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ABSTRACT OF THE THESIS 

 

Mathematical modeling of T-cell exhaustion and PD-1 blockade in chronic infections 

 

By 

 

Bharath Jagadish 

 

University of California, Irvine, 2015 

 

Department of Chemical and Biochemical Engineering 

 

Professor Elizabeth Read, Chair 

 

 

 

Immune responses to persistent viral infections often fail because of intense regulation of 

antigen-specific T-cells–a process referred to as T cell exhaustion, characterized by 

progressive impairment of cytokine expression, cytotoxicity, and proliferative potential. 

Reinvigorating exhausted T-cells is considered a promising immunotherapeutic approach to 

combating chronic viral infections. The inhibitory receptor programmed death 1 (PD-1), is 

remarkably up-regulated on the surface of exhausted virus-specific CD8+ T-cells. Blockade 

of this pathway using antibodies against the PD ligand 1 (PD-L1) restores CD8+ T-cell 

function and reduces viral load. However, the mechanisms that underlie the induction of 

exhaustion are not completely understood. To investigate the role of PD-1 signaling in 

chronic viral infections, we have developed a simple mathematical model, formulated as a 

system of ordinary differential equations, to dissect the dynamics of     virus-infected cells, 

CD8+ T-cells and PD-1 signaling. We estimate rate parameter regimes by fitting to published 

experiments on mice chronically infected by LCMV. Blockade experiments are performed in 

silico by abruptly reducing PD-1 signaling during the chronic phase of infection. Our 
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simulations replicate experimental results, showing an increase in frequency and effector 

function of CD8+ T-cells and decreased viral load upon PD-1 blockade. We use our 

mathematical model to analyze published measurements of single- and combination-

blockade therapy of chronically infected mice. Our analysis shows that anti-LAG3 and anti-

TIM3 modulate CD8+ T-cells activity by different mechanisms. Our analysis furthermore 

shows that the combination blockade by anti-TIM3 and anti-PDL1 results in a synergistic 

decrease of viral load, whereas the anti-LAG3/anti-PDL1 combination does not. 
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Chapter 1 

Introduction 

  

Virus-specific CD8+ T cells become unresponsive to viral antigens during chronic infection. 

They persist in a non-functional exhausted state [1] characterized by the inability to produce 

immune-stimulatory cytokines, lyse virally infected cells and proliferate. Ever since CD8+ T 

cell exhaustion was characterized in the murine LCMV, such a functional impairment has 

been observed to be a common feature in human chronic viral infections such as, HIV, 

hepatitis B virus, hepatitis C virus [2]. These functional defects serve to limit the 

effectiveness of antigen-specific responses over time and are considered to be one reason 

for failure of immunological control of the persisting infections. 

 

Recent studies have gained interest in reversing T-cell exhaustion by focusing on the crucial 

role of inhibitory receptors in regulating T-cell exhaustion during chronic viral infections. 

The surface inhibitory receptor Programmed death 1 (PD-1) of the CD28 superfamily, was 

shown to be highly expressed on exhausted CD8+ T cells. Proliferation and function of 

exhausted T cells can be rescued by blockade of PD-1, which can result in restoration of 

effective immune responses that control infections and tumors [3-7]. However, expression 

of other inhibitory receptors like LAG3, TIM3, CTLA4, GP49, 2B4, PirB, and CD160 [8] on 

exhausted CD8+ T cells indicate that blockade of PD-1 alone may not be sufficient to 

completely reverse T cell exhaustion. 
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Inhibitory receptors clearly play a role during chronic infections. But the exact mechanism 

by which they mediate the T-cell exhaustion is still unknown. PD-1 and CTLA4 are thought 

to interfere with activation of T-cells, both by reducing co-stimulatory signals at the cell 

surface through competitive binding to CD80, and by attenuating downstream signaling 

through TCR or co-stimulatory pathways [9]. An additional mechanism of T cell exhaustion 

has been described, in which PD-1 signaling actively up-regulates gene expression programs 

in T cells that are associated with reduced proliferative capacity and effector function [10]. 

Therefore, the PD-1 pathway appears to mediate exhaustion through multiple mechanisms. 

Moreover, these mechanisms appear to be to some degree distinct or non-overlapping from 

those of other receptors. 

 

The complexity of interactions in this type of biological system and the difficulty to isolate 

influencing factors make the use of mathematics challenging, but valuable. Mathematical 

models allow us to gain biological insight and improve the interpretation of PD-1 mediated 

T-cell exhaustion related experimental data.  Another advantage of mathematical modeling 

is that it can be used to unify and interpret data from multiple laboratories and experimental 

settings. The aim of our research is to provide a comprehensive, predictive and multifaceted 

approach to quantify the mechanisms responsible for CD8+ T-cell exhaustion. Our main goal 

is to discover the relative roles played by each immune mechanism during the course of 

disease and treatment to have a better understanding of what drives the intensity of 

symptoms, infectivity of the virus and duration of the disease.  

 

 



 

3 
 

Specific objectives were to: 

1. Develop a mathematical model of chronic infection that specifically includes PD-1 up-

regulation and previously-hypothesized mechanisms of exhaustions. 

2. Identify rate parameter ranges most consistent with previous experiments and 

modeling. 

3. Perform in silico blockade experiments to determine major mechanisms of              PD-

1-induced exhaustion alone and in combination with other inhibitory receptors. 

4. Determine whether published experimental results support the hypothesis that 

inhibitory receptors modulate CD8+ T-cell activity in a synergistic manner. 
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Chapter 2 

Background 

 

2.1 Innate and adaptive immune system 

An organization of cells and molecules with specialized roles in defending against infection 

is the immune system [11]. Immune responses fall into two categories - those that occur to 

the same extent however many times the infectious agent is encountered (innate or natural) 

and those that improve on repeated exposure  to given infection (adaptive or acquired). 

