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Abstract of the Dissertation

Multidimensional Item Factor Analysis With

Semi-Nonparametric Latent Densities

by

Scott Lee Monroe

Doctor of Philosophy in Education

University of California, Los Angeles, 2014

Professor Li Cai, Chair

Woods and Lin (2009) proposed a unidimensional item response theory (IRT)

model where the distribution of the latent variables is estimated using a semi-

nonparametric (SNP, Gallant & Nychka, 1987) density. Estimation of the latent

variable density can reduce bias in parameter estimates that results from mis-

specifying the form of the density (Woods & Thissen, 2006; Woods & Lin, 2009).

However, application of the Woods and Lin (2009) model is restricted to the uni-

dimensional setting. To address this limitation, the present research generalizes

the Woods and Lin (2009) model to multidimensional IRT (MIRT). The result-

ing model, the SNP-MIRT model, may also be considered a generalization of the

“standard” MIRT model, which specifies a normal density for the latent variables.

A secondary focus of this research concerns a new proposal for calculating stu-

dent growth percentiles (SGP, Betebenner, 2009). In Betebenner (2009), quantile

regression (QR, Koenker & Bassett, 1978; Koenker, 2005) is used to estimate the

SGPs. However, a shortcoming of the original methodology is that measurement

error in the score estimates, which always exists in practice, leads to bias in the

SGP estimates (Shang, 2012). One way to address this issue is to estimate the

SGPs using a modeling framework that can directly account for the measurement

error. MIRT is one such framework, and the one utilized here. To maximize the

ii



generality of the approach, as well as guard against misspecification of the latent

variable density, the SNP-MIRT model is used. SNP-MIRT estimates, in turn,

are used with the calibrated projection linking methodology (Thissen, Varni, et

al., 2011; Thissen, Liu, Magnus, & Quinn, 2014; Cai, in press-a, in press-b) to

produce SGP estimates.

Preliminary simulation studies are conducted to investigate the fidelity of the

SNP-MIRT model and SGP estimation implementations. The simulation study

for the SNP-MIRT model focuses on recovery of the shape of the data-generating

latent variable density. The simulation study for the proposed SGP method fo-

cuses on comparing the accuracy of the QR, standard MIRT, and SNP-MIRT

approaches. Finally, empirical applications are provided to illustrate the new

methods.
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CHAPTER 1

Introduction

Woods and Lin (2009) proposed a unidimensional item response theory (IRT)

model where the distribution of the latent variables is estimated using the semi-

nonparametric (SNP) density of Gallant and Nychka (1987). The present research

is primarily concerned with the generalization of the Woods and Lin (2009) model

to a multidimensional IRT (MIRT) framework. Hereafter, the proposed model will

be referred to as the SNP-MIRT model. In particular, this research concerns full-

information maximum likelihood (FIML) estimation of the SNP-MIRT model,

along with likelihood inference more generally. While the SNP density has been

successfully used in other modeling contexts, the exisiting parameterizations are

not well-suited for a general confirmatory MIRT model implementation. Thus,

this research proposes a new parameterization that facilitates customary MIRT

model specification. As such, the SNP-MIRT model may also be considered a

generalization of the standard MIRT model which specifies a normal distribution

for the latent variable density.

Due to the potentially high-dimensional latent variables, the Metropolis-Hastings

Robbins-Monro (MH-RM, Cai, 2010a) algorithm is adopted for estimation. Use

of the MH-RM algorithm also facilitates the incorporation of various methods

for inference related to the Metropolis-Hastings (M-H, Metropolis, Rosenbluth,

Rosenbluth, Teller, & Teller, 1953) algorithm. To that end, this research also

extends the work of Chib and Jeliazkov (2001) to propose a new estimator for

the information matrix. Like MH-RM, this estimator eschews quadrature in favor
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of Monte Carlo methods. And, since this estimator depends on output from the

M-H algorithm, it naturally complements the MH-RM algorithm.

A secondary focus of this research concerns a new proposal for estimating

student growth percentiles (SGP, Betebenner, 2009). In the original methodology,

quantile regression (QR, Koenker & Bassett, 1978; Koenker, 2005) is used to

regress the current year score estimates on previous years’ score estimates. In this

research, an alternative method is proposed for estimating SGPs, where all data

are modeled jointly using MIRT, or its generalization, SNP-MIRT. Specifically,

the new proposal capitalizes on the calibrated projection linking (Thissen, Varni, et

al., 2011; Thissen et al., 2014; Cai, in press-a, in press-b) methodology to produce

the SGP estimates.

This research, though technical in nature, is ultimately motivated by expand-

ing the range of questions that may be investigated by social science researchers.

Regarding the SNP-MIRT model, researchers may have theory-driven ideas about

the form of the latent variable distribution. Theory may hold that this distribution

is, for example, normal, skewed, or multimodal. On the other hand, researchers

may be unwilling to claim any prior knowledge as to the distributional form. In ei-

ther case, the shape of the distribution may itself be a point of substantive interest.

Regarding the new framework for estimation of SGPs, educational researchers and

policymakers likely have numerous questions about the merits and shortcomings

of the original SGP methodology (Betebenner, 2009). The framework presented

here provides a versatile tool to investgate many of those questions. This issue is

further discussed in Chapter 2.

The remainder of this chapter reviews methodological topics particularly rel-

evant to this research. These topics are: modeling latent densities; FIML estima-

tion of MIRT models; and the original QR-based approach to SGPs.
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1.1 Modeling Latent Densities

Across numerous modeling frameworks, methodologists have used a variety of den-

sities for latent variables. This section reviews these efforts for generalized linear

mixed models (GLMMs), generalized linear latent variable models (GLLVMs),

and IRT models. In this review, particular attention is devoted to the use of

the SNP density. The technical details of the density, however, are presented in

Chapter 4.

An appealing feature of the SNP density is that it is quite flexible. It can

approximate a wide range of densities, including skewed densities and those with

multiple modes. Figure 1.1 gives an example of an SNP density. Both marginals

are clearly nonnormal, as is the joint distribution. However, the density in Figure

1.1 is standardized, with null mean vector and identity covariance matrix. Thus,

even when the SNP density is standardized, it can take on a variety of shapes.

1.1.1 Generalized Linear Mixed Models

Within the GLMM framework, the random effects in the model can be regarded

as latent variables. Thus, estimating the distribution of the random effects for

GLMMs is analogous to estimating the distribution of the latent variables in IRT.

Typically, the random effects density is specified as normal, but researchers have

proposed several alternative approaches.

One of these alternatives utilizes the SNP density (e.g., Zhang & Davidian,

2001; Chen, Zhang, & Davidian, 2002; Papageorgiou & Hinde, 2012; Vock, David-

ian, & Tsiatis, 2012, 2014). Two notable implementations are given by Zhang and

Davidian (2001) and Chen et al. (2002). Zhang and Davidian (2001) is important

for a reparameterization that stabilized estimation, while Chen et al. (2002) is

noteworthy for its method of estimation (Monte Carlo EM).

Other alternatives include Gaussian mixtures (Verbeke & Lesaffre, 1996; Magder

3



Figure 1.1: Contour of Bivariate SNP Denisty and Marginal Densities
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Note. The SNP density above is standardized, with null mean vector and identity
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& Zeger, 1996), skew normal mixtures (Arellano-Valle, Bolfarine, & Lachos, 2005;

Lin & Lee, 2008), and skew ellipticals (Jara, Quintana, & San Martin, 2008). Skew

normal mixture densities have also been used in IRT (e.g., Azevedo, Bolfarine,

& Andrade, 2011).

With so many competing models, it is natural to wonder how they compare

to one another. With this motivation, Ghidey, Lesaffre, and Verbeke (2008) com-

pared several methods through simulation study. The research concluded that

no single methodology was best across all conditions, including heavily-skewed

and bimodal distributions. Compared to other methods, the SNP approach was

found to perform very well in recovering bimodal distributions, and less well in

recovering heavily-skewed distributions.

1.1.2 Generalized Linear Latent Variable Models

Density estimation has been incorporated into the estimation of a number of

latent variable models besides IRT. Notably, in factor analysis, a Gaussian mixture

(Montanari & Viroli, 2010b) and a skew normal approach (Montanari & Viroli,

2010a) have been taken. And recently, Irincheeva, Cantoni, and Genton (2012)

proposed a GLLVM using the SNP method for density estimation. Notably, these

approaches all adopt the EM algorithm (Dempster, Laird, & Rubin, 1977) or a

general Newton-type optimizer for estimation. As will be discussed, these choices

are largely impractical for FIML estimation of MIRT.

1.1.3 Item Response Theory Models

Bock and Aitkin (1981) is best known for its implementation of EM to obtain

maximum marginal likelihood estimates for item parameters, as the approach

is still widely considered the gold-standard for parameter estimation for many

IRT models. However, the research also presented the Empirical Histogram (EH)
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method (see also Mislevy, 1984) for characterizing a latent variable distribution

as a collapsing of all posteriors across the E-step tables. More recently, Knott

and Tzamourani (2007) proposed a generalization of the EH method, where the

locations of the quadrature points need not be fixed.

Two alternatives to the EH method have been advanced by Carol Woods

and colleagues. One of these methods is Ramsay-Curve IRT (RC-IRT, Woods

& Thissen, 2006; Woods, 2007, 2008; Monroe & Cai, 2014), which has been

implemented for unidimensional models. In its original implementation (Woods &

Thissen, 2006), the RC method is incorporated into an EM scheme. Basically, the

estimates of the Ramsay-Curve parameters are updated during the Maximization

step (M-step) by regressing the proportions given by the EH method onto a basis

spline. In a precursor to the current research, Monroe and Cai (2014) implemented

an RC-IRT model using the MH-RM algorithm.

The other method is SNP-IRT (Woods & Lin, 2009), originally termed “Da-

vidian Curve IRT,” in honor of Marie Davidian, who has been instrumental in

developing the SNP methodology.

1.2 FIML Estimation of MIRT Models

In theory, FIML estimation for MIRT can be achieved by the EM algorithm, as

in Bock and Aitkin (1981). In other words, there is no deficiency in the theoret-

ical approach of the EM algorithm for estimating parameters of MIRT models.

Instead, the difficulty lies in the computational burden of EM for MIRT models,

which grows exponentially with the dimensionality of the model. This is because

in the Expectation step (E-step), posterior distributions (of response patterns) are

evaluated at some specified number of quadrature points per dimension. The use

of 49 points for one dimension implies 493 > 100, 000 points for three dimensions.

In the literature, this phenomenon is often referred to as the “curse of dimension-
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ality.” Moreover, functions of each response pattern must be evaluated at every

point, at every iteration.

1.2.1 Addressing the “Curse of Dimensionality”

The curse of dimensionality has motivated many research efforts designed to avoid

the sort of computational burden that attends use of the EM algorithm for high-

dimensional MIRT models. Cai (2010a) provides a taxonomy of the different

methods and the relationship of the MH-RM algorithm to these various methods.

A similarly comprehensive review is not presented here. However, two methods

will be briefly described as they are particularly relevant to the SNP-MIRT re-

search. The first of these is Monte Carlo EM (MCEM, Wei & Tanner, 1990). The

second is Stochastic EM (SEM, Diebolt & Ip, 1996).

MCEM is of special interest here because it is used to estimate the SNP-

GLMM model in Chen et al. (2002). In MCEM, the integration in the E-step

is accomplished by Monte Carlo methods as opposed to, for instance, the use of

quadrature via E-step tables. This is attractive because, in principle, the Monte

Carlo sample size can be relatively small. However, as the likelihood approaches

its maximum, the Monte Carlo sample size must also increase so that the Monte

Carlo error does not dominate the M-step update (Booth & Hobert, 1999). To

the extent that the Monte Carlo sample size must approach the E-step table size

to achieve convergence, MCEM remains plagued by the curse of dimensionality.

Unlike MCEM, SEM does not produce ML estimates. However, it is described

here because it is related to both MCEM and MH-RM. SEM can be understood as

MCEM with a fixed Monte Carlo sample size of 1. As mentioned above, since the

sample size does not increase across iterations, the likelihood will not converge to

its maximum. However, the sequence of parameter estimates can yield a sample

from a stationary distribution where the mean is close to the ML estimate. This
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characteristic of the sequence of SEM estimates is itself useful, and MH-RM adopts

a similar approach to obtain refined starting values (discussed in Chapter 5).

1.2.2 The Metropolis-Hastings Robbins-Monro Algorithm

Like SEM and MCEM, the MH-RM algorithm (Cai, 2010a, 2010b) iterates be-

tween two steps. However, unlike the methods just discussed, there is no maxi-

mization step. In this sense, MH-RM is not a variant of the EM algorithm. It is

similar, though, to both SEM and MCEM in that Monte Carlo samples are drawn

from the posterior predictive distribution of missing data. In other words, latent

variable draws “fill-in” the missing data. This step is accomplished via an M-H

sampler (Metropolis et al., 1953; Hastings, 1970), and constitutes the “MH” part

of the algorithm. In the “RM” part, the Robbins-Monro method (RM, Robbins

& Monro, 1951) is used to slowly filter out the noise introduced by the MH sam-

ples across the sequence of iterations. Thus, the RM filter obviates the need to

increase the Monte Carlo sample size in order to ensure the sequence of estimates

converges to the ML solution. To the contrary, in practice, MH-RM often proves

stable with sample size 1.

Technical details of the MH-RM algorithm are presented in Chapter 5. It

should be noted, though, that the algorithm has been successfully applied to

exploratory factor analysis (EFA, Cai, 2010a) and confirmatory factor analysis

(CFA, Cai, 2010b), and is available in commercial IRT software (Cai, 2013; Cai,

Thissen, & du Toit, 2011). Further, it has been used to estimate a unidimesional

RC-IRT model (Monroe & Cai, 2014). Consequently, it is an attractive method

to use in estimating the parameters of the SNP-MIRT model.
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1.3 The QR-Based Approach to SGPs

The SGP methodology (Betebenner, 2009) is used to locate a student’s current

score in a conditional distribution based on the student’s past score(s). As such,

SGPs may be considered conditional status percentiles (Castellano & Ho, 2013).

Instead of focusing solely on current achievement, SGPs provide context for that

achievement. For example, suppose a student’s current achievement is categorized

as “below basic.” By itself, this evaluation may be considered disappointing.

However, if the accompanying SGP is 90, there is reason for encouragement: the

interpretation is that this student’s current achievement is higher than 90% of

students who share the same score history. In this way, SGPs can add to our

understanding of how well students are doing, and how they are progressing.

Consequently, the SGP methodology has grown in popularity, and is used in

numerous states to describe student performance. Moreover, the measure can

be aggregated in an effort to describe teacher or school performance. In this

latter case, the desired inference is that higher aggregate SGPs indicate higher

effectiveness.

For the QR approach to SGPs, estimation of the conditional distribution uses

the current year score as an outcome variable and previous years’ scores as co-

variates. The approach uses a B-spline parameterization, as opposed to a linear

parameterization, for the conditional quantile functions (Betebenner, 2009). This

choice helps to account for non-linearity, skewness, and heteroskedasticity in the

data. Just as with linear regression analysis, however, measurement error in the

scores introduces bias into the regression parameter estimates, and ultimately the

SGP estimates (Shang, 2012). Within the context of QR using a linear param-

eterization, Shang (2012) applied simulation extrapolation (SIMEX) in an effort

to correct the regression parameter bias caused by measurement error in the co-

variates (i.e., past years’ scores).
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In this research, the proposed method for SGP estimation accounts for the

correlated measurement error in all scores (i.e., past and current years). This

method is presented and studied in Chapter 10.
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CHAPTER 2

Relevance of Topics to Educational Policy and

Practice

This chapter discusses how the methodological topics explored in this research

are relevant to education policy and practice. The proposal of the SNP-MIRT

model is broadly relevant to any education policy that utilizes IRT modeling in

some form. On the other hand, the proposal of the SGP estimation framework is

directly relevant to evaluating states’ current SGP policies and may help to shape

future practice in measuring student growth.

2.1 Relevance of SNP-MIRT Model

Prior research on density estimation in IRT has found that misspecification of the

latent variable density can lead to bias in the parameter estimates (Yamamoto &

Muraki, 1991; Woods & Thissen, 2006; Woods & Lin, 2009). This phenomenon

certainly extends to the multidimensional setting to some extent, and is one of the

motivations for the current research. This potential bias is important because in

educational testing settings, parameter estimates are used to calculate a multitude

of quantities.

For instance, individual latent variable estimates and conditional standard er-

rors of measurement both depend on parameter estimates. Consequently, classifi-

cation decisions also depend on these estimates. Further, when individual latent

variable estimates are aggregated to either the teacher or school level, these ag-
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gregated estimates must necessarily depend on parameter estimates. Since the

SNP-MIRT model can yield less biased parameter estimates, the method has the

potential to improve the validity of inferences that results from any educational

test.

As a concrete example to help illustrate the relevance of the SNP-MIRT model

to educational practice, consider the assessment being developed by Smarter Bal-

anced Assessment Consortium (Smarter Balanced) and the Partnership for As-

sessment of Readiness for College and Careers (PARCC) (see, e.g., Herman &

Linn, 2013). The stated goal of the assessment is to measure progress towards

college- and career-readiness. While the assessment includes English Language

Arts/literacy, this example will focus on mathematics.

For mathematics, the assessment aims to report achievement level descriptors

(ALD), aligned with the Common Core State Standards, for each of four Content

Claims. These Content Claims are: Concepts and Procedures; Problem-Solving;

Communicating Reasoning; and Modeling and Data Analysis. For each of these

(related) Content Claims, students will receive a Content ALD, rating the student

from 1-4. The relevance of the SNP-MIRT to this assessment can be appreciated

by considering the intended structure of the data and the sorts of inferences that

Smarter Balanced and PARCC will want to make.

First, the test as designed will likely be multidimensional. In the absence of

pilot test data, it is not possible to state whether there will be four factors, as

suggested by the number of Content Claims. However, an exploratory item factor

model is one tool that could be used to determine the number of empirical fac-

tors. More generally, it could be used to provide validity evidence for the claim

that the assessment structure conforms to design specifications, including whether

subscores will represent designed subdomains. Also, some individual items may

involve multiple factors. For instance, temporarily assuming the existence of four

factors aligned with the Content Claims, items that involve Communicating Rea-

12



soning could conceivably involve other Claims. This is because the “reasoning”

involved will be due to knowledge of concepts, or maybe problem-solving. In any

event, an exploratory item factor model could be used to analyze the dimension-

ality of individual items, and the pattern of loadings overall.

Second, it may be desirable to conduct differential item functioning (DIF)

analyses to compare ethnic groups, or to compare native speakers with English

Language Learners (ELL). And for some DIF methods, a multiple group model

is necessary. For instance, DIF can be assessed using likelihood ratio tests that

compare nested two-group IRT models, as in Thissen, Steinberg, and Wainer

(1993). For this method, one group is designated the “reference” group, with fixed

mean and variance. In relation to the reference group, the means and variances

for the other groups are then be estimated. This sort of DIF analysis could be

conducted with the SNP-MIRT model, as it is possible to freely estimate density

means and variances.

Third, depending on the constitution of the groups, it may be unreasonable

to assume normality of the latent variables. For example, consider a two-group

comparison math achievement level between native speakers and ELLs. Further,

assume that the native speakers are designated as the reference group. It is at

least plausible that the latent variable density for the native speakers is normal.

For the ELLs, however, such an assumption would be less plausible. The different

stages of language acquisition likely interact with the math Content Claims in

unpredictable ways, making an assumption of normality less tenable. Again, the

SNP-MIRT model could address this concern.

