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ABSTRACT OF THE DISSERTATION

Addressing Privacy, Fairness, and Scalability Challenges for Context-Aware Applications
in Smart Environments

By

Eun-Jeong Shin

Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Professor Sharad Mehrota, Chair

Various in-situ and mobile sensors are deployed in the smart environments for the purpose

of providing personalized services to the end users. Large amount of data is being collected,

stored and analyzed from a variety of sensors in a real-time manner. Such data introduces

several challenges to the end users. These challenges include privacy and security of the users

and system development challenges such as scalability, data management, energy efficiency,

and data analytics.

The functionality of a smart environment depends heavily on the context. For example, the

HVAC (Heating, Ventilation, and Air Conditioning) system of a building takes into account

the occupancy of various regions of the building and determines the appropriate temperature

of the regions. Such decision requires determination of accurate contexts such as occupancy,

air pressure, outside air temperature, and water pressure. However, the state of a motion

detector used to derive occupancy can reveal user-privacy, due to revealing the absence or

presence of a user at a given space. Similarly, participatory thermal comfort control systems

take users thermal comfort votes into account to control the temperature of a building. These

systems require fairness in decision making. For example, if the majority of the votes for

their comfort level is good even though one person is uncomfortable, the IoT-enabled building
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management systems will keep ignoring the minors opinion. When applying decision-making

methods to aggregate user opinions that is collected through sensor data, the result can be

unfair to certain groups of users. Likewise, context-aware messages can benefit from taking

user and environmental context into account to deliver messages in real time/near real time

manner. Such a messaging application requires scalable context collection and evaluation of

context predicates. However, enrichment techniques which convert low-level sensor readings

into meaningful context cannot be applied to the context data on the resource-constrained

mobile devices due to the high resource requirements of these algorithms.

We identify aforementioned context reasoning challenges within two different IoT testbeds:

first, TIPPERS (Testbed for IoT-based Privacy-preserving PERvasive Spaces) is an experi-

mental six-story smart building testbed in UC Irvine designed to study the numerous privacy

challenges due to fine-grained monitoring of building occupants and visitors using a diverse

set of sensors. Second, Honeywell testbed consists of total 7687 Enlighted sensors which are

capable of recording occupancy, light, power, and temperature.

This thesis is organized as follows. First, we study occupancy sensors and propose a privacy

attack in which the adversary associates an individual with the occupancy sensor by combin-

ing the occupancy data with other public information that could easily be obtained online,

and that breaches the user-privacy. Second, we present the first study, up to the authors’

knowledge, on fairness in the aggregation of user thermal comfort in Participatory Thermal

Comfort Control (PCC) systems. Third, we propose a context-aware messaging framework,

SCARF that empowers senders and receivers to control message delivery through policies

defined over context collected from a variety of mobile and in-situ sensors.
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Chapter 1

Introduction

1.1 IoT Environment

We are living in the era of IoT where a large number of heterogeneous sensors (e.g. mobile

phones, smart light sensors, smart meters, smart vehicles, and office equipment) are con-

nected to the Internet to provide ubiquitous services. IoT is not only a technical revolution

that influences our daily lives, but also enabled physical space to be transformed into smart

spaces. Examples of such space are smart buildings where it can be further categorized

into smart hospital, community, and shopping malls. Consider smart university example

where student and employee can be identified through face recognition without a burden to

carry physical IDs. Tracking of the last location of person and equipment is also feasible

through location tracking system built upon sensor data. Smart attendance maintenance

and equipment tracking applications transformed cumbersome manual jobs into automated

task.

Sensors play a critical role for capturing the state of the environment accurately. Captur-

ing sensor data is an initial step for smart applications to perform actions and/or expose
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situation-aware services within the physical space. There are two types of sensors in IoT

environment: in-situ sensors and mobile sensors. In-situ sensors are used to create a dynamic

representation of the state of buildings, by collecting data that is used to actuate or control

building management systems. HVAC sensors are one of the biggest component of in-situ

sensors. For example, thermostat is capable of monitoring the temperature of the rooms.

Occupancy sensors can measure motion changes. Indoor air quality measurement sensors are

becoming increasingly important as it detects carbon levels in the air. WiFi access points

can capture the device connected to a certain location inside the buildings. As smartphones

become integral part of residents, building management systems have better opportunity to

utilize smartphone sensors including accelerometer, gyroscope, magnetometer, GPS, prox-

imity, microphone, touchscreen, fingerprint, and light sensors.

The functionality of a smart environment depends heavily on the context. For example,

HVAC system of a building depends on an environmental context such as occupancy to

determine the temperature of the various regions of building. However, such decision can

lead to the loss of user-privacy. An adversary can efficiently identify a set of sensors that

corresponds to the given interest (with a relatively small amount of additional information).

Furthermore, several inference attacks are feasible by figuring out potentially sensitive in-

formation including the daily routine of the users: commute patterns, work habits, break

patterns, and smoking habits. Similarly, to control the environmental factors (e.g., room

temperature, air, and light), participatory decision making process takes users thermal com-

fort into account. While deciding group thermal comfort to actuate temperature changes,

these systems can be improved by considering fairness. Finally, context-aware applications

play an important role in these environments. These applications require real-time/near

real time response times. Collection and evaluation of context data in a scalable manner to

support such context-aware applications is a very relevant direction of research.

We address three situations where context influence decision making in smart environments,

2



specifically, privacy, fairness, and scalability. First, we study occupancy sensors and propose

a privacy attack in which the state of a motion sensor can reveal user-privacy, due to reveal-

ing the presence of a user at a given space. Second, we present fair decision making methods

to aggregate user opinions that is collected through sensor data. Third, We propose SCARF

to support scalable data collection and evaluation for smart environments. We focused par-

ticularly on scalability challenges with context-aware messaging applications which we still

see the improvement can be made in terms of delivery considering both senders and receivers

context. To accomplish this goal, we designed a context data collection and management

system called SCARF .

1.2 Context-Awareness

Context consists of a variety of observable phenomena including time, location, activity (e.g.

driving/walking/running/still), sensor state (e.g. active, inactive), sensor value (e.g. occu-

pancy, temperature, air quality, water pressure), and user preference on surroundings (e.g.

thermal comfort level, lighting preference). Context information is generated by processing

raw sensor data. Further, it is checked for consistency and metadata is added [87]. Collected

sensor data can be enriched or processed further to be used for smart applications. We

consider two types of context in this thesis:

• User Context. User context consists of the properties of users inside a building

such as the location, activity, or preference on surroundings of the user between two

timestamps.

• Environmental Context. Environmental context consists of a number of environ-

nemtal properties such as the temperature, occupancy, and water pressure between

two timestamps.

Context-awareness in the messaging domain has also been explored [52, 19, 20]. For instance,

3



the authors in [52] considered adapting the message body based on the recipient’s context

(e.g., language of user, interest of users, devices used by the user, etc.) in a distributed

pub-sub system. Recently, Gmail has introduced a new feature [2] that empowers senders a

control over the message translation by providing a temporal context.

Consider the following two different architectures to build context-aware applications:

• Server-based Centralized Architecture Once context data is collected from mo-

bile phones, it will be transmitted to server. Transmitted sensor data is stored and

evaluated on server side.

• Edge-based Architecture Context data acquisition, context data storage, and con-

text evaluation take place in edge (mobile phones).

In this thesis, we leverage two architectures: a server-based centralized architecture and an

edge-based architecture to address the problem of scalability of context collection and eval-

uation. SCARF collects the context data efficiently from resource constrained mobile/edge

and multiple in-situ sensors (not resource constrained) deployed in smart environments. In

particular, SCARF takes a set of contextual queries from applications and optimizes the

rate at which the context data needs to be collected and/or transmitted from the sensor

to the server. Furthermore, SCARF decides whether the code for evaluating context should

be executed on the server or on the edge. Execution on the edge will result in reduced

communication between the server and the edge but can result in low performance due to

resource constraints of the edge. On the other hand, evaluation of context on the server, will

require SCARF to transmit sensor data from the sensor to the server but can result in high

performance due to high resource availability of the server. SCARF is an adaptive framework

which generates an optimal context acquisition plan and a context evaluation plan such that

the overall latency is minimized.

4



1.3 Motivation: Context Reasoning Challenges in IoT

Environment

1.3.1 Privacy Challenge

There is an increasing legislative support for user privacy (e.g. the European general Data

Protection Regulation - GDPR - and California Consumer Privacy Act - CCPA -) that

requires applications to deal with user-defined policies. General Data Protection Regulation

(GDPR) was approved by European Union (EU) and it is enforced starting on 25th May

2018. The aim of the GDPR1 is to protect all EU citizens from privacy and data breaches

in an increasingly data-driven world. GDPR applies to the processing of personal data by

controllers and processors in the EUs, regardless of whether the processing takes place in

the EU or not. In a smart building context, the new concept of ‘privacy-by-design’ requires

organizations to consider how they ensure compliance with GDPR.

In Chapter 4, we present exploratory study on privacy breaches and mitigation strategies

of occupancy sensors in smart buildings. Occupancy sensors are an integral part of many

smart building applications, including energy and space optimizations. However, as more

occupancy data is collected at an increasingly fine grained level, possibilities of potential

privacy breaches also increase.

We show an attack in which the adversary associates an individual with the occupancy sensor

by combining the occupancy data with other public information that could easily be obtained

online. We conduct an experiment using real-world data to demonstrate that the proposed

attack is not only feasible, but the adversary can efficiently identify a small set of sensor IDs

that contains the ID of interest given a relatively small amount of additional information.

We also summarize a number of mitigation strategies against the proposed attack.

1https://www.eugdpr.org/eugdpr.org.html
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1.3.2 Fairness Challenge

As IoT-enabled smart buildings made engagement with building residents easier, many ap-

proaches have been presented to address the challenges of capturing the user thermal comfort

and preference and implementing actuation into the HVAC system of the smart building.

To increase occupants comfort and convenience, the research community as well as industry

have been actively working on the issue of participatory thermal comfort in the last years.

For examples, Honeywell introduced Vector2 Occupant app that allows users to submit oc-

cupant temperature feedback to optimize comfort settings. Comfy3 is another workspace

application enables personalization of space by offering temperature controls.

When buildings do not have access to residents feedback, actuation system relies on prede-

fined rules to control the temperature in rooms disregarding their residents’ thermal comfort.

By enabling occupants to express their feedback using their mobile devices, actuation based

on user comfort level became feasible. In general setting, to reach consensus among group

members, we apply decision making methods (e.g., majority, mean, trimmed mean, and

median) to aggregate the diverse expected comfort levels of the inhabitants. However, such

methods might be unfair to some participants.

Chapter 5 presents the first study of the issue of fairness in participatory thermal comfort

in smart buildings. Inspired by the traditional definitions in scheduling, we introduce a

definition of fairness that is suitably adapted to the particularities of our scenario. We then

present our design of an aggregation method that ensures fairness. Finally, we show how

our algorithm behaves compared with traditional aggregation methods in diverse simulated

scenarios.

2https://buildingsolutions.honeywell.com/en-US/solutions/Vector/Pages/default.aspx
3https://www.comfyapp.com/the-app/
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1.3.3 Scalable Context Collection and Evaluation Challenge

We aim for a holistic framework which allows context collection and evaluation in scalable

manner. Clearly, a truly holistic solution to the challenge of context collection and evaluation

must address following issues:

• Scalability. Scalability is an important issue while supporting large number of context-

aware applications. Several architectures have been proposed in the past to address

the scalability issues such as processing speed-up, reduced communication bandwidth,

and increased reliability [6]. Among different programming paradigms of context-aware

systems, service-oriented and agent-oriented [72] programming model have addressed

the scalability issues up to some extent but they do not consider the scalability of

context collection and evaluation from a large number of heterogeneous sources.

• Latency. The context-aware applications need to provide real time/near real time

responses to the end users. In this scenario, latency becomes a significant issue while

detecting/extracting contextual features from collected context data [80, 76, 75].

• Energy Consumption. Most of the devices in smart environments are battery pow-

ered. Energy consumption becomes a critical issue as context-aware applications con-

sume large amount of energy from user’s devices. Several authors [93, 108, 28, 94] have

pointed out this issue for context-aware applications.

• Security. Some of the major security concerns of context-aware applications include

context data access by malicious users, gaining access to user’s mobile sensors by

attacker and inferring sensitive user information from the output of these applications.

Systems that support context-aware applications need to provide security guarantees

against these types of attackers.

• Privacy. Context-aware applications can disclose behavior and social phenomena such
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as a user’s location, their friends, associates, the timing of their interactions which can

lead to serious privacy concerns [60].

However, we leave these other challenges out of scope for this thesis and maintain a narrow

focus on the scalable framework for context data collection and evaluation. The approach

outlined below can be leveraged as one solution to the plethora of IoT context data manage-

ment challenges. Such a framework should perform under a variety of challenging conditions

(e.g. context evaluation on limited resource environment, effective communication in emer-

gency response) by achieving minimum latency and ensuring bounded amount of energy

consumption.

1.4 Thesis Contributions and Organization

This thesis aims to address some of the above challenges through scalable context collection

and evaluation framework.

The following is the overall organization and research contributions of the thesis:

• Chapter 2 surveys related work.

• Chapter 3 introduces two IoT testbeds where the experimental evaluations took place.

• Chapter 4 introduces privacy challenge in reasoning occupancy in IoT environment.

We study privacy breaches and mitigation strategies of occupancy sensors.

• Chapter 5 introduces fairness challenge in determining group thermal comfort in IoT

environment. We study an opportunity for fairness when applying decision making

methods to aggregate user opinions in participatory thermal comfort system.

• Chapter 6 introduces scalable context collection and evaluation challenge and proposes

a framework named SCARF as a solution.
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• Chapter 7 concludes the dissertation with lessons learned, a holistic view of the chal-

lenges, and a future research directions of context reasoning challenges.
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Chapter 2

Related Work

We now survey relevant work to provide an appropriate background for this thesis. We start

with an overview of context-aware services related to IoT environment. We then explore

systems for context-aware applications and provide a brief overview of existing systems by

surveying existing systems. Lastly, we review the work in terms of energy-efficient process-

ing. These emerging technologies and concepts can help enable scalable context collection

and evaluation solutions in IoT environment, and so we build upon these in designing our

proposed framework.

2.1 Context-Awareness in IoT Environment

Several survey papers [42, 71, 27, 92] have discussed different aspects of IoT applications. In

[71], the authors categorize the IoT applications into three groups: (1) monitoring and control

(where the smart home is known to be at the forefront of innovation regarding IoT monitoring

and control systems); (2) big data and business analytics (to discover changes in customer

behaviors and market conditions, to increase customer satisfaction, and to provide value-

added services to customers); (3) information sharing and collaboration. Context-aware
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applications have also been studied by many authors in the past [82, 29, 9, 65]. Yurur et

al. presented a detailed survey of context-aware applications in mobile sensing environments

[115]. The authors introduced a model which captures the essential components of context-

aware applications. The study topic varies from interface design [15], context modeling

[23, 11] to system design [4].

The context data adds more meaningful and value to the sensor data [117, 22]. Ramesh

and Pinaki [54] pointed out that content without context is meaningless. Context data

which were popularly used by context-aware applications were location, activity, timestamps,

schedule and a combination of them. As location became a prominent condition while

delivering messages, location-based applications became a norm. Location-based messaging

was introduced in the recent applications such as Snapchat [50], Drop Message [49], Yikyak

[114], and Notificare [1]. However, these applications either consider a limited number of

contexts or it relies on the context data from a limited number of mobile sensors located in

the user’s mobile device.

