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Abstract	of	the	Dissertation	
	

Exploring	the	Relationships	between	Emergent	Mathematical	Practices,	Individuals’	
Ways	of	Reasoning,	and	Meanings	Constructed	through	Discourse	

by	

John	Gruver	

	

Doctor	of	Philosophy	in	Mathematics	and	Science	Education		

	

University	of	California,	San	Diego,	2016	
San	Diego	State	University,	2016	

	

Professor	Joanne	Lobato,	Chair		

	
	

The	emergent	perspective	(Cobb	&	Yackel,	1996)	is	a	way	for	researchers	to	

conceptualize	teaching	and	learning	interactions	that	gives	equal	analytic	focus	to	

the	social	environment	and	individual	cognition.	According	to	this	theory,	individual	

students’	conceptions	and	activities	give	rise	to	ways	of	reasoning	that	become	

accepted	in	the	class	community,	called	emergent	mathematical	practices.	Students’	

participation	in	these	practices	then	affects	their	personal	conceptions	and	

activities.	In	this	study,	I	further	contribute	to	researchers’	understanding	of	the	

nature	of	this	relationship	by	documenting	the	mathematical	practices	established	

in	a	class	community	and	investigating	a	subset	of	individuals’	subsequent	



	

xv	

reasoning	in	a	clinical	interview.	In	contrast	to	previous	work,	I	found	the	majority	

of	students	interviewed	reasoned	in	ways	that	were	qualitatively	different	from	the	

established	practice.	I	then	developed	a	partial	explanation	for	how	students	could	

participate	in	class	activities	yet	continue	to	reason	in	ways	that	differed	from	the	

established	practice	by	examining	the	mathematical	meanings	constructed	through	

the	classroom	discourse.	

	



1	

Chapter	1: Rationale	
	

In	the	late	eighties,	mathematics	education	research	took	what	Lerman	

(2000)	called	a	“social	turn”	(p.	19).	This	meant	that	researchers	began	to	more	

seriously	consider	the	social	nature	of	knowing.	This	is	not	to	say	that	social	

interactions	were	ignored	previous	to	this	time.	For	example,	Piaget	acknowledged	

the	contributions	of	the	social	world	to	individuals’	construction	of	knowledge	(M.	

Cole	&	Wertsch,	1996).	However,	after	the	social	turn	researchers	began	to	conceive	

of	knowledge	as	inseparable	from	the	social	context	in	which	that	knowledge	was	

developed,	to	explore	the	semiotic	and	cultural	mediation	of	thought,	and	

investigate	learning	as	enculturation	into	practice	(Brown,	Collins,	&	Duguid,	1989;	

Wenger,	1998;	Wertsch,	1991).	Thus,	mathematics	educators	began	to	expand	the	

unit	of	analysis	beyond	the	individual	to	explore	the	collective	mathematical	

development	of	a	community	and	to	understand	regularities	in	patterns	of	

communication	among	participants	in	a	classroom.		

However,	as	Lerman	(2000)	pointed	out,	this	expansion	was	not	without	

challenges.	

A	major	challenge	for	theories	from	the	social	turn	is	to	account	for	
individual	cognition	and	difference,	and	to	incorporate	the	substantial	
body	of	research	on	mathematical	cognition,	as	products	of	social	
activity	(p.	27).	

	
Thus,	as	social	theories	came	into	prominence,	educators	began	to	better	

understand	the	nature	of	social	interactions	in	their	classrooms.	However,	with	the	

expanded	unit	of	analysis	nuances	in	individual	cognition	were	lost.	This	leaves	

open	the	question	of	what	meanings	are	students	making	from	these	social	
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interactions?	Also,	how	will	participating	in	classrooms,	perhaps	especially	

classrooms	where	powerful	mathematical	ideas	are	developed,	affect	how	students	

reason	in	the	future?	

The	problem	of	coordinating	individual	cognition	with	social	interaction	is	

critical	in	mathematics	education	research,	because	no	matter	how	well	researchers	

are	able	to	conceptualize	the	social	environment,	if	this	conceptualization	is	

divorced	from	individuals’	learning	it	is	less	likely	to	impact	educators’	practice	in	a	

way	that	will	positively	affect	student	learning.	In	order	to	impact	student	learning	

by	changing	the	nature	of	the	interactions	in	which	those	students	engage,	it	is	

necessary	not	only	to	understand	the	nature	of	classroom	interactions,	but	also	their	

relationships	to	student	learning.	This	means	researchers	need	a	way	to	understand	

the	learning	process	as	it	occurs	in	social	environments	in	such	a	way	that	neither	

the	environment	nor	the	cognition	of	individual	is	studied	at	the	expense	of	the	

other.	

One	way	this	challenge	was	met	was	by	the	development	of	the	emergent	

perspective	(Cobb	&	Yackel,	1996).	This	theory	combines	aspects	of	symbolic	

interactionism	(Bauersfeld,	Krummheuer,	&	Voight,	1988)	and	constructivism	(von	

Glasersfeld,	1984,	1992)	to	coordinate	social	aspects	of	the	classroom	microculture	

with	psychological	features	of	the	individuals	who	participate	in	the	classroom	

activities.	In	this	approach,	the	social	and	individual	planes	have	equal	weight,	in	

contrast	to	theories	in	which	the	individual	plane	has	primacy	(and	the	social	nature	

of	knowing	is	downplayed)	or	the	social	plane	has	primacy	(and	the	interpretive	
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nature	of	knowing	is	downplayed).	The	emergent	perspective	has	been	utilized	by	

mathematics	educators	around	the	world	to	inform	a	variety	of	research	efforts	

(Hershkowitz	&	Jaworski,	2012;	Hershkowitz	&	Schwarz,	1999;	Kazemi	&	Stipek,	

2001;	Rasmussen,	Wawro,	&	Zandieh,	2015;	Roy,	2008;	Stephan	&	Rasmussen,	

2002;	Voigt,	1995;	Wawro,	2011).	

The	emergent	perspective	outlines	three	social	aspects	of	the	classroom—

social	norms,	socio-mathematical	norms,	and	classroom	mathematical	practices—

and	their	individual	psychological	correlates.	Social	norms	are	accepted	and	

expected	ways	of	participating	in	the	classroom.	Similarly,	socio-mathematical	

norms	are	expected	ways	of	participating	that	are	specific	to	how	students	engage	

with	the	mathematics	(e.g.	ways	of	giving	valid	mathematical	arguments).	Classroom	

mathematical	practices	are	mathematical	ways	of	reasoning	and	operating	that	

become	taken-as-shared.	This	means	that	in	the	classroom	community,	participants	

assume	that	other	participants	are	familiar	with	and	understand	the	way	of	

operating.	Researchers	use	the	phrase	taken-as-shared	rather	than	shared	to	

describe	these	ways	for	reasoning	and	operating	to	emphasize	that	they	are	not	

claiming	that	all	students’	reason	in	exactly	the	same	way.	Rather,	they	only	claim	

the	mathematical	practice	is	treated	as	if	it	is	understood	and	accepted	in	the	

community.	In	this	way,	the	researchers	are	able	to	identify	a	phenomenon	at	that	

exists	at	the	classroom	level,	but	not	make	assumptions	about	what	any	one	

individual	participant	understands.	
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Each	of	these	three	social	aspects	also	has	a	psychological	correlate	(see	

Table	1.1).	The	correlate	of	social	norms	is	students’	beliefs	about	their	own	role,	

others’	roles,	and	the	general	nature	of	mathematical	activity.	Essentially,	this	is	the	

students’	personal	view	on	what	the	expectations	of	the	norm	are	and	how	they	

should	participate	in	them.	The	correlate	of	socio-mathematical	norms	is	students’	

mathematical	beliefs	and	values.	This	refers	to	students’	view	of	mathematics	in	

general	as	well	as	their	view	on	mathematical	practices,	including	how	they	see	

themselves	engaging	in	them.	For	example,	if	one	of	the	socio-mathematical	norms	

that	exists	in	a	classroom	defines	the	criteria	that	guides	what	constitutes	a	

mathematically	significant	difference	in	two	explanations,	individuals’	personal	

judgments	about	whether	or	not	their	solution	is	significantly	different	than	the	

solution	being	presented	influence	how	they	interpret	and	engage	with	the	socio-

mathematical	norm.	Finally,	the	individual	correlate	of	classroom	mathematical	

practices	is	students’	own	mathematical	conceptions	and	activity.	This	can	include	

students’	ways	of	reasoning	about	a	topic	as	well	as	images	of	mathematical	

concepts.	

Table	1.1:	The	emergent	perspective’s	interpretive	framework	(Cobb	&	Yackel,	1996).	
Social	Perspective	 Individual	Perspective	

Classroom	social	norms	 Beliefs	about	own	role,	others’	roles,	
and	the	general	nature	of	
mathematical	activity	

Socio-mathematical	norms	 Mathematical	beliefs	and	values	
Classroom	mathematical	practices	 Mathematical	conceptions	and	

activity	
	
According	to	Cobb	and	Yackel	(1996)	the	relationship	between	individuals’	

conceptions	and	mathematical	practices	is	indirect	and	reflexive.	This	means	that	
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individuals’	ideas	gives	rise	to	classroom	mathematical	practices	as	individuals	

share	and	negotiate	ideas.	Then,	as	ways	of	reasoning	become	accepted	in	the	

community,	they	influence,	but	do	not	determine,	students’	further	reasoning	and	

conceptions.	Because	participation	in	emergent	practices	is	not	deterministic	of	

further	ways	of	reasoning,	classroom	participants	may	not	share	identical	

conceptions.	This	diversity	of	student	ideas	is	acknowledged	through	use	of	the	

metaphor	that	students	participate	differentially	in	classroom	mathematical	

practices.	

However,	despite	the	promise	of	the	theory	to	coordinate	individual	and	

social	constructs,	most	of	the	research	conducted	by	those	who	have	worked	from	

the	emergent	perspective	has	focused	on	fleshing	out	and	investigating	the	social	

constructs	of	social	norms,	socio-mathematical	norms,	and	classroom	math	

practices	(e.g.	Kazemi	&	Stipek,	2001;	Pang,	2000;	Yackel,	2001).	This	is	

understandable,	given	the	need	to	operationalize	these	constructs	in	classroom-

based	mathematics	education	research.	Indeed,	the	emergent	perspective	provides	

a	powerful	way	to	conceptualize	social	aspects	of	the	learning	environment	

generally,	and	in	particular	the	mathematical	progress	of	the	class	at	the	collective	

level.	However,	analyses	that	focus	solely	on	social	aspects	are	limited	in	their	

meaningfulness	for	individual	students’	learning	unless	researchers	provide	an	

elaboration	of	the	relationships	between	social	interactions	and	individuals’	

mathematical	development.	Cobb	himself	(1999)	called	for	the	“the	need	to	clarify	
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the	relation	between	individual	students'	reasoning	and	the	collective	practices	in	

which	they	participate	in”	(p.	33).	

Although	understanding	the	complex	relationship	between	individual	

interpretations	and	normative	ways	of	reasoning	is	in	its	infancy,	a	few	relevant	

studies	have	conducted.	Most	recently,	Rasmussen	and	his	colleagues	have	

elaborated	the	ways	individuals	contribute	to	emergent	practices	with	two	studies.	

In	the	first,	Tabach,	Hershkowits,	Rasmussen,	and	Dreyfus	(2014)	combined	two	

methodological	tools,	one	of	which	is	a	lens	on	the	mathematical	progress	of	the	

individual	and	one	of	which	is	a	lens	on	the	mathematical	progress	of	class	

community,	to	track	the	movement	of	ideas	from	small	group	to	whole	class	and	

vice	versa.	In	another	study,	Rasmussen,	Wawro,	and	Zandieh	(2015)	extended	

notions	of	what	constitutes	collective	and	individual	mathematical	progress.	In	

particular,	they	examined	not	only	what	conceptions	individuals	bring	to	bear	when	

contributing	ideas	to	the	classroom	community,	but	also	the	roles	they	take	on	when	

expressing	ideas.	For	example,	they	distinguished	between	and	kept	track	of	

whether	individuals	were	contributing	their	own	ideas	or	relaying	an	idea	that	was	

originally	brought	up	by	another	person.	They	also	expanded	notions	of	collective	

progress	by	not	only	tracking	the	emergence	of	mathematical	practices,	but	also	

recognizing	when	students	engaged	in	external	practices	that	are	central	to	the	

work	of	mathematicians,	which	they	termed	disciplinary	practices.	In	sum,	

Rasmussen	and	his	colleagues’	work	helps	to	develop	researchers’	understanding	of	

the	relationships	between	individual	engagement	and	collective	progress	by	giving	
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ways	to	conceptualize	the	movement	of	ideas	and	expanding	conceptualizations	of	

individual	activity	and	collective	progress.	Additional	work	is	needed	to	understand	

the	nature	of	individual	students’	ways	of	reasoning	that	are	qualitatively	different	

from	established	mathematical	practices	and	their	relationships	to	those	practices.	

The	most	comprehensive	investigation	of	the	relationship	between	

individuals’	ways	of	reasoning	and	emergent	practices	was	preformed	by	Stephan,	

Cobb,	and	Gravemeijer	(2003).	They	outlined	in	narrative	form	how	two	first	grade	

students,	Nancy	and	Meagan,	participated	in	the	emergence	of	the	classroom	

mathematical	practices	as	well	as	how	their	subsequent	ways	of	reasoning,	which	

the	researchers	determined	by	analyzing	their	utterances	in	class,	related	to	the	

mathematical	practices.	They	found	that	while	the	students	generally	reasoned	in	

ways	that	were	consistent	with	the	established	practices,	there	were	a	few	instances	

where	Meagan’s	mathematical	conceptions	were	qualitatively	different	than	

established	practices.	However,	Meagan	reorganized	her	knowledge	as	the	class	

progressed.	

This	example	suggests	that	one	possible	way	to	describe	the	relationship	

between	individuals’	activity	and	emergent	mathematical	practices	is	that	

qualitative	differences	may	exist	temporarily,	but	unproductive	ways	of	reasoning	

typically	become	problematized	as	the	course	continues,	at	which	point	the	

individual	will	reorganize	his	or	her	knowledge	so	that	it	is	mathematically	

consonant	with	the	practice.	This	summation	is	consistent	with	the	findings	of	

Bowers	et	al.	(1999).	While	their	study	focused	on	documenting	the	emergent	
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mathematical	practices	in	a	third	grade	teaching	experiment,	the	researchers	also	

conducted	pre-	and	post-interviews	with	all	the	students	to	provide	evidence	that	

learning	had	occurred	for	individual	students.	The	interview	findings	revealed	that	

the	vast	majority	of	students	moved	from	unproductive	strategies	to	sophisticated	

strategies	on	both	a	conceptually	oriented	task	about	place	value	and	on	a	

procedural	two-digit	subtraction	task	that	required	exchanging	a	group	of	ten	for	

ten	ones.	

	 While	these	two	studies	have	encouraging	results	in	that	they	suggest	

students	develop	powerful	ways	of	reasoning	when	they	engage	in	conceptually	

oriented	emergent	mathematical	practices,	researchers’	understanding	of	that	

relationship	is	still	limited	because	there	are	only	a	few	studies	that	address	the	

topic.	While	the	few	studies	that	exist	imply	that	students	with	qualitatively	

different	ways	of	reasoning	eventually	reorganize	their	knowledge,	is	it	possible	for	

these	ways	of	reasoning	to	persist	or	do	they	always	get	resolved?	If	unproductive	

ways	of	reasoning	do	persist,	under	what	circumstances	does	this	occur?	

Furthermore,	what	conditions	allow	for	differing	ways	of	reasoning	occur	in	the	first	

place?	

	 To	answer	this	last	question	of	how	differing	ways	of	reasoning	arise,	it	may	

be	efficacious	to	examine	the	ways	mathematical	meanings	are	constructed	in	the	

classrooms.	When	examining	the	emergence	of	mathematical	practices,	researchers	

focus	on	the	forms	of	arguments	students	give.	Cobb	and	Yackel	(1996)	originally	

described	a	math	practice	as	a	way	of	reasoning	that	initially	needed	justification,	
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but	whose	justifications	eventually	dropped	off.	Therefore	an	analysis	to	determine	

whether	or	not	a	way	of	reasoning	is	taken	as	shared,	examines	the	structure	of	

arguments	that	use	that	way	of	reasoning.	In	particular,	the	analysis	examines	

whether	or	not	the	way	of	reasoning	required	justification.	Other	criteria	to	

determine	whether	or	not	a	way	of	reasoning	is	normative	in	the	classroom	have	

since	been	added	(R.	Cole	et	al.,	2012;	Rasmussen	&	Stephan,	2008),	but	these	also	

focus	on	the	changing	forms	of	arguments	given	by	students.	An	analysis	of	this	type	

reveals	the	status	of	a	way	of	reasoning	in	the	community	(i.e.	whether	or	not	it	is	

accepted),	but	does	not	reveal	the	meanings	associated	with	that	way	of	reasoning	

as	constructed	in	the	class.	This	is	an	important	distinction	as	Meagan’s	variance	

from	established	ways	of	reasoning	centered	on	her	unique	interpretation	of	a	

particular	normative	way	of	reasoning	(Stephan	et	al.,	2003).	

	 Thematic	analysis	(Herbel-Eisenmann	&	Otten,	2011;	Lemke,	1990)	provides		

one	way	to	investigate	emergent	mathematical	meanings	in	social	situations.	This	

technique	is	rooted	in	a	perspective	on	language	called	Systemic	Functional	

Linguistics	(SFL;	Halliday,	1978;	Halliday	&	Hasan,	1985).	According	to	the	

assumptions	of	thematic	analysis,	semantic	relationships,	the	relationships	between	

words	expressed	through	language,	constrain,	but	do	not	determine	meanings	of	

those	words.	Thus,	by	carefully	tracking	semantic	relationships	researchers	can	

determined	what	potential	meanings	particular	words	have	in	the	classroom	

community.	For	example,	through	thematic	analysis	Herbel-Eisenmann	and	Otten	

(2011)	found	there	were	subtle	ambiguities	in	the	ways	participants	spoke	about	
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the	content.	When	explaining	relationships	among	geometric	figures,	one	of	the	

teachers	they	studied	repeatedly	said,	“rectangles	are	parallelograms.”	While	

proficient	users	of	mathematics	may	interpret	this	to	mean	rectangles	are	a	type	of	

parallelogram,	the	word	“are”	does	not	establish	this	semantic	relationship	

unambiguously.	For	example,	“are”	can	also	communicate	a	synonymous	

relationship	as	in	the	example,	“equilateral	triangles	are	triangles	whose	sides	are	

all	equal	length.”	This	ambiguity	in	the	statement	“rectangles	are	parallelograms”	

may	have	been	missed	without	careful	attention	the	semantic	relationships.	If	there	

were	students	in	that	classroom	who	had	trouble	navigating	this	ambiguity,	one	

could	imagine	a	scenario	in	which	the	idea	that	“rectangles	are	parallelograms”	

became	taken-as-shared,	while	individual	students	reasoned	about	rectangles	in	

qualitatively	different	ways.	Thematic	analysis	could	help	reveal	this	ambiguity	and	

help	explain	why	that	difference	arose.	

	 This	example	shows	how	the	method	to	determine	established	practices,	

which	focuses	on	argumentation,	and	the	method	to	determine	mathematical	

meanings,	which	focuses	on	semantic	relationships,	are	complementary.	Focusing	

on	the	structure	of	arguments	is	a	more	macro	approach	and	reveals	the	

progression	of	ideas	as	they	unfolded	in	the	classroom.	This	can	help	educators	

understand	productive	ways	to	develop	ideas.	Cobb	called	this	“domain	specific	

instructional	theory”	(Cobb,	1999,	p.	6).	Thematic	analysis,	on	the	other	hand,	is	a	

more	fine-grained	approach,	which	has	the	power	to	reveal	subtleties	in	the	way	

meaning	is	constructed	in	the	community	by	examining	semantic	relationships.		



11	

	

	 In	summary,	mathematics	education	took	a	“social	turn”	in	the	late	eighties,	

which	enriched	the	field	by	moving	analytic	foci	beyond	the	individual	to	include	the	

social	environments	in	which	learning	is	embedded.	However,	a	challenge	of	this	

development	was	to	account	for	the	social	nature	of	learning,	while	at	the	same	time	

not	losing	sight	of	what	individuals	are	learning	by	participating	in	these	social	

settings.	The	emergent	perspective	promised	a	coordination	of	the	social	

environment	and	individuals’	learning,	but	the	nature	of	this	relationship	is	still	

inadequately	understood.	In	this	dissertation	study	I	will	contribute	to	this	field	of	

study	by	answering	the	following	two	research	questions.	

Research	Question	1:	How	are	individuals’	ways	of	reasoning	related	
to	the	progression	of	increasingly	sophisticated	ways	of	reasoning	
that	function	as	if	shared	in	the	classroom?	
	
The	purpose	of	this	research	question	is	to	document	what	mathematical	

progress	was	made	at	both	the	classroom	level	and	at	the	individual	level	and	

investigate	the	nature	and	extent	of	individual	variation	in	students’	conceptions	

from	established	classroom	practices.	To	do	this	I	identified	the	ways	of	reasoning	

that	became	normative	in	the	classroom	community	by	analyzing	the	way	

arguments	were	made	in	the	class	and	how	the	form	of	those	arguments	changed	

over	time.	By	analyzing	how	particular	ideas	were	used	in	arguments	I	investigated	

the	status	of	these	ideas	in	the	class	community	and	documented	which	ideas	

became	accepted	in	the	community.	

After	establishing	the	normative	ways	of	reasoning,	I	investigated	

individuals’	ways	of	reasoning	by	analyzing	individual	clinical	interviews	
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administered	after	instruction	to	a	subset	of	students	(the	focus	students).	

Analyzing	these	individual	ways	of	reasoning	revealed	the	nature	and	extent	of	

individual	variation	in	students’	conceptions	from	the	normative	ways	of	reasoning.	

I	then	sought	to	develop	a	partial	explanation	for	the	variation	from	the	

emergent	practices	by	investigating	the	mathematically	meanings	established	

through	discourse	in	the	classroom.	This	differed	from	the	analysis	for	Research	

Question	1,	which	examined	the	status	of	ways	of	reasoning,	in	that	it	provided	

insights	into	the	ways	students	may	have	potentially	interpreted	those	ways	of	

reasoning.	This	investigation	gave	insights	into	Research	Question	2.	

Research	Question	2:	What	mathematical	connections	exist	between	
the	focus	students’	ways	of	reasoning	in	the	post	interviews	and	the	
discursive	interactions	between	them	and	other	students	and	the	
teacher	in	both	whole	class	and	small	group	settings?	Furthermore,	
how	might	the	nature	of	these	discursive	interactions	give	plausible	
explanations	for	students’	differing	conceptions?	
	
To	answer	this	question	I	analyzed	sematic	relationships	expressed	in	the	

class	discourse.	By	comparing	various	networks	of	semantic	relationships	I	was	able	

to	identify	when	particular	ideas	were	left	implicit	or	ambiguous	in	the	talk.	This	

helped	explain	how	students	could	engage	in	the	discourse,	yet	still	have	potentially	

interpreted	classroom	events	in	various	ways.	

Defining	the	Scope	of	this	Dissertation	Study	

This	study	will	admittedly	only	provide	a	partial	accounting	of	the	nature	of	

the	relationship	between	established	practices	and	individuals’	ways	of	reasoning.	

No	one	study	can	determine	this	relationship	completely;	only	after	many	studies	

have	investigated	this	relationship	will	scholars	begin	to	understand	its	nature.	
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Furthermore,	this	study	will	only	provide	a	partial	explanation	of	why	individuals	

reason	in	ways	that	vary	from	established	practices.	In	this	study	I	only	examined	

the	meanings	constructed	through	discourse	to	explain	this	variance.	However,	

there	are	likely	other	issues	at	play.	For	instance,	some	scholars	have	argued	

convincingly	that	the	discontinuities	between	home	and	school	practices	impact	the	

nature	of	students’	learning	(e.g.	Heath,	1982;	Labov,	1972;	Mejía-Arauz,	Rogoff,	

Dexter,	&	Najafi,	2007).	These	discontinuities	may	help	explain	why	there	is	

variance	in	individuals’	ways	of	reasoning	from	accepted	classroom	practices.	Thus,	

it	will	likely	take	the	coordination	of	several	studies	taking	several	approaches	to	

fully	explicate	and	explain	the	relationships	between	individuals’	ways	of	reasoning	

and	those	that	are	developed	and	accepted	in	classroom	settings.	This	study	

contributes	to	that	understanding,	but	in	no	way	is	meant	to	be	a	comprehensive	

explanation.	

Significance	of	this	Study		

This	study	has	both	theoretical	and	practical	significance.	It	contributes	to	

the	theoretical	knowledge	of	the	field	by	elaborating	Cobb	and	Yackel’s	(1996)	

emergent	perspective.	Part	of	the	power	of	this	perspective	is	that	it	fully	embraces	

the	social	turn	of	mathematics	education	research,	yet	still	emphasizes	the	

interpretive	nature	of	individual	knowledge	construction	by	positing	a	reflexive	

relationship	between	the	establishment	of	collective	mathematical	practices	and	

individuals’	mathematical	activity	and	conceptions.	However,	this	relationship	

needs	further	empirical	investigation.	While	this	research	has	begun	(e.g.	Bowers	et	
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al.,	1999;	Cobb,	1999;	Rasmussen	et	al.,	2015;	Stephan	et	al.,	2003;	Tabach	et	al.,	

2014),	questions	still	remain.	Rasmussen	and	his	colleagues’	work	(Rasmussen	et	

al.,	2015;	Tabach	et	al.,	2014)	has	helped	develop	researchers’	understanding	of	how	

students	contribute	to	emergent	practices	and	how	ideas	from	those	practices	flow	

back	into	small	groups.	However,	Cobb	(1999)	illustrated	that	students	can	have	

qualitatively	different	interpretations	of	math	practices,	which	Rasmussen’s	work	

does	not	directly	address.	Stephan	et	al.	(2003)	provided	some	insight	into	this	

issue;	their	work	suggests	that	qualitative	differences	can	exist	during	the	course	of	

instruction,	but	often	get	resolved	by	end	of	the	unit.	While	this	idea	seems	to	be	

supported	by	the	findings	of	Bowers	et	al.	(1999),	neither	study	was	meant	to	

provide	a	definitive	answer	as	to	the	nature	of	the	relationship	between	students’	

participation	in	emergent	practices	and	their	subsequent	reasoning.	This	

dissertation	study	contributes	to	this	understanding	by	expanding	on	the	findings	of	

these	previously	conducted	studies.	

This	expansion	is	not	only	done	in	answering	Research	Question	1,	but	also	

in	the	investigation	for	Research	Question	2.	In	this	study	I	not	only	investigated	

ways	of	reasoning	that	became	accepted,	but	also	investigated	how	mathematical	

meanings	were	constructed	in	that	classroom.	This	gave	insights	into	the	ways	that	

students	in	the	classroom	could	have	potentially	interpreted	accepted	ways	of	

reasoning,	which	may	help	explain	how	they	could	reasonably	engage	in	ways	of	

reasoning	that	were	qualitatively	different	than	those	established	in	class.	This	

coordination	of	these	two	types	of	discourse	analysis,	one	that	examines	the	
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structure	of	arguments	to	document	when	ways	of	reasoning	became	accepted	and	

one	that	examines	semantic	relationships	to	determine	the	meanings	that	were	

constructed	in	the	class	community,	may	be	an	important	analytic	approach	as	

scholars	begin	to	understand	the	relationship	between	individuals’	ways	of	

reasoning	and	those	that	become	normative	in	a	class	community.	

Elaborating	this	theoretical	relationship	will	have	practical	implications	for	

teaching.	As	researchers	begin	to	explain	why	students	may	reason	in	qualitatively	

different	ways	form	those	that	are	established,	teachers	will	gain	insights	into	how	

to	structure	classroom	interactions	that	lead	to	productive	interpretations	of	and	

ways	of	participating	in	emergent	practices.	For	example,	in	this	study,	I	examined	

how	meanings	created	through	discourse	can	potentially	influence	students’	

interpretations.	These	insights	may	have	important	implications	for	how	teachers	

orchestrate	classroom	discourse	so	that	students	can	engage	productively	in	class	

discussions.	

The	National	Council	of	Teachers	of	Mathematics’	view	on	productive	

discourse	underscores	the	need	for	greater	understanding	of	how	classroom	

discourse	relates	to	individuals’	ways	of	reasoning.	In	their	recently	released	book	

Principles	to	Actions:	Ensuring	Mathematical	Success	for	All	(2014)	they	describe	

eight	mathematics	teaching	practices,	which	represent	the	organization’s	vision	for	

high	quality	teaching.	One	of	these	teaching	practices	is	facilitate	meaningful	

discourse,	which	is	described	in	the	following	way.	

Effective	teaching	of	mathematics	facilitates	discourse	among	
students	to	build	shared	understanding	of	mathematical	ideas	by	
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analyzing	and	comparing	student	approaches	and	arguments	(p.	10,	
emphasis	added).	
	

Here	NCTM	claims	that	as	students	intellectually	engage	with	each	other’s	ideas,	

they	will	begin	to	develop	common	conceptions.	This	claim	is	at	least	somewhat	

dubious	given	Cobb’s	(1999)	documentation	of	students	reasoning	in	qualitatively	

different	ways	from	established	practices	in	a	classroom	where	productive	

mathematical	discourse	was	the	norm.	This	is	not	to	say	I	doubt	the	efficacy	of	

facilitating	meaningful	discourse	for	students.	Rather,	I	believe	that	if	practitioners	

are	to	effectively	engage	students	in	meaningful	discourse,	researchers	need	to	

develop	greater	theoretical	understanding	of	how	the	nature	of	classroom	

discourse,	including	both	the	status	of	mathematical	ideas	in	the	discourse	and	their	

meanings,	is	related	to	individuals’	ways	of	reasoning.	Through	this	greater	

theoretical	understanding	educators	will	get	more	precise	definitions	of	what	

meaningful	discourse	is	for	the	students	in	their	classrooms.	
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Chapter	2: Literature	Review	

	
This	dissertation	study	focuses	on	the	relationship	between	the	individual	

and	the	collective.	First,	I	will	examine	the	relationship	between	individual	ways	of	

reasoning	and	ways	of	reasoning	that	are	accepted	by	the	collective.	I	will	then	

examine	classroom	interactions	in	finer	detail	to	determine	the	mathematical	

meanings	that	were	constructed	through	discourse	by	classroom	participants.	As	

such,	in	this	literature	review	I	examine	approaches	to	documenting	mathematical	

progress	at	both	the	individual	and	collective	level,	including	studies	that	explicitly	

try	to	coordinate	collective	and	individual	analyses.	I	then	examine	research	

relevant	to	understanding	classroom	discourse.		

Approaches	to	Documenting	Mathematical	Progress	

There	are	two	major	approaches	to	the	study	of	students’	mathematical	

progress	in	mathematics	education:	one	that	focuses	on	the	learning	of	an	individual	

and	one	that	focuses	on	the	mathematical	progress	of	a	classroom	community.	The	

work	that	focuses	on	the	learning	of	individuals	identifies	increasingly	sophisticated	

states	of	knowing	(Battista,	2004;	Battista,	Clements,	Arnoff,	Battista,	&	Van	Auken	

Borrow,	1998;	Burger	&	Shaughnessy,	1986;	Hackenberg,	2010;	Mitchelmore	&	

White,	2000;	Norton,	2008;	Olive,	1999;	Saenz-Ludlow,	1994;	Steffe,	2004;	Tillema,	

2013).	Conversely,	other	scholars	track	the	mathematical	progress	of	a	classroom,	

thereby	outlining	opportunities	students	had	to	learn	(Bowers,	Cobb,	&	McClain,	

1999;	Clements,	Wilson,	&	Sarama,	2004;	Cobb,	McClain,	&	Gravemeijer,	2003;	Ellis,	

Ozgur,	Kulow,	Williams,	&	Amidon,	2012;	Stephan	&	Akyuz,	2012).	In	this	review	on	
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documenting	mathematical	progress,	I	first	illustrate	researchers’	approaches	to	

documenting	increasingly	sophisticated	states	of	knowing	for	individuals	and	then	

turn	to	the	work	on	the	mathematical	progress	of	the	classroom.	

Individual	Cognitive	Milestones	

	 One	approach	to	documenting	mathematical	progress	is	to	identify	

individuals’	increasingly	sophisticated	states	of	knowing,	called	cognitive	milestones	

(Battista,	2004;	Battista	et	al.,	1998;	Burger	&	Shaughnessy,	1986;	Hackenberg,	

2010;	Mitchelmore	&	White,	2000;	Norton,	2008;	Olive,	1999;	Saenz-Ludlow,	1994;	

Steffe,	2004;	Tillema,	2013).	This	work	helps	educators	understand	the	milestones	

children	will	pass	by	as	they	increase	in	sophistication	in	their	reasoning	about	a	

particular	topic.	For	example,	Battista	(2004)	outlined	the	cognitive	levels	students	

attain	as	they	learn	about	area	and	volume.	Central	to	understanding	area	is	the	

ability	to	mentally	enumerate	squares	that	are	structured	in	rectangular	arrays.	To	

do	this,	the	student	needs	to	first	see	the	structure	of	rows	and	columns	in	the	array	

and	be	able	locate	particular	squares	in	the	array	in	terms	of	the	row	and	column	it	

resides	in.	When	Battista	(2004)	outlined	the	cognitive	levels	he	talked	about	them	

in	terms	of	these	competences.	For	example,	at	the	first	cognitive	level	he	identified,	

the	student	does	not	see	the	structure	of	rows	and	columns	or	locate	squares	in	that	

structure.	When	a	student	at	this	level	was	asked	to	predict	how	many	squares	

would	cover	a	rectangle,	she	drew	in	small	squares	to	cover	the	rectangle,	but	these	

squares	were	not	the	uniformly	sized	and	were	not	arranged	in	rows	and	columns.	

This	demonstrated	her	lack	of	awareness	of	the	structure.	This	is	in	contrast	to	a	
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more	advanced	cognitive	level,	level	4,	in	which	the	student	is	able	to	mentally	fuse	

squares	together	to	form	rows	and	columns,	but	is	not	able	to	locate	squares	in	

terms	of	the	rows	and	columns.	For	example,	when	a	student	at	this	level	was	shown	

that	five	squares	fit	across	a	rectangle	and	seven	squares	fit	down	the	middle	of	the	

rectangle,	the	student	was	able	to	count	by	fives	as	he	covered	the	rectangle	with	

rows	of	squares,	but	did	not	realize	that	there	should	be	seven	rows.	This	showed	

that	he	was	able	to	recognize	the	structure	of	rows,	but	was	not	able	to	coordinate	

those	rows	with	the	squares	in	the	columns.	Similarly,	other	researchers	have	

identified	cognitive	levels	for	other	topics	such	as	fractions	(Hackenberg,	2010;	

Norton,	2008;	Olive,	1999;	Saenz-Ludlow,	1994;	Steffe,	2004),	the	development	of	a	

power	meaning	for	multiplication	(Tillema,	2013),	geometry	(Burger	&	

Shaughnessy,	1986),	and	angles	(Mitchelmore	&	White,	2000).	

While	this	work	gives	insights	into	the	variability	in	thinking	that	exists	in	

students’	thinking	among	a	general	population,	it	does	not	give	insights	into	the	

variation	that	exists	among	students	who	participated	in	a	particular	classroom.	

This	is	reflected	in	the	methods	they	used.	Some	researchers	used	a	cross-sectional	

approach	in	which	the	researchers	analyzed	how	a	sampling	of	students	from	the	

population	of	interest	performed	on	tasks	(Battista,	2004;	Battista	et	al.,	1998;	

Burger	&	Shaughnessy,	1986;	Mitchelmore	&	White,	2000).	The	researchers	then	

stratified	these	performances	and	inferred	conceptual	milestones.	Since	the	

students	they	studied	often	experienced	a	variety	of	instructional	approaches,	the	

variation	was	not	constrained	by	the	type	of	instruction	the	students	received.	
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Rather,	the	variation	is	supposed	to	be	reflective	of	the	natural	variation	that	exists	

among	all	students	in	the	given	population.	

Other	researchers	have	documented	detailed	accounts	of	student	thinking	as	

students	have	learned	through	instruction	in	constructivist	teaching	experiments	

(Steffe	&	Thompson,	2000).	In	such	a	teaching	experiment	the	researcher	interacts	

with	a	small	number	of	students	to	understand	their	conceptions	and	then	poses	a	

problem	in	an	attempt	to	advance	their	thinking.	While	the	method	has	the	word	

teaching	in	it,	teaching	is	not	the	focus	of	the	approach.	“In	this	methodology,	

researchers	use	teaching	as	a	tool	to	understand	and	explain	how	students	operate	

mathematically	and	how	their	ways	of	operating	change”	(Hackenberg,	2010,	p.	

397).	By	tracking	the	changes	in	student	thinking,	researchers	gained	insight	into	

how	students	learned	particular	content	by	leveraging	prior	conceptions.	

This	focus	on	individual	student	learning	was	purposeful.	Steffe	and	

Thompson	(2000)	explained	the	historical	context.	At	the	time	of	the	emergence	of	

the	method	in	the	United	States,	the	type	of	study	that	dominated	educational	

research	were	ones	that	assessed	teaching	effectiveness	by	looking	for	statistically	

significant	differences	in	outcomes	on	exams.	The	teaching	experiment	was	a	

departure	from	this	type	of	work;	turning	away	from	effective	teaching	moves	or	

environments	to	taking	seriously	the	nature	of	students’	conceptions	and	students’	

learning	processes	as	they	engaged	with	particular	content.	This	broadened	the	

research	literature	in	several	ways.	It	not	only	redefined	teaching	from	something	

that	acted	on	students	to	something	that	interacted	with	the	knowledge	students’	
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brought	to	the	classroom,	but	also	redefined	learning	from	a	score	on	a	test	to	the	

progression	of	children’s	conceptions.	

While	the	level	of	detail	would	be	sufficient	to	see	variability	in	the	nature	of	

students’	conceptions,	typically	these	studies	only	had	one	or	two	students,	limiting	

the	amount	of	variability	that	could	be	captured.	However,	some	researchers	were	

able	to	document	variability	in	student	thinking	through	the	use	of	multiple	

teaching	experiments	with	students	starting	at	different	cognitive	levels	

(Hackenberg,	2010,	2014;	Steffe,	1992;	Steffe	&	Olive,	2010).	They	have	argued	that	

the	way	the	student	leverages	prior	knowledge	to	make	mathematical	progress	

depends	on	the	cognitive	level	he	is	starting	at.	This	begins	to	investigate	the	

relationship	between	students’	individual	ways	of	reasoning	and	their	mathematical	

progress,	but	stops	short	of	investigating	how	that	variability	affects	their	learning	

in	social	situations.	

Other	scholars	have	investigated	the	relationship	between	participation	in	

classrooms	and	individual	mathematical	progress	by	examining	tasks	and	teacher	

moves.	For	example,	Ellis,	Ozgur,	Kulow,	Williams,	and	Amidon	(2012)	showed	how	

particular	tasks	encouraged	the	shifts	in	students’	thinking	by	encouraging	them	to	

explore	particular	mathematical	relationships	(e.g.	the	relationship	between	two	

quantities,	which	may	have	helped	them	coordinate	the	two	quantities	as	they	

developed	proportional	reasoning).	Tzur	(2004)	also	explored	how	tasks	can	

support	learning.	In	his	study,	he	identified	general	categories	for	the	tasks	he	gave	

and	articulated	their	function.	One	type	of	task,	reflective,	encouraged	students	to	
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notice	regularities	among	the	results	of	activities	to	establish	relationships	between	

the	activities	and	their	results.	Barrett	and	Clements	(2003)	took	note	of	teaching	

moves	that	encouraged	progression	on	the	learning	trajectory	they	advanced	for	

abstracting	linear	measurement.	However,	instead	of	general	task	categories,	like	

reflective	tasks,	their	moves	were	topic	specific.	This	type	of	work	explores	

connections	between	the	social	environment	and	students’	learning,	but	does	not	

explicitly	investigate	variability	from	established	ways	of	reasoning.		

Documenting	the	Progress	of	a	Classroom	

	 	In	order	to	understand	the	relationship	between	individual	ways	of	

reasoning	and	ways	of	reasoning	accepted	by	a	classroom	community,	scholars	need	

a	way	to	conceive	of	the	mathematical	progress	of	a	classroom	as	a	whole.	This	can	

be	found	in	work	by	researchers	who	did	classroom-based	research.	This	research	

was	similar	to	constructivist	teaching	experiments	in	that	the	researchers	carefully	

considered	students’	conceptions	and	how	to	advance	them,	but	were	situated	in	

larger	classrooms	(see	Bowers	et	al.,	1999;	Cobb	et	al.,	2003;	Simon,	1995).	

One	example	of	this	type	of	work	was	done	by	Bowers,	et	al.	(1999),	which	

was	briefly	described	in	Chapter	1.	They	reported	the	mathematical	development	of	

a	3rd	grade	classroom	as	students	learned	about	place	value.	In	this	class,	students	

reasoned	about	quantities	of	candies	packed	in	boxes	of	100	and	rolls	of	10.	

Students	were	tasked	with	determining	if	two	arrangements	of	boxes,	rolls,	and	

pieces	contained	the	same	amount	of	candy.	One	way	of	doing	this	that	became	

accepted	in	the	classroom	community	was	transforming	both	arrangements	into	the	
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same	canonical	arrangement.	Later,	a	more	sophisticated	practice	became	

institutionalized	in	the	micro-culture,	in	which	students	could	transform	one	

arrangement	into	the	other.	

This	work	was	done	from	the	emergent	perspective	(Cobb	&	Yackel,	1996),	

which	was	described	in	Chapter	1	of	this	dissertation.	Researchers	can	use	the	

emergent	perspective	to	track	the	mathematical	progress	of	a	classroom	community	

by	identifying	emergent	mathematical	practices,	which	are	ways	of	operating	that	

have	become	accepted	or	taken-as-shared	in	the	class	community.	Taken-as-shared	

means	participants	assume	that	other	participants	are	familiar	with	and	understand	

the	way	of	operating.	This	phrase	is	used	to	emphasize	that	the	researchers	do	not	

claim	that	all	students	share	identical	ways	of	operating.	In	fact,	the	claim	is	not	

about	individuals’	understandings	at	all.	Rather,	the	researchers	claim	that	the	way	

of	operating	has	a	particular	status	in	the	classroom	community.	Namely,	that	

people	assume	that	others	understand	that	way	of	operating.	The	evidence	for	this	

status	is	found	in	the	way	people	use	the	way	of	reasoning.	In	particular,	the	way	of	

reasoning	is	thought	to	be	taken-as-shared	when	students	use	it	without	fully	

explaining	or	justifying	it.	This	means	that	math	practices	are	not	simply	the	

conceptions	held	by	the	majority	of	students.	Rather	these	are	ways	of	operating	

that	are	accepted	by	the	community	as	a	whole.	As	such,	the	community	as	whole	

should	be	thought	of	as	its	own	entity	with	its	own	characteristics	that	exist	outside	

of	the	characteristics	of	its	individual	members.	
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Rasmussen	and	Stephan	(2008)	elaborated	the	analytic	techniques	used	to	

establish	the	practices	that	emerge	in	classrooms.	As	they	did	so,	they	made	

modifications	to	Cobb	and	Yackel’s	(1996)	original	work.	For	example,	they	talked	

about	normative	ways	of	reasoning	that	function	as	if	shared	rather	than	ones	that	

are	taken-as-shared.	This	highlights	the	particular	methodology	used	to	identify	

them,	which	focuses	on	the	function	utterances	play	in	an	argument.	Another	

difference	is	that	the	math	practices	identified	by	those	following	Cobb	were	usually	

one	normative	way	of	acting,	whereas	Rasmussen	and	Stephan’s	(2008)	techniques	

reveal	several	conceptually	related	normative	ways	of	reasoning,	which	they	group	

together	as	one	practice.	

As	other	researchers	have	analyzed	emergent	mathematical	practices,	the	

nature	of	the	practices	documented	has	changed.	Originally,	practices	were	

observable	behaviors,	activities,	or	strategies.	For	example,	Bowers	et	al.	(1999)	

talked	about	how	students	transformed	the	packing	arrangement	of	candies.	

However,	scholars	have	begun	to	use	more	cognitive	terms	by	talking	about	ideas	

that	are	taken-as-shared.	For	example,	in	a	study	about	negative	numbers,	Stephan	

and	Akyuz	(2012)	reported	that	the	idea	that	“a	minus	sign	is	different	from	a	

negative	sign”	(p.	458)	became	normative	in	the	class.	This	deals	with	the	meaning	

of	a	symbol,	not	an	observable	strategy.	

This	fruitful	way	of	tracking	the	mathematical	progress	of	the	classroom	is	

compelling,	as	teachers	tend	to	experience	classroom	interactions	as	interacting	

with	a	collective	rather	than	a	collection	of	individual	students.	The	constructs	of	
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taken-as-shared	and	function	as	if	shared	are	ways	to	rigorously	identify	ways	of	

reasoning	that	feel	as	if	the	class	as	a	whole	has	accepted	them.	However,	since	

these	interactions	reveal	proprieties	of	the	collective	rather	than	the	individual,	a	

natural	question	is	how	does	participating	in	these	interactions	affect	students’	

personal	ways	of	reasoning?	The	researchers	care	in	defining	properties	of	the	

collective	without	making	inferences	about	individual	participants	honors	the	

interpretive	nature	of	knowledge,	which	in	turn	underscores	the	necessity	of	

examining	individuals’	ways	of	reasoning.	While	these	studies	provide	compelling	

images	of	how	educators	might	advance	the	mathematical	agenda	in	their	

classrooms,	they	ultimately	want	students	to	advance	their	personal	ways	of	

reasoning	as	a	result	of	participation	in	these	classrooms.	As	such,	researchers	need	

to	better	understand	the	relationship	between	individual	ways	of	reasoning	and	

ways	of	reasoning	that	became	normative	in	the	classroom.	

Coordination	of	Emergent	Practices	and	Individuals’	Participation	

As	the	emergent	perspective	developed,	the	relationships	between	emergent	

practices	and	individuals’	ways	of	participating	in	those	practices	have	begun	to	be	

studied.	For	example,	shortly	after	the	emergent	perspective	was	put	forth	(Cobb	&	

Yackel,	1996),	Cobb	himself	(1999)	reported	how	students	could	participate	

differently	in	emergent	practices.	His	example	was	situated	in	a	ten-week	teaching	

experiment	with	29	twelve-year-old	students	studying	ways	to	reason	about	the	

distribution	of	a	data	set.	As	students	explored	various	data	sets,	the	first	

mathematical	practice	to	emerge	was	students	describing	qualitative	features	of	
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frequency	plots	(e.g.	the	data	were	“bunched	up”).	As	the	second	mathematical	

practice	emerged,	students	began	to	be	able	to	describe	these	features	in	more	

quantitative	terms	(e.g.	by	describing	how	much	of	the	data	lay	in	a	certain	range).	

This	allowed	them	to	talk	about	features	of	the	distribution	itself,	such	as	the	

median.	Students	could	then	compare	data	sets	by	directly	reasoning	from	the	

distributions	without	regard	to	the	values	of	any	one	particular	data	point,	for	

example,	by	comparing	medians.	However,	Cobb	noted	that	as	the	second	practice	

emerged	many	students	had	difficulty	in	understanding	students’	explanations.	As	

students	argued	using	features	of	the	data	distribution,	other	students	asked	about	

the	actual	values	of	the	data	points.	While	these	students	may	have	eventually	

understood	the	specific	arguments,	it	seems	that	they	struggled	to	conceive	of	the	

distribution	itself	as	an	object	of	study	beyond	a	collection	of	data	points.	As	such	

there	were	significant	qualitative	differences	in	the	ways	the	students	participated	

in	the	practice.	Cobb	said	that	this	was	not	unique	to	this	study	and	highlighted	“the	

need	to	clarify	the	relation	between	individual	students'	reasoning	and	the	

collective	practices	in	which	they	participate	is	therefore	a	pressing	one”	(p.	33).		

The	most	in-depth	response	to	this	Cobb’s	call	came	from	Stephan,	Cobb,	and	

Gravemeijer	(2003),	as	described	briefly	in	Chapter	1.	They	explored	two	first	grade	

students’,	Nancy	and	Meagan’s,	participation	in	the	development	of	collective	

mathematical	practices	around	measurement.	The	purpose	of	this	study	was	to	

develop	an	image	of	how	students	participated	in	mathematical	practices	and	

thereby	illustrate	how	individual	learning	can	occurs	through	participation	in	
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emergent	practices.	This	is	related	to,	but	not	the	same	as,	characterizing	the	

relationships	between	individuals’	ways	of	reasoning	and	the	math	practices.	

However,	the	narrative	is	detailed	enough	that	one	can	see	relationships	and	even	

begin	to	hypothesize	why	those	relationships	exist.	In	general,	the	two	students	

reasoned	in	ways	that	were	consistent	with	the	emergent	mathematical	practices,	

but	at	times	one	of	the	students,	Meagan,	would	reorganize	her	way	of	reasoning	to	

be	consistent	with	the	practice	after	it	had	already	been	established	in	the	

classroom.	This	was	most	clearly	seen	in	the	first	mathematical	practice.	

Students	in	this	class	were	asked	to	engage	in	a	fictional	world	in	which	the	

length	of	the	king’s	foot	was	a	unit	of	measure.	The	first	mathematical	practice	

emerged	as	students	debated	how	to	use	this	unit	of	measure.	Some	students	did	

not	count	the	first	foot,	while	other	did.	The	researchers	argued	that	the	students	

who	were	counting	the	first	foot	were	able	to	conceive	of	the	foot	as	measuring	out	a	

certain	length,	meaning	that	as	they	counted	paces	they	were	counting	the	number	

of	times	the	length	of	the	foot	fit	into	length	of	the	object	they	were	measuring.	The	

other	students	were	essentially	counting	the	number	of	steps.	After	teacher	

intervention,	the	students	decided	to	count	the	first	step	and	this	way	of	counting	

became	an	established	practice.	However,	analysis	of	Meagan’s	way	of	participating	

revealed	that	she	had	not	necessarily	reorganized	her	knowledge	as	she	seemed	to	

still	be	counting	paces.	This	is	reasonable	since	students	could	potentially	be	

involved	in	the	debate,	but	miss	the	mathematical	difference	between	the	two	

approaches.	This	could	lead	to	an	acceptance	of	counting	the	first	step,	without	a	
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reorganization	of	knowledge.	However,	since	many	of	the	other	students	seemed	to	

have	a	similar	problem,	it	came	up	in	class	and	was	explored	further.	Through	this	

discussion	Meagan	seemed	to	reorganize	her	knowledge	and	begin	conceiving	of	the	

pace	as	covering	a	length.	

Other	scholars	have	also	contributed	to	understanding	the	relationship	

between	emergent	practices	and	individuals’	ways	of	participating	in	those	

practices,	by	not	only	comparing	individuals	ways	of	reasoning	with	the	practices,	

but	also	examining	how	individuals	contribute	to	and	learn	from	the	practices.	For	

example,	Rasmussen,	Wawro,	and	Zandieh	(2015)	expanded	the	last	row	of	Cobb	

and	Yackel’s	(1996)	interpretive	framework	by	adding	new	constructs.	Instead	of	

thinking	of	the	social	perspective	as	just	emergent	mathematical	practices,	they	

added	disciplinary	practices.	This	means	that	in	addition	to	tracking	the	emergence	

of	practices	specific	to	local	community,	they	also	considered	how	the	classroom	

participants	were	engaging	in	practices	central	to	the	work	of	mathematicians.	They	

also	expanded	the	individual	perspective	from	individual	conceptions	and	activity	to	

now	include	two	constructions,	participation	in	mathematical	activity	and	

mathematical	conceptions.	The	researchers	conceived	of	participation	in	terms	of	

the	roles	students	took	on	as	they	contributed	ideas	to	whole	class	and	small	group	

discussions,	based	on	the	work	of	Krummheuer	(2007,	2011).	They	described	

individual	conceptions	as	the	images	and	ideas	they	brought	to	bear	in	their	work.	

They	then	used	the	four	constructs	in	this	expanded	framework	to	correspond	with	

four	analytic	passes	as	they	investigated	the	ways	students	participated	in	and	



29	

	

leveraged	their	conceptions	as	they	developed	sophisticated	emergent	and	

disciplinary	practices.		

Tabach,	Hershkowitz,	Rasmussen,	and	Dreyfus	(2014)	also	contributed	to	

researchers’	understanding	of	the	relationship	between	individuals’	ways	of	

reasoning	and	those	that	function	as	if	shared	by	examining	how	ideas	flowed	in	

classroom	from	small	group	to	whole	class	and	vice	versa.	To	do	this	they	combined	

two	methodological	tools,	abstraction	in	context	(AiC),	which	explains	the	process	

by	which	individual	knowledge	arises	and	develops	in	social	contexts,	and	

documenting	collective	activity	(DCA),	which	explains	how	knowledge	develops	at	

the	collective	level.	Their	analysis	was	fruitful	in	that	is	showed	the	importance	of	

attending	to	the	role	of	small	groups	in	the	advancement	of	mathematical	progress	

at	the	classroom	level,	especially	in	relation	to	how	ideas	were	developed	in	whole	

class	discussion.	However,	this	study	did	not	examine	students’	individual	ways	of	

reasoning	after	instruction.	Rather,	the	focus	was	on	the	relationship	between	

individuals	and	the	collective	in	the	process	of	the	establishment	of	mathematical	

practices	rather	than	the	results	of	that	participation.	

One	study	that	explored	students’	conceptions	after	instruction	was	Bowers	

et	al.	(1999).	The	researchers	did	this	by	interviewing	the	students	after	instruction.	

However,	the	purpose	of	this	study	to	examine	how	increasingly	sophisticated	

mathematical	practices	emerged,	not	to	explore	the	relationship	between	

mathematical	practices	and	individuals	ways	of	reasoning.	As	such,	the	purpose	of	

the	interview	was	to	show	that	the	instruction	had	been	successful.	However,	
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because	the	mathematical	practices	and	the	interview	results	were	both	reported	in	

some	detail,	relationships	can	be	explored.	

In	Bowers	et	al.’s	study,	the	researchers	reported	the	development	of	five	

emergent	practices	as	students	reasoned	about	inventory	of	a	candy	story.	By	

engaging	with	problems	set	in	this	context,	students	developed	understandings	of	

place	values	rooted	in	the	context	of	packing	candies.	First,	they	decided	to	pack	

candies	in	packages	of	1,	10,	and	100	(MP1).	Then	they	explored	how	they	could	

pack	the	same	amount	of	candies	in	different	ways	(MPs	2	and	3).	Then	they	solved	

addition	and	subtraction	problems	set	in	the	context	of	keeping	track	of	inventory	of	

candy	(MP4).	Lastly,	they	moved	to	solving	addition	and	subtractions	problems	

symbolically	(MP5).		

After	instruction	had	concluded,	the	researchers	interviewed	the	students,	

asking	them	to	solve	two	problems.	For	the	first	problem,	students	were	shown	a	

bag	filled	with	360	crayons	and	asked	how	many	bags	10	crayons	could	be	made	

with	the	crayons.	In	the	second	task	students	were	asked	to	solve	the	problem	42-

18,	which	was	given	symbolically.	In	general,	students	did	strikingly	well	on	these	

problems,	suggesting	the	instruction	was	successful.	

From	the	interview	results,	it	appears	that	most	students	reasoned	in	ways	

that	were	consistent	with	the	math	practices	that	emerged	in	the	classroom.	The	

first	task	on	the	interview	is	related	to	the	first	three	math	practices,	in	that	it	was	

about	reorganizing	the	packing	of	candies.	The	second	task	was	most	closely	

connected	the	last	math	practice,	in	that	both	were	ways	of	reasoning	about	
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symbolic	problems.	While	this	makes	the	study	compelling,	in	that	the	instructional	

sequence	seemed	to	be	efficacious	in	supporting	students	in	building	productive	

ways	of	reasoning	about	addition	and	subtraction	problems,	part	of	the	power	of	the	

instructional	sequence	seems	to	be	that	the	symbolic	reasoning	arose	out	of	

reasoning	about	a	real-world	context,	packing	candies.	In	this	sense,	MP4	seems	a	

critical	transition	from	reasoning	about	candies	to	reasoning	about	addition	and	

subtraction	of	numbers	without	context.	Leaving	individual	interpretations	of	this	

math	practice	unexplored	leaves	questions	about	what	students	make	of	these	

critical	transition	periods.	This	could	be	important	as	it	may	have	implications	for	

whether	or	not	their	symbolic	reasoning	is	procedural	or	conceptual	in	nature.		

My	answer	to	Research	Question	1	will	contribute	to	this	area	of	research.	

Cobb	and	Yackel	(1996)	originally	posited	that	the	relationship	between	individuals’	

ways	of	reasoning	and	emergent	practices	was	reflexive,	but	not	direct.	This	has	

been	confirmed	in	empirical	studies	with	Rasmussen	and	his	colleagues	(Rasmussen	

et	al.,	2015;	Tabach	et	al.,	2014)	demonstrating	the	reflexivity	of	the	relationships	

and	Cobb	(1999)	demonstrating	its	indirectness.	However,	despite	Cobb’s	

demonstration	that	students	can	have	personal	ways	of	reasoning	that	are	

qualitatively	different	than	established	practices,	other	research	seems	to	suggest	

that	students	eventually	develop	productive	ways	of	reasoning	(Bowers	et	al.,	1999;	

Stephan	et	al.,	2003).	Thus,	more	research	that	directly	examines	this	relationship,	

especially	those	that	relate	emergent	practices	to	students’	subsequent	ways	of	

reasoning,	is	needed.	In	this	study,	I	examined	this	relationship	as	I	documented	the	
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math	practices	that	emerged	in	the	classroom	I	studied	(see	Chapter	4)	and	then	

investigated	students’	personal	ways	of	reasoning	and	explored	the	relationship	

between	those	ways	of	reasoning	and	one	of	the	emergent	mathematical	practices	

(see	Chapter	5).	Furthermore,	these	results	will	be	expanded	upon	in	Chapter	6	as	I	

investigate	the	mathematical	meanings	that	were	constructed	through	the	

classroom	discourse	to	help	explain	how	students	may	have	been	interpreting	the	

emergent	practices.	This	may	help	explain	some	of	the	variability	in	students’	ways	

of	reasoning	from	the	practices.	

Mathematical	Discourse	

In	this	section	I	consider	the	research	on	classroom	mathematical	discourse.	