2.2 Relevance of SGP Estimation Framework

The proposed MIRT-based SGP estimation framework has the potential to sig-

nificantly influence education policy and practice in two ways. First, it may be
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used to better study properties of the existing QR-based methodology. Second, it

could potentially be adopted instead of the existing QR-based methodology.

Without an IRT-based SGP estimation framework, it is exceedingly difficult to

study the QR-based methodology under realistic conditions. This is because the

predominant method of generating realistic item level data in simulation studies

in educational research is via an IRT model. Yet, without an IRT-based SGP

estimation framework, there is no way to calculate the “true” SGPs of the simulees.

And without the “true” SGPs, it is difficult to evaluate the performance of the

QR-based SGPs for such simulated data.

However, the proposed MIRT-based framework solves this problem. Data may

be simulated from a relatively realistic MIRT model and the “true” model-implied

SGPs may be computed. These, in turn, may be used to assess the performance

of the QR-based SGPs. The implication is that educational researchers now have

a more direct method to pursue research topics concerning QR-based SGPs.

Of course, the proposed MIRT-based SGP framework also makes it possible to

produce MIRT-based SGP estimates. These estimates may be compared to both

“true” model-implied SGPs and QR-based estimates. It is at least conceivable that

the MIRT-based estimates are better, in some sense, than the SGP counterparts,

which could lead to changes in future policy or practice.
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CHAPTER 3

A Multidimensional Item Response Theory

Model with Multiple Groups

This chapter introduces the confirmatory multiple group MIRT model used in this

research, as well as various results needed for estimation by the MH-RM algorithm.

First, this chapter presents how user-defined constraints and multiple groups may

be accomodated. Then, the models for the items, multidimensional generaliza-

tions of Samejima’s (1969) graded response model and Birnbaum’s (1968) three-

parameter logistic (3PL) model, are introduced. This is followed by a brief in-

troduction of the models for the densities, which are the multivariate normal

density and the SNP density. The details of the SNP density are given in Chapter

4. Finally, this chapter presents the observed and complete data log-likelihood

equations, as these are needed for the MH-RM algorithm.

3.1 Some Notation

Let there be g = 1, . . . , G groups, with i = 1, . . . , Ng respondents in group g. The

total sample size is N =
∑G

g=1Ng. Also, for group g, let there be j = 1, . . . , ng

items. For the ith respondent in this group, let yijg be the observed response to

the jth item. The ng responses for respondent i may then be collected in the ng×1

vector yig. For group g, let Yg be the Ng×ng matrix with ith row y′ig. Finally, all

of the observed responses for the full sample may be collected in Y = {Yg}Gg=1.

For group g, let there be pg latent variables. Then, for the ith respondent, θig
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is a pg × 1 vector of latent variable scores. As with the observed responses, the

latent variable scores for group g may be collected in a matrix. Let Θg be this

matrix, with ith row θ′ig. Then, Θ = {Θg}Gg=1 collects all latent variable scores

for the full sample.

Moving on to notation for the parameters of the model, let ζ be a d1×1 vector

of independent item parameters and let ξ be a d2×1 vector of independent group

or density parameters. Then, ω = (ζ ′, ξ′)′ is a d× 1 vector of all freely estimated

parameters, where d = d1 + d2. With this general structure, individual item and

group parameters may be expressed as functions of ζ and ξ, respectively.

3.2 Item Response Models, Latent Density Models, and

Constraints

Generically, let πijk be the probability that the observed response yij takes the

score k, k ∈ {0, . . . , Kj − 1}. In this research, the Kj responses for item j are or-

dered, but the modeling framework may accommodate unordered responses (e.g.,

Thissen, Cai, & Bock, 2011). Here, πijk is expressed as a function of ζ and θi

using one of two item response models.

The first is a a multidimensional version of Samejima’s (1969) graded response

model. Let α(ζ) be a (Kj−1)×1 vector of item intercepts and let β(ζ) be a p×1

vector of item slopes, where the parentheses emphasize the functional dependence

of α and β on ζ. The nature of this functional dependence will be discussed

below.

Returning to the graded response model, πijk is defined as

πijk = T (yij = k|α(ζ),β(ζ),θi) = T+
j (k)− T+

j (k + 1), (3.1)

where T+
j (k) is a multidimensional version of the familiar two-parameter logistic

16



model,

T+
j (k) =

1

1 + exp(−(αjk(ζ) + βj(ζ)′θi))
. (3.2)

That is, T+
j (k) is the conditional probability that a response is in category k or

higher. Also, define T+(0) = 1 and T+(Kj) = 0 for all j, so that given θi, the

sum of the conditional probabilities is 1.

The second model is a multidimensional version of the 3PL model. Since the

3PL model is defined for dichotomous responses, α(ζ) is a scalar. Also, let c(ζ)

be the guessing parameter. Then, conditional on θi, the conditional probability

of observing yij = 1 is

T ∗j (1) = T (yij = 1|c(ζ), α(ζ),β(ζ),θi) (3.3)

= c(ζ) +
1− c(ζ)

1 + exp(−(αj(ζ) + βj(ζ)′θi))
,

and the probability of observing yij = 0 is simply

T ∗j (0) = T (yij = 0|c(ζ), α(ζ),β(ζ),θi) = 1− T ∗j (1). (3.4)

Then, for the multidimensional version of the 3PL, the probability of an item

response is

πijk = T ∗j (1)yijT ∗j (0)1−yij . (3.5)

Moving on to the latent density models, in general, let ϕ(θ; ξ) represent a

density function for θ depending on ξ. If the density is specified as multivariate

normal, it is parameterized by the p×1 mean vector, µ(ξ), and the p×p covariance

matrix Σ(ξ). In this case, the function will be written as φ(θ;µ(ξ),σ(ξ)), where

σ = vech(Σ) is a p∗ × 1 vector of the unique elements of Σ, p∗ = p(p+ 1)/2, and

vech(·) returns elements on or below the main diagonal.

Alternatively, the latent denstiy may be modeled by the SNP density function,
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in which case it will be written as h(θ;ψ(ξ)), where ψ is a vector of parameters.

The dimensionality of ψ depends on both p and a user-defined tuning contant κ.

As will be explained in Chapter 4, this research proposes a new parameterization

for the SNP density where one set of the parameters defines the “shape” of the

density, and a disjoint set defines the location and scale.

Following Cai (2010b), the notation for the dependence of the parameters on

ζ and ξ is indicated by function notation to elucidate how linear constraints may

be imposed to yield a confirmatory model. As an example, suppose p = 2 and

a bivariate normal density is chosen to model θ. Further, suppose that the only

free parameters are the elements of µ(ξ), while σ(ξ) = vech(Ip), with Ip a p × p

identity matrix. Assuming the model is otherwise identified, this constraint may

be imposed as µ(ξ)

σ(ξ)

 = u + Lξ, (3.6)

where, in this case, u is a (p+ p∗)× 1 vector of constants and L is a (p+ p∗)× d2

matrix of constants that specify the constraint. For this example, the necessary

u and L are



µ1

µ2

σ11

σ21

σ22


=



0

0

1

0

1


+



1 0

0 1

0 0

0 0

0 0


ξ1

ξ2

 =



ξ1

ξ2

1

0

1


. (3.7)

In other words, while the bivariate normal may depend on 5 unique quantities,

given this particular constraint, it is only a function of 2 free parameters, ξ1 and

ξ2. In an analogous fashion, arbitrary linear constraints may be imposed on the

various item parameters (e.g., Cai, 2010b).
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The example also highlights a convenient feature of the normal density, namely,

that it is parameterized directly by the mean and variance. As just shown, this

feature makes imposing constraints on either of the moments straightforward.

This feature also motivates the proposed parameterization of the SNP density,

presented in Chapter 4.

3.3 Observed and Complete Data Likelihoods

Given an item model, the conditional distribution of yij is a multinomial with Kj

cells and cell probabilities πijk,

f(yij|ζ,θig) =

Kj−1∏
k=0

π
χk(yij)
ijk , (3.8)

where χk(y) is an indicator function defined as

χk(y) =


1, if y = k,

0, otherwise

. (3.9)

As is common with latent variable models, item responses are assumed inde-

pendent after conditioning on the latent variable (Lord & Novick, 1968). The

implication is that the conditional density of yi is simply the product over the n

items:

f(yi|ζ,θi) =
n∏
j=1

f(yij|ζ,θi). (3.10)

Having specified the conditional distribution of yi, the next step is to specify

its marginal density, which is obtained by integrating out the latent variables.
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The marginal density is defined as

f(yi|ω) =

∫ n∏
j=1

f(yij|ζ,θ)ϕ(θ; ξ)dθ. (3.11)

At this point, the subscript g is re-introduced to define the observed data likelihood

for group g,

L(ω|Yg) =

Ng∏
i=1

[∫ ng∏
j=1

f(yijg|ζ,θ)ϕ(θ; ξ)dθ

]
. (3.12)

For the entire sample, the observed data likelihood may then be expressed as

L(ω|Y) =
G∏
g=1

L(ω|Yg). (3.13)

Though we seek the maximum of Equation (3.13), it is difficult to directly optimize

due to the N integrals, which may be high-dimensional. Instead, it is easier

to optimize Equation (3.13) indirectly, by exploiting the relationship between

the observed and complete data models. This relationship will be discussed in

Chapter 5. For group g, the observed data, Yg, with the missing data Θg together

constitute the complete data, and its likelihood is

L(ω|Yg,Θg) =

Ng∏
i=1

[
ϕ(θig; ξ)

ng∏
j=1

f(yijg|ζ,θig)

]
, (3.14)

which may be factored as

L(ω|Yg,Θg) =

[
Ng∏
i=1

ϕ(θig; ξ)

][
Ng∏
i=1

ng∏
j=1

f(yijg|ζ,θig)

]
. (3.15)

Then, just as with the observed data likelihood, the complete data likelihood for
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the entire sample is obtained by taking the product across groups,

L(ω|Y,Θ) =
G∏
g=1

L(ω|Yg,Θg). (3.16)

Moreover, taking the log of the complete data likelihood reveals that it is the

sum of two different parts:

logL(ω|Y,Θ) = logL(ζ|Y,Θ) + logL(ξ|Θ), (3.17)

Furthermore, each of these parts may consist of multiple mutually independent

log-likelihoods. With SNP-MIRT, (at least) one of these log-likelihoods is given

by the SNP density. The implications of this structure are remarkable. First, note

that Equation (3.17) does not contain the N integrals of Equation (3.12). And

second, instead of optimizing all of the elements of ω simultaneously, the complete

data formulation allows a piecemeal approach. Consequently, an optimization

scheme that updates parameters based on the complete data log-likelihood (e.g.,

EM) or its derivatives (e.g., MH-RM) can proceed with individual updates for

each item and group density.

This chapter has introduced the graded response and 3PL MIRT models,

and the likelihood for the item parameters. The associated log-likelihood and

derivatives can be found in Appendix B of Cai (2010a). For SNP-MIRT, the

log-likelihood and derivatives for the SNP density are also needed. These are

presented next.
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CHAPTER 4

Semi-Nonparametric Density Estimation

In this chapter, the SNP density is introduced as a model for “observed” latent

variables. Examples are provided to demonstrate the flexibility of the SNP model,

as well as illustrate minor limitations. Often, the SNP density is applied in situa-

tions where the scale and location of the density may not need to be constrained.

However, in MIRT, it is often desirable to place constraints on the latent vari-

able density, either to identify the model or to investigate substantive hypotheses,

such as differences in latent variable means. Consequently, in this research, a

new parameterization is proposed, which is more amenable to a MIRT modeling

context.

While the SNP density is more flexible than the normal, it is also more com-

plex. This relative complexity, of course, may introduce some difficulties during

estimation of the SNP-MIRT model. How these challenges are addressed will be

discussed in Chapter 5.

4.1 Original Parameterization

Let x be a p-dimensional vector with jth element xj. The semi-nonparametric

(SNP) density is given by

g(x;ν) = P 2
κ (x;ν)φ(x) (4.1)

where the first factor is a p-variate polynomial in x with t =
(
p+κ
κ

)
terms, and φ(·)
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is a p-variate standard normal density. Let a be the t × 1 vector of polynomial

coefficients. As will be explained, the elements of a are functions of the q = t− 1

elements in ν. The tuning constant, κ, governs the powers of the elements of x,

as the sum of these powers may not exceed κ.

For example, let p = 2 and κ = 2. Then the bivariate polynomial may be

written as

P (x) = a00 + a10x1 + a01x2 + a20x
2
1 + a11x1x2 + a02x

2
2, (4.2)

where, for any term, the subscript of the coefficient corresponds to the set of

powers of x. Note that for κ = 0, P (x) = a00, a constant, and the SNP simplifies

to a constant multiple of φ(x).

It is convenient to organize the powers for all terms in a t × p matrix, where

each row consists of the p powers of a term. Let this matrix be Λ, with (i, j)th

element, λij. Continuing with the example above,

Λ =



0 0

1 0

0 1

2 0

1 1

0 2


. (4.3)

Then, let η = η(x) be a t× 1 vector with ith element

ηi =

p∏
j=1

x
λij
j . (4.4)

With this arrangement, the polynomial may be written more compactly as P (x) =

a′η.
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For the general presentation above, the SNP function does not integrate to 1

and cannot serve as a proper density. Gallant and Tauchen (1989) impose the

necessary constraint by fixing the first coefficient (e.g., a00 ≡ 1) and dividing

g(x;ν) by a normalizing constant. Another approach, presented in Zhang and

Davidian (2001), is adopted here.

4.2 The Zhang and Davidian (2001) Parameterization

The parameterization proposed by Zhang and Davidian (2001) does not involve

the calculation of a normalizing constant. Instead, it ensures g(x;ν) integrates

to 1 by enforcing the contstraint c′c = 1, where c = c(ν) is defined below. Let

U ∼ Np(0, I) so that U1, . . . , Up are independent standard normals. Then,

∫
g(x;ν)dx = E

(
P 2
κ (U)

)
(4.5)

= a′E [η(U)(η(U))′] a

= a′Aa,

where A = E [η(U)(η(U))′] is a t× t matrix with (k, l)th element

Akl =

p∏
j=1

E
(
U
λkj+λlj
j

)
. (4.6)

In words, the elements of A are the products of expectations of standard

normals raised to specified powers. We can take the product of the expectations as

the Uj are independent. Given p and κ, A is fixed and only needs to be computed

once. Also, the expectations involved can be found by recursive formulas (see, e.g.,

Johnson, Kotz, & Balakrishnan, 1994). Notably, A is a sparse positive definite

matrix, implying that A = B′B for some B. Next, define the t×1 vector c = Ba.

Finally, the restriction ensuring g(x;ν) is a proper density may be imposed on c
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as

E(P 2
κ (U)) = a′Aa = a′B′Ba = c′c = 1. (4.7)

Note, however, that (−c)′(−c) = 1 as well, creating an indeterminacy and need for

a further constraint. These constraints may be achieved by the reparameterization

of Zhang and Davidian (2001):

c1 = cos(δ1) (4.8)

c2 = sin(δ1) cos(δ2)

...

ct−1 = sin(δ1) sin(δ2) · · · sin(δq−1) cos(δq)

ct = sin(δ1) sin(δ2) · · · sin(δq−1) sin(δq),

for the q × 1 vector δ, where −π/2 < δr ≤ π/2, r = 1, . . . , q. The constraint on

the angles restricts c to a half-unit sphere of Rt, and prevents the indeterminacy

mentioned above.

To allow unconstrained optimization, which is preferable for MH-RM, δ must

be reparameterized. The strategy adopted in this research is to relate δ to the

q × 1 vector ν through the arctangent function, that is,

δr = arctan(νr), r = 1, . . . , q, (4.9)

where νr is the rth element of ν. Thus, −∞ < νr <∞, and −π/2 < δr(νr) < π/2,

r = 1, . . . , q. Note that with this parameterization, δr(νr) may not attain the value

π/2, though it may come arbitrarily close.
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Returning to the earlier example (with p = 2 and κ = 2),

A =



1 0 0 1 0 1

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 3 0 1

0 0 0 0 1 0

1 0 0 1 0 3


,

B =



1 0 0 1 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0
√

2 0 1

0 0 0 0 1 0

0 0 0 0 0
√

2


,

B−1 =



1 0 0 −1/
√

2 0 −1/
√

2

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1/
√

2 0 1

0 0 0 0 1 0

0 0 0 0 0 1/
√

2


,

c is the 6× 1 vector following the definition in Equation (4.8), and
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a = B−1c =



c1 − c4/
√

2− c6/
√

2

c2

c3

c4/
√

2

c5

c6/
√

2


.

With small values of κ (e.g., κ = 1 or 2), the SNP density can generate an

impressive variety of shapes. However, these shapes may not match the modeled

data in either location or scale. Consequently, it is desirable to introduce location

and scale parameters to increase the flexibility of the density. One approach,

illustrated by Zhang and Davidian (2001), has gained popularity in the literature

on mixed models (e.g., Chen et al., 2002; Vock et al., 2012), and will be now be

presented.

Let m = E(x) be the mean of x and let V = Var(x) be its variance. Also, let

SS′ = V, where S is a p×p lower triangular matrix and s = vech(S). For the time

being, assume these moments can be calculated. Importantly, in general, m 6= 0

and V 6= Ip. In Zhang and Davidian (2001), the random effects b are modeled as

b = µ̃+ R̃x, (4.10)

with inverse transformation

x = R̃−1(b− µ̃). (4.11)

Then E(b) = µ̃ + R̃m and Var(b) = R̃VR̃′. The tilde symbol is used to in-

dicate that µ̃ and R̃, while location and scale parameters, may not be directly

interpreted. Instead, these parameters serve to “adjust” the mean and variance
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implied by ν, and increase the flexibility of the location and scale of the SNP

density. We may write this more flexible density as

f(b;ν, µ̃, r̃) = g(R̃−1
b (b− µ̃);ν, µ̃, r̃)|R̃−1| (4.12)

= g(x;ν)|R̃−1|,

where r̃ is defined analogously to s. The parameterization in Equation (4.12) for

the random effects b has been used successfully in the mixed modeling literature

(Chen et al., 2002) and implemented in software (Vock et al., 2014). Note, how-

ever, that due to the complicated dependence of E(b) and Var(b) on ν, µ̃, and r̃,

this parameterization does not lend itself to general confirmatory modeling. More

specifically, placing constraints on E(b) and Var(b) via the various parameters

would be cumbersome at best.

Another approach to introducing location and scale parameters, though, is

proposed here.

4.3 A Standardized Parameterization

Ultimately, the parameterization proposed in this research depends on a standard-

ized parameterization of g(x;ν). Let

z = S−1(x−m) (4.13)

with inverse transformation

x = Sz + m. (4.14)

That is, z is simply a standardized version of x. It is easy to verify that E(z) = 0
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and Var(z) = Ip, as desired. We may write this density as

hz(z;ν) = g(Sz + m;ν)|S| (4.15)

= g(x;ν)|S|.

The approach is simple, and appears quite similar to the approach of Zhang

and Davidian (2001). However, whereas the elements of µ̃ and r̃ are additional

parameters to be estimated, the elements of m and s are complex functions of ν.

Standardized latent variable densities are used extensively in IRT modeling.

However, in some IRT modeling contexts, it is desirable to estimate the location

or scale of the latent variable. For instance, a researcher may wish to allow di-

mensions to freely correlate. As another example, it is common in multiple group

modeling to standardize the distribution for a reference group while freely estimat-

ing the location and scale (or components thereof) of the comparison group. In the

next section, an approach to extend the standardized SNP density is presented.

