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Abstract

A Novel Tool for the Assessment and Validation of Acceleration Methods for Solving the
Neutron Transport Equation

by

Joshua Stephen Rehak

Doctor of Philosophy in Engineering – Nuclear Engineering

University of California, Berkeley

Associate Professor Rachel Slaybaugh, Chair

The Boltzmann Transport Equation describes the behavior of the population of neutrons
in nuclear systems. Solving this equation is therefore of great interest to researchers designing
future generations of nuclear reactors among many other applications. Solving the neutron
transport equation using computers requires careful discretization of the phase space and
iterative methods to converge to a solution. These methods can be slow to converge, often
due to material properties in systems of interest. Highly scattering media, for example,
are often used in reactor designs and can cause many methods to take arbitrarily long to
converge. To combat computational inefficiencies, researchers modify the iteration schemes
using a broad class of algorithms called acceleration methods. Implementing, assessing, and
validating acceleration methods is necessary but challenging for researchers. A particular
challenge is confirming whether an acceleration method is actually improving the simulation
the way we expect. Computational tools are generally designed for solving the problem of
interest, not for assessing the solving process itself.

We present the Bay Area Radiation Transport (BART) code, a computational tool de-
signed with the researcher as the end-user in mind. This code is designed to relieve some of
the burden of implementing novel acceleration methods. It leverages modern coding prac-
tices to minimize the amount of code that must be modified to implement new methods
and aims to make clear where these modifications need to be made. This both simplifies
implementation and makes comparison across methods easier. Once implemented, the code
provides a high-quality environment for testing the new method. The design of the code iso-
lates modifications, providing a good comparison to a base case as well as other acceleration
methods. Making this comparison is supported by the inclusion of a robust instrumentation
system.

Developers are empowered to collect and extract data of any type from anywhere in
the solving process with ease. This data collection can then be used to assess and validate
implemented methods. Importantly, these data can interrogate whether the problems are
being accelerated where and how the methods are designed to provide acceleration. Typically,
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developers do not have the ability to see if a method is actually doing what we think, we only
measure compute time and iteration count; BART provides much more information about
what is happening. Finally, the code is designed with comprehensive testing to provide a
reproducible and trusted environment to researchers.

The code itself is robust, with the ability to solve angular and scalar formulations of the
transport equation in one, two, and three dimensions. We demonstrate a level-symmetric-
like Gaussian quadrature implemented for solving angular formulations and show that it
accurately integrates the spherical harmonics.

We present two acceleration methods, the two-grid (TG) and nonlinear diffusion accel-
eration (NDA) methods. The TG method is designed to accelerate the Gauss-Seidel (GS)
iteration process in the presence of large amounts of upscattering. We demonstrate the
effectiveness of the method using the BART code in one, two, and three dimensions. The
effectiveness is shown by a reduction in total GS iterations by a larger factor than is required
for the method to be efficient. We also demonstrate the benefits of the BART code, showing
more rapid convergence of the scattering source using the code’s unique instrumentation.
The NDA method is designed to accelerate convergence by converging diffusive error modes
more rapidly. We demonstrate effectiveness by reducing total iterations in one, and three
dimensions. For the one-dimensional case, we demonstrate a significant reduction in the
diffusive error modes using the BART Fourier analysis instrumentation.

We will examine the goals of the BART code and how the design meets these goals. By
examining two acceleration methods and analyzing them using the data we can collect using
this new tool, we will show the benefits of this novel code to the broader research community.
The BART code changes how people are able to implement, assess, and validate acceleration
methods. The ease of use and new information enables the development of new and better
methods so we can design and build better nuclear systems.
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Chapter 1

Introduction

Humanity is unique among the species on Earth, not least of all because its existential crises
are of its own making. For the second half of the 20th century, the cold war between the
United States of America and the USSR ignited a nuclear arms race that threatened to
destroy both countries, and most of humanity in the balance. Now, in the 21st century, the
threat of sudden destruction at the hands of a third has been replaced by the threat of slow
destruction at the hands of the many. The global pollution crisis and the climate change
it is driving is more insidious than nuclear war, a hard-to-identify destruction driven by a
thousand small decisions. History is not without a sense of irony, as one of the greatest tools
we have to fight this pollution crisis is nuclear energy.

Ever increasing demand for energy drives the global pollution crisis by creating an in-
centive for the use of fossil fuels and other carbon-releasing power sources. Transnational
corporations focused on the short term need for profit ignore the long-term consequences of
their actions, leaving governments and non-governmental-organizations to take action. So-
lutions to many of the effects of global climate change will require a large amount of energy:
caring for and housing climate refugees, growing food in lands that have become less arable,
and building carbon neutral industries. To avoid the positive feedback loop, we require the
development and deployment of power sources that do not contribute to the carbon in the
atmosphere, in operation or fabrication. Renewable power sources like solar and wind can
meet many of our energy needs, but are dynamic and depend greatly on environmental con-
ditions. Static power sources are still a necessity, a need most optimally met by a zero-carbon
energy source, such as nuclear energy.

The gigawatt-scale mega-project nuclear reactors of the 20th century are not sufficient
to meet the challenges of global climate change. The largest resource required by these
projects is one we do not have in bulk: time. As climate conditions change more rapidly,
the spatial distribution of energy needs will change with it. Important factors support that
small modular reactors (SMRs) and other advanced concept reactors may be the key to
the future of nuclear energy. First, smaller projects that are quicker to deploy and require
exponentially less materials are better equipped to meet current and future needs. Second,
advanced reactors may also find a better fit in smart-grid technology that is a key part
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in maximizing the use of dynamic renewable energy sources. Finally, branching out from
the water-cooled reactor designs of the 1950s and using modern fault detection systems can
produce designs that are passively safe, increasing public acceptance of the technology. For
these reasons, and others, It is imperative that we as a species support the development of
these advanced reactors to meet this crisis.

A major need at the core of the development of advanced reactors is the use of computer
modeling. A steady energy-creating nuclear reaction requires precision in both design and
operation. The chain reaction is sustained by a population of neutrons that interact with a
fuel material (e.g. uranium or plutonium) causing the release of both energy and more neu-
trons. In general, a constant neutron population size produces a steady amount of reactions
and therefore a steady amount of energy. Some major factors complicate the situation and
make modeling the neutron population difficult. First, the geometry of the reactor is very
important and can be complex, making the path and possible escape of neutrons compli-
cated. Second, many reactors require the neutrons to interact with a material that reduces
their energy before they can interact with the fuel; a process known as moderation. Finally,
models must be able to solve problems with sufficient accuracy, to ensure safety and enable
licensing. The complicated problem of modeling the neutron population in a nuclear reactor
has lead to the development of two broad categories of methods.

The first is Monte Carlo (MC) methods. These methods use the statistical sampling
of random numbers to solve numeric problems; they are used in a broad variety of fields
from biology to finance. The use of MC methods to simulate the physics and geometry of a
nuclear chain reaction was first developed at Los Alamos National Lab (LANL) in the 1940s
to develop the first nuclear weapons. Since that time, the methods have become widespread,
complex, and increasingly powerful and precise. Now, many labs and Universities that
study nuclear engineering maintain or develop their own MC code that seeks to further the
art. Monte Carlo methods have many benefits, including the ability to run the simulation
longer or with a more powerful computer (or both) to generate increasingly precise solutions.
The downside being the exact same: that increasingly precise solutions require running
the simulation longer or with a more powerful computer. In some cases, even running a
simulation for an arbitrarily long amount of time will not result in a solution with enough
precision. These cases require researchers to make more efficient algorithms, or use other
data to improve the algorithm. These methods are not the focus of this dissertation; we will
rather focus on the second broad class, deterministic methods.

Deterministic methods are those that confront the mathematical equations that describe
the neutron population directly. While MC methods treat the neutrons as individual parti-
cles, deterministic methods instead consider the neutrons as a distributed population. The
equation used was developed by Ludwig Boltzmann in the 1800s to describe thermodynamic
systems, but is equally applicable to neutrons. Unlike MC methods, the precision of a de-
terministic method cannot be improved arbitrarily. The precision and quality of the solve is
limited by our ability to translate a mathematical equation into a form that can be solved
numerically. This is no small task, as the equation takes into account the whole range of
neutron population position, velocity, and energy, all of which can span multiple orders of
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magnitude. Some extremely simplified versions of the equation can be solved easily, even
by hand. However, a level of precision needed to ensure the safety of a novel reactor design
requires a computer to solve a much more complex version and requires an assortment of
mathematical tools.

Numerical methods to solve complex equations like the neutron transport equation are
an active and fertile area of research. Ever since the development of the first computer
algorithms, researchers have been optimizing and developing methods for solving abstract
mathematical equations in the concrete digital world of a computer. Deterministic methods
utilize the best of these algorithms to solve the neutron transport equation in a reactor de-
sign quickly and with high precision, but encounter limitations. In some cases, an algorithm
may take an arbitrarily long amount of time to solve if the reactor uses certain materials
or geometric configurations. Mathematical improvements to algorithms, called acceleration
methods, work to make the solve faster or, sometimes, possible at all. Unfortunately, algo-
rithms and acceleration methods that work well for some reactors may not work for others,
and it may take time to find optimized methods for novel designs. It is also sometimes
unclear if combinations of acceleration methods improve or detract from the ability to solve
the neutron transport equation. We have a metaphorical toolbox of modeling algorithms
and acceleration methods that we have experience working with, but we do not always know
which will work best for novel reactor designs. If we want to support the modeling and
development of advanced reactors, we need a way to assess which tools will be best, espe-
cially for reactors where we have less experience and intuition. This dissertation presents an
environment for performing such an assessment.

The BART code presented in this dissertation is designed to provide a testing ground for
deterministic acceleration methods, a new and valuable contribution to reactor simulation.
This code is unlike codes designed to solve the neutron transport problem quickly and provide
a solution at the end. Instead, the data of concern is collected during the solve algorithms
itself, to provide insight into how the methods are really working as well as whether they are
effective and for what reasons. Existing codes may present difficulties when collecting this
data as they are not built for this purpose, resulting in large scale or intrusive modifications.
The BART code is designed to make the data collection process easy and minimize impact
to the rest of the solve. Designed with the developer in mind, the code is modular so that
portions can be swapped out, while maintaining the rest of the code identical. This enables
isolation of the modifications to assess their effectiveness.

Overall, the combination of improved data collection and modular design will provide
researchers with a testing ground for developing and investigating novel methods and com-
binations of methods. In the past, people have implemented methods and use a few basic
indicators to determine whether the methods are working the way they expect without hav-
ing the data to truly support the conclusions. A main driver for the BART code is that
we can get detailed data throughout a solve to validate our mathematical hypotheses. To
some extent this is enabled by modern computing languages and software development tools.
Moreover, this is motivated by increasing access to powerful computing resources combined
with the need to rapidly, repeatedly, and accurately model reactors we have much less ex-
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perience with than light water reactors. The following chapters describe the philosophy,
implementation, and testing of BART:

Chapter 2: Background This chapter will present the neutron transport equation and
the schemes used to discretize the phase space for solving. Finite element methods, central
to the operation of the BART code, will be discussed. Two second-order formulations, the
diffusion and self-adjoint angular-flux (SAAF) formulations, will be derived.

Chapter 3: Iterative Methods and Acceleration Schemes This chapter describes
the iterative methods used to solve the discretized transport equation and the convergence
challenges that are present in these methods. Two acceleration schemes: TG and NDA will
be described.

Chapter 4: Assessment of Acceleration Methods This chapter discusses the chal-
lenges associated with implementing acceleration methods in novel or existing codes. In
addition, we discuss how to define and assess the effectiveness of acceleration methods. Fi-
nally, we outline the challenges associated with validating whether the methods are effective
for the reasons expected.

Chapter 5: The BART Code and Design This chapter provides an overview of the
design goals of the BART code. In addition, we describe how the particular design features of
BART meet these goals and enable it to be an important and novel tool for future researchers.

Chapter 6: Assessing Acceleration Methods using BART In this chapter we discuss
the implementation details of two acceleration methods in BART: TG and NDA. We then
use the tools provided by BART to assess and validate the effectiveness of these methods.

Chapter 7: Conclusions and Future Work This chapter will cover lessons learned and
conclusions drawn from the BART project. We will discuss existing issues and a future path
forward for the code.
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Chapter 2

Background

In this chapter, we will cover some of the mathematical tools used to quantify the propagation
and generation of neutrons in a steady state system. We will begin with the time independent
Boltzmann transport equation, a balance equation that governs the production and loss of
neutrons in such a system. Next, we will discuss the required discretization of the phase space
of this equation. This includes a discussion of the finite element method and its application.
The approximations and assumptions we use will enable us to ultimately solve the transport
equation for complex systems. Finally, we will discuss two formulations of the transport
equation: the diffusion equation and the SAAF equation. These will be used extensively in
future Chapters, and so we will derive the forms appropriate for the finite element method
as well.

2.1 Boltzmann Transport Equation

The Boltzmann transport equation to describes the population of neutrons in a steady-state
system. To use this equation, we will ignore two quantum-mechanics properties of neutrons.
First, we will assume that that all neutrons are point particles. This naturally holds for
high energy neutrons with very small de Broglie wavelengths. There are very few neutrons
within the populations of interest that have low enough energy that their wave-like nature
is important and thus this assumption has minimal impact on accuracy. Second, we will
assume that all neutrons can be exactly described by both a position and a velocity. The
uncertainty in knowing these values simultaneously is ignored. Since we are looking for
average, aggregate behavior of the neutron population, this assumption also has minimal
impact on accuracy.

For a given neutron, the position is described by the vector ~r and the velocity is

~v = v(E)Ω̂ ,

where v(E) =
√

2E/m is the speed, m is particle mass, E ∈ [0,∞] is particle energy, and Ω̂

is a directional unit vector such that |Ω̂| = 1. The Ω̂ vector can also be described in polar



CHAPTER 2. BACKGROUND 6

coordinates,

Ω̂ =

sin (θ) cos (ϕ)
sin (θ) sin (ϕ)

cos (θ)

 .

The entire phase space as described is shown in Fig. 2.1. In a three-dimensional (3D)
domain, there are six degrees of freedom for a neutron: three position, two direction, and one
energy. As neutrons propagate through matter, they interact with nuclei and are scattered

y

z

x

~r

Ω̂

θ

ϕ

Figure 2.1: Neutron phase space in three-dimensional position with two-dimensional direc-
tion vector.

or absorbed. For finite regions, neutrons will eventually stream out through a boundary if
they are not absorbed. Scattering events may change the velocity (in magnitude, direction,
or both) of a neutron but ultimately leave the number of neutrons unchanged. Absorption
events remove a neutron from the population but some events, such as fission or (n, 2n), may
produce secondary neutrons.

A description of the steady-state neutron population that includes these effects is the
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linear Boltzmann transport equation,[
Ω̂ · ∇+ Σt(~r, E)

]
ψ(~r, E, Ω̂)

=

∫ ∞
0

dE ′
∫

4π

dΩ̂′Σs(~r, E
′ → E, Ω̂′ → Ω̂)ψ(~r, E ′, Ω̂′)

+ χ(E)

∫ ∞
0

dE ′ν(E ′)Σf (~r, E
′)

∫
4π

dΩ̂′ψ(~r, E ′, Ω̂′) +Q(~r, E, Ω̂) , (2.1)

where linearity is based on the assumption that neutron-neutron interactions are ignored1.
The angular neutron flux ψ(~r, E, Ω̂) is the variable for which we are solving and gives the
number of neutrons per unit area per steradian per unit energy; the other terms are defined
in Table 2.1. A full derivation of the transport equation and a more in depth description of

Table 2.1: Quantities and terms in the linear Boltzmann transport equation.

Term Description

Σt(~r, E) Total cross-section at ~r for neutrons with energy E

Σs(~r, E
′ → E, Ω̂′ · Ω̂) Differential scattering cross-section at ~r that scatters neutrons from

energy E ′ to E and direction of motion Ω̂′ to Ω̂
Σf (~r, E

′) Fission cross-section at ~r for neutrons with energy E ′

ν(E ′) Average neutrons created by fission caused by a neutron of energy E ′

χ(E) Probability that a neutron of energy E will be created by a fission
reaction

Q(~r, E, Ω̂) A fixed source at ~r that emits neutrons of energy E in direction Ω̂

all the terms can be found in many standard texts [1, 2, 3].
The linear transport equation is often expressed in operator form

Hψ = (S + F)ψ +Q , (2.2)

where

Hf(~r, E, Ω̂) =
[
Ω̂ · ∇+ Σt(~r, E)

]
f(~r, E, Ω̂)

Sf(~r, E, Ω̂) =

∫ ∞
0

dE ′
∫

4π

dΩ̂′Σs(~r, E
′ → E, Ω̂′ → Ω̂)f(~r, E ′, Ω̂)

Ff(~r, E, Ω̂) = χ(E)

∫ ∞
0

dE ′ν(E ′)Σf (~r, E
′)

∫
4π

dΩ̂′f(~r, E ′, Ω̂′)

are the transport operator, scattering operator, and fission operator, respectively.

1Interactions between neutrons would be proportional to the angular flux of both the incident and
interacted-upon neutrons, which are members of the same population. This leads to a term proportional to
the square of the angular flux, and thus non-linearity.
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2.1.1 Criticality

Many fission reactions result in the production of one or more neutrons, creating a chain-
reaction with the potential of a self-sustaining equilibrium state. In an equilibrium situation
where, on average, every lost neutron is replaced by a fission neutron the rate of change of the
population size is zero, and thus at a critical point; the system is called “critical.” If more
neutrons are created than lost, the system is “supercritical” and will grow exponentially.
Conversely a net loss of neutrons will cause the population to decay away exponentially in
a “subcritical” system.

Calculating the criticality state of a system is of great practical interest. This is partic-
ularly important in nuclear reactor design, where control of the criticality is vital to both
steady-state operation, power changes, and accident studies. To this end, we introduce a
factor, k-effective, that synthetically weighs the average neutrons created per fission: ν/k.
Solving the system assuming an equilibrium state will yield a value for this factor. If it is
unity, the each neutron produces one new neutron and the system is critical. Deviation from
unity indicates a deviation from critical. If k > 1, the more than one neutron is produced
by each neutron, indicating that the system is supercritical. A similar line of reasoning for
cases where k < 1 leads to the following summary for k-effective,

k


< 1, subcritical,

= 1, critical,

> 1 supercritical.

Expressing the k-effective version of the transport equation,[
Ω̂ · ∇+ Σt(~r, E)

]
ψ(~r, E, Ω̂)

=

∫ ∞
0

dE ′
∫

4π

dΩ̂′Σs(~r, E
′ → E, Ω̂′ → Ω̂)ψ(~r, E ′, Ω̂′)

+
χ(E)

k

∫ ∞
0

dE ′ν(E ′)Σf (~r, E
′)

∫
4π

dΩ̂′ψ(~r, E ′, Ω̂′) , (2.3)

and in operator form,

Hψ =

(
S +

1

k
F
)
ψ,

we see that this is an eigenvalue problem with eigenvalues k corresponding to angular flux
eigenvectors ψ. The k-eigenvalue problem is defined without an external source, Q(~r, E, Ω̂),
which has been dropped from the formulation. On physical grounds, we will assume that
there exists at least one eigenvalue k with a nonnegative eigenfunction [2]. In most cases
there will in fact be an infinite number of values of k, with the largest corresponding to the
positive eigenvalue, k0. The remaining k values will be ordered such that k0 > k1 > k2 . . ..
Other eigenvalue formulations of the transport equation exist but are outside the scope of
this work [4].
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2.2 Discretization and Expansion in Angle and

Energy

Solving a differential equation like the Boltzmann transport equation deterministically re-
quires a discretization of the phase space. Through this process, we will convert the infinite
degrees of freedom of a continuous system into a finite-dimensional space that we are able to
solve. Even with discretization, solving the equation with a high amount of accuracy often
requires an extremely large number of degrees of freedom. The use of supercomputers makes
very large problems possible, with possible discretizations having up to 100 million spatial
cells, 256 angles per octant, and over 200 energy groups [5]. Discretization of energy and
angle will be discussed in this section, and the discretization of space for the use of finite
element methods will be discussed in the next section.

2.2.1 Energy Discretization

The energy solution space is defined by

E = {E : E ∈ R, 0 < E ≤ Emax}

where Emax is some chosen maximum energy. A good choice for this value is the maximum
energy at which we expect to find neutrons in our system. Typically, this is determined by
the maximum energy of neutrons generated by fission events. We will divide this space into G
non-overlapping intervals that cover the entire space, {E0, . . . , EG−1} such that E =

⋃G−1
i=0 Ei.

The size and location of these groups will be informed by the physics of the problem. The
intervals are also by convention indexed such that lower numbers indicate higher energy
values, Eg > Eg+1.

The next step is to integrate Eq. (2.3) over the energy domain,∫ Emax

0

[
Ω̂ · ∇+ Σt(~r, E)

]
ψ(~r, E, Ω̂)dE

=

∫ Emax

0

dE

∫ Emax

0

dE ′
∫

4π

dΩ̂′Σs(~r, E
′ → E, Ω̂′ → Ω̂)ψ(~r, E ′, Ω̂′)

+
1

k

∫ Emax

0

dE χ(E)

∫ Emax

0

dE ′ν(E ′)Σf (~r, E
′)

∫
4π

dΩ̂′ψ(~r, E ′, Ω̂′) . (2.4)

We will assume that the integral can be expressed as a summation of integrals across each
energy group,2 ∫ Emax

0

=
G−1∑
g=0

∫ Eg

Eg+1

dE .

2Formally, we will be using a Petrov-Galerkin scheme in which our test function is unity within the
energy group interval and zero everywhere else.
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Using this, Eq. (2.4) becomes G equations of the form,

[
Ω̂ · ∇+ Σg

t (~r)
]
ψg(~r, Ω̂)dE =

G−1∑
g′=0

∫
4π

dΩ̂′Σg′→g
s (~r, Ω̂′ → Ω̂)ψg′(~r, Ω̂

′)

+
χg
k

G−1∑
g′=0

νg′Σ
g′

f (~r)

∫
4π

dΩ̂′ψg′(~r, Ω̂
′) , (2.5)

for g = 0, . . . , G− 1 where,

ψg(~r, Ω̂) =

∫ Eg

Eg+1

ψ(~r, E, Ω̂)dE

Σg
t (~r) =

∫ Eg

Eg+1

Σt(~r, E)dE

Σg′→g
s (~r, Ω̂′ → Ω̂) =

∫ Eg′

Eg′+1

dE ′
∫ Eg

Eg+1

dE Σs(~r, E
′ → E, Ω̂′ → Ω̂)

νg =

∫ Eg

Eg+1

ν(E)dE

χg =

∫ Eg

Eg+1

χ(E)dE

Σg
f (~r) =

∫ Eg

Eg+1

Σf (~r, E)dE .

This form of the neutron transport equation (NTE), Eq. (2.5), gives the G multigroup
equations. The number of groups can vary greatly depending on the amount of computational
power at hand, and the problem of interest. For the simplest problems, few groups may
suffice. For example, a simple pressurized water reactor problem may only require two groups:
a high energy (fast) group for neutrons born in fission events, and a low energy (thermal)
group for neutrons that cause these events after losing their energy by scattering. Modern
deterministic codes provide the option to use many more groups for more complex analysis.
For example, the SCALE code system [6] developed at Oak Ridge National Laboratory
provides a number of group structures, including one with 252 groups. The specifics of
discretization of the energy spectrum and modifications to cross-sections are outside the
scope of this work.

2.2.2 Scattering Expansion

The handling of the scattering operator is of particular concern. Fission reactions release
a large amount of energy, some of which is given to the neutrons released by the reaction
that will go on to cause further reactions. These energetic fast neutrons are not likely
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to immediately cause fission in some problems of interest. In thermal reactor problems,
for example, we expect these fast neutrons to scatter and reduce their energy. Only after
reaching a very low energy after many scattering events do we expect these neutrons to cause
more fission reactions to occur, continuing the chain reaction. This makes careful handling
of the scattering operator of particular interest.

The scattering reaction rate, as seen in the scattering operator,

Σs(~r, E
′ → E, Ω̂′ → Ω̂)ψ(~r, Ω̂′, E ′) ,

provides the rate of generation of neutrons of energy E and direction of motion Ω̂, due to
incoming neutrons of energy E ′ and direction of motion Ω̂′. We assume that the scattering is
axially symmetrical: the actual incoming and outgoing directions of motion do not matter,
only the angle between them, µ0 = Ω̂′ · Ω̂ = cos (θ). For many systems of interest this
assumption is valid and introduces minimal error.

The scattering cross-section is complex and, depending on the material and physical
layout of the system, neutrons can scatter with varying degrees of anisotropy. We therefore
expand the scattering cross-section using a functional expansion that enables us to represent
these scattering modes numerically. The most commonly used way to accomplish this is
to expand the scattering operator using the Legendre polynomials. This is equivalent to
expanding the scattering operator using the spherical harmonics [1] with m = 0, which is an
orthogonal set of functions that solve Laplace’s equation on a sphere. In addition, as shown
in Appendix A, the spherical harmonics are eigenfunctions of the scattering operator.

Thus, we expand the multigroup scattering differential cross-section as an infinite sum
of the Legendre polynomials,

Σg′→g
s (~r, Ω̂′ · Ω̂) =

∞∑
`=0

2`+ 1

4π
Σg′→g
s` (~r)P`(Ω̂

′ · Ω̂) ,

where the scattering cross-section moments are given by

Σg′→g
s` (~r) = 2π

∫
4π

Σg′→g
s (~r, Ω̂′ · Ω̂)P`(Ω̂

′ · Ω̂)dΩ̂ .

Practically, we must bound expansion when solving systems numerically. We typically choose
a maximum value of `max ∈ [3, 5], which efficiently captures the dominant modes of scattering.
In the special case of only isotropic scattering, only the 0th moment of the scattering cross-
section is nonzero. In this case, Eq. (2.5) reduces to[

Ω̂ · ∇+ Σg
t (~r)

]
ψg(~r, Ω̂)dE =

G−1∑
g′=0

Σg′→g
s0 (~r)φg′(~r)

+
χg
k

G−1∑
g′=0

νg′Σ
g′

f (~r)φg′(~r) +Qg(~r, Ω̂) , (2.6)

where

φg′(~r) =

∫
4π

dΩ̂′ψg′(~r, Ω̂
′) .
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2.2.3 Angle Discretization

The angular solution domain for the transport equation is the unit sphere,

Ω =
{

Ω̂ ∈ R2 : ||Ω̂||2 = 1
}
.

To discretize this space we will use a collocation method commonly referred to in this context
as the discrete ordinates method [1]. We enforce the solution to the transport equation
along a particular set of angles. There must be enough points to sweep all of the unit
sphere, the number of which varies with the dimension in which the problem is being solved
as well as the physics properties of the system. In addition, symmetry in the choice of
angles is usually desired for two reasons. First, so that no particular direction or axis is
preferred. Second, some reflective boundary conditions will require angles to have a reflected
counterpart. Using a quadrature set in this way is known as an SN method, where N is the
order of the quadrature set.

In addition, these angles and corresponding integration weights are chosen such that they
form a quadrature set that we can use to integrate the angular flux on the unit sphere to
calculate the scalar flux. For a quadrature set with N quadrature points,

φg(~r) =

∫
4π

ψg(~r, Ω̂)dΩ̂ ≈
N−1∑
n=0

wnψg(Ω̂n) ,

where (wn, Ω̂n) are the ordinate and weight pairs in the quadrature set. The quadrature set
should also integrate exactly the spherical harmonics and Legendre polynomials. This will
enable calculation of scattering moments from the previous section, as well as the Legendre
moments of the scalar flux.