Examining	discourse	can	give	powerful	insights	into	a	variety	of	phenomenon.	In	

this	review,	I	chose	to	focus	on	studies	that	examined	the	teaching	and	learning	of	

particular	mathematical	content	(as	opposed	to	say,	how	social	relationships	are	

reified	through	discourse)	as	the	topics	of	these	studies	are	more	closely	related	to	

this	dissertation	study.	The	studies	I	considered	roughly	fell	into	four	categories:	(a)	

those	that	explored	theoretical	claims	about	the	relationship	between	discourse	and	

learning,	(b)	those	that	focused	on	discourse	moves	and	their	effects	on	the	learning	

process,	(c)	those	that	used	conversation	analysis	to	characterize	teacher’s	practice,	

and	(d)	those	that	used	discourse	analysis	techniques	rooted	in	Systemic	Functional	

Linguistics	(SFL).	In	the	following	sections,	I	detail	these	four	categories.	

Theoretical	Claims	of	Discourse’s	Central	Role	in	Learning	
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As	Vygotskian	perspectives	gained	prominence	in	the	thinking	of	educational	

researchers,	scholars	began	to	look	to	discourse	to	gain	further	understanding	of	the	

learning	process.	Vygotsky	claimed	that	higher	mental	functioning	begins	in	the	

social	plane	and	is	slowly	internalized	by	students	(Vygotsky,	1978).	Specifically,	as	

a	student	and	a	more	knowledgeable	other	participate	in	reasoning	and	problem	

solving	activities,	the	more	knowledgeable	other	starts	by	leading	the	student	

through	the	process	and	then	the	student	slowly	begins	to	gain	competence	and	to	

take	the	lead	the	process,	with	the	more	knowledgeable	other	guiding	only	when	

necessary.	As	such,	the	learning	process	is	inherently	social	and	co-constructed	by	

both	the	learner	and	more	knowledgeable	other	(Ash	&	Levitt,	2003;	John-Steiner	&	

Mahn,	1996).	This	process	is	called	internalization	and	is	said	to	occur	through	the	

transformation	of	communicative	language	into	thinking	(Enyedy,	2003).	This	

means	that	thinking	in	inherently	mediated	by	tools	(e.g.	language,	counting	

systems,	diagrams;	Goos,	2004).	

Complementing	the	idea	of	internalization	is	the	theoretical	construct	of	the	

zone	of	proximal	development	(ZPD),	which	is	the	space	in	which	internalization	

takes	place.	The	ZPD	is	defined	as	the	difference	between	what	a	student	can	do	on	

her	own	versus	what	she	can	do	with	the	help	of	a	more	knowledgeable	other	

(Enyedy,	2003;	Goos,	2004).	Thus,	scholars	who	study	teaching	and	learning	

interactions	from	a	Vygotskian	perspective,	study	this	zone	(Goos,	2004;	Goos,	

Galbraith,	&	Renshaw,	2002;	Lau,	Singh,	&	Hwa,	2009).	In	doing	so,	they	often	

elaborate	the	construct.	For	example,	Goos	(2004)	described	three	different	types	of	
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ZPDs.	The	first	interaction	is	between	a	teacher	and	a	student,	which	she	termed	

scaffolding.	In	the	scaffolding	ZPD	the	teacher	and	student	mutually	appropriate	

each	other’s	actions	as	the	teacher	helps	the	student	engage	in	more	sophisticated	

reasoning.	The	second	type	of	ZPD	is	an	interaction	between	two	peers,	which	she	

termed	collaboration.	This	ZPD	differs	from	the	first,	in	that	the	two	students	are	

more	equal	status	as	opposed	to	a	student	interacting	with	a	more	knowledgeable	

teacher.	Nevertheless,	students	working	together	can	be	more	capable	than	either	

would	be	on	their	own.	This	means	the	social	interaction	expands	their	capabilities	

and	thus	acts	as	a	ZPD.	Finally,	the	third	type	of	interaction	is	one	in	which	everyday	

concepts	are	leveraged	to	develop	more	formal	ways	of	reasoning.	She	calls	this	ZPD	

interweaving,	as	in	interweaving	everyday	and	formal	ways	of	reasoning.	Using	

these	three	types	of	ZPDs	as	a	lens	when	investigating	the	data,	Goos	investigated	

teacher	actions	to	support	productive	engagement	in	classroom	interactions.	For	

example,	the	teacher	asked	students	to	explain	and	justify	their	ideas	to	each	other,	

which	supported	productive	engagement	in	the	collaboration	ZPD.	Also,	the	teacher	

made	connections	between	everyday	words	and	technical	terms	to	promote	

productive	engagement	in	the	interweaving	ZPD.	In	this	way,	the	Goos	elaborated	

the	construct	of	ZPD	by	not	only	defining	different	types,	but	also	by	helping	to	

characterize	ways	teachers	can	support	effective	engagement	in	the	ZPD.		

Another	way	in	which	Vygotsky’s	work	has	been	extended	is	through	the	

work	of	Anna	Sfard.	She	agreed	with	Vygotsky	that	participation	in	discourse	is	

central	to	learning,	but	made	the	stronger	claim	that	thought	and	communication	
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are	a	single	phenomenon	(Sfard,	2007,	2008).	Her	claim	is	that	thinking	is	dialogical,	

in	essence	self-communication,	in	which	the	thinker	argues	with	himself,	asks	

himself	questions,	and	answers	himself.	She	conceives	of	mathematics	as	a	

particular	type	of	discourse,	which	like	all	discourses,	has	its	own	rules.	According	

to	her	theory,	each	discourse,	including	mathematics,	has	four	characteristics:	the	

way	its	participants	use	words,	the	way	they	use	visual	mediators,	the	narratives	

that	are	endorsed,	and	routines	that	are	used.	Visual	mediators	describe	appropriate	

ways	of	interacting	with	visual	objects	in	the	discourse.	For	example,	in	

mathematics,	graphs	are	visual	objects	that	mediate	interaction.	Narratives	are	texts	

that	describe	objects	and	relationships.	Endorsed	narratives	are	ones	the	discourse	

treats	as	true.	For	example,	in	mathematics	axioms	and	theorems	are	endorsed	

narratives.	Routines	are	patterns	in	the	discourse.	Learning	mathematics	is	then	an	

individualization	of	the	discourse.	This	refers	to	the	process	through	which	

individuals	come	to	participate,	both	with	others	and	with	oneself,	in	the	discourse.	

As	they	do	so,	they	can	reason	about	things	they	could	not	before	(like	negative	

numbers,	see	Sfard,	2008).	

As	students	learn	the	discourse	of	mathematics,	they	learn	the	rules	that	

govern	that	discourse.	These	can	be	object	level	rules,	which	define	how	objects	are	

related	to	each	other	(e.g.	acceptable	use	of	a	particular	word).	Object	level	rules	are	

about	the	content	of	the	discourse.	Meta	level	rules,	sometimes	just	called	meta-

rules,	on	the	other	hand,	are	rules	about	how	the	discourse	should	operate	(e.g.	the	

rules	of	proving	or	defining).	Meta-rules	is	a	quite	broad	term	and	can	refer	to	
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phenomenon	that	might	also	be	referred	to	as	a	social	norm,	like	raising	one’s	hand	

before	speaking	(Xu	&	Clarke,	2012).	If	one	can	participate	in	that	discourse,	by	

following	the	rules,	he	or	she	is	communicating	(with	others	or	with	self)	

mathematically.	Students	learn	these	rules	via	breakages	in	the	discourse	when	they	

try	to	participate	in	it.	These	are	when	different	participants	seem	to	be	abiding	by	

different	rules,	a	situation	which	Sfard	calls	commogonitive	conflict	(2007,	2008).	As	

such,	learning	mathematics	is	the	same	as	adopting	the	discourse	of	mathematics.	

This	entails	learning	the	vocabulary,	routines,	and	endorsed	narratives,	as	well	as	

learning	the	rules	of	how	the	discourse	operates	(e.g.	the	rules	regarding	what	

makes	an	appropriate	proof).	

Scholars	have	elaborated	Sfard’s	theory	by	using	her	framework	to	analyze	

teaching	and	learning	interactions.	This	is	often	done	by	looking	at	the	data	through	

the	lens	of	the	four	characteristics	of	discourse	(Caspi	&	Sfard,	2012;	Güçler,	2012;	

Sfard	&	Lavie,	2005).	For	example,	Güçler	(2012)	explored	the	discourse	on	limits	in	

a	beginning-level	undergraduate	calculus	classroom	with	these	four	characteristics	

acting	as	the	four	axes	on	which	she	coded	classroom	interactions.	Her	analysis	of	

word	use	provided	interesting	insight	into	explaining	students’	difficulties	with	

limits.	She	argued	that	the	teachers’	shifts	in	his	use	of	the	word	limit	corresponded	

with	student	difficulties.	In	particular,	the	teacher	usually	referred	to	the	limit	as	a	

distinct	mathematical	object	(over	82%	of	his	references	to	limits),	however,	when	

talking	about	the	informal	definitions	of	limits	or	how	to	compute	them,	he	would	

shift	between	talking	about	the	limit	as	number	and	the	limit	as	a	process.	Students	
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seemed	to	struggle	navigating	this	change	as	they	endorsed	the	narrative	that	limits	

were	a	process	in	their	speech	rather	than	limits	being	a	number.	I	now	detail	the	

second	category	of	literature.	

Discourse	Moves	and	their	Effects	

Some	scholars	use	discourse	to	understanding	the	learning	process	in	a	

different	way.	The	studies	presented	in	the	previous	paragraphs	tightly	connect	

learning	to	participating	in	discourse.	Therefore,	when	they	study	discourse	they	are	

studying	the	nature	of	the	learning	process	directly.	Other	scholars	conceive	of	

discourse	as	affecting	the	learning	process	through	the	creation	of	particular	

learning	environments	rather	than	being	the	synonymous	with	learning.	For	

example,	scholars	have	examined	how	the	teacher’s	or	(less	frequently	analyzed)	

the	students’	discourse	moves	influence	students’	engagement	with	the	learning	

environment.	The	result	of	this	type	of	research	is	a	description	of	a	particular	way	

of	speaking	or	interacting	(the	discourse	move)	along	with	evidence	of	its	effects.	

For	example,	O’Connor	and	Michaels	(1993)	illustrated	how	a	particular	reaction	to	

expressed	student	thinking,	revoicing,	can	encourage	mathematical	argumentation.	

Revoicing	occurs	when	a	teacher	summarizes	something	a	student	has	said,	perhaps	

adding	details	to	or	rewording	the	utterance.	When	a	teacher	revoices	she	can	

create	argumentative	positions,	thereby	fostering	mathematical	argumentation.	

Martino	and	Maher	(1999)	similarly	illustrated	how	questions	can	serve	different	

functions	in	the	classroom,	such	as	encouraging	students	to	justify,	generalize,	make	

connections,	or	draw	attention	other	students’	solutions.	Similarly,	Franke	et	al.	
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(2009)	and	Webb	et	al.	(2008)	found	that	when	teachers	probed	student	responses	

by	asking	clarifying	questions	and	asking	students	to	elaborate	their	responses,	

students	were	more	likely	to	give	correct	and	complete	explanations.	This	may	help	

explain	Pierson’s	(2008)	finding	that	teacher	follow-ups	that	built	on	the	student’s	

idea	were	correlated	with	achievement.	Responsive	follow-ups	were	particularly	

important	for	students	who	entered	instruction	with	low	levels	of	prior	knowledge.	

Researcher	have	also	found	that	teacher	follow-ups	can	also	constrain	opportunities	

for	reasoning.	Bieda	(2010)	found	teachers	often	shut	down	opportunities	for	

students	to	engage	in	proving	activities	by	sanctioning	conjectures	or	putting	them	

to	a	class	vote.	Together,	these	studies	show	that	the	teacher’s	discourse	moves	have	

a	large	effect	on	shaping	the	nature	of	the	intellectual	work	required	of	students	and	

their	subsequent	reasoning.	Through	their	discourse	moves,	teachers	can	encourage	

students	to	extend	their	mathematical	thinking	and	engage	in	mathematical	

argumentation.	

Most	of	the	research	that	investigates	discourse	moves	examines	how	these	

moves	create	opportunities	for	further	reasoning.	In	these	studies,	the	reasoning	is	

normally	talked	about	in	a	general	way,	as	in	opportunities	to	prove	or	engage	in	

mathematical	argumentation.	However,	there	also	exists	a	small	and	emerging	type	

of	research	that	seeks	to	make	mathematical	connections	between	discourse	

practices	and	students’	reasoning	about	a	specific	mathematical	topic.	For	example,	

Rasmussen	and	Marrongelle	(2006)	described	a	of	way	of	noting	ideas,	called	a	

transformational	record,	that	advanced	the	mathematical	agenda	in	the	classroom	
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they	studied.	In	this	case,	the	teacher	wrote	down	students’	thinking	in	a	way	that	

created	a	model	from	which	students	could	later	use	to	reason.	The	authors	

illustrated	the	idea	of	a	transformational	record	by	describing	how	a	teacher	

recorded	students’	reasoning	population	growth	in	way	that	an	expert	would	

recognize	as	a	tangent	vector	field.	Students	then	used	this	record	to	reason	about	

the	shape	of	the	solution.	Notice	that	while	the	idea	of	a	transformational	record	

could	be	employed	in	any	mathematical	topic,	any	particular	instantiation	of	the	

record	is	highly	connected	to	specific	topic	being	discussed.	In	particular,	the	

practice	is	used	to	advance	the	students’	thinking	about	a	particular	mathematical	

topic.	

Similarly,	Lobato,	Hohensee,	and	Rhodehamel	(2013)	also	analyzed	topic-

specific	features	of	discourse	practices.	In	their	analysis	they	created	conceptual	

connections	between	discursive	practices	and	what	students	noticed.	They	did	so	by	

comparing	two	classrooms.	In	the	first	class	the	majority	of	students	were	able	to	

coordinate	two	quantities	as	they	reasoned	about	a	linear	situation,	while	most	of	

the	students	in	the	second	class	inappropriately	relied	on	various	forms	of	non-

multiplicative	reasoning.	Upon	investigation	of	the	lessons	the	students	received,	

they	found	that	in	the	first	class	the	teacher	pressed	for	the	meaning	of	quantities,	a	

discursive	interaction	they	termed	quantitative	dialogue,	while	in	the	second	class	

the	teacher	used	a	discourse	routine	which	emphasized	additive	growth	in	a	single	

quantity.	The	authors	identified	two	other	types	of	discursive	interactions	that	were	

also	important	for	making	sense	of	their	data:	highlighting	and	renaming.	A	person	
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is	said	to	highlight	when	he	or	she	draws	attention	to	a	particular	aspect	of	a	

representation	by	visibly	interacting	with	it,	for	example,	by	drawing	on	it.	

Renaming	is	when	a	person	uses	a	label	from	mathematical	practice	to	change	the	

name	an	existing	idea.	Using	these	three	types	of	discursive	interactions,	Lobato	et	

al.	(2013)	were	able	to	account	for	the	emergence	of	shifts	in	students’	attention,	

thereby	providing	insight	into	how	discourse	practices	can	affect	the	nature	of	

students’	reasoning.	

Using	Conversation	Analysis	to	Characterize	a	Teacher’s	Practice		

In	the	previous	two	sections,	discourse	was	related	to	learning	either	directly	

(as	being	born	out	of	and	inseparable	from	discursive	interactions)	or	indirectly	(as	

being	influenced	by	learning	environments).	Other	research	uses	discourse	analysis	

as	a	lens	on	the	nature	of	interactions	rather	than	a	description	of	the	mechanisms	

of	learning.	Specifically,	researchers	can	investigate	discourse	to	characterize	the	

nature	of	a	teacher’s	interaction	with	her	students	(Blanton,	Berenson,	&	Norwood,	

2001;	Forman,	Mccormick,	&	Donato,	1998;	Nathan	&	Knuth,	2003).	This	is	different	

from	the	previous	category	in	that	the	analysis	is	meant	to	provide	a	window	into	

the	teacher’s	practice	and	not	meant	to	describe	how	the	teacher’s	practice	affects	

the	learning	environment.	This	is	often	done	to	see	if	a	teacher’s	practice	is	in	line	

with	her	goals	(e.g.	the	amount	of	student	participation	or	whether	or	not	she	is	

sharing	authority).	For	example,	Nathan	and	Knuth	(2003)	analyzed	who	talked	to	

whom	(teacher	to	student,	teacher	to	class,	student	to	teacher,	student	to	student)	to	

investigate	the	centrality	of	the	teacher	in	the	discussion.	They	found	that	very	few	
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mathematical	statements	were	student-to-student	despite	the	teacher	

characterizing	lessons	as	having	good	student	participation.	Similarly,	Forman,	

McCormick,	and	Donato	(1998)	examined	when	the	teacher	overlapped	her	speech	

with	students	(essentially	cutting	them	off)	to	reveal	the	extent	to	which	she	

allowed	her	students	to	determine	the	validity	of	their	peers’	solutions.	They	found	

that	the	teacher	met	her	goal	of	sharing	responsibility	to	give	explanations,	but	not	

her	goals	to	share	authority	for	evaluating	those	explanations.	Finally,	in	

characterizing	a	student	teacher’s	evolving	practice	by	examining	her	talk,	Blanton	

et	al.	(2001)	found	that	she	initially	asked	leading	questions	and	gave	hints	to	funnel	

students	to	a	particular	strategy.	Later	however,	she	used	questions	less	for	

instructional	purposes	and	more	to	investigate	student	behavior.	

Just	as	these	analyses	are	useful	to	the	research	community	in	characterizing	

the	teacher’s	practice,	some	scholars	suggest	that	careful	attention	to	language	can	

help	teachers	understand	their	own	practice.	For	example,	Nathan	and	Knuth	

(2003)	pointed	out	to	the	teachers	in	their	study	how	the	information	was	flowing	

in	their	classrooms.	As	the	one	teacher	realized	her	practice	was	inconsistent	with	

her	goals,	she	changed	how	she	participated	in	the	discourse,	which	changed	how	

the	information	flowed.	Similarly,	as	the	teacher	in	the	study	by	Blanton	et	al.	

(2001)	focused	on	the	language	in	her	classroom,	she	also	changed	her	practice.	

The	studies	in	each	of	these	three	sections	are	important	in	their	own	ways,	

but	none	of	the	studies	offer	systematic	ways	of	examining	the	construction	of	

meaning	in	classrooms.	For	example,	the	first	two	categories	have	powerful	
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implications	for	educators.	By	examining	the	discourse	with	a	particular	theoretical	

lens,	scholars	can	gain	insights	into	the	role	of	discourse	in	learning	the	process.	

These	insights	normally	have	implications	for	teachers.	For	example,	Güçler’s	

(2012)	study	suggests	that	teachers	should	become	aware	of	the	way	they	use	

words	when	describing	mathematical	content	as	the	shifting	of	use	may	be	difficult	

for	students	to	navigate.	The	work	on	discourse	moves	has	even	more	direct	

implications	for	teachers.	For	example,	revoicing	can	create	argumentative	positions	

or	asking	students	to	elaborate	can	help	them	articulate	complete	and	correct	

solutions.	

This	third	category	is	closer	to	providing	a	way	to	investigating	meaning	in	

that	it	uses	discourse	as	a	way	to	characterize	something.	However,	the	thing	that	it	

is	characterizing	is	teachers’	practice,	not	mathematical	meaning.	Systemic	

Functional	Linguistics	(SFL;	Halliday,	1978;	Halliday	&	Hasan,	1985)	is	a	broad	

theory	meant	to	describe	how	English	works	in	general.	As	such,	it	offers	a	

systematic	way	of	analyzing	how	meaning	is	created	through	discourse.	

Systemic	Functional	Linguistics	

	 Unlike	the	other	approaches	described,	which	focus	specifically	on	teaching	

and	learning,	SFL	is	a	general	theory	meant	to	describe	how	meaning	is	made	

through	language.	Rather	than	thinking	of	words	as	having	meaning	in	and	of	

themselves,	words’	meanings	are	created	through	their	function	in	the	text.	This	

meaning	is	created	with	the	three	metafunctions	of	language:	ideational,	

interpersonal,	and	textual.	At	its	core,	ideational	meaning	centers	on	the	content	of	
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the	discourse,	while	the	interpersonal	meaning	centers	on	the	relationship	between	

the	conversation	partners	and	their	respective	roles.	This	can	include	the	speakers’	

expressed	attitudes	toward	the	content	and	towards	one	another.	These	meanings	

are	organized	by	the	textual	metafunction	of	language.	

Different	educational	scholars	focus	on	different	metafunctions	to	illuminate	

various	aspects	of	teaching	practice.	This	was	theory	was	largely	introduced	to	math	

education	through	science	education’s	use	of	it	when	Lemke	examined	classroom	

talk	from	this	perspective	in	Talking	Science	(Lemke,	1990).	In	his	examination	he	

attended	to	all	three	metafunctions	of	language,	which	revealed	patterns	of	

interaction	in	the	classroom,	how	the	content	was	talked	about,	how	science	was	

positioned	in	the	classroom,	and	how	students	began	to	adopt	ways	of	talking	that	

are	considered	scientific.	The	breadth	of	his	findings	attests	to	the	

comprehensiveness	of	the	theory.	As	such,	scholars	usually	need	to	focus	their	

analysis	is	some	way.	This	can	either	be	done	by	attending	to	how	the	three	

metafunctions	of	language	create	a	particular	type	of	meaning	(Atweh,	Bleicher,	&	

Cooper,	1998;	Morgan,	2005)	or	by	focusing	on	a	particular	metafunction	of	

language	(Chapman,	1995;	Herbel-Eisenmann,	2007;	Herbel-Eisenmann	&	Otten,	

2011;	Herbel-Eisenmann,	Wagner,	&	Cortes,	2010;	Mesa	&	Chang,	2010).	

	 For	example,	Morgan	(2005)	studied	the	nature	of	definitions	and	how	the	

differed	when	used	in	a	mathematics	texts	for	15-16	year	old	students	and	in	an	

academic	research	paper.	To	do	this	analysis	she	used	Halliday’s	ideational	

metafunction	to	examine	what	process	are	being	talked	about	in	definitions,	the	
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interpersonal	metafunction	to	examine	the	roles	of	the	actors	that	are	at	play	in	

definitions,	and	textual	metafuctinon	to	examine	how	is	the	status	of	definitions	

were	established.	She	found	that	in	more	advanced	texts,	definitions	were	

constructed	for	creative	purposes.	In	texts	for	less	advanced	students,	there	was	

more	of	a	one-to-one	word-concept	relationship.	This	raises	the	concern	of	access	

for	these	students	to	not	only	more	advanced	mathematical	content,	but	also	more	

authentic	mathematical	practices.		

	 Other	scholars	have	focused	on	one	metafunction	of	language	in	their	

analyses.	For	example,	Mesa	and	Chang	(2010)	and	Herbel-Eisenmann	(2007)	both	

focused	on	the	interpersonal	metafunction	in	their	analyses.	Mesa	and	Chang	(2010)	

explored	the	differences	between	two	classrooms.	Through	the	coding	of	the	

teachers’	talk,	the	researchers	found	that	in	one	classroom	the	teacher	maintained	a	

more	authoritarian	position,	despite	both	having	high	levels	of	student	

participation.	Herbel-Eisenmann	(2007)	also	examined	the	interpersonal	

metafunction,	but	instead	of	analyzing	classroom	interactions,	she	analyzed	a	

middle	school	mathematics	textbook.	She	examined	the	construction	of	the	roles	of	

the	authors	and	readers	and	their	relationships.	She	found	that	even	though	the	

authors	were	committed	to	shifting	the	locus	of	authority	to	students,	the	

relationships	constructed	through	the	text	were	often	hegemonic.	She	suggested	

this	might	be	due	to	the	traditional	forms	of	discourse	in	mathematics	that	are	often	

filled	with	imperatives	that	leave	little	room	for	the	reader	to	preserve	their	own	

agency.	
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Conversely,	Herbel-Eisenmann	and	Otten	(2011)	focused	on	the	ideational	

metafunction	of	language.	These	researchers	also	compared	two	classrooms,	but	

instead	of	analyzing	the	roles	of	the	teacher	relative	to	the	students,	they	analyzed	

the	sematic	relationships	between	key	concepts	in	the	lesson.	This	revealed	

subtleties	in	how	the	mathematical	content	was	being	talked	about	and	the	

meanings	that	were	constructed.	One	of	these	subtleties	was	the	ambiguity	in	

phrases	like	“rectangles	are	parallelograms”	that	was	mentioned	in	Chapter	1.	Other	

subtleties	found	dealt	more	with	shifting	meanings	in	the	classrooms.	For	example,	

in	both	classrooms	the	teachers	shifted	the	meaning	of	the	mathematical	terms	base	

and	height.	They	both	talked	about	these	words	as	geometric	objects	and	as	

quantities.	This	might	be	expected	since	the	lessons	required	discussion	of	both	

geometric	representations	and	algebraic	formulas.	However,	the	shifts	in	word	

meanings	were	left	implicit	and	it	is	not	clear	that	all	students	were	able	to	navigate	

the	change	in	meanings.	

This	type	of	detailed	analysis	is	necessary	to	answer	Research	Question	2.	

This	question	seeks	to	establish	a	plausible,	although	partial,	explanation	for	how	

students	could	participate	in	emergent	practices	while	potentially	reasoning	ways	

that	are	qualitatively	different	from	the	practice.	As	such,	I	need	to	carefully	

document	the	mathematical	meanings	that	were	being	established	in	the	classroom.	

By	systematically	looking	at	the	relationships	expressed	between	words	SFL	

techniques	can	reveal	subtleties	in	the	meaning	construction	that	could	be	missed	

with	coarser	grained	approaches.		
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Since	this	analysis	dealt	with	the	mathematical	meanings	about	exponential	

and	logarithmic	relationships,	I	now	turn	to	the	somewhat	limited	literature	on	

teaching	and	learning	exponents	and	logarithms.	

Teaching	and	Learning	of	Exponential	and	Logarithmic	Relationships	

In	my	analysis	I	considered	the	normative	ways	of	reasoning	and	individuals’	

ways	of	reasoning	about	a	topic	that	is	conceptually	rich,	conducive	to	a	variety	of	

ways	of	thinking,	and	mathematically	important—the	exploration	of	exponential	

and	logarithmic	relationships.	Despite	their	historical	significance	and	importance	

for	modeling	real	world	phenomena,	the	teaching	and	learning	of	exponential	

relationships	in	general,	and	logarithms	in	particular,	has	been	understudied.	

When	logarithms	were	invented,	they	dramatically	changed	the	way	

computations	were	done.	At	this	time,	calculations	had	to	be	done	by	hand.	The	

time-intensive	nature	of	vast	computations	slowed	astronomers,	architect,	

merchants,	and	bankers	in	their	work.	Building	on	Stifel’s	ideas,	Napier	invented	

logarithms	(Villarreal-Calderon,	2008)	as	he	explored	ways	to	compute	more	

efficiently.	The	logarithm,	along	with	its	tables,	provided	a	way	for	professionals	to	

turn	multiplication	problems	into	addition	problems,	which	were	much	easier	to	

solve	by	hand.	By	greatly	reducing	the	time	required	to	compute,	Napier’s	invention	

immediately	changed	these	professionals’	work	(Bakst,	1967;	Gladstone-Millar,	

2003).	

Logarithms	are	not	only	historically	important,	but	continue	to	have	

applications	in	mathematical	modeling.	Wood	(2005)	explained	that	logarithms	are	
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a	helpful	way	to	model	phenomena	when	the	range	of	possible	values	is	particularly	

large,	as	in	the	case	of	decibels	and	the	Richter	scale.	Liang	and	Wood	(2005)	

mentioned	astronomy	and	pH	level	as	other	applications,	while	Bakst	(1967)	

reminds	us	of	the	application	to	the	brightness	of	stars.	In	order	to	appropriately	

model	and	reason	about	values	that	can	fall	on	a	large	scale,	logarithms	are	

essential.	

Even	though	logarithms	are	an	important	topic,	not	much	is	known	about	

how	students’	think	and	learn	about	them.	With	the	notable	exception	of	the	work	of	

Confrey	and	Smith	(Confrey,	1994;	Confrey	&	Smith,	1994,	1995)	and	Kastberg	

(2002),	research	on	student	thinking	about	logarithms	consists	of	noting	

calculational	mistakes	students	make		(Barnes,	2006;	Hoon,	Singh,	&	Ayop,	2010;	

Liang	&	Wood,	2005;	Nogueira	de	Lima	&	Tall,	2006)	or	the	misapplication	of	linear	

reasoning	(Berezovski,	2004;	De	Bock,	van	Dooren,	Janssens,	&	Verschaffel,	2002).	

As	such,	this	work	focuses	on	the	conceptions	or	skills	students	lack.	For	example,	

many	scholars	suggest	that	students	may	not	be	conceptualizing	a	logarithm	as	

number	(Berezovski,	2004;	Liang	&	Wood,	2005;	Wood,	2005).	This	research	is	

limited	in	that	it	does	not	reveal	what	conceptualizations,	images,	and	skills	

students	have	that	could	be	useful	in	the	advancing	their	reasoning	about	

logarithms.		

Similar	to	the	work	on	logarithms,	many	scholars	who	study	students’	

understanding	of	exponential	relationships	detail	the	procedural	errors	individuals	

make	when	reasoning	(Alagic	&	Palenz,	2006;	Cangelosi,	Madrid,	Cooper,	Olson,	&	
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Hartter,	2013;	Davis,	2009).	These	errors	include	the	over	application	of	linear	

reasoning	(Alagic	&	Palenz,	2006)	and	reasoning	about	negative	exponents	

incorrectly	(Cangelosi	et	al.,	2013).	These	errors	exist	even	in	mathematics	teachers	

(Alagic	&	Palenz,	2006;	Davis,	2009).	Strom	(2006)	also	discovered	teachers	found	

reasoning	about	non-integer	exponents	especially	difficult.	

As	mentioned	above,	one	major	exception	to	casting	students’	knowledge	in	

terms	of	skills	they	lack	or	errors	they	make	is	the	work	of	Confrey	and	Smith	

(Confrey,	1994;	Confrey	&	Smith,	1994,	1995).	They	suggested	students	have	

separate	ways	of	thinking	about	additive	and	multiplicative	situations.	They	

introduced	a	construct,	splitting,	which	describes	a	one-to-many,	multiplicative	

action.	Instead	of	conceiving	of	multiplication	as	repeated	addition,	they	suggested	

students	naturally	have	the	capacity	to	the	think	of	a	simultaneous	duplication	

action,	splitting,	and	claim	it	is	cognitively	distinct	form	repeated	addition.	

Exponential	and	logarithmic	relationships	link	the	additive	and	splitting	worlds,	by	

linking	a	variable	that	grows	additively	with	a	variable	that	grows	multiplicatively.	

The	work	of	Kasterberg	(2002)	is	the	other	major	exception	in	the	work	on	

logarithms.	While	much	of	her	work	focused	on	students’	lack	of	understanding,	she	

was	also	able	to	find	cognitive	resources	that	may	be	valuable	to	a	teacher.	In	

particular,	she	found	that	students	tried	to	make	sense	of	the	relationships	in	the	

numbers	by	looking	for	patterns	when	presented	with	tables	of	values.	This	helped	

them	find	common	ratios	and	difference.	This	provides	evidence	that	they	attended	

to	both	geometric	and	arithmetic	patterns.	



49	

	

Similar	to	work	on	logarithms,	only	a	few	studies	focus	on	individuals’	ways	

of	thinking	about	exponential	functions	rather	than	just	procedural	errors.	One	

notable	study	was	a	teaching	experiment	of	three	8th	grade	students	conducted	by	

Ellis	et	al.	(2013).	They	compared	the	reasoning	of	two	students,	one	who	focused	

on	the	covariational	relationship	between	the	variables	and	one	who	focused	on	a	

correspondence	relationship.	A	covariation	perspective	means	that	the	student	

coordinates	how	the	dependent	variable	changes	as	the	independent	variable	

changes,	while	a	correspondence	view	emphasizes	a	static	relationship	between	

individual	x-y	pairs	(Smith,	2003;	Smith	&	Confrey,	1994).	Ellis,	Özgür,	Kulow,	

Williams,	and	Amidon	(2015)	found	the	student	who	focused	on	the	covariation	

perspective	was	able	to	reason	more	powerfully	as	she	had	less	trouble	shifting	

between	a	covariation	and	correspondence	perspective.	Furthermore,	her	

understanding	of	the	relationship	between	the	two	varying	quantities	enriched	her	

correspondence	view.		

	 In	another	body	of	scholarly	writings	about	exponential	and	logarithmic	

relationships,	researchers	give	pedagogical	recommendations	for	teaching.	Webb,	

Kooij,	&	Geist	(2011)	recommended	starting	with	informal	explorations	of	

exponential	situations	and	then	dropping	context	in	the	style	of	realistic	

mathematics	education	(RME).		Others	(Katz,	1986;	Van	Maanen,	1997)	

recommended	a	curricular	sequence	that	mirrors	the	historical	development	of	

logarithms.	Finally,	Weber	(2002)	developed	a	hypothetical	learning	trajectory	

based	on	APOS	theory	(Dubinsky	&	Mcdonald,	2001),	complete	with	activities	to	
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help	students	progress	through	the	learning	trajectory.	These	recommendations	are	

helpful	starting	points,	but	none	were	implemented	with	students.	In	this	way	this	

study	contributes	to	the	literature	on	teaching	logarithms	by	not	only	developing	a	

hypothetical	learning	trajectory,	but	also	observing	its	implementation	and	carefully	

documenting	the	learning	of	the	students.	

Research	Questions	Revisited	

I	now	revisit	the	research	questions	and	elaborate	them	using	ideas	from	the	

literature	review.	

Research	Question	1:	How	are	individuals’	ways	of	reasoning	related	
to	the	progression	of	increasingly	sophisticated	ways	of	reasoning	
that	function	as	if	shared	in	the	classroom?	
	
One	way	scholars	have	documented	the	mathematical	progress	of	students	is	

to	identify	increasingly	sophisticated	ways	of	reasoning	that	function	as	if	shared	in	

the	classroom	community	(e.g.	Bowers	et	al.,	1999;	Stephan	&	Rasmussen,	2002).	

This	is	important	because	it	gives	teachers	an	image	of	how	complex	ways	of	

reasoning	might	develop	in	their	classrooms.	However,	it	is	important	to	note	that	

while	these	emergent	ways	of	reasoning	likely	shape	students’	individual	ways	of	

reasoning,	they	do	not	determine	what	students	learn.	Scholars	working	from	the	

emergent	perspective	have	always	maintained	that	the	relationship	between	

normative	ways	of	reasoning	and	students’	ways	of	reasoning	is	indirect	and	

reflexive	(Cobb	et	al.,	2003;	Rasmussen	&	Stephan,	2008).	This	means	that	as	

students	participate	in	the	social	processes	involved	in	creating	emergent	

mathematical	practices,	this	affects	their	personal	conceptions,	but	a	researcher	
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should	not	assume	that	all	students	construct	identical	conceptions	as	a	result	of	

participation	in	the	classroom.	

While	the	emergent	perspective	outlines	the	general	nature	of	this	

relationship	between	students’	ways	of	reasoning	and	normative	ways	of	reasoning,	

the	details	of	this	relationship	have	been	left	understudied.	Early	on,	Cobb	(1999)	

provided	evidence	that	students	may	reason	in	ways	that	are	qualitatively	different	

from	established	practices.	However,	the	few	studies	that	have	documented	

students’	subsequent	reasoning	after	participating	in	emergent	practices	seem	to	

imply	that	if	significant	differences	exist	in	students’	ways	of	reasoning	the	students	

tend	to	reorganize	their	ways	of	thinking	by	continuing	to	participate	in	classroom	

discussions	(Bowers	et	al.,	1999;	Stephan	et	al.,	2003).	Because	this	has	only	been	

examined	in	a	few	studies,	more	research	is	needed	for	scholars	to	understand	how	

typical	these	results	are,	if	qualitative	differences	can	persist	beyond	instruction,	

and	under	what	circumstances	students	reorganize	their	knowledge	to	become	

more	consistent	with	productive	emergent	practices.	In	answering	this	Research	

Question	1,	I	will	provide	more	insight	into	the	nature	of	this	relationship.	Research	

Question	2	will	then	building	on	the	findings	of	Research	Question	1.	

Research	Question	2:	What	mathematical	connections	exist	between	
the	focus	students’	ways	of	reasoning	in	the	post	interviews	and	the	
discursive	interactions	between	them	and	other	students	and	the	
teacher	in	both	whole	class	and	small	group	settings?	Furthermore,	
how	might	the	nature	of	these	discursive	interactions	give	plausible	
explanations	for	students’	differing	conceptions?	

The	answer	to	Research	Question	1	will	describe	students’	ways	of	reasoning	

after	they	have	participated	in	emergent	mathematical	practices.	While	this	gives	
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insight	into	the	nature	and	extent	of	individual	variation	from	established	practices,	

it	did	not	elaborate	why	differences	may	have	existed.	Answering	Research	Question	

2	will	give	insight	into	this.	By	analyzing	semantic	relationships	among	words	I	will	

document	the	mathematical	meanings	established	in	class.	Similar	work	has	proven	

to	elucidate	subtleties	in	the	ways	meanings	were	constructed	that	revealed	things	

like	ambiguities	in	the	talk	(e.g.	“rectangles	are	parallelograms”)	or	shifting	

meanings	(e.g.	talking	about	a	base	as	both	a	geometric	object	and	a	quantity).	These	

types	of	results	may	prove	fruitful	in	explaining	how	different	participants	could	

have	different	interpretations	of	established	practices	(perhaps	by	revealing	

ambiguities)	or	why	may	have	had	a	difficult	time	engaging	in	certain	practices	

(perhaps	because	of	shifting	meanings).	While	the	results	of	the	analysis	for	

Research	Question	2	may	have	similarities	in	the	findings	of	other	researchers	using	

an	SFL	approach	to	uncover	mathematical	meanings	in	a	classroom,	this	work	will	

expand	upon	previous	results	as	the	meanings	will	be	situated	in	normative	ways	of	

reasoning	and	help	explain	documented	ways	of	reasoning	students	use	that	differ	

from	emergent	practices.		
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Chapter	3: Research	Methods	

	
In	this	chapter,	I	present	the	methods	I	used	to	answer	the	following	two	

research	questions:		

Research	Question	1:	How	are	individuals’	ways	of	reasoning	related	
to	the	progression	of	increasingly	sophisticated	ways	of	reasoning	
that	function	as	if	shared	in	the	classroom?	
	
Research	Question	2:	What	mathematical	connections	exist	between	the	
focus	students’	ways	of	reasoning	in	the	post	interviews	and	the	discursive	
interactions	between	them	and	other	students	and	the	teacher	in	both	whole	
class	and	small	group	settings?	Furthermore,	how	might	the	nature	of	these	
discursive	interactions	give	plausible	explanations	for	students’	differing	
conceptions?	
	

I	first	outline	the	connection	between	the	research	questions	and	the	research	

methods	and	then	describe	the	data	collection	and	analysis	methods	in	depth.	

Overview	of	Methods	for	Research	Question	1	

This	study	was	performed	in	an	undergraduate	mathematics	class	designed	

for	prospective	secondary	teachers.	In	this	course	secondary	mathematics	content	

was	explored	in	a	conceptually	oriented	way.	This	meant	to	deepen	the	prospective	

teachers’	knowledge	of	both	mathematics	content	and	students’	thinking	about	that	

content.	The	class	I	studied	consisted	of	26	mathematics	majors.		

To	answer	Research	Question	1,	I	first	documented	all	the	ways	of	reasoning	

that	functioned	as	if	shared	in	the	classroom	community.	I	then	grouped	these	

normative	ways	of	reasoning	into	five	mathematical	practices	(see	Chapter	4).	I	then	

focused	on	the	second	emergent	mathematical	practice,	which	consisted	of	two	
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normative	ways	of	reasoning	and	investigated	students’	related	individual	ways	of	

reasoning.	

To	perform	this	analysis	I	needed	to	collect	specific	kinds	of	data.	First,	I	used	

the	documenting	collective	activity	method	(DCA;	Rasmussen	&	Stephan,	2008),	

described	in	more	detail	in	the	data	analysis	section,	to	infer	the	normative	ways	of	

reasoning.	The	DCA	method	was	designed	to	study	classrooms	where	genuine	

argumentation	occurs.	Thus,	I	needed	to	study	a	class	where	students	regularly	

presented	and	discussed	solutions	to	problems.		

Second,	I	administered	task-based	clinical	interviews	(Ginsburg,	1997)	after	

instruction	was	completed,	to	infer	individuals’	conceptions	related	to	the	

normative	ways	of	reasoning	for	a	sample	of	students	from	the	class.	To	infer	

relevant	conceptions,	I	needed	to	engage	the	students	in	tasks	that	are	related	to	

these	ways	of	reasoning.	Because	I	was	not	be	able	to	perform	the	analysis	to	

determine	these	ways	of	reasoning	before	I	conducted	the	interviews	(shortly	after	

the	class	had	ended),	I	constructed	tasks	that	reveal	students’	ideas	about	ways	of	

reasoning	I	had	hypothesized	will	become	normative	in	the	classroom	community.	

In	Chapters	4	and	5,	I	present	the	findings	from	this	analysis.	In	Chapter	4	I	

provide	evidence	for	each	of	the	normative	ways	of	reasoning	that	occurred	in	the	

class.	With	each	normative	way	of	reasoning	I	provide	an	elaboration	of	the	way	of	

reasoning	with	examples	of	how	the	arguments	shifted	in	the	class	once	the	way	of	

reasoning	became	established.	In	Chapter	5	I	present	categories	of	conceptions	that	

relate	to	Math	Practice	2.	In	the	Discussion	section	of	Chapter	5,	I	address	Research	
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Question	1	directly	by	articulating	the	relationships	between	individuals’	ways	of	

reasoning	and	ways	of	reasoning	that	functioned	as	if	shared	in	the	class	

community.	

Overview	of	Methods	for	Research	Question	2	

While	Research	Question	1	focuses	on	the	relationship	between	the	emergent	

mathematical	practices	and	students’	individual	ways	of	reasoning	that	arose	from	

participating	in	those	practices,	Research	Question	2	focuses	on	explaining	the	

variation	in	student	thinking	from	established	practices.	As	such,	I	needed	to	

understand	how	students	could	reasonably	engage	in	mathematical	conversations,	

which	lead	to	the	establishment	of	Math	Practice	2,	yet	still	hold	differing	

conceptions.	To	do	this	I	investigated	the	mathematical	meanings	created	in	these	

conversations	by	investigating	the	semantic	relationships	using	the	technique	of	

thematic	analysis	from	Systemic	Functional	Linguistics	(Herbel-Eisenmann	&	Otten,	

2011;	Lemke,	1990)	This	technique	will	be	described	in	more	detail	in	the	data	

analysis	section	of	this	chapter.	

To	perform	this	analysis	I	needed	video	of	whole	class	and	small	group	

discussion	to	capture	students’	utterances,	diagrams,	and	gestures.	These	video	

allowed	me	to	determine	the	semantic	relationships	expressed.	The	analysis	of	

these	semantic	relationships	is	presented	in	Chapter	6.	

Data	Collection	

Setting	
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To	answer	the	research	questions,	the	classroom	environment	needed	meet	

several	criteria.	First,	to	establish	normative	ways	of	reasoning	using	the	DCA	

method,	students	in	the	class	needed	to	routinely	give	arguments	and	explain	their	

thinking.	Second,	this	study	is	intended	to	investigate	the	discourse	of	a	classroom	in	

which	students	are	building	conceptual	understanding	of	a	topic.	Thus,	the	

treatment	of	the	topic	needed	to	be	conceptual.	Finally,	this	research	has	the	

potential	to	give	insight	into	how	conceptual	understanding	can	develop	in	a	

classroom	setting.	This	means	the	study	will	potentially	be	more	useful	if	it	

contributes	to	educators	understanding	of	a	topic	for	which	little	is	known	about	the	

teaching	and	learning	of	that	topic.	

A	site	that	met	all	these	criteria	was	a	capstone	course	for	prospective	

secondary	teachers	at	a	large	southwestern	university,	during	a	3	week	unit	on	

logarithms	(consisting	of	7.5	hours	of	instruction	across	6	sessions).	This	class	was	

selected	in	part	because	a	mathematics	education	researcher	taught	it,	which	

increased	the	chance	that	she	would	attend	to	conceptual	issues	in	the	content	and	

encourage	students	to	explain	their	thinking	and	give	arguments.	That	turned	out	to	

be	the	case.	Finally,	the	unit	I	studied	focused	on	the	meaning	of	exponents	and	

logarithms,	a	topic	for	which	issues	of	teaching	and	learning	are	not	well	understood	

by	mathematics	education	researchers.		

Because	this	work	deals	with	the	learning	of	prospective	teachers,	a	critical	

reader	may	worry	that	it	focuses	on	the	learning	of	subject	matter	knowledge	rather	

than	pedagogical	content	knowledge	(PCK),	which	focuses	not	only	on	the	
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mathematics	content	itself,	but	also	issues	of	how	to	teach	the	particular	content	

(Ball,	Thames,	&	Phelps,	2008;	Shulman,	1986).	However,	it	is	important	to	note	that	

mathematical	knowledge	for	teaching,	as	defined	by	Ball,	Thames,	and	Phelps	

(2008),	includes	common	content	knowledge	and	specialized	content	knowledge,	

both	of	which	are	components	of	subject	matter	knowledge.	These	elements	are	

crucial	for	teaching	and	were	the	focus	of	this	study.		

Furthermore,	while	pedagogical	knowledge	is	also	important,	there	is	limited	

research	that	illuminates	pedagogical	content	knowledge	for	logarithms.	For	

example,	little	is	known	about	student	thinking	on	logarithms	(for	exceptions	see	

Berezovski,	2004;	Kastberg,	2002).	While	some	student	errors	have	been	reported,	

these	are	more	procedural	in	nature	than	conceptual	(Hoon,	Singh,	&	Ayop,	2010;	

Liang	&	Wood,	2005).	Similarly,	fruitful	representations	have	not	been	established	

in	the	literature.	While	common	instructional	sequences	and	tasks	could	be	found	

with	a	textbook	analysis,	their	usefulness	is	limited	because	of	the	lack	of	research	

on	student	thinking,	making	it	difficult	to	judge	how	productive	these	instructional	

sequences	and	tasks	are.	This	severely	limits	what	empirically	based	PCK	could	be	

taught	in	a	capstone	course.	Consequently,	the	course	focuses	on	subject	matter	

knowledge	related	to	the	understanding	of	logarithms,	rather	than	student	thinking.	

Participants	

In	this	study	there	were	three	types	of	participants:	the	teacher,	the	students	

in	the	class,	and	a	subgroup	of	those	students	referred	to	as	focus	students.		
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Students.	All	students	in	the	capstone	course	participated	in	this	study	in	

that	they	contributed	to	whole	class	interactions,	from	which	I	inferred	the	

emergent	mathematical	practices.	There	were	26	undergraduates	enrolled	in	the	

course.	Many	of	these	students	had	at	least	one	mathematics	course	taught	in	a	non-

traditional	manner.	One	class	in	particular,	an	undergraduate	math	course	in	which	

they	reasoned	about	spherical	geometry	taught	by	a	math	education	researcher,	had	

been	taken	by	many	of	the	students.	In	this	geometry	course	students	worked	on	

open-ended	problems,	presented	their	thinking,	and	engaged	in	argumentation.	

Using	this	format,	the	instructor	used	students’	ideas	to	advance	the	mathematical	

agenda	rather	than	solely	relying	on	exposition.	This	format	was	similar	to	the	one	

used	in	the	capstone	course	which	served	as	the	setting	for	this	dissertation	study.	

Since	these	students	were	undergraduate	mathematics	majors,	they	had	

likely	previously	been	exposed	to	logarithms	(e.g.	in	a	calculus	course	in	college	and	

briefly	in	high	school).	However,	given	their	comments	in	class	it	seems	many	had	

not	fully	explored	the	relationship	between	the	additive	and	multiplicative	

relationships	inherent	in	exponential	and	logarithmic	reasoning.		

Focus	Students.	To	infer	individuals’	ways	of	reasoning,	I	collected	

additional	data	from	seven	focus	students.	These	seven	students	were	selected	

purely	based	on	their	willingness	to	volunteer.	Originally	eight	students	

volunteered,	but	one	did	was	not	able	to	complete	the	post-interview.		

Teacher.	The	teacher	of	this	course	is	an	experienced	mathematics	

education	researcher.	She	had	taught	this	specific	capstone	course	11	times	prior	to	
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this	study	and	taken	notes	on	her	experience.	She	began	including	a	unit	on	

logarithms	recently	and	had	taught	it	two	times	previously.	Her	experiences	as	a	

mathematics	education	researcher	and	her	experiences	teaching	this	class	make	her	

an	ideal	candidate	for	study.	Because	of	her	experience	as	a	researcher,	she	was	

aware	of	the	literature	on	teaching	and	learning,	which	she	actively	drew	from	as	

she	taught.	As	an	experienced	teacher,	she	had	refined	the	unit	on	logarithms	and	

had	been	previously	exposed	to	the	types	of	thinking	students	typically	brought	to	

this	course	and	how	prior	knowledge	could	be	leveraged.	The	knowledge	she	had	

gained	from	the	literature	and	her	personal	teaching	experiences	maximized	the	

chance	there	would	be	rich	discourse	and	conceptual	gains	in	the	classroom.	This	

turned	out	to	be	the	case.	

Whole	Class	Level	Data	

The	main	source	of	whole	class	data	was	a	video	recording	of	students’	

presentations	to	the	class	and	all	whole-class	discussion.	Video	of	students’	

presentations	captured	the	student,	their	gestures,	and	any	inscriptions	they	

created.	During	whole-class	discussion	the	video	recorded	the	person	currently	

speaking	and	their	gestures.	The	video	was	captured	by	another	doctoral	student,	

situated	in	the	back	of	the	room	using	wide	angle	shot	to	avoid	panning,	as	much	as	

possible.	Figure	3.1	shows	an	example	shot.	During	these	class	interactions	I	was	

also	in	the	class	observing	and	noting	events	I	felt	were	important.	
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Figure	3.1:	The	camera	capturing	whole	class	discussion.	

Small	Group	Level	Data	

The	seven	focus	students	were	distributed	among	two	small	groups	of	four.	

There	interactions	were	captured	by	two	cameras,	one	situated	on	a	tripod	placed	

on	an	adjacent	desk	and	one	hung	from	the	ceiling.	The	camera	on	the	tripod	

captured	students’	utterances	and	gestures.	Figure	3.2	shows	an	example	shot.	I	will	

videotape	and	audio-record	these	four	groups	during	the	unit.	When	coordinated	

with	records	of	student	work,	the	camera	hung	from	the	ceiling	was	useful	in	

identifying	what	students	were	drawing	or	pointing	to	on	their	papers.	Figure	3.3	

shows	and	example	shot.	
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Figure	3.2.	The	camera	on	a	tripod	capturing	small	group	interactions.	

	

Figure	3.3:	The	hanging	camera	capturing	small	group	members’	writings.	

Individual	Level	Data	
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The	main	sources	of	individual	data	were	responses	to	task-based	clinical	

interviews	and	written	work	produced	in	class.	

Clinical	Interview.	I	performed	an	individual	task-based	after	instruction	

with	each	of	the	seven	focus	students	(Ginsburg,	1997).	Two	features	of	a	clinical	

interview	made	it	an	appropriate	choice	for	the	study.	First,	a	clinical	interview	is	

characterized	by	its	open-ended	questions.	The	questions	I	required	non-

algorithmic	thinking,	probed	conceptual	topics	with	connections	to	other	

mathematics,	and	had	a	variety	of	entry	points	(Zazkis	&	Hazzan,	1999).	I	used	tasks	

with	these	characteristics	to	maximize	the	possibility	that	the	student	would	reveal	

how	he	or	she	actually	thought	about	exponential	and	logarithmic	relationships	and	

related	mathematics.		

The	second	feature	of	clinical	interviews	that	makes	it	an	appropriate	choice	

is	what	Ginsburg	(1997)	calls	hypothesis	testing.	As	the	student	engaged	in	the	

tasks,	I	built	a	model	of	his	or	her	conceptions.	I	then	generated	follow	up	questions	

and	tasks	in	the	moment	designed	to	test	my	hypothetical	model.	This	meant	that	

while	all	students	received	the	same	initial	prompts,	there	were	variations	in	follow	

up	questions	and	tasks	to	test	the	individualized	models	I	formed	during	the	

interview.	As	I	tested	my	hypotheses	I	listened	closely	to	the	student’s	response	

(Confrey,	1993)	for	confirming	or	disconfirming	evidence.	While	I	drew	on	previous	

research	and	my	own	personal	understandings	of	the	interview	topic	to	form	

hypotheses,	I	was	willing	to	drop	my	hypotheses	at	any	moment.	In	this	way,	I	will	

constantly	tested	and	formed	new	hypotheses	as	the	interview	proceeded	(c.f.	
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Simon,	1995).	In	this	way,	I	was	able	to	uncover	students’	individual	ways	of	

reasoning.	

The	clinical	interview	lasted	between	1	and	1.5	hours	for	each	of	the	seven	

focus	student	and	was	performed	after	instruction	to	explore	students’	ways	of	

reasoning	after	they	had	participated	in	class	interactions.	The	clinical	interview	

was	videotaped	with	two	cameras,	one	focused	on	the	student	and	interviewer	

(myself)	and	one	focused	on	the	student’s	inscriptions.	The	camera	focused	on	the	

student	and	the	interviewer	captured	our	gestures	and	facial	expressions	(see	

Figure	3.4	for	an	example	shot).	The	camera	focused	on	the	student’s	inscriptions	

(see	Figure	3.5	for	an	example	shot)	helped	me	follow	her	work.	

	

	

Figure	3.4:	Shot	from	camera	capturing	interaction	of	interviewer	and	student.	
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Figure	3.5:	Interviewee's	inscriptions.	

	

Tasks	for	Clinical	Interviews.	The	tasks	for	the	interview	were	designed	to	

uncover	conceptions	related	to	the	ways	of	reasoning	that	I	had	hypothesized	were	

going	to	become	normative	in	the	classroom.	This	was	necessary	because	the	aim	of	

Research	Question	1	was	to	make	connections	between	normative	ways	of	

reasoning	and	students’	conceptions.	To	maximize	the	likelihood	that	I	would	

uncover	conceptions	related	to	the	normative	ways	of	reasoning,	I	based	my	

interview	tasks	on	my	hypotheses,	which	will	be	elaborated	later	in	this	chapter.	

Written	Work.	I	also	scanned	the	written	work	of	the	focus	students	

produced	in	class.	At	times,	students	would	talk	about	and	gesture	to	their	written	

work	in	small	group	interactions.	The	scans	helped	me	understand	the	content	of	

these	conversations.	I	also	collected	scans	of	the	focus	students’	homework.	This	

helped	me	understand	students’	engagement	with	tasks	outside	of	class.	
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Additional	Data.	Other	data	sources	were	collected	from	the	focus	students,	

but	were	not	needed	to	answer	the	research	questions.	These	included	a	clinical	

interview	before	instruction	to	explore	students’	prior	knowledge,	an	interview	

after	instruction	where	students	reflected	on	classroom	interactions,	and	a	short	

survey	students	filled	out	after	each	class	period	where	they	very	briefly	reflected	

on	the	events	of	the	day.	These	data	were	collected	to	help	explain	individual	

variation	in	student	thinking	from	established	practices.	The	interview	conducted	

after	instruction	and	survey	were	meant	to	reveal	students’	interpretations	of	

classroom	events,	which	may	have	helped	explain	variability.	Data	on	prior	

knowledge	was	meant	to	help	explain	students’	interpretations.	While	I	still	believe	

these	are	important	lines	of	inquiry,	when	designing	the	study	I	did	not	fully	

anticipate	the	complexity	of	students’	knowledge	development.	Because	individual	

students’	ways	of	reasoning	typically	underwent	several	shifts	during	the	course	of	

instruction,	it	was	difficult	to	account	for	the	differences	in	ways	of	reasoning	for	

each	of	the	students	as	individuals.	It	was	more	feasible	to	explain	trends	in	

individual	ways	of	reasoning.	In	order	to	explain	the	relationships	between	

classroom	specific	classroom	interactions	and	individual	student’s	way	of	reasoning,	

a	scholar	would	likely	need	a	more	fine	grained	analysis	of	particular	students’	

reasoning	and	how	that	reasoning	changes	throughout	the	course	of	instruction.	

This	may	require	more	interviewing	that	occurred	during	the	course	of	instruction	

(instead	of	just	before	and	after).	

Conjectured	Normative	Ways	of	Reasoning	
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Since	the	interview	data	needed	to	reveal	the	connections	between	

individual	ways	of	reasoning	and	normative	ways	of	reasoning,	I	needed	to	

anticipate	what	ways	of	reasoning	would	become	normative	as	I	developed	the	

interview	questions.	In	consultation	with	the	teacher	about	the	planned	classroom	

activities,	we	hypothesized	that	four	ways	of	reasoning	are	likely	to	become	

normative	in	the	class:	(a)	creating	a	uniform	geometric	number	line,	(b)	developing	

a	meaningful	interpretation	of	fractional	exponents,	(c)	coordinating	geometric	and	

arithmetic	sequences,	and	(d)	treating	a	logarithm	as	a	number.	The	hypothesized	

development	was	close	enough	to	the	actual	development	that	the	interview	tasks	

generated	useful	data.	Below	I	present	the	hypothesized	development.	This	was	

written	before	the	unit	was	taught,	though	the	verb	tenses	have	been	changed.	

Creating	A	Uniform	Geometric	Number	Line.	Students	were	given	a	task	

(Confrey,	1991),	in	which	they	were	to	create	a	time	line	that	shows	the	history	of	

the	world	(Figure	3.6).	In	the	past	instantiations	of	the	course,	this	had	been	difficult	

for	the	teacher’s	students.	In	the	past,	they	had	started	with	arithmetic	approaches,	

but	then	realized	that	this	either	makes	the	majority	of	events	too	close	together	on	

the	line,	or	makes	the	line	too	long.	For	example,	consider	the	number	line	in	Figure	

3.7.	If	we	take	these	numbers	to	represent	the	number	of	years	in	the	past	from	

now,	everything	but	the	big	bang	fits	on	this	number	line.	However,	to	scale	this	line	

so	that	it	fits	on	a	single	page,	the	very	first	tic	mark	corresponds	to	a	time	when	

coral,	jellyfish,	and	worms	ruled	the	earth.	Seeing	the	problems	with	an	arithmetic	

approach,	students	then	move	to	a	hybrid	number	line,	where	the	powers	of	10	are	
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all	equally	spaced,	but	have	arithmetic	subsections	(Figure	3.8).	So,	for	example,	the	

halfway	point	between	1	and	100	would	be	50.5,	whereas	the	halfway	point	

between	100	and	10,000	would	be	5,050	(Figure	3.8).	This	means	that	the	hybrid	

number	line	functions	as	several	arithmetic	number	lines	of	different	scales	pasted	

together.	Finally,	they	move	to	a	fully	geometric	number	line	(Figure	3.9).	This	

means	that	any	distance	on	the	number	line	corresponds	to	a	particular	

multiplicative	relationship	between	the	two	points.	Thus,	if	two	inches	corresponds	

to	multiplication	by	100,	then	one	inch	must	correspond	to	multiplication	by	10	

because	repeating	this	multiplication	twice	must	be	equivalent	to	multiplying	by	

100.	This	means	that	the	halfway	point	between	any	two	numbers	on	the	line	is	the	

geometric	mean	of	those	two	points.	This	is	in	contrast	to	an	arithmetic	number	line	

in	which	the	distance	between	two	points	is	the	arithmetic	mean.	
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Figure	3.6:	Timeline	task.	