4.4 SNP-MIRT Parameterization

Consider the variable y, defined as

y = µ+ Rz, (4.16)

with inverse transformation

z = R−1(y − µ). (4.17)

Then, E(y) = µ and Var(y) = Σ = RR′. Also, let σ = vech(Σ). Finally, let

ψ = (µ′,σ′,ν ′)′ collect the various parameters for the density of y. Then, the
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density may be written as

hy(y;ψ) = hy(y;µ,σ,ν) = hz(R
−1(y − µ);ν)|R−1| (4.18)

= hz(z;ν)|R−1|

= g(x;ν)|SR−1|,

where the full dimensionality ofψ is q+p+p∗. The density given in Equation (4.18)

is the general SNP parameterization proposed in this research and implemented

for the SNP-MIRT model.

Several features of this parameterization are worth noting. First, unlike µ̃

and r̃, µ and σ are themselves mean and variance parameters. Consequently, for

purposes of confirmatory modeling in SNP-MIRT, constraints may be imposed

just as with a normal density. Second, if µ is fixed to 0 and Σ is fixed to Ip, then,

hy(y;ψ) simplifies to hz(y;ν). Third, if κ = 0, then a multivariate normal with

mean µ and variance Σ is obtained. Consequently, SNP-MIRT can be understood

to be a generalization of standard MIRT, where the latent distribution is assumed

normal.

Additionally, two practical features of this parameterization should be noted.

Estimation of µ and σ should be relatively stable, since location and scale param-

eters tend to have high information. Also, this parameterization facilitates finding

starting values for ψ in the following way. Given a sample, say θ, estimates for

µ and σ may be found immediately using the sample mean and variance. These

estimates may then be fixed and attention can turn to finding starting values for

just ν. In contrast, for the random effects parameterization, it is necessary to

find starting values for ν, µ̃, and r̃ simultaneously. Obviously, the additional

dimensionality may complicate the search.

All of this is not to argue that the parameterization proposed here is superior.

It is clearly more complex than the established parameterization. However, given
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typical IRT modeling, the proposed parameterization is arguably preferable for

that context. The more straight-forward parameterization of Zhang and Davidian

(2001) may arguably be better-suited for modeling the random effects in mixed

models.

4.5 Mean and Variance of Original Parameterization

The standardized implementation depends on finding m and V. To find m and

V, we proceed as we did to find A. That is, we again utilize U ∼ Np(0, I), since

E(x) =

∫
xP 2

κ (x)φ(x)dx (4.19)

= E(UP 2
κ (U)).

For the mth element of x,

E(xm) = E(Uma′η(U)η(U)′a) (4.20)

= a′E(Umη(U)η(U)′)a

= a′A∗ma,

where the (k, l)th element of A∗m is given by

p∏
j=1

E
(
U
λjk+λjl+χj(m)
j

)
, (4.21)

where χj(m) is an indicator function defined as

χj(m) =


1, if m = j,

0, otherwise

. (4.22)
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A similar strategy is used to find E(xx′), needed for Var(x). Proceeding as

above, for the mth and nth element of x,

E(xmxn) = E(UmUna
′η(U)η(U)′a) (4.23)

= a′E(UmUnη(U)η(U)′)a

= a′A∗m,na,

where the (k, l)th element of A∗m,n is given by

p∏
j=1

E
(
U
λkj+λkl+χj(m)+χj(n)
j

)
, (4.24)

and the additional indicator function is defined analogously to the Equation (4.22).

Using Equations (4.20) and (4.23), m = E(x) and V = E(xx′) − E(x)E(x)′ can

be obtained.

With the expressions for m and V, the density in Equation (4.15) can be

found. The log-likelihood function for the new parameterization is then

logL(ψ|Y) =
N∑
i=1

log hy(yi;ψ) (4.25)

=
N∑
i=1

logP 2
κ (xi;ν) + log φ(xi) + log |S|+ log |R−1|

= N log |SR−1|+
N∑
i=1

logP 2
κ (xi;ν) + log φ(xi)

As mentioned previously, in practice κ is treated like a tuning parameter, with

larger values allowing more flexibility in the shape of the SNP density. If κ is too

large relative to the information in the data (i.e., θ), then estimation of elements

in ν will be unstable. In more extreme cases, estimation may fail. However, it

is difficult, a priori, to know how much information is provided by Θ in order
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to specify κ appropriately. Therefore, in the interest of stabilizing estimation, a

diffuse prior may be placed on the ν parameters.

4.6 Prior for SNP Parameters

Following Woods and Thissen (2006) and Monroe and Cai (2014), a diffuse q-

variate normal prior is placed on the ν parameters. It can be confirmed from the

Zhang and Davidian (2001) parameterization that g(x; 0) = φ(x). Consequently,

the q-variate normal prior is specified with mean vector 0. The covariance matrix

for the prior, ςIq, implies that the marginal univariate priors on the elements of ν

are independent with common dispersion ς. Then, the actual objective function

to be maximized is logL(ψ|Y) + φ(ν; 0, ςIq).

The first and second derivatives of this expression are needed for the MH-RM

algorithm. The derivatives for the first term are presented in Appendix A. The

derivatives for the second term are standard results (see, e.g., Equations (18) to

(20), Woods & Thissen, 2006). With the SNP model fully defined, the complete

data log-likelihood in Equation (3.17) is entirely specified. We can now turn our

attention to estimation of the model, using the MH-RM algorithm.
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CHAPTER 5

The Metropolis-Hastings Robbins-Monro

Algorithm

5.1 The EM Algorithm as a Point of Comparison

Before presenting the MH-RM algorithm, the EM algorithm will be presented

for two purposes. First, the EM algorithm is more well-known, and comparing

details of EM to details of MH-RM may make the latter easier to understand.

And second, the two algorithms are both motivated by the so-called “Fisher’s

Identity,” (Fisher, 1925).

Let l denote the log-likelihood, so that l(ω|Y) is the observed data log-

likelihood and l(ω|Y,Θ) is the complete data log-likelihood. Formally, the goal

of MML estimation is to find

ω̂ = arg max
ω

l(ω|Y). (5.1)

Instead of maximizing l(ω|Y) directly, the EM algorithm finds ω̂ by iteratively

maximizing the expectation of l(ω|Y,Θ) over Π(Θ|Y,ω), where Π(Θ|Y,ω) is the

posterior distribution of missing data, given observed data and current parameter

estimates. Taking the appropriate expectation is the E-step, and calculating its

maximum is the M-step. These two steps are iterated until some convergence

criteria is met.
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Thus, the EM algorithm capitalizes on the equality

l(ω|Y) = E(l(ω|Y,Θ)) (5.2)

where the expectation is with respect to Π(Θ|Y,ω). Let ∇ω return the d × 1

vector of all partial first derivatives with respect to ω. Then, let

s(ω|Y,Θ) = ∇ωl(ω|Y,Θ) (5.3)

be the complete data score function. As noted by Efron (1977) in the discussion

section of Dempster et al. (1977), Equation 5.2 is a reformation of

∇ωl(ω|Y) =

∫
s(ω|Y,Θ)Π(Θ|Y,ω)dΘ (5.4)

= E(s(ω|Y,Θ)),

first presented by Fisher (1925). This connection is important here because Equa-

tion (5.4) also drives MH-RM. In this way, EM and MH-RM exploit the same re-

lationship to iteratively find the MLE. The mechanics of how MH-RM capitalizes

on Equation (5.4) will now be presented.

5.2 MH-RM in Broad Outline

Notice that the root of the left-hand side of Equation (5.4) is the MLE. The MH-

RM algorithm finds this maximum by iteratively updating ω̂, using the right-hand

side. The right-hand side, in turn, is an expectation that can be approximated

by Monte Carlo, provided samples from Π(Θ|Y,ω) may be obtained. Typically,

when computing Monte Carlo approximations, it is preferable to increase the sam-

ple size to reduce the Monte Carlo error. With MH-RM, however, minimizing the

Monte Carlo error for any iteration is not a priority. Perhaps counter-intuitively,
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with MH-RM, a small Monte Carlo sample size is preferable because it is compu-

tationally cheap. The RM method serves to filter the noise, and the sequence of

estimates converges to ω̂. In the sections below, more details will be provided on

how to obtain the samples, compute the updates, and apply the RM filter. These

are the key steps in the algorithm.

5.3 MH-RM in Greater Detail

5.3.1 Constructing an MH Sampler

Again, to approximate Equation (5.4) by Monte Carlo, samples from Π(Θ|Y,ω)

are needed. Following Patz and Junker (1999) and Cai (2010a), a Metropolis-

within-Gibbs sampling scheme is used to impute these latent variable scores. Con-

sider the posterior predictive density of θi for a generic respondent. By Bayes’

rule, the density is

Π(θi|yi,ω) =
f(y;θi, ζ)ϕ(θi; ξ)∫
f(y;θi, ζ)ϕ(θi; ξ)dθ

∝ f(y;θi, ζ)ϕ(θi; ξ), (5.5)

where the constant of proportionality is f(yi|ω) from Equation (3.11). By the

Metropolis-Hastings algorithm, given the current value θi, a candidate value, θ̌i,

is drawn from a convenient transition density, q(θi, θ̌i). The candidate value is

accepted with probability

α(θi, θ̌i) = min

[
Π(θ̌i|yi,ω)q(θ̌i,θi)

Π(θi|yi,ω)q(θi, θ̌i)
, 1

]
. (5.6)

Note that since Π(·|yi,ω) appears in both the numerator and denominator of

Equation (5.6), the expression may be simplified by cancelling the (difficult to eval-

uate) constant of proportionality. Additionally, if a symmetric transition density

is chosen, Equation (5.6) may be further simplified. With these simplifications,
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the acceptance factor takes the form

α(θi, θ̌i) = min

[
f(yi|ζ, θ̌i)ϕ(θ̌i; ξ)

f(yi|ζ,θi)ϕ(θi; ξ)
, 1

]
, (5.7)

Conveniently, calculating the acceptance probability for each θi depends on nei-

ther the latent variable scores of other persons, nor their item responses. With

this sampler, a Monte Carlo approximation to Equation (5.4) may be calculated

for any provisional estimate of ω. Next, the process by which these estimates are

updated is presented.

5.3.2 Calculating Updates

Let ωk be the vector of parameter estimates at the end of the kth iteration. At

iteration k + 1, the update is a function of three components. One of these is

an approximation of ∇ωl(ωk|Y). Another is a recursive approximation to the

conditional expectation of the complete data information matrix, which will be

defined below. The final component is the gain constant, γ, which will be explained

in the next section. It is also helpful to view the update at each iteration as

consisting of three stages: stochastic imputation, stochastic approximation, and

an RM update.

For stochastic imputation, we drawmk sets of missing data {Θ(j)
k+1; j = 1, . . . ,mk}

from Π(Θ|Y,ωk). Coupled with Y, these imputations create mk complete data

sets. Again, the RM filter makes large mk unnecessary. In many IRT applications

(e.g., Cai, 2010a; Monroe & Cai, 2014), mk ≡ 1 has proven sufficient.

For stochastic approximation, using Equation (5.4), we approximate the ob-

served data gradient, ∇ωl(ωk|Y), by the sample average of complete data gradi-

ents,
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s̃(k+1) =
1

mk

mk∑
j=1

s(ω(k)|Y,Θ
(j)
k+1). (5.8)

Essentially, s̃k+1 provides the direction of the update. However, its magnitude may

not be optimal. Consequently, convergence may be hastened given an appropriate

scaling factor. Following Cai (2010a), we choose the scaling factor to be the

conditional expectation of the complete data information, where the expectation

is with respect to Π(Θ|Y,ω). Let the complete data information matrix be

H(ω|Y,Θ) =
∂2l(ω|Y,Θ)

∂ω∂ω′
. (5.9)

Also, let (ω0,Γ0) be initial values, where Γ0 is a symmetric positive definite ma-

trix. Then, E(H(ω|Y,Θ)) may be recursively approximated as

Γk+1 = Γk + γk

{
1

mk

mk∑
j=1

H(ωk|Y,Θ
(j)
k+1)− Γk

}
. (5.10)

Finally, in the RM update, we set the new parameter estimate to

ωk+1 = ωk + γk(Γ
−1
k+1s̃k+1). (5.11)

Due to the independence implied by Equation (3.17), the stochastic approximation

and RM update steps may be carried out separately for the different items and

group densities.

5.3.3 Applying the RM Filter

Let k = 1, 2, . . . ,∞ index the iteration for the MH-RM algorithm. The gain

constants γk, for k ≥ 1, scale the updates and serve to slowly average out the

noise in the updates. For this to occur, the γk need to slowly decrease to zero,
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which is ensured by the following conditions,

γk ∈ (0, 1],
∞∑
k=1

γk =∞, and
∞∑
k=1

γ2
k <∞. (5.12)

If the γk decrease too quickly, then the estimates of ω may stabilize prematurely,

before the MLE is reached. Alternatively, if the γk decrease too slowly, the es-

timates for ω may never stabilize. Cai (2010a) suggests taking γ = 1/k, which

has proven effective for most MIRT models. The SNP-MIRT model, however, is

relatively delicate, and it is desirable to have greater control over the size of the

updates. In this research, the gain constant is defined as

γk =
1

A+ kε
, (5.13)

where 1/2 < ε ≤ 1, and A is some positive integer known as the stability coefficient

(Spall, 1998). Setting ε closer to 1/2 allows for greater step-sizes at later iterations,

thus guarding against premature convergence. Monroe and Cai (2014), following

Polyak and Juditsky (1992), found setting ε = .75 to be effective, especially for

the Ramsay-curve parameters. The purpose of A is to dampen the magnitude

of the updates in the early iterations, when the sequence of estimates tends to

be least stable. Spall (2003) recommends setting A to approximately 10% of the

number of cycles expected to reach convergence.

In the stochastic approximation literature (e.g., Spall, 1997, 1998), it is also

common to allow for update blocking, meaning that if certain criteria are met, no

update is taken for that iteration. As an example, criteria may be based on the

absolute magnitude of the proposed update. This research also adopts blocking

criteria to stabilize the estimation algorithm, and a graphical example is provided

in Figure 5.1.

These tuning features highlight the fact that MH-RM is an incredibly flexible
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Figure 5.1: Effect of Blocking on Parameter Estimation
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Note. The two trajectories show SNP-MIRT estimation that implements blocking
(solid line) and estimation that does not (dashed line). Both histories start at the
same value, with the same random number seed. The difference in the trajectories
is due to blocking.
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framework, and ideas developed in the rich stochastic approximation literature

may be incorporated as needed. To the same end, some aspects of the original

implementation may be relaxed without compromising the convergence results. In

particular, the update in Equation (5.11) is still proper even if the scaling factor

Γ−1
k+1 is removed from the expression, provided that the gain constants are chosen

with care.

5.3.4 Obtaining Starting Values

The convergence of the sequence of MH-RM estimates to the MLE depends on

the use of starting values that are sufficiently close to the MLE. These starting

values will be referred to as “Stage III” starting values, for reasons that will soon

be apparent. Whether a set of Stage III starting values satisfies this requirement

depends on a host of factors, which certainly includes the data and choice of

model. Generally, the following two steps, or stages, have been used to obtain

Stage III starting values in MH-RM:

1. For any parameter, choose some crude, but not unreasonable, initial value.

Run MH-RM cycles, with mk and γk fixed to one for all k, until the estimates

stabilize within a “neighborhood.”

2. Continuing with these settings, compute an average of the parameter es-

timates over the next M cycles, where M is sufficiently large so that the

average represents the “neighborhood.”

The two stages above are often referred to as “Stage I” and “Stage II” (see, e.g.,

Cai, 2013). The averages from Stage II may then be used as starting values for

Stage III, when decreasing gain constants are applied. As noted in Cai (2010a), the

MH-RM algorithm, as specified in Stages I and II, is a close relative to Diebolt

and Ip’s (1996) stochastic EM (SEM) algorithm. Importantly, the SEM-type
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iterations move ω̂k quickly to the neighborhood of the MLE. While the parameter

estimates are not themselves sampled, the first stage is akin to the burn-in of an

MCMC scheme. Extending the analogy, the “neighborhood” is somewhat like a

target distribution.

In practice, for most item models, as well as the normal density, choosing

intial values for Stage I is easy. For example, item slopes may be initialized to 1.0,

and item intercepts may be initialized based on sample proportions of observed

responses. However, for the SNP shape parameters, ν, there is no obvious choice

for the initial values. Setting ν = 0 produces a normal, which would seem like a

good choice. However, in many cases, the likelihood surface for ν is quite irregular.

The implication of this irregularity, with regards to MH-RM, is that unless the

Stage I initial value for ν is chosen carefully, the Stage III starting values will not

be close to the MLE. For such a condition, the convergence results for MH-RM

do not hold. Thus, an alternative strategy is needed for ν.

Other research on the SNP density has recognized the difficulty of finding

useful initial values (see, e.g., Irincheeva et al., 2012; Vock et al., 2014). Of

particular difficulty is that the parameter space of ν may be high-dimensional,

limiting the practicality of quadrature-based approaches. At the same time, as

mentioned above, the likelihood surface tends to be irregular, which limits the

effectiveness of Newton-type optimizers. Assume for the moment that an initial

estimate of Θ̂ may be obtained, say Θ̂0. For the present research, the initial

value of ν, given Θ̂0, is found using the differential evolution (DE) algorithm

(Storm & Price, 1997). The DE algorithm is a stochastic direct search method for

global optimization that is relatively robust to multi-modality. Notably, DE does

not guarantee an optimal solution (Storm & Price, 1997). However, an optimal

solution is unnecessary for the present purposes, as the initial value for ν only

needs to be “good enough.”
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In practice, researchers will want to compare the results from the standard

MIRT and SNP-MIRT models. With this in mind, the starting values for SNP-

MIRT may be found in the following manner. First, obtain ω̃, the ML estimates

for a standard MIRT model. Then, use ω̃ to obtain latent variable score estimates.

Next, treat these score estimates as Θ̂0, and use the DE algorithm to find the

initial value of ν. This initial value, along with ω̃, may be used for Stage I of

MH-RM for the SNP-MIRT model.
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CHAPTER 6

On Likelihood Inference for MIRT

Following estimation of an SNP-MIRT model, it is desirable to conduct inference,

compare models, examine parameter significance, etc. Two quantities important

to likelihood inference are the observed data log-likelihood and the information

matrix. The former is routinely used in model comparison, either directly, or

through derived statistics such as AIC and BIC. The latter may be used for sev-

eral purposes, including the assessment of parameter estimate variability, DIF

analyses, and construction of overall model fit statistics. Approaches for estimat-

ing these quantities in conjunction with Bock and Aitkin’s (1981) quadrature-

based EM have received a good deal of attention (see, e.g. Cai, 2008b; Tian, Cai,

Thissen, & Xin, 2012). However, for high-dimensional models, where MH-RM

is the preferred algorithm, methods for estimating these quantities have received

less attention.

In this chapter, some current approaches to estimation of the observed data

likelihood and information matrix are presented. Then, approaches based on

Chib and Jeliazkov (2001) are presented. In particular, extending the marginal

likelihood estimator in Chib and Jeliazkov (2001), a new estimator for the observed

information matrix is proposed.

As the observed log-likelihood and observed information are summed over

respondents, it is sufficient to consider a single respondent, with observed response

pattern yi, and latent variable θi. However, to simplify the presentation, the

subscript i will be dropped temporarily.