Innate immune responses range from external barriers (skin, mucous membranes, cilia, 

secretions) to sophisticated receptors capable of recognizing broad classes of pathogenic 

organisms. The innate responses use phagocytic cells (neutrophils, monocytes, and 

macrophages), cells that release inflammatory mediators (basophils, mast cells, and 

eosinophils), and natural killer cells. The molecular components of innate responses include 

complement, acute-phase proteins, and cytokines such as the interferons. Adaptive immune 

responses are mediated by a specialized group of leukocytes, the lymphocytes, which include 

B cells and T cells. The proliferation of antigen-specific B and T cells occur when the surface 

receptors of these cells bind to antigen. Specialized cells, called antigen-presenting cells, 

display the antigen to lymphocytes and collaborate with them in the response to the antigen. 

B cells secrete immunoglobulins, the antigen-specific antibodies responsible for eliminating 

extracellular microorganisms. T cells help B cells to make antibody and can also eradicate 

intracellular pathogens by activating macrophages and by killing virally infected cells. Innate 

and acquired responses usually work together to eliminate pathogens. 
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Figure 2.1 Components of the immune system. The principal cells of the immune 

system and their functions are shown (Elgnainy, 2013). 

 

 

2.2 T cell activation 

 

Once T cells have completed their development in the thymus, they enter the bloodstream. 

On reaching a peripheral lymphoid organ, they leave the blood to migrate through the 

lymphoid tissue, returning via the lymphatics to the bloodstream to recirculate between 

blood and peripheral lymphoid tissues. Mature recirculating T cells that have not yet 

encountered their specific antigens are known as naive T-cells. To participate in an adaptive 

immune response, a naive T-cell must meet its specific antigen, present to it as a 
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peptide:MHC complex on the surface of an antigen-presenting cell, and be induced to 

proliferate and differentiate into cells that have acquired new activities that contribute to 

removing the antigen. These cells are called effector T-cells and, unlike naive T-cells, perform 

their function as soon as they encounter their specific antigen on other cells. Because of their 

requirement to recognize peptide antigens presented by MHC molecules, all effector T-cells 

act on other host cells, not on the pathogen itself. The primary T cell response not only 

provides effector T-cells but also generates memory T-cells, long-lived cells that give an 

enhanced response to antigen, which yields protection from subsequent challenge by the 

same pathogen. 

 

 

Figure 2.2 Memory CD8 T-cell generation is linear and progressive. Antigenic 

stimulation causes naïve CD8 T cells to proliferate and acquire effector functions. The 

effector T cells that survive the death phase further differentiate, giving rise to 

memory T cells that continue to differentiate in the absence of antigen and acquire the 

ability to persist in the absence of antigen via homeostatic turnover (Wherry, et al., 

2004). 
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2.3 T-cell exhaustion  

An effective CD8+ T-cell response is required to eradicate or control intracellular pathogens. 

During the acute phase of an infection, antigen-specific CD8+ T cells expand and differentiate 

into effector cells to clear the pathogens. In the wake of antigen clearance, long-lived memory 

CD8+ T-cells develop in order to launch an effective secondary response against future 

infections [13]. Some viruses evade the immune defense and develop into chronic infection. 

As a consequence, the pool of antigen-specific CD8+ T-cells persist throughout the infection 

and become dysfunctional. This state of T-cell dysfunction [14] that is characterized by 

progressive loss of T-cell functions that can culminate in the physical deletion of the 

responding cells [15] is referred to as CD8+ T-cell exhaustion. The typical loss of functions 

happens in a hierarchical manner. In the first stage, IL-2 production, high proliferative 

capacity and ex vivo killing ability are lost. In the intermediate stage, the ability to produce 

tumor necrosis factor is lost and the final stage of exhaustion is the physical deletion of virus-

specific T cells [16-18].  

 

Figure 2.3 Hierarchical T-cell exhaustion during chronic infection (Wherry, 2011) 
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2.4 Reversing T-cell exhaustion 

 

Studies have indicated that exhausted T-cells are characterized by dramatic up-regulation of 

multiple inhibitory receptors [2, 19]. During acute infections these receptors function to 

limit the severity of the response but are then down-regulated as the pathogen is cleared and 

the memory pool forms [15]. However, during chronic infections, this pattern diverges and 

establishes an exhausted state that is associated with the constitutive expression of clusters 

of inhibitory receptors. These receptors collectively operate to negatively regulate the 

functional and proliferative potential of the responding cells. The identification of the 

importance of inhibitory receptors in the dysregulation of cellular immune responses in 

chronically infected hosts has revealed new potential therapeutic targets for restoring 

immune functions and decreasing viral loads.  

 

Programmed death-1 (PD-1, CD279 ), a member of the CD28 immunoglobulin super-family 

of transmembrane proteins expressed as a monomer (PD1, 2) on a wide array of immune 

cells plays an important role in establishing peripheral tolerance and inhibiting the 

proliferation and function of T-cells. In LCMV system, PD-1 is markedly upregulated on 

exhausted T-cells but only transiently expressed on effector T-cells during acute infections, 

and is not present on the functionally competent memory T-cells. CD8+ T-cells in humans 

chronically infected with HIV [20-22], HBV [23], and HCV [24] also express high levels of PD-

1. Several other receptors have been shown to impair T-cell responses during chronic 

infections. Cytotoxic T lymphocyte antigen 4 [CTLA-4], which like PD-1 is a CD28 family 

member, has been shown to impact the functional quality of the T-cell response during      

HIV-1 and HCV infections of humans [25-27]. T cell immunoglobulin and mucin domain-
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containing protein-3 [TIM3] functions to attenuate autoimmune responses and has also been 

shown to influence the exhausted state. During HIV-1, HCV and LCMV infections, TIM3 is 

expressed by virus-specific T-cells, and the frequencies and levels of expression parallel the 

exhausted state of the cells and the severity of infection.   

