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ABSTRACT OF THE DISSERTATION

A Steinberg Type Decomposition Theorem for Higher Level Demazure Modules

by

Peri Shereen

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, August 2015

Dr. Vyjayanthi Chari, Chairperson

We study Demazure modules which occur in a level ` irreducible integrable representa-

tion of an affine Lie algebra. We also assume that they are stable under the action of the

standard maximal parabolic subalgebra of the affine Lie algebra. We prove that such a

module is isomorphic to the fusion product of “prime” Demazure modules, where the

prime factors are indexed by dominant integral weights which are either a multiple of `

or take value less than ` on all simple coroots. Our proof depends on a technical result

which we prove in all the classical cases and G2. Calculations with mathematica show

that this result is correct for small values of the level. Using our result, we show that

there exist generalizations of Q–systems to pairs of weights where one of the weights is

not necessarily rectangular and is of a different level. Our results also allow us to com-

pare the multiplicities of an irreducible representation occurring in the tensor product of

certain pairs of irreducible representations, i.e., we establish a version of Schur positivity

for such pairs of irreducible modules for a simple Lie algebra. We also present a more

refined presentation of a larger family of modules which include Demazure modules.
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Chapter 1

Introduction

Demazure modules associated to simple Lie algebra or more generally a Kac–

Moody Lie algebra g have been studied intensively since their introduction in [14]. These

modules, which are actually modules for a Borel subalgebra of the Lie algebra, are in-

dexed by a dominant integral weight Λ and an element w of the Weyl group. In this

paper we shall be concerned with affine Lie algebras and a particular family of Demazure

modules: namely those which are preserved by a maximal parabolic subalgebra contain-

ing the Borel. More precisely, let g be a simple finite–dimensional complex Lie algebra

and ĝ the corresponding affine Lie algebra. Then the maximal parabolic subalgebra of

interest is the current algebra g[t] which is the algebra of polynomial maps C→ g with

the obvious pointwise bracket. The g[t]–stable Demazure modules are indexed by a pair

(`, λ), where ` is the level of the integrable representation of ĝ and λ is a dominant inte-

gral weight of g and we denote the corresponding module by D(`, λ). In the case when

` = 1, these modules are interesting for a variety of reasons, including the connection

with Macdonald polynomials established in [36] for slr+1 and in [23] in general.

Our interest in these modules arise from their relationship with the represen-
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tation theory of quantum affine algebras. This connection was originally developed in

[4], [10], [12] where it was shown that the classical limit of certain irreducible represen-

tations of the quantum affine algebra can be viewed as graded representations of g[t].

The classical limits were first related to the g[t]–stable Demazure modules in level one

representations of affine Lie algebras in [8] for slr+1. In that paper, the connection was

also made between these modules and the fusion product defined in [16] of representa-

tions of g[t]. In [12] it was shown that a Kirillov–Reshetikhin module for a quantum

affine algebra is similarly related to a Demazure module when g is of classical type.

In [17] and [18] the authors worked with arbitrary untwisted affine Lie algebras

and with particular classes of g[t]–stable Demazure module. In the simply–laced case

for instance, they studied the modules D(`, `µ) where µ is a dominant integral weight of

g. They proved that such modules were the fusion product of the classical limit of the

Kirillov–Reshetikhin modules defined in [12]. (The definition of fusion products of g[t]–

modules is recalled in Section 2 of this paper, for the moment it suffices to say that it

is a procedure which defines a cyclic graded g[t]–module structure on a tensor product

of finite–dimensional g–modules. In particular, the underlying g module structure is

unchanged, where we are regarding g as the subalgebra g[t] consisting of constant maps).

A completely obvious question is: what is the analog of the results of [17] and

[18] for the module D(`, `µ + λ) where λ is an arbitrary dominant integral weight. A

much less obvious, but very interesting reason to study this question is the following:

when ` = 2 and in the case of sln+1, these modules are related to the modules for the

quantum affine algebra which occur in the work of Hernandez–Leclerc (see [22]). This

relationship is made precise in [1].

Recall that Steinberg’s tensor product theorem asserts that a simple mod-

ule L(λ) of an algebraic group over characteristic p is isomorphic to a tensor product
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L(pλ1) ⊗ L(λ0) where λ0(hi) ≤ p for all simple coroots. Our first result establishes an

analog of this replacing p by ` and the tensor product by fusion product, i.e.,

D(`, `µ+ λ) ∼= D(`, `µ) ∗D(`, λ),

for all positive integers ` and dominant integral weights µ and λ and if g is of classical

type or G2. The main obstruction to proving this result in general is a technical propo-

sition (Proposition 2.5) on the affine Weyl group which is problematic for E8 and F4.

However, computer calculations show that this result is true for small values of ` and

all λ and µ.

To continue the connection with the work of [22], we define and study the notion

of prime representations of g[t]–modules: namely a module which is not isomorphic to a

fusion product of non–trivial g[t]–modules. We prove that the modules D(`, `ωi) where

ωi is a fundamental weight and D(`, λ) where λ(hi) ≤ ` for all simple coroots, are prime

if g is simply–laced. In fact we show that the underlying g–module is not a tensor

product of non–trivial g–modules. In the case when g is of type type A or D we show

that any Demazure module is a fusion product of prime Demazure modules.

We use our main result to study generalizations of Q–systems (see [20] for

details, [27] for a more recent discussion and [21] , [32] for the quantum analog). In

the case of sln+1, the Q–system is a classical identity of Schur functions associated

to rectangular weights of a fixed height. Equivalently, the Q–system is a short exact

sequence

0→
⊗

{j:ai,j=−1}

V (`ωj)→ V (`ωi)⊗ V (`ωi)→ V (`+ 1)ωi)⊗ V ((`− 1)ωi)→ 0,

where V (rωi) is the irreducible representation of sln+1 with highest weight rωi. In

Theorem 4.2 of this paper, we write down an analogous short exact sequence for the

pair V (`ωi)⊗V (λ) for λ satisfying the restriction that λ(hi) ≤ ` for all simple coroots. In

3



fact we show that we can replace the tensor product of sln+1–modules by fusion products

of sln+1[t]–modules so that all the maps are completely canonical. It is interesting to note

that the kernel is in general not a tensor or fusion product of irreducible representations

of sln+1, but is a fusion product of prime Demazure modules.

1.1 Notation

Throughout the paper C denotes the field of complex numbers, Z the set of

integers and Z+, N the set of non–negative and positive integers respectively. Given

any complex Lie algebra a we let U(a) be the universal enveloping algebra of a. Also,

if t is any indeterminate we let a[t] be the Lie algebra of polynomial maps from C to a

with the obvious pointwise Lie bracket:

[x⊗ f, y ⊗ g] = [x, y]⊗ fg, x, y ∈ a, f, g ∈ C[t].

Let ev0 : a[t] → a be the map of Lie algebras given by setting t = 0. The Lie algebra

a[t] and its universal enveloping algebra inherit a grading from the degree grading of

C[t], thus an element a1 ⊗ tr1 · · · as ⊗ trs , aj ∈ a, rj ∈ Z+ for 1 ≤ j ≤ s will have grade

r1 + · · · + rs. We shall be interested in Z–graded modules for a[t]. By this we mean a

Z–graded vector space V = ⊕s∈ZV [s] which admits a compatible a[t]–action,

(a⊗ tr)V [s] ⊂ V [r + s].

A morphism of graded a[t]–modules is just a degree zero map of a[t]–modules. Given

r ∈ Z and a graded vector space V , we let τ∗r V be the r–th graded shift of V . Clearly

the pull–back of any a–module V by ev0 defines the structure of a graded a[t]–module

on V and we denote this module by ev∗0 V .
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1.2 Lie Algebra Terminology

From now on g will be a simple complex Lie algebra of rank n and h a fixed

Cartan subalgebra of g. Let R be the corresponding set of roots, αi, 1 ≤ i ≤ n be a set

of simple roots and R+ the corresponding set of positive roots and let θ be the highest

root of R+. For α ∈ R+, we set dα = 1 if α is long and dα = 2 if α is short and g is

not of type G2. If g is of type G2, then we set dα = 3 if α is short. The Weyl group W

of R is generated by simple reflections si, 1 ≤ i ≤ n and w0 denotes the unique longest

element of W .

Let x±α , α ∈ R+, hi, 1 ≤ i ≤ n be a Chevalley basis for g. We have

g = n− ⊕ h⊕ n+, h =
n⊕
i=1

Chi, n± =
⊕
α∈R+

Cx±α .

The fundamental weights ωi ∈ h∗, 1 ≤ i ≤ n are defined by setting ωi(hj) = δi,j where

δi,j is the Kronecker delta symbol. The weight lattice P (resp. P+) is the Z–span (resp.

Z+ span) of the fundamental weights. The root lattice Q and the subset Q+ are defined

in the obvious way using the simple roots. The co–weight lattice L is the sublattice

of P spanned by the elements diωi, 1 ≤ i ≤ n and the co–root lattice M is defined

analogously. The subsets L+ and M+ are defined in the obvious way. Let Z[P ] be the

integral group ring of P with basis e(λ), λ ∈ P .

1.3 g character

For λ ∈ P+, denote by V (λ) the simple finite–dimensional g–module generated

by an element vλ with defining relations

n+vλ = 0, hivλ = λ(hi)vλ, (x−αi)
λ(hi)+1vλ = 0, 1 ≤ i ≤ n.

5



It is well–known that V (λ) ∼= V (µ) iff λ = µ and that any finite–dimensional g–module

is isomorphic to a direct sum of modules V (λ), λ ∈ P+. If V is a h–semisimple g–module

(in particular if dimV <∞), we have

V =
⊕
µ∈h∗

Vµ, Vµ = {v ∈ V : hv = µ(h)v, h ∈ h},

and we set wtV = {µ ∈ h∗ : Vµ 6= 0}. If dimVµ < ∞ for all µ ∈ wtV , then we define

chhV : h∗ → Z+, by sending µ→ dimVµ. If wtV is a finite set, then

chhV =
∑
µ∈h∗

dimVµe(µ) ∈ Z[P ].

1.4 Untwisted Affine Lie Algebra

We now define the untwisted affine Lie algebra associated to g and some related

terminology (see [25] for details). The affine Lie algebra ĝ is given by

ĝ = g⊗ C[t, t−1]⊕ Cc⊕ Cd

where c is the canonical central element, and d acts as the derivation t ddt and commutator

[x⊗ tr, y ⊗ ts] = [x, y]⊗ tr+s + rδr,−s(x, y)c,

where ( , ) : g × g → C is a symmetric nondegenerate invariant bilinear form on g

normalized so that the square length of the long root is two. The Cartan subalgebra of

the affine Lie algebra is

ĥ = h⊕ Cc⊕ Cd.

Regard h∗ as a subspace of ĥ∗ by setting µ(c) = µ(d) = 0 for all µ ∈ h∗. Let δ,Λ0 ∈ ĥ∗

be given by

δ(d) = 1, δ(h⊕Cc) = 0, Λ0(c) = 1, Λ0(h⊕Cd) = 0.
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Extend the non–degenerate form on h∗ to a non–degenerate form on ĥ∗ by setting,

(δ, δ) = (Λ0,Λ0) = 0, (Λ0, δ) = 1.

The elements αi, 0 ≤ i ≤ n where α0 = −θ+ δ are a set of simple roots for the

set of roots of (ĝ, ĥ). Let R̂+ be the corresponding set of positive roots,

R̂+ = {α+ rδ : α ∈ R, r ∈ N} ∪R+ ∪ {rδ : r ∈ N}.

Set b̂ = ĥ
⊕

α∈R̂+ ĝα and note that

g[t]⊕C⊕Cd = n− ⊕ b̂, g[t] = n− ⊕ h
⊕
α∈R̂+

ĝα.

1.5 Affine Weyl Group

For 1 ≤ i ≤ n, set Λi = ωi + ωi(hθ)Λ0 ∈ ĥ∗ . The set P̂+ of dominant integral

affine weights is defined to be the Z+–span of the elements Λi + Zδ, 0 ≤ i ≤ n and P̂

is defined similarly. The root lattice Q̂ is the Z–span of the simple roots αi, 0 ≤ i ≤ n

and Q̂+ is defined in the obvious way.

The affine Weyl group Ŵ acts on ĥ∗ via reflections corresponding to the affine

simple roots, in particular wδ = δ for all w ∈ Ŵ . An equivalent way to define the affine

Weyl group is as follows. The finite Weyl group W acts on the co–root lattice M by

restricting its action on h∗ and we have

Ŵ ∼= W n tM .

The extended Weyl group W̃ is the semi–direct product of Ŵ with the group of affine

diagram automorphisms, denoted Σ, and

W̃ ∼= W n tL

7



where L is the co-weight lattice. Given µ ∈ M (resp. L) , we denote by tµ the corre-

sponding element of Ŵ (resp. W̃ ). Then,

tµ(λ) = λ− (λ, µ)δ, λ ∈ h∗ ⊕Cδ, tµ(Λ0) = Λ0 + µ− 1
2

(µ, µ)δ. (1.5.1)

Let Z[P̂ ] be the integral group ring of P̂ with basis e(Λ) and let Iδ be the ideal of Z[P̂ ]

obtained by setting e(δ) = 1. Since we have identified h∗ with a subspace of ĥ∗, the

group ring Z[P ] is isomorphic to a subring of Z[P̂ ] and the composite morphism

Z[P ] ↪→ Z[P̂ ] −→ Z[P̂ ]/Iδ,

is injective. Clearly, the action of W̃ on P̂ induces an action on Z[P̂ ] and Z[P̂ ]/Iδ as

well.

1.6 Demazure Module

For Λ ∈ P̂+ let V (Λ) be the highest weight, irreducible, integrable ĝ-module

with highest weight Λ and highest weight vector vΛ. Then,

V (Λ) =
⊕
η∈Q̂+

V (Λ)Λ−η, V (Λ)Λ−η = {v ∈ V (Λ) : hv = (Λ− η)(h)v, h ∈ ĥ∗}.

