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HIGHLIGHTED ARTICLE
| INVESTIGATION
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Perils of Demographic Inference
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*Department of Statistics, and **Computer Science Division, University of California, Berkeley, California 94720, †Department of
Genetics, and ‡Howard Hughes Medical Institute, Stanford University, California 94305, §Department of Mathematics, University

of Wisconsin, Madison, Wisconsin 53706, and ††Chan Zuckerberg Biohub, San Francisco, California 94158

ORCID ID: 0000-0001-8425-6991 (A.B.)

ABSTRACT The sample frequency spectrum (SFS), which describes the distribution of mutant alleles in a sample of DNA sequences, is a
widely used summary statistic in population genetics. The expected SFS has a strong dependence on the historical population
demography and this property is exploited by popular statistical methods to infer complex demographic histories from DNA sequence
data. Most, if not all, of these inference methods exhibit pathological behavior, however. Specifically, they often display runaway
behavior in optimization, where the inferred population sizes and epoch durations can degenerate to zero or diverge to infinity, and
show undesirable sensitivity to perturbations in the data. The goal of this article is to provide theoretical insights into why such
problems arise. To this end, we characterize the geometry of the expected SFS for piecewise-constant demographies and use our
results to show that the aforementioned pathological behavior of popular inference methods is intrinsic to the geometry of the
expected SFS. We provide explicit descriptions and visualizations for a toy model, and generalize our intuition to arbitrary sample sizes
using tools from convex and algebraic geometry. We also develop a universal characterization result which shows that the expected
SFS of a sample of size n under an arbitrary population history can be recapitulated by a piecewise-constant demography with only κn

epochs, where κn is between n=2 and 2n2 1: The set of expected SFS for piecewise-constant demographies with fewer than κn

epochs is open and nonconvex, which causes the above phenomena for inference from data.

KEYWORDS population size; expected sample frequency spectrum; coalescent theory; algebraic methods

THE sample frequency spectrum (SFS), also known as the
site or allele frequency spectrum, is a fundamental statistic

in population genomics for summarizing the genetic variation
in a sample of DNA sequences. Given a sample of n sequences
from a panmictic (i.e., randomly mating) population, the SFS
is a vector of length n2 1 of which the kth entry corresponds
to the number of segregating sites, each with k mutant (or
derived) alleles and n2 k ancestral alleles. The SFS provides
a concise way to summarize n sequences of arbitrary length
into just n2 1 numbers, and is frequently used in empirical
population genetic studies to test for deviations from equilib-
rium models of evolution. For instance, the SFS has been
widely used to infer demographic history where the effective

population size has changed over time (Nielsen 2000;
Gutenkunst et al. 2009; Gravel et al. 2011; Keinan and Clark;
2012; Excoffier et al. 2013; Bhaskar et al. 2015) and to test
for selective neutrality (Kaplan et al. 1989; Achaz 2009). In
fact, many commonly used population genetic statistics for
testing neutrality, such as Watterson’s uW (Watterson 1975),
Tajima’s up (Tajima 1983), and Fu and Li’s uFL (Fu and
Li 1993) can be expressed as linear functions of the SFS
(Durrett 2008).

In the coalescent framework (Kingman 1982a,b,c), the
unnormalized expected SFS jn for a random sample of n ge-
nomes drawn from a population is obtained by taking the
expectation of the SFS over the distribution of sample gene-
alogical histories under a specified population demography.
In this work, we will be concerned with well-mixed, panmic-
tic populations with time-varying historical population sizes,
evolving according to the neutral coalescent process with the
infinite-sites model of mutation. The coalescent arises as the
continuum limit of a large class of discrete models of random
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mating—such as the Wright–Fisher, Moran, and Cannings
exchangeable family of models (Möhle and Sagitov 2001)—
by a suitable rescaling of time and taking the population
size to infinity. The infinite-sites model postulates that
every mutation in the genealogy of a sample occurs at a dis-
tinct site and is commonly employed in population genetic
studies for organisms with low population-scaled mutation
rates, such as humans. The SFS also appears in the context of
statistical modeling as a vector of probabilities. In particular,
the normalized expected SFS ĵn; defined by normalizing the
entries of jn so that they sum to one, gives the probability that
a mutation chosen at random is present in k out of n se-
quences in the sample. Unless stated otherwise, we use the
term expected SFS to refer to the unnormalized quantity jn:

