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Over the last few decades, chip performance has increased steadily due to continuous and 

aggressive technology scaling. However, it leaves chips quite vulnerable to several issues at the 

same time. High power densities in some particular areas spread across a chip might result in 

hotspots and thermal gradients, and these can lead to permanent damage to the chip and also can 

reduce the reliability of the entire system using the chip.  As a result, a large number of dynamic 

thermal management (DTM) solutions have been proposed in recent years for use in multi-core 

architectures, and accurate temperature information over the entire chip area has become 

indispensable especially for fine-grain DTM solutions. Naturally, on-chip thermal sensors came 

to play an important role in providing accurate information on the thermal distribution of a chip, 

but there still remain some issues regarding the allocation of on-chip thermal sensors. Due to 

power, die area, and routing issues, it is preferable to limit the total number of on-chip thermal 

sensors on a die. Their placement also needs to be considered carefully in order to increase the 

accuracy of full-chip thermal profile reconstruction, especially when just a small number of 

thermal sensors can be deployed. In addition, it would be preferable to have some way to 
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improve the reading accuracy of low power, small-sized on-chip thermal sensors that usually 

tend to have very limited accuracy in temperature readings.  

In this work, an issue will be firstly addressed regarding how to improve the reading 

accuracy of a low power, small-sized on-chip thermal sensor such as Ring-Oscillator (RO) based 

sensors at runtime on a software level. Secondly, a question of how to allocate a proper number 

of thermal sensors on a die in order to get the accurate full-chip scale temperature information on 

the run is addressed. Additionally, a temperature-aware routing method for global interconnects 

to minimize the signal propagation delay and also to reduce the probability of chip failure due to 

electromigration is presented at the end.  
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CHAPTER 1. Introduction 

1.1. Thermal issues in Nano CMOS era 

In the past few decades, downscaling of chips has been playing a key role in reducing the 

power consumption and also in increasing the performance of chips. The size of gate length, 

gate oxide thickness, and other design parameters will keep shrinking for a while in the future 

even though the shrinking trend will be slowed down slightly due to some technology 

difficulties such as an escalated cost and process complexity in lithography, the reliability of 

extremely fine interconnects, etc. Downscaling of chips or the continued shrinkage in gate 

length has naturally increased the power density of chips. Resulting high temperature of chips 

became one of the biggest issues in chip design, and those thermal issues are becoming more 

problematic with aggressive technology scaling. In extreme cases, some parts of a chip can be 

burned out leading to chip failure in the end; thermal runaway, which is caused by positive 

feedback between increased leakage current and high temperature, can be thought of as one 

example of such a case. In addition, as we put a lot of heterogeneous components on a chip, 

the thermal distribution of a chip tend to become non-uniform, i.e., some parts of a chip are 

hotter than the others due to different processing tasks in different parts of a chip. 

Implementing multiple cores instead of increasing the clock frequency of a single core 

became a trend in processor design as a way of alleviating the burden of high power 

consumption and enormous heat generation [1], and this trend also plays a role in making the 

thermal distribution non-uniform over a chip to some extent. Especially when thread mapping 
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among the multiple cores is not well-balanced, non-uniform thermal distribution can become 

a lot worse, resulting in multiple localized temperature maxima, which are usually termed 

hotspots [2]. According to [3], [4], and [5], temperature within a chip can vary as much as 

50℃ across a die, and examples of this non-uniform thermal distribution are given in Figure 

1.1.  

Hotspots and thermal gradient may result in various kinds of issues: reduced reliability of 

a chip due to electromigration [6], timing failure or communication error between functional 

blocks in a chip due to increased clock skews, higher cost than before for cooling solutions 

such as heavy cooling fans, heat sinks, etc. [7]  

1.1.1. Reliability 

One of the serious issues that can be caused by high operating temperatures and non-

uniform thermal distribution over a die is the reduction in the reliability of interconnects and 

the resulting short life expectancy of a chip due to electromigration [6]. Electromigration is 

the result of momentum transfer from the collision between electrons and the atoms forming 

the lattice of the material, and it can cause void or hillock formation along the metal lines in 

400K 

 

 

 

360K 

 

 

 

320K 

Figure 1.1. Examples of non-uniform thermal profiles [87] [86] 
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extreme cases [6]. With CMOS (Complementary Metal-Oxide Semiconductor) technology 

scaling, the reliability and the life expectancy of interconnects in a chip are becoming more 

susceptible to electromigration than before. Black’s equation [6] or its modified equation [8] 

given below have been widely used as a way of modeling and predicting the Mean Time to 

Failure (MTF) of interconnects subjected to electromigration:  

 

MTF =
𝐴

𝐽𝑛
𝑒
𝐸
𝑘𝑇          (1.1) 

 

In this equation, A is a constant that is determined by the material properties and the 

geometry of the interconnects, J is the current density, n is a scaling factor that is to be 

determined experimentally, E is the thermal activation energy depending on the used material, 

k is the Boltzmann’s constant, and T is the absolute temperature of the metal in the unit of 

Kelvin. The current density exponent n is usually set to a value between one and two, and it 

depends on the failure mechanism [9]; a value close to one characterizes well the failure due 

to void growth [10]; a value close to two represents the failure due to void nucleation quite 

well [11]. In the equation, two dominant factors determining the MTF of interconnects are the 

current density J and the temperature T. As CMOS technology scales down, the current 

density of interconnects generally increases [12], so the life expectancy of interconnects will 

decrease. To make it worse, the MTF decreases exponentially with respect to the temperature 

of interconnects. For example, when the temperature of an interconnect changes from 45℃ to 

65℃, the life expectancy of the interconnect is reduced by 70% roughly, and the chip will fail 
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much sooner than before if we design chips in a traditional way without proper consideration 

on thermal issues and adequate cooling solutions. The trend in MTF, which is normalized so 

that the MTF at 25℃ is to be one, is given in Figure 1.2 as a function of temperature.   

As process scaling develops further, the top metal layers get closer to the substrates, and 

this will further intensify the impact of thermal gradients of substrates on the thermal profile 

of interconnects [13]; thus, the reliability or the MTF of interconnects decreases exponentially 

with the increase in the temperature of substrates. In order to improve the reliability or the 

MTF of interconnects, it becomes indispensable to manage the thermal distribution of a chip 

dynamically and also to consider the thermal distribution of substrates during chip design or 

interconnect design stage so that we can avoid hot regions or hotspots on the substrates for the 

routing. 

 

0

0.2

0.4

0.6

0.8

1

25 50 75 100 125

N
o

rm
al

iz
ed

 M
T

F
 (

to
 2

5
℃

) 

Temperature 

(℃) 

Figure 1.2. Trend in MTF as a function of temperature 
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1.1.2. Performance 

As CMOS technology scales down, the gate delay, i.e., the delay of active devices in a 

chip, has been reduced quite successfully. On the contrary, the global interconnect delay 

continuously increased, and as a result, the interconnect delay already became more dominant 

than the gate delay. The total length of interconnects in a chip is expected to reach 9,091 

m/cm2 in the year of 2022 as can be seen in Figure 1.3 [14], and the gap between gate delay 

and interconnect delay will keep increasing with CMOS technology scaling as given in Figure 

1.4 [15]. Rapid increase in interconnect delay makes the timing closure a lot harder than 

before, and it usually renders or forces the reduction in clock frequency, i.e., the performance 

limitation in order to prevent any timing-related issues. To make it worse, interconnect delay 

depends not only on the length of interconnects but also on the thermal distribution of 

substrates, over which interconnects pass, especially in deep submicron eras. Traditional 

routing algorithms just use the length of interconnects as a metric for the signal delay, 
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 Figure 1.3. Trend in total interconnect length on a chip [14] 
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assuming that the resistivity within interconnects stays constant and uniform, and the non-

uniform thermal distribution on the substrates doesn’t affect the interconnect delay. These 

assumptions are not valid any longer in deep submicron technologies; thus, we need to 

consider both the length and the non-uniform thermal distribution of interconnects, especially 

for global routing. That is to say, we need to consider thermal distribution during the 

interconnect design stage in order to prevent any unexpected temperature-related timing 

failure or to prevent further limitation on performance due to temperature.  

According to [16], the temperature within an interconnect for a given substrate 

temperature can be expressed as follows: 

 

𝑇(𝑥) = 𝑇𝑠𝑢𝑏(𝑥) +
𝜃

𝜆2
(1 −

sinh 𝜆𝑥 + sinh 𝜆(𝐿 − 𝑥)

sinh 𝜆𝐿
)          (1.2) 
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 Figure 1.4. Trend in interconnect delay [15] 
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In above equation, 𝑇𝑠𝑢𝑏 is the temperature of the substrates beneath the interconnect, L is the 

length of the interconnect, and θ and λ are constants for a chosen metal layer in a specific 

technology node. Both constants depend on the thermal conductivity of the metal and 

insulator, their geometries, and also on the current density and the resistivity of the 

interconnect. It is quite well known that the electrical resistance of metal has a linear 

relationship with its temperature and can be expressed as [16]:  

 

𝑟0(𝑥) =  𝜌0(1 + 𝛽𝑇(𝑥))          (1.3) 

     

In the equation, 𝜌0 is the unit length resistance of the metal at reference temperature, β is 

the temperature coefficient, and T(x) is the thermal profile along the length of the interconnect. 

According to the distributed RC Elmore delay model, signal propagation delay through an 

interconnect of length L can be given as [17]:  

 

𝐷 = 𝑅𝑑 (𝐶𝐿 +∫ 𝑐0

𝐿

0

(𝑥)𝑑𝑥) + ∫ 𝑟0

𝐿

0

(𝑥) (∫ 𝑐0

𝐿

𝑥

(𝑦)𝑑𝑦 + 𝐶𝐿)𝑑𝑥          (1.4) 

 

In the equation, 𝑅𝑑 is the output resistance of the driver, 𝑟0(𝑥) and 𝑐0(𝑥) are the resistance 

and capacitance per unit length at location x, respectively, and 𝐶𝐿 is the load capacitance.  

From the equations given in (1.2), (1.3) and (1.4), the interconnect delay model, which is 

dependent on the temperature of substrates, can be derived as [18]: 
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𝐷 = 𝐷0 + (𝑐0𝐿 + 𝐶𝐿)𝜌0 𝛽 ∫ 𝑇(
𝐿

0

𝑥)𝑑𝑥 − 𝑐0𝜌0 𝛽 ∫ 𝑥𝑇
𝐿

0

(𝑥)𝑑𝑥          (1.5) 

, where     

𝐷0 = 𝑅𝑑(𝑐0𝐿 + 𝐶𝐿) + (𝑐0𝜌0 𝐿
2/2 + 𝐶𝐿𝜌0 𝐿)          (1.6) 

     

𝐷0 is the Elmore delay of an interconnect corresponding to the unit length resistance at 

0℃.  From equation (1.5), we can derive that there will be roughly five to six percent increase 

in the Elmore delay of a long global interconnect for each uniform temperature increase of 20℃ 

in its corresponding substrates [16].  Therefore, if we do not consider the thermal distribution 

of substrates in selecting optimal paths for global interconnects especially when they pass 

through hot regions or hotspots, then delay-induced timing failure or delay-related 

performance degradation might be unavoidable.  

1.1.3. Power consumption 

CMOS circuits are built on the basic structure of a pair of n-type and p-type MOSFETs 

(Metal-Oxide-Semiconductor Field-Effect Transistors) in series. One transistor of the pair 

stays off except when it changes its states from on to off or vice versa. Thus, logic gates based 

on CMOS technologies consume negligibly small amount of power when not in switching in 

theory. However, aggressive technology scaling and rapid increase both in chip density and 

clock speed in recent years have caused dramatic increase in power consumption, and as a 

result, power consumption became a critical factor in chip design and a major issue in 

semiconductor industry.  
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Two major sources of power consumption in a chip are dynamic power and static power 

as we can see in equation (1.7):  

 

     𝑃 = Dynamic power consumption + Static power consumption 

      =  𝛼𝐶𝐿𝑉
2𝑓 + 𝑉𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 =  𝛼𝐶𝐿𝑉

2𝑓 + 𝑉(𝐼𝑠𝑢𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 𝐼𝑔𝑎𝑡𝑒_𝑜𝑥𝑖𝑑𝑒)          (1.7) 

 

P in (1.7) is the total power consumption of a device, and the first term is the dynamic 

power portion when we can ignore the power dissipation due to the direct path short circuit 

current when both NMOS and PMOS transistors are active for a short period of time during 

the gate voltage transition. In the equation, the average switching activity factor is denoted by 

 𝛼, which is roughly 0.2 for logic blocks in 65nm technology [19], and 𝐶𝐿 is the total load 

capacitance of all gates in the device, and V and f are the supply voltage and the clock 

frequency, respectively.  

Dynamic power consumption basically results from the repeated charging and discharging 

of load capacitance on the output of the gates, and it has been a principal source of the total 

power consumption for several technology generations as we can see in Figure 1.5. Dynamic 

power is proportional to the square of the supply voltage as we can see in equation (1.7), and 

CMOS technology scaling and the reduction in the supply voltage have managed dynamic 

power consumption relatively well, especially when compared with the explosive increase in 

static power consumption as given in Figure 1.5. However, dynamic power will still keep 

increasing in the future due to the continuous increase in power density or the number of gates 

in a chip and the limit to the supply voltage reduction as we can see both in Figure 1.6 and 
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Figure 1.7, which show the trend in power consumption of SoC (Systems on Chip) consumer 

portable chips and SoC consumer stationary chips, respectively.  