 

Blocking anti-PD-L1 antibody treatment during chronic LCMV infections promotes the 

proliferation of virus-specific T-cells, improves their functionality, and reduces viral loads, 

even in cohorts of CD4-depleted mice, which develop severe T cell exhaustion [3]. As with 

PD-1, blockade of TIM3 improves the responsiveness and proliferation of the exhausted cells 

in vivo. The hierarchies of inhibitory receptor expression by exhausted cells have been 

documented during chronic LCMV infection, and these populations of CD8+ T-cells can be 

segregated into a series of discrete subsets that express different numbers and combinations 

of inhibitory receptors [8, 28]. More severely exhausted cells express a greater number of 

inhibitory receptors. The roles of each individual receptor in promoting and sustaining 

exhaustion are less clear. The inhibitory molecule lymphocyte-activated gene-3 (LAG-3) is 

widely expressed on exhausted LCMV-specific CD8+ T-cells [28, 29]. Nevertheless, LAG-3 

blockade alone is less effective at reversing exhaustion and lowering viral levels than a 

combined PD-L1 and LAG-3 blocking approach. Therefore, deciphering how specific 

inhibitory receptor signals integrate to promote and maintain exhaustion will be important. 
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Figure 2.4 Reinvigoration of exhausted T cells by the blockade of interaction of PD-1 

with its ligand PD-L1 (Wherry, et al., 2006).  

 

2.5 Mathematical models in immunology 

The main objective of this section is to highlight alternative perspectives on the production 

of various mathematical models of immune processes, and the need for well-founded 

methodologies for the construction and selection of such a model. We describe some of the 

contributions that mathematical models have made to our understanding of various aspects 

of CD8+ T-cell responses to pathogens after chronic infections. 

 

We review three representative models formulated using different types of equations to 

describe the dynamics of cell populations labeled with CFSE: a heterogeneous ordinary 

differential equation (ODE) model, a delay differential equation (DDE) model and an age-

structured hyperbolic partial differential equation (PDE) model [31]. 
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a. We first consider an ODE based model. A general linear compartmental model considered 

in [32] describes the rate of changes in the numbers of lymphocytes Nj(t) having undergone 

j divisions and D(t) the number of dead but not disintegrated lymphocytes at time t. The 

model assumes that the rates of cell proliferation and death, ⍺j and βj, respectively, are 

division number dependent. In generic form, the model equations are as follows: 

 

The birth rate and death rate parameters were estimated using the in vitro data on the 

growth of CFSE labeled T-cells. It appeared that the birth rate as a function of the divisions 

number is bell-shaped, whereas the death rate function is initially zero and increases 

thereafter. 

 

b. We now consider a model incorporating memory. A well-known biological model for cell 

cycle data analysis is the Smith-Martin (SM) model, which lumps the cell cycle into two 

states. The first state (called A) corresponds to G1 phase of the cycle, and the second one 

(state B) represents S-G2-M phases of the cell cycle. The progression through the cell cycle 

is assumed to have a stochastic component (the recruitment of cells from an A state into B) 

and a deterministic component (a progression with a fixed time-lag through the B state). In 

a recent study a DDE-type model was proposed which describes the rate of change of the 

population of T lymphocytes in the A and B states that have undergone j divisions: 
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The parameters of the model characterize separately the division rates and the time-lags of 

transit through the B state of naive and divided cells as well as the death rates of cells in the 

A and B states. The range for the division number j was taken to be infinite in order to derive 

an analytical solution of the models for some special choice of the initial/boundary 

conditions. In the model variables Aj(ti) + Bj(ti) were fitted to in vivo data on T lymphocyte 

distributions with respect to the division number. 

 

c. A model based on PDEs which considers the (with respect to the progression through the 

B state of the cell cycle) age-structured description of lymphocyte division was analyzed in 

[32]. For data fitting, the authors considered the population of cells that have undergone j 

divisions in the A state and in the B state, the latter being defined using the time distribution 

of cells at time t in the B state bj(t, s): Bj(t) = ∫ 𝑏𝑗 (𝑡, 𝑠) 𝑑𝑠
τ

0
. The corresponding equations read 

 

To estimate the parameters of the PDE version of the SM model three different parameter 

estimation approaches (direct fitting, indirect fitting and rescaling method) were examined 
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[32]. The model proved to be consistent with the in vivo data characterizing the CFSE profile 

of transgenic T-lymphocyte adoptively transferred into irradiated mice. The issue of 

choosing the right initial conditions for the PDE description received special attention. 

 

The models formulated with general non-linear ODEs represent the dominating class of 

equations in use in mathematical immunology  as they are easy to simulate in silico and 

simpler to analyze qualitatively than many other types of model [30]. The complex      short- 

and long-term dynamics can be portrayed in simple constant coefficient homogeneous 

equations.  
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Chapter 3 

Mathematical model 

 

3.1 Model development 

The model presented here is developed from the work of Johnson et al., [33], which modeled 

the infection dynamics along with the effects of CD8+ T-cell exhaustion with a series of 

nonlinear ODEs in mice chronically infected by LCMV. Their model captured the interplay 

between uninfected target cells (U), virus-infected target cells (V), CD8+ T-cells (X) and the 

level of exhaustion (Q). 