A frequently used quadrature set for the discrete ordinates method is the level-symmetric
set. Use of this set has been historically very successful and a full description can be found
in many sources [2, 1]. Although this set fits all the requirements described above for a
quadrature set, the ordinate and weight values are not procedurally generated. These values
must be provided in a table and therefore do not provide the ability for an arbitrary order
quadrature set. Ideally, a quadrature set could be generated for any arbitrary order while
still meeting the requirements above. One set that accomplishes both of these is a level-
symmetric-like Gaussian quadrature set, described in Chapter 5.

Using this or any other quadrature set results in a set of N equations, where N is the
number of quadrature points in our set. For example, the isotropic scattering multigroup
equation shown in Eq. (2.6) is now,[

Ω̂n · ∇+ Σg
t (~r)

]
ψng (~r, Ω̂n)dE =

G−1∑
g′=0

Σg′→g
s0 (~r)φg′(~r)

+
χg
k

G−1∑
g′=0

νg′Σ
g′

f (~r)φg′(~r) . (2.7)
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Accounting for more angles and energy groups will improve the resolution and accuracy
of our solution, an incentive to using as many of each as possible. Unfortunately, for every
energy group we must solve all the angles, resulting in scaling ofO(N×G). The multiplicative
nature of the number of equations is further exacerbated by discretizing the spatial domain
of the phase space. This is a more complex process and depends greatly on the means by
which we will solve the transport equation.

2.3 Discretization of Space

Choices of spatial discretization are motivated by the methodology one will use to solve
the problem. In this section, we will motivate the discretization of differential equations
to enable the use of a finite element method (FEM). The derivations and methodology in
this section can be found in many FEM books, including Numerical Solution of Partial
Differential Equations by the Finite Element Method by Claes Johnson [7].

To describe the FEM methodology, we will consider a one-dimensional, bounded Poisson
problem

−d
2u(x)

dx2
= 1,∀x ∈ (0, 1) , (2.8)

with boundary conditions,
u(0) = u(1) = 0 . (2.9)

This problem has an exact solution

u(x) =
x

2
(1− x) , (2.10)

but we will assume this is unknown and seek an approximate solution û(x). One method
to approximate the solution to Eq. (2.8) is to impose the average of our approximation over
the interval by integrating

−
∫ 1

0

d2û(x)

dx2
dx =

∫ 1

0

dx . (2.11)

A better average will be achieved by a weighted average achieved by using a well-chosen
weighting function v(x),

−
∫ 1

0

d2û(x)

dx2
v(x)dx =

∫ 1

0

v(x) dx . (2.12)

Choice of this weighing function will have a large influence on the quality of our approxima-
tion.

Galerkin methods are those that chose v(x) from the same solution space as our approx-
imation. For the Poisson problem of this form, one good approximation is the sine function.
To this end, we can seek our approximate solution in the space,

V = {k sin(πx) : k ∈ R} ,
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where the weighing function is also a member of this space. The choice of weighing function
is arbitrary, and therefore our approximation must hold for all possible values.

We will seek an approximate solution û(x) ∈ V by plugging it into Eq. (2.12) and
requiring that it hold for all possible values of v(x),

−
∫ 1

0

d2

dx2
[k sin(πx)] v(x)dx =

∫ 1

0

v(x) dx, ∀v ∈ V . (2.13)

As the choice of v(x) is arbitrary, we will chose the simplest version, v(x) = sin(πx) and
solve for k: ∫ 1

0

kπ2 sin2(πx)v(x)dx =

∫ 1

0

sin(πx) dx. (2.14)

This ultimately yields a value of k = 0.129, which is an excellent approximation of the
Poisson equation.

2.3.1 Basis Functions

In the previous section, we described approximating the Poisson equation using a Galerkin
method and a set of good basis functions. The choice of basis functions was motivated by
an a priori understanding of what functions would provide a good approximation. In most
cases, we do not have this information and will need to arbitrarily choose a set of good basis
functions to use for our Galerkin method.

We must first discretize the solution space. We will divide our solution space, D, into a
triangulation3 of a finite number of non-overlapping elements that cover the entire space,

Th = {K0, K1, . . . , KH−1} , s.t. D =
H−1⋃
i=0

Ki .

We now define a space for our solution as a space of continuous functions that are piecewise
linear on each element,

Vh =
{
v ∈ C0(D) : v|K ∈ P1(K)∀K ∈ Th, v(∂D) = f(∂D)

}
, (2.15)

where C0(D) is the space of continuous functions on our solution domain, and P1(K) is the
space of polynomials that are linear on the element K, and f(∂D) is a function describing
our boundary conditions (only Dirichlet boundary conditions are shown here for simplicity).

If our solution is a member of this space, it is linear on each element and is therefore
uniquely described by the values of the function on the vertices of all the elements in our
triangulation. If our triangulation of H elements has M total vertices, our approximate
solution uh(~r) is therefore

uh(~r) =
M∑
i=0

uiϕi(~r) , (2.16)

3We will use the term triangulation to describe the discretization of the solution space into non-
overlapping elements, even when they are not triangular in shape.
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where ui is the value of our approximate solution at vertex i and ϕi(~r) is a function that is
unity at that vertex, and zero everywhere else. If the position of vertex j is ~rj,

ϕi(~rj) = δij, uh(~ri) = ui, ∀i, j ∈ 0, . . . ,M .

These functions ϕi(~r) form a basis for our solution space Vh. An example basis function is
shown in Fig. 2.2. Now equipped with a solution space on which to seek our solution and a
basis to describe this space, we will return to our general Galerkin method.

x

y

xi−2 xi−1 xi xi+1 xi+2

ϕi−1 ϕi ϕi+1
1

Figure 2.2: One-dimensional basis functions, ϕ(x).

2.3.2 The Weak Formulation

The Galerkin formulation for our model problem, Eq. (2.8), uses the weighted average form
of Eq. (2.12) and our solution space from Eq. (2.15). For this one-dimensional case with the
given boundary conditions, we will be seeking an approximate solution uh(x) in the space,

Vh =
{
v ∈ C0([0, 1]) : v|K ∈ P1(K)∀K ∈ Th, v(0) = v(1) = 0

}
,

such that

−
∫ 1

0

d2uh(x)

dx2
v(x)dx =

∫ 1

0

v(x) dx, ∀v(x) ∈ Vh .

Our choice of v(x) is arbitrary, as this must hold for all possible functions in our solution
space. We will therefore pick the simplest value: our weighing function is equal to our basis,
v(x) = ϕ(x),

−
∫ 1

0

d2uh(x)

dx2
ϕ(x)dx =

∫ 1

0

ϕ(x) dx . (2.17)

We will first use Green’s Formula,∮
∂D
v(~r)n̂ · ∇u(~r)ds =

∫
D
∇v(~r) · ∇u(~r) d~r +

∫
D
v(~r)∇2u(~r)d~r , (2.18)
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which in one-dimension on our domain simplifies to integration by parts,∫ 1

0

d2u(x)

d2x
v(x)dx =

[
du(x)

dx
v(x)

]1

0

−
∫ 1

0

du(x)

dx

dv(x)

dx
dx . (2.19)

We plug the expansion of Eq. (2.19) into our formulation Eq. (2.17),[
duh(x)

dx
ϕ(x)

]1

0

−
∫ 1

0

duh(x)

dx

dϕ(x)

dx
dx =

∫ 1

0

ϕ(x) dx .

By our definition of the space, all functions including the basis go to zero on the boundaries,
ϕ(0) = ϕ(1) = 0, eliminating the first term and leaving us with∫ 1

0

duh(x)

dx

dϕ(x)

dx
dx =

∫ 1

0

ϕ(x) dx .

This is the weak formulation of our problem that provides a weak solution. Our original
problem required the second derivative of u(x) to exist and be continuous, while this for-
mulation only requires that of the first derivative. This is what makes this formulation
weak.

For our given triangulation T , we have M equations, one for each vertex basis function,
ϕj = ϕ(~rj), ∫ 1

0

duh(x)

dx

dϕj
dx

dx =

∫ 1

0

ϕj dx, j = 0, 1, . . . ,M − 1 .

We can also substitute in our definition of uh(x) as a linear combination of the basis functions
from Eq. (2.16),

M−1∑
i=0

ui

∫ 1

0

dϕi
dx

dϕj
dx

dx =

∫ 1

0

ϕj dx, j = 0, 1, . . . ,M − 1 . (2.20)

To simplify notation, we will use inner product notation to indicate integration of the problem
domain, (

u, v

)
D
≡
∫
D
u v d~r〈

u, v

〉
∂D
≡
∮
∂D
u v ds ,

and prime to indicate spatial derivatives.
Using this notation for our model problem, Eq. (2.20) becomes

M−1∑
i=0

ui
(
ϕ′i, ϕ

′
j

)
D = (1, ϕj)D , j = 0, . . . ,M − 1 .
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We now note that this is a linear system of M equations and M unknowns (the values of
ui), that can be represented in matrix form as,

A~u = ~b ,

where A is an M ×M matrix and vectors ~b and ~u are M × 1 vectors with entries,

Aij =
(
ϕ′i, ϕ

′
j

)
D

~bi = (1, ϕj)D
~ui = ui .

Consequently, we note that this matrix and vector are only dependent on the solution space
basis functions and the formulation of our problem. In addition, unless the indices i and
j are on the same element, at least one of the basis functions will be zero. The matrix A
is therefore quite sparse and the sparsity pattern will depend on the indexing and spatial
dimension of the problem.

2.3.3 Assembling the System Matrix

Explicitly creating the matrix A and vector ~b can be complicated, especially if the mesh is
irregular and complex. One practical way to build the matrix is to iterate over all the cells
in the triangulation and calculate the value of Aij and ~bi at each local degree of freedom.
These local cell values are added to the system matrix by mapping the local index to the
global system index. Multiple cells share degrees of freedom, and each will contribute to
that degree of freedom’s value in the system matrix.

To calculate the local contributions, we must integrate the local basis functions. We will
accomplish this computationally by using a quadrature rule, such as Gaussian quadrature, on
the cell. The basis functions will be evaluated on cell K for each quadrature point consisting
of an ordinate and a weight, ∫

K

f(~r)d~r ≈
Q−1∑
q=0

wqf(~rq) ,

where ~rq are the ordinates, and wq are the weights. Note that this is a spatial quadrature
that integrates exactly on each cell and necessarily is different from the quadrature over the
unit sphere used in the angular discretization.

For square cells, we will perform this integration on a reference cell on the domain [0, 1]d

where d is the spatial dimension of the triangulation. We will then map the value back to
the actual cell K using a mapping function,

fK : [0, 1]d 7→ K ∈ Rd .

The quadrature formulation will then take the form,∫
K

f(~r)d~r ≈
Q−1∑
q=0

wqf(~rq)|J(fK)| ,
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where |J(fK)| is the determinant of the Jacobian matrix of the transformation. A conse-
quence of this is that the integration only needs to be calculated once for the reference cell
and then mapped to each cell’s local contribution for stamping on the system matrix.

2.3.4 General Form

Our description of the finite element method has been limited to our model problem, but it
can be applied to more generalized partial differential equations (PDEs). This is important
for application to problems that are not the model problem, such as the NTE. We will
examine a generalized time-independent PDE with derivatives up to second order, noting
the general names for each term. Note that this is not a specific equation, but the application
of a FEM to a generalized equation.

−D∇2u(~r)︸ ︷︷ ︸
Diffusion term

+ Ω̂ · ∇u(~r)︸ ︷︷ ︸
Convection term

+ Σu(~r)︸ ︷︷ ︸
Reaction term

= Q(~r)︸︷︷︸
Source term

, ∀~r ∈ D ,

with boundary conditions,

n̂ · ∇u(~r) + n̂ · u = f(~r), ∀~r ∈ ∂DN
u(~r) = fD(~r), ∀~r ∈ ∂DD ,

where DN and DD are the portions of the domain boundary with Neumann and Dirichlet
boundary conditions, respectively, with respective functional forms f(~r) and fD(~r).

From this generalized form we can define many of the well-known PDEs: the Laplace
equation only has the diffusion term, the Poisson equation (our model problem) adds a source
term, and the Helmholtz equation adds a reaction term on to that. Our NTE is a convection-
reaction equation with a source term, but in the first-order form lacks the diffusion term.
Adding time dependence allows us to also include time-dependent forms of PDEs like the
wave equation and heat equation, which is beyond the scope of this work.

A major benefit of discretizing diffusive problems using the FEM is that they, in general,
result in sparse symmetric positive-definite system matrices. This enables the use faster and
more efficient solving algorithms, even for complex or unstructured meshes. Different diffu-
sive, or second-order, forms of the transport equation have been developed. These include
the even- and odd-parity formulation [1], the diffusion formulation, the weighted least-square
formulation [8], and the self-adjoint angular-flux formulation [9]. We will examine the dis-
cretization of the diffusion and SAAF formulations in the following sections.

2.4 Diffusion Equation

The diffusion equation is a well known and understood second-order form of the transport
equation. This formulation treats neutron propagation as diffusive, much like the heat
equation. A full derivation and asymptotic analysis of the diffusion equation can be found
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in many standard texts [1, 2, 3]. The process of deriving the diffusion formulation in general
involves integrating the transport equation over angle, and using a form of Fick’s law as a
closure for the current,

~Jg(~r) = −Dg(~r)∇ · φg(~r) , (2.21)

where ~Jg is the current and Dg is the diffusion coefficient, each for group g. The current
represents a net rate at which neutrons are passing through a unit area in a specific direction.
The diffusion coefficient is related to the total cross-section and the first moment of the
scattering cross-section,

Dg(~r)
1

3 (Σg
t (~r)− Σg

s1(~r))
.

Using this, the standard form of the k-eigenvalue multigroup diffusion equation is

[
−Dg(~r)∇2 + Σg

t (~r)
]
φg(~r) =

G−1∑
g′=0

Σg′→g
s0 φg′(~r) +

χg
k

G−1∑
g′=0

νg′Σ
g′

f φg′(~r) . (2.22)

We will now derive the weak form of the diffusion equation for solving using finite element
methods. In doing so, we will prepare for iterative solving techniques, moving the within-
group scattering term to the left-hand-side, as the other groups will be treated as a source
term from the previous iteration. This will be discussed further in Chapter 3

2.4.1 Weak Form of the Diffusion Equation

We begin with Eq. (2.22) and bring the within-group scattering term to the right hand side,
then multiply through on the left by an arbitrary spatial weight function, v(~r), and integrate
over the spatial domain.(

v(~r),−Dg(~r)∇2φg(~r)

)
D

+

(
v(~r),Σg

r(~r)φg(~r)

)
D

=(
v(~r),

∑
g′ 6=g

Σg′→g
s0 φg′(~r)

)
D

+

(
v(~r),

χg
k

G−1∑
g′=0

νg′Σ
g′

f φg′(~r)

)
D

where Σg
r(~r) = Σg

t (~r)− Σg→g
s0 (~r) is the removal cross-section and the inner product notation

is as described in the previous section. Applying Green’s formula, Eq. (2.18), to the first
term gives(

∇v(~r), Dg(~r)∇φg(~r)
)
D
−
〈
v(r), n̂ ·Dg(~r)∇φg(~r)

〉
∂D

+

(
v(~r),Σg

r(~r)φg(~r)

)
D

=(
v(~r),

∑
g′ 6=g

Σg′→g
s0 φg′(~r)

)
D

+

(
v(~r),

χg
k

G−1∑
g′=0

νg′Σ
g′

f φg′(~r)

)
D
,
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where n̂ is the outward normal on the boundary. Using our Fick’s law definition in Eq. (2.21),
and the definition of net current we can say

~Jnet(~r) ≡ n̂ · ~J(~r) = −n̂ ·Dg(~r)∇φg(~r) ,

and then substitute the net current into the boundary term:(
∇v(~r), Dg(~r)∇φg(~r)

)
D

+

〈
v(r), ~Jnet(~r)

〉
∂D

+

(
v(~r),Σg

r(~r)φg(~r)

)
D

=(
v(~r),

∑
g′ 6=g

Σg′→g
s0 φg′(~r)

)
D

+

(
v(~r),

χg
k

G−1∑
g′=0

νg′Σ
g′

f φg′(~r)

)
D
.

For reflective boundary conditions, this term is zero because all outgoing flux is matched
by reflected incoming flux resulting in zero current. For vacuum boundary conditions, we
need to enforce zero incoming flux. We will do so using Marshak boundary conditions, fully
derived in Bell and Glasstone [2]. Using these boundary conditions, the requirement of zero
incoming current is represented by

n̂ · ~J(~r) =
1

2
φ(~r) . (2.23)

Substituting this in to our weak form gives us the final weak form for the diffusion equation,(
∇v(~r), Dg(~r)∇φg(~r)

)
D

+

〈
v(r),

1

2
φg(~r)

〉
∂D,vacuum

+

(
v(~r),Σg

r(~r)φg(~r)

)
D

=(
v(~r),

∑
g′ 6=g

Σg′→g
s0 φg′(~r)

)
D

+

(
v(~r),

χg
k

G−1∑
g′=0

νg′Σ
g′

f φg′(~r)

)
D
.

2.4.2 Benefits of the Diffusion Equation

The diffusion equation has a number of benefits that we will leverage. The angular de-
pendence has been integrated out, which significantly reduces the phase space required to
solve the problem. The diffusive nature of the formulation means that problems with high
scattering will solve much more quickly than the NTE. This has been leveraged in many ac-
celeration methods to speed up the convergence of problems, discussed further in Chapter 3.
The formulation does not have a convective term, and so the matrix generated by the weak
formulation is symmetric and sparse, allowing us to solve with more efficient methods. Some
of these structural benefits can be found in a formulation that retains angular information,
such as the self-adjoint angular flux formulation, described in the next section.
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2.5 Self-Adjoint Angular-Flux Equation

The SAAF equation [9] is a second-order self-adjoint form of the transport equation much
like the well-understood even- and odd-parity forms. This particular form of the second-
order transport equation is derived algebraically from the first-order form, and presents a
set of benefits and drawbacks compared to the parity forms. One of the major benefits of
second-order forms such as the SAAF formulation is that FEM can be more easily applied
than first-order forms to unstructured meshes and those with re-entrant cells. In this section,
we shall derive the SAAF equation and discuss the advantages and disadvantages of its use.

2.5.1 Derivation

We will derive the SAAF equation from a monoenergetic form of Eq. (2.1),

Ω̂ · ∇ψ(~r, Ω̂) + Σtψ(~r, Ω̂) = Sψ(~r, Ω̂) + q(~r, Ω̂) , (2.24)

where the source q can be the eigenvalue term or a fixed source and the scattering term is
the monoenergetic form of the differential cross-section

Sψ(~r, Ω̂) =

∫
4π

Σs(~r, Ω̂
′ → Ω̂)dΩ̂ψ(~r, Ω̂′) .

To derive the second-order form from the first-order form, we will solve for the angular
flux as a function of the first-order term and substitute this back into the first-order term,
resulting in a second-order formulation. First, we will re-order Eq. (2.24) to solve for the
angular flux,

Σtψ(~r, Ω̂)− Sψ(~r, Ω̂) = −Ω̂ · ∇ψ(~r, Ω̂) + q(~r, Ω̂)

(Σt − S)ψ(~r, Ω̂) = −Ω̂ · ∇ψ(~r, Ω̂) + q(~r, Ω̂)

ψ(~r, Ω̂) = − (Σt − S)−1 Ω̂ · ∇ψ(~r, Ω̂) + (Σt − S)−1 q(~r, Ω̂) . (2.25)

We then substitute Eq. (2.25) back into the first term of Eq. (2.24),

Ω̂ · ∇
[
− (Σt − S)−1 Ω̂ · ∇ψ(~r, Ω̂) + (Σt − S)−1 q(~r, Ω̂)

]
+ Σtψ(~r, Ω̂)

= Sψ(~r, Ω̂) + q(~r, Ω̂)

−Ω̂ · ∇ (Σt − S)−1 Ω̂ · ∇ψ(~r, Ω̂) + (Σt − S)ψ(~r, Ω̂)

= q(~r, Ω̂)− Ω̂ · ∇ (Σt − S)−1 q(~r, Ω̂) . (2.26)

Naturally, the second-order form of the transport equation will require two boundary
conditions. For incoming flux, we will enforce a Dirichlet boundary condition, which is
standard for the first-order form:

ψ(~r, Ω̂) = f(~r, Ω̂), ~r ∈ ∂D, Ω̂ · n̂ < 0 . (2.27)
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This is the term that will require the most modification depending on the type of boundary
condition used. For vacuum boundaries, we will set f(~r, Ω̂) = 0 and for reflective boundaries
f(~r, Ω̂) = ψ(~r, Ω̂′) where Ω̂′ is the reflected angle.

For the second boundary condition, we will enforce Robin boundary conditions on the
outgoing flux in the form of the first-order form itself,

Ω̂ · ∇ψ(~r, Ω̂) + Σtψ(~r, Ω̂) = Sψ(~r, Ω̂) + q(~r, Ω̂), ~r ∈ ∂D, Ω̂ · n̂ > 0 . (2.28)

For SN calculations, we will derive the SAAF equation starting with the multigroup form
of the transport equation with isotropic scattering. We start with Eq. (2.7) with the fission
term represented as q,

[
Ω̂n · ∇+ Σg

t (~r)
]
ψng (~r, Ω̂n)dE =

G−1∑
g′=0

Σg′→g
s0 (~r)φg′(~r) + qng (~r, Ω̂n) .

Following the same steps as the derivation for the monoenergetic equation, we get the form
of the SAAF equation appropriate for multigroup SN calculations,

−Ω̂n · ∇
1

Σt

Ω̂n · ∇ψng (~r, Ω̂n) + Σtψ
n
g (~r, Ω̂n)

=
G−1∑
g′=0

Σg′→g
s0 φg′(~r) + qng (~r, Ω̂n)− Ω̂n · ∇

∑G−1
g′=0 Σg′→g

s0 φg′(~r) + qng (~r, Ω̂n)

Σt

.

(2.29)

2.5.2 Properties of the SAAF Equation

Many important properties of the SAAF form of the transport equation are fully described
by Morel and McGhee [9]; some of the important properties will be summarized here. The
SAAF equation can also be derived as a version of the weighted least-square transport
equation with a weighing factor of Σ−1

t [8], so the properties of these formulations are also
applicable.

As discussed in Section 2.3, second-order forms of the transport equation like the SAAF
equation lead to sparse, symmetric matrices when using standard finite-element spatial dis-
cretization, enabling the use of more efficient solvers. This contrasts with the block dense
lower-triangular matrix formed by a first-order form of the transport equation. The block
dense matrix pattern lends itself to stepping through the mesh and solving cells sequentially,
implicitly inverting the transport operator in a method called sweeping. Using a FEM with
a second-order form enables us to use unstructured meshes and re-entrant cells, which are
challenges for a sweeping method. In addition, unlike other second-order forms of the trans-
port equation, the full angular flux is the unknown in the SAAF equation. Calculating the
full angular flux when using other forms such as the even- and odd-parity equations can be
challenging, and the SAAF formulation avoids the issue entirely.
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A disadvantage of the SAAF equation is the presence of the inverse of the total cross-
section. This makes solving the equation in voids, where the total cross-section is zero,
impossible. There are techniques that can be applied to make the SAAF and other forms
of the least-squares transport equation compatible with void regions [8, 10], but we will not
discuss them here.

2.5.3 Weak Form of the SAAF Equation

To solve the SAAF equation with a finite element method, we must derive the weak form, as
described in the previous section. We begin with the self-adjoint angular flux equation ap-
propriate for SN calculations, Eq.(2.29), and drop the angle and group index, and reintroduce
the scattering operator for conciseness:

−Ω̂ · ∇ 1

Σt

Ω̂ · ∇ψ(~r, Ω̂) + Σtψ(~r, Ω̂) = Sψ(~r, Ω̂) + q(~r, Ω̂)− Ω̂ · ∇Sψ(~r, Ω̂) + q(~r, Ω̂)

Σt

. (2.30)

Multiplying through on the left by an arbitrary spatial weight function v(~r ) and integrating
over the angular and spatial domain, we get∫

dΩ̂

∫
D
d~r v(~r )

(
− Ω̂ · ∇ 1

Σt

Ω̂ · ∇ψ(~r, Ω̂)

)
+

∫
dΩ̂

∫
D
d~r v(~r )Σtψ(~r, Ω̂)

=

∫
dΩ̂

∫
D
d~r v(~r )

(
Sψ(~r, Ω̂) + q(~r, Ω̂)− Ω̂ · ∇Sψ(~r, Ω̂) + q(~r, Ω̂)

Σt

)
.

(2.31)

First, we will collect all the terms in Eq. (2.31) on one side of the equal sign and group the
terms with Ω̂ · ∇,∫

dΩ̂

∫
D
d~r v(~r )

(
− Ω̂ · ∇ 1

Σt

Ω̂ · ∇ψ(~r, Ω̂) + Ω̂ · ∇Sψ(~r, Ω̂) + q(~r, Ω̂)

Σt

)
+

∫
dΩ̂

∫
D
d~r v(~r )Σtψ(~r, Ω̂) −

∫
dΩ̂

∫
D
d~r v(~r )

(
Sψ(~r, Ω̂) + q(~r, Ω̂)

)
= 0 .

(2.32)

The inner product is preserved under commutation and association, so we will reverse the
order and factor out the del operator from this combined term,∫

dΩ̂

∫
D
d~r v(~r )

(
−Ω̂ · ∇ 1

Σt

Ω̂ · ∇ψ(~r, Ω̂) + Ω̂ · ∇Sψ(~r, Ω̂) + q

Σt

)
=

∫
dΩ̂

∫
D
d~r v(~r )

(
−∇ · Ω̂ 1

Σt

Ω̂ · ∇ψ(~r, Ω̂) +∇ · Ω̂Sψ(~r, Ω̂) + q

Σt

)
=

∫
dΩ̂

∫
D
d~r v(~r )

[
∇ ·
(
−Ω̂

1

Σt

Ω̂ · ∇ψ(~r, Ω̂) + Ω̂
Sψ(~r, Ω̂) + q

Σt

)]
.
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Next, we use the following vector identity to expand this term,

f(∇ · g) = ∇ · (fg)− g · (∇f) ,

resulting in two terms,∫
dΩ̂

∫
D
d~r

[
∇ · v(~r )

(
−Ω̂

1

Σt

Ω̂ · ∇ψ(~r, Ω̂) + Ω̂
Sψ(~r, Ω̂) + q

Σt

)

+∇v(~r ) ·
(

Ω̂
1

Σt

Ω̂ · ∇ψ(~r, Ω̂)− Ω̂
Sψ(~r, Ω̂) + q

Σt

)]
.

We then apply Green’s theorem to the first term,∫
∇ · ~f d~r =

∫
∂D
n̂ · ~f ds ,

where ∂D is the surface of the region D, n̂ is the surface normal, and ds is the differential
distance along the surface. This leaves us with the two terms,∫

dΩ̂

∫
∂D
ds (n̂ · v(~r ))

(
−Ω̂

1

Σt

Ω̂ · ∇ψ(~r, Ω̂) + Ω̂
Sψ(~r, Ω̂) + q

Σt

)

+

∫
dΩ̂

∫
D
d~r∇v(~r ) ·

(
Ω̂

1

Σt

Ω̂ · ∇ψ(~r, Ω̂)− Ω̂
Sψ(~r, Ω̂) + q

Σt

)
.