For w ∈ Ŵ , we have dimV (Λ)wΛ = 1 and the corresponding Demazure module is,

Vw(Λ) = U(b̂)V (Λ)wΛ.

More generally, given, σ ∈ Σ and w ∈ Ŵ , set Vwσ(Λ) = Vw(σΛ). Since V (Λ)Λ−η+rδ = 0

for all r ∈ N, it follows that dimVσw(Λ) < ∞. In the special case when wΛ|h ∈ −P+,

the Demazure module Vw(Λ) is g–stable, in other words it is a finite–dimensional module

for g[t]. The action of d defines a grading on Vw(Λ) which is compatible with the Z–

grading on g[t]. Finally, note that for w ∈ W̃ , the function chĥVw(Λ) : P̂ → Z is the

mapping Λ′ → dimVw(Λ)Λ′ and is an element of Z[P̂ ].
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1.7 Fusion Product

We recall the notion of fusion products of representations of g[t] introduced in

[16]. Let V be a finite–dimensional cyclic g[t] module generated by an element v and

for r ∈ Z+ set

F rV =

 ⊕
0≤s≤r

U(g[t])[s]

 .v

Clearly F rV is a g–submodule of V and we have a finite g–module filtration

0 ⊂ F 0V ⊂ F 1V ⊂ · · · ⊂ F pV = V,

for some p ∈ Z+. The associated graded vector space grV acquires a graded g[t]–module

structure in a natural way and is generated by the image of v in grV .

Given a g[t] module V and z ∈ C, let V z be the g[t]–module with action

(x⊗ tr)w = (x⊗ (t+ z)r)w, x ∈ g, r ∈ Z+, w ∈ V.

If Vs, 1 ≤ s ≤ k are cyclic finite–dimensional g[t]–modules with cyclic vectors vs, 1 ≤ s ≤

k and z1, · · · , zk are distinct complex numbers then, the fusion product V z1
1 ∗ · · · ∗ V

zk
k

is defined to be gr V(z), where V(z) is the tensor product

V(z) = V z1
1 ⊗ · · · ⊗ V

zk
k .

It was proved in [16] that in fact V(z) is cyclic and generated by v1 ⊗ · · · ⊗ vm and

hence the fusion product is cyclic on the image v1 ∗ · · · ∗ vm of this element. Clearly

the definition of the fusion product depends on the parameters zs, 1 ≤ s ≤ k. However

it is conjectured in [16] and (proved in certain cases by various people, [8], [15], [16]

[18], [26] for instance) that under suitable conditions on Vs and vs, the fusion product is

independent of the choice of the complex numbers. For ease of notation we shall often

suppress the dependence on the complex numbers and write V1∗· · ·∗Vk for V z1
1 ∗· · ·∗V

zk
k .
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1.8 Length of Weyl Element

We conclude this section with a technical result which will be needed in the

proof of Theorem 1. Given w ∈ Ŵ , let `(w) be the length of a reduced expression of w.

Clearly `(w1w2) ≤ `(w1) + `(w2) for all w1, w2 ∈ Ŵ . An alternative characterization of

`(w) is

`(w) = #{α ∈ R̂+ : wα ∈ −R̂+}. (1.8.1)

It is convenient to define the length of an element in the extended Weyl group as well,

by

`(σw) = `(w), for w ∈ Ŵ and σ ∈ Σ.

For w ∈ W̃ set R̂+
w = {α ∈ R̂+ : wα ∈ −R̂+}. Since Σ is the group of automorphisms

of the Dynkin diagram of ĝ it follows that `(w) = #R̂+
w as well. Note also that for all

w ∈ Ŵ and σ ∈ Σ we have `(σwσ−1) = `(w) and hence `(wσ) = `(w).

Proposition. (i) Let w1, w2 ∈ W̃ be such that R̂+
w2
⊂ R̂+

w1w2
. Then `(w1w2) =

`(w1) + `(w2).

(ii) For λ, µ ∈ P+ and w ∈W we have `(t−µt−λw) = `(t−µ) + `(t−λw).

Proof. Write ws = σsw
′
s for some σs ∈ Σ and w′s ∈ Ŵ for s = 1, 2. Hence we get

`(w1w2) = `(w′1σ2w
′
2) = `((σ−1

2 w′1σ2)w′2) ≤ `(σ−1
2 w′1σ2) + `(w′2) = `(w1) + `(w2).

It remains to prove the reverse inequality. For this it is enough to prove that

R̂+
w2
∪ w−1

2 R̂+
w1
⊂ R̂+

w1w2
R̂+
w2
∩ w−1

2 R̂+
w1

= ∅. (1.8.2)

To prove the inclusion, we only need to show that w−1
2 R̂+

w1
⊂ R̂+. For this, note that if

β ∈ R̂+, we have

−β ∈ w−1
2 R̂+

w1
=⇒ w2β ∈ −R̂+

w1
⊂ −R̂+ =⇒ w1w2β ∈ −R̂+,
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by our hypothesis. On the other hand we also have

−β ∈ w−1
2 R̂+

w1
=⇒ −w2β ∈ R̂+

w1
=⇒ −w1w2β ∈ −R̂+,

which is clearly absurd. The second assertion in (1.8.2) follows from

α ∈ w−1
2 R̂+

w1
=⇒ w2α ∈ R̂+

w1
⊂ R̂+ =⇒ α /∈ R̂+

w2
,

and part (i) of the proposition is established.

For (ii) we see that using part (i), it suffices to prove that if

α+ pδ ∈ R̂+, t−λw(α+ pδ) ∈ −R̂+ =⇒ t−µt−λw(α+ pδ) ∈ −R̂+.

Since µ ∈ P+ it follows from the explicit formulae for the translations that t−µ preserves

−(R+ + Z+δ). Hence it suffices to show that

α+ pδ ∈ R̂+, t−λw(α+ pδ) ∈ R̂− =⇒ t−λw(α+ pδ) ⊂ −(R+ + Z+δ),

i.e., that wα ∈ −R+. But this is again clear from the formulae because λ ∈ P+
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Chapter 2

Main Results

We begin this section by giving an alternate presentation of the g–stable De-

mazure modules and then state our main result in Section 2.4. We then discuss ap-

plications of our results, the notion of prime modules and also a generalization of the

Q–systems of [20].

2.1 g-stable Demazure Modules: D(`, λ)

We introduce a family of graded modules for g[t]. These are indexed by a pair

(`, λ) ∈ N × P+ and the corresponding module is denoted D(`, λ). For α ∈ R+, set

sα,mα ∈ N by

λ(hα) = dα`(sα − 1) +mα, 0 < mα ≤ dα`.

Then, D(`, λ) is the g[t]–module generated by an element wλ with defining relations:

n+[t]wλ = 0, (hi ⊗ ts)wλ = δs,0λ(hi)wλ, (x−αi)
λ(hi)+1wλ = 0, 1 ≤ i ≤ n, (2.1.1)

(x−α ⊗ tsα)wλ = 0, (2.1.2)

(x−α ⊗ tsα−1)mα+1wλ = 0, if mα < dα`. (2.1.3)
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Remark. The relations in (2.1.1) guarantee that the moduleD(`, λ) is finite–dimensional

(a more detailed discussion of this can be found in [10]). In particular this gives,

(x−α ⊗ 1)λ(hα)+1wλ = 0,

for all α ∈ R+.

2.2 Properties of D(`, λ)

The defining relations of D(`, λ) are graded, it follows that D(`, λ) is a graded

g[t]–module once we declare the grade of wλ to be zero. Clearly for s ∈ Z, the graded

shift τ∗sD(`, λ) is defined by letting wλ have grade s. It is elementary to check that

ev∗0 V (λ) is the unique irreducible graded quotient of D(`, λ) and moreover that,

D(`, λ) ∼= ev∗0 V (λ), if λ(hα) ≤ dα`, for all α ∈ R+. (2.2.1)

It is sometimes necessary to consider simultaneously, the different level Demazure mod-

ules associated to a given weight λ, in which case we shall denote the generator of D(`, λ)

by wλ,` and the integers sα and mα by sα,` and mα,` respectively.

Lemma. For all (`, λ) ∈ N× P+, we have,

Homg[t](D(`, λ), D(`+ 1, λ)) = C.

Moreover any non–zero map is surjective.

Proof. It is clear that any element ϕ ∈ Homg[t](D(`, λ), D(` + 1, λ)) must send wλ,`

to a scalar multiple of wλ,`+1 and hence the space of homomorphisms is at most one–

dimensional. To prove that it is exactly one we must show that wλ,`+1 satisfies the

relations of wλ,`. Write

λ(hα) = dα`(sα,` − 1) +mα,` = dα(`+ 1)(sα,`+1 − 1) +mα,`+1,
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with 0 < mα,` ≤ dα` and 0 < mα,`+1 ≤ dα(` + 1) and using the uniqueness of sα,` and

mα,`, we get that either

sα,` = sα,`+1, mα,` = mα,`+1 + dα(sα,`+1 − 1) ≥ mα,`+1,

or sα,` > sα,`+1. In either case the assertion follows.

2.3 Connection of D(`, λ) with Demazure Modules

The following result which is a combination of [18, Section 2.3, Corollary 1], [33,

Proposition 3.6] and [11, Theorem 2] explains the connection with Demazure modules.

Proposition. Let (`, λ) ∈ N× P+ and suppose that w ∈ Ŵ , σ ∈ Σ, Λ ∈ P̂+ are such

that

wσΛ = w0λ+ `Λ0.

Then we have an isomorphism

D(`, λ) ∼= Vw(σΛ),

of g[t]–modules and hence, for all µ ∈ P , we have

dimD(`, λ)µ =
∑
s∈Z≥0

dimVw(σΛ)`Λ0+µ+sδ. (2.3.1)

2.4 Steinberg-like Fusion Decomposition

The main result of this paper is the following theorem.

Theorem 1. Assume that g is of classical type or of type G2. Let λ ∈ P+ and k, ` ∈ N

and write

λ = `

(
k∑
s=1

λs

)
+ λ0, λs ∈ L+, 1 ≤ s ≤ k, λ0 ∈ P+.
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We have an isomorphism of graded g[t]–modules,

D(`, λ) ∼= D(`, λ0)z0 ∗D(`, `λ1)z1 ∗ · · · ∗D(`, `λk)zk ,

where z0, · · · , zk are distinct complex numbers. In particular, the fusion product on the

right hand side is independent of the choice of parameters.

2.5 Affine Weyl Group Result

In the case when λ0 = 0 the result was first proved in [18] and a different

proof was given in [11]. As in these papers, the proof of our theorem uses the theory of

Demazure operators and the following additional key result proved in Chapter 3.

Proposition. Assume that g is of classical type or of type G2. Let λ ∈ P+ and ` ∈ N

be such that λ(hi) ≤ di` for all 1 ≤ i ≤ n. There exists µ ∈ L+ and w ∈ W such that

wtµ(`Λ0 + w0λ) ∈ P̂+.

Remark. The restriction on g in the main theorem is purely a consequence of the fact

that we are able to prove Proposition 2.5 only in the case when g is of classical type or

of type G2. Computer calculations for small values of ` show that the proposition is true

for such ` for the other exceptional Lie algebras as well. However a proof for arbitrary

` seems difficult for E8 and F4.

2.6 Applications

For the rest of the section, we discuss applications of our result. We begin by

noting the following corollary of our theorem.
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Proposition. Let ` ∈ N, λ1 ∈ L+, and λ2 ∈ P+. There exists a canonical surjective

map of g[t]–modules

D(`, `λ1) ∗D(`, λ2)→ D(`+ 1, (`+ 1)µ1) ∗D(`+ 1, µ2)→ 0

for all µ1 ∈ L+, µ2 ∈ P+ with (`+ 1)µ1 + µ2 = `λ1 + λ2.

Proof. By Theorem 1 we see that the proposition amounts to proving that

Homg[t](D(`, `λ1 + λ2), D(`+ 1, `λ1 + λ2)) 6= 0.

But this is precisely the statement of Lemma 2.2.

Corollary. Let 1 ≤ i ≤ n be such that ωi(hα) ≤ 1 for all α ∈ R+. For all µ, ν ∈ P+

and ` ∈ N such that `− di ≥ max{µ(hα) : α ∈ R+} we have,

dim Homg(V (ν), V (di(`+ 1)ωi)⊗ V (µ)) ≤ dim Homg(V (ν), V (di`ωi)⊗ V (µ+ diωi)).

Proof. We apply the proposition by taking λ1 = diωi and µ+diωi = λ2. The conditions

on i and µ imply that (µ + diωi)(hα) ≤ ` ≤ dα` and `ωi(hα) ≤ ` for all α ∈ R+.

Equation (2.2.1) now shows that all the Demazure modules involved in the proposition

are actually evaluation modules and the result follows.

Remark. The preceding corollary generalizes Theorem 1(ii) of [6] where the case when

µ is also a multiple of ωi was proved by entirely different methods.

2.7 Q-Systems

We discuss now the kernel of the map defined in Proposition 2.6 and whether

it too, can be described in terms of Demazure modules. This question can be related to

the notion of Q–systems introduced and studied in [20] for arbitrary simple Lie algebras
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and for a pair (i,m) where i is a node of the Dynkin diagram and m ∈ N. Analogs of

this system exist for the quantum affine algebras. We refer the reader to [20], [21], [32]

for further information. In our discussion here, we restrict ourselves to the simply–laced

case and assume that i is such that ωi is miniscule. For (i,m) ∈ I ×N the Q–system is

a short exact sequence of g–modules

0→
⊗
j:i∼j

V (mωj)→ V (mωi)⊗ V (mωi)→ V ((m+ 1)ωi)⊗ V ((m− 1)ωi)→ 0,

where we say that i ∼ j if i 6= j and the nodes i and j are connected in the Dynkin

diagram. For current algebras, it was proved in [11] that each of the modules in the short

exact sequence is a Demazure module for g[t] of level m. In fact, a stronger statement

was established: that replacing the tensor product of g–modules by the fusion product

of g[t]–modules gives rise to a canonical short exact sequence of g[t]–modules.