𝑑𝑈

𝑑𝑡
 = a – βUV – bU       (3.1a) 

𝑑𝑉

𝑑𝑡
= βUV – (b + ⍺)V – kVX      (3.2a) 

𝑑𝑋

𝑑𝑡
= sX

𝑉

(𝜙+ 𝑉)
 – δX

𝑄𝑛

(𝑞𝑛 + 𝑄𝑛)
      (3.3a) 

𝑑𝑄

𝑑𝑡
= 

𝑉

(𝜙+ 𝑉)
 – dQ                                  (3.4a) 

Table 3.1a A summary of variables used in the model (equations 3.1a -3.4a) 
 

Variable Description Initial 
value 

U Uninfected target cells 1e6 

V Virus infected target cells 1 

X CD8+ T-cells 10 

Q Level of exhaustion 0 

 



 

15 
 

 

Table 3.1b A summary of parameters used in the model (equations 3.1a - 3.4a) 
 

Parameter Description Value Units 

a Rate of production of host 
cells 

1e4 target cells/day 

β Rate of infection 5e-6 [(target cells)2.day]-1 

b Death rate of host cells 1e-2 (target cells.day)-1 

α Rate at which virus infected 
cells die due to infection 

5e-2 (target cells.day)-1 

k Rate of clearance of 
infected cells by the 
antigen-specific CD8+ T 
cells 

1e-5 (target cells.T cells. day)-1 

s Maximum growth rate of 
CD8+ T cells 

1.3 (T cells.day)-1 

δ Death rate of CD8+ T cells 
due to exhaustion 

3 (T cells.day)-1 

ϕ Antigen density 1e3 target cells 

q Exhaustion threshold 5 - 10 - 

d Rate at which the immune 
response recovers from 
exhaustion. 

0.1 - 
 

 

We modify the above Johnson et al. model in such a way that cytotoxic killing of virus infected 

cells, antigen-dependent growth of CD8+ T-cells and death of CD8+ T-cells are made to be 

dependent on the level of exhaustion Q, which we will refer to as PD-1 signaling. We assume 

that CD8+ T cells also proliferate without encountering antigen, and die without undergoing 

exhaustion. So, our new model is as follows: 
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𝑑𝑈

𝑑𝑡
 = a-βUV-bU        (3.1b) 

𝑑𝑉

𝑑𝑡
 = βUV - (b + ⍺)V - k(Q)VX                  (3.2b) 

𝑑𝑋

𝑑𝑡
 = s(Q)X

𝑉

(𝜙+ 𝑉)
 +P(Q)X - δE(Q)X − δX                (3.3b) 

𝑑𝑄

𝑑𝑡
 = r

𝑉

(𝜙+ 𝑉)
 - dQ                                   (3.4b)  

where P(Q) is the antigen independent proliferation rate of CD8+ T-cells, δE (Q) and  δ are 

PD-1 signaling dependent and independent death rates  of CD8+ T-cells respectively.  

We introduce a new parameter r, called “blockade parameter”, whose reduction is assumed 

to simulate the blockade of interaction between PD-1 and its ligand PD-L1.  

 

We simplify the model by eliminating the differential equation for U, as the rate of production 

of host cells differ in each tissue [34]. Now, our exhaustion model is a simplified model of 

population-dynamics type focusing on the specific effects of PD-1 signaling and blockade on 

CD8+ T-cell effector function. Our goal is to understand the mechanisms behind T-cell 

exhaustion.  

 

We describe the system as three coupled differential equations, where each equation gives 

the rate of change of the particular variable in terms of growth and death, cell-cell kill, and 

cell inactivation due to PD-1 signaling. 
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𝑑𝑉

𝑑𝑡
 = pV (1-

𝑉

𝐶
) - k(Q)VX      (3.1c) 

𝑑𝑋

𝑑𝑡
 = s(Q)X

𝑉

(𝜙+ 𝑉)
 - δ(Q)X      (3.2c) 

𝑑𝑄

𝑑𝑡
 = r

𝑉

(𝜙+ 𝑉)
 - dQ                 (3.3c) 

 

  

 

Figure 3.1 Schematic representation of interactions included in the model 

 

Equation (3.1c) of the system describes the rate of change of virus infected cells. It expresses 

the expansion of virus population at the rate p from the initial inoculum that can reach a 

maximum density C [35], and rate of neutralization of virus infected cells by CD8+ T cells. 

 

Equation (3.2c) characterizes the time rate of change of CD8+ T cells. The proliferation of 

CD8+ T cells is described by the first term. The rate depends on the density of antigen ϕ. The 

term δ(Q)X indicates the loss of functional cells due to exhaustion. CD8+ T-cells are 

stimulated by the interaction with virus infected cells through a Michaelis-Menten dynamic. 
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Equation (3.3c) establishes the time rate of change of PD-1 signaling by integrating over the 

antigenic stimulus and decaying exponentially. We call r - the blockade parameter; we 

assume that the reduction of r simulates the blockade of interaction between PD-1 and its 

ligand PD-L1. Although our model is similar to that of Johnson et al., if differs in a number of 

instances that reflect the latest knowledge about mechanisms causing T cell exhaustion. We 

make the killing rate of CD8+ T cells k(Q), maximum growth rate of CD8+ T cells  s(Q), and 

the death rate of CD8+ T cells δ(Q) dependent on PD-1 signaling, which are implemented as 

Hill function in the following manner: 

k(Q) = k0 
𝑄𝑛

(𝑞𝑘
𝑛 + 𝑄𝑛)

 

s(Q) = s0 (1-
𝑄𝑛

(𝑞𝑠
𝑛 + 𝑄𝑛)

) 

δ(Q) = δ0 
𝑄𝑛

(𝑞δ
𝑛 + 𝑄𝑛)

 

where qk, qs and qδ are half-maximal constants and n is the coefficient. 