	

Figure	3.7:	This	is	an	arithmetic	number	line.	
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Figure	3.8:	This	is	a	hybrid	number	line.	

	

Figure	3.9:	This	is	a	uniformly	geometric	number	line	

Developing	A	Meaningful	Interpretation	of	Fractional	Exponents.	We	

expected	most	students	would	know	that	raising	a	number	to	the	½	power	is	

equivalent	to	taking	the	square	root	of	that	number.	However,	we	did	not	expect	

many	students	to	be	able	to	explain	why	that	must	be	before	instruction	or	be	able	

to	link	fractional	exponents	with	subsections	of	their	timelines.	In	the	past,	when	

students	began	to	work	on	creating	a	fully	geometric	number	line,	they	have	
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struggled	with	how	to	construct	the	subsections.	They	may	split	the	section	between	

107	and	108	into	10	sections,	but	at	the	beginning	they	do	not	know	how	to	label	

these	subsections.	They	know	that	they	must	multiply	by	a	common	factor,	but	they	

do	not	anticipate	that	they	should	multiply	by	the	tenth	root	of	10.	Instead,	they	use	

a	guess	and	check	approach,	trying	out	different	factors,	multiplying	107	by	that	

factor	ten	times	in	hopes	that	the	product	will	end	up	being	108.	Eventually,	

however,	they	come	to	anticipate	that	the	factor	is	the	tenth	root	of	ten,	since	they	

need	to	multiply	that	number	by	itself	ten	times	to	get	10.	They	then	realize	that	

since	the	exponents	in	the	number	line	are	growing	arithmetically,	the	exponents	of	

the	subsections	should	grow	arithmetically	as	well,	meaning	107	times	the	tenth	

root	of	10	should	be	written	as	107.1.	

Coordinating	Geometric	and	Arithmetic	Sequences.	When	dealing	with	

logarithms,	one	has	to	coordinate	a	multiplicative	relationship	with	an	additive	one.	

This	is	in	fact	how	Napier	discovered	logarithms.		As	Napier	explored	the	

mathematics,	he	drew	two	lines	and	imagined	a	particle	moving	on	each	of	the	lines.	

One	of	the	particles	moved	at	a	constant	velocity,	while	the	other	particle	moved	

with	a	velocity	proportional	to	its	position.	This	means	that	the	relationship	

between	the	two	particles	is	logarithmic.	Napier	defined	the	logarithm	of	the	

position	of	the	second	particle	as	the	position	of	the	first	particle	(Katz,	1986;	

Villarreal-Calderon,	2008).	As	this	historical	note	illustrates,	coordinating	these	two	

sequences	is	at	the	conceptual	heart	of	logarithms.	
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In	the	classroom,	students	must	also	be	able	to	coordinate	these	sequences.	

For	example,	when	operating	with	the	number	line,	a	student	must	know	that	each	

time	she	progresses	by	one	tic	mark	(an	additive	relationship),	she	is	multiplying	by	

10.	Or	if	student	was	reasoning	about	a	petri	dish	of	bacteria	that	grows	by	a	factor	

of	9	each	hour,	she	would	need	to	coordinate	the	number	of	hours	(an	additive	

relationship)	with	the	total	number	of	bacteria	(a	multiplicative	relationship).	I	

expected	that	as	students	talked	in	class	they	would	begin	to	explicitly	mention	both	

the	additively	growing	quantity	and	multiplicatively	growing	quantity	and	their	

relationship.		

Treating	a	Logarithm	as	a	Number.	I	expected	that	at	the	beginning	of	the	

course,	some	students	may	have	only	thought	of	a	logarithm	as	an	operator	that	

undoes	exponentiation.	If	this	was	the	case,	I	would	expect	these	student	to	request	

justification	when	a	student	talks	about	a	symbol	like	log	5	25	as	the	number	2.	I	

expected	the	participants	in	the	course	to	eventually	accept	talk	of	a	symbol	like	log	

5	25	as	a	number	as	being	legitimate.	If	students	can	only	think	of	a	logarithm	as	an	

operator	that	undoes	exponentiation,	they	will	not	be	able	to	operate	on	logarithms	

(e.g.	multiply	them	by	a	number,	subtract	them,	or	divide	them).	Furthermore,	

students	need	to	conceptualize	a	logarithm	as	a	number	to	make	sense	of	

expressions	like	log	4	8,	which	is	equivalent	to	a	(non-integer)	fraction	(Berezovski,	

2004;	Weber,	2002).		

Data	Analysis	

Analysis	for	Research	Question	1	
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Research	Question	1:	How	are	individuals’	ways	of	reasoning	related	
to	the	progression	of	increasingly	sophisticated	ways	of	reasoning	
that	function	as	if	shared	in	the	classroom?	
	
To	answer	this	question,	I	needed	to	establish	the	progression	of	increasingly	

sophisticated	ways	of	reasoning	that	functioned	as	if	shared	and	individuals’	related	

conceptions.	To	accomplish	this	goal,	I	used	the	three-phase	method	outlined	by	

Rasmussen	and	Stephan	(2008).	In	the	first	phase,	I	transcribed	whole	class	

interactions	using	Transana	(Woods	&	Fassnacht,	2015).	I	then	identified	arguments	

in	the	transcript.	I	defined	an	argument	as	an	episode	where	a	participant	makes	a	

mathematical	assertion	and	supports	that	assertion	with	evidence.	I	then	created	an	

argumentation	log,	which	recorded	the	arguments	identified	and	their	structure,	in	

terms	of	Toulmin’s	(1969)	scheme.	This	means	that	for	each	argument	I	identified	

the	function	(usually	warrant,	claim,	or	data)	of	each	element	of	the	argument.	One	

element	of	the	argument	is	the	claim.	This	is	what	the	argument	attempts	to	

establish,	in	other	words,	it	is	the	conclusion	of	the	argument.	Another	element	of	

the	argument	is	the	data.	This	is	the	evidence	used	in	the	argument.	Finally,	the	

warrant	is	the	reasoning	that	connects	the	data	to	the	claim.	

Tabach,	Hershkowitz,	Rasmussen,	and	Dreyfus	(2014)	illustrated	how	to	

parse	an	argument	made	in	differential	equations	class	according	to	this	scheme.	In	

the	class,	they	were	debating	whether	or	not	the	growth	rate	of	a	population	of	

rabbits	was	constant.	Several	students	contributed	to	an	argument	that	the	rate	was	

not	constant.	In	essence,	the	students	argued	that	since	the	entire	population	is	
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reproducing,	the	amount	of	rabbits	increases,	which	means	there	is	more	

reproduction.	Thus,	the	rate	of	reproduction	is	increasing.	In	this	case	the	claim	is	

that	the	rate	is	not	constant.	The	data	is	that	the	entire	population	is	reproducing	

and	the	warrant	is	that	more	rabbits	leads	to	more	reproduction.	

It	is	important	to	note	that	these	arguments	are	not	constructed	by	talk	

alone.	Rather	it	is	through	the	coordination	of	talk,	gestures,	and	inscriptions	that	

mathematical	meaning	is	communicated.	Thus,	as	I	performed	this	analysis	I	

considered	all	three	of	these	aspects	of	the	classroom	discourse.	In	fact	Rasmussen,	

Stephan,	and	Allen	(2004)	found	that	when	ideas	shift	function	in	an	argument,	this	

can	be	coordinated	with	the	shift	of	particular	gestures.	

After	I	parsed	the	arguments	to	create	argumentation	log,	I	moved	to	the	

second	phase	of	analysis.	In	this	phase,	I	used	the	argumentation	log	as	data	to	

identify	normative	ways	of	reasoning.	To	identify	these	ways	of	reasoning	I	used	

three	criteria.	First,	if	backings	or	warrants	were	initially	needed	to	establish	a	

claim,	but	later	become	no	longer	necessary,	the	way	of	reasoning	was	considered	

normative.	Second,	a	way	of	reasoning	was	established	as	normative	if	a	piece	of	

information	shifts	the	function	it	plays	in	the	argument	(e.g.	claim	to	data).	Lastly,	R.	

Cole	et	al.,	(2012)	added	a	third	way	to	establish	normative	ways	of	reasoning,	

which	is	the	repeated	use	of	an	idea,	as	data	or	warrant.	

In	the	third	phase	of	analysis,	I	grouped	mathematically	related	normative	

ways	of	reasoning	into	mathematical	practices.	The	way	these	normative	ways	of	

reasoning	were	grouped	was	a	researcher	decision.	
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Research	Question	1	also	required	that	I	establish	individuals’	ways	of	

reasoning	about	the	math	practices.	To	infer	students’	individual	ways	of	reasoning,	

I	analyzed	the	videos	of	interviews.	Analyzing	all	the	interview	data	was	not	tenable,	

so	I	needed	to	reduce	the	data.	This	data	reduction	was	informed	by	the	results	of	

the	analysis	of	the	normative	ways	of	reasoning	using	the	DCA	method.	In	particular,	

I	focused	on	a	particular	math	practice,	Math	Practice	2,	which	I	termed	Subdividing	

the	Segments.	I	focused	on	this	math	practice	both	because	I	knew	I	had	data	from	

the	interviews	that	related	to	this	math	practice	and	because	the	practice	was	

conceptually	rich	and	seemed	to	be	borne	out	of	significant	struggle	in	the	class.	

Thus,	I	hoped	to	see	variety	in	students’	ways	of	reasoning.	With	this	focus,	I	

analyzed	students’	responses	to	one	task	in	the	interview	which	elicited	students’	

ways	of	reasoning	related	to	this	math	practice.	

When	analyzing	the	interview	data,	I	used	grounded	theory	(Strauss	&	

Corbin,	1994,	1998)	to	develop	categories	that	described	the	students’	ways	of	

reasoning.	I	first	transcribed	the	reduced	data	set	using	Transana.	Then	I	created	a	

descriptive,	non-inferential	narrative	of	the	reduced	data	set	(Miles	&	Huberman,	

1994).	This	helped	establish	what	happened	in	the	interview.	Then,	I	engaged	in	

open	coding	from	grounded	theory	(Strauss	&	Corbin,	1990).	This	involved	first	

breaking	up	the	data	into	smaller	episodes,	where	a	student	is	expressing	an	idea	or	

making	use	of	a	strategy.	I	then	grouped	similar	episodes	to	form	a	category.	This	

category	was	named	so	that	the	category	could	be	discussed	as	a	particular	way	of	

reasoning.	As	I	inferred	these	categories,	I	made	use	of	the	constant	comparison	
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method	(Glaser	&	Strauss,	1967;	Strauss,	1987;	Strauss	&	Corbin,	1990,	1994).	This	

is	the	comparison	of	different	pieces	of	data	to	create	and	refine	categories.	As	I	

began	to	establish	categories,	I	compared	the	episodes	in	the	category	to	other	

episodes	in	the	interviews,	both	within	and	between	subjects.	The	purpose	of	these	

comparisons	is	to	bring	into	greater	relief	the	similarities	and	differences	in	

categories.	This	was	an	iterative	process.	This	means	that	as	categories	were	

refined,	episodes	that	have	been	coded	earlier	were	revisited	in	light	of	the	new	

categories	(Strauss	&	Corbin,	1990).	

I	then	compared	the	normative	ways	of	reasoning	in	Math	Practice	2	to	the	

categories	of	individual	ways	of	reasoning.	In	particular,	I	looked	for	differences	

between	the	math	practice	and	the	individual	ways	of	reasoning.	

In	summary,	to	address	Research	Question	1,	I	will	first	report	the	

progression	of	increasingly	sophisticated	normative	ways	of	reasoning	in	Chapter	4.	

Then,	I	will	report	categories	of	individuals’	related	ways	of	reasoning	and	elaborate	

how	these	ideas	were	similar	to	or	different	from	Math	Practice	2	in	Chapter	5.	

Analysis	for	Research	Question	2	

Research	Question	2:	What	mathematical	connections	exist	between	
the	focus	students’	ways	of	reasoning	in	the	post	interviews	and	the	
discursive	interactions	between	them	and	other	students	and	the	
teacher	in	both	whole	class	and	small	group	settings?	Furthermore,	
how	might	the	nature	of	these	discursive	interactions	give	plausible	
explanations	for	students’	differing	conceptions?	
	
The	heart	of	this	research	question	is	to	understand	how	various	students	

could	participate	in	the	same	interactions	where	particular	ways	of	reasoning	are	

negotiated	and	accepted,	yet	subsequently	reason	in	different	ways.	One	possible	
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explanation	is	that	students	are	interpreting	these	interactions	differently.	Thus,	I	

found	it	useful	to	examine	how	the	meanings	associated	with	these	explanations	

were	constructed	in	the	class	community.	This	may	help	explain	how	various	

students	could	make	sense	of	the	explanations	in	different	ways.	

Thematic	analysis	(Lemke,	1990;	Herbel-Eisenmann,	2011),	a	systemic	

functional	linguistics	(SFL)	approach	(Halliday,	1978;	Halliday	&	Hasan,	1985;	

Halliday	&	Martin,	1993;	Halliday	&	Matthiessen,	2004),	is	useful	for	determining	

meanings	as	they	are	constructed	in	use.	Central	to	this	method	is	the	assumption	

that	words	derive	their	meaning	from	their	relationships	to	other	words.	For	

example,	if	I	said	“I	played	xyz	yesterday,”	one	could	infer	the	potential	meanings	for	

“xyz”—it	could	be	a	sport,	a	game,	an	instrument,	but	not	a	soft	drink—by	

examining	the	relationship	between	“xyz”	and	played.	In	particular,	“xyz”	needs	to	

be	something	that	is	“playable.”	As	this	example	suggests,	a	particular	utterance	

constrains,	but	does	not	determine	meaning	of	a	word.	Thus,	the	constructed	

meanings	are	sometimes	referred	to	as	meaning	potentials	(Herbel-Eisenmann	&	

Otten,	2011),	to	indicate	that	they	may	not	by	identical	to	the	personal	meanings	

individual	participants	hold.	As	such,	it	is	important	for	researchers	to	look	for	

patterns	over	time	in	the	expressed	relationships.	

To	perform	the	thematic	analysis,	I	first	reduced	my	data	to	episodes	where	

students	were	giving	explanations	that	related	to	Math	Practice	2.	I	then	used	an	

adapted	version	of	Herbel-Eisenmann	and	Otten’s	(2011)	method	on	the	reduced	

data	set.	Their	method	had	four	phases.	First,	they	created	a	lexical	chain	by	making	
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a	table	with	columns	that	are	the	central	ideas	expressed	in	the	transcript.	In	those	

columns,	they	placed	portions	of	the	transcript	where	that	idea	was	being	talked	

about.	The	sections	of	transcript	can	be	placed	in	multiple	columns	when	several	

ideas	are	being	related	(see	Table	3.1).	To	determine	what	column	or	columns	the	

section	of	text	should	go	in	they	asked	questions	like,	“What	is	the	bigger	

mathematical	point	of	this	segment	of	text?	What	is	the	mathematical	gist	of	this	

section	of	text”	(Herbal-Eisenmann	&	Otten,	2011,	p.	458)?	

Table	3.1:	An	example	of	the	Lexical	Chain	developed	by	Herbel-Eisenmann	and	Otten	(2011,	p.	
459).	

	

In	the	next	three	phases	of	analysis	they	determined	sematic	relationships	
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between	the	ideas,	or	thematic	items,	identified	in	phase	one.	These	relationships	

express	how	two	thematic	items	are	associated.	For	example,	if	a	student	said,	“The	

length	of	a	segment	is	ten,”	that	student	is	expressing	a	relationship	between	length	

and	segment.	Namely,	the	length	is	a	measure	of	the	segment.	This	relationship	is	an	

EXTENT/ENTITY	relationship,	where	the	EXTENT	is	the	thing	that	is	being	

measured,	in	this	case	the	segment,	and	the	ENTITY	is	the	measure,	in	this	case	the	

length.	See	Table	3.2,	generated	by	Herbel-Esienmann	and	Otten	(2011,	p.	461)	that	

describes	a	sample	of	these	relationships,	with	descriptions	and	examples	(also	see	

Lemke,	1990,	p.	221	for	a	list	of	several	common	relationships).	

Table	3.2:	A	Sample	of	Semantic	Relations	used	by	Herbel-Eisenmann	and	Otten	(2011,	p.	461).	

	

In	phase	two	they	created	a	canonical	map,	a	two	dimensional	drawing	that	

represents	the	relationships	between	the	thematic	elements	that	is	faithful	to	

mathematics	register	(see	Figure	3.10).	To	create	this	map	they	drew	on	curricular	

materials	and	other	formal	mathematical	writings	as	well	as	their	own	

understanding	of	the	subject.		
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Figure	3.10:	Herbal-Eisenmann	and	Otten’s	(2011,	p.	463)	canonical	map.	

In	phase	three,	they	created	an	analysis	document	from	classroom	

transcripts	that	noted	when	semantic	relationships	were	expressed	and	what	those	

relationships	were.	In	phase	four,	they	took	the	relationships	they	found	in	phase	

three	and	represented	them	in	a	map,	analogous	to	one	created	in	phase	two,	but	

faithful	to	the	relationships	as	expressed	in	class	(see	Figure	3.11).	
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Figure	3.11:	One	of	Herbal-Eisenmann	and	Otten’s	(2011,	p.	467)	classroom	maps.	

I	used	a	similar	method,	but	with	some	adaptations.	First,	because	I	was	

interested	in	the	meanings	constructed	through	discourse	associated	with	an	

inscription—the	number	line—I	could	not	focus	solely	on	spoken	words.	As	I	

created	a	lexical	chain,	I	also	included	gestures	over	the	number	line	to	determine	

thematic	elements.	See	Table	3.3	below	for	an	example	of	the	lexical	chain	I	

developed	for	my	analysis,	which	also	includes	a	column	that	describes	the	

relationships	between	the	lexical	items	in	the	utterance.	Also,	see	Table	6.4	for	

definitions	of	the	sematic	relationships	I	used.	Second,	in	the	creation	of	the	

canonical	map,	I	drew	mostly	from	my	own	mathematical	understanding	as	an	

exponential	number	line	is	not	typically	included	in	curricular	materials.	Third,	

because	words	have	different	meanings	when	expressed	in	the	various	ways	of	

reasoning	I	created	different	maps	for	each	of	the	three	ways	of	reasoning	as	

opposed	to	one	map	for	the	whole	unit.	Fourth,	I	compared	the	maps	I	created.	

While	Herbel-Eisenmann	and	Otten	(2011)	do	not	list	this	as	a	stage	of	analysis,	they	

did	this	as	well.	In	fact,	they	join	with	their	intellectual	forbearers	in	describing	the	
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comparison	of	different	networks	of	semantic	relationships	as	a	strength	of	thematic	

analysis	(Herbel-Eisenmann	&	Otten,	2011,	Lemke,	1990,	Martin,	2009b;	Martin	&	

Rose,	2003).	Finally,	I	also	examined	episodes	where	students	talked	about	the	

methods	themselves.	In	this	phase	of	analysis,	students	tended	to	develop	semantic	

relationships	in	a	different	way	than	when	they	talked	about	the	thematic	elements	

involved	in	subdividing	a	segment.	They	tended	to	use	equivalence	and	contrast	

strategies	(see	Appendix	D	in	Lemke,	1990,	p.	226)	to	show	whether	they	thought	

two	strategies	were	the	same	or	different.	These	strategies	will	be	described	in	

more	detail	in	Chapter	6.	
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Used	for	Analysis	Table	
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Table	3.3:	Semantic	Relationships	Used	in	Analysis	

Linguistic	Term	 Description	 Example	
Process/Target	 The	process	is	an	action	that	

is	being	carried	out.	The	
target	is	what	is	being	
operated	on.	

Dividing	(process)	the	
segment	(target)	up.	

Process/Result*1	 The	result	is	the	outcome	of	
the	process.	

I	divided	(process)	500	
by	2	and	got	250	
(result).	

Process/Reason*	 The	reason	is	why	the	
process	is	occurring.	

I	added	200	(process)	
because	that’s	our	
starting	point.		

Entity/Extent	 The	measure	of	a	physical	
space	

I	found	the	length	
(extent)	of	the	segment	
(entity).	

Location/Located	 Where	an	object	is	located.	 500	is	at	the	midpoint.	
Token/Type	 An	example	of	a	class	of	

objects.	
450	(token)	is	an	
amount	of	elapsed	
years	(type).	

Representation/Represented*	 The	representation	is	a	
depiction	of	something	and	
the	represented	is	what	is	
being	depicted	

Same-sized	segments	
(representation)	
represent	
multiplication	by	a	
constant	factor	
(represented)	

Label/Labeled*	 This	is	an	objects	is	called	
something.	This	can	be	done	
verbally	or	through	an	
inscription.	

A	student	might	put	a	
bracket	over	a	segment	
(labeled)	and	write	
“x10”	(label).	
The	segment	(labeled)	
is	500	(label).	

Preposition/Object	 A	word	that	expresses	a	
physical	or	temporal	
relationship	to	another	word.	

Place	the	tick	to	the	
right	(preposition)	of	
the	middle	(object).	

Synonym	 When	the	two	words	mean	
the	same,	or	nearly	the	same,	
thing	

Ten	squared	is	
(synonym)	one	
hundred.	

Agent/Process	 The	agent	is	the	person	or	
object	that	preforms	the	
process.	

I	(agent)	divided	
(process)	the	segment.	

	

Reliability	and	Validity	

To	address	the	issue	of	reliability	in	coding	and	interpretation	of	data,	I	used	

peer	review	(Confrey	&	Lachance,	2000).	This	means	I	made	presentations	to	other	

																																																								
1	An	asterisk	denotes	the	relationship	was	not	reported	in	Talking	Science	(Lemke,	1990).	
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researchers	in	which	I	showed	them	how	I	had	coded	and	interpreted	data.	In	this	

presentation	I	sought	feedback	as	to	the	strength	of	the	evidence	provided	by	the	

data	for	my	interpretation.	Specifically,	as	I	started	to	parse	arguments	using	

Toulmin’s	scheme	I	met	with	Dr.	Lobato	and	Dr.	Rasmussen,	an	expert	in	the	DCA	

method.	In	the	meeting	we	discussed	how	to	identify	an	argument	as	well	as	how	to	

code	that	argument.	I	presented	some	of	my	analyses	and	Dr.	Rasmussen	gave	

examples	of	how	he	coded	data	from	his	own	work	as	well.	As	I	developed	claims	

from	my	data	that	particular	ways	of	reasoning	were	functioning	as	if	shared	in	the	

class	community,	I	met	with	other	doctoral	students	during	semester	long	class	

(MSE	830)	to	get	impressions	from	others	as	to	the	validity	of	my	claims.	I	also	

continued	to	meet	with	Dr.	Lobato	during	this	time	to	discuss	the	validity	of	these	

claims.	Then,	as	I	developed	categories	of	meaning	from	the	post-instruction	

interview,	I	sought	feedback	from	Dr.	Lobato.	I	presented	detailed	evidence	for	my	

claims	for	particular	categories	of	ways	of	reasoning.	Finally,	I	met	with	Dr.	Lemke	

several	times	as	I	examined	the	classroom	discourse.	We	discussed	the	classroom	

discourse	and	he	helped	me	identify	resources	and	methodological	tools	that	would	

help	reveal	subtleties	in	students’	meaning	making.	

To	address	the	issue	of	validity	I	will	use	the	notion	of	fit	from	grounded	

theory	(Glaser,	1978).	This	means	I	considered	the	degree	to	which	my	

interpretations	were	faithful	to	the	data.	To	do	this,	as	I	developed	plausible	

explanations	I	constantly	compared	the	emerging	explanation	and	interpretation	to	
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the	data	(Strauss	&	Corbin,	1994).	This	required	several	analytic	passes	over	the	

data,	in	which	I	actively	sought	disconfirming	evidence.	
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Chapter	4: Collective	Mathematical	Progress	

	
In	this	and	the	subsequent	chapter	I	will	answer	Research	Question	1,	which	

follows.	

Research	Question	1:	How	are	individuals’	ways	of	reasoning	related	to	the	
progression	of	increasingly	sophisticated	ways	of	reasoning	that	function	as	if	
shared	in	the	classroom?	

	
To	answer	this	question	I	need	to	establish	the	progression	of	increasingly	

sophisticated	ways	of	reasoning	that	function	as	if	shared	in	the	classroom,	establish	

the	individuals’	ways	of	reasoning,	and	then	explore	their	relationship.	In	this	

chapter	I	present	the	progression	of	increasingly	sophisticated	ways	of	reasoning	

that	function	as	if	shared	in	the	classroom.	In	the	next	chapter	I	present	the	analysis	

of	individuals’	ways	of	reasoning	for	a	sample	of	students	from	the	class	as	they	

worked	on	math	tasks	in	an	interview	conducted	after	instruction	had	ended.	In	

particular,	I	explore	the	nature	and	extent	of	individual	variation	in	students’	ways	

of	reasoning	from	the	collective	mathematical	practices	that	emerged	in	the	

classroom.	This	will	answer	Research	Question	1.	

Review	of	Methods	

To	determine	which	practices	became	accepted	in	the	class	community	I	

used	the	documenting	collective	activity	method	(DCA;	Rasmussen	&	Stephan,	2008;	

Cole	et	al.,	2012).	I	first	created	an	argumentation	log,	which	catalogued	all	the	

public	arguments	given	in	class.	This	log	contained	the	transcript	of	the	arguments	

as	well	as	the	coding	of	the	constituent	pieces	of	the	argument	as	data,	claim,	or	

warrant	(Toulmin,	1969).	I	then	used	the	argumentation	log	as	data	to	look	for	
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changes	in	the	structure	of	arguments	over	time.	If	the	arguments	changed	in	one	of	

three	ways,	(a)	warrants	or	backings	that	were	once	needed	to	justify	claims	

dropped	off	in	later	arguments,	(b)	ideas	shifted	position	in	the	Toulmin	scheme	

(e.g.	from	claim	to	data),	or	(c)	ideas	functioned	repeatedly	as	data	or	warrant	in	

arguments,	the	idea	was	considered	to	have	begun	functioning	as	if	shared.	

Arguments	changing	in	these	ways	represent	an	acceptance	by	the	class	community.	

Criterion	1	shows	that	ideas	are	accepted	in	that	they	no	longer	need	to	be	justified.	

Criterion	2	shows	that	ideas	are	accepted	in	that	they	can	be	used	to	support	new	

ideas	under	consideration.	Criterion	3	shows	that	a	way	of	reasoning	has	become	a	

standard	way	of	reasoning	in	the	class.	If	an	idea	meets	one	of	these	three	criteria	I	

labeled	it	a	normative	way	of	reasoning	(NWR).	Following	Rasmussen	and	Stephan	

(2008)	and	others	who	have	followed	their	method	(Cole	et	al.,	2012;	Stephan	&	

Akyuz,	2012),	I	then	grouped	related	normative	ways	of	reasoning.	These	groups	

are	called	collective	mathematical	practices.	

This	method	was	intended	to	be	used	in	a	classroom	where	multiple	people	

are	actively	participating	in	advancing,	developing,	and	evaluating	mathematical	

arguments,	as	opposed	to	just	the	teacher	or	one	dominant	student	being	the	author	

of	mathematical	ideas	and	arbiter	of	their	validity.	If	multiple	students	are	

participating,	the	ideas	that	take	hold	are	more	likely	to	represent	a	broader	swath	

of	students’	personal	ways	of	thinking.	This	is	especially	true	if	students	feel	

comfortable	not	only	in	advancing	ideas,	but	also	intellectually	engaging	with	

others’	idea.	This	was	the	case	in	the	classroom	that	I	studied.	Students	routinely	
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questioned	each	other’s	ideas	(for	example,	see	the	reaction	to	David	in	the	

discussion	of	Argument	2.2.2	that	follows	for	an	example)	or	pressed	for	more	

explanation	(see	students’	reaction	to	Rachel	in	Argument	1.1.2	an	example).	

Instructional	Context	

I	studied	a	logarithm	unit	in	a	class	for	prospective	teachers.	This	unit	

focused	on	developing	students’	understanding	of	exponential	and	logarithmic	

relationship.	To	develop	these	ideas,	the	teacher	first	asked	students	to	create	a	

representation	of	exponential	relationships,	an	exponential	number	line,	and	then	

use	that	representation	to	explore	the	meanings	of	fractional	exponents	and	

logarithms.	

On	the	first	day	of	the	unit,	the	students	were	asked	to	create	a	timeline	that	

represented	the	earth’s	history—from	15	billion	years	ago	until	today.	The	students	

were	asked	to	place	several	historic	events	(see	Figure	4.1)	on	the	line.	After	

students	had	time	to	develop	these	timelines	in	groups,	three	distinct	approaches	

were	presented	in	class.	The	first	approach	was	a	linear	timeline.	In	this	

representation	one	endpoint	was	labeled	“big	bang”	and	marked	1.5	x	1010,	while	

the	other	endpoint	was	labeled	“now”	and	marked	0.	The	student	presenting	the	

approach	explained	they	placed	times	on	the	line	by	successively	halving	the	line.	

They	first	placed	7.5	billion	years	at	the	halfway	point	and	then	placed	3.25	billion	at	

the	halfway	point	between	0	and	7.5	billion	(see	Figure	4.2).	
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Figure	4.1:	The	timeline	task.	
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Figure	4.2:	The	linear	time	line.	

	
The	class	named	the	second	approach	that	was	presented	the	“several	

chunks	approach.”	A	group	of	students	developed	this	timeline	by	chunking	the	

table	of	events	into	several	groups	(see	Figure	4.3),	each	of	which	used	a	different	

linear	scale.	They	grouped	events	by	first	converting	all	the	times	into	scientific	

notation	and	then	categorizing	by	powers	of	10.	For	example,	1.44	x	108	and	2.08	x	

108	were	in	the	same	group,	because	they	were	written	as	some	number	times	108,	

while	3.5	x	109	was	in	a	different	group,	because	it	was	written	as	some	number	

times	109.	Each	group	was	then	given	its	own	scale.	For	example,	in	the	109	group	

1/2	cm	represented	1	x	109,	while	in	the	108	group	1	cm	represented	1	x	108.	They	

then	found	the	amount	of	elapsed	time	between	events	and	plotted	them	according	

to	the	scales	they	developed.	This	means	that	unlike	the	first	approach,	in	this	

approach	the	number	line	was	built	up.	Students	did	not	start	with	a	line	with	

defined	endpoints.	Rather,	they	plotted	a	point	on	the	line,	found	how	much	further	

away	the	next	point	should	be,	plotted	it,	and	then	moved	on	to	the	next	point.	
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Figure	4.3:	Table	of	events	split	into	several	chunks.	

	
Another	group	of	students	developed	a	third	approach.	This	group	started	by	

plotting	successive	powers	of	10	on	the	line,	each	one-inch	apart.	They	said	they	

then	broke	up	each	of	the	one-inch	segments	into	10	subsections,	but	only	the	

halfway	points	were	labeled	in	the	line	that	was	presented	(see	Figure	4.4).	This	

subdivision	seemed	to	occur	in	a	linear	fashion.	This	approach	was	originally	called	

exponential,	but	after	extensive	investigation	of	and	reflection	on	the	line,	it	began	

to	be	referred	to	as	having	an	exponential	structure	at	the	macro	level	(among	the	

powers	of	10),	but	a	linear	structure	in	between	tick	marks.	
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Figure	4.4:	The	Third	Approach	

	
Overview	of	Claims	

In	results	section	that	follows,	I	present	evidence	for	the	claim	that	five	

mathematical	practices	emerged	in	the	classroom.	These	practices	are	summarized	

in	Table	4.1.	Math	Practices	1,	2,	and	3	centered	on	creating	a	fully	exponential	

number	line.	Math	Practice	1:	Developing	the	Macro	Multiplicative	Structure	deals	

with	noticing	that	in	an	exponential	number	line	a	multiplicative	structure	exists	

between	labeled	tick	marks.	The	students	then	leveraged	this	multiplicative	pattern	

to	reason	about	subdividing	the	segments	between	these	tick	marks,	which	led	to	

the	establishment	of	Math	Practice	2:	Subdividing	the	Segments.	Math	Practice	3:	

Finding	Fractional	Exponents	dealt	with	the	methods	students	used	to	place	events	

written	in	the	form	10a/b.	Math	Practice	4:	Reasoning	about	Sequences	was	the	

establishment	of	a	definition	for	additive	and	multiplicative	sequences.	Finally,	Math	

Practice	5:	Interpreting	logarithms	dealt	with	making	sense	of	and	interpreting	

logarithms.	

As	I	present	the	ways	of	reasoning	that	began	to	function	as	if	shared,	i.e.	the	

normative	ways	of	reasoning	(NWRs),	I	have	used	a	particular	numbering	scheme.	I	



93	

	

have	labeled	them	as	NWR	a.b.	The	NWR	stands	for	normative	way	of	reasoning,	the	

a	corresponds	to	the	Math	Practice	that	is	part	of	and	the	b	indexes	the	ways	of	

reasoning.	For	example,	NWR	1.2	is	the	second	normative	way	of	reasoning	(the	2	in	

1.2)	that	is	part	of	Math	Practice	1	(the	1	in	1.2).	In	contrast,	NWR	2.1	is	the	first	way	

of	reasoning	that	is	part	of	Math	Practice	2.	I	extend	this	labeling	scheme	to	index	

the	arguments	that	I	will	present	as	evidence	for	the	development	of	the	normative	

ways	of	reasoning.	I	label	arguments	as	Argument	a.b.c.	The	a.b	tells	the	reader	

which	normative	way	of	reasoning	the	argument	is	acting	as	evidence	for	and	the	c	

indexes	the	argument.	So	for	example	Argument	1.2.3	would	be	the	third	argument	

(the	3	in	1.2.3)	that	I	am	using	to	support	my	claim	that	NWR	1.2	(the	1.2	in	1.2.3)	

became	normative.	There	is	one	instance	where	one	argument	is	used	as	evidence	to	

support	the	development	of	two	different	NWRs,	in	which	case	the	way	of	reasoning	

was	labeled	so	that	it	would	correspond	to	the	first	NWR	presented.	Also,	There	

were	three	NWRs	that	did	fit	within	any	math	practice,	which	are	labeled	NWR	0.x.	

Each	of	these	ways	of	reasoning	dealt	with	content	that	was	tangential	to	the	goal	of	

the	unit,	which	was	to	develop	exponential	and	logarithmic	reasoning.	
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Table	4.1:	The	emergent	mathematical	practices.	
	 NWR	0.1:	In	a	linear	time	line	“each	distance	is	going	to	be	the	same	
amount	of	years”	
Math	Practice	1:	Developing	the	Macro	Multiplicative	Structure	
	 NWR	1.1:	Multiply	the	Previous	Term	by	10	to	get	the	Next	Term.	
	 NWR	1.2:	Finding	Factors	Over	Several	Segments		
Math	Practice	2:	Subdividing	the	Segments	
	 NWR	2.1:	Subdividing	Segments	by	Reasoning	Linearly	About	Exponents	
	 NWR	2.2:	Preserving	the	Multiplicative	Relationship	within	the	Segments	
Math	Practice	3:	Finding	Fractional	Exponents	
	 NWR	3.1:	Subdividing	Extents	that	Span	Multiple	Segments	
Math	Practice	4:	Reasoning	about	Sequences	
	 NWR	4.1:		An	Exponential	Sequence	is	one	that	has	a	Constant	Multiple	
	 NWR	4.2:	An	Additive	Sequence	is	one	that	has	a	Constant	Sum	
Math	Practice	5:	Interpreting	Logarithms	
	 NWR	5.1:	Logarithms	are	Exponents	
	 NWR	5.2:	The	“On	What	Day”	Interpretation	of	Logarithms	
	 NWR	5.3:	The	Factor	Interpretation	of	Logarithms	
Foundational	NWRs:	Fluently	Translating	Among	Various	Notations	
	 NWR	0.2	Translating	Between	Scientific	and	Standard	Notation	
	 NWR	0.3	Fractional	Powers	as	Roots	

	
Results	

Math	Practice	0	

There	were	three	normative	ways	of	reasoning	that	were	not	grouped	into	

math	practices	because	they	did	focus	on	the	main	goal	of	the	unit,	which	was	to	

develop	exponential	reasoning.	Instead,	these	normative	ways	of	reasoning	dealt	

with	topics	that	could	be	viewed	as	foundational	for	engaging	in	the	tasks	of	the	

unit.	The	first	of	these	three	is	more	conceptual	in	nature,	as	it	deals	with	the	

definition	and	meaning	of	a	linear	timeline.	Since	students’	engagement	with	this	

idea	set	the	stage	for	their	development	of	an	exponential	timeline,	I	give	evidence	

for	its	establishment	first.	The	other	two	normative	ways	of	reasoning	focus	on	

notation.	Since	this	is	more	peripheral	to	the	goal	of	the	unit,	the	evidence	for	the	
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development	of	these	normative	ways	of	reasoning	will	be	saved	for	the	end	of	the	

chapter.	

NWR	0.1:	In	a	linear	timeline	“each	distance	is	going	to	be	the	same	

amount	of	years.”	This	NWR	deals	with	students’	coordination	of	distances	on	a	

timeline	with	elapsed	times.	Specifically,	they	noticed	that	on	a	timeline	with	a	

linear	scale,	same	sized	segments	represented	the	same	amount	of	elapsed	time.	

This	feature	of	the	timeline	began	to	function	as	the	definition	of	a	linear	timeline	as	

the	class	continued.	

Overview	of	the	Development	of	NWR	0.1.	This	normative	way	of	reasoning	

is	a	characterization	of	a	linear	timeline;	same-sized	pieces	represent	the	same	

amount	of	elapsed	time.	This	idea	was	initially	put	forth	by	Nathan2	and	then	

elaborated	by	Danna	on	the	Day	1	(Argument	0.1.1).		When	Danna	introduced	the	

idea,	the	warrant	was	fully	articulated.	On	the	next	day,	Day	2,	another	student,	

Kathy,	argued	that	a	particular	line	was	not	linear	(in	Argument	0.1.2).	In	her	

argument,	she	drew	on	the	definition	as	an	implicit	warrant,	but	did	not	articulate	it.	

This	dropping	off	of	the	warrant	in	arguments	fulfills	Criterion	1	of	the	DCA	method	

and	provides	evidence	that	the	idea	was	functioning	as	if	shared	in	the	classroom.	

Background	to	Argument	0.1.1.	This	idea	first	came	up	while	discussing	the	

first	approach	on	Day	1.	Natalie	had	presented	a	linear	timeline	and	the	class	had	

been	discussing	what	they	noticed	about	the	line.	The	initial	comments	centered	on	

how	the	group	successively	halved	the	segments,	until	Nathan	made	a	comment	in	

																																																								
2	All	names	are	gender-preserving	pseudonyms	
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which	he	pointed	out	that	both	the	years	and	the	line	itself	were	being	halved.	In	

this	comment,	he	introduced	the	idea	of	coordinating	the	length	of	segments	on	the	

line	with	the	elapsed	years.	

Nathan:	Well,	more	to	add	on	to	that…I	like	the	idea	of	halving,	but	you’re	not	
just	halving	the	years,	…	you're	also	halving	the	distance	so	that	keeps	
everything	consistent	in	the	absolute	differences,	so	you're	halving	two	
things	at	once.	

	
Danna	then	built	upon	the	idea	of	coordinating	the	years	and	distance	as	she	named	

the	approach	linear	and	defined	this	term	by	saying	that	a	particular	amount	of	

elapsed	distance	on	the	line	represented	the	a	particular	amount	of	years	(see	Table	

4.2).		

Overview	of	Argument	0.1.1.	In	this	argument	Dana	claims	that	the	timeline	

generated	using	the	first	approach	should	be	characterized	as	linear.	She	uses	as	a	

warrant	that	specific	lengths,	which	she	calls	distances,	correspond	to	specific	

amounts	of	elapsed	years.	This	warrant	is	then	expressed	more	clearly	by	the	

teacher.	The	argument	draws	on	the	accepted	data	that	two	particular	segments	in	

this	timeline	each	represent	an	elapsed	time	of	7.5	billion	years.	The	transcript	

excerpt	follows	in	Table	4.2,	along	with	gestural	and	other	physical	actions,	and	the	

analytic	codes	from	Toulmin’s	scheme.	
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Table	4.2:	Coding	of	Argument	0.1.1	
Participant	 Speech	 Actions	 Code	

Danna	 It's	kind	of	like	more	linear.	 	 Claim	
Teacher	 More	linear.	…	What	do	you	mean	by	

linear?	
	 	

Danna	 Well	like,	each	distance	is	going	to	be	
the	same	amount	of	years.	

Makes	three	chunking	
gestures	in	succession	in	
the	air	by	holding	
forefinger	and	thumb	
apart,	as	if	to	bound	
some	distance		
[See	Figure	4.5]	

Warrant	

Teacher	 Each	distance	is	going	to	represent	the	
same	amount	of	years.	Can	you	point	
to	a	distance,	Natalie,	and	tell	us	how	
many	years	it	is?	

	 	

Natalie	 Seven	point	five	billion.	 Points	to	the	midpoint	
labeled	7.5	x	109	

Data	

Teacher	 And	can	you	show	us	the	segment	that	
is	that	much.	

	 	

Natalie	 This	segment	right	here*	and	this	
segment**.	
	

*Makes	a	chunking	
gesture	over	her	paper	to	
identify	the	segment	
from	0	to	7.5	x	109		
[See	Figure	4.6]	
	
**Similar	chunking	
gestures	over	7.5	x	109	to	
1.5	x	1010	segment	
[See	Figure	4.7]	

Data	

Teacher	 Each	of	those	segments	represents	
how	many	years?	

	 	

Natalie	 Seven	point	five	billion.	 	 Data	
Teacher	 Seven	point	five,	seven	and	half	billion.	

Okay.	So	that's	what	she	meant	by	
linear,	the	same	chunk	of	distance	
meant	the	same	amount	of	time	

	 Claim	
Warrant	
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Figure	4.5:	Danna	Showing	the	Distances	Represent	the	Same	Amount	of	Years	

	

	 	
Figure	4.6:	Natalie	chunking	0	to	7.5	x	109	 Figure	4.7:	Natalie	chunking	7.5	x	109		

	 to	1.5	x	1010	
	
In	this	exchange,	Danna,	Natalie,	and	the	teacher	co-constructed	an	argument	that	

the	timeline	should	be	called	linear	because	particular	distances	represent	

particular	amounts	of	elapsed	time.	Natalie	provided	the	data	by	pointing	to	two	

segments	that	were	the	same	length	and	represented	the	same	amount	of	elapsed	

time	and	Danna	connected	the	data	to	the	claim	by	providing	the	warrant	that	this	

feature	is	a	characteristic	of	a	linear	timeline.	The	teacher	structured	this	argument	

by	requesting	data	when	she	asked	Natalie	to	point	to	two	segments	that	

represented	the	same	amount	of	time	and	when	she	concisely	summarized	and	

more	clearly	articulated	the	whole	argument.	
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In	fact,	a	critical	reader	might	suggest	that	this	episode	mainly	represents	the	

teacher’s	reasoning.	However,	it	was	Danna	who	originally	provided	both	the	claim	

and	the	warrant.	In	the	first	three	turns	of	talk	Danna	called	the	approach	linear	and	

explained	that	linear	meant,	“each	distance	is	going	to	be	the	same	amount	of	years.”	

While	this	is	in	response	to	the	teacher	asking	Danna	for	further	justification,	the	

teacher	is	not	the	one	providing	the	justification.	The	bulk	of	the	rest	of	the	

argument	is	illustrating	what	this	means	by	having	Natalie	point	to	an	example	of	

two	segments	that	represent	the	same	amount	of	elapsed	time.	In	the	teachers’	final	

comment,	she	does	add	to	the	argument	by	articulating	the	idea	more	clearly.	This	

revoicing	may	also	serve	to	legitimize	or	emphasize	Danna’s	contribution.	However,	

in	terms	of	content,	Danna’s	original	statement	is	quite	similar	to	the	teacher’s	(see	

Table	4.3).		

Table	4.3:	Comparison	of	Two	Warrants	
Danna’s	Original	Warrant	 Teacher’s	Refined	Warrant	

Teacher	 What	do	you	mean	by	linear?	 Teacher	 So	that's	what	she	meant	by	linear,	the	
same	chunk	of	distance	meant	the	same	
amount	of	time	

Danna	 Well	like,	each	distance	is	going	
to	be	the	same	amount	of	
years.	

	
Background	to	Argument	0.1.2.	This	characterization	of	linear	time	lines	

was	then	used	implicitly	the	next	day	when	a	student	argued	that	a	particular	time	

line	was	not	linear.	At	the	beginning	of	class	the	teacher	asked	a	group	to	present	

two	methods	for	creating	a	number	line,	as	a	way	to	review	the	methods	presented	

the	previous	day.	Jaime	started	by	presenting	the	third	approach	presented	on	Day	1	

(macro	exponential	with	linear	subdivision)	and	his	group	mate,	Jose,	presented	the	

linear	approach.	Then	the	teacher	asked	the	class	why	the	linear	method	was	linear.	
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Danna	explained,	“I	called	it	linear	just	because	you're	associating	the	distance	and	

the	time.	They're	the	same	amount	each	time.	So	one	inch	is	going	to	be	the	same	

amount	of	time	at	the	beginning	of	the	time	line	as	it	is	at	the	end.”		The	teacher	

asked	about	a	name	or	description	of	the	other	approach	(macro	exponential)	and	

Danna	suggested	exponential,	because	it	had	exponents.		“Well	just	'cause	you're	

looking	clearly	at	the	exponents,	ten	to	the	eighth,	ten	to	the	ninth,	so	it's	growing	

exponentially.”	

Overview	of	Argument	0.1.2.	The	teacher	then	asked	if	anyone	would	like	to	

add	anything	and	Kathy	claimed	that	the	approach	was	not	linear.	To	support	this	

claim	Farah	pointed	to	the	data	that,	in	this	instance,	same-sized	segments	

represented	different	amounts	of	elapsed	time.		

Here	Kathy	claimed	that	a	particular	timeline	should	not	be	called	linear,	by	

implicitly	using	the,	now	established,	definition	of	linear	in	the	class.	She	did	not	

need	to	fully	articulate	the	warrant	by	pointing	out	that	the	line	does	not	meet	the	

definition	of	a	linear	timeline	because	two	same	sized	segments	represent	different	

amounts	of	elapsed	times.	Instead	she	simply	provided	the	data	for	the	claim,	“each	

section	doesn’t	represent	the	same	amount.”		

Table	4.4:	Coding	of	Argument	0.1.2	
Participant	 Speech	 Actions	 Code	

Teacher	 Would	anyone	else	like	to	add	anything	under	approach?	
Either	an	alternative	name,	or	another	description	of	
what's	happening?	[Pause	for	10	seconds].	So	is	everyone	
satisfied	calling	it	exponential	and	we	all	know	what	we	
mean?	
	

	 	

Kathy	 Exponentially	not	linearly.	[Laughter].	 	 Claim	
Teacher	 How	is	it,	how	is	it	different	from	linear…?	 	 	
Farah	 Each	section	doesn't	represent	the	same	amount.	 	 Data	
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Summary	of	NWR	0.1.	This	normative	way	of	reasoning	is	a	definition	of	a	

linear	timeline.	It	centers	on	the	idea	that	in	a	linear	time	line	same-sized	segments	

represent	the	same	amount	of	elapsed	time.	This	idea	originated	on	Day	1	from	

Nathan	and	Danna.	By	Day	2,	this	idea	was	accepted	as	evidenced	by	Kathy	and	

Farah	using	it	implicitly	to	argue	that	a	line	was	not	linear.	Since	the	warrant	had	

dropped	off	in	this	argument,	Criterion	1	of	the	DCA	method	is	satisfied.	

Math	Practice	1:	Developing	the	Macro	Multiplicative	Structure	

Math	Practice	1	describes	how	students	recognized	the	macro	multiplicative	

structure	of	the	third	approach.	It	involves	several	multiplicative	patterns.	First,	

students	articulated	the	idea	that	each	of	the	segments	on	the	line	represented	an	

increase	by	a	factor	of	10	(NWR	1.1).	They	then	articulated	that	this	meant	that	a	

section	of	the	timeline	that	consisted	of	multiple	segments	represented	an	increase	

by	various	factors	of	10	(e.g.	two	segments	together	represented	an	increase	by	a	

factor	of	100,	three	segments,	an	increase	of	1,000;	see	NWR	1.2).	This	practice	

emerged	over	Days	2	and	3	of	class.	

NWR	1.1:	Multiply	the	Previous	Term	by	10	to	get	the	Next	Term.	The	

impetus	for	the	development	of	this	normative	way	of	reasoning	was	a	claim	that	

this	multiplicative	pattern	existed.	Specifically,	on	Day	2	Erin	claimed	that	a		“times	

10”	pattern	existed	among	the	tick	marks	in	an	exponential	line.	By	the	next	day	this	

idea	had	become	normative	according	to	Criterion	2	of	the	DCA	method.	On	Day	3	an	

argument	was	co-constructed	by	two	students	and	the	teacher	that	used	this	times	

10	pattern	as	data.	
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Since	the	times	10	pattern	was	used	as	data	in	the	second	argument,	it	may	

not	be	the	most	salient	idea	of	the	argument.	More	salient	may	be	the	actual	claim	of	

the	argument,	which	was	that	the	macro	level	multiplication	pattern	should	be	

extended	to	guide	how	segments	should	be	subdivided.	This	was	a	major	shift	in	

how	students	were	talking	about	the	subdivision	and	was	preceded	by	significant	

exploration	and	discussion.	However,	the	details	of	the	process	by	which	the	

students	arrived	at	this	claim	will	be	saved	until	the	discussion	of	Math	Practice	2.	

For	NWR	1.1,	the	aspect	of	the	argument	that	I	will	focus	on	is	the	data,	the	macro	

level	times	10	pattern.	

Background	for	Argument	1.1.1.	Near	the	beginning	of	Day	2,	the	teacher	

posed	a	fairly	open	ended	task	that	generated	discussion.	She	showed	an	

exponential	time	line	(Figure	4.8)	and	simply	asked	what	mathematical	

relationships,	patterns,	or	ideas	students	noticed.	Erin	responded	by	noting	the	

existence	of	a	“times	10”	pattern.		

	

	 	
Figure	4.8:	The	exponential	time	line	

	
Overview	of	Argument	1.1.1.	Erin	appeared	to	argue	for	the	claim	that	the	

number	of	years	ago,	represented	by	consecutive	tick	marks	on	the	time	line	from	
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right	to	left,	increases	by	a	factor	of	ten	from	each	tick	mark	to	the	next.	She	

provided	data	for	the	claim	by	inserting	a	multiplication	sign	(“x”)	in	two	places	(i.e.,	

to	show	that	1	x	10	=	10	and	that	10	x	10	=	100;	see	Figure	4.9),	and	by	inserting	“x	

10”	in	three	places	on	the	time	line	(e.g.,	to	express	that	10	x	100	=	1	thousand).	

Table	4.5:	Coding	for	Argument	1.1.1	
Participant	 Speech	 Actions	 Code	

Erin	 It's	increasing	by	multiples	of	ten.	 	 Claim	
Teacher	 Could	you	mark	that?	So	she	says	it's	

increasing	by	multiples	of	10.	
	 	

Erin	 	 marked	the	time	line	
with	“x10”	in	several	
places	Figure	4.4.	

Data	

Teacher	 Can	anyone	put	this	pattern	in	their	own	
words?	What	am	I	multiplying	by	ten?	

	 Claim	

Several	 The	previous	term.	 	 Claim	
	

	 	
Figure	4.9:	Erin’s	Markings,	overlaid	with	researcher’s	annotations	(red	circles)	

	
Background	for	Argument	1.1.2.	On	the	next	day,	Day	3,	the	teacher	asked	

what	number	went	halfway	in	between	102	and	103.	Lacey	came	up	and	suggested	

that	it	should	be	102.5.	While	Lacey’s	label	was	not	disputed,	a	significant	discussion	

ensued	about	the	justification	of	the	point.	There	were	two	methods	students	used	

for	subdividing	the	segment	from	102	to	103,	both	of	which	lend	justification	to	

Lacey’s	claim.	These	will	be	further	explored	when	I	present	the	evidence	for	Math	

Practice	2.	In	this	discussion	several	ideas	came	up,	including	how	the	how	the	

multiplicative	pattern	at	the	macro	level	relates	to	the	subdivision	of	segments.	
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Overview	of	Argument	1.1.2.	In	Argument	1.1.2,	Rachel,	Kathy,	and	the	

teacher	co-constructed	an	argument	about	how	to	subdivide	segments.	They	

claimed	that	the	halfway	point	between	102	and	103	should	be	102.5	using	as	a	

warrant	they	idea	that	the	multiplicative	pattern	that	existed	at	macro	level	should	

be	extended	within	the	subsections.	The	introduction	of	this	idea	that	the	macro	

pattern	should	be	extended	was	a	turning	point	in	the	class	and	was	preceded	by	

significant	mathematical	struggle.	This	may	be	the	most	salient	thing	about	this	

argument.	However,	I	will	not	explore	her	method	of	subdivision	until	the	

discussion	of	Math	Practice	2.	Rather,	I	will	focus	on	the	data	of	this	argument,	the	

times	10	pattern.	This	shift	of	the	times	10	pattern	from	claim	(as	in	Argument	

1.1.1)	to	data	(as	in	this	argument,	Argument	1.1.2)	satisfies	Criterion	2	of	the	DCA	

method.	
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Table	4.6:	Coding	of	Argument	1.1.2	
Participant	 Speech	 Actions	 Code	

Rachel	 All	I	was	going	to	say	was,	what	we	discussed	
last	time,	was	that	to	get	from	each	next	one,	so	
like	ten	to	the	one,	ten	to	the	two,	ten	to	the	
three,	ten	to	the	four,	we're	multiplying	by	10.	

	 Data	

Teacher	 So	on	this	one.	Right,	I'll	put	up	the	one	we	had	
the	other	day.	Ten	to	the	zero,	ten	to	the	one,	I	
believe	this	was	Erin	who	first	put	this	up	and	
she	said	what?	That	10	to	the	zero...		

Draws	a	
number	line	
on	the	board	
with	tick	
marks	labeled	
100,	101,	102,	
103,	104.	See	
Figure	4.10	

	

Rachel	 You	are	just	timesing	by	ten,	which	is	the	same	
thing	as	ten	to	the	one.		

	 Data	

Teacher	 Okay	 	 	
Rachel	 Which	is	the	same	thing	as	square	root	of	ten	

times	square	root	of	ten.	
	 	

Kathy	 You	didn't	say	it	enough.	 	 	
David	 Yeah,	you	could	do	it.	 	 	
Nathan	 Almost	there!	 	 	
Kathy	 Which	is	the	same	thing	as...	 	 	

Teacher	 So	can	someone	kind	of	finish	this	off?	Kathy?	 	 	
Kathy	 Uh...	I	don't	know	if	I	can	finish	it	off	 	 	

Teacher	 Okay,	Whatever	you	want	to	say.	 	 	
Kathy	 I	was	going	to	say	it	makes	sense	to	me	because	

when	we	were	doing	it	like	half	exponential	half	
linear	we	were	adding	the	two	halves,	but	now	
we	need	to	have	like	the	first	half	times	the	
second	half	give	us	103.	Before	we	were	doing	
like	500	plus	500	needs	to	give	us	a	thousand,	
but	that's	linear;	and	we	need	to	do	something	
this	half	times	this	half	needs	to	give	us	10	to	
the	third.	

	 Warrant	

Teacher	 That	sounds	like	a	breakthrough	to	me.		 	 	
Kathy	 Oh,	thank	you.	 	 	

Teacher	 I	think	what	she's	saying	is	when	we	were	
doing	it	linear	we	were	adding	these	chunks,	
but	what	you	really	want	to	do	is	continue	this	
pattern1,	it's	this	times	something	is	this	times	
something	is	this	times	something	is	this2.	So	
now	we	have	ten	squared	times	square	root	of	
ten	is	ten	to	the	two	point	five3,	times	square	
root	of	ten	is	ten	to	the	third.	

	 1Warrant	
2Data	
3Claim	

Kathy	 Yep	 	 	
	



106	

	

	
Figure	4.10:	The	Macro	“times	10”	Pattern	

	
Summary	of	NWR	1.1.	In	this	normative	way	of	reasoning	students	noticed	

the	macro	level	times	10	pattern.	This	first	came	up	when	Erin	said	she	noticed	it.	

She	provided	data	for	this	pattern	by	labeling	“x10”	among	various	tick	marks	

(Argument	1.1.1).	Later	in	class,	Rachel,	Kathy,	and	the	teacher	justified	the	claimed	

that	the	halfway	point	between	102	and	103	should	be	102.5	by	saying	that	they	

needed	to	continue	the	pattern	that	existed	at	the	macro	level	(Argument	1.1.2).	

This	line	of	reasoning	treats	the	pattern	at	the	macro	level,	the	“times	10”	pattern,	as	

data.	By	this	idea	shifting	from	a	claim	in	Argument	1.1.1	to	data	in	Argument	1.1.2,	

Criterion	2	of	the	DCA	method	is	satisfied.	

NWR	1.2:	Finding	Factors	Over	Several	Segments.	This	normative	way	of	

reasoning	is	similar	to	NWR	1.1,	except	that	students	now	looked	across	several	

segments	to	find	multiplicative	patterns.	So	instead	of	simply	noticing	that	the	

amount	of	years	increased	by	a	factor	of	10	over	one	segment,	the	times	ten	pattern,	

they	noticed	that,	for	example,	the	years	increased	by	a	factor	of	100	across	two	

segments.	
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Overview	of	the	Development	of	NWR	1.2.	This	idea	first	arose	on	Day	2	

when	students	used	the	idea	that	going	across	two	segments	increases	the	amount	

of	elapsed	years	by	a	factor	of	100	as	data	to	support	an	argument	about	how	one	

can	see	10,000	in	the	number	line.	Several	days	later,	on	Day	6,	the	same	idea	was	

used	as	a	warrant	when	reasoning	about	a	different	exponential	number	line.	This	

repeated	use	of	the	idea	provides	evidence	that	this	way	of	reasoning	functioned	as	

if	shared,	as	it	had	become	a	standard	way	to	reason	about	the	exponential	lines.	In	

particular,	this	satisfies	Criterion	3	of	the	DCA	method,	since	the	idea	appeared	over	

several	days,	as	data	and	then	as	warrant.	