44



6.1 Current Approaches

6.1.1 Observed Data Likelihood

Restating Equation (3.11) in Chapter 3, the observed likelihood for response pat-

tern y is

f(y|ω) =

∫
f(y|ζ,θ)ϕ(θ; ξ)dθ, (6.1)

where, as a reminder, θ may be high-dimensional, rendering quadrature-based

methods impractical. A straightforward approach, and the current standard, is

to estimate Equation (3.11) as a Monte Carlo expectation, using random draws

from ϕ(θ; ξ). That is,

f(y|ω) ≈M−1

M∑
r=1

f(y|ζ,θ(r)), (6.2)

where {θ(r)} is sampled from ϕ(θ; ξ). A benefit of this Monte Carlo approach

is that each iteration is fast. To see the potential problem with this approach,

suppose that f(y|ζ,θ) is nearly 0 for θ outside some region B. In such a scenario,

accurate approximation by Equation (6.2) requires a sufficient number of draws

where θ ∈ B. However, as p and n increase, P (θ ∈ B) will decrease. At some

point, increasing M to address this issue may not be practical.

This situation is fairly common in Bayesian inference, and a number of variance-

reduction methods have been developed to address it. Among these are impor-

tance sampling and stratified sampling.
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6.1.2 Observed Information

Louis (1982) presented a result relating the observed information to derivatives of

the complete data model. The equation is

−∂
2l(ω|Y)

∂ω∂ω′
= E(H(ω|Y,Θ))− E(s(ω; Y,Θ) [s(ω; Y,Θ)]′) (6.3)

+ E(s(ω; Y,Θ))E([s(ω; Y,Θ)]′),

where all expectations are with respect to Π(Θ|Y,ω). Note that at the ML

estimate, again, due to Fisher (1925), s(ω̂; Y,Θ) = 0. Thus, evaulated at ω̂, the

last term on the right-hand side in Equation (6.3) is a d× d null matrix.

Cai (2010a) proposed a method to recursively estimate the quantities needed

for the Louis formula concurrently with the main MH-RM cycles. The first term

on the right-hand side may be estimated using Equation (5.10), while the sec-

ond and third terms may take analogous forms, using the complete data score

in Equation (5.8). A benefit of this approach is that the information matrix es-

timate is available upon convergence of the MH-RM algortihm. This method is

implemented in flexMIRT R©(Cai, 2013).

A second approach, also implemented in flexMIRT R©and used in Monroe and

Cai (2014), is based on a method proposed by Diebolt and Ip (1996). Basically,

the strategy uses Monte Carlo integration following convergence of MH-RM. This

approach obviously requires more computation than the concurrent approach, but

may be slightly more stable, as ω is fixed at ω̂ for all Monte Carlo samples.

In practice, using either of the above approaches, there tends to be substantial

variability in the Monte Carlo estimates, especially when the fraction of missing

information is high. In some situations, this can result in negative error variance

estimates, which is obviously undesirable.
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6.2 Chib and Jeliazkov Estimators

Chib and Jeliazkov (2001) proposed a method to estimate the marginal likelihood

of a model, integrating over all free parameters. This quantity is particularly

useful in Bayesian model selection, and has been applied to latent variable models

(Vitoratou, Ntzoufras, & Moustaki, 2014). In this research, the method is used

in a slightly different way, for a slightly different purpose. The goal here is to

estimate the marginal likelihood of a response pattern for a fixed ω̂. Thus, instead

of integrating over all model parameters, the integration only takes place over θ.

6.2.1 Observed Data Likelihood

Since the observed data marginal is the constant of proportionality for the pos-

terior predictive distribution Π(θ|y,ω), the observed data marginal may be ex-

pressed as

f(y;ω) =
f(y|θ;ω)ϕ(θ;ω)

Π(θ|y,ω)
. (6.4)

This equation holds for any fixed θ, say θ∗. Fixing θ at this value and taking log

of both sides,

log f(y|ω) = log f(y|θ∗;ω) + logϕ(θ∗;ω)− log Π(θ∗|y,ω). (6.5)

As the first two terms on the right-hand side are easy to calculate, the challenge

of estimating f(y|ω) is replaced by the challenge of estimating Π(θ∗|y,ω). The

major contribution of Chib and Jeliazkov (2001) is that it proposes an estimator

for this latter quantity when the M-H algorithm is used to sample from Π(θ∗|y,ω).

For MH-RM, this is of course the case.

Recall that q(·, ·) and α(·, ·) are the transition density and acceptance probabil-

ity, respectively, defined in Section 5.3. Utilizing properties of the M-H Algorithm,
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Chib and Jeliazkov (2001) shows that Π(θ∗|y,ω) may be written as

Π(θ∗|y,ω) =
EΠ [q(θ,θ∗)α(θ,θ∗)]

Eq [α(θ∗,θ)]
(6.6)

where the numerator expectation, EΠ, is with respect to Π(θ|y,ω) and the de-

nominator expectation, Eq, is with respect to q(θ∗,θ). Consequently, a consistent

estimate of Π(θ∗|y,ω) is

Π̂(θ∗|y,ω) =
C−1

∑C
c=1 q(θ

(c),θ∗)α(θ(c),θ∗)

J−1
∑J

j=1 q(θ
∗,θ(j))

, (6.7)

where {θ(c)} are (possibly correlated) draws from Π(θ|y,ω), and {θ(j)} are in-

dependent draws from q(θ∗,θ). Let ū and v̄ be the numerator and denominator

of the right-hand side of Equation (6.7), respectively. Then, by this method,

log Π̂(θ∗|y,ω) = log ū− log v̄.

Let the observed data likelihood estimate obtained by this method be f̂(y|ω).

Then, to assess the variability in log f̂(y|ω), it is only necessary to assess the

variability in log Π̂(θ∗|y,ω), as the other quantities are fixed. This may be ac-

complished using a bivariate Delta method. Plugging in sample quantities as

needed, this estimator is

Var(log Π̂(θ∗|y,ω)) =
Var(ū)

ū2
+

Var(v̄)

v̄2
. (6.8)

The terms on the right are merely variances of sample means. Note, however, that

the calculation of Var(ū) should account for the correlation among the samples

{θ(c)}. In this research, Var(ū) is estimated using batch means (see, e.g. Roberts,

1996).

For the full sample, the contributions to the log-likelihod and variability are

simply summed across the N respondents, as the observations are assumed inde-
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pendent. Let the log-likelihood estimator for the full sample be lCJ(Y|ω).

6.2.2 Observed Information

The Louis (1982) formula in Equation (6.3) provides one method of approximating

the information matrix. Another method, for a sample of size N , is given by

F =
N∑
i=1

∇ω log f(yi|ω)[∇ω log f(yi|ω)]′, (6.9)

where the subscript i has been re-introduced. Extending Chib and Jeliazkov

(2001), we may take derivatives of Equation (6.5) with respect to ω, yielding

∇ω log f(yi|ω) = ∇ω log f(yi|θ∗;ω) +∇ω logϕ(θ∗;ω)−∇ω log Π(θ∗|yi,ω).

(6.10)

Consequently, if ∇ω log f(yi|ω) can be calculated from Equation (6.10), the quan-

tity may then be used in Equation (6.9) to approximate the observed information.

The first two terms on the right-hand side of Equation (6.10) are simply complete

data gradients evaluated at θ∗, and the MH-RM code may be re-used. The last

term on the right-hand side requires taking derivatives of Equation (6.7) with

respect to ω. The necessary derivatives are provided in Appendix B.

Let this estimator of the observed information be FCJ . If priors are imposed

on any of the free parameters in ω, then it is necessary to adjust FCJ to reflect

the additional information. This can be done in the following manner. Let ω be

an arbitrary element of ω, with prior density π(ω). Then, to reflect the addi-

tional information contained in the prior, −∂2π(ω)/∂ω2 should be added to the

corresponding diagonal element of FCJ .
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CHAPTER 7

SNP-MIRT Simulation Study Design

This chapter outlines the Monte Carlo simulation study design used to investigate

the major features of the proposed methods regarding the SNP-MIRT model. For

any study design, the number of factors and corresponding levels must be managed

so that the study may be completed in a timely fashion. Such is the case here,

and conditions were chosen so that the study results would address the main

research questions. However, this necessarily leaves many interesting questions

unanswered. To that end, further simulation work should be pursued.

7.1 Goals

There were several goals for the simulation study. First, the simulation was de-

signed to assess the implementation of the SNP-MIRT model. This is primarily

a question of parameter recovery, but other features of the implementation, such

as the stability of the algorithm, are also of importance. Evidence of accurate

parameter recovery may also be taken as evidence that the proposed SNP param-

eterization is valid. Assuming the model can be reliably estimated, then attention

can turn to comparing the SNP-MIRT model with the standard MIRT model,

which assumes a normal. These comparisons are facilitated by accurate likeli-

hood and information matrix estimates. Thus, a final goal of the simulation is to

evaluate the proposed Chib and Jeliazkov (2001) estimators.
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7.2 Simulation Conditions

Overall, there were 8 conditions, which differed in the dimensionality and shape

of the latent variable density. For each condition, the dimensionality of the latent

variable was p = 1, 2, or 3. At each of these levels, one condition corresponded to

a normal density. Nonnormal densities were constructed as mixtures of normals.

The definitions for all generating densities is given in Table 7.2. At the p = 2

level, one condition involved 2 groups. For this condition, the latent variable

density of the reference group was defined as normal with null mean vector and

identity covariance matrix, whereas the latent variable density of the comparison

group was defined as nonnormal with mixture-implied µ = (−0.46,−0.12)′ and

σ = (1.57, 0.12, 1.38)′.

In addition to the mixture definitions, the unidimensional generating densities

are displayed in Figure 7.1. Univariate and bivariate marginal plots of the gener-

ating multidimensional densities will be provided in the Chapter 8, which presents

simulation results.

For all conditions, data were generated for n = 20 graded items, with a sample

size of N = 1000. These figures also apply to each group for the 2-group condition.

Further, for the 2-group condition, the same item parameters were used to generate

data for both groups. Thus, the two groups only differed in their respective latent

variable densities.

The slope parameters were drawn from a normal (1.8, 0.64) distribution, trun-

cated at 0.5 and 4. For each item, the first threshold parameter was drawn from a

normal (−1, 0.5). The second threshold was obtained by adding a normal (1, 0.04)

to the first threshold. This method was repeated to obtain the remaining thresh-

olds. Finally, intercepts were taken as the negative products of the slopes and

thresholds. Table 7.2 presents the item parameter values for all conditions.

For a given level of p, all conditions implemented the same factor structure.
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Figure 7.1: Unidimensional Generating Densities
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Note. The solid line traces a normal density. The dashed line traces a “bimodal”
density. The dotted line traces a “skewed” density.
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For the 2-dimensional model, an independent cluster factor pattern was defined,

with items 1 − 10 loading on θ1 and items 11 − 20 loading on θ2. For the 3-

dimensional model, items 1 − 6 load on θ1, items 7 − 12 load on θ2, and items

13− 18 load on θ3. Finally, items 19 and 20 load on all 3 latent dimensions.

Table 7.2: Simulation Study: Generating Item Parameter Values

Intercepts
Item 1 2 3 4 Slope

1 1.71 −0.32 −2.59 −4.56 1.89
2 2.37 0.88 −0.66 −1.90 1.44
3 3.71 2.50 1.42 0.24 1.45
4 3.20 0.60 −1.24 −2.97 2.18
5 3.28 1.42 −0.25 −2.69 1.81
6 1.07 0.58 0.20 −0.27 0.50
7 0.37 −0.48 −1.56 −2.66 0.89
8 1.00 −0.22 −1.24 −2.37 0.94
9 1.09 −0.32 −1.30 −2.60 1.30

10 2.05 0.20 −1.17 −3.17 1.56
11 2.28 0.51 −1.05 −1.82 1.37
12 5.04 2.11 −2.37 −5.47 3.18
13 3.15 1.05 −1.16 −2.65 2.02
14 3.93 1.97 0.44 −1.23 2.34
15 1.03 −1.06 −2.70 −4.46 1.63
16 1.39 −0.31 −1.33 −2.93 1.41
17 0.62 −0.19 −1.13 −2.22 0.75
18 1.35 −0.37 −2.31 −3.90 1.99
19 1.67 −0.52 −2.60 −4.14 1.85
20 1.06 −0.86 −2.99 −5.14 1.96

Note. For 2-dimensional models, items 1− 10 load on θ1 and items 11− 20 load
on θ2. For 3-dimensional models, items 1− 6 load on θ1, items 7− 12 load on θ2,
items 13− 18 load on θ3, and items 19 and 20 load on θ1, θ2, and θ3.

7.3 Components of a Replication

For each condition, 200 Monte Carlo replications were attempted. Given the

multiple goals of the simulation, each replication incorporated several steps. These
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were:

1. Fit the standard MIRT model using MH-RM, yielding the ML estimate ω̃.

Obtain CJ estimates of the log-likelihood and information matrix.

2. Obtain EAP score estimates, Θ̃, using ω̃.

3. Use Θ̃ to obtain starting values for the SNP shape parameters, ν0.

4. Use the starting values, ω̃ and ν0, to fit the SNP-MIRT model using MH-

RM, yielding the ML estimate ω̂.

5. Obtain CJ estimates of the log-likelihood and information matrix.

The first step is necessary as one of the simulation goals is to compare ω̂ with

ω̃. For the second step, 50 posterior draws (with a thinning interval of 10) were

averaged to obtain Θ̃. Finally, for the CJ estimates, a Monte Carlo sample size

of 1000 was used, with no thinning interval.

The SNP tuning parameter, κ was held fixed within a condition. In practice,

several values for κ should be fit, with model selection then based on conventional

indices, such as AIC, BIC, or HQIC. Such approaches have been found useful in

other studies of nonnormal density estimation in IRT (e.g., Woods & Thissen,

2006). However, here, κ is held fixed to limit the scale of the simulation study.

The number of free SNP parameters for each condition is given in Table 7.3. Also,

to add stability to estimation of the SNP parameters, a multivariate normal prior

was implemented, as detailed in Section 4.6. After some trial and error, a value

of τ = 1 was selected and used for all conditions.

To obtain starting values for the SNP parameters, the DE algorithm described

in Section 5.3.4 was used. In particular, the ‘DEoptim’ function in the R package

of the same name (Mullen, Ardia, Gil, Windover, & Cline, 2011) was used, with

default arguments.
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Table 7.3: SNP Tuning Constants and Number of Free Parameters

p Shape κ dim(ν) dim(ψ)
1 Normal 5 5 5

Bimodal 5 5 5
Skewed 5 5 5

2 Normal 3 9 10
Bimodal 3 9 9
2 Group 2 5 10

3 Normal 2 9 12
Bimodal 2 9 9

Note. p = Number of dimensions; κ = SNP tuning constant.

Also, when the generating model was normal (for all p), several other statistics

were collected to study the CJ estimators. All of these statistics were based on the

ML estimate from the standard MIRT model, ω̃. First, the observed information

was approximated via the Louis (1982) formula in the fashion of Diebolt and Ip

(1996). For this estimate, a Monte Carlo sample size of 5, 000 was used, with a

thinning interval of 10. The likelihood was estimated by standard Monte Carlo,

with a sample size of 25, 000.

Further, quadrature-based estimates of the information and likelihood were ob-

tained to serve as references for both the CJ and conventional estimators. Specif-

ically, the information matrix was estimated using a quadrature-based gradient

cross-product approximation, as in Equation (6.9). The likelihood was estimated

using the quadrature-based E-step tables in an EM estimation scheme. All of

the quadrature-based estimates used 49 points per dimension, from −6 to 6, and

were calculated using flexMIRT R©(Cai, 2013). For the 3-dimensional models, these

computations were relatively time-consuming, as might be expected.
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7.4 Collected Statistics

The bias and root mean square error (RMSE) were collected for the parameter

estimates, ω̃ and ω̂. For an arbitrary parameter ω and a corresponding estimate,

say ω̂, bias is defined as

bias(ω) = M−1

M∑
m=1

(ω − ω̂m), (7.1)

where M is the number of Monte Carlo replications. RMSE is defined as

RMSE(ω) =

√√√√M−1

M∑
m=1

(ψ − ψ̂m)2. (7.2)

The SNP parameter estimates are not themselves interpretable, but the degree

to which the parameters recover the generating density may still be assessed. The

most straightforward approach is graphical. Using a quadrature grid, the mean

estimate of the SNP density, across replications, may be plotted and compared

to the generating density. Similarly, empirical confidence intervals may be con-

structed. In the results, a 90% confidence interval is used for the SNP estimated

densities.

The information matrix estimates were evaluated via the implied standard

errors. Let ω be an arbitrary parameter and ω̂ be its estimate. Also, let se(ω̂) be

the estimated standard error for ω̂. Then, the Monte Carlo standard deviation

of the estimates, SD(ω̂) may be compared to the mean of the standard error

estimates E(se(ω̂)). If the standard error estimates accurately reflect the sampling

variability, then the two quantities should be similar. Additionally, the parameter

estimate standard errors may be used to construct confidence-intervals. Then, the

empirical coverage rate (ECR) of the confidence intervals may be examined. In

the results, ECRs for 95% confidence intervals are presented.
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CHAPTER 8

Simulation Study Results

The results of primary interest relate to the SNP-MIRT model. However, results

relating to the CJ estimators will be presented first, since the estimators may then

be used to evaluate the SNP-MIRT model.

8.1 Chib and Jeliazkov (2001) Likelihood

Like the accuracy of the standard Monte Carlo approach, the accuracy of the

quadrature-based approach will deteriorate as the number of items or dimensions

grows. However, with p = 3, the specification of 49 points per dimension results

in over 100, 000 points, a relatively fine grid. (Recall that the Monte Carlo sample

size for the standard approach is 25, 000). Consequently, the quadrature-based

calculation may be considered reasonably accurate, and both the standard Monte

Carlo and CJ approaches may be compared to it. Figure 8.1 makes these com-

parisons for the three normal generating densities. For the unidimensional model,

there is no appreciable difference between any of the three estimators. However,

for the 2-dimensional and 3-dimensional models, there are clear differences. The

CJ estimates and quadrature-based estimates continue to correspond closely, while

the standard Monte Carlo estimator appears positively biased.

Equation (6.8) presented an estimator for the CJ likelihood variance. Its ability

to capture the variability can be explored by repeatedly estimating the likelihood

for a single model, dataset, and MLE. The results shown in Table 8.1 are based on
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Figure 8.1: −2×Log-Likelihood Estimate Comparison
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200 replications. Of note, the bias is relatively small, which supports the intuition

gained from Figure 8.1. Also, the MCSD and mean SE values correspond closely.

This is even true for the estimates with no “thinning,” suggesting that the batch

means approach to addressing the correlation in the Monte Carlo draws is effective.

Table 8.1: CJ Estimates of −2×Log-Likelihood for Three Simulated Datasets

p −2× LogLq Thin Samples Estimate Bias MCSD Mean SE
1 51481.05 1 5000 51480.87 0.82 1.03 1.06

10 1000 51482.20 2.16 2.47 2.36
2 52778.68 1 5000 52778.08 1.09 1.23 1.42

10 1000 52780.62 2.87 2.94 2.94
3 52392.53 1 5000 52390.85 1.99 1.90 2.02

10 1000 52394.91 3.64 3.67 3.84

Note. p = Number of dimensions; −2× LogLq is calculated by quadrature; Thin
= thinning interval for posterior draws; Samples = Monte Carlo sample size;
Estimate = mean of point estimates; Bias = absolute bias; MCSD = standard
deviation of point estimates; Mean SE = mean of estimated SEs.

