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ABSTRACT

Since Galileo’s time, the pendulum has evolved into one of the most exciting physical objects in mathematical modeling due to its vast range of
applications for studying various oscillatory dynamics, including bifurcations and chaos, under various interests. This well-deserved focus aids
in comprehending various oscillatory physical phenomena that can be reduced to the equations of the pendulum. The present article focuses
on the rotational dynamics of the two-dimensional forced-damped pendulum under the influence of the ac and dc torque. Interestingly, we
are able to detect a range of the pendulum’s length for which the angular velocity exhibits a few intermittent extreme rotational events that
deviate significantly from a certain well-defined threshold. The statistics of the return intervals between these extreme rotational events are
supported by our data to be spread exponentially at a specific pendulum’s length beyond which the external dc and ac torque are no longer
sufficient for a full rotation around the pivot. The numerical results show a sudden increase in the size of the chaotic attractor due to interior
crisis, which is the source of instability that is responsible for triggering large amplitude events in our system. We also notice the occurrence
of phase slips with the appearance of extreme rotational events when the phase difference between the instantaneous phase of the system and
the externally applied ac torque is observed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0152699

Natural events like droughts, earthquakes, tsunamis, floods,
global pandemics, and human-made disasters like share market
crashes and power blackouts are recurrent with a low probabil-
ity of occurrence with having immediate cataclysmic impacts on
human society. In the literature, such recurrent and profoundly
significant incidents are referred to as extreme events. From the
study of the temporal dynamics of many physical systems, large-
amplitude events significantly deviating from the mean state are
observed occasionally, which has a qualitative similarity, recog-
nized from the data records and statistical distribution, with
those described above natural and human-made cataclysms. This
similarity encourages researchers to study dynamical systems
investigating those sudden, intermittent events better to under-
stand the origin of extreme events. Our present study considers a
forced-damped nonlinear pendulum with ac and dc torque and
identifies a sudden expansion of the chaotic attractor through
the interior crisis. This sudden expansion of the chaotic attrac-
tor is connected to the origination of extreme rotational events,
and our numerical simulations indicate that the return interval

distributions of these events are highly dependent on the parame-
ter values of the system. System dynamics experience a phase slip
during the transition from libration to rotation. Consequently,
we uncover the same large phase slip during the appearance of
these large-amplitude rotational events. Our research offers valu-
able insights into the emergence of extreme rotational events
on dynamical systems and may find applicability for a better
understanding of the continuous-time systems with a strange
attractor.

I. INTRODUCTION

The study of extreme events1–3 has the utmost importance in
many scientific and interdisciplinary disciplines for their imme-
diate severe consequences and potential applications. It is hardly
possible to define, what indeed the extreme events (EEs) are, in
literature. The events or phenomena with large deviation from
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the regular behavior having a huge impact in the society are usu-
ally contemplated to be as EEs. These recurrent EEs are observed
in several natural and engineering systems. EEs present several
unique challenges because they are unpredictable and occur spon-
taneously. Recently, researchers have been tremendous attention to
extreme events due to their devastating and catastrophic effects on
the socio-economic scenario.1 EEs are found to occur in nature as
well as it may be human-made as well. The natural events such
as floods,4 tsunamis,5 earthquakes,6 cyclones,7 droughts,8 seismic
activity,9 wildfires,10 volcanoes,11 to name but a few, and the man-
made system’s disasters such as power blackouts,12 the nuclear leak-
age in Chernobyl and Fukushima,13 regime shifts in ecosystems,14–16

share market crashes17 are all considered as EEs. The necessity of
studying EEs basically lies in restraining their adverse huge impact
in terms of havoc concerning the importance of prediction18–23 and
mitigation.18,19,24–27

Generally, the events with amplitude larger than four to eight
times the standard deviation from the central tendency (mean state)
of the events1 or the events whose amplitudes are in the 90th–99th
percentile of the probability distribution2 are defined as EEs. The
EEs are being occurred far away from the mean state of the skewed
distribution, they appear on the tail of the distribution having less
frequency of occurrence.28 The scientific community faces difficul-
ties in triggering extreme events in advance and extrapolating their
long-lasting, vexatious impact from a small number of real data
which stings to contemplate a new era of scientific research, unveil-
ing the dynamical system approach.28,29 The dynamical systems are
being recognized as the prognostication to get rid of the problem
of having a small number of real data.28 Specifically, in dynami-
cal systems, evolving the equations of motion forward in time, we
may gather a huge number of simulated data which are helpful for
statistical analysis.28,30 Researchers often struggle to explain the ori-
gin of EEs in natural systems. In that situation, dynamical models
might facilitate the same. In the study of temporal dynamics of
many dynamical systems, the occurrence of infrequent but recurrent
comparatively high or low amplitude events might have qualita-
tive similarities with occasional large events being recorded in many
real-world phenomena. The emergence of EEs is reported in sev-
eral dynamical systems such as FitzHugh–Nagumo oscillators,29,31–35

Hindmarsh–Rose model,36 Liénard system,37 Ikeda map,25 Joseph-
son junctions,38 Ginzburg–Landau model,39 nonlinear Schrödinger
equation,40 micromechanical system,41 climatic models,42 ecological
model,43 mechanical system,44 and electronic circuits,45 to name but
a few. In addition, we also find some experimental evidence of the
appearance of EEs, such as in laser systems,46 epileptic EEG studies
in rodents,47 annular wave flume,48 and laser systems,49 to name but
a few.