A natural question to ask is if there is an analog of Q–systems associated to an

arbitrary pair of dominant integral weights. In [19], a start was made on this question

where they proved that if ` ≥ m, then there exists a surjective map of g–modules

V (`ωi)⊗ V (mωi)→ V ((`+ 1)ωi)⊗ V ((m− 1)ωi)→ 0,

but their methods do not allow them to determine the kernel of this map when ` >

m. Our next theorem, has the result of [19] as a special case (by taking λ = mωi).

Moreover, the short exact sequences of g[t]–modules are seen (by taking λ = `ωi) to

be generalizations of Q–systems. It also determines the kernel of the map defined in

Proposition 2.6 when λ1 = ωi.

Theorem 2. Assume that g is of type A or D and let 1 ≤ i ≤ n be such that ωi(hα) ≤ 1

for all α ∈ R+. Choose (`, λ) ∈ N× P+ such that

λ(hi) ≥ 1, ` ≥ max{λ(hα) : α ∈ R+}.
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Let ν = `ωi + λ − λ(hi)αi and write ν = `ν1 + ν0 for some ν0 ∈ P+, ν1 ∈ L+. There

exists a canonical short exact sequence of g[t]–modules:

0→ τ∗λ(hi)

(
D(`, `ν1) ∗D(`, ν0)

)
→ D(`, `ωi) ∗D(`, λ)

→ D(`+ 1, (`+ 1)ωi) ∗D(`+ 1, λ− ωi)→ 0.

2.8 Prime D(`, λ) Modules

The study of graded representations of current algebras was originally mo-

tivated by the representation theory of quantum affine algebras. In this theory it is

completely natural and interesting to talk about the prime irreducible representations:

namely an irreducible representation which is not isomorphic to the tensor product of

non–trivial irreducible representations (see [9], [13], [22]). An important family of prime

irreducible representations are the Kirillov–Reshetikhin modules. Using the work of

several authors ([10], [4],[21], [32], [26]) together with [12] shows that the g[t]–module

D(`, `ωi) is the “limit”of the corresponding Kirillov–Reshetikhin modules. Other exam-

ples of prime representations can be found in [7], [12], [22]. In all these examples one

actually proves that the underlying g–module is prime which motivates the following

definition.

Definition. We say that a g–module V is prime if it is not isomorphic to the tensor

product of a non-trivial pair of g–modules.

It is not hard to see that any irreducible finite–dimensional g–module is prime.

It is also trivial to construct examples of prime representations of g which are reducible.

For instance, in the sl2 case the direct sum of the natural and the adjoint representation

is obviously prime. In the case when dimV < ∞ it is clear that any g–module has

18



a prime factorization: in other words, is isomorphic to a tensor product of non–trivial

prime modules. However, it is not known in general if such a decomposition is unique.

The uniqueness of a tensor product of simple g–modules was proved fairly recently in

[35], [38]. Notice that a g[t]–module V which is prime is necessarily prime with respect

to the fusion product as well.

2.9 Prime Decomposition

Our final result shows that if g is of type A or D, then any Demazure module

is a fusion product of prime Demazure modules.

Proposition. Let (`, λ) ∈ N × P+ and let g be any simply–laced simple Lie algebra.

The module D(`, λ) is prime if λ = `ωi for some i ∈ I or λ(hi) < ` for all 1 ≤ i ≤ n.

More generally, if λ = λ0 +
∑

i∈mi`ωi where 0 ≤ λ0(hi) < ` for all 1 ≤ i ≤ n, and g is

of type A or D, then the isomorphism

D(`, λ) ∼=g[t] D(`, `ω1)∗m1 ∗ · · · ∗D(`, `ωn)∗mn ∗D(`, λ0), (2.9.1)

is a prime factorization of D(`, λ).

Remark. In [1] the relationship of these prime Demazure modules to prime represen-

tations of quantum affine algebras is studied.

In Chapter 5, we investigate the g character for some prime Demazure modules

in type An.
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Chapter 3

Affine Weyl Group

For w ∈W and λ, µ ∈ P+, we have

wtµ(`Λ0 + w0λ) = `Λ0 + w(`µ+ w0λ) +Aδ

for some A ∈ Z. Hence, wtµ(`Λ0 + w0λ) ∈ P̂+ iff w ∈W is such that

w(`µ+ w0λ) ∈ P+ and w(`µ+ w0λ)(hθ) ≤ `.

This shows that Proposition 2.5 is an immediate consequence of the following,

Lemma. Given (`, λ) ∈ N×h∗ with 0 ≤ λ(hi) ≤ di` (equivalently that 0 ≤ (λ, αi) ≤ `))

for 1 ≤ i ≤ n, there exists µ ∈ L+ such that

|(`µ− λ, α)| ≤ `, (3.0.1)

for all α ∈ R+.

The Lemma is proved in the rest of the section. The strategy for proving the

Lemma is as follows. We give an inductive construction of µ in the case of g = Cn and

use elementary results on root systems to deduce the existence of µ in the other classical

cases. In the case of G2, we write down explicit solutions of µ. From now on, we will
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assume that (`, λ) are fixed and satisfy the conditions of the Lemma. We remind the

reader that we are working with the form on h∗ which has been normalized so that the

square length of a long root is two.

3.1 Type C

Lemma. Assume that g is of type Cn and that αn is the unique long simple root. There

exists µ = 2
∑n−1

i=1 siωi with si ∈ {0, 1} satisfying |(`µ− λ, α)| ≤ ` for all α ∈ R+.

Proof. Any short root α ∈ R is one half the difference of two long roots and hence it

suffices to find µ such that |(`µ− λ, α)| ≤ ` holds for the long roots.

We proceed by induction on n, with induction beginning at n = 1 where we

can take µ = 0. For the inductive step assume that the result is proved for the Cn−1–

subdiagram of Cn defined by the simple roots {α2, · · ·αn} of Cn. Let µ′ = 2
∑n−1

j=2 siωi ∈

L+, with si ∈ {0, 1} such that

|(`µ′ − λ, α)| ≤ `,

for all roots α of Cn−1. The only additional long root in Cn is the highest root θ.

Moreover, θ − 2α1 is a root of Cn−1 and so we take

µ =


µ′ if |(λ, θ)− `(µ′, θ − 2α1)| ≤ `,

2ω1 + µ′, otherwise.

A simple calculation completes the proof.

3.2 Type A

The diagram subalgebra of Cn generated by the root vectors x±i , 1 ≤ i ≤ n− 1

is isomorphic to An−1 and the restriction of the fundamental weights ωi, 1 ≤ i ≤ n− 1
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of Cn to An−1 gives a set fundamental weights for An−1. There is one important thing

to note here however. The restriction of the normalized form ( , ) of Cn to the An−1

subdiagram is one half of the normalized form on An−1. This means that if λ is any

element in the real span of ωi, 1 ≤ i ≤ n − 1 satisfying the conditions of Lemma 3 of

An−1 with respect to its normalized form, then the element 2λ regarded as an element

of Cn satisfies 0 ≤ (2λ, αi) ≤ ` for all 1 ≤ i ≤ n with respect to the normalized form on

Cn. Hence we can find µ =
∑n−1

i=1 siωi, with si ∈ {0, 1} such that

|(2λ− 2`µ, α)| ≤ `,

for all short roots α of Cn and hence for all roots of An−1. This gives that µ satisfies

(3.0.1) for λ with respect to the form on An−1 and the Lemma is established in this

case.

3.3 Type D

To prove the Lemma for Dn, we observe that the subset of short roots of Cn

form a root system of type Dn. Notice again that the restriction of the normalized

form on Cn to Dn is one half the normalized form of Dn. The simple system for Dn

is the set {αi : 1 ≤ i ≤ n − 1} ∪ {αn−1 + αn} and the set of fundamental weights is

{ωi : 1 ≤ i ≤ n− 2} ∪ {ωn−1 − 1
2ωn,

1
2ωn}. In particular this means that if λ is in the

real span of the fundamental weights for Dn satisfying the hypothesis of Lemma 3, then,

either 2λ or 2λσ (here σ is the diagram automorphism of Dn which switches the spin

nodes and leaves the others fixed) satisfy the conditions for Cn. Hence we can choose

a dominant integral weight for Cn of the form 2µ where µ =
∑n−1

i=1 siωi, si ∈ {0, 1},

1 ≤ i ≤ n− 1 such that
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|2(`µ− λ), α)| ≤ ` (resp. |2(`µ− λσ), α)| ≤ `)

for all short roots α of Cn, i.e., for all roots of Dn. Since µ and µσ are dominant integral

weights of Dn, Lemma 3 follows for the element λ with µ or µσ and the normalized form

of Dn, according as 2λ or 2λσ is dominant for Cn. We remark here that the element µ

when regarded as an element of Dn is such that it is either not supported on the spin

nodes or it is supported on both spin nodes. This is because either sn−1 = 0 in which

case it is not supported on the spin nodes or sn−1 = 1 and we have

µ =
n−2∑
i=1

siωi + (ωn−1 −
1
2
ωn) +

1
2
ωn

3.4 Type B

To prove the result for Bn we first observe that it is enough to prove that

there exists µ ∈ L+ such that (3.0.1) is satisfied for the long roots. This is because

any short root is half the difference of two long roots. Recall that Bn can be regarded

as a subalgebra of Dn+1 by folding: namely it is the fixed points of the automorphism

σ which interchanges the spin nodes and leaves the others fixed. If αi, 1 ≤ i ≤ n + 1

are the simple roots of Dn+1, then the simple roots of Bn are αi, 1 ≤ i ≤ n − 1 and

1
2(αn + αn+1). It is easily seen that any long root of Bn is a root of Dn+1.

The restriction of the normalized form of Dn+1 to Bn is the normalized form of

Bn. The set of dominant integral weights for Bn is ωi, 1 ≤ i ≤ n− 1, and 1
2(ωn +ωn+1).

Given λ =
∑n−1

i=1 riωi + rn
1
2(ωn + ωn+1), one sees that if λ satisfies the conditions of

Lemma 3.0.1 for Bn, then we have that rn ≤ 2` and hence λ also satisfies the conditions

for Dn+1. Choose µ =
∑n+1

i=1 siωi as in Section 3.3 such si ∈ {0, 1} satisfies (3.0.1) for

23



Dn+1. Since either sn = sn+1 = 0 or sn = sn+1 = 1, we see that µ is in the lattice L+

for Bn and hence Lemma 3 follows for Bn.

3.5 Type G2

If g is of type G2, we assume that α2 is the simple short root. We note that it

is enough to prove that there exists a µ ∈ L+, which satisfies (3.0.1) only on long roots.

This is because any non-simple short root can be written as either a half or a third of

the sum of two long roots. Next, we observe that we have,

(ω1, α1) = 1, (ω2, α2) = 1/3.

Let µ be the following weight in L+,

µ =



0, if (λ, 2α1 + 3α2) ≤ `

ω1, if ` < (λ, 2α1 + 3α2) ≤ 3` and (λ, α1 + 3α2) ≤ 2`

3ω2, if 2` < (λ, 2α1 + 3α2) ≤ 4` and (λ, α1 + 3α2) > 2`

ω1 + 3ω2, if 4` < (λ, 2α1 + 3α2) ≤ 5`

where we note that the last condition 4` < (λ, 2α1 +3α2) implies that (λ, α1 +3α2) > 3`.

Therefore, one can check easily that the condition |(`µ − λ, α)| ≤ ` is satisfied for all

positive long roots, and hence all positive roots.

3.6 The case of E and F4

It is clear that it suffices to prove Proposition 2.5 for E8 and F4. The methods

of this section do not appear to generalize to these cases. However, it is possible to

check using mathematica that Proposition 2.5 is true for ` at least five. In the tables in
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the appendix, we associate to the ordered pair (a1, · · · , an) the weight ν =
∑n

i=1 aiωi.

For ` = 2, we provide one solution for every λ with λ(hi) ≤ 1 for all 1 ≤ i ≤ n.
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Chapter 4

Proof of Main Results

4.1 Proof of Steinberg Type Factorization

In this section we shall assume Proposition 2.5 and prove Theorem 1. As in [17]

and [37], the proof uses the Demazure operators and the Demazure character formula

in a crucial way. We recollect these concepts briefly and refer the interested reader to

[14], [17], [29] and [31] for a more detailed discussion.

4.1.1

There are two main ingredients in the proof of the Theorem. The first is the

following proposition which was proved in [37] but we include a very brief sketch of the

proof for the reader’s convenience.

Proposition. Let (`, λ) ∈ N× P+. Let (pj , µj) ∈ N× L+ for 1 ≤ j ≤ m be such that

there exists µ ∈ P+ with

`µ = p1µ1 + · · ·+ pmµm, µ(hα) ≥
m∑
j=1

µj(hα), for all α ∈ R+.
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There exists a non-zero surjective map of graded g[t]-modules,

D(`, `µ+ λ) −→ D(p1, p1µ1) ∗ · · · ∗D(pm, pmµm) ∗D(`, λ)→ 0.

Proof. For α ∈ R+, and 1 ≤ j ≤ m, write

λ(hα) = dα`(rα − 1) +mα, 0 < mα ≤ dα`, µ(hα) = dαsα, µj(hα) = dαs
j
α.

For 1 ≤ j ≤ m set vj = wpjµj and recall that

(x−α ⊗ ts
j
α)vj = 0, (x−α ⊗ trα)wλ = 0, (x−α ⊗ trα−1)mα+1wλ = 0.

Let w be the image of v1 ⊗ · · · ⊗ vm ⊗ wλ in D(p1, p1µ1) ∗ · · · ∗D(pm, pmµm) ∗D(`, λ).

The proposition follows if we show that for α ∈ R+,

(x−α ⊗ tsα+rα)w = 0, and (x−α ⊗ tsα+rα−1)mα+1w = 0, if mα < dα`. (4.1.1)

Set bα = sα−
∑

j s
j
α and note that our assumptions imply that bα ≥ 0. For z1, · · · , zm+1

be the distinct complex numbers which define the fusion product. This means that in

the corresponding tensor product, we have

(x−α ⊗ tbα(t− z1)s
1
α · · · (t− zm)s

m
α (t− zm+1)rα)(v1 ⊗ · · · ⊗ vm ⊗ vm+1)

=
m+1∑
j=1

(
v1 ⊗ · · · ⊗ (x−α ⊗ ts

j
αgj(t)vj)⊗ · · · ⊗ vm+1

)
= 0,

where vm+1 = wλ and gj(t) =
∏
r 6=j(t − zr + zj)s

r
α . It is now immediate that (x−α ⊗

tsα+rα)w = 0. The proof of the second equality in (4.1.1) is identical and we omit the

details.

