk3 pro.html. Ac-
cessed: 2019-09-01.

[28] Px4. https://px4.io/. Accessed: 2019-09-01.

[29] Reimplement non-asm OPENSSL cleanse(). https://github.com/openssl/openssl/pull/455.

[30] Secure an android device: Control flow integrity. https://source.android.com/devices/tech/
debug/cfi. Accessed: 2019-08-22.

[31] Sudo. https://www.sudo.ws/.

[32] Tarsnap - Online backups for the truly paranoid. http://www.tarsnap.com/.

[33] Tor Project: Anonymity Online. https://www.torproject.org.

[34] Vendicator. http://www.angelfire.com/sk/stackshield/info.html. Accessed: 2019-08-22.

[35] When erasing secrets, use a memset() that’s not optimized away. https://community.
openvpn.net/openvpn/ticket/751.

[36] WolfSSL - Embedded SSL Library for Applications, Devices, IoT, and the Cloud. https:
//www.wolfssl.com.

93

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://capsule8.com/blog/millions-of-binaries-later-a-look-into-linux-hardening-in-the-wild/
https://capsule8.com/blog/millions-of-binaries-later-a-look-into-linux-hardening-in-the-wild/
https://www.musl-libc.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
http://chromium.github.io/octane
https://docs.px4.io/v1.9.0/en/flight_controller/omnibus_f4_sd.html
http://www.openssh.com/
https://www.openssl.org/
https://openvpn.net/
https://pax.grsecurity.net/docs/aslr.txt
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk3_pro.html
https://px4.io/
https://github.com/openssl/openssl/pull/455
https://source.android.com/devices/tech/debug/cfi
https://source.android.com/devices/tech/debug/cfi
https://www.sudo.ws/
http://www.tarsnap.com/
https://www.torproject.org
http://www.angelfire.com/sk/stackshield/info.html
https://community.openvpn.net/openvpn/ticket/751
https://community.openvpn.net/openvpn/ticket/751
https://www.wolfssl.com
https://www.wolfssl.com

[37] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity. In Proc. of CCS
2005, New York, NY, USA, 2005.

[38] G. Barthe, B. Grgoire, and V. Laporte. Secure compilation of side-channel countermeasures:
The case of cryptographic constant-time. In Proc. of CSF 2018, Oxford, UK, 2018.

[39] D. Bounov, R. G. Kici, and S. Lerner. Protecting c++ dynamic dispatch through vtable
interleaving. In Proc. of NDSS 2016, San Diego, CA, USA, 2016.

[40] N. Burow, D. McKee, S. A. Carr, and M. Payer. Cfixx: Object type integrity for c++ virtual
dispatch. In Proc. of NDSS 2018, San Diego, CA, USA, 2018.

[41] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In Proc. of USENIX Security 1998,
San Antonio, TX, USA, 1998.

[42] Chaoqiang Deng and Kedar S. Namjoshi. Securing a compiler transformation. In Static
Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016,
Proceedings, pages 170–188, 2016.

[43] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee. Efficient protection of path-
sensitive control security. In Proc. of USENIX Security 2017, Vancouver, BC, Canada,
2017.

[44] Vijay D’Silva, Mathias Payer, and Dawn Song. The correctness-security gap in compiler
optimization. In Security and Privacy Workshops (SPW), 2015 IEEE, pages 73–87, 2015.

[45] X. Fan, Y. Sui, X. Liao, and J. Xue. Boosting the precision of virtual call integrity protection
with partial pointer analysis for c++. In Proc. of SIGSOFT 2017, Santa Barbara, CA, USA,
2017.

[46] D. Jang, Z. Tatlock, and S. Lerner. Safedispatch: Securing c++ virtual callsfrom memory
corruption attacks. In Proc. of NDSS 2014, San Diego, CA, USA, 2014.

[47] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-pointer
integrity. In Proc. of OSDI 2014, Broomfield, CO, USA, 2014.

