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Novel soil bacteria possess diverse genes for secondary 
metabolite biosynthesis

Alexander Crits-Christoph, Spencer Diamond, Cristina N. Butterfield, Brian 
C. Thomas, & Jillian F. Banfield 

Abstract

In soil ecosystems, microorganisms produce diverse secondary metabolites
such as antibiotics, antifungals and siderophores that mediate 
communication, competition and interactions with other organisms and the
environment1,2. Most known antibiotics are derived from a few culturable 
microbial taxa3, and the biosynthetic potential of the vast majority of 
bacteria in soil has rarely been investigated4. Here we reconstruct 
hundreds of near-complete genomes from grassland soil metagenomes and
identify microorganisms from previously understudied phyla that encode 
diverse polyketide and nonribosomal peptide biosynthetic gene clusters 
that are divergent from well-studied clusters. These biosynthetic loci are 
encoded by newly identified members of the Acidobacteria, Verrucomicobia
and Gemmatimonadetes, and the candidate phylum Rokubacteria. Bacteria
from these groups are highly abundant in soils5,6,7, but have not previously 
been genomically linked to secondary metabolite production with 
confidence. In particular, large numbers of biosynthetic genes were 
characterized in newly identified members of the Acidobacteria, which is 
the most abundant bacterial phylum across soil biomes5. We identify two 
acidobacterial genomes from divergent lineages, each of which encodes an
unusually large repertoire of biosynthetic genes with up to fifteen large 
polyketide and nonribosomal peptide biosynthetic loci per genome. To 
track gene expression of genes encoding polyketide synthases and 
nonribosomal peptide synthetases in the soil ecosystem that we studied, 
we sampled 120 time points in a microcosm manipulation experiment and, 
using metatranscriptomics, found that gene clusters were differentially co-
expressed in response to environmental perturbations. Transcriptional co-
expression networks for specific organisms associated biosynthetic genes 
with two-component systems, transcriptional activation, putative 
antimicrobial resistance and iron regulation, linking metabolite 
biosynthesis to processes of environmental sensing and ecological 
competition. We conclude that the biosynthetic potential of abundant and 
phylogenetically diverse soil microorganisms has previously been 
underestimated. These organisms may represent a source of natural 
products that can address needs for new antibiotics and other 
pharmaceutical compounds.

Main

We reconstructed draft genomes for hundreds of microorganisms from the 
soil ecosystem of a northern Californian grassland using genome-resolved 
metagenomic methods, and targeted genomes from four dominant soil 



phyla for analysis of their biosynthetic potential (Extended Data Fig. 1). 
Specifically, we analysed newly reconstructed genomes from 149 
Acidobacteria, 135 Verrucomicrobia, 43 Rokubacteria and 49 
Gemmatimonadetes species (Supplementary Table 1and Supplementary 
Methods). We targeted these groups because bacteria from all four phyla 
are highly abundant at our field sampling site8 (Fig. 1a) and in globally 
sampled soils5. Specifically, meta-analysis of many 16S rRNA gene 
sequence studies showed that Acidobacteria and Verrucomicrobia are the 
first and second most abundant bacterial phyla in soil, respectively5, and 
Gemmatimonadetes are also known to be common in soils9. There are few 
reference genomes available for soil-associated bacteria from all four 
phyla, and their potential for secondary metabolism remains understudied. 
To our knowledge, the current study represents the largest genomic 
sampling of soil-associated bacteria from these groups to date and the 
most detailed analysis of their secondary metabolism.

Fig. 1: Diversity of extracted soil genomes and their biosynthetic gene clusters.

a, Mean relative abundances of reconstructed genomes across 60 soil samples as determined by 
sequencing coverage of the genomes. Genomes from four understudied soil phyla are juxtaposed 
with recovered genomes from the Actinobacteria and Proteobacteria for comparison. b, 
Biosynthetic gene clusters found on contigs greater than 10 kb, from each phylum studied, 
coloured by putative product types as assigned by antiSMASH. c, NRPS and PKS gene clusters found
on contigs >10 kb, from each phylum studied. d, Network of biosynthetic gene clusters, in which 
edges connect clusters that share genes. The line thickness and darkness increase with increasing 
percentage of genes shared between clusters. trans-AT, trans-acyltransferase.