The expected SFS is strongly influenced by the demo-
graphic history of the population, and extensive theoretical
and empirical work has been done to characterize this de-
pendence (Fu 1995; Wakeley and Hey 1997; Polanski et al.
2003; Marth et al. 2004; Chen 2012; Jouganous et al.
2017; Kamm et al. 2017). Fu (1995) showed that under the
infinite-sites model for a panmictic population with con-
stant size and no selection, the expected SFS is given by
jn ¼ u � ð1; 1=2; . . . ; 1=ðn2 1ÞÞ; where u=2 denotes the pop-
ulation-scaled mutation rate. When the population size is
variable, however, the formula for the expected SFS depends
on the entire population size history. In particular, Polanski
and Kimmel (2003) (in equations 13–15) showed that the
expected SFS under a time-varying population size is given by
jn ¼ Anc; with An being an ðn21Þ-by-ðn2 1Þ invertible ma-
trix that only depends on n (formula presented in Appendix)
and c ¼ ðc2; . . . ; cnÞ; where cm denotes the expected time to
the first coalescence event in a random sample of size m
drawn from the population at present. For any time-varying
population size function hðtÞ; the quantity cm is given by the
following expression:

cm ¼
Z N

0

�
m
2

�
t

hðtÞ exp
"
2

�
m
2

�Z t

0

1
hðxÞdx

#
dt: (1)

Pathologies of SFS-based inference algorithms

Letus considerahypothetical scenario. Supposewewould like
to learn about the population history of a group of finches on a
remote island. Fossil evidence indicates that the island expe-
rienced many generations with ample resources leading to a
large, roughly constant population size. Then, some catastro-
phe occurred, rendering the island’s resources scarce, leading
to a small constant population size until the present. We are
given four haplotypes from the population and we hope to
infer the following parameters for a demographic model
based on the history described above:

1. How big was the population during the epoch of plenty?
2. How big was the population during the epoch of scarcity?
3. When did the catastrophe occur, marking the break point?

First, we compute the SFS for the four haplotypes we
collected. (Our choice of a sample size of four is for simplicity
in this example, but the principles apply for larger samples.)
We count singleton (appearing in only one of the haplotypes),
doubleton, and tripleton mutations. We do not attempt to
track nonsegregating sites. Now we have the SFS, a vector of
three real numbers.

Next,weaskourselves:wouldweexpect toobtain thisSFS
for some particular set of parameters, based on ourmodel? If
the answer is yes, then that set of parameters is our best
guess. In Figure 1, the green region describes the set of SFS
we would expect for various parameters under this model.
Blue dots indicate measured SFS. When the blue dots land
in the green region, we simply infer the parameters corre-
sponding to that point. The red crosses are the expected SFS
computed for those parameters, so they coincide with the
blue dots.

What if the answer is no? That is, what if the SFS we
measuredwould not be expected for any choice of parameters
in our population history model? We have two options to
interpret this situation: (1) statistical noise is making the SFS
appear inconsistent with the model, or (2) our model is mis-
specified. Let us suppose that noise is the culprit. Our strategy
is then to look for the closestSFS thatwould be expected in our
model, and infer the parameters associated with that one.

This runs into two problems: First off, the parameters
inferred in this way are often nonsensical. In Figure 1, the
blue dots outside of the green region are connected by dotted
lines to the closest SFS vectors in the green region. Naturally,
these mainly lie on the boundary of the green region. The
problem is that the boundary points (with one exception that
we will discuss later) do not actually correspond to achiev-
able expected SFS vectors! Those points correspond to pop-
ulation size histories where one of the epochs is infinity or
zero.

The second problem: Even though there is, in general, a
unique closest SFS to agivenpoint outside of the green region,
the process of finding the closest point is highly sensitive to
noise. Specifically, if you change the quantities in the vector
by a small amount, the resulting closest point may change by
a large amount. The reason for this is that the set is
nonconvex, meaning that not all of the straight lines between
points in the green region lie inside the green region. As a
consequence, some of the blue dots point to the left-hand
green region, while others nearby point to the right-hand
green region. Sensitivity to noise is a big problem for in-
ference. Any demographic inference method would man-
ifest these pathologies; indeed, the commonly used @a@i
(Gutenkunst et al. 2009), fastsimcoal2 (Excoffier et al.
2013), and fastNeutrino (Bhaskar et al. 2015) all encoun-
ter these issues.