[48] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. Unisan: Proactive kernel
memory initialization to eliminate data leakages. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages 920–932, New
York, NY, USA, 2016. ACM.

[49] William Mansky, Dmitri Garbuzov, and Steve Zdancewic. Formalizing the llvm inter-
mediate representation for verified program transformations. In Proc. of CAV 2015, San
Francisco, CA, USA, 2015.

94

[50] Carlos O’Donell and Martin Sebor. Updated Field Experience With Annex K — Bounds
Checking Interfaces. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm,
September 2015.

[51] Colin Percival. Erratum. http://www.daemonology.net/blog/2014-09-05-erratum.html.

[52] Colin Percival. How to zero a buffer. http://www.daemonology.net/blog/
2014-09-04-how-to-zero-a-buffer.html.

[53] A. Prakash, X. Hu, and H. Yin. vfguard: Strict protection for virtual function calls in cots
c++ binaries. In Proc. of NDSS 2015, San Diego, CA, USA, 2015.

[54] Robert Seacord. The CERT C Secure Coding Standard. Addison Wesley, 2009.

[55] L. Simon, D. Chisnall, and R. Anderson. What you get is what you c: Controlling side
effects in mainstream c compilers. In Proc. of EuroS P 2018, London, United Kingdom,
2018.

[56] Cryptographic Coding Standard. Coding rules. https://cryptocoding.net/index.php/Coding
rules#Clean memory of secret data.

[57] Ken Thompson. Reflections on trusting trust. Commun. ACM, 27(8).

[58] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlingsson,
Luis Lozano, and Geoff Pike. Enforcing forward-edge control-flow integrity in GCC &
LLVM. In Proc. of USENIX Security 2014, San Diego, CA, USA.

[59] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. Towards
optimization-safe systems: Analyzing the impact of undefined behavior. In Proc. of SOSP
2013, Farminton, Pennsylvania, USA.

[60] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. Towards
optimization-safe systems: Analyzing the impact of undefined behavior. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pages
260–275, New York, NY, USA, 2013. ACM.

[61] David Wheeler. Specially protect secrets (passwords and keys) in user memory. https:
//www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html.

[62] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song. Vtrust: Regaining
trust on virtual calls. In Proc. of NDSS 2016, San Diego, CA, USA, 2016.

[63] C. Zhang, C. Song, K. Chen, Z. Chen, and D. Song. Vtint: Defending virtual function
tables integrity. In Proc. of NDSS 2015, San Diego, CA, USA, 2015.

[64] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. Formalizing
the llvm intermediate representation for verified program transformations. In Proc. of POPL
2012, Philadelphia, PA, USA, 2012.

95

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm
http://www.daemonology.net/blog/2014-09-05-erratum.html
http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
https://cryptocoding.net/index.php/Coding_rules#Clean_memory_of_secret_data
https://cryptocoding.net/index.php/Coding_rules#Clean_memory_of_secret_data
https://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html
https://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Opportunities
	Introduction
	Background
	C++ Basics
	Dynamic Dispatch Hijacking
	Virtual Call CFI

	Our Advanced Scheme
	Deployment Model
	Threat Model
	Overview
	Preparation
	VTable Object Ordering
	VTable Object Interleaving
	Check Instrumentation

	Implementation
	Evaluation
	Chromium
	SPEC 2006
	PX4

	Related Work
	Conclusion

	Challenges
	Introduction
	Background
	Existing Approaches
	Platform-Supplied Functions
	Disabling Optimization
	Hiding Semantics
	Forcing Memory Writes
	Discussion

	Case Studies
	OpenVPN
	Kerberos
	Tor
	OpenSSL
	NSS
	Libsodium
	Tarsnap
	Libgcrypt
	Crypto++
	Bitcoin
	OpenSSH
	Discussion

	Universal Scrubbing Function
	Scrubbing-Safe DSE
	Inhibiting Scrubbing DSE
	Performance

	Discussion
	Related Work
	Conclusion

	Conclusion
	The current version of secure_memzero
	Bibliography