4.1.2

The second result that we need is the following.
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Proposition. For (`, λ) ∈ N× P+ and (`, µ) ∈ N× L+, we have,

dimD(`, `µ+ λ) = dimD(`, λ) dimD(`, `µ).

Assuming Proposition 4.1.2 the proof of Theorem 1 is completed as follows. It

was proved in [18] that if µs ∈ L+ for 1 ≤ s ≤ m, then

dimD(`, `µ) =
m∏
s=1

dimD(`, `µs),

where µ =
∑m

s=1 µs. Using Proposition 4.1.2, we get

dimD(`, `µ+ λ) = dim (D(`, `µ1) ∗ · · · ∗D(`, `µm) ∗D(`, λ)) .

Taking p1 = · · · pm = ` in Proposition 4.1.1 now establishes Theorem 1.

4.1.3

The rest of the section is devoted to the proof of Proposition 4.1.2. Recall from

Section 1.5 that the composite map

Z[P ] ↪→ Z[P̂ ] −→ Z[P̂ ]/Iδ,

is injective. Given two elements χ, χ′ of Z[P̂ ], we write χ ≡ χ′ if they have the same

image in Z[P̂ ]/Iδ.

Lemma. Let w ∈ Ŵ , σ ∈ Σ, Λ ∈ P̂+ and (`, λ) ∈ N×P+ be such that wσΛ = w0λ+`Λ0.

Then chhD(`, λ) =
∑

µ∈P dimD(`, λ)µe(µ) ∈ Z[P ] is invariant under the action of W

on P and we have

chĥVw(σΛ) ≡ e(`Λ0)chhD(`, λ).

Proof. The fact that chhD(`, λ) is W–invariant is immediate since D(`, λ) is a finite–

dimensional g–module. Recall that,

chĥVw(σΛ) =
∑

Λ′∈P̂

dim(Vw(σΛ)Λ′)e(Λ′).
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Since Λ(c) = `, we may assume that the sum is over elements of P̂ of the form `Λ0+µ+sδ

for µ ∈ P and s ∈ Z≥0. Going mod Iδ, we get that

chĥVw(σΛ) ≡ e(`Λ0)
∑
µ∈P

 ∑
s∈Z≥0

dimVw(σΛ)`Λ0+µ+sδ

 e(µ) = e(`Λ0)chhD(`, λ),

where the last equality follows from (2.3.1).

4.1.4

For 0 ≤ i ≤ n, the Demazure operator Di : Z[P̂ ]→ Z[P̂ ] is defined by,

Di(e(Λ)) =
e(Λ)− e(si(Λ)− αi)

1− e(−αi)
.

Here for 1 ≤ i ≤ n we identify the generator si of W with the element (si, 0) of Ŵ

and s0 = (sθ, tθ). Given a reduced expression w = si1 · · · sir for an element w ∈ Ŵ , set

Dw = Di1 · · ·Dir , and note that Dw is independent of the choice of reduced expression

for w (see [28], Corollary 8.2.10). For σ ∈ Σ, and w ∈ Ŵ , set Dwσ(e(Λ)) = Dw(e(σ(Λ)).

Since Di(e(δ)) = e(δ), it follows that for all w ∈ W̃ , the operator Dw descends to

Z[P̂ ]/Iδ.

The following result is proved in [17, Lemma 6, Lemma 7, Section 3].

Lemma. Let χ ∈ Z[P ] be a W–invariant element of Z[P ]. Then Dw(χ) ≡ χ for all

w ∈ W̃ . Moreover, for all Λ ∈ P̂ , we have

Dw(e(Λ)χ) ≡ χDw(e(Λ)).
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Along with Lemma 4.1.3, we get

Dw(e(`Λ0)chhD(`, λ)) ≡ Dw(e(`Λ0))chhD(`, λ), (4.1.2)

for all (`, λ) ∈ N× P+ and w ∈ W̃ .

4.1.5

The following result may be found in [29, Theorem 3.5] and [28, Theorem 8.2.9].

Theorem 3. For w ∈ Ŵ , σ ∈ Σ, and Λ ∈ P̂+ we have

chĥVw(σΛ) = Dwσ(e(Λ)).

Lemma 4.1.3 and Theorem 3 now gives,

Dwσ(e(Λ)) ≡ e(`Λ0)chhD(`, λ), (4.1.3)

for all σ ∈ Σ and w ∈ Ŵ such that wσΛ = w0λ+ `Λ0.

4.1.6

The next result makes crucial use of Proposition 2.5.

Lemma. Let ` ∈ N and λ ∈ P+ be such that λ = `λ1 +λ2 where λ1 ∈ L+ and λ2 ∈ P+

satisfies λ2(hi) ≤ di` for all 1 ≤ i ≤ n. Then,

chhD(`, λ) = chhD(`, `λ1)chhD(`, λ2).

Proof. By Proposition 2.5 we can choose ν ∈ L+ and w ∈W such that

Λ = w−1tν(`Λ0 + w0λ2) ∈ P̂+.
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Since tw0λ1t−νw(Λ) = `Λ0 + w0λ+mδ for some m ∈ Z, it follows from (4.1.3) that

e(`Λ0)chhD(`, λ) ≡ Dtw0λ1
t−νw(e(Λ)).

Proposition 1.8 gives

`(tw0λ1t−νw) = `(tw0λ1) + `(t−νw),

and hence using the properties of Demazure operators we get,

Dtw0λ1
t−νw(e(Λ)) = Dtw0λ1

Dt−νw(e(Λ)).

Using (4.1.3) we get

Dtw0λ1
Dt−νw(e(Λ)) ≡ Dtw0λ1

(e(`Λ0)chhD(`, λ2)).

Using (4.1.2) and a further application of (4.1.3) gives,

Dtw0λ1
(e(`Λ0)chhD(`, λ2)) ≡ Dtw0λ1

(e(`Λ0))chhD(`, λ2)

≡ e(`Λ0)chhD(`, `λ1)chhD(`, λ2).

Hence we get

chhD(`, λ) ≡ chhD(`, `λ1)chhD(`, λ2)

and the Lemma follows since the map Z[P ]→ Z[P̂ ]/Iδ is injective.

4.1.7

Proposition 4.1.2 follows if we prove that for all λ ∈ P+ and µ ∈ L+, we have

D(`, `µ+ λ) ∼=g D(`, `µ)⊗D(`, λ).

Since finite–dimensional g–modules are determined by their characters, it suffices to

prove that

chhD(`, `µ+ λ) = chhD(`, `µ)chhD(`, λ).
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Write λ = `λ1 + λ2 where λ1 ∈ L+ and λ2 ∈ P+ satisfies λ2(hi) < di` for all 1 ≤ i ≤ n.

By Lemma 4.1.6, we get

D(`, `µ+ λ) ∼=g D(`, `µ+ `λ1)⊗D(`, λ2)

∼=g D(`, `µ)⊗D(`, `λ1)⊗D(`, λ2)

∼=g D(`, `µ)⊗D(`, λ),

where the second and the the third isomorphisms are a further application of Lemma

4.1.6.

4.2 Proof of Generalized Q-System

Throughout this section g is simply–laced and i ∈ I is such that ωi(hα) ≤ 1

for all α ∈ R+. In particular, this means that the multiplicity of αi in any positive root

is at most one. We also fix (`, λ) ∈ N× P+ with λ(hα) ≤ ` for all α ∈ R+, and write

(`ωi + λ)(hα) = `(sα,` − 1) +mα,`, 0 < mα,` ≤ ` α ∈ R+.

For α =
∑n

j=1 rjαj , set

suppα = {j ∈ I : rj > 0}.

4.2.1

Proposition. The defining relation, (2.1.3), of D(`, `ωi+λ) is a consequence of (2.1.1),

(2.1.2) and the single additional relation,

(x−αi ⊗ t)
λ(hi)+1w`ωi+λ = 0. (4.2.1)

Proof. A simple calculation shows that either sαi,` = 1 and λ(hi) = 0 or sαi,` = 2 and

mαi,` = λ(hi). In the first case, the relation (2.1.2) and in the second case the relation

(2.1.3) shows that the relation (4.2.1) does hold in D(`, `ωi + λ).
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If ωi(hα) = 0, then sα,` = 1 and mα,` = (`ωi + λ)(hα) = λ(hα). For such α the

relation (2.1.3) is (x−α ⊗1)(`ωi+λ)(hα)+1w`ωi+λ = 0 which is the content of Remark 2.1. It

remains to consider the case when ωi(hα) = 1 and α 6= αi. If λ(hα) = 0, then mα,` = `

and there is nothing to check. Otherwise, λ(hα) > 0 and sα,` = 2, mα,` = λ(hα). We

proceed by induction on htα with induction obviously beginning with α = αi. Writing

α = β + γ for some positive roots β and γ, we assume without loss of generality that

i /∈ supp γ. Since α(hα) = 2, and we are in the simply laced case, it follows that

(α, β) = (α, γ) = 1, β − γ /∈ R, β + α /∈ R.

By the inductive hypotheses we have

(x−β ⊗ t)
λ(hβ)+1w`ωi+λ = 0. (4.2.2)

Suppose for a contradiction that

(x−α ⊗ t)λ(hα)+1w`ωi+λ 6= 0.

Since

(`ωi + λ− (λ(hα) + 1)α)(hγ) = (λ− (λ(hα) + 1)α)(hγ) = −λ(hβ)− 1 < 0,

we get by applying the representation theory of sl2 to x±γ , hγ that

(x+
γ )λ(hβ)+1(x−α ⊗ t)λ(hα)+1w`ωi+λ 6= 0.

Since

[x+
γ , x

−
α ] = Ax−β , [x−α , x

−
β ] = 0 [x−β , x

+
γ ] = 0,

for some non–zero constant A, it follows by using the first two relations in (2.1.1) that

(x−α ⊗ t)λ(hγ)(x−β ⊗ t)
λ(hβ)+1w`ωi+λ 6= 0,

which contradicts (4.2.2) and completes the proof.
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4.2.2

We now prove,

Lemma. Suppose that λ(hi) > 0 and (`, λ) ∈ N × P+. There exists a surjective map

of graded g[t]–modules

π : D(`, `ωi + λ)→ D(`+ 1, `ωi + λ)→ 0,

with

kerπ = U(g[t])(x−αi ⊗ t)
λ(hi)w`ωi+λ.

Proof. The existence of a non–zero map π : D(`, `ωi + λ) → D(` + 1, `ωi + λ) → 0, is

guaranteed by Lemma 2.2. Since `ωi + λ = (` + 1)ωi + (λ − ωi) and λ − ωi ∈ P+, it

follows that Proposition 4.2.1 applies to both D(`, `ωi + λ) and to D(`+ 1, `ωi + λ). In

particular, (4.2.1) shows that

(x−αi ⊗ t)
λ(hi)w`ωi+λ ∈ kerπ.

To prove that it generates the kernel, notice first that w`ωi+λ and π(w`ωi+λ) both satisfy

all the relations in (2.1.1). The Lemma follows if we prove that (x−α ⊗ tsα,`)w`ωi+λ is in

the g[t]—submodule of D(`, `ωi + λ) generated by (x−αi ⊗ t)
λ(hi)w`ωi+λ, where

(`ωi + λ)(hα) = `(sα,` − 1) +mα,` = (`+ 1)(sα,`+1 − 1) +mα,`+1.

If i /∈ suppα, then sα,` = sα,`+1 = 1 and so (x−α ⊗ tsα,`+1)w`ωi+λ = 0 and there is nothing

to prove. If i ∈ suppα and λ(hα) > 1 then (λ − ωi)(hα) > 0 and so sα,` = sα,`+1 = 2

and we are done. It remains to consider the case when λ(hα) = ωi(hα) = 1. In this case

sα,` = 2, mα,` = 1, sα,`+1 = 1, mα,`+1 = `+ 1 (4.2.3)

and the only thing to check is that (x−α⊗t)w`ωi+λ is in the g[t]–submodule ofD(`, `ωi + λ)

generated by (x−αi ⊗ t)w`ωi+λ. For this we proceed by induction on htα. If htα = 1,
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then α = αi and hence induction begins. Write α = β+ γ with i ∈ suppβ in which case

i /∈ supp γ. Notice that

λ(hα) = 1 =⇒ λ(hβ) = 1, (`ωi + λ)(hγ) = 0.

Hence using the induction hypothesis for β and the third equality in (2.1.1) for γ, we

get

(x−α ⊗ t)w`ωi+λ = x−γ (x−β ⊗ t)w`ωi+λ ∈ U(g[t])(x−αi ⊗ t)w`ωi+λ.

This completes the proof of the Lemma.

4.2.3

The following Lemma now clearly completes the proof of Theorem 2.

Lemma. Suppose that λ(hi) > 0 and (`, λ) ∈ N × P+ and let µ = `ωi + λ − λ(hi)αi.

The assignment wµ → (x−i ⊗ t)λ(hi)wλ+`ωi defines an injective map of g[t]–modules

ι : τ∗λ(hi)
D(`, µ)→ D(`, λ+ `ωi).

Proof. Choose Λ ∈ P̂+ such that wΛ = w0(`ωi + λ) + `Λ0 for some w ∈ Ŵ . Then,

D(`, `ωi + λ) ∼=g[t] Vw(Λ).

The element w`ωi+λ maps to a non–zero element vw0wΛ ∈ (Vw(Λ))w0wΛ. Since

(w0wΛ,−αi + δ) = (`ωi + λ+ `Λ0,−αi + δ) = −(λ, αi) < 0,

it follows from the representation theory of the sl2 associated to the root −αi + δ that

0 6= (x−i ⊗ t)
λ(hi)vw0wΛ ∈ Vw(Λ)sαi−δw0wΛ,
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where sαi−δ is the reflection in Ŵ corresponding to the root αi − δ. In particular,

(x−i ⊗ t)
λ(hi)w`ωi+λ 6= 0.