If we hypothesize that the model may be mis-specified, we
need to support this assertion. The following question will
arise: How far away is our measured SFS from the type of SFS
that we would expect under the rejected population model?
Furthermore, we may be asked to offer an alternative

666 Z. Rosen et al.



hypothesis, i.e., is there another model that actually does
allow for an SFS equal to or near the one that we measured?
Both of these questions require an understanding of the set of
all possible SFS.

Minimal demographic complexity for SFS reconstruction

Let us slightly change our finch example. Suppose we have no
a priori assumptions regarding the demographic history. In-
stead, we are only interested in determining whether the SFS
is consistent with a null hypothesis of a single panmictic pop-
ulation under neutrality. If the measured SFS is equal to
the expected SFS for some demography, we may be asked
to produce the simplest demography with the expected SFS
we want. Work by Myers et al. (2008) implies that there
are infinitely many population size histories with a given
expected SFS, as long as we allow the demographies to be
arbitrarily complicated. Bhaskar and Song (2014) (two of the
authors of this article) demonstrated that when we constrain
ourselves to a simpler family of population size histories, we
may have a unique function achieving the desired expected
SFS.

Now suppose that the SFS does not equal the expected SFS
for any demography. Again, we would need to quantify how
far away it is frombeingachievedby somedemography. This is
an intimidating task. How can we be certain to find the SFS
corresponding to every demography without leaving any SFS
vectors out? After all, the space of possible population size
histories is infinite-dimensional! Our hope is to understand
the shape of the set of all possible SFS vectors so we know
that we have covered everything when we reject the null
hypothesis.

For the small example of a sample size of four, we have
demonstrated a sequence of constraints placed onSFS vectors in
Figure 2. The vectors of interest have three coordinates corre-
sponding to singleton, doubleton, and tripletonmutations. Note
that any vector of probabilities must be nonnegative and must
sum to one. This means we are constrained to the triangle with
vertices ð1; 0; 0Þ; ð0; 1; 0Þ; and ð0; 0; 1Þ:Wecan ignore the third
coordinate since it will always be one minus the others. This
triangle is depicted in yellow in Figure 2. One might naively
hope that every one of these probability vectors is achievable
as the expected SFS of some demography.

A result proved by Sargsyan and Wakeley (2008) is that
SFS vectors must be nonincreasing—this means that we
are left with the triangle with vertices ð1=3; 1=3; 1=3Þ;
ð1=2; 1=2; 0Þ; and ð1; 0; 0Þ: This is depicted in blue in Figure
2. They further proved that the SFS is convex. This implies
that the second coordinate is less than the average of the
other two. This further cuts down our possibilities to the tri-
angle with vertices ð1=3; 1=3; 1=3Þ; ð2=3; 1=3; 0Þ; and
ð1; 0; 0Þ; depicted in red in Figure 2. If we want SFS vectors
for population size histories with two constant pieces, we are
further constrained to the green region, which we will de-
scribe algebraically later.

We will be able to completely describe the shape of all SFS
for a sample size of four using algebraic formulas for the
boundary. In fact, wewill show that to find all possible SFS for
a sample size of four it is sufficient to consider piecewise-
constant functions with at most three constant pieces.
Furthermore, we will use tools from convex and algebraic
geometry to extend our intuition from this small case study
to the SFS for all sample sizes.

Figure 1 The green region, denoted bΞ4;2; rep-
resents the set of expected SFS for two-epoch,
piecewise-constant demographies for sample
size n ¼ 4: Each blue hollow circle is the ob-
served SFS simulated using msprime (Kelleher
et al. 2016) under a constant population size
coalescent with recombination using realistic
mutation and recombination rates of 1028 mu-
tations and 2:231028 crossovers per base pair
per generation per haploid. Each sequence has
1000 unlinked loci of length 10 kb each, result-
ing in an average of 7300 segregating sites.
The red crosses are the expected SFS inferred
for these simulated SFS using fastNeutrino
(Bhaskar et al. 2015); the dotted blue lines show
the correspondence between the observed SFS
and their projections onto bΞ4;2: For observed SFS
lying in the interior of bΞ4;2; the observed SFS and
their projections coincide, while the observed
SFS lying outside bΞ4;2 project onto the bound-
aries of one of the two convex regions that formbΞ4;2:
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Summary of main results

Studying the geometry of the set of expected SFS will address
both of the areas discussed above:

1. Explaining the pathologies in SFS-based inference.
2. Describing the full set of SFS for a fixed sample size.

In this way, we can help researchers understand why
fitting parameters to certain demographic models will lead
to runaway behavior. We also enable researchers to reject
a null hypothesis of a single panmictic population under
neutrality.