Factoring the Ω̂ out of the first term,∫
dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
v(~r )

(
− 1

Σt

Ω̂ · ∇ψ(~r, Ω̂) +
Sψ(~r, Ω̂) + q

Σt

)

+

∫
dΩ̂

∫
D
d~r∇v(~r ) ·

(
Ω̂

1

Σt

Ω̂ · ∇ψ(~r, Ω̂)− Ω̂
Sψ(~r, Ω̂) + q

Σt

)
,

we can see that it is identical to the first-order form of the transport equation. That is,

− 1

Σt

Ω̂ · ∇ψ(~r, Ω̂) +
Sψ(~r, Ω̂) + q

Σt

∣∣∣
∂D

= ψ(~rb, Ω̂) ≡ ψb(~r, Ω̂), ∀~rb ∈ ∂D .

Substituting in this term leaves us with,∫
dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
v(~r )ψb(~r, Ω̂)

+

∫
dΩ̂

∫
D
d~r∇v(~r ) ·

(
Ω̂

1

Σt

Ω̂ · ∇ψ(~r, Ω̂)− Ω̂
Sψ(~r, Ω̂) + q

Σt

)
.
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We can use the commutative properties of the dot product again to obtain,∫
dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
v(~r )ψb(~r, Ω̂)

+

∫
dΩ̂

∫
D
d~r
(

Ω̂ · ∇v(~r )
)( 1

Σt

Ω̂ · ∇ψ(~r, Ω̂)− Sψ(~r, Ω̂) + q

Σt

)
.

(2.33)

We substitute the final expansion in Eq. (2.33) back into Eq. (2.32), replacing the first
term and giving us the next step in the derivation of the weak form,∫

dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
v(~r )ψb(~r, Ω̂)

+

∫
dΩ̂

∫
D
d~r
(

Ω̂ · ∇v(~r )
)( 1

Σt

Ω̂ · ∇ψ(~r, Ω̂)− Sψ(~r, Ω̂) + q

Σt

)
+

∫
dΩ̂

∫
D
d~r v(~r )Σtψ(~r, Ω̂) −

∫
dΩ̂

∫
D
d~r v(~r )

(
Sψ(~r, Ω̂) + q

)
= 0 .

(2.34)

As discussed in Sec. 2.3, we consider a triangulation of our spatial domain, divided into
non-overlapping elements,

Th = {K1, K2, . . . KM} such that
⋃
K∈Th

K = D .

We will seek an approximate solution ψh in the following space:

Vh =
{
v ∈ C0(D) : v|K ∈ Pp(K)∀K ∈ Th

}
.

We insert this approximate solution into the SAAF weak form Eq. (2.36),

ψh(~r, Ω̂) =
N∑
i=1

ψi(Ω̂)ϕ(~ri ) , (2.35)

and complete the Galerkin formulation by seeking ψh ∈ Vh such that,∫
dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
vh(~r )ψb(~r, Ω̂)

+

∫
dΩ̂

∫
D
d~r
(

Ω̂ · ∇vh(~r )
)( 1

Σt

Ω̂ · ∇ψh(~r, Ω̂)− Sψh(~r, Ω̂) + q

Σt

)
+

∫
dΩ̂

∫
D
d~r vh(~r )Σtψh(~r, Ω̂) −

∫
dΩ̂

∫
D
d~r vh(~r )

(
Sψh(~r, Ω̂) + q

)
= 0 ,

(2.36)



CHAPTER 2. BACKGROUND 26

for all vh ∈ Vh. Included in the possible values of vh is the most straightforward choice: that
the weighing functions are equal to the basis functions, vh(~r ) = ϕj(~r ), for j = 1, . . . , N .
Plugging this into Eq. (2.36) gives us N equations of the form,∫

dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
ϕj(~r )ψb(~r, Ω̂)

+

∫
dΩ̂

∫
D
d~r
(

Ω̂ · ∇ϕj(~r )
)( 1

Σt

Ω̂ · ∇ψh(~r, Ω̂)− Sψh(~r, Ω̂) + q

Σt

)
+

∫
dΩ̂

∫
D
d~r ϕj(~r )Σtψh(~r, Ω̂) −

∫
dΩ̂

∫
D
d~r ϕj(~r )

(
Sψh(~r, Ω̂) + q

)
= 0 ,

for j = 1, . . . N .
The next step is to substitute in our approximate solution from Eq. (2.35). We will

not substitute this in for the scattering terms, Sψ, because our solving methodology will
treat these as constants that are not dependent on the angular flux that we are solving for.
In practice, our iterative methods will calculate these terms from the previous iteration.
In addition, we must split the boundary term into expressions for incoming and out-going
fluxes. The incoming flux will be defined by our choice of boundary conditions, and the
outgoing flux will be equal to the angular flux itself,

ψb(~r, Ω̂) =

{
ψinc(~r, Ω̂) n̂ · Ω̂ < 0

ψh(~r, Ω̂) n̂ · Ω̂ > 0
. (2.37)

Splitting the boundary term gives us,∫
(n̂·Ω̂)<0

dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
ϕj(~r )ψinc(~r, Ω̂) +

∫
(n̂·Ω̂)>0

dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
ϕj(~r )ψh(~r, Ω̂)

+

∫
dΩ̂

∫
D
d~r
(

Ω̂ · ∇ϕj(~r )
)( 1

Σt

Ω̂ · ∇ψh(~r, Ω̂)− Sψh(~r, Ω̂) + q

Σt

)
+

∫
dΩ̂

∫
D
d~r ϕj(~r )Σtψh(~r, Ω̂) −

∫
dΩ̂

∫
D
d~r ϕj(~r )

(
Sψh(~r, Ω̂) + q

)
= 0, j = 1, . . . N .

Or, with the approximate solution substituted in, and the summation factored out from each
term,

N∑
i=1

[∫
(n̂·Ω̂)<0

dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
ϕj(~r )ψinc(~r, Ω̂) +

∫
(n̂·Ω̂)>0

dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
ϕj(~r )ϕi(~r )ψi(Ω̂)

+

∫
dΩ̂

∫
D
d~r
(

Ω̂ · ∇ϕj(~r )
)( 1

Σt

Ω̂ · ∇ϕi(~r )ψi(Ω̂)− Sψh(~r, Ω̂) + q

Σt

)

+

∫
dΩ̂

∫
D
d~r ϕj(~r )Σtϕi(~r )ψi(Ω̂) −

∫
dΩ̂

∫
D
d~r ϕj(~r )

(
Sψh(~r, Ω̂) + q

)]
= 0 ,
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for i, j = 1, . . . N .
We therefore have the weak form of the SAAF equation that forms a system of the form,

A~Ψ = ~b

where A ∈ RN×N , ~b ∈ RN , and ~Ψ =
[
~ψ0(Ω̂), . . . , ~ψN(Ω̂)

]T

. The entries of the left-hand side

matrix are,

A~Ψ(i, j) =

∫
(n̂·Ω̂)>0

dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
ϕj(~r )ϕi(~r )ψi(Ω̂)

+

∫
dΩ̂

∫
D
d~r
(

Ω̂ · ∇ϕj(~r )
)( 1

Σt

Ω̂ · ∇ϕi(~r )ψi(Ω̂)

)
+

∫
dΩ̂

∫
D
d~r ϕj(~r )Σtϕi(~r )ψi(Ω̂) ,

and the right-hand side vector has entries,

~b(i) = −
∫

(n̂·Ω̂)<0

dΩ̂

∫
∂D
ds
(
n̂ · Ω̂

)
ϕi(~r )ψinc(~r, Ω̂)

+

∫
dΩ̂

∫
D
d~r
(

Ω̂ · ∇ϕi(~r )
)(Sψh(~r, Ω̂) + q

Σt

)
+

∫
dΩ̂

∫
D
d~r ϕi(~r )

(
Sψh(~r, Ω̂) + q

)
.

We now have the SAAF equation in a form that can be assembled and solved. Armed
with this derivation and applying the multigroup and discrete ordinates method, we can use
iterative solving techniques. We will explore these in the following chapter.

2.6 Conclusion

In this chapter, we covered the Boltzmann neutron transport equation that describes the
propagation of neutrons in our steady state system. We then introduced the k-eigenvalue
formulation that describes the criticality of this system. To make the equation practical
to solve, we described how to discretize this the phase space, including the development
and the use of continuous finite element methods. Finally, we discussed two second-order
formulations of the equation, the diffusion equation and the SAAF equation. We derived the
weak forms of these formulations to support using finite element methods. In the following
chapter, we will build on this discretization and formulation by introducing iterative methods
to solve the transport equation. These methods will introduce their own challenges, which
we will discuss and address with acceleration methods.
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Chapter 3

Iterative Methods and Acceleration
Schemes

The size and complexity of the discretized transport equation in the previous chapter prevents
solving directly in most cases. Instead, we will apply iterative methods[11], a broad class of
schemes that converge on the solution in a finite number of discrete steps. There are three
types of iterative schemes that we will use in solving the transport equation. The first two go
together to solve the space, energy, and angle part of the equations–we will call these fixed
source solves as a fission source, if present, is treated as fixed. The third is an eigenvalue
solver that is only necessary when looking for the criticality state of the systems. We will
discuss the iterative methods we use. In this work we will only focus on two of the iterative
schemes, the one for solving in energy and the one for solving the eigenvalue. Thus, we will
discuss the convergence properties of these methods and two acceleration schemes designed
to alleviate some of the convergence challenges.

3.1 Operator Form

We will apply the iterative methods in this chapter to the fully discretized transport equation.
To simplify notation, we will summarize the discretization using the operator form, in which
the parts of the discretized transport equation are expressed as matrices and vectors. Our
discretizations and important parameters are summarized as,

• Energy discretized using multigroup discretization with G energy groups,

• Angle discretized using discrete ordinates using a quadrature set with N total angles,

• Space discretized using a continuous finite element method using a triangulation with
M total degrees of freedom, and

• Scattering expansion using scattering operator expanded in L moments.
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The full operator form of the discretized transport equation is

H~ψ = MS~φ+
1

k
MF~φ , (3.1)

where the terms are described below.
The matrix H is the discretized transport operator. It is block-diagonal, made up ofG×N

blocks, one for each energy group and angle. Each of these blocks is M ×M , representing
the spatial discretization. The ordering within the matrix may vary, but the size of the
matrix H ∈ Rm×m where m = (G×N ×M) will not. The block vector ~ψ ∈ Rm×1 contains
the spatial solution for each angle and group. The scalar flux vector contains the angular
flux moments (not the solution) along angular collocation points, and the size is therefore

a function of L and not N : ~φ ∈ Rn×1 where n = (G × L ×M). The scattering and fission
operators operate on these moments: S ∈ Rn×n, F ∈ Rn×n. Finally, the matrix M converts
angular flux moments into angular fluxes along the collocation angles of our discretization.
This is called the moment-to-discrete operator and is of size M ∈ Rm×n.

Related is the means by which we calculate the scalar flux using the angular flux moments,

~φ = D~ψ ,

where D ∈ Rn×m is the discrete to moment operator. We can substitute this into Eq. (3.1)
to see that the angular flux explicitly appears on both sides of the discretized equation,

H~ψ = MSD~ψ +
1

k
MFD~ψ .

When describing the iterative schemes below, it is often beneficial to simplify the notation,

H~ψ = S̃~ψ +
1

k
F̃~ψ , (3.2)

where X̃ = MXD ∈ Rm×m for a matrix X ∈ Rn×n.

3.2 Solving Linear Equations

A general iterative method solves A~x = ~b by iteratively performing

~x(k+1) = ~x(k) + P−1
(
~b−A~x(k)

)
, (3.3)

where k ≥ 0 is an iteration index, and P is a preconditioner matrix chosen such that
P−1A ≈ I. Note that if P−1 is chosen to be exactly A−1, Eq. (3.3) reduces to solving the
original equation. Choice of P defines the type of method,

• GS iteration chooses P equal to the lower-triangular portion of A,
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• Jacobi iteration chooses P equal to the diagonal portion of A, and

• Richardson iteration chooses P = 1
ω
I, where ω is a parameter chosen such that the

iteration converges.

Methods that choose P as part of A are called matrix-splitting methods.
The error in step k of the method is defined,

e(k) ≡ ~x− ~x(k) = A−1~b− ~x(k) , (3.4)

and is related to the error in the previous step using the iteration matrix C,

e(k) = Ce(k−1) =
(
I−P−1A

)
e(k−1) =

(
I−P−1A

)k
e(0) . (3.5)

Convergence of the iterative method requires the error to go to zero as the number of itera-
tions approaches infinity. Therefore, this is dependent on the norm of the iteration matrix C.
Taking the norm of both sides of Eq. (3.5), taking the limit, and using the Cauchy-Schwartz
inequality we can say

lim
k→∞

∥∥e(k)
∥∥ = lim

k→∞

∥∥Cke(0)
∥∥ ≤ lim

k→∞

∥∥Ck
∥∥∥∥e(0)

∥∥ = ρ(C)
∥∥e(0)

∥∥ ,

where ρ(C) is the spectra radius of C. The problem converges if and only if the spectral
radius of C is less than unity.

3.2.1 Solving the Discretized Neutron Transport Equation

The discretized form of the Boltzmann transport equation as seen, e.g., in Eq. (2.29) is a
set of single-group energy equations that are each only a function of space and angle. Each
“within-group” equation is solved for that group’s flux with an iterative method; these are
often called the inner iterations. In this work, we use source iteration (SI) as the within-
group solver. These single-group equations are often coupled together through scattering. We
typically use a different iterative solver over energy groups, and these are the “multigroup”
solver or the outer iterations. The outer iterations converge the angular flux over all groups.
If there is no upscattering, only one outer iteration is required. We use GS as the multigroup
solver.

The combination of inner and outer iterations is sufficient to solve fixed source problems.
In systems with fission, the fission source is treated as a constant during the inner and outer
iterations so it looks like a fixed source problem. The process of converging the fission source
and the k-eigenvalue is the eigenvalue iteration. In this work, we use power-iteration (PI)
for the eigenvalue solver. We therefore have three iterative schemes nested and working
together.
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3.3 Fixed Source Solvers

The first method for solving part of the transport equation is the well-known SI. This is
a straightforward scheme for solving the scattering term of the transport equation using a
stationary iterative method to solve the linear equation. In doing so, we will hold the fission
source constant, leaving it to other methods to converge this term. A complete and thorough
discussion of SI can be found in many texts and review papers [2, 12].

We begin with the discretized transport equation in operator form, Eq. (3.2), with the
fission source term replaced with a constant source term vector and the terms consolidated,(

H− S̃
)
~ψ = ~Q . (3.6)

We now apply the iterative scheme of Eq. (3.3), introducing the iteration index (k),

~ψ(k+1) = ~ψ(k) + P−1
[
~Q− (H− S̃)~ψ(k)

]
. (3.7)

The source iteration scheme is a matrix-splitting scheme, where we chose the preconditioner
matrix P = H. The source iteration scheme reduces as,

~ψ(k+1) = ~ψ(k) + P−1
[
~Q− (H− S̃)~ψ(k)

]
= ~ψ(k) + H−1

[
~Q− (H− S̃)~ψ(k)

]
H~ψ(k+1) = H~ψ(k) + ~Q− (H− S̃)~ψ(k)

= S̃~ψ(k) + ~Q .

Using the source-iteration scheme, an initial guess for the scalar flux is chosen and used
to calculate ~ψ(1). This new value is then used to calculate the new scalar flux, ~φ(1) and the
process is repeated. Repeated application of the scattering operator k times results in an
angular flux that accounts for particles that have scattered at most k− 1 times. Intuitively,
this indicates that the iterative scheme will take many steps for problems with a large amount
of scattering.

To solve the fully discretized neutron transport equation, we will solve groups individually
in angle and space using the SI scheme. Once converged, we move on to the next group,
using the flux from the previous group, if needed, in the scattering source term. This forward
substitution is the GS iterative process. The convergence of the individual groups using SI
is referred to as the inner iteration, and the GS iteration is referred to as the outer iteration.
This process requires separating the problem into G equations of the form

Hg
~ψ(k+1)
g = M

g∑
g′=0

Sg′→g~φ
(k+1)
g′ + M

G−1∑
g′=g+1

Sg′→g~φ
(k)
g′ + ~Qg . (3.8)

The GS scheme is most efficient with minimal contribution from lower energy groups (higher
g) to higher energy groups (lower g). This phenomenon, upscattering, requires more outer
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iterations to loop over those groups with upscattering contributions until all groups have
converged. In this work we focus on speeding up the the energy part of the fixed source
solves, though BART could easily be used to focus on accelerating the space-angle solves as
well.

3.3.1 Convergence

The speed at which GS converges depends on the spectral radius of the iteration matrix.
Fourier analysis of the infinite one-dimensional case [12, 11] reveals that the spectral radius
is equal to the scattering ratio c = Σs/Σt. As a system becomes more and more dominated
by scattering, the value of c approaches unity, and GS may take an arbitrarily long amount
of time to converge. This matches with the physical intuition identified earlier: if each
iteration results in a solution that takes into account neutrons that scatter an additional
time, an arbitrary number of iterations may be required if the neutrons will scatter an
arbitrary number of times.

This convergence property is not ideal for many problems of interest. Thermal reactor
designs rely on high energy neutrons born from fission losing nearly all of their energy
by scattering many times before being ultimately absorbed. These designs are built around
causing neutrons to scatter without leaking or being absorbed, ideal circumstances for source
iteration to converge extremely slowly. Additionally, some shielding problems may rely
on a large amount of scattering, causing issues for source iteration. Finally, as discussed,
significant upscattering can cause the GS iteration schemes to converge very slowly. These
convergence issues have motivated the development of acceleration schemes to produce a
more efficient iteration strategy.

3.3.2 Accelerating Fixed Source Solves

Approaches to accelerate SI and GS stretch back as far as the work of Kopp and Lebedev
in the 1960s [13, 14]. Their schemes chose better preconditioners for source iteration that
would improve the convergence properties for problems with a large amount of scattering.
These methods are referenced as “synthetic methods,” in that they do not solve the original
problem (like a matrix splitting preconditioner would) but a different problem that is a good
approximation. One such method that has wide applicability and use is the diffusion syn-
thetic acceleration (DSA) scheme [15]. The diffusion synthetic acceleration (DSA) scheme
uses a diffusion approximation to calculate a more accurate error term in Eq. (3.7). This
is very successful in problems with a large amount of scattering where diffusion is a better
description of the behavior of neutrons. Careful consideration must be paid to the discretiza-
tion of the diffusion equation when using DSA to ensure consistency with the discretization
of the transport equation that it is accelerating. Inconsistencies can cause instabilities in
the scheme, ultimately preventing convergence. Other acceleration methods have been de-
veloped, including the nonlinear diffusion acceleration (NDA) [16, 8] and two-grid (TG)
methods, discussed in the next sections.
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3.4 Two-Grid Acceleration

As discussed in the previous section, the two-grid (TG) acceleration scheme was developed
by Adams and Morel [17] to speed up the convergence of the GS iteration scheme. The
method is similar to other schemes for efficient solving of PDEs that use multiple levels of
discretization, called multigrid methods. These schemes use a fast and efficient course-grid
solve of the PDE to provide a correction to the finer grid solve, sometimes using multiple
grids of increasing coarseness and correcting on each level. This speeds up the convergence
of smoother error modes that slow down the solve on the fine grid. For the TG method, the
two grids are not spatial but angular: the fine grid is the standard angular solve and the
course grid is a scalar diffusion solve. Specifically, the TG method was derived to accelerate
the GS iteration in regions with a large amount of upscattering.

3.4.1 Derivation

Our derivation of the TG method begins with the exact operator form of the transport
equation but for a single group g,

Hg
~ψg = M

G−1∑
g′=0

Sg′→g~φ+ ~Qg . (3.9)

and the GS iteration scheme,

Hg
~ψ(k+1)
g = M

g∑
g′=0

Sg′→g~φ
(k+1)
g′ + M

G−1∑
g′=g+1

Sg′→g~φ
(k)
g′ + ~Qg . (3.8, revisited)

Next, we subtract the iterative scheme Eq. (3.8) from the exact equation Eq. (3.9),

HgD
−1~ε (k+1)

g = M

g∑
g′=0

Sg′→g~ε
(k+1)
g′ + M

G−1∑
g′=g+1

Sg′→g~ε
(k)
g′ ,

where,
~ε (k)
g = ~φg − ~φ(k)

g , (3.10)

is the scalar flux error in step k. Next, we will add and subtract an extra term to the right
hand side,

HgD
−1~ε (k+1)

g = M

g∑
g′=0

Sg′→g~ε
(k+1)
g′ + M

G−1∑
g′=g+1

Sg′→g~ε
(k)
g′

+ M
G−1∑

g′=g+1

Sg′→g~ε
(k+1)
g′ −M

G−1∑
g′=g+1

Sg′→g~ε
(k+1)
g′ ,
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which will combine with our current summations,

HgD
−1~ε (k+1)

g = M
G−1∑
g′=0

Sg′→g~ε
(k+1)
g′ + M

G−1∑
g′=g+1

Sg′→g

(
~ε

(k)
g′ − ~ε

(k+1)
g′

)
.

Using the definition of our error, Eq. (3.10),

HgD
−1~ε (k+1)

g = M
G−1∑
g′=0

Sg′→g~ε
(k+1)
g′ + M

G−1∑
g′=g+1

Sg′→g

(
~φ

(k+1)
g′ − ~φ

(k)
g′

)
= M

G−1∑
g′=0

Sg′→g~ε
(k+1)
g′ + M~R (k+1)

g ,

where ~R
(k+1)
g is the isotropic residual.

Our first restriction is to reduce the angular resolution by only considering the scalar flux
moments and approximating the transport operator using the diffusion operator, weighed
by a diffusion coefficient. This is a natural step, given that our error and isotropic residuals
are defined using only the scalar flux and gives

[−∇ ·Dg∇+ Σg
t ] ~ε

(k+1)
g =

G−1∑
g′=0

Σg′→g
s0 ~ε

(k+1)
g′ + ~R(k+1)

g , (3.11)

where ∇·Dg∇ is the discretized diffusion operator and Σs0 is the discretized zeroth moments
of the scattering operator.

Our second restriction step is to collapse all energy groups into a single group. To define
our restriction operator, we will assume that our error can be separated into functions of
energy and space,

~ε (k)
g = ~ε (k)ξg , (3.12)

where ~ε is the spatial component of the error, and ξg is an energy-shape weighing function
that serves as a prolongation operator. The norm of the total error should be conserved, so
the values of ξg are normalized such that their sum is unity,

G−1∑
g=0

ξg ≡ 1 .

The value of ~ξ ∈ RG×1 is determined using an eigenvalue equation of the SI GS iteration
matrix: [

Σt −ΣL
s0 −ΣD

s0

]−1
ΣU
s0
~ξ = λ~ξ ,

where Σt ∈ RG×G is a diagonal matrix with the total cross-sections and Σs0 ∈ RG×G is the
zeroth-moments of the scattering cross-sections divided into strictly upper (U), diagonal (D),
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and strictly lower (L) matrices. The values of ξg correspond to the entries of the normalized

eigenvector ~ξ for the spectral radius of this problem.
We now apply a restriction operator to Eq. (3.11) by first substituting in Eq. (3.12) and

then summing over all groups,[
−∇ · 〈D〉∇+

〈
Ḋ
〉

+ 〈Σa〉
]
~ε (k+1) =

〈
~R(k+1)

〉
, (3.13)

where

〈D〉 =
G−1∑
g=0

Dgξg

〈
Ḋ
〉

=
G−1∑
g=0

Dg∇ξg

〈Σa〉 =
G−1∑
g=0

[
Σg
t ξg −

G−1∑
g′=0

Σg′→g
s0 ξg′

]
〈
~R(k+1)

〉
=

G−1∑
g=0

R(k+1)
g .

For our discretization, we will assume that all cells have a single material and so we will
neglect the term that includes the gradient of the energy-shape weighing function. This is
the final level of restriction, and this is the equation that will be solved on the same spatial
domain as the original problem but with greatly reduced angular and energy phase space.
The formulation of the residual term and the calculation of the energy-shape weighting
function are both based on groups that have upscattering. Therefore, it is expected that this
method will speed up the convergence of our GS iterations in the presence of upscattering.

The full algorithm is now presented and shown in Fig. 3.1:

1. Solve the discretized GS,

Hg
~ψ(k+1/2)
g = M

g∑
g′=0

Sg′→g~φ
(k+1/2)
g′ + M

G−1∑
g′=g+1

Sg′→g~φ
(k)
g′ + ~Qg ,

2. Calculate the collapsed one group isotropic residual,〈
~R(k+1/2)

〉
=

G−1∑
g=0

G−1∑
g′=g+1

Σg′→g
s0

(
~φ

(k+1/2)
g′ − ~φ

(k)
g′

)
,

3. Solve the discretized restricted diffusion approximation for the error,

[−∇ · 〈D〉∇+ 〈Σa〉] ~ε (k+1/2) =
〈
~R(k+1/2)

〉
,
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Solve discretized transport 
equation 

Generate initial guess

Calculate isotropic residual

Solve diffusion approximation 
of one-group error

Prolongate error and correct 
flux

Have all groups 
converged?

No

Yes

Finish

Figure 3.1: Two-grid algorithm.
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4. Prolong the error as a correction using the energy-shape function and Eqs. (3.10)
and (3.12)

~φ(k+1)
g = ~φ(k+1/2)

g + ξg~ε
(k+1/2) .

The TG method has been show to speed up GS iteration in the presence of upscatter-
ing [17]. The acceleration depends on a very careful discretization of the restricted problem.
This is a consequence of inconsistencies between the diffusion operator and the transport
operator. To combat this, a version of two-grid that uses the transport operator, transport
two-grid, was developed by Evans et al. [18]. For the purposes of this work, we will be us-
ing the TG algorithm to accelerate a diffusion-based formulation, so the transport two-grid
method will not be required.

The weak formulation of the TG equation is nearly identical to the diffusion weak form,
with the cross-sections weighed by the energy-shape function, and the right-hand-side re-
placed by the isotropic residual.

(
∇~v,

〈
D
〉
∇~ε (k+1/2)

)
D

+

〈
~v,

1

2
~ε (k+1/2)

〉
∂D,vacuum

+

(
~v,
〈
Σa

〉
~ε (k+1/2)

)
D

=

(
~v,
〈
~R(k+1/2)

〉)
D
.

3.5 Eigenvalue Solver

The GS scheme will converge the scattering term of the discretized transport equation, but
treats the fission term as a constant. To converge the fission eigenvalue, we will use the
process of power iteration. This iterative method will converge an eigenvalue problem of the
form,

A~x = λ~x .

We assume that the matrix A ∈ Rm×m has m real eigenvalues λ0, λ1, . . . , λm that correspond
to m eigenvectors ~q0, ~q1, . . . ~qm. The eigenvalues are distinct and ordered such that |λ0| >
|λ1| > . . . , |λm|. The power iteration algorithm is as follows:

1. Begin with an initial guess ~x(0),

2. Apply the matrix A, ~y(k) = A~x(k−1),

3. Normalize the vector to get the next vector ~x(k) = ~y(k)/
∥∥~y(k)

∥∥,

4. Calculate the eigenvalue using the Rayleigh quotient,

λ(k) =
[
~x(k)
]T

A~x(k) ,

and then,
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5. Repeat the process of steps 2–4 until a convergence criterion is met, usually

|λ(k) − λ(k−1)|/λ(k−1) < ε ,

where ε is some convergence criterion.