The emergence of EEs in dynamical systems is basically due
to the presence of a region of instability in the state space of the
system.3,50 The occasional visit of a chaotic trajectory in the region
of instability of the state space immediately leads to the travers-
ing locations in the state space far away from the bounded region,
after short duration the trajectory returns back to that region. As
a result, the manifestation of occasional comparatively large ampli-
tude events is observed in the temporal dynamics of the observable.50

The emergence of EEs in dynamical systems most of the time follows
the sudden enlargement of the size of a chaotic attractor through

an interior crisis, which is a considerably important one among all
other possible mechanisms.25,30,31,51–54 Interior crisis55–58 occurs due
to the collision of a chaotic attractor with the stable manifold of
an unstable fixed point or an unstable periodic orbit. In multistable
systems, under the presence of noise, a sudden transition from one
state to another may cause the origination of EEs.59,60 There are sev-
eral other mechanisms behind the emergence of EEs in dynamical
systems such as breakdown of quasiperiodicity,61 intermittency,37,62

transition between the librational motion to rotational motion,38,63

and on-off intermittency.18,64,65

Typically, EEs in a dynamical system tend to occur1,2 near the
bifurcation point of a selected parameter where a transition between
two different states in the system’s dynamics occurs, such as a tran-
sition from a periodic to a chaotic state. In this study, we consider
a forced-damped nonlinear pendulum (a second-order phase model
under the influence of external forces), the dynamics of which are
known to be phenomenologically rich and comprising two types
of motion, libration and rotation, as described in Refs. 66–68. We
aim to investigate the system’s behavior as the pendulum’s length
is varied, focusing on the transition point under the influence of dc
and ac torque. Through numerical simulations, we observe that the
rotational dynamics of the forced-damped nonlinear pendulum sys-
tem exhibit high amplitude events that deviate significantly from
the central tendency of the gathered data. Physically, this implies
that the pendulum occasionally rotates much more vigorously than
usual under the influence of externally applied dc and ac torques.
Recently, we noted in Ref. 38 that the occurrence of extreme events
is demonstrated during the transition from libration to rotation
in globally coupled nonidentical Josephson junctions (which are
also second-order phase models) under repulsive interaction. These
findings motivate us to investigate the dynamics of a forced-damped
pendulum system and determine whether we can observe similar
large-amplitude events in the system’s rotational dynamics.

In our study, we specifically investigate the emergence of large-
amplitude events in the rotational dynamics of a damped pendulum
under the influence of both dc and ac torques. These events result in
brief periods where the angular velocity becomes infrequently faster
than usual during rotation. To demonstrate the abrupt enlarge-
ment of the chaotic attractor, we use existing nonlinear theories to
analyze the system within a range of the pendulum’s length and
identify an interior crisis as the mechanism behind the observed
extreme rotational events (EREs). We define EREs as instances
where the large-amplitude rotational events repeatedly surpass a
certain threshold. We also present a histogram plot that exhibits
the probability distribution of event occurrences, demonstrating
a non-Gaussian distribution. Additionally, we plot histograms of
inter-arrival times between extreme rotational events for two dif-
ferent parameter values and observe that they are fitted by various
families of distributions depending on the parameter values. To pro-
vide more details, we find that for one set of parameter values, an
exponential distribution best represents the inter-event intervals of
EREs. However, for a different set of parameter values, we observe
that the inter-event intervals of EREs are best described by a non-
exponential distribution, as suggested by the goodness of fit test
results, specifically the chi-square test.

The layout of this manuscript is as follows: we delineate the
model’s description in Sec. II. We further detail how our procedure
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FIG. 1. A schematic of a forced-damped nonlinear pendulum under the influence
of dc and ac torque: The angle between the pendulum of length l and the down-
ward vertical is denoted by the angular variable θ . Here, g is the acceleration due
to gravity, and m is the mass of the bob. Both constant dc torque τ ′ and periodic
ac torque τ are applied to drive the pendulum. Here, ω is the angular frequency
and φ is the initial phase of the ac torque.

defines EREs in Sec. III. The bifurcation analysis, time series and
phase portrait plotting, statistical analysis of EREs, and subsequent
results are illustrated in Sec. III. Finally, we conclude with a concise
summary and future perspectives in Sec. IV.