Static power consumption arises from leakage current, which is the combination of 

subthreshold leakage current and gate-oxide leakage current. Subthreshold leakage is due to 

the current from source to drain when the gate voltage is smaller than the threshold voltage of 

a transistor, and it depends on the threshold voltage and the supply voltage of a transistor. 

Subthreshold leakage current can be modeled as [20]: 

 

𝐼𝑠𝑢𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐾1𝑊𝑒
−𝑉𝑡ℎ/𝑛𝑉𝜃(1 − 𝑒−𝑉/𝑉𝜃)          (1.8) 

 

In equation (1.8), 𝐾1 and n are constants that are determined experimentally, W is the gate 

width or the width of a transistor, 𝑉 is the supply voltage, 𝑉𝜃 and  𝑉𝑡ℎ are the thermal voltage 

and the threshold voltage, respectively. The thermal voltage 𝑉𝜃 is defined as 𝑘𝑇/𝑞, where k is 
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the Boltzmann’s constant, T is the absolute temperature in Kelvin, and q is the elementary 

charge. It is roughly 26mV at room temperature, and as we can see in the definition, it 

increases linearly as temperature rises. The first thing that we can notice from the equation 

(1.8) is the exponential relationship between the subthreshold leakage current and the 

threshold voltage of a transistor. With technology scaling, the supply voltage of transistors has 

been consistently lowered as an efficient way of reducing the dynamic power due to the 

quadratic relationship between the supply voltage and the dynamic power consumption. The 

threshold voltage of transistors has been also getting lowered accordingly in order to maintain 

high switching speed because the delay of a transistor is inversely proportional to the 

difference between supply voltage and threshold voltage [21]. This incessant reduction in the 

threshold voltage of transistors brought about the exponential increase in the subthreshold 

leakage current and the increase in static power consumption as a result. The second one that 

Dynamic 

power 

Static 

power 

Figure 1.6. Trend in total chip power: portable consumer Systems on Chip (SoC) [88]  
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we can notice from the equation is that the subthreshold leakage current and static power 

consumption will increase exponentially when temperature rises owing to the linear 

relationship between temperature and 𝑉𝜃. In extreme cases, thermal runaway can happen due 

to a positive feedback between the subthreshold leakage current and temperature; increase in 

subthreshold leakage current can lead to the rise of temperature, and the resulting high 

temperature will cause the increase in 𝑉𝜃, and as a result, the increase in subthreshold leakage 

current in turn. Therefore, in order to minimize the power consumption, static power 

consumption to be exact, and also to prevent temperature-induced chip failures, it is crucial to 

manage the temperature of a chip efficiently.  

Another source of leakage current is gate-oxide leakage, which is due to the tunneling 

current through the gate-oxide insulator, and it mainly depends on the supply voltage and 

Dynamic 

power 

Static  

power 

Figure 1.7. Trend in total chip power: stationary consumer Systems on Chip (SoC) [88] 
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oxide thickness. It was shown that the gate-oxide leakage current does not depend on 

temperature when compared with the subthreshold leakage current [22], and it can be roughly 

modeled as [20]:   

 

𝐼𝑔𝑎𝑡𝑒_𝑜𝑥𝑖𝑑𝑒 = 𝐾2𝑊(
𝑉

𝑇𝑜𝑥
)
2

𝑒−𝛼𝑇𝑜𝑥/𝑉          (1.9) 

 

In the equation, 𝐾2 and 𝛼 are constants that are determined experimentally, W is the gate 

width, 𝑉 is the supply voltage, and  𝑇𝑜𝑥 is the thickness of gate dielectrics or gate oxide. We 

can see that the reduction in the supply voltage and the increase in the thickness of gate 

dielectrics will be helpful in minimizing the gate-oxide leakage current. Unfortunately, the 

thickness of gate dielectrics has been reduced continually with the technology scaling; thus, it 

became necessary to find a way of increasing the effective thickness of dielectrics in order to 

minimize the gate-oxide leakage current. As a solution to this issue, metal gates and high-k 

dielectrics came into play in current CMOS technology nodes instead of traditional 

polysilicon gate electrodes and silicon dioxide gate dielectrics [23].   

1.2. Dynamic Thermal Management (DTM)  

As we discussed in previous sections, temperature plays a critical role in the reliability, 

performance, and the power consumption of a chip in current and future CMOS technology 

nodes. Therefore, temperature of a chip, especially in case of a high performance chip, should 

be managed in a smart way at runtime so that the maximum temperature can be controlled and 
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also temperature can be evenly distributed both temporally and spatially for better reliability 

and performance of a chip. According to [24], cost for the implementation of cooling and 

packaging solutions was expected to increase at an alarming rate with the thermal dissipation 

of 65W or higher; thus, thermal management of a high performance chip is also quite crucial 

in terms of cooling and packaging cost. A large number of techniques for Dynamic Thermal 

Management (DTM) have been proposed and developed in recent years as ways of limiting 

the peak temperature of a chip or managing the temporal and spatial temperature variation of 

a chip through proper resource management [25] [26]. Those techniques can be roughly 

classified into one of two categories based on how the source management is performed: 

hardware-based techniques and software-based techniques.  

1.2.1. Hardware-based DTM 

The relationship between temperature and power consumption is quite complicated, but 

temperature can be managed to a certain extent by controlling power consumption of a chip. 

One of the simple power management techniques, which is called clock gating, began to be 

used widely in the early 2000’s [24]; dynamic power consumption can be minimized by 

disabling the clocks in a functional block when the functional block is not in use or when the 

temperature of the functional block reaches a threshold. Clock gating is relatively simple to 

implement and has good cooling capability because we can effectively reduce the power 

consumption of a clock tree, which may consume up to around 70% of total dynamic power 

[27], but the performance degradation is quite high.   
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Changing the supply voltage and the clock frequency of a processor dynamically based on 

the workload can be effective in reducing the dynamic power consumption because of the 

quadratic relationship between dynamic power and the supply voltage, and this technique is 

called DVFS (Dynamic Voltage and Frequency Scaling) [28]. In case of a processor 

consisting of multiple cores, the supply voltage and the clock frequency settings of each core 

can be scaled independently, and it is termed local DVFS or distributed DVFS or per-core 

DVFS [29], while the chip-level voltage and frequency control is usually termed global DVFS 

[30]. Additional hardware components and increased design complexity to support multiple 

clock domains or multiple voltage/frequency islands (VFI) might become a critical issue 

especially in case of processors with a large number of cores [31].   

Fetch gating [28] [32] is another way to cool down a chip through power consumption 

reduction; it controls the instruction activity in the pipeline by throttling the fetch stage, and 

its performance on power reduction and thermal management highly depends on the 

implemented throttling mechanisms as expected.    

1.2.2. Software-based DTM 

A simple temperature-aware task scheduling technique for single-threaded processors was 

proposed in [33]; kernel monitors the CPU activity of each process and the temperature 

readings from a thermal sensor. When the temperature of a chip becomes higher than a 

threshold, the kernel identifies processes that use more CPU activities than a predefined value, 

and then it slows them down for cooling purpose. Even though it was simple, it worked 

effectively to some extent. This basic idea was extended to temperature-aware scheduling 
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techniques for processors that support multithreading or have multiple cores. For example, a 

temperature-aware scheduling technique for Simultaneously Multithreading (SMT) processors 

was proposed in [34]; it manages the execution of threads selectively and dynamically based 

on the probability of heat generation of each thread, and hardware event counters [35] are 

used for the estimation of the heat generation probability. In [36], a scheduling method 

specifically targeting MPSoC (Multi-Processor Systems on Chip) was proposed; for each core 

or processor, the probability of workload assignment is calculated and updated regularly 

based on the temperature history in the past, and one core with the highest probability is 

selected when a new workload assignment is required.  

When there are multiple cores or processors in a chip, process or task migration can be 

used effectively in order to balance the thermal distribution among all cores and also to 

improve the performance as a result; in [2], a task migration technique was used on top of 

local DVFS, and it successfully avoided all thermal emergencies and also achieved 2.6 times 

speedup when compared with the base case of using local clock gating without task migration.  
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Figure 1.8. (a) Thread selection when the integer register file is thermally critical [34], 

(b) Temperature-aware task scheduling for MPSoC [36] 
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1.3. Thermal sensors 

As we can expect naturally, DTM solutions use temperature information in order to 

manage the thermal distribution of a chip. Performance Counter-based temperature 

information can be used for thermal management [35], but the information is not a direct 

representation of thermal behaviors of a chip most of the time, and it just supplies 

approximation at best. In that sense, it is far better to use the temperature information from 

thermal sensors because it represents actual thermal behavior of a chip. Each thermal sensor 

basically provides point-wise temperature information. Thus, it would be better to use a large 

number of thermal sensors in order to have correct temperature information at any locations 

of interest on a chip. As for the locations of interest, hotspots need to be monitored first for 

better reliability and performance, and also for the reduction in power consumption of a chip 

just as we discussed in previous sections. In addition, a lot more thermal sensors need to be 

deployed across a die so that the thermal distribution over a die can be monitored and 

balanced out for the increased reliability of a chip and also for the prevention of performance 

degradation. However, it is not reasonable to allocate as many thermal sensors as possible on 

a small-sized chip in reality due to a lot of practical design constraints [37]: power 

consumption and heat generation of thermal sensors, routing and placement issues, etc. As a 

result, quite a large number of methods have been proposed regarding how to select the 

number of thermal sensors properly and how to allocate them on a die in order to have 

accurate temperature readings at any locations of interest on a die at runtime.     

Another issue to be resolved is the accuracy of thermal sensors. A thermal sensor in a 

0.35μm  2.5V digital CMOS technology, which was implemented in a general purpose 
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microprocessor in the late 1990’s, had the reading accuracy of ±12℃ with the resolution of 

4℃, and the area and the maximum power consumption of the sensor were 0.192mm2 and 

10mW, respectively [38]. Since then, great improvement has been made in its reading 

accuracy, size, and power consumption, but there still remains a lot of work to be done, 

especially when it comes to the design of on-chip thermal sensors that are fully compatible 

with digital CMOS technologies.     

1.3.1. Sensor allocation: hotspot monitoring 

In the late 1990’s and the early 2000’s, some general purpose microprocessors came with 

a single on-die thermal diode that could be used to monitor the temperature of a chip and also 

to trigger a signal to shut down the chip for protection purpose when the temperature of a chip 

reached a critical point [39]. Since then, thermal distribution of a chip has become a lot more 

complicated due to a large number of hotspots spreading across a die, and multiple thermal 

sensors came into play to monitor the temperatures of hotspots more efficiently and accurately.  

a) Uniform allocation 

One simple way to place multiple thermal sensors on a die will be to put them on a 

uniform grid, and it is not necessary to consider the thermal distribution of a chip with this 

allocation method. As a result, some hotspots might not be detected, and the accuracy will be 

quite limited especially when a small number of thermal sensors need to cover the entire die 

area and when the spatial thermal variation of a chip is quite large. In order to overcome this 

shortcoming, a linear interpolation technique using the temperature readings of four 

neighboring thermal sensors was proposed for the estimation of the maximum temperature of 
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a chip [40]; a single-core processor and SPEC2000 benchmark suites [41] were used for the 

simulation, and it achieved the maximum error of 5.47℃ and the averaged error of 1.05℃ 

using 16 thermal sensors on a 4 by 4 uniform grid. 

b) Recursive bisection 

When thermal distribution of a chip is available, this information can be used for sensor 

allocation, and thermal sensors can be allocated in a smart way so that the hotspots of a chip 

can be monitored correctly while minimizing the number of thermal sensors. Initial emphasis 

was placed on how to group multiple hotspots efficiently into a small number of clusters so 

that a single thermal sensor can monitor all hotspots in each cluster properly.  In [42], a sensor 

allocation method based on recursive bisection was proposed; this algorithm divides the die 

area into an array of blocks using the information about hotspot locations, and the size of each 

block is adjusted in such a way that all hotspots in each block can be covered and monitored 

by a single thermal sensor assigned to the block. Experimental results showed that the number 

Figure 1.9. Recursive bisection based thermal sensor allocation [42] 
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of required thermal sensors was 19 for an FPGA with 96 by 64 CLBs (configurable logic 

blocks), while 40 thermal sensors were required in case of grid-based uniform allocation. This 

method works well when the number of hotspots is not large, but with the increase in the 

number of hotspots, a lot more thermal sensors will be required.  

c) Temperature-aware k-means clustering 

A thermal sensor allocation method based on k-means clustering [43] was proposed in 

[44]; each and every hotspot is assigned to one of k clusters recursively, where k is the 

number of thermal sensors, so that the Euclidean distance between the centroid of a selected 

cluster and the hotspot is minimized. Then, k thermal sensors are assigned to the centroids of 

those k clusters, and each thermal sensor represents the thermal status of each cluster. One 

modification made in [44] to the basic k-means clustering method is that the temperature 

difference between the centroid of a cluster and a hotspot is included as a third dimension in 

Euclidean distance calculation, as given in (1.10): 

 

𝐸(𝑂𝑗, ℎ𝑖) = (𝑂𝑗𝑥 − ℎ𝑖𝑥)
2
+ (𝑂𝑗𝑦 − ℎ𝑖𝑦)

2
+ (𝑂𝑗𝑡 − ℎ𝑖𝑡)

2
          (1.10) 

    

In the equation, (𝑂𝑗𝑥, 𝑂𝑗𝑦) represents the x and y coordinates of the centroid of 𝑗𝑡ℎ cluster 

out of k clusters, and (ℎ𝑖𝑥, ℎ𝑖𝑦)  represents the x and y coordinates of 𝑖𝑡ℎ  hotspot. The 

temperature values at the centroid of 𝑗𝑡ℎ cluster and 𝑖𝑡ℎ hotspot are represented by  𝑂𝑗𝑡 and ℎ𝑖𝑡, 

respectively. That is, the main idea was to consider temperatures in the process of hotspot 

clustering, and the results based on a single-core processor and SPEC2000 benchmark suites 

[41] were reasonable with the maximum error of 6.11℃ and the averaged error of 2.66℃ 
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using 16 thermal sensors. However, this method might produce some unreasonable results, 

especially when remotely located hotspots have smaller temperature differences than closely 

located hotspots.  