2.2 Context Reasoning Challenges in IoT Environment

Context-aware layered architecture is represented in [14]. In this layered architecture, the

pre-processing layer is responsible for reasoning and interpreting contextual information.

The sensors queried in the underlying layer most often return technical data that are not

appropriate for end applications to use by application developers. Context reasoners abstract

higher level concepts from raw sensor readings. Context provisioning middleware [64] has

been studied by Knappmeyer et al. This paper addresses an issue of context reasoning as

the main criteria required for the middleware.
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2.2.1 Occupancy Reasoning

Accurate occupancy detection has been an active area of research both in academia as well

as in industry [5, 79, 59, 62, 86]. The use-case of such research has been focused into two

main categories such as, reducing energy footprint of the buildings [5] and optimizing the

space utilization of the users inside the building [62]. As the use of occupancy data is

being widely implemented, identifying privacy leakage and developing potential mitigation

strategies against the potential privacy breaches have been gaining increasing attention [59,

109].

In [59], an optimization framework was proposed where the goal is to minimize the infor-

mation regarding the location traces of individuals while guaranteeing performance of the

HVAC system. However, the chapter starts with the assumption that the mapping between

the locations and individuals are already available to the adversary.

Under certain circumstances, smart buildings equipped with Wi-Fi APs are capable of cap-

turing Wi-Fi Mac addresses and converting them to occupancy has been explored. For

examples, TIPPERS [79] is such an example which captures individual’s location based on

Wi-Fi Mac addresses. In this approach, there exists a sensor-to-individual, which is an one to

one, mapping. However, for most commercial buildings, it is often not the case that unique

mapping between sensor and individual exists.

A differentially private mechanism for streaming data was studied in [25], and the proposed

mechanism was implemented on the building occupancy data in [40]. In this work, differential

privacy ensures that an occupancy pattern in a particular zone is statistically similar whether

an individual is in the zone or not. In this chapter, we study the problem of linking an

individual and the sensor ID at each presence sensor level.
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2.2.2 Participatory Thermal Comfort Reasoning

There have been multiple contributions in the literature towards participatory comfort con-

trol in buildings [68, 57, 44, 33]. However, up to the authors’ knowledge, we are presenting

the first approach that takes into account fairness in this context. In the following, we review

works in the area of participatory thermal comfort control. In particular, we describe ap-

proaches to obtain user thermal comfort preferences and to implement such preferences into

the HVAC system. Also, we review works considering fairness in other aspects of computer

science.

Works on Participatory Comfort Control

Thermal comfort is defined by American Society of Heating, Refrigerating and Air-conditioning

Engineers (ASHRAE) Standard 552013 as the condition of mind that expresses satisfaction

with the thermal environment. The Predicted Mean Vote (PMV) scale is a common mecha-

nism to measure how comfortable a person is with room temperature [36]. The PMV scale

consist of seven points of thermal sensation varying from cold (-3) to hot (3), with other

points on the scale corresponding to cool, slightly cool, neutral, slightly warm and warm.

Predicted Percentage of Dissatisfied (PPD) predicts the percentage of occupants that will be

dissatisfied with thermal conditions. PPD is a function of PMV, given that as PMV moves

further from neutral (0), PPD increases.

There are two main issues to be addressed in order to provide participatory thermal com-

fort: 1) Capture and aggregate user thermal preferences, and 2) Implement appropriate

thermal comfort into the HVAC system. Several approaches for PCC systems that take into

account both issues have been presented in the literature [55, 13, 69, 110]. In [3], authors

presented the survey results of occupants satisfaction with indoor environmental quality in-

cluding satisfaction with the temperature, air quality, lighting, and acoustics in buildings.
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Industry is also paying attention to the development of PCC systems. For instance, Comfy1

and Honeywell’s Vector2 systems collect user thermal feedback which is communicated to the

building administrator. However, all these systems use traditional decision making methods

(i.e., majority, mean, trimmed mean, and median) to aggregate user thermal preferences

which, as we will demonstrate in Section 5.3.2, are not fair to the participants.

Some works have focused on obtaining the user thermal comfort and could serve as in-

put for our aggregation algorithm. In [68], the authors developed a Temperature Comfort

Correlation (TCC) model that builds a profile for each occupant based on three parame-

ters: 1) personal information such as age, gender, height, weight, etc, 2) indoor and outdoor

temperatures, 3) trainable parameters such as users votes. Thermal comfort is a function

of heat gain and heat loss, which are primarily settled by metabolic rates and parameters

are plugged into this function. In [95], the authors introduced a framework for building

occupants serving as participatory sensors wherein occupants provide their feedback of ther-

mal comfort and dynamic temperature control is applied [34, 13, 56, 110, 98] based on the

feedback.With increasing levels of instrumentation in buildings, e.g., audiovisual sensing,

methods to extract thermal comfort of occupants using visual signals and features along

with specialized image processing have been studied [58].

The aggregated thermal comfort of the different users in a zone computed by our algorithm

can be translated into HVAC control. Different strategies have been proposed in the literature

for such a task. In [34], authors proposed a real-time and learned strategy for temperature

control. [32] proposed an HVAC control strategy based on occupancy prediction and real

time occupancy monitoring via a sensor network of cameras. In [37], signals measured

directly on the body were used to infer user comfort and control the air-conditioning system

to direct air flow where it was needed. Techniques to estimate occupancy in buildings via

sensors in conventional building management systems have been shown to be effective for

1https://www.comfyapp.com/the-app/
2https://buildingsolutions.honeywell.com/en-US/solutions/Vector/Pages/default.aspx
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zone-based HVAC scheduling and managing energy usage effectively while ensuring thermal

comfort [12].

Fairness in Scheduling

The notion of fairness in scheduling has been addressed along multiple dimensions and has

addressed a range of trade-offs - including fair share scheduling in OS, delay scheduling for

clustered systems [111, 116], wireless networks [24, 46], shared memory architectures [81,

48, 47], and cloud computing [41, 90]. We focus on the treatment of fairness in scheduling

algorithms, in particular in the context of a carpooling problem, which is related to our

scenario.

The carpooling problem supposes that N people have decided to form a carpool to commute

to office and a decision has to be made regarding who has to drive on a given day. Being

selected as a driver is a burden and thus, the driver role has to be shared by the carpool

members. In this context, to be fair, each person should be driving approximately 1/k of

the time that she rides with k − 1 others. For example, if the carpool consists of A, B, and

C, then A might be expected to drive 1/2 of the times that she rides with only B or only C

and 1/3 of the times that she rides with both B and C.

Fagin and Williams [35] generalized this definition. Assume that at time t, A has participated

in the carpool on b2 days when exactly 2 persons participated in the carpool, on b3 when

exactly 3 persons participated, and so on. They defined A’s ideal number of drives as the

number (1/2)b2 + (1/3)b3 + ...+ (1/N)bN . Then, their formal definition of fairness considers

a carpool scheduling algorithm as fair if “for each N (where N is the number of member of

the carpool), there is a number P such that whatever the schedule of arrivals, it is the case

that at each time t and for each carpool member A, the number of times that A has actually

driven differs from his ideal number of drives in absolute value by no more than P”.

In Fagin and Williams scheduling algorithm, U is considered to be a value that represents
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the total cost of a trip. U is a least common multiple of 1, 2, ...,m where m is the largest

number of people who ever ride together at a time in the carpool. The ledger maintained by

the algorithm contain one row for the date and one column for each participant. It starts

with initial record with all 0’s. If there are k participants on the given day, and A is the

driver, then A’s entry is increased by U(k− 1)/k units. For the rest of the users who do not

drive, entry is decreased by U/k units. To decide the next driver, the algorithm chooses the

person with the lowest entry in the table. [35] shows the above algorithm maintains fairness

with a bounded deviation from the ideal number of drives.

2.2.3 Scalable Context Collection and Evaluation

A number of authors have identified the requirements, implementation, and major research

challenges of systems that support context-aware applications [16, 77, 115]. According to the

authors in [77], existing implementations can be categorized according to the functionalities

provided by these systems such as the capability of collection, storage, query, prediction,

and context representation.

Context-aware approach is widely used for searching in IoT. In [10], the authors proposed

a context-aware service framework on top of IoT controlled systems, which is applied on

the fault management process in electric power distribution networks. Their proposal takes

automate actions depending on contextual information sensed from the IoT environment

and received by the framework through its controlled systems. In [97], a context-aware and

multi-service trust management system fitting the new requirements of the IoT is designed.

To the best of our knowledge, we could not find any work that addresses the problem of

minimizing the latency of the context-aware applications while maintaining a bound on the

energy consumption cost.
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2.3 Energy Efficiency of Context-Aware Applications

Several authors [61, 7, 8] in the past highlighted the importance of energy efficiency of

context-aware mobile applications. Iqbal et al. presented a generic architecture [51] for

context-aware mobile applications using a four stage energy saving techniques introduced

in [118] which is Suppression, Substitution, Adaptation and Piggybacking. They proposed

a state machine consisting of states and transitions, through which energy consumption of

an application is optimized. Nailah et al. suggested context-aware energy optimization for

perpetual IoT-based safe communities, which uses a semantic approach that utilizes context

of extracted activities of daily living (ADLs) from device data to drive energy optimized

sensor activations [7]. CASSARAM [88] proposes to select the sensor from large set of

sensors with capabilities and parallel functionalities. Based on the user requirements the

context will be identified and relevant sensors are used to the context data. From the large

set of sensors, CASSARAM finds out which sensor is containing more energy.

Piggyback Crowdsensing (PCS) [70, 112] is a framework designed to reduce the energy

overhead of smartphone-based crowd-sensing. Using prior knowledge about user habits and

CPU/network profiles of applications, PCS determines when to trigger on-board sensors to

minimize energy consumption. Data upload only happens at night when the smartphone

is connected to WiFi and power adapter at users homes. When and how to upload the

collected information is not a significant concern. In [99], authors have proposed an efficient

context data processing pipeline where an early feature detection stage can eliminate the

usage of expensive context recognition. Although such an approach can minimize the overall

energy consumption cost of mobile devices, but it can incur high latency depending on the

complexity of the context evaluation function. In contrast, our hybrid architecture chooses

to collect, transmit and evaluate context data appropriately either on the mobile side or on

the server side to overcome the latency barrier of the end applications.
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Chapter 3

IoT Testbeds

For chapter 4 and 5, we use TIPPERS dataset for experiments. For chapter 5, we experi-

mented on Honeywell Testbed dataset. We explain the dataset in detail in the following.

3.1 TIPPERS

TIPPERS (Testbed for IoT-based Privacy-preserving PERvasive Spaces) [79] is an experi-

mental six-story smart building testbed designed to study the numerous privacy challenges

due to fine-grained monitoring of building occupants and visitors using a diverse set of sen-

sors [9]. To date, TIPPERS uses the data from pre-installed 40 cameras, 64 WiFi APs, over

six thousand Heating, Ventilation, and Air Conditioning (HVAC) sensors measuring airflow

and ventilation as well as temperature at different parts of the building, and a large number

of light and motion sensors. Also, several hundred of bluetooth beacons covering all major

regions in the building, over a hundred smart plug meters to monitor energy consumption of

connected devices are installed. Data from these sensors flows through the TIPPERS sys-

tem that fuses the underlying sensor data to produce mainly two higher-level data streams

PRESENCE, which monitors location of all individuals who are inside the building as a func-
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tion of time, and ENERGY, which monitors energy usage at different spatial resolutions.

The information managed by the TIPPERS database system is used to build a variety of

applications from real-time awareness of resources, people, and events, to mechanisms to

perform analytics on historical data.

Dataset. In TIPPERS, the location of individuals is determined dynamically based on

several lower level data sources including connectivity to WiFi APs, presence of an individual

in a video feed, WiFi fingerprinting, as well as connectivity to different bluetooth beacons.

Of the different methods for localizing individuals within the building, using WiFi APs to

track client connections is the most useful because (a) it is ubiquitous, since wireless network

covers the entire building, and (b) it does not require active participation of, or any software

to run on the client machine. One of the key challenges, however, in using such dataset is the

relatively coarse granularity (region level) compared to the much finer granularity that can

be achieved using beacons and/or cameras. While coarse granularity data suffices for certain

applications/analysis tasks (e.g., understanding region level occupancy of the building), for

other tasks needing finer granularity (e.g., at the room level) additional mechanisms for

localization need to be designed. One of the mechanisms explored in TIPPERS is to postulate

the finer granularity localization, viz., room level, as a data cleaning challenge. Additional

information such as location of occupants office, calendar entries, data collected over time

to observe patterns in the location of individuals, as well as fine granularity location data

collected sporadically using other sensors such as beacons placed in some locations, is used

within TIPPERS to develop models for fine grained localization using WiFi AP datasets.

Hedwig is built on top of PRESENCE and OCCUPANCY which is derived from PRESENCE.
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3.2 Honeywell Testbed

In Honeywell Golden Valley laboratory, total 7687 Enlighted1 sensors (see figure 4.2) which

are capable of recording occupancy, light, power, and temperature are placed for sensing and

actuating purposes. These sensors are used for energy and space management.

Dataset. Enlighted is continuously recording occupancy data every 5 minute interval. We

have gathered data from Honeywell Golden Valley laboratory, which is a three story com-

mercial building, but focused on data collected from second floor, which is a main floor where

most employees’ work spaces are located. Total 2493 fixtures were collected, in particular,

1719 fixtures on the second floor for 68 days. Along with occupancy data, we used sensor

dataset which stores sensor ID, name, floor ID, area ID, area name, area description, and

the x, y coordinates of sensors.

1http://www.enlightedinc.com/
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Chapter 4

Exploring Privacy Breaches and

Mitigation Strategies of Occupancy

Sensors in Smart Buildings

Smart buildings are becoming increasingly prevalent as an integral part of our society.

Equipped with various sensors and actuators, smart buildings enable automated building

controls including light, HVAC, and space optimization [101]. This results in personalized

comfort controls for the building occupants as well as economic savings for the owners of

buildings. However, as more fine-grained data at individual levels are collected for building

automation, dangers of potential privacy breach also increase [78]. New technologies are

putting us at risk from increasingly sophisticated privacy attacks. Evidently, IoT sensors

process and produce massive amount of data and potentially, these data could be a potential

source for attackers to exploit privacy of users.

One type of sensor that has been identified as a potential privacy risk is the occupancy

sensor [59]. Occupancy sensors detect presence of an individual which enables dynamic
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control of light and HVAC systems based on the detected occupancy information. However,

the collected occupancy data could potentially be used for inference of individual’s occupancy

patterns and tracking individuals [109].

In this chapter, we study an occupancy reasoner, occupancy as an environmental context, has

privacy implications in smart buildings. In particular, we are interested in a setting where

each individual is given a primary location where the person is expected to be throughout

the day, such as cubicles or offices.

4.1 Background on Occupancy Sensors

In many cases, the automation control is indifferent to the identities of building occupants.

For example, detection of a presence is sufficient to trigger turning on the light at the

sensed location. The automated building control does not require the knowledge of who is

triggering the occupancy sensor, but only requires the information that presence is detected

at a particular location.