 

3.2 Simulation 

The time course of variables were obtained by numerical integration in MATLAB using 

ode45, which implements a Runge-Kutta method with a variable time step for efficient 

computation. We use the dynamical systems analysis software COPASI to estimate the 

parameters for the model by fitting the model to the experimental data (Blackburn et al.) by 

adopting evolutionary programming optimization method. We specified the time course 

data set for viral infected cells and CD8+ T-cells from Blackburn et al. and a finite range of 

parameter values in COPASI. 
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Chapter 4 

Results and discussion 

 

4.1 Kinetics in chronic infection: Time course simulation of virus infected cells and 

CD8+ T-cells 

We examined whether the simple mathematical models presented above could capture the 

measured kinetics of viral load and cytotoxic CD8+ T-lymphocytes (CTLs). By fitting the 

parameter values of the mathematical model, we were able to achieve a good fit to the 

experimental kinetic data of Blackburn, et al., and the parameter values we found are close 

in magnitude to those of Johnson, et al.  We simulated the dynamics of virus infected cells 

and CD8+ T-cells by fitting our model defined by the system of ODEs 3.1(b), 3.2 (b), 3.3 (b), 

3.4 (b) to Blackburn, et al. experimental data and estimated rate parameters shown in Table 

4.1. 

 

Figure 4.1 The model described by equations 3.1(b) – 3.4(b) is fit to the LCMV data of 

Blackburn et al.  
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Table 4.1 Parameter estimates obtained from COPASI (equations 3.1b - 3.4b) 
 

Parameter Description Value Units 

a Rate of production of 
host cells 

.7e4 target cells/day 

β Rate of infection 5e-6 [(target cells)2.day]-1 

b Death rate of host cells 5e-2 (target cells.day)-1 

α Rate at which virus 
infected cells die due to 
infection 

5e-2 (target cells.day)-1 

k Rate of clearance of 
infected cells by the 
antigen-specific CD8+ T 
cells 

3.5e-5 (target cells.T cells. day)-1 

s Maximum growth rate of 
CD8+ T cells 

1.2 (T cells.day)-1 

δ Death rate of CD8+ T cells 
due to exhaustion 

1.1 (T cells.day)-1 

ϕ Antigen density 1.25e4 target cells 

d Rate at which the 
immune response 
recovers from 
exhaustion. 

0.1 - 
 

qk 
 
qs 
 

qP 
 
qδ 

 
 
 

Half maximal-constants 

2.3e6 
 
1.04e4 
 

1.9 
 
3.36e3 

- 
 
- 
 

- 
 
- 
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4.2 In vivo blockade of PD-1 

We utilized the data for single- and combination-blockade therapy of mice infected with 

chronic (clone 13) LCMV from Blackburn, et al., [28] and Jin, et al [36]. In both studies, drug 

treatment was begun on day 28 post-infection, and measurements of viral loads and CTL 

responses were performed two weeks later (day 42). A consistent feature of the 

experimental data in both studies is that the increase of CD8+ T cells after blockade therapy 

appears to be correlated with the decrease of viral load after therapy in infected tissues. We 

analyzed the data using our mathematical model, to determine how this correlation 

depended on the type of therapy (anti-PD-L1, alone or in combination with anti-LAG3 or 

anti-TIM3) and type of infected tissue. 

 

Figure 4.2 Ratio of total number of virus infected cells to CD8+ T cells on day 28 and on day 42 

in response to α-PD-L1 therapy. 
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4.3 In silico blockade simulation 

We assessed the role of inhibitory receptor PD-1 on exhausted CD8+ T cells in silico by 

reducing the “blockade parameter”-r on day 28 of the infection.  Blockade of PD-1 

reproduced the key qualitative effects seen in Blackburn, et al and Jin, et al. There was a 

decrease in number of viral infected cells and increase in the CD8+ T cells after blockade 

 
 

Figure 4.3a Dynamics of V and X according to the modified model (equations 3.1(c) - 

3.3 (c)) with the steady state data points on day 42 of treatment for spleen (Blackburn, 

et al. [28]). Treatment begins on day 28, and the effect of PD-1 blockade is clearly 

visible with the decrease in V and increase in X as time progressed and ultimately 

reached steady state. 
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Figure 4.3b V and X from the above simulation on day 28 (before α-PD-L1 treatment) 

and day 42 (after α-PD-L1treatment).  

 

4.4 Steady state analysis 

We performed a steady state and stability analysis for the model 3.1–3.3(c). The system has 

3 steady states: 

● (V, X, Q) = (0, 0, 0)      (4.1) 

● (V, X, Q) = (0, 0,
𝐶𝑟

𝑑(𝐶+𝜙) 
)      (4.2) 

● (V, X, Q) = (
−𝛿(𝑄)𝜙

𝛿(𝑄)−𝑠(𝑄)
,

𝑝

𝑘(𝑄)
[1 +

𝛿(𝑄)𝜙

𝐶(𝛿(𝑄)−𝑠(𝑄))
] ,

𝛿(𝑄)𝑟

𝑑𝑠(𝑄)
)  (4.3) 

It is possible to determine the stability of our system by the sign of real part of eigenvalues 

of the Jacobian matrix. The Jacobian matrix of our system of ODEs is the matrix of the partial 

derivatives of the right-hand side with respect to state variables. 
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We substitute the three steady state solutions for V, X and Q and estimate the following 

eigenvalues. 