The Rayleigh quotient in step 4 of the algorithm is an efficient means of calculating the
eigenvalue. For a given guess ~x(k), this finds λ(k) that minimizes∥∥A~x(k) − λ(k)~x(k)

∥∥
2
.

3.5.1 Convergence

To see the convergence properties of the power iteration algorithm, we will examine how the
process converges and which eigenvalues and eigenvectors are produced. The eigenvectors of
the matrix A ∈ Rm×m form a basis for Rm, so we will expand our initial guess in this basis,

~x(0) = x
(0)
0 q0 + x

(0)
1 q1 + . . .+ x

(0)
m−1qm−1 . (3.14)

We will assume that, given x0 6= 0, our initial guess must have some component in the
direction of the largest eigenvalue λ0. If we follow our power iteration algorithm through k
steps, we have applied the matrix A that many times to this initial guess,

~x (k) = Ak~x (0) .

Substituting in our expanded form of the initial guess from Eq. (3.14),

~x (k) = Ak
(
x

(0)
0 q0 + x

(0)
1 q1 + . . .+ x

(0)
m−1qm−1

)
= x

(0)
0 λk0q0 + x

(0)
1 λk1q1 + . . .+ x

(0)
m−1λ

k
m−1qm−1

= λk0

[
x

(0)
0 q0 + x

(0)
1

(
λ1

λ0

)k
q1 + . . .+ x

(0)
m−1

(
λm−1

λ0

)k
qm−1

]
.

Since λ0 is the largest eigenvalue, as the number of iterations k increases, our guess
approaches its eigenvector. The speed of convergence depends on how quickly the other
components are suppressed. The convergence rate is based on the dominance ratio,∥∥∥∥λ1

λ0

∥∥∥∥ . (3.15)

If the problem of interest has a second dominant eigenvalue, this value may be close to unity
and convergence can take arbitrarily long.
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3.5.2 Application to the Transport Equation

We will now apply this power iteration method discussed in to the transport equation. We
will begin with the operator form of the transport equation Eq. (3.2)

H~ψ = S̃~ψ +
1

k
F̃~ψ . (3.2, revisted)

This is an eigenvalue problem with the form,(
H− S̃

)−1

F̃~ψ = k ~ψ .

If we substitute the matrix A = (H − S̃)−1F into our scheme for applying the matrix in
power iteration, we see

~ψ(k+1) =
(
H− S̃

)−1

F~ψ(k)(
H− S̃

)
~ψ(k+1) = F~ψ(k) .

To solve the k-eigenvalue problem We will repeatedly apply the matrix (H − S̃)−1F as
described in the power-iteration algorithm:

1. Begin with an initial guess ~ψ(0),

2. Apply the fission operator to the angular flux from the previous step (or the initial

guess) F~ψ(k),

3. Use this as the source term Q for the GS formulation of Eq. (3.8), and solve for ψ(k+1)

using that scheme,

4. Calculate a new k using the Rayleigh quotient,

5. Repeat steps 2–4 until the k-eigenvalue has converged within some tolerance.

In this scheme, the power iterations are the eigenvalue iterations, which update the
fission source through the application of the fission operator. Some method is still required to
converge the scattering source, such as the previously GS iterative scheme. Some combination
of power iteration and a scattering source iteration scheme are found in all deterministic
codes that solve the k-eigenvalue problem. As this combination relies on the power iteration
scheme, slow convergence will occur for problems with dominance ratios close to unity.
Convergence is also slowed when the scattering source iteration scheme is inefficient, such
as problems with a large amount of scattering that use the SI scheme. To alleviate some of
these issues, acceleration methods have been developed, such as the NDA method described
in the following section.
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3.6 Nonlinear Diffusion Acceleration

The nonlinear diffusion acceleration (NDA) method [16, 8] is similar to the TG method in
that it uses a higher-order angular solve that is accelerated by a lower-order scalar diffusion
solve. But, unlike the TG method, which performs an additive correction to each step of the
GS outer iteration, the NDA method modifies the inner iterative scheme. This method uses
a low-order diffusion formulation to solve for the scalar flux, using an angular formulation
as a closure. While the TG method is designed to speed up outer-iteration convergence of
all groups in the presence of upscattering, NDA has been shown to improve the speed of
within-group convergence. This section will describe the derivation and application of the
NDA method. A full and comprehensive derivation can be found in Hammer et al. [8].

3.6.1 Derivation

We begin with the diffusion equation, Eq. (2.22), but with the current form of the first term
and the fission source contained in a constant source term,

[
∇ · ~Jg(~r) + Σg

t (~r)
]
φg(~r) =

G−1∑
g′=0

Σg′→g
s0 φg′(~r) + qg(~r) . (3.16)

To arrive at the diffusion equation, we would use Fick’s law,

Jg(~r) = −Dg∇φg(~r) ,

as a closure to this problem. Use of this closure would be exactly correct if the flux was
perfectly diffusive, and is a very good approximation in equations with high scattering. But
in reality, the flux will not act perfectly diffusively so using the angular flux, if known, should
provide a better value for the current than Fick’s law.

The NDA method uses a combination of the two, both the diffusive formulation of Fick’s
law, and a known angular flux. To do this, we will add the angular formulation of the current
to Fick’s law as a correction:

Jg(~r) = −Dg∇φg(~r) + Jg(~r)− Jg(~r)

= −Dg∇φg(~r) +

∫
Ω̂ψg(~r, Ω̂) dΩ̂ +Dg∇φg(~r)

= −Dg∇φg(~r) +

[∫
Ω̂ψg(~r, Ω̂) dΩ̂ +Dg∇φg(~r)

φg(~r)

]
φg(~r)

= −Dg∇φg(~r) + D̂(~r)φg(~r) ,

where we define the drift-diffusion vector D̂(~r). This additive correction should improve the
value of our current when informed by the angular flux. Plugging this into the integrated
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transport equation gives the low-order nonlinear diffusion acceleration (LO-NDA) equation,

∇ ·
[
−Dg∇+ D̂g(~r)

]
φg(~r) + (Σg

t − Σg→g
s )φg(~r) =

∑
g′ 6=g

Σg′→g
s φg′(~r) + qg(~r) . (3.17)

We will solve an angular form of the transport equation, the high-order nonlinear diffusion
acceleration (HO-NDA), and use the result to calculate the drift diffusion term. Then we
solve Eq. 3.17 holding the scattering source constant and updating the fission source until
convergence. The solved scalar flux is then used to update the scattering source for the
HO-NDA and the angular flux equation is solved and the process repeated.

3.6.2 Weak Form Derivation

To solve the LO-NDA equation using the finite-element method, we must derive the weak
formulation. The LO-NDA is nearly identical to the diffusion equation, with the extra drift-
diffusion term. The weak form is therefore,(

∇v(~r),Dg(~r)∇φg(~r)
)

D
+

(
∇v(~r)D̂g(~r)φg(~r)

)
D

+

〈
v(r), ~Jnet(~r)

〉
∂D

+

(
v(~r),Σg

r(~r)φg(~r)

)
D

=

(
v(~r),

∑
g′ 6=g

Σg′→g
s0 φg′(~r)

)
D

+

(
v(~r), qg(~r)

)
D
.

As with the standard diffusion equation in the reflective boundary case, the incoming and
outgoing fluxes are equal, so the net current is simply zero. For the vacuum boundary case,
the net current is simply the outgoing current and we can calculate the outward current
using the higher-order solve in a similar process to the drift-diffusion vector [8].

Jout =
1

4
κφg(~r)

where the correction κ is calculated using the scalar flux from the higher-order solve, φHO
g (~r):

κ =
4

φHO
g (~r)

∫
n̂·Ω̂>0

|n̂ · Ω̂|ψg(~r, Ω̂)dΩ̂ .

Substituting this in gives the final weak form of the LO-NDA equation in the vacuum bound-
ary case,(

∇v(~r),Dg(~r)∇φg(~r)
)

D
+

(
∇v(~r)D̂g(~r)φg(~r)

)
D

+

〈
v(r),

1

4
κφg(~r)

〉
∂D,vacuum

+

(
v(~r),Σg

r(~r)φg(~r)

)
D

=

(
v(~r),

∑
g′ 6=g

Σg′→g
s0 φg′(~r)

)
D

+

(
v(~r), qg(~r)

)
D
.
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3.6.3 Algorithm

The steps of the NDA process are therefore,

1. Solve an angular form of the transport equation such as Eq. (3.2), the HO-NDA equa-
tion,

2. Calculate the drift-diffusion vector, D̂(~r) using the higher-order solution,

D̂(~r) =

∫
Ω̂ψg(~r, Ω̂) dΩ̂ +Dg∇φHO

g (~r)

φHO
g (~r)

,

and calculate κ if required.

3. Solve the LO-NDA equation, Eq. (3.17), by holding the scattering source constant and
updating the fission source,

4. Use the solved low-order scalar flux to update the scattering source term of the HO-
NDA.

The NDA algorithm has been shown to improve the convergence of the k-eigenvalue problem
in the presence of large amounts of scattering [8, 16].

3.7 Conclusion

In this chapter, we presented the methods by which we will solve the discretized transport
equation. We discussed the source iteration and GS methods, which together solve fixed
source transport problems. We also presented the two-grid acceleration scheme, which im-
proves convergence of GS in the presence of a large amount of scattering and, in particular,
upscattering. Power iteration provides a method to converge the k-eigenvalue form of the
transport equation. Convergence challenges due to high within-group scattering with this
method can be helped with the use of the nonlinear diffusion acceleration method. In the
next chapter, we will discuss the mathematical basis for these methods, and the challenges
of implementing and assessing their effectiveness.
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Chapter 4

Assessment of Acceleration Methods

In the previous chapter we discussed the iterative methods used to solve the discretized
transport equation. As described, these iterative methods have properties that can make
convergence challenging or impossible, motivating the development of acceleration methods.
These methods were developed through a mathematical understanding of the iterative solving
process and are designed to combat the well understood convergence issues. For researchers
interested in developing acceleration methods, this is only the first step. Once developed,
there are three major challenges that must be overcome before the method can be published:
implementation, assessing effectiveness, and validation.

The first of these challenges is practical in nature; once a method is developed, we must
implement this method in some way to show that it works. The mathematical derivation
of the method has limitations, often requiring assumptions about the solving domain and
dimension that are almost certainly invalidated in more complex problems of interest. There-
fore, researchers are expected to create or update a code that solves the transport equation
to show that the method is effective when put into practice. Each of these options includes
unique challenges and benefits, which will be discussed in this chapter. Once implemented,
researchers can move on to assessing the effectiveness of the method.

Assessing the effectiveness of acceleration methods is often measured in iterations or
clock time. These measurements of efficiency are motivated by the end-users of acceleration
methods: researchers executing large production-scale codes to solve complex problems of
interest. Ultimately, acceleration methods are efficient if they solve problems using less
computational work, which is usually reflected in iterations or wall clock time. In this
chapter, we will discuss these heuristics and associated assumptions.

The final challenge in assessing acceleration methods is validation. While users are of-
ten interested in a method merely being efficient, this may not be enough for researchers
developing methods. The mathematical basis for a method often dictates how we expect
the method to improve convergence. To validate whether the expected reason for improve-
ment is happening correctly, specific data needs to be collected that is often not available in
transport codes.

In this chapter, we will explore these challenges. We will discuss the practical challenges



CHAPTER 4. ASSESSMENT OF ACCELERATION METHODS 44

of implementation of acceleration methods and the barriers that exist. We will also discuss
the assessment of acceleration methods, including the use of iterations as a heuristic for
work. Finally, we will discuss the challenge of validation.

4.1 Implementation

Collecting good experimental data on the operation of novel acceleration methods can be a
major practical challenge. Before even discussing how to measure effectiveness, we need to
overcome the practical matter of implementing the method in some form. In general, there
are two possible paths developers can take: they can develop their own code, or implement
the novel method in an existing code base. Both of these approaches have benefits and
challenges in an academic environment and we shall examine each.

4.1.1 Developing New Codes

One approach is to fully develop a new code to implement and experiment with a novel
acceleration method. The first major barrier to creating a new code is proficiency in the
programming language of choice. Although most graduate students and professors now
possess some skill in one or more programming languages, a deep enough understanding of a
language to build and maintain a new code of any real quality may be beyond their reach. A
2013 survey of institutions of higher learning in the United States [19] shows that of students
taking a first programming course, 44% learned Java, 19% learned C++ and 17% learned
Python. The survey indicates that in academic environments, some compiled languages
like Java are slowly becoming less popular than interpreted languages like Python. For a
first computing course, which the authors indicate is more geared towards general academic
programming, the top languages taught are MATLAB and Python.

The impact of what languages graduate or undergraduate students know is important
when developing a new code to test an acceleration method. Many essential computing
libraries such as Portable, Extensible Toolkit for Scientific Computation (PETSc) [20] and
Trilinos [21] are designed for use in C or C++ applications, and many have been adapted
to work in Python. Adapting these libraries for use in a popular programming language
such as Java may be difficult if a library does not already exist. The use of an interpreted
language such as Python may be non-ideal for complex problems that require a large amount
of computation. In many cases they are less efficient than a compiled language such as C or
C++ that has the benefit of compile-time optimization.

The final challenge when developing a new code to test an acceleration method is code
quality. Writing tested and well-written code is a time consuming process, which may be cast
to the wayside in the time and resource strapped environment of academia. The graduate
students and academics writing the code may not have the background to write testable
code, or the time to learn the skills necessary. Unfortunately, the publishing focus is on the
results of the numerical experiments, not the methods by which they were collected. This
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situation may lead to researchers trusting code that may be acting in ways they do not
expect, which is not ideal for generating good experimental data.

Despite these challenges, there are benefits to developing a new code. First, the researcher
has full control over the code design and execution. Many large existing code bases may have
optimizations or subroutines that are not obvious to a developer or user, and may affect the
quality of experimental data produced. By fully designing and building a code, researchers
know exactly what their code is doing so they can produce more trustworthy experimental
data. Second, if researchers already possess a good understanding of a coding language and
good software practices, it may be faster to develop a new code base than to learn how to
modify an existing one. Large deterministic codes are, in general, designed to be as fast as
possible and are therefore not necessarily easy to modify. Finally, designing and writing a full
new code can make it easier for others to replicate the work. Instead of needing to download
a large code and then apply modifications, researchers can download the presumably smaller
experimental code and run their own or the same test cases.

4.1.2 Modifying Existing Codes

The second approach is to modify an existing code by adding the novel acceleration method.
The major benefit to this approach is that a majority of the solving process has already been
implemented and proven to work. Depending on the code used, inserting a novel method
into the solving process can be significantly faster and easier than writing a completely new
code. Similar issues surrounding general programming knowledge factor in when modifying
codes. In this case, researchers have no choice for what programming language is required
since that decision has already been made. Many “production scale” codes are written in
highly optimized compiled languages such as C++ or C. These production codes are designed
to be fast and efficient, and therefore may use esoteric and modern coding practices that
may not be within the technical expertise of researchers and students.

The use of coding frameworks like Multiphysics Object Oriented Simulation Environ-
ment (MOOSE) [22] provides an excellent opportunity for this type of development. This
framework provides a developer-centered approach to designing finite element applications
for solving various types of problems. Although extremely optimized and well written, the
framework may be too complex for the simple application of an acceleration method. Re-
searchers may also want more control over what the code is doing, requiring in-depth study
of how the MOOSE framework operates. It cannot be overlooked, however, that a major
benefit of using existing codes is that in general these codes are well tested and understood,
providing assurances that experimental data collected is good.

Regardless of the path taken to implement a novel acceleration method, this is only the
first practical challenge in testing its effectiveness. Researchers must now collect and assess
data to determine if the method is working and, more importantly, working for the reasons
expected.
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4.2 Assessment of Efficiency

A transport solve is a complex series of interlocking routines that will ultimately lead (hope-
fully) to a convergent solution. As we have described, acceleration methods are designed to
combat inefficiencies in these routines to improve the converging behavior. Different schemes
will modify various routines or subroutines, so determining if the method has worked can
be challenging. To discuss evaluation of acceleration methods, we will use two inexact but
useful terms: upstream and downstream measures. We will compare means of measuring
acceleration by first describing a relative proximity in the solving process to the modified
routine.

The most downstream measure of acceleration is binary: if the solve converges or not.
As discussed, in media with a very high scattering ratio the Gauss-Seidel (GS) iteration
processes can take arbitrarily long to converge. This means that some problems solved with
GS may take an unreasonable amount of time to converge, or may not converge at all due to
the limitations of the computer’s accuracy. If an acceleration method is designed to address
this inefficiency and implementation of the method results in a non-convergent problem
converging, then we can reasonably make the assertion that the method is effective. We will
refer to this as the most downstream possible measure of acceleration effectiveness.

From a practical standpoint, if convergence of a non-converging problem is our goal this
may be the only measure that we need. From the standpoint of analyzing acceleration
methods and their effectiveness, it is less ideal. Although a method causing convergence
clearly had an impact on the problem, claiming the method was effective relies on a few
assumptions. In the case of GS, the first assumptions is that the arbitrarily slow convergence
was due to the high scattering ratio. Second, that implementation of the acceleration method
addressed this particular inefficiency. And third, that fixing this particular inefficiency caused
the problem to ultimately converge. In many cases these are valid assumptions to make; but
these are still assumptions that could be analyzed for their validity. To analyze the method
further, we need more and better data that is closer to the point of acceleration: further
upstream.

The most common means of verifying the effectiveness of an acceleration method is a
comparison of number of iterations. The solve is run at least twice, once accelerated and once
unaccelerated.1 The number of iterations is then compared to determine the effectiveness
of the method. As with analyzing convergence as a binary measure, this relies on a number
of assumptions. The most important of these assumptions is that the number of iterations
is a good heuristic for indicating the amount of work required to converge the problem. No
matter the methods involved, convergence of the problem relies on the removal of a finite
amount of error. If this error removal is performed in N iterations, the total work is merely

1The use of nonaccelerated indicates that a solve algorithm has no acceleration methods implemented.
Unaccelerated will indicate routines within a solve that have access to an implemented acceleration method
but are not utilizing it.
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the sum of the work of each iteration,

Wtotal =
N−1∑
k=0

w(k) , (4.1)

where w(k) is the work performed by iteration k.
The goal of our acceleration methods is to remove the same amount of error with less

total work. Our acceleration method is efficient only if

N ′−1∑
k′=0

w′(k
′) <

N−1∑
k=0

w(k) ,

where N ′ is the total number of iterations in our accelerated solve and w′(k
′) is the error

removed by the accelerated solve in iteration k′. It is important to note that in the accelerated
solve, both the total number of iterations and the work done in each iteration can be different
but what indicates an efficient acceleration is the total work. If we create a subroutine that
performs a large amount of work in each iteration but reduces the total number iterations,
we can significantly reduce the total iterations while not reducing the total work.

The development of acceleration methods is driven by a desire to solve larger and more
complex transport problems more efficiency. This is driven by large production-scale codes
that are designed to operate on super computers. For the users of these codes, wall clock
time or computational time are the most important measures of work. Unfortunately, for
those who wish to compare the effectiveness of different acceleration schemes, time required
is not an easily controlled variable. The amount of computational or wall clock time can vary
wildly depending on the type of computer used, the loading of the computer at the time, and
a vast array of other variables that cannot be controlled. We will therefore abandon the use
of the wall clock time and move on to a different heuristic often used to measure efficiency,
inversions.

For most solves, each iteration indicates an inversion of the transport operator, which
is assumed to be the most computationally expensive of the subroutines. This inversion
may involve an explicit inversion of a formed matrix, or an implicit inversion through a
transport sweep. Inversion of the matrix scales O(n3) with matrix size n compared to
matrix-vector multiplication which scales O(n2). In most cases, this inversion process will
therefore dominate the computational cost of the solve. Our equation for work in Eq. (4.1)
can be approximated

Wtotal =
N−1∑
k=0

w(k) ≈
N−1∑
k=0

winv = Nwinv ,

where winv is the computational work required for each inversion of the transport operator.
The addition of a subroutine in our acceleration method complicates our model of work.

If the work of our acceleration subroutine in each iteration is w′, the total work of our
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accelerated scheme is

W ′
total =

N ′−1∑
k′=0

w′(k
′) ≈

N ′−1∑
k′=0

(winv + w′) = N ′ (winv + w′) .

If we assume that our acceleration routine work is negligible compared to the work of invert-
ing the transport operator w′ � winv,

W ′
total ≈ N ′ (winv + w′) ≈ N ′winv . (4.2)

In this case, meeting our convergence criteria with fewer iterations should indicate that we
have reduced the same amount of error with fewer inversions and therefore less computational
work. As the value of w′ increases, using the number of iterations becomes less useful when
determining total work.

In the formulation just presented, each iteration corresponds to a single inversion of the
transport operator and a single execution of the acceleration subroutine. In an extreme case,
many inversions worth of work can be performed by a single execution of the acceleration
subroutine or the subroutine might be executed many times per inversion. This would
significantly reduce the value of using N ′ as a measure of performance by violating the
assumption that w′ � winv.

Thus, as our acceleration routines become more complex and do more work, we cannot
perform the simplification seen in Eq. (4.2). In this case our acceleration method is efficient
only if

W ′
total < Wtotal

N ′ (winv + w′) < Nwinv

N ′w′ < (N −N ′)winv

N ′w′ < ∆Nwinv , (4.3)

where ∆N = (N − N ′). Our acceleration method is only worthwhile if the amount of
additional work required to converge the problem, N ′w′, is less than the work saved by
not performing ∆N extra inversions. We also see that a method can never be efficient if
N < N ′. This is a consequence of every iteration requiring at least one inversion of the
transport operator.

Measuring the values of winv and w′ in most cases is impractical due to the routines used
for the inversion and the complexity of some acceleration methods. This heuristic is further
complicated if we combine acceleration methods, either to accelerate the base problem in two
or more ways or accelerate an acceleration method. What we can do is compare the ratios
of work using our understanding of the methods to help us decide if a method is efficient.
Dividing Eq. (4.3) by the work to invert and the total iterations in our accelerated solve we
see,

w′

winv

<

(
N

N ′
− 1

)
.
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In Fig. 4.1 we see a plot of this inequality. The x-axis is the ratio of the acceleration
method work to the inversion of the transport operator and the y-axis shows the ratio of the
accelerated iterations to the unaccelerated iterations. The region under the curve indicates
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Figure 4.1: Ratio of accelerated to unaccelerated iterations vs ratio of acceleration method
work to the work of inversion. The shaded region indicates the area where acceleration
subroutines are efficient. The vertical dotted line indicates a subroutine that requires exactly
as much work as an inversion of the transport operator.

the region where acceleration methods are efficient. As expected, if the acceleration method
is doing the exact amount of work as a single inversion, we require convergence in exactly half
the iterations and any fewer indicates acceleration. As our method becomes more efficient
and w′/winv becomes less than unity, there is a larger region where our method is efficient,
and as w′ � winv, any reduction in iterations indicates an efficient method. There are regions
of efficiency where w′ > winv, assuming the number of iterations in the accelerated solve is
low enough. Much like the use of inversions to represent work, this is merely a heuristic but
it can add insight. When assessing, care must be taken to ensure that we are examining the
correct number of inversions, which can be complicated by the use of both inner and outer
iterations.

Without a large amount of analysis and many simplifying assumptions, we can’t truly
measure the total work performed by a method. We can use this model to make educated
conclusions about the efficiency of an algorithm. A complicating factor is the required
overhead of implementing a subroutine. The additional work done by an acceleration method
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is not just the work done by the derived mathematical acceleration scheme, but also any
work done that comes from the code modifications to run the subroutine,

w′ = wsubroutine + wimplementation . (4.4)

To be clear, this implementation work is not work done by the subroutine to execute the
acceleration method, but the surrounding logic required to perform the subroutine. To make
good assessments about the effectiveness of our acceleration subroutine, we must minimize
the computational work done by the implementation; this work is typically small but it must
still be considered. Many subroutines perform a solve of some form of the transport equation,
such as those that accelerate an angular solve using a diffusion solve. In these cases, it would
be ideal for both solves to be as identical as possible in implementation except where changes
are necessary.

4.3 Validation

As discussed earlier, determining if an acceleration method is efficient by measuring the num-
ber of iterations is only one part of assessment. Overall convergence is the most downstream
possible measure, with the total iterations being only slightly more upstream. The benefit
to using total iterations is that it gives us a standard candle to use when comparing different
acceleration methods, and in many cases relates well to wall clock time required. This is
of particular interest to researchers looking to implement methods in production level codes
for faster convergence. For researchers interested in developing and modifying acceleration
methods, this data is useful but there are much more interesting metrics to collect. When
developing new acceleration methods, modifying existing methods, or combining them, we
are interested in not just the overall acceleration but the reasons behind it.

To determine if our subroutine is working and working in the way we expect, we need
to collect data from much closer to, or from within the subroutine itself. The type of data
required and the collection location will vary greatly between different acceleration schemes.
Collecting and analyzing this data is important for a number of reasons. First, we have
designed acceleration methods to not just be more efficient, but to be more efficient for
reasons identified mathematically. For complex problems, we expect these mathematical
derivations to still hold, and so we would like to collect data to test this hypothesis. Second,
we are comparing an accelerated solve to an unaccelerated solve that necessarily use different
code. We need to make sure that our accelerated solve is more efficient because of the
mathematical properties of the method, not due to coding practices or processes.

One tool often used by researchers to develop acceleration methods is Fourier analysis.
This process can help reveal inefficiencies in the iterative process that can be targeted by
acceleration methods. The ability to do fast discrete Fourier transforms then provides the
ability to validate if the acceleration method is operating as we expect.
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4.4 Fourier Analysis

A large body of research has focused on accelerating the convergence of source iteration
(SI) by speeding up the convergence of the scattering portion of the formulation (generally
referred to as the scattering source term or scattering source). A thorough discussion of the
history of these methods can be found in Adams and Larson [12].

As we discussed in the previous chapter, development of preconditioning schemes began
in the 1960s with the near concurrent work of Kopp [13] and Lebedev [14]. Here, we see
the use of scalar (non-angular) formulations to accelerate angular formulations, using the
understanding that the scalar form is much more efficient when dealing with more diffusive
neutron behavior. Their work has been expanded on for many years, leading to the develop-
ment of various acceleration schemes including diffusion synthetic acceleration (DSA) [15].
From the physical interpretation of the SI process, we know why these methods work. If the
k-th iteration corresponds to calculating the flux for neutrons that have scattered at most
k − 1 times, using the diffusion method will help propagate those neutrons more efficiently
in diffusive problems.

Mathematically, we can show this using Fourier analysis [12]. We begin our analysis with
an infinite one-spatial dimension, single energy version of source iteration on convex domain
D ⊂ R1 with position and angle

{x ∈ R | x ∈ D}
{µ ∈ R | µ2 < 1} .

The transport equation in an infinite homogenous medium with isotropic scattering is given
by,

µ
∂

∂x
ψ(x, µ) + Σtψ(x, µ) =

Σs

2

∫ 1

−1

ψ(x, µ′)dµ′ +
Q

2
.

This equation in the SI form is,

µ
∂

∂x
ψ(k+1)(x, µ) + Σtψ

(k+1)(x, µ) =
Σs

2

∫ 1

−1

ψ(k)(x, µ′)dµ′ +
Q

2
.