Within the genomes, we identified 1,159 biosynthetic gene clusters on 
contigs at least 10 kb in length (Fig. 1b and Supplementary Table 2) and an
additional 440 biosynthetic gene clusters on smaller contigs 



(Supplementary Table 3) using antiSMASH 3.010, an in silico pipeline that 
was originally verified against 473 verified biosynthetic gene clusters with 
a 97.7% reported accuracy11. The gene clusters that we identified are 
inferred to synthesize nonribosomal peptides (NRPs), polyketides, 
terpenes, bacteriocins, lassopeptides, lantipeptides and metabolites of 
uncertain function. Most known bacterial natural products—including many 
of the clinical antibiotics that we use today—have been obtained from 
microbial isolates3 of the Actinobacteria, Proteobacteria and Bacillus, which
represent microorganisms that often comprise a minority in soil microbial 
communities4,5. Previous global analyses based on the few publicly 
available genomes for Acidobacteria, Verrucomicrobia and 
Gemmatimonadetes12,13,14identified only a handful of biosynthetic clusters, 
and to our knowledge only the Acidobacteria have previously been 
suggested to be linked to secondary metabolite production7,15. We greatly 
expand the number of known biosynthetic gene pathways from these soil 
microorganisms and at the same time confidently link them to their 
genomic contexts.

Most previous searches for biosynthetic systems from uncultivated 
microorganisms have randomly cloned environmental DNA into a host 
organism to screen for function (functional metagenomics)16. Other 
studies2,17 have used degenerate PCR primers to explore the genetic 
diversity of novel biosynthetic clusters without the need for cloning, but 
primers can fail to amplify genetically divergent sequences. Because we 
reconstructed near-complete genomes de novo, we could identify entire 
novel biosynthetic gene clusters as well as describe their genomic, 
phylogenetic and ecological contexts within individual genomes and the 
environment. We computationally tested the ability of sets of previously 
used degenerate primers2,17 to detect genes containing polyketide ketoacyl
synthase and NRP amino acid adenylation domains in the clusters reported 
here, and found that only 5 out of 240 clusters would be likely to amplify 
properly when using degenerate primers (Supplementary Table 6).

Gene clusters containing nonribosomal peptide synthetases (NRPSs) and 
polyketide synthases (PKSs) were of particular interest, as the products of 
these enzymes include many antibiotics, antifungals, siderophores and 
immunosuppressants14. These NRPS and PKS biosynthetic pathways use 
modular enzymatic domains to build molecules with complex chemical 
structures. We identified 240 NRPS, PKS (types I, II and III, which differ in 
the organization of their enzymatic domains) and hybrid (NRPS-PKS) gene 
clusters on contigs from all four phyla of interest (Fig. 1c and 
Supplementary Table 4) and 86 probably incomplete clusters on smaller 
genome fragments. Although they are enormously diverse in gene content,
these biosynthetic pathways are identifiable owing to their colocalized 
logical organization of conserved enzymatic domains. Although the 
majority of these clusters occurred in a wide diversity of Acidobacteria, we 
also identified 11 NRPS clusters in genomes of the Rokubacteria, a recently



described phylum that was not previously known to produce natural 
products. The co-linear ‘assembly-line’ regulation of many NRPS and type I 
PKS systems make predictions of the core scaffold of the molecular product
synthesized possible11,18. In 136 cases, there were a sufficient number of 
functional domains with known substrate specificity to predict the core 
chemical structures of the products using antiSMASH (Supplementary Table
4).

To compare the degrees to which predicted biosynthetic clusters shared 
genes, we built a relational network of clusters on the basis of shared gene
content. This approach revealed substantial genetic variety, with large 
groups of diverse and sparsely connected NRPS and PKS systems in 
Verrucomicrobia, Acidobacteria and Rokubacteria and many unique NRPS-
based clusters with few close representatives (Fig. 1d). A conserved type III
PKS locus that was nearly ubiquitous in the Rokubacteria formed a dense 
network cluster, as did a conserved type III PKS locus found in a wide clade
of the Acidobacteria. The high conservation of these type III PKS loci across
taxonomic groups could indicate a broad distribution of a novel group of 
specialized metabolites.

We compared the 240 NRPS and PKS gene clusters to the reference set 
described in the ‘Minimum Information about a Biosynthetic Gene’ (MIBiG) 
repository19 (Supplementary Table 5). No protein in any cluster shared with
reference proteins more than 79.7% amino acid identity across ≥50% of 
the full protein lengths. Fifty-nine per cent of predicted proteins had no 
≥50%-length homologue in MIBiG, and those that did shared an average of
only about 39% amino acid identity to the best hit of any MIBiG protein. 
Using the same thresholds for gene homologues, we found that 220 
clusters did not share more than 50% of the genes of any previously 
described cluster. Although the relationship between gene similarity of 
biosynthetic genes and structural similarities of their final products can be 
difficult to discern, previous analyses have shown that structural 
divergence correlates strongly with genetic divergence, even within 
families of gene clusters20.