 

 

 

where e1, e2 and e3 are the eigenvalues corresponding to steady state solutions (4.1), (4.2) 

and (4.3) respectively and s = s(Q) and δ = δ(Q) 

We plug in the following parameter values to determine the numerical values of eigenvalues. 

C = 5e5, p = 5, ϕ(Q) = 1.67e5, δ(Q) = 1.2, s(Q)= 2, d = 10 

Now, e1= [
−10
1.2
5

], e2= [
−10
−5
0.3

], e3= [
−10

−1.85
−0.65

]  

 
As all the eigenvalues in e3 have negative real parts, (4.3) provides a stable steady state 

solution. 
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Solution (4.1) is not of interest, because all species are 0. Solution (4.2) represents a steady-

state viral load that reaches capacity, in the absence of any immune response. Solution (4.3) 

corresponds to a steady-state equilibrium between the virus and the CTL response. In 

previous mathematical modeling studies, such an equilibrium state has been identified as 

representing a chronic infection scenario, where a non-zero CTL response maintains the 

virus in steady-state, but does not successfully clear the virus. So, solution (3) provides stable 

steady state values for the model, and the model is capable of capturing the stable 

equilibrium between virus and the CTL response that is seen in chronic viral infections. 

 

4.5 Sensitivity analysis to examine qualitative effects of blockade treatment: 

 

We investigated the sensitivity of model variables by studying the effect of changes in the 

parameters that depend on PD-1 signaling. It is possible to examine the robustness of 

infection dynamics to parameter values and to explore to which parameters the system is 

more sensitive to understand key immune system mechanisms. 

Table 4.2 One-dimensional sensitivity analysis on model parameters. 

 

Parameter Range Model behavior 

s 1 - 5 There is a dramatic decrease in viral infected cells with increase 
in s. However, CD8+ T-cells increase and reach a steady state  
with increase in s. 

δ 0 - 2 The higher δ, the higher the damage to the susceptible tissue as 
CD8+ T-cells go down to zero. 

k 10-8 - 1 Changes in k has no effect on virus infected cells. But CD8+ T 
cells decrease sharply with slight increase in k.  
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Figure 4.4 One-dimensional sensitivity analyses. Steady state values of V and X vs 

parameters 
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Figure 4.4 shows that blockade treatment could work by different mechanisms. If treatment 

increases the proliferation rate of CTLs (parameter s), that would result in a decreased viral 

load and increased CTLs, which qualitatively agrees with the trend seen in the data from 

Blackburn, et al., and Jin, et al. Similarly, if blockade treatment decreases the CTL apoptosis 

rate (parameter δ), that would also have the correct qualitative effect. However, if blockade 

treatment modulates only parameter k (the rate of infected cell killing by CTLs), that would 

not have the appropriate effect, because the viral load would be unchanged. Therefore, 

blockade treatment must have an effect on either s or δ (or both) in order to recapitulate the 

trend observed in experiments. 

 

4.6 Analysis of per-cell killing efficiency  

 

If we assume that the system has reached steady-state by day 42 after treatment, then we 

can calculate the per-cell killing efficiency of CTLs based on the measured values of viral 

infected cells and T cells. This allows us to determine whether the killing efficiency is affected 

by the blockade treatment.  

At steady state, 

𝑑𝑉

𝑑𝑡
 = 0 = pV(1 −  

𝑉

𝐶
)– kVX 

So, k = 
𝑃

𝑋
 (1 −  

𝑉

𝐶
) 

If we used the value of p = 5 day-1 assumed by Ganusov, et al., [35] we can directly calculate 

k for different values of C, the carrying capacity of virus for a particular tissue.   

 

Figure 4.5 shows the calculated ratio of 
𝑘𝑡

𝑘𝑢 , that is the per-cell killing efficiency after 

treatment to before treatment, respectively. By analyzing the data in Blackburn, et al., [28] 
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we find that for most parameter values, the per-cell killing efficiency is higher after anti-

LAG3 treatment, but lower after anti-PD-L1 combination therapy. In analysis of the Jin, et al., 

[36] data we find that both anti-TIM3 and anti-PD-L1 decrease the per-cell killing efficiency. 

Both studies show the same qualitative effect, which is that anti-PD-L1 has the stronger effect 

of the single-drug therapies, while the combination therapy shows the greatest effect. 

 

 

Figure 4.5a Inference of per-cell killing efficiencies from Blackburn, et al. [28] Values 

plotted are calculated based on the data from Blackburn, et al. [28] and the 

mathematical model. For each tissue, specificity, and drug-type, 
𝒌𝒕

𝒌𝒖 is calculated for a 

range of values of the unknown parameter C (the viral load carrying capacity). For 

most values of C, the anti-LAG-3 treatment results in an increased per-cell killing 

efficiency (
𝒌𝒕

𝒌𝒖>1), while for anti-PD-L1 and combination therapy, the per-cell killing 

efficiency is decreased (
𝒌𝒕

𝒌𝒖<1). 
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Figure 4.5b Inference of per-cell killing efficiencies from Jin, et al. [36] The data from 

Jin, et al., show qualitative similarity to those of Blackburn, et al. [28] Per-cell killing 

efficiencies are decreased most upon combination therapy. Anti-Tim3 treatment 

decreases per-cell killing efficiencies for most values of C, but not as much as anti-PD-

L1 therapy alone or in combination. 
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4.7 Analysis of proliferation/apoptosis 

 

By a steady-state assumption on X (the CTL response), we can infer the correct value of 
𝒔

𝜹
 in 

the model.  