Background	for	Argument	1.2.1.	This	argument	was	advanced	on	Day	2	

when	students	were	reasoning	about	mathematical	patterns	they	saw	in	the	

timeline.	The	students	had	been	annotating	a	line	that	was	on	the	document	camera	

with	various	patterns	(see	Figure	4.11).	While	they	were	discussing	the	times	10	

pattern,	the	teacher	asked	about	patterns	across	sections	of	the	timeline	that	span	

several	tick	marks.	David	started	the	conversation	by	drawing	attention	to	the	idea	

that	10,000	can	be	thought	of	as	100	x	100.	Samantha	then	helped	articulate	how	

the	100	x	100	can	be	seen	in	the	timeline.	
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Figure	4.11:	Annotating	the	number	line	with	mathematical	patterns.	

	
Overview	of	Argument	1.2.1.	In	this	argument	Samantha	claimed	that	one	

can	see	10,000	in	the	timeline	by	looking	across	two	sections	of	the	timeline	that	

each	represent	1,000	years	(the	section	from	100	to	102	and	the	one	from	102	to	

104).	In	this	argument,	she	uses	the	idea	that	the	sections	each	represent	1,000	

years	as	data.	Then	for	the	warrant,	she	said	that	the	two	1,000s	should	be	

multiplied.	

	 	



109	

	

	

Table	4.7:	Coding	for	Argument	1.2.1	
Participant	 Speech	 Actions	 Code	

David		 I'm	going	to	go	like	hundred	times	
hundred*,	you'll	get	the	ten	thousand**.		

*writes	100	x	100	
under	the	line	
**draws	a	vertical	
line	under	the	
10,000	label	
See	Figure	4.12	

	

	 …	 	 	
Teacher	 I	think	he	has	a	great	idea.	Where	does	the	

first	hundred	come	from?	Someone	go	up	
and	point	to	it.	

	 	

David	 It's	from	the	ten	squared.	 	 Data	
Teacher	 Ten	squared.	 	 	
David	 Yeah.	 	 	

Teacher	 What's	another	way	to	think	about	how	we	
got	it?	Samantha?	

	 	

Samantha	 Well,	the	ten	thousand	is	ten	to	the	fourth,	
so	it's	ten	squared	times	ten	squared.	

	 Data	

Teacher	 Can	you	write	that?	…		 	 	
Samantha	 	 Samantha	goes	up	

to	the	document	
camera	and	writes	
104	=	102	�	102	

Data	

Teacher	 So	Samantha,	go	ahead	and	explain	your	
thinking.	

	 	

Samantha	 So	this	here	is	ten	to	the	second*	and	then	
ten	to	the	fourth	is	just	double	that**1.	So	
it's	two	[sections	of	the	timeline],	so	you	
just	multiply	them2	and	then	it	gives	you	
ten	thousand3.	

*traces	out	a	circle	
over	the	section	
from	100	to	102	
**traces	out	a	circle	
over	the	section	
from	100	to	102	and	
then	over	the	
section	from	102	to	
104	
See	Figure	4.13	
	

1Data	
2Warrant	
3Claim	
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Figure	4.12:	David’s	100	x	100	Pattern	

	

	 	
Figure	4.13:	Samantha’s	Gestures	

	
Background	for	Argument	1.2.2.	This	normative	way	of	reasoning	was	

established	much	later	in	the	class,	on	Day	6,	after	other	mathematical	progress	had	

been	made.	On	the	previous	day,	Day	5,	the	students	had	been	asked	to	create	an	

exponential	number	line	that	represented	the	accumulation	of	money	in	a	magic	

bank	where	the	money	tripled	each	day.	At	the	beginning	of	Day	6,	the	teacher	gave	
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them	a	summary	sheet,	which	had	the	number	line	they	developed	the	previous	day	

(see	Figure	4.14).	She	then	displayed	the	following	prompt	on	the	document	camera.	

	
Suppose	you	look	at	your	bank	account	and	record	how	much	money	
you	have.	The	next	time	you	look,	you	have	81	times	as	much	money.	
How	much	time	passed	between	the	two	observation	points?	

	

	 	
Figure	4.14:	The	“Bank	of	Magic”	number	line.	

	
After	some	time	working	on	the	problem,	Kaitlyn	claimed	the	answer	was	4	

days.	Erin	supported	this	answer	by	saying	that	it	takes	4	days	to	get	81	dollars,	

which	is	81	times	the	starting	amount	of	1.	Here	several	students	stated	the	idea	

that	between	any	four	days,	the	money	increases	by	a	factor	of	eighty-one.	Farah	

then	explained	why	this	true	in	Argument	1.2.2	

Overview	of	Argument	1.2.2.	In	this	Argument	David	claimed	that	over	four	

days,	the	amount	of	money	increases	by	a	factor	of	81.	Farah	provided	the	warrant	

for	this	claim	by	pointing	out	that	each	day	represents	an	increase	by	a	factor	of	

three,	so	over	four	days	you	get	an	increase	by	a	factor	of	3x3x3x3,	in	other	words	

by	a	factor	of	81.	
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Table	4.8:	Coding	for	Argument	1.2.2	
Participant	 Speech	 Actions	 Code	

Teacher	 Okay.	Another	one?	Please	raise	your	hand	if	
you	got	another	one?	Okay.	David?	So	what's	
yours	David?	

	 	

David	 From	day	four	to	day	eight	you're	going	to	
have	eighty-one	times	more	money.		

	 	

Teacher	 How	do	you	know?	 	 	
David	 Because,	I	don't	know,	‘cause	in	the	factors	of	

four.	I'm	just	looking	at	the	fours.	Four	days	
from	when	I	start,	wherever,	it's	going	to	be	
eighty-one	times	more	money.	

	 Claim	

Teacher	 It's	true.	Can	someone	explain	why	that	is?	Can	
someone	explain	why	that	is?	Lacey?	

	 	

Lacey	 Well,	if	you	have	eighty-one	times	more	you're	
going	to	multiply	eighty-one	by	whatever	
number	the	day	you	started	at.	So	in	his	
example.	

	 Claim	

Teacher	 Go	point.	 	 	
Lacey	 Eighty-one	times	eighty-one,	so	this	is	the	day*	

you're	starting	to	look	at	it	if	you	multiply	
Eighty-one	times	eighty-one	you	get	this	
number**		

*points	to	day	4,	
with	$81	
**points	to	6561	

Claim	

Teacher	 How	do	you	know?	How	do	you	know	that	was	
times	a	factor	of	eighty-one?	Can	someone	
come	point	to	something?	

	 	

Farah	 So	for	every	day	that	goes	by	you're	
multiplying	by	three	so	you	multiply	three*	
times	three**	times	three***	times	three****	
and	that's	eighty-one.	

*sweeps	over	
the	section	
between	day	4	
and	day	5	
**	sweeps	over	
the	section	
between	day	5	
and	day	6	
***	sweeps	over	
the	section	
between	day	6	
and	day	7	
****	sweeps	
over	the	section	
between	day	7	
and	day	8	
See	Figure	4.15	

Warrant	
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Figure	4.15:	Farah’s	sweeping	gestures	to	illustrate	the	factor	of	3x3x3x3	
	

Summary	of	NWR	1.2.	This	normative	way	of	reasoning	deals	with	students	

reasoning	about	sections	of	the	timeline	that	span	more	than	one	segment	between	

tick	marks.	The	students	had	already	established	the	constant	multiplicative	

relationship	between	tick	marks	when	they	noticed	the	times	ten	pattern	when	

reasoning	about	the	timeline	task	(see	NWR	1.1).	When	they	reasoned	about	

sections	of	the	timeline	that	spanned	several	tick	marks	they	repeatedly	used	a	

similar	line	of	reasoning.	Namely,	that	the	larger	section	of	the	timeline	represented	

multiplication	by	a	factor	that	was	equal	to	the	product	of	the	factors	represented	by	

each	those	smaller	segments	(e.g.	if	a	large	segment	spanned	two	smaller	times	ten	

segments	it	represented	a	factor	of	10x10=100	or	if	an	large	segment	spanned	four	

smaller	times	three	segments	it	represented	a	factor	of	3x3x3x3=81).	The	repeated	

use	of	this	line	of	reasoning	as	data	(as	in	Argument	1.2.1)	or	warrant	(as	in	

Argument	1.2.2)	satisfies	Criterion	3	of	the	DCA	method.	

Summary	of	Math	Practice	1.	This	math	practice	had	to	do	with	the	macro-

level	multiplicative	patterns	that	exist	in	the	number	line.	Students	first	noticed	that	

the	segments	between	tick	marks	represented	an	increase	by	a	factor	of	ten	(NWR	
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1.1).	They	then	began	to	look	across	segments	to	recognize	other	patterns,	such	as	

times	100	(NWR	1.2).	These	multiplicative	patterns	are	foundational	to	how	

students	later	subdivided	segments,	which	will	be	addressed	in	NWR	2.2	of	Math	

Practice	2.	

Math	Practice	2:	Subdividing	Segments	

This	Math	Practice	deals	with	ways	of	reasoning	about	how	to	subdivide	

segments.	Two	normative	ways	of	reasoning	co-developed	over	the	class	period	on	

Day	3.	In	the	first	way	of	reasoning,	students	focused	on	the	linear	pattern	in	the	

exponents	(NWR	2.1).	In	the	second	way	of	reasoning,	students	generalized	the	idea	

that	a	segment	of	the	line	represented	an	increase	by	a	constant	factor	from	the	

macro	structure	of	the	time	line	(see	Math	Practice	1)	to	subdivided	segments.	

Specifically,	they	reasoned	that	each	subsection	should	represent	an	increase	by	a	

particular	factor	(NWR	2.2).	

NWR	2.1:	Subdividing	Segments	by	Reasoning	Linearly	About	

Exponents.	Subdividing	linearly	means	there	is	a	one	to	one	correspondence	

between	how	the	segment	is	divided	and	how	the	exponent	is	divided.	This	means	

that	if	the	students	divided	the	segment	where	the	exponent	increased	by	1	into	two	

pieces,	they	reasoned	the	exponent	increased	by	½	over	each	subsection.	Similarly,	

if	they	divided	the	segment	into	ten	subsections,	they	reasoned	the	exponent	

increases	by	1/10th	over	each	subsection.	

Overview	of	the	Development	of	NWR	2.1.	This	normative	way	of	reasoning	

developed	during	Day	3.	Three	arguments	were	given	that	all	used	the	same	
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warrant.	The	first	occurred	at	the	very	beginning	of	class,	when	Lacey	reasoned	that	

the	midpoint	between	102	and	103	was	102.5.	After	this,	the	class	started	to	

subdivide	in	a	different	way,	a	way	consistent	with	NWR	2.2.	However,	they	

returned	to	reasoning	linearly	with	exponents	at	the	end	of	class	when	they	needed	

to	place	the	bow	and	arrow	(104.5	years	ago)	and	the	Ordovician	period	(108.7	years	

ago).	Since	the	same	warrant	was	used	to	reason	about	the	placement	of	three	

different	times,	102.5,	104.5,	and	108.7,	Criterion	3	of	the	DCA	method	is	satisfied.	

Background	for	Argument	2.1.1.	This	argument	came	at	the	very	beginning	

of	Day	3,	when	the	teacher	started	the	class	by	putting	up	a	number	line	and	asking	

the	students	what	the	midpoint	of	the	102	and	103	should	be	labeled	(see	Figure	

4.16).	Lacey	argued	that	the	point	should	be	labeled	102.5	and	no	one	challenged	her.	

This	was	somewhat	surprising	because	previous	to	this,	the	only	way	students	had	

been	subdividing	segments	of	the	number	line	was	reasoning	linearly	about	the	

values.	In	other	words,	they	would	have	found	the	difference	between	1,000	and	

100,	which	is	900,	divide	that	by	2	to	get	450,	and	add	that	100.	This	linear	method	

of	subdivision	became	problematized	at	the	end	of	Day	2.	On	Day	2,	the	teacher	had	

asked	the	students	to	place	the	Renaissance,	which	occurred	500	years	ago	on	a	

number	line	where	the	tick	marks	increased	by	multiples	of	ten.	They	placed	this	by	

linearly	subdividing	the	segment	from	100	to	1,000.	The	teacher	then	asked	them	to	

use	the	same	method	to	place	the	Renaissance,	but	to	use	1	and	1,000	as	the	

endpoints.	The	students	did	this	to	find	the	midpoint	of	1	and	1,000	to	be	500.5.	This	
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made	it	clear	that	the	Renaissance	would	move	depending	on	the	endpoints	you	

choose.		

	

	 	
Figure	4.16:	The	midpoint	task.	

	
During	the	discussion	of	why	this	was	problematic,	Danna	argued	that	the	

problem	was	their	method	of	subdivision.	She	then	started	to	present	an	alternative	

idea.	She	briefly	flashed	an	image	of	her	work	on	the	document	camera	(see	Figure	

4.17).	In	this	image,	she	had	a	segment	of	a	number	line,	from	102	to	103,	divided	

into	10	subsections	with	each	subsection	labeled	with	powers	of	10	whose	

exponents	successively	increased	by	a	tenth.	Even	though	the	image	was	only	on	the	

document	camera	for	about	3	seconds,	it	is	possible	that	other	students	noticed	the	

linear	pattern	in	the	exponents.		

	

	
Figure	4.17:	Author’s	recreation	of	Danna’s	Work	

	
More	ideas	about	how	to	place	events	in	between	tick	marks	may	have	emerged	for	

students	as	they	worked	on	homework	between	Day	2	and	Day	3.	This	homework	

encouraged	students	to	explore	the	relationship	between	the	multiplicative	patterns	

that	exist	at	the	macro	level	and	additive	pattern	in	the	exponents.	If	students	were	
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affected	by	Danna’s	image,	it	may	be	possible	that	they	attended	more	to	linear	

patterns	in	the	exponents	on	the	homework	rather	than	coordinating	linear	

reasoning	with	multiplicative	patterns,	as	was	intended.	This	may	help	explain	

students’	acceptance	of	Lacey’s	linear	argument.	

Overview	of	Argument	2.1.1.	Lacey	appeared	to	argue	that	the	midway	point	

between	102	and	103	is	102.5	(claim)	because	from	102	to	103	is	a	factor	of	101	(data),	

and	since	the	segment	on	the	number	line	is	divided	in	half,	you	divide	the	exponent	

of	1	in	half	to	get	0.5	(warrant).	The	.5	is	then	added	to	the	exponent	of	the	endpoint	

of	the	segment,	which	was	2.	

Table	4.9:	Coding	for	Argument	2.1.1	
Participant	 Speech	 Action	 Code	

Lacey	 I	got	ten	to	the	two	point	five1.	‘Cause	
thinking	about	it,	this	whole	thing*	is	a	
factor	of	ten	to	the	one2,	so	then	if	you're	
going	to	divide	it	in	half	it's	going	to	be	
point	five	of	that,	so	then,	you	just	add	the	
point	five	to	the	two	to	make	this	a	factor	of	
point	five**	and	this	a	factor	of	point	
five***3.	
	

*sweeps	finger	from	
102	to	103	
**gestures	to	the	
segment	from	102	to	
midpoint	by	placing	
her	thumb	on	102	
and	index	finger	on	
midpoint	
***similarly	
gestures	to	the	
segment	from	the	
midpoint	to	103	
See	Figure	4.18	

1Claim	
2Data	
3Warrant	

	

	 	
Figure	4.18:	Lacey	Gesturing	to	Part	a	Subsection	
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I	interpret	her	argument	to	be	reasoning	linearly	with	the	exponents	and	not	

multiplicative	reasoning	(as	will	come	in	NWR	2.2).	Saying	“you’re	going	to	divided	

it	in	half,”	focuses	on	the	halving,	which	implies	linear	reasoning.	While	she	did	use	

some	multiplicatively	language,	calling	both	the	101	and	the	two	sections	

representing	10.5	“factors,”	she	did	not	talk	about	the	factors	being	multiplied	by	

anything.	In	fact,	she	talked	about	adding	the	.5	to	2.	This	suggests	that	she	may	

simply	be	using	the	word	factor	as	a	label	for	the	segment	and	two	subsections.	

Furthermore,	this	was	not	taken	up	as	multiplicative	reasoning	in	the	class.	Mallory	

elaborated	this	argument,	focusing	on	the	linear	relationship	between	the	

exponents.	

Mallory:	Well	I	just	kinda	ignored	the	ten	and	just	looked	at	the	
exponents.	So,	ten	to	three	and	ten	to	the	two,	so	I	just	did	three	minus	
two	so,	equals	one,	so	that	one	so	if	you	put	the	ten	back	in	there	that's	
the	whole	thing	and	then	just	do	one	divided	by	two	which	is	point	
five	so	you	know	each	little	section	is	two	point	five.	
	

This	clearly	focuses	on	operating	on	the	exponents,	specifically	dividing	the	

exponent	of	one	by	two.	

Background	Argument	2.1.2.	Toward	the	end	of	class	on	Day	3,	the	students	

revisited	this	way	of	reasoning	as	they	worked	on	a	worksheet	that	asked	them	to	

place	several	time	periods.	The	first	of	these	was	to	place	the	bow	and	arrow.	The	

task	asked	the	following.	

	 	
Figure	4.19:	The	bow	and	arrow	task.	
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Overview	of	Argument	2.1.2.	After	they	had	time	to	work	in	small	group,	

Yessica	presented	her	solution	to	the	whole	class,	claiming	that	104.5	should	be	

placed	halfway	between	104	and	105.	Her	warrant	focuses	on	the	fact	that	she	has	

divided	segment	from	104	to	105	in	half	and	that	each	half	represents	10.5.		Then,	in	

the	follow	up	discussion	the	fact	that	she	divided	the	exponent	in	half	was	further	

emphasized.	
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Table	4.10:	Coding	for	Argument	2.1.2	
Participant	 Speech	 Actions	 Code	

Teacher	 So	bow	and	arrow	appeared	thirty	one	
thousand	six	hundred	years	ago,	and	that	
is	ten	to	the	four	point	five,	where	should	
that	go	and	why?	

	 	

Yessica	 Well	it's	the	same	similar	to	the	one	we	
already	did.	So	it's	from	here	to	here	is	
going	to	be	ten	to	the	one*1.	So	if	we	
want	to	get	the	sorry,	so	this	is	going	to	
be,	hold	on**.	Okay.	

*draws	a	bracket	from	
105	to	104	and	labels	it	
101	
**Writes	“=	101/2	x	
101/2”	to	get	101	=		101/2	
x	101/2	and	then	draws	
a	brace	from	105	to	the	
midpoint	and	from	the	
midpoint	to	104	and	
labels	them	each	101/2.	
Writes	104.5	at	the	
midpoint	of	the	larger	
extant2.	
See	Figure	4.20	

1Data	
2Claim	

Teacher	 So	can	you	explain	your	labels?	 	 	
Yessica	 Yes,	this	is	going	to	be	the	same	as	ten	to	

the	one	half*	and	ten	to	the	one	half**,	so	
for	here	to	here,	it's	ten	to	the	one	
half***,	and	the	same	for	here****,	ten	to	
the	one	half,	so	if	we	want	to	get	the	one,	
ten	to	the	four	point	five,	so	we	have	to	
add	just	the	half	from	here*****,	so	it's	
ten	to	the	four	and	the	one	half	so	it's	
going	to	be	ten	to	the	four	point	five.	

*points	to	first	label	of	
101/2	
**points	to	second	label	
of	101/2	
***sweeps	over	the	
subsection	from	105	to	
the	midpoint.	
****sweeps	over	the	
subsection	from	the	
midpoint	to	104.	
*****points	to	the	
exponent	in	101/2	that	
labels	the	subsection	
from	104	to	the	
midpoint.	

Warrant	

	

	 	
Figure	4.20:	Yessica’s	Drawing	
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The	teacher	then	asked	for	questions	about	Yessica’s	work.	David	asked	

about	Yessica’s	notation—why	she	wrote	4.5	instead	of	4 !
!
.	Kathy	responded	to	the	

question	and	in	her	response	emphasized	that	Yessica	divided	the	exponent	in	two.	

Kathy:	So	what	I	think	is	why	she	didn't	do	one	half	is	because,	she	
was	just	splitting	the	ten	to	the	one	so	that	would	just	be	ten	to	the	
one	half	not,	not	ten	to	the	four	and	a	half	and	then	she	takes	that	ten	
to	the	one	half	and	multiplies	it	to	ten	to	the	four	so	then	you	get	four	
and	half.	

	
The	halving	of	the	exponents	was	further	emphasized	in	a	teacher’s	follow	up	

question.	She	asked,	“Why	is	it	working	to	halve	when	it	did	not	work	when	you	

were	using	a	halving	linear	method	for	the	Renaissance	last	Thursday?”	In	response,	

Samantha	explained,	“Last	time	we	were	solving	like	ten	to	the	fourth	and	ten	to	the	

fifth	and	we	were	halving	the,	what	the	answers	were	to	it…rather	than	take	half	of	

five	and	four.”	Similarly,	when	the	teacher	asked,	“What	are	you	taking	half	of	here?”	

Several	students	responded,	“The	exponents.”	The	teacher	then	reiterated	what	they	

were	saying,	“The	exponents,	you're	not	taking	half	of	the	one	thousand	or	half	of	

ten	thousand	or	a	hundred	thousand,	you're	taking	half	of	the	exponent.”		

Background	Argument	2.1.3.	This	linear	method	continued	as	students	

reasoned	about	the	next	task,	which	was	to	place	the	Ordovician	period	(see	Figure	

4.16).	Jacqueline	presented	her	way	of	placing	this	period,	which	was	also	linear.		

	

	 	
Figure	4.21:	The	Ordovician	period	task.	
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Overview	of	Argument	2.1.3.	Jacqueline’s	claim	was	the	placement	of	108.7	

(see	Figure	4.17).	Her	warrant	justifying	her	placement	was	dividing	the	segment	

between	108	and	109	into	ten	subsections.	She	then	placed	108.7	on	the	tick	mark	for	

the	seventh	subsection.	

Table	4.11:	Coding	of	Argument	2.1.3	
Participant	 Speech	 Action	 Code	

Teacher	 …	Could	you	tell	us	how	you	did	the	second	one	
[placing	108.7]?	…		

	 	

Jacqueline	 Yeah,	so	for	this	one,	since	it	says	it's	ten	to	the	
eight	point	seven	and	then	so	I	just	divide	the	
whole	thing	to	ten	pieces	and	then	I	just,	yeah,	and	
here	is	the	middle*	which	is	eight	point	five	and	
then	I	just	add	two	so	it's	going	to	be	ten	to	the	
eight	point	seven.	

*points	to	the	
tick	mark	
labeled	108.5	
Figure	4.22	

Warrant	
	

Teacher	 …	Any	different	way	of	thinking	about	it?	How	
would	you	describe	this	method	in	general?	What	
are	you	doing?	Tanya.	

	 	

Tanya	 We're	splitting	the	interval	into	tenths.	…	What	I	
did	was	the	same	thing,	but	just	saw	it,	the	point	
seven	as	seven	tenths,	so	divide	it	into	tens	and	
then	go	seven	tenths.	

	 Warrant	

	

	 	
Figure	4.22:	Jacqueline’s	Placement	of	108.7	

	
Summary	of	NWR	2.1.	Students	reasoned	linearly	with	the	exponents	to	

justify	the	placements	of	three	different	times	in	Arguments	2.1.1,	2.2.2,	and	2.2.3.	

This	repeated	use	of	a	warrant	fulfills	criterion	3	of	the	DCA	method.	Giving	further	
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evidence	that	this	way	of	reasoning	functioned	as	if	shared	in	the	classroom,	they	

concluded	their	discussion	by	saying	that	to	place	20,000	they	would	first	need	to	

write	it	as	some	power	of	10	“because	you	can	just	plot	that.”	This	reiterates	the	

focus	on	the	exponents	when	plotting	events.	

NWR	2.2:	Preserving	the	Multiplicative	Relationship	within	the	

Segments.	This	way	of	reasoning	also	deals	with	subdividing	the	segments	of	the	

timeline,	but	instead	of	focusing	on	the	additive	relationships	between	the	

exponents,	in	this	line	of	reasoning,	students	focused	on	the	multiplicative	

relationships	among	dates	represented	on	the	time	line.	

Overview	of	the	development	of	NWR	2.2.	This	normative	way	of	reasoning	

was	established	according	to	Criterion	3	of	the	DCA	method.	As	I	mentioned	in	the	

discussion	of	NWR	2.1,	Day	3	began	with	Lacey’s	argument	that	to	102.5	was	the	

midpoint	between	102	and	103.	She	justified	her	claim	by	appealing	to	a	linear	

pattern	in	the	exponents.	However,	as	the	students	probed	this	placement	more	

deeply,	they	began	to	talk	about	multiplicative	relationships.	During	this	discussion	

two	different	arguments	came	up	where	students	used	multiplicative	patterns	as	the	

warrant	for	their	subdivisions	of	segments	of	the	time	line.	One	of	these	was	

Argument	1.1.2,	whose	data	I	used	as	evidence	for	the	establishment	of	NWR	1.1.	

There	I	focused	on	how	the	macro	multiplicative	pattern	was	used	as	data.	Now	I	

focus	on	the	warrant,	how	this	multiplicative	pattern	was	extended	to	the	

subsections.	Students	later	used	the	same	warrant	to	place	101/7.	This	repeated	use	

of	a	warrant	satisfies	Criterion	3	of	the	DCA	method.	
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Revisiting	of	Argument	1.1.2.	Kathy’s	breakthrough	came	on	Day	3	when	

Rachel,	the	teacher,	and	she	co-constructed	an	argument	in	which	she	compared	the	

class’s	initial	linear	way	of	reasoning	about	subsections,	with	an	alternative,	finding	

a	constant	factor.	As	mentioned	previously,	they	appeared	to	have	claimed	that	the	

halfway	point	between	102	and	103	should	be	102.5	using	as	a	warrant	the	idea	that	

the	multiplicative	pattern	that	existed	at	macro	level	should	be	extended	within	the	

subsections.	However,	when	I	presented	this	argument	before,	the	focus	was	on	

data.	Now,	for	NWR	2.2	I	focus	on	the	conceptual	breakthrough	in	this	argument,	the	

warrant.	

Table	4.12:	Revisiting	of	the	Coding	of	Argument	1.1.2	
Participant	 Speech	 Action	 Code	

Rachel	 You	are	just	timesing	by	ten,	which	is	the	same	thing	
as	ten	to	the	one.		

	 Data	

	 …	 	 	
Kathy	 I	was	going	to	say	it	makes	sense	to	me	because	when	

we	were	doing	it	like	half	exponential	half	linear	we	
were	adding	the	two	halves,	but	now	we	need	to	have	
like	the	first	half	times	the	second	half	give	us	103.	
Before	we	were	doing	like	500	plus	500	needs	to	give	
us	a	thousand,	but	that's	linear;	and	we	need	to	do	
something	this	half	times	this	half	needs	to	give	us	10	
to	the	third.	

	 Warrant	

Teacher	 That	sounds	like	a	breakthrough	to	me.		 	 	
Kathy	 Oh,	thank	you.	 	 	

Teacher	 I	think	what	she's	saying	is	when	we	were	doing	it	
linear	we	were	adding	these	chunks,	but	what	you	
really	want	to	do	is	continue	this	pattern1,	it's	this	
times	something	is	this	times	something	is	this	times	
something	is	this2.	So	now	we	have	ten	squared	times	
square	root	of	ten	is	ten	to	the	two	point	five3,	times	
square	root	of	ten	is	ten	to	the	third.		

	 1Warrant	
2Data	
3Claim	

	
Background	for	Argument	2.2.2.	After	Kathy	had	voiced	her	argument,	she	

pointed	out	that	this	line	of	reasoning	could	be	used	with	other	roots.	For	example,	

by	splitting	a	segment	into	three	pieces,	one	would	reason	he	or	she	needs	a	number	

that	when	multiplied	by	itself	three	times	yields	ten.	That	means	the	subsection	
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would	need	to	represent	a	factor	of	the	cube	root	of	ten.	To	follow	up	on	this	

observation,	the	teacher	drew	a	segment	from	102	to	103	on	the	document	camera	

and	divided	it	into	seven	sections.	She	asked	how	the	students	thought	about	the	

relationship	between	the	first	subsection	and	the	whole	segment	(see	Figure	4.23).	

	

	 	
Figure	4.23:	The	relationship	between	a	segment	and	its	subsections.	

	
Overview	of	Argument	2.2.2.	Eventually,	Jade	argued	that	this	subsection	

must	represent	101/7.	Her	reasoning	that	multiplication	of	101/7	by	itself	seven	times	

yields	10	acted	as	a	warrant	and	supported	this	claim.	The	data	in	this	argument	

was	simply	that	the	segment	was	divided	into	seven	subsections.	After	Jade’s	

argument,	Mallory	added	that	thinking	of	the	subsections	in	this	way	is	crucial	to	

keeping	the	line	exponential.	
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Table	4.13:	Coding	for	Argument	2.2.2	
Participant	 Speech	 Action	 Code	

Teacher	 …	Okay.		I've	got	it	in	seven	sections.	Before	
anybody	calculates	anything,	I	want	you	to	
tell	me,	how	do	you	think	about	the	
relationship	between	these	two	factors**?	So	
I	want	you	to	think	a	minute.	How	do	you	
think	about	the	relationship	between	the	
factor	that	you	multiply	ten	squared	to	get	
ten	cubed	and	the	factor	you	multiply	ten	
squared	to	get		that	next	tick	mark?	…	Okay.	
Jade,	how	do	you	think	about	it?	

*Draws	a	line	
and	splits	into	
seven	sections	
**Draws	a	
double	sided	
arrow	between	
103	and	102	and	
another	between	
102	and	the	first	
tick	mark?	
See	Figure	4.18	

	

Jade	 So	going	from	ten	squared	to	ten	to	the	third	
you	have	to	multiply	ten	squared	times	ten	to	
get	to	ten	to	the	third.	

	 Data	

Teacher	 *Is	that	what	you're	thinking?	 *Labels	top	
arrow	“x10”	

	

Jade	 Yeah,	yeah.	And	since	you	have	seven	
subsections1,	what	I	did	to	the	exponent	of	
ten,	since	it's	ten	to	the	one,	I	divided	that	
exponent	by	seven2.	

	 1Data	
2Warrant	

Teacher	 I	think	I'm	going	to	have	to	have	you	write.	 	 	
Jade	 So	this	whole	thing	is	ten,	you	multiply	ten	

squared	times	ten	to	get	ten	to	the	third,	or	
ten	to	the	first1,	and	since	we	have	seven	
subsections1,	each	subsection	would	be	ten	to	
the	one	seventh*2.	So	this	is…	

She	comes	up	to	
document	
camera	
*She	labels	the		
subsection	101/7.	

1Data	
2Claim	

Teacher	 Why?	Why	is	that?	And	either	Jade	can	
answer	or	someone	else	can	answer.	Can	you	
answer	it?	Why	is	it	ten	to	the	one	seventh?	

	 	

Jade	 Because	if	we	multiply	by	ten	to	the	seven	ten	
times	[sic.]	it's	going	to	give	us	ten	to	the	one.	

	 Warrant	

Teacher	 I	want	you	to	do	that.	…	 	 	
Mallory	 There's	seven	times	so	you	have	to	have	

seven	sections.	
	 Warrant	

Teacher	 Someone	else	revoice	what	Mallory	just	said.	
Could	you	all	hear	her?	Say	it	one	more	time.	

	 	

Mallory	 Since	there's	seven	sections	you	have	to	
multiply	the	same	number	seven	times,	so	
that's	why	it's	divided	by	seven.	

	 Warrant	

	
The	feature	of	this	argument	relevant	to	the	establishment	of	NWR	2.2	is	the	

use	of	multiplicative	reasoning	when	determining	the	placement	of	dates	on	

subdivided	segments.	Jade	used	multiplicative	reasoning	as	a	warrant	when	she	

said,	“because	if	we	multiply	by	ten	to	seven	ten	times,	it’s	going	to	give	us	ten	to	the	

one.”	This	was	in	response	to	the	teacher	asking	why	the	first	tick	mark	should	
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represent	ten	to	the	one	seventh,	which	provides	evidence	that	this	idea	was	being	

used	as	a	warrant.		The	warrant	was	then	articulated	even	more	clearly	by	Mallory	

when	she	said,	“Since	there's	seven	sections	you	have	to	multiply	the	same	number	

seven	times.”	

The	fact	that	multiplicative	relationship	should	be	preserved	was	further	

emphasized	when	David	got	confused	about	what	factor	two	subsections	should	

represent.	While	talking	about	this	problem,	the	class	had	re-expressed	101/7	as	1.39	

and	were	discussing	what	factor	two	of	these	one-seventh	subsections	represented.	

David	said	that	two	subsections	should	represent	an	increase	by	a	factor	of	2	times	

1.39,	but	this	was	universally	rejected.	

Summary	of	NWR	2.2.	The	idea	of	subsections	representing	multiplication	

by	a	constant	factor	rather	than	addition	by	a	constant	difference	was	first	

introduced	as	a	warrant	in	Kathy’s	argument	in	Day	2.	This	warrant	was	also	used	to	

reason	about	how	to	place	101/7.	This	repeated	use	of	a	warrant	satisfies	Criterion	3	

of	the	DCA	method	and	provides	evidence	the	idea	was	functioning	as	if	shared	in	

the	classroom.	This	is	corroborated	by	the	students’	rejection	of	David’s	suggestion	

that	they	should	repeatedly	add	1.39	in	the	subsections.	

Summary	of	Math	Practice	2.	This	math	practice	describes	students’	ways	

of	reasoning	as	they	subdivided	segments	of	the	exponential	number	line.	There	

were	two	ways	of	doing	this.	In	NWR	2.1,	students	recognized	a	linear	pattern	in	the	

exponents	and	continued	that	pattern.	In	NWR	2.2,	students	extended	the	macro-

level	exponential	pattern	to	the	subsections.	
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Math	Practice	3:	Finding	Fractional	Exponents	

This	math	practice	deals	with	students	placing	numbers	of	the	form	10a/b	on	

the	number	line.	This	math	practice	is	unique	in	that	it	only	consists	of	one	

normative	way	of	reasoning,	NWR	3.1.	In	this	way	of	reasoning	the	students	rewrote	

10a/b	as	(10a)(1/b),	found	the	segment	from	100	to	10a	and	subdivided	it	into	b	

subsections.	There	was	a	second	way	of	reasoning	that	was	used	to	place	numbers	

of	this	form	as	well,	but	it	did	not	become	normative	because	students	only	used	this	

way	of	reasoning	once	in	whole	class	discussion	(though	it	was	present	on	

homework	and	on	the	final	exam).	In	this	way	of	reasoning,	students	rewrote	10a/b	

as	(101/b)a,	found	the	segment	from	100	to	101	and	subdivided	it	into	b	subsections	

and	then	placed	the	point	at	the	end	of	the	ath	subsection.	This	way	of	reasoning	is	

similar	to	NWR	2.2,	where	students	reasoned	about	how	to	subdivide	a	segment	by	

preserving	the	multiplicative	pattern	that	existed	at	the	macro	level	within	the	

subsections.	Because	of	these	similarities,	the	participants	may	have	felt	it	

unnecessary	to	continue	exploring	this	method	of	placing	points	of	the	form	10a/b.	

This	may	be	why	the	way	of	reasoning	was	only	used	once	and	was	not	established	

as	normative.	

NWR	3.1:	Subdividing	Extents	that	Span	Multiple	Segments.	This	idea	

first	arose	as	students	divided	the	section	of	the	timeline	that	represented	105	into	

two	equal	sections	to	find	10(5/2).	The	idea	then	became	normative	when	the	same	

warrant	was	used	to	reason	about	10(3/4)	as	a	1/4th	segment	of	103.	Again,	the	
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repeated	use	of	the	warrant	provides	evidence	this	was	a	standard	way	of	reasoning	

in	the	class	and	satisfies	Criterion	3	of	the	DCA	method.	

Background	for	Argument	3.1.1.	On	Day	3,	Nathan	made	an	argument	for	

placing	102.5	at	the	midpoint	between	102	and	103	by	saying	that	the	subsections	

should	form	a	multiplicative	pattern	(see	NWR	2.2).	After	he	had	given	his	argument	

the	teacher	asked	students	to	discuss	it	in	small	group.	After	they	had	discussed	it,	

the	teacher	asked	Farah	to	expand	on	his	idea	in	a	whole	class	discussion.	Instead,	

she	said	she	did	it	a	different	way	and	presented	the	seemingly	unrelated	fact	that	

10(5/2)	can	be	rewritten	as	(105)(1/2)	or	as		 10!.		She	then	went	to	the	board,	drew	a	

number	line	with	100	and	105	as	endpoints	and	marked	102.5	at	the	midpoint	(See	

Figure	4.19).	She	then	explained	that	one	could	see	105(1/2)	in	the	number	line	by	

thinking	of	105	as	a	single	section	of	the	timeline,	which	means	105(1/2)	would	be	the	

halfway	point	of	that	section.	At	that	point	Danna	said	she	could	connect	Farah’s	

idea	to	Nathan’s	and	gave	the	following	argument	

Overview	for	Argument	3.1.1.	Danna	claimed	that	the	halfway	point	was	the	

square	root	of	ten	to	the	fifth,	using	as	a	warrant	the	idea	that	the	square	root	of	a	

number	is	the	same	as	the	half	the	distance	of	a	section	of	the	number	line.	In	this	

case,	the	square	root	of	105	would	be	the	halfway	point	of	section	of	the	number	line	

from	100	to	105.	
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Table	4.14:	Coding	for	Argument	3.1.1	
Participant	 Speech	 Action	 Code	

Danna	 So	if	you're	looking	at	ten	to	the	fifth,	
halfway	is	square	root	of	ten	to	the	fifth,	
which	is	also	happens	to	be	ten	to	the	two	
point	five,	that's	all	I'm	saying.	So	that	
square	root	is	half	the	distance	and	we	
know	ten	to	the	two	point	five	is	half.	

Draws	a	number	
line	with	100	and	
105	at	the	ends	
with	102.5	and	
√(10!)	marked	in	
the	middle	
See	Figure	4.24	

Claim	

Chris	 But	that's	between	zero	and	five	and	
we're	working	with...	

	 	

Kathy	 with	two	and	three.	 	 	
Danna	 I	know,	but	it's	the	same	thing	so	there's	

your	three,	there's	your	two.	So	this	is,	the	
square	root's	giving	you	half	the	distance,	
well	it's	half	the	distance	of	this*1.	That’s	
where	the	five	comes	in.	'Cause	two	point	
five	is	half	of	five2.	

*points	to	segment	
from	100	to	105	

1Warrant	
2Data	

Rachel	 Because	we	took	our	original	five	dived	
by	two.	

	 	

Danna	 Yeah.	So	even	though	we're	looking	at	this	
small	section*,	this	shows	that	it	
continues	throughout	the	whole	time	line.	

*sweeps	over	the	
segment	between	
102	and	103	

	

Kathy	 Oh,	interesting.	 	 	
Danna	 Which	is	what	we're	trying	to	show.	 	 	

	 	

	
Figure	4.24:	Danna’s	way	of	finding	105/2	

	
Background	for	Argument	3.1.2.	This	way	of	subdividing	these	larger	

sections	of	the	timeline	was	reiterated	on	the	next	day,	Day	4.	The	teacher	gave	a	

task	that	asked	the	students	to	express	103/4	in	three	ways	and	to	show	each	

expression	on	the	number	line.	At	this	point	in	this	episode,	the	students	had	



131	

	

already	expressed	103/4	as	(101/4)3	and	represented	it	on	the	number	line.	Now	they	

were	exploring	how	to	represent	(103)(1/4)	on	the	number	line.	Here	we	see	Farah	

adopting	Danna’s	warrant	from	the	previous	day.	

Overview	for	Argument	3.1.2.	In	this	argument	Farah	claims	that	if	one	

takes	the	section	of	the	timeline	from	100	to	103	and	divide	it	into	four	subsections,	

the	first	subsection	will	be	(103)1/4.	The	warrant	that	supports	this	idea	is	that	

dividing	the	section	from	100	to	103	into	fourths	is	the	same	thing	as	raising	103	to	

the	one-fourth	power.	

Table	4.15:	Coding	for	Argument	3.1.2	
Participant	 Speech	 Action	 Code	

Teacher	 Let's	get	a	different	model	up	here	of	um...	Did	anybody	
work	with	a	number	line	that	has	the	ten	cubed	on	it?	So	
we've	got	Farah	and	Danna.	Let's	start	with	Farah.	…?	

	 	

	 …	 	 	
Farah	 	So	the	way	I	have	it	is	that	it's	ten	cubed	as	your	

endpoint,	instead	of	ten	to	the	one.	And	then	you	take	a	
fourth	root	of	that1.	So	it's	ten	cubed	to	the	fourth,	which	
is	ten	to	the	three	fourths2.	And	then	I	just	did	it	over	
again	to	reiterate	what	I	was	doing.	

Puts	up	
a	
timeline	
Figure	
4.25	

1Warrant	
2Claim	

Student	 Can	you	repeat	that?	 	 	
Farah	 So	it's	ten	cubed	as	a	whole	and	then	you	take	a	fourth	

root	of	that	whole.	
	 	

Teacher	 Explain	what	that	means	to	take	the	fourth	root	of	that	
whole.	What	are	you	looking	at?	

	 	

Farah	 Well,	you're	looking	at	that	you	can	take	ten,	ten	cubed	to	
the	fourth,	three,	four	times	over	and	get	the	whole	ten	
cubed.	

	 	

	 …	 	 	
Teacher	 …	Okay,	now	I'm	going	to	revoice	Farah.	Thank	you,	but	

I'm	going	to	keep	yours	for	a	second.	Here's	what	I	heard	
her	say.	She	extended	this	to	ten	to	the	third,	she	now	
thought	about	taking	the	fourth	root	of	ten	to	the	third,	
which	is	saying	I	need	a	number	that	times	itself	four	
times	gives	me	what?		

	 Warrant	

Student	 Ten	to	the	third	 	 	
Teacher	 Ten	to	the	third.	And	what	is	ten	to	the	third?	 	 	
Many	 A	thousand	 	 	
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Figure	4.25:	Farah’s	model	of	(103)1/4	

	
Summary	of	NWR	3.1.	This	normative	way	of	reasoning	deals	with	how	

students	can	find	a	number	in	the	form	10a/b	on	the	number	line.	Students	did	this	

by	rewriting	the	number	in	the	form	(10a)1/b,	and	then	subdivide	the	section	from	

100	to	10a	into	b	subsections.	10a/b	was	the	first	of	these	subsections.	This	was	

established	by	Criteria	3	of	the	DCA	method,	as	students	repeatedly	used	this	idea	as	

a	warrant.	

Another	Way	of	Reasoning	about	Fractional	Exponents.	As	was	

mentioned	in	the	background	to	NWR	3.1,	on	Day	4	the	students	were	asked	to	

express	10(3/4)	in	multiple	ways	and	to	show	each	expression	on	the	number	line.	As	

previously	discussed,	Farah’s	representation	of	10(3/4)	as	(103)(1/4)	gave	rise	to	

Argument	3.1.2,	which	helped	established	NWR	3.1.	However,	students	also	

represented	10(3/4)	as	(10(1/4))3.	This	gave	rise	an	alternative	way	of	reasoning	about	

fractional	exponents.	In	this	way	of	reasoning,	students	partitioned	the	segment	

from	100	to	101	into	four	pieces	to	find	10(1/4)	and	then	iterated	this	segment	three	

times	to	find	(10(1/4))3.	This	way	of	reasoning	technically	did	not	become	normative	

because	this	was	the	only	instance	in	which	it	was	used	in	whole	class.	However,	
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there	are	similarities	between	this	way	of	reasoning	and	NWR	2.2,	in	which	students	

subdivided	segments	by	preserving	the	multiplicative	pattern	within	segments.	This	

made	this	way	of	reasoning	with	fractional	exponents	feel	familiar	in	the	class.	This	

combined	with	the	fact	that	this	was	clearly	presented	as	another	way	of	reasoning	

about	10(3/4)	in	whole	class,	on	homework,	and	on	the	final	exam	warrants	a	

discussion	of	this	way	of	reasoning	under	this	math	practice.	

Background	to	the	Argument.	The	students	were	tasked	with	representing	

10(3/4)	in	several	ways	and	showing	those	representations	on	the	number	line.	Their	

discussion	of	these	representations	began	with	Santiago	suggesting	it	could	be	

written	as	(10(1/4))3.	They	then	discussed	how	they	could	find	this	on	the	number	

line.	

Overview	of	Argument.	The	claim	in	this	argument	is	the	location	of	103/4.	

The	warrant	supporting	this	placement	is	that	subdividing	the	segment	from	100	to	

101	into	four	pieces	yields	101/4.	Then,	if	one	takes	the	third	subdivision,	she	gets	

101/4	times	itself	three	times,	which	is	(101/4)3,	which	is	103/4.		This	warrant	was	co-

constructed	by	Samantha	and	Kathy.		
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Table	4.16:	Coding	for	Argument	
Participant	 Speech	 Actions	 Code	

Teacher	 	…What	does	the	ten	to	the	one-quarter	mean?	What	am	I	
doing	with	that?	Samantha.	

	 	

Samantha	 You're	pretty	much	breaking	it	into	four	parts	where	you	
can	multiply	the	same	amount	four	times.	

	 	

Teacher	 Can	you	show	us	with	your	hand,	just	come	up	and	gesture,	
what	you	broke	apart	and	what	you	would	be	multiplying*?	
So	we're	just	trying	to	get	at	the	meaning	of	ten	to	the	one	
quarter.	

*Samantha	
goes	up	

	

Samantha	 	So	this*	you	would	break	it	in	four	parts**,	where	you	
would	multiply	the	same	amount,	which	is	ten	to	the	one	
fourth,	four	times	it	would	give	you	ten	to	the	one.	

*Points	to	
the	101	
**Points	to	
each	of	the	
four	sections	

Warrant	

Teacher	 	And	what	are	you	multiplying	the	ten	to	the	one	fourth	by?	 	 	
	 [Inaudible]		 	 	

Rachel	 	Itself.	 	 	
Teacher	 Itself.	Let's	write	some	expressions	here	to	get	that	

multiplication.	So	can	anybody	write	above	this	what	am	I	
multiplying	the	ten	and	a	one	fourth	by	here*?	What	am	I	
multiplying	it	by	here**?	What	am	I	multiplying	it	by	
here***?	Someone	add	that	as	labeling	to	this?	

*Points	to	
first	
subsection.	
**Points	to	
second	
subsection	
***Points	to	
third	
subsection	
Figure	4.26	

	

Rachel	 Do	it.	 	 	
Teacher	 Kathy,	come	on	up….	 Kathy	comes	

to	the	
document	
camera.	

	

	 …	 	 	
Kathy	 Can	I	write	it	on	the	bottom?	 	 	

Teacher	 You	can	write	it	wherever	you	want.		 	 	
Kathy	 	 Writes	

(101/4)1,	
(101/4)2,	
(101/4)3,	
(101/4)4	
Figure	4.27.	

	

Teacher	 Can	you	explain	what	you	wrote?	 	 	
Kathy	 …	Okay,	because	we're	multiplying	the	one	fourth	every	

time,	I'm	taking	the	power	of	ten	to	the	one	fourth.	So	for	my	
like	first	nitch	I	took	the	power,	well	I'll	do	this	one,	like	ten	
to	the	one	fourth,	I	only	multiplied	it	like	one	time	so	I	took	
it	to	the	power	of	one.	Now	to	get	here	I	need	to	take	ten	to	
the	one	fourth	times	ten	to	the	one	fourth	to	get	these	two	
parts,	so	I	took	ten	to	the	one	fourth	squared,	which	gives	
me	ten	to	the	two	fourths.	Which	is	like	our	nitch	that	we	
had	up	here.	And	then	you	keep	doing1...	Oh	okay	so	here's	
like	my	third	pieces	so	I	needed	to	do	it	three	times	so	I	took	
ten	to	the	one	fourth	three	times	and	we	get	our	point	ten	to	
the	three	fourths2	and	then	I	did	it	four	times.	
	

	 1Warrant	
2Claim	
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Figure	4.26:	The	teacher’s	gestures.	

	

	
Figure	4.27:	Kathy’s	annotations	

	
Summary	of	Way	of	Reasoning.	This	way	of	reasoning	came	up	once	in	

whole	class,	during	a	discussion	of	103/4.	Students	rewrote	this	as	(101/4)3	and	found	

this	point	on	the	line	by	taking	the	segment	from	100	to	101,	subdividing	it	into	four	

subsection,	each	representing	multiplication	by	101/4,	and	then	marking	the	end	of	

the	third	subsection.	

Summary	of	Math	Practice	3.	This	math	practice	deals	with	students	

placing	the	numbers	of	the	form	10a/b	on	the	number	line.	They	did	this	in	two	ways,	

though	only	one	became	normative.	In	the	first	way,	NWR	3.1,	the	students	rewrote	

10a/b	as	(10a)(1/b),	found	the	segment	from	100	to	10a	and	subdivided	it	into	b	
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subsections.	In	the	second	way	of	reasoning,	that	did	not	become	normative,	the	

students	rewrote	10a/b	as	(101/b)a,	found	the	segment	from	100	to	101	and	

subdivided	it	into	b	subsections	and	then	placed	the	point	at	the	end	of	the	ath	

subsection.	

Math	Practice	4:	Reasoning	about	Sequences	

Math	Practice	4	deals	with	how	students	defined	exponential	and	additive	

sequences.	This	practice	consists	of	two	normative	ways	of	reasoning.	First,	the	

students	defined	an	exponential	sequence	as	one	that	had	a	constant	multiple	(NWR	

4.1).	Second,	the	students	defined	an	additive	sequence	as	one	that	had	a	constant	

sum	(NWR	4.2).	

NWR	4.1:		An	Exponential	Sequence	is	one	that	has	a	Constant	Multiple.	

The	definition	of	an	exponential	sequence	as	one	with	a	constant	factor	was	

established	as	a	normative	way	of	reasoning	using	Criterion	3	of	the	DCA	method.	

Erin	used	this	definition	to	claim	that	1,	2,	4,	8	was	an	exponential	sequence	and	

Samantha	used	the	definition	to	claim	10,	21,	32,	43	was	not	an	exponential	sequence.	

Background	to	Argument	4.1.1.	Day	5	began	with	the	teacher	introducing	

the	“Get	Rich	Quick	Task.”	In	this	task,	students	were	asked	to	create	a	number	line	

that	modeled	the	growth	of	money	in	a	magic	bank.	In	this	bank,	one’s	money	tripled	

every	day.	The	teacher	put	the	task	on	the	document	camera	to	launch	it	(Figure	

4.28).	Question	1	asked	students	to	create	an	exponential	number	line	to	represent	

the	growth	of	the	money	in	the	bank	over	time.	Question	2	asked	the	students	to	

find	a	multiplicative	sequence	in	the	number	line.	The	students	had	been	engaging	
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with	the	idea	of	a	multiplicative	sequence	when	they	were	subdividing	segments	

while	developing	their	exponential	number	line	for	the	timeline	task	on	Days	3	and	

4,	but	it	was	formally	defined	in	homework	as	a	sequence	that	had	a	constant	factor	

between	any	two	consecutive	terms	(See	Figure	4.29).	After	they	had	created	a	

number	line	and	were	starting	to	engage	with	Question	2	on	the	“Get	Rich	Quick	

Task,”	the	teacher	broadened	Question	2.	She	simply	asked	for	any	multiplicative	

sequence.	Erin	responded	with	Argument	4.1.1.	

	

	
Figure	4.28:	The	“Get	Rich	Quick	Task”	

	

	
Figure	4.29:	Definitions	of	linear	and	exponential	sequences.	
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Overview	of	Argument	4.1.1.	In	this	argument,	Erin	claimed	that	1,	2,	4,	8	

was	a	multiplicative	sequence.	To	justify	this	claim,	she	used	the	warrant	that	a	

multiplicative	sequence	has	a	common	factor.	She	illustrated	the	common	factors	

using	the	data	that	one	times	two	is	two,	two	times	two	is	four,	etc.	

Table	4.17:	Coding	for	Argument	4.1.1	
Participant	 Speech	 Action	 Code	
Teacher	 Next,	I'm	asking	you	to	identify	one	

multiplicative	sequence	in	your	number	line.	
Can	someone	remind	us	from	the	definition	I	
gave	you	in	homework	twelve?	What's	a	
multiplicative	sequence?	What	makes	it	
multiplicative?	Or	you	can	give	me	an	example	
of	one.	

	 	

Samantha	 Multiplying	by	a	constant	factor.	 	 Warrant	
Teacher	 You're	multiplying	by	a	constant	factor,	in	a	

multiplicative	sequence.	Do	people	agree	with	
her?	One	nod	head.	Two	nod	heads.	Thumbs	
up?	Can	someone	just	write	down	a	
multiplicative	sequence	for	us?	Not	necessarily	
for	this	bank	of	magic,	but	just	any	example.	
And	put	it	on	the	board.	Can	you	raise	your	
head,	hand	if	you	have	one?	Do	you	have	one	
Erin?	Awesome	

	 Warrant	

Erin	 	 Writes:	1,	2,	4,	
8.	Then	
underneath	
1x2,	2x2,	4x2	

Claim	

Teacher	 So	can	you	explain	your	thinking?	 	 	
Ericka	 Well,	when	we	have	this	order	of	numbers*	you	

start	with	one.	One	times	two	is	two,	then	we	go	
to	that	number	two**	times	two	is	four,	four	
times	two	is	eight,	and	so	on.	

*points	to	1,	2,	
4,	8	
**points	to	2	

Data	

Teacher	 So	a	multiplicative	sequence	has	a	common	
factor.	This	one	has	what	common	factor	here?	

	 Warrant	

Many	 Two.	 	 	
Teacher	 Two.	 	 	

	
Background	to	Argument	4.1.2.	As	students	continued	to	discuss	what	an	

exponential	sequence	was,	the	teacher	asked	students	if	the	following	statement	

was	true,	“An	exponential	sequence	is	one	in	which	each	term	is	expressed	using	

exponents	or	scientific	notation.”	After	talking	about	it	small	groups,	the	teacher	
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found	everyone	appeared	to	disagree	with	the	statement.	She	then	asked	someone	

to	put	up	a	counter	example.	Samantha	provided	one	in	Argument	4.1.2.	

Overview	of	Argument	4.1.2.	In	this	argument,	Samantha	claimed	that	10,	21,	

32,	43	was	not	an	exponential	sequence.	Danna	helped	explain	why.	She	argued	that	

it	was	not	an	exponential	sequence	since	it	did	not	have	a	common	factor.	While	the	

fact	that	a	common	factor	was	not	present	was	treated	as	data,	the	warrant	

connecting	the	data	and	claim	was	the	definition	of	an	exponential	sequence,	namely	

a	sequence	that	has	a	common	factor.	
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Table	4.18:	Coding	for	Argument	4.1.2	
Participant	 Speech	 Action	 Code	

Teacher	 Can	anybody	express	a	counterexample	with	
exponents?	In	other	words,	I	want	a	sequence	that	can	
be	written	with	exponents,	but	it	is	not	an	exponential	
sequence?	Get	what	I'm	saying?	It	can	be	written	with	
exponents,	but	it's	additive,	not	multiplicative.	Okay,	
your	group	seemed	like	you	had	something.	Samantha,	
do	you	want	to	share?	

	 	

Samantha	 Do	I	write	it	down?	 	 	
Teacher	 You	can	put	it	on	the	board,	or	you	can	put	it	on	the	

document	cam.	So	she's	producing	a	sequence	that's	
actually	additive	or	linear,	arithmetic,	not	exponential	
that	she's	going	to	use...	So,	tell	us	about	that.	

	 	

Samantha	 Well	it's	increasing	by	one	and	so	are	the	exponents,	
but	it's	not	exponential,	it's	not	an	exponential	
sequence.	

Writes	on	
the	board	
10,	21,	32,	
43	

Claim	

Teacher	 It's	not	exponential.	…	Do	other	people	agree	that	it's	
not	exponential?	Can	I	get	someone's	reaction?	Danna?	
What	do	you	think?	

	 	

Danna	 Well,	I	mean	you	go	from	one	to	the	second	one,	or	…	
one	to	two,	so	you	multiply	it	by	two,	but	the	to	the	
next	one	it's	to	nine,	so	you're	not	multiplying	by	the	
same	number.	

	 Data	

Teacher	 You're	not	multiplying	by	the	same	number.	What	do	
you	say	Kathy?	

	 Data	

Kathy	 …	Can't	we	say	it	is	exponential	because	things	are	
growing	exponentially?	If	I	had	a	chart	and	I	changed	
those	into	whole	numbers	to	me	like	things	are	
growing	exponentially,	just	not	at	a	constant	rate,	
constant	factor.	

	 	

Danna	 But	that's	how	we're	classifying	exponentially,	is	it	has	
to	have	a	constant	factor.	So	while	they	have	
exponents,	they're	not	an	exponential	sequence.	And	
that's	what	we're	saying.	

	 Warrant	

	
Summary	for	NWR	4.1.	Students	reasoned	about	exponential	sequences	

using	the	definition	that	an	exponential	sequence	is	one	in	which	the	terms	differ	by	

a	constant	factor.	This	definition	was	used	to	reason	about	several	sequences.	

Students	used	it	as	a	warrant	to	justify	the	claim	that	1,	2,	4,	8	was	an	exponential	

sequence	and	that	10,	21,	32,	43	was	not	an	exponential	sequence.	These	instances	of	

the	use	of	this	definition	as	a	warrant	satisfy	Criterion	3	of	the	DCA	method.	
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NWR	4.2:	An	Additive	Sequence	is	one	that	has	a	Constant	Sum.	The	

definition	of	an	additive	sequence	as	one	with	a	constant	sum	was	introduced	as	a	

warrant.	However,	as	the	class	progressed,	these	arguments	became	more	

truncated,	with	the	warrant	becoming	implicit.	Thus,	Criterion	1	of	the	DCA	method	

was	satisfied.	

Background	to	Argument	4.2.1.	On	day	5,	right	after	the	students	had	

defined	a	multiplicative	sequence,	the	teacher	asked	the	students	what	an	additive	

sequence	was.	This	had	been	defined	on	the	homework	(See	Figure	4.24),	and	Tanya	

reminded	the	class	of	the	definition.	The	teacher	then	asked	for	an	example,	which	

Tanya	provided.	