For this reason, the database containing user-identifying information is typically kept sep-

arately from the database storing occupancy information, and there is no communication

between those databases. Because of this separation, it is easy to believe that unless the

adversary compromises both databases, it is extremely difficult to infer the mapping between

the set of sensors that are located at primary locations of individuals and the identities of

individuals. The findings of this chapter demonstrate that maintaining separate databases

is insufficient for mitigating privacy leakage from occupancy sensors. Specifically, we make

the following set of contributions.

• We propose a new privacy attack in smart buildings when the gathered occupancy

information does not contain unique identifiers of individuals. In the proposed attack,

the adversary combines the sensed occupancy data with auxiliary information which
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Figure 4.1: Illustrating the privacy implications of the presence data. Once the adversary creates
a mapping between the set of individuals and the set of presence sensors, the adversary can infer
sensitive attributes that pertain to specific individuals.

is often public information. This attack enables the adversary to identify the sensor

ID whose location is associated with the individual, which in turn, leads to leakage of

sensitive information (Figure 4.1).

• We perform an experiment using real-world data to validate the feasibility of the pro-

posed attack. The experiment shows that even with a small set of auxiliary information,

the adversary can obtain a significant amount of information regarding the sensor ID

at the primary location of the targeted individual.

• We propose a set of mitigation strategies against the proposed attack including the

use of differential privacy, time-based encryption and deletion of the stored occupancy

data.

The chapter is organized as follows. Section 4.2 contains our assumptions of the building and

the adversary. In Section 4.3, we describe the proposed privacy breaching attack in detail.

Section 4.4 describes the experimental study. Section 4.5 summarizes potential mitigation

strategies against the proposed attack.

4.2 Model and Preliminaries

In this section, we present data processing flow, adversary and building models. We also

define the notations that will be used throughout the chapter.
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Figure 4.2: Enlighted sensor.

4.2.1 Data Source

We have used Enligted dataset which is continuously storing occupancy data every 5 minute

interval. We have gathered data from Honeywell Golden Valley laboratory, which is a three

story commercial building, but focused on data collected from second floor, which is a main

floor where most employees’ work spaces are located. Example dataset is shown in Table

4.1.

Capture Time Sensor ID Occupancy (Hex) Power (Watt) Temp. (F)

8/1/2019 12:05:00 AM 5314 1152921504606840000 0 71.16
8/1/2019 12:05:00 AM 238 0 1.2 76.92
8/1/2019 12:05:00 AM 904 0 1.2 72.78

Table 4.1: Occupancy raw dataset.

4.2.2 Data Processing Flow

We have developed a location inferencer to find out office/cubicle candidates. A location

inferencer takes occupancy readings and sensor locations as inputs and produces location

candidates as outputs. It outputs location candidates as a png file. Figure 4.3 illustrates

data processing flow of location inferencer.

4.2.3 Building Model

We consider a building that is divided into multiple locations where each location is equipped

with a presence sensor. We assume that a presence sensor is capable of inferring whether or
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Figure 4.3: Data processing flow.

not the location is currently occupied, but is not capable of inferring which specific individual

is triggering the occupancy. An example of such a sensor would be a motion detector which

uses ultrasonic or microwave technologies.

Each individual is given a primary location where the individual will be spending most of

the time when the individual is in the building. For example, a primary location might be

a designated office, a particular room, or a particular cubicle.

The set of presence sensors are denoted as S. Each sensor periodically detects presence in

its neighborhood. The occupancy pattern of sensor sj ∈ S at time t is denoted as otj and is

defined as

otj =

 1, if sensor sj detects presence at time t

0, else.

Similarly, we define o
[t0,tf ]
j = 1 if occupancy is continuously detected during the time interval
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[t0, tf ] and o
[t0,tf ]
j = 0 otherwise.

4.2.4 Adversary Model

An application that consumes the occupancy data could potentially use the data other

than its intended purposes. For example, an adversary might be interested in finding the

behavioral patterns of the users, friendships, or floor maps of the building. The goal of the

adversary is to infer the sensor ID that is installed at the primary location of the targeted

individual i denoted as si. It is assumed that the adversary can query any sensor ID to

observe the presence information at any given time t.

The adversary also has a set of auxiliary information of the individual i, which is denoted as

Ai. Auxiliary information is defined as occupancy-pattern information that the adversary

has about the individual. An example of a piece of auxiliary information is a travel schedule

of the individual from which the adversary can infer that the individual was not in the

building for a given time interval. Such information is often public information that can

easily be obtained from social network sites including LinkedIn, where postings may include

an individual receiving an award or giving a presentation at a conference. Such information

would indicate that the individual was not present in the building on the days when this was

posted.

For each auxiliary information a
[t0,tf ]
i ∈ Ai, we denote a

[t0,tf ]
i = 1 if the individual i was

known to be in the building during the time interval [t0, tf ] and a
[t0,tf ]
i = 0 if the individual

i was known to be absent from the building during the time interval [t0, tf ].

4.3 Proposed Attack

In this section, we propose an attack in which the adversary infers the sensor ID of the

targeted individual i with high probability by combining the auxiliary information with
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the queried occupancy patterns. The main idea of the attack is to exploit the fact that

the sensor si has to satisfy all the conditions presented by the auxiliary information Ai.

An illustration of the proposed attack is shown in Figure 4.4. In this particular attack,

the adversary computes the intersection of four sets (out of office in April, out of office in

May, in the building in August, out of office in June) that are consistent with the auxiliary

information such as ”out of office” or ”in the building” to uniquely identify the sensor ID

that is associated with the targeted individual.

4.3.1 Formal Description of the Attack

Without loss of generality, we define the set Ai as

Ai = {a[t0,t1]i , . . . , a
[tn−1,tn]
i } (4.1)

Ai represents the set of auxiliary information obtained by the adversary for individual i. For

each item of auxiliary information a
[tm−1,tm]
i ∈ Ai, define the set S im ⊂ S as

S im = {sj : o
[tm−1,tm]
j = a

[tm−1,tm]
i } (4.2)

In other words, the set S im is the set of sensors such that the corresponding occupancy

patterns are consistent with the auxiliary information a
[tm−1,tm]
i . Given n auxiliary informa-

tion, the adversary can construct n such sets, and the sensor si has to be in all of the sets

S i1, . . . ,S in. Assuming the adversary does not have any a priori information regarding si, the

probability of correctly guessing si given Ai is written as

P(ŝi = si|Ai) =
1

|
⋂n
m=1 S im|

(4.3)

where ŝi is the adversary’s estimate of si.
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Out of office in June
In the building in Aug

Out of office in May
Out of office in April

Figure 4.4: Figure illustrating the proposed attack. The attacker continuously intersects sets of
sensors that are consistent with the auxiliary information.

4.3.2 Area Type Inference

The adversary infers area types without having a floor map. We explore the idea that the

adversary infers area types (office, cubicle, hallway) from occupancy data alone.

The adversary starts from the intuition that sensors which behave similarly are more likely

to be the same area type (temporal aspect). Also, sensors that are close to each other are

more likely to belong to the same area type (spatial aspect). Here, the adversary explores

temporal aspects of group sensors. In particular, the adversary finds features of group sensors

in three area types: office, cubicle, and hallway.

Table 4.2 summarizes our occupancy data exploration results. We test out 7 different

hypotheses and accepted 5 among 7. Two hypotheses which turned out to be unuseful were

as follows: 1) H5: Average number of changes (’01’ and ’10’) carries enough information

to decide whether the sensor is located in office/cubicle/hallway, 2) H7: Summation of

occupancy data with fast sampling rate (5 seconds) carries enough information to decide

whether the sensor is located in office/cubicle/hallway. The main reason for these negative

results was due to occupancy sensor’s fidgety behavior. Occupancy reading in 5-second

intervals is unreliable to use as a feature. However, by combining H3, H4, and H6 and

calculating average sparsity, maximum un-occupancy, and occupancy variance as features,
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the adversary can infer a user’s location with high probability.

4.4 Experimental Evaluation

We conducted an experimental study using real-world occupancy sensor data from an office

building. The goal of this study was to experimentally evaluate the effectiveness of the attack

described in Section 4.3.

We selected one zone of the office building for the experimental study which contained 1663

motion detectors. Each motion detector records a binary value of 1 if it senses presence via

motion and 0 otherwise. The presence value is recorded every 5 seconds and transmitted to

a centralized database.

The auxiliary information we considered was daily travel schedules of individuals. The travel

schedules used for this study were obtained either with user consent or through public data

from LinkedIn. The set of auxiliary information was gathered within the period of 5 months.

For each day, we assumed that an individual was present in the building if person stayed in

his or her primary location for more than an hour, which is equivalent to having more than

720 number of 1’s in the presence data for one day. The assumption was made to account

for triggering of the motion detector by bypassing people or patrolling security guards at

night time. If the presence data for a sensor contained less than 720 number of 1’s for one

day, then we assume that the area covered by the sensor was unoccupied for that day.

We conducted our experiment on four employees. For the first case, we used three pieces of

auxiliary information.

1. The person traveled for two days during weekdays and therefore was not present in the

building during the travel.

2. The person has not worked during the weekends for a particular month.
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ID Hypothesis Finding Conclusion

H1 Occupancy data with
several days of occu-
pied/unoccupied meta-
data will increase the
probability of inferring a
user’s location.

Accepted; combining oc-
cupied/unoccupied days of
occupancy data will signif-
icantly reduce number of
candidate locations.

A combination of occu-
pied/unoccupied days is
meaningful to infer one’s
location

H2 Part of occupancy sensor
readings are not reliable

Accepted; Some sensors
have no readings over the
whole period, some of
them have very low occu-
pancy value

Data cleaning before pro-
cessing is required

H3 Average sparsity of oc-
cupancy carries enough
information to decide
whether the sensor is
located in office/cubi-
cle/hallway

Accepted; using this as a
feature to apply clustering
sensors will find good area
type clusters

K-Means clustering al-
gorithm with average
sparsity, maximum un-
occupancy, and occupancy
variance find clusters with
three different area types

H4 Maximum un-occupancy
carries enough informa-
tion to decide whether
the sensor is located in
office/cubicle/hallway

Accepted; using this as a
feature to apply clustering
sensors will find good area
type clusters.

K-Means clustering al-
gorithm with average
sparsity, maximum un-
occupancy, and occupancy
variance finds good clus-
ters with three different
area types

H5 Average number of
changes (’01’ and ’10’)
carries enough informa-
tion to decide whether
the sensor is located in
office/cubicle/hallway

Rejected; using this as a
feature to apply clustering
sensors will not find good
area type clusters

Average number of
changes is not reliable to
use as a feature

H6 Occupancy variance car-
ries enough information to
decide whether the sensor
is located in office/cubi-
cle/hallway

Accepted; using this as a
feature to apply clustering
sensors will find good area
type clusters.

K-Means clustering al-
gorithm with average
sparsity, maximum un-
occupancy, and occupancy
variance finds good clus-
ters with three different
area types

H7 Summation of occupancy
data with fast sampling
rate carries enough infor-
mation to decide whether
the sensor is located in of-
fice/cubicle/hallway

Rejected; summation of
occupancy data is not
enough to differentiate
area type

Summation of real time
occupancy is not reliable

Table 4.2: Occupancy data exploration summary.
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3. The person returned to work after two days of travel and was present in the building

on the third day.

Without any additional information, the probability of correctly guessing the sensor ID that

is located at the person’s primary location is 1
1663

. After identifying the set S1 that satisfied

the first auxiliary information 1), the cardinality of the set was reduced to 14 from 1663.

In addition, after obtaining the intersection S1
⋂
S2

⋂
S3, where S2 and S3 are the sets that

satisfied the auxiliary information 2) and 3) respectively, the cardinality of the new set was

reduced to 9 from 1663. We have verified that the person’s primary location (an office space)

was indeed one of the nine candidate locations that we identified.

Figure 4.5 shows how probabilities of correctly identifying primary locations (Equation (4.3))

change with auxiliary information for all four cases. The horizontal axis is the relative time of

the year when the auxiliary information was gathered within the period of five months. For

cases 2,3, and 4, the off label shown in Figure 4.5 indicates that the person was not present

in the building during weekdays and the on label indicates that the person was present in the

building. In all four cases, we observed that with two to three pieces of auxiliary information,

the cardinalities of candidate sets will reduce to approximately 10, resulting in significant

increase of probabilities of correctly identifying the primary locations for all four individuals

to approximately 0.1 from 1
1663

.

In all four cases, it was observed that a person’s absence in the building during weekdays

significantly reduces the size of the candidate set initially. This is due to two reasons. First,

identifying the candidate set of locations that are occupied during weekdays will eliminate

almost all sensors that are located in hallways, which are usually occupied during weekdays.

Second, since the building chosen for this study does not allow working from home, being

absent during weekdays is a rare event.

However, as can be seen in cases 1,2 and 4, having additional auxiliary information of
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Figure 4.5: Figure illustrating the increase of probability of correctly identifying the primary
locations given auxiliary information. Horizontal axis is the relative time of the year when auxiliary
information are collected. The off label indicates that the person was not present in the building
during weekdays for cases 2,3 and 4. The on label indicates the person was present in the building.

being absent in the building does not provide much additional information. This is because

the candidate set with the first item of auxiliary information contained locations that are

unoccupied for a long period of time. Therefore, unless significant changes have occurred in

such empty locations including new people being assigned to the locations in a short period

of time, the same locations will be counted even after refining the candidate set with an

additional auxiliary information of the individual being absent in the building.

To eliminate the empty locations from the candidate set, it is required to combine an ad-

ditional piece of auxiliary information of the candidate being present in the building. As

seen in all four cases, the probability of correctly identifying the sensor ID (Equation (4.3))

significantly increases when the targeted individual’s presence in the building is accounted

for.

To further reduce the number of sensors to explore, we conduct an experimental study on

area type inference. We apply k-means clustering algorithm with three features:

• Average occupancy sparsity: an average of distances between chunks of 1s. For exam-

ple, if we have binary readings of ’11111111111111000001000011000000000000000110001

0000001100101’ as ot, an average occupancy sparsity’s value is (5 + 4 + 15 + 3 + 6 +
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2 + 1)/7 * 5 = 25.

• Maximum un-occupancy: a maximum value of chunks of 0s. For the same binary

number given above, maximum un-occupancy’s value is a maximum of (5, 4, 15, 3, 6,

2, 1) = 15. Offices will be likely to have longer consecutive un-occupancy than hallways

and cubicles.

• Occupancy variance: variance of 0s and 1s. Hallways are likely to have bigger variance

due to combinations of multiple people moving around. However, offices or cubicles

will have less dynamic movement patterns since they are occupied by single persons

for the most of the time.

Figure 4.6 shows an experimental result of applying k-means clustering algorithm with k =

3 to the set of sensors installed on the second floor. Blue dots are candidates for cubicles,

red dots for hallways, and yellow dots for offices. For the subset (150) of sensors installed on

the second floor, error rates are: hallways (18%), office (12%), and cubicle (30%). Sensors

installed in hallways and cubicles show higher error rate than sensors installed in offices

as sensors installed on top of cubicles observe similar patterns to the sensors installed in

hallways.

We filter out raw sensor observations based on a user’s presence information in the building.

We apply set intersection for the dates he/she was present/absent. By applying set intersec-

tion for 4 different known absence/presence dates, we increase the probability of correctly

guessing an employee’s office candidates. Once we have reduced the number of candidate

sensor locations, we apply area type inference algorithm introduced in 4.3.2 to further re-

duce the candidate locations. By combining set intersection approach for known travel dates

and k-means clustering algorithm to determine space types, we were able to achieve more or

less than 10 candidate points for three candidates.