It is often the case that antibiotic producers will also encode antibiotic 
resistance genes to avoid self-toxicity, and that these genes will often co-
localize with the antibiotic biosynthetic cluster in the genome21. Therefore, 
the presence of antimicrobial resistance genes within a gene cluster could 
indicate that the cluster is involved in antibiotic production. We mined all 
NRPS and PKS biosynthetic loci with a set22 of curated hidden Markov 
models for antibiotic resistance proteins (in part derived from the 
Resfams23 database) (Supplementary Methods). One hundred and fifty-
three proteins from 84 different NRPS and PKS clusters most closely 
matched hidden Markov models for transporters known to be involved in 
antimicrobial resistance, out of a total of 621 transporter genes within 
clusters. Annotations that could most confidently be linked to antibiotic 
resistance included one d-alanine–d-alanine ligase in a Rokubacteria NRPS 



cluster, four d-alanine–d-alanine ligases in acidobacterial NRPS clusters, 
and two modified penicillin-binding protein sequences in Verrucomicrobia 
NRPS clusters (Supplementary Table 7).

Two near-complete genomes of divergent Acidobacteria were found to 
encode unusually large repertoires of NRP and PKS gene clusters. We refer 
to these two organisms as ‘CandidatusEelbacter’ (genome 
Eelbacter_gp4_AA13) and ‘CandidatusAngelobacter’ (genome 
Angelobacter_gp1_AA117), tentatively placed within the Blastocatellia and 
the Acidobacteriales, respectively. In the 7-Mb genome of Candidatus 
Eelbacter we identified 17 biosynthetic loci containing 74 NRPS and PKS 
open reading frames that were 404 kb in total length. In the 6.5-Mb 
genome of Candidatus Angelobacter there were 16 loci containing 54 NRP/
PKS open reading frames that were 325 kb in total length. The biosynthetic
genes from each species had only distant homology to those from the 
other. We confirmed the biosynthetic clusters for both genomes by re-
analysing with ‘Prediction Informatics for Secondary Metabolomes’ 
(PRISM)24 (Extended Data Figs. 2, 3). In total, each of these organisms 
contains over 900 kb of genes that are putatively involved in biosynthesis 
of secondary metabolites (about 12–14% of their recovered genomes). A 
phylogenetic analysis, using ribosomal protein sequences, of acidobacterial
genomes from this study and reference databases revealed that both 
Candidatus Angelobacter and Candidatus Eelbacter acquired their unusual 
arrays of biosynthetic operons independently in evolutionary time (Fig. 2a).

Fig. 2: Biosynthetic NRPS and PKS loci from the Acidobacteria.

a, Concatenated ribosomal protein phylogenetic tree of all acidobacterial genomes from this study 
(red) and existing reference genomes (black). Scale bar on the tree represents substitutions per 
site. Adjacent is a chart that reflects the count of NRPS and PKS biosynthetic gene clusters 
observed in each genome. The phylogenetic placements of Candidatus Eelbacter (*) and 
CandidatusAngelobacter (+) are marked. b, Six large PKS–NRPS hybrid biosynthesis gene clusters 
are encoded in the Candidatus Eelbacter genome. Predicted genes and biosynthetic protein 
domains are coloured by general function, and the genomic positions of polyketide and 
nonribosomal peptide synthetic domains are shown below each genome track. The following gene 
annotations are identified by number: 1, penicillin amidase; 2, oxygenase; 3, radical SAM proteins; 
and 4, betalactamase. AT, acyltransferase; DH, dehydrogenase; KR, ketoreductase; KS, 
ketosynthase; MT, methyltransferase; TE, thioesterase.



The Candidatus Angelobacter genomes included multiple lantibiotic 
biosynthesis proteins, a bacteriocin biosynthesis cluster, multigene 
operons with components for both a type VI and a type II secretion system,
and several large RHS-repeat containing proteins, which have been 
hypothesized to have evolved to mediate microbial competition by 
facilitating transfer of protein toxins between species25. The 
CandidatusEelbacter genome contained six clusters that were complex 
type I NRPS-PKS hybrid systems over 45 kb in length (Fig. 2b). Three 
replicate genomes of Candidatus Eelbacter were obtained from 
independent soil samples and shared the same set of biosynthetic clusters.
Both species also possessed CRISPR–Cas loci (31 spacers and repeats in 
CandidatusAngelobacter and 438 across the Candidatus Eelbacter 
genome). The ecological and evolutionary forces that can select for the 
production of an unusually high number of metabolites in a species are 
varied, and previously characterized examples are microorganisms with 
complex cooperative lifestyles26,27 or an association with a eukaryotic 
host28. The discovery of these two microorganisms establishes that 
bacterial specialization in secondary metabolite biosynthesis is not limited 
to known clades in the Actinomycetales, Proteobacteria, Cyanobacteria, 
Bacilli and the recently discovered Entotheonella28. When considered 
together, the genomic features of these Acidobacteria hint towards an 
unusually competitive lifestyle mediated by chemical and toxin production.