Since Vw(Λ) is a g–stable Demazure module, it follows that the g–module through

(x−i ⊗ t)λ(hi)vw0wΛ is contained in it and hence we get that

V (Λ)w0sαi−δw0wΛ ⊂ Vw(Λ).

This means that we have an inclusion of Demazure modules Vw0sαi−δw0wΛ(Λ) ↪→ Vw(Λ).

A straightforward calculation now shows that

Vw0sαi−δw0wΛ(Λ) ∼=g[t] τ
∗
λ(hi)

D(`, µ)

which completes the proof.

4.3 Proof of Prime Demazure Modules

To prove Proposition 2.9 we must show that if (`, λ) ∈ N × P+ is such that

λ(hi) ≤ `, then D(`, λ) is prime. We shall prove this in the rest of the section assuming

that g is simply–laced, including the algebras of type E.

4.3.1

The first step in proving Proposition 2.9 is,

Lemma. Let V be a finite–dimensional g–module such that:

dimVλ = 1, wtV ⊂ λ−Q+.

Suppose that V ∼= V1 ⊗ V2, where Vj , j = 1, 2 are non–trivial finite–dimensional g–

modules. There exists a unique pair of non–zero elements µj ∈ wtVj ∩ P+ such that

µ1 + µ2 = λ, dim Homg(V (µj), Vj) = 1,
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and an injective map V (µ1)⊗ V (µ2)→ V of g–modules.

Proof. The existence of µj ∈ wtVj , j = 1, 2, such that µ1 + µ2 = λ is a consequence of

the fact that dimVλ > 0 while the uniqueness of these elements is a consequence of the

fact that dimVλ = 1. Notice that this also proves that dim(Vj)µj = 1 for j = 1, 2. Since

wtV ⊂ λ−Q+ we get wtVj ⊂ µj −Q+ and hence

dim Homg(V (µj), Vj) = 1, j = 1, 2.

If µ1 = 0 then the argument proves that V1 is the one–dimensional trivial representation

of g contradicting our assumptions. This completes the proof of the Lemma.

4.3.2

For the rest of the section we fix (`, λ) ∈ N× P+ and an isomorphism

D(`, λ) ∼=g V1 ⊗ V2,

for some finite–dimensional g–modules V1 and V2. Since D(`, λ) satisfies the conditions

of Lemma 4.3.1 we choose µ1 and µ2 as in Lemma 4.3.1 and Proposition 2.9 follows if

we prove that either µ1 = 0 or µ2 = 0.

4.3.3

We need some additional notation. Given any connected subset J ⊂ {1, · · · , n}

of the Dynkin diagram of g, set

R+
J = R+ ∩

∑
j∈J

Zαj , P+
J = P+ ∩

∑
j∈J

Zωj , Q+
J = Q+ ∩

∑
j∈J

Zαj .

Let gJ be the subalgebra of g generated by the elements x±i , i ∈ J and let n±J ,

hJ be defined in the obvious way. Then R+
J is the set of positive roots of gJ with respect
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to hJ and PJ and QJ are the corresponding weight and root lattice respectively. Finally,

we regard the algebra gJ [t] as a subalgebra of g[t] in the natural way.

Given µ ∈ P+ set

VJ(µ) = U(gJ)vµ ⊂ V (µ), DJ(`, µ) = U(gJ [t]))wµ ⊂ D(`, µ).

Then VJ(µ) is the irreducible gJ–module with highest weight µJ which is the restriction

of µ to hJ . The moduleDJ(`, µ) is a quotient of the Demazure module for gJ [t] associated

to the pair (`, µJ).

The following is elementary and will be used repeatedly.

Lemma. (i) Suppose that µ, µ′ ∈ P+ and η ∈ Q+
J is such that ν = µ + µ′ − η ∈ P+.

Then

HomgJ+h(VJ(ν), VJ(µ′)⊗ VJ(µ)) ∼= Homg(V (ν), V (µ′)⊗ V (µ)).

(ii) Suppose that µ, ν ∈ P+ are such that µ− ν ∈ Q+
J . Then,

dim HomgJ+h(VJ(ν), DJ(`, µ)) = dim Homg(V (ν), D(`, µ)). (4.3.1)

Proof. Let µ|J be the restriction of a weight µ to hJ . Then, it is clear that

VJ(µ|J)⊗ VJ(µ′|J) ∼=gJ VJ(µ)⊗ VJ(µ′)

0→ VJ(µ)⊗ VJ(µ′)→ V (µ)⊗ V (µ′).

Where the injective map is as gJ + h modules. Next, one can extend the gJ module

VJ(µ|J) ⊗ VJ(µ′|J) to a gJ + h module. First, we identify gJ + h ∼= gJ ⊕ cJ where

[gJ , cJ ] = 0. And then we define the action of cJ on the tensor product to be the scalar

action by (µ+ µ′)|cJ , which is well defined since µ, µ′ ∈ P+.
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4.3.4

For µ ∈ P+, set suppµ = {i ∈ I : µ(hi) > 0}.

Lemma. Let (`, λ) ∈ N × P+ with λ(hi) ≤ ` for all 1 ≤ i ≤ n. With the notation of

Section 4.3.2, we have

suppµ1 ∩ suppµ2 = ∅.

In particular, if λ = mωi for some 0 ≤ m ≤ ` and we are in the simply laced case, then

D(`, λ) is prime.

Proof. Suppose for a contradiction that i ∈ suppµ1∩suppµ2 for some 1 ≤ i ≤ n and set

J = {i}. Then gJ ∼= sl2 and hence using the Clebsch–Gordon formula and Proposition

4.3.3, we get

Homg(V (λ−αi), V (µ1)⊗V (µ2)) = Homg(V (µ1 +µ2−αi), V (µ1)⊗V (µ2)) 6= 0. (4.3.2)

Using Lemma 4.3.1 this implies that

Homg(V (λ− αi), D(`, λ)) 6= 0. (4.3.3)

On the other hand since λ(hi) ≤ `, we have that the element wλ ∈ D(`, λ) satisfies the

defining relation (x−i ⊗ t)wλ = 0 and hence

U(gJ [t])wλ ∼= U(gJ)wλ ∼= VJ(λJ).

Using (4.3.1) we get

Homg(V (λ− αi), D(`, λ)) = 0,

which contradicts (4.3.3). This proves the Lemma.
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4.3.5

Lemma. Suppose that ν1, ν2 ∈ P+ are such that

supp ν1 ∩ supp ν2 = ∅.

There exists a connected subset J ⊂ I with gJ isomorphic to slr+1 for some r ∈ N and

|J ∩ supp νj | =


1, νj 6= 0,

0, νj = 0,

, j = 1, 2.

Proof. If ν1 = ν2 = 0, we take J to be the empty set while if ν1 = 0 and ν2 6= 0 we

take J = {i} for some i ∈ supp ν2. Assume now that ν1 and ν2 are non–zero. If g is of

type An, assume without loss of generality that supp ν2 contains the maximal element

in the union supp ν1 ∪ supp ν2. Choose i1 to be the maximal element in supp ν1 and

i2 ∈ supp ν2 minimal so that i2 > i1. The minimal connected subset J of I containing

i1 and i2 satisfies the conditions of the Lemma.

If g is of type D or E we let i0 be the trivalent node and let Ir, r = 1, 2, 3 be

the three legs of the Dynkin diagram through i0 and assume without loss of generality

that I1 = {i0, i1}. Assume that i1 /∈ supp ν2. Then,

ν ′1 = ν1 − ν1(hi1)ωi1 ∈ P+ supp ν ′1 ∩ supp ν2 = ∅, i1 /∈ supp ν ′1.

If ν ′1 = 0 take J to be the connected closure of {i1, i2} for some i2 ∈ supp ν2. If ν ′1 6= 0,

then the connected closure of supp ν ′1 ∪ supp ν2 is contained in I2 ∪ I3 and is of type A.

Now, we can use the result for A to find J ⊂ I \ {i1} with the required properties for

the pair ν ′1, ν2. But this set also has the desired properties for the pair ν1, ν2 and the

proof is complete.
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4.3.6

We return to the notation of Section 4.3.2. Using Lemma 4.3.4 we see that we

can choose J as in Lemma 4.3.5 for the pair µ1, µ2. Let θJ ∈ R+
J be the highest root of

gJ and notice that λJ = λ(hi1)ωi1 + λ(hi2)ωi2 . If we assume in addition that λ(hi) < `

for all i ∈ I, then we see that: λ(hα) < ` for all α ∈ R+
J with α 6= θJ and λ(hθJ ) < 2`.

Hence the following relations hold in D(`, λ)

(x−α ⊗ t)wλ = 0, α ∈ R+
J , α 6= θJ , (x−θJ ⊗ t

2)wλ = 0,

(x−θJ ⊗ t)
r = 0, r > p = max{0, λ(hθJ )− `}.

It is again a standard fact that the elements (x−θJ ⊗ t)
swλ are non–zero if 0 ≤ s ≤ p.

Using the Poincare–Birkhoff–Witt theorem, one sees that

U(gJ [t])wλ =
p∑
s=0

U(gJ)(x−θJ ⊗ t)
swλ.

Moreover, a simple calculation shows that (x−θJ ⊗ t)
swλ, s ∈ Z+ are n+–invariant vectors

in D(`, λ) and we have

U(gJ [t])wλ ∼=gJ

p⊕
s=0

U(gJ)(x−θJ ⊗ t)
swλ ∼=gJ

p⊕
s=0

VJ(λJ − sθJ)ms .

Applying (4.3.1), now gives

Homg(V (λ− sθJ), D(`, λ)) = 0, s > p. (4.3.4)

On the other hand, it is well–known and in any case easily proved that

dim Homg(V (µ1 + µ2 − sθJ), V (µ1)⊗ V (µ2)) 6= 0 if 0 ≤ s ≤ min{µ1(hθJ ), µ2(hθJ )}.

Since V (µ1)⊗ V (µ2) is isomorphic to a g–submodule of D(`, λ), it follows that

dim Homg(V (λ− sθJ), D(`, λ)) 6= 0 if 0 ≤ s ≤ min{µ1(hθJ ), µ2(hθJ )}. (4.3.5)
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Since

p = max{0, λ(hθJ )− `} = max{0, µ1(hθJ ) + µ2(hθJ )− `} < min{µ1(hθJ ), µ2(hθJ )},

we see that (4.3.5) contradicts (4.3.4). The proof of Proposition 2.9 is complete.
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Chapter 5

A Character Decomposition

Recall Proposition 2.9 states that in types A and D, given ` ∈ N, if we write

λ = λ0 +
∑
i∈I

mi`ωi

for λ ∈ P+ and 0 ≤ λ0(hi) < ` for all 1 ≤ i ≤ n, then

D(`, λ) ∼=g[t] ev∗0 V (`ω1)∗m1 ∗ · · · ∗ ev∗0 V (`ωn)∗mn ∗D(`, λ0).

In fact if λ0(hθ) ≤ `, then D(`, λ0) ∼=g[t] ev∗0 V (λ0). So we assume in the subsequent

chapter that λ0(hθ) > `. Our aim is to understand the g module structure of the prime

Demazure module D(`, λ0) when λ0(hθ) > 0.

5.1 Decomposition of prime modules over sl3

Throughout this section we fix the following notation: let ` ∈ N, k1, k2 ∈ Z+

such that 0 ≤ k1, k2 < `, and k1 + k2 = `+ r, for some 0 < r < `. We write

λ0 = k1ω1 + k2ω2 and µ = (`− k2)ω1 + (`− k1)ω1.

We remind the reader that for any D(`, λ) we denote its generator by w`,λ. In particular,

we prove the following proposition in the subsequent sections.
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Proposition. There exists the following short exact sequence of g[t]-modules

0→ τrD(`, µ)
φ1−→ D(`, λ0)

φ2−→ D(`+ 1, λ0)→ 0.

In addition, D(`, µ) ∼= ev∗0 V (µ).

We will prove Proposition 5.1 in the following sections. But first, we remark

that a repeated application of Proposition 5.1 gives us the following immediate conse-

quence.

Corollary. The module D(`, λ0) has the Jordan decomposition

D(`, λ0) ∼=g V (λ0)
⊕

0≤i≤r−1

V ((`+ i− k2)ω1 + (`+ i− k1)ω2)

5.1.1

Lemma. There is a surjection

φ2 : D(`, λ0)→ D(`+ 1, λ0)

whose kernel is generated by (x−θ ⊗ t)
rw`,λ0 .

Proof. By Lemma 2.2 up to scalars there is a unique non-zero surjection. We need only

to calculate the kernel of the map which sends w`,λ0 to w`+1,λ0 . Both Demazure modules

are quotients of the local Weyl module Wloc(λ0). Hence, we consider the extra relations

given by each Demazure module:

(x−i ⊗ t)w`,λ0 = 0 = (x−i ⊗ t)w`+1,λ0

(x−θ ⊗ t
2)w`,λ0 = 0 = (x−θ ⊗ t

2)w`+1,λ0

while,

(x−θ ⊗ t)
r+1w`,λ0 = 0 = (x−θ ⊗ t)

rw`+1,λ0

And hence it is clear that the kernel of φ2 is generated by (x−θ ⊗ t)
rw`,λ0 .
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5.1.2

Lemma. The assignment of w`,µ 7→ (x−θ ⊗ t)
rw`,λ0 defines a well-defined injection of

modules

φ1 : τrD(`, µ)→ D(`, λ0).

Proof. Since µ(hθ) = 2` − k1 − k2 < 2` − ` − r = ` − r then D(`, µ) ∼=g[t] ev∗0 V (µ), if

the assignment is well defined, then the kerφ1 = 0 since the map is nonzero. We check

the map is well-defined. Since r = k1 + k2 − `, then λ0 − rθ = µ and the h[t] action is

preserved. It is also easy to check that x+
i (x−θ ⊗ t)

rw`,λ0 = 0 and hence (x−θ ⊗ t)
rw`,λ0

is a highest weight vector. Lastly, we have seen that (x−α ⊗ t)(x−θ ⊗ t)
rw`,λ0 = 0 for all

α ∈ R+. This completes the proof.

