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ABSTRACT OF THE DISSERTATION

Deep Learning in Medical Image Analysis

By

Hao Tang

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Professor Xiaohui Xie, Chair

Developing algorithms to better interpret images has been a fundamental problem in the field

of medical imaging analysis. Recent advances in machine learning, especially deep convolu-

tional neural networks (DCNNs), have demonstrated great improvement to the speed and

accuracy of many medical image analysis tasks, such as image registration, anatomical struc-

tures/tissue segmentation, and computer-aided diagnosis. Despite previous progress, these

problems still remain challenging due to the limited amount of labeled data, large anatomical

variance among patients, etc. In this dissertation, we propose various approaches to address

the aforementioned challenges in order to achieve better accuracy, higher efficiency, and use

fewer labeled data. First, to address the difficulty of accurately detecting pulmonary nodules

in its early stage, we propose a novel CAD framework that consists entirely of 3D DCNNs

for detecting pulmonary nodules and reducing false positives in chest CT images. Second,

to avoid training several deep learning models to solve nodule detection, false-positive re-

duction, and segmentation separately which may be suboptimal and resource-intensive, we

propose NoduleNet to solve the three tasks jointly in a multi-task fashion. To avoid fric-

tion between different tasks and encourage feature diversification, we incorporate two major

design tricks: 1) decoupled feature maps for nodule detection and false positive reduction,

and 2) a segmentation refinement subnet for increasing the precision of nodule segmentation.

Third, to address the limitation in scope and/or scale of previous works on organs-at-risk

x



(OAR) delineation - with only a few OARs delineated and a limited number of samples

tested, we propose a new deep learning model that can delineate a comprehensive set of 28

OARs in the head and neck area, trained with 215 CT samples collected and carefully anno-

tated by experienced radiation oncologists with over ten years of experience. The accuracy

of our model was compared to both previous state-of-the-art methods and a radiotherapy

practitioner. Moreover, we deployed our deep learning model in actual RT planning of new

patient cases, and evaluated the clinical utility of the model. Fourth, to reduce the in-

formation loss from cropping/downsampling 3D images due to limited GPU memory, we

propose a new framework for combining 3D and 2D models, in which the segmentation is re-

alized through high-resolution 2D convolutions, but guided by spatial contextual information

extracted from a low-resolution 3D model. A self-attention mechanism is implemented to

control which 3D features should be used to guide 2D segmentation. Last but not least, since

DCNNs often require a large amount of data with manual annotation for training and are

difficult to generalize to unseen classes, we propose a new few-shot segmentation framework

RP-Net to address this issue. RP-Net has two important modules: 1) a context relation

encoder (CRE) that uses correlation to capture local relation features between foreground

and background regions, and 2) a recurrent mask refinement module that repeatedly uses

the CRE and a prototypical network to recapture the change of context relationship and

refine the segmentation mask iteratively.
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Chapter 1

Introduction

1.1 Background

Medical imaging technologies, e.g. computed tomography (CT), magnetic resonance (MR),

positron emission tomography (PET), mammography, ultrasound, X-ray and etc., have be-

come a critical component for the early detection, diagnosis and treatment of disease over

the last decades [9, 120]. In the clinic, the interpretation of medical images is mostly done

by experienced human experts with many years’ clinical experience. However, this process is

often tedious and prone to human errors, due to the large variation of pathology or anatom-

ical structures and potential fatigue of experts. Computational tools that can automatically

conduct these image analysis can greatly alleviate the manual efforts of human experts, if

these tools can achieve high accuracy within a reasonable amount of time.

Recent advances in artificial intelligence and machine learning, especially deep learning have

brought dramatic changes to medical image analysis. Computational tools that are developed

using deep learning have achieved huge accuracy and speed improvement, making it possible

to be applied in clinical practice and help doctors to interpret various medical images. Despite

1



the extensive effort to improve the accuracy and efficiency of using deep learning based

algorithm for automatic medical image analysis, it still remains challenging due to the limited

amount of labeled data, large anatomical variance among patients, etc. In this dissertation,

we first give a review on different challenges in different medical image tasks and then propose

new approaches to address them.

1.2 Deep Learning in Medical Image Analysis

In recent years, deep learning has achieved substantial success and attention in the field of

medical image analysis. In this dissertation, we focus on developing deep learning based

methods to address challenges in several topics, including pulmonary nodule detection and

segmentation using CT images, organs-at-risk (OAR) delineation for radiotherapy, and few-

shot learning in the low data regime.

Lung cancer has become the leading cause of cancer death among men and women worldwide

[124]. Detecting pulmonary nodules and screening lung cancer in early stages using Low-

dose Computed Tomography (CT) have been demonstrated to be effective and can increase

patients’ 5-year survival rates [146]. However, traditional Computer aided diagnosis (CAD)

system often detects too many false positive and thus hard to be applied in real clinical

practice. Detecting pulmonary nodules with a low false positive rate while maintaining high

sensitivity is challenging because of the variations in nodules’ size, shape, and the abundance

of tissues sharing similar appearance. This dissertation attempts to address these challenges

in two ways. First, to reduce the false positive rate, we propose a novel CAD framework that

consists entirely of 3D DCNNs for detecting pulmonary nodules and reducing false positives

in chest CT images. Second, to avoid training several deep learning models to solve nodule

detection, false positive reduction and segmentation separately which may be suboptimal

and resource intensive, we propose NoduleNet to use multi-task learning by integrating the

2



three tasks into one network, and carefully remove frictions among them to maximize their

performance.

Radiation therapy (RT) is an important treatment option for many types of cancers. It

can be used as an adjuvant treatment before or after surgery, or as a radical treatment

administered jointly with chemotherapy [69, 98, 5, 6, 81, 100, 130, 35, 62, 18]. An important

step involved in RT planning is the delineation of organs-at-risk (OAR) from CT images

so that they can be protected from irradiation. Existing methods mostly adopt atlas-based

methods which cannot adequately account for anatomical variance. Although recent methods

using deep learning on whole CT images show improved performance [44, 144, 182, 85], these

studies were limited in scope and/or scale - with only a few OARs delineated and a limited

number of samples tested. In this dissertation, we propose two new methods to address

these issues in previous methods. First, we propose Ua-Net, an end-to-end DCNN, that first

uses object detection to locate the potential OAR and then uses segmentation head for a

finer-level segmentation. We apply Ua-Net to delineate 28 organs at a time, and deploy and

evaluate its performance in real clinical practice. Second, to reduce the information loss

from cropping/downsampling 3D images due to limited GPU memory, we propose a new

framework for combining 3D and 2D models, in which the segmentation is realized through

high-resolution 2D convolutions, but guided by spatial contextual information extracted from

a low-resolution 3D model using self-attention.

Few-shot learning has been proposed as one of the potential solutions to addressing these

challenges in the low data regime [128, 131, 153, 30, 70]. It is an attractive solution to address

the expensive data labeling issue in medical image analysis. Although recent studies [113,

95] show promising result of using few-shot segmentation in medical image segmentation,

they do not achieve satisfying accuracy. This is likely because they do not adequately

capture the foreground and background relationship around the object being segmented. As

a result, in this dissertation, we propose a new few-shot segmentation framework RP-Net

3



which iteratively uses correlation and mask refinement to better capture the foreground and

background relationship.

1.3 Dissertation Outline and Contribution

The outline of the rest of the dissertation is as follows:

Chapter 2: In this chapter, we introduce a novel two-stage DCNN approach to detect

pulmonary nodules. Our approach, unlike previous ones that are either 2D or 2.5D, is fully

three-dimensional end-to-end and utilizes the state-of-the-art in object detection. First,

nodule candidates are identified with a U-Net-inspired 3D Faster R-CNN trained using online

hard negative mining. Second, false positive reduction is performed by 3D DCNN classifiers

trained on difficult examples produced during candidate screening. Finally, we introduce a

method to ensemble models from both stages via consensus to give the final predictions. By

using this framework, we ranked first of 2887 teams in Season One of Alibaba’s 2017 TianChi

AI Competition for Healthcare. Part of this chapter is published in [135].

Chapter 3: In this chapter, we present an end-to-end framework for nodule detection,

integrating nodule candidate screening and false positive reduction into one model, trained

jointly. This work addresses the issues of most of the existing deep learning nodule detection

systems that are constructed in two steps: a) nodule candidates screening and b) false

positive reduction, using two different models trained separately. Although it is commonly

adopted, the two-step approach not only imposes significant resource overhead on training

two independent deep learning models, but also is sub-optimal because it prevents cross-talk

between the two. We demonstrate that the end-to-end system improves the performance by

3.88% over the two-step approach, while at the same time reducing model complexity by one

third and cutting inference time by 3.6 fold. Part of this chapter is published in [137].
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Chapter 4: In this chapter, we release our manually labeled 50 CT scans which are randomly

chosen from the LUNA16 dataset and explore the use of deep learning for pulmonary lobe

segmentation. We propose pre-processing CT image by cropping region that is covered

by the convex hull of the lungs in order to mitigate the influence of noise from outside

the lungs. Moreover, we design a hybrid loss function with dice loss to tackle extreme

class imbalance issue and focal loss to force model to focus on voxels that are hard to

be discriminated. To validate the robustness and performance of our proposed framework

trained with a small number of training examples, we further tested our model on CT scans

from an independent dataset. Experimental results show the robustness of the proposed

approach, which consistently improves performance across different datasets by a maximum

of 5.87% as compared to a baseline model. Part of this chapter is published in [138].

Chapter 5: In this chapter, we propose a new end-to-end 3D deep convolutional neural

net (DCNN), called NoduleNet, to solve nodule detection, false positive reduction and nod-

ule segmentation jointly in a multi-task fashion. To avoid friction between different tasks

and encourage feature diversification, we incorporate two major design tricks: 1) decou-

pled feature maps for nodule detection and false positive reduction, and 2) a segmentation

refinement subnet for increasing the precision of nodule segmentation. Extensive experi-

ments on the large-scale LIDC dataset demonstrate that the multi-task training is highly

beneficial, improving the nodule detection accuracy by 10.27%, compared to the baseline

model trained to only solve the nodule detection task. We also carry out systematic ablation

studies to highlight contributions from each of the added components. Code is available

at https://github.com/uci-cbcl/NoduleNet. Part of this chapter is published in [138].

Part of this chapter is published in [139].

Chapter 6: In this chapter, we present a deep learning model to automatically delineate

OARs in head and neck, trained on a dataset of 215 CT scans with 28 OARs manually

delineated by experienced radiation oncologists. On a hold-out dataset of 100 CT scans,
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our model achieves an average Dice similarity coefficient (DSC) of 78.34% across the 28

OARs, significantly outperforming human experts and the previous state-of-the-art method

by 10.05% and 5.18% respectively. Our model takes only a few seconds to delineate an entire

scan compared to over half an hour required by human experts. These findings demonstrate

the potential for deep learning to improve the quality and reduce the treatment planning

time of radiation therapy. Part of this chapter is published in [134].

Chapter 7: In this chapter, we propose a new framework for combining 3D and 2D models,

in which the segmentation is realized through high-resolution 2D convolutions, but guided

by spatial contextual information extracted from a low-resolution 3D model. We implement

a self-attention mechanism to control which 3D features should be used to guide 2D seg-

mentation. Our model is light on memory usage but fully equipped to take 3D contextual

information into account. Experiments on multiple organ segmentation datasets demonstrate

that by taking advantage of both 2D and 3D models, our method is consistently outperforms

existing 2D and 3D models in organ segmentation accuracy, while being able to directly take

raw whole-volume image data as inputs. Part of this chapter is published in [136].

Chapter 8: In this chapter, we propose a new framework for few-shot medical image

segmentation based on prototypical networks. Our innovation comes at the design of two

important modules: 1) a context relation encoder (CRE) that uses correlation to capture

local relation features between foreground and background regions; 2) a recurrent mask

refinement module that repeatedly uses the CRE and a prototypical network to recapture the

change of context relationship and refine the segmentation mask iteratively. Experiments on

two abdomen CT datasets and an abdomen MRI dataset show the proposed method obtains

substantial improvement over the state-of-the-art method by an average of 16.32%, 8.45%

and 6.24% in terms of DSC, respectively.
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Chapter 2

Automated Pulmonary Nodule

Detection using

3D Deep Convolutional Neural

Networks

2.1 Introduction

Lung cancer has been the leading cause of all cancer-related deaths, causing 1.3 millions

death annually [123]. Detecting pulmonary nodules early is critical for a good prognosis of the

disease, and low-dose computed tomography (CT) scans are widely used and very effective

for this purpose. However, manually screening CT images is time-consuming for radiologists

who are increasingly overwhelmed with data. Advanced computer-aided diagnosis systems

(CADs) have the potential to expedite this process but the task is complicated by the

variation in nodule size (from 3 to 50 mm), shape, density, and anatomical context, as well
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as the abundance of tissues that resemble the appearance of nodules (e.g., blood vessels,

chest wall).

Many approaches have been proposed for this challenge, often employing two stages: 1) nod-

ule candidate screening, which identifies candidates with high sensitivity at the expense of

accumulating many false positives, and 2) false positive reduction. Frameworks for the first

stage commonly relied on techniques including voxel clustering and curvature computation

[61, 90], while second stage methods carefully utilized low-level descriptors such as intensity,

size, sphericity, texture, and contextual information [61, 90, 149]. These conventional meth-

ods had limited discriminative power due to their reliance on hand-crafted features. More

recent efforts have focused on the use of convolutional neural networks (CNNs) and have

produced encouraging results, but often use 2D or 2.5D networks in some components for

inherently 3D data [21, 115, 117]; nodules can be impossible to discriminate from tissues such

as blood vessels from axial slices. Moreover, frameworks incorporating the state-of-the-art

models in object detection are still rare.

In this chapter, we propose a novel CAD framework that consists entirely of three-dimensional

deep convolutional neural networks (3D DCNNs) end-to-end. Candidate detection is first

performed by a U-Net [109]-like Faster Region-based CNN (Faster R-CNN) [105], which is

the state-of-the-art model in object detection. The hard mimics identified by the detector

are then used to train highly discriminative, deep 3D classifiers for false positive reduction.

Both models heavily utilize residual shortcuts [46] that promote performance gains with

deep architectures. The final prediction scores are generated by ensembling the detector

and the classifiers, unifying contributions learned from both stages. We validated our pro-

posed method on a dataset of 1000 low-dose CT images provided by the 2017 TianChi AI

Competition for Healthcare organized by Alibaba [1], where our model ranked 1st in Season

One.
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2.2 Related work

Ding et al. (2017) proposed a CAD system using Faster R-CNN on 2D axial slices then false

positive reduction with a 3D DCNN [21]. Dou et al. (2017) leverages 3D input but uses a

binary classifier 3D CNN with online sample filtering for candidate screening, rather than a

Faster R-CNN [27]. Our work utilizes an efficient 3D Faster R-CNN for detection and deep

residual 3D classifiers for false positive reduction.

2.3 Proposed framework

Figure 2.1: General architecture of the candidate-screening 3D Faster R-CNN.

Our proposed method for nodule detection roughly follows two stages: (1) candidate screen-

ing using a 3D Faster R-CNN, and (2) subsequent false positive reduction using 3D DCNN

classifiers. The purpose of the Faster R-CNN in (1) is to identify nodule candidates while

preserving high sensitivity, whereas the classifiers in (2) finely discriminate between true

nodules and false positives. We find optimal results when models from both stages are

ensembled for final predictions.

Rather than using one stage in which we heavily retrain the Faster R-CNN with hard exam-

ples, we believe the two-stage framework provides more flexiblity in adjusting the trade-off

between sensitivity and specificity.
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2.3.1 Candidate Screening Using 3D Faster R-CNN

The success of Faster R-CNN [105] and deep residual networks [46] in natural images, and

U-Net [109] in medical images, has inspired the use of a deep residual 3D Faster R-CNN

architecture with transposed convolutional layers, which is illustrated in Fig. 2.1. After a

series of downsampling layers to encode high-level information, we concatenate early features

with latter ones and feed them through several upsampling transposed convolutions, decoding

high-resolution information regarding the nodule’s location and diameter. Because we use

over 30 convolutional layers, we use residual shortcuts extensively. Memory limits on 4 GPUs

made it necessary to split the input image into overlapping 128× 128× 128 input volumes,

process them separately, and combine them.

The output is a 32× 32× 32 map of (x, y, z) coordinates, diameter, and nodule probability

corresponding to regions of the input volume. These five features are parameterized by three

anchors whose sizes we set to 5, 10, and 30 mm based on the nodule size distribution in our

dataset. Each input region is associated with output for each anchor, so the output map is

of shape 32× 32× 32× 5× 3.

We compute a classification loss Lcls for the predicted nodule probabilities and four regression

losses Lreg associated with predicted nodule coordinates and diameters. The ground truth

labels are determined for each anchor as follows. If an anchor i overlaps with a nodule with

an intersection over union (IoU) equal or greater than a threshold of 0.5, we regard it as

positive (p∗i = 1). In contrast, if anchor i overlaps with a nodule with an IoU less than 0.2,

we regard it as negative (p∗i = 0). All other anchors do not contribute to the loss. Note also

that only positive anchors contribute to the regression loss. The final loss for anchor i is
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defined as

L(pi, ti) = λLcls(pi, p
∗
i ) + p∗iLreg(ti, t

∗
i ) (2.1)

where pi is the predicted nodule probability; ti is the vector

ti =

(
x− xa
da

,
y − ya
da

,
z − za
da

, log
d

da

)
(2.2)

of predicted relative coordinates and diameter, where x, y, z, d are the predicted nodule

coordinates and diameter and

xa, ya, za, da are the coordinates and size of anchor i. Similarly, the ground truth nodule is

expressed as the vector

t∗i =

(
x∗ − xa
da

,
y∗ − ya
da

,
z∗ − za
da

, log
d∗

da

)
(2.3)

where x∗, y∗, z∗, d∗ are the coordinates and diameter of the ground truth box. We set λ to

1. We use binary cross entropy loss for Lcls and smooth L1 loss for Lreg.

Hard Negative Mining

Each input volume to the Faster R-CNN is dominated by numerous trivial negative locations

(air). To make the negative samples as informative as possible, we used hard negative mining

[121]. A pool of N predictions corresponding to condition negative anchors were randomly

selected and ranked in descending order according to nodule probability. The top n samples
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were chosen to be considered in the loss function.

2.3.2 False Positive Reduction Using 3D DCNN Classifier

Figure 2.2: General architecture of the 3D false positive reduction classifier.

The predictions (x, y, z, d, p) from the Faster R-CNN are used to extract 64× 64× 64 crops

centered at (x, y, z) for input to a DCNN classifier, whose architecture is illustrated in Fig.

2.2. It begins with several residual blocks of Conv, BatchNorm, ReLU layers, which are

ultimately fed to a fully-connected layer to calculate the final classification score. We inte-

grate detailed local information about the nodule with more contextual features by adding

shortcuts from the end of each block to the last feature map.

12



2.4 Experiments and results

We validated our framework on the large-scale TianChi competition dataset, which contains

CT scans from 1000 patients from hospitals in China. The images were annotated by radi-

ologists similarly to LUNA16 [117], i.e. with nodule location and size. We used 600 images

for training (containing 969 annotated nodules), 200 for validation, and the remaining 200

comprised the test set.

The evaluation metrics included sensitivity and average number of false positives per scan

(FPs/scan), where a detection is considered a true positive if the location falls within the

radius of a nodule centroid. The competition ranked participants based on a CPM score

defined as the average sensitivity at seven predefined FPs/scan rates: 1/8, 1/4, 1/2, 1, 2, 4,

8.

2.4.1 Training

The Faster R-CNN was trained with Adam for 150 epochs. The examples for each epoch

were split such that 70% of the examples consisted of the entire training set of annotations

(positive samples), and 30% consisted of random nodule-lacking cropped images from random

scans (negative samples). The classifier was trained for 300 epochs with Adam using the

same positive examples as the Faster R-CNN detector. These were balanced with hard

negative samples, i.e. 969 samples for which the detector assigned a confidence score of 0.5

or greater. The input candidates for test set predictions were provided by the detector. For

both detector and classifier, the checkpoint with the highest CPM on the validation set was

used for prediction on the test set.
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Table 2.1: Validation score comparison showing stepwise performance gains with hard neg-
ative mining and classifier ensembling.