We tested whether the microorganisms genomically described in this study
are active and express biosynthetic NRPS or PKS gene clusters by 
analysing metatranscriptomics data from 120 soil microcosm samples from
two soil depths and two sampling locations from the same field site that 
were subject to amendment with glucose, methanol or water over 24 h 
(Supplementary Methods). These experiments were designed to probe the 
strong biological responses that occur in soils following water addition and 
nutrient release after a long dry period29. Because distinct NRPS or PKS 
clusters can produce products with very different bioactivities, we tracked 
expression of each gene cluster as a functional biosynthetic unit by 
pseudo-aligning exact matches of paired reads to full genomes obtained 
directly from the environment studied using Kallisto30. Overall, we detected
expression for 198 NRPS and/or PKS genes across those NRPS and PKS 
clusters with any level of gene expression (133 out of 180 clusters) 
(Supplementary Table 8). Expression of NRPS and PKS clusters was 
detected in all four phyla that we studied, and 84 active clusters were 
detected in Acidobacteria (Extended Data Fig. 4). We detected the 
expression of genes within 10 biosynthetic clusters—including 11 genes 
with NRPS and/or PKS domains within these clusters—of Candidatus 
Eelbacter (Extended Data Fig. 5) and 14 clusters of Candidatus 
Angelobacter—including 25 genes with NRPS and/or PKS domains. We 
tested for co-expression of genes in all biosynthetic clusters and found that
gene clusters were co-expressed more often than were randomized 



permutations of genes across each genome (Wilcoxon rank-sum test, P < 
0.001).

Across all organisms in our dataset, we identified ten NRPS and/or PKS 
gene clusters from seven genomes with levels of expression that were 
time-dependent across the 24-h time course of the amendment 
experiments (permutational multivariate analysis of variance 
(PERMANOVA); P < 0.05, false discovery rate (FDR) = 5%) (Fig. 3a and 
Extended Data Fig. 6). We confirmed differential expression over time for 
individual genes within these clusters using a model that accounts for 
variation in both sequencing library sizes and organism abundances across 
samples31 (DESeq232; P < 0.05; FDR = 5%) (Supplementary Table 9). 
Notably, the expression of genes from several gene clusters in Candidatus 
Angelobacter showed a statistically significant increase 12–24 h after 
substrate addition (Fig. 3a), and we found that the expression of several 
biosynthetic genes of Candidatus Angelobacter was temporally distinct 
from the expression of core ribosomal genes (Fig. 3b). These results 
indicate that Candidatus Angelobacter populations respond to water and 
substrate addition, and independently regulate expression of secondary 
metabolite genes many hours after a period of increased core metabolic 
gene expression.



Fig. 3: Metatranscriptomics of biosynthetic genes.

a, Levels of transcriptional expression of genes from biosynthetic gene clusters encoded in the 
Candidatus Angelobacter genome, across 120 microcosm soil samples grouped by extraction times 
(reported in hours). Expression levels are reported in log10-transformed transcripts per million 
(TPM). Gene clusters that were significantly differentially expressed across time points 
(PERMANOVA); *P < 0.05, FDR = 5% are marked by an asterisk. b, Hierarchical clustering of 
expression levels for differentially expressed (n = 120; DESeq2; P < 0.05; FDR = 5%) genes from the
Candidatus Angelobacter genome across samples grouped by experimental time point. 
Differentially expressed genes from biosynthetic clusters and differentially expressed core 
ribosomal proteins are marked. Values are reported in counts transformed using the rlog 
transformation from DESeq2 and were normalized by row. c, The transcriptional co-expression 
network modules (n = 120 microcosm time-point samples) significantly enriched in NRPS and PKS 
biosynthetic genes from three genomes (P < 0.05; hypergeometric distribution). Nodes represent 
gene transcripts and edges between them represent high topological overlap values between the 
transcripts. Genes outlined are genes found within biosynthetic gene clusters (BGC), and are 
coloured by assigned function using the Kyoto Encyclopedia of Genes and Genomes and Pfam 
databases. 16s rRNA MT, gene encoding for a 16S rRNA methyltransferase.

To predict the broader biological and ecological roles of these biosynthetic 
NRPS and PKS genes, we conducted separate co-expression analyses of all 



genes for each of the seven species identified with temporally dependent 
biosynthetic gene expression, using the WGCNA package33 (Supplementary
Methods), across the 120 microcosm time-point samples. Co-expressed 
genes often share biological functions and regulation34. Modules of co-
expressed genes significantly enriched in secondary metabolite genes 
were identified in four out of seven genomes (P < 0.05; hypergeometric 
distribution) (Fig. 3c, Extended Data Fig. 7 and Supplementary Table 10). 
These four modules were small (fewer than 69 genes) and very 
transcriptionally distinct. We found that all four secondary metabolism 
networks were dominated by genes involved in two-component systems, 
efflux and transcriptional regulators, and were almost completely devoid of
genes for the core processes of transcription, translation and energy 
metabolism.