Our main result is Theorem 8 which focuses on piecewise-
constant demographies. It shows that for every sample size n,
there is a crucial threshold in demographic complexity, which
we denote κn. If we are fitting to a demographic model with
fewer than κn constant pieces, then the set of all SFS will be
nonconvex and we must expect pathological behavior as de-
scribed above. However, once we allow for κn constant pieces ,
we get the full set of SFS for all demographies. Proving that
this set is convex is left for later work.

Piecewise-Constant Demographies

In this section, wewill define two sets: one of themwill be the
set of expected SFS for piecewise-constant population size
histories. As described in the Introduction, this is an impor-
tant set for inference. The other set is the set of expected
coalescence vectors; this is not as commonly used as the SFS,
but it helps us build a strong understanding of the SFS. This is
because it is related to the SFS by a simple transformation and
yet it is much easier to formulate.

Let Pk be the set of piecewise-constant population size
functions with k pieces. Any population size function in Pk

is described by 2k2 1 positive numbers, representing the
k population sizes ðy1; . . . ; ykÞ and the k2 1 time points
ðt1; . . . ; tk21Þ when the population size changes. Let Ξn;k;

which we call the ðn; kÞ SFS “manifold,” denote the set of
all expected SFS vectors for a sample of size n that can be
generated by population size functions inPk: (Note that the
sets Ξn;k and Cn;k are not technically manifolds; they would be

more accurately described as semialgebraic sets. However,
for expository purposes, we use the widely known termmani-
fold.) Similarly, let Cn;k; called the ðn; kÞ-coalescence mani-
fold, denote the set of all vectors c ¼ ðc2; . . . ; cnÞ giving the
expected first coalescence times of samples of size 2; . . . ; n for
population size functions inPk: Let bΞn;k and Ĉn;k; respectively,
be equal to the normalization of all points inΞn;k and Cn;k by their
ℓ1 norms (i.e., the sums of their coordinates). Note that both
manifolds live in ℝn21 and their normalized versions live in the
ðn2 2Þ-dimensional simplex Dn22; this is the set of nonnegative
vectors in ℝn21 whose coordinates sum to 1.

Now thatwehavedefinedour basic objects of study,we can
describe the remainder of the article: First, we provide a
complete geometric picture of the Ξ4;k SFS manifold de-
scribing the expected SFS for samples of size n ¼ 4 under
piecewise-constant population size functions with an arbi-
trary number k of pieces. We make explicit the map be-
tween regions of the demographic model space and the
corresponding probability vectors, and this will fore-
shadow some of the difficulties with population size in-
ference in practice. Next, we develop a characterization of
the space of expected SFS for arbitrary population size
histories. In particular, we show that for any sample size
n, there is a finite integer κn such that the expected SFS for
a sample of n under any population size history can be
generated by a piecewise-constant population size func-
tion with at most κn epochs. Stated another way, we show
that the Ξn;κn SFS manifold contains the expected SFS for
all possible population size histories, no matter how com-
plicated their functional forms. We establish bounds on κn

that are linear in n and along the way prove some inter-
esting results regarding the geometry of the general Ξn;k

SFS manifold.
Beforeproceeding further,we state aproposition regarding

the structure of the map from Pk to Cn;k; which we will call
xð x!; y!Þ; the vector of k2 1 transformed break points is
denoted by x!¼ ðx1; . . . ; xk21Þ and defined below, while the
vector of population sizes in the k epochs is denoted by
y!¼ ðy1; . . . ; ykÞ: It turns out that we can formulate the
expected coalescence times as polynomial functions of the x
and y variables. Two different ways of writing those functions

Figure 2 Eliminating candidate normalized SFS
vectors for bΞ4;2:This image considers candidate
vectors and eliminates them for different rea-
sons. A priori, any vector adding up to one is
a possible SFS. This is represented by the yellow
triangle whose third coordinate (not shown) is
simply one minus the sum of the other two.
Sargsyan and Wakeley (2008) showed that
the SFS is nondecreasing, ruling out any vec-
tors outside the blue triangle. Furthermore,
they showed that the SFS is convex, therefore
j4;2 #

1
2 ðj4;1 þ j4;3Þ; ruling out anything outside

the red triangle. Finally, our algebraic analysis of
the expected SFS for a piecewise-constant de-
mography with two epochs rules out vectors
outside the green region at the right.
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down will give us two perspectives on their shape. All proofs
of the results presented in this article are deferred to the
Appendix.