Prediction Method Validation CPM

Faster R-CNN 0.603

Faster R-CNN w/ hard negative mining 0.695

Average (Faster R-CNN, classifier) 0.723

Consensus (Faster R-CNN, 3 classifers) 0.758

2.4.2 Data Augmentation

We trained the Faster R-CNN with random x-, y-, and z-axis flips; random scaling; and

large jitters to promote translational invariance and improve generalization. The classifiers

were trained similarly along with random rotations. Interestingly, even though the nodule

locations predicted by the detector are expected to be centers, minor regression errors made

it necessary to add small jitters of up to 2 mm.

2.4.3 Faster R-CNN and Classifier Ensemble Results

The stepwise performance gains of the Faster R-CNN with hard negative mining and clas-

sifier ensembles are shown in Table 2.1. Hard negative mining substantially increased the

validation CPM from 0.603 to 0.695, demonstrating the importance of using the most in-

formative negative samples. The ensemble average of the Faster R-CNN and the classifier

achieved an improved validation CPM of 0.723.

The validation CPM was increased further still, to 0.758, with a “consensus ensembling”

method that worked as follows. Two additional classifiers with similar architecture were

trained. If the three classifiers agreed with the ensemble average of the detector with the

first classifier that a particular candidate location was the most probable nodule for that

patient, then the probability score was increased such that “consensus” candidates would
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Table 2.2: Top 5 submissions to Season One of the TianChi challenge, for which 2887 teams
participated.

Team Test CPM

Ours 0.815

Yi Yuan Smart HKBU 0.806

LAB2112 (qfpxfd) 0.780

Biana Information Technology 0.780

LAB518-CreedAI 0.769

rank higher than non-consensus ones across all test patients. Fig. 2.3 presents the free-

response receiver operating characteristic (FROC) curves. Note the increase in sensitivity

at 0.125 and 0.25 FPs/scan.

Figure 2.3: Free-response receiver operating characteristic (FROC) curves showing stepwise
performance gains in validation with hard negative mining and classifier ensembling.

Ultimately, this consensus ensembling method was used in calculating our final test set

predictions for the competition. The CPM score was 0.815, surpassing all other submissions

for the TianChi challenge. Final rankings are shown in Table 2.2.
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2.5 Conclusion

In this chapter, we present our fully three-dimensional framework of automatic pulmonary

nodule detection. It consists of a U-Net-like 3D Faster R-CNN, trained with online hard

negative mining, and a 3D classifier for false positive reduction. We introduce a consensus

ensembling method to integrate both models for predictions. We validate our method in the

2017 TianChi Healthcare AI Competition, achieving superior performance (0.815 CPM). We

believe our model is a powerful clinical tool that harnesses state-of-the-art architectures in

a way that captures the spatial nature of CT data.
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Chapter 3

An End-to-end Framework for

Integrated Pulmonary Nodule

Detection and False Positive

Reduction

3.1 Introduction

Lung cancer has become the leading cause of cancer death among men and women world-

wide [124]. Low-dose Computed Tomography (CT) has demonstrated to be an effective tool

for detecting pulmonary nodules and screening lung cancer in early stages. Recent report

suggests that detecting lung cancer in early stages can increase patients’ 5-year survival rates

by 63-75% [146]. However, locating nodules manually through CT scans is time-consuming.

Over the past a few years, a lot of work has been done to automatically detect pulmonary

nodules by using computer algorithms to read CT images. However, detecting pulmonary
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nodules with a low false positive rate while maintaining high sensitivity is challenging be-

cause of the variations in nodules’ size, shape, and the abundance of tissues sharing similar

appearance.

In recent years, deep convolutional neural nets have shown great promise for automated

nodule detection [26, 186, 135, 118, 22]. Most of the state-of-art nodule detection systems

are constructed in two steps, composed of two separate subsystems: one used for generat-

ing nodule candidates, and the other for subsequent false positive reduction. The primary

objective of the first subsystem is to generate a comprehensive list of candidate nodules

with high sensitivity in mind, while the objective of the second subsystem is to remove false

positives to improve specificity. Deep learning models have been proposed for both systems.

The first subsystem usually uses segmentation-based methods or Region Proposal Network

(RPN) [107] to generate candidates, while the second subsystem primarily uses classification

models to distinguish nodules from non-nodules.

Although widely used, the two-step approach implemented in current deep learning systems

has two major disadvantages. First, it is time-consuming and resource-intensive to construct

and train two separate deep learning models. Although the objectives of the two subsystems

are different, they share the commonality of extracting image features characterizing pul-

monary nodules. As such, some of the model components can be shared and trained together.

Second, the performance of the system may not be optimal because the two subsystems are

trained separately without cross-talk between the two.

Here we propose an end-to-end framework for pulmonary nodule detection, integrating nod-

ule candidate generation and false positive reduction into a single model with shared feature

extraction blocks, trained jointly. The new end-to-end system substantially reduces model

complexity by eliminating one third of the parameters of the corresponding two-step model.

It simplifies the training process and cuts the inference time by 3.6 fold. Experiments show

that the end-to-end system also improves performance, increasing nodule detection accuracy
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Figure 3.1: End-to-end pulmonary nodule detection framework

by 3.88% over the two-step approach.

Related Work Deep learning, especially deep convolutional neural net (DCNN), has shown

great success in medical image analysis. Ding et al. [22] proposed a 2D regional proposal

network for nodule candidate generation, followed by a 3D convolutional neural net for false

positive reduction. Tang et al. [135] utilized 3D deep convolutional neural nets in both

nodule candidate screening and false positive reduction. Zhu et al. [186] adopted 3D nodule

candidate screening algorithm, and combined deep learning algorithm with a probabilistic

model to explore the usage of weakly labeled clinical diagnosis data. There are also a few

works focusing on false positive reduction, such as using multi-scale and model fusion to

better classify nodules with various sizes [26] and using multi-view CNN for enhanced 3D

information [116]. Recent work also explored using single stage nodule detection model, for

instance Khosravan et al. [65] proposed using single scale and single shot detection model,

which however, has performance limitation because of its single scale assumption and the

use of classification instead of detection when approaching this problem.
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3.2 Proposed method

The proposed framework largely follows the two stages strategy: (1) generating nodule candi-

dates using 3D Nodule Proposal Network, and (2) subsequent nodule candidate classification

for false positive reduction. Different from the aforementioned works where two 3D DCNNs

need to be trained separately, we discover the underlying computation of feature extraction

for both networks can be shared and forwarded only once. Different tasks can be done on

top of the feature map using different branches. The nodule candidate screening branch uses

3D Region Proposal Network adapted from Faster-RCNN [107], and the predicted nodule

proposal is then used to crop features of that nodule candidate using 3D Region of Interest

(RoI) Pool layer, which are then fed as input to the nodule false positive reduction branch.

The whole framework is shown in Figure 3.1.

In feature extraction network, we use 3D convolution layer with stride 2 as the very first layer

to reduce GPU memory cost. The subsequent convolution blocks are built using residual

blocks [49] with 3× 3× 3 convolution followed by maxpooling to reduce spatial resolution.

3.2.1 Nodule Proposal Network

The output of feature extraction is a 32× 32× 32 feature map where each pixel on feature

map has 128 feature channels. Then a 1× 1× 1 convolution layer is applied to this feature

map to generate (z, y, x) coordinates, diameter and probability corresponding to the region

of input volume. These five features are parameterized by five preset anchors of size 3, 5,

10, 20, 30.

We compute a classification loss and four regression losses associated with (z, y, x) and

diameter for each of the anchor on each pixel on the feature map. We then use binary cross

entropy loss with Online Hard-negative Example Mining (OHEM) for classification and L1

20



loss for four regressions.

Formally, our objective function is defined as:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

Lreg(ti, t
∗
i ) (3.1)

where i is the index of an anchor in one mini-batch and pi is the probability that anchor

contains a nodule candidate. p∗i is 1 if an anchor is positive and 0 otherwise. λ is a hyper-

parameter for balancing classification and regression losses and we set it to 1 in this case.

Ncls is the total number of anchors considered for calculating the classification loss and Nreg

is the total number of anchors considered for calculating regression losses. ti is a vector

representing the four parametrized coordinate offsets of the predicted bounded box and t∗i is

the ground truth of the four regression terms. More specifically, ti = (tz, ty, tx, td) is defined

as:

t = (
z − za
da

,
y − ya
da

,
x− xa
da

, log
d

da
)

t∗ = (
z∗ − za
da

,
y∗ − ya
da

,
x∗ − xa
da

, log
d∗

da
)

(3.2)

where z, y, x, d denote square box’s center coordinates and its diameter since we only need

diameter to measure the size of a nodule. z, za, z
∗ denote the predicted box, anchor box and

ground truth box respectively (likewise for y, x, d).

3.2.2 False Positive Reduction Network

The bounding box regression terms are applied to each anchor, representing the actual spatial

location and diameter of nodule candidate, which we call nodule proposal. We then use 3D

RoI Pool operation to extract a small feature map from each RoI (i.e., 4 × 4 × 4). These

features contain all the information about this nodule candidate and they go through two
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fully connected layers for predicting the probability that it is a nodule and four regression

terms regarding its (z, y, x) coordinates and diameter.

We use nodule candidate whose probability is equal or greater than 0.5 for training this

branch. A nodule candidate is considered as positive if it overlaps with a nodule with an

intersection over union (IoU) larger than a threshold 0.5. In contrast, if it has an IoU

less than 0.1 with a nodule, we consider it as negative. All other nodule candidates do not

contribute to the classification loss and we only calculate regression losses for positive nodule

candidates. Definitions of classification and regression losses are the same as Equation (4.1).

3.2.3 Training

We train the whole network in an end to end fashion. We first train the nodule proposal

network using Stochastic Gradient Descent (SGD) for 60 epochs and then we train both

network together for another 100 epochs. This is because, in the beginning the nodule

proposal network predicts random nodule candidates which would be time-consuming for

training the false positive reduction branch. Learning rate of SGD optimizer is scheduled as

0.01 initially, decreased to 0.001 after 80 epochs and 0.0001 after 120 epochs.

To improve the generalization ability of the network, input volume is randomly shifted,

randomly flipped along all 3 axis, and randomly scaled between 0.9 and 1.1.

3.3 EXPERIMENTS AND RESULTS

We validated our framework on large-scaled Tianchi competition dataset1. It contains 800

CT scans from 800 patients with released ground truth label. The CT scans were annotated

1https://tianchi.aliyun.com/competition/rankingList.htm?raceId=231601&season=0
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Figure 3.2: Performance comparison

# Parameters Inference Time
[135] 15903490 10.2s/CT
Proposed 9618523 2.8s/CT

Table 3.1: Comparison of number of parameters and time for inference between separate two
stage framework [135] and the proposed framework

in a similar way to LUNA16 [118] with exact nodule location and diameter information.

We used 600 CT scans for training and validation and another holdout 200 CT scans for

reporting the performance of our model.

Free-Response Receiver Operating Characteristic (FROC) [68] analysis was adopted to quan-

tify trade-off between sensitivity and specificity. We used the same evaluation metric as the

LUNA16 challenge [146] and the evaluation was performed by measuring the detection sen-

sitivity and false positives per scan (FPs/scan). A nodule detection is considered positive if

and only if its predicted location falls within a distance R from the ground truth nodule’s

center, where R is one half of nodule’s diameter. The final Competition Performance Metric

(CPM) is defined as the average sensitivity at seven predefined FPs/scan rates: 1/8, 1/4,

1/2, 1,2,4, 8.
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3.3.1 Performance comparison on holdout test set

We compared performance among single stage nodule detection framework ([135] w/o false

positive reduction), a state-of-art separate two-stage framework [135] and the proposed end-

to-end two-stage framework. The step-wise gains of using the end-to-end framework is sum-

marized in Figure 3.2. As we can see, when training the nodule proposal network and false

positive reduction network together, the proposed end-to-end framework not only improves

nodule proposal performance by 3.73%, but further boosts the performance by 1.06% using

false positive reduction, which yields a 3.88% improvement on CPM compared to previous

state-of-art separate two-stage nodule detection model ([135]) without model ensemble.

Also, Table 3.1 shows the number of parameters used by the proposed framework, which

is significantly lower than that of the previous two-stage model because of weight sharing.

Moreover, since the proposed framework only needs to perform feature extraction once in-

stead of forwarding the same patch of CT scan multiple times when inferring, it substantially

reduces inference time for each CT scan from an average of 10.2s to 2.8s using single GPU.

3.3.2 Visualization

We randomly chose one patient from the holdout test set for visualizing performance gains

of using the proposed framework in Figure 7.3. The end-to-end model yields more precise

detection of nodule location and size and better probability score, which demonstrates the

proposed end-to-end framework improves the quality of pulmonary nodule detection.
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Figure 3.3: Visualization of predictions from different branches of the proposed end-to-end
nodule detection framework. The first row is from a true nodule while the other rows are
false positives. We only show the center slice of each nodule candidate. Note that the
false positive reduction branch is able to refine nodule diameter for the true nodule and
significantly reduce probabilities for false positives.

3.4 Conclusion

In summary, we have presented a novel end-to-end framework for pulmonary nodule detec-

tion integrating nodule candidate generations and false positive reduction. The new system

substantially reduces model complexity and inference time, thereby simplifying the train-

ing process and reducing resource overhead. Additionally, it improves the nodule detection

performance over the two-step approach commonly used in existing nodule detection sys-

tems. Altogether, our work suggests that an end-to-end framework is more desirable for

constructing deep learning-based pulmonary nodule detection systems.
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Chapter 4

Aotomatic Pulmonary Lobe

Segmentation using Deep Learning

4.1 Introduction

Lung cancer has been the leading cause of all cancer-related disease during the past years

[124]. Segmentation of pulmonary lobe based on Computed Tomography (CT) is an impor-

tant task for Computer Aided Diagnosis systems (CADs). Pulmonary lobe segmentation is

relevant in a wide range of clinical applications. The location and distribution of pulmonary

disease can be a significant factor in determining the most suitable treatment. According to

[42], locally distributed emphysema can be treated more effectively by lobar volume resec-

tion than homogeneously distributed emphysema. Another application is pulmonary nodule

detection where detecting pulmonary nodule in its early stage is critical for a good prognosis

of the disease. Recent success in deep learning especially the use of Deep Convolutional

Neural Network (DCNN) has accelerated the development of automatic pulmonary nodule

detection and classification system, such as [135, 184], which can be used to help radiologist
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and reduce their labor work. Precise segmentation of lung lobes can be used to generate

automatic electronic diagnosis report since the rough location of nodules are required and

the precise coordinate information is rarely used in most medical institutes.

Human lungs are composed of five lobes (two in the left lung and three in the right lung).

The upper lobe and lower lobe of left lung are separated by the major fissures (oblique

fissure). In the right lung, there are three lobes, namely upper lobe, middle lobe and lower

lobe. The upper lobe and middle lobe are divided by the minor fissure (horizontal fissure)

while the major fissure (oblique fissure) separates the lower lobe from the rest of the lung.

Methods for pulmonary lobe segmentation have been focused on unsupervised models using

classical computer vision techniques which usually include detecting fissures, locating bronchi

and vessels, such as [67, 72]. More recently, FJS Bragman et al. applied probabilistic model

in enhanced fissure detection using fissure prior which yields accurate results under various

fissure incompleteness. However, the attempt of using deep learning in this task is still

rare [31] because of the need for a large number of annotated training examples. Moreover,

publicly available annotations for pulmonary lobe segmentation can hardly be found for

supervised training of deep neural network.

In this chapter, we collaborate with our radiologist on manually creating and releasing refer-

ence annotations from a randomly chosen subset from the LUNA16 [118]. Next, we present

a framework using DCNN that can be trained effectively and robustly with a small number

of training examples. In order to further validate the generalization ability and robustness

of the trained deep neural net, we annotated 10 more CT scans from Tianchi dataset as a

holdout test set. Experimental results show the proposed framework generalize well to CT

scans collected from different sources, which yields a maximum of 5.87% improvement as

compared to a baseline model.

Our contributions of this work are summarized as below:
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a). We propose pre-processing CT image by cropping region that is covered by the convex

hull of the lungs in order to mitigate the influence of noise outside the lungs. We design a

hybrid loss function with dice loss to tackle extreme class imbalance issue and focal loss to

force model to focus on voxels that are hard to be discriminated. This achieves the state-of-

art averaged dice coefficient of 91.48% on the LUNA16 test set and 94.17% on the Tianchi

test set respectively.

b). We release our reference annotations on 50 CT scans randomly chosen from LUNA16 for

supervised pulmonary lobe segmentation study, which is the first publicly available dataset

with reference annotations on this task.

4.2 Data

In this section, we describe in details the source of CT scan and tool we used to generate

reference annotations for pulmonary lobe segmentation task.

4.2.1 Data and annotation

We randomly chose 50 CT scans from LUNA16 [118] and collaborated with our radiologist in

creating annotations for each CT scan. LUNA16 is a subset of LIDC-IDRI [3] for pulmonary

nodules, which is the largest publicly available lung image dataset. LUNA16 was then created

by removing CT scan that has a slice thickness greater than 3mm, inconsistent slice spacing

or missing slices from LIDC-IDRI dataset to provide an evaluation framework for pulmonary

nodule detection. LIDC-IDRI data uses the Creative Commons Attribution 3.0 Unported

License.

Reference annotation for each CT scan was then manually delineated by radiologist using
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Chest Image Platform1. This software platform is built on top of the 3D slicer and uses an

interactive algorithm to perform lobe segmentation where user is required to mark points on

three fissures [67, 72].

We used 40 of the annotated CT scans for training our model and 10 for testing on the

LUNA16 dataset. In order to validate the robustness of our algorithm, we further annotated

another 10 randomly chosen CT scans collected from a different source: Tianchi2, which is

also a large-scaled competition dataset.

4.2.2 Reference annotation availability

50 annotations created on the LUNA16 dataset will be made publicly available for supervised

lung lobe segmentation study. However, the 10 annotations made on the Tianchi dataset

will not be made publicly available at this time.

4.3 Method

We present in this section the framework using the deep convolutional neural network which

includes pre-processing of removing regions outside the lung region, model architecture and

hybrid loss function used to train the network.

4.3.1 Pre-processing

We propose pre-processing by cropping region covered by the convex hull of the lungs, which

removes noise from different CT scans outside the lungs, as well as reducing the cost of GPU

1https://chestimagingplatform.org/about
2https://tianchi.aliyun.com/competition/rankingList.htm?raceId=231601&season=0
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Figure 4.1: Neural network architecture. Each cube represents 3D image volume and the
side number denotes the number of channels in that block. Different from original V-Net, we
only use one down-sampling to balance the trade-off between feature representation capacity
and GPU memory.

memory as the input volume is substantially smaller.

We start with normalizing the whole CT scan by truncating Hounsfield Unit (HU) values

outside the range of [−1000, 600]. Next, we use OTSU to binarize the CT image. A binary

morphology close is then used to remove regions outside the lungs and binary hole filling

is applied to fill small isolated regions in the lung on a per slice base. The convex hull of

the two lungs is computed and a binary morphology dilation using 5 ∗ 5 kernel is applied to

preserve information near the border slice by slice.

4.3.2 Model architecture

The network architecture is illustrated in Figure 8.1. We use 3D residual block [49] as a

basic building block which consists of two consecutive 3∗3∗3 convolution layers followed by

ReLU and Batchnorm. We only use one down sampling in this architecture to balance the

trade-off between feature representation capacity and GPU memory, which is different from

original V-Net [86] who employs the standard four down-samplings.
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4.3.3 Loss

Dice loss is widely used for training a segmentation network using deep learning in the medical

image. Dice loss performs relatively well when training samples are highly imbalanced as

compared to cross entropy loss. However, dice loss fails to capture the difference of difficulty

in classifying different voxels. For instance, voxels on the border are more difficult to be

classified correctly than voxels are in the center of the lobe. As a result, we adopt a hybrid

loss of both dice loss and focal loss [77] to address voxel-wise imbalance and force model to

focus on those voxels that are hard to be correctly predicted. More formally, our hybrid loss

function is defined as:

L = Ldice + λLfocal (4.1)

Ldice =
C∑
c

N∑
i

pic ∗ gic
pic ∗ gic + (1− pic) ∗ gic + pic ∗ (1− gic)

Lfocal = − 1

N

C∑
c

N∑
i

αc ∗ gic ∗ (1− pic)γ ∗ log(pic)

λ is a hyper-parameter controlling the balance between dice loss and focal loss, which is set

to 1 in this chapter. N is the total number of voxels in each mini-batch and i is the index

of each individual voxel. C denotes the total number of classes which is six in this task (one

more class for background). pic is the predicted probability that i-th voxel is class c and gic

is 1 if i-th voxel is class c and 0 otherwise. α and γ are parameters controlling weight for

each class and adjusting the down-weighting of well-classified voxels respectively. We set α

to be one and γ to be two as suggested in [77].
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4.3.4 Data augmentation

Data augmentation is critical for training model that can generalize well across different

datasets, especially when the number of training samples is small. The input volume is

randomly shifted, z-axis flipped and XY-plane rotated in order to improve the generalization

ability of the model.