1.3.2. Sensor allocation: full-chip profile reconstruction 

In recent years, a large number of new sensor allocation methods have been proposed to 

support full-chip thermal profile reconstruction at runtime from the temperature readings of a 

small number of sensors. Sensor allocation is performed with a view to a better runtime 

thermal profile reconstruction from the beginning, and the number and the locations of 

thermal sensors are determined accordingly. Fine-grain DTM solutions can make full use of 

the detailed temperature information from full-chip profile reconstruction, especially on 

multi-core processors [45]; task migration among cores can be performed more efficiently, 

and the thermal behavior and static power consumption of caches, which consume a large 

portion of the die area, can be optimized [46] [47].  

a) Energy-aware distribution 

In [48], energy analysis in frequency domain was used for sensor allocation. The main 

idea of this method is that the large thermal variations in thermal profiles correspond to large 

amount of energy in high frequency components in frequency domain. That is, thermal 

sensors should be distributed in proportion to the high frequency energy in frequency domain 

so that a lot more thermal sensors can be assigned to regions with large thermal variations. 

This method alternates vertical bisection and horizontal bisection, and compares the high 

frequency energy of two bisected regions. Thermal sensors are allocated proportionately, and 



22 
 

the bisection continues until all thermal sensors are assigned. As for the full-chip thermal 

profile reconstruction, Discrete-Cosine Transform (DCT) [49] is used for the transformation 

between spatial domain and frequency domain; the temperature readings of thermal sensors in 

spatial domain are first transformed to the coefficients in frequency domain, and then the 

coefficients of low frequency components are transformed back to spatial domain to build 

full-chip thermal profiles. According to the experimental results on a dual-core processor and 

SPEC2006 benchmark suites [50] [51], the hotspot temperature error was around 16% to 21% 

of the temperature difference between the maximum and the minimum temperature of the 

chip, and the averaged absolute error over a die was around 14% with the use of four thermal 

sensors. This method considers only the amount of energy in AC or high frequency 

components in its sensor assignment, excluding DC component. As a result, it is possible to 

allocate a large number of thermal sensors in regions where no hotspots exist at all and 

allocate just a small number of sensors near hotspots. Considering the fact that it was 

proposed with full-chip thermal profile reconstruction in mind, this approach might have been 

unavoidable. However, hotspot monitoring might become an issue when just a small number 

of sensors are used for a chip whose thermal distribution is quite complicated. In addition to 

the hotspot monitoring issue, another possible issue we can surmise from the Nyquist 

Figure 1.10. Energy-aware thermal sensor allocation [48] 
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sampling theorem [52] is that quite a large number of thermal sensors need to be used in order 

to maintain good results when the thermal distribution of a chip has a lot of non-negligible 

high spatial frequency components.  

b) Statistical approach 

In [53], a statistical methodology was developed for sensor allocation and full-chip 

thermal profile reconstruction; the entire die area was divided into a 16 by 16 grid, and a set 

of nodes on the grid were selected so that the thermal correlation among them can be 

minimized, and the thermal correlation between the selected nodes in the set and the nodes 

outside the set can be maximized at the same time. In this way, each thermal sensor can 

provide as much temperature information as possible on the non-sensor nodes, while the 

redundancy among the sensor nodes is minimized. As for the full-chip profile reconstruction, 

temperatures at non-sensor nodes can be estimated based on the statistical correlation between 

thermal sensors and those non-sensor nodes. If we can allocate thermal sensors so that the 

correlation between sensor nodes and non-sensor nodes can be always high, then we can 

expect good results from this approach, but it doesn’t guarantee accurate profile 

reconstruction always by its nature. Experimental results on SPEC2000 benchmark suites [41] 

and a processor, of which power consumption was rated 60W, showed that the Root Mean 

Squared Error (RMSE) was around 10℃ when four thermal sensors were allocated on a 16 by 

16 grid.   

c) Sensor-assisted power estimation  

One way to have accurate temperature information of a chip is to solve the heat 

differential equation directly with correct power information. Performance counter-based 
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runtime power estimators [54] [55] can be used to supply power information at runtime, but 

they tend to have some power estimation errors. A new approach to achieve good temperature 

estimation based on the differential equation was proposed in [56], and it exploits the 

temperature readings of thermal sensors to correct the power estimation errors. In order to 

reduce the number of thermal sensors, functional blocks on a chip are clustered into sensor 

blocks based on the correlation in power estimation errors, and then a thermal sensor is 

assigned to each sensor block. According to the simulation results on a dual-core processor 

and SPEC2000 benchmark suites [41], it achieved the maximum error of 1.2℃ and the 

averaged error of 0.085℃ with six thermal sensors. The simulation results look promising, but 

one possible issue of this method is it depends on statistical information, i.e., correlation 

among multiple functional blocks, in correcting power information of multiple functional 

blocks. Therefore, its performance could be degraded for some applications where high 

correlation among functional blocks cannot be expected.       

 

Figure 1.11. Thermal profile estimation based on sensor-assisted power estimation [56] 
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1.4. Dissertation overview 

Issues regarding reliability, performance, and power have made DTM solutions play a 

vital role in deep submicron eras. Considering the fact that DTM solutions take actions based 

on the temperature information of a chip, the accuracy of the information is quite critical. BJT 

(Biploar Junction Transistor) based on-chip thermal sensors have long been used mainly 

owing to their excellent reading accuracy, while their size and power consumption leave a lot 

to be desired especially in current CMOS technology nodes. As an alternative, Ring-

Oscillator (RO) based thermal sensors have been drawing a huge amount of attention lately 

due to their small size, low power consumption, and full compatibility with current digital 

CMOS technologies. One issue to be thoroughly considered when using RO-based thermal 

sensors is their limited accuracy of around 3℃ [57]. The first proposal in this dissertation is 

regarding how to improve the reading accuracy of this type of on-chip thermal sensors. We 

propose the use of multiple virtual sensors at one location, and we make improvements by 

adaptively selecting one out of multiple virtual sensors using the temperature readings in the 

past and the calibration points of those multiple virtual sensors. In the case where we used two 

virtual thermal sensors, maximum absolute error was reduced down to 0.84℃ in comparison 

with 2.43℃ of a single physical sensor case, and the RMSE was reduced by 59%.  

DTM solutions generally make use of point-wise temperature information from multiple 

thermal sensors. When we allocate those multiple thermal sensors on a die, it is reasonable to 

limit the number of thermal sensors because of area, power, and routing issues accompanying 

the sensor allocation. Therefore, it is crucial to choose the proper number of sensors and their 

locations on a die so that DTM solutions can manage the resources in an efficient way. Fine-
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grain DTM solutions might be able to work more effectively when temperature information 

on a full-chip scale is available, especially when the thermal distribution of a chip is 

complicated. Our second proposal is intended to address these issues: how many thermal 

sensors are to be deployed, where to place them on a die, and how to reconstruct thermal 

profiles on a full-chip scale. A geometrical framework based on thermal gradient analysis was 

established, and this framework was used to choose the number of thermal sensors and their 

locations on a die. Thermal profiles on a full-chip scale were also reconstructed based on the 

framework and the temperature readings from the allocated sensors. Using six thermal sensors 

on a dual-core microprocessor, we achieved a 36% reduction in RMSE and a 50% reduction 

in averaged absolute error in comparison with a similar full-chip thermal profile 

reconstruction method given in [48].  

In our third proposal, we discuss a physical design issue to improve the reliability and also 

to maximize the performance of a chip. The life expectancy and the amount of signal delay of 

global interconnects are dependent on the thermal distribution of substrates, and we can 

alleviate those issues by routing them in a smart way. The reduction in life expectancy can be 

minimized by routing them so that hotspots can be avoided as much as possible. Temperature-

dependent delay can be also minimized by considering the thermal distribution of each 

possible path. Regarding the number of segments that pass through hotspots on a die, our 

proposed method reduced it by 42% on the average in comparison with a conventional router 

and also reduced it by 13% on the average when compared with a similar temperature-aware 

router [58]. When it comes to signal delay, our method achieved a 3.5% reduction on the 

average, while other temperature-aware router [58] increased the delay in some benchmark 

circuit cases.      
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1.5. Application to a chip design 

As we briefly discussed in the previous section, we investigate in this dissertation how to 

manage the reading accuracy of on-chip thermal sensors, where to allocate those thermal 

sensors on a die, and how to route global interconnects using temperature gradient analysis. 

All these proposals can be applied to a chip design from its early stage, and possible 

Proposal#1: 

sensor accuracy improvement 

Proposal#2: 

sensor allocation 

Proposal#3: 

temperature-aware routing 

RO-based sensors with low accuracy 

: use a small number of virtual sensors 

RO-based sensors with high accuracy 

: use a large number of virtual sensors 

Reference  

thermal profile  

generation 

Profile  

analysis 

Figure 1.12. Application of propose methods to a chip design 
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application scenarios are outlined in this section.   

 At the early stage of chip design, the worst case power consumption of each and every 

functional block is estimated, and then thermal simulations are performed based on the 

floorplanning result of all functional blocks on a die in order to check the maximum 

temperature of a chip and also to initiate the design of cooling and packaging solutions. 

Thermal profiles from the simulations can be used for thermal sensor allocation and 

interconnect routing, and our proposed methods can be applied for that purpose. When a test 

chip is available, we can measure or capture detailed thermal profiles of a chip while running 

benchmark suites or test applications on it. However, at the early stage of a chip design, it is 

difficult to use a test chip for data collection or to estimate those thermal profiles accurately 

through simulations. With this limitation in mind, we use two different data sets in our sensor 

allocation proposal, which is presented in chapter 3; one data set is composed of thermal 

profiles of a test chip captured by a thermal imaging device, and another data set is composed 

of profiles generated by a thermal simulator based on the worst case power consumption 

estimation. When using thermal profiles from the worst case power consumption information, 

it is possible to miss a few local hotspots on a die, but experimental results show that we can 

still achieve good results using those thermal profiles.  

Our sensor allocation method places thermal sensors on a die automatically using the 

analysis of the thermal profiles of a chip, and it allows designers to choose the total number of 

thermal sensors flexibly based on the availability of resources such as white space on a die. 

When necessary, our proposed method can be easily modified to choose the total number of 

sensors in a fully automated way based on several criteria. Firstly, die area and power 
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consumption associated with new thermal sensors and their interconnects can be used to set 

the maximum number of thermal sensors to be deployed. Secondly, the number of sensors can 

be increased incrementally until the improvement in error reduction falls below a pre-defined 

threshold. In this way, we can find the optimal number of thermal sensors with respect to the 

design objectives without violating major design constraints.  

When it comes to the sensor allocation for a multi-core chip with hundreds of cores on a 

die, it might be unnecessary or even inefficient to perform full-chip scale analysis and sensor 

allocation, especially when an identical basic building block is uniformly distributed and 

placed over a die. Due to the inherent independence among the cores and the lack of structure 

and predicability in task assignment among hundreds of cores, it becomes difficult and 

meaningless to find a full-chip thermal profile that can represent all possible thermal profiles 

on a die for the purpose of analysis. In that case, it would be more effective to analyze the 

thermal characteristics of the basic building block and replicate the sensor allocation result on 

the building block to all the other blocks on a die.       

Thermal sensors allocated by our proposed method are classified into two groups 

automatically: sensors that are mainly used to monitor hotspots and cold spots on a die and 

sensors that are mainly used for the improvement in thermal profile reconstruction. Therefore, 

we can use thermal sensors with high accuracy for the ones belonging to the former group and 

use sensors with low accuracy for the latter group when thermal sensors with high accuracy 

cannot be arranged for all sensors due to some resource issues. As for the accuracy of thermal 

sensors, BJT-based thermal sensors can be used at the locations where high accuracy is 

required, while RO-based sensors can be used at the remaining sensor locations. If we use 
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RO-based thermal sensors at all sensor locations and control the accuracy using the second 

proposal in this dissertation, then we can flexibly choose the number of virtual sensors 

depending on the required accuracy at each sensor location. Considering the high cost for 

sensor calibration, it is preferable to minimize the number of calibration points or the number 

of virtual sensors. In that sense, it would be a reasonable choice to use two virtual sensors for 

most cases, with which we still achieve the maximum absolute error of 0.84℃ with two-point 

calibration, and to use a larger number of virtual sensors for some limited cases only.  