II. MODEL DESCRIPTION

We consider a forced-damped nonlinear pendulum66,67 having
the governing equation as

ml2θ̈ + γ θ̇ = −mgl sin θ + τ ′ + τ sin(ωt + φ). (1)

Here, θ is the phase variable, and θ̇ and θ̈ denote the angu-
lar velocity and angular acceleration of the pendulum, respectively.
g is the acceleration due to gravity, m is the mass of the bob, l is
the length of the pendulum, and γ is the damping parameter. ω

is the angular frequency, φ is the initial phase of the ac torque, τ

is the ac torque, and τ ′ is the dc torque. A schematic diagram of the
pendulum (1) is portrayed in Fig. 1. The angle between the down-
ward vertical and the pendulum in this case is denoted by θ . The
parameter values, m = 1.0, g = 1.0, γ = 0.75, τ = 0.4, τ ′ = 0.7167,
ω = 0.25, and φ = 22

7
are remained constant throughout the text.

We would like to mention here that the parameter values used in
this study, with the exception of the dc torque and pendulum length,
are adopted from Ref. 66. We further emphasize that we generally
use radians as the unit of measurement for phases in our study.
However, we need to approximate the value of π for numerical
simulations. We chose to use the value of 22

7
for π as inspired by

Ref. 66. In Sec. III, we examine the impact of the pendulum length l
by treating it as the bifurcation parameter.

FIG. 2. A schematic of librational and rotational orbits in cylindrical phase space:
(a) The librational orbit covers a portion of the periphery of the phase space.
(b) The rotational orbit rounds the circumference of phase space.

In general, two types of motion69 are possible for a pendulum
model. One is librational motion70 (small amplitude oscillation) in
which the pendulum merely swings back and forth but does not
fully rotate (around) with respect to the pivot, and another one is
rotational motion71 (large amplitude oscillation) in which the pen-
dulum fully rotates or swings around with respect to the pivot. A
schematic diagram of cylindrical phase space is plotted where a tra-
jectory of the librational orbits is shown in Fig. 2(a). On the other
hand, a trajectory for the rotational orbits is shown in Fig. 2(b).

III. RESULT

Brief overview of this section: This section introduces the results
of this study on extreme rotational events (EREs). The starting point
of this work refers to how we characterize events, librational events,
rotational events, and EREs. This small discussion provides the
essential background to interpret our findings for dynamical system
(1). The second portion of these results describes how the interior
crises give rise to an enlarged attractor and crisis-induced intermit-
tent behavior in our considered pendulum (1). All these results lie
at the heart of our work. With the help of bifurcation and existing
nonlinear theories, we investigate how a trajectory spends most of its
time on the post-crisis attractor and occasionally does intermittent
excursions for a short while too distant regions. Also, we explore
the statistics of EREs in the last part of this section, which enables
us to conclude the inter-event intervals between these EREs for a
particular pendulum’s length are distributed according to the expo-
nential distribution, and their amplitude maintains a non-Gaussian
distribution.

Quantification of EREs: Gavrielides et al.68,72 illustrated the
emergence of chaotic regimes for our chosen system described by
Eq. (1) by examining the bifurcation analysis with the variation
of the length l of the pendulum. They identified the approximate
range of l ∈ (0.998, 1.002) for which chaotic dynamics occur in the
system. Also, it is mentioned in Ref. 66 that the dynamics of a pen-
dulum, given by Eq. (1), exhibit librational motion for l > 1.002,
whereas it shows rotational motion for l < 0.998. Those studies
drive us to focus on the regime of l, which is near the transition
in dynamics from rotation to libration. In the bifurcation diagram
presented in Fig. 3, we represent the variation of the local maxima
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of θ̇ by varying l and also observe the transition between high and
low amplitude oscillations. Here, we can expect the occurrence of
extreme events like large-amplitude events because already a few
notable Refs. 38 and 63 confirm the appearance of extreme events
in the two-dimensional phase model during the transition between
rotation and libration. So for our study, the angular velocity (θ̇) is the
observable50 where we expect to observe the extreme events. We con-
sider the local maxima (θ̇max) of θ̇ as events. Since we know trajectory
bounds only for a portion of the circumference of the cylindrical
phase space due to libration, system dynamics exhibits small oscil-
lations, and the values of θ̇max become lower. On the other hand,
the trajectory revolves around the cylinder for rotation, resulting in
large amplitude oscillation. So, the values of θ̇max become higher.
This clear distinction is observed in the bifurcation diagram from
Fig. 3. In the present investigation, the events are classified into two
classes: (a) librational events and (b) rotational events, based on this
observation. We choose a threshold in such a way that large and
small amplitude events are easily separated. We set the threshold
value as 0.5 since the librational and rotational events are distin-
guishable as a gap is observed between small and large amplitude
events in the same bifurcation diagram. For θ̇max < 0.5, the events
appear due to the librational motion of the system, and being so is
termed as librational events. For θ̇max > 0.5, the events occurred due
to rotation. We call them rotational events. In our present study,
we mainly concentrate on the rotational dynamics of the pendu-
lum (1) because we observe from the bifurcation diagram that the
maximum value of rotational events is, for a wide range of l, less
than 1.5. Still, it crosses 2 for another range of l. This difference