4.4 Experiments

Dice coefficient was used to evaluate the performance of the model:

DCc(P,G) = 2 ∗ Pc ∪Gc

Pc ∩Gc

, c ∈ C (4.2)

DCavg(P,G) =
1

C

C∑
c

DCc(Pc, Gc) (4.3)

where P is the set of predictions for each voxel and G represents the set of ground truth

label. We calculate dice coefficient for each lobe independently and averaged dice coefficient

for all lobes as described in Equation (4.2) and Equation (4.3) respectively.

We split 50 annotated CT scans from LUNA16 into 40 for training and 10 for testing. We

tested our model on a holdout 10 CT scans annotated from Tianchi dataset as well to

illustrate the robustness of our proposed approach.

In order to assess the influence of hybrid loss and pre-processing by using convex hull,

we added each component step by step and all models were trained using the same data

augmentation with the same hyper parameters. We trained each model for 300 epochs using
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Figure 4.2: Comparison between prediction of the model and ground-truth in CT scan views:
Axial, Sagittal and Coronal.

Adam as the optimizer and used the last epoch for predicting each test set. Batch size

was set to one since the size of input volume might be different for each CT scan after

pre-processing.

The step-wise gains of using hybrid loss and pre-processing by using convex hull are shown

in Table 5.1. Also, we compared our best model with [31] which we found most relative to

our work. As shown in the tables, model trained with hybrid loss increased the averaged dice

coefficient of the baseline model by 3.87% on LUNA16 test set and 3.95% on Tianchi test

set. By removing regions outside the lung using convex hull further increased the averaged

dice coefficient by 0.54% on LUNA16 test set and 1.92% on Tianchi test set as compared

to the model trained only with hybrid loss. Moreover, the comparison between [31] and

our approach further validated the robustness and generalization ability of the proposed

framework by improving the previous state-of-art result by a maximum of 2.39% on averaged

dice coefficient.

We visualized in Figure 7.3 qualitative comparison between model prediction and reference

annotation from three views, which illustrates the significance of focusing on hard negative

examples and only regions inside and between two lungs.
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LUNA16 test set

RU RM RL LU LL AVG
[31] 92.76 84.68 94.33 88.10 94.78 90.93
DL 78.28 79.69 93.96 88.65 94.79 87.07
+ FL 90.58 78.41 93.95 96.01 95.77 90.94
+ CH 92.53 80.60 93.05 96.10 95.30 91.48

Tianchi test set

RU RM RL LU LL AVG
[31] 93.11 86.43 94.54 89.30 95.40 91.76
DL 80.80 82.71 94.46 89.03 94.51 88.30
+ FL 92.59 84.75 93.08 95.94 94.88 92.25
+ CH 95.11 87.92 95.15 97.21 95.46 94.17

Table 4.1: Step-wise performance gains of using hybrid loss and pre-processing using convex
hull as compared to a baseline model trained only with dice loss and previous state-of-art
method [31]. RU, RM, RL, LU, LL and AVG represent the dice coefficient of right upper
lobe, right middle lobe, right lower lobe, left upper lobe, left lower lobe and their average
respectively. DL means model trained with dice loss and +FL means model trained with
hybrid loss of focal loss and dice loss. +CH represents model trained with hybrid loss and
training data cropped by the convex hull of the lungs.

4.5 Conclusion

In this chapter, we release our manual annotation by radiologist for 50 CT scans collected

from the LUNA16 challenge and present a practical and robust framework for robust pul-

monary lobe segmentation. We believe the public availability of those reference annotations

will help the study of pulmonary lobe segmentation using supervised learning. Also, our

proposed framework trained with a small number of training examples is proved to perform

well across CT scans from different sources.
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Chapter 5

NoduleNet: Decoupled False Positive

Reduction for Pulmonary Nodule

Detection and Segmentation

5.1 Introduction

Lung cancer has the highest incidence and mortality rates worldwide [8]. Early diagnosis and

treatment of pulmonary nodules can increase the survival rate of patients. Computed to-

mography (CT) has been widely used and proved effective for detecting pulmonary nodules.

However, manually identifying nodules in CT scans is often time-consuming and tedious,

because a radiologist needs to read the CT scans slice by slice, and a chest CT may contain

over 200 slices. Accurate and precise nodule segmentation can provide more in-depth assess-

ment of the shape, size and change rate of the nodule. When nodule is identified, a follow

up scan in 3 - 12 months is usually required to assess its growth rate [63]. The growth of

the lung tumor may be an indicator for malignancy, and an accurate nodule segmentation
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can be used for measuring the growth rate of the nodule.

In recent years, deep convolutional neural network has emerged as a leading method for au-

tomatically detecting and segmenting pulmonary nodules and have achieved great success.

State-of-the-art frameworks for nodule detection often ustilize the 3D region proposal net-

work (RPN) [106] for nodule screening [135, 185, 118, 76], followed by a 3D classifier for false

positive reduction [23, 137]. Although single stage detector has also been proposed in [65],

their hit criteria was different from what was more commonly adopted [118]. Moreover, the

refinement provided by the extra classifiers may correct some errors made by the detectors.

In terms of nodule segmentation, U-Net [110] and V-Net [87] like structure is predominantly

used [160, 165, 2]. In practice, a computer aided diagnosis (CAD) system for pulmonary nod-

ule detection and segmentation often consists of several independent subsystems, optimized

separately.

There are some limitations on handling each task completely independent. First, it is time-

consuming and resource intensive to train several deep convolutional neural networks. Al-

though each component is designed for different purposes, they share the common proce-

dure of extracting feature representations that characterize pulmonary nodules. Second, the

performance of the whole system may not be optimal, because separately training several

systems prevents communication between each other and learning intrinsic feature represen-

tations. Intuitively, the segmentation mask of the nodule should provide a strong guide for

the neural network to learn discriminative features, which may in turn improve the perfor-

mance of nodule detection.

Although multi-task learning (MTL) and feature sharing offer an attractive solution to com-

bine different tasks, a naive implementation may cause other problems [15]. First, because

of the mismatched goals of localization and classification, it may be sub-optimal if these two

tasks are performed using the same feautre map. Second, a large receptive field may inte-

grate irrelevant information from other parts of the image, which may negatively affect and
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confuse the classification of nodules, especially small ones. [15] decoupled localization and

classification to address the problem in natural imaging. However, completely separating the

two tasks without sharing any feature extraction backbone, still prevents cross-talk between

two networks and may not be the most efficient. Therefore, a decoupled false positive reduc-

tion, that pools features from early scales of the feature extraction backbone, is proposed

to address this problem, which allows learning both task-independent and task-dependant

features.

Here, we propose a new end-to-end framework, called NoduleNet, for solving pulmonary

nodule candidate screening, false positive reduction and segmentation jointly. NoduleNet

consists of three parts: nodule candidate screening, false positive reduction and segmenta-

tion refinement (Figure 8.1). These three components share the same underlying feature

extraction backbone and the whole network is trained in an end-to-end manner.

Our main contributions are summarized as follows:

• We propose a unified model to integrate nodule detection, false positive reduction and

nodule segmentation within a single framework, trained end-to-end in a multi-task

fashion.

• We demonstrate the effectiveness of the model, improving nodule detection accuracy

by 10.27% compared to the baseline model trained only for nodule detection, and

achieving a state-of-the-art nodule segmentation accuracy of 83.10% on Dice-Sørensen

coefficient (DSC).

• We carry out systematic ablation studies to verify the contributions of several design

tricks underlying NoduleNet, including decoupled features maps, segmentation refine-

ment subnet, and multi-task training.
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Figure 5.1: Overview of NoduleNet. NoduleNet is an end-to-end framework for
pulmonary nodule detection and segmentation, consisting of three sequential
stages: nodule candidate screening, false positive reduction and segmentation
refinement. k is the number of anchors. FC is short for fully connected layer.

5.2 NoduleNet

Nodule candidate screening (NCS)

To generate nodule candidates, a 3× 3× 3 3D convolutional layer is applied to the feature

map (feature map 4 in Figure 8.1), followed by two parallel 1 × 1 × 1 convolutional layers

to generate classification probability and six regression terms associated with each anchor

at each voxel on the feature map. An anchor is a 3D box, which requires six parameters to

specify: central z-, y-, x- coordinates, depth, height and width. We chose cube of size 5, 10,

20, 30 and 50 as the 5 anchors in this chapter. Then, we minimize the same multi-task loss
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function as [106].

Decoupled false positive reduction (DFPR)

Unlike [106] that performs classification using features pooled from the same feature map

as RPN (feature map 4). Learning using coupled feature map may lead to sub-optimal

solutions of the two tasks. Instead, we use 3D region of interest (ROI) pooling layer to pool

features from early feature map that has a small receptive field (down 4). This not only

ensures the false positive reduction network has a small receptive field and can learn feature

representations that are substantially different from nodule candidate screening network, but

also allows sharing of a few feature extraction blocks. The false positive reduction network

minimizes the same multi-task in loss function as the NCS .

Segmentation refinement (SR)

As shown in Figure 8.1, segmentation is performed at the same scale of the original input

CT image, by progressively upsampling the cropped high-level feature map (feature map 4)

and concatenating them with low-level semantically strong features.

This approach is fundamentally different from the mask branch proposed in [48]. In [48], the

authors perform segmentation by only using downsampled feature map and then resize the

predicted mask back to the original image scale, which may lose precision due to bounding

box regression errors and loss of more fine-grained local features.

Another advantage is that, only the regions have nodules are upsampled to the original

image scale, which only accounts for a small area of the whole input image. This saves

a large amount of GPU memory, making whole volume input feasible during training and

testing, as compared to upsampling the whole feature map to original input scale in [87].
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The segmentation refinement network minimizes the soft dice loss of the predicted mask sets

{m} and the ground truth mask sets {g} of the input image.

5.3 Results

Data and experiment configurations

We used LIDC-LDRI [3] for evaluting the performance of NoduleNet. LIDC-LDRI is a large-

scale public dataset for studying lung cancers, which contains 1018 sets of CT scans collected

from multiple sites with various slice thickness. Nodules with diameter equal or greater than

3 mm in this dataset have contour outlined by up to four radiologists. We included only those

CT scans met the selection criteria of LUNA16 [118] in this chapter. If the two segmentation

masks provided by two radiologists have an intersection over union (IoU) larger than 0.4, we

consider the two masks are referring to the same nodule. We consider nodules annotated by

at least 3 out of 4 radiologists the ground truth, resulting in a total number of 586 CT scans

with 1131 nodules. Note that the number of CT scans and nodules included in this chapter

may be different from previous work [160, 165, 2], due to different inclusion criteria.

A six-fold cross validation was performed to demonstrate the performance of NoduleNet. All

models in the experiment were trained using stochastic gradient descent (SGD) with initial

learning rate 0.01, momentum 0.9 and l2 penalty 0.0001, for 200 epochs. The learning rate

was scheduled to decrease to 0.001 after 100 epochs and to 0.0001 after another 60 epochs.

Free-Response Receiver Operating Characteristic (FROC) [68] analysis was adopted for eval-

uating the performance of nodule detection. We used the same hit criterium and compe-

tition performance metric (CPM) as in the LUNA16 [118]. Intersection over union (IoU)

and Sørensen-Dice coefficient (DSC) were used for evaluating the performance of nodule

segmentation.
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Nodule detection performance

In order to fully verify and understand our aforementioned assumptions, we conducted ex-

tensive experiments using different network architectures and design choices. We use N1

to represent network that only has NCS branch, N2 for network has both NCS and FPR

branches, and N3 for network has all NCS, FPR and SR branches. Fc represents the FPR

branch is built on the same feature map as NCS, and Fd means the FPR branch is built

on the decoupled feature map mentioned in previous section. R means the training data is

extraly augmented with xy - plane rotation. NCS means the predicted probability comes

from NCS branch, FPR means the predicted probability comes from FPR branch, and FU

means the predicted probability is fused from NCS and FPR. Note that N1 is the widely

used 3D RPN for nodule detection [135, 137, 185, 76], which was served as a strong baseline

for evaluating the performance of each added component. The results are summarized in

Table 5.1.

As seen from Table 5.1, the sensitivity at 8 false positives per patient rate has a consistent

improvement of 1.0% to 1.5% by adding the segmentation refinement network (N3), which

demonstrates the effectiveness of using the extra nodule segmentation information.

The average sensitivity of the NoduleNet using decoupled false positive reduction (Fd) has

around 3% to 4% improvement over the NoduleNet using coupled false positive (Fc). More-

over, by adding rotation in data augmentation (R), the performance of FPR branch is

further improved by around 2.5% while the performance of NCS branch remains almost the

same. This verifies our assumption that classification should learn invariant features, while

localization may learn co-variant features. Those findings demonstrate the importance of

decoupling modules that are essentially learning different tasks.

By fusing the predicted probability from NCS and FPR, the performance was consistently

improved by 0.7% - 1.0%, demonstrating that combining predictions from branches that
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perceive different level of context information is important.

By adding false positive reduction and segmentation refinement network, the performance

of the baseline detector (NCS) is correspondingly improved, showing the effectiveness of

multi-task learning and feature sharing.

All together, NoduleNet outperforms a strong baseline single stage detector by 10.27%. Note

that performance reported in LUNA16 may not be directly comparable to this work, because

of different nodule selection criteria, and training and testing data splits. Also, this work

focuses on the joint learning of nodule detection and segmentation, whereas the LUNA16

focuses only on nodule detection.

Method 0.125 0.25 0.5 1.0 2.0 4.0 8.0 Avg.
N1 (NCS) [135, 137, 185, 76] 52.17 62.51 71.09 80.46 87.27 91.07 94.43 77.00
N2 + Fc (NCS) 53.85 62.07 71.09 79.22 86.74 90.98 93.28 76.75
N2 + Fc (FPR) [137] 55.79 66.93 75.77 82.40 88.68 91.78 93.10 79.21
N3 + Fc (NCS) 53.67 63.84 74.62 83.20 88.51 92.04 94.96 78.69
N3 + Fc (FPR) 57.38 65.96 77.19 84.97 89.92 93.28 95.40 80.59
N2 + Fd (NCS) 56.15 66.93 74.54 82.23 88.59 92.22 95.05 79.39
N2 + Fd (FPR) 61.98 71.26 78.78 85.41 89.30 92.22 95.31 82.04
N3 + Fd (NCS) 61.45 70.20 78.16 84.62 90.27 93.63 96.20 82.08
N3 + Fd (FPR) 68.08 73.56 81.70 85.94 90.80 93.90 96.55 84.36
N3 + Fd (FU) 68.70 75.60 82.23 87.36 92.04 94.96 96.46 85.34
N3 + Fd + R (NCS) 62.78 70.65 78.43 84.44 89.74 93.10 95.49 82.09
N3 + Fd + R (FPR) 69.23 77.01 84.70 89.48 93.37 95.23 96.55 86.51
N3 + Fd + R (FU) 70.82 78.34 85.68 90.01 94.25 95.49 96.29 87.27

Table 5.1: CPM of different methods on the LIDC dataset based on six-fold cross
validation. Shown are nodule detection sensitivities (unit: %) with each column
denoting the threshold false positive rate per CT scan (FPs/scan). The last
column denotes the average sensitivities across the seven pre-defined FPs/scan
thresholds.

Nodule segmentation performance

In Table 5.2, we compared the segmentation performance of NoduleNet to other deep learning

based methods trained and tested on LIDC dataset [160, 165, 2]. NoduleNet outperformed
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previous state-of-the-art deep learning based method by 0.95% on DSC, without the need to

train a separate and dedicated 3D DCNN for nodule segmentation. We randomly selected

several nodules for visualizing the segmentation quality (Figure 7.3).

Approach # Nodules # Consensus IoU (%) DSC (%)
train test

Wu et al. [165] 1404 1404 3 N\A 73.89 ± 3.87
Aresta et al. [2] 1593 1593 3 55.00 ± 14.00 N\A
Wang et al. [160] 350 493 4 71.16 ± 12.22 82.15 ± 10.76
NoduleNet 1131 1131 3 69.98 ± 10.80 81.80 ± 8.65
NoduleNet 1131 712 4 71.85 ± 10.48 83.10 ± 8.85

Table 5.2: IoU (%) and DSC (%) performance of nodule segmentation between
different methods. “# Consensus” means each method includes nodules that
are annotated by at least “# Consensus” experts.

CT Image Ground truth Model prediction Contour comparison

Figure 5.2: Examples of nodule segmentation generated by NoduleNet.
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5.4 Conclusion

In this chapter, we propose a new end-to-end 3D DCNN, named NoduleNet, for solving pul-

monary nodule detection, false positive reduction and segmentation jointly. We performed

systematic analysis to verify the assumptions and intuitions behind the design of each com-

ponent in the architecture. Cross validation results on LIDC dataset demonstrate that our

model achieves a final CPM score of 87.27% on nodule detection and DSC score of 83.10% on

nodule segmentation, representing current state-of-the-arts on this dataset. The techniques

introduced here are general, and can be readily transferred to other models.
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Chapter 6

Clinically Applicable Deep Learning

Framework for Organs at Risk

Delineation in CT images

6.1 Introduction

Radiation therapy (RT) is an important treatment option for many types of cancers. It can be

used as an adjuvant treatment before or after surgery, or as a radical treatment administered

jointly with chemotherapy [69, 98, 5, 6, 81, 100, 130, 35, 62, 18]. However, irradiation can

lead to damage of normal organs (“organs at risk”, OARs), especially in treating head

and neck cancers, owing to the complex anatomical structures and dense distribution of

important organs in this area. Damaging normal organs in the head and neck can result

in a series of complications, such as xerostomia, oral mucosal damage, laryngeal edema,

dysphagia, difficulty in opening mouth, visual deterioration, hearing loss, and cognitive

impairment. Recently, as the efficacy of radiotherapy for head and neck cancers has been

45



steadily improving, irradiation complications affecting patients’ quality of life have received

increasing attention. Research on mitigating the toxic side effects of RT can have important

clinical and social implications [169, 54, 29, 20, 32, 73, 84, 91].

A key step involved in mitigating the side effects of irradiation during RT planning is to

accurately delineate all OARs so that they can be protected during radiotherapy. OARs

delineation is typically done manually by radiation oncologists based on computed tomog-

raphy (CT) scans, which can take significant time and efforts depending on the number of

OARs to be delineated and the complexity of the local anatomical structures. In the case

of head and neck, the treatment range of many tumors in the area, such as nasopharyn-

geal carcinoma, is relatively large and covers a large number of OARs. Manual delineation

is especially daunting because of the anatomical complexity of the area. Computational

tools that automatically segment anatomical regions can greatly alleviate clinicians’ manual

efforts, if these tools can delineate OARs accurately and within a reasonable amount of time.

A number of computational methods have been proposed to delineate OARs from CT or mag-

netic resonance imaging (MRI) images. Traditional OAR delineation methods are mostly

atlas-based, producing OAR segmentation by aligning new images to a fixed set of manu-

ally labeled image templates. However, atlas-based methods have some limitations. First,

they are computationally intensive and often take many minutes or even hours to complete,

depending on hardware and implementation. Second, because of the reliance on templates,

they cannot adequately account for anatomical variations naturally occurring among pa-

tients or due to the growth of tumors [19, 37, 28, 51, 74, 101, 127, 141, 143, 158, 154, 58, 39,

17, 152, 157, 36, 173].

Deep learning provides an alternative solution to the OAR delineation problem [66]. Deep

convolutional neural networks (DCNNs) can learn to extract a hierarchy of complex image

features directly from data and utilize these image features to segment anatomical structures,

without mapping an image to templates. DCNNs have been successfully applied to segment
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objects in natural images, as well as biomedical images from CT, MRI or microscopy. There

are existing works of applying DCNN to head and neck OAR delineation. Most of these

works apply deep learning to segment OARs from cropped local patches around regions of

interest, which is achieved either manually or based on outputs from image registrations by

mapping to templates [108, 88, 38, 57, 133, 166, 145, 97, 164, 12], or delineate OARs one

slice at a time [92].