8.2 Proposed Information Estimator

Cai (2008a), appealing to multiple imputation theory, noted that when mk (i.e.,

the number of imputations per MH-RM cycle) is small, the parameter estimate

standard errors tend to have a downward bias. Simulation results in Cai (2008a)

and Monroe and Cai (2014) support this claim, as do results from the present

study. Figure 8.2 compares the standard error estimators, plotting E(se(ω̂))

against SD(ω̂) for the 3 normal generating models. Examining the left column

of plots corresponding to the Louis (1982) estimator, the downward bias of the

standard errors is slight but clear. This bias becomes more pronounced as the

dimensionality of the generating model increases. On the other hand, neither

the XPD nor CJ estimator appears to have any notable bias, for any level of p

considered here.
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Figure 8.2: Standard Error Comparison for Conditions with a Normal Generating
Model
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In addition to evaluating E(se(ω̂)), the variability of se(ω̂) itself may be as-

sessed. Following Tian et al. (2012), let the Monte Carlo standard deviation of

the standard error estimates for an arbitrary parameter be SD(se(ω̂)). Then,

lower values of SD(se(ω̂)) indicate more stability. Table 8.2 presents mean values

of SD(se(ω̂)), under the column heading “E(MCSD)”, for the three estimators.

ECR statistics are also presented. Surprisingly, the Louis estimator has lower

SD(se(ω̂)) values for all levels of p. This may, however, reflect an undesirable

sort of stability. In other words, it is possible that the lower SD(se(ω̂)) values

are a consequence of the downwards bias in the Louis estimated standard error

estimates.

Examining to the ECR statistics, the XPD and CJ estimators have mean

ECR rates quite close to the nominal level of 0.95, while the Louis estimator is

again biased downwards. This is more apparent for the 3-dimensional model,

where the 2.5% empirical percentile is 0.80, compared to 0.93 for both the XPD

and CJ estimators. These particular results may be presented graphically using

histograms, as in Figure 8.3. The XPD and CJ histograms indicate that the

derived standard errors are well-calibrated, particularly in comparison to the Louis

standard errors.

Figure 8.3: Empirical Coverage Rates of 95% Confidence Intervals
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Note. Generating model is 3-dimensional normal. Louis = Louis (1982) SE, XPD
= quadrature-based empirical cross-product SE, CJ = Chib and Jeliazkov (2001)
SE. Histograms based on 200 replications.
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Table 8.2: Information Matrix Simulation Results

Coverage Rate

p Method E(MCSD) Mean 2.5% 97.5%
1 XPD 5.28 0.96 0.93 0.98

Louis 3.91 0.92 0.86 0.96
CJ 5.28 0.96 0.93 0.98

2 XPD 6.01 0.96 0.93 0.98
Louis 4.65 0.92 0.88 0.96

CJ 5.99 0.96 0.93 0.98
3 XPD 7.99 0.96 0.93 0.99

Louis 6.22 0.92 0.80 0.99
CJ 7.81 0.96 0.93 0.99

Note. Generating models are normal. p = Number of dimensions; E(MCSD) =
mean of Monte Carlo standard deviations of parameter estimate standard errors
(multiplied by 1000); Coverage Rate = empirical coverage rate of 95% confi-
dence intervals; Mean = mean parameter ECR; 2.5% and 97.5% are empirical
percentiles.

It is perhaps unsurprising that the XPD and CJ results are similar, as both

estimators are based on Equation (6.9). The estimators only differ in how the

necessary quantities are approximated. This difference, however, is an important

distinction for high-dimensional models. The XPD estimator is quadrature-based,

and is therefore subject to the “curse of dimensionality.” On the other hand, the

CJ estimator is “posterior-based” in the sense that the estimator depends on

approximations of Π(θ∗|y,ω), and its gradient. Importantly, this approximation

relies on the M-H sampler, and not quadrature. Consequently, the CJ estimator

would seem to be a viable general method for high-dimensional MIRT models in

general, and a natural complement to the MH-RM algorithm in particular.

8.3 SNP-MIRT Model

The simulation results for the SNP-MIRT model will be presented in the following

order. First, the unidimensional results will be presented. These results should be
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consistent with results from similar research efforts, in particular Woods and Lin

(2009). Second, the results for the normal generating density conditions will be

presented. Ideally, for these conditions, the SNP-MIRT parameter estimates and

log-likelihood values will be comparable to those from the standard MIRT esti-

mation. Also, the parameterization of the mean and variance parameters for the

SNP density may be assessed, since the 2-dimensional and 3-dimensional gener-

ating densities have correlated dimensions. Finally, the results for the nonnomral

multidimensional density conditions will be presented. Most importantly, these

conditions provide an opportunity to assess the ability of the SNP-MIRT model

to recover the generating densitites.

8.4 Unidimensional Models

Generally, the unidimensional model results correspond to those in Woods and

Lin (2009). Figure 8.4 shows the mean estimated SNP curves, as well as 90%

empirical confidence intervals. Overall, the estimated densities compare favorably

to the generating densities. Notably, the mean estimated bimodal density is more

symmetric than the generating density. This lack of accuracy in recovery for the

bimodal model is unsurprising, as prior research (e.g., Woods & Lin, 2009; Monroe

& Cai, 2014) has produced similar findings. The mean estimate for the skewed,

however, closely approximates the generating density.

Table 8.3 presents bias and RMSE statistics for the unidimensional conditions,

as well as the log-likelihood values. The bias and RMSE statistics are largely

comparable for the SNP-MIRT and standard MIRT models. The most notable

difference between the results for the models is seen for the skewed generating

density, where the SNP-MIRT parameter estimates have slightly less bias than

the standard MIRT counterparts. For both the bimodal and skewed generating

densities, the log-likelihood values clearly indicate that, on average, the SNP-
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Figure 8.4: Mean SNP Estimated Densities for Unidimensional Models
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Note. For plots in the left column, the gray solid line is a normal density, included
as a reference. For plots in the right column, the gray dashed lines gives a 90%
empirical confidence interval.
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MIRT model provides better fit.

Table 8.3: Simulation Results for Unidimensional SNP-IRT

Model Slopes Intercepts

Generating Estimated −2×LogL Bias RMSE Bias RMSE
Normal Standard 51473.92 0.01 0.10 0.01 0.12

SNP 51473.09 0.01 0.10 0.01 0.12
Bimodal Standard 51418.27 0.02 0.09 0.02 0.12

SNP 51293.78 0.01 0.09 0.01 0.12
Skewed Standard 51650.37 0.05 0.12 0.04 0.13

SNP 51407.39 0.01 0.11 0.01 0.13

Note. Bias = absolute bias.

8.5 Multidimensional Normal Generating Models

When the simulated latent variables are sampled from a normal density, then

the standard MIRT model is not misspecified. Typically, with a sufficiently large

sample and number of items, the model should then fit simulated data well. For it

to be useful, the SNP-MIRT model should also fit these data well. Theoretically,

this should be the case since the standard MIRT model is nested within the SNP-

MIRT model.

Figure 8.5 presents the log-likelihood values for all of the normal generating

conditions, for both the SNP-MIRT and standard MIRT models. Clearly, the

two models provide nearly identical fit for these conditions. The item parameter

bias and RMSE are not presented here, but these statistics are presented for the

group parameters. The motivation for presenting these specific results is that

they are indictative of the validity of the proposed SNP parameterization. These

results are presented in Table 8.4. Surprisingly, the SNP estimates appear to be

less biased than those from the standard model, though the absolute difference

is likely inconsequential. In any case, the SNP-MIRT model provides accurate
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estimates of the correlations among the latent variable dimensions.

Figure 8.5: −2×Log-Likelihood Values for Normal-Generating Models
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Table 8.4: Correlation Estimates for Normal Generating Models

Estimated Model
Standard SNP

p Parameter Value Bias RMSE Bias RMSE
2 σ21 0.40 0.013 0.033 0.001 0.031
3 σ21 0.50 0.012 0.094 0.005 0.110

σ31 0.60 0.014 0.188 0.005 0.206
σ32 0.40 0.006 0.033 0.007 0.034

Note. Bias = absolute bias.

8.6 Multidimensional Nonnormal Generating Models

Figure 8.6 presents the generating density (center column) as well as the standard

and SNP model estimates for the bimodal 2-dimensional density. Looking at the

bivariate contours, the mean SNP estimate is a reasonable approximation of the

generating density, clearly capturing the bimodality. Similarly, the univariate

plots show the ability of the SNP model to recover the univariate shapes. For
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the 3-dimensional skewed density, the generating bivariate contours are presented

in Figure 8.7. Again, the SNP model is able to recover the general shape if not

the precise features. For the 3-dimensional model, the 3 univariate plots may also

be examined, which are given in Figure 8.8. Among the 3 dimensions, only θ1 is

clearly nonnormal.

Table 8.5 presents some results for these two conditions. The SNP models

clearly fit better, as evidenced by the log-likelihood values. And, as with other

conditions, the SNP parameter estimates exhibit slightly less bias than the stan-

dard counterparts. The RMSE values, though, are largely comparable.

Table 8.5: Simulation Results for Multidimensional Nonnormal Models

Model Slopes Intercepts

p Generating Estimated −2×LogL Bias RMSE Bias RMSE
2 Bimodal Normal 52786.15 0.015 0.107 0.015 0.127

SNP 52646.65 0.016 0.105 0.010 0.126
3 Nonormal Normal 52690.32 0.027 0.125 0.026 0.136

SNP 52572.28 0.022 0.123 0.016 0.132

For the 2-Group condition, Figure 8.9 displays the generating contours and uni-

variate margins, as well as the SNP and standard model estimates. The graphical

results are similar to those results presented for the other conditions. However, of

note, for this condition, the means and variances of the density were estimated.

Though it is difficult to gauge from Figure 8.9, the standard method mean esti-

mate for σ11 is biased upwards. The relevant numerical results are presented in

Table 8.6. Along with the bias of standard model estimates of σ11, the ECR rates

for two standard estimates are relatively low. The ECR for µ1 is only 0.89, while

the ECR for σ11 is 0.92. On the other hand, the ECRs for the SNP model are all

at the nominal level or better.

Figure 8.10 plots the σ11 estimates for the SNP and standard estimates, which

clearly show the bias associated with the standard model. Finally, in Figure 8.10,
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Figure 8.6: Density Estimates for Bimodal Two-Dimensional Model
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Note. Standard and SNP contours and univariate densities based on means of
replication estimates.
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Figure 8.7: Density Estimates for Skewed Three-Dimensional Model
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Figure 8.8: Univariate Margins for Skewed Three-Dimensional Density
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Figure 8.9: Contour Plots for Group 2 Skewed 2-Dimensional Density
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Table 8.6: Parameters Estimates: 2-Group 2-Dimensional Model

Estimated Model
Standard SNP

Parameter Value Bias RMSE ECR Bias RMSE ECR
Slopes 0.011 0.079 0.939 0.007 0.077 0.954

Intercepts 0.011 0.098 0.950 0.005 0.097 0.955
µ1 −0.455 0.019 0.047 0.885 0.009 0.041 1.000
µ2 −0.120 0.004 0.033 0.995 0.003 0.033 1.000
σ11 1.566 0.125 0.180 0.915 0.010 0.118 0.950
σ21 0.121 0.002 0.048 0.995 0.010 0.048 0.985
σ22 1.378 0.019 0.076 0.990 0.005 0.071 1.000

Note. Bias = absolute bias. ECR = empirical coverage rate of 95% confidence
intervals.

EAP estimates for the 2 groups are compared, by replication. EAP estimates

were computed using the sample average of 100 draws from the posterior, with a

thinning interval of 10. For Group 1, the scores are of similar quality. However,

for Group 2, the RMSE values for the EAP estimates from the standard model are

clearly greater than the RMSE values from the SNP model. Clearly, the standard

model did not recover the Group 2 density particularly well, which led to poorer

estimates for several quantities of interest.
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Figure 8.10: Estimates of σ11 for Group 2 in 2-Group Model
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Figure 8.11: EAP Scoring for θ1: 2-Group Model
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CHAPTER 9

Empirical Application for the SNP-MIRT Model

Differences between genders in terms of mathematics achievement and attitude

towards the subject have received a great deal of attention in educational and

psychological research (Else-Quest, Hyde, & Linn, 2010). In the United States,

standardized tests indicate that, on average, girls perform as well as boys (Hyde,

Lindberg, Linn, Ellis, & Williams, 2008). However, recent meta-analyses have

shown consistent gender differences in attitudes towards the subject (Else-Quest

et al., 2010). Typically, boys report greater intrinsic motivation and less math

anxiety. One data source used in the meta-analysis of Else-Quest et al. (2010) is

the PISA 2003 student questionnaire (Adams, 2005). In that analysis, students

scores are averaged within a construct. These mean scores are then used in the

meta-analysis.

Here, using the same PISA data, the gender difference in mathematics atti-

tudes and affect is explored using a 2-group SNP-MIRT model. The data are

responses to 17 items intended to measure three constructs: Mathematics Self-

Efficacy (MSE); Mathematics Anxiety (ANX); and Mathematics Self-Concept

(MSC). The item stems and wordings are presented in Table 9.1. Of the 2,705

female and 2,750 male respondents, 1,000 of each group were randomly sampled

for the analysis. Also, to keep the example relatively simple, the analysis ignores

both the hierarchical nature of the data, and the possibility that any of the items

are characterized by differential item functioning (DIF). Consequently, all item

parameters were constrained to be equal across groups.
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Table 9.1: Items for PISA 2003 Self-Related Cognition in Mathematics Scale

Construct Stem and Item Wordings
How confident do you feel about having to do the following
mathematical tasks?

MSE 1. Using a train timetable to work out how long it would take
to get from one place to another.

2. Calculating how much cheaper a TV would be after a 30%
discount.

3. Calculating how many square feet of tile you need to cover a
floor.

4. Understanding graphs presented in newspapers.
5. Solving an equation like 3x+ 5 = 17.
6. Finding the actual distance betwee two places on a map with

a 1 : 100 scale.
7. Solving an equation like 2(x+ 3) = (x+ 3)(x− 3).
8. Calculating the gas mileage of a car.

To what extent do you agree with the following statements?
ANX 9. I often worry that it will be difficult for me in mathematics

classes.
10. I get very tense when I have to do mathematics homework.
11. I get very nervous doing mathematics problems.
12. I feel helpless when doing a mathematics problem.
13. I worry that I will get poor grades in mathematics.

MSC 14. I am just not good at mathematics.
15. I get good grades in mathematics.
16. I have always believed that mathematics is one of my best

subjects.
17. In my mathematics class, I understand even the most difficult

work.

Note. MSE = Mathematics Self-Efficacy; ANX = Mathematics Anxiety; MSC =
Mathematics Self-Concept. Response options for the first stem are: Very confi-
dent, Confident, Not very confident, or Not at all confident. Response options for
the the second stem are: Strongly agree, Agree, Disagree, and Strongly disagree.
All items were inverted for scaling except for item 14.
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On the other hand, according to the literature, the latent variable distributions

for males and females are expected to be different, at least in terms of location.

To explore this issue, the males are designated as the reference group, with null

mean vector and latent variable variances fixed to 1.0. Note, though, that the

correlations are not fixed to 0, as previous research has found sizable correlations

between constructs similar to those studied in this analysis. Then, in order to

compare the groups, the elements of the mean vector and covariance matrix for

the females may be freely estimated. This standard MIRT model was estimated,

assuming both latent distributions were normal, using MH-RM. For convenience,

this model will be referred to as STD.

Additionally, the shapes for both distributions could be analyzed, using SNP-

MIRT. Specifying the tuning parameter as κ = 2 for both distributions resulted

in 18 additional parameters. Let this model be the SNP2 model. A compro-

mise between the specifications of the STD and SNP2 models is to constrain the

SNP shape parameters to be equal between the groups. This particular configu-

ration was not explored in the simulation study, but is arguably appropriate in

the present context. Let this be the SNP1 model, which adds an additional 9 pa-

rameters to the STD model (but has 9 fewer parameters than the SNP2 model).

Conveniently, the three models are nested, facilitating model comparison. All 3

models were estimated using the same settings as in the simulation study, with

the following exception. The proposal standard deviation was reduced to 0.25 to

maintain acceptable levels of the M-H sampler acceptance ratio.

All three models converged properly, and the results are presented in Table 9.2.

Using a likelihood ratio test, SNP1 is preferred to SNP2 (χ2
9 = 13.36, p = 0.15),

while both SNP models are clearly preferable to the STD model. These conclu-

sions are also supported by the HQIC values. Additionally, Table 9.2 gives the

parameter estimates for the female mean vector. The estimates are all quite simi-

lar. However, substantively, the results are consistent with those in the literature
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indicating that females have higher levels of mathematics anxiety and lower levels

of mathematics self-concept.

Table 9.2: −2×Log-Likelihood and HQIC for PISA 2003 Data

Group 2 Estimates (SE)
Model d −2×LogL (CI) HQIC µ1 µ2 µ3

STD 80 66808.84 (2.84) 67133.36 −.11 (.05) .21 (.05) −.24 (.05)
SNP1 89 65302.88 (2.93) 65663.91 −.11 (.04) .21 (.05) −.24 (.05)
SNP2 98 65289.52 (2.92) 65687.06 −.09 (.05) .22 (.05) −.21 (.05)

Note. d = number of free parameters; STD = standard MIRT model; SNP1 =
SNP-MIRT model with constraints among SNP parameters; SNP2 = SNP-MIRT
model without constraints among SNP parameters; µ = mean of latent variable.

Turning to the density estimates, the bivariate contours of the males for the

STD and SNP1 models are displayed in Figure 9.1. While the SNP contour plots

for the males and females look quite similar, careful examination reveals that

they are not identical. Though the elements of ν (the “shape” parameters) are

constrained to be equal across groups, the implied standardized SNP density is

transformed via the elements of µ and σ (the mean and variance), which differs

by group. Finally, figure 9.3 shows the univariate marginal distributions for the

females. For θ2 and θ3, it is difficult to perceive any difference between the dis-

tributions. For θ1, the SNP estimated distribution appears slightly more peaked

than the STD distribution, and is also slightly left-skewed.
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Figure 9.1: PISA 2003: Estimated Contour Plots for Males
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Figure 9.2: PISA 2003: Estimated Contour Plots for Females
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Figure 9.3: PISA 2003: Estimated Univariate Marginal Densities for Females
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CHAPTER 10

Student Growth Percentiles

In this chapter, the SGP approach discussed in Chapter 1 is presented in detail.

First, the approach that utilizes the standard MIRT model is presented. Then,

a generalization is presented, where the SNP-MIRT model is used. This chap-

ter also contains a small simulation study with two conditions to evaluate the

proposed method and compare it with the original QR-based approach. Finally,

an empirical application is presented, where SGPs are calculated for longitudinal

achievement data.

10.1 The Proposed Method

This section presents the proposed method for calculating MIRT-based SGPs.

The method may be applied to latent scores based on response patterns. How-

ever, the use of full response patterns is inconvenient for introducing the method,

since the number of patterns is exponential in the number of test items. Instead,

latent scores based on summed scores are used, as this facilitates the presentation.

Further, this choice is not inappropriate, as numerous states utilize latent scores

based on summed scores in reporting. Additionally, we limit the number of prior

years to 1, again to facilitate the presentation. The proposed method, though,

may accommodate multiple prior years.

At this point, it is convenient to introduce some limited notation. Let n1 and

n2 be the numbers of items in year 1 (i.e., last year) and year 2 (i.e., current year),
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respectively. For any student, let y1 and y2 be the analogously defined vectors of

observed response patterns. Similarly, let s1 ∈ {0, . . . , S1} and s2 ∈ {0, . . . , S2}

be the summed scores, where S1 and S2 are the respective maximum summed

scores. Finally, let θ1 and θ2 be the latent achievement scores. For convenience,

we assume all students take both tests and that there are no missing data, though

both assumptions may be relaxed.