and temporal dynamics of observable lead to categorizing a subset
of rotational events as EREs. To distinguish EREs from rotational
events, we adopt the threshold-based statistical measure,1,2,63 which
is commonly used to classify an event as an extreme event in dynam-
ical system-related studies. A rotational event is considerable as
ERE when its amplitude crosses a threshold value, HT = µ + dσ

(d ∈ R\{0}) where we chose d = 6 for our study. µ and σ signify
the mean and standard deviation of a collected dataset of rotational
events. The choice of d sets forth how far the deviation is from the
mean state. It is suitably chosen for our system so that the characteri-
zation of extreme events sustains the extreme rotational events. One
of the essential characteristics of EREs is the irregular occurrence
in the temporal dynamics of events. The low probable occurrence
of the EREs is classified depending on how the larger value of d is
chosen.28,65

Throughout the study, we perform the numerical simulation
by integrating Eq. (1) using the fifth-order Runge–Kutta–Fehlberg
method, having an integration step length of 0.01.

Generation of EREs: A bifurcation diagram is plotted in Fig. 3
for the depiction of the changing scenario of θ̇max as l varies within
[0.998, 1.004]. Initially, we observe the periodic dynamics of the
oscillation, and after a certain value of l, chaotic dynamics emerge via
period-doubling bifurcation. But the amplitude of the chaotic attrac-
tor increases after crossing a particular value of l. In this scenario,
the pendulum swings back and forth as well as whirls over the top
in a chaotic fashion. After increasing the value of l, we only observe
that the system dynamics exhibit chaotic libration beyond a specific
value of l. That means the pendulum swings only to and fro because

FIG. 3. Emergence of EREs caused by the interior crises: We draw the bifurcation diagram of θ̇max for the forced-damped nonlinear pendulum (1) considering the length of
the pendulum, l as the bifurcation parameter varying in the range [0.998, 1.004] with the step length 0.000 01. Numerical simulation is performed using the RKF45 method
with integration step length 0.01 and 8 × 105 iterations, leaving a transient of 3 × 105 iterations. The pendulum displays the librational dynamics for θ̇max < 0.5 and the
rotational motion for θ̇max > 0.5. A sudden transition from the chaotic oscillation (pre-crisis) to comparative large-amplitude chaotic oscillation (post-crisis) is observed when
the value of l is increased from the left-hand side of the diagram. The critical value of l is indicated by L where the sudden expansion of the attractor occurs. Similarly, a
sudden transition of the small amplitude chaotic oscillation in libration to large-amplitude chaotic oscillation in libration and rotation occurs at the critical value of l is indicated
by R when the value of l is decreased from the right-hand side of the diagram. The red line is the extreme rotational events qualifying threshold line HT . Enlarge versions of
the transition from two sides in rotation dynamics (two shaded portions of the bifurcation diagram) are presented in two insets on the figure’s left and right sides. The left and
right inset figures portray how the chaotic attractor suddenly enlarges through the interior crises. Those intermittent, sporadic blue points from the post-crisis attractor cross
the red threshold line HT from the left and right sides, respectively. We set the initial condition fixed at (θ0, θ̇0) = (0.01, 0.02). Although the result remains qualitatively the
same for other choices of initial conditions too. Other parameter values: ω = 0.25, φ = 22

7
, m = 1.0, g = 1.0, γ = 0.75, τ ′ = 0.7167, τ = 0.4.
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the combined effect of dc and ac torque is inadequate to overcome
its increased rotational inertia. After that, the system undergoes
from chaotic to periodic oscillation through inverse period-doubling
bifurcation. We also plot the variation of HT by changing l in Fig. 3
for identifying EREs. The physical concept behind this character-
istic can be explained as follows: as the length of the pendulum
increases, so does its rotational inertia. However, there is a certain
point, denoted as R, beyond which the externally applied dc and ac
torque cannot fully rotate the pendulum bob around the pivot. At
this point, the rotational events suddenly cease altogether. The find-
ings mentioned have been previously examined and documented in
Refs. 66 and 67.