Recently, delineating OARs directly from whole-volume CT images has also been attempted

and shown better performance than atlas-based methods [44, 144, 182, 85]. However, these

studies were limited in scope and/or scale - with only a few OARs delineated and a limited

number of samples tested. More importantly, previous studies have not examined the clinical

utility of these methods and to what extent these methods might actually help clinicians.

In this study, we sought to address the questions described above by proposing a new deep

learning model that can delineate a comprehensive set of 28 OARs in the head and neck

area (Figure 6.1), trained with 215 CT samples collected and carefully annotated by expe-

rienced radiation oncologists with over ten years of experience. The accuracy of our model

was compared to both previous state-of-the-art methods and a radiotherapy practitioner.

Moreover, we deployed our deep learning model in actual RT planning of new patient cases,

and evaluated the clinical utility of the model.

Our deep learning model addresses some key constraints of the existing deep learning meth-

ods used in this area. Most of the existing deep learning methods for OAR segmentation

are based on U-Net-like network architectures [110, 87]. U-Net consists of an encoder and

decoder architecture, with lateral connections concatenating low-level and high-level feature

maps. The integrated image features infuse both low-level image information and high-level

semantic content, which has proven very effective for precise voxel-wise classification. How-

ever, without constraining the rough location and size of an OAR, U-Net often produces

many false positives (called pseudo hot-spots), scattered voxels lying outside the normal
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Figure 6.1: An illustration of the 28 organs at risk (OARs) that we aim to delineate
in the head and neck area. Views are from three different orientations.

ranges of OARs (Supplementary Figure 1). These false positives are especially problematic

in actual clinical applications, because it would take a significant amount of time and efforts

to manually remove them from the delineation map, and, to a certain extent, it might offset

the benefit received from correct predictions. In addition, there are also implementation

issues when applying U-Net to whole-volume images. Training U-Net-like models based on

whole volume input requires specialized graphics processing units (GPUs) with large memory.

For these reasons, most of the existing deep learning methods have focused on segmenting

OARs from local image patches or on a slice-by-slice basis.

To address the challenges outlined above, we propose a novel end-to-end deep learning frame-
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work, named Ua-Net (stands for attention-modulated U-Net), to segment 28 OARs in the

head and neck area from whole-volume CT images. The proposed framework consists of two

stages: OAR detection and OAR segmentation. The first stage includes an OAR detection

network, the objective of which is to identify the approximate location and size of each OAR

[106], and to suppress false positive predictions outside the normal range of each OAR. The

second stage includes an OAR segmentation network, which utilizes the results of the first

stage as a guide and focuses on regions containing OARs to derive a fine-scale segmenta-

tion of each individual OAR. This attention mechanism allows us to perform local contrast

normalization to enhance image features for improving the segmentation of OAR bound-

aries with low contrast. The networks of the two stages share the same underlying feature

extraction backbone, based on 3D convolutions, allowing weight sharing and significantly

reducing GPU memory cost. With the two-stage design, it is feasible to train and test the

entire model end-to-end directly on whole-volume images, using easily accessible commodity

GPUs.

In the following, we describe the detailed design of our model, the data that we have collected

to train and test our model, and the evaluation results by comparing it to state-of-the-art

methods and to a radiation oncologist. Furthermore, we present a study on the clinical

utility of our method. In particular, we report how much time the clinicians can actually

save when assisted by our model during RT planning. The work presented here provides a

study of a clinically applicable deep learning model for OAR delineation in the head and

neck area.

6.2 Data

We used three datasets in this study (Table 6.1). Dataset 1 contains an in-house collection of

175 CT scans with 28 OARs annotated (Figure 1) in each scan. We randomly split the data
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into 145 cases for training and 30 cases for testing. Dataset 2 contains 140 CT scans from

two different sources available at the Cancer Imaging Archive (TCIA) [16]. We manually

delineated all 28 OARs in each of these scans, and randomly split the data with half reserved

for training and the other half for testing. Altogether this brings the total number of samples

used for training to 215 and the total number of samples for testing to 100. Dataset 3 is a

publicly available dataset with a predetermined training (33 cases) and test (15 cases) set,

each with 9 OARs annotated. It was used primarily for evaluation purposes.

Data source # of OARs annotated Train Test
Dataset 1 In-house 28 145 30

Dataset 2
HNC [7] 28 18 17
HNPETCT [147] 28 52 53

Dataset 3 PDDCA [104] 9 33 15
Total 248 115

Table 6.1: Datasets used in this study.

Dataset 1 contains CT scans from the head and neck areas of patients and the delineation of

OARs in each scan by radiation oncologists. The data include 175 CT scans from patients

with head and neck cancer (Table 6.2), who undertook radiation therapy from 2016 to

2018. The CT scans were generated by GE Discovery 590 RT with the following scanning

conditions: bulb voltage 120KV, current 300mA, scan layer thickness 2.5mm, SFOV 50cm,

and scan range from top of the skull to tracheal carina.

The CT scans were manually delineated by a radiation oncologist with more than 10 years of

experience, using Varian Eclipse 10.0 system for delineation and following the guidelines of

[10], with assistance of MRI images from the same patients when necessary. The delineations

were further reviewed and revised by a second expert with more than 30 years of clinical

experience in radiation therapy. We call the manual delineations generated this way “gold

standard” for both training and testing purposes, while being mindful of the caveat that

there are potential subjective variants or even errors within the annotation.

A clinically relevant set of 28 OARs was delineated in each CT scan, including brachial

50



plexus, brain stem, constrictor naris, ears (left and right), eyes (left and right), hypophysis,

larynx, lenses (left and right), mandible, optic chiasm, optic nerves (left and right), oral

cavity, parotids (left and right), submandibular gland left (SMG L), submandibular gland

right (SMG R), spinal cord, sublingual gland, temporal lobes (left and right), thyroid, tem-

poromandibular joint left (TMJ L), temporomandibular joint right (TMJ R), and trachea

(Figure 6.1).

Train Test
Number of patients (CTs) 145 30
Patient average age 61.0 65.5
Gender Male 112 24

Female 33 6
Tumor site Nasopharynx 25 7

Hypopharynx 14 7
Larynx 18 2
Nasal Cavity 3 1
Brain 50 10
Oropharynx 7 1
Parotid Gland 4 0
Other 24 2

Table 6.2: Characteristics of the in-house collected data. The data consists of 175
CT scans randomly split to training and testing.

We randomly split the dataset into a training set consisting of 145 CT scans and a test set

consisting of 30 CT scans. We verified that the distributions of gender, age and tumor sites

are roughly equal between the training and test sets (See Table 6.2). The training set was

used to train our model, whereas the test set was used for evaluation and was not seen by

the model during training.

Patient identities and other clinical information were removed from the data. Non-clinicians

had only access to image data and corresponding OAR labels. The usage of the data for

this study was reviewed and approved by an institutional review board (IRB) responsible

for overseeing the human subject data, prior to the beginning of this study.

Dataset 2 consists of CT scans from two sources: Head-Neck Cetuximab (HNC) [7] and Head-
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Neck-PET-CT (HNPETCT) [147], both available at TCIA [16]. HNC consists of image data

from a clinical trial for stage III and IV head and neck carcinomas, while HNPETCT consists

of imaging data from four different institutions in Québec with histologically proven head-

and-neck cancer. We followed the same procedure as described in generating dataset 1 to

annotate 28 OARs in each of CT scans.

Dataset 3 consists of CT scans from a public dataset called Public Domain Database for

Computational Anatomy (PDDCA), used in the head and neck auto segmentation challenge

at the 2015 MICCAI conference [104]. A total of 9 OARs were annotated in this dataset,

including brain stem, mandible, optic chiasm, optic nerve (left and right), parotid (left and

right) and submandibular gland (left and right).

Model performance

Ua-Net is an end-to-end deep learning model for OAR delineation, composed of two sub

networks a) OAR detection, the objective of which is to identify approximate location and

size of each OAR, and b) OAR segmentation, which extracts fine-scale image features and

performs image segmentation with attention focused on individual OARs (Figure 8.1). It

receives whole-volume images as input and outputs predicted masks of all 28 OARs at once.

It follows the general U-Net-like structure for feature extraction, consisting of an encoder,

a sequence of down-sampling blocks for extracting semantically more complex features, and

a decoder, a sequence of up-sampling blocks for increasing the resolutions of image features

for fine-scale segmentation. Each feature extraction block is composed of several residual

sub-blocks, all based on 3D convolution to make use of three dimensional image features in

volumetric CT images.

A major difference between Ua-Net and the conventional U-Net model [110] is that Ua-
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Net utilizes the OAR detection module to first identify regions containing OARs, and then

upsamples image features only within the detected OAR regions, instead of the whole-volume

as in U-Net. The two-stage design enables the model to focus its attention on extracting

high-resolution image features surrounding OARs, having the advantage of reducing false

positive predictions outside the normal range of OARs and substantially cutting down the

GPU memory consumption required for the up-sampling step. A detailed description of the

model is provided in the Method section.

6.2.1 Performance metrics

We used volumetric Dice similarity coefficient (DSC) [104] and the 95th percentile Hausdorff

distance (95% HD) [56, 104], two most commonly used metrics in this field, to evaluate the

quality of OAR delineation. The OAR segmentation results of our model are represented

by 28 binary masks, one for each OAR. Each binary mask is a three-dimensional array of

the same size as the input CT images, with values of either 0 or 1, indicating whether the

underlying voxel is part of the corresponding OAR. Let Mp and Mg be the set of voxels

with value 1 in the predicted and gold standard masks, respectively. The DSC is defined

as DSC= 2|Mp ∩ Mg|/(|Mp| + |Mg|), measuring the volumetric overlap between the two

masks. In addition to DSC, we also measured Hausdorff distance between the boundaries

of two masks. Let Cp and Cg denote the contours of the predicted and gold standard

masks, respectively. Define max HD to be max {h(Cp, Cg), h(Cg, Cp)}, where h(Cp, Cg) =

maxa∈Cp minb∈Cg ‖a−b‖. Because max HD is very sensitive to outliers, a more commonly used

metric, called 95% HD, which measures the 95th percentile distance between two contours,

is used instead.

To assess the clinical utility of our model, we calculated and compared the time that a

radiation oncologist spent on delineating OARs, either from scratch or by modifying the
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Figure 6.2: Overview of Ua-Net. D, H, W represent the depth, height and width
of the input CT image respectively. The size of each feature map is represented
as (batch size, channel, depth, height, width). k is the number of anchors (12
in this study). FC is short for fully connected layer and ROI is short for re-
gion of interest. The proposed deep learning framework consists of two stages:
OAR detection and OAR segmentation. OAR detection network outputs the
locations and sizes of OARs in the CT image, which are then fed to the OAR
segmentation network for finer grained segmentation using cropped CT image
and feature maps. OAR detection and OAR segmentation network share the
same underlying feature extraction backbone and can be jointly optimized. The
whole framework is trained in an end-to-end fashion.
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delineation results from the model.

6.2.2 Comparison with state-of-the-art methods

The Ua-Net model was trained on 215 CT scans in the training set (from dataset 1 & 2) (See

“Supplementary Methods” for model training details). Next, we evaluate its segmentation

accuracy on the test set, which includes 30 CT scans from dataset 1 and 70 CT scans from

dataset 2. Because the two test sets are from difference sources, the performance evaluations

are reported in separate tables (Table 3 & 4 for dataset 1 and Supplementary Table 5 for

dataset 2) for the purpose of assessing the robustness of our model across different data sites.

We first compared Ua-Net to a state-of-the-art deep learning model called AnatomyNet [182],

which has been shown to be able to significantly outperform traditional atlas-based methods

for OAR delineation in terms of both accuracy and speed. AnatomyNet is representative of

U-Net like models for OAR segmentation, but stands out from the rest of the deep learning

models in that it can segment OARs directly on whole-volume CT images instead of extracted

local patches. To ensure consistent comparisons, we trained both models on the same training

dataset using the same procedure.

In terms of DSC, Ua-Net outperformed AnatomyNet in 27 out of 28 OARs with an average

improvement of 4.24% (Table 6.3) on dataset 1, and in 28 out of 28 OARs with an average

improvement of 5.7% (Supplementary Table 5) on dataset 2. Ua-Net performed particularly

better on anatomies that are difficult to delineate under normal contrast conditions, e.g.,

optic chiasm and sublingual gland, likely due to the local contrast normalization mechanism

implemented in Ua-Net. Ua-Net performed slightly worse than AnatomyNet on the right

ear; however, the difference is relatively small.

The advantage of Ua-Net over AnatomyNet is even more obvious when evaluated in terms
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of the Hausdorff distance, decreasing the average 95% HD from 21.96mm to 6.21mm. As

shown in (Table 6.4), AnatomyNet is prone to produce false positives outside the normal

range of OARs, which is expected because its segmentation is done on whole-volume images

instead of localized OAR regions as in Ua-Net. These false positives were small in terms of

the number of voxels, having less negative effects on DSC that measures volumetric overlap,

but they significantly increased the Hausdorff distance.

Next we compared Ua-Net to multi-atlas segmentation (MAS), a classical OAR delineation

method based on image registration (See Supplementary Methods for details of the MAS

method). In both datasets, MAS generated significantly lower scores (15.56% lower average

DSC score on dataset 1 and 23.16% lower on dataset 2 compared to our model), indicating

that the classical method is not as competitive as the deep learning based methods.

Finally we compared the performance of our model to previous state-of-the-art results on

dataset 3 (PDDCA). Table 6.5 contains a summary of previously reported delineation results,

evaluated in terms of DSC on 9 OARs from dataset 3 test set. Ua-Net obtained the best

delineation results on 8 out of 9 OARs, achieving an average DSC score of 81.23% across the

9 OARs, higher than all previous methods.

6.2.3 Comparison with human experts

Having demonstrated that Ua-Net performed better than both the classical and state-of-the-

art deep learning methods for OAR delineation, we proceeded to compare its performance to

manual delineations produced by human experts. For this purpose, we enlisted a radiation

oncologist with over 10 years of professional experience, who was not involved in annotating

either the training or test datasets. The radiation oncologist manually delineated the 28

OARs on the 30 CT scans in the test set from dataset 1 in accordance with the normal

professional procedure, but without consulting other professionals or seeking assistance from
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additional data sources such as MRI images.

OAR MAS AnatomyNet Ua-Net Human Human1

Brachial Plexus 30.38± 15.63 50.41± 8.08 56.15 ± 10.83 33.03± 7.83 33.03± 7.83
Brain Stem 82.25± 7.47 82.63± 4.57 86.25 ± 3.86 83.25± 4.63 83.47± 4.35
ConstrictorNaris 66.38± 8.21 73.68± 7.56 75.46 ± 6.13 62.34± 8.63 62.34± 8.63
Ear L 70.38± 14.94 76.68± 5.00 77.28 ± 4.25 43.57± 12.63 43.57± 12.63
Ear R 70.03± 15.57 78.77 ± 5.77 78.64± 6.35 39.71± 10.81 39.71± 10.81
Eye L 85.96± 10.99 88.41± 3.10 92.51 ± 2.00 90.71± 2.11 90.71± 2.11
Eye R 82.68± 17.38 89.25± 3.38 92.49 ± 2.34 91.51± 1.79 91.51± 1.79
Hypophysis 43.54± 18.45 56.18± 10.01 63.86 ± 8.73 59.26± 14.77 60.15± 15.07
Larynx 82.60± 8.19 83.06± 7.98 89.25 ± 3.26 68.60± 6.59 68.60± 6.59
Lens L 46.25± 24.29 77.25± 7.92 81.90 ± 6.88 64.27± 10.06 64.27± 10.06
Lens R 45.53± 23.94 78.06± 7.51 83.04 ± 5.90 71.79± 9.59 71.79± 9.59
Mandible 83.95± 11.48 91.97± 1.71 93.12 ± 1.41 90.97± 1.46 90.97± 1.46
Optic Chiasm 42.08± 17.52 60.55± 11.16 64.21± 16.39 28.61± 14.40 69.66 ± 13.26
Optic Nerve L 59.49± 14.61 72.55± 6.55 75.73 ± 7.26 65.10± 8.44 69.80± 8.87
Optic Nerve R 59.08± 16.53 72.95± 7.90 76.06 ± 6.49 66.14± 7.29 68.70± 8.85
Oral Cavity 86.10± 9.11 87.69± 5.67 90.77 ± 2.32 79.30± 3.59 79.30± 3.59
Parotid L 72.52± 15.57 82.28± 6.71 84.86 ± 4.22 78.46± 4.90 78.46± 4.90
Parotid R 71.20± 17.55 82.20± 7.26 84.93 ± 3.99 78.88± 4.41 78.88± 4.41
SMG L 60.89± 12.11 75.47± 8.93 80.71 ± 7.32 77.73± 6.25 77.73± 6.25
SMG R 63.70± 15.80 74.82± 14.69 82.54 ± 7.47 74.10± 16.92 74.10± 16.92
Spinal Cord 77.42± 16.70 80.32± 6.48 85.64 ± 5.90 84.59± 6.62 84.59± 6.62
Sublingual Gland 21.52± 16.34 39.94± 21.02 45.99 ± 18.84 35.16± 23.87 35.16± 23.87
Temporal Lobe L 80.05± 7.28 81.76± 5.33 84.78 ± 2.62 82.41± 5.01 82.79± 4.53
Temporal Lobe R 78.26± 7.40 72.97± 14.60 84.13 ± 3.34 80.90± 7.49 81.40± 7.62
Thyroid 63.68± 19.65 71.82± 11.40 85.62 ± 4.63 82.42± 6.16 82.42± 6.16
TMJ L 61.26± 19.86 86.65± 3.34 87.96 ± 3.12 84.67± 5.09 84.67± 5.09
TMJ R 63.45± 20.48 85.73± 3.69 86.86 ± 3.60 81.98± 8.59 81.98± 8.59
Trachea 65.86± 18.75 79.34± 7.75 81.29± 4.84 91.05 ± 1.69 91.05 ± 1.69
Average 64.87 76.19 80.43 70.38 72.17

Human1 The same radiation oncologist modified his/her previous delineation by referencing the
corresponding MRI images.

Table 6.3: Dice similarity coefficient (DSC) comparison on the test set of dataset
1 (unit: %). L is short for left and R is short for right. SMG is short for
submandibular gland and TMJ is short for temporomandibular joint.

In terms of DSC, both Ua-Net and AnatomyNet performed better than the human expert.