With error,
e(k)(x, µ) = ψ∗(x, µ)− ψ(k)(x, µ) ,

where ψ∗ is the exact solution. We can subtract the iterative scheme from the exact solution
to get an equation for the error in iteration k,

µ
∂

∂x
e(k+1)(x, µ) + Σte

(k+1)(x, µ) =
Σs

2

∫ 1

−1

e(k)(x, µ′)dµ′ . (4.5)

To examine the modes of spatial variation in our error, it is useful to use the inverse
Fourier transform. This mapping f : C 7→ R will express the error in terms of a spatial
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frequency. First, we must decide on a measure of spatial variation, a characteristic distance.
One way that provides some physical intuition is to examine how error varies as measured
in mean-free paths `, giving a wavelength,

λ =
`

n
,∀n ∈ R . (4.6)

The larger the value of n, the higher the frequency of the error over our characteristic length.
These error modes are also assigned a linear wave number ν̃, defined using Eq. (4.6).

ν̃ =
1

λ
=
n

`
= n · Σt,∀n ∈ R . (4.7)

Using the wave number, we can perform an inverse Fourier transform in space of our
error, using our parameter n,

e(k)(x, µ) =

∫ ∞
−∞

ê(k)(n, µ)eiΣtnxdn ,

We can substitute this into Eq.(4.5) to get a recursion relationship for the error in each
iteration, ∫ ∞

−∞

[
Σt (iµn+ 1) ê(k+1)(n, µ)− Σs

2

∫ 1

−1

ê(k)(n, µ′)dµ′
]
eiΣtnxdn = 0 .

The exponential basis functions of the Fourier transform eikx are all linearly independent.
Therefore, the only way for this integral to be zero is by setting

Σt (iµn+ 1) ê(k+1)(n, µ) =
Σs

2

∫ 1

−1

ê(k)(n, µ′)dµ′

ê(k+1)(n, µ) =
Σs

2Σt (iµn+ 1)

∫ 1

−1

ê(k)(n, µ′)dµ′ .

We can also write the transformed error in terms of the scattering ratio, c = Σs/Σt.

ê(k+1)(n, µ) =
c

2

1

(iµn+ 1)

∫ 1

−1

ê(k)(n, µ′)dµ′,∀n ∈ R .

If we integrate both sides over µ,∫ 1

−1

ê(k+1)(n, µ)dµ =

∫ 1

−1

(
c

2

1

(iµn+ 1)

∫ 1

−1

ê(k)(n, µ′)dµ′
)
dµ

=
c

2

∫ 1

−1

ê(k)(n, µ′)dµ′
∫ 1

−1

1

1 + iµn
dµ

=
c

2

∫ 1

−1

ê(k)(n, µ′)dµ′ · 2
∫ 1

0

∣∣∣∣ 1

1 + iµn

∣∣∣∣ dµ
= c

∫ 1

−1

ê(k)(n, µ′)dµ′
∫ 1

0

1

1 + µ2n2
dµ .
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We see we have a function that provides recursive generation of error expressions, which is
a function of the parameter n,

Λ(n) = c ·
∫ 1

0

dµ

1 + µ2n2

=
c

n
tan−1 (nµ)

∣∣∣1
0

=
c

n
tan−1 (n) .

Now we have a function that describes how the angle-iterated error in spatial frequency
space evolves from iteration to iteration as a function of our parameter n and the scattering
ratio c ∫ 1

−1

ê(k+1)(n, µ)dµ = Λ(n)

∫ 1

−1

êk(n, µ′)dµ′ .

This allows us to express error in iteration k in relationship to the initial error,∫ 1

−1

êk(n, µ)dµ = Λ(k)(n)

∫ 1

−1

ê0(n, µ′)dµ′ .

We now see that the error is an eigenfunction of our iteration scheme, with corresponding
eigenvalue Λ(n). The spectral radius of the iteration scheme is therefore,

ρ = sup
n
|Λ(n)| = c .

As a problem introduces more scattering as a fraction of the total cross-section, the
value of c approaches unity. In each step of our iteration, the error is reduced by a factor
equal to the spectral radius of the iteration matrix, which is also c. Therefore, we see the
mathematical basis for the arbitrarily slow convergence of the SI scheme.

It is important to note that this spectral radius corresponds to the maximum value of
Λ(n), which occurs at a value of n = 0 as we see in Figure 4.2. This is the most diffusive
mode of scattering and corresponds to an infinite wavelength as shown by Eq. (4.6) and
this provides a mathematical basis for methods like DSA that use a diffusion approximation
to improve convergence. Fourier analysis of acceleration methods can show the theoreti-
cal improvement expected. For DSA, the spectral radius of the iterative scheme has been
shown to be less than or equal to 0.23c [15], a vast improvement. Similar analysis of the
spectral radius has been performed for other iterative schemes, including nonlinear diffusion
acceleration (NDA) [8], and two-grid (TG) [17].

As shown, Fourier analysis is a powerful tool to analyze and develop acceleration methods.
Unfortunately, the method is not without its limitations. In many cases we are limited to
analysis of a one-dimensional, infinite-media case and are limited in our ability to introduce
multiple energy groups or other changes to the iterative scheme.
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Figure 4.2: Value of Λ(n)/c as a function of n.

Ideally, we are developing novel acceleration methods for use in improving the convergence
of large, complex systems with complicated geometries and many energy groups. Therefore,
experimental data is required to validate the effectiveness of the acceleration schemes using
more complex models. We cannot know a priori what data researchers will need to validate
the effectiveness of their acceleration schemes. Not only must we collect this data, but we
must ensure that it is good data. The quality of the data will depend on many factors, not
least of all if it separates the computer science of implementation from the mathematics of
the method. A very efficient acceleration method can be undermined by inefficient computer
science in implementation. In the reverse case, a very efficient acceleration method could
bypass inefficient sections of the original code, showing improvement due to better computer
science.

Separating the computer science from the mathematics of the subroutine can be diffi-
cult. What makes the process harder is that many codes are not designed to make this
clear, precise, and easy to do. The act of modifying codes necessarily adds some amount
of uncertainty to this distinction. Ideally, we could implement an acceleration method into
a code while modifying as little of the rest of the solving process as possible. Luckily, this
is possible using modern object oriented programming techniques, but relies on developing
the code with the developer end-user in mind. The data collection itself also relies on the
design of the code. It may be difficult or impossible to modify existing codes to output the
data researchers are interested in when assessing their acceleration methods. The need for
a code to meet these requirements motivates the development and design goals of the Bay
Area Radiation Transport (BART) code, described in the next chapter.
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4.5 Conclusion

In this chapter we discussed the three major challenges in assessing acceleration methods:
implementation, assessment, and validation. Implementation is made more complex by the
difficulty in creating or modifying codes. Once implemented, assessment and validation can
require the collection of good experimental data. Many of these challenges motivate the
design and development of a new code that would make implementation and analysis of the
methods easier and faster. To this end, we will discuss the development of a novel code,
BART in the following chapter.
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Chapter 5

The BART Design and Code

Developing, implementing, and testing new acceleration methods is a difficult endeavor. The
implementation is typically time consuming and resource heavy, especially if high software
quality standards are to be met and maintained, which limits the speed with which we
can try new methods and therefore the number of idea iterations. Further, as we will
discuss in detail later, the transport community often does not have enough information
to tell why a particular acceleration method works nor the measures to truly compare one
method to another. Such comparisons are hindered by disparate implementations and code
base differences. We developed the Bay Area Radiation Transport (BART) code to create
an environment specifically for implementing and testing acceleration methods to speed
development and improve assessment. The code is designed to meet four major practical
challenges.

First, the difficulty of implementing new acceleration methods is a barrier to idea gener-
ation and testing. Development of a new method often begins with an analytic derivation
based on mathematics and an understanding of what need the method is trying to meet.
Once the method is designed, there exists the very practical need to implement the method to
measure its effectiveness. Often researchers are left with few options: modifying an existing
code or writing their own code. Both of these approaches have benefits and drawbacks, but
both are typically resource and time intensive. Regardless of the method chosen, implemen-
tation is a major barrier between the derivation of an acceleration method and publishing
the method and data about its effectiveness. Ideally, the BART code should ease some of
the burden of implementing a novel acceleration method.

Once implemented, measuring the effectiveness of an acceleration method is the second
major practical challenge. To do so, we must collect good data. The quality of the data
we collect is greatly dependent on how we implemented the acceleration method and is
dependent on two major factors. First, we need a good base case for comparison, either an
unaccelerated problem or a problem using a different acceleration method. Second, once the
base case is established, we need to change as little as possible between the base case and
our accelerated solve. If a new code was developed to test our acceleration method, we must
also ensure that this code can perform a nearly identical base case for valid comparison. If



CHAPTER 5. THE BART DESIGN AND CODE 57

we modified an existing code, we must modify it such that as little as possible is changed,
keeping in mind that a larger code may have optimizations that are unknown to the developer.
Keeping this in mind, the BART code should provide an environment for developers to change
as little as possible to implement an acceleration method and do so in an isolated manner
such that the rest of the solving process is identical to a base case.

If we have implemented our novel method in a good environment that enables a good
comparison to a base case, we must still collect good data. This can be a major challenge
for large codes designed for efficiency. The data we want to validate our method may be
difficult to find and extract, if not impossible. As described in Chapter 4, we have various
heuristic methods to assess the efficiency of an acceleration method. Ideally, we can capture
data upstream of convergence and total iterations to validate not only that the method is
efficient, but the reasons for its efficiency. If we can easily collect good data, we can more
quickly publish the results of novel methods and give others tools to determine if it will work
in their own codes and for their particular problems of interest. It is also a way to check if
the method is really correct: if it performs the way we expect given the mathematical basis
we have much more confidence the method is right and is implemented correctly. We aim
to create a paradigm in the BART code that makes it easy to extract data from the solving
process in a minimally invasive way. In addition, the data extraction method is extensible
in data type, allowing future developers to capture whatever kinds of data they may need.

Finally, assuming we have created a code for testing a novel method that provides a good
environment for assessment and enables us to collect that data, we want our results to be
portable and reproducible. In an ideal case, others will be able to download and compile our
implementation to validate our results, or test cases that are similar to their own problems
of interest. We would also like this code to be tested as thoroughly as possible to show
reliability and that our results can be trusted. Not only does this improve the transparency
of our research but enables others to expand and improve upon it.

We seek to overcome these major challenges with the design of the BART code. The main
purpose of the BART code is to provide a controlled environment for comparing different
solution and acceleration methods. The end-user for the code is not someone interested in
solving the transport equation but a user interested in changing how the solve happens. New
methods can be implemented easily and with minimal code change. In addition, BART is
highly instrumented, so detailed information about solves is accessible and we can extract
useful information and metrics about the solve process. Ultimately, the BART code should
serve as a testing ground for proving the concept of novel acceleration methods to justify
the time and resources required to implement them in production-level codes.

To summarize, the design goals of BART are to

1. Relieve the burden of implementing novel acceleration methods,

2. Provide a good environment for measuring the effectiveness of those methods,

3. Provide tools for measuring the effectiveness of methods, and,
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4. Provide a tested, portable, and reliable environment.

In the following sections, we will discuss how BART meets each of these goals, following
an overview of the code itself. Please note that the following sections contain code segments
that are intended to illustrate the design of BART in a representative fashion. These code
segments are not intended to be complete code or exactly reflective of the current state of
the source code. Where possible, things such as virtual destructors and argument names
have been omitted.

5.1 An Overview of the BART Code

In this section, we will provide an overview of the structure and implementation of the
BART code. Some of the characteristics have been covered in the previous section where we
described how they meet the design goals of the code. Therefore, these specific parts will
not be repeated.

The BART source code is written in the C++ programming language and uses function-
ality implemented up to the C++20 [23] standard. This enables the use of many modern
and time-saving C++ features that make the code more expressive and easy to understand.
Many of the less common C++ features that researcher developers may not be familiar with
are in classes that we do not expect them to modify. If a modern C++ feature would improve
code we expect to be often modified, but at the expense of making it harder to understand,
in many cases the feature was not used. Building the BART code can be accomplished using
a provided build file for the CMake system.

5.1.1 Deal.II

The largest dependency that BART relies on is the deal.II finite element library [24, 25]. The
BART code uses this library to provide several functions including continuous finite element
basis functions and meshes for Cartesian grids. The linear solver implemented in BART
is generalized minimal residual (GMRES)[26] and BART uses the deal.II implementation
of the Portable, Extensible Toolkit for Scientific Computation (PETSc)[20] GMRES solver
and vectors. BART implements a Gaussian cell quadrature provided by deal.II. Finally, the
deal.II library supports Message Passing Interface (MPI) for parallel computing and handles
domain decomposition and parallel vectors for efficient solving. BART leverages all of these
library features to solve in 1, 2, or 3D and across multiple processors if desired.

As discussed in the previous chapter, the goal of BART is to provide an environment for
developers that minimizes the learning curve to implementing new methods. To support this,
all the deal.II methods used are wrapped by BART classes, minimizing interactions with the
underlying dependency. There are, however, a few common objects used throughout BART
provided by deal.II that are not wrapped and these are the deal.II vector and matrix formats
and their MPI counterparts.
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5.1.2 Implemented Methods and Formulations

BART supports both angular and scalar formulations of the transport equation. Three for-
mulations are implemented for scalar solves: diffusion, drift-diffusion, and two-grid diffusion.
One angular formulation is implemented at this time, the self-adjoint angular-flux (SAAF)
formulation. All formulations support both vacuum and reflective boundary conditions.
These formulations use the system matrix assembly procedure described in Section 2.3.3. A
system “stamper” iterates over all the cells in the domain, calculates the local cell contribu-
tion to the system matrix and uses a local-to-global mapping to construct the system matrix.
For one-dimension, a Gauss-Legendre quadrature is provided and for three-dimensions, a
level-symmetric-like Guassian Qaudrature is provided, described in the next section.

As mentioned, power-iteration (PI) is implemented for eigenvalue iterations, Gauss-Seidel
(GS) is implemented for outer iterations, and source iteration (SI) is implemented for inner
iterations. Default implementations of each iteration type is provided; users merely need
to identify how an iterative scheme updates the system and how it checks for convergence.
For example, a PI iteration updates the fission source and checks for convergence of the k-
eigenvalue. A Rayleigh Quotient calculator is implemented for calculating the k-eigenvalue.
Convergence checkers for different types of data types are provided, using C++ templating
to make future implementations straightforward.

Each instance of a transport equation formulation is contained in a “framework”, a data
structure that contains all objects and data needed to execute the solve. For describing
this object, a framework “parameters” data structure specifies all the values needed to fully
build a solvable framework. BART can use the deal.II parameters handler to ingest and
validate input files and easily convert this to framework parameters for building problems.
Builders and factories are provided for instantiating all the classes in BART and performing
all required dependency injection.

5.1.3 Angular Quadrature

As described in Sec. 2.2.3, to solve the transport equation we need an implemented angular
quadrature set. Our aim is to use a quadrature set that will exactly integrate the spherical
harmonics which are of the form,

Y`,m(θ, φ) = Cm
` P

m
` (cos θ)eimφ, (5.1)

where ` ≥ 0 is the degree, m ∈ [−`, `] is the order, Cm
` is a normalization constant and

Pm
` are the associated Legendre polynomials. We base this decision on our method of

expanding the flux and scattering operator in the spherical harmonic basis. Once solved,
we can then calculate the scalar flux by combining the angular flux moments using this
numerical integration. This set should contain N quadrature points in either Cartesian or
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polar forms, where we define the relationship between these two coordinate systems:

x = cosφ sin θ

y = sinφ sin θ

z = cos θ ,

where φ is the azimuthal angle and θ is the polar angle. For one-dimension, it is easy enough
to use a Gauss-Legendre quadrature set for the values of z, as this will integrate the Legendre
polynomials exactly.

Historically, for higher dimensions a common angular quadrature set is the level-symmetric
set. A description can be found in many sources [2, 1], and it has historically shown to be
successful and efficient for solving the transport equation. One benefit of the level-symmetric
set is that it is invariant in 90-degree rotations, such that no axis or direction receives prefer-
ential treatment [1]. A down side of the level-symmetric set is that it can not be procedurally
generated. The ordinate choice is constrained such that there exists only one degree of free-
dom, choosing the first point x0 determines all points xi for i ∈ (0, N ]. The value of x0,
the quadrature point weights, and layout of weights must all be provided in a lookup table.
Therefore, we must have values provided for the specific values of N that users may choose.
Ideally, we could instead generate a quadrature set that integrates the spherical harmonics
with an arbitrary number of points N .

5.1.3.1 Product Gaussian Quadrature

One possible choice of procedurally generated angular quadrature is the product Guassian
quadrature. A short description of the basis for this set is provided here, and a full derivation
and proof of accuracy can be found in Atkinson and Han [27].

This quadrature formula performs the integral by using the product of two one-dimensional
quadrature rules, one for θ and one for φ:

I(f(θi, φj)) =
N−1∑
i=0

wi

M−1∑
j=0

w′jf(θi, φj) ,

where N is the number of points in the quadrature rule for the θ-direction with associated
weights wi, and M is the number of points in the quadrature rule for the φ-direction with
associated weights w′j. Examining the form of the spherical harmonics in Eq. (5.1), we see
that the portion that depends on φ is an exponential, eimθ. This exponential is periodic on the
interval [0, 2π], and can be integrated using the trapezoidal rule with uniform spacing [27],∫ 2π

0

g(φ)dφ ≈ IN(g(φ)) = h

M−1∑
j=0

g(j · h) ,

where h = 2π
M

is the spacing of the points. Note that the periodicity of the function removes
the halving of the first and last terms seen in the trapezoidal rule.



CHAPTER 5. THE BART DESIGN AND CODE 61

In the θ-direction, we seek a quadrature set to integrate exactly the Legendre polynomials,
as this is the portion of the spherical harmonics that is dependent on θ. These are polynomials
that depend on z = cos θ, so we apply a Gauss-Legendre quadrature with N points over the
interval z ∈ [−1, 1]. The values of θ can therefore be calculated,

cos θi = zi, i = 0, . . . , N − 1 ,

where zi is the Gauss-Legendre point and θi is the corresponding value for the product set.
Our quadrature rule for the θ-direction is therefore,∫ π

0

g(cos θ) sin θdθ =

∫ 1

−1

g(z)dz ≈ IM(g(z)) =
N−1∑
i=0

wig(zi) . (5.2)

Our product Gaussian quadrature set is therefore defined as follows: choose N > 1 and
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Figure 5.1: Product Gaussian quadrature set for N = 16. See App. B.1 for the code to
generate this set and graph.
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apply the trapezoidal rule with M = 2N to the φ direction with spacing

h =
π

N
,

and quadrature points
(φj, wj) = (jh, 1), j = 0, . . . N − 1 .

In the θ-direction, apply a Gauss-Legendre quadrature with N points (zi, wi) where i =
0, . . . N−1. This results in a product quadrature set that will exactly integrate (with appro-
priate normalization) a function f(θ, φ) of the spherical harmonics using the approximation,

I(f) =

∫ 2π

0

dφ

∫ π

0

sin θdθf(θ, φ) ≈ π

N

N−1∑
i=0

wi

2N−1∑
j=0

f(θi, φj) .

This product quadrature can be procedurally generated for any value N > 1, unlike the level-
symmetric set. Unfortunately, it is not invariant under rotation; many points are clustered
near the pole, as we see in Fig. 5.1. We will modify this product Gaussian quadrature to
have the symmetry properties that we desire.

5.1.3.2 Level-Symmetric-Like Product Gaussian Quadrature

As stated before, the level-symmetric set has invariance under 90-degree rotation, making
it symmetrical, so no axis is preferred [1]. Our product Gaussian set does not have this
property, as we are using two different quadrature methods in φ and θ, precluding any
chance for that kind of rotational symmetry. We can, though, modify the quadrature set
to make it closer to the level-symmetric set. This will reduce the clustering of quadrature
points near the pole, more equally space the points out through the angular phase space,
and reduce the overall number of points. We will use the nomenclature of “levels”, which
refers to sets of quadrature points with the same θ value as shown in Fig. 5.1 by dotted lines.

We will use the product Gaussian as a basis for this set. Observing Fig. 5.1, we see that
with the same number of points in each level, the points become more and more clustered
with increasing z-value. To counteract this effect, we will change the number of points in
each level. Again, we start with the generalized product quadrature form,

I(f(θi, φj)) =
N−1∑
i=0

wi

M−1∑
j=0

w′jf(θi, φj) .

Our interest is in modifying the distribution of points in the φ direction, so we will apply the
same quadrature rule for θ. We will apply a Gauss-Legendre quadrature with N points in
the same way, using Eq. (5.2). For the φ-direction, we will again apply the trapezoidal rule,
but will adapt the spacing h for each level. To make the layout more symmetrical, we will
place a single point per octant in the top level to mimic the ends of the distributed points
on the “equatorial” z = 0 level.



CHAPTER 5. THE BART DESIGN AND CODE 63

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

O

Figure 5.2: Level-symmetric-like Gaussian quadrature set for N = 16. See App. B.2 for the
code to generate this set and graph.

With each subsequent level we will increase the number of points resulting in exactly 2N
points on the equatorial level, the same as the product Gaussian set. We will assume that
the values of θi are ordered such that θ0 < θ1 < . . . θN−1. The value of θ0 corresponds to
the smallest value (the “highest” level) where we will place exactly four points, and increase
this value by four for each subsequent value of θ. The spacing for the level corresponding to
θi is therefore

hi =
2π

4(i+ 1)
, i = 0, . . . N − 1 .

For this level, the quadrature points are therefore,

(φj, wj) = (jhi, 1), j = 0, . . . , 4(i+ 1) .
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Combining the two quadrature rules results in the following product quadrature rule,

I(f) =

∫ 2π

0

dφ

∫ π

0

sin θdθf(θ, φ) ≈ 2π
N−1∑
i=0

wi
4(i+ 1)

4(i+1)∑
j=0

f(θi, φj) .

A plot of this quadrature is shown in Fig. 5.2. Although not rotationally symmetrical like
the level-symmetric quadrature set, this set has a more even distribution of points within
the octant. As we will be using these points as collocation points for solving the transport
equation, we will more efficiently solve for angular fluxes that span the space. Importantly,
this set also accurately integrates the spherical harmonics. The spherical harmonics are
orthogonal and normalized such that,∫ 2π

0

dφ

∫ π

0

sin θdθY`,m(θ, φ)Y`′,m′(θ, φ) = δ``′δmm′ .

We can therefore calculate an error in our numerical integration,

e =
∣∣1− I(Y 2

`,m)
∣∣ . (5.3)

The error for the level-symmetric-like Gaussian quadrature set with N = 16 are shown in
Table 5.1 for values of ` ∈ [0, 4].

5.1.4 Cross-Sections

BART uses a novel cross-section format developed with Google Protocol Buffers [28]. This
format enables us to describe the format of a structured data file and have the code for
parsing that data file generated automatically. We have created a file structure for cross-
sections, and used the protocol buffers executable to generate C++ code that is used by
BART to parse the files. The most significant benefit of the protocol buffers format is that it
reduces the work required to create new codes by automatically generating the code to parse
the cross-section data. There is no tool for automatically converting existing cross-section
formats like evaluated nuclear data file (ENDF) [29] or XML to the new protocol buffer
format. But, the ability of protocol buffers to automatically generate parsing code for many
programming languages means that existing codes designed to ingest and process ENDF
files can be modified to output to protocol buffers easily. For the test problems included
with BART, we generated parsing code for Python and used this to manually create cross-
section libraries based on existing benchmark problems such as those published by Sood et.
al. [30], Ganapol [31], and a Korea Advanced Institute of Science and Technology (KAIST)
benchmark problem [32].

5.2 Reducing the Burden of Method Implementation

Typically, the end user of a transport code has less interest in the solving process than in the
solution to their particular problem of interest. As long as the deterministic codes arrives
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Table 5.1: Error for the level-symmetric-like Gaussian quadrature set with N = 16. The
code used to generate these values is shown in App. B.3

.

` m e

0 0 2.220446049250313e-16

1
-1 2.220446049250313e-16
0 1.2212453270876722e-15
1 2.220446049250313e-16

2

-2 4.440892098500626e-16
-1 0.0
0 1.4432899320127035e-15
1 2.220446049250313e-16
2 4.440892098500626e-16

3

-3 4.440892098500626e-16
-2 8.881784197001252e-16
-1 6.661338147750939e-16
0 2.220446049250313e-16
1 5.551115123125783e-16
2 2.220446049250313e-16
3 2.220446049250313e-16

4

-4 0.0
-3 0.0
-2 8.881784197001252e-16
-1 1.1102230246251565e-16
0 1.1102230246251565e-16
1 2.220446049250313e-16
2 8.881784197001252e-16
3 0.0
4 3.3306690738754696e-16
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at the correct answer, the exact process by which it gets there is of no importance. Users
typically want to solve more complex problems with higher fidelity, which forms demand
for codes that utilize more powerful modern hardware, better designed software, and more
efficient methods. Ultimately, users are interested in the solution, and the solving process
only in that it uses as few resources as possible. Our interest in developing BART is to
explore an inverted paradigm: we are deeply interested in the solving process and only the
solution in that it is correct. The BART code is designed with a different end user in mind:
the developer.

The ultimate goal of this inverted design is to allow the developer to insert their own
process or subroutine into the solve, validate that it works against provided test problems,
and compare its performance against other methods in an information-rich way. Unlike major
production codes, the speed and efficiency we want is in modifying the solve, not the solve
process itself. Those who develop the acceleration methods that would be implemented in a
code like this are researchers who study the mathematics of the neutron transport equation.
Therefore, the code must be designed to make sense to this audience. Many decisions made
in designing the code may not be optimal from a computer science perspective, but will
make things more clear to an academic developer making modifications. The development
of the BART code itself therefore uniquely benefits from being developed by academics and
not pure computer scientists. In this section, we will discuss some of the qualities and
characteristics of the BART code that emphasize its focus on the developer end-user.

5.2.1 Class Design

In performing a careful division of the solve process and using individual classes to perform
many of the individual steps, we seek to make modifying the routine straightforward. Larger
production codes may use more procedural processes that are difficult to modify because
it is a more efficient routine for completing the solve. The downside of the more efficient
procedural code is that it is harder to modify. Implementing new acceleration methods or
schemes often requires multiple modifications to different parts of the solve process, inserting
new subroutines into the procedural code, or inserting logic trees. A key design goal of BART
is that developers can identify the part of the solve process where their routine fits, identify
the interface that performs that function, and add their customized class or classes. Doing
so limits the amount of code that needs to be understood and modified.

We will illustrate this with an example. Consider a researcher who has developed a new
method of calculating the k-eigenvalue for power-iteration (PI). They will naturally need to
find the PI routine and determine where modifications will need to be made. In BART, outer
iterations are defined as generally as possible, but with steps clearly named. The researcher
will see that the BART code identifies that an eigenvalue iteration has a few basic steps,

1. Update the system in some way,

2. Perform outer iterations,
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3. Check for convergence, and

4. Repeat if necessary.

The provided power iteration scheme is a specialization of this class that updates the
fission source in step 1, and calculates the k-eigenvalue in step 3. The benefit to this care-
ful consolidation of iteration procedures in a generalized base class means that the power-
iteration scheme implementation requires less than ten lines of code. This greatly reduces
the amount of existing code the researcher will need to read and understand to implement
their new calculation.

In looking at the few lines of code that specialize the PI scheme,the researcher can easily
identify the location where the k-eigenvalue is calculated,

// src/iteration/eigenvalue/power_iteration.cpp
...
convergence::Status EigenPowerIteration::CheckConvergence(

system::System &system) {

double k_effective_last = system.k_effective.value_or(0.0);
system.k_effective =

k_effective_updater_ptr_->CalculateK_Eigenvalue(system);

return convergence_checker_ptr_->ConvergenceStatus(
system.k_effective.value(), k_effective_last);

}
...