5.2 Prime modules over sln+1

Given ` ∈ N, we fix λ = k1ωi1 + · · · + krωir , such that λ(hθ) = ` + 1 and let

γ = αi1 + αi1+1 + · · ·+ αir−1 + αir .

Theorem 4. There exists a short exact sequence

0→ τ∗1D(`, λ− γ)→ D(`, λ)→ D(`+ 1, λ)→ 0

An immediate corollary is

Corollary. D(`, λ) has a Jordan Holder series decomposition

D(`, λ) ∼=g

min{i1,n−ir}⊕
s=0

V (ωi1−s+(k1−1)ωi1 +k2ωi2 + · · ·+kr−1ωir−1 +(kr−1)ωir +ωir+s)

In particular, D(n− 1, ρ) ∼=g V (ρ)⊕ V (ρ− ω1 − ωn).

45



5.2.1

Lemma. There exists a surjection

D(`, λ)→ D(`+ 1, λ)→ 0

with kernel generated by (x−γ ⊗ t)w`,λ.

Proof. By lemma in CSVW the map w`,λ 7→ w`+1,λ is a non-zero surjection.

And hence we only need to show that φ is generated by (x−γ ⊗ t)w`,λ. It is clear

that (x−γ ⊗ t)w`,λ ∈ kerφ. Suppose that Xw`,λ ∈ kerφ. Then we can write X = Y + Z

where Y is in the left ideal of U(g[t]) generated by {x−α ⊗ t : λ(hα) ≤ `} and Z is in the

left ideal generated by {x−α ⊗t : λ(hα) = `+1}. Since Y w`,λ = 0, we can simply consider

Zw`,λ ∈ kerφ. Hence, consider α such that λ(hα) = ` + 1 and write α = β1 + γ + β2

where β1 = αj + · · ·+ αi1−1 and β2 = αir+1 + · · ·+ αk, j < k. Therefore,

(x−α ⊗ t)w`,λ = [x−β1
⊗ 1, [x−β2

⊗ 1, x−γ ⊗ t]]w`,λ

= (x−β1
⊗ 1)(x−β2

⊗ 1)(x−γ ⊗ t)w`,λ

∈ U(n−)(x−γ ⊗ t)w`,λ

Hence, kerφ = U(g)(x−γ ⊗ t)w`,λ.

5.2.2

Lemma. The assignment w`,λ−γ → (x−γ ⊗t)w`,λ defines an injective map of g[t]-modules

ψ : τ∗1D(`, λ− γ)→ D(`, λ)

Proof. The proof follows as it does in Lemma 4.2.3. Choose Λ ∈ P̂+ such that wΛ =

w0λ+ `Λ0 for some w ∈ Ŵ . Then,

D(`, λ) ∼=g[t] Vw(Λ).
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Thus, under this isomorphism, we know that w`,λ is mapped to some nonzero element,

vw0wΛ, of Vw(Λ)w0wΛ. Also, since

(w0wΛ,−γ + δ) = −1 < 0

then by the sl2 representation theory associated to the root −γ + δ we have that

0 6= (x−γ ⊗ t)vw0wΛ ∈ Vw(Λ)sγ−δwowΛ,

where sγ−δ is the reflection in Ŵ along the root γ − δ. Hence, passing through the

isomorphism again, we see that

0 6= (x−γ ⊗ t)w`,λ ∈ D(`, λ).

Recall that Vw(Λ) is a g stable Demazure module, in particular the g module through

the element (x−γ ⊗ t)vw0wΛ is contained in Vw(Λ) and therefore

V (Λ)w0sγ−δw0wΛ ⊂ Vw(Λ).

In particular, we have the inclusion of Demazure modules

Vw0sγ−δw0w(Λ) ↪→ Vw(Λ)

where Vw0sγ−δw0w(Λ) ∼=g[t] τ
∗
1D(`, λ− γ).
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Chapter 6

A Refined Presentation

In this chapter we discuss a family of g[t] modules denoted V (ξ) which are

associated to a R+-tuple of partitions. In fact, for certain tuples of partitions it is

known that these modules are isomorphic to a level ` Demazure module. The modules

V (ξ) were introduced in [11] as quotients of local Weyl modules. In [11] they provided

three alternate presentations of the V (ξ) modules. In addition, under suitable conditions

on the partitions, the V (ξ) modules are isomorphic to some D(`, λ). In this chapter, I

provide a fourth presentation with a reduced, finite set of relations. First, we develop

the notation necessary to prove our result.

6.1 Modules associated to λ-compatible partitions

Given a dominant integral weight λ ∈ P+, we say that ξ = (ξα)α∈R+ is λ-

compatible, if

ξα = ξα1 ≥ ξα2 ≥ · · · ξαr ≥ 0

and

|ξα| =
∑
i≥1

ξαi = λ(hα).
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In the subsequent sections we will also use the following notation for partitions. If

i1 ≥ i2 ≥ i3 ≥ · · · ≥ ir ≥ 0 are the distinct parts of the partition where part ik occurs

sk times, then we will denote this partition by (is11 , i
s2
2 , · · · , isrr ). If a partition only has

two distinct parts it is called a fat hook. In particular, if a fat hook is of the form

(ia, (i− 1)b), then I shall call it a consecutive fat hook.

In [11] they define the modules V (ξ) to be the graded quotient of Wloc(λ) by

the submodule generated by the elements

{(x+
α ⊗ t)s(x−α ⊗ 1)s+rwλ : α ∈ R+, s, r ∈ N, s+ r ≥ 1 + rk +

∑
j≥k+1

ξαj , for some k ∈ N}.

(6.1.1)

In particular, Proposition 2.4 in [11] states that the modules V (ξ) are non-zero, in-

decomposable g[t]-modules and under certain conditions are isomorphic to ev0 V (λ).

In particular, if we denote {λ} to be the R+-tuple of partitions where each partition

ξα = λ(hα) and hence has at most one part, then we have the following proposition (in

[11]).

Proposition. Let λ ∈ P+.

(i) The module ev0 V (λ) is the unique irreducible quotient of V (ξ) and hence V (ξ) is

a nonzero, indecomposable g[t] module.

(ii) We have an isomorphism,

ev0 V (λ) ∼=g[t] V ({λ})
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6.2 Alternate Presentations

6.2.1 Presentation 2

In this section we give the alternate presentations of the V (ξ) modules estab-

lished in [11]. First, we need notation developed in [11].

Definition. Let s, r ∈ Z≥0,

(i) We define the following set of sequences

S(r, s) =

(bp)p≥0 : bp ∈ Z≥0,
∑
p≥0

bp = r,
∑
p≥0

pbp = s


(ii) Given x ∈ g we define the elements x(r, s) ∈ U(g[t]) by

x(r, s) =
∑

(bp)p≥0∈S(r,s)

(x⊗ 1)b0(x⊗ t)b1 · · · (x⊗ ts)(bs)

First, note that if (bp)p≥0 ∈ S(r, s) then bp = 0 for all p > s, and so (ii) is well-defined.

Also, for any p ∈ Z, x ∈ g, we denote x(p) = xp/p!.

Then, by Garland’s identity, one can show that relation 6.1.1 is equivalent to

x−α (r, s)vξ = 0, if s+ r ≥ 1 + rk +
∑
j≥k+1

ξαj , α ∈ R+ (6.2.1)

Hence providing a second presentation.

6.2.2 Presentation 3

The third presentation requires defining yet another description of S(r, s) given

in Section 6.2.1. Here, for any k ∈ Z≥0 we let S(r, s)k (respectively kS(r, s)) be the subset

where the elements (bp)p≥0 must also satisfy

bp = 0, p ≥ k (respectively, bp = 0, p < k).
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In addition, if we let `,m ∈ Z≥0, such that both sets S(r − `, s−m)k and kS(`,m) are

nonempty, then the function

S(r − `, s−m)k ×k S(`,m) −→ S(r, s)

((bp)p≥0, (cp)p≥0) 7→ (b0, b1, · · · , bk−1, ck, · · · )

is one to one, and we denote its image simply by S(r − `, s−m)k ×k S(`,m).

Next, we can define the elements x(r, s)k and kx(r, s) in the obvious way by

setting

x(r, s)k =
∑

(bp)p≥0∈S(r,s)k

(x⊗ 1)(b0) · · · (x⊗ tk−1)(bk−1)

kx(r, s) =
∑

(bp)p≥0∈kS(r,s)

(x⊗ tk)(bk) · · · (x⊗ ts)(bs)

The following lemma will be useful in Section 6.3 and is a combination of results

found in [11] Section 2.5.

Lemma. Let k, r, s,∈ Z≥0 and x ∈ g. Then

(i) S(r, s) =k S(r, s)
⋃
r′,s′∈Z≥0

(S(r − r′, s− s′)k ×k S(r′, s′))

(ii) If in addition, s+ r ≥ kr +K for some K ∈ Z≥0. Then

x(r, s) =k x(r, s) +
∑

x(r − r′, s− s′)k ×k x(r′, s′),

where the sum is over all r′, s′ ∈ Z≥0 satisfying r′ < r, s′ < s and s′+ r′ ≥ r′k+K.

Finally, the last and third presentation given in [11] is that the module V (ξ) is generated

by the element vξ with the defining relations of the local Weyl module and the additional

relation

kx(r, s)vξ = 0, α ∈ R+, s, r, k ∈ N, s+ r ≥ 1 + kr +
∑
j≥k+1

ξαj
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In particular it is noted that for all α ∈ R+ with r, k ∈ N which satisfy r ≥ 1+
∑

j≥k+1 ξ
α
j

we have that

(x−α ⊗ tk)rvξ = 0.

6.3 A Fourth Presentation

In the fourth presentation that I prove in this thesis, we see that there are

only finitely many k in 6.2.2 that are needed in the presentation of V (ξ). In particular,

the proof illustrates that in the case that every partition is a consecutive fat hook, the

relations are greatly simplified to a single monomial for every positive root.

Theorem 5. Let ξ = (ξα)α∈R+ be a λ–compatible |R+|–tuple of partitions where we

write ξα = ξα1 ≥ ... ≥ ξαj ≥ ... ≥ ξαsα . We let pαi denote the number of times the i-th

distinct part of ξα occurs, and mα the total number of distinct parts in ξα. Then, V (ξ)

is isomorphic to the quotient of Wloc(λ) by the submodule generated by the elements,

{(x−α ⊗ tsα)wλ : α ∈ R+}
⋃

{kα,ix
−
α (r, s)wλ : s+ r ≥ 1 + rkα,i +

∑
j≥kα,i+1

ξαj , 1 ≤ i ≤ mα, if ξα is not a consecutive fat hook }

where kα,i = pα1 + ...+ pαi and kα,n = sα is the total number of parts.

Proof. Let U be the submodule of Wloc(λ) generated by the elements given in the state-

ment of the theorem. Let Ṽ (ξ) be the corresponding quotient of Wloc(λ). We see

immediately that V (ξ) is a quotient of Ṽ (ξ) since we can take k = kα,i

To prove that they are isomorphic, we must show that: for α ∈ R+ and

k, r, s ∈ N, either

s+ r ≥ 1 + rk +
∑
j≥k+1

ξαj =⇒ (x+
α ⊗ t)s(x−α ⊗ 1)s+rwλ ∈ U, (6.3.1)
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or

s+ r ≥ 1 + rk +
∑
j≥k+1

ξαj =⇒ x−α (r, s)wλ ∈ U. (6.3.2)

If r ≥ ξα1 , then

s+ r ≥ 1 + kξα1 +
∑
j≥k+1

ξαj ≥ 1 +
∑
j≥1

ξαj = |ξα|+ 1.

By local Weyl module relations, we know (x−α ⊗ 1)s+rwλ = 0 and so equation 6.3.1 is

proved in this case.

It remains to check what happens if r ≤ ξαsα or if ξi ≥ r ≥ ξi+1. Before we

proceed, we make note of the following. Since we have that

(x−α ⊗ tsα)wλ ∈ U

then it follows that, (x−α ⊗ tm)wλ ∈ U for all m ≥ sα. Second, it follows that if

(bp)p≥0 ∈ S(r, s) is such that bm > 0 for some m ≥ sα then

((x−α ⊗ 1)(b0)...(x−α ⊗ tm)(bm)...)wλ) ∈ U (6.3.3)

So,

(x−α (r, s)− x−α (r, s)sα)wλ ∈ U (6.3.4)

Hence, for our remaining cases it will suffice to show that x−α (r, s)sαwλ ∈ U .

Now, suppose that ξαsα ≥ r. We claim that,

s+ r ≥ 1 + kr +
∑
j≥k+1

ξαj =⇒ s+ r ≥ 1 + sαr. (6.3.5)

For the claim, notice there is nothing to prove if k ≥ sα, and if k < sα, then

s+ r ≥ 1 + kr +
∑
j≥k+1

ξαj ≥ 1 + kr + (sα − k)ξαsα ≥ 1 + kr + (sα − k)r.

This means that if (bp)p≥0 ∈ S(r, s), then we must have bm > 0 for some m ≥ sα, since

otherwise we would have s =
∑

p<sα
pbp ≤ r(sα−1). In particular, we get x−α (r, s)sα = 0
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and equation (6.3.4) now proves that x−α (r, s)wλ ∈ U . This also completes the proof

when ξα is a consecutive fat hook.

Lastly, suppose that ξαi ≥ r ≥ ξαi+1. We claim the following inequality holds

∑
j≥kα,i

(j − (kα,i − 1))bj ≥ 1 + r(k − kα,i) +
∑
j≥k+1

ξαj (6.3.6)

and hence

∑
j≥kα,i

(j − (kα,i − 1))bj ≥ 1 +
∑

j≥kα,i+1

ξαj (6.3.7)

Inequality 6.3.6 follows from

(sα − 1)bsα−1 + ...+ kα,ibkα,i + (kα,i − 1)(r −
sα−1∑
j=kα,i

bj) ≥ s ≥ 1 + r(k − 1) +
∑
j≥k+1

ξαj

where we are assuming (bp)p≥0 ∈ S(r, s)sα otherwise we are done by 6.3.3.