Ua-Net outperformed the human expert on 27 out of 28 OARs, with an average improvement

of 10.15%. The human expert’s delineation had lowest DSC scores on optic chiasm (28.61),

brachial plexus (33.03) and sublingual gland (35.16), highlighting the challenge of manually

delineating these organs, which are small in size and have a relatively low contrast in CT

images. The gap between the human expert and our deep learning model delineation was

smaller when the results were evaluated using Hausdorff distance. Both the human expert
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OAR MAS AnatomyNet Ua-Net Human Human1

Brachial Plexus 30.73± 25.99 37.97± 36.44 18.27 ± 14.53 43.20± 18.19 43.20± 18.19
Brain Stem 6.62± 2.99 5.30± 1.36 4.75 ± 1.58 5.04± 1.28 4.89± 1.22
ConstrictorNaris 9.49± 8.78 8.14± 6.20 5.71 ± 3.34 12.92± 7.57 12.92± 7.57
Ear L 9.81± 19.85 25.88± 76.28 5.04 ± 1.35 11.08± 3.49 11.08± 3.49
Ear R 9.01± 16.04 23.28± 68.48 4.67 ± 1.42 13.44± 3.31 13.44± 3.31
Eye L 4.73± 4.53 2.97± 0.54 2.44 ± 0.75 3.03± 0.67 3.03± 0.67
Eye R 6.37± 7.95 2.95± 0.54 2.52 ± 1.16 2.62± 0.61 2.62± 0.61
Hypophysis 5.25± 2.33 3.62± 0.74 3.23± 0.75 3.25± 0.80 3.20 ± 0.98
Larynx 11.53± 11.14 64.29± 89.51 6.15 ± 5.83 13.35± 7.26 13.35± 7.26
Lens L 5.69± 7.02 2.32± 0.82 1.95 ± 0.80 2.98± 0.63 2.98± 0.63
Lens R 6.77± 9.82 2.00 ± 0.74 2.07± 1.35 2.50± 0.76 2.50± 0.76
Mandible 8.19± 12.53 7.14± 21.95 2.48 ± 0.83 2.54± 0.30 2.54± 0.30
Optic Chiasm 7.34± 3.89 4.45± 1.19 4.58± 2.36 6.90± 1.81 4.19 ± 1.70
Optic Nerve L 6.94± 4.54 5.28± 3.68 3.31 ± 0.91 4.35± 1.29 3.75± 1.12
Optic Nerve R 7.53± 7.52 4.67± 1.84 4.11± 1.31 4.09± 1.24 3.61 ± 1.05
Oral Cavity 12.65± 9.60 12.79± 21.54 7.38 ± 2.05 11.83± 3.10 11.83± 3.10
Parotid L 11.49± 15.45 19.29± 65.05 6.98 ± 3.83 8.83± 3.65 8.83± 3.65
Parotid R 11.22± 12.84 20.67± 63.34 6.26 ± 2.67 8.54± 4.22 8.54± 4.22
SMG L 8.87± 3.47 6.49 ± 4.00 6.75± 4.65 6.86± 3.72 6.86± 3.72
SMG R 12.14± 14.42 6.59± 4.40 5.65 ± 3.99 6.40± 3.12 6.40± 3.12
Spinal Cord 6.09 ± 5.54 99.72± 80.01 6.86± 22.03 9.04± 18.95 9.04± 18.95
Sublingual Gland 13.00± 12.93 7.56± 3.29 7.46 ± 3.07 9.19± 3.88 9.19± 3.88
Temporal Lobe L 13.19± 4.85 12.03± 4.34 11.32± 3.73 8.32 ± 2.71 9.79± 4.69
Temporal Lobe R 14.73± 5.27 16.17± 6.21 13.58± 4.52 9.64 ± 4.06 10.22± 5.57
Thyroid 12.52± 13.92 128.99± 83.86 3.94 ± 2.43 5.93± 6.44 5.93± 6.44
TMJ L 7.74± 6.78 12.21± 25.25 2.79 ± 1.09 2.96± 1.30 2.96± 1.30
TMJ R 10.29± 18.13 28.13± 79.13 2.74 ± 0.68 2.88± 0.98 2.88± 0.98
Trachea 33.68± 18.21 43.91± 56.11 20.85± 8.99 2.57 ± 1.26 2.57 ± 1.26
Average 10.84 21.96 6.21 8.01 7.94

Human1 The same radiation oncologist modified his/her previous delineation by referring to the
corresponding MRI images.

Table 6.4: Average 95th percentile Hausdorff distance comparison on the test set
of dataset 1 (unit: mm). L is short for left and R is short for right. SMG is
short for submandibular gland and TMJ is short for temporomandibular joint.

and Ua-Net did substantially better than AnatomyNet, for the reasons explained above. Ua-

Net did better than the human expert (with smaller 95% HD) on most of the OARs (22 out

of 28), lowering the average 95% HD from 8.01 mm to 6.28 mm - a 21% reduction. Because

the Hausdorff distance is very sensitive to outliers, it was a more challenging metric for

models than human experts, whose mistakes were mostly confined in regions around OARs.

In real clinical practice, clinicians may also reference MRI images during the delineation

process. To benchmark the delineation quality of clinicians in a real clinical setting, we also
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asked the same clinician to update the delineation results guided by inputs from both CT

and MRI images. We observed a noticeable improvement in delineation quality of several

OARs, especially those with low CT image contrast such as optic chiasm and optic nerves.

This led to the increase of the average DSC to 72.17%. We should note that the lower score

is likely contributed by multiple factors, including inter-observer variation [10, 148, 66, 158],

a common issue in OAR delineation, as well as skills and experiences.

Altogether, the experimental results described above suggested that 1) the two-stage model

implemented in Ua-Net was beneficial for improving the performance of deep learning models

in terms of DSC, and substantially so in terms of the Hausdorff distance; and 2) the model

was also capable of providing better delineation performance than human expert. Note that

our model can complete the entire delineation process of a case within a couple of a second

(Supplementary Table 7). By contrast, the human expert took on average 34 minutes to

complete one case, highlighting the significant advantage of the deep learning model (Table

6.6).

Study
Brain Stem Mandible Optic Chiasm Optic Nerve Parotid SMG

L R L R L R
Raudashl et al. [104] 88.0 93.0 55.0 62.0 62.0 84.0 84.0 78.0 78.0
Fritscher et al. [38] 49.0 ± 9.0 81.0 ± 4.0 81.0 ± 4.0 65.0 ± 8.0 65.0 ± 8.0
Ren et al. [108] 58.0 ± 17.0 72.0 ± 8.0 70.0 ± 9.0
Wang et al. [164] 90.0 ± 4.0 94.0 ± 1.0 83.0 ± 6.0 83.0 ± 6.0
Zhu et al. [182] 86.7 ± 2.0 92.5 ± 2.0 53.2 ± 15.0 72.1 ± 6.0 70.6 ± 10.0 88.1 ± 2.0 87.3 ± 4.0 81.4 ± 4.0 81.3 ± 4.0
Tong et al. [144] 87.0 ± 3.0 93.7 ± 1.2 58.4 ± 10.3 65.3 ± 5.8 68.9 ± 4.7 83.5 ± 2.3 83.2 ± 1.4 75.5 ± 6.5 81.3 ± 6.5
Nikolov et al. [92] 79.5 ± 7.8 94.0 ± 2.0 71.6 ± 5.8 69.7 ± 7.1 86.7 ± 2.8 85.3 ± 6.2 76.0 ± 8.9 77.9 ± 7.4
Ua-Net (Our) 87.5 ± 2.5 95.0 ± 0.8 61.5 ± 10.2 74.8 ± 7.1 72.3 ± 5.9 88.7 ± 1.9 87.5 ± 5.0 82.3 ± 5.2 81.5 ± 4.5

Table 6.5: Dice similarity coefficient (DSC) comparison with previous published
results on PDDCA (unit: %). L is short for left and R is short for right. SMG
is short for submandibular gland.

6.2.4 Clinical performance

Having demonstrated that our model can do better than both the state-of-the-art method

and human expert, we next sought to find out its clinical utility, i.e., to what extent the

model can actually help clinicians. For this purpose, we conducted a study to compare the

time spent by radiation oncologists in delineating OARs under two modes - without or with
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assistance from our model. In the first mode, the delineation was performed completely

manually from scratch. In the second mode, the delineation results of all 28 OARs from our

model were provided to the clinician, who would then verify the results and revise incorrect

delineations when necessary. The overall work time in this case includes the time spent on

verifying the results, as well as the time spent on modifying model’s predictions.

Ten new CT scans from real-life radiotherapy planning were studied. We recorded the time

spent by an experienced radiation oncologist to delineate 28 OARs in each of these ten cases,

operating under the two modes described above. To ensure the quality of delineation, all

delineation results were checked and confirmed by a second radiation oncologist.

Without assistance from the model, the radiation oncologist spent on average 33.6 ± 2.55

minutes to delineate one case. By contrast, when assisted by our model, the delineation

time was substantially reduced, reaching an average value of 13.1±3.14 minutes (Table 6.6),

representing roughly a 61% reduction in time. A paired t-test confirmed that the differences

were statistically significant (p-value = 4.5e-9). We note that the radiation oncologist ac-

cepted the model delineation results on most OARs without any need of modification. Most

of the modification time was spent on brachial plexus and temporal lobes, two OARs with

relatively large volumes.

This study confirmed the clinical utility of our model, demonstrating that the model can

generalize well on previously unseen cases, and can save clinician’s time by as much as 61%,

when offered as a tool to assist the clinician’s manual delineation.

Visualization

We randomly selected two representative CT scans from the holdout test set for visualizing

the delineation quality of the proposed method. Figure 6.3 shows the model prediction and
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Tumor category Mode one (min) Mode two (min) t p
PA1 NPC 35 13
PA2 NPC 33 11
PA3 NPC 30 13
PA4 NPC 38 20
PA5 HD 36 11
PA6 BM 34 12
PA7 NPC 32 8
PA8 NPC 33 14
PA9 BM 35 15
PA10 BM 30 14

Average 33.60± 2.55 13.10± 3.14 21.68 4.5e-9

Table 6.6: Time comparison for oncologist delineating using two approaches. NPC
is short for nasopharyngeal carcinoma, HD for hodgkin disease and MD for
brain metastasis. Mode one refers to delineation performed completely manually,
without any assistance of computational tools, and mode two refers to delineation
done by modifying the delineation result generated by the proposed method. t
denotes the paired t-test statistic, and p denotes the p-value.

manual delineation results of 28 OARs in axial planes. Figure 6.4 shows an unusual case

where the head is tilted. In both cases, the model was able to generate delineations that

matched well to the results produced by human experts.

6.3 Discussion

In this study, we presented a new deep learning model to automatically delineate OARs in the

head and neck area. We demonstrated that the new model improved the delineation accuracy

over the state-of-the-art method by 5.18% in terms of the DSC score, and substantially more

in terms of the Hausdorff distance. In addition, we showed that the model also performed

better than a radiation oncologist, achieving 10.15% higher DSC and 1.80 mm lower 95%HD,

when averaged across 28 OARs.

The success of the model can be attributed to its two-stage design. Different from most

existing deep learning models in this field, which are based on U-Net or its variants, Ua-Net
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CT Image Gold standard Model prediction Contour comparison

Figure 6.3: Visualization of one randomly selected CT scan from test set. The six
rows are six representative axial slices in the CT image showing the 28 OARs.
The first column is the original CT scan, and the second to the fourth columns are
zoomed in version of the white square box on the original CT image. The second
column shows the delineation of oncologists, the third column shows prediction
generated by the proposed deep learning method and the fourth column shows
comparison of the two contour outlines.
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CT Image Gold standard Model prediction Contour comparison

Figure 6.4: Visualization of a second randomly selected CT scan from test set.
The five rows are five representative axial slices in the CT image. The first col-
umn is the original CT scan, and the second to the fourth columns are zoomed
in version of the white square box on the original CT image. The second col-
umn shows the delineation of oncologists, the third column shows prediction
generated by the proposed deep learning method and the fourth column shows
comparison of the two contour outlines. This CT was taken when the head of the
patient was tilted. However, the proposed framework can still generate accurate
segmentation, demonstrating the robustness of the framework.
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first identifies regions containing OARs and then focuses on extracting image features around

these focal areas. There are several advantages with this design. First, it allows the model

to perform local contrast normalization within each detected anatomy, which we notice has

significant impact on delineating anatomies with low CT image contrast. In addition, it

becomes more efficient to train and force the model to learn better features to segment

boundaries of OARs, because the segmentation loss function is now confined to the local

OAR regions. Second, the design significantly reduces false positives, effectively eliminating

outliers away from the normal range of OARs. This is reflected in the improvement of the

Hausdorff scores. Third, the design cuts down GPU memory consumption and is more com-

putationally efficient. Training deep neural nets on volumetric CT images is computationally

intensive and requires hardware with large GPU memory, which has become a bottleneck

in many deep learning applications in this field. In models developed for OAR delineation,

most of the GPU memory consumption occurs at the last few layers, where the image fea-

ture maps were upsampled to have the same spatial resolution as the original CT image.

Our model only upsamples feature maps containing OARs, and thus is able to drastically

cut down GPU memory consumption. With our model, it becomes feasible to delineate

all 28 OARs from whole-volume CT images using only commodity GPUs (e.g., with 11 Gb

memory), which we believe is important for the method to be able to be deployed in actual

clinics.

This study has several important limitations. First, only CT images were used by our model

to delineate OARs. Some anatomies, such as the optic chiasm, have low contrast on CT and

are difficult to delineate based on the CT modality alone. It is important to integrate images

from other modalities (e.g., MRI) into the deep learning framework to further improve the

delineation accuracy. Second, although we have taken great care in generating gold standard

annotations (See Data subsection), these annotations were still carried out manually by

human experts, with the caveat of potential subjective variations and even errors. We showed

that an independent human expert only reached an average DSC score of 70.38 (72.17% if the
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human experts reference MRI images in addition to CT) on the test of dataset 1 (Table 6.3).

Some of these discrepancies can be attributed to the inter-observer variation among experts

[10, 148, 66, 158], although they have been trained to follow the same delineation guidelines

and procedures. In this regard, further improving the annotation quality and generating an

industry-wide standardized dataset will be necessary in the future. Nonetheless, our study

suggested that the deep learning model provides an attractive solution for standardizing

the delineation process and ensuring consistent results across institutions and individuals.

Third, the dataset used here is relatively small for deep network training. In dealing with

this constraint, we have limited the number of layers and the number of free parameters to

control the complexity of our model, and have augmented the training data through affine

and elastic transformation (Supplementary Methods). However, more data collected from

a more diverse set of sources will be needed to improve the cross-domain adaptation and

generalization of the model.

In summary, we demonstrate that our proposed deep learning approach can accurately de-

lineate OARs in head and neck with an accuracy comparable to an experienced radiation

oncologist. It is clinically applicable and can already save approximately 2/3 of a clini-

cian’s time spent on OAR delineation. With further improvements on model and data, it is

conceivable that the time-consuming OAR delineation process critical for radiation therapy

planning may be fully automated by deep learning methods.

6.4 Method

Ua-Net consists of two submodules - one for OAR detection and the other for OAR segmenta-

tion. The goal of the OAR detection module is to identify the location and size of each OAR

from the CT images, while the goal of the OAR segmentation module is to further segment

OAR within each detected OAR region. The overall diagram of the network architecture is
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shown in Figure 8.1.

6.4.1 OAR detection module

The OAR detection module receives a whole-volume CT image as input (with dimension D×

H×W denoting depth, height and width respectively), and extracts images features through

a sequence of down-sampling blocks, followed by an up-sampling block. Each down-sampling

block is composed of two residual sub-blocks, all based on 3D convolution, reducing resolution

by one-half along each axis after each down-sampling. The last down-sampling block is up-

sampled to a final feature map of 64 channels with size D/8 × H/8 ×W/8 (feature map 8

in Figure 2) through transposed convolution and by concatenating feature maps of the same

size from the corresponding down-sampling block. OAR candidate screening is carried out

based on this final feature map, with one head for bounding box regression and one head for

binary classification (to be detailed in the following). Detected OAR candidate bounding

boxes further undergo a 3D ROI-pooling [41] step to generate feature maps of fixed sizes,

which are then used for further bounding box regression and for multi-class classification to

identify the class label associated with each OAR.

To generate OAR candidates, we branch the final feature map of the detection module

(feature map 8 in Figure 8.1) into two separate heads - one for bounding box regression and

the other for binary classification, with each head undergoing 3× 3× 3 convolution followed

by 1×1×1 convolution. Each bounding box is represented by a rectangular cuboid, defined

by six parameters t = (x, y, z, d, h, w) with (x, y, z) denoting its center and (d, h, w) denoting

its depth, height and width in original CT image coordinates. Overall 12 anchors are used

to generate OAR candidates at each sliding window. The selection of the anchors and their

sizes are described in Supplementary Methods.

The anchors produce a list of candidate bounding boxes. Let ti ∈ R6 be the bounding box
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parameter associated with the i-th anchor, predicted by the regression head, and pi be the

probability of the anchor being an OAR, predicted by the classification head. We minimize

a multi-task loss function

Ld({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p∗i ) + λ
1

Nreg

∑
i

Lreg(ti, t∗i ) (6.1)

where the first term is a classification loss, the second term is a regression loss, and λ is a

hyper parameter balancing the two losses (set to 1 in this study). Ncls and Nreg are the total

number of anchors included in classification and regression loss calculation, respectively. p∗i

is 0 if the i-th anchor does not contain any OAR and 1 otherwise. t∗i is the ground truth

box parameter. Both ti and t∗i are parameterized relative to the size of the anchor box (See

Supplementary Methods for details). We use weighted binary focal loss for Lcls ([79]) and

smooth `1 loss for Lreg.

To assign a class label to each OAR proposal, we apply an ROI-pooling step [41] to image

features extracted from the feature map 8 in regions specified by its predicted bounding box

to derive a feature map with fixed dimensions. Two fully connected layers are subsequently

applied to classify each OAR proposal into one of 29 classes (28 anatomies plus 1 background)

and to further regress coordinates and size offsets of its bounding box. We minimize a similar

multi-task loss function as Equation (6.1), with Lcls replaced by a weighted cross entropy

loss of 29 classes, while the regression loss remains the same. The final output of the

OAR detection network is the predicted bounding box (x̂, ŷ, ẑ, d̂, ĥ, ŵ) in the original image

coordinates, and the corresponding class label ĉ for each OAR.

6.4.2 OAR segmentation module

The goal of the segmentation module is to segment each of the OAR regions returned by the

detection module. The module takes the bounding box and the class label of each OAR as
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input, and produces a binary mask to delineate the OAR in the original image resolution.

It starts by cropping feature maps from the feature map 8, the location and size of which

are specified by the predicted bounding box. The cropped feature maps are subsequently

up-sampled by a sequence of up-sampling blocks to derive a final set of feature maps in the

original CT resolution (i.e., from 1/8x to 1x resolution). Each up-sampling block is composed

of a trilinear up-sampling, followed by a 3D convolution and local contrast normalization.

To incorporate fine-scale local image features, we also crop image features from the feature

maps derived by the down-sampling blocks (in the detection module) in regions specified

by the bounding box, and concatenate them into the feature maps of the corresponding

up-sampling blocks. The final segmentation feature map consists of 64 channels with size

d̂ × ĥ × ŵ, the same as the dimension of the predicted bounding box. Finally we apply a

1 × 1 × 1 3D convolution (chosen according to the class label ĉ) to this final feature map,

followed by sigmoid transformation, to generate the predicted mask m, a set indexed by

voxel coordinates with mi denoting the probability of voxel i being the foreground of the

OAR. The same procedure is applied to each detected OAR within a CT scan. The final

binary mask mc associated with OAR c is taken to be the union of all mi whose predicted

OAR class label is c.

The segmentation loss associated with one CT scan is defined to be

Ls =
28∑
c=1

I(c)(1− φ(mc,gc)) (6.2)

where I(c) is an indicator function, taking 1 if OAR c is detected by the detection module

and zero otherwise. gc denotes the ground truth binary mask of OAR c: gci = 1 if voxel

i is within the OAR and zero otherwise. φ(m,g) computes a soft Dice score between the

predicted mask m and the ground truth g,

φ(m,g) =

∑N
i=1 migi∑N

i=1 migi + α
∑N

i=1 mi(1− gi) + β
∑N

i=1(1−mi)gi + ε
(6.3)
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where i is a voxel index and N denotes the total number of voxels. The terms
∑N

i=1 mi(1−gi)

and
∑N

i=1(1−mi)gi can be understood as soft false positives (FPs) and soft false negatives

(FNs), respectively. Parameters α and β control the weights of penalizing FPs and FNs, and

were set to be 0.5 in this study. The ε term was added to ensure the numerical stability of

the loss function.

Local contrast normalization

To facilitate the training of the segmentation module, we apply a response normalization step

that we refer to as “local contrast normalization” to feature maps of the up-sampling blocks.

It standardizes each 3D response map to zero mean and unit variance across all voxels.

More specifically, let x ∈ RC×D×H×W be a feature map with C channels and of dimension

D ×H ×W . The local contrast normalization step transforms the map to y ∈ RC×D×H×W

with

ycijk =
xcijk − µc√
σ2
c + ε

(6.4)

where µc and σc are the mean and standard deviation of the voxel intensities within the

c-th channel of the feature map x. We found that the local contrast normalization step can

not only facilitate the training by making it converge faster, but also improve segmentation

accuracy (See Supplementary Discussion for details.)

At a high level, Ua-Net shares similarities with Mask-RCNN [48] and the feature pyramid

network (FPN) [78]. However, the overall objectives and implementation details are quite

different. First, the ultimate goal of Ua-Net is on segmentation, while Mask-RCNN is on

both object detection and segmentation. As a result, Mask-RCNN has two equally important

parallel head - one for detection and the other for segmentation after ROI aligning. By

contrast, Ua-Net is a two-stage model with only segmentation head in the second stage.
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Second, Ua-Net is designed to perform segmentation on the original image resolution. It is

different from FPN in that a) it does not perform multi-scale segmentation as would be in

the case of FPN, and b) its bottom-up (up-sampling) path and lateral feature concatenation

from the top-down path only involve cropped image/feature map regions containing the

detected OARs, different from FPN where both bottom-up and top-down paths are on whole

images/feature maps. These design considerations allow the model to focus its attention on

fine and detailed segmentation of each individual OAR.
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Chapter 7

Spatial Context-Aware Self-Attention

Model For Multi-Organ Segmentation

7.1 Introduction

Segmentation of organs or lesions from CT images has great clinical implications. It can be

used in multiple clinical workflows, including diagnostic interventions, treatment planning

and treatment delivery [40]. Organ segmentation is an importance procedure for computer-

assisted diagnostic and biomarker measurement systems [150]. Organ-at-risk (OAR) seg-

mentation and tumor segmentation are also crucial to the planning of radiation therapy

[132]. Moreover, the segmentation-based models of anatomical structures can support sur-

gical planning and delivery [53].