Temporal dynamics of θ̇ and the corresponding phase space
(θ–θ̇) in the cylindrical surface are displayed in Fig. 4 for five dif-
ferent values of l. In the left panel, the temporal evolutions of θ̇

along with threshold, HT (denoted by red dashed line) are dis-
played, and the respective cylindrical phase spaces (θ vs θ̇) are shown
in the right panel for l = 0.999 941, 0.999 945, 1.001, 1.002 18, and
1.002 184. Figure 4(a) portrays the temporal evolution of θ̇ exhibit-
ing large amplitude oscillation for l = 0.999 941. No large spikes or
bursts are observed here; consequently, no rotational events exceed
the threshold. Corresponding phase space is shown in Fig. 4(b),
where trajectory bounds within a small portion of the periphery as
well as rotates the entire cylindrical surface. Occasional large spikes
are observed in Fig. 4(c), corresponding to the temporal evolution
of θ̇ for l = 0.999 945 because the angular velocity θ̇ of the pen-
dulum occasionally increases during rotation. Here, two rotational
events that cross the red threshold line HT are treated as EREs. Cor-
responding phase space is shown in Fig. 4(d), in which trajectory is
being observed in the librational (partially rounding the periphery
of the cylinder) and rotational orbit (fully rounding the perimeter of
the cylinder). The trajectory rotates within a bounded region during
rotation but occasionally travels far away from the region, indicat-
ing the appearance of EREs. For the sake of clarity, the presence
of an ERE is depicted by the orange colored spike in the temporal
dynamics of θ̇ in Fig. 4(c) and the respective portion of trajectory is
shown by the orange color in the phase space of Fig. 4(d). Figure 4(e)
exhibits the time series of θ̇ and the corresponding phase space dia-
gram is shown in Fig. 4(f) for l = 1.001 where EREs are not observed
anymore. Also, the trajectory’s deflection from a bounded region
in the phase space is absent. Figure 4(g) is the depiction of the
temporal evolution of θ̇ for l = 1.002 18 in which some intermit-
tently large spikes are observed. Here, few rotational events exceed
HT and are qualified as EREs. Figure 4(h) shows the respective
phase space in the cylindrical surface. Here, the trajectory evolves
within a portion of the circumference of the surface and also spends
some time fully rounding the periphery of the cylinder. But some-
times, the trajectory traverses around the cylindrical surface far away
from its regular arrival path during rotation. The temporal dynam-
ics of θ̇ for l = 1.002 184 is depicted in Fig. 4(i), where we observe
only chaotic dynamics in libration. Since rotational dynamics are
fully terminated, and the dynamics is switched over to libration,
no large intermittent spikes in the time series are observed here.
The denser region in Fig. 4(i) displays the librational chaos merely.
Here, the extreme rotational event qualifying red threshold line HT

is not also observed because of no rotational event. We delineate the

FIG. 4. Temporal dynamics (left panels) and cylindrical phase spaces (right pan-
els): We choose five different values of l from five different zones of the bifurcation
diagram in Fig. 3. Panels (a) and (b) show the dynamics of the pendulum (1) at
l = 0.999 941, just before the crisis point L. Clearly, there are no signs of EREs.
We plot the extreme rotational events qualifying threshold HT = µ + 6σ by the
red dashed horizontal lines in all panels of the left column. Similarly, we do not
find any ERE in the third [panels (e) and (f) for l = 1.001] and fifth rows [panels
(g) and (h) for l = 1.002 184]. We choose the value of l in the third row far away
from both crisis points L and R. The last row only contains librational motion;
hence, we do not plot the threshold HT in panel (i). The second [panels (c) and
(d) for l = 0.999 945] and fourth rows [panels (g) and (h) for l = 1.002 18] reveal
the appearance of EREs, as we choose the value of l near the crisis points from
post-crisis regimes. For illustration, two spikes (orange color) are chosen from
both panels of time evolutions to visualize the path of trajectories corresponding
to two phase spaces during extreme rotational events. All panels on the left col-
umn display the temporal evolutions of θ̇ , and their respective phase spaces are
shown in the right column. The values ofHT are 1.634, 1.629, 2.189, and 1.971 for
respective values of l = 0.999 941, 0.999 945, 1.001, and 1.002 18. Other param-
eter values: ω = 0.25, φ = 22

7
, m = 1.0, g = 1.0, γ = 0.75, τ ′ = 0.7167,

τ = 0.4. Initial condition: (θ0, θ̇0) = (0.01, 0.02). See the main text for further
details.

Chaos 33, 063134 (2023); doi: 10.1063/5.0152699 33, 063134-5

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0152699/17996200/063134_1_5.0152699.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Time evolution of θ̇ (top panel) and variation of phase difference 1 with respect to time (bottom panel): We choose two values of the pendulum’s length to illustrate
the temporal dynamics of θ̇ and the occurrence of phase slips. We choose l = 0.999 945 for panels (a) and (b) just after the crisis point L and l = 1.002 18 at the crisis
point R for panels (c) and (d). The inset of panel (b) shows the phase slip during the manifestation of the largest spike of the time series in panel (a). An abrupt jump of 1 is
observed during the phase slip in both panels (b) and (d). Red dashed lines indicate the threshold HT .

corresponding cylindrical surface depicting the trajectory in a small
portion of phase space in Fig. 4(j).