For Candidatus Angelobacter, genes from five biosynthetic clusters were 
co-expressed together in a module with a variety of genes involved in 
environmental sensing and response, including homologues of the gene 
that encodes for the iron siderophore uptake receptor TonB. Homologues 
of the gene that encodes for the macrolide export transporter MacB were 
also found to be co-expressed with the biosynthetic genes, as were two 
putative antimicrobial resistance genes—those encoding for penicillin-
binding protein and for a 16S rRNA methyltransferase. Additional co-
expressed genes included an operon for a type VI secretion system and an 
operon annotated as encoding for gas vesicle proteins. Notably, the 
Angelobacter population expressed biosynthetic genes from multiple 
clusters simultaneously, suggesting a concerted response that is linked to 
ecological competition.

Acidobactera_gp22_AA4 was found to co-express its NRPS gene cluster 
(Acidobacteria_nrps_112) with response-regulatory genes and a set of 
genes involved in cell surface structure remodelling, as well as an operon 
of genes involved in regulating stress response (rsbX, rsbR and rsbS). A 
homologue of virginiamycin B lyase (vgb), which is an inactivator of type B 
streptogramin antibiotics, was also co-expressed in this module. The same 
operon of genes involved in the regulation of stress response was found to 
be co-expressed in the transcriptional network containing a biosynthetic 
cluster (cluster Gemmatimonadetes_nrps_183) in 
Gemmatimonadetes_AG49, along with a tonB homologue.

In summary, we uncovered extensive evidence for secondary metabolite 
synthesis in a large collection of bacterial genomes from four phyla of soil 
bacteria that have not previously been genomically linked to this capacity. 
Although we cannot confidently predict more than the basic chemical 
scaffolds of the products derived from the biosynthetic genes reported 
here, or their biological activities, a large percentage of known polyketide 
and nonribosomal metabolites isolated from microbial sources have 
antimicrobial activity35. Transcriptional associations between specific NRPS 
and PKS gene clusters, regulators of iron metabolism and putative 



antimicrobial resistance mechanisms suggest that these gene clusters may
be involved in competition for iron resources and antibiotic production. The
findings underline the utility of genome-resolved metagenomic 
investigations of soil ecosystems and open the way for laboratory 
characterization of genes for novel bioactive metabolites with potential 
ecological and pharmaceutical importance.

Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized and investigators were not blinded to 
allocation during experiments and outcome assessments.

Soil sampling and DNA extraction

Soil samples were collected from the Angelo Coast Range Reserve meadow
(39° 44′ 21.4′′ N 123° 37′ 51.0′′ W) on four dates in 2014 that bracketed the
first winter rain of the season. Samples were collected from three depths, 
10–20 cm, 20–30 cm and 30–40 cm at six independent sampling sites that 
were first metagenomically characterized as part of a previous study8. 
Sampling was conducted in biological triplicate, with three of the sites 
being unamended biological control plots and three being amended with 
extended spring rainfall from a sprinkler system as described in a previous 
publication8. Sampling was accomplished using a soil coring device that 
was fitted with sterilized polycarbonate sheaths. Sheaths were removed 
after each collection event. After collection, samples were flash-frozen in a 
mixture of dry ice and ethanol, and placed on dry ice for transport. A total 
of 60 soil cores were sampled across all depth and treatment conditions.

For each depth, DNA was extracted using MoBio Laboratories PowerMax 
Soil DNA Isolation kits from 10 g of soil as previously described8. Mean DNA
concentration in the extracted samples, quantified by using qubit 
fluorometric assay, was 388 ng/μl.

Sequencing, genomic assembly and binning

Metagenomic libraries for all 60 samples were prepared and sequenced at 
the Joint Genome Institute using an Illumina HiSeq 2500 platform to 
generate 250-bp paired-end reads. Samples were multiplexed for 
sequencing. Raw sequence data were processed with BBmap36 to remove 
Illumina adaptor and phiX sequences, and reads were quality-score 
trimmed using Sickle with default parameters37. Read sets were 
subsequently analysed for per-base GC content using FastQC38, and it was 
determined that GC content increased substantially after 200 bp in some 
sample read sets. Thus all reads longer than 200 bp were hard-trimmed to 
200 bp using BBmap. In total, 6.22 × 109reads were sequenced across all 
samples, which yielded 1.24 Tb of total sequence information with an 
average read count of 1.04 × 108 reads per sample.



The 60 samples were individually assembled de novo on a 24-core Intel 
Xenon Linux cluster node with 256 Gb of RAM using IDBA-UD39 with the 
following initial parameters: –pre_correction,–mink 30,–maxk 200,–step 10. 
In the 13 cases in which assemblies did not complete owing to memory 
requirements, minimum k-mer size was increased to 40 bp. The resulting 
assemblies averaged 1.15 Gb of assembled sequence with an N50 of 1,609
bp. Sequencing coverage of each contig was calculated by mapping raw 
reads back to assemblies using Bowtie240; 36.4% of reads mapped back to 
assembled sequence on average. It should also be noted that contigs >100
kb in length were acquired from all 60 assemblies, with a maximum contig 
size across assemblies of 2.7 Mb.