Organ segmentation is typically done manually by experienced doctors. However, manually

segmenting CT image by doctors is often time consuming, tedious and prune to human

error, as a typical CT scan can contain up to hundreds of 2D slices. Computational tools

that automatically segment organs from CT images can greatly alleviate the doctors’ manual
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effort, given a certain amount of accuracy is achieved.

There is a vast volume of work on organ segmentation using CT or magnetic resonance (MR)

image. Traditional segmentation methods are mostly atlas-based. These methods rely on a

set of accurate image templates with manual segmentation, and then use image registration

to align the new image to the templates. Because of the reliance on the pre-computed

templates, these methods may not adequately account for the anatomical variance due to

variations in organ shapes, removal of tissues, growth of tumor and differences in image

acquisition [167]. Also, registration is computationally intensive and may take up to hours

to complete [19, 37, 28, 51, 74, 101, 127, 141, 143, 158, 154, 58, 39, 17, 152, 157, 36, 173].

Deep learning-based methods provide an alternative solutions with substantial accuracy

improvement and speed-up. With recent advances in deep learning especially deep convolu-

tional neural network, automatic segmentation using computer algorithm has shown great

promise in achieving near human performance [4, 177, 76, 134], and various applications

have been deployed in clinical practice.

Fully convolutional network [82] and U-Net [110] are two of the most widely used deep

learning-based segmentation algorithms for this purpose. Many its variants have been pro-

posed in recent years, including V-Net [87] and Attention U-Net [94]. These methods can use

either 2D or 3D convolutions as its basic building component. 2D methods usually operate

on a slice by slice basis, while 3D methods often operate on a 3D block or a stack of multiple

2D slices [80, 179]. The whole volume prediction can be obtained by predicting each slice or

block using a sliding window. Additionally, some may stack multiple 2D slices in the input

channel and use 2D convolution as a way to include some 3D features, and this is often

referred as 2.5D model.

However, a CT image is inherently 3D. Cutting the images into slices or blocks often ignores

the rich information and relation within the whole image volume. A big challenge in de-
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veloping algorithm for consuming the whole image volume is the GPU memory limitation.

Simply storing the tensors of the image features would require huge amount of GPU memory.

One way is to adopt a coarse-to-fine strategy [187, 171, 163, 176, 161, 83, 168, 187, 171, 181,

11, 111], where in the first stage the organs of interest are roughly located, and in the sec-

ond stage the segmentation masks are further refined by using a smaller input based on the

localization. This usually requires training multiple CNNs for different stages and organs.

Recently, several methods have been proposed to use the whole CT image volume as input,

and achieve state-of-the-art accuracy and inference speed [134, 183, 187, 139, 43]. Despite

their successes, there exists several disadvantages. First, to reduce the GPU memory con-

sumption, these methods usually directly downsample the input in the very first convolution

layer, which may lead to loss of local features. Moreover, they require carefully tailored image

input size in order to fit the whole-volume image. However, they will still face GPU memory

limitation if the image resolution becomes higher, because the memory requirement grows

quickly with the size of the image volume. This makes previous whole-volume algorithm less

effective when adapted to new dataset. Second, some of them make strong assumption on

the organs/region they segment, thus lacking the ability to generalize well to other parts of

the CT image.

We seek to incorporate 3D whole volume information into 2D model in a scalable way.

We hypothesize that the benefits of using 3D convolution on the whole-volume image may

come from its capability of modeling the shapes and relationships of the 3D anatomical

structures. However, to model such shapes and relationships, we do not have to use very

high-resolution image. 3D convolution on downsampled image volume may suffice to extract

such information and can save a lot of computation and GPU memory. We can use 2D

convolution on the original image slice to compensate for the loss of resolution. To fuse both

3D context features and 2D features, we implement a new module called multi-slice feature

aggregation based on self-attention [151], which treats the 2D feature map as query and 3D

context map as key, and uses self-attention to aggregate the rich 3D context information.

73



In this chapter, we propose a new deep learning framework named Spatial Context-Aware

Self-Attention Model (SCAA). Our main contributions are: i) a new framework for combin-

ing 3D and 2D models that takes the whole-volume CT image as input; ii) a self-attention

mechanism to filter and aggregate 3D context features from the whole volume image to

guide 2D segmentation iii) the proposed method can scale to larger input volume without

concerning the GPU memory limitation that common 3D methods face. Experiment results

on a head and neck (HaN) dataset of 9 organs and an abdomen dataset of 11 organs show

the proposed model consistently outperforms state-of-the-art methods in terms of organ

segmentation accuracy, while being able to take the whole-volume CT image as input.

7.2 Method

Figure 8.1 shows the details of the proposed method. The proposed model consists of four

parts: a 3D context feature encoder f 3D, a 2D feature encoder fEnc, a multi-slice feature

aggregation (MSFA) module fMSFA, and at last a 2D decoder fDec. The input to the model

f : x → fDec(fEnc(f 3D(x))) is the whole CT image volume I ∈ RD×H×W , and the outputs

are D 2D segmentation masks for C classes m ∈ RD×H×W×C . D,H,W are the depth, height

and width of the image volume.

7.2.1 3D context feature encoder and 2D encoder

f 3D first downsamples the input 3D volume I to I′ ∈ RD3D×H3D×W 3D
. D3D, H3D,W 3D are

the depth, height, and width of the downsampled 3D volume. We use a downsample factor

of two in this chapter. Note we can also downsample the volume to other resolutions, e.g.

isotropic 4mm resolution. It then applies 3D convolution blocks three times, where each

convolution block consists of two residual blocks followed by one 2 × 2 × 2 max pooling,
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Figure 7.1: Overview of spatial context-aware self-attention model (SCAA.) SCAA
consists of a 3D context feature encoder, a 2D encoder, a 2D decoder and a multi-slice
feature aggregation (MSFA) module. SCAA starts with extracting 3D features from the
downsampled CT image using 3D convolutions. Then the 2D encoder extracts 2D features
and uses MSFA module to fuse 2D and 3D features hierarchically. Lastly, the 2D decoder
decodes the fused 2D and 3D features and outputs 2D segmentation masks of each organ.
The numbers of feature channels in Fi are 64, 96, 128, 192, 256 for i = 1, 2, 3, 4, 5 respectively.
The number of feature channels in F 2D

i is 96, 128, 192, 256 for i = 2, 3, 4, 5 respectively. The
numbers of feature channels in F 3D

i are 24, 32, 64, 64 for i = 2, 3, 4, 5 respectively. W k
i is

implemented by using 1 × 1 × 1 3D convolution with 2, 2, 4, and 4 feature channels for
i = 2, 3, 4, 5 respectively. W q

i is implemented by using 1×1 2D convolution with 2, 2, 4, and
4 feature channels for i = 2, 3, 4, 5 respectively. The xy spatial resolution of the output of
the adaptive pooling are 16× 16, 8× 8, 4× 4, 4× 4 for scale i = 2, 3, 4, 5 respectively. The
number of attention heads for scale i = 2, 3, 4, 5 is 2, 2, 4, and 4 respectively.
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aiming at extracting 3D context features in the whole CT image.

The output of f 3D are four feature maps at different scales, denoted as F 3D
i ∈ RC3D

i ×D3D
i ×H3D

i ×W 3D
i ,

where i = 2, 3, 4, 5. This means the feature map F 3D
i is downsampled by a factor of 2i com-

pared to the original image. D3D
i , H3D

i and W 3D
i are the depth, height and width of the

feature map at scale i, the values of which depend on the size of input image. C3D
i equals

24, 32, 64 and 64 for i = 2, 3, 4, 5 respectively. After F 3D
5 , we flatten the channel, depth,

height and width dimension into a vector and regard it as a global descriptor Fglobe for the

3D volume.

fEnc is similar to U-Net encoder. It consumes one axial slice of the CT image S ∈ RH×W

and applies 2D convolution blocks five times, where each block consists of two convolutions

followed by instance normalization and ReLU activation, and a max pooling at the end.

The 2D feature encoder outputs five sets of feature maps at different scales, denoted as

F 2D
i ∈ RC3D

i ×H2D
i ×W 2D

i , where i = 1, 2, 3, 4, 5. C2D
i equals 64, 96, 128, 192 and 256 for

i = 2, 3, 4, 5 respectively.

7.2.2 Multi-scale feature aggregation

Inspired by Transformer [151, 103], we implement a self-attention mechanism to filter and

extract useful 3D context features from our 3D feature maps F 3D
i , and we name this module

as multi-scale feature aggregation (MSFA). We regard 3D features as values, and generate

queries from the 2D features and keys from the 3D features. Based on feature similarities of

current 2D features and all slices in the 3D feature map (along z dimension), the MSFA will

generate an attention vector ai ∈ RD3D
i the same length of the depth of the 3D feature map.

This attention then is applied to the 3D feature map to generate a 2D feature map that is

considered as the aggregated 3D context features.
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We start by mapping our 2D feature map F 2D
i and 3D feature map F 3D

i (i = 2, 3, 4, 5),

to one query and D3D
i keys, of the same embedding space. We use a weight metric W q

i

(1 × 1 2D convolution) to generate our query q ∈ RCembed×Hi×Wi . We use a weight metric

W k
i (1× 1× 1 3D convolution) to generate our keys {kj} of size Cembed

i ×H3D
i ×W 3D

i , where

j = 1, 2, ..., D3D
i . An adaptive pooling operation is used to reduce the spatial resolution of

the query and keys to H ′i×W ′
i , followed by a flatten operation to make them one dimensional.

As a result, the embed dimension of the query and keys is now of size Cembed
i ·H ′i ·W ′

i :

(F 3D′

i )c′dhw = (F 3D
i )cdhw(W k

i )c′c

(F 2D′

i )c′hw = (F 2D
i )chw(W q

i )c′c

ki = Flatten(AdaptivePoolD3D
i H′iW

′
i
(F 3D′

i ))

qi = Flatten(AdaptivePoolH′iW ′i (F
2D′,
i ))

(7.1)

(·)(·) is the Einstein summation convention.

A scaled dot product is used to compute the response of the 2D feature map with the

3D feature map rj =
q·kj√

Cembed
i ·H′i·W ′i

. A softmax is followed to generate our attention ai =

softmax(r). We then multiply the attention ai over the depth dimension of F 3D
i and sum over

the depth dimension to generate our aggregated context feature map F agg
i ∈ RC3D

i ×Hi×Wi :

(F agg
i )chw = (F 3D

i )cdhw(ai)d (7.2)

A multi-head attention mechanism is also used. We generate mi such fused 2D feature map

and then use a weight metric Wm
i (1×1 2D convolution) to aggregate multiple self-attention

output. mi is 2, 2, 4 and 4 for i = 2, 3, 4, 5 respectively. This multi-head attention allows

our model to focus on different parts of the 3D context volume to extract features required
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by different classes. Two 2D convolution blocks on the concatenated 2D feature map of F 2D
i

and F agg
i are used to better combine the 2D and 3D context features. Fi denotes our final

2D feature map for scale i. Note that F1 is the same as F 2D
1 .

7.2.3 2D decoder

fDec is similar to the U-Net decoder. Starting from F5, a 2D upsample is used first to

increase the spatial resolution by 2. Then we concatenate the upsampled features with the

corresponding encoder feature map and apply one 2D convolution block. The last upsampled

feature map is of the same resolution as our input image. We concatenate our 3D global

descriptor Fglobe to each pixel’s feature vector and use a 1 × 1 convolution to obtain the

final axial segmentation mask for each class {m2D
c }, where c ∈ Z∗<C and C is the number of

classes.

7.2.4 Loss function and implementation details

The loss function is defined as:

L2D =
N∑
c

1− φ(mc,gc) (7.3)

g is the ground truth segmentation for the axial slice. φ(m,g) computes a soft Dice score

between the predicted mask m and the ground truth g:

φ(m,g) =

∑N
i migi∑N

i migi + α
∑N

i mi(1− gi) + β
∑N

i (1−mi)gi + ε
(7.4)

N is the number of total pixels in the batch. α and β are two hyper parameters controlling

the penalty for false positive and true negative respectively, and we set them to both 0.5. ε
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is used for numerical stability.

To facilitate the training of 3D context feature encoder, we add an auxiliary 3D segmentation

loss. We first upsample F 3D
5 by a factor of 16, so it has the same spatial resolution as the

downsampled 3D image volume. A 1 × 1 × 1 3D convolution is used to obtain the 3D

segmentation mask {m3D
c }. We use the same dice loss to get our 3D supervision loss L3D.

The final loss is then L = L3D + L2D.

We use one CT image for each batch during training. For each batch, we generate one 3D

image volume and randomly sample 16 axial slices (batch size 16 for the 2D network). We

only need to forward the 3D context encoder once per batch. We use Adam with initial

learning rate 10−4 as optimizer for a total of 150 epochs. We applied elastic transformation

and random jitter for data augmentation.

For testing, we only need to forward the 3D context feature encoder once, and we segment

each 2D slice using the 2D decoder/encoder and MSFA.

7.3 Experiments

7.3.1 Datasets

Two datasets were used for evaluation: i) MICCAI 2015 head and neck (HaN)organ-at-

risk (OAR) segmentation challenge dataset [104], containing a training of 33 CT images

and a test of 15 CT images. The dataset contains manually labeled organ segmentation

mask for 9 organs: brain stem, mandible, optic nerve left and right, optic chiasm, parotid

left and right, submandibular gland (SMG) left and right; ii) an in-house abdomen multi-

organ segmentation dataset∗ (ABD-110) containing 110 contrast enhanced CT images and

∗Use of this dataset has been approved by an institutional review board (IRB).
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Anatomy U-Net CA C-CA SCAA SCAA∗

Large Bowel 80.5± 9.4 79.6± 10.2 81.5± 9.0 81.5± 10.0 82.5 ± 9.2
Duodenum 63.4± 18.6 67.6± 17.4 69.9± 17.2 71.4 ± 17.2 70.7± 17.5
Spinal Cord 90.3± 3.8 90.4± 3.8 91.0 ± 3.7 90.7± 4.0 90.8± 3.5
Liver 95.5± 1.9 96.0± 1.9 96.2± 1.4 96.4± 1.1 96.4 ± 1.2
Spleen 94.6± 3.1 95.2± 2.3 95.4± 2.0 95.6± 2.3 95.9 ± 1.4
Small Bowel 72.2± 16.2 72.4± 16.0 75.4± 16.0 76.1± 15.1 76.5 ± 15.3
Pancreas 79.8± 9.1 79.9± 10.6 81.8± 9.4 81.8± 8.5 82.1 ± 9.1
Kidney L 95.7± 1.2 95.7± 1.8 95.8± 1.4 96.0 ± 1.4 96.0± 1.5
Kidney R 95.3± 3.0 95.5± 2.8 95.6± 3.3 95.6± 2.7 95.7 ± 2.5
Stomach 84.2± 16.7 85.0± 15.8 86.1± 15.6 86.8± 13.6 87.5 ± 14.3
Gallbladder 78.6± 19.5 78.2± 20.1 81.4± 18.1 82.7 ± 17.2 82.2± 17.7
Average 84.6 85.0 86.4 86.8 86.9

Anatomy U-Net CA C-CA SCAA SCAA∗

Large Bowel 9.5± 7.8 9.7± 8.3 8.9± 8.7 7.1± 4.6 6.6 ± 5.0
Duodenum 7.8± 4.9 7.4± 4.9 6.6± 4.7 6.2± 4.8 5.7 ± 4.1
Spinal Cord 1.8± 2.6 1.9± 2.8 1.8± 2.5 1.9± 3.0 1.6 ± 2.3
Liver 3.9± 3.9 2.5± 2.6 2.6± 3.4 2.1± 1.5 1.9 ± 1.4
Spleen 6.5± 12.8 2.4± 4.7 2.5± 7.3 1.7± 4.6 1.2 ± 0.7
Small Bowel 7.8± 7.3 8.1± 7.8 9.0± 11.4 8.3± 8.4 7.4 ± 7.1
Pancreas 4.1± 3.3 3.9± 3.9 3.6± 3.4 3.5± 3.5 3.3 ± 3.7
Kidney L 1.5± 1.4 1.5± 1.1 1.9± 5.4 1.2± 0.6 1.2 ± 0.4
Kidney R 1.8± 3.2 1.5± 1.6 1.3 ± 1.0 1.7± 2.4 1.3± 1.1
Stomach 7.2± 8.1 6.6± 7.4 5.7 ± 7.4 8.2± 10.5 5.9± 7.9
Gallbladder 7.0± 11.5 6.0± 7.6 6.0± 11.4 4.9± 9.1 3.1 ± 4.6
Average 5.4 4.7 4.5 4.3 3.6

Table 7.1: Left: DSC (unit: %). Higher the better. Right: 95%HD (unit: mm). Lower
the better. Bold numbers represent the best performance. CA stands for context-aware
model, which does not progressively integrate 3D features from the 3D model. C-CA for
center context-aware model, which only integrates the corresponding center slice from the 3D
feature maps. SCAA for spatial context-aware self-attention model, which uses the MSFA
module to aggregate 3D features from the whole 3D volume. SCAA∗ for model without
concatenating Fglobe to the last feature map.

11 organs (large bowel, duodenum, spinal cord, liver, spleen, small bowel, pancreas, left and

right kidney, stomach and gallbladder). The 110 CT scans were collected from 110 patients

who had radiotherapy during the past three years. The CT scans were manually delineated

by one experienced doctor and then manifested by another. We use the official split of

training set to train the model and test on the official test set on MICCAI 2015 challenge

dataset, following the same protocol as previous work [134, 92, 104, 43]. All experiments on

ABD-110 dataset was conducted using 4-fold cross validation.

We report the segmentation performance using dice similarity coefficient (DSC) in percentage

and 95% hausdorff distance (HD) in mm following previous work [104]. DSC measures the

overlap between the predicted mask m and ground truth mask g:

DSC =
2|m ∪ g|
|m ∩ g| (7.5)

7.3.2 Ablation study on ABD-110

To compare different ways of integrating 3D features and demonstrate the contribution of

each of the add-on modules in the proposed model, we conducted ablation studies with the
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following different settings: 1) model with only a 3D global descriptor Fglobe concatenated

to the last feature map (CA), to demonstrate the importance of including 3D features pro-

gressively during feature extraction. 2) model without MSFA module, but only uses the

corresponding center slice feature from the 3D context feature maps (C-CA), to show the ef-

fectiveness and importance of using self-attention to aggregate 3D features. 3) SCAA model

without concatenating Fglobe to the last feature map (SCAA∗), to show whether Fglobe is

crucial to improve the segmentation accuracy.

As we can see from Table 8.2, by adding the 3D global descriptor to the 2D U-Net, CA out-

performs the 2D U-Net by 0.4% and lowers the 95%HD by 0.7 mm, showing the importance

of integrating the 3D holistic information. Next, by progressively integrating 3D features

to 2D feature extractor, C-CA outperforms CA by 1.4% in DSC and 0.2 mm in 95%HD,

showing the importance of integrating 3D context features hierarchically. Finally, by adding

the MSFA module based on self-attention, SCAA outperforms C-CA by 0.4%, demonstrat-

ing the effectiveness of the implemented self-attention mechanism to weigh the information

from different adjacent slices. To find out which part of the 3D features contribute the most,

we then compare the performance of SCAA and SCAA∗. SCAA∗ achieves average DSC of

86.9% and average 95%HD 3.6 mm, while SCAA achieves 86.8% and 4.3 mm. They are very

close in terms of DSC and SCAA∗ wins on 95%HD. This demonstrates that Fglobe has very

little contribution, and progressively integrating 3D features with 2D encoder achieves the

most performance gain.