Thermal profiles and their analysis results used in sensor allocation can also be used in 

routing global interconnects. Using the proposed method, we can improve the reliability of 

interconnects and also minimize temperature-induced signal propagation delay of the 

interconnects at the same time. It also means we can push the temperature of a chip somewhat 

further in order to achieve better performance, not worrying about the reliability of a chip.       

In the following chapters, each proposal will be presented in further detail: improvement 

in the reading accuracy of RO-based on-chip thermal sensors in chapter 2, thermal sensor 

allocation and full-chip thermal profile reconstruction in chapter 3, and temperature-aware 

routing for global interconnects in chapter 4.  
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CHAPTER 2. On-Chip Temperature Estimation 

using Multiple Virtual Sensors 

2.1. Motivation  

DTM solutions need on-chip thermal sensors to get the accurate temperature information 

of a chip at different locations at runtime. Ideally, each on-chip thermal sensor should 

consume negligible area and power, while instantly providing accurate temperature readings 

so that DTM solutions can work just as intended. In reality, each thermal sensor requires non-

negligible footprint and also consumes a certain amount of power even though both quantities 

might be small. More importantly, temperature readings of thermal sensors will not be free 

from errors. According to recent studies, incorrect temperature readings could impact on a 

processor’s power and performance indeed; the performance of DTM solutions could be 

improved by 14.3% when the RMSE in sensor readings was reduced by 71.5% since DTM 

actions could be triggered more appropriately with more accurate temperature readings [59]. 

Similarly, 1.5℃ accuracy in sensor readings was equivalent to 1Watt of processor power in 

mobile computing environment, and 1℃ accuracy was equivalent to 2Watts in the desktop 

computing environment [60].  

A lot of researchers have been designing new on-chip thermal sensors that are small and 

consume little energy without compromising the power grid integrity of a chip; BJT-based 

thermal sensors generally show good performance relative to their accuracy [61] [62]. 
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However, they are not fully suitable for digital CMOS technologies; RO-based thermal 

sensors are digital CMOS compatible and have low area and consume only nano-Joules of 

energy for each measurement (e.g., 0.2nJ per sample [63] [57]). However, RO-based thermal 

sensors suffer from low levels of accuracy (~3℃ [57]), motivating the need for accuracy 

improvement.  

In this chapter, we propose an efficient method to increase the accuracy of temperature 

readings through the use of multiple virtual thermal sensors that are generated from a small, 

low power, inaccurate physical thermal sensor (e.g., a CMOS RO-based thermal sensor) by 

adaptively switching its calibration points on the run.  

2.2. Related work 

Existing efforts take different approaches for accurate temperature estimation based on 

noisy temperature readings; statistical approaches [59] [64] use power and thermal simulation 

statistics extracted from benchmark suite execution to estimate correct temperatures and 

improve the accuracy by using the correlation between multiple sensors, which are assumed 

to be jointly Gaussian and highly correlated, at different locations; performance counter-based 

methods [65] combine noisy sensor readings with temperature estimations based on system 

performance counters; Kalman Filter based methods [66] improve sensor accuracy by 

combining noisy sensor readings with power consumption information of each functional 

block. 

Statistical methods need prior simulation results and space to store the information and 

don’t guarantee accurate estimation results either. Performance counter-based approaches 
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require power consumption data of each functional block, and the Kalman filter based 

methods may result in high computational complexity. In contrast, our approach, which uses 

multiple virtual thermal sensors generated from each physical thermal sensor, is much simpler 

while achieving good accuracy.  

2.3. Cooperative temperature estimation 

2.3.1. Modeling 

RO-based on-chip thermal sensors are used in this proposal since they are fully 

compatible with digital CMOS technologies while consuming small area and power.  

Figure 2.1 shows the basic structure of a RO-based on-chip thermal sensor that has an odd 

number of inverters. The transition time for each inverter to switch levels (H-L or L-H) is 

determined by several factors [59]. The high-to-low time is: 

 

𝑡𝑃𝐻𝐿 =
𝐶

𝜇𝑛𝐶𝑜𝑥(𝑊/𝐿)𝑛(𝑉𝐷𝐷 − 𝑉𝑡)
[
2𝑉𝑡

𝑉𝐷𝐷 − 𝑉𝑡
+ 𝑙𝑛 (

3𝑉𝐷𝐷 − 4𝑉𝑡
𝑉𝐷𝐷

)]          (2.1) 

 

… Counter Frequency outputs 

Figure 2.1. A RO-based on-chip thermal sensor 
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In the equation, 𝜇𝑛 is the mobility of electron in silicon, 𝐶𝑜𝑥 is the capacitance per unit 

gate area, (𝑊/𝐿)𝑛 is the ratio between width and length, 𝑉𝐷𝐷 is the supply voltage, 𝑉𝑡 is the 

threshold voltage, and 𝐶  is the load capacitance that the inverter drives. The low-to-high 

transition time (𝑡𝑃𝐿𝐻) uses the same equation with PMOS parameters: 𝜇𝑝, the mobility of hole, 

and (𝑊/𝐿)𝑝 instead. 

 

𝑓 =
1

𝑁(𝑡𝑃𝐻𝐿 + 𝑡𝑃𝐿𝐻)
          (2.2) 

 

Equation (2.2) describes the frequency output of a thermal sensor [59], where 𝑁 is the 

number of inverters in the sensor.  

Due to process variation and environmental uncertainties, most of the parameters in (2.1) 

will be random variables, and it is reasonable to assume they follow a Gaussian distribution 

[64]. In addition, 𝜇𝑛(𝑝)  and 𝑉𝑡  are temperature-sensitive parameters, and we assume they 

follow these empirical equations, respectively [67] [68]:   

 

𝜇𝑛(𝑝) = 𝜇𝑛0(𝑝0)(𝑇/𝑇0)
−1.5          (2.3) 

𝑉𝑡 = 𝑉𝑡0 − 0.002(𝑇 − 𝑇0)          (2.4) 

 

In above equations, 𝑇0 is the room temperature, 𝜇𝑛0(𝑝0) is the nominal value of mobility, 

and 𝑉𝑡0 is the threshold voltage at 𝑇0.  
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2.3.2. Calibration 

Due to process variation and environmental uncertainties, the frequency outputs of RO-

based thermal sensors will be different from sensor to sensor; Figure 2.2 shows simulation-

based variations in the frequency outputs of a number of sensors with exactly identical design 

parameters, and a reference frequency output, which is calculated from nominal parameter 

values, is also shown as a thick dashed line in the same figure for comparison purpose. We 

can observe the frequency output of each sensor has a different gain (or slope) and a different 

offset. Therefore, frequency outputs of each sensor should be interpreted or calibrated 

properly. That is, the conversion from the frequency outputs of a sensor to temperature 

readings should be performed with great care in order to minimize possible temperature 

reading errors [69]; single-point and two-point calibration are most popular, while for higher 

precision, piece-wise linear calibration or a nonlinear least square regression method based on 

multiple calibration points might be considered. Due to the fact that the actual frequency 
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Figure 2.2. Variations in frequency outputs of RO-based thermal sensors due to 

process variation and environmental uncertainties 
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outputs of RO-based thermal sensors are a lot noisier than the simulation results shown in 

Figure 2.2, and do not always decrease or increase monotonically, piece-wise linear 

calibration or a nonlinear least square regression method using multiple calibration points 

might not give better results or drastic improvements over traditional single-point or two-

point calibration in case of RO-based thermal sensors. Therefore, we adopt much simpler 

single-point and two-point calibration in this proposal.  

In case of single-point calibration, either a gain or an offset is adjusted to generate correct 

temperature readings [69]. In other words, the frequency output at the single calibration point 

(temperature) is used as a reference point in the conversion from the frequency outputs of a 

sensor to the temperature readings. Two-point calibration usually gives better results than 

single-point calibration does because both a gain and an offset are adjusted together based on 

the frequency outputs of a sensor at two calibration points. However, if the gain or offset 
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Figure 2.3. Temperature reading errors of 1,000 sensors due to variations: (a) with 

single-point calibration at 63℃, and (b) with two-point calibration at 45℃ and 82℃  
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varies a lot due to environmental uncertainties, neither single-point nor two-point calibration 

might give satisfactory results as shown in Figure 2.3, where temperature reading errors in ℃ 

are plotted as a function of temperature for 1,000 sensors with identical design parameters. To 

address this issue, we present a cooperative estimation strategy in order to improve the 

temperature reading accuracy.   

2.3.3. Cooperative estimation 

a) A sensor group  

Temperature reading errors of a thermal sensor tend to become very small around each 

calibration point. We exploit this observation to achieve good error performance over an 

entire temperature range by using a sensor group composed of multiple physical sensors – 

each calibrated differently, but all at one sensor location – and judiciously select one of those 
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Figure 2.4. Ideal error bounds in case of four sensors at one location: (a) single-point 

calibration at 36, 54, 73, 91℃, respectively, (b) two-point calibration at (32, 41), (50, 59), 

(68, 77), (86, 95)℃, respectively 
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physical sensors on the run for the temperature readings at the location so that the errors over 

the entire temperature range are to be contained quite small.  Figure 2.4 shows some examples 

of such error bounds for a sensor group composed of four physical thermal sensors, with 

single-point calibration on the left, and two-point calibration on the right.  

b) Multiple virtual thermal sensors 

While using a group of multiple physical thermal sensors with different calibration points 

at one location may provide immunity to failures, the area and power consumption overheads 

may be quite high. Instead, we can simulate multiple sensors from a single physical sensor, 

avoiding the overhead of multiple physical sensors at one location. Simply put, calibration is a 

process of interpreting the frequency outputs of a physical thermal sensor to generate correct 

temperature readings at the sensor location. Thus, by changing the interpretation, we can 

simulate multiple sensors at the location from one physical sensor; in case of single-point 

calibration, we can simulate multiple sensors, each of which has different calibration point, by 

simply switching one constant, either a gain or an offset; in case of two-point calibration, we 

need to switch two constants, both a gain and an offset, for the simulation of multiple sensors 

with different calibration points. Since the thermal profile of a chip usually stays constant for 

over a few hundred milliseconds [70], we can repeat the interpretation processes multiple 

times simulating thermal sensors with different calibration points as long as temperature does 

not change.  

c) Switching virtual sensors  

We can take several simple approaches in selecting one sensor out of multiple virtual ones 

in order to determine the correct temperature reading at time index i. For instance, variations 
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in the standard deviation of each virtual sensor in the past are traced over a predefined tap size 

m; then compared with each other; finally, one sensor with the smallest variation can be 

chosen to give the temperature reading at time index i. A much simpler approach would be to 

use the mean of temperature readings over a predefined tap size n in the past; this mean is 

compared with the calibration point of each sensor, and a sensor whose calibration point is the 

nearest the mean is selected; in case of two-point calibration, the center of the two calibration 

points of each sensor can be used to represent the calibration point of the sensor. We used the 

latter in our experiments with n set to three. 

d) Prediction 

Various prediction methods can be used together with the sensor switching method 

described earlier to improve estimation results. The simplest is a linear prediction method 

using the temperature readings over the last k taps in the past. A weight vector can be used to 

give more priority to more recent readings, as summarized in (2.5), with k set to four in the 

experiments. In (2.5), T(i) is the temperature at time index i, and ws is weight.  

 

𝑇(𝑖) = 𝑇(𝑖 − 1) +
1

𝑘 − 1
∑𝑤𝑠

𝑇(𝑖 − 1) − 𝑇(𝑖 − 1 − 𝑠)

𝑠

𝑘−1

𝑠=1

          (2.5) 

 

In the experiments, final temperature estimation at each time instance was made based on 

the temperature reading of a selected sensor and the prediction result with the ratio of 6 to 4. 
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2.4. Experimental results 

We evaluated 1,000 RO-based thermal sensors using Monte Carlo simulations. For the 

parameters in (2.1), we assumed a Gaussian distribution with means and standard deviations 

as shown in Table I. 130nm CMOS technology process parameters were used for the 

simulations, and each value was set according to the predictions given in [64] [71] [72].  

Our experiments used 20 thermal profiles that were generated randomly, summing up 

multiple sinusoids with different magnitude and phase terms, in order to simulate actual 

temperature variations of a chip. 

 For each possible combination of a calibration method (single-point or two-point 

calibration) and the number of sensors (one to four) at one location, we generated the upper 

and the lower error bound as a function of temperature using Monte Carlo simulations, and 

examples of these error bounds are shown in Figure 2.4. The generated error bounds were 

then used to randomize temperature readings of each sensor for a given thermal profile as a 

function of time, or to simulate actual temperature readings of each sensor by adding some 

noise to the thermal profile. For the randomization of temperature reading at each time 

Parameters 
𝑊𝑛(𝑝) 𝐿𝑛(𝑝) 𝑇𝑜𝑥 𝑉𝐷𝐷 𝑉𝑡 𝜇𝑛(𝑝) 

(𝑛𝑚) (𝑛𝑚) (𝑛𝑚) (𝑉) (𝑉) (𝑚2/𝑉 ∙ 𝑠) 

      

Mean 100 49 2.25 1.3 0.288 0.03 

Std. dev. 5% 6% 3% 5% 4% 3% 

Table I. Random variables for Monte Carlo simulations 
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instance, we applied uniform randomization in order to maximize randomness, choosing an 

arbitrary value in a uniform manner between the upper bound and the lower bound at the 

corresponding temperature value.  