Based on our findings, we ran the experiment on one of executive member’s data. By applying
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Figure 4.6: Figure illustrating area type can be inferenced based on k-means clustering algorithm.
The blue dot indicates cubicle. The red dot indicates hallway. The yellow dot indicates office.

set intersection for 4 different known absence/presence dates and area inference algorithm,

we narrowed down the probability of his locations to 1/7.

4.5 Potential Mitigation Strategies

In this section, we propose a set of potential mitigation strategies against the proposed

attack.
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4.5.1 Principle of Least Privilege for Privacy

Principle of least privilege has been widely accepted as one of the governing principles in

designing mitigation strategies in security. The principle of least privilege states that the

minimum amount of information and resources should be given to a subject in order for the

subject to perform required duties. The same principle can be used for privacy enhancement

as stated in [73].

For building applications, we need to ensure that only the minimum, necessary level of

occupancy information is disclosed. For example, for occupancy-driven HVAC control, the

controller only requires occupancy information at the zone level, but does not require the

information to be consumed at the individual sensor level [31]. Specifically, this implies that

the HVAC controller will be given the number of people present in a zone, but not presence

information at each individual sensor.

The adversary could still potentially perform the attack using the zone level occupancy in-

formation to at least identify which zone includes the targeted individual’s primary location.

On the days when the individual is not present in the building, the adversary would expect

to observe a decrease in the number of occupants in the zone. However, unlike the attack

performed on the individual sensor level, the behaviors of other occupants in the zone would

affect the accuracy of the identified sets in Equation 4.3. It is possible that the decrease

in the number of occupants could be due to other individuals not present in the building

when the targeted individual is present. Similarly, even when the targeted individual is

not present in the building, other individuals that were not previously in the zone could be

present, resulting in no change or even an increase in the number of occupants in the zone.

Moreover, even if the adversary were able to correctly identify the zone where the targeted

individual resides in, k-anonymity [103] will be provided where k is the number of sensors

in the zone.
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4.5.2 Differential Privacy

When the occupancy information at the zone level is released, it is possible to implement ad-

ditional privacy enhancing mechanisms that will provide differential privacy. In this setting,

probabilistic noise is added to the released occupancy information to ensure that answers to

queries regarding the occupancy level in a zone would be statistically similar even when a

single individual is present or not present in the zone [30].

We have implemented PeGaSus [25] on the collected occupancy data to examine how the

utility of the occupancy data would change as we vary the parameter ε. However, initial

results suggest that even for a relatively large value of ε, the utility of the gathered occupancy

data decreases significantly. Finding the optimal trade-off between the utility and privacy

for the differential privacy based mitigation would be part of future work.

4.5.3 Deletion of Past Information

The proposed attack does not rely on the particular timeframes when the presence data are

collected. Whether the presence data was collected in the past or present, any data that

matches the auxiliary information would be equally valuable in narrowing down the set of

candidate sensor IDs of the targeted individual.

While the past data could be valuable in many applications that rely on predicting future oc-

cupancy levels as well as energy consumptions through machine learning techniques, keeping

a large amount of past data will provide additional opportunities for the adversary. Setting

an expiration time on the gathered occupancy data and either deleting or encrypting it au-

tomatically at the time of expiration will provide additional privacy against the proposed

attack by eliminating the occupancy data that correspond to auxiliary information in the

past.
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The adversary can gather the auxiliary information of an individual from various sources

including social networks, news, or other offline sources. However, the building cannot

control the leakage of such auxiliary information, and more importantly, does not know

which individual may be targeted by the adversary.

From our experience, we identified the most common and likely kind of auxiliary information

as the day to day travel schedules since such information is often published online. Automatic

reply e-mails set up during vacations or travels also reveal specific dates when the targeted

individual is not in the building.

Assuming that the set of auxiliary information gathered by the adversary is the set of specific

dates when the individual was in the building or not in the building, releasing the daily

occupancy data is likely to lead to privacy breach with high probability.

4.5.4 Analysis of the Mitigation Strategy

It is assumed that the parameter p is known to the adversary. In addition, without loss of

generality, we assume that p < 0.5. Since for any p > 0.5, the adversary can flip all the

elements in õj and regard each element being flipped with probability 1− p.

Theorem 4.1. The probability of si being included in
⋂n
m=1 S

i
m under the proposed mitigation

strategy is given as

P(si ∈
n⋂

m=1

Sim) = (1− p)n (4.4)

Proof. The proof is trivial and omitted for brevity.

Theorem 4.1 states that if the adversary were to naively conduct the attack described in

Section 4.3, then the probability of correctly deducing a set that includes si is a monotonically

decreasing function in n. Therefore, additional auxiliary information would in fact increase

37



the probability of deducing an incorrect set instead of correctly narrowing down the possible

set of candidates for si as shown in (4.3).

The adversary, however, can perform a more sophisticated attack by computing the proba-

bility

P(sj = si|õj) (4.5)

for each sensor sj and then construct a set that is highly likely to include the target sensor

si. The effectiveness of the mitigation strategy can be quantified by the size of the computed

set such that the probability of si being included in the set is comparable to that of (4.3).
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Chapter 5

Exploring Fairness in Participatory

Thermal Comfort Control in Smart

Buildings

5.1 Background on Fairness and Thermal Comfort Con-

trol

The control of the temperature in most of our current buildings (e.g., offices) is still based on

rules that try to match the comfort of average people. For instance, Federal Occupational

Safety and health Administration (OSHA) regulations usually recommend that the temper-

ature in the different rooms be in the 20-25oC range1 which is considered to be comfortable.

The reality is that people have diverse comfort preferences depending upon different factors

such as their gender, age, weight, and nationality [113, 63]. Such prespecified control tends

not to be comfortable for many of the inhabitants of the building [69].

1https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=INTERPRETATIONS&p_id=

24602
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Smart buildings equipped with a range of plug-and-play IoT devices that provide sensing/ac-

tuation capabilities are becoming the norm; these technologies allow users to interact with

spaces they live/work in on a fine grained basis and participate in the control and man-

agement of these spaces. Participatory engagement with building environments in a more

integrated manner enables a new level of personalized services including customized cap-

ture and exchange of information. Such participation can be used in the context of thermal

comfort control. In this context, Participatory Comfort Control (PCC) systems adapt the

temperature of buildings to increase the comfort of their residents.

However, adapting the temperature to the desired comfort level of the inhabitants of the

building presents several challenges. On the one hand, there is a need for mechanisms to

allow people to express their feedback regarding the temperature in the room they are. On

the other hand, the feedback of the users have to be implemented in the HVAC (Heating,

ventilation and air conditioning) system of the building. Multiple approaches have been

presented in the literature to address these challenges. For instance, systems have been

proposed to obtain feedback from people automatically (e.g., by determining their thermal

profiles using information about their gender, age, height and weight [21] or manually (e.g.,

by enabling them to vote using their smartphones) [68, 44, 67]. Also, different mechanisms

have been presented to translate the preferences of the users into the appropriate HVAC

settings [37, 32, 34].

Nevertheless, there is an intrinsic challenge in such PCC systems: people inside a same room

usually have different thermal comforts that have to be somehow aggregated to decide the

temperature for the room (unfortunately, having different temperature zones in the same

room might not be always possible). Works in the literature dealing with this problem often

leverage traditional decision making methods to aggregate the possibly diverse opinions of

people. For example, group decision making processes, such as majority or mean, have been

extensively studied to reach consensus [104]. However, these methods might not be fair
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with the participants. For example, think about a group of people that meet daily in the

same room (e.g., coworkers sharing a meeting room). If a majority of the people prefer cold

temperature and a minority prefer the temperature to be hot, the previously mentioned PCC

systems might determine that the temperature in the meeting room should be cold always.

In the long term, the minority will be clearly uncomfortable.

In this chapter, we study longitudinal fairness in the aggregation of user thermal comfort in

PCC systems, user thermal comfort as a user context in smart buildings. We present the

first study, up to the authors’ knowledge, on this issue. In particular, the contributions of

this chapter are as follows:

• We introduce a definition of fairness, inspired by the traditional definitions in schedul-

ing, adapted to the particularities of our scenario. Under this definition we prove that

systems that use traditional group decision making processes, such as majority, mean,

trimmed mean, and median, to aggregate people thermal comfort are not fair.

• We present our design of an aggregation algorithm that ensures fairness with the par-

ticipants. We prove mathematically that the proposed algorithm is fair regardless of

the number of people and iterations.

• We present a tool to simulate scenarios to evaluate different aggregation algorithms.

The tool enables us to define the thermal profile of the inhabitants of a building, the

frequency of the feedback obtained from them, and the desired aggregation algorithm,

and executes a simulation that computes its fairness and comfort.

• We show experimental results of our approach and the traditional aggregation group

decision making methods used in the literature (i.e., majority, mean, trimmed mean,

and median) using the simulation tool with two scenarios: a weekly group meeting and

a building with hundreds of participants and 64 zones. For the latter, we drive the

simulation by the real occupancy data captured in a building.

41



The experimental results show the fairness of our algorithm in contrast to the rest. They also

show that, although there is a trade off between fairness and comfort, the overall discomfort

of the participants with our algorithm remains similar to the discomfort that results from

other techniques that target minimizing discomfort without considering fairness.

The rest of the content is structured as follows. In Section 5.2, we introduce a motivating

scenario of a real building with different rooms and people. In Section 5.3, we present our

modeling of fairness and comfort in occupant-participatory thermal comfort approaches. In

Section 5.4, we show our fair algorithm for the aggregation of user thermal preferences.

Finally, the experimental evaluation is presented in Section 5.5.

5.2 Motivating Scenario

Consider a future commercial office building where the HVAC (Heating, ventilation and

air conditioning) system has been instrumented to capture resident feedback on thermal

comfort; furthermore, let us assume that the system is capable of incorporating this input

when adjusting temperatures for different rooms in the building. Note that any existing

system can be used as a starting point for this instrumentation [44, 67, 34, 98, 89, 66].

Person Room Comfort
Alison 2011 +1

Eleanor 2059 -3
Erin 2059 -3

James 2011 +1
Jason 2059 -3
Karl 2059 +3
Katie 2059 -3

Katherine 2059 -3
Lisa 2011 +1

Figure 5.1 & Table 5.1: Distribution of the building residents in our sample scenario (left) and
their thermal comfort (right)
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Let us also suppose that the distribution of people at a given time in the rooms of the our

scenario is as shown in Figure 5.1 and that their thermal comfort at a given time is given in

Table 5.1.

In the case of rooms occupied by a single person, the individual’s preferred temperature

setting can be applied. When multiple residents of a space have identical thermal preferences

(e.g., room 2011), the selection of a comfortable setting for all is also simple. When several

residents in a room have varying thermal preferences (e.g., room 2059 where 5 users are cold

(-3) and 1 of them feels hot (3)), one can apply any commonly used aggregation method

to represent a group decision, such as: 1) majority (which selects the comfort supported

by more than half of the participants), 2) mean (which selects the average value among

votes), 3) trimmed mean (which selects the average value after trimming a percentage of

the largest and smallest values), or 4) median (which selects the value, in an ordered set of

values, below and above which there are an equal number of values). As an example, if we

were to use the system presented in [91], the mean method would be applied to situations

with several participant thermal comforts in the same room. A setting of “cold (-3)” (the

mean of the comfort values) will result in discomfort for the single person that feels hot (3)

at all times – such a smart building is unfair to some of its residents.

5.3 Modeling Fairness and Comfort

In this section, we first explain the modeling of the participatory comfort control scenario.

Then, we present a definition of fairness for such scenario that is inspired by the definition

of fairness in the carpooling problem described earlier.

5.3.1 Modeling Thermal Comfort

Typically, PCC systems are slot-based control systems where decisions are made for a fixed

interval of time, which we will refer in the following as a “round”. We consider that at the
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beginning of each round, thermal comfort collection happens. We adopt the PMV scale (see

Section 2.2.2) to model participant comfort. Thus, thermal comfort of a participant Pi at

round r is a value from the PMV scale and can be defined as TCr[Pi] = [−3, 3] (see Table 5.1

for an example).

Let P [z] = {P1, ..., Pn} be the set of participants in a specific zone z, and let TCr[P [z]] denote

the aggregated comfort of zone z set by the aggregate thermal control algorithm in round

r. Note that TCr[P [z]] = [−3, 3] (i.e., it is also a value from the PMV scale). For example,

considering the set of participants in room 2059 in our running example (see Figure 5.1) and

their thermal comfort (see Table 5.1), if traditional aggregation methods such as majority,

mean, trimmed mean, or median were used the value of TCr[P [2059]] would be -3,-2,-2, and

-3, respectively.

Moreover, we can measure the disagreement between a participant’s thermal comfort TCr[Pi]

and the aggregated thermal comfort of the participants in the zone (viz., TCr[P [z]]) as the

difference in absolute value of these two terms TCDr[Pi] = |TCr[Pi] − TCr[P [z]]|. In our

running example, the disagreement per participant for the different approaches to aggregate

thermal comfort discussed earlier is shown in Table 5.2. A measure of the total disagreement

of the participants in the zone can be obtained by summing up their respective disagreements:

TCDr[P [z]] =
r∑
i=0

TCDr[Pi] (5.1)

We can aggregate the disagreement of a user over time to obtain a value that represents how

uncomfortable the user has been with the decisions made until round r as follows:

ATCDr[Pi] =
r∑

k=0

TCDk[Pi] (5.2)

Finally, we generalize the scenario to buildings with m thermal zones where the temperature
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Participant Majority Mean Trimmed Mean Median

Eleanor 0 1 0 0

Erin 0 1 0 0

Jason 0 1 0 0

Karl 6 5 6 6

Katie 0 1 0 0

Katherine 0 1 0 0

Table 5.2: Disagreement between the participant thermal comfort and the zone thermal comfort
for traditional approaches in our running example.

can be controlled. We define the set of zones as Z = {Z1, ..., Zm}. Also, we define the set of

participants of the building at a round r as P = {P1, ..., Pn}. P includes all the participants

that have been in the building until round r.

5.3.2 Modeling Fairness

The definition of fairness in our context is based on the definition of fairness in the carpool

scenario explained in Section 2.2.2. In the carpool scenario every time that users are involved

in driving, they split the “cost” of the ride. A driver should ideally have driven at any point

of time her share in the rides she took part in.

In our scenario, the equivalent of a ride is a round, which is the moment when the thermal

comfort of the zone(s) is calculated using the thermal comfort of the N inhabitants within.

During round r, each user Pi “loses” the value represented by her thermal comfort disagree-

ment, which we refer to as real loss Lr[Pi] = TCDr[Pi]. We define the “total loss” (or cost)

of the round as Lr =
∑N

i=0 Lr[Pi], which is equal to the thermal comfort disagreement of the

zone TCDr[P [z]] in Equation 5.1. Then, we split the loss Lr among the N users to define

their ideal loss. We define the extra loss of a user Pi in round r, ELr[Pi] = Lr[Pi] − Lr/N

as the difference between her ideal loss and her real loss. Finally, we define the accumulated

extra loss of a user Pi at round r as:

AELr[Pi] =
r∑

k=0

ELk[Pi] (5.3)
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We define that an algorithm to select the thermal comfort of a zone is “fair” if for the N users

in the zone and at the round r, their accumulated extra loss in absolute value is bounded by

some constant M which is independent of r.