For all following comparisons with other methods, we use the best performing configuration

SCAA∗.
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7.3.3 Comparison with previous methods on ABD-110

To compare with previous methods of multi-organ segmentation on the ABD-110 dataset,

we ran the following representative algorithms: U-Net [110], Attention U-Net [94], Ua-Net

[134], and nnU-Net [60]. U-Net is a well-established medical image segmentation baseline

algorithm. Attention U-Net is a multi-organ segmentation framework that uses gated at-

tention to filter out irrelevant response in the feature maps. Ua-Net is a state-of-the-art

end-to-end two-stage framework for multi-organ segmentation in the head and neck region.

nnU-Net is a self-adaptive medical image semantic segmentation framework that wins the

first in the Medical Segmentation Decathlon (MSD) challenge [126]. nnU-Net mainly con-

sists of three main deep learning-based segmentation methods: a 2D U-Net (slice-wise), a 3D

U-Net (patch-wise) and a coarse-to-fine cascade framework consisting of two 3D U-Nets. Its

final model is an ensemble of the three methods. The above-mentioned works cover a wide

range of algorithms for multi-organ segmentation and should provide a comprehensive and

fair comparison to our proposed method on the in-house dataset. For 3D Attention U-Net,

we followed the same preprocessing as in its original paper, to downsample the image to

isotropic 2mm resolution due to GPU memory limitation. However, for all other methods,

we feed the original CT image with its original image spacing.

The results are shown in table 8.1. First, by comparing 2D and 3D methods, we can see

that the performance of 2D methods is on par with 3D methods on kidneys, spinal cord

and liver, which is likely because those organs are usually large and have regular shapes.

However, for organs like stomach, small and large bowels, 3D methods generally perform

better. This may be because those organs often have more anatomical variance, and a 3D

holistic understanding of the context is beneficial. Next, Ua-Net was 1.4% lower than 2D

U-Net and 3.5% lower than SCAA. This may be because Ua-Net was designed mainly for the

head and neck region where organs are relatively small and do not overlap too much with each

other. The abdomen region, on the other hand, is more complicated as the bounding boxes
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Study
Brain Stem Mandible Optic Chiasm Optic Nerve Parotid SMG

Avg.
L R L R L R

Raudashl et al. [104] 88.0 93.0 55.0 62.0 62.0 84.0 84.0 78.0 78.0 76.0
Fritscher et al. [38] 49.0 ± 9.0 81.0 ± 4.0 81.0 ± 4.0 65.0 ± 8.0 65.0 ± 8.0 -
Ren et al. [108] 58.0 ± 17.0 72.0 ± 8.0 70.0 ± 9.0 -
Wang et al. [164] 90.0 ± 4.0 94.0 ± 1.0 83.0 ± 6.0 83.0 ± 6.0 -
Zhu et al. [182] 86.7 ± 2.0 92.5 ± 2.0 53.2 ± 15.0 72.1 ± 6.0 70.6 ± 10.0 88.1 ± 2.0 87.3 ± 4.0 81.4 ± 4.0 81.3 ± 4.0 79.2
Tong et al. [144] 87.0 ± 3.0 93.7 ± 1.2 58.4 ± 10.3 65.3 ± 5.8 68.9 ± 4.7 83.5 ± 2.3 83.2 ± 1.4 75.5 ± 6.5 81.3 ± 6.5 77.4
Nikolov et al. [92] 79.5 ± 7.8 94.0 ± 2.0 71.6 ± 5.8 69.7 ± 7.1 86.7 ± 2.8 85.3 ± 6.2 76.0 ± 8.9 77.9 ± 7.4 -
Tang et al. [134] 87.5 ± 2.5 95.0 ± 0.8 61.5 ± 10.2 74.8 ± 7.1 72.3 ± 5.9 88.7 ± 1.9 87.5 ± 5.0 82.3 ± 5.2 81.5 ± 4.5 81.2
Guo et al. [43] 87.6 ± 2.8 95.1 ± 1.1 64.5 ± 8.8 75.3 ± 7.1 74.6 ± 5.2 88.2 ± 3.2 88.2 ± 5.2 84.2 ± 7.3 83.8 ± 6.9 82.4
SCAA (proposed) 89.2 ± 2.6 95.2 ± 1.3 62.0 ± 16.9 78.4 ± 6.1 76.0 ± 7.5 89.3 ± 1.5 89.2 ± 2.3 83.2 ± 4.9 80.7 ± 5.2 82.6

Table 7.3: Comparison of DSC with previous methods on the MICCAI 2015 9
organs segmentation challenge. Numbers are the higher the better (best in bold).

of some organs overlap a lot with each other (e.g. large bowel and small bowel), which makes

Ua-Net less effective. Finally, comparing SCAA to nnU-Net, we find SCAA outperform nnU-

Net by 1.2%. The best configuration of nnU-Net on ABD-110 was ensemble of a 2D U-Net

(slice by slice) and a 3D U-Net (patch-wise). Both nnU-Net and SCAA consider the fusion

of 2D model and 3D model, but they implement it in different ways - nnU-Net uses ensemble

to combine 2D and 3D models while SCAA integrates 3D model into 2D model in an end-

to-end fashion and jointly optimizes both models. This improvement then is likely due to

the soft attention mechanism that allows SCAA to filter and extract relevant features from

the large 3D context and better fuse the 2D and 3D models. Altogether, we demonstrated

the effectiveness of the proposed method, which achieves an average DSC of 86.9% on the

in-house dataset.

7.3.4 Performance on MICCAI2015

A second multi-organ segmentation dataset from MICCAI 2015 organ-at-risk (OAR) seg-

mentation challenge[104] was used for evaluation. First, as we can see from Table 7.3, SCAA

outperforms [92] by 4.2%. [92] used a combination of 3D and 2D convolution on 21 stacked

slices for OAR segmentation. This shows the use of larger context information is beneficial

for a good segmentation accuracy. Next, by comparing SCAA to AnatomyNet [182] which

is a 3D model that takes the whole-volume CT as input, SCAA was 2.4% higher. This is

likely due to the attention mechanism that helps the model to filter irrelevant features from
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Method Batch size Estimate (GB) Actual (GB) # of parameters

2D U-Net [110] 4 2.86 3.35 34.51 M
3D U-Net [94] 1 27.96 out of memory 5.88 M
3D Attention U-Net [94] 1 17.31 out of memory 6.40 M

SCAA (3D encoder) 1 3.22 - -
SCAA (2D U-Net & MSFA) 4 2.13 - -
SCAA (total) 5.35 6.44 7.82 M

Table 7.4: GPU memory consumption comparison. We used PyTorch as the deep
learning framework to measure the actual GPU memory cost.

the entire volume. Also, SCAA outperforms Ua-Net [134] by 1.4%. Ua-Net is an end-to-end

two-stage model that first detects bounding box of OARs and then segments organs within

the bounding box. SCAA performed better, partly because SCAA did not enforce a ’hard’

attention (bounding box) but rather use ’soft’ attention to enable the model focus on a

smaller region. This keeps SCAA away from potential bounding box regression error and

missing detection. Finally, SCAA outperforms previous state-of-the-art method [43] in 5 out

of 9 organs and achieves an average DSC of 82.6%, 0.2% higher than the state-of-the-art

method. Also note that [43] is a two-stage segmentation framework, which consists of two

DCNNs. Our proposed method (SCAA), however, is a one-stage end-to-end solution for

multi-organ segmentation, requiring less training time and computation, as well as fewer

parameters.

7.3.5 Memory consumption

One advantage of the proposed method is that it significantly reduces the GPU memory while

at the same time preserves the large 3D context features. To demonstrate GPU memory

consumption when using whole-volume as input, we estimated and measured the actual

GPU memory cost (using PyTorch as framework) for different 3D models during training

in Table 7.4. We made several assumptions: i) the input image volume is of size 256 ×

256 × 256. This is the size used for whole-volume input with original image spacing. ii)
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we only take the memory cost of storing tensor and its gradient after each convolution and

batch/instance normalization layer into consideration, because they consume the most GPU

memory. iii) each number is a floating point number (32 bits). For 2D U-Net, the numbers

of channel for the five scales are 64, 128, 256, 512 and 1024 respectively, as in the original

implementation [110]. For the 3D U-Net, as the network has more parameters in convolution

kernels, fewer channels are used in practice (16, 32, 64, 128 and 256) [94]. The memory cost

and number of parameters of [110] and [94] were computed by running their released code.

The GPU memory cost is for the training phase, and that of inference is approximately half

of the values in Table 7.4. The actual cost is computed by running the algorithm on a GTX

1080 Ti GPU card (12 GB memory).

As seen from Table 7.4, compared to most 3D U-Net based methods, we only require 6.44 GB

total memory for a batch size of four during training, which is approximately 35.1% of the

3D Attention U-Net, demonstrating the efficiency of the proposed method. Moreover, our

method supports distributing batches among multiple GPU devices, which is more scalable

than previous 3D methods.

7.3.6 Visualization

We visualize the attention vector ai learnt for F 3D
i Figure 7.2 and the prediction of a ran-

dom CT image from the ABD-110 dataset Figure 7.3. As seen from Figure 7.2, the 3D slice

features that are useful when segmenting each 2D slice are mostly its adjacent slices. This

accords with the intuition that the most prominent and useful 3D information should be

mostly from its neighbouring slices. But it is also important to incorporate full 3D con-

text information progressively. We have demonstrated the effectiveness of the self-attention

mechanism in Section 7.3.2 by comparing to C-CA that only integrates the corresponding

center slice feature from the 3D feature map.
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Figure 7.2: Attention vector learnt by the proposed method. Y-axis is the slice
number of the CT image, and the X-axis is the slice number (depth) of the 3D feature map
F 2D
i .

7.4 Conclusion

In this chapter, we propose a Spatial Context-aware Self-Attention model for multi-organ

segmentation. The proposed model uses a self-attention mechanism to filter useful 3D con-

textual information from the large 3D whole-volume CT image to guide the segmentation

of 2D slice. It addresses the GPU memory concerns that common whole volume-based 3D

methods confront. Experiments on two multi-organ segmentation datasets demonstrate the

state-of-the-art performance of the proposed model.
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Figure 7.3: A CT image from ABD-110 dataset. The first and second columns are the
ground truth and predicted mask overlayed on the original CT image slice, respectively. The
third column shows the comparison of contours of the ground truth and predicted mask on
the same slice.
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Chapter 8

Recurrent Mask Refinement for

Few-Shot Medical Image

Segmentation

8.1 Introduction

Medical image segmentation is a fundamental task in medical image analysis. It is used in

many clinical applications, including disease diagnosis, treatment planning and treatment

delivery. Segmentation of anatomical structures or lesions is usually done manually by

experienced doctors, which is often tedious and labor-intensive. With the recent use of deep

convolutional neural networks, automated segmentation tools using computer programs can

achieve near human accuracy on multiple tasks with very short processing time. However,

in order to achieve good performance, these systems are usually trained in a fully supervised

fashion with large amounts of annotated data. Acquiring a dataset with abundant manual

labels is often very expensive and time-consuming as it requires experts with many years’
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clinical experience. Moreover, the differences in image acquisition protocols among different

medical equipment and institutes pose great challenges to the generalization ability of the

learning based systems.

Few-shot learning has been proposed as one of the potential solutions to addressing these

challenges in the low data regime [128, 131, 153, 30, 70]. The main few-shot image segmenta-

tion approach forms the problem as meta learning [33, 34, 52] and uses supervised learning to

train few-shot learning models. A few-shot learning model is trained to extract class-specific

features from the set of support images with annotations, and then perform segmentation on

the query images by using distilled knowledge from the support images. During test time,

by extracting features from a set of new support images (unseen classes), the model is able

to segment novel classes. Many few-shot learning methods have been proposed and achieved

great performance on natural image segmentation tasks [102, 119, 25, 122, 159, 174, 172].

However, applying few-shot learning models for medical image segmentation is still in early

stages [96, 113].

Few-shot segmentation in medical images is different than that in natural images. Many

approaches are based on prototypical networks [128], and often apply masked average pool-

ing [25, 159, 174] to extract class prototypes from feature maps within the foreground mask.

This step usually assumes the masked region contains sufficient features to distinguish dif-

ferent classes, especially foreground and background. However, this may not always be true

in medical images. Distinct local appearances and context information are more critical in

determining the boundary for foreground and background. A clear boundary to separate re-

gions of interest from the background is of critical importance in medical image segmentation.

Moreover, the background is usually large and spatially inhomogeneous while the foreground

is small and homogeneous [95], and there exists the abundance of tissues that share very

similar appearance to each other, all of which add ambiguity to define the foreground and

background regions. To address this issue, we encourage the network to explicitly model the
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Figure 8.1: RP-Net consists of three main components: (1) A feature encoder that extracts
features from both support and query images; (2) A context relation encoder (CRE) that
use correlation to enhance the local context relationship features; (3) A recurrent mask
refinement module that iteratively uses CRE and a prototypical network to recaptures the
change of local context features and refines the mask.

context relationship between foreground and background pixels, especially pixels around the

boundary.

In this work, we introduce a new network framework for few shot medical image segmen-

tation using prototypical network (RP-Net: Recurrent Prototypical Networks). First, we

propose a context relation encoder (CRE) on top of the extracted features, to explicitly

model the relation between foreground and background feature maps. The relationships

between foreground and background regions are more important in defining the boundary

of the regions of interest in medical image segmentation. To force the model to distill and

utilize the local context relation information, CRE uses correlation to capture the differences

in the foreground and background regions. Pixel features are augmented with the context

relation features. The explicit extraction of the context relationship poses a strong con-

straint to the features the model would learn and forces it to focus on the boundary of the
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region of interest. A prototypical network is followed to produce predicted masks using these

augmented features.

Second, we propose a recurrent mask refinement module that iteratively refines the segmen-

tation using CRE and prototypical networks. This design draws inspiration from recent

works [140, 99, 55] that employ iterative refinement. More importantly, the prediction mask

modifies the mask in the previous step, which results in updated local context relationship.

The recurrent module serves the purpose to recapture the updated context relationship and

recompute its context relationship based on new prediction. Starting from the segmentation

mask from the previous step, the model uses the refined prediction mask in the previous

step to compute new context features using CRE, and then feeds it to the same prototypi-

cal network. The weights of the module are shared among multiple iterations so it is fully

recurrent. This recurrent module facilitates the learning and forces the model to learn to

gradually refine the segmentation.

Our contributions are summarized as:

- A context relation encoder (CRE) that uses correlation between foreground and background

to enhance context relationship features around the object boundary.

- A new framework for few-shot medical image segmentation that iteratively refines the

prediction mask through a recurrent module that uses CRE and prototypical networks.

- We conducted experiments on two abdomen CT datasets and one abdomen MRI dataset.

Experiments show that the proposed framework outperforms the SOTA few-shot framework

for medical image segmentation by an average of 16.32% on ABD-110 dataset [136], 8.45%

on MICCAI15 Multi-Atlas Abdomen Labeling challenge dataset [71] and 6.24% on ISBI 2019

Combined Healthy Abdominal Organ Segmentation Challenge [64] in terms of DSC.
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8.2 Related work

8.2.1 Medcial image segmentation

The development of the deep convolutional neural networks has lead to various successful

applications in medical image segmentation, including segmentation of tissue [129, 156, 93],

organ [134, 13, 144, 180, 40, 24] and lesions [139, 45, 178, 155, 75, 114]. One of the most

famous and widely used network architecture is U-Net [110]. U-Net uses lateral connection

to fuse features from encoders and decoders. Many its variants were proposed, with different

focus on their designs. V-Net [87] extends the use of U-Net to 3D volume data. Attention U-

Net [94] proposes to use gated mechanism to filter features. nnUNet [59] combines different

U-Net like network architectures and automatically configure the optimal setting for different

tasks, which is the best out of box U-Net. These SOTA methods require abundant manual

annotations for their specific tasks to achieve good performance. They are designed to fully

utilize the power of annotated dataset, and is limited when segmenting novel classes.

8.2.2 Few-shot learning

Few-shot learning can be categorized into three main focuses: data, model and algorithm

[162]. One main stream of few-shot segmentation in natural image that focuses on the model

is prototypical networks [128]. Prototypical network uses the idea of meta learning [33, 34, 52]

and applies averaged mask pooling to pool class-specific features from the support set, which

is called prototypes. Then, segmentation for the query image is done by computing the

cosine distance with each class prototype . PANet [159] further improves upon this idea by

proposing a prototype alignment network to better utilize the support set, by also predicting

on support images using query images as support set.
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In few-shot medical image segmentation, most works focus on generating new training data

to enlarge the training set given only a few labels [175, 89, 96, 170]. However, this still

requires retraining the model when a new class needs to be segmented. More recently,

a few works focus on designing network architecture that does not require retraining the

model. Squeeze and excite [113] first proposes a few-shot learning architecture specifically

designed for medical image segmentation. They propose to use squeeze and excite modules

to fuse information from support image on to query image to guide the segmentation arm.

[95] proposes local prototypes to enrich the representation of class prototypes and a self-

supervised training strategy using super pixels. Likewise, we focus on few-shot medical

image segmentation without retraining the model, and we propose a new framework that

uses CRE and recurrent mask refinement module to better capture local feature and shape

differences around foreground object boundary.

8.3 Method

We first describe the formal definition of few-shot medical image segmentation. Next, we

introduce the architecture of RP-Net, especially the context relation encoder (CRE) and

recurrent mask refinement module.

8.3.1 Problem definition

In few-shot medical image segmentation task, the model is trained using images and a

set of semantic labels Ctr drawn from a training dataset Dtr. During inference, the model

segments a new set of semantic classes Cte from test images Dte, given a few labeled examples

of Cte. Note that Ctr ∩ Cte = ∅. For example, the model is trained using semantic labels

Ctr = {liver, left and right kidney} and during testing time the model needs to segment new
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semantic classes Cte = {spleen}. Let N be the number of semantic classes in Cte, and K be

the number of examples for each semantic class in Cte. The few-shot learning problem is also

referred to as N-way K-shot learning. In medical image segmentation, most works usually

consider 1-way 1-shot learning [113, 95].

To achieve the goal of segmenting unseen classes in inference time, an episodic training

strategy is used widely [159, 95, 113]. To simulate the situation in testing time where only

K examples for each class are provided, the episodic training schema randomly draws each

training example in the form of a support and query data pair [(xs,ys), (xq,yq)] from Dtr.

The model is trained to distill knowledge about a semantic class from the support set (xs,ys)

and then apply this knowledge to segment query set xq. In inference time, only the K support

images xs and their corresponding labels ys are given, and the model performs segmentation

on query images xq.

8.3.2 Proposed method

We now introduce RP-Net for few-shot learning in medical images. For the rest of this

section, we consider a 1-way K-shot learning problem. The architecture of RP-Net is shown in

Figure 8.1. Our approach consists of three steps: 1) extracting image features, 2) enhancing

context relation features using CRE, 3) iteratively applying CRE and prototypical network

to refine the segmentation mask. All stages are differentiable and can be trained end-to-end.

Feature extraction

The input to the network is a set of K support images xs ∈ RH×W×1 and a query image

xq ∈ RH×W×1, padded to the same height H and width W. The support and query images are

first aligned globally using affine transformation, which is a common step in many medical
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image tasks.

The model first uses the same feature encoder fθ to extract support features Fs ∈ RH′×W ′×Z

and query features Fq ∈ RH′×W ′×Z respectively. H′ and W′ are the height and width of the

feature map, and C is the number of feature channels. An adapted version of the U-Net

backbone was used as the feature encoder fθ. Instead of upsampling the feature maps to the

original resolution as implemented in the original U-Net, we remove the last two upsampling

blocks in the U-Net to save GPU memory and computation. This results in the resolution

of the support and query features being 1/4 of the image resolution (H ′ = H/4,W ′ = W/4).

Context relation encoder (CRE)

In medical image segmentation, the local context features are important to determine the

boundary of foreground and background. To strengthen and emphasize these features, we

propose the context relation encoder to enhance context features and force the model to

focus on the shape and context of the region of interest rather than pixels themselves.

CRE takes the extracted features F (we drop subscript q and s for convenience) and fore-

ground mask m as input and outputs augmented features Fcre = fcre(F,m) ∈ RH′×W ′×Z . m

is the mask of the foreground class from the support image (ys), or the proposed foreground

mask of a query image. Features of foreground and background are first extracted by mask-

ing F using the mask m: Ff = φf (F �m) and Fb = φb(F � (1 −m)). φf and φb denote

3× 3 convolution. Next, a correlation computation is applied to acquire the context relation

features between foreground and background feature vectors at each spatial location (x, y)

of Fb and (x− i, x− j) of Ff with offset i and j:

C(x,y,i,j) =
∑
z

F
(x,y,z)
f F

(x−i,x−j,z)
b (8.1)
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Instead of computing correlation between every pair of pixels on Ff and Fb, we limit the

maximum displacement d for comparison at each location (x, y). Given a maximum displace-

ment d, we only compute correlation C(x,y,i,j) in a neighborhood of size 2d + 1 by limiting

the range of (i, j). As a result, the context relation feature C is of size H ′×W ′× (2d+ 1)2.