 Figure 2.5(a) shows the temperature readings of four sensors, each calibrated with single-

point calibration at 36℃, 54℃, 73℃, and 91℃, respectively. Similarly, Figure 2.5(b) shows 

the temperature readings of four sensors, each calibrated with two-point calibration at (32℃, 

41℃), (50℃, 59℃), (68℃, 77℃), and (86℃, 95℃), respectively. Horizontal lines in each 

subplot represent the corresponding calibration points of each sensor, and an original thermal 

profile to be estimated is also plotted as a black solid line in each subplot for reference 

purpose.  

(a) Single-point calibration 
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Figure 2.5. Temperature readings of four sensors: (a) with single-point calibration, 

(b) with two-point calibration 
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Estimation results and their corresponding estimation errors for one thermal profile are 

given in Figure 2.6; results based on four sensors with single-point calibration are given on 

the left, and results based on four sensors with two-point calibration are given on the right. 

From the figures on the right, we observe that the errors are almost negligible except for some 

time instances when the sensors are switched.  

Maximum absolute errors and the averaged results based on 20 randomly-generated 

thermal profiles are summarized in Table II, Figure 2.7, and Figure 2.8. In Table II, we can 

observe that both maximum absolute errors and RMSEs decreased with the increase in the 

number of sensors and calibration points. RMSE reduction rates in Figure 2.8(b) are relative 

values compared with the RMSEs of a single sensor case, and we can observe the error 

reduction rate increased from 60.4% to 91.1% when we increased the number of sensors from 

two to four with two-point calibration. In case of single-point calibration, the error reduction 
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Figure 2.6. Estimation results (top) and corresponding errors (bottom) in case of 

four sensors: single-point calibration (left), and two-point calibration (right) 
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rates were a bit smaller than those of two-point calibration, but we can still observe an 

increase from 47.4% to 72.6%. One interesting point is that the application of the prediction 

method described in a chapter 2.3.3(d) didn’t improve the results when two-point calibration 

was used or when the estimation results without prediction were already good. On the 

contrary, when the error bounds are quite large (e.g., single-point calibration), we can reduce 

the errors quite effectively by applying the prediction method as shown in Table II.  

 

Calibration method/   

number of sensors 

Max. abs. error  

in ℃ 

RMSE in ℃  

(w/o prediction) 

RMSE in ℃ 

(w/ prediction) 

Single-point 

calibration 

1 27.23  2.93  - 

2 8.01  2.90  1.54  

3 5.32  1.98  0.98  

4 4.83  1.62  0.80  

Two-point 

calibration 

1 2.43 0.69 - 

2 0.84 0.28 0.36 

3 0.38 0.11 0.23 

4 0.21 0.06 0.22 

 

Table II. Maximum absolute error and RMSE of estimation for 20 profiles 
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2.5. Summary  

 In this chapter, we proposed a method of obtaining accurate temperature information at 

one sensor location using multiple thermal sensors. By applying a sensor switching method 

and a prediction method, we were able to reduce the RMSE of 130nm RO-based thermal 

1               2                3               4  plotting: RMSEsingle-point calibration2.925 1.539 0.98 0.8

two-point calibration0.694 0.275 0.111 0.06

plotting: reductionsingle-point calibration0 47.37 66.5 72.6

two-point calibration0 60.35 84.08 91.1

single-point calibration
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  Figure 2.8. RMSE and its reduction rates as a function of the number of sensors 
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sensors by up to 91.1% compared with the two-point calibrated single sensor case. We also 

showed that multiple sensors could be simulated by switching the calibration points of a single 

physical sensor in case the temperature at the sensor location changes slowly, which is true in 

most cases.  
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CHAPTER 3. Thermal Sensor Allocation for SoCs 

Based on Temperature Gradients 

3.1. Motivation 

DTM solutions need thermal distribution of a chip in order to manage and control chip 

temperatures properly at runtime. As discussed in previous chapters, there have been 

researches about using the performance counter or similar to estimate the thermal distribution 

of a chip instead of using dedicated thermal sensors [35]. The relationship between power and 

temperature is quite complicated and involves a lot of factors such as on-chip thermal 

diffusion and physical characteristics of silicon. As a result, it is easily observed that the 

region with the maximum power density is not the hottest part of a chip. That makes it more 

necessary to measure temperatures in different regions of a chip directly using dedicated on-

chip thermal sensors than to estimate temperatures indirectly from power information.  

In an ideal case, spreading a lot of accurate thermal sensors on a die will give satisfactory 

temperature information. However, it is not practical to use as many thermal sensors as 

possible because each sensor occupies valuable die area and also consumes power. The 

challenging question is how to use a small number of thermal sensors to acquire the accurate 

information about the thermal profiles of a chip at runtime. In this chapter, we address next 

two things: how many sensors are required and where should be their placement in order to 
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estimate or reconstruct thermal profiles accurately? How can we reconstruct full-chip thermal 

profiles in a reliable way? 

3.2. Related work 

Frequency domain analysis based on DCT (Discrete Cosine Transform) was proposed in 

[48] as briefly discussed in chapter 1, and it was based on an idea that a non-sparse signal in 

spatial domain could be transformed into a sparse signal in frequency domain with mostly 

zero coefficients; that is, as long as we can find major low frequency components correctly 

through proper sensor allocation, we can estimate any thermal profiles with high accuracy. 

This method works quite well when there are no major high spatial frequency components in 

a thermal profile. In other words, this method is good for relatively simple thermal profiles. 

However, with a lot more processing elements in a chip, thermal profiles of recent chips tend 

to have higher spatial frequency components than before, and as a result, a lot more thermal 

sensors need to be used to detect all major high frequency components and to maintain good 

full-chip reconstruction results. 

As a novel approach, we propose using image processing and computer vision techniques 

in selecting the proper number of thermal sensors and their locations in order to reconstruct 

full-chip thermal profiles more accurately and efficiently in this chapter.  
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3.3. Thermal sensor allocation 

The basic idea of the proposal is as follows; thermal profile of a chip has its own signature 

even though it keeps changing at runtime depending on the use of functional blocks in a chip 

over time. By analyzing the signature of the thermal profiles, we can collect basic information 

on its geometrical structure or framework, and this information can play an important role in 

estimating or reconstructing thermal profiles of a chip more effectively using just a small 

number of thermal sensors.  

The rest of this proposal is organized as follows; in the rest of this section, details of our 

sensor allocation method and its results are given; in 3.4, profile reconstruction methods based 

on the sensor allocation results are explained; in 3.5, simulation results on profile 

reconstruction are reported.  

3.3.1. Reference thermal profile generation 

As we can see in Figure 3.1, which summarizes our thermal sensor allocation scheme, the 

first step is to generate a reference thermal profile of a chip. Various kinds of methods can be 

used for this, and one possibility is to use thermal simulation tools and the power estimates of 

each and every functional block on a die. In this proposal, we generate a reference thermal 

profile of a chip by averaging thousands of thermal profiles that we can collect by running 

various kinds of benchmark suites on a chip. We used thermal profiles from a thermal 

imaging device [50] instead of the results from thermal simulation tools in order to verify the 

effectiveness of our methods on real thermal data, and one exemplary reference thermal 

profile is given in Figure 3.2. A reference thermal profile generated from thermal simulation 
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tools will be also used at the end in order to see if our proposal also works quite well on those 

profiles. This process is to be performed just once for a chip, and it doesn’t need to be 

performed at runtime.  

 

Reference thermal profile generation 

Edge detection and object labeling 

Initial sensor allocation: sensor points and sensor candidates 

Additional sensor allocation by grouping sensor candidates: k-means clustering 

Set up geometrical framework for full-chip profile reconstruction 

Full-chip profile reconstruction: DCT/regression 

Thermal sensor 

allocation 

Thermal profile 

reconstruction 

Figure 3.1. Steps for thermal sensor allocation and full-chip profile reconstruction 

(a) Top view (b) Quarter view 

Figure 3.2. An example of reference thermal profiles of a chip 
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3.3.2. Edge detection and object labeling 

The second step is to perform the analysis of the reference thermal profile and to extract 

meaningful objects from the profile using edge detection techniques such as Canny edge 

detector [73]. Here, edges are the sets of nodes on the grid with relatively high thermal 

gradients, and they usually correspond to the boundaries of local maxima or local minima, 

which compose the crucial elements in the geometrical framework of the profile. 

Mathematical morphology [74] is applied to the detection result to remove minor objects 

based on the size and the shape of each object, and the resulting objects are labeled and 

numbered as separate objects. Also some modifications such as trimming of a long and 

narrow object were applied to some objects based on the size and shape of each object so that 

we can make analysis of each object more properly in a later step. The result is given in 

Figure 3.3, and it presents eight separate objects in different colors.  

Before we move on to the third step, we will define a few terms for clarification and will 

use them throughout this paper. Based on the aspect ratio of the length of minor axis to the 

(a) (b) 

Ellipse 

Arc 

Figure 3.3. (a) Edge detection, (b) object labeling and analysis 
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length of major axis, each object is classified as either an ellipse or an arc; if the ratio of an 

object is greater than a pre-defined threshold value, then the object is classified as an ellipse; 

otherwise, it is classified as an arc. In our experiments, we use the value of 0.33 as the 

threshold, and the value was selected empirically through the simulations based on multiple 

thermal profiles of several different chips. When we analyze each object, we assign sensor 

points and sensor candidates to each object; a sensor point represents a node where a thermal 

sensor is placed; a sensor candidate, on the contrary, represents a node where a thermal sensor 

might be placed. All sensor candidates are compared with each other, and some of them are 

promoted to sensor points, and thermal sensors are assigned to them. The remaining sensor 

candidates will be still used as key elements composing the geometrical framework of the 

profile, and the temperature of each sensor candidate is determined based on the temperature 

readings of thermal sensors at sensor points and the geometrical framework.  

3.3.3. Initial sensor allocation 

a) Sensor points 

In the third step, we figure out the best sensor locations for each object through heuristics, 

and we take slightly different approaches depending on the type of an object as explained in 

Figure 3.4.  

In case of an ellipse, the hottest node and the coldest node inside the ellipse are searched 

for, and then the one with a shorter distance from its centroid than the other is selected as its 

sensor point.  
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Find the hottest node (A)  
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Either A or B  
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Both A and B  
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A or B that is  
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A = sensor point B = sensor point Two new nodes  

on its minor axis 

= sensor candidates  

Yes No 

Yes No 

Yes 

Yes 

Yes 

No 

No 

No 

Is ellipse? 

Object 

End 

 Figure 3.4. Sensor point allocation 
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In case of an arc, a corresponding bounding box is drawn first, and then the hottest node 

and the coldest node are searched for inside the box; if both nodes are either a local minimum 

or a local maximum, then we choose one whose Euclidean distance from the center of the 

bounding box is shorter than the other and assign the node as its sensor point; if just one of the 

two nodes is either a local maximum or a local minimum, then we assign the node as the 

sensor point of the arc; if neither of the two nodes is a local maximum nor a local minimum, 

then we discard both nodes and assign two new nodes at both ends of its minor axis as two 

sensor candidates of the arc instead, not selecting a sensor point of the arc.  

b) Sensor candidates  

In case only one node is assigned as the sensor point to an object in above sensor point 

assignment step, additional nodes are assigned as sensor candidates based on the geometrical 

properties of the profile, as explained in Figure 3.5.  

In case of an ellipse, we draw horizontal and vertical lines crossing its centroid and check 

the gradient changes along those four line segments extending from the centroid. For each line 

segment, two nodes whose gradient values are the closest to 10% of the maximum gradient 

value along the segment, one inside and the other outside the ellipse, are assigned as its sensor 

candidates. Therefore, up to eight nodes can be assigned as sensor candidates to each ellipse. 

In order to handle a little bit differently, we define sensor candidates inside the ellipse as 

pseudo sensor candidates.  

In case of an arc, one node, which is located on the other side of the object and at the same 

distance from the center of the bounding box, will be assigned as a sensor candidate.  
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Figure 3.5. Sensor candidate allocation 
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One example with three sensor points and multiple sensor candidates, which is based on a 

reference thermal profile given in Figure 3.2, is given in Figure 3.6(a).  

3.3.4. Additional sensor allocation 

In order to select a few nodes among the multiple sensor candidates for additional thermal 

sensor allocation, we use k-means clustering method [43] to group sensor candidates into k 

clusters. Weighted sum of Euclidean distance and the temperature value is used as a metric 

with the ratio of two to five, which was chosen empirically. Normally, we choose the value of 

k to be equal to the number of sensor points, but we can flexibly change the number of 

thermal sensors to be allocated on a die by changing the value of k. One example of k = 6 is 

given in Figure 3.6(b), and all sensor candidates in each cluster are marked in the same color 

and will be assigned the same temperature value. Finally, we need to select a representing 

sensor candidate node for each cluster to allocate a thermal sensor, and we pick one whose 

(a) (b) 

  □ : sensor points 

  : clustered sensor candidates 

 □ : sensor points 

◊,○,* : sensor candidates 

+ : center/centroid 

Figure 3.6. (a) Sensor points and sensor candidates (including pseudo candidates), 

(b) k-means clustering (k = 6) on sensor candidates 
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temperature value is the closest to the mean of the temperature values of all sensor candidates 

in the cluster. In k-means clustering, pseudo sensor candidates are not included, and the 

temperature values of each pseudo sensor candidate node are set equal to the temperature 

values of a thermal sensor assigned to its corresponding sensor point.  