All resulting assemblies were subsequently clustered into genome bins 
individually using a hybrid binning approach. Initially, reads from all 
assemblies were separately cross-mapped to all scaffolds >2 kb in size 
from a single assembly using Bowtie2 to generate a coverage profile for 
the scaffolds of that assembly across all samples. Scaffold differential 
coverage profiles were used to inform five separate automated binning 
software packages: ABAWCA, ABAWACA241, MaxBin242, CONCOCT43 and 
MetaBAT44, which were run on all samples individually. The resulting output
genome bins for all packages run on a single sample were combined, 
assessed for completeness using an inventory of 51 universal single-copy 
genes (SCGs), and dereplicated by selecting the most complete bin of an 
overlapping set using DAStool45. Following automated binning, all genomic 
bins were manually inspected and curated using our in-house bin 
visualization and analysis system, ggKbase46 (http://ggkbase.berkeley.edu).
Finally, after manual curation in ggKbase, reads from a given sample were 
mapped back to the bins derived from that sample to identify and correct 
assembly and scaffolding errors, as previously described47. In total, 10,463 
individual genome bins were identified across all samples. Of these bins, 
3,334 were then estimated at a completeness of ≥ 70% using CheckM48. 
Taxonomic assignment of bins was performed by looking at the closest 
known hits and phylogenetic placement of ribosomal marker proteins. Bins 
were then dereplicated by clustering their ribosomal S3 proteins at 99% 
amino acid identity and choosing the bin in each cluster with the highest 
completeness and lowest contamination, which resulted in a final set of 
377 nonredundant bins in the bacterial phyla of interest.

Genomic analysis of genomes and biosynthetic gene clusters

Curated genomes were individually processed using antiSMASH 3.010 with 
default parameters. The results are summarized in Supplementary Table 2 
for gene clusters on contigs greater than 10 kb, Supplementary Table 1 for 
gene clusters on contigs smaller than 10 kb and Supplementary Table 4 for
all PKS and NRPS clusters on contigs greater than 10 kb. Ribosomal protein
phylogenetic trees were built using a concatenated set of 16 ribosomal 
proteins49 for all Acidobacteria genomes in this dataset, as well as those 
that could be obtained from GenBank or the Integrated Microbial Genomes 



platform. An Escherichia coli genome was used as an outgroup for the tree.
These protein sequences were aligned with MUSCLE50 and then a maximum
likelihood phylogeny was built using FastTree251 with default parameters.

To test whether existing primer-based methods have the ability to amplify 
these biosynthetic gene sequences, sets of forward and reverse 
degenerate primers used by previous analyses of biosynthetic genetic 
diversity2,17 for ketosynthase genes and adenylation domain genes were 
searched for pattern matches against all NRPS and PKS clusters in both 
reverse and forward reading frames. The inosine nucleotides were 
substituted with the ambiguous code B, because these nucleotides can 
base pair with adenine, cytosine and uracil. Only five of our gene clusters 
had correctly oriented matches to both a forward and reverse primer within
2 kb of each other (Supplementary Table 6).

The network of gene clusters based on shared gene content was built by 
performing an all-versus-all BLASTP search of predicted biosynthetic 
protein sequences. Shared proteins were defined as protein alignments 
with at least 50% of the query sequence covered and amino acid per cent 
identity >50%. Two clusters (nodes) were connected if either one shared at
least 10% of its proteins with the other. The width and colour intensity of 
the network edges was scaled with the length of the shared protein 
alignments, normalized to the length in base pairs of the two clusters being
compared. Biosynthetic gene clusters were compared to clusters 
previously reported in the MiBIG repository19 using BLASTP and the same 
definition of shared proteins, and the closest hits to MiBIG clusters 
containing at least five genes were reported. To identify antibiotic 
resistance genes in clusters, we searched protein products of all 
biosynthetic gene clusters with a set of hidden Markov models derived 
from a previous publication22, using HMMER with the gathering threshold 
cutoffs specified in this previous study. We then manually curated hits and 
eliminated matches to ambiguous functions (acetyltransferases, general 
methyltransferases and amidases) and focused on reporting proteins with 
functions that are unlikely to be involved in generic biosynthetic pathways.
The Candidatus Angelobacter and Eelbacter genomes were both 
subsequently analysed using the PRISM3 webserver24.