Before presenting the proposed method, we review the QR approach as im-

plemented in this research, which serves as a point of comparison. First, two

separate unidimensional IRT models are calibrated, one for each year. The item

responses are modeled using the 3PL model in Equation (3.5), but note that here,

θ is scalar-valued. Next, the respective IRT scaled scores based on summed scores

are calculated. This simulation uses EAP score estimates. For the QR, the es-

timated scores from year 2 are the dependent variable, and the estimated scores

from year 1 are the covariate. Finally, the ‘SGP’ R package (Betebenner, VanI-

waarden, Domingue, & Shang, 2014) is used to compute the QR-based SGPs. For

all package functions, the default arguments were used.

Next, we turn to the newly proposed method. Together, the prior and current

years imply a two-dimensional MIRT model, where each dimension is measured

by one year’s items. Consequently, for all year 1 items, β2 = 0; for all year 2 items,

β1 = 0. Again, Equation (3.5) is used, but in this case θ is two-dimensional.

To present the method, we introduce various conditional distributions with

the generic notation Π(·|·). An example is ϕ(θ1, θ2), the unconditional distribu-

tion (i.e., prior population distribution) for the latent variable scores. And, as a

reminder, ϕ(·) is generic notation for the latent variable prior density. Let the

correlation of ϕ(θ1, θ2) be ρ. Also, to illustrate the calculation of various quan-

tities used in the proposed method, we define a model with n1, n2 = 40, so that

s1, s2 ∈ {0, . . . , 40}. For the illustrations, ρ = 0.85.

Calculation of MIRT-based SGPs begins with estimation of all MIRT model
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parameters, including ρ. Then, for any combination of s1 and s2, perform the

following:

Step 1. Latent Variable Score Estimation. Estimate the current latent

score, based on s1 and s2. This estimate (e.g., an EAP score) is denoted θ̂2|s1, s2.

Step 2. Calibrated Projection. Using calibrated projection, find the ref-

erence conditional distribution, Π(θ2|s1, s2). This distribution is based on ρ and

only s1.

Step 3. SGP Estimation. Calculate the SGP using θ̂2|s1, s2 and the cu-

mulative distribution function of Π(θ2|s1, s2). The location of the current score

estimate within this conditional distribution gives the MIRT-based SGP.

These steps are explained in greater detail in the 3 subsections to follow.

10.1.1 Latent Variable Score Estimation

For Step 1, θ̂2|s1, s2 is based on
∫
p(θ1, θ2|s1, s2)dθ1. Recognizing that the MIRT

model used here is a special case of the two-tier item factor model (Cai, 2010c),

Π(θ1, θ2|s1, s2) may be found using a modified version of the Lord-Wingersky algo-

rithm (Cai, in press-a). This algorithm makes it possible to calculate Π(θ1, θ2|s1, s2)

without first calculating Π(θ1, θ2|y1,y2) for all y1 and y2. Again, the numbers of

possible response patterns for y1 and y2 grow exponentially with n1 and n2. Thus,

any method requiring calculations for all possible y1 and y2 will have practical

limitations. On the other hand, the Lord-Wingersky algorithm is constructed

so that the number of calculations is approximately linear in n1 and n2. This

makes calculation of Π(θ1, θ2|s1, s2) feasible for very large numbers of items. As

an aside, in the case of response pattern scoring, Step 1 is simpler, as it is then

only necessary to calculate Π(θ1, θ2|y1,y2) for all observed y1 and y2.

Before proceeding, we note that the posterior distribution Π(θ1, θ2|s1, s2) re-

flects the correlated measurement errors for the latent dimensions. While estima-
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tion of separate unidimensional IRT models, as in the QR approach to SGPs, may

be used to estimate Π(θ2|s1) and Π(θ2|s2), such an approach cannot account for

the association between the measurement errors. Additionally, θ̂2|s1, s2, obtained

via the MIRT framework, will be a more efficient estimate than θ̂2|s2, obtained

via unidimensional IRT (Cai, 2010c).

10.1.2 Calibrated Projection

The development of calibrated projection (Thissen, Varni, et al., 2011) was mo-

tivated by the need to link two highly similar, though not identical, constructs

for the purposes of producing a scoring cross-walk. Utilizing a MIRT framework,

calibrated projection provides a means to use item responses from one instrument

to produce scores on the scale of a second instrument. These scores are summaries

(e.g., EAPs) of the posterior distribution Π(θ2|s1). In the original application of

calibrated projection, Π(θ2|s1) is needed because estimates of θ2 are desired for

people who have not taken test 2.

In contrast, in the current application of calibrated projection, we assume s2

exists for all students. Still, Π(θ2|s1) is a key quantity for MIRT-based SGPs: it

represents the conditional distribution of the current latent score for all students

with identical score histories. In other words, it is the reference conditional dis-

tribution from which an SGP may be estimated. We now provide an example of

how calibrated projection may be used to find this reference distribution.

Consider Figure 10.1, which is akin to figures in Thissen, Varni, et al. (2011)

and Cai (in press-a). Given a specified s1 (e.g., 20), the MIRT model implies

a distribution on θ1, shown on the y-axis. This distribution is then projected

through the relationship between θ1 and θ2 to imply a distribution on θ2, shown

on the x-axis. This latter distribution, Π(θ2|s1), is the distribution for all students

with identical score histories (here, s1 = 20). It is used in Step 3 to estimate an
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SGP.

Figure 10.1: Calibrated Projection Linking
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Note. Given a specified s1 (here, s1 = 20), the MIRT model implies a distribution
on θ1, shown on the y-axis. This distribution, Π(θ1|s1), is then projected through
the relationship between θ1 and θ2 to imply a distribution on θ2, shown on the
x-axis. The dark gray central ellipses approximate Π(θ1, θ2|s1). The light gray
central ellipses represent the prior distribution of latent scores, ϕ(θ1, θ2).

Other features of Figure 10.1 are worth mentioning. First, the light gray

central ellipses represent ϕ(θ1, θ2), the prior distribution of the latent variables.

In Figure 10.1, ϕ(θ1, θ2) is bivariate normal with ρ = 0.85. Second, the dark gray

central ellipses represent Π(θ1, θ2|s1), which does not condition on s2. As a result,

Π(θ1, θ2|s1) is more variable for θ2 than for θ1. Finally, this relative uncertainty
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is projected onto the x-axis in Π(θ2|s1). Given the estimated parameters, the

location and scale of Π(θ2|s1) are completely determined by s1 and ϕ(θ1, θ2).

10.1.3 SGP Estimation

Step 3 is conceptually the most straightforward. Let qθ2|s1(θ2) be the cumulative

distribution function of Π(θ2|s1), the reference conditional distribution from Step

2. Then, the MIRT-based SGP estimate is qθ2|s1(θ̂2|s1, s2), where θ̂2|s1, s2 is the

score estimate from Step 1. As an example, consider Figure 10.2, which shows

Π(θ2|s1 = 20) as the large light gray distribution, and Π(θ2|s1, s2 = 30) as the

small black distribution. The EAP of Π(θ2|s1 = 20, s2 = 30), θ̂2|s1, s2, is marked

by the solid black vertical line segment. Its position within Π(θ2|s1 = 20) is

marked by the solid light gray vertical line segment, and corresponds to an SGP

estimate of 88 for this score combination. That is, qθ2|s1(θ̂2|s1 = 20, s2 = 30) = 88.

Figure 10.2 also shows how uncertainty in the SGP estimate is directly related

to uncertainty in θ̂2|s1, s2. The dashed vertical lines in Figure 10.2 correspond

to ±1 and ±2 standard errors of measurement for θ̂2|s1, s2. Like θ̂2|s1, s2, these

values of θ2 correspond to percentiles of Π(θ2|s1), which are displayed in Figure

10.2. For any given s1, the uncertainty in the SGP estimate will vary as a function

of s2.

This phenomenon is presented graphically in Figure 10.3, for s1 = 20. For each

s2, the boxplot demarcates the SGP estimates corresponding to θ̂2|s1, s2, and ±1

and ±2 standard errors of measurement for θ̂2|s1, s2. Note that the boxplots for

s2 values near s1 = 20 are relatively large. This is because for these values,

Π(θ2|s1 = 20, s2) is centrally located in relation to Π(θ2|s1 = 20), where small

changes in θ2 lead to large changes in the SGP estimate. At least for this example,

there is considerable uncertainty for most of the SGP estimates.
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Figure 10.2: Illustration of MIRT-Based SGP Calculation
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Note. The dominating light gray curve is Π(θ2|s1) (here, s1 = 20). The smaller
dark gray curve is Π(θ2|s1, s2) (here, s2 = 30). The 5 vertical line segments
demark the expectation of Π(θ2|s1, s2), as well as ±1 and ±2 standard errors of
measurement. The extended line segments (light gray) correspond to percentile
values for Π(θ2|s1). Here, s1 = 20 and s2 = 30 yields an SGP point estimate of
88.
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Figure 10.3: Uncertainty of MIRT-Based SGPs
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Note. The boxplots are of MIRT-based SGPs corresponding to EAP scores and
±1 and ±2 standard errors of measurement for s1 = 20 and all possible s2. The
horizontal dotted lines correspond to hypothetical SGP cut-values of 35 and 65.
Many boxplots span all 3 “classifications.” The boxplot above s2 = 30 corresponds
to Figure 10.2.
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10.2 Generalizing the Proposed Method with SNP-MIRT

Recall the calibrated projection example given in Figure 10.1. Given the specified

MIRT model and estimated parameters, the reference conditional distribution,

Π(θ2|s1) (shown on the x-axis), depends on two quantities: s1 and ϕ(θ1, θ2). Con-

sequently, for a given s1 and s2, different specifications of ϕ(θ1, θ2) may lead to

different SGP estimates. In other words, the MIRT-based SGP estimates may be

sensitive to the specification of the prior density for the latent scores.

As an example of this potential sensitivity we consider two different specifica-

tions for ϕ(θ1, θ2), holding all other aspects of the model constant. The first is

the bivariate normal from the examples in Section 10.1, with null mean vector,

unit variances, and ρ = 0.85. The second is a nonnormal specification, created

using a mixture of normals, shown in Figure 10.4. This distribution likewise has

null mean vector, unit variances, and ρ = 0.85. For a given s1, each of these

distributions may lead to a different reference conditional distribution.

Figure 10.5 shows the reference conditional distributions formed by using the

normal (dashed gray curves) and nonnormal (solid black curves) priors for s1 = 20

(left plot) and s2 = 35 (right plot). For s1 = 20, the two reference conditional

distributions are quite similar, and the corresponding SGP estimates would likely

be comparable. On the other hand, for s2 = 35, the two reference conditional

distributions are clearly different, suggesting that the specification of ϕ(θ1, θ2)

can impact the MIRT-based SGP estimates.

The potential sensitivity of the proposed SGP calculation to the specificaiton

of ϕ(θ1, θ2) suggests the use of SNP-MIRT in lieu of standard MIRT. The only

change to the proposed framework is that all of the calculations (i.e., Steps 1-3)

are perfomed using the ML estimates from the SNP-MIRT model instead of the

standard MIRT model.
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Figure 10.4: Example of Bivariate Nonnormal Density
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Note. The variance for each dimension is 1, and the correlation between dimen-
sions is ρ = 0.85. Each marginal distribution is standardized, but skewed right.
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Figure 10.5: Examples of Posterior Distributions of θ2 Given s1
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Note. The plots are of Π(θ2|s1) for s1 = 20 (left plot) and s1 = 35 (right plot)
using a normal prior distribution (light gray, dashed curve) and the nonnormal
distribution from Figure 4 (black solid curve). For both prior distributions, ρ =
0.85.

10.3 SGP Simulation Study

A limited simulation study was conducted to evaluate the proposed methods and

to compare SGP approaches. To focus the investigation, only 2 conditions were

studied. In Condition 1, latent variable scores were generated from a bivariate

normal. Then, SGPs were estimated using the QR and MIRT approaches. In

Condition 2, latent variable scores were generated from the normal mixture shown

in Figure 10.4. In this latter condition, SGPs were estimated using the QR, MIRT,

and SNP-MIRT approaches. Generally, data-generating parameter values were

chosen to be representative of large-scale state assessments.

10.3.1 Data Generation and SGP Estimation

For both conditions, the generating density had a null mean vector, variances equal

to 1, and a correlation of ρ = 0.85. For Condition 2, the latent variable density
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was a mixture of 2 bivariate normals with parameters: µ1 = (−0.47,−0.47)′,

µ2 = (1.09, 1.09)′, σ1 = (0.48, 0.29, 0.48)′, σ2 = (0.48, 0.44, 0.48)′, mp1 = 0.7, and

mp2 = 0.3, where “mp” stands for mixing proportion. This is also the definition

of the density in Figure 10.4.

Each of the two dimensions was measured by 40 3PL items. Thus, s1, s2 ∈

{0, . . . , 40}. Slopes were drawn from a truncated normal, with mean = 1.5 and

standard deviation = 0.5, truncated at 0.5 and 3. Intercepts were drawn from a

normal with mean = 0 and standard deviation = 1. Finally, guessing parameters

were drawn from a normal with mean = 0.25 and standard deviation = 0.05, trun-

cated at 0.1 and 0.35. The logits of the guessing parameters, used in estimation,

are denoted logit(c). All of the data-generating item parameters are presented in

Table 10.1.

Let πs1,s2 be the true model-implied probability for the summed-score combi-

nation given s1 and s2. For all combinations of s1 and s2, πs1,s2 may be calculated

using a modified version of the Lord-Wingersky algorithm (Cai, in press-a). Fig-

ure 10.6 presents bubble plots of these probabilities for Condition 1 (left plot) and

Condition 2 (right plot), with larger bubbles corresponding to greater probabil-

ities. Although the overall patterns are similar, differences can be detected, in

particular for score combinations where both s1 and s2 are large.

For each replication, SGPs based on QR, MIRT, and SNP-MIRT were esti-

mated as described in Section 10.1. All SGP estimates were compared to “true”

SGPs, calculated using the data-generating parameter values and MIRT model.

10.3.2 Collected Statistics

The SGP estimates are evaluated using several measures of accuracy. Momentarily

suppressing reference to s1 and s2, let ψ be a true SGP and ψ̂ its corresponding

estimate. Two measures used, bias and RMSE, are defined in Equations (7.1)
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Table 10.1: Generating Parameters for SGP Simulations

item logit(c) α β item logit(c) α β
1 −1.41 −0.71 1.22 41 −0.94 0.70 1.15
2 −0.79 0.26 1.38 42 −0.82 −0.26 1.40
3 −1.19 −0.25 2.28 43 −0.92 −1.57 0.87
4 −1.34 −0.35 1.54 44 −1.20 −1.51 2.58
5 −1.16 −0.95 1.56 45 −1.08 −1.60 2.10
6 −1.15 −0.05 2.36 46 −1.30 −0.53 0.94
7 −0.82 −0.78 1.73 47 −1.30 −1.46 1.30
8 −1.08 −1.67 0.87 48 −0.87 0.69 1.27
9 −0.91 −0.38 1.16 49 −1.39 2.10 1.89

10 −1.24 0.92 1.28 50 −0.63 −1.29 1.46
11 −1.19 0.61 1.68 51 −1.12 0.79 1.63
12 −1.04 −0.58 2.11 52 −1.04 0.77 1.49
13 −1.07 −1.62 1.70 53 −1.31 0.33 1.48
14 −1.35 −0.06 1.56 54 −1.26 −1.01 2.18
15 −1.49 0.52 1.22 55 −1.49 −0.12 1.39
16 −0.62 0.30 2.39 56 −1.15 −0.28 2.26
17 −0.94 0.11 1.75 57 −0.99 0.56 0.73
18 −1.47 −0.64 0.52 58 −1.01 −0.37 1.79
19 −1.27 −0.85 1.85 59 −1.32 0.98 1.56
20 −1.45 −1.02 1.26 60 −1.32 −0.37 1.61
21 −0.77 0.12 0.97 61 −1.24 1.05 1.69
22 −1.17 −0.95 1.39 62 −0.73 −1.05 1.25
23 −0.96 −0.49 0.99 63 −1.43 −1.26 1.33
24 −1.21 −0.26 1.14 64 −1.15 3.24 0.99
25 −1.23 −1.84 1.19 65 −0.64 −0.42 0.96
26 −1.32 −0.65 0.66 66 −1.13 0.30 1.65
27 −1.26 0.24 1.92 67 −1.50 0.64 1.72
28 −0.70 0.08 1.58 68 −1.28 −0.48 1.53
29 −1.11 −0.96 0.93 69 −0.97 0.52 1.96
30 −1.07 −0.07 2.13 70 −1.20 0.37 2.53
31 −1.03 1.44 1.71 71 −1.25 −0.22 1.25
32 −0.79 0.45 1.35 72 −1.19 0.07 2.00
33 −1.24 0.04 1.95 73 −1.07 −0.03 1.15
34 −1.38 −0.42 1.94 74 −0.71 2.13 1.16
35 −0.69 −2.05 1.91 75 −1.12 −0.74 2.01
36 −1.22 1.13 1.84 76 −0.83 −1.10 1.36
37 −1.30 −1.46 1.78 77 −0.94 0.04 0.89
38 −1.46 −0.74 1.47 78 −1.13 0.31 1.59
39 −1.48 −1.91 1.35 79 −1.56 0.44 1.43
40 −1.26 −1.44 1.31 80 −1.24 −0.46 1.50
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Figure 10.6: Bubble Plots of True Model-Implied Probabilities
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Note. Larger bubbles correspond to greater model-implied probabilities.

and (7.2), respectively. Another measure used is the integrated absolute bias.

The absolute bias is defined as δ = M−1
∑M

m=1 |ψ − ψ̂m|, where M is the number

of Monte Carlo replications.

Then, for a given s1, the integrated absolute bias is

δ̄s1 =

S2∑
s2=0

δs1,s2Ws1,s2 , (10.1)

where Ws1,s2 = πs1,s2/
∑S2

s2=0 πs1,s2 . In words, this measure gives the expected

absolute bias for a given s1, averaged across all possible s2 values.

The SGP estimates were also evaluated using correct classification rates (CCR).

Given a set of cut-percentiles, such as (0, 35, 65, 100), the rate is defined as

CCR = M−1N−1

M∑
m=1

N∑
i=1

1τ(ψim)(τ(ψ̂im)) (10.2)

where τ(·) maps an SGP to a classification and 1τ(ψim)(τ(ψ̂im)) is an indicator
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function that returns a 1 if and only if τ(ψim) is equal to τ(ψ̂im), and 0 otherwise.

The CCR is simply the proportion of estimated classifications that agree with true

classifications.

Bias and RMSE statistics (see Equations (7.1) and (7.2)) were also collected

for the item parameter estimates. For Condition 1, since the models are correctly

specified, the estimates should be approximately unbiased. However, for Condi-

tion 2, all fitted models are misspecified, since the true latent variable density

is a normal mixture. Thus, the bias and RMSE statistics can help to measure

the sensitivity of the models to this misspecification. Finally, the log-likelihoods

and HQIC values of the MIRT and SNP-MIRT models were collected to make

comparisons of overall fit. These results, focusing on parameter estimation and

model fit, may therefore supplement the simulation results from Chapter 8.

10.3.3 Condition 1 Results: Normal Latent Variable Density

Table 2 presents some parameter recovery results for Condition 1. As expected,

the estimates for all parameter types are approximately unbiased. The RMSE

values from the MIRT model are slightly smaller than those from the two separate

unidimensional IRT models used for the QR approach. This is to be expected

since the correlation between dimensions in the MIRT model leads to an increase

in efficiency of the parameter estimates. Table 10.2 also serves as a point of

reference for parameter recovery results for Condition 2, when the fitted models

are misspecified.