3.3.5. Geometrical framework  

Even though we set up a basic geometrical framework using multiple sensor points and 

sensor candidates, it would be still helpful to add some additional nodes to the framework 

based on the geometrical information of all objects for better profile reconstruction.  

In case of an ellipse, we choose up to four additional nodes on the object in four directions, 

whose temperature values are set to be the mean of the two corresponding sensor candidates 

inside and outside the ellipse.  

In case of an arc, we basically use all nodes on the object running parallel to the major 

axis, and the mean of the temperature values of two sensor points or candidates assigned to 

the object is used as their temperature values.  

One exemplary geometrical framework of the reference thermal profile that we used in 

previous steps is given in Figure 3.7, for the case of k = 6; the framework is composed of nine 

thermal sensor nodes, three from sensor points and six from sensor candidates, and additional 

23 nodes that were selected based on the geometrical information of all objects on the profile. 

The temperature values of those 32 nodes are assigned based on the temperature readings of 

nine thermal sensors and the geometrical information of the profile.  
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3.4. Thermal profile reconstruction  

In this proposal, we use both a regression method [75] and a transform-based method for 

full-chip profile reconstruction over an entire die area. In case of a transform-based method, 

DCT [49] is used for the transformation, and the details are explained in Figure 3.8 and Figure 

3.9 [49]; we transform 2D signals in spatial domain, i.e., thermal profiles from sensor 

readings, to their counterparts in frequency domain using DCT, and we perform low pass 

filtering in frequency domain. Low pass filtered results are then transformed back to the ones 

in spatial domain using similar matrix calculations. A matrix Ssensors with the dimension m by 

n is generated from a full-size matrix by removing rows and columns whose elements are all 

zeroes. Because this m by n matrix is a sparse matrix, we use a regression technique to replace 

its zero elements with non-zero values before we calculate FLowFreq1 for better reconstruction 

results. For low pass filtering in frequency domain, we select ‘N-1’ low frequency coefficients 

(a) (b) 

Figure 3.7. (a) 9 thermal sensors (3 from sensor points and 6 from sensor candidates) 

(b) geometrical framework composed of 32 nodes 
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in a zigzag pattern [49], where N is the total number of nodes in the geometrical framework 

with non-zero temperature values.  

One thing to note is, when we consider sensor locations as sampling points, sampling of 

thermal profiles is clearly non-uniform. Therefore, it is necessary to figure out carefully how 

to transform the non-uniformly sampled profiles between spatial domain and frequency 

domain, especially when the number of sampling points is quite limited. However, with the 

additional nodes in the geometrical framework other than the thermal sensor nodes, we can 

have good results even when we use a simpler transformation method than the ones used in 

previous methods.  

 

𝑆𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑇′ ∙ 𝐹𝐿𝑜𝑤𝐹𝑟𝑒𝑞2 ∙ 𝑇 

          , where 𝐹𝐿𝑜𝑤𝐹𝑟𝑒𝑞2 is a full-size matrix from 𝐹𝐿𝑜𝑤𝐹𝑟𝑒𝑞1, with zero padding 

            and 𝐹𝐿𝑜𝑤𝐹𝑟𝑒𝑞1 = (𝐴′𝐴)
−1 ∙ 𝐴′ ∙ 𝑆𝑠𝑒𝑛𝑠𝑜𝑟𝑠 ∙ 𝐵′ ∙ (𝐵𝐵′)

−1  

 

▪ 𝑆𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (full-size): estimated thermal profiles (spatial domain) 

▪ T (full-size): DCT matrix 

▪ 𝐹𝐿𝑜𝑤𝐹𝑟𝑒𝑞1 (𝑘 × 𝑡): thermal profiles with low frequency coefficients only (freq. domain) 

▪ 𝑆𝑠𝑒𝑛𝑠𝑜𝑟𝑠 (𝑚 × 𝑛): thermal profiles from sensor readings (spatial domain) 

▪ A (𝑚 × 𝑘): sampled matrix from T′  

▪ B (𝑡 × 𝑛): sampled matrix from T  

Figure 3.8. Transform-based reconstruction 



59 
 

3.5. Experimental results 

For the evaluation, we used 7,273 thermal profiles of AMD Athlon2 X2 240 processor, 

which were captured by a thermal imaging device, running SPEC2006 benchmark suites [50]. 

The maximum temperature on the processor was 47.65℃, and the difference between the 

maximum and the minimum was 9.29℃ on the average, ranging from 1.62℃ up to 16℃. 

Using 4 to 16 sensors, with the value of k ranging from 1 to 13, we reconstructed all of the 

7,273 profiles purely based on sensor readings and the geometrical framework that we built, 

and then we calculated two metrics for each profile: RMSE over all nodes on the grid and the 

absolute error at the hottest spot, which was normalized by the temperature difference 

between the hottest node and the coldest node.  

                𝑇(𝑖𝑡ℎ 𝑟𝑜𝑤, 𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛) =  
1

grid_sz
; 

                𝑇(𝑖𝑡ℎ 𝑟𝑜𝑤, 𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛) =   
2

grid_sz
∗ 𝑐𝑜𝑠 (

(2𝑗 − 1) ∗ (𝑖 − 1)

2 ∗ grid_sz
𝜋) ; 

grid_sz = 64 or 32, depending on the dimension of thermal profiles;   

T = DCT matrix, grid_sz by grid_sz; 

for ( i = 1; i <= grid_sz; i++ )   

    for ( j = 1; j <= grid_sz; j++ )    

         if i == 1 

         else 

Figure 3.9. DCT matrix generation 
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Exemplary reconstruction results of the case k = 1, or the case of using four thermal 

sensors, is given in Figure 3.10, and we can observe the results of our methods are quite 

similar to the true profile to be estimated even though just four sensors were used.  

Performance comparison of two reconstruction methods, DCT and regression, along with 

the method in [48] is given in Figure 3.11 and Figure 3.12. Averaged RMSE over 7,273 

profiles is given in Figure 3.11, and the averaged absolute error at the hottest spot over all the 

profiles is given in Figure 3.12.  

The method in [48] solely depends on the sensor readings in its reconstruction; thus, the 

RMSE over the grid and the absolute error at the hottest spot were both worse than our 

methods, especially when the number of sensors was quite limited. In addition, we observed 

that the absolute error at the hottest spot increased even with a larger number of sensors in 

case sensor locations were not close to the hottest spot. On the contrary, our approach 

achieved improvements of up to 42% in RMSE and also up to 93% in hottest spot estimation 

when compared with the method in [48], and it is mainly due to the fact that we used both 

sensor readings and the geometrical framework in an effective and cooperative way for the 

(a) (c) (b) (d) 

Figure 3.10. Sensor allocation and profile reconstruction results when the number of 

sensors is set to four (or k = 1) (a) sensor allocation result, (b) profile to be reconstructed, 

(c) reconstruction: DCT, (d) reconstruction: regression 
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reconstruction of thermal profiles.  

Comparing two reconstruction methods that we used, DCT and regression, we can see the 

DCT-based reconstruction method achieved a little bit better results when it comes to RMSE, 

and slightly worse results in hotspot temperature estimation. Considering the higher 

computational complexity of a regression method, a DCT-based reconstruction method would 

be a reasonable choice maintaining a good balance between RMSE and hotspot temperature 

estimation errors.   

In order to verify if the proposed method works equally well on other chips, especially 

0.9

1.2

1.5

1.8

2.1

1 2 3 4 5

Series1

Series2

Series3

   RMSE (℃) 

DCT 

Regression 

[48] 

0

15

30

45

1 2 3 4 5

Series1

Series2

Improvement over [48] (%) 

Number of sensors 

Number of sensors 

     4                   6                    9                  12                 16 

DCT over [48] 

Regression over [48] 

     4                   6                    9                  12                 16 

Figure 3.11. RMSE as a function of the number of sensors 
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when the representative thermal profiles of the chips are generated from thermal simulation 

tools, we applied the exactly same method without any modification to a new industrial-size 

SoC that was composed of six core clusters and a large number of functional blocks. A 

reference thermal profile of the SoC was generated from a thermal simulation tool HotSpot 

[76], based on the worst case power consumption of each and every functional block on a die, 

and 63 additional thermal profiles were generated from HotSpot for a test purpose, switching 

on and off six core clusters. Each thermal profile was presented on a grid of 64 by 64, with 
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4096 nodes in total on the grid. The maximum temperature over the 64 thermal profiles was 

105.65℃, and the minimum was 90.47℃. The averaged maximum temperature over the 64 

profiles was 102.76℃, and the averaged minimum was 93.02℃, with the mean temperature 

difference of 9.74℃. For comparison purpose, results of each step were prepared and given in 

four figures; a reference thermal profile of this new SoC is given in Figure 3.13; edge 

detection and object classification results are given in Figure 3.14; assignment of sensor 

points and sensor candidates is given in Figure 3.15; final sensor allocation results and the 

geometrical framework are given in Figure 3.16.  

Nine thermal sensors, six from sensor points and three from sensor candidates (k = 3), 

were used for the reconstruction of thermal profiles as given in Figure 3.16. The averaged 

RMSE of a DCT-based reconstruction method was 0.93℃, and the averaged RMSE of a 

regression-based reconstruction method was 0.75℃, achieving 43% and 54% improvement 

over [48] whose averaged RMSE was 1.63℃. When we considered 1024 hot nodes out of 

4096 nodes, whose temperatures were within top 25% when sorted in the order of temperature, 

Top view Quarter view 

 Figure 3.13. Reference thermal profile of a new chip 
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the averaged RMSEs of both a DCT-based reconstruction method and a regression-based 

method dropped to 0.69℃. This is mainly due to the fact that no thermal sensors were 

assigned to the nodes near the cold spots on the profile, and as a result, the errors tended to 

increase in the estimation of low temperature nodes. Averaged RMSEs of three methods over 

64 thermal profiles are summarized in Figure 3.17, and it is clear that both of our methods 

gave better results than the method in [48], especially when it comes to the temperature 

estimation of hotspots.  

Just like RMSE cases, the method in [48] gave much worse results when it comes to the 

absolute errors at the hottest nodes on thermal profiles. A regression-based reconstruction 

method resulted in an averaged absolute error of 0.01℃, and a DCT-based method resulted in 

an average value of 0.11℃, while the method in [48] gave an average value of 1.74℃. 

The method in [48] might have given good results with the use of a large number of 

thermal sensors. However, it was simply not enough to use just nine thermal sensors to 

capture all spatial frequency components of the profiles, which are necessary for the accurate 

(a) (b) 

Ellipse 

Arc 

 Figure 3.14. (a) Edge detection, (b) object labeling and analysis of a new chip 
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(a) (b) 

  □ : sensor points 

  ● : clustered sensor candidates 

Figure 3.15. (a) Sensor points and sensor candidates of a new chip, (b) k-means 

clustering on sensor candidates (k = 3) of a new chip 

(a) (b) 

Figure 3.16. (a) 9 thermal sensor nodes of a new chip,  (b) geometrical framework 

composed of 105 nodes to which temperature values are assigned 
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profile reconstruction. On the contrary, our approach used the temperature values at 105 

nodes out of 4096 nodes, which were all derived from both the temperature readings of nine 

thermal sensors and the geometrical framework of the profile. As a result, both a regression-

based method and a DCT-based method worked quite well just using nine thermal sensors.  

Regarding the comparison between the results of AMD X2 240 processor and a new SoC 

with six core clusters, the first observation that we can make is the increase in the number of 

cores or core clusters from two to six resulted in the increased number of thermal sensors; the 

number of sensor points increased from three to six. Another observation to be made is that 

the averaged RMSE of each method decreased when compared with its counterpart of a dual-

core case, and this is mainly because the profiles generated from HotSpot were quite smoother 

than the noisy profiles captured by a thermal imaging device, and also because the variation 

among the 64 profiles was smaller than the variation among the 7,273 profiles.  We can also 

observe that the improvements over [48] in percentage are higher than the corresponding 

figures of a dual-core case with a similar choice of k. This is due to the fact that the method in 
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[48], which purely depends on the temperature values at the sensor nodes for the 

reconstruction of thermal profiles, requires a lot more thermal sensors than the two proposed 

method do when thermal profiles become quite complicated with a lot of high spatial 

frequency components.    

3.6. Summary 

In this chapter, we proposed new methods of thermal sensor allocation and full-chip 

thermal profile reconstruction through the analysis of thermal profiles. We considered a 

reference thermal profile of a chip as an image and applied various image processing and 

computer vision techniques to extract its geometrical framework. Then we used the 

framework to reconstruct thermal profiles from the temperature readings of a small number of 

thermal sensors efficiently. We believe that our methods are more efficient and may be more 

suitable than others, especially when thermal profiles are complicated due to multiple cores 

on a die for emerging SoCs.  
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CHAPTER 4. Vision-inspired Global Routing for 

Enhanced Performance and Reliability 

4.1. Motivation 

While Moore's law has enabled the advent of products with increasing functionality and 

complexity, shrinking geometries and increasing power densities have led to higher operating 

temperatures of chips. In addition, due to different switching activity rates and different types 

of circuits, different parts of a chip have different power densities, and as a result, they will 

have different temperatures. For example, the power density of the integer processing unit 

will be much higher than that of a cache memory. Furthermore, the low thermal conductivity 

of silicon will make the lateral heat propagation rate slow, which will cause localized heating. 