Now, we examine the route of the emergence of extreme rota-
tional events by analyzing the bifurcation diagram in Fig. 3. From
the left side of the bifurcation diagram, a sudden and abrupt jump
of the chaotic attractor is observed at the critical value of the bifur-
cation parameter, l ≈ 0.999 942, evinced by L on the diagram when
we increase the value of l. We also provide an enlarged version of
a shaded region of the bifurcation diagram in the inset on the left-
hand side for precise observation of the transition. On the left-hand
side of L, the dynamics are chaotic but exhibit librational as well as
rotational motion, and the maximum amplitude of θ̇ is less than 1.5.
But, though the dynamics remain chaotic, consisting of oscillation
in libration as well as rotation at the right-hand side of L, the maxi-
mum amplitude of θ̇ reaches around 2. Temporal dynamics of θ̇ near
the critical value of l (crisis point L) is depicted in Fig. 4(c), which
exhibits the appearance of EREs. Similarly, a sudden large expan-
sion of the chaotic attractor is also noticed at the critical value of
the bifurcation parameter l ≈ 1.002 18 being evinced by R on the
diagram from the right side of the bifurcation diagram when we
decrease the value of l. For this scenario, chaotic librational dynam-
ics transit to chaotic dynamics consisting of not only libration but
also rotation (see the zoomed version of the shaded portion in the
inset of Fig. 3 for better visualization). The temporal evolution of θ̇

near the critical value of l is exhibited in Fig. 4(g), where the appear-
ance of EREs is clearly detected. So from the left-hand side as well as
the right-hand side, a sudden large expansion of the chaotic attrac-
tor occurs for the critical values of the bifurcation parameter l in

Fig. 3. This incident occurs when chaotic dynamics emerge in a sys-
tem through interior crisis. Chaotic attractors can experience sudden
and qualitative changes depending on the system parameters. These
changes are well-known in the literature as crises.55–57,73,74 Generally,
interior crisis occurs when a chaotic attractor, typically relatively
small, collides with the stable manifold of an unstable equilibrium
point or unstable periodic orbit, leading to intermittent behavior
and sudden enlargement of the attractor in dynamical systems. This
process is also responsible for the appearance of extreme events in
many dynamical systems.25,37,53 So, we also conclude that extreme
rotation events are generated in the system through the route of inte-
rior crisis. Interior crisis-induced intermittent large spikes in time
evolution of θ̇ are observed in Figs. 4(c) and 4(g).

Now, another interesting observation is experienced, con-
nected with the switching between librational and rotational dynam-
ics when the pendulum swings back and forth and whirls over
the top successively. From Fig. 3, we observe oscillatory dynam-
ics in libration and rotation until the pendulum length l crosses
1.002 18. When the system switches between rotational and libra-
tional dynamics, the difference37,75 between the instantaneous phases
of the system and the forcing signal exceeds a multiple of π . Gener-
ally, this abrupt change of phase difference is called phase slip.76,77

So, to verify the appearance of the phase slip, we first calculate
the instantaneous phase of the ac torque τ sin(ωt + φ) using the
Hilbert Transform78 method and then calculate its difference with
the system’s phase θ , and finally, we plot the phase difference 1

with respect to time in the lower panel of Fig. 5. Notably, when-
ever there is a transition from libration to rotation or vice versa, an
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accompanying phase slip can be observed in the time evolution of
θ̇ , displayed in the upper panel of Fig. 5. For l = 0.999 945, the time
series of θ̇ is depicted in Fig. 5(a), and its corresponding phase differ-
ence is shown in Fig. 5(b). For the large-amplitude rotational event
observed in the time series plot, its respective phase slip is shown
in the inset figure for clear visualization of the abrupt jump of the
phase difference 1, highlighted by the shaded portion for the spe-
cific region. In Fig. 5(c), the time evolution of θ̇ for l = 1.002 18 is
portrayed, and its corresponding phase difference plot is depicted
in Fig. 5(d). The two panels (b) and (d) of the phase difference plot
make it reasonably clear that a phase slip in the phase difference with
regard to time takes place during the transition of system dynamics
from libration to rotation. Consequently, phase slip occurs with the
occurrence of EREs.