To prove 6.3.7 first suppose that k > kα,i. By our assumption that r ≥ ξαi+1, it

follows that r ≥ ξαj for all j ≥ kα,i + 1. Then by 6.3.6,

∑
j≥kα,i

(j − (kα,i − 1))bj ≥ 1 +
k∑

j=kα,i+1

r +
∑
j≥k+1

ξαj

≥ 1 +
k∑

kα,i+1

ξαj +
∑
j≥k+1

ξαj

≥ 1 +
∑

j≥kα,i+1

ξαj

On the other hand, suppose that k ≤ kα,i. By our assumption that r ≤ ξαi it

follows that ξαj − r ≥ 0 for all j ≤ kα,i. Hence, from 6.3.6

∑
j≥kα,i

(j − (kα,i − 1))bj ≥ 1 +
kα,i∑

j=k+1

−r +
∑
j≥k+1

ξαj

= 1 +
kα,i∑

j=k+1

(ξαj − r) +
∑

j≥kα,i+1

ξαj

≥ 1 +
∑

j≥kα,i+1

ξαj
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which proves the claim.

Next, note that by 6.3.7 we can write

s+ r − kα,ir = s+ r(1− kα,i)

=
∑
j≥0

jbj + (1− kα,i)
∑
j≥0

bj

=
∑

0≤j≤kα,i−1

(j − (kα,i − 1))bj +
∑
j≥kα,i

(j − (kα,i − 1))bj

≥
∑

0≤j≤kα,i−1

(j − (kα,i − 1))bj +

1 +
∑

j≥kα,i+1

ξαj



In other words, we have the following inequality:

s+ r − kα,ir ≥

1 +
∑

j≥kα,i+1

ξαj

+

kα,i−1∑
j=0

(j − (kα,i − 1))bj

 (6.3.8)

By [CV, Lemma 2.5] we can write

x−α (r, s)sαwλ = kα,ix
−
α (r, s)sαwλ +

∑
r′<r
s′≤s

x−α (r − r′, s− s′)kα,ikα,ix
−
α (r′, s′)sαwλ.

By 6.3.8 if (bp)p≥0 ∈ kα,iS(r, s)sα , then s+r ≥ 1+rkα,i+
∑

j≥kα,i+1

ξαj and so kα,ix
−
α (r, s)sαwλ ∈

U . While, if (bp)p≥0 ∈ S(r − r′, s− s′)kα,i × kα,iS(r′, s′)sα , then again by 6.3.8 we have:

(s− s′) + s′ + (r − r′) + r′ − kα,i(r − r′)− kα,ir′

≥

1 +
∑

j≥kα,i+1

ξαj

+
kα,i−1∑
j=0

jbj − kα,i
kα,i−1∑
j=0

bj +
kα,i−1∑
j=0

bj

= 1 +
∑

j≥kα,i+1

ξαj + (s− s′)− kα,i(r − r′) + (r − r′)

Therefore, s′ + r′ ≥ 1 + kα,ir
′ +

∑
j≥kα,i+1

ξαj and kα,ix−α (r′, s′)sαwλ ∈ U . And hence,

x−α (r, s)sαwλ ∈ U which completes the proof.
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Table .1: Data for F4 and ` = 2.

λ µ λ µ

(0,0,0,0) (0,0,0,0) (1,0,0,0) (0,0,0,0)
(0,0,0,1) (0,0,0,0) (1,0,0,1) (1,0,0,0)
(0,0,0,2) (0,0,0,0) (1,0,0,2) (0,0,0,2)
(0,0,0,3) (0,0,0,2) (1,0,0,3) (0,0,0,2)
(0,0,1,0) (0,0,0,0) (1,0,1,0) (1,0,0,0)
(0,0,1,1) (0,0,0,2) (1,0,1,1) (0,0,0,2)
(0,0,1,2) (0,0,0,2) (1,0,1,2) (0,0,0,2)
(0,0,1,3) (0,0,0,2) (1,0,1,3) (1,0,0,2)
(0,0,2,0) (0,0,0,2) (1,0,2,0) (0,1,0,0)
(0,0,2,1) (0,0,0,2) (1,0,2,1) (0,0,2,0)
(0,0,2,2) (0,0,0,2) (1,0,2,2) (0,0,2,0)
(0,0,2,3) (0,0,2,0) (1,0,2,3) (0,0,2,0)
(0,0,3,0) (0,0,2,0) (1,0,3,0) (0,0,2,0)
(0,0,3,1) (0,0,2,0) (1,0,3,1) (0,0,2,0)
(0,0,3,2) (0,0,2,0) (1,0,3,2) (0,0,2,0)
(0,0,3,3) (0,0,2,0) (1,0,3,3) (0,0,2,2)
(0,1,0,0) (1,0,0,0) (1,1,0,0) (0,1,0,0)
(0,1,0,1) (0,0,0,2) (1,1,0,1) (0,1,0,0)
(0,1,0,2) (0,0,0,2) (1,1,0,2) (0,1,0,0)
(0,1,0,3) (0,0,0,2) (1,1,0,3) (1,0,0,2)
(0,1,1,0) (0,1,0,0) (1,1,1,0) (0,1,0,0)
(0,1,1,1) (0,1,0,0) (1,1,1,1) (0,0,2,0)
(0,1,1,2) (0,0,2,0) (1,1,1,2) (0,0,2,0)
(0,1,1,3) (0,0,2,0) (1,1,1,3) (0,1,0,2)
(0,1,2,0) (0,0,2,0) (1,1,2,0) (0,0,2,0)
(0,1,2,1) (0,0,2,0) (1,1,2,1) (0,0,2,0)
(0,1,2,2) (0,0,2,0) (1,1,2,2) (0,1,0,2)
(0,1,2,3) (0,1,0,2) (1,1,2,3) (0,0,2,2)
(0,1,3,0) (0,0,2,0) (1,1,3,0) (1,0,2,0)
(0,1,3,1) (0,0,2,0) (1,1,3,1) (1,0,2,0)
(0,1,3,2) (0,0,2,2) (1,1,3,2) (0,0,2,2)
(0,1,3,3) (0,0,2,2) (1,1,3,3) (0,0,2,2)
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Table .2: Data for E8 and ` = 2.

λ µ λ µ

(0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (0,0,0,1,0,1,0,0) (0,0,0,0,1,0,0,0)
(1,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,0) (1,0,0,1,0,1,0,0) (0,0,0,1,0,0,0,0)
(0,1,0,0,0,0,0,0) (0,0,0,0,0,0,0,1) (0,1,0,1,0,1,0,0) (0,0,0,1,0,0,0,0)
(1,1,0,0,0,0,0,0) (0,1,0,0,0,0,0,0) (1,1,0,1,0,1,0,0) (0,0,0,1,0,0,0,1)
(0,0,1,0,0,0,0,0) (1,0,0,0,0,0,0,0) (0,0,1,1,0,1,0,0) (0,0,0,1,0,0,0,0)
(1,0,1,0,0,0,0,0) (0,0,1,0,0,0,0,0) (1,0,1,1,0,1,0,0) (0,0,1,0,0,1,0,0)
(0,1,1,0,0,0,0,0) (0,0,1,0,0,0,0,0) (0,1,1,1,0,1,0,0) (0,0,0,1,0,0,1,0)
(1,1,1,0,0,0,0,0) (0,0,1,0,0,0,0,0) (1,1,1,1,0,1,0,0) (0,0,0,1,0,1,0,0)
(0,0,0,1,0,0,0,0) (0,1,0,0,0,0,0,0) (0,0,0,0,1,1,0,0) (0,0,0,0,0,1,0,0)
(1,0,0,1,0,0,0,0) (0,0,1,0,0,0,0,0) (1,0,0,0,1,1,0,0) (0,0,0,0,1,0,0,0)
(0,1,0,1,0,0,0,0) (0,0,0,0,1,0,0,0) (0,1,0,0,1,1,0,0) (0,0,0,0,1,0,0,0)
(1,1,0,1,0,0,0,0) (0,0,0,1,0,0,0,0) (1,1,0,0,1,1,0,0) (0,1,0,0,0,1,0,0)
(0,0,1,1,0,0,0,0) (0,0,0,0,1,0,0,0) (0,0,1,0,1,1,0,0) (0,0,0,0,1,0,0,1)
(1,0,1,1,0,0,0,0) (0,0,0,1,0,0,0,0) (1,0,1,0,1,1,0,0) (0,0,1,0,0,1,0,0)
(0,1,1,1,0,0,0,0) (0,0,0,1,0,0,0,0) (0,1,1,0,1,1,0,0) (0,0,1,0,0,1,0,0)
(1,1,1,1,0,0,0,0) (0,1,1,0,0,0,0,0) (1,1,1,0,1,1,0,0) (0,0,1,0,1,0,0,0)
(0,0,0,0,1,0,0,0) (0,0,0,0,0,0,1,0) (0,0,0,1,1,1,0,0) (0,0,0,0,1,0,1,0)
(1,0,0,0,1,0,0,0) (0,0,0,0,0,1,0,0) (1,0,0,1,1,1,0,0) (0,0,0,0,1,1,0,0)
(0,1,0,0,1,0,0,0) (0,0,0,0,0,1,0,0) (0,1,0,1,1,1,0,0) (0,0,0,0,1,1,0,0)
(1,1,0,0,1,0,0,0) (0,0,0,0,1,0,0,0) (1,1,0,1,1,1,0,0) (0,0,0,1,0,1,0,0)
(0,0,1,0,1,0,0,0) (0,0,0,0,1,0,0,0) (0,0,1,1,1,1,0,0) (0,0,0,1,0,1,0,0)
(1,0,1,0,1,0,0,0) (0,0,0,0,1,0,0,0) (1,0,1,1,1,1,0,0) (0,0,0,1,0,1,0,0)
(0,1,1,0,1,0,0,0) (0,0,0,1,0,0,0,0) (0,1,1,1,1,1,0,0) (0,0,0,1,1,0,0,0)
(1,1,1,0,1,0,0,0) (0,1,1,0,0,0,0,0) (1,1,1,1,1,1,0,0) (0,1,1,0,1,0,0,0)
(0,0,0,1,1,0,0,0) (0,0,0,0,1,0,0,0) (0,0,0,0,0,0,1,0) (0,0,0,0,0,0,0,1)
(1,0,0,1,1,0,0,0) (0,0,0,1,0,0,0,0) (1,0,0,0,0,0,1,0) (0,0,0,0,0,0,1,0)
(0,1,0,1,1,0,0,0) (0,0,0,1,0,0,0,0) (0,1,0,0,0,0,1,0) (0,0,0,0,0,0,1,0)
(1,1,0,1,1,0,0,0) (0,1,0,0,1,0,0,0) (1,1,0,0,0,0,1,0) (0,0,0,0,0,1,0,0)
(0,0,1,1,1,0,0,0) (0,0,0,1,0,0,0,1) (0,0,1,0,0,0,1,0) (0,0,0,0,0,0,1,0)
(1,0,1,1,1,0,0,0) (0,0,1,0,1,0,0,0) (1,0,1,0,0,0,1,0) (0,0,1,0,0,0,0,0)
(0,1,1,1,1,0,0,0) (0,0,1,0,1,0,0,0) (0,1,1,0,0,0,1,0) (0,0,0,0,1,0,0,0)
(1,1,1,1,1,0,0,0) (0,0,1,1,0,0,0,0) (1,1,1,0,0,0,1,0) (0,0,0,1,0,0,0,0)
(0,0,0,0,0,1,0,0) (0,0,0,0,0,0,0,1) (0,0,0,1,0,0,1,0) (0,0,0,0,0,1,0,0)
(1,0,0,0,0,1,0,0) (0,0,0,0,0,0,1,0) (1,0,0,1,0,0,1,0) (0,0,0,0,1,0,0,0)
(0,1,0,0,0,1,0,0) (0,0,0,0,0,1,0,0) (0,1,0,1,0,0,1,0) (0,0,0,1,0,0,0,0)
(1,1,0,0,0,1,0,0) (0,0,0,0,0,1,0,0) (1,1,0,1,0,0,1,0) (0,0,0,1,0,0,0,0)
(0,0,1,0,0,1,0,0) (0,0,0,0,0,1,0,0) (0,0,1,1,0,0,1,0) (0,0,0,1,0,0,0,0)
(1,0,1,0,0,1,0,0) (0,0,0,0,1,0,0,0) (1,0,1,1,0,0,1,0) (0,0,0,1,0,0,1,0)
(0,1,1,0,0,1,0,0) (0,0,0,0,1,0,0,0) (0,1,1,1,0,0,1,0) (0,0,0,1,0,0,0,1)
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Table .3: Data for E8 and ` = 2 continued.