These non-uniform power densities and the low thermal conductivity of silicon will result in a 

thermal distribution that varies from one part of a chip to another and thermal hotspots that 

are caused by localized areas of high power densities. 

As we discussed in previous chapters, the temperature difference within an SoC can be as 

high as 50 ℃ across the die [4] [5], and this non-uniform thermal distribution along with high 

operating temperatures can cause a large number of issues; reduced life expectancy of 

interconnects due to electromigration [6]; system degradation caused by lowered clock 

frequencies to prevent any delay-induced failure; increased leakage power, etc. In this chapter, 
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we focus on the issues of the life expectancy and reliability of interconnects and the increased 

delay due to non-uniform thermal distribution.  

The interconnect delay model in the deep submicron era, which depends on the thermal 

distribution of substrates, was derived as [18]: 

 

𝐷 = 𝐷0 + (𝑐0𝐿 + 𝐶𝐿)𝜌0 𝛽 ∫ 𝑇(
𝐿

0

𝑥)𝑑𝑥 − 𝑐0𝜌0 𝛽 ∫ 𝑥𝑇
𝐿

0

(𝑥)𝑑𝑥          (4.1) 

 

In the equation, 𝐷0  is the Elmore delay of the interconnect corresponding to the unit 

length resistance at 0℃, and the detailed discussion was given in chapter 1.  

In this chapter, we propose a method of using the thermal distribution of substrates and 

the temperature-dependent interconnect delay given by (4.1) to select optimal paths out of 

multiple candidates and also to minimize the delays and the number of wires near hotspots for 

better reliability. 

4.2. Related work 

Several approaches have been proposed for temperature-aware global routing recently. 

TAGORE [58] uses an iterative L-shaped pattern routing in order to reduce the number of 

nets passing through hotspots and then uses a maze router [77] to route the remaining nets. 

Basically, TAGORE considers only two simple L-shaped paths for a given two-terminal net, 

and maximum temperatures along the paths are used as a metric; maximum temperatures of 

those two paths are compared with each other, and a path with a lower maximum temperature 
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is chosen as a path for the given net. While TAGORE decreases the worst-case failure rate by 

selecting a path with a lower maximum temperature, it doesn’t consider the delay of each path. 

As a result, it is possible that the selected path has a larger delay than the other, especially 

when the thermal distribution along the selected path is constantly higher than the other. In 

addition, routers using larger solution space will give better results than TAGORE since it 

considers only two possible paths for each net. In [78], two thermal-driven techniques were 

proposed as ways of reducing the probability of interconnect failure: thermal-driven MST 

(Minimum Spanning Tree) construction and thermal-driven maze routing. It achieves better 

results when compared with TAGORE mainly because it explores much larger solution space 

using maze routing, but the better results come with higher computational complexity.  

4.3. Vision-inspired global routing 

As a novel approach, we propose using Image processing and computer vision techniques 

for global routing, and the detailed description is given in this section.  

4.3.1. Overall flow 

The overall flow of our proposed method is given in Figure 4.1. We generate a thermal 

profile of a given chip using a thermal simulation tool HotSpot [76] and then we detect major 

peak and valley areas, or local maxima and minima, within the profile using image processing 

and computer vision techniques. We decompose each net from a given circuit into a set of 

two-terminal nets using Prim’s algorithm [79], which is used to find a Minimum Spanning 
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Tree (MST) [79]. Each two-terminal net defines a window, and the collected information 

about the peak and valley areas on the profile is used to find a number of internal nodes 

within the window, which will be used for solution space expansion in a later step. Using the 

resulting set of internal nodes within the window, we draw horizontal and vertical lines 

passing through them and then assign additional nodes at the crossings between those lines 

and the boundaries of the window. We define each path connecting a pair of nodes as an edge 

and use the temperature-aware delay of each path as the weight of the edge. Using the two 

terminals and the resulting set of nodes as vertices and the horizontal and vertical paths as 

edges, we apply Dijkstra’s algorithm [79] to find a path with a minimum delay out of all 

possible paths for each two-terminal net.  

Find a path with a minimum delay for each two-terminal net 

using temperature-aware delay as a metric 

For each two-terminal net,  

find a set of internal nodes to expand solution space with 

Generate a set of two-terminal nets  

using Prim’s MST algorithm  

Analyze thermal profile  

using image processing and computer vision techniques 

Figure 4.1. Overall flow of vision-inspired global router 
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4.3.2. Peak and valley detection  

Figure 4.2 shows a thermal profile from the thermal simulations on an industrial size SoC, 

and HotSpot [76] was used for the generation of the profile on a grid of 64 by 64 nodes. 

Temperature difference between the maximum and the minimum temperature within the 

profile is 45℃, and the maximum temperature is 105℃. We can locate multiple peak and 

valley areas within this thermal profile using image processing and computer vision 

techniques, and this information can be used to find paths with better reliability and 

minimized delay.  

First, we can define an area with relatively lower temperatures compared with its 

surrounding areas as a valley, and this area can be used for the routing to avoid hotspots. 

Likewise, we define an area with relatively higher temperatures compared with its 

surroundings as a peak, and this area should be avoided especially in global routing to 

improve the reliability of the interconnects or the chip. We can locate peak and valley areas 

efficiently and easily using the gradient at each node, which is defined as follows:  

Figure 4.2. HotSpot [76]-generated thermal profile 
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𝛻𝑇(𝑥, 𝑦) =
𝜕𝑇

𝜕𝑥
𝑥⃗ +

𝜕𝑇

𝜕𝑦
𝑦⃗           (4.1)  

    

In the equation, 𝑇(𝑥, 𝑦) is the temperature of a node at (𝑥, 𝑦), and 𝑥⃗ and 𝑦⃗ are the unit 

vectors pointing in the positive x direction and the positive y direction, respectively. The 

gradient at each node of the thermal profile, which is a vector, is shown in Figure 4.3 as a 

small arrow with its own magnitude and direction.  

By comparing Figure 4.2 and Figure 4.3, we can easily see that the areas with small 

arrows, i.e., with 
𝜕𝑇

𝜕𝑥
 and 

𝜕𝑇

𝜕𝑦
 close to zero, represent peak areas or valley areas, depending on 

the directions of corresponding arrows. Therefore, the first step to identify peak areas and 

valley areas is to find nodes with small arrows on the gradient map, and the result is given in 

Figure 4.4, with all marked with small blue circles.  

 

Figure 4.3. Gradient at each node on a grid of 64 by 64 nodes 
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Using k-means clustering [43] and a simple grouping method, we group nodes with small 

gradient magnitude into a number of separate areas, and then each area is classified into either 

a peak area or a valley area based on the gradient variation within each area. The result is 

given in Figure 4.5, and red rectangles represent peak areas, and cyan rectangles represent 

valley areas, respectively. In this figure, a larger rectangle than its actual size is used for 

clarification purpose.   

Figure 4.4. Peak and valley areas: identifying nodes with small gradient magnitude 

 

Figure 4.5. Peak and valley areas: classification 
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4.3.3. Solution space expansion   

When a two-terminal net is given, we have a window defined by those two terminals. 

TAGORE [58] considers only two simple L-shaped paths on the boundaries of this window as 

routable paths of the given net. Therefore, its solution space is too small to find an optimal 

path for the net. A thermal-driven maze routing was used in [78] to explore much larger 

solution space, but the increasing number of nets and a large chip area of current chips make 

the use of maze routing quite burdensome computationally. Using the collected information 

on the locations of valley areas within a thermal profile, we can expand solution space 

efficiently to explore much more possible paths, but the solution space will be a lot more 

compact than the one used in [78].  

In Figure 4.6, a rectangle with magenta boundaries is a window defined by a two-terminal 

net, and peak and valley areas inside the window are marked with red and blue rectangles, 

respectively. While a larger rectangle than its actual size was used for clarification purpose in 

Figure 4.5, peak and valley areas in figure 4.6 are given in their actual sizes. Basically, each 

Figure 4.6. Solution space expansion by adding a limited number of internal nodes 
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valley area within the window adds two internal nodes along the long axis, and we choose a 

proper number of internal nodes in order to expand the solution space suitably. In Figure 4.6, 

we limited the number of newly added internal nodes to six in order to prevent the solution 

space from becoming too large, and we chose six internal nodes from the three largest valley 

areas inside the window, two nodes from each valley area. Newly chosen six internal nodes 

are marked with green diamonds in the figure, and the new paths generated from these new 

internal nodes are given in dotted red. In this example, we have 38 new nodes in total inside 

the window and on the boundaries in addition to the two terminals that define the window.    

If there are no valley areas inside a given window, we take a different approach to expand 

the solution space. First, we find the nodes within the window whose temperatures are lower 

than the minimum of the temperatures of the two terminals defining the window, and we 

group them into several separate areas using image processing techniques. We find the 

centroid of each area and choose a proper number of centroids as new internal nodes. We also 

limit the number of newly added internal nodes in order to prevent too large solution space.  

4.3.4. Reliability and performance metric 

We basically use the temperature-aware delay as a metric, and we choose a proper path 

connecting the two terminals of a given net using the metric. Because each two-terminal net 

will have a window in a different size at a new location and a new set of nodes, we need to 

calculate the weight of each edge before we use Dijkstra’s algorithm [79] to find a path for the 

given net. In order to reduce the resulting computational complexity, we calculate 
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temperature-aware, node-to-node unit delays first so that we can approximate the weight of 

each edge by simply summing up the unit delays along the edge.  

There might be some cases that a selected path, which was selected purely based on the 

delay of the path, passes through hotspots for a fraction of the path. In order to give more 

priority to better reliability than to delay minimization of the path, we compare the maximum 

temperature of a resulting path with the maximum temperatures of two L-shaped paths on the 

boundaries of the window. If the maximum temperature of the resulting path is higher than 

the minimum of the maximum temperatures of the two L-shaped paths on the boundaries of 

the window, then one of the two L-shaped paths with a lower maximum temperature is 

selected as a path for the given net instead.  

The routing of a net given in Figure 4.6 is plotted as a dotted green line in Figure 4.7.  

Figure 4.7. Routing of a net given in Figure 4.6 

 



78 
 

4.4. Experimental results 

We implemented and evaluated our vision-inspired global router in C++ and MATLAB, 

and we used nine benchmarks [80] to show the effectiveness of our method. Thermal profiles 

for the benchmarks were generated by [76] on a grid of 64 by 64 nodes, and the number of 

nodes of each benchmark was modified properly so that it was equal to the number of nodes 

of a corresponding thermal profile. For comparison purpose, a conventional router and 

TAGORE [58] were implemented together. All three routers basically follow the same steps 

explained in section 4.3.1, but they choose a path for each two-terminal net in different ways; 

TAGORE chooses a path out of two L-shaped paths based on the maximum temperature of 

each path; a conventional router chooses a path randomly out of the two L-shaped paths. For a 

clear comparison, one-dimensional nets, of which two terminals lie on a same horizontal or 

vertical line, were not used for data collection, and only two-dimensional nets were used. The 

number of internal nodes within a window, which is defined by a two-terminal net, was 

limited to 15 in the experiment in order to limit the size of solution space.  

We collected temperature information of the nodes on all resulting paths for each 

benchmark and then compared the accumulated number of nodes within hotspots whose 

temperatures lie between 104.1℃ and 105℃, which is within top 2% of the entire temperature 

range.  

The result is given in Table III. When it comes to the reduction in the number of nodes in 

hotspots, our router gave better results than a conventional router by up to 50% reduction, and 

42% reduction on the average. When compared with TAGORE, our router reduced the 

number of nodes in hotspots by up to 24% and 13% on the average. We can also observe in 
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Figure 4.8 and Figure 4.9 that our router gave increasingly better results with the increase in 

the size of the circuits. This is because larger circuits will have larger windows and longer 

global interconnects, and our router can handle them a lot more efficiently than the others.  

When it comes to the reduction in delay, our router reduced delay by up to 4.11% when 

compared with a conventional router. Even though the result in delay reduction was not so  

Circuits # nets # grids 

Accumulated # of nodes in hotspots 

reduction in # of nodes  

in comparison with a conventional router 

Maximum  

delay  

reduction  

in comparison  

with a 

conventional  

router 

Conventional 

router 

TAGORE 

[58] 
Our router 

IBM01 11507 64×64 490 
320  

(34.7%↓) 

309  

(36.9%↓) 
2.17% 

IBM03 21621 80×64 967 
727  

(24.8%↓) 

658  

(32.0%↓) 
3.75% 

IBM04 26163 96×64 946 
542  

(42.7%↓) 

526  

(44.4%↓) 
3.29% 

IBM05 27777 128×64 3345 
2190  

(34.5%↓) 

1900 

(43.2%↓) 
3.98% 

IBM06 33354 128×64 2021 
1374  

(32.0%↓) 

1217 

(39.8%↓) 
4.11% 

IBM07 44394 192×64 2178 
1492  

(31.5%↓) 

1200  

(44.9%↓) 
3.22% 

IBM08 47944 192×64 2910 
2170  

(25.4%↓) 

1846  

(36.6%↓) 
3.38% 

IBM09 50393 256×64 2437 
1656  

(32.0%↓) 

1265  

(48.1%↓) 
3.66% 

IBM10 64227 256×64 5802 
3561  

(38.6%↓) 

2923  

(49.6%↓) 
3.78% 

Table III. Comparison in the number of nodes in hotspots and delay reduction 
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Figure 4.9. Trend in reduction rates: our router in comparison with TAGORE [58] 
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Figure 4.8. Reduction rates: comparison with a conventional router 
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compelling, our router gave better results than both TAGORE and a conventional router 

because our router uses temperature-aware delay as a major metric. In addition, TAGORE 

doesn’t consider delay at all in selecting a path and just considers and compares maximum 

temperatures of two L-shaped paths; therefore, it increases delay when the thermal 

distribution on a selected path, of which maximum temperature is lower than the other, is 

constantly higher than the counterpart on the other path. In Figure 4.10, we can see our router 

consistently reduced the delay with the average reduction rate of 3.5%, while TAGORE 

increased the delay by up to 6%. 