At steady state, 

𝑑𝑋

𝑑𝑡
 = 0 = s(

𝑋𝑉

ϕ+𝑉
) – 𝛿X 

So, 
𝐬

𝛅
 = 

ϕ+𝑉

V
 

In the treatment scenarios, we can calculate 
(

𝐬

𝛅
)

t
 

(
𝐬

𝛅
)

u
 
  equivalent to 

(ϕ+Vt)Vu

(ϕ+Vu)Vt, where Φ is an 

unknown parameter. The maximum of this expression is given by 
Vu

Vt . Therefore, this ratio 

gives a measure of how much the net proliferation rate (
s

δ
) is increased after treatment. We 

see that in both the Blackburn and Jin studies, the combination treatment has the largest 

effect on the net proliferation rate of CTLs. We can furthermore calculate the ratio of 
Vu

Vt  that 

would be seen using a Bliss-independence model [37] for the combination therapy. The 

Bliss-independence model is a commonly-used measure to determine whether two drugs in 

combination have a greater (i.e., synergistic) or lesser (i.e., antagonistic) effect than would 

be expected if they functioned independently. 

 

 

 

 



 

31 
 

Table 4.3 Fraction of virus infected cells surviving according to single drug, 

combination and Bliss independence. 

 Drug 1 Drug 2 Combination Bliss independence 

Fraction 

Surviving 
S1 =  

Vt

Vu S2 =  
Vt

Vu Sc S1 × S2 

 

If Sc < S1 x S2, the combination treatment is thought to be synergistic; if Sc > S1 x S2 the 

combination treatment is not synergistic 

 

In analysis of the Blackburn data, we see that the combination of anti-PDL1 and anti-LAG3 is 

not synergistic in all tissues except the kidney. However, in analysis of the Jin data, we see 

that the combination therapy is synergistic (i.e., exceeding the Bliss-independence criterion) 

in all tissues. 
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Figure 4.6a Inference of proliferation/apoptosis rates from Blackburn, et al. [28] 

Plotted values are log10(
𝐕𝐮

𝐕𝐭), where 
𝐕𝐮

𝐕𝐭  is related to 
(

𝐬

𝛅
)

t
 

(
𝐬

𝛅
)

u
 
, the ratio of 

proliferation/apoptosis rates of CTLs after and before treatment. In every case except 

the kidney, the same qualitative trend is seen, where each drug treatment decreases 

viral load, with the effect being least significant for the single-drug anti-LAG3 

treatment, and most significant for the treatment combinations with anti-PD-L1. 

These results indicate that the 
𝐬

𝛅
 ratio of CTLs is highest for combination therapy. 

However, as compared to the Bliss independence model of synergy (×), the anti-

PDL1/anti-LAG-3 combination therapy is not synergistic, except in the case of the 

kidney. 
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Figure 4.6b Inference of proliferation/apoptosis rates from Jin, et al.  As in Blackurn, 

et al., [28] a similar trend is seen, where the single-drug anti-TIM-3 treatment is least 

effective at reducing viral load, while the combination treatment with anti-PD-L1 is 

most effective. As compared to the Bliss-independence model of synergy (×), the anti-

PD-L1/anti-TIM3 combination therapy appears synergistic in all 4 tissues measured, 

as indicated by the 
𝐕𝐮

𝐕𝐭  ratio exceeding that of the Bliss independence model in all cases. 

 

Taken together, the above analysis shows that all three drugs (anti-PD-L1, anti-LAG-3, anti-

Tim-3) modulate CD8+ T-cells activity by increasing the net proliferation rate 

(proliferation/apoptosis rates). However, the analysis reveals a mechanistic difference 

between the function of anti-LAG3 and anti-TIM3: in addition to modulating the net 

proliferation rate of CD8+ T-cells, anti-LAG3 also functions by increasing the per-CD8+ T-cell 

killing efficiency (k). While anti-TIM3/anti-PD-L1 showed more synergy, the anti-PD-
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L1/anti-LAG3 combination was overall more effective in reducing viral loads, according to 

the measurements of Blackburn, et al. [28] 
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Chapter 5 

Conclusions and future directions 

 

We developed a simple ODE based mathematical model to investigate the role of PD-1 

signaling in chronic viral infections. Our model is in good agreement with the experiment, 

reproducing the kinetics of virus infected and CD8+ T-cells.  We performed blockade 

experiments in silico, the simulations of which reproduced the experimental results, showing 

a decreased frequency in virus infected cells and increased frequency in CD8+ T cells. We 

explored the different mechanisms by which the blockade experiments worked by 

performing steady state and sensitivity analyses. We showed that blockade therapy must 

have an effect on either proliferation rate or apoptosis rate (or both) of CD8+ T-cells in order 

to replicate the results of blockade experiments. Our investigations on the effect of single 

drug and combined drug therapies indicated that anti-PD-L1/anti-TIM3 and anti-LAG3 

worked by different mechanisms, as anti-PD-L1/anti-TIM3 decreased per-cell killing 

efficiencies but anti-LAG3 increased per-cell killing efficiencies.  Future studies should 

analyze alternative models that could provide better insights into the mechanisms of CD8+ 

T-cells killing. We also showed that anti-TIM3 and anti-PD-L1 behave synergistically, 

whereas anti-LAG3 and anti-PD-L1 do not. A kinetic model that includes the possibility of 

synergistic or antagonistic behavior of drugs in combination could be useful in further 

quantifying the degree of synergy between drugs. 

  

 

 



 

36 
 

Chapter 6 

References 

 

 

1. Wherry, E. J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. 

Virol. 78, 5535–5545 (2004). 