Overview	of	Argument	4.2.1.	Tanya	gave	the	example	of	1,	2,	3,	4.	Since	this	

was	in	response	to	the	teacher’s	request	for	an	additive	sequence,	Tanya	was	

claiming	that	1,	2,	3,	4	is	an	additive	sequence.	The	data	supporting	this	claim	is	that	

constant	sum	is	one	and	the	warrant	connecting	the	data	to	the	claim	is	the	

definition	of	an	additive	sequence,	one	that	has	a	constant	sum.	
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Table	4.19:	Coding	for	Argument	4.2.1	
Participant	 Speech	 Action	 Code	
Teacher	 ….Can	someone	remind	us	what	an	additive	

sequence	is?	If	we	could	get	a	couple	hands	up,	
can	someone	tell	me	what	an	additive	sequence	
is.	I'm	going	to	wait	until	a	few	people	who	
haven't	responded	yet	at	all	put	their	hands	up.	
I	want	to	try	to	get	good	participation	today.	
Can	I	hear	from	someone	I	haven't	heard	from	
yet	today?	Tanya,	what's	an	additive	sequence?	

	 	

Tanya	 When	you	add	the	same	number.	 	 Warrant	
Teacher	 When	you	add	the	same	number	as	you	go.	Can	

you	give	us	an	example?	Can	you	come	write	it?	
	 	

Tanya	 	 writes	1,	2,	
3,	4;	and	
then	under	
1+1,	2+1,	
3+1	

Claim	

Teacher	 So	as	she	writing	this	I	want	you	to	think	of,	
she's	saying	there's	a	constant	sum,	what	is	the	
constant	sum?	

	 	

Many	 One.	 	 Data	
Teacher	 One.	Adding	one	to	each	success	term.		 	 	

	
Background	Argument	4.2.2.	After	students	reacted	to	the	statement	“An	

exponential	sequence	is	one	in	which	each	term	is	expressed	using	exponents	or	

scientific	notation,”	they	returned	to	the	“Get	Rich	Quick	Task.”	Question	3	asked	

students	to	find	an	example	of	an	additive	sequence	on	the	number	line	had	been	

working	on.	The	teacher	asked	Jade	to	find	one.	She	came	to	board	pointed	to	the	

writing	was	still	on	the	board	from	their	discussion	of	exponential	sequences,	“30	x	

3,	31	x	3,	32	x	3,	33	x	3”	(see	Figure	4.30),	and	explained	that	the	powers	of	3	form	an	

additive	sequence.	
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Figure	4.30:	The	exponents	form	an	additive	sequence.	

	
Overview	of	Argument	4.2.2.	In	this	argument	Jade	claimed	that	1,	2,	3	form	

an	additive	sequence.	Lacey	explains	why	this	is	an	additive	sequence,	by	pointing	

out	that	there	is	a	constant	sum	of	one.	The	existence	of	a	constant	sum	serves	as	

data	in	this	argument.	The	warrant	would	be	the	definition	of	an	arithmetic	

sequence	as	one	that	has	a	constant	sum,	however	this	is	never	articulated	explicitly.	
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Table	4.20:	Coding	for	Argument	4.2.2	
Speaker	 Speech	 Action	 Code	
Teacher	 …	An	additive	sequence,	number	three.	So,	can	somebody	

write,	raise	your	hand	if	you	think	you	can	identify	an	
additive	sequence	on	Kathy's	number	line?	…	Jade.	Can	you	
write	yours	up	on	the	board?	

	 	

Jade	 Can	I	use	this?	 Points	to	30	x	3,	
31	x	3,	32	x	3,	
33x	3	on	the	
board.	
Figure	4.25.		

	

Teacher	 Yep,	you	want,	what	do	you	want	to	point	out?	 	 	
Jade	 So,	the	additive	sequence,	the	constant	sum,	would	be	the	

power	of	one	on	the	three*.	So	we	add	the	power,	zero	plus	
one	would	give	me	two**,	wait,	wait,	sorry***,	I’m	like,	I’m	
nervous,	sorry...	

Puts	an	
exponent	of	one	
on	all	the	x3s	
*points	to	the	
x3	
**writes	0+1	=	2	
***Changes	it	to	
0+1	=	1	

	

Teacher	 Well	we’re	glad	you	got	up	there.	You’re	brave.	 	 	
Jade	 And	then	one	plus,	I’m	talking	about	the	powers	here,	one	

plus	one	equals	two,	then	two	plus	one	equals	three.	
Writes	1	+	1	=2;	
2+1	=	3	

Data	

Teacher	 Jade,	Can	you	circle	each	member	in	the	sequence	that	
you’re	seeing.	

	 	

	 [Jade	circled	the	exponents	in	the	x31,	but	then	Chris	helped	
her	identify	the	exponents	1,	2,	3,	etc.]	

	 	

Jade	 Oh,	sorry.		 Circles	the	
exponents	of	0,	
1,	2,	3	

Claim	

Teacher	 What	do	you	think	about	Chris’	suggestion,	Jade?	 	 	
Jade	 I	think	that’s	what	I	meant.	Yeah.	This	would	be	the	one	over	

here.	
	 	

Teacher	 So	do	people	agree	that	that	forms	an	arithmetic	sequence?		 	 Claim	
Students	 Yes	 	 	
Teacher	 Kay,	what’s	the	constant	sum?	[inaudible]	Alright,	how	

would	you	describe	that	one?	How	would	you	describe	that	
sequence?	Does	anyone	have	a	different	way	of	saying	it?	
Thank	you	Jade.	Lacey?	

	 	

Lacey	 I	was	just	looking	at	the	exponents	and	ignoring	the	base	
and	using	that	as	an	additive	sequence1,	where	you	go	from	
zero	to	one,	and	then	one	to	two,	you’re	adding	one	each	
time2.	

	 1Claim	
2Data	

Teacher	 Okay,	so	it’s	important	to	say	the	exponents	themselves	are	
forming	the	additive	sequence.	We	are	not	saying	that	this	
[circles	the	whole	sequence	with	her	finger]	forms	an	
additive	sequence.	Just	the	exponents.	This	was	actually	
really	important	as	you	probably	saw	in	that	youtube	video.	
This	is	a	huge	insight	that	Napier	had	historically,	fifteen,	
sixteen	hundreds.	That	you	had	in	a	number	line	like	this	
both	arithmetic	and	geometric	sequences	or	we	can	say	it	
exponential	and	linear	or	additive	and	multiplicative,	
however,	whichever	one	you	want	to	use.	And	um	
coordinating	those	was	very	important	thing,	which	we’re	
going	to	work	on	a	little	bit	more	in	[??].		
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Summary	of	NWR	2.2.	In	this	normative	way	of	reasoning,	students	

established	the	definition	of	an	additive	sequence	as	one	that	had	a	constant	sum.	

When	determining	whether	or	not	a	sequence	was	arithmetic,	students	looked	for	a	

constant	sum.	In	early	arguments,	the	constant	sum	was	explicitly	mentioned	as	the	

definition	of	an	arithmetic	sequence.	However,	reference	to	the	definition	quickly	

dropped	off	in	subsequent	arguments	satisfying	Criterion	1	of	the	DCA	method.		

Summary	of	Math	Practice	4.	Math	Practice	4	dealt	with	two	ways	of	

reasoning	about	sequences.	In	NWR	4.1	students	used	the	definition	of	an	

exponential	sequence	as	one	in	which	there	is	a	constant	multiplicative	factor	to	

determine	whether	or	not	particular	sequences	were	exponential.	Similarly,	in	NWR	

4.2	students	used	the	definition	of	an	additive	sequence	as	one	in	which	there	is	a	

constant	sum	to	argue	particular	sequences	were	additive.	

Math	Practice	5:	Interpreting	Logarithms	

This	math	practice	deals	with	the	three	ways	of	interpreting	the	word	

logarithm	that	were	established	in	the	class	community.	The	word	logarithms	was	

first	introduced	in	the	timeline	context.	When	deciding	how	to	place	times	that	were	

not	written	as	a	power	of	ten,	students	suggested	using	logarithms.	This	lead	to	the	

first	accepted	meaning	in	the	class,	which	was	a	logarithm	is	an	exponent	(NWR	

5.1).	The	students	then	used	this	definition	to	interpret	logarithmic	statements	in	

the	magic	bank	context.	Two	interpretations	became	accepted	in	the	class.	First,	a	

logarithm	could	be	interpreted	as	the	day	on	which	a	person	had	accumulated	a	

given	amount	of	money	in	the	bank	(NWR	5.2).	The	second	interpretation	was	that	
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the	logarithm	was	the	number	of	days	it	took	to	increase	one’s	fortune	by	a	

particular	factor	(NWR	5.3).	

NWR	5.1:	Logarithms	are	Exponents.	It	is	important	to	mention	that	it	is	

possible	that	different	students	interpreted	the	statement	“a	logarithm	is	an	

exponent”	differently	as	at	times	students	talked	about	the	number	of	times	one	

needs	to	multiply	a	number	by	itself	(e.g.,	Argument	5.1.1),	while	at	other	times	

students	manipulated	symbols	to	find	the	appropriate	exponent	(e.g.,	Argument	

5.1.3).	In	the	class	community,	these	two	interpretations	were	treated	as	consistent	

with	each	other	and	with	the	definition	of	a	logarithm	as	an	exponent.	In	other	

words,	while	the	meaning	of	an	exponent	was	never	explicitly	talked	about	in	the	

class,	it	seemed	to	be	taken-as-shared	from	the	beginning	that	the	idea	of	repeated	

multiplication	is	consistent	with	the	idea	of	exponentiation.	Therefore,	I	treat	both	

types	of	warrants	as	support	for	the	idea	of	“A	logarithm	is	an	exponent”	as	

functioning	as	if	shared	in	the	class.		

Overview	of	the	Development	of	NWR	5.1.	The	definition	of	a	logarithm	as	

an	exponent	began	to	function	as	if	shared	in	the	class	community	when	the	warrant	

dropped	off,	fulfilling	Criterion	1	of	the	DCA	method.	In	the	beginning,	students	

justified	their	calculations	of	logarithms	by	appealing	to	the	definition	one	as	an	

exponent.	Eventually,	the	explicit	mention	of	the	definition	was	no	longer	necessary.	

Rather,	students	implicitly	used	the	definition	to	reason	about	logarithms,	but	did	

not	mention	the	definition	in	their	arguments.	
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Background	to	Argument	5.1.1.	This	argument	was	advanced	at	the	end	of	

Day	3.	Students	had	been	working	on	a	worksheet	that	asked	them	to	place	the	bow	

and	arrow	(see	Argument	2.1.2)	and	the	Ordovician	period	(see	Argument	2.1.3).	

The	last	question	on	this	worksheet	asked	them	to	consider	how	they	would	place	

the	cave	paintings	(See	Figure	4.31).	The	students	suggested	it	would	be	helpful	to	

write	20,000,	the	number	of	years	ago	cave	paintings	appeared,	as	a	power	of	ten.	

The	teacher	then	put	up	a	table	of	several	numbers	written	in	both	standard	form	

and	scientific	notation	and	as	a	power	of	10	(see	Figure	4.32)	and	asked	how	they	

thought	she	got	those	numbers.	Farah	answered,	“logarithms.”	The	teacher	asked	

the	students	to	talk	in	their	small	groups	about	what	they	remembered	about	a	

logarithm.	As	they	shared	what	their	groups	talked	about,	Farah	suggested	that	a	log	

gives	you	an	exponent.		The	teacher	then	recorded	this	idea	on	the	board	by	writing	

“A	logarithm	is	an	exponent”.	After	writing	this	on	the	board,	the	teacher	

encouraged	the	students	to	use	the	idea	to	reason	about	the	expression	log3	81.	

	

	
Figure	4.31:	Cave	Paintings	Task.	
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Figure	4.32:	Table	of	times.	

	
Overview	of	Argument	5.1.1.	In	this	argument	Julia	claimed	that	log3	81	was	

equal	to	four.	She	justified	her	argument	by	pointing	out	that	three	multiplied	by	

itself	four	times	is	eighty-one,	which	functioned	as	data	in	her	argument.	She	

seemed	to	think	of	this	an	explanation	in	and	of	itself,	however,	the	teacher	made	

explicit	the	warrant	by	pointing	out	the	exponent	is	the	logarithm.	

Table	4.21:	Coding	for	Argument	5.1.1	
Speaker	 Speech	 Action	 Code	
Teacher	 …	The	logarithms	are	the	exponents.	’K,	now	just	

keep	that	in	mind,	a	logarithm	is	an	exponent.		I'm	
going	to	give	a	problem,	don't	enter	anything	into	a	
calculator,	just	think	about	it.	…	Okay.	These	are	
just	thinking	problems	with	the	idea	that	a	
logarithm	is	an	exponent.	…	What	do	you	think	the	
log	of	eight-one	in	base	three	is?	What	is	the	log	of	
eighty-one	in	base	three*?	Just	think	it's	an	
exponent.	…	Okay,	Julia,	what	do	you	think	the	
logarithm	of	eighty-one	is?	

*writes	log3	81	
on	the	board.	

	

Julia	 Four.	 	 Claim	
Teacher	 Four.	Why?	 	 	

Julia	 Because	you	multiply	three	times	itself	four	times	
to	get	eighty-one.	

	 Data	

Teacher	 Because	you	multiply	three	times	itself	four	times	
that	is	the	logarithm*.	That	exponent	is	the	
logarithm	of	eighty-one	in	base	three.		

*Writes	3	•	3	•	3	
•	3	and		34	on	
the	board,	
circles	the	4	and	
points	to	it.	
Figure	4.33.	
	

Warrant	
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Figure	4.33:	“That	exponent	is	the	logarithm.”	

	
Background	Argument	5.1.2.	The	teacher	continued	to	pose	logarithm	

problems	where	students	needed	to	use	the	definition	to	reason	about	them.	

However,	as	they	did	more	and	more	problems	that	increased	in	complexity,	the	

explicit	mention	of	the	definition	dropped	off.	For	example,	one	of	the	questions	the	

teacher	asked	was	which	of	log3	30	and	log5	30	was	bigger.		After	some	talk	in	their	

groups	Danna	gave	an	argument	for	why	log3	30	was	larger.	

Overview	of	Argument	5.1.2.	Danna	claimed	that	log3	30	was	bigger.	She	

then	pointed	out	that	33	was	27	and	52	was	25,	but	did	not	explicitly	say	why	that	

data	supported	her	claim.	Rachel	then	gave	a	more	general	argument	saying	that	

since	the	base	was	smaller	you	would	need	to	multiply	it	by	itself	more	times.	

However,	she	also	did	not	offer	any	specific	warrant.	
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Table	4.22:	Coding	for	Argument	5.1.2	

Participant	 Speech	 Action	 Code	
Teacher	 Are	we	ready?	Let's	hear	some	reasoning.	I'm	going	

to	call	on	a	couple	people?	Danna?	
	 	

Danna	 Well	you	have	to	multiply	three	by	itself	more	times	
to	get	to	thirty	than	you	do	with	five.	And	the	way	I	
thought	about	it	is...	

	 	

Teacher	 Which	one's	bigger?	This	one	or	this	one?	This	one?	 	 	
Danna	 Yeah.	Base	three.	 	 Claim	

Teacher	 Why?	 Circles	log3	
30	

	

	 …	 Danna	comes	
to	the	board	

	

Danna	 Just	for	getting	close	to	it	without	going	over,	three	
to	the	three	is	twenty-seven*	so	you	know	it's	bigger	
than	three	to	the	third.	Or	so	you	know	it's	bigger	
than	three**	and	this	one	is,	you	know	five	squared	
gives	you	twenty-five***,	so	it's	bigger	than	two****,	
but	you	know	it's	not	bigger	than	three.	

*Writes	33	=	
27	on	the	
board.	
**Writes	3	on	
the	board.	
***Writes	52	
=	25.	
****Writes	
>2.	
Figure	4.34	

Data	

Teacher	 That's	one	way	to	think	about	it.	Is	there	a	different	
way	to	think	about	it?	Without	even	calculating	
anything?	In	fact...	

	 	

Rachel	 The	base	is	smaller,	I	mean	it's	the	same	process,	
just	without	writing	anything	down,	but	the	base	is	
smaller	with	the	three	so	you	need	a	bigger	
exponent	to	get	to	the	thirty	than	you	would	with	
five	with	a	larger	base.	

	 	

Teacher	 So	you	don't	really	have	to	calculate	anything.	You	
need	a	bigger	number	because	the	base	is	smaller.	

	 	

	

	
Figure	4.34:	Danna’s	work	to	argue	log3	30	is	bigger.	
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Another	Argument	without	the	Warrant.	There	were	other	arguments	in	

which	students	used	the	definition,	but	did	not	explicate	it.	On	Day	4,	after	students’	

had	engaged	with	the	fractional	exponents	tasks	(see	Math	Practice	3),	the	teacher	

returned	to	logarithm	problems.	One	of	the	more	difficult	problems	they	worked	on	

was	calculating	log4	8	using	the	definition	of	a	logarithm.	After	talking	in	their	small	

groups	for	a	few	minutes,	Samantha	suggested	the	answer	was	3/2.	She	said,	“I	did	

four	to	the	x	equals	eighty.”	She	then	preformed	algebraic	manipulations	to	arrive	at	

x	=	3/2	(see	Figure	4.35).	Notice	that	as	in	Argument	5.1.2,	there	is	no	explanation	

that	the	logarithm	is	the	exponent.	Rather,	this	is	simply	assumed	as	Samantha	

writes	4x	=	8.	

	

	
Figure	4.35:	Samantha’s	work.	
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Summary	of	NWR	5.1.	The	definition	of	logarithm	as	an	exponent	was	first	

advanced	on	Day	3.	Students	then	used	this	definition	to	calculate	and	reason	about	

various	logarithms	on	both	Days	3	and	4.	Initially	when	students	reasoned	about	

these	logarithm	problems,	they	justified	their	arguments	by	talking	about	the	

interpretation	of	logarithms	as	exponents.	However,	as	the	problems	became	more	

complex	they	no	longer	appealed	to	the	definition	in	their	justifications.	Since	these	

warrants	dropped	off	as	time	passed,	Criterion	1	of	the	DCA	method	is	satisfied	and	

there	is	sufficient	evidence	that	the	way	of	reasoning	was	normative	in	the	

community.	

NWR	5.2:	The	“On	What	Day”	Interpretation	of	Logarithms.	During	the	

“Get	Rich	Quick”	task	students	leveraged	their	definition	of	a	logarithm	to	develop	

two	meanings	for	a	logarithm	in	the	context	of	the	problem.	In	the	first	meaning,	the	

argument	of	the	logarithm	represented	an	amount	of	money	while	the	logarithm	

itself	represented	the	day	you	had	that	amount	of	money.	For	example,	log3	(9)	=	2	

would	be	the	day	you	had	$9,	which	would	be	day	2.	In	the	second	meaning,	the	

logarithm	represented	an	amount	of	elapsed	time,	while	the	argument	represented	

the	factor	by	which	the	money	increased	over	that	time.	Using	this	interpretation	

log3	(9)	=	2	would	mean	it	takes	2	days	for	your	money	to	increased	by	a	factor	of	9.	

The	first	of	these	interpretations	is	NWR	5.2	and	the	second	is	NWR	5.3.	Both	of	

these	interpretations	were	then	used	to	make	sense	of	the	product	rule.	

Overview	for	the	development	of	NWR	5.2.	In	this	normative	way	of	

reasoning,	students	interpreted	log3	(x)	as	the	day	on	which	one	has	x	dollars	in	the	
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bank.	This	was	established	using	Criterion	2	of	the	DCA	method.	Julia	began	Day	5	

by	arguing	that	this	interpretation	was	valid.	In	her	argument	the	interpretation	

functioned	as	the	claim.	Then	on	Day	6,	the	students	used	this	interpretation	to	

make	sense	of	the	product	rule	log	(ab)	=	log	(a)	+	log	(b).		In	this	argument,	the	

interpretation	functioned	as	data.	This	shift	satisfies	Criterion	2.	

Background	for	Argument	5.2.1.	On	Day	5,	the	students	were	working	on	

the	“Get	Rich	Quick”	task.	In	this	task	they	were	asked	to	create	a	number	line	that	

represented	the	growth	of	their	money	in	a	magic	bank	and	find	exponential	and	

arithmetic	sequences	in	their	line	(see	Math	Practice	4).	After	finding	the	arithmetic	

and	exponential	sequences,	students	were	supposed	to	write	an	expression	that	

gave	the	day	on	which	one	would	become	a	millionaire	using	this	bank	(see	Figure	

4.36).	David	suggested	the	expression	log3	(106),	because	a	million	is	106.	The	

teacher	then	asked	the	students	to	work	in	their	small	groups	and	write	two	or	

three	more	logarithmic	statements.	After	they	had	time	to	do	this	Julia	presented	

her	group’s	work.	

	

	
Figure	4.36:	Question	4	in	the	“Get	Rich	Quick”	Task	

	
Overview	for	Argument	5.2.1.	In	this	argument	Julia	used	as	data	the	

interpretation	of	a	logarithm	as	an	exponent.	She	wrote	log3	81	and	referred	to	

logarithm	as	“The	power	that	we	raise	three	to	to	get	eighty-one.”	She	then	use	that	
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fact	to	support	her	claim	that	this	logarithm,	the	exponent,	should	represent	a	

particular	day.	

Table	4.23:	Coding	for	Argument	5.2.1	
Participant	 Speech	 Action	 Code	

Teacher	 So	Julia's	going	to	write	one	for	us	and	tell	us	what	it	
means…	

	 	

Julia	 So	we	want	to	know	three	to	what	power	gives	us	eighty-
one1	and	that	power	is	going	to	represent	what	day	that	
person	has	eighty-one	dollars2.	

Writes	
log3	81	

1Data	
2Claim	

Teacher	 What	do	you	guys	think	of	that?	 	 	
Kathy	 Nice.	 	 	

Teacher	 Nice.		 	 	
Student	 Can	you	say	that	again?	 	 	
Teacher	 Say	it	again.	 	 	

Julia	 The	power	that	we	raise	three	to	to	get	eighty-one	
represents	the	day	that	that	person	will	have	eighty-one	
dollars.	

	 Claim	

Teacher	 And	what	should	it	be?	What	should	the	answer	be	here?	 	 	
Many	 Four	 	 	

	
Background	for	Argument	5.2.2.	NWR	5.2	became	accepted	on	Day	6,	when	

students	began	to	make	sense	of	the	product	rule.	Day	6	began	with	a	short	review	

after	which	the	class	discussed	the	following	problem:	“Suppose	you	look	at	your	

bank	account	and	record	how	much	money	you	have.	The	next	time	you	look,	you	

have	81	times	as	much	money.	How	much	time	passed	between	the	two	observation	

points?”	This	gave	rise	to	the	idea	of	looking	at	a	logarithm	as	the	number	of	elapsed	

days,	with	the	argument	of	the	logarithm	being	the	factor	of	increase,	rather	than	an	

amount	of	money	(as	in	NWR	5.2).	With	this	interpretation,	they	were	well	

positioned	to	make	sense	of	the	product	rule	using	both	interpretations.	This	rule	

came	up	when	the	teacher	asked	them	what	log3	(3	•	27)	meant	in	the	banking	

context.	After	some	time	discussing	in	small	group,	Erin	wrote	the	following	series	

of	equations	on	the	board:	log3	(3x27)	=	log3	(3)	+	log3	(27)	=	1	+	3	=	4.	The	teacher	

then	asked	the	class	to	make	sense	of	each	of	logarithm	statements.		
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Argument	5.2.2.	In	this	argument	5.2.2	students	claimed	that	log3	(3)	is	the	

day	on	which	one	has	$3.	It	is	important	to	note	that	here	that	the	claim	is	not	that	a	

logarithm	can	be	interpreted	as	the	day	on	which	you	have	a	particular	amount	of	

money	as	was	the	case	in	Argument	5.5.1,	but	which	of	the	two	interpretations	

should	be	used	for	this	specific	logarithm.	Thus,	the	particular	interpretation	is	used	

as	data.	

Table	4.24:	Coding	for	Argument	5.2.2	
Participant	 Speaker	 Action	 Code	

Teacher	 What	does	each	of	these	things	mean?	Is	this*	a	
dollar	amount,	a	factor,	a	number	of	days	or	
something	else?		

*traces	a	circle	
around	the	second	
3	in	log3	3.	

	

	 …	 	 	
Several	 It's	a	dollar.	 	 	
Teacher	 So	you	think	this	one's	a	dollar?	 	 	
Nathan	 It	depends	on	how	you	look	at	it	 	 Data	
Teacher	 It	depends	on	how	you	look	at	it.		 	 	
Nathan	 One	of	them's	probably	a	dollar.	 	 	
Teacher	 So	there	are	multiple	ways	for	us	to	interpret	

this.	Let's	start	here	and	see	what	sense	we	
make	of	it.	So,	if	this	is	a	dollar	amount,	what	
question	is	this*	posing?	

Draws	a	square	
around	log3	3	

Data	

Multiple	 On	what	day	will	you	have	three	dollars?	 	 Claim	
Teacher	 So	what's,	what's	the	answer	to	that?		 Writes	“On	what	

day	do	I	have	3	
dollars?”	

	

Several	 One	 	 	
Teacher	 So	that	one	means	day	one.		 Labels	the	1	in	1	+	

3	as	“day	1.”	
Claim	

	
	 Summary	of	NWR	5.2.	In	this	normative	way	of	reasoning,	students	

interpreted	log3	(x)	as	the	day	on	which	one	has	x	dollars	in	the	bank.	This	was	

established	as	students	first	argued	that	one	could	interpret	a	logarithm	in	this	way	

and	then	argued	that	a	particular	logarithmic	expression	should	be	interpreted	in	

this	way.	In	this	way,	the	interpretation	moved	from	a	claim	to	data,	fulfilling	

Criterion	2	of	the	DCA	method.	
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NWR	5.3:	The	Factor	Interpretation	of	Logarithms.	NWR	5.3	is	another	

interpretation	of	logarithmic	statements	in	the	banking	context—that	the	log3	(x)	

could	represent	the	number	of	days	it	takes	to	increase	one’s	fortune	by	a	factor	of	x.	

This	contrasts	to	the	interpretation	in	NWR	5.2	where	students	interpreted	x	as	an	

amount	of	money	and	the	logarithm	as	a	particular	day.	

Overview	of	the	Development	of	NWR	5.3.	This	normative	way	of	reasoning	

developed	in	a	similar	way	to	NWR	5.2.	First,	students	argued	for	this	definition	on	

Day	6.	Then,	when	interpreted	the	product	rule	they	took	this	interpretation	as	data	

and	argued	which	interpretation	corresponded	to	various	log	statements	in	the	

equation	log3	(3x27)	=	log3	(3)	+	log3	(27).	Again,	this	shift	in	the	interpretation’s	

function,	from		claim	to	data	fulfills	Criterion	2	of	the	DCA	method.	

Background	to	Argument	5.3.1.	The	foundation	for	this	normative	way	of	

reasoning	was	laid	at	the	end	of	Day	5	when	as	students	explored	the	question	of	

how	much	more	a	person	would	have	on	Day	9	of	their	investment	than	they	did	on	

Day	6.	This	led	to	students	thinking	about	the	factor	by	which	money	increased	over	

a	period	of	three	days.	Students	found	the	answer	to	this,	that	the	money	increased	

by	a	factor	of	27,	and	also	noticed	that	27	was	33.	This	led	to	the	noticing	of	

relationships	among	the	exponents,	particularly	that	the	exponent	of	3	in	33	is	the	

difference	in	the	exponents	of	39	and	36,	the	amounts	of	money	one	has	on	days	nine	

and	six.	However,	at	this	point	the	students	did	not	connect	this	to	logarithms.	



157	

	

The	next	day,	Day	6,	began	with	the	teacher	giving	them	a	summary	sheet,	

which	had	the	number	line	they	had	developed	the	day	before.	The	teacher	then	

gave	them	following	prompt.	

Suppose	you	look	at	your	bank	account	and	you	record	how	much	
money	you	have.	The	next	time	you	look,	you	have	81	times	as	much	
money.	How	much	time	has	passed	between	the	two	observation	
points?		

	
The	students	claimed	the	answer	was	four	and	articulated	several	different	

four-day	spans	of	time	where	the	money	increased	by	a	factor	of	eighty-one.	They	

also	annotated	the	number	line	on	the	summary	sheet	to	show	how	these	passages	

of	time	were	represented	on	the	line	(see	Figure	4.37).	The	teacher	then	asked	them	

to	explore	a	particular	passage	of	four	days	from	Day	6	to	Day	10.	This	question	led	

to	Argument	5.3.1.	In	this	argument,	the	teacher	asked	the	students	to	write	a	

logarithmic	statement	and	interpret	it.	This	led	to	the	interpretation	of	a	logarithm	

as	a	number	of	elapsed	days	corresponding	to	an	increase	by	a	particular	factor.	

	

	
Figure	4.37:	Annotations	on	the	summary	sheet	showing	passages	of	four	days.	

	
Overview	for	Argument	5.3.1.	Similar	to	Argument	5.2.1,	the	claim	of	this	

argument	centers	on	which	interpretation	should	be	used.	Several	students	suggest	

that	log	the	logarithm	should	be	viewed	as	the	number	of	elapsed	days	it	takes	
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increase	one’s	fortune	by	a	factor	of	eighty-one.	The	actual	calculation	of	the	

logarithm,	that	log3	81	is	4,	serves	as	data	in	this	argument.	
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Table	4.25:	Coding	for	Argument	5.3.1	
Participant	 Speech	 Action	 Code	
Teacher	 …Before	we	go	there,	can	we	just	write	a	

statement	right	in	here*?	What	if	I	wrote	log	of	
eighty-one	in	base	three?	What	would	that	be?	

Gestures	to	the	
segment	from	729	
to	59,046	

	

Several	 Four	 	 Data	
Teacher	 And	what	would	that	mean	here*?	 Pointing	to	the	36	

x	81	stuff	
	

Kathy	 Number	of	days	that	have	passed.	 	 Claim	
Teacher	 Number	of	days	that	have	passed	for	what?	 	 	
Rachel	 Every	four	days	you	get	eighty-one	times	as	

more	money	as	you	had.		
	 Claim	

Teacher	 Every	four	days	you	get	eighty-one	times	much	
as	money	as	you	had.	Now	notice	that	that's	
different	than	here.	On	Tuesday	you	said	the	log	
of	eighty-one	in	base	three	meant	on	what	day	
you'll	have	eighty-one	dollars	in	the	bank.	Now	
let's	get	down	another	meaning.	I	want	someone	
to	dictate	to	me.	Could	someone	rephrase	what	
she	said?	I’m	not	going	to	put	the	four	in	there,	
I'm	just	going	to	pose	it	as	a	question.	Now	what	
would	it	mean?		

	 	

Kathy	 Wait,	repeat.	 	 	
Teacher	 Before	we	were	writing	log	statements	that	

linked	these	amounts	with	these	days.	You	had	
three	dollars	after	one	day,	nine	dollars	after	two	
days,	right?	Log	of	eighty-one	meant	you	had	
eighty-one	dollars	after	four	days.	But,	now	
we're	looking	at	the	eighty-one	as	a	factor,	not	as	
a	total	amount	of	money.	So	what	would	this	
statement	mean,	log	of	eighty-one	in	base	three?	
What	question	could	I	write	here,	just	like,	a	
question	here?	Chris,	you’ve	got	an	idea?	

	 	

Chris	 Maybe,	how	many	days	does	it	take	for	you	to	
increase	your	money	by	eighty-one	times?	

	 Claim	

Kathy	 That’s	awesome.	 	 	
Teacher	 Do	agree	or	disagree	with	Chris?	That	it's	the	

meaning	of	this	log	statement	with	this	eighty-
one?	Kathy	did	she	said,	“That's	awesome.”		

Writes	“How	
many	days	does	it	
take	for	you	to	
increase	your	
money	by	eighty-
one	times?”	

	

	 …	 	 	
Teacher	 What	are	you	seeing	is	the	difference	between	

these	two	meanings?	They're	both	legitimate.	
What's	the	difference	you're	seeing	in	these	
meanings?	Rachel?		

	 	

Rachel	 I	feel	like	the	difference	is	that	one,	what	day	will	
have	eighty-one	dollars,	is	assuming	you're	
starting	at	day	one.	And	the	one	we	just	did	it	
doesn't	matter	what	day	you	start.	It's	just	
talking	about	eighty-one	times	as	more,	as	much.	
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Background	to	Argument	5.3.2.	This	argument	occurred	during	the	same	

exchange	as	in	which	Argument	5.2.2	occurred,	when	students	were	interpreting	the	

product	rule.	This	exchange	occurred	directly	after	the	students	talked	about	factor	

interpretation	of	logarithms.	The	students	were	explaining	which	of	the	two	

interpretations,	the	day	on	which	one	has	a	certain	amount	of	money	or	the	number	

of	days	it	takes	to	increase	by	a	certain	factor,	were	appropriate	for	each	of	the	

logarithms	in	the	following	equation	log3	(3	x	27)	=	log3	(3)	+	log3	(27).	Argument	

5.2.2	established	that	log3	(3)	gave	the	day	on	which	one	has	$3	in	the	bank.	In	the	

following	argument,	the	students	decided	log3	(27)	gives	the	number	of	days	it	takes	

to	increase	by	a	factor	of	27.	

Overview	of	Argument	5.3.2.	In	this	argument,	the	students	claim	that	log3	

(27)	gives	the	number	of	days	it	takes	to	increase	by	a	factor	of	27.	Again,	in	this	

discussion	the	students	are	not	trying	to	establish	the	validity	of	this	interpretation	

in	general,	but	rather	decide	if	it	makes	sense	to	interpret	a	particular	expression	in	

that	way.	In	this	sense,	the	fact	that	there	are	multiple	interpretations	for	

logarithmic	expressions,	one	of	which	is	the	number	of	days	it	takes	to	increase	

one’s	fortune	by	a	particular	factor,	is	treated	as	data.	
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Table	4.26:	Coding	for	Argument	5.3.2	
Participant	 Speaker	 Action	 Code	
Teacher	 What	does	each	of	these	things	mean?	…		 	 	
	 …	 	 	
Nathan	 It	depends	on	how	you	look	at	it	 	 Data	
Teacher	 It	depends	on	how	you	look	at	it.		 	 	
Nathan	 One	of	them's	probably	a	dollar.	 	 	
Teacher	 So	there	are	multiple	ways	for	us	to	interpret	

this.	Let's	start	here	and	see	what	sense	we	
make	of	it.	

Draws	a	square	
around	log3	3	

Data	

	 …	 	 	
Teacher	 …	So	this	is	saying	the	log	of	three	dollars*	is	

one**.	That	means	I	have	three	dollars*	in	the	
bank	after	one	day**.	But	now	what's	the	next	
one	mean?	Is	this	[the	27]	a	dollar,	a	factor,	
number	of	days,	or	something	else?	

*points	to	$3	
**points	to	1	in	31.	

	

Chris	 It	could	be	a	dollar.	 	 Data	
Teacher	 Farah,	what	do	you	think?	 	 	
Farah	 I	think	it's	a	factor.	 	 Claim	
Teacher	 Why?	 	 	
Farah	 …		I	think	it's	a	factor	because	if	you	start	with	

money	and	you	say	on	what	day	do	we	have	
three,	and	then	you	multiply	by	twenty-seven	
in	the	original	problem,	you're	saying,	well,	on	
what	day	do	we	have	twenty-seven	more	than	
we	do	on	day	one.	

	 	

	 …	 	 	
Teacher	 Kay.	What	do	other	people	think?	…We	need	a	

meaning	for	this*.	So	does	anyone	…	have	an	
idea	for	what	the	log	of	twenty-seven	means	
then?	Danna?	

*Draws	an	arrow	
that	points	to	log3	
(27).	

	

	 …	 	 	
Danna	 …	Here	you	have	a	day*,	which	is	day	one,	and	

then	day	three**,	or	three	days	more,	so	this	is	
really	how	many	days	later.	

*Points	to	second	
three	in	log3	3	
**Points	to	27	in	
log3	27	

	

Kathy	 Three	days	more.	 	 	
Teacher	 So	she	just	said	something	important	I	think,	is	

this,	I	heard	two	things,	is	this	day	three	or	
three	days	more*?	

*Draws	an	arrow	
to	log3	27,	writes	
both	day	3	and	3	
days	more	

	

Several	 Three	days	more.	 	 Claim	
	
In	this	argument	the	students	used	the	two	interpretations	of	logarithms	already	

discussed	in	class	to	interpret	and	make	meaning	of	the	multiplication	rule.	

Immediately	after	this,	they	did	the	same	thing	again,	but	with	the	statement	log3	

(27	x	3)	=	log3	(27)	+	log3	(3).		
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Summary	of	NWR	5.3.	This	is	another	interpretation	of	a	logarithm	in	the	

banking	context.	In	this	interpretation	log3	(x)	yields	the	number	of	days	it	takes	to	

increase	one’s	fortune	by	a	factor	of	x.	This	contrasts	with	the	interpretation	

associated	with	NWR	5.1,	in	which	log3	(x)	would	mean	the	day	on	which	one	has	x	

number	of	dollars	in	the	bank.	This	was	established	in	the	same	way	as	NWR	5.1	

using	Criterion	2	of	the	DCA	method.	Students	first	argued	whether	or	not	the	

interpretation	was	valid	and	then	argued	if	it	should	be	used	to	interpret	particular	

logarithmic	expressions.	

Summary	of	Math	Practice	5.	This	math	practice	deals	with	ways	of	

interpreting	the	word	logarithm	that	were	accepted	in	the	class	community	and	

consisted	of	three	normative	ways	of	reasoning.	The	first	way	(NWR	5.1)	was	

reasoning	about	logarithms	as	exponents.	The	last	two	NWRs	were	ways	of	

interpreting	logarithms	in	a	specific	context,	the	banking	context.	Students	were	

able	to	interpret	logarithms	as	both	a	particular	day	(NWR	5.2)	and	as	an	elapsed	

time	(NWR	5.3).		

Math	Practice	0:	Fluently	Translating	Among	Various	Notations	

Two	other	normative	ways	of	reasoning	were	also	established	in	the	class.	

However,	these	two	NWRs	were	not	focused	on	developing	exponential	reasoning.	

Rather,	these	were	about	notations.	This	review	was	necessary	for	students	to	be	

able	to	engage	in	the	tasks.	Since	these	ideas	were	not	the	focus	of	the	unit,	I	only	

briefly	present	evidence	for	their	establishment.	



163	

	

NWR	0.2	Translating	Between	Scientific	and	Standard	Notation.	On	Day	

1,	when	the	timeline	task	was	introduced,	the	teacher	asked	them	what	they	noticed	

about	the	time	periods	in	the	task.	Students	pointed	out	that	some	of	the	times	were	

written	in	scientific	notation.	This	led	to	a	discussion	about	how	to	convert	scientific	

notation	to	standard	notation.	In	this	discussion	several	students	used	the	same	

method	for	translating	between	scientific	and	standard	notation—moving	the	

decimal	the	same	number	of	spaces	as	the	exponent.	One	of	these	will	be	presented	

in	Argument	0.2.1.	Eventually	explicit	mention	of	the	method	was	no	longer	needed	

and	students	fluently	translated	between	the	two	notations.	This	dropping	off	of	the	

warrant	fulfills	Criterion	1	of	the	DCA	method.	

	 Argument	0.2.1.	In	this	first	example,	Kaitlyn	claimed	that	2	x	106,	the	date	

for	the	Pleistocene	period,	was	two	million.	Her	warrant	for	the	equivalence	of	the	

two	ways	to	write	the	number	was	moving	the	decimal	point	six	places.	
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Table	4.27:	Coding	for	Argument	0.2.1	
Participant	 Speech	 Actions	 Code	

Kaitlyn	 …For	the	Pleistocene,	you	would	
move	the	…	decimal	…	six	times	
to	the	right.	

	 Warrant	

Teacher	 So	I'm	hearing	you	say	that,	
move	it	six	times*.	And	what	
number	do	you	get?	

*Writes	2.000000	and	then	
draws	a	bump	under	the	first	
three	zeros	and	then	under	the	
last	three.	

Warrant	

Many	 Two	million.	 	 Claim	
	

Argument	0.2.2.	The	following	argument	came	later	in	class	when	Natalie	

presented	a	linear	number	line.	She	placed	her	number	line	on	the	document	

camera,	which	had	1.5	x	1010	at	the	very	left	edge	and	7.5	x	109	in	the	middle.	Natalie	

explained	that	the	halfway	point	on	the	number	line	represented	an	amount	of	

elapsed	time	that	is	half	the	total	amount	of	elapsed	time.	Samantha	called	this	into	

question	when	she	asked,	“Is	that	times	ten	to	the	ninth,”	presumably	referring	to	

the	9	in	7.5	x	109	and	said,	“So	that	isn't	technically	half.”	

Danna	then	claimed	that	7.5	x	109	was,	in	fact,	half	of	1.5	x	1010.	In	this	

argument,	she	used	as	data	the	fact	that	1.5	x	1010	was	fifteen	billion	and	7.5	x	109	

was	seven	point	five	billion.		

Table	4.28:	Coding	for	Argument	0.2.2	
Participant	 Speech	 Actions	 Code	

Samantha	 I	have	a	question.	 	 	
Teacher	 What's	your	question?	 	 	

Samantha	 Is	that	times	ten	to	the	ninth?	 	 	
Natalie	 Yeah.	 	 	

Samantha	 So	that	isn't	technically	half.	 	 Claim	
Natalie	 Oh.	 	 	
Danna	 Because	it's	fifteen	billion	to	seven	and	a	half	billion1.	

So	half	of	fifteen	is	seven	point	five	billion2.	So	since	
you're	going	from	tens	to	just	billions,	you	take	off	one.	
So	that's	why	it	goes	from	ten	to	the	tenth	to	ten	to	the	
ninth.	

	 1Data	
2Warrant	

Teacher	 Does	that	make	sense?	 	 	
Samantha	 Yeah	 	 	
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NWR	0.3	Fractional	Powers	as	Roots.	This	next	normative	way	of	

reasoning	deals	with	how	students	translated	between	numbers	written	as	a	

number	raised	to	a	fractional	power	and	as	the	nth	root	of	a	number	(e.g.	101/2	and	

10).	In	the	beginning	of	the	unit,	students	needed	to	give	justification	for	the	

translation	between	these	two	notations.	However,	later	these	translations	were	

used	as	data	to	support	more	complex	arguments.	This	satisfies	Criterion	2	of	the	

DCA	method.	

Argument	0.3.1.	The	teacher	had	asked	the	students	if	they	could	express	

103/4	as	an	nth	root	and	Santiago	claimed	that	103/4	is	the	same	as	 10!! .	He	then	

explained	that	the	denominator	of	the	faction	determines	the	type	of	root	(in	this	

case	the	fourth	root)	and	the	numerator	determines	the	exponent.	This	served	as	

the	warrant	for	his	claim.	

Table	4.29:	Coding	for	Argument	0.3.1	
Participant	 Speech	 Action	 Code	

Santiago	 	 Writes	it	
10!! .	

Claim	

Students	 Yeah,	yeah,	yeah.	Right.	Yes.	Yes.	 	 	
Teacher	 I	hear	some	resounding	agreement.	How	many	

agree	with	Santiago?*	Anyone	disagree?	Let's	
just	take	a	couple	explanations	that,	since	we	
have	some	agreement,	why	is	that	Santiago,	how	
did	you	figure	that	out?	

*Many	
students	raise	
their	hands.	

	

Santiago	 Well,	I	know	when	an	exponent	is	a	fraction	if	we	
were	to	write	it	as	an	nth	root.	And	we	have	the	
denominator	of	the	fraction	of	the	exponent	to	
be	inside	here*	and	then	we	take	the	root	of	that	
and	then	since	we're	taking	that	three	times,	
took	it,	that	whole	thing	to	the	power	of	three.	

*Points	to	the	
crook	of	the	
square	root	
sign.	

Warrant	

Teacher	 Kay.	Someone	else	put	it	in	their	own	words.	
Thank	you.	Can	I	get	one	more	revoicing	or	
explanation?	Rachel.	

	 	

Rachel	 So	we're	taking	…	so	ten	to	the	one	fourth	can	be	
represented	as	the	fourth	root	of	ten.	…Then	just	
that	whole	quantity	cubed.		
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Argument	0.3.2.	This	argument	occurred	when	the	students	were	reasoning	

about	log4	8.	Samantha	had	already	given	her	argument	(see	Argument	3.1.3)	that	

log4	8	=	3/2.	Danna	then	offered	another	way	to	think	about	it.	Keeping	the	same	

claim	as	Samantha,	that	log4	8	=	3/2,	she	argued	that	since	 4 =  4!/!	is	two,	and	

two	cubed	equal	eight,	the	logarithm	must	be	3/2.	In	this	compact	argument,	she	

treated	as	data	 4 =  4!/!.	Since	she	used	this	translation	as	data,	this	fulfills	

Criterion	1	of	the	DCA	method.	

Table	4.30:	Coding	for	Argument	0.3.2	
Participant	 Speech	 Actions	 Code	

Danna	 It’s	kinda	the	same	 	 Claim	
Teacher	 Try	it.	 	 	
Danna	 I	thought	about	it	differently.	 	 	

Teacher	 There's	space	up	there.	 	 	
Danna	 …	I	just	knew	four	didn't	go	into	eight,	but	I	knew	that	the	

square	root	of	four	did,	which	I	knew	is	the	same	as	four	
to	the	one	half	and	then	since	that's	two,	I	knew	two	
cubed	equals	eight,	so	that	would	be	four	to	the	three	
halves.	

Writes	
	
4 =

 4!/!	
	23	=>	
43/2	
Figure	
4.33.	

Data	

	

	
Figure	4.38:	Danna’s	symbolic	manipulation	

	
Discussion	
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The	emergence	of	these	five	mathematical	practices	show	the	development	

of	the	exponential	and	logarithmic	relationships	as	it	occurred	in	the	public	space	in	

this	classroom.	Students	first	built	up	a	fully	exponential	number	line	by	noticing	

multiplicative	patterns	at	the	macro	level	(MP1)	and	then	extending	those	

relationships	to	subdivide	segments	(MP2).	Students	then	used	this	number	line	to	

make	sense	of	fractional	exponents	(MP3),	arithmetic	and	exponential	sequences	

(MP4),	and	logarithms	and	the	product	rule	for	logarithms	(MP5).	

These	results	are	significant	in	several	ways.	First,	the	research	on	students’	

thinking	about	logarithmic	and	exponential	relationships	suggests	that	students	are	

prone	to	making	calculational	mistakes	(Barnes,	2006;	Hoon,	Singh,	&	Ayop,	2010;	

Liang	&	Wood,	2005;	Nogueira	de	Lima	&	Tall,	2006).	This	suggests	students	

typically	have	a	procedural	understanding	these	relationships.	Scholars	have	given	

pedagogical	suggestions	for	developing	more	conceptual	understanding	(e.g.	Katz,	

1986;	Van	Maanen,	1997;	Webb,	Kooij,	&	Geist,	2011;	Weber,	2002),	but	these	

suggestions	are	hypothetical	in	nature	as	they	had	not	been	tested	with	students.	

This	study,	on	the	other	hand,	gives	an	image	of	how	the	ideas	might	productively	

unfold	in	a	classroom	environment.	

This	includes	providing	an	image	of	how	a	conceptually	oriented	tool	for	

reasoning,	an	exponential	number	line,	can	be	developed	out	of	reasoning	about	

how	to	create	a	representation	of	the	history	of	the	earth.	Giving	students	such	a	

tool	such	may	help	them	develop	powerful	images	and	ways	of	reasoning	that	go	

beyond	a	procedural	understanding.	This	is	consistent	with	the	work	of	other	
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scholars	using	the	emergent	perspective	to	study	collective	development	in	which	a	

model	was	developed	by	reasoning	about	a	real	world	concept	and	then	leveraged	

to	reason	about	more	sophisticated	mathematics	(e.g.	Bowers,	Cobb,	&	McClain,	

1999;	Stephan	&	Akyuz,	2012).		

This	is	particularly	significant	because	the	trajectory	presents	a	way	for	

students	to	transition	from	linear	ways	of	reasoning	to	exponential	ways	of	

reasoning,	which	has	been	shown	to	be	difficult	for	students	(Alagic	&	Palenz,	2006;	

Berezovski,	2004;	De	Bock,	van	Dooren,	Janssens,	&	Verschaffel,	2002).	This	was	

accomplished	as	students	developed	the	exponential	number	line.	They	first	

subdivided	segments	linearly,	but	this	was	problematized	through	the	Renaissance	

task	(see	the	background	to	Argument	2.1.1).	Students	were	then	able	to	develop	

ways	to	exponentially	subdivide	segments	(see	Math	Practice	2).	Because	of	the	

importance	of	this	transition,	I	investigate	students’	personal	ways	of	reasoning	

about	subdivision,	as	determined	by	a	clinical	interview,	in	the	next	Chapter.	In	that	

chapter	I	will	also	explore	in	relationship	between	the	emergent	practice	and	

students’	individual	ways	of	reasoning	to	which	will	address	Research	Question	1.	
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Chapter	5: Individuals’	Ways	of	Reasoning	

	
This	chapter,	together	with	Chapter	4,	addresses	Research	Question	1:		

	
How	are	individuals’	ways	of	reasoning	related	to	the	progression	of	
increasingly	sophisticated	ways	of	reasoning	that	function	as	if	shared	
in	the	classroom?	

	
	This	purpose	of	this	question	is	to	examine	the	nature	of	the	relationship	between	

individuals’	ways	of	reasoning	and	the	ways	of	reasoning	that	were	established	in	

the	classroom.	In	particular,	it	examines	the	students’	ways	of	reasoning	after	

participation	in	the	classroom.	This	will	help	researchers	understand	the	nature	and	

extent	of	individual	variation	from	established	practices.	

In	the	previous	chapter,	I	addressed	the	last	part	of	Research	Question	1,	

namely	the	identification	of	increasingly	sophisticated	ways	of	reasoning	that	

function	as	if	shared	by	the	collective	community.	Specifically,	I	documented	five	

math	practices	that	emerged	in	the	classroom.	This	was	done	using	the	

Documenting	Collective	Activity	(Rasmussen	&	Stephan,	2008)	method,	in	which	

Toulmin’s	(1969)	scheme	was	used	to	analyze	how	arguments	changed	over	time.	If	

the	arguments	changed	in	particular	ways	they	were	said	to	have	begun	to	have	

functioned	as	if	shared,	or	equivalently	to	have	become	a	normative	ways	of	

reasoning	(NWR).	I	then	grouped	related	normative	ways	of	reasoning	into	math	

practices.		

In	this	chapter,	I	investigate	how	individuals’	ways	of	reasoning	relate	to	

Math	Practice	2:	Subdividing	the	Segments.	This	practice	was	the	keystone	to	

students	making	the	transition	from	linear	ways	of	reasoning	to	fully	exponential	
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ways	of	reasoning.	Since	this	transition	can	be	difficult	for	students	(Alagic	&	Palenz,	

2006;	Berezovski,	2004;	De	Bock,	van	Dooren,	Janssens,	&	Verschaffel,	2002),	I	

wanted	to	better	understand	how	students’	were	personally	reasoning	about	this	

important	mathematical	practice.	

Previous	work	that	examines	the	relationship	between	individuals’	ways	of	

reasoning	and	emergent	practices	suggests	that	while	students	can	reason	in	ways	

that	are	qualitatively	different	from	established	practices	(Cobb,	1999),	students	

eventually	reorganize	their	knowledge	to	reason	in	ways	that	are	more	productive	

(Bowers,	Cobb,	&	McClain,	1999;	Stephan,	Cobb,	&	Gravemeijer,	2003).	In	contrast,	I	

argue	that	the	individual	participants	in	this	study	maintained	meaningful	

differences	in	their	ways	of	reasoning	even	after	the	unit	had	concluded.		

The	bulk	of	this	chapter	is	thus	devoted	to	supporting	the	claim	that	there	

was	variation	in	the	nature	of	individual	student	reasoning	on	the	post	interview	

question	that	was	related	to	Math	Practice	2.	Specifically,	their	reasoning	fell	into	

the	following	three	categories	(a)	multiplicative	reasoning	coordinated	with	

reasoning	linearly	with	the	exponents,	(b)	reasoning	linearly	with	the	exponents,	and	

(c)	elements	of	reasoning	linearly.	The	descriptions	of	these	categories	will	be	given	

later	in	the	chapter.	In	the	discussion	section	of	this	chapter	I	use	the	results	of	the	

analysis	presented	in	Chapter	4,	specifically	the	normative	ways	of	reasoning	for	

MP2,	and	the	results	section	of	this	chapter	to	explore	the	relationship	between	

individual	and	normative	ways	of	reasoning	to	answer	Research	Question	1.		
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Review	of	Method	

To	determine	students’	individual	ways	of	reasoning	about	how	to	subdivide	

the	segment,	I	analyzed	their	responses	to	a	task	in	which	an	interviewer	asked	

them	to	label	the	midpoints	of	a	segment	on	an	exponential	number	line	during	an	

individual	clinical	interview	(Ginsburg,	1997).	I	analyzed	this	task	because	I	wanted	

to	investigate	students’	individual	ways	of	reasoning	about	the	subdivisions	on	a	

number	line.	This	task	asked	students	to	engage	in	such	reasoning	(see	Figure	5.1).	

	

	
Figure	5.1:	The	interview	task.	

	
When	analyzing	their	responses	I	used	open	coding	from	grounded	theory	

(Strauss	&	Corbin,	1994,	1998)	to	develop	categories	that	described	the	students’	

ways	of	reasoning.	This	involved	developing	categories	for	ways	of	reasoning	

through	iterative	cycles	of	analysis.	I	started	by	giving	the	focus	students’	ways	of	

reasoning	descriptive	names.	Then,	using	the	constant	comparison	method	(Glaser	

&	Strauss,	1967;	Strauss,	1987;	Strauss	&	Corbin,	1990,	1994),	I	grouped	ways	of	

reasoning	into	categories,	adjusting	the	names	of	categories	as	needed.	This	

comparison	was	done	on	the	basis	of	the	features	of	the	students’	responses	(e.g.	

what	mathematical	relationships	were	they	attending	to	and	what	justification	did	



172	

	

they	give	for	their	label).	As	I	compared	the	features	of	different	arguments,	their	

difference	came	into	greater	prominence.	As	categories	became	established,	I	

revisited	the	data	from	previously	analyzed	interviews	and	made	adjustments	as	

necessary	to	either	the	description	of	the	category	or	the	categorization	of	the	way	

of	reasoning.	

Overview	of	Claims	

In	this	section,	I	provide	evidence	to	support	the	claim	that	students	

reasoned	in	one	of	three	ways	in	the	interview	task.	The	three	of	ways	of	reasoning	

are	(a)	multiplicative	reasoning	coordinated	with	reasoning	linearly	with	the	

exponents,	(b)	reasoning	linearly	with	the	exponents,	and	(c)	elements	of	reasoning	

linearly	(see	Table	5.1).	

Table	5.1:	The	three	categories	for	individuals’	ways	of	reasoning.	
Code	 Characterization	
Multiplicative	Reasoning	Coordinated	
with	Reasoning	Linearly	with	the	
Exponents	

Recognizing	the	subsections	are	
associated	with	multiplication	by	
the	square	root	of	ten	in	addition	
to	using	the	linear	pattern	in	the	
exponents	to	determine	
placements.	

Reasoning	Linearly	with	the	
Exponents	

Finding	the	midpoints	by	dividing	
increases	in	the	exponent	by	two.	

Elements	of	Linear	Reasoning	 Determining	the	first	midpoint	
was	five	by	taking	half	of	ten.	

	
The	first	way	of	reasoning,	multiplicative	reasoning	coordinated	with	

reasoning	linearly	with	the	exponents,	is	characterized	by	students	recognizing	the	

fact	that	there	was	a	multiplicative	relationship	between	the	subsections	generated	

by	subdividing	a	segment.	At	a	minimum,	this	means	students	would	reference	the	

fact	that	the	square	root	of	ten	times	the	square	root	of	ten	is	ten	and	somehow	
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connect	that	fact	to	their	reasoning	about	the	subsections.	The	students	in	this	

category	also	reasoned	linearly	with	the	exponents,	meaning	they	used	the	linear	

pattern	in	the	exponents	to	determine	placements,	but	this	linear	reasoning	was	

accompanied	by	talk	of	multiplicative	patterns.	The	evidence	will	demonstrate	that	

three	students,	Tanya,	Kathy,	and	Rachel,	all	reasoned	in	this	way.	The	second	way	

of	reasoning,	reasoning	linearly	with	the	exponents,	was	characterized	by	students	

talking	about	halving	the	exponent	of	101	to	find	that	the	midpoints	should	be	

represent	an	increase	of	.5	in	the	exponent.	This	differs	from	the	first	category	in	

that	the	linear	pattern	used	in	these	explanations	was	not	elaborated	by	

multiplicative	reasoning.	It	is	important	to	note	as	students	reasoned	in	this	way	

they	may	have	said	the	word	“factor.”	Simply	uttering	this	word	did	not	

automatically	mean	that	they	were	reasoning	multiplicatively.	At	times	students	

would	call	101	a	factor,	but	still	reasoned	solely	about	the	exponent—dividing	it	in	a	

linear	way.	In	order	to	be	coded	as	multiplicative	reasoning	coordinated	with	

reasoning	linearly	with	the	exponents,	students	needed	to	go	beyond	simply	calling	

something	a	factor	and	explain	that	the	factor	is	being	multiplied	by	something.	I	

will	give	evidence	that	Farah	and	Brittany	employed	reasoning	linearly	with	the	

exponents	and	did	not	accompany	it	with	any	multiplicative	reasoning.	Finally,	

elements	of	linear	reasoning	means	that	at	some	point	the	student	claimed	the	

midpoint	was	five,	presumably	because	five	is	half	of	ten	and	the	midpoint	is	

halfway.	Both	Santiago	and	Lacey	made	this	claim.	During	the	course	of	the	
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interview	Santiago	changed	his	answer	as	he	began	to	reasoning	linearly	with	the	

exponents.	Lacey	did	not	change	her	answer	during	the	interview.		

Results	

Multiplicative	Reasoning	Coordinated	With	Reasoning	Linearly	With	The	

Exponents		

In	this	section,	I	will	provide	evidence	that	Tanya,	Kathy,	and	Rachel	all	

expressed	or	recognized	a	multiplicative	pattern	of	 10 times	 10	within	segments	

where	the	values	increase	by	a	factor	of	10.	I	will	do	this	by	first	describing	their	

way	of	reasoning	in	the	interview	and	then	discuss	the	aspects	of	their	way	of	

reasoning	that	lead	me	to	code	it	as	multiplicative	reasoning	coordinated	with	

reasoning	linearly	with	the	exponents.	

Kathy.	Kathy	began	the	task	by	immediately	labeling	the	empty	spots	as	10.5	

and	101.5	without	any	explanation.	She	started	to	write	a	few	words,	but	then	said,	

“Well	first,	this	is	exponential,”	and	wrote,	“This	is	exponential”	at	the	top	the	top	of	

her	page.	She	then	wrote	her	actual	explanation,	which	follows.	