Soil microcosm experiments and RNA extraction

At the Angelo Coast Range Reserve meadow, five holes were bored within 
a 1-m2 area to obtain 10-cm-long cores of soil, from depths 10–20 cm and 
30–40 cm (permission under APP # 27790). Samples were collected on 21 
September 2015. At each depth, five cores were mixed in a large Whirl-Pak
bag, then distributed into five capped core liners and stored in individual 
Whirl-Pak bags at 4 °C. The unsieved soils were mixed a second time in the
laboratory to obtain six equally proportioned samples, and the weights 
were measured. To settle the soil, the core liners were struck with a rubber
mallet 50 times each, and then stored at 4 °C. The night before wet-up 



experiments, the cores were placed in a cooler alongside the substrate that
was to be added, so that the soil and substrate equilibrated to the same 
temperature and the soil would be kept in the dark. Immediately before 
adding the substrate, 10 g soil was collected for DNA extraction and 2 g 
soil with 4 ml LifeGuard RNA Soil Preservation Solution (MoBio) was 
collected for RNA purification. Both were immediately frozen in liquid N2 
and stored in a freezer at −80 °C. Samples at different time points were 
collected for nucleic acid extraction in the same manner. Ten millimolar 
glucose, methanol or water substrate was added to the open-soil core 
liners and soil in a cooler by pipette 2.5–4 ml at a time over 1 min, and the 
lid was closed. Substrates were added in amounts that increased the soil 
moisture to the level of a sample collected from the meadow after 29 cm of
rainfall on 5 November 2015 (the moisture level of the field sample was 
determined by weight loss on drying). RNA was isolated from 2 g soil with 
RNA PowerSoil Total RNA Isolation kits, following kit protocols. cDNA 
libraries were prepared and were sequenced to generate 5.9 × 109 150-bp 
paired-end reads.

Transcriptomics

To test for the expression of clusters of biosynthetic genes within a soil 
environment, we analysed metatranscriptomics data from experimental 
soil microcosms. Soil samples from depths of 20 cm and 40 cm from two 
sampling locations were subject to amendment with glucose, methanol or 
water, and RNA was extracted from samples at 0, 4, 8, 12 and 24 h after 
treatment. From the 120 sequenced samples, we generated 5.9 × 109 150-
bp paired-end reads. Transcript abundances for all Prodigal-predicted gene 
sequences from all genomes reconstructed from the project site were 
quantified using Kallisto30 exact pseudoalignments of paired reads. Kallisto 
was run using default parameters. Transcripts that were either found to be 
expressed in at least 10% of samples or to have at least 100 counts were 
reported and included in downstream analyses. Differential gene 
expression analysis was performed using PERMANOVA and DESeq232 (see 
‘Statistical analysis’).

We mapped RNA reads from one replicate for each sample at the t = 0 and 
t = 24 h time points to 16S sequences assembled from our genomic data 
from the two plots from which the microcosm soil was obtained. A subset 
of 4,000 RNA reads was compared to the SILVA 16S database using BLAST 
to determine the percentage of RNA reads that were 16S rRNAs. Of 16S 
rRNA reads in the RNA data, 47% ± 19% were determined to be at least 
98% identical to 16S sequences assembled in the genomic data 
(Supplementary Table 12), which indicates that the community that we 
assembled in the genomic dataset is a substantial fraction of the active 
community in the metatranscriptomic data.

We performed weighted gene co-expression network analyses using the 
WGCNA package33 separately and individually on genes from seven 



genomes that were identified as having differentially expressed 
biosynthetic gene clusters over time, reasoning that these genomes will 
have the strongest signal of secondary metabolite co-expression. 
Transcripts per million for each gene were log-transformed. A soft network 
threshold was generated by choosing the lowest value that returned an R2 
fit to a scale-free network greater than 0.8. A signed adjacency matrix was 
built using Pearson correlations, and a topographical overlap matrix was 
generated from the adjacency matrix. Module detection was run using the 
cuttreeDynamic() function with the ‘hybrid’ method, a minimum cluster 
size of 15, deepSplit set to TRUE and a cutHeight of 0.95.

Statistical analysis

To test whether cluster genes were significantly more co-expressed than 
random genes across a genome, we calculated all Spearman correlations 
between genes within clusters (mean ρ = 0.063; n = 5,940 comparisons), 
and compared this distribution of correlations to a distribution of all 
Spearman correlations between 100 randomly chosen genes from each 
genome (mean ρ = 0.041; n = 503,699 comparisons) using an independent 
two-group Wilcoxon rank-sum test (P < 0.001). We also compared both 
distributions to a distribution of randomly selected genes from the entire 
dataset compared (mean ρ = 0.026 n = 4947228 comparisons) and found 
random genes to have the lowest levels of co-expression (P < 0.001).

To identify differentially expressed clusters of genes between time points, 
we used the adonis function from the vegan package52. Transcript 
abundances in transcripts per million were log2-transformed, and adonis 
tests were run on all clusters with any expression data for at least five 
proteins. Pvalues were corrected for multiple tests using the Benjamini and
Hochberg53 method with a controlled family wise error rate of 5%.