Our definition (and subsequently algorithm) of fairness is based on the ones of the carpool

scenario but is different. The main difference between the carpooling and the thermal comfort

scenarios is that in the latter only one person is affected (the chosen driver) at the time of

making a decision, whereas the rest of the people are benefited always and in the same way.

In the thermal comfort scenario, users might have the same or similar preference, which

would mean that selecting the temperature preferred by one user might also satisfy others.

Therefore, straightforward algorithms (like round robin selection of the driver) or the greedy

algorithm presented by Fagin and Williams [35] would not satisfy fairness in our context.

Under our definition of fairness it is possible to show that the traditional methods to aggre-

gate participant thermal comfort are not fair.

Majority selection is not fair. Assume the scenario for room 2059 in Table 5.1 where there

are six participants P1, P2, P3, P4, P5, and P6 whose thermal comfort are −3, −3, −3, −3,

−3, and 3, respectively. In this situation, selecting the value supported by the majority

would make TC0[P [2059]] = −3, the real loss per user will be 0, 0, 0, 0, 0, and 6 and the

ideal loss per user will be 1. Thus, the extra loss will be −1, −1, −1, −1, −1, and 5. If this

exact situation keeps happening for r rounds, the extra loss for participants P1, P2, P3, P4,

and P5 will be −1r and for participant P6 will be 5r, which are not bounded by any fixed

number M (as r gets large).

Mean selection is not fair. Let’s consider the same scenario described before. In that case,

the mean value would make TC0[P [2059]] = −2, the real loss will be 1, 1, 1, 1, 1, and 5, the

ideal loss per user will be 5/3, the extra loss will be −2/3, −2/3, −2/3, −2/3, −2/3, and

10/3. Therefore, for r iterations the extra loss is again not bounded.
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Trimmed mean selection is not fair. We can find an scenario similar to the previous for which

this method is not fair regardless of the percentage removed from the smallest and largest user

thermal comforts. For instance, using 20% (the value used in our experiments in Section 5.5)

and the same scenario used for majority, the value selected will make TC0[P [2059]] = −3.

Therefore, the extra loss is the same than in the majority example and not bounded for r

rounds.

Median selection is not fair. As in the case of the trimmed mean, median will make

TC0[P [2059]] = −3 and thus the extra loss of the participants is not bounded for r rounds.

5.4 A Fair Aggregation Algorithm

In this section, we present our algorithm to calculate the thermal comfort of a zone using

the thermal comfort of the participants within. Then, we prove that our algorithm is fair

according to the definition of fairness explained in the previous section.

As explained earlier, both the thermal comfort of the participants and the zones take values

in the range [−3, 3]. The goal of our algorithm is to evaluate from these 7 possible values

which one(s) will minimize the aggregated loss of the participants defined in Equation 5.3.

Therefore, for each of the 7 possible values (v) of the thermal comfort of the zone, we compute

the aggregated extra loss of each participant as AEL
(v)
r [Pi] = EL

(v)
r [Pi] + AELr−1[Pi]. We,

then, take the Lmax distance of the vectors < AEL
(v)
r [P1], ..., AEL

(v)
r [PN ] > and the vector

< 0, 0, .., 0 > for each value (v). Then, we choose the value (v) that minimizes the Lmax

distance.

Let’s show how the algorithm will work for one round of our running example of Table 5.1

and the room 2059. First, our algorithm generates Table 5.3 which contains the information

used to determine the zone thermal comfort at round r. Notice that AEL0[Pi] = 0 for all

the participants as this is the first round (r = 1). Then, each block in the table contains the
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values for the loss (L
(v)
1 [Pi]), extra loss (EL

(v)
1 [Pi]), and accumulated extra loss (AEL

(v)
1 [Pi])

for all the possible values of (v). For example, (v) = (−3) generates a loss of 6 (the maximum

loss possible) for every participant whose thermal comfort is 3 (TC1[Pi] = 3, i = 1, 2, 3, 4, 5),

whereas it generates no loss for the participant whose thermal comfort is -3 (TC1[P6] =

−3). This means that the ideal loss for (v) = (−3) is 6+6+6+6+6+0
6

= 5. So, participants

with TC1[Pi] = 3, i = 1, 2, 3, 4, 5 have an extra loss of EL
(−3)
1 [Pi] = 1, i = 1, 2, 3, 4, 5 and

the participant with TC1[P6] = −3 has an extra loss of EL
(−3)
1 [P6] = −5. Finally, as

AEL0[Pi] = 0 then AEL
(v)
1 [Pi] = EL

(v)
1 [Pi].

P1 P2 P3 P4 P5 P6

TC1[Pi] 3 3 3 3 3 -3

AEL0[Pi] 0 0 0 0 0 0

L
(−3)
1 [Pi] 6 6 6 6 6 0

EL
(−3)
1 [Pi] 1 1 1 1 1 -5

AEL
(−3)
1 [Pi] 1 1 1 1 1 -5

L
(−2)
1 [Pi] 5 5 5 5 5 1

EL
(−2)
1 [Pi] 2/3 2/3 2/3 2/3 2/3 -10/3

AEL
(−2)
1 [Pi] 2/3 2/3 2/3 2/3 2/3 -10/3

L
(−1)
1 [Pi] 4 4 4 4 4 2

EL
(−1)
1 [Pi] 1/3 1/3 1/3 1/3 1/3 -5/3

AEL
(−1)
1 [Pi] 1/3 1/3 1/3 1/3 1/3 -5/3

L
(0)
1 [Pi] 3 3 3 3 3 3

EL
(0)
1 [Pi] 0 0 0 0 0 0

AEL
(0)
1 [Pi] 0 0 0 0 0 0

L
(1)
1 [Pi] 2 2 2 2 2 4

EL
(1)
1 [Pi] -1/3 -1/3 -1/3 -1/3 -1/3 5/3

AEL
(1)
1 [Pi] -1/3 -1/3 -1/3 -1/3 -1/3 5/3

L
(2)
1 [Pi] 1 1 1 1 1 5

EL
(2)
1 [Pi] -2/3 -2/3 -2/3 -2/3 -2/3 10/3

AEL
(2)
1 [Pi] -2/3 -2/3 -2/3 -2/3 -2/3 10/3

L
(3)
1 [Pi] 0 0 0 0 0 6

EL
(3)
1 [Pi] -1 -1 -1 -1 -1 5

AEL
(3)
1 [Pi] -1 -1 -1 -1 -1 5

Table 5.3: Information generated by our algorithm for the running example.

With the information in Table 5.3, our algorithm computes the Lmax distance to be 5 for
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(v) = −3 and (v) = 3 (corresponding to AEL
(−3)
1 [P6] and AEL

(3)
1 [P6], respectively), 10/3 for

(v) = −2 and (v) = 2, 5/3 for (v) = −1 and (v) = 1, and 0 for (v) = 0. Then, the algorithm

chooses (v) = 0 which minimizes the Lmax distance. Notice that, in the next round r = 2,

AEL1[Pi] = 0 ∀ i. This way, if the thermal comfort of the users remains the same, the

values on Table 5.3 will be the same for r = 2. Thus, in this scenario, where majority and

mean are not fair, our algorithm is fair as AELr[Pi] = 0 ∀ i, r.

In the following, we prove that our algorithm is fair for any scenario, number of participants

and rounds, under the fairness definition given in Section 5.3.2.

First, we will prove that three propositions that we will use to prove the fairness of our

algorithm.

L
(v)
r [Pi] is bounded by [0, 6].

Proof. L
(v)
r [Pi] represents the loss for participant Pi when the thermal comfort of the zone

selected is (v) that is, the difference between the participant’s thermal comfort TCr[Pi] and

(v). As both TCr[Pi] and (v) take values ranging between [−3, 3], L
(v)
r [Pi] is bounded by

[0, 6].

Theorem 5.1. AELr[Pi] < 7N for all i in N

Proof. For that we prove it by contradiction. We assume that at time t it was the first time

that a participant crossed the bound. Therefore,

AELt[Pi] > 7N (5.4)

Because it was the first time, it means that in this round his thermal comfort was not chosen.
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Because of our algorithm this can only happen if

AELt−1[Pi] <= AELt−1[Pj]forsomej. (5.5)

Also, we know that if you don’t get chosen, your increment of AEL is at max 6. Therefore,

7N > AELt−1[Pi] > 7N − 7. (5.6)

by (5.5) and (5.6), then

7N > AELt−1[Pj] >= AELt−1[Pi]. (5.7)

Because AEL0[Pi] = 0 for all i, both Pi and Pj had to increase their AEL at some point to

reach their AELt−1.

a) Let’s consider that both of them increased at the same time t− i. If that’s the case, then

at that round our algorithm picked another Pk with the highest AEL in t− i− 1. Therefore,

AELt−(i+1)[Pk] > AELt−(i+1)[Pj]and

AELt−(i+1)[Pk] > AELt−(i+1)[Pi]

(5.8)

In that situation, both Pi and Pk increased, but the max increase is 6 and by (5.6) and

(5.7),

AELt−i[Pi] > AELt−(i+1)[Pi] > AELt−i[Pi]− 7 (5.9)
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or by (5.6)

AELt−i[Pi] > AELt−(i+1)[Pi] > 7N − 7− 7 (5.10)

also

AELt−i[Pj] > AELt−(i+1)[Pj] > AELt−i[Pj]− 6 (5.11)

or by (5.7) and (5.6)

AELt−i[Pj] > AELt−(i+1)[Pj] >= 7N − 7− 7 (5.12)

by (5.8), (5.9) and (5.10),

AELt−i[Pj] <= AELt−(i+1)[Pk] >= 7N − 7− 7 (5.13)

Similarly to the previous situation, because AEL0[P ] = 0, Pk had to increase his AEL at

some point to reach his AELt−(i+1). At that point, someone else Pz should had been chosen,

and so, he had the highest AELt−(i+2). Then, following the same logic,

AELt−(i+1)[Pi] > AELt−(i+2)[Pi] > 7N − 7− 7− 7

AELt−(i+1)[Pj] > AELt−(i+2)[Pj] >= 7N − 7− 7− 7

AELt−(i+1)[Pk] <= AELt−(i+1)[Pz] >= 7N − 7− 7− 7

(5.14)

If we apply it recursively we will reach Pn which is the last participant at time t’ and will
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have

AELt′ [Pn] >= 7(N − (N − 1)) (5.15)

Which means that at that point all of them will be greater than 7(N − (N − 1)) and then

contradict the checksum property.

5.5 Experimental Evaluation

In this section, we first present the simulator tool developed to perform the experiments.

Then, we explain the experimental set up with the scenarios. Finally, we show the results of

the experiments to compare traditional aggregating methods and our approach in terms of

fairness and comfort.

5.5.1 Simulator Tool

We have developed a simulator to test various building occupants scenarios. The simulator

takes input parameters such as a set of zones, a set of participants with their corresponding

thermal profiles (e.g. hot/neutral/cold preferred) and movement between rooms, a set of

initial temperatures per room, simulation period, etc. Also, it enables the user to select the

algorithms to use to compute thermal comfort of the rooms (it supports the five algorithms

considered along the chapter –majority, mean, trimmed mean, median, and our algorithm–).

Also, we included a variant of our algorithm which bases the selection of the participant whose

thermal comfort should be selected at a given round on the Lmax distance of the accumulated

extra loses of the participants. We included this algorithm because it presents an interesting

trade off fairness vs. comfort. Nevertheless, such algorithm is not fair according to our

definition as we have found a pathological situation where the accumulated extra loss is
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unbounded2.

Once the settings have been defined, the tool starts the simulation of the movement of

people through the different rooms and periodically uses the defined algorithm to compute

the thermal comfort of the zone/room based on the thermal comfort of the participants in it.

Finally, the tool simulates a change of temperature in such rooms according to the computed

thermal comfort.

The simulator is composed of four main modules:

• Participant manager, which generates participants and their thermal comfort based

on the profiles and ratio given as input (e.g., if the input ratio is 50:30:20, 50% of

cold, 30% of neutral, and 20% of hot preferred participants will be generated). Also,

it manages the movement of the participants according to the input trajectories.

• Zone thermal comfort manager, which computes the thermal comfort for each zone

using the thermal comfort of the participants in the room and the selected algorithms.

• Fairness and thermal comfort calculator, which computes the accumulated loss and

discomfort of each participant at each round.

• Temperature manager, which simulates a change of temperature according to the com-

puted thermal comfort for each zone. HVAC control is out of the scope of the chapter

but we implemented a simple mechanism in the simulator that changes the tempera-

ture by 1oC every 30, 45, and 60 minutes if the computed thermal comfort is -3/3, -2/2,

and -1/1, respectively.

After each simulation, the tool outputs CSV files with the results for each algorithm in terms

of accumulated loss and discomfort per user and per round.

2Due to the space restrictions we included more information about such situation and the complete
algorithm at tippersweb.ics.uci.edu/fairness.
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5.5.2 Experimental Setup

We used the simulator to empirically test the behavior of our approach compared with

traditional aggregating methods. We tested two scenarios:

1. A simulation of a weekly group meeting with regular participants. We assume that 10 peo-

ple meet in the same room every week at 8am. Meeting lasts for about 30 minutes and

the comfort of the room is computed at the beginning of the meeting. The scenario

tries to simulate short meetings, which are common in buildings like the one described

in our experiments. Due to the time needed to implement the temperature changes,

we compute the comfort at the beginning in order to change the temperature for the

duration of the whole meeting. Also, we introduce some randomness for each meeting

guaranteeing that at least 4 of the participants vote in each round.

2. A complete building with hundreds of participants. The TIPPERS [79] dataset consists

of a trace of distinct devices connected to 64 Wi-Fi access points located in the 6 story

Bren Hall building at UC Irvine collected over a 20 month period from January 2016 to

September 2017. We used a subset of the TIPPERS dataset for the period of May 29th

to June 2nd 2017 from 8am to 8pm. To filter out passerby devices (some of the WiFi

AP ranges cover a few meters outside of the building), we discarded MAC addresses

that had less than 50 events registered in the log for the period. After the filter, we

obtained 18,837 events and 1065 unique MAC addresses. WiFi AP ranges cover several

rooms in most of the cases so, for simplicity, we considered each WiFi AP as a zone.

Therefore, all the MAC addresses connected to a WiFi AP at a given time represent

participants in the same zone.

We defined three types of thermal profiles for the two scenarios: hot preferred, neutral, and

cold preferred (see Figure 5.2). These profiles are based on the temperature in the zone.
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For example, as Figure 5.2 shows, for a room temperature of 23oC the thermal comfort

of a hot preferred, neutral, and cold preferred users will be -1 (slightly cold in the PMV

scale), 0 (neutral), and 2 (warm), respectively. For each scenario, we performed two tests with

two different thermal profile settings. One setting represents a scenario with a clear majority

of thermal profiles, where 90% of people prefer cold temperature and 10% of people prefer

hot temperature (in the following we refer to it as 90/10). The second setting represents a

balanced scenario where 50% of people prefer cold temperature and 50% of people prefer hot

temperature (50/50).

Figure 5.2: Thermal comfort for different thermal profiles in our experiments.

5.5.3 Results for the Meeting Simulation

In the following, we show the results of fairness and comfort achieved by each method for

the first scenario.

Fairness

Figure 5.3 shows a comparison of the fairness of the different algorithms in terms of accu-

mulated loss per round. For each algorithm we show two graphs (for the 90/10 and 50/50

settings) and a measure of the average accumulated loss per participant (represented by the

dots in the graph) and the standard deviation from it. Notice that for each graph, the value

at the last round represents the final accumulated loss at the end of the simulation.