We	must	multiply	1	by	10	to	get	10	so	between	the	tick	mark	is	101.	If	
we	find	the	midpoint	we	are	finding	half	of	101	or	10.5	or	 10.	The	
same	process	occurs	between	10	and	100.	We	have	to	multiply	10	by	
10	to	get	100.	So	half	is	10.5	but	we	now	add	that	to	101	so	we	get	101.5	

	
After	she	finished	writing,	the	interviewer	asked	what	she	meant	when	she	

wrote,	“This	is	exponential.”	She	responded	with	the	following.	

So,	there's	equal	amount	of	space	between	one	and	ten	and	ten	and	a	
hundred	[sweeps	pen	in	an	arc	from	the	tick	mark	labeled	1	to	the	tick	
mark	labeled	10	and	then	to	the	tick	mark	labeled	100	tick,	see	Figure	
5.2].	So	it	can’t	be	linear	because	there’s	nine,	like	nine	whole	values	
here	[makes	a	sweeping	motion	with	the	pen	back	and	forth	between	
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1	and	10],	like	nine,	ninety	here	[sweeping	motion	over	the	segment	
from	10	to	100].	So	for	it	be	linear,	the	space	between	would	need	to	
be	much	larger.	

	

	
Figure	5.2:	Kathy	gesturing	(represented	with	arrows)	over	intervals.	

	
When	asked	what	it	meant	to	be	exponential,	Kathy	said	that	something	

needed	to	be	doubling	or	tripling.	When	the	interviewer	asked	what	was	doubling	in	

the	line,	she	said	that	the	numbers	were	not	doubling,	but	“tens-ing.”	She	explained	

that	this	was	still	exponential.	It	would	not	be	exponential	if	ten	were	added	each	

time.	

Kathy	then	explained	that	because	the	line	was	exponential,	you	needed	to	

find	the	midpoint	“exponentially.”		She	explained	that	this	meant	that	one	takes	half	

the	exponent,	not	half	the	ten,	as	that	would	be	linear.	She	said,	“the	value	here	

[traces	a	circle	with	her	pen	in	the	air	over	the	segment	from	1	to	10]	represents	a	

multiplication	of	ten	to	the	one.	So	to	find	half	of	ten	to	the	one,	or	half	of	what’s	in	

between	here	[circles	over	the	segment	again],	I	took	half	of	the	exponent	of	one,	so	

it’s	ten	to	the	point	five.”	She	continued,	“To	get	to	ten	to	the	one	exponentially,	we	

need	ten	here,	times	ten	point	five	here,	to	give	us	ten	to	the	one.”	As	she	said	this,	

she	labeled	the	two	subsections	as	10.5	(see	Figure	5.3)	and	explained	that	they	are	



176	

	

multiplied	to	find	101.	When	asked	why	she	was	multiplying,	she	said,	“Because	

everything	is	multiplication	when	it’s	exponential.	If	it	were	addition,	it	would	be	

linear.”	

	

	
Figure	5.3:	Kathy’s	labels.	

		
Kathy	reiterated	her	process	succinctly	as	she	explained	her	label	of	101.5	for	

the	next	midpoint.	She	said,	“Between	these	two	[points	to	tick	mark	labeled	10	and	

tick	mark	labeled	100]	is	ten	to	the	one.		…	So	you	take	…	ten	to	the	one,	to	find	the	

midpoint,	and	divide	it	by	a	half.	But	then	since	you’re	not	starting	at	zero,	you’re	

starting	at	ten	to	the	one,	you	have	to	multiply	ten	to	the	point	five	to	ten	to	the	one.”	

Kathy	used	multiplication	in	her	explanation	in	several	ways.	First,	she	drew	

on	the	multiplicative	pattern	at	the	macro	level	when	she	explained	what	it	meant	to	

be	exponential.	As	she	discussed	this	she	explained	that	there	was	an	equal	amount	

of	space	between	the	tick	marks,	but	the	differences	in	the	values	were	not	the	same	

(i.e.	one	was	9	and	the	other	was	90).	Even	though	this	discussion	was	mainly	about	
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the	macro	level,	it	appeared	to	inform	how	she	thought	about	the	relationship	

between	the	subsections.	Before	she	felt	she	could	write	her	explanation	of	how	to	

subdivide,	she	first	had	to	establish	the	multiplicative	pattern	at	the	macro	level,	

which	hinged	on	the	fact	that	the	segments	represented	an	increase	by	a	factor	of	

ten	rather	than	a	difference	of	ten.	While	she	stopped	just	short	of	making	an	

explicit	connection	between	the	multiplication	at	the	macro	level	and	how	the	

segments	were	subdivided,	multiplication	was	still	present	in	her	descriptions	of	

how	she	subdivided.	She	labeled	the	first	two	subsections	10.5	while	she	said,	“To	

get	to	ten	to	the	one	exponentially	we	need	ten	here	times	ten	point	five	here,	to	give	

us	ten	to	the	one.”	Even	though	she	said	“we	need	ten	here,”	she	said	this	as	she	

labeled	the	spot	10.5.	As	such,	I	believe	she	simply	dropped	the	“to	the	point	five”	in	

her	utterance.	In	other	words,	I	believe	she	tried	to	communicate	that	each	of	the	

subsections	needs	to	represent	multiplication	by	10.5.	This	is	corroborated	by	her	

phrase	“get	to	ten	to	the	one	exponentially,”	given	her	definition	of	exponential	as	

constant	multiplication.	Furthermore,	when	she	was	asked	why	she	multiplied	the	

subsections,	she	again	talked	about	the	exponential	nature	of	the	line.	Overall,	her	

reasoning	seemed	to	be	that	because	the	line	was	exponential,	since	it	had	a	

multiplicative	pattern	at	the	macro	level,	the	subsections	should	also	represent	

multiplication.	

Even	though	she	appeared	to	calculate	based	on	linear	patterns	in	the	

exponents,	she	seemed	to	coordinate	the	linear	pattern	with	multiplication.	She	said	

that	to	find	the	midpoint	exponentially	you	take	half	of	the	exponent,	but	she	also	
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talked	about	multiplying	the	subsections.	This	coordination	between	additive	

exponents	and	multiplicative	relationships	between	the	values	was	explicitly	

referenced	when	she	said,	“You	add	the	exponents.	So	you	have	ten	to	the	half	times	

ten	to	the	half	gives	you	ten	to	the	one.”		

It	is	important	to	note	that	in	her	coordination	of	additive	and	multiplicative	

relationships,	she	said	something	that	was	mathematically	inaccurate.	She	said,	“To	

find	half	of	ten	to	the	one…I	took	half	the	exponent	of	one,”	which	is	technically	

incorrect.	Taking	half	the	exponent	does	not	yield	half	of	ten	to	the	one.	She	also	

made	this	mistake	in	her	written	explanation.	She	wrote,	“If	we	find	the	midpoint	we	

are	finding	half	of	101	or	10.5	or	 10,”	which	is	inaccurate	since	half	of	101	is	not	10.5	

or	 10.		While	this	could	indicate	that	she	saw	101	only	as	an	exponent	of	1	and	not	

as	a	multiplicative	factor,	I	do	not	think	this	is	the	case.	When	she	talked	about	

finding	half	of	ten	to	the	one,	she	traced	out	a	circle	with	her	pen	over	the	section	of	

the	line	from	1	to	10.	I	interpret	this	statement	to	refer	to	halving	the	segment	(as	if	

101	was	a	name	for	the	segment),	not	the	value	of	101.	In	other	words,	she	seemed	to	

coordinate	halving	the	segment	with	halving	the	exponent	and	with	multiplying	10.5	

by	10.5.	

Tanya.	Tanya	began	the	interview	by	claiming	the	first	spot	should	be	

labeled	10.5.	She	said,	“Since	this	is	increasing	by	a	factor	of	ten	to	the	one,	then	half	

of	it	would	be	ten	to	the	one	half.”	She	then	labeled	1	as	100,	10	as	101,	and	100	as	

102,	as	well	as	marking	in	a	brace	over	the	segment	from	1	to	10,	which	she	labeled	
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“x101”	and	a	brace	over	the	subsection	from	1	to	the	midpoint,	which	she	labeled	

“x101/2”	(see	Figure	5.4).	

	
	

	
Figure	5.4:	Tanya	labeled	the	multiplicative	factors.	

	
She	then	wrote	her	explanation.	
	

From	100	to	101	we	increase	by	a	factor	of	101	(100	�	101	=	101).	We	
cut	this	increment	of	101	in	half,	so	we	half	the	exponent	of	101	as	well	
to	get	101/2.	Check	by	101/2	�	101/2	=	102/2	=	101.	Multiply	the	previous	
term	by	101/2	to	obtain	the	next	tick	mark,	from	100	we	get	the	next	by	
100	�	101/2	=	101/2,	then	101/2	�	101/2	=	101.	

	
When	the	interviewer	asked	what	she	meant	by,	“We	cut	this	increment	of	101	in	

half,”	she	responded	with	the	following.		

	
	 Tanya:		 Since	this	whole	[traces	over	the	segment	from	1	to	10],	

…	these	increments	were	ten	to	the	one	[points	to	tick	
marks	labeled	1	and	10	simultaneously]	and	we	only	
wanted	to	do	halve	the	distance	[points	to	tick	marks	
labeled	1	and	the	midpoint	of	1	and	10],	we	don’t	halve	
ten,	because	that	just	doesn’t	make	sense.	So	we	halve	
the	exponent,	so	instead	of	moving	by	a	factor	of	ten	to	
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the	one,	we’re	moving	by	a	factor	of	ten	to	the	half.	So	
we’re	halving	the	exponent.	

	 Interviewer:		 How	do	you	know	to	halve	the	exponent?	
	 Tanya:		 When	we	were	first	trying	to	figure	it	out	it	didn’t	really	

make	sense	to	…	halve	the	ten.	…	We	would	multiply	ten	
to	the	zero	times	ten	to	the	one	to	get	ten	to	the	one	and	
we	only	want	to	go	half	the	way	and	so	we	wouldn't	
multiply	by	half	of	ten,	we	wouldn’t	multiply	it	by	five,	
so	we	would	halve	the	exponent.		

	
As	with	Kathy,	Tanya	seemed	to	calculate	based	on	linear	patterns,	but	this	was	

coordinated	with	multiplication.	Multiplication	came	up	several	times	in	Tanya’s	

argument.	First,	she	immediately	marked	in	the	multiplicative	factors	of	“x	101”	and	

“x	101/2”	(see	Figure	5.1).	Importantly,	these	labels	included	the	multiplication	

symbol	“x,”	suggesting	she	did	not	seem	them	solely	as	exponents.	Multiplication	

was	also	present	in	her	written	explanation.	She	wrote,	“Multiply	the	previous	term	

by	101/2	to	obtain	the	next	tick	mark,	from	100	we	get	the	next	by	100	•	101/2	=	101/2,	

then	101/2	•	101/2	=	101.”	Finally,	multiplication	was	present	as	she	responded	to	the	

interviewer’s	question,	“How	do	you	know	to	halve	the	exponent?”	In	response,	she	

explained	that	her	group	in	class	first	tried	to	halve	the	ten,	but	that	was	

inconsistent	with	the	macro-level	multiplication.	She	said,	“We	wouldn't	multiply	by	

half	of	ten,	we	wouldn’t	multiply	it	by	five,	so	we	would	halve	the	exponent.”	Notice	

that	implicit	in	her	comment	is	the	assumption	that	the	relationship	should	be	

multiplicative—what	needs	to	be	decided	is	whether	the	multiplication	should	be	by	

5	or	by	10.5.	In	summary,	even	though	Tanya	talked	about	halving	the	exponent	in	

her	explanation,	this	was	often	coordinated	with	a	recognition	of	the	multiplicative	

nature	of	the	subsections.	
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Rachel.	Rachel	started	by	drawing	an	arrow	from	the	tick	mark	labeled	1	to	

the	tick	mark	labeled	10	and	another	from	the	tick	marked	labeled	10	to	the	tick	

mark	labeled	100.	She	labeled	these	arrows	“x	10”	and	drew	two	lines,	one	from	10	

to	the	midpoint	of	the	segment	from	10	to	100	and	one	from	the	midpoint	to	100	

(see	Figure	5.5).	She	then	drew	arrows	to	the	unlabeled	spots	and	wrote	

calculations,	while	she	verbalized	them,	to	explain	how	the	spots	should	be	labeled	

(see	Figure	5.5).	She	then	explained,	“This	distance	you	times	by	the	square	root	of	

ten	and	this	distance	you	times	by	the	square	root	of	10	[labels	two	subsections	

“x 10”	as	shown	in	Figure	5.5].…You	needed	to	break	that	up	[the	segment	from	10	

to	100]	evenly	into	two	of	the	same,	which	is	ten	to	the	one	half	times	ten	to	the	one	

half,	because	the	one	half	and	the	one	half	gets	you	one.”	

	

	
Figure	5.5:	Rachel’s	labels.	

	
She	then	wrote	her	response,	which	follows.	
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From	1	(100)	to	10	(101),	we	have	a	multiple	of	101.	To	break	this	in	
half	we	need	a	number	that	when	multiplied	twice	gives	1:	1/2	x	1/2	=	
1.	So	1	x	101/2	gives	us	our	1st	unknown.	

	
The	interviewer	pointed	out	that	½	x	½	does	not	equal	1,	and	she	said,	

“That’s	not	what	I	meant	to	do.”	She	then	changed	the	words	“when	multiplied	

twice”	to	“multiplied	by	two”	and	explained,	“Because	you	need	to	do	it	once	and	

then	twice”	as	she	pointed	to	the	two	subsections.	She	then	explained	that	if	you	had	

three	segments	you’d	divide	the	exponent	into	three.	

The	interviewer	asked	why	the	unlabeled	spot	was	not	5.5.	She	responded	in	

the	following	way.	

I	feel	like	that	would	be	taking	it	into	linear	perspective.	So	we	have	to	
keep	everything	multiplication,	only.	Because	this	is	times	ten	
[sweeps	her	finger	across	the	segment	from	1	to	10]	that’s	times	ten	
[sweeps	her	finger	across	the	segment	from	10	and	100].	Like,	the	
next	one	would	be	a	thousand	[sweeps	her	finger	from	100	to	the	
right];	times	ten	[repeats	the	last	gesture].	The	next	one	would	not	be	
two	hundred.	Because	you	have	to	keep	a	common,	to	keep	it	an	
exponential	line.	

	
Like	Kathy	and	Tanya,	Rachel	had	elements	of	both	multiplicative	reasoning	

and	reasoning	linearly	with	the	exponents	present	in	her	justification.	She	began	by	

highlighting	the	multiplicative	relationship	at	the	macro	level	by	drawing	two	“x	10”	

arrows,	which	seemed	to	be	connected	to	the	way	she	subdivided	the	exponents,	

since	she	also	drew	lines	that	were	labeled	“x 10.”	This	was	coordinated	with	

linear	reasoning	with	the	exponents,	when	she	said,	“You	needed	to	break	that	up	

[the	segment	from	1	to	10]	evenly	into	two	of	the	same,	which	is	ten	to	the	one	half	

times	ten	to	the	one	half,	because	the	one	half	and	the	one	half	gets	you	one.”	She	

then	got	a	bit	confused	and	went	to	more	linear	reasoning	in	the	exponents,	but	
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went	back	to	more	multiplicative	reasoning	when	the	interviewer	asked	his	follow	

up	question.	

When	the	interviewer	asked	why	the	unlabeled	spot	was	not	5.5.	She	

responded,	“We	have	to	keep	everything	multiplication,	only…	you	have	to	keep	a	

common,	to	keep	it	an	exponential	line.”	In	her	elaboration,	she	focused	mostly	on	

the	multiplication	at	the	macro	level.	While	it	is	possible	that	she	saw	multiplication	

being	more	connected	with	the	macro	pattern	than	with	the	subdivision	of	

segments,	it	seems	that	there	was	at	least	some	connection	to	the	subdivision	of	

segments	since	she	brought	up	the	macro	level	pattern	in	response	to	a	question	

about	subdivision.	As	with	Kathy,	the	constant	multiplicative	relationship	between	

values	seems	to	have	been	a	defining	characteristic	of	an	exponential	line	for	Rachel.		

Reasoning	Linearly	with	the	Exponents	

Like	the	first	three	students,	Brittany	and	Farah	drew	on	the	linear	pattern	in	

the	exponents	to	reason	about	the	unlabeled	tick	marks	should	be	labeled.	However,	

unlike	Kathy,	Tanya,	and	Rachel,	the	two	students	drew	exclusively	on	this	pattern	

and	did	not	talk	about	multiplicative	relationships	within	the	subsections.	

Brittany.	Brittany	began	by	relabeling	the	points	1,	10,	and	100	as	100,	101,	

and	102	respectively.	She	then	labeled	the	first	unlabeled	spot	as	10.5,	said	that	it	

was	the	square	root	of	ten,	and	then	labeled	the	second	marked	spot	as	101.5	(see	

Figure	5.6).	After	some	talk	about	what	the	square	root	of	10	means,	she	wrote	her	

explanation.	

Half	way	between	100	and	101	is	10.5	=	 10	because	the	factor	it	takes	
to	get	from	100	->	101	is	101	and	half	of	1	is	½.	
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Figure	5.6:	Brittany’s	labels.	

	
After	she	wrote	her	explanation,	she	said,	“I	don’t	know	if	it	makes	logical	

sense.”	When	asked	what	she	was	questioning,	Brittany	explained	her	concern	

further.	

	 Brittany:		 I	know	that	to	get	from	one	to	ten,	you	have	to	multiply	
by	ten.	So	to	get	halfway	between	that	[points	to	the	tick	
mark	halfway	between	1	and	10	with	her	pen],	it’s	not,	I	
mean,	it’s	five,	but	not	when	you’re	looking	at	the	whole	
timeline	[sweeps	pen	back	and	forth	over	the	whole	
timeline,	stops	on	tick	mark	marked	10].	Because	to	get	
to	this	[moves	pen	from	10	to	100]	you	have	multiply	by	
ten	as	well,	but	halfway	between	ten	and	a	hundred	is	
not	going	to	be	the	same	as	you	find	for	here	[points	to	
the	midpoint	between	1	and	10].	So	we’re	looking	at	the	
exponential	values.	

	 Interviewer:		 So	you	said	something	that,	I’m	not	sure	I	understood	
what	you	meant.	You	said	something	like,	it’s	five,	but	
not	if	you	look	at	the	whole	timeline.	Can	you	say	more	
about	that,	what	you’re	meaning	there?	

		 Brittany:		 ‘Cause	this	is	labeled	exponentially,	not	linearly.	
	 Interviewer:		 And	does	that	mean,	it’s	exponential,	not	linear?	
	 Brittany:		 It's	going	by	a	factor	of	ten	[points	to	1,	10,	and	100	in	

quick	succession],	instead	of	like	adding	something	on.	
So	like,	these	portions	[points	to	1,	10,	and	100	in	quick	
succession]	are	not	the	same	values.	Linearly,	you	
would	add	five	[points	to	the	midpoint	of	1	and	10]	and	
add	five	[points	to	10],	but	here	[traces	out	a	circle	over	
the	section	between	10	and	100]	it	would	change.	So	I	
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can’t	label	that	five.	It's	half	of	the	exponential	values	
it's	going	by.	So	ten	to	the	one	half.		

	
She	then	explained	that	for	the	second	unlabeled	spot	“you	just	add	that	half	

to	the	one	[the	exponent	of	1	in	101],	because	it’s	half	way	between	one	and	two	[the	

exponents	of	ten].”	She	ended	by	adding	on	to	her	written	justification,	“where	the	1	

is	the	exponent	of	10.	So	half	the	exponent	of	the	multiplicative	factor	needs	to	be	

added	to	0	to	get	halfway	between	2	numbers".	

When	Brittany	reasoned	about	the	subsections,	she	talked	exclusively	about	

the	linear	pattern	in	the	exponents.	In	her	explanation	she	wrote,	“Half	way	between	

100	and	101	is	10.5	=	 10	because	the	factor	it	takes	to	get	from	100	->	101	is	101	and	

half	of	1	is	½”.	In	her	explanation	she	justified	the	placement	of	10.5	by	pointing	out	

“half	of	1	is	½.”	The	1	in	the	explanation	likely	refers	to	the	exponent	of	101,	given	

her	previous	phrase	“the	factor	…	is	101.”	This	means	that	her	justification	is	based	

solely	on	halving	the	exponent.	This	reasoning	continued	later	in	her	verbal	

explanation	as	well.	She	said,	“It's	half	of	the	exponential	values	it's	going	by.	So	ten	

to	the	one	half.”	I	interpret	the	phrase	“exponential	values”	to	mean	the	exponents.	

This	interpretation	is	corroborated	by	what	she	added	to	the	end	of	her	explanation,	

“where	the	1	is	the	exponent	of	10.	So	half	the	exponent	of	the	multiplicative	factor	

needs	to	be	added	to	0	to	get	halfway	between	2	numbers."	This	means,	again,	the	

explanation	if	focused	on	halving	exponents.	She	then	explained	that	for	the	second	

unlabeled	spot	“you	just	add	that	half	to	the	one,	because	it’s	half	way	between	one	

and	two.”	Again,	the	focus	seems	to	be	on	the	exponents	of	one	half,	one,	and	two.		
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While	there	were	instances	of	multiplicative	talk,	these	all	occurred	when	

discussing	the	pattern	at	the	macro	level.	For	example,	in	her	written	explanation,	

she	used	the	word	“factor,”	but	it	was	in	reference	to	the	“x	10”	pattern	and	she	did	

not	extend	this	pattern	to	the	subsections.	She	wrote,	“the	factor	it	takes	to	get	from	

100	->	101	is	101.”	This	is	how	multiplication	came	up	in	her	verbal	explanation	as	

well.	She	said,	“I	know	that	to	get	from	one	to	ten,	you	have	to	multiply	by	ten”	and	

“It's	going	by	a	factor	of	ten	[points	to	1,	10,	and	100	in	quick	succession],	instead	of	

like	adding	something	on.”	These	are	all	establishing	the	fact	that	the	line	was	

exponential,	not	linear.	During	her	explanation	she	never	made	reference	to	the	idea	

that	the	subsection	represented	multiplication	by	the	square	root	of	ten	or	that	

multiplication	by	the	square	root	of	ten	times	the	square	root	of	ten	was	the	same	as	

multiplication	by	ten.	In	this	way	she	differed	from	the	previous	three	students.	

Farah.	Farah	began	by	labeling	the	spot	10.5,	and	relabeling	1	as	100	and	10	

as	101	(see	Figure	5.7).	She	then	wrote	the	following.	

Because	this	is	an	exponential	line	each	label	must	be	representable	in	
exponential	form.	Each	labeled	tick	mark	represents	100,	101,	102	
respectively.	The	halfway	marks	can	not	be	represented	in	whole	
numbers	dependent	upon	endpoints	because	that	will	force	the	value	
to	move	depending	on	the	endpoints	given.	The	halfway	mark	is	the	
half	of	the	exponent	of	the	larger	endpoint.	1/2	of	1	=	1/2	[three	dots	
in	a	triangular	pattern	to	mean	therefore]	100.5.	

	



187	

	

	
Figure	5.7:	Farah’s	labels.	

	
Here	Farah	is	clear	that	she	was	operating	on	the	exponents.	She	wrote,	“The	

halfway	mark	is	the	half	of	the	exponent	of	the	larger	endpoint.	1/2	of	1	=	½.”	She	

did	not	mention	anything	about	multiplication	at	the	macro	level	or	within	the	

segments.	Furthermore,	in	her	explanation	she	focused	on	the	form	the	numbers	

were	written	in,	which	may	suggest	a	focus	on	the	exponents.	She	wrote,	“The	

halfway	marks	can	not	be	represented	in	whole	numbers.”		

Something	that	might	be	confusing	is	her	statement,	“that	will	force	the	value	

to	move	depending	on	the	endpoints	given.”	In	the	interview,	she	explained	that	this	

was	in	reference	to	an	activity	in	class	where	students	subdivided	segments	linearly	

using	two	different	pairs	of	endpoints,	which	resulted	in	two	different	placements	

for	the	Renaissance	(see	the	background	to	Argument	2.1.1	in	Chapter	4).	However,	

in	the	class	activity,	it	was	not	the	fact	that	the	endpoints	were	written	in	whole	

numbers	that	caused	the	location	of	the	Renaissance	to	be	dependent	on	the	

endpoints	given,	it	was	the	mixed	nature	of	the	half	exponential	half	linear	number	
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line	they	were	reasoning	about.	In	other	words,	this	had	less	to	do	about	the	

notation	and	more	about	the	reasoning	about	how	to	subdivide.	

Elements	of	Reasoning	Linearly	Among	the	Values	

Unlike	the	other	students,	Santiago	and	Lacey	both	had	elements	of	

reasoning	linearly	about	the	actual	values	on	the	line.	Santiago	began	by	reasoning	

linearly,	but	eventually	corrected	this	error,	while	Lacey	reasoned	linearly	and	left	

the	mistake	uncorrected.	

Lacey.	Lacey	began	by	saying,	“I	think	it’d	[the	first	unlabeled	spot	would]	be	

five”	and	labeled	the	first	unlabeled	spot	5.	She	then	wrote	her	justification.	As	she	

wrote	her	justification,	she	labeled	the	second	spot	50	(see	Figure	5.8)	

	
5	gets	in	first	spot	because	it	looks	like	½	distance	between	1	and	10.	
50	in	second	spot	because	50	is	½	of	100.	

	

	
Figure	5.8:	Lacey’s	labels.	

	
After	she	wrote	this,	she	checked	that	5	lay	between	its	surrounding	tick	

marks,	1	and	10.	She	then	said,	“This	one’s	going	to	be	fifty	because	it’s	half	of	a	

hundred	and	it’s	still	between	ten	and	a	hundred.”	
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Lacey’s	way	of	reasoning	differed	from	the	previous	five	students’	ways	of	

reasoning	in	that	she	reasoned	linearly	on	the	values.	In	particular,	she	halved	10	to	

get	5	and	halved	100	to	get	50.	This	halving	resulted	in	a	number	that	when	added	

twice	would	give	the	endpoint	(5+5)	instead	of	a	number	that	when	multiplied	twice	

would	give	the	endpoint	 10 ∙  10 .	This	linear	reasoning	is	similar	to	the	

reasoning	in	category	two	in	that	both	require	halving,	except	here	it	was	applied	to	

the	actual	value	of	the	endpoint	(10)	instead	of	the	exponent	of	factor	by	which	it	

values	increased	(101).	This	difference	is	crucial	because	reasoning	linearly	with	the	

values	does	not	yield	the	correct	label	for	the	midpoint	whereas	reasoning	linearly	

with	the	exponents	does.	

Santiago.	Santiago	also	thought	the	first	unlabeled	spot	should	be	marked	5,	

although	he	later	revised	his	thinking.	He	started	by	saying	the	first	unlabeled	spot	

should	be	marked	five	and	labeled	it	as	such.	He	then	moved	to	reasoning	about	the	

second	unlabeled	spot.	He	said,	“just	by	looking	at	half	of	it	[makes	a	chopping	

motion	over	the	halfway	point	between	10	and	100,	followed	by	a	sweeping	motion	

from	10	to	100],	it’s	not	going	to	help”	and	then	relabeled	10	as	101	and	100	as	102.	

He	then	said,	“exponentially	the	distance	is	just	adding	one	[sweeping	motion	from	

10	to	100].”	The	interviewer	then	asked	what	the	point	should	be	labeled	to	which	

he	replied,	“ten	to	the	one	point	five.”	After	some	discussion	of	the	meaning	of	101.5,	

he	then	returned	to	reasoning	about	the	first	unlabeled	spot.	He	first	relabeled	1	as	

100	and	then	relabeled	the	spot	100.5	(see	Figure	5.9).	The	interviewer	then	asked	if	

he	was	happier	with	5	or	10.5	as	a	label	for	the	midpoint	between	1	and	10.	After	
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some	deliberation,	he	said	it	should	be	10.5.	He	then	explained	his	mistake	saying,	“I	

looked	at	it	just	linearly,	half	of	it,	five,	instead	of	exponentially.	…	‘Cause	usually	

with	lines	I	think	of	it	as	linear.	I	never	think	of	lines,	timelines,	or	whatever	this	is,	

as	exponential	ones.”	He	then	justified	his	claim	that	the	spot	should	be	labeled	10.5	

by	saying,	“Just	looking	at	the	exponents,	and	then	half	between	those	exponents	

[points	to	0	and	1]	is	now	point	five.”	

	
Figure	5.9:	Santiago’s	labels.	

	
Santiago	eventually	determined	that	the	midpoint	between	1	and	10	should	

be	10.5,	by	reasoning	about	the	exponents.	However,	I	am	placing	his	response	to	

this	task	in	this	category	because	he	initially	said	that	the	midpoint	of	1	and	10	

should	be	labeled	5	because	half	of	ten	is	5.	He	even	explicitly	said	he	“looked	at	it	…	

linearly.”	While	it	would	be	reasonable	to	categorize	students’	ways	of	reasoning	

based	on	what	they	eventually	decided	to	do,	I	felt	it	important	to	capture	in	the	

results	what	students	were	still	struggling	with	after	instruction.	This	struggle	was	

especially	striking	given	the	amount	of	time	spent	in	class	talking	about	linear	

subdivision	and	contrasting	it	with	exponential	subdivision.	
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Discussion	

Relationships	between	the	Categories	of	Individuals’	Reasoning	and	the	Class	

NRWs		

In	Chapter	4	I	established	the	emergence	of	Math	Practice	2.	This	Math	

Practice	consists	of	two	normative	ways	of	reasoning	that	describe	accepted	ways	of	

subdividing	segments.	The	first	of	these,	NWR	2.1:	Subdividing	Segments	by	

Reasoning	Linearly	About	Exponents,	is	characterized	by	students	focusing	on	the	

exponents.	The	students	would	write	the	endpoints	of	a	segment	in	the	form	ab	and	

then	essentially	ignore	the	base	and	reason	linearly	with	the	exponents.	In	the	

second	way	of	reasoning,	NWR	2.2:	Preserving	the	Multiplicative	Relationship	

within	the	Segments,	students	reasoned	that	since	a	multiplicative	pattern	exited	

among	the	macro	level	tick	marks	(see	MP1),	a	multiplicative	pattern	should	also	

exist	among	the	subsections.	This	means	that	if	a	segment	that	represents	an	

increase	by	a	factor	of	10	is	divided	into	n	subsections,	one	needs	a	number	that	

when	multiplied	by	itself	n	times	yields	10.	This	number	is	the	nth	root	of	ten.	This	

means	both	ways	of	reasoning	give	the	same	answer	for	the	subdivision.	However,	

they	are	not	redundant,	as	they	highlight	different	mathematical	relationships.	Thus,	

reasoning	that	is	fully	consistent	with	Math	Practice	would	include	being	able	to	

reason	in	both	ways	and	recognizing	the	how	the	ways	of	reasoning	are	related.	In	

this	section,	I	argue	that	the	students	whose	reasoning	was	categorized	in	the	first	

category	was	fully	consistent	with	Math	Practice	2.	In	contrast,	the	students	whose	

reasoning	was	categorized	in	the	second	category	was	consistent	solely	with	NWR	
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2.1.	Finally,	the	students	whose	reasoning	was	categorized	in	the	third	category	was	

consistent	with	a	way	of	reasoning	that	did	not	become	normative,	but	was	present	

in	classroom	discussions,	reasoning	linearly	to	subdivide	(see	Table	5.2).	This	

means	that	individuals’	ways	of	reasoning,	even	those	that	persist,	can	be	

qualitatively	different	from	the	established	practice,	though	variations	observed	in	

this	study	were	rooted	in	ideas	presented	in	class.	

Table	5.2:	The	relationship	between	ways	of	reasoning	that	appeared	in	class	and	those	that	
appeared	in	the	interview.	

Ways	of	Reasoning	in	Class	 Ways	of	Reasoning	in	
Interviews	

Math	Practice	2	 Category	1:	Multiplicative	
Reasoning	Coordinated	with	
Reasoning	Linearly	with	the	
Exponents	

NWR	2.1	Subdividing	Segments	by	
Reasoning	Linearly	About	Exponents	

Category	2:	Reasoning	Linearly	
with	the	Exponents	

Reasoning	Linearly	to	Subdivide	 Category	3:	Elements	of	Reasoning	
Linearly	Among	the	Values	

	
Math	Practice	2	and	Category	1.	Math	Practice	2	consists	of	two	normative	

ways	of	reasoning.	Both	of	these	ways	of	reasoning	yield	the	same	answer,	but	have	

different	affordances	in	their	use.	NWR	2.1,	which	focuses	on	the	linear	pattern	in	

the	exponents,	is	an	efficient	way	to	determine	the	values	that	should	be	placed	at	

the	endpoints	of	various	subdivisions.	NWR	2.2	elaborates	NWR	2.1,	in	that	it	

focuses	on	a	different	mathematical	relationship,	namely	the	multiplicative	

relationship	between	the	values	rather	than	the	linear	one	in	the	exponents.	

This	analysis	of	the	relationship	between	NWR	2.2.	and	2.1	is	consistent	with	

how	the	ways	of	reasoning	developed	in	class.	NWR	2.1	was	first	brought	up	by	

Lacey	at	the	beginning	of	Day	3	(see	Argument	2.1.1).	She	reasoned	linearly	with	the	
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exponents	to	determine	that	102.5	was	the	midpoint	of	the	segment	from	102	to	103.	

In	the	subsequent	exploration	of	her	argument	students	started	talking	about	

multiplicative	relationships.	It	was	in	this	discussion	when	Kathy	had	her	

breakthrough,	when	she	extended	the	multiplication	pattern	at	the	macro	level	to	

the	subsections	(see	Overview	of	the	development	of	NWR	2.2	and	Revisiting	of	

Argument	1.1.2	in	the	previous	chapter).	In	this	way,	Kathy	was	elaborating	Lacey’s	

reasoning.	Furthermore,	in	Argument	2.2.2	Jade	originally	reasoned	that	the	

subsection	that	was	one	seventh	of	the	segment	from	102	to	103	should	be	101/7	by	

appealing	to	the	linear	pattern	in	the	exponents.	Only	when	the	teacher	pressed	

further,	asking,	“why	is	it	ten	to	the	one	seventh,”	did	Jade	start	to	talk	about	

multiplicative	relationships	within	the	subsections.	In	this	way,	the	multiplicative	

relationships	served	to	explain	the	answer,	which	was	obtained	by	reasoning	

linearly	about	the	exponents.	

Using	multiplicative	relationships	to	justify	the	placements	of	numbers	that	

were	determined	by	reasoning	linearly	about	the	exponents	is	consistent	with	the	

reasoning	in	Category	1.	For	example,	Kathy	explained	that	she	found	half	the	

exponent	(which	is	linear	reasoning),	but	went	on	to	explain	that	this	gave	the	

square	root	of	ten.	She	then	seemed	to	indicate	that	these	subsections	were	being	

multiplied	and	connected	that	multiplication	to	the	macro	pattern	by	positioning	

both	as	a	consequence	of	the	definition	of	an	exponential	line.	Similarly,	Tanya	and	

Rachel	talked	about	dividing	the	exponent	in	half,	but	also	talked	about	how	the	

factors	were	being	multiplied	together.	
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NWR	2.1	and	Category	2.	Similar	to	the	students	whose	reasoning	was	

placed	in	Category	1,	the	two	students	whose	reasoning	was	placed	in	Category	2,	

Farah	and	Brittany,	also	used	linear	reasoning	in	response	to	the	interview	task.	In	

this	way,	their	reasoning	was	consistent	with	NWR	2.1.	However,	unlike	the	first	

three	students,	Farah	and	Brittany	did	not	elaborate	their	labeling	of	the	

subdivisions	by	drawing	on	multiplicative	relationships,	despite	probes	from	the	

interviewer.	In	this	way,	instead	of	fully	engaging	with	Math	Practice	2,	these	

students	seemed	to	engage	only	with	a	consistent	piece	of	the	emergent	practice,	

NWR	2.1.	

An	Early	Way	of	Reasoning	in	Class	and	Category	3.	The	previous	two	

ways	of	reasoning	in	the	interview	corresponded	to	ways	of	reasoning	in	class	that	

were	eventually	accepted.	The	last	way	of	reasoning	that	occurred	in	the	interview,	

elements	of	linear	reasoning,	also	corresponded	to	a	way	of	reasoning	that	was	

expressed	in	class,	but	did	not	become	normative,	reasoning	linearly	to	subdivide.	

Linear	reasoning	came	up	in	two	ways	during	students’	explorations	of	how	to	build	

a	timeline.	The	first	of	these	was	a	fully	linearly	line,	which	was	characterized	by	

equal	length	segments	representing	equal	elapsed	times.	This	characterization	was	

accepted	in	class	(NWR	0.1).	The	second	approach,	which	employed	reasoning	

linearly	to	subdivide,	was	not	accepted	in	class.	In	this	mixed	approach	the	students	

had	a	macro	exponential	“x	10”	pattern,	but	within	the	segments	they	would	reason	

linearly.	This	did	not	become	a	normative	way	of	reasoning	because	it	was	
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overturned	in	favor	of	fully	exponential	reasoning	(initially	at	the	macro	level	in	

MP1	and	eventually	within	segments	in	MP2).	

Answering	Research	Question	1	

In	this	chapter	I	have	argued	that	the	three	categories	of	individual	reasoning	

correspond	to	ways	of	reasoning	that	were	expressed	in	class.	Category	1	

corresponded	to	Math	Practice	2,	Category	2	corresponded	with	NWR	2.1,	and	

Category	3	corresponded	an	early	way	of	reasoning	in	class	that	was	rejected.	This	

means	that	individual	ways	of	reasoning	that	are	qualitatively	different	than	the	

emergent	practice	(Categories	2	and	3)	can	persist	after	instruction.	Category	3	was	

clearly	different	than	established	math	practice	as	it	resulted	in	differences	in	the	

placement	of	times.	Category	2	was	consistent	with	the	math	practice	in	that	it	

provides	the	same	answers,	however,	it	is	still	significantly	different	in	that	fully	

participation	in	practice	requires	an	ability	to	reason	using	both	NWR	2.1	and	NWR	

2.2	and	see	the	relationships	between	them.	

The	fact	that	ways	of	reasoning	that	were	qualitatively	different	from	the	

established	practice	persisted	after	instruction	may	be	somewhat	surprising	given	

the	results	of	the	few	studies	that	examined	the	relationship	between	emergent	

practices	and	students’	subsequent	reasoning.	These	studies	seem	to	indicate	that	

students	eventually	reorganize	their	knowledge	to	be	consistent	with	emergent	

practices	(Bowers	et	al.,	1999;	Stephan	et	al.,	2003).	Given	the	discrepancy	in	

results,	it	is	important	to	examine	the	impetus	for	the	reorganization	of	knowledge	

of	the	students	in	these	studies.	This	is	clearer	in	results	of	the	study	performed	by	
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Stephan	et	al.	(2003).	In	that	study,	one	of	the	students,	Meagan,	reasoned	in	ways	

that	were	qualitatively	different	from	emergent	practices	temporarily,	but	

eventually	her	ways	of	reasoning	became	problematized	as	they	became	more	

inconsistent	with	class	activities.	

One	hypothesis	to	explain	the	observed	variation	in	ways	of	reasoning	

reported	here	from	the	established	practice	might	be	that	students	whose	reasoning	

was	placed	in	Categories	2	and	3	simply	stopped	intellectually	engaging	in	the	class.	

However,	this	was	not	case.	For	example,	Farah	contributed	to	the	emergence	of	

NWRs	3.1	(Subdividing	Extents	that	Span	Multiple	Segments)	and	5.1	(Logarithms	

are	Exponents)	and	Lacey	contributed	to	the	emergence	of	NWRs	2.1	(Subdividing	

Segments	by	Reasoning	Linearly	About	Exponents)	and	4.2	(An	Additive	Sequence	is	

one	that	has	a	Constant	Sum).	This	implies	that	the	students	continued	to	participate	

in	class	discussions	and	intellectually	engage	with	the	materials.	

Given	the	two	assumptions	that	(a)	students	in	this	study	continued	to	

engage	with	class	activities	and	(b)	continued	participation	was	the	impetus	for	

Meagan’s	reorganization,	why	did	the	participants	in	this	study	fail	to	reorganize	

their	knowledge?	This	question	may	be	best	answered	separately	for	Categories	2	

and	3.	Students	whose	reasoning	was	placed	in	Category	3	were	still	struggling	with	

the	transition	from	linear	reasoning	to	exponential	reasoning.	This	was	surprising	

given	the	amount	of	time	spent	in	class	on	developing	exponential	ways	of	

reasoning	and	the	explicit	discussion	about	why	reasoning	linearly	was	problematic	

during	the	Renaissance	activity.	However,	it	should	be	noted	that	both	students	
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whose	reasoning	was	placed	in	this	category,	at	some	point,	correctly	placed	points	

by	reasoning	linearly	with	the	exponents.	Thus,	the	claim	here	is	not	that	students	

were	not	capable	of	placing	points	in	way	that	was	consistent	with	a	fully	

exponential	line	or	were	completely	unaware	of	the	problems	with	linear	reasoning.	

Rather,	it	seems	that	these	students	were	still	struggling	with	knowing	when	place	

points	linearly	and	when	to	place	them	exponentially.	This	is	consistent	with	the	

research	on	exponential	and	logarithmic	thinking,	which	shows	this	is	a	common	

problem	for	students	(Alagic	&	Palenz,	2006;	Berezovski,	2004;	De	Bock	et	al.,	

2002).	As	such,	these	two	students	likely	just	needed	more	opportunities	to	reason	

about	when	to	use	which	type	of	reasoning.	

Perhaps	more	puzzling	is	the	question	of	why	did	students	not	adopt	

multiplicative	ways	of	reasoning?	Over	half	of	the	students	in	the	post	interview	

reasoned	about	subdivisions	without	drawing	on	multiplicative	patterns.	This	

makes	it	seem	less	likely	that	students	were	able	to	reason	in	this	way	and	simply	

did	not	in	the	interview,	rather	it	seems	as	though	many	of	the	focus	students	failed	

to	make	the	shift	entirely.	This	may	be	due	to	the	nature	of	the	NWRs	with	respect	to	

the	Math	Practice	2.	This	practice	consisted	of	two	ways	of	reasoning	that	both	gave	

the	correct	placements.	As	such,	students	could	reason	linearly	with	the	exponents	

with	no	understanding	of	multiplicative	patterns	and	still	get	correct	placements.	

This	means	that	this	way	of	reasoning	was	powerful	enough	to	allow	students	to	

participate	in	future	class	activities,	without	reorganizing	their	knowledge.	This	

differs	from	Meagan’s	experience	where	her	ways	of	reasoning	that	were	
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qualitatively	different	than	established	practices	yielded	different	answers,	thus	

making	her	way	of	reasoning	more	problematic	for	continued	participation	in	class	

activities.	

	 This	analysis	helps	explain	how	the	students	in	this	study	could	participate	in	

subsequent	class	activities	yet	reason	in	ways	that	were	qualitatively	different	from	

established	practices.	However,	this	leaves	open	the	question	of	why	students	did	

not	reorganize	their	knowledge	as	the	practice	was	being	established.	In	other	

words,	given	the	considerable	class	time	spent	on	developing	multiplicative	ways	of	

reasoning,	how	could	students	reasonably	intellectually	engage	in	those	discussions,	

yet	not	advance	their	thinking?	This	is	examined	in	the	next	chapter	where	I	analyze	

the	mathematical	content	of	the	class	discussions	held	as	multiplicative	ways	of	

reasoning	were	being	developed.	
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Chapter	6: Thematic	Analysis	of	Classroom	Discourse	

	
In	the	previous	two	chapters	I	examined	the	relationship	between	

individuals’’	ways	of	reasoning	on	in	an	interview	administered	after	instruction	

and	Math	Practice	2.	I	found	that	in	contrast	to	the	findings	of	other	scholars,	the	

focus	students	in	this	study	still	reasoned	in	ways	that	were	qualitatively	different	

from	the	established	practice,	even	after	instruction	had	ended.	However,	these	

ways	of	reasoning	were	all	similar	to	ways	of	reasoning	that	were	expressed	in	class.	

In	the	first	way	of	reasoning,	students	coordinated	reasoning	linearly	with	the	

exponents	with	multiplicative	reasoning.	This	is	consistent	with	Math	Practice	2	as	

it	was	established	in	class,	which	includes	two	normative	ways	of	reasoning,	NWR	

2.1:	Subdividing	Segments	by	Reasoning	Linearly	About	Exponents	and	NWR	2.2:	

Preserving	the	Multiplicative	Relationship	within	the	Segments.	In	class,	NWR	2.1	

was	positioned	as	a	way	to	efficiently	determine	the	value	of	subdivisions	and	NWR	

2.2	was	positioned	as	a	way	to	explain	why	reasoning	linearly	with	the	exponents	

makes	sense.	This	is	consistent	with	the	way	students	reasoned	in	post	interview	

whose	reasoning	was	placed	in	the	first	category.	In	the	second	category	were	ways	

of	reasoning	that	solely	used	the	linear	pattern	in	the	exponents	to	determine	

placements.	This	is	consistent	with	NWR	2.1,	but	differs	from	Math	Practice	2	as	a	

whole	because	it	did	not	include	multiplicative	reasoning.	Finally,	ways	of	reasoning	

in	Category	3	assumed	a	linear	relationship	among	the	values.	This	is	inconsistent	

with	Math	Practice	2,	but	is	consistent	with	the	mixed	approach	that	was	discussed	

on	Days	1	and	2	in	whole	class	and	eventually	rejected.	
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Since	over	half	the	focus	students	did	not	include	multiplicative	reasoning	in	

their	interview	responses,	observers	are	left	with	the	question	of	how	could	the	

students	intellectually	engage	in	class	discussions,	but	not	personally	adopt	ways	of	

reasoning	consistent	with	the	emergent	practice?	A	partial	explanation	to	this	

question	will	be	developed	in	this	chapter.	In	particular,	I	will	focus	on	the	nature	of	

the	discourse	as	multiplicative	reasoning	was	developed	in	this	class.	Examining	the	

semantic	relationships	expressed	in	the	classroom	discourse	will	help	illuminate	the	

mathematical	meanings	established	in	class.	Understanding	the	multi-faceted	nature	

of	these	meanings	will	help	provide	a	plausible	account	of	how	students	could	

legitimately	engage	in	class	discussions,	but	not	shift	their	ways	of	reasoning	to	

include	reasoning	multiplicatively.	This	analysis	will	answer	Research	Question	2.		

Research	Question	2.	What	mathematical	connections	exist	between	
the	focus	students’	ways	of	reasoning	in	the	post	interviews	and	the	
discursive	interactions	between	them	and	other	students	and	the	
teacher	in	both	whole	class	and	small	group	settings?	Furthermore,	
how	might	the	nature	of	these	discursive	interactions	give	plausible	
explanations	for	students’	differing	conceptions?	

	
It	is	important	to	note	that	the	point	of	this	analysis	is	to	explain	how	

students	could	participate	the	class	without	using	ways	of	reasoning	on	the	

interview	question	that	mirror	the	emergent	math	practice	developed	in	the	class	

community.	To	do	this	I	will	focus	on	how	the	discourse	allowed	for	students	to	

continue	reasoning	linearly	with	the	exponents	and	not	shift	to	include	

multiplicative	ways	of	reasoning.	As	such,	the	analysis	may	at	times	feel	like	a	

critique	of	the	instruction,	but	this	is	not	the	intent	of	this	chapter.	It	is	important	to	

recognize	that,	overall,	the	instruction	could	be	considered	very	successful.	All	of	the	
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focus	students	were	at	some	point	able	to	reason	correctly	about	the	exponential	

number	line	to	make	accurate	placements.	However,	there	were	subtle	differences	

in	students’	conceptions	that	have	the	potential	to	compound	into	bigger	differences	

over	time,	if	not	addressed.	Thus,	it	is	worth	examining	how	the	discursive	

environment	was	related	to	these	differences	to	reveal	subtle	changes	that	could	be	

made	to	support	a	greater	number	of	students	developing	deep	conceptual	

understanding	of	this	exponential	number	line.	By	examining	this	case,	I	hope	to	

better	understand	how	discourse	can	foster	multiple	interpretations	and	allow	

students	to	participate	in	emergent	mathematical	practices	without	being	able	to	

reason	on	their	own	in	the	same	the	way.	As	researchers	gain	more	understanding	

of	this	process,	they	may	be	better	able	to	support	teachers	in	fostering	discourse	

that	makes	less	sophisticated	reasoning	more	problematic	for	students	as	they	

participate	in	emergent	practices.	This	will	encourage	students’	development	of	

more	sophisticated	reasoning.	

Review	of	Methods	

To	determine	mathematical	meanings	as	they	were	constructed	in	I	used	a	

modified	version	of	Herbel-Eisenmann	and	Otten’s	(2011)	method	for	thematic	

analysis	(Lemke,	1990;	Herbal-Eisenmann,	2011),	a	systemic	functional	linguistics	

(SFL)	approach	(Halliday,	1978;	Halliday	&	Hasan,	1985;	Halliday	&	Martin,	1993;	

Halliday	&	Matthiessen,	2004).	The	first	step	was	to	reduce	the	data	to	episodes	

where	students	were	explaining	how	to	subdivide	a	segment	or	referencing	a	

method	of	subdivision.	I	first	analyzed	the	episodes	where	students	explained	how	
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to	subdivide.	To	do	this	I	created	a	lexical	chain	for	each	episode.	This	was	a	way	of	

formatting	the	transcript	to	reveal	central	ideas	in	the	text.	The	rows	were	the	turns	

of	talk	and	the	columns	were	the	mathematical	ideas	that	were	expressed	in	turn.	

Since	multiple	ideas	could	be	expressed	in	one	turn,	the	utterance	could	be	placed	in	

multiple	columns.	I	also	included	descriptions	of	gestures	over	the	line	(see	Table	

6.1	for	an	example	portion	of	a	lexical	chain).	I	then	augmented	the	chain	by	adding	

a	column	to	the	table	in	which	I	recorded	the	semantic	relationships	expressed	in	

each	turn.	Many	of	the	semantic	relationships	I	used	are	described	in	Talking	Science	

(Lemke,	1990),	but	I	also	found	it	necessary	to	define	new	ones	(see	Table	6.2	for	

the	list	or	relations	I	used	and	their	definitions).	

In	the	next	stages	I	created	two-dimensional	drawings	that	represented	the	

semantic	relationships	that	were	expressed.	I	made	such	a	map	for	each	way	of	

reasoning	expressed	in	the	class.	In	addition,	I	also	made	a	“canonical	map,”	a	map	

that	is	faithful	to	the	mathematics	register.	To	create	this	map	I	drew	on	my	

personal	understanding	of	the	topic.	I	did	this	by	creating	arguments	for	how	to	

subdivide	the	line	and	then	analyzed	those	arguments	for	the	semantic	relationships	

expressed,	just	as	I	did	for	the	classroom	discourse.	I	then	compared	the	various	

maps.	This	revealed	differences	between	the	ways	of	reasoning	expressed	in	class	

and	between	them	and	the	canonical	arguments.	

Finally,	I	examined	episodes	where	students	referenced	the	methods	

themselves.	In	these	episodes	students	tended	to	develop	semantic	relationships	in	

a	different	way	than	when	they	were	explaining	the	methods.	In	these	episodes	they	
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tended	to	use	equivalence	and	contrast	strategies	(see	Appendix	D	in	Lemke,	1990,	

p.	226)	to	show	whether	they	thought	two	strategies	were	the	same	or	different.	

These	strategies	will	be	described	in	more	detail	later	in	the	chapter.	
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Table	6.1:	A	Sample	of	the	Lexical	Chain	Used	for	Analysis	
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Table	6.2:	Semantic	Relationships	used	in	Analysis	
Linguistic	Term	 Description	 Example	

Process/Target	 The	process	is	an	action	that	is	
being	carried	out.	The	target	is	
what	is	being	operated	on.	

Dividing	(process)	the	
segment	(target)	up.	

Process/Result*	 The	result	is	the	outcome	of	the	
process.	

I	divided	(process)	500	
by	2	and	got	250	(result).	

Process/Reason*	 The	reason	is	why	the	process	
is	occurring.	

I	added	200	(process)	
because	that’s	our	
starting	point.		

Entity/Extent	 The	measure	of	a	physical	space	 I	found	the	length	
(extent)	of	the	segment	
(entity).	

Location/Located	 Where	an	object	is	located.	 500	is	at	the	midpoint.	

Token/Type	 An	example	of	a	class	of	objects.	 450	(token)	is	an	amount	
of	elapsed	years	(type).	

Representation/Repres
ented*	

The	representation	is	a	
depiction	of	something	and	the	
represented	is	what	is	being	
depicted	

Same-sized	segments	
(representation)	
represent	multiplication	
by	a	constant	factor	
(represented)	

Label/Labeled*	 This	is	an	objects	is	called	
something.	This	can	be	done	
verbally	or	through	an	
inscription.	

A	student	might	put	a	
bracket	over	a	segment	
(labeled)	and	write	“x10”	
(label).	
The	segment	(labeled)	is	
500	(label).	

Preposition/Object	 A	word	that	expresses	a	
physical	or	temporal	
relationship	to	another	word.	

Place	the	tick	to	the	right	
(preposition)	of	the	
middle	(object).	

Synonym	 When	the	two	words	mean	the	
same,	or	nearly	the	same,	thing	

Ten	squared	is	
(synonym)	one	hundred.	

Agent/Process	 The	agent	is	the	person	or	
object	that	preforms	the	
process.	

I	(agent)	divided	
(process)	the	segment.	

	
Overview	of	Claims	

In	the	results	section,	I	present	six	maps	that	show	semantic	relationships	

between	lexical	items	along	with	the	evidence	supporting	the	claim	that	these	

relationships	exist.	By	comparing	these	maps	I	give	evidence	for	my	four	main	

claims.	This	is	organized	as	follows.	First,	I	give	a	conceptual	analysis	of	a	traditional	

number	line,	one	in	which	there	is	a	consistent	linear	scale,	and	an	exponential	

number	line.	With	these	analyses	as	a	backdrop,	I	give	an	example	of	how	one	might	
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reason	about	them	to	determine	the	value	of	the	midpoint	between	102	and	103.	

Using	these	example	arguments	I	created	the	canonical	maps	for	the	two	number	

lines.	I	then	compared	the	two	canonical	maps	to	each	other.	This	provides	evidence	

for	Claim	1:	The	length	of	segments	is	an	important	feature	of	the	number	lines	that	

students	need	to	attend	to	make	the	transition	to	multiplicative	reasoning.		

I	then	give	evidence	from	classroom	interactions	for	the	semantic	

relationships	I	claim	were	expressed	as	students	used	linear	reasoning	to	place	

events	and	present	these	relationships	in	a	map.	I	compare	this	map	to	the	canonical	

map	for	linear	reasoning	to	provide	evidence	for	Claim	2:	As	students	subdivided	

linearly,	the	terms	“distance”	and	“difference”	were	used	somewhat	interchangeably	

and	referred	to	amounts	of	elapsed	years,	the	length	of	segments,	and	the	result	of	

subtraction.		

Next,	I	present	the	evidence	and	maps	that	illustrate	how	students	talked	as	

they	reasoned	linearly	with	the	exponents	and	multiplicatively.	I	then	compare	

these	two	maps	to	support	Claim	3:	Students	used	a	term	that	suggests	multiplicative	

reasoning—“factor”—to	refer	to	segments	as	they	described	additive	patterns	in	the	

exponents.	

Finally,	I	examine	the	ways	the	students	talked	about	the	methods	

themselves.	This	gives	rise	to	Claim	4:	Students	distinguished	in	their	talk	between	

linear	and	exponential	ways	of	reasoning,	but	did	not	distinguish	between	reasoning	

linearly	with	the	exponents	and	multiplicative	ways	of	reasoning.	In	fact,	students	

seemed	to	think	of	both	of	these	methods	as	the	same.	
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	 Together	these	four	claims	suggest	that	the	classroom	discourse	may	not	

have	supported	students	in	disambiguating	between	reasoning	linearly	with	the	

exponents	and	reasoning	multiplicatively.	An	outsider	may	think	that	these	ways	of	

reasoning	are	obviously	different	since	they	focus	on	different	mathematical	

relationships	and	have	a	hard	time	imagining	the	students	thinking	of	them	as	the	

same.	However,	there	were	several	aspects	of	the	discourse	that	may	have	allowed	

students	to	think	of	the	strategies	as	the	same	or	at	least	equivalent.	If	students	did	

not	see	these	methods	as	different,	there	may	have	been	little	intellectual	

motivation	to	fully	understand	NWR	2.2.	This	may	help	explain	why	students	did	not	

adopt	this	way	of	reasoning.	

Results	

Claim	1:	The	Importance	of	Attending	to	Length	

In	this	section,	I	first	present	a	conceptual	analysis	of	two	number	lines,	one	

with	a	consistent	linear	scale,	which	I	call	a	traditional	number	line,	and	one	

exponential.	These	analyses	are	based	on	my	personal	expertise,	analysis,	and	

reflection.	Using	these	conceptual	analyses	as	a	base,	I	then	present	an	argument	for	

which	number	should	be	placed	at	the	midpoint	between	102	and	103	on	a	

traditional	number	line	and	then	present	an	argument	for	which	number	should	be	

placed	at	the	same	midpoint	on	an	exponential	number	line.	I	chose	the	midpoint	of	

102	and	103	because	students	gave	both	exponential	and	linear	arguments	for	the	

placement	of	this	point	in	class.	This	makes	the	networks	of	semantic	relationships	

expressed	in	the	canonical	arguments	more	easily	compared	to	the	classroom	
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arguments.	I	then	created	maps	that	show	the	semantic	relationships	presented	in	

these	arguments.	By	comparing	these	maps	I	provide	evidence	for	Claim	1:	The	

length	of	segments	is	an	important	feature	of	the	number	lines	that	students	need	to	

attend	to	make	the	transition	to	multiplicative	reasoning.		

Conceptual	Analyses.	In	a	traditional	number	line,	numbers	that	differ	by	

one	are	the	same	distance3	apart	on	the	number	line	(e.g.,	one	inch,	see	Figure	6.1).	

This	means	that	the	distance	between	zero	and	one	determines	the	distance	

between	one	and	two,	the	distance	between	two	and	three,	etc.	A	logical	

consequence	of	this	is	that	numbers	that	differ	by	two	will	be	the	same	distance	

apart—double	the	distance	from	zero	to	one	(e.g.,	2	inches,	see	Figure	6.2).	