λ µ λ µ

(1,1,1,0,0,1,0,0) (0,0,0,1,0,0,0,0) (1,1,1,1,0,0,1,0) (0,0,0,1,0,0,1,0)
(0,0,0,0,1,0,1,0) (0,0,0,0,0,1,0,0) (0,0,0,1,1,1,1,0) (0,0,0,0,1,1,0,0)
(1,0,0,0,1,0,1,0) (0,0,0,0,1,0,0,0) (1,0,0,1,1,1,1,0) (0,0,0,1,0,1,0,0)
(0,1,0,0,1,0,1,0) (0,0,0,0,1,0,0,0) (0,1,0,1,1,1,1,0) (0,0,0,1,0,1,0,0)
(1,1,0,0,1,0,1,0) (0,0,0,0,1,0,0,1) (1,1,0,1,1,1,1,0) (0,0,0,1,0,1,0,1)
(0,0,1,0,1,0,1,0) (0,0,0,0,1,0,0,0) (0,0,1,1,1,1,1,0) (0,0,0,1,0,1,0,0)
(1,0,1,0,1,0,1,0) (0,0,1,0,0,0,1,0) (1,0,1,1,1,1,1,0) (0,0,1,0,1,0,1,0)
(0,1,1,0,1,0,1,0) (0,0,0,0,1,0,1,0) (0,1,1,1,1,1,1,0) (0,0,0,1,0,1,1,0)
(1,1,1,0,1,0,1,0) (0,0,0,1,0,0,1,0) (1,1,1,1,1,1,1,0) (0,0,0,1,1,0,1,0)
(0,0,0,1,1,0,1,0) (0,0,0,0,1,0,0,1) (0,0,0,0,0,0,0,1) (0,0,0,0,0,0,0,0)
(1,0,0,1,1,0,1,0) (0,0,0,0,1,0,1,0) (1,0,0,0,0,0,0,1) (0,0,0,0,0,0,0,1)
(0,1,0,1,1,0,1,0) (0,0,0,1,0,0,1,0) (0,1,0,0,0,0,0,1) (0,0,0,0,0,0,0,1)
(1,1,0,1,1,0,1,0) (0,0,0,1,0,0,1,0) (1,1,0,0,0,0,0,1) (0,1,0,0,0,0,0,0)
(0,0,1,1,1,0,1,0) (0,0,0,1,0,0,1,0) (0,0,1,0,0,0,0,1) (0,0,0,0,0,0,1,0)
(1,0,1,1,1,0,1,0) (0,0,0,1,0,1,0,0) (1,0,1,0,0,0,0,1) (0,0,1,0,0,0,0,0)
(0,1,1,1,1,0,1,0) (0,0,0,1,0,1,0,0) (0,0,0,1,0,0,0,1) (0,0,0,0,0,1,0,0)
(1,1,1,1,1,0,1,0) (0,0,0,1,1,0,0,0) (1,0,0,1,0,0,0,1) (0,0,0,0,1,0,0,0)
(0,0,0,0,0,1,1,0) (0,0,0,0,0,0,1,0) (0,1,0,1,0,0,0,1) (0,0,0,0,1,0,0,0)
(1,0,0,0,0,1,1,0) (0,0,0,0,0,1,0,0) (1,1,0,1,0,0,0,1) (0,0,0,1,0,0,0,0)
(0,1,0,0,0,1,1,0) (0,0,0,0,0,1,0,0) (0,0,1,1,0,0,0,1) (0,0,0,1,0,0,0,0)
(1,1,0,0,0,1,1,0) (0,1,0,0,0,0,1,0) (1,0,1,1,0,0,0,1) (0,0,0,1,0,0,0,0)
(0,0,1,0,0,1,1,0) (0,0,0,0,0,1,0,1) (0,1,1,1,0,0,0,1) (0,0,0,1,0,0,0,1)
(1,0,1,0,0,1,1,0) (0,0,1,0,0,0,1,0) (1,1,1,1,0,0,0,1) (0,1,1,0,0,0,0,1)
(0,1,1,0,0,1,1,0) (0,0,1,0,0,0,1,0) (0,0,0,0,1,0,0,1) (0,0,0,0,0,0,1,0)
(1,1,1,0,0,1,1,0) (0,0,1,0,0,1,0,0) (1,0,0,0,1,0,0,1) (0,0,0,0,0,1,0,0)
(0,0,0,1,0,1,1,0) (0,0,0,0,0,1,1,0) (0,1,0,0,1,0,0,1) (0,0,0,0,1,0,0,0)
(1,0,0,1,0,1,1,0) (0,0,0,0,1,0,1,0) (1,1,0,0,1,0,0,1) (0,0,0,0,1,0,0,0)
(0,1,0,1,0,1,1,0) (0,0,0,0,1,0,1,0) (0,0,1,0,1,0,0,1) (0,0,0,0,1,0,0,0)
(1,1,0,1,0,1,1,0) (0,0,0,1,0,0,1,0) (1,0,1,0,1,0,0,1) (0,0,0,0,1,0,0,1)
(0,0,1,1,0,1,1,0) (0,0,0,1,0,0,1,0) (0,1,1,0,1,0,0,1) (0,0,0,0,1,0,0,1)
(1,0,1,1,0,1,1,0) (0,0,0,1,0,0,1,0) (1,1,1,0,1,0,0,1) (0,0,0,1,0,0,0,1)
(0,1,1,1,0,1,1,0) (0,0,0,1,0,1,0,0) (0,0,0,1,1,0,0,1) (0,0,0,0,1,0,0,1)
(1,1,1,1,0,1,1,0) (0,1,1,0,0,1,0,0) (1,0,0,1,1,0,0,1) (0,0,0,1,0,0,0,1)
(0,0,0,0,1,1,1,0) (0,0,0,0,0,1,0,1) (0,1,0,1,1,0,0,1) (0,0,0,1,0,0,0,1)
(1,0,0,0,1,1,1,0) (0,0,0,0,0,1,1,0) (1,1,0,1,1,0,0,1) (0,0,0,1,0,0,1,0)
(0,1,0,0,1,1,1,0) (0,0,0,0,1,0,1,0) (0,0,1,1,1,0,0,1) (0,0,0,1,0,0,0,1)
(1,1,0,0,1,1,1,0) (0,0,0,0,1,0,1,0) (1,0,1,1,1,0,0,1) (0,0,1,0,1,0,0,0)
(0,0,1,0,1,1,1,0) (0,0,0,0,1,0,1,0) (0,1,1,1,1,0,0,1) (0,0,0,1,0,1,0,0)
(1,0,1,0,1,1,1,0) (0,0,0,0,1,1,0,0) (1,1,1,1,1,0,0,1) (0,0,0,1,1,0,0,0)
(0,1,1,0,1,1,1,0) (0,0,0,0,1,1,0,0) (0,0,0,0,0,1,0,1) (0,0,0,0,0,0,1,0)
(1,1,1,0,1,1,1,0) (0,0,0,1,0,1,0,0) (1,0,0,0,0,1,0,1) (0,0,0,0,0,1,0,0)
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Table .4: Data for E8 and ` = 2 continued.

λ µ λ µ

(0,1,0,0,0,1,0,1) (0,0,0,0,0,1,0,0) (0,0,0,1,0,0,1,1) (0,0,0,0,0,1,0,1)
(0,1,0,0,0,1,0,1) (0,0,0,0,0,1,0,0) (1,0,0,1,0,0,1,1) (0,0,0,0,1,0,0,1)
(1,1,0,0,0,1,0,1) (0,0,0,0,0,1,0,1) (0,1,0,1,0,0,1,1) (0,0,0,0,1,0,0,1)
(0,0,1,0,0,1,0,1) (0,0,0,0,0,1,0,0) (1,1,0,1,0,0,1,1) (0,0,0,1,0,0,0,1)
(1,0,1,0,0,1,0,1) (0,0,1,0,0,0,0,1) (0,0,1,1,0,0,1,1) (0,0,0,1,0,0,0,1)
(0,1,1,0,0,1,0,1) (0,0,0,0,1,0,0,1) (1,0,1,1,0,0,1,1) (0,0,0,1,0,0,0,1)
(1,1,1,0,0,1,0,1) (0,0,0,1,0,0,0,1) (0,1,1,1,0,0,1,1) (0,0,0,1,0,0,1,0)
(0,0,0,1,0,1,0,1) (0,0,0,0,0,1,0,1) (1,1,1,1,0,0,1,1) (0,1,1,0,0,0,1,0)
(0,0,0,1,0,1,0,1) (0,0,0,0,0,1,0,1) (0,0,0,0,1,0,1,1) (0,0,0,0,0,0,1,1)
(1,0,0,1,0,1,0,1) (0,0,0,0,1,0,0,1) (1,0,0,0,1,0,1,1) (0,0,0,0,0,1,0,1)
(0,1,0,1,0,1,0,1) (0,0,0,1,0,0,0,1) (0,1,0,0,1,0,1,1) (0,0,0,0,1,0,0,1)
(1,1,0,1,0,1,0,1) (0,0,0,1,0,0,0,1) (1,1,0,0,1,0,1,1) (0,0,0,0,1,0,0,1)
(0,0,1,1,0,1,0,1) (0,0,0,1,0,0,0,1) (0,0,1,0,1,0,1,1) (0,0,0,0,1,0,0,1)
(1,0,1,1,0,1,0,1) (0,0,0,1,0,0,1,0) (1,0,1,0,1,0,1,1) (0,0,0,0,1,0,1,0)
(0,1,1,1,0,1,0,1) (0,0,0,1,0,0,1,0) (0,1,1,0,1,0,1,1) (0,0,0,0,1,0,1,0)
(1,1,1,1,0,1,0,1) (0,0,0,1,0,1,0,0) (1,1,1,0,1,0,1,1) (0,0,0,1,0,0,1,0)
(0,0,0,0,1,1,0,1) (0,0,0,0,0,1,0,1) (0,0,0,1,1,0,1,1) (0,0,0,0,1,0,1,0)
(1,0,0,0,1,1,0,1) (0,0,0,0,1,0,0,1) (1,0,0,1,1,0,1,1) (0,0,0,1,0,0,1,0)
(0,1,0,0,1,1,0,1) (0,0,0,0,1,0,0,1) (0,1,0,1,1,0,1,1) (0,0,0,1,0,0,1,0)
(1,1,0,0,1,1,0,1) (0,0,0,0,1,0,1,0) (1,1,0,1,1,0,1,1) (0,0,0,1,0,0,1,1)
(0,0,1,0,1,1,0,1) (0,0,0,0,1,0,0,1) (0,0,1,1,1,0,1,1) (0,0,0,1,0,0,1,0)
(1,0,1,0,1,1,0,1) (0,0,1,0,0,1,0,0) (1,0,1,1,1,0,1,1) (0,0,1,0,1,0,0,1)
(0,1,1,0,1,1,0,1) (0,0,0,0,1,1,0,0) (0,1,1,1,1,0,1,1) (0,0,0,1,0,1,0,1)
(1,1,1,0,1,1,0,1) (0,0,0,1,0,1,0,0) (1,1,1,1,1,0,1,1) (0,0,0,1,1,0,0,1)
(0,0,0,1,1,1,0,1) (0,0,0,0,1,0,1,0) (0,0,0,0,0,1,1,1) (0,0,0,0,0,0,1,1)
(1,0,0,1,1,1,0,1) (0,0,0,0,1,1,0,0) (1,0,0,0,0,1,1,1) (0,0,0,0,0,1,0,1)
(0,1,0,1,1,1,0,1) (0,0,0,1,0,1,0,0) (0,1,0,0,0,1,1,1) (0,0,0,0,0,1,0,1)
(1,1,0,1,1,1,0,1) (0,0,0,1,0,1,0,0) (1,1,0,0,0,1,1,1) (0,0,0,0,0,1,1,0)
(0,0,1,1,1,1,0,1) (0,0,0,1,0,1,0,0) (0,0,1,0,0,1,1,1) (0,0,0,0,0,1,0,1)
(1,0,1,1,1,1,0,1) (0,0,0,1,0,1,0,1) (1,0,1,0,0,1,1,1) (0,0,1,0,0,0,1,0)
(0,1,1,1,1,1,0,1) (0,0,0,1,0,1,0,1) (0,1,1,0,0,1,1,1) (0,0,0,0,1,0,1,0)
(1,1,1,1,1,1,0,1) (0,0,0,1,1,0,0,1) (1,1,1,0,0,1,1,1) (0,0,0,1,0,0,1,0)
(0,0,0,0,0,0,1,1) (0,0,0,0,0,0,0,1) (0,0,0,1,0,1,1,1) (0,0,0,0,0,1,1,0)
(1,0,0,0,0,0,1,1) (0,0,0,0,0,0,1,0) (1,0,0,1,0,1,1,1) (0,0,0,0,1,0,1,0)
(0,1,0,0,0,0,1,1) (0,0,0,0,0,0,1,0) (0,1,0,1,0,1,1,1) (0,0,0,1,0,0,1,0)
(1,1,0,0,0,0,1,1) (0,1,0,0,0,0,0,1) (1,1,0,1,0,1,1,1) (0,0,0,1,0,0,1,0)
(0,0,1,0,0,0,1,1) (0,0,0,0,0,0,1,1) (0,0,1,1,0,1,1,1) (0,0,0,1,0,0,1,0)
(1,0,1,0,0,0,1,1) (0,0,1,0,0,0,0,1) (1,0,1,1,0,1,1,1) (0,0,0,1,0,0,1,1)
(0,1,1,0,0,0,1,1) (0,0,1,0,0,0,0,1) (0,1,1,1,0,1,1,1) (0,0,0,1,0,0,1,1)
(1,1,1,0,0,0,1,1) (0,0,1,0,0,0,1,0) (1,1,1,1,0,1,1,1) (0,0,0,1,0,1,0,1)
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Table .5: Data for E8 and ` = 2 continued.

λ µ λ µ

(0,0,0,0,1,1,1,1) (0,0,0,0,0,1,1,0) (0,0,0,1,1,1,1,1) (0,0,0,0,1,0,1,1)
(1,0,0,0,1,1,1,1) (0,0,0,0,1,0,1,0) (1,0,0,1,1,1,1,1) (0,0,0,0,1,1,0,1)
(0,1,0,0,1,1,1,1) (0,0,0,0,1,0,1,0) (0,1,0,1,1,1,1,1) (0,0,0,1,0,1,0,1)
(1,1,0,0,1,1,1,1) (0,0,0,0,1,0,1,1) (1,1,0,1,1,1,1,1) (0,0,0,1,0,1,0,1)
(0,0,1,0,1,1,1,1) (0,0,0,0,1,0,1,0) (0,0,1,1,1,1,1,1) (0,0,0,1,0,1,0,1)
(1,0,1,0,1,1,1,1) (0,0,1,0,0,1,0,1) (1,0,1,1,1,1,1,1) (0,0,0,1,0,1,1,0)
(0,1,1,0,1,1,1,1) (0,0,0,0,1,1,0,1) (0,1,1,1,1,1,1,1) (0,0,0,1,0,1,1,0)
(1,1,1,0,1,1,1,1) (0,0,0,1,0,1,0,1) (1,1,1,1,1,1,1,1) (0,0,0,1,1,0,1,0)
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