The first implication of the results is that the accumulated loss for the majority (Fig-

ure 5.3(a)), mean (Figure 5.3(b)), trimmed mean (Figure 5.3(c)), and median (Figure 5.3(d))
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Comparison of fairness for the first scenario in terms of accumulated loss for traditional
methods: majority (a), mean (b), trimmed mean (c), and median (d), our approach (e), and a
variant (f).

are not bounded. The different graphs show that the accumulated loss keeps increasing for

each round for both settings. It is interesting to notice that the behavior is similar for both

settings even when one of them represents a clear majority vs minority situation. This is

caused by the randomness introduced in terms of the participants at the meeting at each

round. This means that even in the 50/50 setting, there might be rounds with a clear ma-

jority. If we focus on the results for our algorithm (see Figure 5.3(e)), we can see that, in

contrast with the other algorithms, it keeps the accumulated loss bounded as expected.
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Additionally, Figure 5.3(f) shows the variant of our algorithm based on Lmax distance which

also keeps the loss bounded in this test (although it is not bounded in general as commented

before).

Thermal Comfort

Figure 5.4 shows the comparison of the algorithms in terms of comfort (measured as aggre-

gated thermal discomfort of the users per round). Figure 5.4(a) shows the comparison in

terms of average discomfort per user for the setting 50/50 and we can see that as expected,

the majority algorithm achieves the best comfort as it selects the most comfortable tempera-

ture for the majority of the participants. Our algorithm, increases the average discomfort in

comparison with the traditional approaches. This happens because by being fair, sometimes

it selects the thermal comfort of the minority and the majority of users thus, feel uncom-

fortable. In terms of the maximum value of discomfort (see Figure 5.4(b)), our algorithms

achieve the worst comparing to the majority and median algorithms. For the 90/10 setting,

our algorithm increases the discomfort greatly in comparison with others because every time

the comfort of the minority gets selected, most of the participants feel uncomfortable. Inter-

estingly, the variant of our algorithm using Lmax behaves similarly to the rest of algorithms

in terms of comfort for the 50/50 scenario.

5.5.4 Results for the Building Simulation

In the following, we show the results for the second scenario.

Fairness

Due to the complexity of the scenario and the high number of participants in it (1065), we

show test results achieved in terms of accumulated loss at the final round of the simulation.

Table 5.4 shows accumulated loss for each method in both 90/10 and 50/50 settings. As in

previous scenario, our algorithm achieves better results in terms of accumulated loss than
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(a) (b)

(c) (d)

Figure 5.4: Comparison of comfort for the first scenario in terms of aggregated thermal comfort.

most of the traditional approaches. Notice that for some specific cases, our algorithm obtains

a slightly higher value than the mean/trimmed mean approach. We analyzed the data and

discovered that the occupancy data extracted from the real building shows a situation where

only in very specific moments the zones contain a significant amount of participants (e.g.,

more than 4) and in most of the rounds, most of the participants are in one or two zones

(remember that the zones correspond to WiFi APs). This corresponds to areas of high

concentration of people in the building and to specific events.

Scenario Loss Majority Mean Median Trim. Mean Our Algo Lmax Algo

90/10 Max 7.5 7.5 7.5 2.5 3 0.5
90/10 Min -3 -1.5 -3 -1 -5.33 -0.83

50/50 Max 8.5 2.83 6 2.83 3 0.83
50/50 Min -6.5 -2.16 6 -2.16 -5.33 -0.66

Table 5.4: Accumulated loss at the last round for each algorithm in the building scenario.
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Thermal Comfort

In terms of comfort, we again looked at the accumulated discomfort at the final round

of the simulation. Comparing the average discomfort per user, the results show that for

the 50/50 setting, our algorithm achieves close discomfort compared to the majority algo-

rithm which obtains the lowest discomfort (0.25 vs 0.2). In case of the 90/10 setting, the

difference is 0.05, which is similar to the previous scenario (0.11 vs 0.06). Notice that as

we pointed out in the previous scenario, the variants of our algorithm using Lmax keep the

discomfort similar to the rest of algorithms. For the 50/50 setting, Lmax obtain an average

discomfort of 0.48 and for the 90/10 setting, they obtain an average discomfort 0.8.

In summary, the experiments of the two scenarios and the different settings show that, as

expected, our algorithm obtains the lowest accumulated loss per user while increasing the

accumulated discomfort. An interesting conclusion of the experiments is that the Lmax

variant of our algorithm (which is not fair under our definition) maintains a low accumu-

lated loss while maintaining the discomfort in similar levels than the traditional algorithms.

Therefore, it seems that this variant could present a good trade off between fairness and

comfort. However, it is not straightforward to design an algorithm that can be proven fair

for any scenario while including the goal of maximizing the comfort of the participants.
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Chapter 6

SCARF: A Scalable Data

Management Framework for

Context-Aware Applications in Smart

Environments

6.1 Background on Context-Awareness

We are living in the era of smart environments where we are surrounded by billions of devices

collecting contextual information from us. The rapid growth of sensors has revolutionized

smart environments such as smart homes, smart shopping malls, and intelligent office build-

ings. With ever increasing sensor deployments, understanding “context” and subsequently

making sense of environment, situation, sensors, along with providing real time responses

have become fundamental research challenges [100].

Context-aware applications play an important role in smart systems, starting from smart

60



hospital [18, 45, 26, 102], smart surveillance [83, 85], smart community [17, 105], smart

notification [84, 106, 107, 53], smart shopping [74, 38], to smart building [96, 43] applications.

Let us consider the following examples of context-aware applications in smart environments.

In a smart shopping mall, when a user steps in, the system recognizes the user based on the

cameras installed in the mall. The system retrieves previously purchased items by the user

and creates a recommendation list of items for the user to purchase. Suppose a user with

a health problem, such as allergies, enters into a smart building. The system detects the

current level of pollen in the air at the user’s location and sends a warning to the user that

the pollen level inside that location is very high. Based on this warning, the user takes out

or buys an asthma pump and/or avoid that particular location inside the building.

Context acquired from user devices is often very low-level for the end applications to inter-

pret. Such information must be enriched/tagged appropriately before it can be effectively

used by the applications. Advancement of data processing techniques, such as machine learn-

ing and crowd-powered techniques, have led to a variety of sophisticated analysis algorithms

being developed in past few years specifically targeting Internet of Things (IoT) systems.

However, these techniques can not be applied to the collected context data on the resource

constrained mobile devices due to high resource requirements of these algorithms.

Systems that support context-aware applications face with several interesting challenges.

Some of these challenges are as follows:

• Scalability. Scalability is an important issue while supporting large number of context-

aware applications. Several architectures have been proposed in the past to address

the scalability issues such as processing speed-up, reduced communication bandwidth,

and increased reliability [6]. Among different programming paradigms of context-aware

systems, service-oriented and agent-oriented [72] programming model have addressed

the scalability issues up to some extent but they do not consider the scalability of

context collection and evaluation from a large number of heterogeneous sources.
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• Latency. The context-aware applications need to provide real time/near real time

responses to the end users. In this scenario, latency becomes a significant issue while

detecting/extracting contextual features from collected context data [80, 76, 75].

• Energy Consumption. Most of the devices in smart environments are battery pow-

ered. Energy consumption becomes a critical issue as context-aware applications con-

sume large amount of energy from user’s devices. Several authors [93, 108, 28, 94] have

pointed out this issue for context-aware applications.

• Security. Some of the major security concerns of context-aware applications include

context data access by malicious users, gaining access to user’s mobile sensors by

attacker and inferring sensitive user information from the output of these applications.

Systems that support context-aware applications need to provide security guarantees

against these types of attackers.

• Privacy. Context-aware applications can disclose behavior and social phenomena such

as a user’s location, their friends, associates, the timing of their interactions which can

lead to serious privacy concerns [60].

In this chapter, we focus on the scalability challenge, while delivering a message based on

a combination of user context such as location, activity and environmental context such as

temperature, occupancy in smart buildings: in particular, achieving minimum latency and

ensuring a bounded amount of energy consumption. We propose a context collection/man-

agement framework entitled SCARF which resides between the sensors and the applications

to support the needs of the context-aware applications. In particular, SCARF takes a set

of contextual queries from applications and optimizes the rate at which the context data

needs to be collected and/or transmitted to the server in order to minimize the latency.

Furthermore, SCARF decides whether the code for extracting contextual features should be

executed on the server or on the edge. If the code is executed on the edge, it results in
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reduced communication between the server and the edge. However, it can result in low per-

formance due to low resource availability of the edge. On the other hand, if it is executed on

the server, the context data needs to be transmitted from the sensor to the server. However,

it can result in better performance due to high resource availability of the server.

The proposed framework SCARF is an adaptive framework which changes the acquisition

plan and contextual feature extraction plan based on several factors. It considers the dynamic

state of sensors (e.g., sensor acquisition cost can change based on the battery level, network

connectivity, optimizations performed by the underlying OS etc.), cost of network transfer

at different points of time, list of contextual features that are concurrently being evaluated

by the applications, to determine an optimized plan. We use SCARF to develop a novel

context-aware messaging application called Hedwig that allows users to send and receive

contextualized messages.

In summary, our contribution in this section is as follows:

1. We introduce a framework named SCARF, an efficient and scalable framework for

collecting and managing context data from a variety of mobile and in-situ sensors for

context-aware applications.

2. We have developed a novel context-aware messaging application named Hedwig where

the delivery of the message is dictated by the conditions on complex contexts set by

the senders and receivers.

3. We provide a survey of existing context-aware applications and identify the data man-

agement, energy management, and security issues of the context-aware applications.

4. We have experimentally evaluated SCARF using different types of real world contexts

mimicking the needs of context-aware applications in smart environments.

The rest of the section is organized as follows. Section 6.2 introduces novel context-aware
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messaging application Hedwig. Section 6.3 describes how we model context in our framework

SCARF. Section 6.4 describes the architecture of SCARF. Section 6.5 provides experimental

evaluations of context in scalable manner.

6.2 Hedwig : Context-Aware Messaging Application

A context-aware message differs from a traditional message in a number of ways. Sender

and receiver policies are specified to dictate the delivery of the message. Such policies are

defined as conditions on the context. Sender policy specifies when or how the sender wishes

the message to be delivered to the receiver. The receiver specifies the policies under which

the receiver wishes to receive messages (e.g., after 5 p.m.). Context consists of a variety of

observable phenomena such as time, location, activity (e.g. driving/walking/running/still),

environmental conditions (e.g., increased allergens in an area, bad weather) and the message

properties (e.g. sender, groups in which the sender belongs etc.).

Context-aware messaging is motivated by the scenarios listed below:

• Consider a scenario of emergency response where fire fighters are evacuating residents

from a building during a major fire incident. One of the challenges during fire events

is effective communication between the fire fighters. For instance, fire fighters need to

communicate about the regions that they already evacuated, number of people still left

to be rescued in a certain region, hazardous situations (e.g., potential for explosion,

high air pressure, water/gas leakage, etc.) they may have observed at a particular

region etc. Context-based messaging based on location, occupancy, room properties

such as temperature, air pressure can be extremely beneficial in such scenarios. For

instance, a context aware message may inform fire fighters about the number of people

trapped at a location or the locations of water leakage and/or evacuation status of the

region that they may be entering.

• Consider a scenario of an office space wherein co-workers send messages to each other
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that are delivered based on context (e.g., invitation of lunch may only be sent to those

people who are at their desks anytime before 12 noon, and whose status is “not busy”).

The delivery context may use the GPS sensor to determine if a person is in the building,

and furthermore, use a Wi-Fi access point connectivity data or BLE beacon data to

determine if a person is on his/her desk. It may further view the calendar entry of the

person to check their availability.

• Consider another scenario of a mobile application on user’s mobile device that com-

municates with the infrastructure of a store (e.g., in-situ sensors) to determine context

(e.g., the store aisle number where a particular product on the user’s shopping list is

shelved). Note that, although this scenario is similar to the newly added location based

reminders supported in Google Home1, the ability to use richer context information

from a variety of sensors is a novel feature of Hedwig.

We have implemented Hedwig using a context data management system entitled SCARF.

We explain the detailed architecture of SCARF in the following section.

6.3 Modeling Context in SCARF

We consider two types of context-aware applications: user and environmental context-aware

applications. User and environmental context are defined as follows:

User Context. We define a user context as a context which consists of the properties of

users inside a building. We denote a user context using the notation of Ui.

In the following, we provide examples of user context that can be specified in SCARF:

• 〈user, start time, end time〉
1https://www.slashgear.com/google-home-can-now-set-location-based-reminders-on-your-phone-

14523229/
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• 〈user, location, start time, end time〉

• 〈user, activity, start time, end time〉

• 〈user, location, occupancy, start time, end time〉

• 〈user, location, activity, start time, end time〉

Environmental Context. An environmental context is defined as any context which con-

sists of a number of building properties such as temperature, occupancy, air volume, and

water pressure. We denote an environmental context using the notation of Bi. Example

environmental contexts can be as follows: 〈 Temperature of room A is higher than 85◦ F〉 ,

〈 Occupancy of rooms higher than 100 〉, and 〈 List of rooms after 7 p.m. with occupancy

higher than 5〉. Such contexts can be specified by the building administrators to monitor the

building resources such as rooms and sensors at different points of time of a day. Examples

of environmental contexts that can be specified in SCARF:

• 〈sensor, threshold, start time, end time〉

• 〈sensor, sensor health, rate, start time, end time〉

• 〈sensor, sensor anomaly, value, start time, end time〉

Context Evaluation. Both environmental and user context can be derived from the data

captured by the sensors that are part of the infrastructure. The sensors, in general, can be

in-situ (such as temperature sensors and occupancy sensors) or mobile sensors such as mobile

devices, cell phones, and smart watches that are carried by the user. Data from the sensors

is collected based on the need of applications and such data is used to create contextual

information relevant to the context-aware application. For instance, a context-aware message

in Hedwig may specify that a user should be delivered a message when the user enters his/her
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Notation Definition

Ci Context

si An in-situ sensor

mi A mobile sensor

Ei Energy consumption cost of collecting
one observation from mi

Si Data storage cost of storing one
observation of mi

Yi Data transmission cost of transmitting
observations of mi

νai Acquisition frequency of sensor mi

νti Transmission frequency of sensor mi

A(mi, ν
a
i , ν

t
i ) Total acquisition cost of sensor mi with

acquisition frequency of νai and the
transmission frequency of νti

fi Evaluation function

ws(fi) Running time of the function fi in the server

wm(fi) Running time of the function fi in the mobile

bi A bit vector signifying whether the function
should be evaluated in the server or on the mobile

Table 6.1: Frequently used notations.

workspace. Sensor data, e.g., the GPS device on the mobile phone carried by the user and/or

data about connectivity of the user’s device to the in-situ WiFi access points can be used

to determine the above context (viz., a user enters his/her office). Note that often context

required by the end application may not be directly captured by the sensor. Instead, such a

context is evaluated using (a sequence of) possibly expensive functions on top of data from

one or more sensors. To support context-aware applications, SCARF continuously computes

the contextual features from raw sensor data at a given periodicity between the timestamps

when the application needing the specific context is active.