	

	
Figure	6.1:	Numbers	that	differ	by	one	are	the	same	distance	apart	

	

	
	

																																																								
3	In	this	analysis	I	talk	both	about	the	distance	between	two	points	and	the	length	of	segments.	These	
are	really	two	ways	to	describe	the	same	thing,	but	I	use	both	phrases	because	sometimes	it	is	more	
natural	to	refer	to	the	endpoints	(and	the	distance	between	them)	and	other	times	it	is	more	natural	
to	talk	about	the	segment	(and	its	length).	
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Figure	6.2:	Numbers	that	differ	by	two	are	twice	the	distance	apart	

	
In	fact,	a	logical	consequence	of	this	is	that	any	pair	of	integers	on	the	line	

with	the	same	difference	will	be	the	same	distance	apart	(e.g.,	96	and	99	will	be	the	

same	distance	apart	on	the	line	as	1,544	and	1,547).	This	relationship	can	be	

generalized	and	one	could	say	that	any	pair	of	numbers	with	the	same	difference	

will	be	the	same	distance	apart	(e.g.	2	and	3.5	will	be	the	same	distance	apart	on	the	

line	as	101	and	102.5).	Given	the	assumption	that	larger	numbers	are	to	the	right	of	

smaller	numbers,	this	rule	determines	the	locations	of	all	the	numbers	on	the	line	

once	any	two	numbers	are	placed	on	the	line.	For	example,	to	place	½	one	would	

reason	that	it	would	need	to	be	the	same	distance	away	from	zero	as	it	is	from	1,	

since	½	-	0	=	1	–	½.	This	means	it	would	need	to	be	halfway	between	zero	and	one.	

Put	succinctly,	in	a	traditional	number	line,	segments	of	the	same	length	represent	

addition	by	a	particular	difference.	



210	

	

An	exponential	number	line	can	be	built	up	in	the	same	way,	except	one	

needs	to	interpret	same	size	segments	differently—as	representing	multiplication	

by	a	particular	factor	rather	than	addition	by	a	particular	difference.	For	example,	

any	two	numbers	that	when	divided	yield	a	quotient	of	ten	will	be	the	same	distance	

apart	(see	Figure	6.3).	

	

	
Figure	6.3:	The	same	distance	apart	means	an	increase	by	a	constant	factor	

	
This	means	that	if	two	numbers	whose	quotient	is	ten	are	one	inch	apart	on	

an	exponential	number	line,	then	numbers	that	are	two	inches	apart	on	that	number	

line	will	have	a	quotient	of	one	hundred	(see	Figure	6.4).	In	general,	if	a	÷	b	=	q	and	

the	distance	between	a	and	b	is	x	inches	and	c	÷	d	=	q2	the	distance	between	c	and	d	

will	be	2x	inches.	
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Figure	6.4:	Twice	the	distance	means	an	increase	by	the	square	of	the	factor	

	
This	means	that	once	any	two	numbers	are	placed,	the	placement	of	all	of	the	

other	numbers	is	determined.	For	example,	to	determine	what	number	should	be	

placed	halfway	between	the	tick	mark	labeled	1	and	the	tick	mark	labeled	10	in	the	

example	above,	call	it	y,	we	would	recognize	that	the	half	way	point	is	equidistant	

from	1	and	10.	That	means	that	1	times	an	unknown	factor,	call	it	m,	would	yield	y,	

and	y	times	m	would	yield	10.	So	we	have	1m	=	y	and	ym	=	10	so	1mm	=	10.	That	

means	m	=	y	=	 10.	

Canonical	Argument	for	Labeling	Point	halfway	between	100	and	1,000	

on	a	Traditional	Number	Line.	Now	I	present	an	argument	for	why	the	midpoint	

of	100	and	1,000	on	a	traditional	number	line	would	represent	550.	Then	I	will	

discuss	the	semantic	relationships	present	in	the	argument	(following	Herbel-

Eisenmann	&	Otten,	2011;	Lemke,	1990).	As	I	do	so,	I	will	bold	lexical	items	and	
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write	semantic	relationships	in	all	caps.	These	conventions	will	continue	in	

subsequent	sections	when	I	analyze	classroom	dialogue.	

The	halfway	point	between	100	and	1,000	divides	the	segment	
from	100	to	1,000	into	two	subsections	of	equal	length.	Since	this	
is	a	traditional	number	line,	same	length	segments	must	represent	
addition	by	the	same	amount	so	each	of	these	two	subsections	
must	represent	addition	by	the	same	number.	Since	the	length	of	
the	whole	segment	represents	addition	by	900,	the	subsections	
must	both	represent	addition	by	450	as	adding	450	twice	is	
equivalent	to	adding	900.	Since	the	location	of	the	leftmost	endpoint	
represents	a	value	of	100,	the	midpoint	must	represent	a	value	of	
100	plus	450,	or	500.	

	
In	this	statement	I	express	several	semantic	relationships.	I	describe	the	

halfway	point	as	an	AGENT	performing	a	PROCESS,	dividing,	whose	TARGET	is	the	

segment.	This	RESULTS	in	two	subsections	of	equal	lengths.	I	then	specify	that	these	

segments	REPRESENT	addition	by	450.	This	is	an	IMPLICATION	of	the	fact	that	

same	size	segments	REPRESENT	addition	by	the	same	number.	I	then	deduce	that	

because	the	whole	segment	REPRESENTS	addition	by	900,	each	subsection	must	

REPRESENT	450,	since	450	plus	450	is	900.	Then	since	the	endpoint	REPRESENTS	

100,	this	is	added	to	450,	a	PROCESS	which	RESULTS	in	550.	
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Figure	6.5:	Canonical	Map	for	Traditional	Number	Line	

	

Canonical	Argument	for	Labeling	the	Halfway	Point	between	100	and	

1,000	on	an	Exponential	Number	Line.	One	can	give	an	argument	that	has	a	very	

similar	structure	for	determining	what	goes	halfway	between	100	and	1,000	on	an	

exponential	number	line	if	one	reinterprets	the	length	of	a	segment	as	representing	

multiplication	instead	of	addition.	Such	an	argument	follows.	

	
The	halfway	point	between	100	and	1,000	divides	the	segment	from	100	to	
1,000	into	two	subsections	of	equal	length.	Since	this	is	an	exponential	number	
line,	same	length	segments	must	represent	multiplication	by	the	same	amount	
so	each	of	these	two	subsections	must	represent	multiplication	by	the	same	
number.	Since	the	length	of	the	whole	segment	represents	multiplication	by	ten,	
the	subsections	must	both	represent	multiplication	by	 𝟏𝟎	as	multiplying	by	
𝟏𝟎	twice	is	equivalent	to	multiplying	by	ten.	Since	the	location	of	the	leftmost	
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endpoint	represents	a	value	of	100,	the	midpoint	must	represent	a	value	of	100	
times	 𝟏𝟎,	about	316.	
	

	
Figure	6.6:	Canonical	Map	for	Exponential	Number	Line	

Comparison	of	Canonical	Maps.	These	arguments	are	nearly	identical	

except	for	the	interpretation	of	what	the	length	of	a	segment,	or	the	distance	

between	two	points,	represents.	On	a	traditional	number	line	the	length	represents	

addition	by	a	particular	difference.	On	the	exponential	number	line	the	length	

represents	multiplication	by	a	particular	factor.	This	may	mean	that	this	shift	in	

interpretation	of	length	is	key	to	understanding	the	exponential	number	line.	

Of	course,	this	shift	is	not	necessary	if	students	write	all	numbers	on	the	

exponential	number	line	as	ten	to	some	power.	Written	in	this	form,	a	numeric	

pattern	emerges.	Segments	that	represent	multiplication	by	ten	also	represent	an	
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increase	of	one	in	the	exponent	because	of	the	way	things	are	notated.	So,	if	one	inch	

represented	multiplication	by	ten,	it	also	would	represent	addition	by	one	in	the	

exponent.	For	example,	one	inch	away	from	100	is	101	and	one	inch	away	from	101	is	

(101	x	10)	or	101+1	or	102.	This	extends	to	subdividing	segments	as	well.	Continuing	

the	example,	one	half	an	inch	would	represent	multiplication	by	the	square	root	of	

ten.	So	one	half	inch	away	from	100	would	represent	100	x	 10,	which	can	also	be	

written	as	100	x	10.5	or	as	100+.5.	This	shows	that	one	half	inch	also	represents	

addition	by	½	in	the	exponent.	Put	more	generally,	in	an	exponential	number	line,	

same	size	segments	not	only	represent	multiplication	by	a	particular	factor,	but	also	

addition	by	a	particular	number	to	the	exponent.	

The	fact	that	the	exponential	number	line	works	exactly	like	a	traditional	

number	line,	if	the	students	just	ignore	the	base,	may	help	explain	why	reasoning	

linearly	with	the	exponents	was	compelling	for	the	students.	Given	the	fact	that	

students	found	this	way	of	reasoning	appealing,	one	might	say	that	it	should	be	

avoided	altogether	so	students	must	reason	multiplicatively.	Alternatively,	given	the	

apparent	complexity	for	students,	one	might	wonder	if	it	is	worth	the	time	to	get	

students	to	shift	their	interpretation	of	length.	Why	not	just	have	them	reason	

linearly	with	the	exponents?	In	response	I	would	argue	that	the	number	line	

becomes	a	powerful	tool	when	students	can	interpret	the	length	of	segments	as	

representing	both	multiplication	and	addition	in	the	exponent.	When	students	can	

interpret	lengths	of	segments	in	both	ways,	students	can	gain	insights	into	and	build	

intuition	for	rules	that	exist	in	exponential	and	logarithmic	situations.	In	other	
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words,	if	students	understand	that	the	length	of	a	segment	can	represent	either	

addition	in	the	exponent	by	a	set	number	or	multiplication	by	a	set	factor,	reasoning	

about	the	number	line	can	build	intuition	about	rules	such	as	101/2	=	 10.	

Similarly,	understanding	what	a	length	of	a	segment	can	represent	lays	the	

groundwork	for	reasoning	about	logarithms.	One	way	to	reason	about	logarithms	

using	the	number	line	is	to	interpret	log	b	(x)	as	the	length	of	the	segment	from	1	to	

x.	This	is	because	the	length	represents	multiplication	by	a	factor	of	x	as	well	as	the	

increase	in	the	exponent	from	b0	to	bt	where	bt	=	x.	For	example,	suppose	we	have	a	

number	line	where	each	factor	of	eight	is	one	inch	apart.	This	means	that	8t	will	be	

located	t	inches	away	from	80	=	1	and	that	log	8	(8t)	=	t.		

	
Figure	6.7:	Finding	“x8t”	on	the	exponential	number	line.	

	
Understanding	this	in	depth	has	the	potential	to	build	intuitive	

understanding	complex	logarithm	rules	such	as	the	change	of	base	formula	that	says	
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log! 𝑥  = !"#! !
!"#! !

.	If	we	say	a	=	2	and	x	=	8	this	rule	says	 !"#! !
!"#! !

=  log! 8 = 3.	In	terms	of	

the	number	line,	this	equation	is	simply	pointing	out	that	the	length	of	a	segment	

that	represents	multiplication	by	a	factor	of	8	is	three	times	as	long	as	a	segment	

that	represents	multiplication	by	a	factor	of	2.	This	is	intuitively	true	if	your	

interpretation	of	the	number	line	is	that	same	sized	segments	represent	

multiplication	by	the	same	factor,	since	three	segments	that	each	represent	

multiplication	by	two	would	necessarily	be	a	segment	that	represented	

multiplication	by	eight.	The	interested	reader	could	explore	more	complicated	

interpretations	of	this	rule	that	get	into	issues	of	scale,	as	when	b	=	2	and	a	=	8.	

Summary.	In	the	first	two	subsections	I	have	provided	conceptual	analyses	

of	both	the	traditional	and	exponential	number	line.	I	then	gave	arguments	for	the	

labeling	of	the	midpoint	of	100	and	1,000	on	both	linear	and	exponential	number	

lines.	From	these	arguments	I	developed	canonical	maps	for	linear	and	exponential	

lines.	By	comparing	these	maps	I	provided	evidence	for	Claim	1:	the	length	of	

segments	is	an	important	feature	of	the	number	lines	that	students	need	to	attend	to	

make	the	transition	to	multiplicative	reasoning.	

Claim	2:	Subtle	Ambiguity	in	Referring	to	Lengths	

In	this	section	I	will	provide	evidence	for	Claim	2:	As	students	subdivided	

linearly,	the	terms	distance	and	difference	were	used	somewhat	interchangeably	and	

referred	to	amounts	of	elapsed	years,	the	length	of	segments,	and	the	result	of	

subtraction.	As	I	argued	in	the	previous	two	sections,	this	is	an	important	feature	of	

the	timeline,	especially	as	students	shift	from	linear	to	exponential	reasoning.	As	
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such,	this	claim	may	help	explain	how	the	discourse	failed	to	support	this	shift.	To	

support	this	claim,	I	will	first	develop	the	classroom	map	that	shows	the	semantic	

relationships	students	expressed	as	they	reasoned	linearly	about	subdivisions.	I	will	

first	analyze	episodes	where	students	expressed	linear	reasoning	and	present	the	

resultant	map.	I	will	then	compare	the	class	map	to	the	canonical	map	to	support	

Claim	2.	

Background.	On	Day	2,	the	teacher	passed	out	a	worksheet	that	had	three	

problems	that	encouraged	students	to	think	about	how	to	subdivide	segments	on	a	

timeline.	The	first	asked	students	to	place	the	Renaissance	(500	years	ago)	on	the	

timeline.	The	second	asked	them	to	place	the	Oligocene	period	(3.7	x	10^7	or	37	

million	years	ago).	The	third	was	not	stated	on	the	worksheet	(see	Figure	6.8.	Note:	

This	is	the	exact	wording	of	the	task,	but	not	the	exact	formatting).	Students	had	

time	to	work	on	the	first	two	problems	in	small	group,	after	which	the	first	problem	

was	discussed	in	whole	class.	The	teacher	then	posed	the	third	problem	orally,	

which	was	to	place	the	Renaissance	using	the	same	method	they	used	in	the	first	

task,	but	with	different	endpoints.	The	students	again	had	time	to	work	on	this	in	

small	group	and	then	they	discussed	it	in	whole	class.	On	all	three	of	these	tasks	in	

both	small	group	and	whole	class,	students	subdivided	linearly.	
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Figure	6.8:	Task	as	Worded	in	Class:	Placing	the	Renaissance	and	the	Oligocene	Epoch	

	
Placing	the	Renaissance	and	Oligocene	Epoch	in	Group	1.	Rachel,	Kathy,	

Tanya,	and	Santiago	quickly	placed	the	Renaissance	without	much	justification,	only	

saying	it	goes	in	the	middle	of	100	and	101.	Before	the	task	was	even	passed	out,	

Kathy	said,	“It’s	just	in	the	middle	of	ten	to	the	zero	and	ten	to	the	one”.	After	they	

had	placed	the	Renaissance,	they	moved	onto	the	Oligocene	period.	It	was	only	

when	the	teacher	visited	the	group	and	asked	them	to	explain	their	reasoning	did	

they	reflect	on	their	method.	As	they	reflected	they	realized	that	500	would	go	

between	102	and	103,	not	between	100	and	101.	They	also	noticed	that	it	would	not	

go	exactly	in	the	middle	of	the	segment.		Rachel	said,	“Oh,	that’s	not	right.	

Because…this	is	between	a	thousand	[points	to	103	with	pen]	and	a	hundred	

[points	to	102	with	pen],	so	the	difference	in	here	is	nine	hundred	[traces	a	circle	

around	the	extant	between	102	and	103	with	pen].	So	it’s	[the	Renaissance]	not	

smack	dab	in	the	middle	[points	to	the	middle,	the	current	placement	of	the	

Renaissance]”.	After	this	realization,	they	worked	to	determine	how	the	midpoint	

should	be	labeled.	As	they	worked	on	this,	Tanya,	Rachel,	and	Kathy	negotiated	
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whether	the	Renaissance	should	be	placed	to	the	right	or	the	left	of	the	midpoint,	

presumably	because	they	were	still	grappling	with	whether	the	midpoint	should	be	

labeled	450	or	550	years.	

	 Tanya:		 Right,	so	if	you’re	thinking	it’s	nine	hundred	years	in	
that	interval	[puts	both	hands	up	like	an	interval,	see	
Figure	6.9],	the	half	way	point	is	four	fifty.	

	 Rachel:		 So	it’s	[the	placement	of	the	Renaissance]	past	half	
way.	If	you’re	going	this	way	[gestures	with	pen	from	
102	to	103] 

	 Kathy:		 It’s	less	than	half	...	because	you're	adding	one	
hundred	[to	four	fifty].	

 

 
Figure	6.9:	Tanya	gesturing	like	an	interval	

	
Kathy’s	idea	that	the	midpoint	is	550	because	it	is	450	plus	100	was	accepted	

and	rearticulated	later.	For	example,	Rachel	said,	“The	[midway]	point	is	not	four	

fifty,	if	it	were	zero	to	nine	hundred	it	would	be	four	fifty,	but	we're	starting	at	

100,	so	we	need	to	add	a	hundred.”	
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In	this	short	episode	students	expressed	some	of	the	semantic	relationships	

depicted	in	the	classroom	map	(Figure	6.11).	Rachel	LABELED	the	extant	from	102	

to	103	as	both	nine	hundred	and	a	difference	when	she	said,	“so	the	difference	in	

here	is	nine	hundred”	as	she	circled	the	extant.	Then,	Tanya,	Rachel,	and	Kathy	

expressed	semantic	relationships	relevant	to	location	of	the	Renaissance.	They	first	

established	that	the	midpoint	is	not	450,	because	the	end	of	interval	is	100,	not	0—

implying	that	the	midpoint	should	be	labeled	550.	This	means	that	500,	the	year	

associated	with	the	Renaissance,	would	be	shifted	from	the	midpoint	so	its	

LOCATION	was	closer	to	the	102	tick	mark. 

Placing	the	Renaissance	in	Group	2.	Similar	talk	occurred	in	Group	2,	

consisting	of	Farah,	Samantha,	Brittany,	and	Lacey.	As	they	began	working	on	

placing	the	Renaissance,	Brittany	began	the	conversation	by	saying	the	midpoint	

would	be	550.	She	said,	“If	the	difference	between	ten	to	the	second	and	ten	to	

the	third	[has	one	finger	on	102	and	one	on	103]	is	nine	hundred	[traces	with	pen	

back	and	forth	between	two	endpoints],	halfway	in	between	is	going	to	be	like,	

five	fifty.”	This	is	consistent	with	the	students’	reasoning	in	Group	1,	although	

Brittany	did	not	articulate	all	the	steps	she	took	to	arrive	at	550.	

One	way	in	which	Group	2’s	work	differed	from	Group	1’s,	however,	is	that	

the	students	in	Group	2	also	used	the	word	distance,	seemingly	interchangeably	

with	difference.	While	they	were	developing	their	method,	Samantha	pointed	out	

that	“half	the	distance”	was	450.	

	 Samantha:	 I	found	the	distance	[traces	the	segment	from	102	to	
103]	and	I	got	nine	hundred	[points	to	a	label	of	900	
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she	has	written	over	a	brace	she	drew	over	the	
segment	from	102	to	103]	and	I	took	half	of	it	[traces	
out	an	up	and	down	sweeping	motion	over	the	vertical	
line	at	halfway	point	with	her	pen],	which	is	four	fifty.	
So	that’s	going	to	be	half	this	distance	here	[points	to	
the	halfway	point	with	pen]”.	

	
Brittany	then	clarified	that	the	halfway	point	would	represent	550.		

In	this	quote	Samantha	expressed	semantic	relationships	involving	distance.	

She	talked	about	the	distance	as	a	SYNONYM	for	the	segment	from	102	to	103	by	

saying	“distance”	while	tracing	out	the	segment	and	at	the	same	time	LABELED	the	

distance	900.	She	also	said	she	halved	the	distance,	a	PROCESS	with	a	RESULT	of	

450.	

Placing	the	Renaissance	in	Whole	Class.	Students	continued	to	use	lexical	

items	in	ways	that	were	consistent	with	the	relationships	they	expressed	in	their	

small	groups	as	they	discussed	where	the	Renaissance	should	be	placed	in	whole	

class.	This	discussion	began	with	a	presentation	by	Ashley	and	Julia.	They	showed	a	

vertical	number	line	and	Ashley	explained	that	500	would	be	the	midpoint	of	102	

and	103.	Lacey	immediately	challenged	her,	pointing	out	the	endpoint	was	100,	not	

zero.	She	said	the	following,	

	
	 Lacey:		 I	think	it’s	[the	location	of	the	Renaissance]	going	to	be	

a	little	bit	less	than	half,	because	you're	not	starting	at	
zero	years,	your	starting	at	a	hundred	years.	So	because	
the	distance	between	is	nine	hundred,	you’ll	have	to	add	
that	extra	hundred,	so	your	halfway	point	would	
actually	be	five	hundred	and	fifty	years.	

	
When	the	teacher	asked	her	to	elaborate	at	the	document	camera	she	continued.	
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	 Lacey:		 I’m	thinking	it’s	actually	going	to	be	closer	towards	the	
ten	to	the	two	tick	mark	[points	to	label	of	102].	So	
maybe	like	here	[points	slightly	above	the	halfway	
point,	see	Figure	6.10].	…	Since	the	distance	between	
ten	to	the	two	[points	to	102]	and	ten	to	the	three	
[points	to	103]	is	nine	hundred	years	[sweeps	finger	
from	102	down	the	line	to	103],	half	that	is	four	fifty	
[points	to	about	the	midpoint],	so	then	since	you're	
starting	at	a	hundred	[points	to	102]	you	have	to	add	
that	extra	hundred	[points	to	102],	to	make	it,	the	
halfway,	five	fifty	[flops	her	hand	around]	so	it	would	
be,	it’d	be	fifty	less	than	the	halfway	point	[points	
slightly	above	the	midpoint].”	

	

	
Figure	6.10:	Lacey	Arguing	the	Location	of	the	Renaissance	Should	be	Moved.	

	
In	her	argument	Lacey	expressed	several	semantic	relationships.	For	

example,	she	said	that	the	Renaissance	should	be	LOCATED	closer	to	the	102	tick	

mark	and	said	that	one	needs	to	add	one	hundred,	a	PROCESS,	to	the	450	to	find	that	

550	is	LOCATED	at	the	midpoint.	She	also	referred	to	the	nine	hundred	years	as	a	

distance,	which	suggests	an	ENTITY/EXTENT	relationship.	However,	it’s	not	clear	if	

she	is	talking	about	the	900	years	as	a	measure	of	the	segment	or	as	a	numerical	
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difference	between	1,000	and	100,	which	would	suggest	a	PROCESS/RESULT	

relationship.	Because	of	this	ambiguity,	I	have	used	the	more	general	relationship	

LABEL/LABELED,	to	describe	the	relationship	between	distance	and	nine	hundred.		

Placing	the	Renaissance	Again,	but	with	Different	Endpoints.	In	both	

groups,	the	students	started	by	negotiating	what	they	were	supposed	to	do.	They	

determined	that	the	teacher	was	essentially	asking	them	to	ignore	the	tick	marks	

101	and	102.	Both	groups	were	able	to	successfully	use	the	same	method	as	before,	

reasoning	linearly	using	1	and	1,000	as	the	endpoints.	They	calculated	the	difference	

between	1	and	1,000	was	999,	divided	their	result	in	two	to	find	a	quotient	of	499.5,	

and	then	added	that	to	1	to	find	the	midpoint	represented	500.5	years.	They	both	

noticed	that	this	implied	that	this	would	shift	the	Renaissance	to	about	the	middle	of	

the	segment	from	1	to	1,000	rather	than	near	the	midpoint	of	the	smaller	segment	

from	100	to	1,000,	where	it	was	placed	before.	They	then	went	through	this	method	

interactively	whole	class.	In	both	whole	class	and	small	group,	the	relationships	they	

expressed	were	consistent	with	the	relationships	they	expressed	when	reasoning	

about	subdividing	the	segment	from	100	to	1,000.	For	example,	consider	the	

following	exchange	in	Group	1.	

	 Rachel:	 What’s	half	of	nine	hundred	ninety-nine?	
	 Santiago:	 Four	hundred	forty	four	point	five.	
	 Kathy	 Divide	by	two?	Four	ninety-nine	point	five.	But	now,	

since	we’re	starting	at	one,	we	just	need	to	add	one,	
right?	

	 Rachel:	 That’s	what	I’m	thinking.	So	we	just	add	one.	
	 Kathy:	 So	what	does	that	number	mean	to	us	though?	Five	

hundred	point	five.	
	 Tanya:	 So	it	would	just	be	to	the	left	of	the	middle.	
	 Rachel:	 So	we	need	to	just	go	to	the…	
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	 Tanya:	 Teenzy	bit	left.	
	 	 …	
	 Rachel:	 I	didn’t	plot	nine	hundred	ninety	nine.	I	said	the	

whole	thing	is	nine	hundred	ninety	nine	[pulls	her	
hands	away	from	each	other	in	the	air].	

	 Kathy:	 Okay,	what	is	this	line	[the	midpoint]?	Five	hundred?	
	 Tanya:		 Well	no,	the	line	was	your	center,	right?	[holds	flat	

hand	up,	perpendicular	to	the	floor]	
	 Rachel:	 Which	is	five	hundred	and	a	half.	Five	hundred	point	

five.	
	
Similarly,	the	relationships	expressed	in	whole	class	were	consistent	with	those	

previously	expressed.	

	
	 Teacher:	 	…	What's	the	difference	between	one	and	one	thousand?	
	 Several:		 Nine	hundred	ninety	nine.	
	 Teacher:		 Nine	hundred	ninety	nine	years.	Kay.	…	How	do	I	think	about	

it	next?	Kaitlyn,	how	did	you	think	about	it	next?	
	 Kaitlyn:		 We	divided	by	two,	right?	
	 Teacher:		 Divided	this	distance,	this	number	of	years	by	two	and	what	

did	you	get?	
	 	 …	
	 Students:		 Four	ninety-nine	and	a	half.	
	 	 …	
		 Teacher:		 …	I've	got	four	ninety-nine	point	five	years	that	passed,	so	

how	many	years	ago	is	right	here	[draws	an	arrow	to	the	
midpoint]. 

	 Kathy:		 Five	hundred	point	five.	
	 	 …	
	 Teacher:		 So	where	is	the	Renaissance?	Is	it	to	the	right	or	to	the	left	of	

there? 
	 Several:		 To	the	right.	
	

In	both	of	these	instances	we	see	relationships	being	expressed	that	are	

consistent	with	those	expressed	in	the	previous	episodes.	These	relationships	are	

represented	in	the	classroom	map	(Figure	6.11).	There	are	a	few	things	to	note	

about	this	map.	In	some	of	the	blue	discs,	which	represent	the	lexical	items,	there	

are	multiple	words.	There	are	two	reasons	why	multiple	words	can	be	placed	in	the	
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same	disc.	First,	students	may	have	referred	to	the	same	object	in	different	ways.	

For	example,	students	talked	about	placing	500	and	placing	the	Renaissance	

interchangeably.	I	could	have	legitimately	represented	these	two	items	as	separate	

synonymous	items,	but	I	chose	to	simply	place	them	in	same	disc	since	students	

never	explicitly	expressed	this	relationship.	Second,	there	are	times	when	different	

objects	functioned	the	same	way	in	the	discourse.	For	example,	both	102	and	103,	

and	later	one	and	one	thousand,	had	the	same	role	in	the	arguments	that	were	

presented;	they	functioned	as	endpoints	to	a	segment.	However,	I	did	not	simply	put	

the	term	“endpoint”	in	the	disc	because	the	students	did	not	refer	to	those	points	as	

endpoints.	

Also,	it	worth	noting	that	there	were	semantic	relationships	that	were	

expressed,	but	were	later	determined	to	be	inappropriate	as	well	as	terms	that	were	

debated.	For	example,	at	one	point,	students	thought	that	the	Renaissance	should	be	

LOCATED	at	the	midpoint	and	then	later	determined	it	was	close	to,	but	not	exactly	

at	the	midpoint.	I	have	indicated	this	overturned	relationship	with	a	dotted	line.	

Similarly,	students	debated	whether	the	Renaissance	was	to	left	or	to	the	right	of	the	

middle.	Eventually,	they	decided	it	was	to	the	right	of	the	middle.	To	indicate	this,	I	

colored	the	disc	containing	the	lexical	term	“right”	orange	instead	of	blue.	
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Figure	6.11:	Class	Map	of	Linear	Method	
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Comparison	of	Canonical	and	Class	Maps	for	Linear	Reasoning.	In	this	

subsection	I	will	discuss	the	differences	between	the	canonical	and	classroom	maps	

which	will	give	evidence	for	Claim	2:	As	students	subdivided	linearly,	the	terms	

distance	and	difference	were	used	somewhat	interchangeably	and	referred	to	amounts	

of	elapsed	years,	the	length	of	segments,	and	the	result	of	subtraction.		In	order	to	talk	

about	the	differences	in	the	maps,	I	will	first	introduce	some	terminology.	

Thompson	and	his	colleagues	(Smith	&	Thompson,	2008;	Thompson,	1990,	

1994)	introduced	the	idea	of	quantities	and	values.	A	quantity	is	one’s	conception	of	

a	measurable	attribute	of	a	situation.	It	can	have	an	associated	numerical	value	or	be	

conceived	without	one.	For	example,	in	the	number	line	task,	the	number	of	years	

ago	the	Renaissance	occurred	is	a	quantity	that	has	an	associated	value	of	500.	

Another	example	of	a	quantity	would	be	the	amount	of	elapsed	years	between	the	

invention	of	zero	(1,800	years	ago)	and	the	Mayan	civilization	(1,000	years	ago),	

which	has	an	associated	value	of	800	years.	These	examples	are	quantities	that	

measure	attributes	of	the	story	context.	There	are	also	quantities	that	measure	

attributes	of	the	physical	number	line	itself.	Examples	of	these	quantities	are	

locations	on	the	line,	such	as	two	inches	away	from	the	origin,	and	the	length	of	

segments,	such	as	one	inch.	

As	the	students	presented	arguments	in	class,	they	did	not	explicitly	discuss	

the	relationship	between	quantities	that	measure	attributes	of	the	line	and	those	

that	measure	attributes	in	the	problem	situation	(e.g.,	number	of	years	ago).	In	

particular,	the	way	students	talked	about	an	interval	did	not	distinguish	between	
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attributes	of	the	line	and	attributes	of	the	problem	situation.	In	the	class	map,	the	

interval	was	labeled	as	a	“difference”	and	“nine	hundred.”	Also,	the	word	“distance”	

was	treated	as	a	synonym	for	the	interval.	Furthermore,	“nine	hundred”	was	also	

referred	to	as	a	“distance”.	In	this	way,	the	terms	distance	and	difference,	the	

numerical	difference	(e.g.,	900),	and	the	segment	were	all	used	somewhat	

interchangeably.		This	differs	from	the	canonical	arguments	where	relationships	are	

clearly	articulated.	In	the	canonical	argument	the	interval	is	said	to	represent	

adding	by	900.	Furthermore,	the	length	of	a	segment	is	clearly	articulated	as	

representing	“adding	by	the	same	amount.”	In	this	way,	distance	(or	its	equivalent	in	

the	canonical	argument—length)	and	differences	are	distinguished	and	their	

relationship	is	clearly	articulated	in	the	canonical	argument,	but	treated	somewhat	

synonymously	in	the	class	arguments.	

Students	may	have	assumed	a	natural	connection	between	distance	and	

difference,	which	could	explain	why	they	used	both	terms	to	refer	to	both	elapsed	

years	and	length	and	why	neither	were	named	explicitly.	If	the	only	way	to	interpret	

length	is	as	the	addition	of	elapsed	years,	there	is	no	reason	to	distinguish	it	from	

elapsed	years.	Thus,	students’	assumption	of	linearity	supported	imprecision	in	the	

language	in	terms	distinguishing	between	length	and	elapsed	years.	Reflexively,	the	

imprecision	in	language	perhaps	inhibited	the	consideration	of	alternative	

interpretations	lengths	of	segments	because	it	obscured	that	physical	attribute	of	

the	line.	
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It	is	important	to	note	that	I	am	not	necessarily	claiming	that	the	students	did	

not	understand	the	relationship	between	lengths	and	elapsed	years,	just	that	they	

did	not	articulate	it.	In	terms	of	their	understanding	of	the	relationship,	it	is	likely	

that	this	varied	among	students	and	evolved	over	Days	2	and	3.	There	was	quite	a	

bit	of	discussion	about	whether	or	not	the	midpoint	between	102	and	103	was	450	

or	550,	suggesting	that	for	some	students	this	relationship	was	not	completely	clear,	

at	least	in	the	beginning.	However,	even	if	all	students	eventually	got	to	the	point	

where	they	could	use	linear	reasoning	accurately	to	determine	the	midpoint	of	

segments,	this	does	not	mean	that	they	were	attending	to	the	length	of	segments	or	

could	articulate	what	that	length	represented.	In	fact,	it	is	unlikely	that	many	

students	could	do	this,	even	at	the	end,	because	the	discourse	supported	a	conflating	

of	the	quantities	length	and	elapsed	years	since	differences	and	distances	were	used	

as	synonyms	to	refer	to	both	quantities.	

The	other	major	difference	between	the	two	maps	is	that	in	the	classroom	

map	justification	was	given	for	why	one	adds	one	hundred.	This	difference	indicates	

that	it	would	be	an	oversimplification	to	say	the	canonical	arguments	use	greater	

precision	than	the	class	arguments.	It	is	more	appropriate	to	say	the	arguments	

differ	in	where	the	interlocutors	are	more	precise.	This	likely	has	to	do	with	what	

the	participants	think	need	to	be	justified.	As	I	argued	previously,	distinguishing	

between	the	length	of	the	segment	and	what	the	length	represents,	elapsed	years,	

may	be	important	for	students.	If	students	are	more	aware	of	their	assumptions	of	

what	the	length	of	segments	represent,	that	may	free	them	to	reassign	the	meaning.	
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Exceptions	to	Claim	2.	While	in	general	the	relationship	between	the	length	

of	a	segment	and	the	elapsed	years	it	represented	was	implicit,	there	were	times	

when	students	at	least	referred	to	them	as	if	they	were	different	quantities.	For	

example,	during	small	group	Farah	drew	a	line	under	the	segment	from	102	to	

103	and	said,	“So	this	would	be	a	representation	of	nine	hundred	years.”	While	

Farah	still	did	not	specify	the	attribute	of	the	segment	that	represents	the	900	years	

or	say	that	the	nine	hundred	years	is	an	elapsed	time,	she	positions	the	segment	as	a	

representation,	rather	than	speaking	about	the	segment	and	elapsed	years	

interchangeably.	However,	other	students	did	not	distinguish	between	these	two	

quantities	in	their	speech	in	future	exchanges.	Here	Farah	was	talking	to	Samantha	

and	neither	student	commented	on	this	shift,	nor	did	it	change	how	Samantha	was	

speaking.	In	fact,	the	previous	example	of	Samantha	using	the	word	distance	to	refer	

to	the	difference	was	in	response	to	what	Farah	said.	

A	more	explicit	call	to	the	relationship	occurred	when	Lacey	responded	to	

Ashley’s	presentation.	She	talked	about	what	the	spaces	between	tick	marks	

represented.	She	was	working	with	Ashley’s	representation,	which	had	the	segment	

from	102	to	103	divided	into	eight	subsections.	While	explaining,	Lacey	said,	“Each	

tick	mark	[gestures	to	extant	between	small	tick	marks	with	two	fingers]	

represents	a	hundred	years.	Or	each	space	between	this	tick	mark	[gestures	to	102]	

and	this	tick	mark	[points	to	first	small	tick	mark]	is	a	hundred	years.”	So	here	

Lacey	specifically	referenced	the	space,	an	attribute	of	the	line,	and	said	that	it	

represented	an	elapsed	time,	100	years.	However,	as	with	Farah,	this	shift	was	not	
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commented	on	nor	was	it	taken	up	by	other	students.	Instead	students	continued	to	

focus	more	on	whether	the	midpoint	represented	450	or	550.	

During	this	discussion,	the	relationships	between	the	lengths	of	segments	and	the	

quantities	they	represented	continued	to	only	be	implied,	not	expressed.	For	

example,	consider	the	following	exchange	between	the	teacher	and	several	students.	

	
	 Teacher:		 …	And	then	the	midpoint	[between	102	and	103]	is	

what? 
	 Many:		 Four-fifty. 
	 Teacher:		 Four-fifty	what? 
	 Many:		 Years 
	
Samantha	then	clarified	that	the	midpoint	does	not	represent	a	time	of	450	years.	

	
	 Samantha:		 The	four-fifty	is	not	the	halfway	point;	it's	half	the	

distance. 
	 	 … 
  Teacher:		 So	she	said,	who	can	revoice	what	she	just	said?	She	

said	four-fifty	is	not	the	midway	point,	what	is	it? 
	 Many:		 Half	the	distance	

	
While	Samantha	clarified	that	the	midpoint	was	not	450,	presumably	because	

she	had	a	strong	understanding	of	how	the	four-fifty	was	represented	in	the	model,	

she	did	not	articulate	how	one	could	see	450	in	the	model,	beyond	saying	it	was	half	

the	distance.	It	is	unclear	whether	she	is	referring	to	a	literal	distance	here,	referring	

to	the	difference	of	900,	or	both	at	once.	This	lack	of	clarity	further	underscores	the	

point	that	Lacey’s	way	of	speaking	did	not	change	the	way	people	spoke	in	the	

classroom.	

This	discussion	ended	with	perhaps	the	clearest	discrimination	between	

lengths	and	elapsed	years	when	Kathy	said,	“Isn't	there	two	midpoints?	Like	a	
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distance	midpoint,	of	like	where's	the	midpoint	literally	of	the	distance	[puts	two	

hands	up	to	chunk	out	a	segment]	and	then	there’s	the	year	midpoint	[makes	a	

chopping	motion]?”	Instead	of	talking	about	two	thematic	items	with	a	particular	

semantic	relationship,	Kathy	takes	a	more	reflective	stance	and	uses	a	contrast	

strategy	(see	Appendix	D	of	Lemke,	1990)	to	establish	that	two	thematic	elements,	

the	midpoint	of	the	distance	and	the	year	midpoint,	are	in	fact	separate.	Her	gesture	

suggests	that	by	“midpoint	literally	of	the	distance”	she	means	the	halfway	point	

between	the	two	endpoints.	By	year	midpoint,	I	assume	she	is	referring	to	the	

quantity	half	the	elapsed	years.	This	may	have	been	a	turning	point	for	Kathy.	On	

Day	3,	she	was	one	of	the	leaders	in	the	class	in	putting	forth	multiplicative	ways	of	

reasoning	when	she	said,	“we	were	adding	the	two	halves,	but	now	we	need	to	have	

like	the	first	half	[gestures	with	thumb	and	forefinger	in	segment	shape]	times	the	

second	half	[bounces	hand	with	fingers	in	same	position]	give	us	ten	to	the	third	

[bounces	again].”	However,	it	is	not	clear	what	sense	other	students	made	of	her	

statement.		

Claim	3:	Using	“Factor”	to	Talk	about	Addition	

In	this	section	I	will	first	provide	evidence	for	the	semantic	relationships	that	

students	expressed	as	they	were	using	the	second	method	for	placing	points	on	the	

number	line,	reasoning	linearly	with	the	exponents	(NWR	2.1).	I	will	then	provide	

the	map	for	the	next	way	of	reasoning,	multiplicative	reasoning	(NWR	2.2).	After	

both	of	these	maps	are	established,	I	will	then	compare	them	to	support	Claim	3:	

Students	used	a	term	that	suggests	multiplicative	reasoning,	factor,	to	refer	to	



234	

	

segments	as	they	described	additive	patterns	in	the	exponents.	The	use	of	the	term	

factor	to	refer	to	an	additive	pattern	is	significant	in	that	it	may	help	explain	how	

students	could	listen	to	arguments	that	established	NWR	2.2,	but	not	realize	this	

was	a	significantly	different	way	of	reasoning	than	reasoning	linearly	with	the	

exponents.	This	may	help	explain	why	some	students	did	not	shift	to	thinking	

multiplicatively.	

Background	for	Episodes	of	Reasoning	Linearly	with	the	Exponents.	

Linear	reasoning	with	the	exponents	(NWR	2.1)	surfaced	at	the	end	of	Day	2.		After	

students	had	placed	the	Renaissance	by	linearly	subdividing	the	segment	between	

102	and	103,	the	teacher	asked	them	to	use	the	same	method,	but	use	100	and	103	as	

endpoints.	Using	this	reasoning	caused	the	Renaissance	to	shift	position.	When	

students	were	discussing	whether	or	not	it	was	problematic	that	the	Renaissance	

moved,	which	occurred	at	the	very	end	Day	2	(Thursday),	Danna	briefly	showed	an	

image	with	a	noticeable	linear	pattern	in	the	exponents	(Figure	6.12).	

	
Figure	6.12:	Author’s	recreation	of	Danna’s	Work	

	
As	discussed	in	Chapter	4,	Danna’s	explanation	seemed	impactful	for	the	

students	as	they	used	this	reasoning	on	their	homework	over	the	weekend.	The	

students’	homework	asked	them	to	explore	the	relationship	between	the	constant	

factors	shown	on	the	exponential	line	and	additive	patterns	in	the	exponents,	but	
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students	tended	to	mainly	reason	about	the	additive	patterns	in	the	exponents	and	

not	engage	with	multiplicative	thinking.	

This	line	of	reasoning	continued	through	Day	3.	At	the	beginning	of	Day	3	the	

teacher	showed	a	number	line	with	endpoints	103	and	102	and	an	unlabeled	

midpoint.	The	teacher	asked	for	a	volunteer	to	label	the	midpoint	and	explain	her	

reasoning.	This	elicited	an	explanation	from	Laruen	who	used	linear	reasoning	with	

the	exponents	to	support	her	claim	that	it	should	be	102.5.	As	the	day	progressed,	the	

class	developed	multiplicative	reasoning,	but	then	returned	to	linear	reasoning	

when	solving	the	last	two	problems	in	class,	placing	the	bow	and	arrow	and	placing	

the	Ordovician	period.		Students’	responses	to	these	three	activities,	labeling	the	

midpoint,	placing	the	bow	and	arrow,	and	placing	the	Ordovician	period	will	be	

analyzed	here	to	determine	the	map	of	semantic	relationships	for	reasoning	linearly	

with	the	exponents.	

Labeling	the	Midpoint	of	102	and	103.	Lacey	began	by	explaining	that	she	

found	the	“factor”	from	102	to	103	was	101	and	“half	of	that	factor”	was	10.5.	She	

then	added	the	point	five	to	the	two	in	102	to	determine	the	midpoint	should	be	

labeled	102.5.	She	said	the	following.	

	 Lacey:		 I	got	ten	to	the	two	point	five.	'Cause	thinking	about	it,	
this	whole	thing	is	a	factor	of	ten	to	the	one	[points	
to	whole	line],	so	then	if	you're	going	to	divide	it	in	
half	it's	going	to	be	point	five	of	that,	so	then,	you	just	
add	the	point	five	to	the	two	to	make	this	a	factor	of	
point	five	and	this	a	factor	of	point	five	[points	to	the	
subsection	from	102	to	the	midpoint	and	then	to	the	
subsection	from	the	midpoint	to	the	103].	
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At	the	teacher’s	request	she	marked	in	the	factors	she	was	seeing	in	the	

diagram	(see	Figure	6.13).	At	this	point	the	teacher	asked	if	others	got	102.5	and	

several	students	raised	their	hands.	During	the	discussion	of	her	work	another	

student,	Mallory,	said,	“I	just	ignored	the	ten”.	

	
Figure	6.13:	Lacey’s	Labeling	of	the	Factors	

	
Through	her	pointing	and	her	later	drawings	of	brackets,	Lacey	LABELED	the	

segment	from	102	to	103	as	101	both	through	inscription	and	in	her	speech.	

Similarly,	she	also	literally	and	verbally	LABELED	the	subsections	as	10.5.	She	also	

talked	about	the	PROCESS	of	dividing	“it”	in	half,	which	RESULTED	in	point	five.	She	

then	talked	about	another	PROCESS,	adding	the	exponents	of	point	five	and	two.	

While	she	talked	about	factors	in	this	instance,	she	seemed	to	mostly	be	referring	to	

the	exponent.	The	exponent	is	what	she	operated	on	(i.e.	the	exponents	are	what	she	

divided	and	added)	and	she	even	referred	to	the	subsections	as	“factors	of	point	

five,”	not	factors	of	ten	to	the	point	five.	This	focus	on	the	exponents	is	made	even	

more	explicit	by	Mallory	who	said	she	ignored	the	ten.	
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Placing	the	bow	and	arrow	and	placing	the	Ordovician	period.	The	next	

two	tasks	in	which	students	used	linear	reasoning	on	the	exponents	came	at	the	end	

of	class,	as	students	placed	the	bow	and	arrow	and	the	Ordovician	period.	Yessica	

presented	her	solution	to	the	first	problem,	placing	the	bow	and	arrow.	Just	like	

Lacey,	she		began	her	explanation	by	talking	about	the	relationship	between	the	

endpoints	of	the	segment.	She	said,	“From	here	[104]	to	here	[105]	is	going	to	be	

ten	to	the	one.”	She	then	labeled	the	segment	between	105	and	104	as	“101”	and	

wrote	“=	101/2	�	101/2.”	She	then	divided	that	segment	into	two	pieces	and	labeled	

each	of	them	101/2	and	wrote	104.5	at	the	midpoint	of	the	larger	segment	(see	Figure	

6.14).	The	teacher	then	asked	her	to	explain	her	labels	and	she	said	the	following.	

	
Figure	6.14:	Yessica	Placing	the	104.5	

	
	 Yessica:		 This	[points	to	her	label	of	101]	is	going	to	be	the	same	

as	ten	to	the	one	half	and	ten	to	the	one	half,	so	for	
here	[points	to	104]	to	here	[the	midpoint],	it's	ten	to	
the	one	half,	and	the	same	for	here	[points	to	the	
subsection	from	the	midpoint	to	105],	ten	to	the	one	
half,	so	if	we	want	to	get…ten	to	the	four	point	five,	so	
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we	have	to	add	just	the	one	half	from	here	[104],	so	it's	
ten	to	the	four	and	the	one	half	so	it's	going	to	be	ten	
to	the	four	point	five.	

	
Here	Yessica	expressed	very	similar	semantic	relationships	as	Lacey	did	

during	her	explanation.	Yessica	LABELED	the	segment	from	104	to	105	as	101	and	

each	subsection	as	“ten	to	the	one	half.”	She	then	talked	about	the	PROCESS	of	

adding	the	point	five	to	the	four.	

This	way	of	reasoning	continued	on	the	last	problem,	placing	the	Ordovician	

period,	which	occurred	108.7	years	ago.	Jacqueline	presented	her	work	at	the	

document	camera	(See	Figure	6.15)	and	explained	how	she	placed	108.7	saying,	

“Since	this	eight	point	seven,	I	divide	the	spaces	into	tenth,	so	here's	the	middle,	

point	five	and	then	add	two	more….I	saw	it	as	seven	tenths.	Divide	it	into	tenths	

and	then	go	seven	tenths.”		

	

	
Figure	6.15:	Jacqueline	Placing	108.7	

	
Here,	Jacqueline	expressed	relationships	consistent	with	those	expressed	by	

Yessica	and	Lacey.	Like	the	other	two	students,	she	focused	on	the	exponent,	talked	
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about	the	PROCESS	of	dividing	the	segment,	which	seemed	to,	at	the	same	time,	

divide	the	exponent.	While	Jacqueline	did	not	label	the	factors	or	talk	about	adding	

the	exponents,	her	labeling	of	the	subdivisions	are	consistent	with	the	way	Yessica	

and	Lacey	spoke.	

	

	
Figure	6.16:	The	Linear	Reasoning	with	the	Exponents	Map	

	
There	are	a	few	interesting	features	of	this	map	(Figure	6.16).	First,	there	are	

two	discs	that	are	unconnected	to	the	rest	of	the	lexical	items.	The	disc	that	

represents	“point	five”	and	the	disc	that	represents	a	“factor	of	point,”	could	be	

considered	the	same	lexical	item.	However,	I	distinguished	between	these	two	



240	

	

because	of	the	multiplicative	language	that	is	present	in	“factor	of	point	five,”	but	

absent	from	simply	“point	five.”	This	suggests	that	the	justification	of	what	the	

subsections	represent	are	a	product	of	the	arithmetic	operation	of	the	values	of	the	

exponents	(i.e.	how	point	five	was	arrived	at)	and	although	it	is	called	a	factor,	it	is	

not	justified	by	any	type	of	multiplicative	thinking.	

Overview	of	Classroom	Analysis	of	Multiplicative	Reasoning.	In	the	

following	subsections	I	will	analyze	the	three	explanations	in	which	students	used	

multiplicative	reasoning,	describing	the	semantic	relationships	they	express.	From	

this	I	will	present	a	map	that	shows	these	relationships.	Following	this	section	I	will	

present	a	comparison	of	the	classroom	maps	that	show	the	relationships	expressed	

when	students	were	reasoning	linearly	with	the	exponents	and	the	map	developed	

in	this	section.	This	will	support	Claim	3:	Students	used	a	term	that	suggests	

multiplicative	reasoning,	factor,	to	refer	to	segments	as	they	described	additive	

patterns	in	the	exponents.	

Background	for	Episodes	of	Reasoning	Multiplicatively.	The	three	times	

multiplicative	ways	of	reasoning	were	advanced	all	occurred	on	Day	3.	The	first	of	

these	instances	occurred	during	the	discussion	of	Lacey’s	justification	for	placing	

102.5	at	the	midpoint	of	102	and	103.	In	contrast	to	Lacey’s	explanation,	which	relied	

on	a	linear	pattern	in	the	exponents,	Nathan	talked	about	how	to	see	the	factors	of	

the	square	root	of	ten	as	a	continuation	of	the	multiplicative	pattern	that	existed	at	

the	macro	level.	The	second	episode	occurred	later	that	day	when	Kathy	also	talked	

about	multiplicative	relationships	as	she	compared	how	their	timeline	had	changed	
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from	when	they	were	reasoning	linearly.	Kathy’s	observation	led	to	an	impromptu	

task,	where	the	teacher	asked	the	students	to	subdivide	a	segment	of	the	number	

line,	from	102	to	103,	into	seven	subsections.	Here	the	students	also	reasoned	

multiplicatively.	

Nathan’s	Explanation.	Nathan	was	the	first	person	to	bring	up	

multiplicative	reasoning.	This	came	during	the	discussion	of	Lacey’s	explanation	

after	Mallory	had	made	her	point	about	ignoring	the	ten.	Unlike	Lacey	who	focused	

on	the	exponents,	Nathan	focused	on	the	“times	10”	pattern	that	existed	at	the	

macro	level	and	extended	the	relationship	to	the	subdivision	of	segments.	

	
	 Nathan:		 Well,	the	way	I	did	this	one	was	I	was	looking	at	it	

where,	in	the	more	general	sense,	each	tick	was,	each,	
each	thing	apart	on	the	bigger	one	is	the	same	
distance…multiplicatively	apart,	so	we're	going	to	do	
the	same	thing	here.	We	have	two	so,	we	have	two	
sections	that	when	multiplied	all	together	are	ten.	So,	
each	side	we'd	had	better	have	the	square	root	of	ten,	
because	that's	the	only	thing	that's	gonna	give	us	ten	
when	we	multiply	it	again,	so	I,	so	I,	just	took	the,	I	just	
figured	it	was,	the	distance	away	was	ten	to	the	two	
and	then	times	the	square	root	of	ten,	which	is	three	
point	one	six	two.	So	I	got	three	point	one	six	two	
times	ten	to	the	two. 

	
At	the	core	of	his	explanation	seems	to	be	the	idea	that	the	macro	

multiplicative	pattern	should	be	extended	to	within	the	subsections.	He	said,	“I	was	

looking	at	it	where,	in	the	more	general	sense…each	thing	apart	on	the	bigger	one	

is	the	same	distance	multiplicatively	apart,	so	we're	going	to	do	the	same	thing	

here.”	I	interpret	his	phrase	“in	the	more	general	sense”	to	be	referencing	the	macro	

structure	of	the	line	that	was	established	in	Math	Practice	1,	the	times	ten	pattern	
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between	tick	marks.	His	use	of	the	phrase	“same	distance	multiplicatively	apart”	is	

more	ambiguous.	He	could	be	saying	that	the	ticks	on	the	number	line	are	the	same	

distance	apart	and	this	shows	a	multiplicative	relationship	or	he	could	be	using	the	

word	distance	as	a	general	term	to	mean	any	sort	of	comparison	of	values,	as	was	

done	when	students	used	it	as	synonym	for	difference.	In	either	case,	this	represents	

a	shift	from	reasoning	linearly	with	the	exponents	as	he	focuses	on	the	

multiplicative	relationship	between	the	segments	rather	than	the	additive	pattern	in	

the	values	of	the	exponents.	

He	continued	his	line	of	reasoning	to	explain	how	continuing	this	pattern	

forces	the	midpoint	to	be	102	times	the	square	root	ten.	He	said,	“We	have	two	

sections	that	when	multiplied	all	together	are	ten.	So,	each	side	we'd	had	better	

have	the	square	root	of	ten,	because	that's	the	only	thing	that's	gonna	give	us	ten	

when	we	multiply	it	again”.	In	his	explanation,	he	suggested	that	the	macro	

multiplicative	pattern	IMPLIES	that	each	subsection	should	be	the	square	root	of	

ten,	because	the	subsections	are	multiplied	together	to	get	ten,	a	PROCESS	that	

RESULTS	in	ten.	

Kathy’s	Explanation.	The	next	instance	of	multiplicative	reasoning	came	

from	Kathy.	After	students	had	time	to	talk	in	small	group	about	Nathan’s	way	of	

reasoning	the	teacher	asked	Farah	to	present	what	they	had	talked	about.	Farah’s	

way	of	reasoning	was	not	multiplicative	and	will	not	be	examined	here.	However,	it	

led	to	a	discussion	about	the	meaning	of	square	root.	During	this	discussion,	Kathy	
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articulated	the	difference	between	linear	and	the	exponential	reasoning	expressed	

by	Nathan,	which	led	to	the	following	exchange.	

	
	 Kathy:		 I	was	going	to	say	it	makes	sense	to	me	because	when	

we	were	doing	it	like	half	exponential	half	linear	we	
were	adding	the	two	halves,	but	now	we	need	to	have	
like	the	first	half	times	the	second	half	gives	us	ten	to	
the	third.	Before	we	were	doing	like	five	hundred	plus	
five	hundred	needs	to	give	us	a	thousand,	but	that's	
linear;	and	we	need	to	do	something	this	half	times	
this	half	needs	to	give	us	ten	to	the	third.	

	 Teacher:	 	I	think	what	she's	saying	is	when	we	were	doing	it	
linear	we…were	adding	these	chunks,	but	what	you	
really	want	to	do	is	continue	this	pattern,	it's	this	times	
something	is	this	times	something	is	this	times	
something	is	this.	So	now	we	have	ten	squared	times	
square	root	of	ten	is	ten	to	the	two	point	five,	times	
square	root	of	ten	is	ten	to	the	third.	Is	that	what	
you're	saying?	

	
After	Kathy	confirmed	the	accuracy	of	the	teacher’s	summary.	Nathan	also	

elaborated	on	this	idea.	

	
	 Nathan:		 Well,	just	to	get	to	is	you	know,	I	didn't	just	have	square	

root	of	ten	out	of	the	blue,	this	was	actually	my	process,	
my	process	for	this	was	I	realized	the	whole	thing	was	
ten,	I	need	a	number	that	I	can	multiply	by	itself	to	get	
ten,	oh,	right,	that's	square	root	of	ten.	That's	the	only	
thing	that	will	do	that…	Because	I	have	two	segments	
here	so	I	need	one	multiplication	of	it. 

	 Teacher:		 I	think	this	is	very	powerful.	And	we’re	going	to	do	an	
exercise	in	a	minute	to	try	and	emphasize	this.	Is	he	
saying?	Some	of	you,	I	think,	saw	patterns	down	here	
[sweeps	pen	back	and	forth	under	the	number	line].	But	
he's	saying	another	way	to	approach	it	is	just	say	wait,	
this	[the	whole	segment]	is	chunked	into	two	chunks.	
What	factor	times	itself	gives	me	ten?	What,	what	
number	times	itself	gives	me	ten,	because	this	has	to	
be	times	ten?	And	that	by	definition	has	to	be	the	
square	root	of	ten.	Kathy. 
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In	these	exchanges	several	semantic	relationships	are	expressed.	Kathy	

talked	about	the	PROCESS	of	multiplying	the	two	halves,	which	the	teacher	called	

chunks.	Nathan	reiterated	this,	but	talked	about	the	repeated	multiplication	in	terms	

of	numbers	rather	than	the	actual	subsections,	“I	need	a	number	that	I	can	multiply	

by	itself.”	The	teacher	restated	Nathan’s	idea	and	also	talked	about	number	that	

when	multiplied	by	itself	yields	ten	and	also	referred	to	this	number	as	a	factor.	One	

difference	between	Kathy’s	statement	and	Nathan’s	explanation	is	that	she	talked	

about	getting	ten	to	the	third,	whereas	Nathan	said	the	RESULT	of	the	multiplication	

should	be	ten.	These	two	ideas	are	consistent	with	each	other;	Kathy	is	focusing	on	

the	endpoint	whereas	Nathan	is	drawing	attention	to	the	factor	of	increase	from	102	

to	103.	

Seven	Subsections.	The	teacher’s	reaction	to	the	conversation	was	to	

introduce	a	new	task	that	focused	on	multiplicative	relationships.	She	asked,	“I	want	

you	to	tell	me,	how	do	you	think	about	the	relationship	between	these	two	factors	

[Draws	an	line	between	103	and	102	and	another	line	between	102	and	the	first	

tick	mark,	(see	Figure	6.17)?”	This	led	to	the	third	and	last	exchange	where	a	

student	expressed	multiplicative	reasoning.		

After	several	people	raised	their	hands,	the	teacher	called	on	Jade,	who	

started	by	using	linear	reasoning,	but	as	the	teacher	pressed,	moved	to	

multiplicative	reasoning.	She	said,	“Going	from	ten	squared	to	ten	to	the	third	you	

have	to	multiply	ten	squared	times	ten	to	get	to	ten	to	the	third.”	The	teacher	then	

drew	an	arrow	from	102	to	103	and	labeled	it	“x101”	(see	Figure	6.18).	Jade	
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continued,	“And	since	you	have	seven	subsections,	what	I	did	to	the	exponent	of	

ten,	since	it's	ten	to	the	one,	I	divided	that	exponent	by	seven.”	The	teacher	asked	

her	to	come	to	the	document	camera	where	she	reiterated	her	thinking,	saying,	

“Since	we	have	seven	subsections,	each	subsection	would	be	ten	to	the	one	

seventh,”	while	labeling	the	first	subsection	101/7.	At	this	point,	Jade	is	reasoning	

linearly	with	the	exponent,	but	the	teacher	pressed	further,	saying	“Why?	Why	is	

that?...Why	is	it	ten	to	the	one	seventh?”	This	led	to	multiplicative	talk.	Jade	

explained,		“Because	if	we	multiply	by	ten	to	the	seven	ten	times	it's	going	to	give	

us	ten	to	the	one.”	Mallory	reiterated	Jade’s	multiplicative	thinking	during	this	

discussion	when	she	said,	“You	need	to	multiply	by	the	same	thing	to	keep	it	

exponential….	Since	there's	seven	sections	you	have	to	multiply	the	same	

number	seven	times,	so	that's	why	it's	[the	exponent’s]	divided	by	seven.”	