To detect differential expression of individual genes within differentially 
expressed biosynthetic clusters between time points, we modelled Kallisto 
counts in the context of all metadata variables (plot, depth, treatment and 
time) using a negative binomial model implemented in DESeq232. Kallisto 
count data from each genome were analysed independently so that the 
DEseq size factors for cross-sample count normalization would reflect the 
total transcriptomic activity of that genome in each sample. This approach 
is robust to biases in total transcriptomic activity per organism between 
samples, with the intention to identify differences in gene expression 
independent of changes in taxonomic composition, similar to previously 
reported methods30. After size factor normalization, counts were fit to a 
negative binomial model of the form: count ~ depth + plot + treatment + 
time. To specifically test whether any genes exhibit differential expression 
associated with changes in time while accounting for the effects of depth, 
plot and treatment, we fit count data to a reduced model of the form: 
count ~ depth + plot + treatment. We then compared fits between the full 
and reduced model using the likelihood ratio test implemented in DESeq2. 



The significant genes (with an FDR-corrected P < 0.05) identified by 
comparing the full and reduced model were grouped, and direct 
comparisons were made between counts at 0 h and all other time points, 
to find those time points that exhibited a significant change in expression 
relative to the 0 h time point. This method confirmed differential 
expression of several individual genes within each differentially expressed 
biosynthetic cluster.

When examining modules of co-expression genes, the hypergeometric test 
was used to determine whether a module was significantly enriched in 
biosynthetic genes, using the phyper function in R.

Reporting summary

Further information on experimental design is available in the Nature 
Research Reporting Summary linked to this paper.

Code availability

Custom code used for the analyses (transcriptomics expression, DESeq2 
differential expression and WGCNA co-expression analyses) that support 
this work is available in R Notebook format at 
http://www.github.com/alexcritschristoph/angelo_biosynthetic_genes_analy
sis.

Data availability

All genomic data associated with this project has been deposited in 
BioProject under accession PRJNA449266. DNA sequencing reads for this 
project have been deposited in the Sequence Read Archive database under
PRJNA449266. Genomes analysed as part of this project have been 
submitted to the Whole Genome Shotgun (WGS) database. Genomes are 
also available through ggKBase at the following URL: 
http://ggkbase.berkeley.edu/angelo2014/organisms. Raw data for Fig. 2a 
and AntiSMASH annotated GenBank files for biosynthetic gene clusters 
reported on in this Letter are available at: 
http://www.github.com/alexcritschristoph/angelo_biosynthetic_genes_analy
sis.
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Extended data figures and tables

Extended Data Fig. 1 Experimental plan and project overview.

Schematic showing major components of microcosm time-point sampling 
and metagenomic analyses.

Extended Data Fig. 2 NRPS and PKS biosynthetic loci of the Candidatus 
Eelbacter genome.

Biosynthetic loci identified by both antiSMASH and PRISM from the 
Candidatus Eelbacter genome that contained at least 10 kb of biosynthetic 
genes. Predictions of the organization of the biosynthetic domains in each 
locus shown here were determined by PRISM. Smaller biosynthetic loci from 
this genome are not shown. Full names for the biosynthetic domains are 
given in Supplementary Table 11.

Extended Data Fig. 3 NRPS and PKS biosynthetic loci of the Candidatus 
Angelobacter genome.

Biosynthetic loci identified by both antiSMASH and PRISM from the 
Candidatus Angelobacter genome that contained at least 10 kb of 
biosynthetic genes. Predictions of the organization of the biosynthetic 
domains in each locus shown here were determined by PRISM. Smaller 
biosynthetic loci from this genome are not shown. Full names for the 
biosynthetic domains are given in Supplementary Table 11.

Extended Data Fig. 4 Metatranscriptomics of NRPS and PKS proteins.

The graph shows levels of transcriptional expression of genes containing 
NRPS and PKS protein domains across genomes from the four phyla of 
interest. Values are reported in log10-transformed transcripts per million and 
are summed across the 120 soil microcosm samples.



Extended Data Fig. 5 Metatranscriptomics of the CandidatusEelbacter 
genome.

The levels of transcriptional expression of genes from biosynthetic gene 
clusters encoded in the Candidatus Eelbacter genome across 120 soil 
microcosm time-point samples grouped by extraction times (reported in 
hours) are shown. Expression levels are reported in log10-transformed 
transcripts per million.

Extended Data Fig. 6 Differentially expressed biosynthetic gene clusters over
time.

The levels of expression of biosynthetic gene clusters from all organisms 
studied (excluding Candidatus Angelobacter data shown in Fig. 3a) that were
found to be significantly differentially expressed between time points 
(PERMANOVA; n = 120; P < 0.05, FDR = 5%) across 120 soil microcosm time-
point samples are shown. Expression levels are reported in log10 transcripts 
per million.

Extended Data Fig. 7 Biosynthetic co-expression transcriptional module from 
Verrucomicrobia_AV7.

A transcriptional network of co-expressed Verrucomicrobia_AV7 genes from a
module found to be significantly enriched in genes from the biosynthetic 
gene clusters Verrucomicrobia_nrps_156 and Verrucomicrobia_nrps_157 (P < 
0.05; hypergeometric distribution) is shown. Genes from the biosynthetic 
locus are outlined with a dashed line.
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