Proposition 1. Fix a piecewise-constant population size
function in Pk with epochs ½t0; t1Þ; ½t1; t2Þ; ½tk21; tkÞ; where
0 ¼ t0 , t1 ,⋯, tk21 , tk ¼ N; and which has constant pop-
ulation size value yj in the epoch ½tj21; tjÞ for j ¼ 1; . . . ; k.
Let xj ¼ exp½2ðtj 2 tj21Þ=yj� for j ¼ 1; . . . ; k; where xk ¼ 0
(corresponding to time T ¼ N), and define x0 ¼ 1 (corre-
sponding to time T ¼ 0) for convenience. The vectors
ðx1; . . . ; xk21; y1; . . . ; ykÞ; where 0, xj , 1 and yj . 0 for all
j, (uniquely) identify the population size functions in Pk

and they satisfy both of the following equations:

where cm is the expected first coalescence time for a sample of
size m, as defined in (1).

These two formulations provide two different ways of
looking at the coalescence manifold Cn;k :
1. In (2), the left-hand matrix called M1ðn; kÞ has each col-

umn of the same form with two parameters; this indicates
they all live in a two-dimensional surface. Imagine, for
example, the surface of the earth. There are two degrees
of freedom: north–south and east–west. Here, too, specify-
ing the value of each column, regardless of the value of n, is

dependent on two numbers. Explicitly, each column is given by

fnða; bÞ ¼

 
að12 bÞ; . . . ; a

� n
2

� 
12 b

� n
2

�!
=� n

2

�!
for

some inputs a and b.
Additionally, the vector ðy1; . . . ; ykÞ has all positive en-
tries. That means that, when we combine columns from
our surface, they will not cancel in unexpected ways due
to negative coefficients. The set of positive combinations
of a set of points is called a cone, and it is very nicely
behaved geometrically. This means that the vector
c ¼ ðc2; . . . ; cnÞ is contained in the cone over the surface
described by the columns of M1:

2. In (3), the left-hand matrix called M2ðn; kÞ has each col-
umn of the same form with one parameter; this indicates
they all live on a curve. Like a train on a track, this has one
degree of freedom, only forward–backward. Explicitly,

each column is given by gnðaÞ ¼

0B@a; . . . ; a

�n
2

�
=

�
n
2

�1CA
for some input a.
The vector ðy1; y2 2 y1; . . . ; yk 2 yk21Þ on the left-hand
side has entries with possibly negative coordinates. So

x0ð12 x1Þ . . .

 Yk21

i¼0

xi

!
ð12 xkÞ

1
3
x30
�
12 x31

�
. . .

1
3

 Yk21

i¼0

x3i
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�
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2

� x

�n
2

�
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0BBB@12 x

� n
2

�
1
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1� n
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�
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the vector c ¼ ðc2; . . . ; cnÞ is contained in the linear span
of the curve described by the columns of M2: Unfortu-
nately, a linear span is not quite as nicely behaved as a
cone. Still, this formulation gains the simplicity of having
one degree of freedom instead of two.

Proposition 1 gives us the algebraic mappings that will
serve as our objects of interest. Since the SFS manifold is
simply a linear transformation of the coalescence manifold,
wewill use thesemapsasourentry intounderstanding theSFS
manifold.

The J4;k SFS Manifold

A toy model

The first in-depth study will involve the set of all possible
expected SFS for a sample size of four. We choose n ¼ 4 for
a number of reasons: First, the cases of sample sizes of two
and three are not interesting. When we only have two
haplotypes, there is only one entry in the SFS vector, i.e.,
singletons. The resulting set of possible expected SFS
is just the set of all positive numbers. When we have
three haplotypes, it is only slightly better. Because there
must be fewer doubletons than singletons, the possible
expected SFS is somewhere in the wedge between 0
and 45� from the origin; this turns out to be the only
constraint.

Second, when n ¼ 4; the SFS manifold lives in ℝ3; which
can be nicely visualized, and the normalized SFS manifold
lives in the triangle with vertices ð1; 0; 0Þ; ð0; 1; 0Þ; and
ð0; 0; 1Þ: Finally, as observed in Proposition 1, the most in-
teresting phenomena in SFS manifolds of any dimension are
fundamentally phenomena of curves and surfaces. These are
already captured in the n ¼ 4 case.