Statistics of EREs: Still now, we observe from Fig. 3 that the
whole bifurcation diagram can be classified into five regimes for
l ∈ [0.998, 1.004]. Before the pre-crisis regime, i.e., for l < 0.999 942,
there is no sign of EREs. To further validate this claim, we gather
sufficiently long data of length 1011, out of which we discard the ini-
tial transient of size 106. We plot the histogram for l = 0.999 941
in Fig. 6(a). Clearly, there are two separate portions in these pan-
els. Data related to rotational motion concentrate in the right group,
whereas data related to librational motion accumulate in the left
group. We further plot the red vertical threshold line HT to dis-
tinguish between extreme rotational events and chaotic oscillations.
The distributed numerical data cannot cross this threshold HT as
l = 0.999 941 is chosen from the pre-crisis regime. The scenario dif-
fers if we choose l = 0.999 945 just after the crisis point L. Here, a
fair portion of the accumulated data crosses the red line as seen from
Fig. 6(b) and, thus, confirms the presence of EREs. This finding also
validates our bifurcation analysis, given in Fig. 3. We highlight a
portion by the shaded box in that figure (Fig. 3) just after the cri-
sis point L, from which whenever we choose a value of l, then we
can anticipate EREs. Beyond that gray box, those rotational motions
are not high enough to cross the pre-defined threshold HT unless
we choose a value of l from another shaded box just after the cri-
sis from the opposite direction. We choose a value 1.001 of l from
the intermediate range far from the crisis points L and R. Figure 6(c)
shows the chaotic trajectories cannot cross the threshold line HT and
hence validates our understanding. As we move further toward the
point R (l ≈ 1.002 18), we can expect the emergence of such large-
amplitude EREs again. We choose a value of l = 1.002 18 at the crisis
point R, where we expect the occurrence of EREs, as illustrated in
Fig. 3. Our grouped data into bins along the x-axis in Fig. 6(d)
attest to the occurrence of EREs. Figure 3 also confirms the same
attribute for this choice of l, where we notice the bounded chaotic
(rotational) trajectory explodes into a large-size attractor. This bifur-
cation diagram displays that there are no rotational events beyond
this crisis point R; hence, we cannot anticipate such large-amplitude
EREs there. Thus, we cannot detect any EREs for l = 1.002 184 in
Fig. 6(e). Figure 6(e) only shows the data related to the librational
motion.

To further study the inter-event intervals between the EREs,79

we choose two particular values of l. We select the value of l ini-
tially as 0.999 945 that lies just after the crisis point L. The second
one, l = 1.002 18, coincides with the crisis point R. These val-
ues of l correspond to the emergence of EREs, as discussed using

FIG. 6. Histograms of rotational and librational dynamics in semi-log scale: We
collect the data related to both librational and rotational motion over long itera-
tions of length 1011 leaving a transient of 106. The gap between the two groups
is due to the presence of two different motions involving librational and rota-
tional dynamics. The group of bins on the left side corresponds to the librational
motion, and the other group on the right side has rotational dynamics. Using the
red vertical line, we also plot the extreme rotational event qualifying threshold
HT = µ + 6σ , where µ is the sample mean and σ is the standard deviation of
the sample. This threshold helps to distinguish the EREs from the chaotic rota-
tional dynamics. The rotational events on the right of HT are considered as EREs.
Note that panel (e) contains only librational events at l = 1.002 184. Parameter
values: (a) l = 0.999 941, (b) l = 0.999 945, (c) l = 1.001, (d) l = 1.002 18, and
(e) l = 1.002 184. Initial condition: (θ0, θ̇0) = (0.01, 0.02).
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FIG. 7. Probability density functions (PDFs) of the inter-event intervals in semi-log
scale: We calculate the inter-event intervals (IEIs) between consecutive EREs
from the collected sample of size 1011 discarding a sufficiently long transient
of length 106. The blue bins representing our numerical data show a good fit
with the continuous exponential distribution (black line) for panel (b). However,
the inter-event intervals of consecutive EREs in panel (a) do not belong to the
exponential distribution family, as confirmed by the chi-square goodness of fit
test. This highlights the crucial dependence of inter-event intervals of EREs on
the specific parameter values. Small inter-event intervals have higher probabili-
ties of occurrence of EREs. However, since the distribution is positively skewed
(right-skewed), the probability of the appearance of EREs reduces significantly
as the inter-event intervals increase. Parameter values: (a) l = 0.999 945 and (b)
l = 1.002 18. Estimated rate parameter: (a) λ = 4.2177 × 10−06 with standard
error 3652.39, and (b) λ = 1.6018 × 10−05 with standard error 493.323. Calcu-
lated coefficient of variation (CV): (a) CV = 0.9876 and (b) CV = 1.0168. We use
the MATLAB Distribution Fitter app to fit the probability distribution to the gathered
data.

previous figures. We plot the histograms of the gathered data of
length 1011 after discarding the initial transient of size 106. Through-
out the study, we use the same initial conditions θ0 = 0.01 and
θ̇0 = 0.02 (unless stated otherwise). We try to fit our accumulated
data with the exponential distribution as shown in Fig. 7. Using
MATLAB, we confirm our numerical data (shown in blue bins in