Figures 10.7 and 10.8 present the bias in SGP estimates for all summed-score

cross-classifications for the QR and MIRT-based approaches, respectively. The

MIRT-based estimates are nearly unbiased, and much less biased than the QR-

based estimates. Further, the magnitude and direction of bias for the QR-based

estimates clearly depend on s1 and s2. One notable trend is that there is relatively
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Table 10.2: Condition 1: Parameter Recovery

Bias RMSE
Parameter Type Parameter Type

Method logit(c) α β logit(c) α β
QR 0.01 −0.01 0.01 0.15 0.12 0.09

MIRT 0.01 −0.01 0.01 0.14 0.11 0.09

Note. “QR” refers to calibration via two separate unidimensional IRT models,
one for year/test 1, one for year/test 2. logit(c) = logit of the guessing parameter;
α = intercept; β = slope.

little bias in SGP estimates for s1 ≈ s2, at least when each summed score is around

15 or greater. However, for score combinations near this diagonal where s1 > s2,

there is a clear pattern of positive bias. In contrast, near this diagonal, when

s1 < s2, there is a clear pattern of negative bias. Another trend is that for score

combinations where both s1 and s2 are relatively small, the QR-based estimates

are consistently negatively biased.

A shortcoming of the bivariate plots in Figures 10.7 and 10.8 is that they do not

incorporate the model-implied probabilities for each summed score combination

(see Figure 10.6). For example, the bias corresponding to the combination s1 =

0 and s2 = 0 may not be particularly important, since πs1,s2 is practically 0

in that case. One way to focus our attention is to identify the most probable

summed score combinations. Here, the 99% Highest Density Region (HDR, Rosa,

Swygert, Nelson, & Thissen, 2001) of combinations is identified, which comprises

the minimum number of most probable combinations sufficient to account for

99% of the probability mass. In other words, the least probable combinations are

ignored. Figure 10.9 plots the mean SGP estimates against the true SGP values

for the 99% HDR score combinations, for both the QR (left plot) and MIRT (right

plot) approaches. Again, the MIRT-based estimates are nearly unbiased, while

the QR-based estimates are systematically biased. Generally, the QR-based SGP

estimates are negatively biased for smaller values and positively biased for greater
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Figure 10.7: Condition 1: Bias for QR Approach
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Note. Bias is defined as the average estimate across all 100 replications minus the
true value.
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Figure 10.8: Condition 1: Bias for MIRT Approach
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values. The implication is that the QR approach tends to “exaggerate” SGPs.

Figure 10.9: Condition 1: Estimated and True SGPs
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Note. Estimates are averages over all 100 replications. Only the 99% Highest
Density Region cross-classifications are displayed.

Another way to focus our attention is to look at the integrated absolute bias,

given s1. Figure 10.10 shows the integrated absolute bias for both QR and MIRT

approaches, with the MIRT approach again outperforming the QR approach. Two

other features of Figure 10.9 are worth mentioning. First, for this condition, the

QR approach performs better near the middle of the s1 range and worse near

the extremes. Second, while the integrated absolute bias for low values of s1 is

relatively great, those values of s1 have low model-implied probabilities (see Figure

10.6).

Finally, Table 10.3 presents CCRs for the two approaches for several sets of cut-

percentiles. For the set with 3 classes, both approaches are quite accurate, with

rates of 0.95 and 0.99 for the QR and MIRT approaches, respectively. As expected,

as the number of classes increases, the accuracies for both approaches decrease.

However, the accuracy for the MIRT approach decreases relatively slowly with an

accuracy rate of 0.97 for 10 classes.
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Figure 10.10: Condition 1: Integrated Absolute Bias
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Note. For each replication, for each s1, the absolute bias is integrated over the
true model-implied probabilities for all s2. These values are then averaged over
all 100 replications.

Table 10.3: Condition 1: Correct Classification Rates

Correct Classification Rate
Classes Cut-Percentiles QR MIRT

3 (0, 35, 65, 100) 0.949 0.989
4 (0, 25, 50, . . . , 100) 0.916 0.988
5 (0, 20, 40, . . . , 100) 0.893 0.985

10 (0, 10, 20, . . . , 100) 0.749 0.966

Note. Figures based on simulation study with N = 10, 000 and 100 replications
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Based on the measures considered, the MIRT-based approach performed ex-

tremely well in Condition 1. These results, however, represent the unrealistic

situation where the model, including the model for the latent variable density, is

exactly correctly specified. This correct specification, in conjunction with the ML

estimator, leads to asymptotically unbiased estimates. Further, the large sample

sizes in the replications (N = 10, 000) resulted in highly efficient parameter es-

timates. And, since the MIRT-based SGPs are a function of the latent variable

density and parameter estimates, it should not be surprising that the MIRT ap-

proach performed so strongly. Condition 2, however, presents a more challenging

case where the latent variable density is misspecified.

10.3.4 Condition 2 Results: Nonnormal Latent Variable Density

The plots in Figure 10.11 show the true generating latent variable density (left

column) and the SNP-MIRT estimated density for Condition 2. The top row

displays the true bivariate contour and the median of the estimated SNP densities.

The resemblance between the two plots indicates the SNP-MIRT model was, to

some degree, effective in estimating the shape of the latent variable density. The

middle and bottom rows show the univariate marginal densities for θ1 and θ2,

respectively. In the left column for these plots, the true generating density is

represented by the black curve, while the gray curve is a standard normal, provided

as a reference. In the right column for these plots, the median of the estimated

SNP densities is shown in black, while the dashed gray curves provide an empirical

90% confidence interval. Again, the right column (SNP estimate) resembles the

left column (true generating).

Table 10.4 presents parameter recovery results disaggregated by parameter

type for the different estimation approaches, including SNP-MIRT. For all pa-

rameter types, the SNP-MIRT model yields estimates with the least bias and the

lowest RMSE values. And in contrast to the results from Condition 1 (see Table
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Figure 10.11: Condition 2: Estimated Densities
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Note. Condition 2 results: plots of true generating (left column) and SNP-
estimated (right column) prior latent variable densities. The top row shows the
bivariate distributions, ϕ(θ1, θ2). The middle row shows the univariate marginal
for θ1. On the left, the light gray distribution is a standard normal, shown for
reference. On the right, the dashed light gray curves give a 90% empirical confi-
dence interval. The bottom row provides the same information as the middle row,
but for θ2.
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10.2), Table 10.4 suggests that the QR and standard MIRT approaches lead to

biased parameter estimates. Also, for every replication, the SNP-MIRT model

was preferred over the standard MIRT model based on both −2×log-likelihood

and HQIC values.

Table 10.4: Condition 2: Parameter Recovery

Bias RMSE
Parameter Type Parameter Type

Method logit(c) α β logit(c) α β
QR 0.22 −0.25 0.23 0.26 0.28 0.26

MIRT 0.20 −0.19 0.18 0.24 0.23 0.21
SNP-MIRT −0.04 0.05 −0.00 0.17 0.13 0.10

Note. “QR” refers to calibration via two separate unidimensional IRT models,
one for year/test 1, one for year/test 2. logit(c) = logit of the guessing parameter;
α = intercept; β = slope.

To summarize the results for Condition 2 thus far, the SNP-MIRT model was

fairly successful in estimating the shape of the true nonnormal latent variable

density, and performed the best among the methods in terms of parameter recov-

ery. Since the SGP estimation approach presented in this research depends on the

latent variable density and item parameter estimates, we should expect the SGP

estimates based on the SNP-MIRT model to be more accurate than those based

on the standard MIRT model. We now turn to those results.

Figures 10.12-10.14 present the bias in SGP estimates for all summed score

cross-classifications for the QR, MIRT, and SNP-MIRT approaches, respectively.

The pattern of bias for the QR-based estimates in Figure 10.12 is similar to the

corresponding pattern from Condition 1 in Figure 10.7. Specifically, the pattern

of positive and negative bias is similar. One apparent difference, though, is the

magnitude of the bias, in particular for the highest summed score combinations.

The bias in the QR-based estimates for these combinations is greater in Condition

2 than the corresponding bias in Condition 1.
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Figure 10.12: Condition 2: Bias for QR Approach
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Note. Bias is defined as the average estimate across all 100 replications minus the
true value.
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Recall Figure 10.8 from Condition 1, which showed that the MIRT-based SGP

estimates were approximately unbiased when the latent variable density was cor-

rectly specified as normal. Figure 10.13 presents a sharp contrast, as there is con-

siderable bias in the MIRT-based SGP estimates for many cross-classifications.

Also, the pattern of bias appears to be mostly a function of s2. For lower and

higher values of s2, the bias tends to be positive, whereas for more central values

of s2, the bias tends to be negative. This pattern of bias likely depends on the

shape of ϕ(θ1, θ2). In any event, Figures 10.8 and 10.13 makes clear that the

proposed method of estimating SGPs based on standard MIRT is clearly sensitive

to the misspecification of the latent variable density.

Figure 10.13: Condition 2: Bias for MIRT Approach
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Note. Bias is defined as the average estimate across all 100 replications minus the
true value.

Finally, Figure 10.14 presents the bias by cross-classification for the SGP esti-

mates based on the SNP-MIRT model. Overall, the SNP-MIRT approach results

in much less bias than the QR and MIRT approaches (see Figures 10.12 and 10.13).
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At the same time, the approach results in more bias than the MIRT approach in

Simulation 1 (see Figure 10.8). This can be explained by the small amount of bias

in the item parameter and density estimation for the SNP-MIRT approach.

Figure 10.14: Condition 2: Bias for SNP-MIRT Approach
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Note. Bias is defined as the average estimate across all 100 replications minus the
true value.

As in Condition 1, we also present plots of mean SGP estimates against true

SGP values for the 99% HDR score combinations. Figure 10.15 shows these plots

for the QR (left plot), MIRT (center plot), and SNP-MIRT (right plot) approaches.

As in Condition 1, the QR approach seems to exaggerate the SGP estimates at

the high and low ends. The MIRT and SNP-MIRT estimates, in comparison, are

better aligned with the 45◦ line, and it is more difficult to discern any pattern in

the plot. Comparing just the MIRT and SNP-MIRT estimates, the latter shows

a tighter correspondence with the true SGP values.

The final plot for the results of Condition 2 is Figure 10.16, which displays

108



Figure 10.15: Condition 2: Estimated and True SGPs
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Note. Estimates are averages over all 100 replications. Only the 99% Highest
Density Region cross-classifications displayed.

the integrated absolute bias, given s1, for all three methods. Comparing the

QR and SNP-MIRT methods is straightforward: both have higher values at the

extremes of s1, but the bias for the SNP-MIRT approach is always smaller. The

results corresponding to the MIRT method, however, are not easily summarized.

Overall, the bias values for the MIRT method tend to fall between the SNP-MIRT

approach and QR approach, but there are exceptions. For instance, for s1 = 38,

the MIRT method produces the smallest bias, while for s1 = 25, it produces the

largest bias. This variability across s1 is likely due to the shape of the latent

variable density.

As with Condition 1, we can also examine CCRs for the 3 methods, presented in

Table 10.5. The SNP-MIRT approach is the most accurate, regardless of which set

of cut-percentiles is used. The other two methods, QR and MIRT, are comparable

to one another, but clearly less accurate than the SNP-MIRT approach.

10.4 Empirical Application

To illustrate the proposed SGP estimation methodology, we use longitudinally-

matched student achievement data from the 2011-2012 and 2012-2013 academic
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Figure 10.16: Condition 2: Integrated Absolute Bias
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Note. For each replication, for each s1, the absolute bias is integrated over the
true model-implied probabilities for all s2. These values are then averaged over
all 100 replications.

Table 10.5: Condition 2: Correct Classification Rates

Correct Classification Rate
Classes Cut-Percentiles QR MIRT SNP-MIRT

3 (0, 35, 65, 100) 0.922 0.917 0.967
4 (0, 25, 50, . . . , 100) 0.882 0.893 0.947
5 (0, 20, 40, . . . , 100) 0.835 0.848 0.932

10 (0, 10, 20, . . . , 100) 0.677 0.705 0.854

Note. Figures based on simulation study with N = 10, 000 and 100 replications
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years. The data are from a state’s mathematics assessments, but due to confi-

dentiality agreements, the state is not identified. For each year, 44 dichotomous

items were analyzed. These items do not constitute a vertical scale. A random

sample of 10,000 complete cases was drawn.

SGPs based on the QR, MIRT, and SNP-MIRT approach were calculated as

described and illustrated in Section 10.1. As before, a tuning constant of 2 is used

for the SNP density, leading to 5 shape parameters in the SNP-MIRT model.

Also, as before, the 3PL model, or its multidimensional version, was used for all

items.

Figure 10.17 shows the contour plots of the latent variable density for the stan-

dard MIRT (left plot) and SNP-MIRT (right plot) models. The estimated SNP

density appears approximately normal, although the estimated correlation of 0.86

is slightly smaller than the estimate of 0.88 for the standard MIRT model. Figure

10.18 shows the estimated univariate marginals for the SNP-density (solid black

curves) along with normal densities (dashed gray curves) provided for reference.

For θ1, the estimated SNP density is slightly peaked and left-skewed in relation

to the normal. A practical interpretation of this is that a greater proportion of

students in this sample had lower latent achievement levels in 2011-2012 than

would be expected using a normal distribution. On the other hand, for θ2, the

estimated SNP density cannot be easily distinguished from a normal.

Turning to model comparison, Table 10.6 provides −2×log-likelihood and

HQIC values for the different models. The QR approach, which relies on two

separate unidimensional IRT models, is formally equivalent to a two-dimensional

IRT model where ρ is constrained to 0. Among the competing models, the SNP-

MIRT model is preferred by both criteria. Also, since the MIRT and SNP-MIRT

models are nested, a likelihood ratio test can be used to judge whether the addi-

tional constraints placed on the shape parameters by the standard MIRT model

lead to a significant decrement in model fit. Since the test statistic is highly sig-
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Figure 10.17: Empirical Application: Bivariate Latent Variable Density
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Figure 10.18: Empirical Application: Univariate Latent Variable Densities
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Note. The light gray dashed curves are normal from the standard MIRT estima-
tion; the black solid curves are from the SNP-MIRT estimation.
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nificant (χ2
5 = 452.5, p < 0.001), the conclusion is that the standard MIRT model

does not fit the data as well as the SNP-MIRT model.

Table 10.6: State Achievement Data: Model Comparisons

Model N Parameters ρ̂ −2×LogL HQIC
QR 10,000 264 0 987218.00 988390.30

MIRT 10,000 265 0.88 978034.28 978545.35
SNP-MIRT 10,000 270 0.86 977581.80 978102.51

Note. “QR” refers to calibration via two separate unidimensional IRT models,
one for year/test 1, one for year/test 2. This is formally equivalent to a two-
dimensional IRT model with ρ constrained to 0.

Next, we can compare the SGP estimates from the 3 methods. Figure 10.19

displays bivariate plots of SGP estimates for a random subsample of 1,000 stu-

dents. The estimates based on the MIRT and SNP-MIRT approaches are highly

similar, as evidenced by the correspondence of estimates in the lower-right plot.

As for the QR-based estimates, they tend to be more extreme than the estimates

based on the other two methods. Interestingly, this is the same pattern exhibited

by the QR-based estimates in Condition 1 (see Figure 10.7) and Condition 2 (see

Figure 10.12). However, here, the QR-based estimates are being plotted against

the MIRT and SNP-MIRT-based estimates, as opposed to the true values.

Table 10.7 also measures the similarity in the 3 sets of estimates by looking

at the pairwise classification agreement rates. For the set of cut-percentiles with

3 classes, all methods produce similar results, with agreement rates of 0.94 and

higher. However, for the set of cut-percentiles with 10 classes, the results depend

substantially on the method. In particular, the QR-based method has low classi-

fication agreement rates (< 0.68) with the MIRT and SNP-MIRT methods, while

the latter two methods have a relatively high agreement rate (0.92).

The empirical example results provoke several questions and ideas. The SNP-

MIRT method yielded a density estimate that was nonnormal, but only slightly
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Figure 10.19: Empirical Application: SGPs for All Approaches
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Note. Plots use the same random sub-sample of 1,000 students from the full
sample of 10,000.

Table 10.7: State Achievement Data: SGP Classification Agreement Rates

Classification Agreement Rate
Classes Cut-Percentiles QR/MIRT QR/SNP-MIRT MIRT/SNP-MIRT

3 (0, 35, 65, 100) 0.953 0.946 0.982
4 (0, 25, 50, . . . , 100) 0.907 0.890 0.959
5 (0, 20, 40, . . . , 100) 0.846 0.837 0.953

10 (0, 10, 20, . . . , 100) 0.676 0.660 0.915

Note. Figures based on sample of N = 10, 000. Classification Agreement Rates
are pairwise.
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so. Consequently, SGP estimates based on the SNP-MIRT and standard MIRT

approaches were highly similar. This suggests that the SNP-MIRT approach may

serve as a type of sensitivity analysis for the standard MIRT approach. It is un-

clear, however, how different the SGP estimates need to be to justify the use of the

more complex SNP-MIRT model. Further, the empirical latent variable density

suggests that the specified density in Simulation 2 may have been too extreme in

its nonnormality. Additional empirical datasets should be analyzed to develop a

better understanding of typical density shapes for large-scale longitudinal achieve-

ment data.
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CHAPTER 11

Summary and Future Directions

11.1 Summary

The present research implemented a new multidimensional item response theory

model, the SNP-MIRT model, within a general confirmatory modeling framework.

Given that the SNP-MIRT model is parameterized with both mean and variance

parameters, it may be substituted freely for the normal density in any confirmatory

setting. Simulation studies were carried out to verify the implementation, and

the SNP-MIRT model performs admirably in terms of both item parameter and

density shape recovery. Notably, even when the true generating distribution is

normal, the SNP-MIRT model seems to perform as well as the standard MIRT

model. And when the true generating distribution is nonnormal, the SNP-MIRT

model typically performs better than the standard model (though the advantage

was generally small).

All estimation was performed using the MH-RM algorithm, with a few new

wrinkles added to prior implementations. Since the algorithm is firmly rooted in

both the stochastic approximation and MCMC methodologies, it can capitalize on

innovations from both areas. For instance, in this research, a more nuanced form of

gain constant was adopted from the SA literature, as it proved convenient given the

complexity of the SNP-MIRT model. As another example, using methodological

tools developed for Bayesian inference and MCMC, this research proposed and

implemented the two new CJ estimators. The estimators provide approximations
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for the log-likelihood and observed information matrix of a model, which are not

straightforward to compute in high-dimensional settings.

This research also proposed and studied a new method to calculate SGPs

within a MIRT framework, capitalizing on recent research on calibrated pro-

jection. The calibrated projection technique can be used to find the reference

conditional distribution, which is necessary for SGP estimation. The proposed

methods performed well in the simulation study and compared favorably to the

original QR-based approach to SGPs. For Condition 1, when the true latent vari-

able density was specified as normal, the MIRT-based approach produced nearly

unbiased SGP estimates, while the QR-based approach led to exaggerated SGP

estimates. For Condition 2, when the true latent variable density was nonnormal,

the results were more mixed. However, the SNP-MIRT approach was effective in

estimating the latent variable density shape, and led to the most accurate SGP

estimates. Finally, an empirical data analysis of longitudinal achievement data

demonstrated that the choice of method affects estimated SGPS, as well as derived

classifications.

11.2 Future Directions

Having demonstrated that the SNP-MIRT model is a viable alternative to stan-

dard MIRT, future efforts should focus on when the difference in model choice

matters. While the simulation studies showed that the SNP-MIRT model is cor-

rectly implemented, the relatively large amount of information contributed by

the items (20 graded items with 5 categories) limited the influence a misspeci-

fied population distribution might have on item and person parameter estimates.