C(x,y) effectively captures information of how a background pixel is related to foreground

when it is close to the object boundary. Finally, we concatenate C and Ff along channel

dimension and apply a 1 × 1 convolution to fuse foreground features and context relation

features to obtain Fcre. d is set to 5 based on empirical results (see Table 8.2 for details).

Compared to directly computing correlation between feature maps, separating feature map

into foreground and background features is important. Correlation calculated this way is

sparse and has only non-zero values around the boundary, which captures the shape of the

object and clearly differentiate a pixel from the background. Correlation calculated between

full feature maps is not able to achieve this because it does not have the sense of boundary

of the region.

Prototypical networks

Following [95, 159], we use a relative simple method for calculating the prototypes, averaging

feature vectors within the mask and across support images. Given the enhanced image

features of support set Fcre,s, we first compute the prototype of class c via masked average

pooling:

pc =
1

K

K∑
k=1

∑
x,y F

(k,x,y)
cre,s y

(k,x,y,c)
s∑

x,y y
(k,x,y,c)
s

(8.2)

where (x, y) is the index of pixels on the feature map, (x, y, c) indexes the spatial locations

of the binary mask of class c and K is the number of support images.
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Segmentation is done using a non-parametric metric learning method. Prototypical network

calculates the distance between the query feature vector and the computed prototypes P =

{pc|c ∈ C}. A softmax over the distances is applied to produce a probabilistic output over

all classes. Formally, for each pixel at location (x, y) of query feature map Fcre,q, we have:

msoft = cos(Fcre,q, P ), and

cos(Fcre,q, P )(x,y,c) =
exp(−αd(F

(x,y)
cre,q,pc))∑

pj∈P exp(−αd(F
(x,y)
cre,q,pj))

(8.3)

where the distance function d is a commonly used cosine distance and α is a scaling factor

for this distance function to work best with the softmax function. α is set to 20 [159]. The

class prediction can be obtained by:

m(x,y) = arg max
c

m
(x,y,c)
soft (8.4)

Recurrent mask refinement

Since the mask m used to compute context relation features would change every time the

network makes a prediction, we propose a recurrent mask refinement module to recapture

this change and compute new context relation features based on the previous prediction.

The recurrent mask refinement module estimates a sequence of mask predictions {m1,m2, ...,mn}

from an initial mask which is the union of all support masks: m0 =
⋃K
i=1 yis. At each iteration

t, it produces a new segmentation mask mt based on mt−1. The design of this architecture

mimics the steps of an optimization algorithm. For this purpose, all the weights in the recur-

rent module are shared across multiple iterations. The model is trained to learn to modify

the mask gradually so that the final output mask mn converges to an optimum solution.

Note that, in this work the m0 is initialized using the average of support masks since images

are affine aligned, but it is also possible to better initialize m0 using other methods.
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This recurrent mask refinement module takes in support features Fs, query features Fq and

the mask mt−1 in previous step, uses CRE to enhance query features, and applies prototypical

network to output a segmentation mask mt.

msoft,t = cos(fcre(Fq,msoft,t−1), P ) (8.5)

We apply 4 iterations of the recurrent mask refinement module during training to save

memory and computation cost. In inference time, we apply 10 iterations. We show in Figure

8.2 the performance at each iteration during inference time and 10 iterations are sufficient

to obtain a stable result. The final prediction is obtained by upsampling mn to the same

resolution of the xq using bilinear interpolation.

Loss function

We supervise our network using dice loss and cross entropy between the final predicted mask

msoft,n and ground truth segmentation mask yq:

Lseg = βLdice + Lce

Ldice = 1−
2
∑

i,j,c m
(i,j,c)
soft,ny

(i,j,c)
q∑

i,j,c m
(i,j,c)
soft,n +

∑
i,j,c y

(i,j,c)
q

Lce = − 1

HWC

∑
i,j,c

y(i,j,c)
q log(m

(i,j,c)
soft,n)

(8.6)

where β is a constant controlling the strength of the two loss terms and is set to 1. Note that

the use of the sum of dice loss and cross entropy is widely used in medical image segmentation
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Dataset Method Spleen Kidney L Kidney R Liver mean

ABD-110

PANet-init [159] 30.95 19.24 17.64 49.91 29.43
PANet [159] 35.89 40.22 41.54 52.36 42.50
SE-Net [113] 29.48 37.48 37.53 19.09 30.89
SSL-ALPANet [95] 64.90 61.58 64.05 71.83 65.59
Affine 50.42 53.04 52.025 66.99 55.62
RP-Net (Ours) 78.77 81.89 85.12 81.88 81.91
Fully supervised [136] 95.9 95.7 95.7 96.4 95.92

ABD-30

SE-Net [113] 0.23 32.83 14.34 0.27 11.91
PANet [159] 25.59 32.34 17.37 38.42 29.42
SSL-ALPNet [95] 60.25 63.34 54.82 73.65 63.02
Affine 48.99 43.44 45.67 68.93 51.75
RP-Net (Ours) 69.85 70.48 70.00 79.62 72.48
Fully supervised [180] 96.8 95.3 92.0 97.4 95.4

ABD-MR

SE-Net [113] 51.80 62.11 61.32 27.43 50.66
PANet [159] 50.90 53.45 38.64 42.26 46.33
SSL-ALPNet [95] 67.02 73.63 78.39 73.05 73.02
Affine 62.87 64.70 69.10 65 65.41
RP-Net (Ours) 76.35 81.40 85.78 73.51 79.26
Fully supervised [60] - - - - 94.6

Table 8.1: DSC comparison with other methods on ABD-110, ABD-30 and ABD-MR (unit:
%).

tasks, such as [60].

8.4 Experiment

8.4.1 Setup

Dataset We conducted experiments using two abdomen CT datasets and one MR dataset:

- ABD-110 is an abdomen dataset from [136] that contains 110 3D CT images from patients

with various abdomen tumors and these CT scans were taken during the treatment planning

stage.
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Experiment Method Spleen Kidney L Kidney R Liver mean

Added components

Affine 50.42 53.04 52.025 66.99 55.62
Affine + Grabcut 57.93 64.17 64.25 65.27 62.91
Affine + Concat 56.41 52.39 54.99 70.87 58.66
Affine + CRE 57.73 58.05 60.62 73.53 62.48
Affine + Concat + Recurrent 59.99 60.65 62.31 83.03 66.50
Affine + CRE + Recurrent 78.77 81.89 85.12 81.88 81.91

Backbone
VGG16 73.57 67.49 56.81 72.04 67.48
Res18 72.39 79.13 81.61 80.89 78.50
U-Net 78.77 81.89 85.12 81.88 81.91

Correlation radius

d = 0 78.40 81.90 82.12 83.89 81.58
d = 1 80.03 81.87 82.09 82.1 81.52
d = 3 79.12 81.79 83.41 81.32 81.41
d = 5 78.77 81.89 85.12 81.88 81.91
d = 7 77.56 80.25 81.77 80.22 79.95

Initialization

Affine 50.42 53.04 52.02 66.99 55.62
Demons 63.60 63.89 61.89 73.59 65.74
RP-Net (Affine) 78.77 81.89 85.12 81.88 81.91

RP-Net (Demons) 80.31 83.55 85.01 82.86 82.93

Table 8.2: Ablation study on ABD-110 (unit: %). Underlined is the final configuration used
in RP-Net.

- ABD-30 is an abdomen dataset from the MICCAI 2015 Multi-Atlas Abdomen Labeling

challenge [71]. It contains 30 3D abdominal CT scans (ABD-30) from patients with various

pathologies and has variations in intensity distributions between scans.

- ABD-MR is an MRI dataset from ISBI 2019 Combined Healthy Abdominal Organ Seg-

mentation Challenge [64]. It contains 20 3D T2-SPIR MRI scans.

We perform the same 5-fold cross validation and consider only 1-way 1-shot learning, follow-

ing the same protocol as previous work setting 2 [95]. Liver, spleen and left and right kidney

are used as semantic classes. Within each fold, one organ is considered as unseen semantic

class for testing while the rest are used for training. Moreover, to reduce the variance by

choosing only one support image during inference, following [159], for each query image in

the test set we randomly sample one support image from the test set, repeat this process for

5 times and the final result is obtained by averaging the 5 runs.
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Evaluation metric We use the same evaluation metric Sørensen–Dice coefficient (DSC) as

in previous work [95, 113]. DSC measures the overlap of the prediction mask m and ground

truth mask g, and is defined as:

DSC(m,g) =
2|m ∪ g|
|m|+ |g| (8.7)

Implmentation details All images are resampled to have the same xy-plane spacing of

1.25mm × 1.25mm. For segmenting 3D volume data, we follow the same protocol used

in [95, 113] by dividing the support and query images into 12 chunks and segmenting all

slices in the query chunk by using the center slice in the corresponding chunk of the support

image. During training, a pair of support and query images and their labels are both cropped

to have a fixed size of 256 × 256 around the image center. Support and query images are

aligned online using affine transformation before feeding into the network. RP-Net is trained

from scratch using Adam as optimizer with initial learning rate 0.0001 for 50 epochs and the

learning rate is reduced by a factor of 10 every 20 epochs. We also add the alignment loss

to train RP-Net as in [159].

8.4.2 Comparison with the state-of-the-art methods

Table 8.1 shows the performance comparison of RP-Net with previous work on ABD-110,

ABD-30, ABD-MR respectively. PANet [159] is an extended version of the widely used pro-

totypical network [128] designed for natural image segmentation. PANet-init means directly

using the pretrained VGG16 feature extraction backbone without any finetuning on the few-

shot setting. SE-Net [113] is the first specifically designed architecture for few-shot medical

image segmentation. SSL-ALPANet [95] is the state-of-the-art few-shot medical image seg-
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mentation framework that uses self-supervised learning and prototypical networks. Affine is

the result of the accuracy after globally aligning the support and query image using affine

transformation, which we use as an initial mask. [95] reported performance for PANet-init,

PANet, SE-Net and SSL-ALPNet on ABD-30 and ABD-MR, so these numbers are directly

quoted. We ran these algorithms using public available code to report their performance on

ABD-110.

First, compared to PANet, RP-Net outperforms PANet by 39.49%, 43.06% and 21.75% on

the three datasets ABD-110, ABD-30 and ABD-MR respectively. Second, compared to SE-

Net, RP-Net outperforms SE-Net by 51.02%, 60.57% and 27.42% on ABD-110, ABD-30 and

ABD-MR respectively. Third, compared to the state-of-the-art method SSL-ALPANet, RP-

Net outperforms SSL-ALPANet by an average of 16.32%, 9.46% and 6.24% on ABD-110,

ABD-30 and ABD-MR respectively.

These experiments demonstrate our approach can achieve the SOTA accuracy on medical

image datasets with different image modalities (CT and MRI). Also, we focus on design-

ing a new framework for few-shot medical image segmentation, which outperforms other

approaches of the same motivation, e.g. SE-Net by a large margin. Moreover, it is worth

noting that the performance gain to SSL-ALPANet decreases from dataset ABD-110 to

ABD-MR. The main reason may be that the number of training data for ABD-30 and ABD-

MR is small and RP-Net benefits more from more training data. Additional gain may be

obtained by combining our method with the self-supervised training schema proposed in

SSL-ALPANet.

8.4.3 Ablation study

Ablation experiments are conducted using the ABD-110 dataset, because it has more data

compared to the other two. Table 8.2 shows the results for the following experiments.
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Effect of each component To verify the contribution of the two added components -

context relation encoder and recurrent module, we conducted experiments by adding one

component at a time: 1) model trained and tested without the CRE. To make use of the

support mask which is used in CRE, we concatenate the mask to the feature map from

backbone and apply a 3× 3 convolution for a fair comparison (denoted as concat). 2) model

trained without recurrent module. Note that if we remove both CRE and recurrent training,

the model becomes the PANet [159]. Moreover, we compare with Grabcut [112] which is an

unsupervised method that uses iterated Graphcut. Grabcut can be seen as an unsupervised

version of our algorithm.

First, we verify the effect of using CRE. Affine + Concat is a naive way of integrating

support masks by concatenating it directly to the feature maps, which outperforms the

Affine by 3.04%. Affine + CRE implements the more sophisticated way of exploring local

feature differences using CRE, which outperforms the Affine + Concat by 3.82%. This

shows the CRE better captures the local difference via the use of correlation. However, the

performance improvement is still not significant and the reason is that the mask prediction

is changed each time and it lacks a mechanism to recapture this change and recompute the

new local differences. The recurrent mask refinement module serves this purpose and we

discuss its effect in the next paragraph.

Second, we compare the performance of using the recurrent mask refinement module. Affine

+ Concat + Recurrent means we apply the recurrent module to the concatenated feature

map, which performs 7.84% better than not using the recurrent module (Affine + Concat).

This shows that the recurrent training indeed helps the model to find the right mask pre-

diction because the initial mask from support is a very rough estimation of the location of

the region of interests. If we combine the two added components together (Affine + CRE

+ Recurrent), we can achieve a big improvement by 15.39% compared to Affine + Concat

+ Recurrent. This demonstrates that the integration of recurrent module to recapture local
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changes in the CRE is very important and can greatly boost the performance.

Third, we compare with Grabcut. Our method is in some sense similar to Grabcut - we both

use an iterative update to refine the segmentation mask. Grabcut outperforms the baseline

Affine by 7.29%, showing that iteratively refining a mask is indeed beneficial. RP-Net (Affine

+ CRE + Recurrent) outperforms Grabcut by 19%. There are mainly three reasons for this

large improvement. First, Grabcut only uses one image, thus only image intensity is used

to separate foreground and background region. On the contrary, RP-Net uses the support

images to extract knowledge about the relationship between the foreground and background

region, and utilize this knowledge to guide the segmentation of the new image. Second,

Grabcut only refines the mask in the probable foreground region which is a human defined

boundary and lacks the flexibility to attend other areas in the image, as well as the ability

to correct error in the sure foreground region. RP-Net does not have these constraints and

can potentially use information from the whole image. Third, RP-Net uses training data

to train the feature extractor, while Grabcut is not a learning-based method and only uses

information directly derived from pixel intensity.

Effect of feature extraction backbone We also experimented with three different feature

extraction backbones - VGG16 [125], Res18 [50] and U-Net [110]. To make sure the output

feature map is 1/4 of the original image resolution for a fair comparison, we only kept the

first two downsampling operations in both VGG16 and Res18 backbones and the rest of the

network architecture remained the same. As seen from Table 8.2, VGG16 backbone performs

the worst among the three backbones, which is 8.03% lower than Res18. U-Net backbone

outperforms Res18 backbone by an average of 2.32% which is mainly because of the lateral

connection in U-Net that fuses both low-level and high-level features. This demonstrates

that RP-Net is compatible with different backbones, and backbones that perform better on

medical image segmentation task, such as U-Net, would result in similar gain when combined

with RP-Net.
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Figure 8.2: DSC at each refinement iteration. This figure shows the DSC performance of the
proposed model per iteration. DSC of four organs and an average is shown for two models:
one w/ recurrent training (purple) and one w/o recurrent training (cyan).

Effect of correlation radius We conducted experiments with different radius d = 0, 1, 3, 5, 7

in the correlation layer, which controls how many neighbouring pixels are included when com-

puting correlation. d = 0 means the correlation computation is carried out only at a single

point. Note that even with d = 0, the model is able to use features from the surrounding

pixels because φf and φb are used to extract foreground and background specific features.

Table 8.2 shows our approach is not very sensitive to the radius, and this is likely because

RP-Net is designed to focus on a small region around the object boundary at a time, a larger

context may not necessarily bring more benefits.

Effect of number of inference iterations We show in Figure 8.2 the performance at

each inference iteration from one fold in ABD-110. Although the model is trained using

4 iterations of recurrent module, we can apply more iterations during inference. As seen
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from this figure, a model without recurrent training diverges after the 1st iteration, while

a model with recurrent training quickly converges and does not diverge after 20 epochs.

It demonstrates that with the recurrent training, the model learns to gradually refine its

prediction and converges to a stable solution.

Effect of initialization Demons [142] is a medical image registration method that uses

deformable registration, which performs 10.12% better than a simple affine transformation.

As shown in Figure 8.2, using a better initialization (Demons), RP-Net achieves a 1.02%

improvement. Although better initialization improves the result, the improvement is small

compared to that of the initialization itself, and our network is less sensitive to the initial

mask as long as it roughly locates the foreground region. For this reason, we only use

initialization mask from Affine transformation for its simplicity.

8.4.4 Qualitative result

We show in Figure 8.3 how the segmentation mask converges to the optimum solution in

multiple iterations. In general, we can observe that RP-Net refines the initial mask gradu-

ally, finds a better segmentation mask at each iteration, and finally converges to an optimum

solution. RP-Net is able to learn to distill knowledge about the relation between the fore-

ground and background from the support image, and apply it to segment query images by

comparing local differences and modifying its prediction to conform to the shape and bound-

ary. Moreover, RP-Net generates satisfying segmentation masks that have a clear boundary

along the object boundary, demonstrating the successful design of the CRE and recurrent

module.
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Figure 8.3: Examples of predication of RP-Net at different iterations. Each row represents
one slice of the a test scan (row 1-5 are CT images, row 6-7 are MR images).
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8.5 Conclusion

In this work, we present a new few-shot medical image segmentation framework that refines

the segmentation mask iteratively using a context relation encoder and a recurrent module.

The proposed model learns to incrementally refine the segmentation mask to better align the

object boundary. Experiments on three organ segmentation datasets demonstrate that RP-

Net outperforms the previous state-of-the-art approach by as much as 16% in terms of DSC.

Moreover, the proposed CRE and recurrent module are generic and can also be integrated

into other types of network to enhance context relationship features.
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Chapter 9

Conclusion and Outlook

9.1 Conclusion and Contributions

Recent advances in machine learning, especially deep convolutional neural networks (DCNN),

are changing and automating the medical image analysis in clinical practice, making it faster

and more accurate. However, challenges remain due to the limited data and high accuracy

requirement. In this dissertation, we propose several methods to resolve these challenges in

different applications, including pulmonary nodule detection and segmentation, organs-at-

risk (OAR) delineation, and few-shot medical image segmentation.

In chapter 2, we introduce how to design nodule detection framework that fully utilizes 3D

convolutions. In chapter 3, we discuss how to reduce the model complexity by integrating

nodule detection and false positive reduction into an end-to-end solution. In chapter 4, we

release a new dataset for pulmonary lobe segmentation and propose a new framework for

accurate lobe segmentation. In chapter 5, we introduce an unified framework for nodule

detection, false positive reduction and segmentation. In chapter 6, we introduce 3D DCNN

to significantly improve the accuracy and speed for OAR delineation in clinical practice. In
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chapter 7, we introduce how to design a DCNN for medical image segmentation that greatly

reduces the GPU memory consumption. In chapter 8, we introduce a new few-shot medical

segmentation network that requires less labeled data.

These methods contribute to improve the accuracy, achieve better efficiency, and deal with

limited labeled data. They also have the potential to be applied in clinical practice to help

doctors in their daily routine.

9.2 Future Directions

Besides from the exciting achievement and progress mentioned above, there are still many

challenging and interesting topics in the deep learning based medical image analysis. First,

the state-of-the-art nodule detection method still reports many false positives and is limited

when applied in clinical practice. Whether using self-attention and transformer based models

that are capable of capturing long range relationships would be helpful is an interesting topic.

Second, one important factor contributing to the success of deep learning is the availability

of a large labeled dataset. However, acquiring labels is expensive in medical image analysis

while at the same time we have access to a large amount of CT/MRI images that are not

annotated. How to learn and extract useful features from the large amount of unlabeled

data has drawn more and more attention in the field of computer vision [47, 14].In our

previous work, we adopt the few-shot learning idea, but this may be a too extreme case and

it does not solve the more general question: how to learn useful features from unlabeled

data. On the other hand, self-supervised learning that uses contrastive learning strategy

show promising results on natural images. How to effectively use the self-supervised learning

to extract meaningful features in medical images would be very interesting and challenging.

Moreover, previous works mostly focus on the classification task. However, segmentation is

also a very important task in medical image analysis. How to design a pretraining strategy
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that would benefit the segmentation remains an interesting problem.
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