Fig. 7) fitted by the following probability density function (PDF):

f(x; λ) =

{

λe−λx; x ≥ 0,

0; x < 0,
(2)

where λ > 0 is the rate parameter. We explicitly calculate this rate
parameter λ for l = 0.999 945 and 1.002 18. The best estimated rate
parameters are λ = 4.2177 × 10−06 with standard error 3652.39 for
Figs. 7(a) and λ = 1.6018 × 10−05 is for 7(b) with standard error
493.323. Notably, the standard error in panel (a) is more significant
(larger) than in panel (b) regarding data fitting by the exponen-
tial distribution. This large error is due to the number of EREs in
our gathered data. We iterate the system (1) for 1011 iterations dis-
carding a sufficiently long transient of length 106 for both panels.
However, the number of EREs in panel (a) is 4214, and the same
in panel (b) is 16 015. The availability of a larger number of EREs
in panel (b) offers a better statistical convergence to the exponential
distribution than in panel (a). Thus, we get a lower standard error
in panel (b). We additionally calculate the coefficient of variation
(CV), defined as the ratio of standard deviation and the mean of the
sample. This measure is equal to 1 in the case of the exponential
distribution. Contrapositively, if the collected dataset’s coefficient of
variation (CV) is not equal to one, then the empirical probability
density plot is not fitted with the PDF of the exponential distribu-
tion. For the data shown in panels (a) and (b) of Fig. 7, the respective
CVs are 0.9876 (for l = 0.999 945) and 1.0168 (for l = 1.002 18).
Although both the derived CVs are very close to unity, we still con-
clude that the accumulated data of inter-event intervals (IEIs) for
the case of l = 1.002 18 is only distributed according to the expo-
nential distribution. A goodness-of-fit test (the chi-square test) also
supports this conclusion. The memoryless property of the exponen-
tial distribution implies that the probability of an ERE occurring in
the subsequent unit of time is the same, regardless of how much time
has elapsed. In other words, the probability of an ERE occurring in
the next unit of time is constant over time intervals. In contrast,
for the dataset corresponding to l = 0.999 945, although the CV is
close to one, the accumulated data of IEIs are still not fitted with
the PDF of the exponential distribution, which is also confirmed by
the chi-square goodness of fit test. Therefore, we can conclude that a
dependence structure exists between the occurrence of EREs for this
particular parameter value. These studies illustrate the fundamen-
tal relationship between the parameters’ values and the inter-event
intervals of EREs. The process’s underlying dynamics can signifi-
cantly impact the probability distribution choice that best describes
the return intervals of consecutive EREs. This interplay between the
underlying process and the resulting distribution is a rich and com-
plex field of study. It highlights the importance of carefully selecting
appropriate statistical models to represent the data accurately.

IV. CONCLUSIONS

In this work, we have shown how a suitable choice of pendulum
length can produce large-amplitude rotational motion of a forced-
damped nonlinear pendulum under the influence of the ac and dc
torque. We have characterized the librational and rotational events
using the bifurcation analysis. The same bifurcation diagram helps
us detect extreme events’ emergence in the rotational dynamics. The

Chaos 33, 063134 (2023); doi: 10.1063/5.0152699 33, 063134-8

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0152699/17996200/063134_1_5.0152699.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

system displays rotational and librational dynamics, but occasionally
the angular velocity becomes higher during rotation than in regu-
lar observation. Our numerical simulations suggest that the chaotic
attractor in the rotational motion suddenly enlarges at two different
post-crisis regimes due to the interior crisis, generating intermittent
behavior in the rotational dynamics. The temporal evolutions of the
angular velocity further validate that these sporadic rotational events
occasionally cross a statistically pre-defined threshold. Hence, these
large-amplitude rotational events have similar features of extreme
events, as observed in various nonlinear dynamical systems. We
have also displayed the respective phase portrait for each time series
to confirm our claims. Furthermore, we have obtained an expo-
nential distribution for the inter-event intervals between EREs for a
specific length of the pendulum. We have elucidated the occurrence
of phase slips between the system’s phase and the externally applied
ac torque in due course of the origination of extreme rotational
events.

It might be interesting to detect the unstable periodic orbit
lying in the basin of attraction of the attractor, generating inte-
rior crises. However, identifying such nonattracting chaotic sets
mediating interior crises is more challenging and requires further
investigation. One might investigate coupled nonlinear pendula in
the spirit of the present study, which may offer greater insight into a
wide range of dynamical systems. Examining whether the observed
signature of extreme rotational events is experimentally observable
will be further interesting. Such generalizations are left as an exciting
core avenue for future research. It is also possible to investigate why
the angular velocity rises irregularly during rotation. In conclusion,
we anticipate that the findings of this work will contribute to our
knowledge of how extreme large-amplitude events arise in nonlinear
dynamical systems and will encourage additional research into the
causes of these extreme rotational events in other non-equilibrium
systems.
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