4.5. Summary 

In this chapter, we presented a vision-inspired global router that increases the reliability of 

a chip by reducing the number of nets in hotspots while maintaining the delay as small as 

possible. Our router finds a limited number of nodes using a thermal profile of a chip and 
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Figure 4.10. Delay reduction: comparison with a conventional router 
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image processing and computer vision techniques, and it expands the solution space 

efficiently and properly using the newly selected nodes. Our router is computationally 

efficient because it doesn’t explore huge solution space, and it gives better results than 

previous L-shaped routers because it explores solution space that is expanded properly. In 

addition, it reduces delay of interconnects when compared with other routers because it uses 

temperature-aware delay of paths as a metric for routing.  
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CHAPTER 5. Conclusion 

As we enter the deep submicron era, the number of transistors in a chip has increased at an 

alarming rate, and the power density distribution of a chip in current CMOS technology nodes 

is quite far from being uniform. For example, an SoC has multiple complex heterogeneous 

components on a chip, and different parts of a chip will have different power densities owing 

to different activity levels and different types of circuits on a die. As a result, thermal 

distribution of a chip also became non-uniform both temporally and spatially, and it causes a 

large number of problems such as reduced reliability, increased power consumption, and 

limited performance. In order to prevent these temperature-related issues, various DTM 

solutions have been proposed in recent years, and in order for those DTM solutions to work as 

intended, accurate temperature information on a full-chip scale needs to be provided in a 

timely manner.     

RO-based thermal sensors are gaining popularity in sensing temperatures mainly due to 

their small form factor, low power consumption, and full digital CMOS compatibility. 

However, their reading accuracy is quite limited, and DTM solutions based on wrong 

temperature information from this type of sensors might work adversely and lead to 

catastrophic results in some extreme cases. As a way of increasing the reading accuracy of 

RO-based thermal sensors, we proposed a novel approach of using multiple virtual sensors, 

which were all generated from one physical sensor by adaptively switching its calibration 

points on the run. Simulation results show that the RMSE in temperature readings can be 
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reduced by up to 91.1% with the use of four virtual sensors in comparison with a single 

physical sensor case.  

Secondly, we proposed methods of sensor allocation and full-chip thermal profile 

reconstruction. Thermal sensors were allocated with full-chip profile reconstruction in mind 

from the beginning, and we built a geometrical framework by analyzing the thermal profiles 

of a chip. Then we used the framework for sensor allocation and runtime full-chip profile 

reconstruction. Test results based on thousands of thermal profiles captured by a thermal 

imaging device show that the RMSE over an entire die area can be reduced by up to 36%, and 

the averaged absolute error at the hottest spot on a die can be reduced by up to 50% in 

comparison with a previous method when we use six thermal sensors.  

In addition, a temperature-aware interconnect routing method was discussed. A basic 

assumption that the interconnect delay is solely dependent on the length of interconnects is 

not valid any more in deep submicron eras, and thermal effect on delay needs to be considered 

during interconnect design, especially for global interconnects. We proposed a method of 

global routing that considered the thermal distribution of substrates and its effect on 

interconnect delay so that the probability of chip failure due to interconnect failure could be 

minimized, and the performance degradation from increased delay could be prevented to 

some extent. We observed that the number of grid nodes in hotspots was reduced by up to 50 

% when compared with the counterpart of a conventional router, while the delay of 

interconnects was reduced by up to 4.11%.  
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5.1. Practical design issues 

In our proposals, we made several assumptions, and some of them might not be realistic in 

some cases. For that reason, it is necessary to review and adjust them to suit better each 

physical design case.  

On the subject of sensor reading accuracy, we proposed a method regarding how to use 

multiple calibration points in an effective way to improve the accuracy. One thing to consider 

in choosing the proper number of calibration points or virtual sensors is the high cost for 

sensor calibration; thus, it is advisable to use a minimum number of virtual sensors as briefly 

discussed in chapter 1.  

Our proposal on sensor placement is based on a basic assumption that it is desirable to 

limit the number of thermal sensors on a die even though thermal sensors are getting smaller 

nowadays. According to the recent design of RO-based thermal sensors in 65nm CMOS 

technology node [57], the die area consumed by one thermal sensor including all required 

components such as a counter and a voltage regulator was around 0.01mm2, and it is still not 

small enough to be placed at any locations that we want for most cases, especially when we 

take the associated interconnect routings into account. Consequently, the aforementioned 

assumption might be valid for the next few technology generations to come. Another 

assumption that we made in this proposal is that the temperature readings of thermal sensors 

are accurate. When the accuracy in actual readings is degraded by several factors such as the 

low resolution of a sensor and its inherent inaccuracy, profile reconstruction results might 

have a lot larger errors than we expect. In order to deal with this practical issue appropriately, 

sensor selection needs to be performed with care. In our proposal, thermals sensors assigned 
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to the sensor points are required to have higher accuracy than the remaining sensors are; 

therefore, it would be logical to use thermal sensors with high reading accuracy and high 

resolution at the sensor point locations, while sensors with low accuracy are used at the 

remaining sensor candidate locations. If we apply the method proposed in chapter 2 for the 

improvement in reading accuracy, we might use four or more virtual sensors for each sensor 

at sensor point locations, and two virtual sensors for the remaining sensors. Again, high cost 

for calibration should be considered in choosing the proper number of virtual sensors.   

As for the routing of global interconnects, we assumed congestion or densely-populated 

interconnects at some locations is not a big issue. In some locations where the congestion 

issue cannot be ignored, some modifications need to be made to the proposed method. Firstly, 

we can prioritize the nets of the circuits and then route important nets first. When the capacity 

of a certain location is filled up, all associated paths will be removed from the solution space 

so that those paths are not considered for the routing of the remaining nets. Secondly, we can 

Sensors with low accuracy 

Sensors with high accuracy 

Figure 5.1. Practical design issues: sensor accuracy and sensor allocation 
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choose to route all the nets without any consideration on capacity first and then reroute some 

nets whose signal propagation delays have some slack. Thirdly, we can expand solution space 

for a location where congestion becomes an issue and reroute all the affected interconnects so 

that they can be spread out from the congested location using the expanded solution space.  

5.2. Improvement of the proposals 

For each proposed method, there still remain some chances of improvement. Regarding 

the proposed method to improve the accuracy of sensor readings, calibration points of a 

thermal sensor were uniformly distributed over the entire temperature range to be monitored. 

If we can acquire the information on the temperature variations at the spot where the sensor is 

located or if we have thermal profiles of a chip, we can make better choices regarding the 

distribution of calibration points of each virtual sensor using the information as explained in 

Figure 5.2. We can keep the distance between adjacent calibration points short when the 

entire temperature range to be monitored is not wide. We can also adjust the distance between 

adjacent calibration points based on the importance of the temperature range to be monitored. 

For example, we can use a long distance between calibration points over a temperature range 

whose accuracy is less important and use a short distance over a temperature range whose 

accuracy is important.   

In our proposal concerning sensor allocation and thermal profile reconstruction, we used 

DCT for the transform-based reconstruction. Considering the fact that DCT basis is a general 

basis that works equally well on various kinds of signals, there remains a great opportunity to   
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 improve the accuracy of profile reconstruction by using an optimal transform basis 

specifically developed for the thermal profiles of a given chip. Additional improvement can 

be made by generating a reference thermal profile in a smarter way. In the proposal, we used 

averaging to generate a reference thermal profile. One possible issue of this approach, i.e., 

Calibration points 

Temperature (℃) 

(c) 

Calibration points 

Temperature (℃) 

Temperature range 

to be monitored 

Virtual  

sensor #1 

Virtual  

sensor #2 

Error bounds 

(a)  

(b) 

Temperature (℃) 

Calibration points 

Temperature range 

to be monitored: 

low priority 

Temperature range 

to be monitored: 

high priority 

Figure 5.2. Calibration points of virtual sensors: (a) uniform error bounds over the wide 

temperature range, (b) non-uniform error bounds over the wide temperature range, (c) 

uniform error bounds over the narrow temperature range 
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simply averaging all thermal profiles, is that some unique properties of minor thermal profiles, 

which appear intermittently, can be cancelled out or ignored during the averaging process. 

This can be also an issue of major thermal profiles in some cases. In order to prevent this 

issue, we can first classify entire thermal profiles into several distinctive profile groups using 

pattern classification techniques such as Principal Components Analysis (PCA) [81], and then 

we apply the proposed sensor allocation method to each group separately. Sensor allocation 

result of each and every group can be combined to generate a final set of thermal sensors. If 

we need to limit the total number of thermal sensors, we can remove some thermal sensors 

(℃) 

… 

… 

(℃) (℃) 

All thermal profiles 

Classification into multiple groups 

Sensor allocation #2 Sensor allocation #1 Sensor allocation #n 

Final sensor allocation result 

Combine all sensor allocation results 

Figure 5.3. Improvement of the proposals: sensor allocation 
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that are associated with the groups that appear sporadically. This might increase the total 

number of sensors to be allocated, but we can achieve a lot better reconstruction results 

because we assign thermal sensors so that even minor thermal profiles can be reconstructed 

equally well.   

5.3. Directions for future research 

Clock tree synthesis is another topic that requires temperature-aware design. As explained 

in chapter 4, interconnect delay depends on the thermal distribution of substrates. As a result, 

clock tree synthesis methods built on an assumption that the thermal distribution of a chip 

across a die is uniform should be modified accordingly in order to prevent any clock skew 

related issues. Recently, several approaches [16] [82] [83] were proposed to minimize the 

clock skew variation caused by temporal and spatial temperature variation. In the future, we 

can extend our work presented in chapter 4 to improve those methods by allowing the actual 

delay of each path to be calculated and more accurate clock skew to be considered in path 

selection.  

The advent of 3D integrated circuits also gave particular prominence to temperature-aware 

design and DTM solutions. 3D ICs [84] are usually made by stacking up 2D planar IC 

structures, and it allows us to put a lot more transistors on the exactly same foot print. In 

addition, the interconnect length can be drastically reduced by the use of short vertical 

interconnections between tiers, which are usually named Through Silicon Vias or TSVs in 

short; thus, we can reduce power consumption caused by long global interconnects and also 

can solve delay-induced issues using TSVs. One of the reasons why we need to pay a lot more 
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attention to the thermal issues of 3D ICs is that cooling solutions for 3D ICs are not 

appreciably different from the ones used for conventional 2D ICs. Increase in power density 

due to stacking is another reason why temperature-aware design is indispensable in 3D ICs. 

All proposed methods in this work were designed mainly for 2D planar ICs, and they might 

not work as intended in case of 3D ICs because we did not consider 3D IC specific issues 

such as three dimensional thermal profiles instead of planar thermal profiles, more 

complicated relationship between the temperature of substrates and the delay of interconnects, 

etc. As a result, it might be necessary to update them or simply propose all new methods that 

are suitable for 3D ICs in the near future.  

In this work, a part of low-level temperature-aware design methodologies were explored; 

how to prepare accurate temperature information on a full-chip scale so that DTM solutions 

can use the information and manage resources in an efficient way to improve the thermal 

situation of a chip; how to route global interconnects so that delay-related issues can be 

reduced, and the severity or damage can be alleviated even in extreme thermal conditions. 

Temperature-aware design does not provide complete protection against severe thermal 

conditions all by itself; it needs to be accompanied by proper DTM solutions so that they 

work together as a whole system to provide a reliable working environment. Naturally, we 

can propose a new fine-grain DTM technique as a next step that is optimized for a chip based 

on the extensive knowledge about the chip; temperature-aware design methods used for the 

chip; the characteristics of each component of the chip such as the location of thermal sensors 

and their types and accuracy; methods used for full-chip thermal profile reconstruction, etc.   
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As we discussed in this work, there are quite strong correlations among the performance, 

power, reliability, and temperature of a chip or a system. Engineers and researchers have tried 

to improve the performance of a chip or a system for decades, and a large number of 

techniques or solutions have been proposed to deal with the associated issues concerning the 

temperature, power consumption, and reliability of high performance chips. However, the 

most trustworthy and safe choice was always limiting the performance of chips in order to 

reduce the temperature and power consumption and also to increase the reliability. That 

means, there still remain a great number of questions to be answered clearly in order to design 

a chip or a system with great performance and reliability while consuming less power and 

generating less heat, and the on-going research on temperature-aware design and DTM 

solutions might be able to provide some insight or some good answers to those questions.   
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