	
Figure	6.17:	Inscription	on	the	Document	Camera	for	the	Seven	Subsections	Task.	

	
In	this	exchange,	Jade	LABELS	the	subsections	as	ten	to	the	one	seventh.	

Although	her	original	justification	focused	more	on	the	exponents,	with	pressing	

from	the	teacher,	she	eventually	gave	the	REASON	that	repeated	multiplication	gives	

ten	to	the	one.	Although	she	originally,	inaccurately,	said	that	one	would	multiply	

ten	times,	this	is	corrected	by	Mallory	who	said	one	would	multiply	seven	times.	
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Figure	6.18:	The	Classroom	Map	for	Multiplicative	Reasoning	
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Comparison	of	two	Classroom	Maps	for	Exponential	Reasoning.	The	

maps	that	represent	the	semantic	relationships	expressed	while	reasoning	linearly	

with	the	exponents	(Figure	6.16)	and	while	reasoning	multiplicatively	(Figure	6.18)	

are	similar	in	that	they	both	represent	exponential	reasoning,	which	will	result	in	

the	same	number	being	placed	in	the	same	spot.	The	difference	lies	in	how	those	

placements	are	justified.	In	particular,	it	depends	on	how	students	talk	about	the	

segments,	the	subsections,	and	their	operations	on	those	objects.	In	the	map	that	

describes	students’	talk	as	they	reasoned	linearly	with	the	exponents	the	number	

line	and	exponents	are	divided.	This	differs	from	how	students	talked	when	they	

reasoned	multiplicatively,	where	subsections	and	factors	were	multiplied.	With	such	

a	striking	difference,	it	may	seem	odd	that	students	did	not	distinguish	between	the	

two	methods.	

One	reasonable	explanation	for	why	the	students	did	not	attend	to	

multiplication	as	a	distinguishing	factor	is	because	there	was	“multiplication	talk”	in	

the	linear	method	as	well.	In	particular	the	students	used	of	the	word	factor	to	

describe	segments.	For	example,	Lacey	started	her	explanation	by	labeling	the	

segment	from	102	to	103	as	a	factor	of	101	by	pointing	to	the	segment	while	saying,	

“this	whole	thing	is	a	factor	of	ten	to	the	one.”	She	continued	to	refer	to	segments	

as	factors	when	the	teacher	asked	where	she	was	seeing	factors	she	put	braces	over	

the	various	segments.	Consistent	with	the	labeling	of	segments	as	factors,	she	also	

called	each	of	the	subsections	“factors	of	point	five.”	This	makes	it	sound	like	

students	are	talking	multiplicatively,	when	they	are	really	just	reasoning	linearly	
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about	the	exponents.	This	gives	support	for	Claim	3:	students	used	a	term	that	

suggests	multiplicative	reasoning,	factor,	to	refer	to	segments	as	they	described	

additive	patterns	in	the	exponents.	Thus,	when	true	multiplicatively	thinking	was	

expressed,	students	may	have	interpreted	it	as	the	same	thing	that	was	said	before.		

Claim	4:	Only	Two	Ways	of	Reasoning,	Linear	and	Exponential	

In	the	previous	sections,	I	have	analyzed	classroom	discourse	where	students	

used	various	methods	to	subdivide	segments.	However,	there	were	times	when	

students	reflected	on	and	talked	about	these	methods	themselves.	In	SFL,	this	is	

called	condensation	(Lemke,	1990),	which	means	a	group	of	semantic	relationships	

are	talked	about	as	a	single	lexical	item.	In	this	case,	the	group	of	semantic	

relationships	is	the	network	of	relationships	expressed	when	subdividing	a	segment	

and	the	condensed	version	of	those	relationships	is	naming	the	method	by	which	

the	subdivision	took	place.	

As	students	talked	about	these	methods,	they	rarely	explicitly	established	

semantic	relationships	between	the	methods	and	other	lexical	items.	Rather,	they	

tended	to	use	equivalence	and	contrast	strategies	(see	Appendix	D	in	Lemke,	1990)	

to	talk	about	whether	they	the	saw	methods	as	the	same	or	different.	This	occurred	

during	four	episodes.	In	two	of	these	episodes	they	contrasted	linear	and	

exponential	methods	using	the	strategy	of	parallel	environments.	In	this	strategy	

speakers	place	thematic	elements,	in	this	case	the	strategies,	so	that	they	have	the	

same	function	in	the	grammar	of	two	phrases.	For	example,	students	might	say	

something	like,	in	a	linear	method	you	do	abc,	but	in	an	exponential	method	you	do	
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xyz.	In	the	other	two	episodes	students	explicitly	said	strategies	were	the	same.	

Analysis	of	these	four	episodes	will	provide	evidence	for	Claim	4:	Students	

distinguished	in	their	talk	between	linear	and	exponential	ways	of	reasoning,	but	did	

not	distinguish	between	reasoning	linearly	with	the	exponents	and	multiplicative	ways	

of	reasoning.	In	fact,	students	seemed	to	think	of	both	of	these	methods	as	the	same.	As	

I	analyze	these	episodes	I	will	bold	references	to	the	methods	or	what	the	students	

are	comparing	the	methods	to.	Students	may	reference	other	lexical	items,	but	these	

will	be	ignored	as	this	analysis	focuses	on	references	to	the	methods	themselves.	

Background.	Students	talked	about	subdivision	methods	during	both	Day	2	

and	Day	3.	The	first	episode	occurred	near	the	end	of	Day	2,	when	students	were	

still	reasoning	linearly	to	place	events.	They	had	already	done	two	tasks,	placing	the	

Renaissance	and	the	Ordovician	Period,	using	linear	reasoning.	Presumably	to	

problematize	this	way	of	reasoning,	the	teacher	asked	the	students	to	place	the	

Renaissance	again,	using	the	same	method	as	before,	but	using	1	and	1,000	and	

endpoints	instead	of	102	and	103.		As	she	did	this,	she	specifically	asked	if	500	would	

end	up	in	the	same	place.	The	students	worked	in	small	groups	for	about	15	minutes	

before	they	interactively	placed	the	Renaissance	as	a	whole	class	using	these	

endpoints.	This	led	to	the	realization	that	using	the	different	endpoints	lead	to	

different	placements	for	the	Renaissance.	The	students	then	considered	the	idea	

that	the	method	they	were	using	to	subdivide	was	problematic.	As	they	talked	about	

their	method	they	contrasted	how	they	subdivided	the	segments	with	the	macro	

exponential	structure.	
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Talk	about	methods	continued	on	Day	3	as	well.	The	day	began	with	Lacey	

subdividing	a	segment	from	102	to	103	by	reasoning	linearly	with	the	exponents.	

While	discussing	this	task,	Nathan	introduced	a	multiplicative	way	of	reasoning.	

Presumably	because	the	teacher	noticed	this	was	a	distinct	way	of	reasoning,	she	

asked	the	students	to	talk	about	it	in	small	group.	In	their	small	group	discussions,	

the	students	explicitly	talked	about	Nathan’s	method	as	a	lexical	item.	During	this	

second	episode	of	talking	about	methods,	the	students	said	that	Nathan’s	method	

and	Lacey’s	method	were	the	same.	

Later	on	Day	3,	the	teacher	asked	how	their	method	of	halving	the	exponent	

was	different	from	the	linear	method	they	were	using	before.	In	this	episode,	

students	again	contrasted	linear	and	exponential	ways	of	reasoning.	Then	finally,	in	

the	last	episode	Kathy	asked	if	notation	determined	the	method.	In	this	

conversation,	students	determined	that	various	methods	were	the	same,	regardless	

of	how	they	were	notated.	

Discussing	the	Problem	of	the	Renaissance	Moving.	On	Day	2,	students	

were	reasoning	linearly	to	place	events.	At	the	teacher’s	request	they	placed	the	

Renaissance	in	two	ways,	both	using	the	same	linear	method,	but	with	two	different	

sets	of	endpoints,	which	resulted	in	two	different	placements.	This	led	to	students	

speculating	about	what	the	problem	was.	Some	students	seemed	to	think	the	

problem	lay	with	ignoring	the	101	and	102	tick	marks	rather	than	with	the	method	

itself.	For	example,	Mallory	said,	“[Using	the	endpoints	of	100	and	103]	only	works	if	

you	take	out	the	ten	to	the	one	and	ten	to	the	two.”	Other	students	focused	more	on	
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the	linear	method	itself.	These	arguments	won	out	eventually	and	will	be	what	is	

analyzed	here.	In	these	arguments	students	talked	about	the	method	they	were	

using.	Brittany	started	out	pointing	out	that	the	method	could	be	flawed.		

	 Brittany:		 Are	you	trying	to	get	at	the	method	that	we're	not	
using,	or	we're	not	using	the	right	method	to	plot	this	
point?	

	 Teacher:		 What	do	you	think?	
	 Brittany:	 Yes 
	

While	Brittany	introduced	the	idea	that	the	method	might	be	problematic,	

she	did	not	offer	up	an	idea	to	explain	why	the	method	might	be	problematic.	This	

did	not	come	until	a	bit	later	when	Nathan	gave	a	general	rationale.	He	said	the	

following.	

	 Nathan:		 Yeah,	so	ultimately,	the	issue	is	it	seems	like	we're	
trying	to	apply	a	method	that's	completely	linear	in	
nature,	when	our	graph	is	not	it's	exponential.	That	
is,	that's	the	problem,	so	that	means	that	right	there,	the	
solution	will	not	work	because	why	would	it. 

	
Here	is	the	first	instance	of	parallel	environments	to	contrast	the	linear	

method	with	the	exponential	graph.	Here,	Nathan	referenced	the	idea	that	they	were	

using	a	“method	that’s	completely	linear	in	nature”	and	a	“graph…	[that’s]	

exponential.”	While	Nathan	argued	that	there	was	mismatch	between	the	nature	of	

the	method	and	the	nature	of	the	graph,	Danna	provided	even	more	detail	as	to	

what	the	problem	might	be.	She	argued	that	a	linear	placement	would	not	work	by	

using	it	to	show	it	inaccurately	predicts	the	placement	of	the	known	point	103.	

19>  Danna:		 I	started	with	first	doing	basically	what	we	did	up	here	
[the	linear	way	of	reasoning].	So,	we	looked	at	the	
difference	between	ten	to	the	fourth	and	ten	squared,	
which	was	nine	thousand	nine	hundred	years	and	half	
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of	that	[points	to	halfway	between	104	and	102]	should	
have	been	the	forty	eight	or	should	be,	what	did	I	put,	
four	thousand	nine	hundred	fifty,	but	we	know	that	it's	
actually	ten	to	the	third,	so	that	right	there	told	me	
linear	doesn't	work	and	it	pushes	the	halfway	mark	
closer	to	the	ten	to	the	fourth	side.	So	applying	the	five	
hundred	to	this	one,	I	knew	it	was	going	to	be	closer	to	
ten	to	the	three,	just	`cause,	five	hundred	years	it's	
halfway	if	it's	linear,	but	when	it's	exponential,	you	
know	it's	not,	based	on	this	[points	to	the	number	line	
that	she	used	to	argue	“linear	doesn’t	work”].	Then,	I	
realized	you	can	do	it	this	way.	

	
At	this	point,	she	put	her	image	of	a	segment	divided	into	ten	sections	on	the	

document	camera.	The	subsections	were	labeled	with	a	noticeable	linear	pattern	in	

the	exponents	[Figure	6.19].	The	teacher	quickly	asked	her	to	remove	the	image	

from	the	document	camera,	which	Danna	did.	The	teacher	then	continued.	

	

	
Figure	6.19:	Author’s	recreation	of	Danna’s	Subdivision	

	
	 Teacher:		 ...	Instead,	in	your	own	words,	Danna,	what	do	you	think	

the	basic	problem	is	with	the	methods	we	were	using	to	
place	the	Renaissance?	

	 Danna:		 We	were	trying	to	look	at	it	linearly	in	between	each	
chunk,	but	the	entire	timeline	is	exponential….	So	
you	can't	break	it	up	based	off	of,	like	on	the	first	one	
you	can't	say	there's	ten	hash	marks	and	each	mark	is	
one	year,	it's	an	exponential	line.	

	 Teacher:		 So	I'm	going	to	summarize.	Thank	you,	that	was	really	
good.	Here's	what	she,	I	think	she's	saying	is,	you	guys	
didn't	actually	have	a	fully	exponential	time	line.	You	
guys	were	doing	it	as	exponential	at	this	macro	level,	
for	these	big	segments	but	in	each	one	you	wanted	to	
do	linear.	The	problem	is,	you	have	to	then	put	a	
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constraint	on	yourself,	that	you	can't	look	across	
different	sections	to	place	time	lines	because	that	linear	
inside	is	going	to	result	in	the	same	time	being	placed	in	
different	parts	of	your	timeline.	Which	is	a	problem.	
There	should	be	one	placement	for	each	time	period.	
Right,	so,	if	you	have	a	linear	inside	a	segment	an	
exponential	for	the	segment,	you're	going	to	have	
problems,	you	won't	get	unique	placements	for	any	of	
your	times.	So	our	goal	is	to	make	fully	exponential	
timeline.		

	
After	this,	the	teacher	introduced	the	homework,	which	the	students	were	to	work	

on	over	the	weekend.	

Again,	Danna	used	the	strategy	of	parallel	environments	to	contrast	linear	

and	exponential	ways	of	reasoning.	She	began	using	the	linear	method	to	predict	the	

placement	of	a	year	whose	placement	was	known,	103.	She	then	extrapolated,	“five	

hundred	years,	it's	halfway	if	it's	linear,	but	when	it's	exponential,	you	know	it's	

not.”	Here	Danna	used	a	similar	grammatical	structure,	basically	saying	if	it’s	linear,	

then	500	is	halfway,	but	if	it’s	exponential,	then	500	is	not	halfway.	She	did	this	

again	when	she	said,	“We	were	trying	to	look	at	it	linearly	in	between	each	chunk,	

but	the	entire	timeline	is	exponential.”	Again,	she	contrasted	linear	and	

exponential	ways	of	reasoning	by	saying	that	in	each	chunk	it’s	linear,	but	the	

structure	of	the	whole	timeline	is	exponential.	

Reactions	to	Nathan’s	Ideas.	Multiplicative	reasoning	arose	the	next	day,	on	

Day	3.	Nathan	originally	voiced	the	idea	when	the	class	was	talking	about	Lacey’s	

placement	of	102.5	midway	between	102	and	103.	He	said	the	following.	

	
	 Nathan:		 Well,	the	way	I	did	this	one	was	I	was	looking	at	it	

where,	in	the	more	general	sense,	each	tick	was,	each,	
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each	thing	apart	on	the	bigger	one	is	the	same	
distance…multiplicatively	apart,	so	we're	going	to	do	
the	same	thing	here.	We	have	two	so,	we	have	two	
sections	that	when	multiplied	all	together	are	ten.	So,	
each	side	we'd	had	better	have	the	square	root	of	ten,	
because	that's	the	only	thing	that's	gonna	give	us	ten	
when	we	multiply	it	again,	so	I,	so	I,	just	took	the,	I	just	
figured	it	was,	the	distance	away	was	ten	to	the	two	and	
then	times	the	square	root	of	ten,	which	is	three	point	
one	six	two.	So	I	got	three	point	one	six	two	times	ten	to	
the	two. 

	
After	Nathan	gave	his	explantion,	the	teacher	prompted	them	to	think	about	it	in	

small	group.	She	started	by	saying,	“Nathan	said	a	lot	of	juicy	stuff.	He’s	the	first	

person	to	bring	up	square	root.”	She	then	asked	for	a	student	to	revoice	his	idea.	

When	no	one	volunteered,	she	asked	the	students	to	talk	about	it	in	small	group—

specifically	asking,	“Where	do	you	see	the	square	root	coming	up?”	

In	both	small	groups,	they	failed	to	see	the	difference	between	what	Nathan	

said	and	how	they	had	reasoned	about	the	subdivisions	before,	reasoning	linearly	

with	the	exponents.	In	Group	1,	instead	of	engaging	with	the	ideas	of	factors	and	

multiplication,	Tanya	started	the	discussion	of	square	roots	by	talking	about	the	

exponents.	She	said,	“Well,	the	exponent	one	half	is	the	square	root	right?	...	So	if	it’s	

ten	to	the	two,	multiplied	by	ten	to	the	one	half,	right?	So	it’s	one	hundred	times	the	

square	root	of	ten.”	Here	we	see	Tanya	following	the	teacher’s	prompt	to	attend	to	

the	square	root,	however	Tanya	is	arriving	at	the	square	root	in	a	much	different	

way	than	Nathan	did.	Instead	of	continuing	the	multiplicative	patterns	that	existed	

at	the	macro	level,	she	is	arriving	at	the	square	root	via	the	previously	known	rule	

that	10.5	is	the	square	root.	This	allowed	her	to	still	preserve	her	linear	ways	of	
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reasoning	about	the	exponents,	yet	explain	where	the	square	root	is	coming	from	as	

the	teacher	asked.	This	made	it	so	she	did	not	have	to	distinguish	between	the	two	

ways	of	reasoning.	

This	analysis	is	consistent	with	Kathy’s	comment	in	small	group	as	well,	

“[Nathan’s	way	of	reasoning	is]	the	same	thing,	because	if	you’re	doing	ten	to	the	

two	times	ten	to	the	square	root	that’s	the	same	thing	as	point	five.”	Rachel	

concurred	as	she	said,	“He	just	thought	of	it	as	square	root	instead	of…one	half.”	

Kathy	summarized	by	saying,	“Yeah,	it’s	the	same	thing,	he	just	wrote	it	differently.”	

In	Group	2,	the	students	also	continued	to	focus	on	exponents.	However,	

instead	of	engaging	with	Nathan’s	idea,	they	explicitly	said	they	did	not	understand	

it	and	ignored	it.	Farah	said,	“Well,	I	don’t	understand	what	he	[Nathan]	said,	but	

this	is	how,	when	she	said	square	root,	this	is	how	I	thought	if	it.”	She	then	

continued	with	her	own	idea.	

In	these	small	group	interactions,	the	students	either	explicitly	said	Nathan’s	

and	Lacey’s	way	of	reasoning	were	equivalent,	saying	“Yeah,	it’s	the	same	thing,”	or	

they	ignored	Nathan	completely	saying,	“I	don’t	understand	what	he	said.”	Even	

though	the	teacher	prompted	them	to	attend	to	the	square	root,	an	idea	that	was	

central	to	Nathan’s	idea	and	absent	from	Lacey’s,	the	students	treated	this	as	simply	

a	notational	difference.	Tanya	began	by	asking	“the	exponent	one	half	is	the	square	

root	right?”	Rachel	echoed	this	connection	when	she	said,	“He	just	thought	of	it	as	

square	root	instead	of…one	half.”	This	interpretation	may	have	allowed	them	see	
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Nathan’s	idea	as	simply	another	expression	of	Lacey’s	ideas	rather	than	a	new	idea	

worthy	of	examination.	

Discussion	About	Halving.	The	next	instance	where	students	talked	about	

their	method	came	after	Yessica	presented	the	way	she	placed	the	introduction	of	

the	bow	and	arrow,	which	occurred	104.5	years	ago.	She	did	this	by	reasoning	

linearly	with	the	exponents,	placing	the	event	halfway	between	104	and	105.	After	

she	presented,	the	teacher	asked	why	it	was	okay	to	halve	in	this	method,	while	it	

was	not	okay	when	they	were	reasoning	linearly.	

	
	 Teacher:		 Now	here's	my	question	for	you.	…	I	see	you	halving	

things.	…	Why	is	it	working	to	halve	when	it	did	not	
work	when	you	were	using	a	halving	linear	method	
for	the	Renaissance	last	Thursday?	Let	me	pose	my	
question	again.	Last	Thursday	you	were	using	a	sort	of	
halving	and	a	linear	approach	of	cutting	things	up	to	
place	500	years	ago.	Now	this	has	some	feeling	that	
feels	similar	to	me.	What's	similar	and	what's	
different?... 

	 Samantha:		 This	way	we're	halving	the	actual	exponential	value	
and	last	time	we	were	solving	like	ten	to	the	fourth	
and	ten	to	the	fifth	and	we	were	halving	the,	what	
the	answers	were	to	it.	I	don't	know	how	to	say	it…. 
The	ten	to	the	fourth	and	ten	to	the	fifth	you	would	
solve	it	and	you	just	take	half	it.	Rather	than	take	half	of	
five	and	four.	

	 	 …	
	 Chris:		 …	I	don't	know,	but	the	way	I	think	about	it,	like	

exponents	and	stuff	and	exponential	functions.	Like	so	
on	the	linear	parts	when	we	were	adding	together,	
that's	how	you	add	things	together	in	linear	forms,	
fashions,	but	if	we	want	to	“add”	[airquotes]	them	
together	in	an	exponential	form	you	have	to	multiply	
them	to	get	that	"adding"	[airquotes]	instead	of,	'cause	
otherwise	what	we	were	doing	yesterday	was	like	not	
right. 
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	 David:		 For	the	Renaissance	…	we	were	looking	at	a	thousand,	
instead	of	ten	to	the	three,	and	so	we	were	taking	half	a	
thousand	being	five	hundred	and	trying	to	place	it	on	
the	half	line.	

	 Teacher:		 And	now	what	are	you	taking	half	of?	
	 David:		 Now	we're	just	taking	half	of	the,	half	of	the	chunk	

which	is	ten,	ten	to	the	one.	
	 Teacher:		 What	are	you	taking	half	of	here?	What	are	you	taking	

half	of	here?	
	 Students:		 The	exponent	
	 Teacher:		 The	exponents,	you're	not	taking	half	of	the	thousand	or	

half	of	ten	thousand	or	one	hundred	thousand,	you're	
taking	half	of	the	exponent.	 

	
In	this	episode,	the	students	again	distinguished	between	linear	and	

exponential	ways	of	reasoning	using	parallel	environments.	For	example,	Samantha	

said,	“This	way	we're	halving	the	actual	exponential	value	and	last	time	we	were	

solving	like	ten	to	the	fourth	and	ten	to	the	fifth	and	we	were	halving	the,	what	

the	answers	were	to	it.”	Here,	she	contrasted	the	way	they	were	reasoning	at	that	

point,	“this	way,”	with	the	way	they	reasoned	previously,	“last	time.”	Similarly,	Chris	

compared	reasoning	linearly	and	exponentially	by	comparing	how	you	“add”	in	each	

of	the	situations.	He	said,	“That's	how	you	add	things	together	in	linear	forms,	

fashions,	but	if	we	want	to	‘add’	[airquotes]	them	together	in	an	exponential	form	

you	have	to	multiply	them	to	get	that	‘adding.’”	

Notation.	Right	after	this	exchange,	Kathy	wanted	to	know	if	the	notation	

changed	the	method.	In	particular,	Kathy	was	asking	how	to	make	the	whole	

timeline	linear.	She	wanted	to	know	if	simply	changing	the	way	the	numbers	were	

written,	from	scientific	notation	to	regular	base	ten	notation,	would	make	the	time	

line	linear.	This	was	determined	to	not	be	the	case.	
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	 Kathy:	 	…	If	we	were	doing	what	we	were	doing	on	Thursday	

where,	like,	if	this	is	a	hundred	thousand	and	this	is	ten	
thousand	[draws	a	number	line	from	10,000	to	
100,000]	and	we	took	one	hundred	thousand	minus	ten	
thousand	which	is	ninety	thousand	and	then	split	it	in	
half	which	is	forty	five	thousand,	like,	is	that	not	an	
accurate	placement?	If	we	change	these	from,	like,	
scientific	notation	to	number	form.	…	So	then	if	we	had	
to	do	it,	if	we	did,	like,	ten	thousand	to	one	hundred	
thousand,	those	gaps	would	need	to	be	bigger	than	a	
hundred	to	a	thousand?	Like	what	solves	the	problem?	
Where	we	can	do	it	all	linearly.	Lin-e-arly.	

	 Farah:		 To	fix	the	problem,	if	we	go	back	to	this	way,	you	have	
to	make	your	graph	longer.	[Several	students	say	
"yeah"]	So	it,	it	goes	back	to	the	question	we	had	in	the	
homework…	If	it	said,	to	go	from	start	to	finish.	

	 Kathy:		 You'd	need	a	hundred	thousand	inches.	
	 Danna:	 I	think	part	of	the	confusion	also	is	changing	the	

numbers	to	this	notation	does	not	change	the	timeline.	
Just	because	you're	representing	ten	to	the	fourth	as	ten	
thousand	doesn't	make	them	any	different.	So	you	can	
still	have	that	half	way	point	be	ten	to	the	four	point	five	
in	whatever	the	actual	number	is	and	still	have	your	
exponential	timeline.	So	the	numbers	don't	matter	as	
long	as	you	understand	the	relationships	between	them.	
Which	the	notation	is	what	tells	you	the	relationships. 

	
Again,	the	students	distinguished	between	linear	and	exponential	methods,	

though	the	contrast	is	not	made	as	strongly	in	this	episode.	The	larger	point	here	is	

that	notation	does	not	determine	the	method.	In	this	way,	methods	are	positioned	as	

independent	of	notation.	

Summary.	These	four	episodes	provide	evidence	for	Claim	4:	Students	

distinguished	in	their	talk	between	linear	and	exponential	ways	of	reasoning,	but	did	

not	distinguish	between	reasoning	linearly	with	the	exponents	and	multiplicative	ways	

of	reasoning.	In	fact,	students	seemed	to	think	of	both	of	these	methods	as	the	same.	In	
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the	first	episode,	when	students	discussed	the	problem	of	the	Renaissance	moving,	

students	distinguished	between	linear	and	exponential	ways	of	reasoning.	They	

talked	about	subdividing	of	the	segments	as	a	linear	process	while	the	macro	

structure	was	exponential	in	nature.	This	contrast	between	linear	and	exponential	

came	up	again,	in	the	third	episode	I	discussed,	when	students	contrasted	halving	

the	values	on	the	line	with	halving	the	values	of	the	exponents.	While	this	contrast	is	

important,	it	does	not	help	to	disambiguate	between	the	two	exponential	ways	of	

reasoning.	Furthermore,	when	the	students	talked	about	Nathan’s	multiplicative	

way	of	reasoning	in	small	group,	they	referred	to	it	as	the	same	as	Lacey’s	method,	

which	relied	on	linear	patterns	in	the	exponents.	This	was	again	emphasized	when	

Kathy	asked	about	notation	and	the	two	exponential	methods	were	positioned	as	

the	same.	Thus,	it	is	possible	that	students	participating	in	the	class	discussion	could	

see	the	two	exponential	methods	as	the	same,	which	leaves	little	intellectual	

encouragement	for	students	who	can	reason	successful	by	focusing	on	the	

exponents	to	adopt	multiplicative	ways	of	reasoning.	

Discussion	

In	this	chapter	I	have	provided	evidence,	which	together	can	provide	a	

response	to	Research	Question	2.	This	research	question	focused	on	how	the	nature	

of	the	classroom	discourse	may	have	supported	the	development	of	the	three	ways	

of	reasoning	exhibited	in	the	post	interview	by	the	focus	students.	In	particular,	I	

sought	to	develop	an	explanation	for	how	students	could	participate	in	a	classroom	
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where	multiplicative	ways	of	reasoning	were	developed	and	accepted	by	the	class	

community,	but	not	adopt	those	ways	of	reasoning	as	individuals.	

Through	discourse	analysis	I	discovered	that	exponential	and	linear	ways	of	

reasoning	were	contrasted,	but	reasoning	multiplicatively	and	reasoning	linearly	

with	the	exponents	were	not	(Claim	4).	This	may	mean	that	students	thought	there	

was	primarily	two	ways	of	reasoning,	a	wrong	way	and	a	right	way—linear	

reasoning	and	exponential	reasoning.	That	means	that	when	students	heard	

multiplicative	explanations,	they	may	have	thought	that	what	they	were	hearing	was	

no	different	from	reasoning	linearly	with	the	exponents,	since	both	were	

exponential.	This	is	further	supported	by	Claim	3,	which	suggests	that	students	

could	hear	multiplicative	explanations	as	no	different	from	those	that	focused	on	the	

exponents	because	in	both	types	of	explanations	students	used	multiplicative	talk.	

Finally,	students	may	not	have	been	well	positioned	to	make	the	switch	to	

multiplicative	reasoning	since.	Claim	1	suggests	that	central	to	this	shift	is	a	

reinterpretation	of	the	length	of	segments.	While	students	seemed	to	implicitly	

attend	to	the	length	of	segments	as	they	were	reasoning,	this	attribute	of	the	

inscription	was	not	explicitly	named	or	discussed.	Rather,	students	tended	to	use	

the	terms	distance	and	difference	interchangeably	to	refer	to	both	quantities	that	

measure	attributes	of	the	line	and	those	that	measure	attributes	in	the	problem	

situation	(Claim	2).	Since	the	students	did	not	disambiguate	between	these	types	of	

quantities	and	in	particular	did	not	disambiguate	length	and	elapsed	years,	it	may	

have	been	difficult	for	students	to	reassign	meaning	to	the	length	of	segments.	
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Without	reflecting	on	the	meaning	of	length	explicitly,	it	may	have	been	easier	for	

students	to	reason	linearly	with	the	exponents,	as	this	did	not	require	a	

reinterpretation	of	length.		
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Chapter	7: Discussion	

	
This	dissertation	study	contributed	to	our	understanding	of	the	teaching	and	

learning	of	exponential	and	logarithmic	relationships	on	several	levels.	At	a	general	

level,	it	contributed	to	researchers’	emerging	understanding	of	the	relationship	

between	individual	ways	of	reasoning	and	emergent	classroom	practices,	including	

an	examination	of	the	mathematical	meanings	constructed	through	classroom	

discourse	as	practices	are	being	established.	At	a	more	specific	level,	it	helped	create	

a	vision	in	the	research	literature	for	a	productive	way	of	teaching	students	about	

exponential	and	logarithmic	relationships.	In	this	chapter	I	talk	about	these	

contributions	in	more	detail,	as	well	as	acknowledge	the	limitations	of	this	study	

and	consider	directions	for	future	research.	

Theoretical	Significance	

Cobb	and	Yackel’s	(1996)	emergent	perspective	gave	researchers	a	

framework	that	outlined	the	relationship	between	students’	participation	in	

emergent	mathematical	practices	and	their	evolving	conceptions	and	mathematical	

activity.	They	said	this	relationship	was	reciprocal.	On	the	one	hand	mathematical	

practices	arise	out	of	individuals’	activity	in	that	individual	students’	ideas	provide	

the	fodder	for	class	discussions,	which	leads	the	negotiation	and	eventual	

establishment	of	accepted	classroom	practices.	On	the	other	hand,	students’	

participation	in	shapes	their	developing	personal	conceptions.	This	articulation	

contributed	greatly	to	the	way	researchers	conceptualized	classroom	interactions.	

However,	there	are	only	a	limited	number	of	students	that	have	investigated	this	
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relationship	empirically	(Bowers,	Cobb,	&	McClain,	1999;	Cobb,	1999;	Rasmussen,	

Wawro,	&	Zandieh,	2015;	Stephan,	Cobb,	&	Gravemeijer,	2003;	Tabach,	

Hershkowitz,	Rasmussen,	&	Dreyfus,	2014)	making	the	phenomenon	not	well	

understood.	Both	Research	Questions	in	this	dissertation	contribute	to	educators’	

understanding	of	this	process.	

In	my	analysis	for	Research	Question	1	I	examined	the	relationship	between	

the	ways	of	reasoning	in	Math	Practice	2:	Subdividing	the	Segments,	and	individuals’	

ways	of	subdividing	the	segments.	I	found	that	in	this	case,	only	three	of	seven	

students	reasoned	in	a	way	that	was	fully	consistent	with	Math	Practice	2	on	the	

post	interview.	Two	students	relied	on	reasoning	consistent	with	NWR	2.1:	

Subdividing	Segments	by	Reasoning	Linearly	About	Exponents.	The	last	two	

students	were	still	grappling	with	when	to	apply	linear	and	exponential	reasoning,	

but	had	also	at	some	point	successfully	reasoned	linearly	with	the	exponents.	Thus,	

contrary	to	what	previous	research	suggests	(Bowers	et	al.,	1999;	Stephan	et	al.,	

2003),	this	study	demonstrated	that	students	can	continue	to	reason	in	ways	that	

are	qualitatively	different	from	an	established	practice,	even	after	instruction	has	

ended.	As	such,	it	is	important	to	gain	greater	understanding	of	why	these	different	

ways	of	reasoning	were	allowed	to	persist.	

Part	of	the	answer	can	be	found	in	the	nature	of	variation	in	reasoning	from	

the	established	practice	and	its	relationship	to	subsequent	class	activities.	In	

Stephan	et	al.’s	(2003)	study,	they	observed	a	student	who,	at	times	held	

qualitatively	different	ways	of	reasoning	from	established	practices,	but	eventually	
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reorganized	her	knowledge.	This	reorganization	seemed	to	be	spurred	by	continued	

participation	in	class	in	which	her	reasoning	became	problematic.	In	other	words,	

the	differences	between	her	way	of	reasoning	and	the	established	practice	were	

significant	because	her	way	of	reasoning	was	mathematically	problematic.	This	is	in	

contrast	to	the	difference	reported	in	this	study	between	reasoning	linearly	with	the	

exponents	and	Math	Practice	2.	It	is	important	to	note	that	reasoning	linearly	with	

the	exponents	yields	the	correct	placements	of	numbers	on	a	number	line.	Thus,	the	

differences	here	were	significant,	not	because	one	way	was	incorrect,	but	because	

students	who	solely	reason	linearly	with	the	exponents	are	missing	opportunities	to	

see	mathematical	connections	between	the	reasoning	linearly	with	the	exponents	

and	multiplicative	ways	of	reasoning	that	were	established	in	Math	Practice	2.	These	

mathematical	connections	are	important	to	understand	if	the	exponential	number	

line	is	to	become	a	powerful	tool	to	reason	about	exponential	and	logarithmic	

relationships.	

	 Answering	Research	Question	2,	provided	further	insight	into	how	students	

could	participate	in	class	interactions	and	not	adopt	multiplicative	ways	of	

reasoning	that	were	established	in	class.	I	answered	this	question	by	investigating	

the	mathematical	meanings	constructed	in	class	through	detailed	analysis	of	

classroom	talk.	This	is	analysis	is	significant	because	although	Cobb	and	Yackel’s	

(1996)	framework	offers	a	broad	description	of	the	learning	process	as	it	occurs	in	

classrooms,	researchers’	understanding	of	the	nature	of	the	discourse	of	classroom	

interactions	that	contribute	to	the	emergence	of	mathematical	practices	is	only	
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beginning	to	be	understood	(Rasmussen	et	al.,	2015;	Stephan	et	al.,	2003;	Tabach	et	

al.,	2014).	

The	analysis	for	Research	Question,	in	which	I	explored	the	semantic	

relationships	expressed	in	those	interactions	and	thereby	examined	the	constructed	

mathematical	meanings,	may	help	explain	why	different	students	reasoned	in	

different	ways	after	participation	in	classroom	mathematical	practices.	Specifically,	

that	exponential	and	linear	reasoning	were	more	strongly	contrasted	than	the	two	

different	ways	of	reasoning	exponentially.	This	may	have	resulted	in	either	students	

not	noticing	a	difference	in	the	two	ways	of	reasoning	exponentially	or	thinking	the	

differences	were	minor,	rather	than	differentiating	the	two	ways	and	exploring	their	

relationship.	The	analysis	also	revealed	that	the	length	of	subsections	was	not	

explicitly	named	or	discussed.	This	may	be	important	since	students	needed	to	

reinterpret	the	meaning	of	the	length	of	the	subsections	to	productively	engage	with	

NWR	2.2.	Thus,	it	may	have	been	easier	for	students	to	reason	solely	in	a	way	that	

was	consistent	with	NWR	2.1,	which	did	not	require	this	reinterpretation.	

These	results	are	examples	of	how	examining	the	mathematical	content	of	

discursive	interactions	in	which	mathematical	practices	are	being	established	can	

yield	greater	insights	into	the	relationship	between	mathematical	practices	and	

individual	students’	ways	of	reasoning.	In	this	case,	the	analysis	gave	a	partial	

explanatory	account	of	how	students	could	participate	the	math	practice	yet	end	

with	differing	conceptions.	

Reflections	on	the	Relationship	Between	Norms	and	Mathematical	Practices	
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Gaining	greater	understanding	of	the	relationship	between	emergent	

practices	and	individual	ways	of	reasoning	gave	rise	to	new	hypotheses	about	the	

relationship	between	students’	engagement	in	mathematical	practices	and	their	

engagement	in	social	norms.	Often	scholars	working	from	the	emergent	perspective	

to	document	the	evolution	of	mathematical	practices	make	note	of	the	norms	that	

were	present	in	the	classroom.	Specifically,	scholars	often	report	students	were	

expected	to	engage	with	other	students’	explanations,	including	asking	questions	

when	explanations	do	not	make	sense	(e.g.	Bowers	et	al.,	1999;	Cobb,	Confrey,	

diSessa,	Lehrer,	&	Schauble,	2003;	Stephan	&	Akyuz,	2012).	Reporting	this	norm	

makes	the	research	more	compelling	because	it	implies	that	the	mathematical	

progress	of	the	classroom	was	generated	through	the	participation	of	a	variety	of	

students.	This	makes	it	more	likely	that	many	students	advanced	their	own	personal	

ways	of	reasoning	through	participation	in	the	class.	This	suggests	how	norms	may	

affect	students’	engagement	with	mathematical	practices.	Namely,	that	with	the	

proper	norms	in	place,	more	students	are	able	to	intellectually	engage	with	the	

mathematical	practices,	which	in	turn	may	mean	that	the	established	practices	are	

fairly	representative	of	individuals’	ways	of	reasoning.	However,	this	study	

illustrates	the	complexity	of	this	relationship	in	that	it	provided	evidence	that	

students	could	intellectually	engage	with	class	materials,	yet	end	with	ways	of	

reasoning	that	differ	from	established	practices.	

Furthermore,	this	study	provided	instances	that	suggest	a	reciprocal	

relationship	may	exist	as	well.	Namely,	that	students’	intellectual	engagement	with	
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the	mathematical	practices	may	affect	their	participation	in	social	norms.	While	not	

the	focus	of	this	study,	some	interactions	suggest	that	students’	ways	of	

participating	in	Math	Practice	2	may	have	affected	how	they	engaged	with	the	social	

norm	of	questioning	strategies	you	do	not	understand.	In	Chapter	5	I	argued	that	

some	students	could	subdivide	segments	by	reasoning	linearly	with	the	exponents,	

but	were	still	grappling	with	multiplicative	reasoning.	In	other	words,	their	

interpretation	of	Math	Practice	2:	Subdividing	the	Segments	may	have	been	that	it	

was	wholly	consistent	of	NWR	2.1.	One	possible	explanation	for	this	is	that	once	

they	found	a	way	to	reason	that	was	sufficient	to	solve	the	problems	they	were	

given,	they	did	not	engage	with	other	ways	of	reasoning.	This	was	seen	most	clearly	

when	Farah	responded	to	Nathan’s	way	of	reasoning	by	ignoring	it	and	doing	

something	else	(see	the	small	group	reaction	to	Nathan’s	argument	described	in	

Chapter	6).	This	seems	to	go	against	the	social	norm	of	asking	questions	when	you	

do	not	understand	another	student’s	explanation.	However,	this	social	norm	may	

not	be	as	straightforward	as	it	seems.	

To	participate	in	the	social	norm	of	asking	questions	when	you	do	not	

understand	another	student’s	explanation,	students	have	to	monitor	their	own	

understanding.	Students’	personal	understanding	of	the	topic	likely	influences	their	

interpretations	of	an	argument.	In	the	case	of	Nathan’s	explanation,	Farah	was	able	

to	articulate	that	she	did	not	understand	what	he	was	saying,	but	did	not	feel	it	

necessary	to	question	him.	This	could	be	for	several	reasons.	First,	Nathan’s	

explanation	inspired	her	thinking	of	another	idea,	so	it	reasonable	that	she	wanted	
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to	explore	her	own	idea	instead	of	delving	deeply	into	Nathan’s	idea.	Second,	Farah	

may	have,	perhaps	implicitly,	thought	of	Nathan’s	idea	was	essentially	the	same	as	

NWR	2.1,	which	she	may	have	already	understood.	In	Chapter	6,	I	argued	students	

the	classroom	discourse	did	not	contain	strong	contrasts	between	NWR	2.1	and	

NWR	2.2.	This	means	that	as	Farah	heard	Nathan	speaking,	even	though	she	knew	

she	did	not	fully	understand	the	details	of	his	argument,	she	may	have	interpreted	it	

as	consistent	with	ways	of	reasoning	she	already	understood.	Since,	she	had	another	

idea	it	may	have	seemed	more	fruitful	to	explore	that	idea,	rather	than	take	the	time	

to	more	fully	engage	with	Nathan’s	idea.	

In	this	way,	Farah’s	understanding	of	Math	Practice	2	may	have	influenced	

how	she	participated	in	the	social	norm	of	asking	questions	to	her	peers.	This	is	

reasonable	since	it	seems	overly	onerous	for	students	to	make	sure	they	understand	

every	word	from	every	person,	especially	in	an	information	dense	university	

classroom.	Rather,	as	a	student,	it	seems	more	important	to	make	sure	you	

understand	novel	ideas	that	are	presented.	These	observations	are	admittedly	

largely	speculatively,	but	investigating	this	further	in	future	studies	may	be	fruitful	

to	further	advancing	the	emergent	perspective.	

Teaching	Implications	

This	dissertation	also	produced	results	that	have	implications	for	teaching.	

First,	the	teaching	and	learning	of	exponential	and	logarithmic	relationships	has	not	

been	thoroughly	studied.	With	the	exceptions	of	the	work	of	Confrey	and	Smith	

(Confrey,	1994;	Confrey	&	Smith,	1994,	1995)	and	Kastberg	(2002),	research	on	
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student	thinking	about	exponential	and	logarithmic	relationships	has	focused	on	the	

mistakes	students	make	(Alagic	&	Palenz,	2006;	Barnes,	2006;	Berezovski,	2004;	

Cangelosi,	Madrid,	Cooper,	Olson,	&	Hartter,	2013;	Davis,	2009;	De	Bock,	van	

Dooren,	Janssens,	&	Verschaffel,	2002;	Hoon,	Singh,	&	Ayop,	2010;	Liang	&	Wood,	

2005;	Nogueira	de	Lima	&	Tall,	2006).	As	such,	the	literature	is	limited	in	its	ability	

to	provide	insights	into	how	educators	could	leverage	students’	cognitive	resources	

to	develop	powerful	ways	of	reasoning	about	exponential	and	logarithmic	

relationships.	There	are	a	few	scholars	that	have	written	about	this,	but	the	work	

here	largely	is	hypothetical	in	that	it	was	not	empirically	based	(Katz,	1986;	Van	

Maanen,	1997;	Webb,	Kooij,	&	Geist,	2011;	Weber,	2002).	The	major	exception	to	

this	was	a	study	reported	by	Ellis	et	al.	(2015).	In	this	study,	the	researchers	

performed	a	teaching	experiment	with	three	students	and	argued	that	focusing	on	

the	covariation	of	quantities	was	helpful	in	developing	powerful	ways	of	reasoning	

about	exponential	relationships.	This	dissertation	study	also	contributes	to	this	

area,	showing	a	productive	path	to	develop	students’	ideas.	

This	productive	path	started	with	the	timeline	task	(Confrey,	1993).	Future	

teachers	could	use	this	task	and	help	students	notice	multiplicative	patterns	(MP1)	

and	then	leverage	those	patterns	to	subdivide	the	segments	in	an	exponential	way	

(MP2	and	MP3).	As	she	did	so,	she	should	note	that	students	might	begin	by	

subdividing	segments	linearly.	Asking	students	to	place	the	Renaissance	may	be	a	

way	for	them	to	reconsider	their	initial	ways	of	subdividing.	Once	students	have	

developed	a	fully	exponential	number	line,	the	teacher	could	then	have	them	look	
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for	additive	and	multiplicative	sequences	(MP4)	and	explore	the	relationships	

between	the	sequences.	She	could	then	help	them	find	how	logarithms	are	

represented	on	the	number	line	(MP5),	which	could	then	serve	as	a	way	to	reason	

about	and	make	sense	of	logarithm	rules.	

	 The	answer	to	Research	Question	1,	that	many	students’	ways	of	reasoning	

were	qualitatively	different	from	Math	Practice	2,	also	has	an	implication	for	

teaching.	One	aspect	of	Math	Practice	2	that	made	it	difficult	to	encourage	students	

to	adopt	multiplicative	ways	of	reasoning	was	that	NWR	2.1	provided	correct	

answers.	This	raises	the	question	of	how	to	encourage	students	to	see	the	

differences	between	two	correct	ways	of	reasoning	so	that	they	can	distinguish	

them	and	then	explore	their	relationships.	In	Chapter	6,	I	argued	that	these	two	

ways	of	reasoning	were	not	explicitly	named	or	contrasted,	which	may	have	

contributed	to	students	seeing	them	as	essentially	the	same	strategy.	As	such,	an	

implication	for	teachers	of	this	specific	unit	is	to	consider	asking	students	to	

explicitly	name	and	contrast	the	two	strategies.	This	strategy	could	also	be	used	in	

other	units	as	well,	but	the	teacher	likely	needs	to	think	ahead	of	time	in	sufficient	

detail	about	what	strategies	she	wants	to	elicit	and	what	relationships	she	wants	

students	to	talk	about.		

Thinking	at	the	level	of	detail	necessary	to	make	this	move	effective	may	be	

difficult.	In	the	case	of	Math	Practice	2,	the	goal	would	need	to	go	beyond	saying	she	

wants	students	to	subdivide	exponentially,	to	thinking	about	how	the	multiplicative	

reasoning	relates	to	the	additive	reasoning	in	the	exponents.	The	teacher	would	
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then	need	to	think	about	how	to	elicit	the	differences	in	reasoning.	One	way	this	

could	happen	is	by	pressing	students	to	think	about	what	the	lengths	of	segments	

represent	(multiplication	by	a	factor	and	addition	in	the	exponents).	This	may	open	

up	a	way	to	differentiate	between	the	methods	and	talk	about	their	relationship.	

While	this	preparation	is	more	obvious	in	hindsight,	it	was	difficult	to	see	before	

instruction.	This	is	evidenced	by	the	fact	that	it	was	not	clear	to	an	experienced	

teacher	working	with	a	team	of	research	associates.	

	 In	fact,	it	is	important	to	note	that	the	teacher	in	this	classroom	did	many	of	

the	things	I	suggested.	For	example,	I	recommended	that	teachers	plan	student	

strategies	in	detail.	The	teacher	of	this	course	anticipated	NWR	2.1	and	NWR	2.2	

coming	up	as	ways	of	reasoning.	However,	she	imagined	the	ideas	developing	

differently,	with	students	first	reasoning	multiplicatively	and	then	moving	to	

reasoning	linearly	with	the	exponents.	The	fact	that	things	did	not	proceed	as	

expected	complicated	the	development	of	ideas	in	the	classroom	as	the	teacher	had	

to	try	and	get	students	to	reason	multiplicatively	after	they	already	had	a	way	that	

successfully	subdivided	the	number	line	exponentially.	While	she	was	successful	in	

doing	this	at	the	classroom	level,	interview	results	suggest	that	some	students	did	

not	engage	in	the	multiplicative	reasoning.	She	was	more	successful	in	getting	

students	to	transition	from	reasoning	linearly	to	reasoning	exponentially.	Here	she	

asked	students	to	contrast	the	two	ways	of	reasoning,	which	may	have	helped	them	

see	the	two	ways	of	reasoning	as	different.	Part	of	her	success	in	this	transition	may	

have	been	due	to	the	fact	that	she	anticipated	this	transition	would	be	challenging	
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for	her	students.	She	thought	ahead	of	time	about	how	to	problematize	linear	

reasoning	for	her	students	and	developed	the	Renaissance	task.	However,	the	

conceptual	complexity	involved	in	distinguishing	between	reasoning	linearly	with	

the	exponents	and	reasoning	multiplicatively	was	not	as	well	anticipated.	This	

shows	that	even	though	the	teacher	was	thoughtful	in	her	planning,	anticipated	

students	strategies	at	a	detailed	level,	and	used	discourse	moves	effectively	in	the	

classroom	to	orchestrate	student	thinking	(such	as	asking	students	to	name	and	

contrast	the	linear	and	exponential	methods),	there	were	still	some	students	who	

did	not	fully	understand	the	relationship	between	NWR	2.1	and	NWR	2.2.	This	

underscores	the	point	that	to	some	extent,	competence	in	general	teaching	moves	

only	goes	so	far	in	teaching	and	even	highly	effective	teachers	need	support	

garnered	through	research	that	illuminates	the	conceptual	difficulties	of	particular	

topics	and	gives	insights	into	how	to	teach	those	topics.	More	of	this	type	of	research	

is	needed.	

Study	Limitations	

This	study	had	several	limitations.	First,	the	use	of	clinical	interviews	to	

assess	students’	knowledge	is	limited.	Because	of	the	situated	nature	of	knowledge	

(Boaler,	1998;	Brown,	Collins,	&	Duguid,	1989;	Nunes,	Schliemann,	&	Carraher,	

1993),	students’	ways	of	reasoning	may	have	looked	differently	if	a	different	

problem	was	posed	or	if	they	were	interacting	in	a	real	world	or	classroom	setting.	

In	particular,	students	may	have	had	additional	knowledge	that	was	not	revealed	in	

the	interview.	In	fact	this	is	certainly	true	as	Lacey	reasoned	linearly	about	the	



273	

	

values	on	the	interview	task,	but	she	reasoned	exponentially,	more	specifically	

linearly	with	the	exponents	on	a	task	in	class.	Had	she	reasoned	this	way	on	the	

interview	task	and	not	considered	linear	reasoning	she	would	have	been	placed	in	a	

different	category.	Thus,	I	am	not	comfortable	claiming	that	the	category	the	student	

was	placed	in	based	on	the	interview	results	represents	the	full	extent	of	their	

reasoning.	

However,	more	crucial	to	the	results	of	this	study	than	categorizing	

individual	students	is	making	sure	the	categories	themselves	are	meaningful.	I	

believe	this	is	the	case.	The	categories	represent	the	areas	of	transition	that	students	

were	still	struggling	with	after	instruction.	Even	though	Lacey	and	Santiago	seemed	

to	be	able	to	reason	linearly	with	the	exponents,	the	fact	that	they	reasoned	linearly	

on	the	interview	task	suggests	that	they	were	still	struggling	with	this	transition.	

Similarly,	even	if	Farah	and	Brittany	were	able	to	reason	multiplicatively,	they	did	

not	see	that	as	essential	to	an	explanation,	despite	probes	for	multiplicative	

reasoning	in	the	interview.	Furthermore,	it	seems	very	unlikely	that	Lacey	and	

Santiago	were	able	to	reason	multiplicatively	given	how	appealing	they	found	linear	

reasoning.	Thus	it	seems	that	shifting	to	multiplicative	reasoning	was	a	significant	

struggle	for	many	students.	

	 Another	limitation	of	this	study	was	the	collection	of	additional	data	sources	

that	were	not	used	in	the	analysis	of	this	study,	but	which	may	have	affected	the	

results.	In	particular,	I	conducted	a	clinical	interview	with	the	seven	focus	students	



274	

	

before	the	unit.	This	may	have	altered	what	students	attended	to	or	intellectually	

engaged	with	during	instruction.	

	 Another	limitation	of	this	study	is	that	no	one	study	can	fully	articulate	all	

possible	relationships	between	emergent	mathematical	practices	and	individuals’	

subsequent	ways	of	reasoning,	since	this	relationship	may	depend	on	the	nature	of	

the	math	practice	or	the	setting	of	the	study.	It	is	important	to	note	that	I	chose	to	

investigate	Math	Practice	2	because	I	thought	it	was	conceptually	complex	and	

therefore	thought	meaningful	variation	was	likely	to	exist.	There	may	be	less	

variation	in	individuals’	ways	of	reasoning	from	established	practices	when	the	

practices	are	less	complex.	Similarly,	the	teacher	was	special	in	that	she	was	an	

experienced	teacher	and	mathematics	education	researcher.	This	helps	explain	her	

proficiency	in	anticipating	student	thinking,	engaging	students	in	meaningful	tasks,	

and	orchestrating	productive	mathematical	discourse.	A	less	supportive	learning	

environment	for	students	may	have	affected	the	relationship	between	emergent	

practices	and	individuals’	ways	of	reasoning,	perhaps	resulting	in	more	variation	in	

ways	of	reasoning	and	potentially	a	greater	prevalence	of	less	productive	ways	of	

reasoning.	Finally,	the	university	setting	may	have	affected	the	nature	of	the	

relationship.	In	university	courses,	there	is	typically	less	class	time	for	a	given	topic	

than	there	would	be	in	a	high	school	setting.	If	students	had	more	time	to	negotiate	

ideas	as	they	were	developing,	this	may	have	resulted	in	a	different	relationship	

between	the	emergent	practices	and	individuals’	ways	of	reasoning.	
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Finally,	there	are	likely	other	explanations	for	the	nature	of	individual	

variation	besides	classroom	discourse.	Specifically,	issues	of	language	and	culture	

likely	affect	the	way	students	engage	in	classrooms.	Various	ways	of	engaging	would	

likely	affect	the	nature	of	the	relationship	between	students’	individual	ways	of	

reasoning	and	established	practices.	These	issues	were	not	the	focus	of	this	study,	

making	the	results	only	a	partial	explanation	for	the	variation	observed.	

Future	Research	

This	study	contributed	to	educators	understanding	of	the	teaching	and	

learning	of	logarithms,	the	nature	of	the	relationship	between	emergent	

mathematical	practices	and	individuals’	ways	of	reasoning,	and	understanding	how	

examining	the	content	do	discourse	can	help	provide	plausible	explanations	for	the	

variation	in	student	thinking	from	established	practices.	However,	much	more	work	

is	needed	in	all	three	of	these	areas.	

	 First,	future	studies	could	investigate	further	issues	of	teaching	and	learning	

exponential	and	logarithmic	relationships.	This	study	was	successful	in	uncovering	

difficulties	for	students	and	suggesting	possible	ways	to	mitigate	those	difficulties.	

However,	different	types	of	students	may	have	different	difficulties.	One	population	

of	interest	could	be	high	school	students,	since	this	is	where	exponential	and	

logarithmic	relationships	are	generally	introduced.	Rethinking	instructional	

approaches	to	exponential	and	logarithmic	relationships	may	be	fruitful,	given	the	

challenging	nature	of	this	topic	(Barnes,	2006;	Berezovski,	2004;	Cangelosi	et	al.,	

2013;	De	Bock	et	al.,	2002;	Hoon	et	al.,	2010;	Liang	&	Wood,	2005;	Nogueira	de	Lima	
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&	Tall,	2006).	One	way	researchers	could	examine	the	teaching	and	learning	of	

exponential	and	logarithmic	relationships	in	high	school	settings	is	to	use	this	unit.	

They	could	then	explore	the	adaptations	needed	for	a	high	school	setting	and	

whether	or	not	high	school	students	had	different	difficulties	than	the	college	

students	in	this	study.	Also,	ideas	might	emerge	in	a	different	order	in	another	

instantiation	of	this	unit,	which	may	affect	how	students	engaged	with	the	ideas.	For	

example,	the	teacher	in	this	study	reported	the	expectation	that	multiplicative	

reasoning	would	emerge	before	reasoning	linearly	with	the	exponents.	In	another	

instantiation	of	this	unit,	the	ideas	might	unfold	in	this	way,	which	may	have	an	

affect	on	students’	ability	to	coordinate	the	different	ways	of	reasoning.	

	 Second,	more	research	needs	to	be	done	to	develop	educators’	understanding	

of	the	relationship	between	emergent	mathematical	practices	and	individuals’	ways	

of	reasoning.	In	this	study,	the	students’	ways	of	reasoning	were	not	idiosyncratic	

interpretations	of	Math	Practice	2.	Rather,	some	students	seemed	to	have	found	

reasoning	linearly	with	the	exponents	more	compelling	than	multiplicative	

reasoning	and	seemed	to	have	difficulty	understanding	the	relationship	between	

these	two	ways	of	reasoning.	While	this	is	a	beginning	to	researchers’	

understanding	of	this	relationship,	it	is	not	definitive.	It	may	be	helpful	to	examine	

this	relationship	under	the	development	different	content.	The	nature	of	the	content	

may	affect	what	students	make	of	the	content	and	how	they	interpret	emergent	

practices.	It	also	may	be	helpful	to	examine	this	relationship	with	different	types	of	

students.	It	is	possible	that	the	fact	that	these	students	were	college	math	majors	
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may	have	affected	how	they	participated	in	the	course,	which	in	turn	likely	affected	

how	their	personal	ways	of	reasoning	developed.	

	 Third,	this	study	has	contributed	to	our	understanding	of	how	discourse	can	

help	explain	variation	in	students’	thinking	from	established	practices.	This	could	be	

expanded	on	in	at	least	two	ways.	First,	this	could	be	broadened	in	that	future	

studies	could	examine	other	aspects	of	the	instructional	environment,	features	of	

the	individual	students,	or	the	intersection	of	those	two	things	to	help	explain	

variation.	For	example,	researchers	have	already	argued	that	discontinuities	

between	home	and	school	cultures	can	affect	learning	(Heath,	1982;	Labov,	1972;	

Mejía-Arauz,	Rogoff,	Dexter,	&	Najafi,	2007).	Future	research	could	make	more	

explicit	the	connections	between	the	continuity	between	cultures	and	the	nature	of	

the	relationship	between	emergent	practices	and	individuals’	ways	of	reasoning.	

Second,	future	studies	could	also	examine	more	closely	how	individuals	are	

interpreting	classroom	interactions	and	the	content	of	those	interactions.	In	this	

study	I	examined	meaning	potentials	created	through	discourse,	but	did	not	dive	

into	students’	personal	interpretations	of	that	discourse.	To	do	this	type	of	work,	

researchers	would	likely	need	to	work	with	fewer	students	and	have	multiple	

debriefing	sessions	with	these	students	as	they	experienced	a	unit	of	instruction.	

This	way	the	researcher	could	more	easily	understand	students’	experiences	in	the	

classroom,	how	those	experiences	changes	over	time,	and	how	those	experiences	

relates	to	their	emerging	ways	of	reasoning.	
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