Consequently, some simulation work should be devoted to conditions where the

items provide less information.

Regarding the algorithmic implementation, a number of research avenues may
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be pursued. The CJ estimators show great promise, but its unclear how they

compare when timing issues are considered. Compared to the current standard

methods, the estimators require more computation per cycle. With that being

said, there may be a way to estimate some of the necessary quantities concur-

rently with the MH-RM algorithm, like the calculation of the Louis (1982) based

information approximation in Cai (2010a). More generally, it will be interesting

to see what other methods from the SA and MCMC fields eventually prove useful

for MIRT modeling.

For the new SGP framework, there are numerous topics for future research.

Some of these topics involve the generality of the proposed methods. Theoreti-

cally, the framework accommodates scaled scores based on response patterns (as

opposed to summed scores) as well as multiple prior years of achievement data. In

some sense, using response patterns makes calculating SGPs easier. At the same

time, however, the exponentially increasing number of possible response patterns

makes studying the methods more challenging. Regarding the incorporation of

multiple years of prior data, the MH-RM algorithm (Cai, 2010a, 2010b) provides

a way to obtain the required parameter estimates. Also, Thissen et al. (2014) has

already demonstrated that calibrated projection can be generalized to more than

2 dimensions. Finally, the framework can theoretically accommodate residual de-

pendencies among items across years (Cai, in press-a) that may result from, for

instance, the use of highly similar items in consecutive years. For the reasons just

stated, the proposed SGP framework is quite general. However, future research

should demonstrate some this generality.

Other potential research topics involve the quality of the SGP estimates them-

selves. The focus of this preliminary research was on the accuracy of the SGP

point estimates. Another obvious evaluation criteria, hinted at by Figure 10.3, is

the uncertainty in the SGP estimates. This is a very practical issue, since greater

levels of uncertainty would seem to threaten the utility and validity of SGPs, at
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least at the student level. On a related note, the new framework also enables more

systematic examination of the effects of aggregating SGPs, either to the teacher

or school level. Research on these last two topics, in particular, would be of great

interest to policymakers.
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APPENDIX A

Derivatives for the SNP Density

The log-likelihood of the new parameterization of the SNP density is

l = log hy(y;µ,σ,ν) = 2 logPκ(x;ν) + log φ(x) + log |S|+ log |R−1|

= l1 + l2 + l3 + l4. (A.1)

This Appendix presents the first and second derivatives of Equation (A.1), and

is organized as follows. First notational conventions will be introduced. Then, a

number of partial first and second derivatives will be given. Finally, the derivatives

for Equation (A.1) will be presented.

A.1 Notational Conventions

Let E be the p∗×p2 elimination matrix; let K be the p2×p2 commutation matrix;

and let I be the p× p identity matrix.

Also, let s−1 = vech(S−1) and, analogously, let r−1 = vech(R−1)

Generally, let the ‘∇’ symbol indicate derivatives with respect to ν. For ex-

ample, ∇ψi = ∂ψi/∂νi, noting that the argument index also serves to index ν.

Similarly, let ∇2 be defined analogously such that ∇2ψi = ∂2ψi/∂ν
2
i

Generally, let the ‘dot’ and ‘double-dot’ symbols indicate derivatives with re-

spect to the t× 1 vector c. As an example, consider the p× 1 vector x. Then, ẋk

is a t× 1 vector with ith element ∂xk/∂ci, while ẋ is a p× t matrix with (i, j)th
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element ∂xi/∂cj. Also, ẍk is a t× t matrix with (i, j)th element ∂xk/(∂ci∂cj).

A.2 Some Partial Derivatives

A.2.1 Derivatives of c With Respect to ν

Let α and β be q × 1 vectors such that αi = cos (δi) and βi = sin (δi). Then, the

t× 1 vector c is defined as

c1 = α1

c2 = β1α2

c3 = β1β2α3 (A.2)

... =
...

ct−1 = β1β2 · · · βq−1αq

ct = β1β2 · · · βq−1βq.

Define the following derivatives: ∇δi = 1/(1 + ν2
i ); ∇αi = −βi∇δi; and ∇βi =

αi∇δi.

Then, let ∂c/∂ν be the t × q matrix of first derivatives, where the (i, j)th

element is

∂ci
∂νj

=



0 for j > i

∇αi
∏i−1

l=1 βl for j = i < r

αi∇βj
∏i−1

l 6=j βl for j < i < r

∇βj
∏q

l 6=j βl for i = r.

(A.3)

Moving on to the second derivative, ∇2δi = −2νi/(1 +ν2
i )2; ∇2αi = −αi∇δ2

i −

βi∇2δi; and ∇2βi = −βi∇δ2
i + αi∇2δi.

Finally, let ∂2ck/(∂ν∂ν
′) be the q×q matrix of second derivatives for ck. These
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matrices are necessarily symmetric, and only the lower triangular elements will

be defined. For k < t, the (i, j)th element is

∂2ck
∂νi∂νj

=



∇2βiαk
∏k−1

l 6=i βl for j = i < k

∇βi∇βjαk
∏k−1

l 6=i,j βl for j < i < k

∇βj∇αk
∏k−1

l 6=j βl for j < i = k

∇2αk
∏k−1

l=1 βl for j = i = k.

(A.4)

For k = t, the (i, j)th element is

∂2ck
∂νi∂νj

=


∇2βi

∏k−1
l 6=i βl for j = i

∇βi∇βj
∏k−1

l 6=i,j βl for j < i.

(A.5)

A.2.2 Derivatives of m With Respect to c

The first derivatives of elements of m are defined as

ṁi =
∂mi

∂c
= 2(B−1)′A∗ia, (A.6)

and let ṁ be the p× t matrix with ith row given by ṁ′i. Let the matrix of second

derivatives be

m̈i :=
∂2mi

∂c∂c′
= 2(B−1)′A∗iB

−1. (A.7)

A.2.3 Derivatives of v With Respect to c

Let vk be the kth element of the p∗ × 1 vector v. Further, let vk correspond to

the (i, j)th element of V. Then,

v̇k =
∂vk
∂c

= 2(B−1)′A∗ija− (mjṁi +miṁj). (A.8)
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Let v̇ be the p∗ × t matrix

v̇ =
[
v̇1 · · · v̇p∗ .

]′
(A.9)

The matrix of second derivatives is

v̈k =
∂2vk
∂c∂c′

= 2(B−1)′A∗ijB
−1 − (mjm̈i +mim̈j + ṁiṁ

′
j + ṁjṁ

′
i). (A.10)

A.2.4 Derivatives of s With Respect to c

For s, the p∗ × t matrix ṡ is defined as

ṡ =
∂s

∂c′
=
∂s

∂v
v̇, (A.11)

and the matrix of second derivatives is

s̈k =
∂2sk
∂c∂c′

= v̇′
∂2sk
∂v∂v′

v +

p∗∑
i=1

∂sk
∂vi

v̈i. (A.12)

A.2.5 Derivatives of x With Respect to c

Let U be the p× p∗ matrix U = (z′ ⊗ I)E′. Then, let ẋ be the p× t matrix with

ith row ẋ′i. It is defined as

ẋ =
[
ẋ1 · · · ẋp

]′
= Uṡ + ṁ. (A.13)

Let the p∗ × 1 vector u(k) be formed from the kth row of U. Then,

ẍk =
∂2xk
∂c∂c′

= m̈k +

p∗∑
i=1

u
(k)
i s̈i. (A.14)
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A.2.6 Derivatives of η With Respect to c

For η,
∂ηi
∂xj

=
λijηi
xj

, (A.15)

and let ∂ηi/∂x be the p× 1 vector with jth element ∂ηi/∂xj. Then,

η̇k =
∂ηk
∂c

= ẋ′
∂ηk
∂x

, (A.16)

and the t× t matrix η̇ has in its ith row η̇′i, that is

η̇ =
[
η̇1 · · · η̇t

]′
. (A.17)

The matrix of second derivatives, with respect to elements of x, has typical

element

∂2ηk
∂xi∂xj

=


λkiλkjηk
xixj

if i 6= j

(λki − 1)λkiηk
x2
i

if i = j.

(A.18)

Then,

η̈k =
∂2ηk
∂c∂c′

= ẋ′
∂2ηk
∂x∂x′

ẋ +

p∑
i=1

(
∂ηk
∂x

)
i

ẍi. (A.19)

A.2.7 Derivatives of x With Respect to µ and σ

For first derivatives,
∂x

∂µ
= −SR−1, (A.20)

and
∂x

∂σ
=

∂x

∂r−1

∂r−1

∂r

∂r

∂σ
, (A.21)

∂x

∂r−1
= ((y − µ)′ ⊗ S)E′, (A.22)
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∂r−1

∂r
= E(−(R−1)′ ⊗R−1)E′, (A.23)

and ∂r
∂σ

is defined in Smith (1995).

For second derivatives,

∂2xk
∂σ∂σ′

=

p∗∑
i=1

(
∂xk
∂r−1

)
i

∂2r−1
i

∂σ∂σ′
, (A.24)

where

∂2r−1
i

∂σ∂σ′
=

(
∂r

∂σ

)′
∂2r−1

i

∂r∂r′

(
∂r

∂σ

)
+

p∗∑
j=1

(
∂r−1

i

∂r

)
j

∂2rj
∂σ∂σ′

, (A.25)

and
∂2rj
∂σ∂σ′

is defined in Smith (1995). In Equation (A.25),
∂2r−1

i

∂r∂r′
may be obtained

from

G = (I⊗K⊗ I)(((R−1)′ ⊗R−1)⊗Kvec(R−1) + vec(R−1)⊗ (K(R−1)′ ⊗R−1))).

(A.26)

The p4 × p2 matrix G is structured as

G =



G11

...

Gp1

...

G1p

...

Gpp


, (A.27)

where

Gmn =
∂2R−1

mn

∂vec(R)∂vec(R)′
. (A.28)
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As an example of how to obtain the desired quantity, let i = 1. Then,

∂2r−1
1

∂r∂r′
= EG11E

′. (A.29)

The cross-partial derivative, with respect to µ and σ, is

∂2xk
∂µ∂σ′

=
∂2xk

∂µ∂(r−1)′
∂r−1

∂σ
. (A.30)

In Equation (A.30), ∂2xk
∂µ∂(r−1)′

may be obtained from

H = −(R⊗ I)KE′. (A.31)

The p2 × p∗ matrix H is structured as

H =


H1

...

Hp

 , (A.32)

where

Hk =
∂2xk

∂µ∂(r−1)′
. (A.33)

A.3 Full Derivatives for the SNP Log-Likelihood

A.3.1 First Derivatives of l1

Using the chain rule and
∂l1
∂x

=
2

P (x)

∂P (x)

∂x
, (A.34)

where
∂P (x)

∂x
=

(
∂η

∂x

)′
a, (A.35)
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the first derivatives of l1 with respect to ψ are given by

∂l1
∂µ

=

(
∂x

∂µ

)′
∂l1
∂x

(A.36)

and
∂l1
∂σ

=

(
∂x

∂σ

)′
∂l1
∂x

. (A.37)

Finally,
∂l1
∂ν

=
2

P (x)

(
∂c

∂ν

)′
∂P (x)

∂c
, (A.38)

where
∂P (x)

∂c
= (B−1)′η +

(
∂η

∂c

)′
a. (A.39)

A.3.2 Second Derivatives of l1

The second derivatives of l1 are as follows:

∂2l1
∂µ∂µ′

=

(
∂x

∂µ

)′
Γ
∂x

∂µ
, (A.40)

where

Γ = − 2

P (x)2

∂P (x)

∂x

(
∂P (x)

∂x

)′
+

t∑
k=1

ak
∂2ηk
∂x∂x′

, (A.41)

∂2l1
∂σ∂σ′

=

(
∂x

∂σ

)′
Γ
∂x

∂σ
+

2

P (x)

p∑
i=1

(
∂P (x)

∂x

)
i

∂2xi
∂σ∂σ′

, (A.42)

and
∂2l1
∂ν∂ν ′

=
2

P (x)

(
∂c

∂ν

)′
Ξ(1) ∂c

∂ν
+

t∑
k=1

(
∂P (x)

∂c

)
k

∂2ck
∂ν∂ν ′

, (A.43)

where

Ξ(1) = − 1

P (x)

∂P (x)

∂c

(
∂P (x)

∂c

)′
+ 2

(
∂η

∂c

)′
B−1 +

t∑
k=1

ak
∂2ηk
∂c∂c′

. (A.44)
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The cross-partial derivatives are given by:

∂2l1
∂µ∂σ′

=

(
∂x

∂µ

)′
Γ
∂x

∂σ
+

2

P (x)

p∑
i=1

(
∂P (x)

∂x

)
i

∂2xi
∂µ∂σ′

, (A.45)

and using the chain rule with

∂2l1
∂µ∂x′

= − 2

P (x)2

(
∂c

∂ν

)′
∂P (x)

∂x

(
∂P (x)

∂x

)′
(A.46)

− 2

P (x)

(
∂c

∂ν

)′ [(
B−1

)′ ∂η
∂x

+

(
∂x

∂c

)′
∂2P (x)

∂x∂x′

]
,

where
∂2P (x)

∂x∂x′
=

t∑
k=1

ak
∂2ηk
∂x∂x′

, (A.47)

then
∂2l1
∂ν∂ν ′

=
∂2l1
∂ν∂x′

∂x

∂µ
(A.48)

and
∂2l1
∂ν∂σ′

=
∂2l1
∂ν∂x′

∂x

∂σ
. (A.49)

A.3.3 First Derivatives of l2

The first derivatives are
∂l2
∂µ

= −x

(
∂x

∂µ

)′
, (A.50)

∂l2
∂σ

= −x

(
∂x

∂σ

)′
, (A.51)

and
∂l2
∂ν

=

(
∂c

∂ν

)′
∂l2
∂c
, (A.52)

where
∂l2
∂c

=

(
∂x

∂c

)′
x. (A.53)
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A.3.4 Second Derivatives of l2

The second derivatives are of l2 are as follows:

∂2l2
∂µ∂µ′

= −
(
∂x

∂µ

)′
∂x

∂µ
, (A.54)

∂2l2
∂σ∂σ′

= −
(
∂x

∂σ

)′
∂x

∂σ
−

p∑
i=1

xi
∂2xi
∂σ∂σ′

, (A.55)

and
∂2l2
∂ν∂ν ′

=

(
∂c

∂ν

)′
Ξ(2) ∂c

∂ν
+

t∑
k=1

(
∂l2
∂c

)
k

∂2ck
∂ν∂ν ′

, (A.56)

where

Ξ(2) =

(
∂x

∂c

)′
∂x

∂c
−

p∑
i=1

xi
∂2xi
∂c∂c′

. (A.57)

The cross-partial derivatives are given by:

∂2l2
∂µ∂σ′

=

(
∂x

∂µ

)′
∂x

∂σ
−

p∑
i=1

xi
∂2xi
∂µ∂σ′

, (A.58)

∂2l2
∂ν∂µ′

=

(
∂x

∂c

∂c

∂ν

)′
∂x

∂µ
, (A.59)

and
∂2l2
∂ν∂σ′

=

(
∂x

∂c

∂c

∂ν

)′
∂x

∂σ
. (A.60)

A.3.5 First Derivatives of l3

l3 is only a function of ν. So, all derivatives with respect to µ and σ are 0. The

first derivatives of l3 are
∂l3
∂ν

=

(
∂c

∂ν

)′
∂l3
∂c
, (A.61)
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where
∂l3
∂c

=

(
∂s

∂c

)′
s−1. (A.62)

A.3.6 Second Derivatives of l3

The second derivatives of l3 are

∂2l3
∂ν∂ν ′

=

(
∂c

∂ν

)′
Ξ(3) ∂c

∂ν
+

t∑
k=1

(
∂l3
∂c

)
k

∂2ck
∂ν∂ν ′

, (A.63)

where

Ξ(3) = −
(
∂s

∂c

)′
E
(
K((S−1)′ ⊗ S−1)

)
E′
∂s

∂c
−

p∗∑
j=1

s−1
j

∂2sj
∂c∂c′

. (A.64)

A.3.7 First Derivatives of l4

l4 is only a function of σ. So, all derivatives with respect to µ and ν are 0. The

first derivatives of l4 are
∂l4
∂σ

=

(
∂r

∂σ

)′
∂l4
∂r
, (A.65)

where
∂l4
∂c

= EKvec(R). (A.66)

A.3.8 Second Derivatives of l4

The second derivatives of l4 are

∂2l4
∂σ∂σ′

=

(
∂r

∂σ

)′
∂2l4
∂r∂r′

∂r

∂σ
+

p∑
i=1

(
∂l4
∂r

)
i

∂2ri
∂σ∂σ′

, (A.67)

where
∂2l4
∂r∂r′

= −EK (R′ ⊗R) E′. (A.68)

130



APPENDIX B

Derivatives for the Observed Information

Estimator

This Appendix presents dervatives needed for the observed information estimator

FCJ presented in Chapter 6. In particular, the derivative ∇ω log Π(θ∗|y,ω) is

needed, for an arbitrary response pattern y.

Using Equation (6.7),

∇ω log Π(θ∗|y,ω) = ∇ω log ū−∇ω log v̄ (B.1)

=
1

ū
∇ωū−

1

v̄
∇ωv̄.

Then, let ∇ζ return the d1 × 1 vector of partial derivatives with respect to the

item parameters ζ and let ∇ξ return the d2 × 1 vector of partial derivatives with

respect to the group parameters ξ. Therefore, ∇ωū = ((∇ζū)′, (∇ξū)′)′, and

∇ωv̄ = ((∇ζ v̄)′, (∇ξv̄)′)′. Below, each of these 4 quantities will be defined.

At this point, it is convient to define

%(θ, θ̌) =
f(y|θ̌, ζ)ϕ(θ̌; ξ)

f(y|θ, ζ)ϕ(θ; ξ)
. (B.2)

Now, consider ∇ζū:
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∇ζū = C−1

C∑
c=1

q(θ(c),θ∗)∇ζα(θ(c),θ∗), (B.3)

where

∇ζα(θ(c),θ∗) =


0 if α(θ(c),θ∗) ≥ 1

%(θ(c),θ∗)∇ζ log

(
f(y|θ∗, ζ)

f(y|θ(c), ζ)

)
otherwise.

(B.4)

Note that the second case in Equation (B.4) involves a difference of complete data

log-likelihood derivatives for items, which are used in MH-RM.

Next, consider ∇ζ v̄:

∇ζ v̄ = J−1

J∑
j=1

∇ζα(θ∗,θ(j)), (B.5)

where ∇ζα(θ∗,θ(j)) may be calculated by Equation (B.4), substituting in appro-

priate arguments.

Next, consider ∇ξū:

∇ζū = C−1

C∑
c=1

q(θ(c),θ∗)∇ξα(θ(c),θ∗), (B.6)

where

∇ξα(θ(c),θ∗) =


0 if α(θ(c),θ∗) ≥ 1

%(θ(c),θ∗)∇ξ log

(
ϕ(θ∗; ξ)

ϕ(θ; ξ)

)
otherwise.

(B.7)

Note that the second case in Equation (B.7) involves a difference of complete data
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log-likelihood derivatives for density models, which are used in MH-RM.

Finally, consider ∇ξv̄:

∇ξv̄ = J−1

J∑
j=1

∇ξα(θ∗,θ(j)), (B.8)

where ∇ξα(θ∗,θ(j)) may be calculated by Equation (B.7), substituting in appro-

priate arguments.
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