 

2. Shin, H. & Wherry, E. J. CD8 T cell dysfunction during chronic viral infection. Curr. 

Opin. Immunol. 19, 408–415 (2007). 

 

3. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral 

infection. Nature 439, 682–687 (2006). 

 

4. Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor 

antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 207, 

2175–2186 (2010). 

 

5. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune 

tolerance. Cell 133, 775–787 (2008). 

 

6. Butler, N. S. et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established 

blood-stage Plasmodium infection. Nat. Immunol.13, 188–195 (2012). 

 

7. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Targeting the PD-1/B7-H1 [PD-L1] 

pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 24, 207–212 (2012). 

 

8. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral 

infection. Immunity 27, 670–684 (2007). 

 

9. Penaloza-MacMaster, P. et al. Interplay between regulatory T cells and PD-1 in 

modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp 

Med 211, 1905–1918 (2014). 

 

10. Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-

1 inhibits T cell function by upregulating BATF. Nat. Med. 16, 1147–1151 (2010). 

 

11. Delves, P. J. & Roitt, I. M. The Immune System. New England Journal of Medicine 343, 

37–49 (2000). 



 

37 
 

 

12. Elgnainy, H. Immunology I ,THE PHYSIOLOGY OF THE IMMUNE SYSTEM | The 

Amazing Medicine (2013) 

http://theamazingmedicine.blogspot.com/2013/07/immunology-i-physiology-of-

immune-system.html> 

 

13. Buggert, M. et al. T-bet and Eomes Are Differentially Linked to the Exhausted 

Phenotype of CD8+ T Cells in HIV Infection. PLoS Pathog 10, e1004251 (2014). 

 

14. Wherry, E. J. T cell exhaustion. Nat Immunol 12, 492–499 (2011). 

 

15. Yi, J. S., Cox, M. A. & Zajac, A. J. T-cell exhaustion: characteristics, causes and 

conversion. Immunology 129, 474–481 (2010). 

 

16. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without 

effector function. J. Exp. Med. 188, 2205–2213 (1998). 

 

17. Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral 

persistence alters CD8 T-cell immunodominance and tissue distribution and results 

in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003). 

 

18. Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in 

acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector 

T cells. Nature 362, 758–761 (1993). 

 

19. Shin, H., Blackburn, S. D., Blattman, J. N. & Wherry, E. J. Viral antigen and extensive 

division maintain virus-specific CD8 T cells during chronic infection. J Exp Med 204, 

941–949 (2007). 

 

20. Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell 

exhaustion and disease progression. Nature 443, 350–354 (2006). 

 

21. Petrovas, C. et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV 

infection. J. Exp. Med. 203, 2281–2292 (2006). 

 

22. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells 

leads to reversible immune dysfunction. Nat Med 12, 1198–1202 (2006). 

 

23. Boettler, T. et al. Expression of the interleukin-7 receptor alpha chain (CD127) on 

virus-specific CD8+ T cells identifies functionally and phenotypically defined memory 



 

38 
 

T cells during acute resolving hepatitis B virus infection. J. Virol. 80, 3532–3540 

(2006). 

 

24. Urbani, S. et al. PD-1 expression in acute hepatitis C virus (HCV) infection is associated 

with HCV-specific CD8 exhaustion. J. Virol. 80, 11398–11403 (2006). 

25. Kaufmann, D. E. et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates 

with disease progression and defines a reversible immune dysfunction. Nat. Immunol. 

8, 1246–1254 (2007). 

 

26. Nakamoto, N. et al. Synergistic Reversal of Intrahepatic HCV-Specific CD8 T Cell 

Exhaustion by Combined PD-1/CTLA-4 Blockade. PLoS Pathog 5, (2009). 

 

27. Cecchinato, V. et al. Immune activation driven by CTLA-4 blockade augments viral 

replication at mucosal sites in simian immunodeficiency virus infection. J. Immunol. 

180, 5439–5447 (2008). 

 

28. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory 

receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009). 

 

29. Richter, K., Agnellini, P. & Oxenius, A. On the role of the inhibitory receptor LAG-3 in 

acute and chronic LCMV infection. Int. Immunol. 22, 13–23 (2010). 

 

30. Freeman, G. J., Wherry, E. J., Ahmed, R. & Sharpe, A. H. Reinvigorating exhausted HIV-

specific T cells via PD-1–PD-1 ligand blockade. J Exp Med 203, 2223–2227 (2006). 

 

31. Andrew, S. M., Baker, C. T. H. & Bocharov, G. A. Rival approaches to mathematical 

modelling in immunology. Journal of Computational and Applied Mathematics 205, 

669–686 (2007). 

 

32. Luzyanina, T. et al. Computational analysis of CFSE proliferation assay.J Math Biol 54, 

57–89 (2007). 

 

33. Johnson, P. L. F. et al. Vaccination Alters the Balance between Protective Immunity, 

Exhaustion, Escape, and Death in Chronic Infections. J. Virol. 85, 5565–5570 (2011). 

 

34. Ganusov, V. V. et al. Quantifying cell turnover using CFSE data. J. Immunol. Methods 

298, 183–200 (2005). 

 

35. Ganusov, V. V., Barber, D. L. & De Boer, R. J. Killing of Targets by CD8+ T Cells in the 

Mouse Spleen Follows the Law of Mass Action. PLoS ONE 6, e15959 (2011). 



 

39 
 

 

36. Jin, H. T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic 

viral infection. Proc. Natl. Acad. Sci. U.S.A. 107, 14733–14738 (2010). 

 

37. Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a 

response surface perspective. Pharmacol. Rev.47, 331–385 (1995). 

 

 