The power iteration class owns a class that has a single job, calculating the k-eigenvalue
given a system. Therefore, the researcher merely needs to create a new class that calculates
the k-eigenvalue using their new method. No further modification to the solving routine is
required. Once the new method is implemented in this new class, the routine that constructs
the classes responsible for the solving process must be updated to use this new method. To
ease the modification of the code and make it clear to developers where and how formulations
of the transport equation are solved, we use a framework model.

5.2.2 Framework Model

A major design feature of BART is “frameworks.” A framework is a container that holds
the constellation of objects required to solve the transport equation. A framework is not
responsible for connecting all the classes, this is done by a framework builder, it merely
executes the solve. For an unaccelerated solve, only one framework would be constructed
to contain all the required classes to solve some specific formulation of the transport equa-
tion. A non-exhaustive list includes: cross-section data, meshes, finite-element domains,
quadrature, and specific formulations of the transport equation. More complex solves may
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involve multiple frameworks, each able to independently solve a different formulation of the
transport equation as needed.

The power of this framework model is realized when implementing acceleration meth-
ods that require solving a different formulation of the transport equation. For example,
the nonlinear diffusion acceleration (NDA) method requires solving a drift-diffusion formu-
lation with each iteration of the angular solve. Accomplishing this nested solve is easy with
the framework model: we only need to create a post-iteration subroutine that contains a
framework with the appropriate formulation, in this case drift-diffusion. We will refer to the
framework solving the problem of interest as the main framework, and any other frameworks
solving auxiliary problems as subroutine frameworks.

Main framework
solving problem of 

interest

Subroutine 
framework

solving auxiliary 
problem

Solution
data

Execution
data

Figure 5.3: Main and subroutine frameworks.

As we see in Fig. 5.3, there are, in general, two data flows between frameworks. The
main framework often provides execution data to the subroutine frameworks, which inform
the solve of the auxiliary problem. An example of this in NDA is the angular solution data
provided to the drift-diffusion auxiliary problem for calculation of the boundary term and
drift-diffusion vector. This data path is established when the frameworks are constructed at
the start of problem execution and is transparent to the solve process. The second data flow
is solution data provided from a subroutine framework to the main solving process. This
is handled by a subroutine located at a specific location in the solving process of the main
framework. It will call on the subroutine framework to execute a solve, and then extract the
solution to be used. In the example of two-grid (TG), the solution to the auxiliary problem
provides an error update to the main framework solution in each solver step.

The process to define and construct frameworks is designed to specifically aid developer
end-users. The construction of frameworks is controlled by a “framework builder” class that
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takes a recipe for a transport solve and instantiates and wires together all the needed classes
to execute it. This recipe takes the form of a simple but comprehensive data structure that
can either be generated from an input file or created at runtime by the code itself. To
implement an acceleration method, users only need to tell the builder where to find and how
to build their new class and specify using it in the recipe.

There is no limit to the number of frameworks that can be present, except for practi-
cal memory considerations. The framework construction process allows for the sharing of
solver components, such as meshes and finite element domains, reducing the overall memory
consideration.

5.2.3 Term Storage Consideration

Another design consideration that is explicitly included in BART that is not ideal from an
optimization point of view is the storage of terms in transport equation formulations. Solving
the transport equation in general requires either the explicit or implicit formulation of the
left-hand side and right-hand side terms and then a linear solve. In the BART code, terms
on the right-hand side and left-hand side can be stored separately. By default, the code
provides the option of storing “fixed” terms that will not change iteration-to-iteration and
“variable” terms that will be updated. The benefit to storing these terms separately is that
their values can be easily collected and output. The process that would be used for this will
be discussed in the following section.

5.2.4 Documentation

The final, but important, part of designing a code for a developer end-user is good doc-
umentation. BART uses Doxygen, an automated system for generating easily-navigable
documentation from C++ files. The documentation is included in the source files them-
selves, and this program will extract and format the documentation into various formats,
including HTML. A large benefit to using this system for a research code is built-in support
for LATEX-like equations using MathJax. This is particularly important for describing the
formulations for the transport equation. Overall, good documentation is important because
it will reduce the time that developers spend determining how the code works. In addition,
good documentation provides information about other parts of the code without needing to
read the source files themselves.

5.3 Providing a Good Environment for Measuring

Effectiveness

The next design goal of the BART code is to provide a good environment for measuring
the effectiveness of acceleration methods. Ideally, we can easily collect good information
about the efficiency of our acceleration method. An important step in generating good
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data is defining a base case and minimizing the changes between it and the accelerated
case. As researchers driven by the scientific method, we seek to change only one thing: the
implementation of the acceleration method. To do so, we need to be able to insert the novel
method without disrupting the remainder of the solving process. This is a practical challenge
with evaluating acceleration methods in existing codes, because codes often require logical
cutouts to run subroutines and modifications that span multiple sections of the code. We
seek to make BART a code that makes this easy and effective, providing a good environment
for measuring the effectiveness of the method compared to a base case, or other acceleration
methods.

One of the key design features in BART that achieves these goals is the use of pure
abstract interfaces. An interface is a design pattern in which we define a class that doesn’t
actually execute any code, but acts as a template for what classes of its type should do.
The rest of the code only interacts with the interface, and the actual internal workings of
the code are a black box. To put it a different way, interfaces define what a class does, not
how it should do it and the rest of the code only cares about the former. The implication of
this design pattern is that we can swap out one part of the solving process with a modified
version without changing how the rest of the code operates. This not only minimizes the
changes needed to implement a new method, but isolates the changes from the rest of the
solving process. This maximizes the quality of our comparisons to a base case.

As an example, in C++, a pure abstract function is designated as follows:

class PureAbstractI {
public:

virtual auto AbstractFunction() -> void = 0;
}

The virtual identifier indicates that this function may be overridden by other classes. A
virtual method table (VMT) will be instantiated with this class that will point to the address
of the dynamically bound implementation of this function. The use of = 0 indicates that
this class provides no default implementation but that it must be overridden by an inherited
class. All classes in BART are derived from a pure abstract class identified by a trailing I
in their name.

As much as possible, classes interact with each other through the virtual methods in the
interface, not implementation-specific methods. When classes are passed as dependencies or
as arguments, they are passed as either references or pointers and then bound to a reference
or pointer to their base interface. Strict adherence to this design principle means the code
can implement a single interface many different ways, without any impact on the way the
rest of the code operates. There are two major benefits to this design paradigm.

The first comes from good encapsulation of each step or part of the solve process. We
have designed the BART code so that researchers in the transport field will recognize many
of the classes in the solve routing and what they are expected to do. This will make it clear to
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researchers what part of the routine they should modify to implement their novel acceleration
method. In most cases, we have tried to limit each class to performing a single calculation
or mediating the interaction between multiple classes. This also helps with creating testable
code, as will be discussed in a later section. In some cases, the division of classes is not
ideal from a computer science perspective, but may improve the understanding for academic
developers.

By using this interface design model, developers can be sure that their changes are
encapsulated and minimal. This design paradigm is focused on accomplishing the first
two major design goals. By minimizing the amount of code that needs to be modified to
implement new method, we have created an environment that seeks to reduce the burden of
implementing new methods. In addition, the interface paradigm creates a good environment
for measuring the effectiveness of these new methods. By encapsulating the changes and
eliminating modifications to other parts of the solve process, we seek to create a controlled
environment where researchers can be sure that they can effectively measure the effectiveness
of their acceleration routine as they will not be changing lots of pieces of code that could
affect performance in ways that are unrelated to the method itself. The data collection to
make these assessments is described in Section 5.4.

Finally, the use of interfaces improves the portability of code modifications. In most
cases, implementing acceleration methods will not require modifying a majority of the solving
process, merely creating a new version of a class. Therefore, if one developer would like to
share their modified code with another, the potential for conflicts is greatly reduced. This
streamlines sharing and validating of novel acceleration methods and will allow others to see
if they are as efficient on the types of test problems in which they are interested.

5.4 Providing Instrumentation for Measuring

Effectiveness

The third design goal of the BART code is to provide tools for measuring the effectiveness
of acceleration methods. As discussed in Chp 4, total iterations until convergence is a good
heuristic, but more data unlocks more insight. This improved data will help researchers
determine if and how their acceleration methods are working in detail, driving future im-
provements and development. Capturing this data must be extensible; we cannot a priori
know all the of the data users will want or where in the code it will come from. Finally,
capturing different kinds of data must be easy, as this is a key feature in the code and should
be as minimal a burden on the end-users as possible.

The initial question to be asked when dealing with instrumentation is what data needs
to be extracted from the solving process. Acceleration methods are mathematically derived
and often seek to improve a particular inefficiency in existing algorithms. Fixing these
inefficiencies will, in most cases, cause the problem to converge in fewer iterations. In most
cases, better data about how well the solve is working exists further upstream than iteration
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count and is within the solve itself; the form this data takes will be determined by the type
of acceleration method used and how it is expected to operate.

As an example, the TG method described in Sec. 3.4 is specifically designed to converge
the scattering-source term faster than normal GS iterations. Collecting data on the conver-
gence of the source term would therefore provide a better understanding of how the method
operates than observing the total iteration count. Finer data could potentially be collected
as well, such as looking at the magnitude of the isotropic residual. What is important is that
this data is very specific to the design and mathematical basis of the TG method. Some
of the data that can speak to the efficiency of the method may help users analyze other
methods, but some is specific to this scheme.

Therefore, we cannot know ahead of time what kind of data future users will need.
This will be motivated by method development and needs that we cannot and should not
anticipate. To this end, the ability to collect different types of data must be straightforward
and easy to add. In addition, the code should not limit the types of data that can be collected.
Finally, the data collection must be as transparent as possible, reducing the overhead for the
solving process when that data is not being collected.

The instrumentation system is also designed to meet the first goal of BART, being a
developer-centered code that makes implementing new methods easier. We recognize that
part of developing and assesing a new method is the data collection process to determine
effectiveness. Therefore, new types of instruments may be required, and developing them
must be straightforward. As we will see, many common instruments and components have
already been implemented in BART, reducing the coding burden. In addition, instrument
components are designed to be simple and straightforward: each has a single responsibility
that is contained in a single function call. The aim of this is to make their operation and
use transparent and easy to develop.

We will use a motivating example to help understand the two main parts of the data
collection system: ports and instruments. Consider a hypothetical acceleration method that
uses a diffusion solve to accelerate our main angular solve. Let this method have a variable
diffusion coefficient D̃ that is dependent on a parameter from the angular solve that changes
iteration-to-iteration. As we assess this method, we may be interested in the value of D̃
as the solve progresses. This may give us insight into if the method is efficient and if it is
working in the way we expect it to. To extract this value from the solve, we will first need to
install a port that will make the data available, and then install an appropriate instrument
to output the data. We will begin with a description of the port system.

We note that the port and instrument system rely heavily on the C++ concept of tem-
plating, which allows us to create generic code that is not specified for a particular data type.
While this gives us and future developers the flexibility to create ports and instruments for
any data types desired, it does require some more in depth knowledge of C++.
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5.4.1 Ports

Most production codes are not designed with the intention of data collection. This is not a
failing of the design, but a feature. These codes are designed to solve the transport equation
as rapidly and efficiently as possible, not to collect data about the solve process. Therefore,
much of the data method developers may be interested in may reside in difficult-to-find
locations, and may not even be accessible without major modifications to the code. The
easiest and most rudimentary way to collect data is to output the data to the standard
output and collect it manually. This is clearly not an ideal circumstance, but data transfers
to files that work properly in every part of a code can be both frustrating and difficult. In
both cases, changes must be made to the source code near where the data is collected that
may alter program flow, not to mention slowing the code down, and creates a much larger
change than is necessary. An ideal system for data collection would not only be able to
collect data from anywhere in the solve process, but also provide as minimal a change as
possible to that process.

The first part of the data collection system in BART is the port system. The port system
is designed to collect any type of data with minimal changes to the surrounding code. Ports
can collect any type of data through use of the C++ template system. The port class is
defined using a data type and a unique data name. Multiple ports can have the same data
type, so names are used to differentiate them if needed. The Port class is designed to be
inherited by any class that will provide data collection and a portion of the code is as follows:

// src/instrumentation/port.hpp
namespace bart::instrumentation {

template <typename DataType, typename DataName>
class Port {
public:
using InstrumentType = InstrumentI<DataType>;

auto AddInstrument(std::shared_ptr<InstrumentType>) -> void;
auto Expose(const DataType&) -> void;
...

}

} // namespace bart::instrumentation

This shows the two major functions provided by the Port class. The first is
AddInstrument, which will “install” an instrument in the port. This instrument must
be specified for the type of data that the port is designed to read, and the use of a smart
pointer ensures that it can be shared among different ports if desired. The second major
functionality provided by a port is Expose, which will provide or “expose” data to an
instrument if installed. The use of a constant reference to the data ensures that the data is
not changed or copied when exposing. The Expose function consists of a single check to
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see if the instrument pointer is valid, and then a call to its Read function. Determining if
there is a valid instrument installed in the port must be done at runtime, so exposing data
always carries with it the cost of checking if a pointer is valid. The code is kept as simple
as possible to avoid unnecessary overhead and increase the chance that the compiler can
optimize the call by inserting the code inline at the calling location. This meets our design
goals of minimal overhead and disruption to read data, as well as making it extensible to
any data type that the user may need.

The next design goal is to make it easy for a user to install and expose data using these
ports. For our example, we would like to read out our floating point value of the variable
diffusion coefficient D̃ from some arbitrary iteration class. To do so, we will create a port
to extract it. We will give this port a unique name DiffusionCoefPort, and the data
the name DiffusionCoef; names that can be as specific or general as we need them to
be. To extract the data we will first define a template specialization of the port class and
inherit it. This would be done in the header for the class.

// iteration.hpp
#include <src/instrumentation/port.hpp>

namespace data_ports {
using Port = bart::instrumentation::Port;
struct DiffusionCoef;
using DiffusionCoefPort = Port<double, DiffusionCoef>;

}

class Iteration : public data_ports::DiffusionCoefPort { ... };

Now that the class Iteration inherits from the port class, we can expose the temperature
data simply by calling Expose:

auto Iteration::Solve() -> void {
...
data_ports::TemperaturePort::Expose(diffusion_coef);
...

}

The specialization using a unique name, DiffusionCoef, allows us to add multiple ports
to the class that all read the same thing.

Adding a port to our Iteration class required a minimal number of lines of code, less
than ten. This meets our design goal of making adding new data extraction methods cause
minimal changes to the code. It is also very clear within the implementation of the Solve
function that data is being exposed, and when. The user also does not need to worry about
not outputting data when it is not desired. They merely do not install an instrument into
the port.
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To install an instrument, there is a provided free function.

// src/instrumentation/port.hpp
template <typename PortType, typename T>
auto GetPort(T& to_expose) -> PortType&;

Use of this function requires the name of the port to be retrieved, and the underlying port
will be returned, allowing us to call AddInstrument.

Iteration iteration;
auto instrument_ptr = std::make_shared<DoubleInstrument>();
bart::instrumentation::GetPort<data_ports::DiffusionCoefPort>(iteration)

.AddInstrument(instrument_ptr);

This is a compact way of installing the instrument that minimizes the total code required,
and hides much of the implementation and template specialization that isn’t necessary for
the user to understand.

A class can have as many ports as it needs or the user desires. The use of unique identifiers
for each port means that multiple ports can read the same types of values, or even the same
values themselves. The generality of the port class means that it can be used by any part
of the BART code. Now that we have the ability to expose data, we need instruments that
are designed to read that data.

5.4.2 Instruments

With ports installed to access the data and information we need to assess the solving process,
we need instruments to process that data. These instruments must be able to read any kind
of data, and may need to convert that data into other formats depending on where that
information needs to go. The simplest instruments may read data, convert it into a string and
place it into the standard output or a file. More complex instruments may perform various
calculations on the data before outputting. Our instrument framework must therefore be
versatile enough to handle both situations. Unlike ports, the inner workings of which are
not of much use to a user, the inner workings of instruments will need to be understood
by the developer end user. Therefore, constructing complex instruments must be as easy as
possible.

The interface for instruments is straightforward, specifying an input data type, and the
Read function that is accessed by the ports.
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// src/instrumentation/instrument_i.h
namespace bart::instrumentation {

template <typename InputType>
class InstrumentI {
public:
virtual auto Read(const InputType&) -> void = 0;

};

} // namespace bart::instrumentation

We see that the InputType specification must match the DataType of the port where this
instrument is installed. The most basic type of instrument will take this data and send it
elsewhere. We call the class of objects that send the data out of the instrument outstreams.

5.4.2.1 Outstreams

The basic outstream interface also only has a single class function,

// src/instrumentation/outstream/outstream_i.h
namespace bart::instrumentation::outstream {

template <typename DataType>
class OutstreamI {
public:
virtual auto Output(const DataType&) -> OutstreamI& = 0;

};

} // namespace bart::instrumentation::outstream

The outstream also has a template parameter DataType to identify the type of data
that it is expected to output. Again, the data is passed as a constant reference, so no
data is copied or changed in the process. There are many possible outstreams that can be
implemented or conceived of, so only relying on the interface enables users to define their
own if needed. One of the most common data types that an outstream takes is strings.
Therefore, BART has available implemented outstreams for sending strings to a standard
std::ostream that can support either the standard output using std::cout or to a
file using a std::fstream object. To support MPI, there is also an outstream that sends
strings to a conditional output that can be configured to only display for the rank 0 processor.
Another useful task is sending dealii::Vector objects to a file to be read by Paraview,
so BART has outstreams implemented for that task as well.

We now have enough building blocks to describe one of the most simple instruments in
BART. This instrument will read a string from a port configured to expose a string, and
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send it to an oustream. This is used in various parts of BART to provide status updates
to the standard output. In this case, the instrument used is of type BasicInstrument,
an instrument with the same input and output type. For this class, the Read method is
straightforward:

// src/instrumentation/basic_instrument.h
namespace bart::instrumentation {

template <typename InputType
class BasicInstrument : public InstrumentI<InputType> {
public:
using OutstreamType = typename outstream::OutstreamI<InputType>;
explicit BasicInstrument(std::unique_ptr<OutstreamType>);
auto Read(const InputType &input) -> void override {

outstream_ptr_->Output(input); }
...

}

} // namespace bart::instrumentation

It passes the data from input to the outstream operator. We see that the implementation
requires that the outstream accepts the same data type as the instrument reads.

There are a number of benefits to using the port-instrument pattern with classes instead
of just having the classes output directly to the standard output. First, we can easily control
if a class outputs status by leaving the port uninstrumented, instead of requiring a boolean
that needs to be checked every time the class would output status. Second, we can have
multiple status ports that may expose different information, and choose which we instrument
at any given time. Last, if we change how we output to the standard output, for example by
using a different formatting library, we only need to change the instrument and all classes
that use it will be affected.

5.4.2.2 Converters

Exposing, reading, and outputting strings is the most straightforward means of reading data
within BART. Much of the time, however, the data users are interested in when assessing
acceleration methods will not be in the form of strings. Although we could have classes
convert these values and expose them as strings, in many cases the user may need to alter
or modify the data before outputting to a file or the standard output. In fact, the user may
never convert the values to a string at all. Changing data read by an instrument into data to
be output by an outstream is handled by converters. Like the other instrumentation classes,
converters have one main member function, the aptly named Convert.



CHAPTER 5. THE BART DESIGN AND CODE 78

// src/instrumentation/converter/converter_i.h
namespace bart::instrumentation::converter {

template <typename InputType, typename OutputType>
class ConverterI {
public:
virtual auto Convert(const InputType& input) const -> OutputType = 0;

};

} // namespace bart::instrumentation::converter

Unlike the other parts of the instrument, we see that a converter is necessarily specified
by two types, an input and an output type. The input will match the data read by the
instrument (and exposed by the port) and the output will match the data output by the
outstream. Most commonly, we’d like to process or read the data from various parts of the
solve, so many converters will convert various data types into strings to be output into files
or the standard output. Naturally, BART has implementations for many data types to be
converted to strings.

We also anticipate users will require more complex converters, including multistage con-
verters. An example of a multistage converter could be an instrument that reads a vector,
calculates the norm, and then converts the norm to a string to be read in the standard
output. This would involve two converters, one to convert a vector into a numerical value,
and a second to convert the numerical value into a string. Accomplishing this must be easy
for users, who we want to be able to focus on method development, and not the intricacies
of instrumenting their solve.

To accomplish this, BART has a multi-converter class that acts as a mediator between
two converters.
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// src/instrumentation/converter/multi_converter.hpp
namespace bart::instrumentation::converter {

template <typename InputType, typename IntermediateType,
typename OutputType>

class MultiConverter : public ConverterI<InputType, OutputType> {
public:
using FirstStageConverter = ConverterI<InputType, IntermediateType>;
using SecondStageConverter = ConverterI<IntermediateType, OutputType>;
...
MultiConverter(std::unique_ptr<FirstStageConverter>

std::unique_ptr<SecondStageConverter>);

OutputType Convert(const InputType &input) const override {
return second_stage_converter_ptr_->Convert(

first_stage_converter_ptr_->Convert(input));
}

}

} // namespace bart::instrumentation::converter

As we see, our multi-converter owns two different converters, linked by an IntermediateType.
The multi-converter itself is a converter, whose Convert method nests the two internal con-
verters. By this logic, it should be possible to nest many multi-converters to create an endless
chain of converters as needed. Accomplishing this nesting can be tricky and require a large
amount of code.

To meet our design goal of making easy implementation of instrumentation, we need an
easy way to string converters together in a way that users will not need to worry about
the workings of the complex MultiConverter class. To accomplish this, we overload the
binary plus sign operator.

// src/instrumentation/converter/multi_converter.hpp
template <typename InputType, typename IntermediateType,

typename OutputType>
inline std::unique_ptr<ConverterI<InputType, OutputType>>
operator+(

std::unique_ptr<ConverterI<InputType, IntermediateType>> lhs,
std::unique_ptr<ConverterI<IntermediateType, OutputType>> rhs) {

return std::make_unique<
MultiConverter<InputType, IntermediateType, OutputType>>(

std::move(lhs), std::move(rhs));
}

While this code looks complex, the C++17[33] template deduction actually makes the code
quite easy to use.
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If the user has two converters that they would like to convert into a single multi-converter,
they use the binary plus sign. For example, if the user is combining a converter that changes
a vector into the value of its L1 norm, and one that will convert this value into a string, the
code could look like:

auto vector_to_double = std::make_unique<VectorToL1NormConverter>();
auto double_to_string = std::make_unique<DoubleToStringConverter>();
auto vector_l1_to_string = std::move(vector_to_double) +

std::move(double_to_string);

The template deduction will not only return the correct multi-converter, but will cause a
compilation error if the user tries to add two incompatible converters. This not only makes
it easier to create complex instruments, but favors compilation errors over runtime errors,
which helps with development and avoid hard-to-find bugs. Assuming all the converters are
compatible, users can string as many together as they’d like using the binary plus operator,
without ever needing to know that the MultiConverter class even exists.

5.4.2.3 Full Instruments

The basic instrument described earlier in this section read a specified input type and passed
it to an outstream specified with the same type. A full instrument has two parts, a converter
and an outstream, and two types, an input type and an output type. As can be deduced
from the pattern, a full instrument’s Read method nests the conversion and output calls of
the converter and outstream it owns.

// src/instrumentation/instrument.h
namespace bart::instrumentation {

template <typename InputType, typename OutputType>
class Instrument : public InstrumentI<InputType> {
public:
using ConverterType = converter::ConverterI<InputType, OutputType>;
using OutstreamType = outstream::OutstreamI<OutputType>;
...
auto Read(const InputType &input) -> void override {

outstream_ptr_->Output(converter_ptr_->Convert(input));
}

} // namespace bart::instrumentation

Finally, BART also provides an InstrumentArray class that acts as a storage for
multiple instruments that read a single type. The array is an instrument itself, and when
installed will call read on all the instruments that it owns, allowing multiple instruments to
process the same data.
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5.4.2.4 Complex Instrument Systems

Instruments can be expanded to include functionality that is not merely conversion between
data types and output. Converters are designed as merely black boxes between one data
type and another, and can therefore do as many internal complex operations as desired. One
example of this that is included in the BART code is a discrete Fourier transform (DFT)
instrument. This multistage instrument will perform the DFT of a provided vector, “con-
verting” an input vector into a complex output. The implementation in BART is designed
to calculate the DFT of the error and is therefore made up of multiple stages. Each time
the scalar flux is exposed to the instrument it,

• subtracts the scalar flux from a known solution provided a priori1 to calculate the
error,

• performs the DFT of the error,

• converts the complex output of the DFT into a string, and

• outputs the string, usually to a file.

This process requires a converter for each step, and uses the multiconverter structure de-
scribed earlier.

The instrumentation and port system is complex due to the use of the C++ templating
system, but gains the flexibility to read any data type desired by future users. Many classes
specialized for common data types are already implemented in BART, enabling users to
extract a large amount of data without ever designing a new instrument. In this system, we
meet the goal of providing the tools needed to assess the effectiveness of acceleration methods.
Our instrumentation and port system is internally complex but represents minimal intrusion
into the solve process and the minimal amount of work needed to instrument for new data.

5.5 Testing and Reproducibility

The fourth design goal of BART is to provide a tested, portable, and reliable environment.
Much of the design of BART approaches this by using modern coding techniques and tools.
When developing a code in an academic environment, these are qualities that can often be
overlooked. This is not malicious, but a practical consideration when resources and time are
limited. In this section we will describe how the design of BART makes unit testing possible
and discuss some of the other tools used to meet this goal.

1BART provides an option for performing the DFT of the error and executes this by automatically
running the simulation twice and using the solution from the first run as the known solution.
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5.5.1 Testing

Testing is an extremely important part of code development. In general, we will focus on
two types of testing: unit testing and integration testing. Unit testing is code written to
verify that a specific portion of our source code operates properly in isolation. In contrast,
integration testing verifies that different portions of the code work together properly. When
combined, a fully developed test suite should verify the operation of each small segment of
code as well as overall operation. There are two major hurdles that we will discuss to writing
tested code: it can be difficult and time consuming to cover all parts of a code with tests,
and the code must be written so that it is testable. Despite these hurdles, the benefits of
testing cannot be overstated. Testing can immediately catch bugs and errors that would cost
many hours to identify and rectify. Even more importantly, testing can catch issues with
the code that do not result in errors at runtime, but result in an incorrect solution. Finally,
good testing liberates developers to refactor and change sections of the code, confident that
the code still works properly.

5.5.1.1 Writing Tests

For most developers is it not feasible or desirable for researchers to write their own testing
environment. One could design their own framework for testing entirely from scratch, but
much of the work has already been done by computer scientists. There are many testing
libraries out there that provide frameworks for testing code, the one that BART uses is the
GoogleTest framework [34]. The GoogleTest framework provides a large number of macros
that make testing and reporting the results of tests straightforward, making it ideal for
developing an academic code with time and resource constraints.

We want to meet the goal of providing tested code for end-users, but also understand
that academic code development has constraints. To this end, we employed a philosophy of
testing critical functions first, and then if time allows, testing other functions. As much as
possible, the BART code attempts to limit each class to having a single responsibility. When
developing tests, we focus on testing that responsibility first, before testing other supporting
parts of the class. A fully tested class may require hundreds of lines of code to test every
member function and all edge case. The less critical parts to be tested may include functions
to get or set member variables or access dependencies. When time allows, it is imperative
that we implement those tests, as the time spent writing the tests may prevent seeking
hard-to-find bugs in the future.