Cost of Context Acquisition. We assume that the cost of context acquisition from a

mobile sensor is significantly higher than an in-situ sensor. We therefore focus on the data

acquisition cost from the mobile sensors in the following part of the section. The cost of

context acquisition from a mobile sensor mi is dependent on the following factors: energy
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consumption in capturing data for a given sensor associated with the mobile device, storage

cost of the collected data and the energy consumption cost of transmitting the data to the

server.

We denote the energy consumption cost of one probe from a mobile sensor by the notation

of E . For example, the cost of a sensor mi when it is probed once is denoted by Ei. We

associate an acquisition frequency (denoted by νai ) with each of the mobile sensors. This

frequency signifies the number of times the sensor is probed per second. For example, if

the acquisition frequency of a GPS sensor is set to five then the GPS sensor is probed five

times per second. Similarly, we denote the storage cost by the notation of S and the data

transmission cost by the notation of Y . In the previous example, the storage cost of mi is

denoted by Si and the data transmission cost is denoted by Yi. Both Si and Yi are measured

in terms of energy consumption cost (battery level drop) of the mobile device.

We associate a transmission frequency with each sensor and it is denoted by the notation

of νti . This is defined as the number of times context data is transmitted from the mobile

sensor to the server per second. For example, if νti = 2, then the sensor data is transmitted

from the mobile sensor to the server twice per second. This implies that the context data

is collected for a duration of 1/2 seconds = 0.5 seconds and then transmitted to the server.

On the other hand, if νti = 0.2 then sensor data is collected for five seconds and transmitted

to the server at the end of each five seconds time interval.

Definition 6.1. Context Acquisition Cost. Suppose a mobile sensor mi is collecting

context data with an acquisition frequency of νai and a transmission frequency of νti between

time t0 and t1. Then the total cost of context acquisition is as follows.

A(mi, ν
a
i , ν

t
i ) = (t1 − t0)νai Ei + Si

νai
νti

+ (t1 − t0)νtiYi(
νai
νti

) (6.1)

where Ei is the energy consumption cost of one probe from mi, Si is the energy consumption
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cost of storing one record of mi, and Yi(n) is the energy consumption cost of transmitting n

records from the mobile sensor to the server.

Evaluation Function. Input to an evaluation function is a list of context records (e.g. GPS

coordinates) between time t0 and t1. Output of the function is a boolean value signifying

whether the context condition (e.g. a user is in the building) is true or not. For example, a

sample evaluation function for GPS data can be as follows: given a list of GPS locations of a

user and a target GPS location, a function which determines the geodesic distance between

the list and the target location and outputs true if the distance is below a certain threshold.

An evaluation function is denoted by the notation of fi.

Cost of Context Evaluation. The cost of an evaluation function fi is defined as the

average execution time of the function on a single tuple of the context data. Each evaluation

function has two costs: server-running cost and mobile-running cost. Server running cost,

denoted by ws(fi), refers to the execution time of the function on a single tuple on the server.

Mobile running cost, denoted by wm(fi) refers to the execution time on the mobile device.

Latency. We define the latency as the delay in detecting an event by the system from the

time of occurrence of the event. Let us consider an example context 〈Location(P 1,R 1) =

true〉. Suppose user P1 reached location R1 at 10:00:00 a.m. and SCARF detected the event

at 10:02:00 a.m., then the latency will be two minutes.

Definition 6.2. Plan. Let M = {m1,m2, ...,mn} be a set of mobile sensors from which

context data needs to be collected and evaluated. A plan consists of the following items.

• List of acquisition frequency values: νa = 〈 νa1 , νa2 , · · · , νan 〉.

• List of transmission frequency values2 : νt = 〈νt1, νt2, · · · , νtn〉.
2We will henceforth assume that all νti values are equal to each other and we denote it by νt0. The reason
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• List of function evaluation costs on the server: ws = 〈 ws(f1), ws(f2), · · · , ws(fn) 〉.

• List of function evaluation costs on the mobile: wm = 〈 wm(f1), wm(f2), · · · , wm(fn)

〉.

• A bit vector signifying whether the function is evaluated on the server side or on the

mobile side. B = 〈 b1, b2, · · · , bn 〉. If b1 = 1 then the evaluation function is evaluated

on the server side where as if b1 = 0 then it is evaluated on the mobile side.

We denote a plan by the notation of P (νa, νt, B).

Definition 6.3. Latency of a Plan. Given a plan defined as above, we define the latency

of a plan P (νa, νt, B) as follows:

Latency(P ) =
n∑
i=1

νai
νt0
· (bi · ws(fi) + (1− bi) · wm(fi)) (6.2)

In the following we provide an example of a plan and the latency of the plan.

Example 6.1. Let m1, m2, m3 be three sensors from which context data needs to be collected

and evaluated. Let us consider a plan where the acquisition frequency values are 2/sec,

3/sec and 4/sec respectively. Let the values of the transmission frequencies are as follows:

νt1 = νt2 = νt3 = 1/30. This implies that at the end of each 30 seconds time interval, collected

context data is transmitted to the server. At the end of each thirty seconds time interval, the

number of records of m1 that needs to be evaluated are 30*2 = 60. Similarly, the number of

records of m2 and m3 are 90 and 120 respectively.

Suppose the cost of functions f1, f2, f3 when they are executed on the server are 0.01 sec,

0.02 sec and 0.03 seconds respectively. The cost of the functions f1, f2, f3 on the mobile

behind this choice is that we only evaluate the context data at the end of each transmission cycle. If we
transmit context data earlier and not evaluate it until the end of a transmission cycle, it will always increase
the latency.
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are 0.04, 0.015 and 0.05 respectively. Suppose the context data from m1 and m3 needs to

be evaluated on the server and the data from m2 needs to be evaluated on mobile, then the

latency of the plan is calculated as follows: 60*0.01 + 90*0.015 + 120*0.03 = 5.5 seconds.

Problem Statement. Let M = {m1,m2, ...,mn} be a set of mobile sensors from which

context data needs to be collected and evaluated. Let Emax be the maximum cost (in terms

of energy consumption) that can be incurred for the context data acquisition and evaluation

fromM. Our objective is to generate a plan which minimizes the latency given that the total

cost of context data acquisition, storage and transmission from all the sensors is bounded by

Emaxi . Our optimization problem is formally defined as follows:

minimize
νa,νt,B

Latency(P (νa, νt, B))

subject to
n∑
i=1

(t1 − t0)νai Ei + Si
νai
νt0

+ (t1 − t0)νtYi(
νai
νt0

) ≤ Emax,

νai ≥ νmin

(6.3)

where νmin is the minimum frequency value which ensures that there is no missing event

due to the acquisition of data being far apart on the time-line. We assume that if a context

condition is true at a particular time instant, then it will remain true for at least a certain

amount of time interval called eventmin. If eventmin is two seconds, then we set the value of

νmin to be 0.5. This ensures that there exists at least one data point in every two seconds.

Our goal is to choose the frequency values νa, νt and the bit vector B in such a way that

minimizes the latency.
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Figure 6.1: Diagram of the Server-based Architecture

6.4 Description of SCARF

6.4.1 Overview

SCARF divides the entire execution time into multiple smaller time intervals called epochs.

In each epoch, we generate a plan as described in Definition 6.2 by solving the optimization

problem shown in Equation 6.3. This plan is generated at the server. Depending on the

outcome of the optimal solution (i.e., the bit vector B), the evaluation is either performed

at the server or on the mobile. Each epoch consists of two phases: a plan generation phase

and a plan execution phase. We assume that the cost of the sensors (i.e., Ei) and the context

evaluation costs (i.e., ws and wm) does not change within an epoch. Algorithm 1 presents a

high-level overview of how SCARF works.

The input to SCARF is a list of mobile sensors, a list of context evaluation functions, a

start time and end time between which the context has to be evaluated. The variables

totalExecutionT ime and curEpochT ime maintain the overall execution time and the exe-

cution time within an epoch respectively. We maintain two hashmaps for storing the cost

values of the mobile sensors ws and wm. The energy consumption cost E is updated at the

end of each epoch. In line 8, we generate the plan using the updated cost values ws and wm.
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Plan is executed until the epoch time is exhausted.

Algorithm 1 Adaptive Approach.
1: procedure Adaptive Approach(M, {f1, f2, . . . fn}, t0, t1)
2: totalExecutionT ime← 0
3: contextResult← False
4: Initialize-Data-Structure(ws, wm) // Initialize the data structures to store the running

costs of functions on server and mobile
5: while totalExecutionT ime < (t1 − t0) do
6: curEpochT ime← 0
7: E ← Get-Updated-Cost(M, f1, f2, . . . , fn)
8: 〈P, tp〉 ← Generate-Plan(E , ws, wm, ∆) // tp: plan-generation time
9: while curEpochT ime < (epochT ime− tp) do

10: t1 ← time()
11: contextResult← Execute-Plan(P )
12: if contextResult← True then
13: return True
14: end if
15: t2 ← time()
16: curEpochT ime← curEpochT ime+ (t2 − t1)
17: end while
18: end while
19: return False
20: end procedure

In SCARF, we have implemented a hybrid architecture that leverages server-based central-

ized system with an edge-based distributed component. In the following, we describe the

life-cycle of context data acquisition, context data storage and context data evaluation in

the different components of SCARF.

As a first step, given a condition on context from an application, SCARF checks the sensor

data from the in-situ sensors. If a particular context can be evaluated just by using the data

from the in-situ sensors, then SCARF does not have to generate any plan for that particular

context. If a particular context can not be evaluated by the data from in-situ sensors, then

SCARF generates a plan for the mobile sensors according to Equation 6.3. Depending on the

output of the bit vector B of the optimization problem, SCARF uses the following strategies.

In a certain epoch, if bi = 1 then SCARF collects the sensor data at the mobile device for a

certain duration of time and then transmit it to the server. Server stores the data in a local
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database and runs the context evaluation function on that data. If bi = 0, then the mobile

device collects the sensor data, stores it in a local database and also executes the evaluation

function on the collected data. The process of context evaluation on the server side is shown

in Figure 6.1 whereas the process of context evaluation on the mobile side is shown in Figure

6.2.

6.4.2 Plan Generation

At the beginning of each epoch, SCARF performs this step. In this step, SCARF generates an

acquisition plan of the sensors, transmission plan and an evaluation plan whether the context

will be evaluated in the server side or on the mobile side. It solves the optimization problem

as described in Equation 6.3 and determines the above plans. Note that, the constraint of

the equation has following coefficients: Ei, Si and Yi which need to be updated in every

epoch.

The first step of plan generation phase of a certain epoch k, is to update the cost values

Ei, Si and Yi respectively. We determine the average energy consumption costs incurred in

the previous epoch (i.e., epoch k − 1) and set it as the value of Ei in epoch k. For example,

suppose in a certain epoch k−1, the total energy consumed by 100 probes of a certain mobile

sensor is 0.02. Then the value of Ei in epoch k will be as follows: Ei = 0.02/100 = 0.0002.

Similarly, let the values of Si and Yi are 0.0001 and 0.004 respectively.

Once the cost values are updated we solve the optimization problem as shown in Equation

6.3. In the above example, if we add the values of the Ei, Si, Yi in Equation 6.3, we get the
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following optimization problem:

minimize
νa,νt,B

n∑
i=1

νai
νt0
· (bi · ws(fi) + (1− bi) · wm(fi))

subject to (t1 − t0)νai · 2 · 10−4 +
νai
νt0
· 10−4

+ (t1 − t0)νt0 · 4 · 10−3 ≤ Emaxi

νai ∈ R, νt0 ∈ R, bi ∈ {0, 1}

νmax ≥ νai ≥ νmin, νmax ≥ νt0 ≥ νmin

(6.4)

The frequency value νmax denotes the maximum frequency of data collection that is sup-

ported by the operating system of the mobile device. The above optimization problem is a

mixed integer non-linear programming problem where the values of νai and νt0 are real num-

bers and the value bi is an integer which can take two values 0 or 1. Since the domains of

νai and νt0 are bounded, we solve the above optimization problem numerically. We discretize

the domain of νai and νt0 from the values of νmin to νmax using a width of 0.01. For each

pairs, we check the constraint condition to find out if the pair is a feasible solution of the

optimization problem. If the solution is feasible, then we calculate the objective function

and store the value and the solution in a minimum priority queue. After iterating over the

space of νai and νt0, we retrieve the optimal solution from the priority queue.

6.4.3 Context Data Collection

Given a set of mobile sensors m1,m2, ...,mn from which context data have to be collected,

SCARF generates an acquisition plan (i.e., νai ) for each sensors. Note that the energy con-

sumption cost of a sensor in a mobile device is dependent on several factors such as the

operating system installed, underlying hardware, and type of the network to which the de-

vice is connected to.

In a certain epoch, if the context data needs to be evaluated on the server side, then
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Figure 6.2: Diagram of Edge-based Architecture

SCARF uses a push-based mechanism to collect the data. The sensor data gets collected at

the mobile device at a frequency of νai till the end of the epoch. At the end of the epoch, the

mobile device pushes the collected data to the server side. Mobile device uses appropriate

RESTful API to transmit the data to the server. The server stores the collected data in an

internal database.

In an epoch, if the context data needs to be evaluated on the mobile side, then the data

collection takes place on the mobile device itself. The sensor data is collected and stored at

a frequency of νai at the mobile device till the end of the epoch. Since the context data is

evaluated on the mobile device itself, the collected data is not transmitted from the mobile

device to the server in this epoch. The context data is stored in a SQLite database of the

mobile device.

6.4.4 Context Data Management

Context data collected is stored in a database called ContextDB. In the following, we explain

how this database is managed both on the server-side as well as on the mobile side. Context

Reasoner (as explained in the next section) queries this database and evaluate the required

context. Query performance of ContextDB affects the latency of the end applications.

In the server-side, we maintain a centralized database, which stores the context information
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collected from all the mobile devices. The schema of the database is shown as follows:

• OBSERVATION (id INT PRIMARY KEY, sensor id INT, payload VARCHAR(255),

observation type id INT, timestamp datetime)

• USER (user id INT PRIMARY KEY , name VARCHAR(255), email VARCHAR(255),

office VARCHAR(255), mobile number VARCHAR(20), preferred communication VAR-

CHAR(255))

• SENSOR (sensor id INT PRIMARY KEY, description VARCHAR(255), name VAR-

CHAR(255), platform id INT)

• PLATFORM (platform id INT PRIMARY KEY, description VARCHAR(255), name

VARCHAR(255))

• PLATFORM SENSOR (platform id INT, sensor id INT)

In the above schema, the OBSERVATION table contains the collected context data from

the mobile sensors. In this table, sensor id contains the id of the mobile sensor, observa-

tion type id contains the type of the context data such as GPS, accelerometer, gyroscope,

light, etc. Payload attribute contains the actual value of the sensor and it is stored as a JSON

object. For example, for a GPS sensor, a sample payload will be as follows: {”Latitude”:

”33.6431”, ”Longitude”: ”-117.84”}. The timestamp attribute captures the time at which

the observation was collected by the mobile sensor. Context reasoner queries this table based

on the sensor id, timestamp and observation type id attributes. We created indexes on these

attributes of OBSERVATION table for better query performances by the reasoner.

In the mobile-side implementation, the schema of the ContextDB is as follows.