Identifying portions of the code that are not tested can be simplified by using test cov-
erage. Various coverage systems provide easy-to-use outputs that indicate what portions of
the code were run during testing. At the time of writing the BART code uses a website
called Codecov (codecov.io) to display the coverage; an example can be seen in Fig. 5.4.
Code coverage is an excellent tool for finding sections of code that are not executed by tests,
but does not verify that the tests are actually testing the code. The use of coverage needs
to be coupled with an understanding of how classes need to be tested to ensure testing is
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Figure 5.4: Coverage output on the Codecov website; the green indicates lines that are
accessed by tests, and the red lines that are not.

comprehensive and useful. Where coverage is instrumental is identifying decision trees or
other parts of code that have not been accessed, especially if the tester thinks that they are
covered.

Providing a fully tested code for developing and assessing acceleration methods is an
important goal. Users can feel confident that they have built the code correctly and that it
is operating the way we expect it to. Importantly, users may not have the time to write fully
tested modifications to BART. In these cases, the vast majority of the solve, all the parts
not modified by the user will still be covered by tests. Not only does this provide a level
of security that their code is operating properly, even if not tested, but that they haven’t
broken other parts of the solve with their modifications. To this end, the BART code has set
a standard of 95% code coverage, to ensure as much is covered by tests as possible. Much
of the non-covered portions of the code are not critical parts of the solving process, but the
parts that assemble the code for execution. It is vital that we only accept parts of the code
to be uncovered by tests if their incorrect operation will be caught by the user at runtime.

5.5.1.2 Writing Testable Code

A part of writing tests that is often overlooked is that code needs to be written so that it
can be tested. The BART code follows a few guidelines to maximize the testability of code:
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1. every class should have one responsibility,

2. that responsibility should be either doing logic or instantiating other classes, and

3. dependencies should be provided by classes, not instantiated by them.

We will discuss each of these and the roll they play in making the BART code base testable.
The first guideline is known as the single-responsibility principle, which focuses develop-

ment of a class around performing a single task. This principle has a number of benefits
and downsides when developing academic code. The first issue is identifying the difference
between what a responsibility means to a computational scientist when compared to a com-
puter scientist. When approaching the idea of responsibilities from computational science,
we often divide discrete steps in the execution process as responsibilities. For example, to
a computational scientist, computing the discrete Fourier transform of a vector may seem
like a single responsibility. To a computer scientist this step has many responsibilities that
should be executed by independent classes.

When developing a code like BART with the computational scientist end-user in mind, we
need to find a balance between these two positions. From a computer science perspective,
breaking up a complex operation into smaller classes with smaller responsibilities makes
testing much more powerful: if there is an issue with any single step, testing will identify it.
Testing the complex operation overall will only reveal that the overall process is broken. The
downside to breaking complex operations down into small classes with single jobs is that it
causes the code base to grow dramatically. The issue is then that it may take longer for
the computational scientist to grasp how the pieces fit together. If our goal is to focus on
a developer end-user, we need the code base to not just be well designed and testable, but
comprehensible without a large amount of work. With BART we have attempted to find a
balance between the single-responsibility principle and our responsibility to have code that
is not overly complex.

The second guideline divides the responsibilities of classes into two: those that perform
logic and those that instantiate other classes. This division is very important because it
separates out two types of fundamental code: code that is unit tested and code that is
integration tested. If a class is prevented from instantiating any other classes, it can be
tested alone and in isolation without interacting with any other real classes. Testing with
dependencies or mediating interactions between two classes can be accomplished using mocks,
discussed in the next section. If a class instantiates other classes, it can no longer be unit
tested and requires integration testing. By keeping this divide, we maximize the amount of
code that can be unit tested, which is both easier to accomplish and makes isolating bugs
easier. In contrast, an issue identified by integration testing may indicate an issue with either
the class being tested, the interaction it has with another class, or the operation of the other
class.

The third guideline dictates how a very large portion of the BART code base is designed:
dependencies should be provided to classes, not instantiated by them. This is a design
paradigm called dependency injection. When instantiating classes, we do not allow that class
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to create its own dependencies, but rather “inject” the dependencies into the constructor.
In BART, when dependencies are injected, the constructor only specifies an interface that it
requires. The interface is a purely virtual class that only identifies how the rest of the code
interacts with classes that derive from it, not how they should do so.

For example, if we design a Foo class that has a dependency of type Bar, we will first
design the interface for classes that can act as a Bar.

class BarI {
public:

˜BarI() = default;
virtual auto GetValue() const -> double = 0;

}

Here, we define that any class that can act as a Bar must implement a constant function
GetValue() that returns a double. Our Foo class now takes a pointer in its constructor.

class Foo {
public:

Foo(std::shared_ptr<BarI> bar_dependency_ptr);
...

}

The injection of the dependency must either be a pointer or a reference because the code does
not provide a class of type BarI but some class that derives from it. In the BART code, de-
pendencies are always passed using smart pointers that are shared pointers (std::shared_ptr)
when the dependency is shared by more than one class or unique pointers (std::unique_ptr)
otherwise.

We now have a very powerful tool at our disposal when trying to test the Foo class.
It requires a dependency, but doesn’t specify any particular concrete class that can be in-
stantiated, only the abstract interface. We can therefore create a fake or “mock” class that
derives from BarI that we control within our tests. While testing, we can make this mock
class return whatever values we’d like from GetValue() without needing to define any
underlying code. With this in mind, we can fully test the Foo class without ever writing
a concrete Bar class and can test edge cases that a concrete class may never generate. A
mocking framework is provided by GoogleTest called GoogleMock. This framework is used
extensively in testing BART to unit test a majority of the classes where possible.

The only part of the BART code where classes often instantiate their own dependencies
are those that wrap portions of Deal.ii. For these classes, we will assume that the
underlying Deal.ii classes operate properly. This is no different than classes instantiating
objects from the standard C++library, which we assume will operate as expected.
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5.5.2 Reproducibility

We consider reproducibility to be the ability for others to reproduce the results of our work.
Not only should people be able to find, compile, and operate the BART code, but it should
be easy to do so. To achieve this goal, we have used many modern tools when developing the
BART code. These tools provide automated systems to ensure BART compiles without error,
that the code meets our code coverage requirements, and that we provide an environment
for others to use the code with a low barrier to entry.

First, to verify that the BART code will build, we use a continuous integration system.
Every time a new version is pushed to the code repository, this system downloads and builds
BART. This is key to verifying that we are not introducing changes into the code that will
break the compilation process. Second, our continuous integration runs all the tests and
uploads the coverage metrics to our code coverage tool, as discussed in the previous section.
Finally, we provide a virtual environment where BART can be built with all dependencies
already installed. Our continuous integration system also uses this container, verifying that
it works as expected. We also maintain a repository containing the steps used to build this
virtual environment, which acts as a step-by-step guide to setting up a system to build and
use BART.

These tools are vital to others using and validating our code. Through them we not only
verify that the BART code is operating and testing properly, but provide transparency and
accessibility.

5.6 Conclusion

In this chapter we presented the major goals of the BART code. These goals support a
vision of the code as a tool for researcher developers to easily implement and assess novel
acceleration methods in a controlled, tested environment. The design of the BART code
itself is done with the researcher developer end-user in mind, making implementation and
sharing of code modifications easy. Once modified, the ports and instrumentation systems
provide the ability to collect and ultimately analyze the data we need to accurately assess the
effectiveness of acceleration methods. In the next chapter, we will discuss how we leveraged
these design features to implement and assess a novel combination of acceleration methods.
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Chapter 6

Using BART to Assess Acceleration
Methods

In the previous chapters we discussed the discretized transport equation, the iterative meth-
ods used to solve it, and the acceleration schemes that improve the convergence of these
methods. We also covered the practical challenges with implementing and assessing acceler-
ation methods in existing codes that motivated the development of the Bay Area Radiation
Transport (BART) code. In this chapter, we will discuss the implementation details of
the two presented acceleration methods, two-grid (TG) and nonlinear diffusion acceleration
(NDA), in the BART code. For the TG method we will test effectiveness in all dimensions
using a test problem with a large amount of upscattering to leverage the benefits of the
method. The NDA method will be used to accelerate an analytic benchmark in one- and
three-dimensions with a large amount of within-group scattering.

We will then present the data collected in those tests using the tools included in BART
to assess and validate these methods. We will observe that the TG method improves the
convergence of the diffusion formulation in all dimensions, greatly reducing the total Gauss-
Seidel (GS) outer iterations required. The NDA method will accelerate the convergence of
the self-adjoint angular-flux (SAAF) formulation in analytic benchmarks with a large amount
of within group scattering.

6.1 Two-grid Acceleration in BART

The TG method, as described in Sec. 3.4, uses a diffusion approximation to create an additive
correction to the scalar flux following each GS outer iteration. This additive correction should
improve convergence properties of the iteration when there is a large amount of upscattering.
We will first discuss the implementation of TG in the BART code. Following this, we will
describe the test problem used to stress the GS iterative process to assess the effectiveness
of the TG method.
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6.1.1 Implementation Details

Implementation of the method uses two frameworks, one for solving a scalar form of the
transport equation and the second for solving the approximated error diffusion equation to
calculate the correction. These frameworks and data flows are shown in Fig. 6.1. The two-
grid framework is contained in a subroutine that is installed in the outer-iteration and is
run after all groups have been solved, but before checking for all-group convergence. This
subroutine then uses the scalar fluxes to calculate the isotropic residual. The isotropic
residual is material dependent, and consequently is discontinuous on material boundaries.
Therefore, the subroutine first iterates over all cells in the domain and calculates the local cell
contribution to the isotropic residual for each local degree of freedom. This local contribution
is then inserted this into a domain-wide vector using a local-to-global degree of freedom
mapping. The contribution from each group is summed for use as the right-hand-side in the
auxiliary framework’s solve of the two-grid diffusion equation.

Main framework
Solving transport equation

Two-grid acceleration subroutine

Subroutine 
framework

Solves two-grid 
diffusion equation

Correction
Term

Isotropic
Residual

Prolongation 
and 

correction

Isotropic 
residual 

calculation

Figure 6.1: Two-grid acceleration method frameworks and data flows.

The two-grid diffusion equation is a specialization of the diffusion equation that overrides
the source terms on the right-hand-side with zero and instead applies the isotropic residual
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as the source. The solution vector is then the error in the isotropic component of the solution
instead of flux. The solving process, however, is identical. Both frameworks share a solving
domain to be sure that the error solved for in the subroutine framework can be more easily
applied to the main framework solution. This is not strictly necessary, but prevents the need
for determining a degree-of-freedom index mapping from the auxiliary framework domain to
the main framework domain. It also reduces the overall memory burden by only needing to
store the domain and mesh a single time.

All the required steps of the two-grid acceleration are internal to the subroutine or com-
pleted before the solving process begins. Therefore, the difference between an unaccelerated
base case and a two-grid accelerated case is minimized and isolated to the subroutine.

The energy-shape function is determined by solving the eigenvalue problem[
Σt −ΣL

s0 −ΣD
s0

]−1
ΣU
s0
~ξ = λ~ξ ,

where Σt ∈ RG×G is a diagonal matrix with the total cross-sections and Σs0 ∈ RG×G is
the zeroth-moments of the scattering cross-sections divided into strictly upper (U), diagonal
(D), and strictly lower (L) matrices. These energy-shape functions are material dependent,
and therefore need to be calculated for all materials in the problem. As the cross-sections
will not change during the solve, the energy-shape function is calculated prior to the solve
and then stored in the prolongation portion of the two-grid subroutine.

The energy-shape function is discontinuous at material boundaries, which causes the
isotropic residual to be discontinuous at the boundaries and complicates application of the
correction in these locations. On material boundaries, the BART code uses an average of the
energy-shape function for surrounding materials when applying the error. Consider a degree
of freedom shared by two cells that are of different materials with energy-shape functions ξ1

and ξ2. When applying the correction to the group flux at this degree of freedom, we would
use the following formulation,

φ(k+1)
g =

(
ξ1 + ξ2

2

)
ε(k+1/2) + φ(k+1/2)

g .

Identification of material boundaries is not required; when a degree of freedom is interior to
a single material the average reduces to the material’s energy-shape function. This average
value only needs to be calculated once prior to solving for each degree of freedom and is then
stored and retrieved when applying the error.

6.1.2 Instrumentation for Assessment

To assess the effectiveness and implementation of the TG scheme, we need to collect good
data. We expect that the TG scheme will cause the scattering source term to converge faster
in the outer GS iterations for a diffusion-based formulation. We will therefore choose the
unaccelerated diffusion equation for the base case and use the following ports to collect the
data to make our assessment,
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• iteration::group::data_ports::NumberOfIterationsPort: outputs the
number of iterations required for the GS iteration to converge,

• iteration::group::data_ports::ScatteringSourcePort: outputs the scat-
tering source term for the domain after each GS iteration and two-grid subroutine
execution.

The number of GS iterations needed to converge is a good initial downstream indication
of acceleration. We expect the inversion of the diffusion operator in the error equation to
require less work than the standard diffusion equation due to reducing the problem to a
single energy group. Examining the scattering source term will give us information about
the means of acceleration; we can check if the method is truly speeding up convergence of
the scattering source term as expected. Note that we do not expect the number of inner
iterations per GS iteration nor the number of eigenvalue iterations to change since the TG
method is not affecting either solve.

6.1.3 Test Problems

To test the TG method, we will use a two material test problem in one-, two-, and three-
dimensions with reflective boundary conditions. In each case we will use fictional seven-
group cross-sections described below that are designed to stress the GS iterative scheme by
including a large amount of upscattering among the lower energy groups. The group scalar
flux convergence criteria is ∣∣φ(k+1)

g − φ(k)
g

∣∣
∞∣∣φ(k+1)

g

∣∣
∞

< 1× 10−6 ,

We use the same the convergence threshold in source iteration (SI) within each group. The
convergence criterion for the k-eigenvalue is∣∣k(k+1) − k(k)

∣∣
k(k+1)

< 1× 10−6 .

In each test we will check that the accelerated solution is consistent with the unaccelerated
solution. We will do this by calculating an error relative to the base case for each group
where the relative error is,

Rel. Error =
|~φ− ~φtg|

~φ
, (6.1)

where ~φ and ~φtg are the scalar fluxes at each spatial degree of freedom in the base case and
accelerated cases, respectively. The values of k are also compared. We will now describe the
fictional cross-sections developed for these test cases.
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Cross-sections for assessment We will have the chance to see the most benefit from
the TG method if we provide a problem that has a large amount of upscattering. To this
end, we have created two fictional materials with a very large amount of upscattering to
stress the base case and the TG method. These materials have seven energy groups and
neutrons are only generated in the top three energy groups as seen in Tab. 6.1. The total-

Table 6.1: χg for the fake material used to assess the two-grid acceleration scheme.

Group 0 1 2 3 4 5 6 7

χg 0.5 0.25 0.25 0.0 0.0 0.0 0.0 0.0

cross section Σg
t for all energy groups is set to unity, and the scattering cross-sections are

set to maximize upscattering among the thermal groups. The scattering matrix and total
scatter cross sections are given by the following, where empty entries are zero,

Σg′→g
s =



0.499
0.250 0.499
0.250 0.499 0.459

0.240 0.300 0.290 0.250 0.200
0.100 0.230 0.300 0.240 0.200
0.100 0.230 0.200 0.300 0.200
0.100 0.230 0.200 0.200 0.300


, Σs =



0.999
0.998
0.999
0.990
0.990
0.990
0.900


,

and the entry at row i, column j gives the scattering contribution into group i from group
j. The sum of each column therefore gives the total scattering cross-section for that group.
Due to setting the total cross-section to unity, this value also represents the scattering ratio
for this group. The remaining portion of the cross-section is the absorption cross-section, of
which we set 95% to fission, multiplied by a chosen value of ν of 2,

νΣf = 2× 0.95×
(
~1− Σs

)
.

This leads to a system dominated by down-scattering in the upper three energy groups
where all neutrons are born from fission. Scattering is coupled through the third energy
groups to the lower four groups. These groups are dominated by scattering, with a small
amount of fission. We will also use a highly scattering reflector that has an identical scattering
and total cross-section, but no fission. Both of these materials will be used in the following
test problems.

6.1.4 One-Dimensional Test Problem

The one-dimensional test problem includes a central fissionable material region that is sur-
rounded by reflector, with reflective boundary conditions. The domain is triangulated into
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100 segments of uniform size, resulting in 101 spatial degrees of freedom. The solution and
problem layout for the highest energy group and lowest energy group are shown in Figs. 6.2
and 6.3.

Box plots showing the relative error as defined in Eq. (6.1) in each energy group are
shown in Fig. 6.4. These boxes show a statistical analysis using the data set of relative error
across all spatial degrees of freedom. The box extends from the median of the upper half
of the data set values to the media of the lower half of values, with the central green line
indicating the median of the set. Whiskers indicate the minimum and maximum values, and
outlier points show values that fall outside 1.5 times the size of the box. We observe that the
relative error in the higher energy groups is on the order of 1 × 10−6 and the lower energy
groups is on the order of 1 × 10−5. This low relative error shows that the TG method is
returning a solution consistent with the unaccelerated case. The higher error in the lower
energy groups – those with upscattering – is expected, as this is the region impacted by the
TG acceleration method. The k-eigenvalue calculated by the accelerated solve is consistent
with the unaccelerated case, with a relative error of 1.59× 10−5.
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Figure 6.2: Normalized highest energy group scalar flux for the high scattering one dimen-
sional two-grid test problem.

6.1.4.1 Iterations Assessment

Having established from the low relative error that the solution of the two-grid acceleration
is consistent with the base case, we will now examine the efficiency of the method. Table 6.2
summarizes the iterations required for the unaccelerated and TG cases. With both methods,
there were a total of five eigenvalue iterations required, but the two-grid method required
significantly fewer GS outer iterations. Consequently, the TG method requires significantly
fewer inner iterations, each of which requires a linear solve and therefore an inversion of the
transport operator. Note that the number of inner iterations per outer iteration remains
constant, as expected, and the reduction in iteration count comes from accelerating GS–the
goal of the TG method.
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Figure 6.3: Normalized lowest energy group scalar flux for the high scattering one dimen-
sional two-grid test problem.
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Figure 6.4: Relative error vs energy group for all groups for the 1D two-grid test problem;
box plot showing the distribution of values across all degrees of freedom.

Table 6.2: Iteration summary for the unaccelerated 1D base case and two-grid.

Iterations

Eigenvalue Outer GS Inner (Within-group) Two-grid

Unaccelerated 5 441 6174
Two-grid 5 21 294 21
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We thus have a good indication that the two-grid method is efficiently accelerating the
diffusion solve, requiring a twentieth of the GS and linear solves as the unaccelerated case.
We can feel confident that this is a good comparison, given that differences between the
two-grid case and the base case are isolated to the subroutine. Each completed GS outer
iteration requires running the TG routine. The right-hand-side of the TG single-group
diffusion equation is a constant, only requiring a single linear solve of the one-group transport
operator.

Using our discussion of work in Chp. 4, we can calculate the required relative work of
the subroutine for this method to be efficient. We know that for the method to be efficient,
the following inequality must hold,

w′

winv

<

(
N

N ′
− 1

)
.

For the values of these iterations, the method is efficient if and only if

w′ <

(
6174

294 + 21
− 1

)
winv = 19.6winv .

We can now confidently state that this method is very efficient for our problem. While the
subroutine has the same spatial discretization as the main diffusion problem, the collapse of
the problem into a single energy group greatly decreases the total degrees of freedom. This
reduction in problem size means that the subroutine linear solve requires less work than
the inversion of the main problem. For sparse matrices, the generalized minimal residual
(GMRES) conservatively requires floating point operations on the order of O(n) where n is
the number of degrees of freedom. By this metric, by collapsing the seven energy groups
into a single group, the TG method would require a reduction in iterations of

1

7
<

(
N

N ′
− 1

)
=⇒ N ′ = 0.85×N ,

to be considered efficient and we achieved N ′ ≈ 0.05N . This implementation of the routine
is far more efficient than this conservative estimate. The overhead of prolongation and
calculation of the isotropic residual may add further inefficiency, but far less than would be
required for the routine to not be considered efficient.

6.1.4.2 Further Assessment Using BART Tools

The unique features and tooling of the BART code enable us to dig deeper into assessing why
and how the TG method works. Unlike other codes, BART stores each right-hand-side term
individually before assembling to solve. This enables us to instrument these terms themselves
and examine how each of them converges. Using this, we can examine the convergence of
the scattering source term itself. Taking the final scattering source term at the end of the
GS iterations, we calculate the relative error between the same term at each step of the
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iteration. A plot of this convergence, summed over all the equally-sized groups, is shown in
Fig. 6.5. We can observe the slow convergence of the scattering source in the unaccelerated
case and the rapid convergence when TG is used. It is clear that the TG method is better at
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Figure 6.5: Convergence of the scattering source for all groups in the GS iterations for the
first eigenvalue iteration.

converging the scattering source faster. Importantly, BART provided this information easily
while other transport codes do not provide it at all, giving unique insight to confirm this
method works the way we think it does.

6.1.5 Two-Dimensional Test Problem

The two dimensional test problem uses a central region made of the fissionable high scatter-
ing material surrounded by the reflective high scattering material. The layout is shown in
Fig. 6.6, where the dark region is the fissionable material and white areas contain reflective
materials and all boundary conditions are reflective. The domain is discretized into 100 cells
in both dimensions resulting in 10,201 spatial degrees of freedom. The cross-sections and
convergence criteria are the same as described in Sec. 6.1.4. The solutions for the high and
low energy groups are shown in Fig. 6.7.
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Figure 6.6: Two-grid 2D test problem layout, the dark region is the fissionable material and
white areas contain reflective materials and all boundary conditions are reflective.
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Figure 6.7: Two-dimensional test problem (a) highest and (b) lowest energy group solutions
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Performing the same relative error analysis as the one-dimensional case, we see box plots
of the error for all groups in Figs. 6.8. As with the one-dimensional case, we observe the
highest errors in the groups with upscattering where the TG method results in the largest
corrections. All relative errors are still very small, consistent with each method separately
being converged to 1 × 10−6, indicating a consistent result with the TG method. The k-
eigenvalue calculated by the accelerated solve is consistent with the unaccelerated case, with
a relative error of 1.14× 10−5.
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Figure 6.8: Relative error vs energy group for the two-grid 2D test problem, box plot showing
the distribution of values across all degrees of freedom.

Table 6.3: Iteration summary for the unaccelerated base case and two-grid 2D test problem.

Iterations

Eigenvalue Outer GS Inner (Within-group) Two-grid

Unaccelerated 6 674 9436
Two-grid 5 24 336 24

A summary of the iterations for the unaccelerated and TG two-dimensional test problem
are shown in Table 6.3. As we observed with the one-dimensional case, the TG method
results in a large reduction in the GS iterations and, as a result, the linear solves required.
We again obtain the same number of inner iterations per outer iteration, as expected. Here
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there is a reduction in power iterations, likely because the eigenvector converged more quickly
given better GS performance.

Using the same analysis as before, we find that in two-dimensions the TG method is
efficient if

w′ <

(
9436

336 + 24
− 1

)
winv = 25.2× winv .

As with the one-dimensional case we can say with some certainty that the work of the TG
subroutine is much less than 26 times the work of a linear solve of the main routine. We
can therefore assess that the TG method is efficient in two-dimensions as well. We show the
relative error in the scattering source as defined in the previous section in Fig. 6.9. Again,
we see that the unaccelerated case suffers from slow convergence of the scattering source in
GS iteration steps and that the TG method converges the source much more rapidly.
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Figure 6.9: Convergence of the scattering source for all groups in the GS iterations for the
first eigenvalue iteration for the two-dimensional test problem.
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6.1.6 Three-Dimensional Test Problem

The three dimensional test problem uses a central region made of fissionable high scattering
material surrounded by scattering material with reflective boundary conditions. The layout
uses the same xy layout as the two-dimensional test problem shown in Fig. 6.6 and this
layout is constant in the z-direction. The domain is discretized into 30 cells in the x- and y-
directions with one cell in the z-direction. This results in 1922 spatial degrees of freedom.
The cross-sections and convergence criteria are the same as the one- and two-dimensional
test cases. Solution plots for the highest and lowest energy groups are shown in Figs. 6.10
and 6.11.

Figure 6.10: Three-dimensional test problem highest energy group solution.

The relative error for all energy groups is shown in Fig. 6.12. As with the other cases, we
observe the highest errors in the groups with upscattering where the TG method results in
the largest corrections. All relative errors are still small, indicating a consistent result with
the TG method. We note that the errors are higher in this case than the lower-dimensional
cases. The higher error comes from having all reflective boundary conditions in such a highly
scattering system. The k-eigenvalue calculated by the accelerated solve is consistent with
the unaccelerated case, with a relative error of 1.14× 10−5.

A summary of the iterations required for both cases are shown in Tab. 6.4. We find that
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Figure 6.11: Three-dimensional test problem lowest energy group solution.

in three-dimensions, the TG method is efficient if

w′ <

(
12600

546 + 39
− 1

)
winv = 20.5× winv .

As expected, the TG method is efficient in three-dimensions, and based on the reduction in
linear solves allows for the subroutine to be 20.5 times more costly than a linear solve of the
base system. We see a nearly identical trend in the aggregated scattering source, shown in
Fig. 6.13.

Table 6.4: Iteration summary for the unaccelerated base case and two-grid 3D test problem.

Iterations

Eigenvalue Outer GS Inner (Within-group) Two-grid

Unaccelerated 9 900 12600
Two-grid 9 39 546 39
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Figure 6.12: Relative error vs energy group for the two-grid 3D test problem, box plot
showing the distribution of values across all degrees of freedom.

6.1.7 Summary

We have described a test problem in one-, two- and three-dimensions that uses fictional cross-
sections designed to stress the convergence of GS iterations. We were able to use BART’s
capabilities to get detailed information from the method to assess how TG performed for
this problem in a way that is not easy or tractable in other codes. We see consistently in
each dimension that the scattering source suffers from slow convergence rates, resulting in
a high number of GS iterations and linear solves. We have shown that the TG method
accelerates this convergence. The accelerated solution is consistent, but the correction terms
added by TG increases the error in groups with upscattering. In all dimensions, the number
of required linear solves is reduced by a factor of more than 20. For the TG method to
be inefficient, the subroutine would need to require 20 times more work than a linear solve
of the main diffusion problem. We know that the subroutine does not require nearly that
much work as the TG system contains a factor of seven fewer degrees of freedom by using
a collapsed group structure. We can therefore assess that the TG method is efficient in all
dimensions.
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Figure 6.13: Convergence of the scattering source for all groups in the GS inner iterations
for the first outer iteration for the three-dimensional test problem.

6.2 Nonlinear Diffusion Acceleration

In addition to the TG method, the NDA method described in Sec. 3.6 is implemented in
the BART code. This method alters the GS iteration scheme to more efficiently converge
inner iterations when the scattering ratio is high. The eigenvalue iteration process for the
angular solve remains unchanged. To assess this method we will use an analytic benchmark
from Sood et al.[30] in one- and three-dimensions. We will first present the implementation
details of NDA in BART and then the results of the test cases.