• GPS (id INTEGER PRIMARY KEY, latitude FLOAT, longitude FLOAT, accuracy

FLOAT, provider VARCHAR(255), timestamp DATETIME)
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• ACCELEROMETER ( id INTEGER PRIMARY KEY, x coordinate FLOAT, y coordinate

FLOAT, z coordinate FLOAT, timestamp DATETIME)

• GYROSCOPE (id INTEGER PRIMARY KEY, x FLOAT, y FLOAT, z FLOAT, times-

tamp DATETIME)

• LIGHT (id INTEGER PRIMARY KEY, light FLOAT, timestamp DATETIME)

In an epoch, if a context is evaluated on the mobile side, then after the context evaluation

step, we remove all the records from the tables. Since mobile devices have a limited storage

capacity, this ensures that none of the tables become very large. Furthermore, we create

indexes on the timestamp attribute of the above tables for faster retrieval of the records

based on the timestamp attribute.

6.4.5 Context Data Evaluation

The process of context data evaluation consists of multiple steps. In the first step, it fetches

the required context data from ContextDB. The context data collected only in the current

epoch is fetched from the database. For example, if the length of an epoch is one minute,

then the data collected in last one minute is fetched from the ContextDB. In the following,

we define the specifications of a context reasoner, and then we explain how the context

evaluation takes place on both the server side and on the edge-side.

Context Reasoner. The input to a context reasoner is the context condition and a list of

context data of a particular type. For example, if the context is location, then it takes an

input as a set of GPS records. The output of the context reasoner is a boolean value of True

or False. If the context reasoner outputs true at any point, then it is not further evaluated

in the future.

In the epochs, where the context data is evaluated on the server side, context reasoner fetches
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the data of the last epoch from the ContextDB and checks whether the context condition

is satisfied or not. We deploy the reasoner at the same host where ContextDB is hosted

to reduce the network I/O of fetching the data from the database to the server. Context

Evaluator on the server is multi-threaded.

In an epoch, if the context data needs to be evaluated on the mobile side, the reasoner

takes the following steps. It fetches the records from the local ContextDB and executes the

reasoner on top of the fetched data. If the evaluation of the context becomes true, then it

sends a success message to the server signifying that the context evaluation was successful

and further context evaluations should be stopped.

Benefits and Limitations of the Server and Edge Based Approaches. In the server-

based approach, we perform the context evaluation in the same server in which we maintain

the Context DB. The benefits of the context evaluation step on the server side are as follows:

• SCARF can execute complex context reasoners such as machine learning based al-

gorithms, complex rule-based algorithms on the central server. SCARF can use deep

learning based algorithms which require special hardwares such as GPGPUs to execute.

• The server-side component does not have any limitations on the storage size. The

size of the Context DB can potentially be very large without causing any performance

issue.

• ContextDB in the server-side can be replicated appropriately to support context-aware

applications during node failures.

The advantages of the edge-based component are as follows:

• Since ContextDB is maintained on the user’s mobile devices, sensitive context data

(such as location and activity) is very less prone to attack by the attackers.

79



• The context evaluation step is performed by the mobile device itself, which implies that

the server only gets to receive the output of the context evaluation step. Malicious

users on the server will not be able to perform any inference attacks on the context

data.

6.5 Experimental Evaluation

In this section, we experimentally evaluate our framework using real world dataset. In the

following, we first explain the experimental setups, then present experimental results.

Figure 6.3: Figure illustrating the context-aware message application.

Implementation and Deployment Specifications. We implemented both the compo-

nents (server and edge) of SCARF in Java. In the server-side implementation, we use the

MySQL database for managing Context DB. In the edge-side implementation, we use SQLite

database. Our server has the following specifications: Intel(R) Xeon(R) CPU E5-46400, 132
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Figure 6.4: Figure illustrates latency of messages.

GB RAM, 80 TB of disk space and runs CentOS 7.1. Mobile devices have the following

specifications: i) Motorola Moto X (2nd Generation): 2.5GHz Qualcomm Snapdragon 801

processor, 16 GB internal storage, 2GB RAM, 2300 mAh battery capacity, running An-

droid 6.0 and ii) Samsung Galaxy 5: 2.1 GHz quad-core Cortex-A15 and 1.5 GHz quad-core

Cortex-A7 CPU, internal storage of 16GB, 2 GB LPDDR3 RAM, 2800 mAh battery capacity,

running Android 5.0.

Sensors. We consider five different types of mobile sensors: accelerometer, location (gps and

network), gyroscope, light, and proximity. These data is stored on Android SQLite database

as described in section 6.4.4. For accelerometer sensor, we store the accelerometer values

along the directions of x-, y-, and z-axis. For GPS, we store latitude, longitude, accuracy,

and timestamp values. For proximity sensors, we store the proximity values measured in

centimetres. For light sensors, we store the values of light levels measured in terms of

81



luminous flux (i.e., lux). For gyroscope sensors, we store the rate of rotation values along

the directions of x-, y-, and z-axis. For in-situ sensors, we have used the sensors deployed as

part of a live IoT testbed named TIPPERS [79]. This testbed is collecting real time sensor

data from 64 WiFi access point sensors, 40 video cameras, 50 beacons and 6000 HVAC

sensors located in our department building since January 2016.

Context-Aware Messages Used. We use the following context-aware messages to evalu-

ate our framework.

1. M1: If Location(P1, “R1”) = true then send a message.

2. M2: If Activity(P1, “still”) = true then send a message.

3. M3: If Location(P1, “R1”) = true AND Activity(P1, “still”) = true then send a

message.

4. M4: If Occupancy(“R1”) = 10 AND Location(P1, “DBH”) = true then send a

message.

5. M5: If Temperature(“R1”) > 75 AND Temperature(“R1”) < 80

AND Occupancy(“R1”) < Occupancy(“R1”).capacity/3 then send a message.

6. M6: If Occupancy(“R1”) < Occupancy(“R1”).capacity/3 AND Location(P1, “R1”)

= true AND Temperature(“R1”) > 75 AND Temperature(“R1”) < 80 then send a

message.

In the above messages, first and second messages each contains a single user context. The

third message consists of two user contexts and the fourth message consists of an environ-

mental and a user context. The fifth message consists of two environmental contexts. The

sixth message consists of two environmental contexts and one user context. Although we

have chosen the above six representative contexts, it can be specified for any environmental
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contexts and user contexts. Figure 6.3 shows the interface for creating these context-aware

messages.

6.5.1 Experimental Result.

Experiment 1. Latency of SCARF at Different Event Times. In our experiments we

set the value of eventmin to be 120 seconds, i.e., when a particular context condition becomes

true, it remains true for the duration of next 120 seconds. This implies that SCARF needs

to set the transmission frequency to be at least once in 120 seconds in order to ensure that

there is no missing event. Since latency is sensitive to the actual time of event occurrence,

we measure the latency of SCARF for a given value of epoch size (i.e., 1/νt0) as follows.

Let us consider that the epoch size for a certain message is 10 seconds, i.e., after every ten

seconds, the context data is transmitted and evaluated. An event can take place at Tevent

= 1 second, 2 seconds, · · · , or at 10 seconds. We measure the latency of SCARF in each of

these ten possibilities and derive the average latency. We report this value as the latency of

SCARF at the epoch size of 10 seconds. Similarly, we calculate the average latency for the

other epoch sizes as shown in Figure 6.4. The acquisition frequency value for this experiment

was set up at 10.

The results for all the messages are shown in Figure 6.4. From this table, we conclude that

SCARF performs very well in terms of the latency of these messages across different event

times. ForM1, the average latency of SCARF varies from 4.5134 seconds to 59.5033 seconds

depending on the time at which the context condition was true. Furthermore, we observe

that the latency of the messages increase when the epoch size is high (i.e., transmission

frequency is low) but at the same time the cost reduces. Depending on the value of Emax,

SCARF chooses appropriate transmission frequency.

Experiment 2. Latency Comparison with the Baseline Approaches. In this ex-
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periment, we measure the latency of SCARF with two baseline approaches. For baseline 1

approach, we perform the context acquisition, context storage, and context evaluation en-

tirely on the mobile side. In baseline 2 approach, we perform all the three steps (i.e., context

acquisition, context storage, and context evaluation) completely on the server side.

We choose different values of Emax for each message and compare the latency (measured in

milliseconds) of our approach with the baseline approaches. Emax is the maximum energy

consumption cost set up for each messages. For all the messages, the latency of SCARF is

lower than both Baseline 1 and Baseline 2. The latency values of different approaches for

M1 are shown in Table 6.2 and a comparison plot is drawn in Figure 6.5. For M1 and

M2 that utilizes user contexts such as Location and/or Activity, the latency of Baseline

2 is higher than Baseline 1. The reason behind this observation is that in Baseline 2,

the collected context data need to be transmitted to the server from the mobile devices.

Since the message only contains user context that is collected at the mobile device, it is

beneficial to perform the context evaluation on the mobile device. Hence the Baseline 1

approach outperforms the Baseline 2 approach. Similar trends follow for message M3 and

M4. On the other hand, M5 which utilizes two environmental contexts such as Occupancy

and Temperature, the latency of Baseline 1 is higher than Baseline 2 since the data required

for both the environmental contexts are local to the server, the Baseline 2 incurs less latency

as compared to the Baseline 1 approach. ForM6 which utilizes two environmental contexts

and one user context such as Occupancy, Temperature and Location, Baseline 2 shows

higher latency due to the transmission cost of sending GPS data from mobile to the server.

The reason behind the performance gap of our approach and the baseline approaches is as

follows: our approach chooses an optimal acquisition frequency, transmission frequency and

bit vector B specifying if the context should be evaluated on the server or on the mobile side

in order to minimize the latency.

Experiment 3. Energy Consumption Cost. In this experiment, we provide the details
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Emax (Battery Baseline 1 (ms) Baseline 2 (ms) Our Approach (ms)
Level Drop)

24 mAh 341.66 378.33 287.33

47 mAh 251.66 258.66 200.66

70 mAh 186 231 152

93 mAh 162 234 146

117 mAh 87 147 82.66

Table 6.2: Average Latency comparison of M1

Sensor Device Probe Transmission Evaluation
Cost Cost Cost

GPS Device 1 4.6 0.092 0.76

Accelerometer Device 1 0.023 0.46 0.012

Gyroscope Device 1 0.383 0.18 0.0046

GPS Device 2 1.6 0.168 0.93

Accelerometer Device 2 0.028 0.056 0.014

Gyroscope Device 2 0.56 0.168 0.0056

Table 6.3: Details of Cost in Device 1 and Device 2 measured in mAh.

of the energy consumption cost from different types of sensors. The results are shown in

Table 6.3. For each type of sensors, we measure the probe cost of one sensor probe and

report it as the probe cost in Table 6.3. We measure the cost of transmitting one record of a

particular sensor type from the mobile device to the server and report it as the transmission

cost. We performed this step for 10,000 iterations and measure the average transmission cost

from the total cost. In the evaluation cost column, we provide the energy consumption cost

of evaluating the context reasoner on a single record. From this experiment, we draw the

following conclusions: the probe cost, transmission cost and evaluation cost vary depending

on the type of the device, type of hardware, operating system and the type of network.

Furthermore, this implies that the cost model of SCARF as shown in the constraint of

Equation 6.3 is an accurate and practical model for measuring the cost of context acquisition,

transmission, and evaluation.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Comparison of SCARF with baseline approaches: M1 (a),M2 (b),M3 (c),M4 (d),
M5 (e), and M6 (f).
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have presented context reasoning challenges in IoT environments along

with their solutions: feasible location attack from occupancy sensors in smart buildings,

a fair decision making algorithm for participatory thermal comfort control systems, and a

context-aware messaging framework for smart environments, SCARF .

In chapter 4, we studied privacy implications of occupancy sensors in smart buildings. We

have proposed a new privacy breaching attack in which the adversary combines the gathered

occupancy data with auxiliary information, and identifies the sensor ID that is installed

at the primary location of the targeted individual. We have validated the feasibility of the

proposed attack using real-world data where we have demonstrated that even a small amount

of auxiliary information is sufficient to greatly reduce the set of sensors that the targeted

individual’s sensor ID is located in. We have also proposed mitigation strategies against

the proposed attack. The principle of least privilege can be used as a governing principle

in providing the right level of information to various applications. Differential privacy and
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deletion of past occupancy data could also be used to enhance the privacy of the building

occupants.

In chapter 5, we have presented the first analysis, up to the authors’ knowledge, of the

fairness of the different methods used to aggregate residents’ thermal comforts. Specifically,

we defined fairness in the context of thermal comfort control and proved that traditional

group decision making processes, such as majority, mean, trimmed mean, and median, to

aggregate people thermal comfort are not fair. We also explained an aggregation algorithm

that ensures fairness with the participants. Our algorithm takes the thermal comfort of

the participants as input but is agnostic about how this information is determined; it could

be obtained from personal information (such as age, gender, height, and weight) [68], from

stochastic thermal profiles related to room conditions [39], or even asked directly to the

participants [95]. We presented experimental results performed using a simulator that we

implemented to recreate scenarios driven by real occupancy data. The experimental results

show how the accumulated loss for participants in our simulated scenarios increased with

traditional decision making algorithms whereas it remains bounded for our algorithm. Also,

they show, even when there exists a trade off between fairness and comfort, different variants

of our algorithm can achieve a similar comfort than the traditional approaches.

In chapter 6, we proposed a context-aware messaging application Hedwig which allows both

senders and receivers to specify policies in which the message must be delivered. The frame-

work leverages a scalable system of context data collection and management system named

SCARF . In Hedwig, we can support much generalized notions of context than the existing

context-aware messaging frameworks. Furthermore the process of context detection utilizes

context data from user’s mobile devices as well as the context data collected from a variety

of in-situ sensors deployed over the infrastructure.
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7.2 Future Work

Our work on privacy, fairness, and context-aware messaging has identified a number of

opportunities on follow-up work.

Privacy and Security Another direction that we plan to investigate is how to enhance

privacy and security of users using context-aware applications. Several works exist on how

to perform activity detection, location detection in a privacy-preserving manner, but a gen-

eralized framework which is capable of evaluating any type of context in a privacy-preserving

manner is an interesting direction of future work. From the study of feasible privacy attacks,

the exact details of implementing the mitigation strategies will differ from application to

application. A systematic approach of determining the exact parameters of the mitigation

strategies will be part of future work. Finally, it would be interesting to study how to de-

sign generalized privacy-preserving framework for other types of contexts such as activity,

occupancy, mood, comfort, and/or temperature in smart buildings.

Fairness We plan to continue our study about the trade off between fairness and comfort

using other variants of our algorithm. The challenge is to prove that these variants, which

achieved good results in terms of fairness and comfort in our experiments, are fair for any

scenario. Another aspect which was out of the scope of the study but in our plan is to study

whether these algorithms can be gamed by participants. Achieving energy efficiency while

obtaining thermal comfort has been addressed in many works. We also plan to study how

to combine energy efficiency into our fairness vs. comfort trade off. Finally, it would be

interesting to study how to generalize the concept of fairness for other participatory services

in the smart buildings (e.g., time professors spent with students in tutoring hours).

Scalability We would like to continue our research towards improving the scalability of

context-aware messaging frameworks. We are investigating how to evaluate more complex

contexts such as contexts including large number of disjunctive and conjunctive conditions.
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We are also looking into the problem where the context evaluation is inaccurate in nature

(i.e., the evaluation function can make mistakes while evaluating a context). One possibility

would be to use multiple context evaluation functions to evaluate a single context and then

decide whether the context condition is true or not. Finally, it would be interesting to study

how to achieve scalability when there are multiple senders and recipients of context-aware

messages and/or several applications are running at the same time.
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