6.2.1 Implementation Details

Similar to the TG method, the NDA method requires two frameworks. The main framework
solves an angular form of the transport equation, such as the SAAF formulation. The
auxiliary framework will solve the drift-diffusion formulation informed by the drift-diffusion
vector calculated by the main framework. The frameworks and data flows are shown in
Fig. 6.14. When solving for each group in the GS iteration, the solved group angular flux
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and scalar fluxes are passed to the NDA subroutine. The angular flux is used to calculate
the drift-diffusion vector, and the scalar fluxes are used to calculate the scattering and fission
sources. Following the convergence of the drift-diffusion equation, the group scalar flux is
passed up to the main framework, and the next group is solved.

Main framework
Solving angular transport equation

NDA subroutine

Subroutine 
framework

Solves drift-diffusion 
equation

Solved scalar flux

Scalar Flux

Drift-diffusion 
vector 

calculation

Angular flux

Source scalar
fluxes

Figure 6.14: NDA method frameworks and data flows.

The drift-diffusion formulation adds the drift-diffusion term to the left-hand side of the
diffusion formulation. The class in charge of updating the drift-diffusion formulation adds
the scattering source as a fixed term, as defined by the NDA routine described by Park et
al. [16]. Like with the TG method, the domain is shared by both frameworks to reduce
overall memory consumption.

6.2.2 Instrumentation for Assessment

To assess and validate the effectiveness of NDA, we need to collect data to indicate if the
within-group convergence is accelerated. We will compare this to a base case of SAAF
without any acceleration using the following ports,
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• iteration::group::data_ports::NumberOfIterationsPort: outputs the
number of iterations required for the outer GS iteration to converge,

• iteration::group::data_ports::NumberOfWithinGroupIterationsPort:
outputs the number of within-group inner iterations required by SI.

The NDA method is not expected to reduce the total number of outer GS iterations, as this
will be mostly dependent on the amount of upscattering in the problem. We do expect fewer
within group iterations to be required, indicating that it is more efficient at converging each
individual group, if not all groups in total.

6.2.3 One-Dimensional Test Problem

To test the NDA method in one-dimension we will use a single material, six-group infinite
medium problem. All convergence criteria are identical to the ones specified in Sec. 6.1.3.
For the angular solve we used the SAAF formulation with Gauss-Legendre quadrature.

Cross-sections for test problem The analytic benchmark described by Sood et al. [30]
uses a six-group cross-section structure that contains two coupled three-energy groups, sim-
ilar to the cross-sections used for TG. The material properties are shown in Tab. 6.5. We
observe the reflected pattern of the first three and last three energy groups. The scattering

Table 6.5: Material properties for the material used to assess the NDA acceleration scheme.

Group 0 1 2 3 4 5

χg 0.48 0.02 0.00 0.00 0.02 0.48
Σt 0.240 0.975 3.10 3.10 0.975 0.240
νΣf 0.018 0.15 1.80 1.80 0.15 0.018

cross-sections are,

Σg′→g
s =


0.024
0.171 0.600
0.033 0.275 2.000

2.000 0.275 0.033
0.600 0.171

0.024


and the entry at row i, column j gives the scattering contribution into group i from group
j. We see that the top and bottom energy groups are only coupled via fission. Using these
cross-sections in a single medium with reflective boundary conditions, we expect constant
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Table 6.6: Relative error between unaccelerated and NDA fluxes and expected ratios.

Error

Unaccelerated NDA

φ1/φ0 1.11× 10−7 4.47× 10−9

φ4/φ5 1.11× 10−7 4.47× 10−9

φ3/φ4 2.34× 10−8 2.23× 10−8

φ2/φ1 2.34× 10−8 2.23× 10−8

φ2/φ0 8.94× 10−8 1.79× 10−8

φ3/φ5 8.94× 10−8 1.79× 10−8

scalar fluxes with the following ratios,

φ1

φ0

=
φ4

φ5

= 0.4800

φ3

φ4

=
φ2

φ1

= 0.3125

φ2

φ0

=
φ3

φ5

= 0.1500 .

In each case we will check that the solution is consistent with the expected solution by
reporting the relative error of the flux to the expected ratio. We expect the value of the
k-eigenvalue to be exactly 1.6.

The one-dimensional test problem was conducted with reflective boundary conditions and
a domain triangulated into 10 segments of uniform size, resulting in 11 degrees of freedom.
A Gauss Legendre angular quadrature was used with four angles. The scalar flux was found
to be constant at all points as expected, with ratios described in Tab. 6.6 We observe that
the relative errors between the simulated and expected ratios are very low for both the
unaccelerated and NDA cases, indicating that the method returns a consistent solution.
The value of the k-eigenvalue is also consistent, we have shown the absolute error in the
calculated k-eigenvalues in Tab. 6.7.

Table 6.7: Error in the k-eigenvalue for the unaccelerated and accelerated cases for the NDA
test problem. The expected value of kexpected = 1.6.

|k − kexpected|
Unaccelerated 3.70 ×10−8

NDA 1.31 ×10−13
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Table 6.8: Iteration summary for the unaccelerated 1D base case and NDA.

Iterations

Eigenvalue GS Outer Inner (within-group)

Unaccelerated 3 33 1768
NDA 2 70 118

6.2.3.1 Iterations Assessment

Table 6.8 shows the error, GS iterations, and total within-group iterations for the unaccel-
erated case and the NDA accelerated case We see that the NDA modification to the inner
iteration process requires more outer iterations, but greatly reduces the total number of
within-group iterations required. Since we were changing the convergence of the inner itera-
tion scheme, it is unsurprising that the number of outer iterations and therefore eigenvalue
iterations changed. Each of these within-group iterations requires an inversion of the trans-
port operator for solving the linear problem. We can therefore calculate the work ratio for
the NDA scheme using,

w′ <

(
1768

118
− 1

)
winv = 14.0× winv .

We can therefore consider the NDA routine to be efficient if each execution is less than 14
times the cost of the standard GS iteration scheme. In fact, by solving a diffusion formulation
of the transport equation, the NDA routine reduces the total degrees of freedom by the total
number of angles in our quadrature set. We can therefore assess that the NDA method is
efficient.

6.2.3.2 Further Assessment Using BART Tools

We can also examine the evolution of the Fourier modes of the error. It has been established
by Hammer et al. [8] that the NDA method should reduce the spectral radius of the iteration
matrix, and therefore also cause the Fourier modes with the largest wavelength to converge
faster. As described in Sec. 4.4, the error mode that corresponds to n = 0 drives the slow
convergence of the scattering source. When conducting an angular solve with a formulation
such as SAAF, each GS iteration to converge the scattering source accounts for neutrons
that scatter an extra time. For a problem with a large ratio of scattering, this can require
many iterations and take arbitrarily long. This difficulty in capturing the diffusive behavior
is characterized by these hard-to-suppress low frequency error modes. The NDA modified
process uses a diffusion formulation to combat this behavior, capturing – in essence – the
distribution of neutrons that have scattered an infinite number of times.

The NDA method’s use of the diffusion formulation should improve this convergence
compared to the standard GS method that relies on an angular formulation, SAAF. To
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examine this we will use the built-in one-dimensional discrete Fourier transform (DFT) tool
in BART. This tool runs following each eigenvalue iteration and requires the code to be
run twice, using the first run for the actual solution. In Fig. 6.15 we show the magnitude
of the n = 0 Fourier mode of the error summed over all energy groups compared to the
eigenvalue iteration that was just completed. After the first eigenvalue iteration, we see
that the magnitude for this lowest-frequency error mode is more than 1012 larger for the
unaccelerated case. This error is from the difficulty SAAF and other angular formulations
have in regions where the diffusive nature of neutrons is important. The NDA method uses
the drift-diffusion equation to better solve for this behavior. Therefore, just after a single
eigenvalue iteration, this diffusive error mode has been significantly reduced by the NDA
method, as we expected.

1 2 3
Eigenvalue iteration

10−16

10−12

10−8

10−4

100

M
ag

n
it

u
d

e
of

th
e

ze
ro

th
fo

u
ri

er
m

o
d

e

Unaccelerated

NDA

Figure 6.15: Zeroth moment of the error Fourier modes per eigenvalue iteration for the
nonaccelerated and NDA cases.

We also expect that the high frequency error modes do not improve as much since NDA
will not target these as well as the more diffusive modes. We See in Fig. 6.16 the magnitude
of the Fourier mode summed over all groups for the highest frequency error mode we can
observe in this problem, n = 10. We see that the NDA method has reduced the error mode
more after the first iteration, but by only a factor of 104, eight orders of magnitude less than
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the improvement seen in the diffusive error mode. We see that the NDA method is not only
efficiently converging the problem, but can validate that it is targeting the type of error we
expected it to. This is exactly the kind of information we would like to be able to validate
our methods and is not available in standard transport codes.
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Figure 6.16: n = 10 moment of the error Fourier modes per eigenvalue iteration for the
nonaccelerated and NDA cases.

6.2.4 Three-Dimensional Test Problem

To test the NDA method in three-dimensions we will use a single material, two-group infinite
medium problem defined by Sood et al. [30]. All convergence criteria are identical to the
ones specified in Sec. 6.1.3.

Cross-sections for test problem This analytic benchmark uses a two-group cross-section
structure. The material properties are shown in Tab. 6.9. We observe the reflected pattern
of the first three and last three energy groups. The scattering cross-sections are,

Σg′→g
s =

[
0.0792 0.000
0.0432 0.23616

]



CHAPTER 6. USING BART TO ASSESS ACCELERATION METHODS 109

Table 6.9: Material properties for the material used to assess the NDA acceleration scheme
in 3D.

Group 0 1

χg 0.575 0.425
Σt 0.2208 0.3360
νΣf 0.290 0.250

Table 6.10: Relative error for the unaccelerated and NDA flux ratios and k-eigenvalue for
the 3D test problem.

Relative Error

Unaccelerated NDA

φ0/φ1 5.18× 10−7 5.40× 10−7

k 1.73× 10−7 1.83× 10−7

and the entry at row i, column j gives the scattering contribution into group i from group j.
Using these cross-sections in a single medium with reflective boundary conditions, we expect
constant scalar fluxes with the following ratio,

φ0

φ1

= 0.675229 ,

and eigenvalue k = 2.683767. In each case we will check that the solution is consistent with
the expected solution by reporting the relative error of the flux to the expected ratio.

The three-dimensional test problem was conducted with reflective boundary conditions
and a domain triangulated into sixteen cells, with four cells in the y- and z-directions and
a single cell in the x-direction. For the angular solve we used the SAAF formulation with a
level-symmetric-like Gaussian quadrature of order N = 4, with 24 total angles. This results
in 50 spatial degrees of freedom, with 2400 total degrees of freedom in the full phase space.

The scalar flux was found to be constant at all points as expected. The scalar flux ratio
and the k-eigenvalue are consistent with the expected values, with relative errors shown in
Tab. 6.10. We observe that the relative errors between the simulated and expected ratios
and k-eigenvalue are very low for both the unaccelerated and NDA cases, indicating that the
method returns a consistent solution.

Table 6.11 shows the error, GS iterations, and total within-group iterations for the un-
accelerated case and the NDA accelerated case. We see that the NDA modification to the
inner iteration process greatly reduces the total number of within-group iterations required.
Since we were changing the convergence of the inner iteration scheme, it is unsurprising that
the number of outer iterations and therefore eigenvalue iterations changed. Each of these
within-group iterations requires an inversion of the transport operator for solving the linear
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Table 6.11: Iteration summary for the unaccelerated 3D base case and NDA.

Iterations

Eigenvalue GS Outer Inner (within-group)

Unaccelerated 3 44 953
NDA 2 28 56

problem. We can therefore calculate the work ratio for the NDA scheme using,

w′ <

(
953

56
− 1

)
winv = 16.0× winv .

We can therefore consider the NDA routine to be efficient if each execution is less than 16
times the cost of the standard GS iteration scheme. In fact, by solving a diffusion formulation
of the transport equation, the NDA routine reduces the total degrees of freedom by the total
number of angles in our quadrature set. We can therefore assess that the NDA method is
efficient.

6.2.5 Summary

We have described test problems in one- and three-dimensions that uses fictional cross-
sections based on an analytical benchmark by Sood et al. [30] to show the convergence
properties of the NDA routine. We leveraged the tools in BART to show that the NDA
scheme effectively accelerated convergence without introducing error into the solution. The
NDA routine reduced the total iterations more than would be necessary to make the routine
efficient, so we showed this method is useful for these kinds of problems. We also showed
that the implemented BART DFT instrument was useful in identifying how the NDA rou-
tine improved this convergence in one-dimension. As expected, the use of the drift-diffusion
equation more rapidly suppressed the lowest-frequency error mode than standard GS itera-
tions by a significant margin. We can therefore assess that the NDA method is efficient in
one-dimension and that the information easily available through BART lets us confirm why.

6.3 Conclusion

In this chapter, we have presented the implementation details of the TG and NDA methods.
The BART code enabled us to implement them in a contained and controlled way, allow-
ing for the minimal amount of code change to facilitate comparison. Further, the ease of
adding instruments made the collection of useful data to assess and validate the methods
straightforward. To assess the methods, we used cross-sections designed to stress the meth-
ods and the convergence of the GS iterative process. For the TG method, we see a large
reduction in the required inner GS and within-group iterations and assess that the method
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is efficient in all dimensions. We also showed that the scattering source converges rapidly
compared to the unaccelerated case, as expected with the method. For the NDA method,
we found a significant reduction in the number of within-group solves required to converge
the SAAF equation in one-, and three-dimensional analytic benchmarks. We also observe in
the one-dimension case that the most diffusive error mode is suppressed much more rapidly,
as expected with this method.

Importantly, we leveraged the ability of BART to instrument the solve and collect the
data we needed to assess and validate these methods. Once collected, we can be sure that
the data is useful for a good comparison because the structure of the BART code isolates
the modifications from the rest of the solve process. It is important to note that BART
works in one, two, and three dimensions. Many codes written as research codes do not due
to complexity and computational time. We think the ability to test in 3D is an important
addition as many methods behave differently depending one/two/three dimensions. Future
work should focus on expanding the NDA test cases to more test problems, and implementing
a similar DFT instrument in more dimensions for higher dimensional analysis.
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Chapter 7

Conclusions and Future Work

In this dissertation, we discussed the design goals and implementation of the Bay Area Radi-
ation Transport (BART) code and how it creates a new unique tool for analyzing acceleration
methods. The BART code focuses on creating a developer end-user focused source code that
minimizes the work required to implement new methods, and provides a unique environment
for assessing and validating those methods. We then used this environment to assess and
validate two acceleration methods, the two-grid (TG) and nonlinear diffusion acceleration
(NDA) methods.

The neutron transport equation spans a large and complex phase space in space, angle
and energy. This requires complex discretization when solving deterministically and, in
general, a large number of degrees of freedom. Complicating the problem is that solving
for the flux requires solving scattering and fission sources that are dependent on the flux
itself. This and the size of the phase space necessitate the use of iterative methods that
do not solve the problem directly, but rely on repeated iterations to converge to a solution.
The source iteration (SI) scheme converges the scattering source term of the multigroup
transport equation using a stationary iterative method. The convergence of the scheme is
dependent on the ratio of scattering to total cross-sections and can take arbitrarily long
as this ratio approaches unity. The power-iteration (PI) scheme similarly solves the k-
eigenvalue criticality formulation of the transport equation. This is of particular interest for
the modeling of reactors, as it gives a measure of departure from criticality. The convergence
of the PI method is dependent on the ratio of the largest eigenvalue to the second largest,
the dominance ratio.

The slow convergence of the SI has motivated the development of two acceleration meth-
ods we implemented here. These methods are designed to address inefficiencies in the itera-
tive solving process, making it more efficient and ultimately reducing the time and iterations
required for convergence. The first of these methods is TG, which uses a one-group collapsed
diffusion formulation to accelerate the convergence of problems with a large amount of up-
scattering, the process by which neutrons at lower energies will scatter to higher energies.
Upscattering requires repeatedly iterating over energy groups, as higher energy groups have
a contribution from lower energy groups. This process can take arbitrarily long if there is
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enough upscattering. Within-group scattering can also cause issues with convergence, which
motivated the development of the NDA routine. These methods, like other acceleration
schemes, were developed using an in-depth understanding of the mathematical formulation
of the iterative schemes. Expecting the methods will work based on mathematical properties
is different than showing that the methods will work applied to practical problems. Such
mathematical analysis is often done in very simplified conditions, such as one energy group
or infinite media, and those simplifications may make the conclusions about method perfor-
mance invalid in real problems. Assessing the effectiveness of acceleration methods requires
three more steps: implementation, assessment, and validation.

We discussed the first challenge: we must actually implement the problem in a code that
enables us to test it on real problems of interest. The two options, modifying an existing
code and writing a new code both present unique challenges. Writing a new code requires
a large investment of resources and time, especially if written to very high standards of
coding. In general, it is not possible or not worth the time investment to make these codes
comprehensively tested or reproducible. The second option requires modifying an existing
code. This can also require an investment of time to learn the structure of the code and
modify it appropriately. In both cases, the codes may not provide an ideal environment for
assessing the effectiveness of the acceleration method once implemented.

The second major issue was also discussed: assessing the effectiveness of the method
once implemented. Doing this requires an appropriate environment for assessing methods
and good data collection. An appropriate environment provides the ability to compare an
acceleration routine to a base case in a controlled manner. Creating an environment like this
is difficult; modifications to code naturally creates cutouts and other logical branches that
complicate program flow and make comparisons less than ideal. We discussed the benefit to
a code designed to allow for insertion of acceleration methods with minimal change to the
surrounding program flow.

Finally, we discussed the challenge of validating acceleration methods. Validation requires
the collection of data to ensure that the method is efficient for the reasons we expect it to
be. This can be difficult in existing codes as they typically do not provide access to the
data required. Most codes the number of iterations and the runtime. While this is useful
information, it is not enough to tell how methods are really working. Information like Fourier
modes, convergence of different terms, etc. is more helpful for identifying how something
is really working and adding such capabilities is difficult. These challenges motivated the
development of a new code to provide new capabilities.

This work described the design goals of the BART project and code features implemented
to meet these goals. One of the main goals of this project is to reduce the burden of
implementing, assessing, and validating new and novel combinations of acceleration methods.
To this end, we described how the code is designed to target and end-user who is a researcher
interested in studying acceleration methods. The code is not designed to quickly solve
problems of interest, but to provide a good environment for implementing new ways of
solving the transport equation. A framework with this goal can eliminate the need for
researchers to write new codes or modify existing codes to test acceleration methods.
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Not only does the BART code make implementing these new methods easier, it provides
a good environment and tools for assessing their effectiveness. As we described, the code
is designed to leverage object oriented programming in such a way that parts of the solv-
ing routine can be changed without impacting the rest of the program flow or execution.
This provides a controlled environment where unaccelerated solves can be easily compared
to those accelerated by new methods. In addition, the BART code focuses on providing
complex but easy to implement instrumentation to collect any kind of data required to as-
sess these methods. The ability to extend this instrumentation framework to any kind of
data needed was described, as well as those standard instruments already implemented to
make assessment easy, including a built in discrete Fourier transform (DFT) tool for one-
dimensional solves. There aren’t any other codes that do this or have taken an approach like
this. The ability to do this kind of detailed assessment and comparison is truly enabling to
better methods development.

To showcase the ability of the BART code, we implemented two acceleration schemes:
two-grid (TG) and nonlinear diffusion acceleration (NDA). We presented a test case using
fictitious cross-sections to stress the convergence of the Gauss-Seidel (GS) SI process due
to a large amount of upscattering. As expected, the scattering source took many iterations
to slowly converge due to the interaction between groups. We showed that the TG method
improved this issue, causing rapid convergence. The method performed well in one-, two-,
and three-dimensions, accelerating the diffusion solve in a twentieth of the iterations. For
the NDA method we showed improvement in fictitious infinite media analytic benchmark
problems in one- and three-dimensions. The NDA method modified the GS inner iterations
to more efficiently deal with diffusive neutron behavior. This was reflected in the more rapid
convergence of the error modes linked to the most diffusive behavior of the neutrons, as
shown by the DFT.

Future work includes improvement of the BART code to provide more tools to researcher
developers. Other formulations of the transport equation should be implemented to provide
angular forms other than the self-adjoint angular-flux (SAAF) formulation. Coupled with
this, more quadrature sets should be implemented, including a 2D quadrature set, along with
support for solving for flux modes other than the scalar flux. The code supports the use of
Message Passing Interface (MPI) for solving the provided formulations generally and in all
dimensions, but the implemented acceleration schemes are not implemented in a compatible
fashion. Future version of BART should include support for MPI for all acceleration schemes
already implemented. Importantly, inconsistencies in the NDA formulation occur when
solving problems with more than one material, an issue that should be identified and resolved.
Finally, the project should be expanded and modified to further the design goals, it should
be updated to be more friendly to those less familiar with modern C++. The most important
future work is identifying, innovating, and implementing new ways for the code to meet the
original design goals that are at its heart.
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Appendix A

Spherical Harmonics as
Eigenfunctions of the Scattering
Operator

The spherical-harmonic functions (in tesseral form) of degree ` and order m are given by,

Y`,m(~Ω) =

{
(−1)m

√
Cm
` P

|m|
` (µ) sin (|m|φ) −` ≤ m < 0

(−1)m
√
Cm
` P

m
` (µ) cos (mφ) 0 ≤ m ≤ `

,

where Pm
` (µ) is the associated Legendre function, µ is the cosine of the polar angle θ, and

the constant is defined by

Cm
` = (2− δm0)

2`+ 1

4π

(`− |m|)!
(`+ |m|)! .

The functions are orthogonal, with the constant ensuring that they are orthonormal,∫ 2π

0

∫ 1

−1

Y m
` (~Ω)Y n

k (~Ω) = δ`kδmn .

If we operate on the spherical harmonic with our scattering operator

SY m
` (~Ω) =

∫
4π

Σs(~Ω
′ · ~Ω)Y m

` (~Ω′) d~Ω′ . (A.1)

We will then expand the cross-section using the spherical harmonic basis as well, we can
replace the cross-section with a summation of cross-section moments using the associated
Legendre functions,

σk =

∫ 1

−1

σs(µ0)P 0
k (µ0) dµ0 , (A.2)
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where we have defined µ0 = ~Ω′ · ~Ω = cos (θ), and allowing us to redefine the differential
cross-section,

σs(~Ω
′ · ~Ω) =

∞∑
k=0

σkP
0
k (~Ω′ · ~Ω) . (A.3)

Plugging Eq. (A.3) into Eq. (A.4),

SY m
` (~Ω) =

∫
4π

∞∑
k=0

σkP
0
k (~Ω′ · ~Ω)Y m

` (~Ω′) d~Ω′ . (A.4)

We then apply the addition theorem for the associated Legendre polynomial,

P 0
k (~Ω′ · ~Ω) =

k∑
n=−k

Y n
k (~Ω)Y n

k (~Ω′)

and plug this into Eq. (A.4),

SY m
` (~Ω) =

∫
4π

∞∑
k=0

σk

k∑
n=−k

Y n
k (~Ω)Y n

k (~Ω′)Y m
` (~Ω′) d~Ω′ .

The orthonormality conditions of the spherical harmonics collapses the summations, requir-
ing m = n and k = `, reducing this integral to

SY m
` (~Ω) = σ`Y

m
` (~Ω) (A.5)

As we can see from Eq. (A.5), the spherical harmonics are eigenfunctions of the scattering
operator with eigenvalues equal to the cross-section moments.
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Appendix B

Quadrature Set Codes

This appendix contains the code required to make and test the quadrature sets and graphs
described in Sec. 5.1.3.1 using Python 3. The following code is required for all code in this
section:

import numpy as np
import matplotlib.pyplot as plt

plt.rc(’text’, usetex=True)
plt.rc(’font’, family=’serif’)

def z_circle(ax, z):
phi = np.linspace(0, np.pi/2, 100)
zs = np.ones_like(phi) * z
xs = np.sqrt(1 - z*z) * np.cos(phi)
ys = np.sqrt(1 - z*z) * np.sin(phi)
ax.plot(xs, ys, zs, ’--’, c=’k’, alpha=0.05)
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B.1 Product Gaussian Quadrature

n = 16
m = 2*n

[l_points, l_weights] = np.polynomial.legendre.leggauss(n)

xs = []
ys = []
zs = []
ws = []
phis = [np.pi/n * j for j in range(m + 1)]

for i in range(n):
z = l_points[i]
for j in range(m):

x = np.sqrt(1 - z*z) * np.cos(phis[j])
y = np.sqrt(1 - z*z) * np.sin(phis[j])
if (x >= 0 and y >= 0 and z >= 0):

xs.append(x)
ys.append(y)
zs.append(z)
ws.append(l_weights[i])

plot_weight = [500*weight for weight in ws]
fig = plt.figure(figsize=plt.figaspect(1.0)*3.0)
ax = fig.add_subplot(projection=’3d’)
ax.set_box_aspect(aspect = (1,1,1))
ax.scatter(xs, ys, zs, c=’b’, alpha=1.0, s=plot_weight)
ax.text(0.01, 0, .01, "$O$", zdir=None, fontsize=16)
ax.scatter(0, 0, 0, c=’k’)

for z in zs: z_circle(ax, z)

plt.xlim([0, 1])
plt.ylim([1, 0])
ax.set_zlim(0, 1)
ax.set_xlabel(’$x$’, fontsize=16)
ax.set_ylabel(’$y$’, fontsize=16)
ax.set_zlabel(’$z$’, fontsize=16)

plt.show()
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B.2 Level-Symmetric-Like Gaussian Quadrature

order = 16
n_points = int(order/2) # The number of points and levels per octant
[l_points, l_weights] = np.polynomial.legendre.leggauss(order)

xs = []
ys = []
zs = []
ws = []

for level in range(n_points):
points_this_level = level + 1
mu = -l_points[level]
dphi = np.pi/(2 * points_this_level)
weight = l_weights[level] * np.pi/(points_this_level)

for j in range(points_this_level):
phi = (j + 0.5) * dphi
xs.append(np.sqrt(1 - mu * mu) * np.cos(phi))
ys.append(np.sqrt(1 - mu * mu) * np.sin(phi))
zs.append(mu)
ws.append(weight)

plot_weight = [500*weight for weight in ws]
fig = plt.figure(figsize=plt.figaspect(1.0)*3.0)
ax = fig.add_subplot(projection=’3d’)
ax.set_box_aspect(aspect = (1,1,1))
ax.scatter(xs, ys, zs, c=’b’, alpha=1.0, s=plot_weight)
ax.text(0.01, 0, .01, "$O$", zdir=None, fontsize=16)
ax.scatter(0, 0, 0, c=’k’)

for z in zs:
z_circle(ax, z)

plt.xlim([0, 1])
plt.ylim([1, 0])
ax.set_zlim(0, 1)
ax.set_xlabel(’$x$’, fontsize=16)
ax.set_ylabel(’$y$’, fontsize=16)
ax.set_zlabel(’$z$’, fontsize=16)

plt.show()
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B.3 Calculating the Error for a Quadrature Set

The following code was used to test the above-generated quadrature sets to calculate the
error.

import scipy.special as spec
import pandas as pd

phis = []
thetas = []
for i in range(len(xs)):

phis.append(np.arctan(ys[i]/xs[i]))
thetas.append(np.arccos(zs[i]))

data = []
l_max = 4
for l in range(l_max + 1):

for m in range(-l, l + 1):
integration = 0
for i in range(len(phis)):

harmonic = spec.sph_harm(m, l,phis[i], thetas[i])
integration += ws[i] * np.absolute(harmonic * harmonic)

error = np.abs(1 - 4*integration)
data.append([l, m, error])

df = pd.DataFrame(data, columns = [’l’, ’m’, ’error’])
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