For the sake of completeness, we begin by formally de-
scribing the coalescence manifolds Cn;k for the trivial cases of
n ¼ 2 and n ¼ 3:

Proposition 2.We list some basic results on the coalescence
manifolds Cn;k; with sample size n and k population epochs,
for small values of ðn; kÞ :
1. The manifold Cn;1 ¼ l �

 
1; 13; . . . ;

1� n
2

�
!

: l. 0

8>><>>:
9>>=>>;; for

all n.

2. The manifold C2;k ¼ C2;1 ¼ fa : a. 0g; for all k$ 1:
3. The manifold C3;k ¼ C3;2 ¼ fða; bÞ : a. 0  and   0, b

, ag; for all k$ 2:

Note that from (2) and (3) for xð x!; y!Þ; it follows that
xð x!; a y!Þ ¼ axð x!; y!Þ for a. 0: In words, rescaling the pop-
ulation sizes in each epoch by a constant a also rescales the
first coalescence times by a. This implies that every point in
the coalescence manifold Cn;k generates a full ray contained
in the Cn;k coalescence manifold. Another consequence is
that the normalized coalescence manifold Ĉn;k is precisely
the intersection of the coalescence manifold Cn;k with the
simplex Dn22:

With that justification,webegin to consider thenormalized
coalescence manifold Ĉ4;k living in the simplex. As stated in
Proposition 2, C4;1 is a ray, which implies that Ĉ4;1 is a single
point. We now characterize the set Ĉ4;2: Again, this is the set
of possible SFS for two-epoch, piecewise-constant population
size histories considered as a subset of all vectors summing to
one.

Proposition 3. The manifold Ĉ4;2; describing normalized
expected times to first coalescence for sample size 4 and
two population epochs, is a two-dimensional subset of the
2-simplex which can be described as the union of the point Ĉ4;1
with the interiors of the convex hulls of two curves g1 and g2: The
curves are parametrized as follows:

g1 ¼
�

6
6þ 2t2 þ t5

;
2t2

6þ 2t2 þ t5
;

t5

6þ 2t2 þ t5

�
: 0, t,1

( )
;

and g2 ¼
�

6
6þ 2½2�t þ ½5�t

;
2½2�t

6þ 2½2�t þ ½5�t
;

½5�t
6þ 2½2�t þ ½5�t

�(

: 0, t, 1

�
;

where ½n�t denotes 1þ⋯þ tn:
This set has some highly unpleasant geometry. First of all,

the set is nonconvex; topologically, it is also neither closed nor
open because most of the boundary is excluded with the
exception of the point ð2=3; 2=9; 1=9Þ: The set is visualized
in Figure 3A.

To precisely illustrate the geometry of xð x!; y!Þ; we will
consider how contours in the domain map to contours in the
image. Specifically, we plot the images of lines with fixed
values of x1; respectively fixed values of ðy1; y2Þ; to C4;2
in the 2-simplex. The resulting contours are pictured in
Figure 4.

Finally, we consider how the map x acts on the boundaries
of the domain. To aid visualization, we limit the inputs to x1
and y1=y2; since all rescalings of y1 and y2 by the same pos-
itive constant while keeping x1 fixed map to the same nor-
malized coalescence vector. The resulting map is illustrated
in Figure 5.

We note that the map fails to be one-to-one within the
domain only when y1=y2 ¼ 1; this is also in the preimage of
the point ð2=3; 2=9; 1=9Þ 2 Ĉ4;2:: The inverse function the-
orem implies that on the complement of y1=y2 ¼ 1; the
map is a homeomorphism (a map that preserves topolog-
ical features like number of components). This is consis-
tent with our observation that the two rectangles in Figure
5A correspond to the two envelopes in Figure 5C. Now,
we consider demographies with more than two epochs.
This proposition implies that any expected SFS for a sample
size of four coming from a single panmictic population un-
der neutrality, regardless of the true population size history,
is equal to the expected SFS for some piecewise-constant
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history with only three pieces. It also shows that all of
these SFS vectors live inside of the convex hull of one
curve.

Proposition 4. For all values k$ 3; the manifold Ĉ4;k ¼
Ĉ4;3; and Ĉ4;3 is the interior of the convex hull of the following
curve:

g3 ¼
�

1
1þ t2 þ t5

;
t2

1þ t2 þ t5
;

t5

1þ t2 þ t5

�
: 0, t,1

( )
:

As we can see from Proposition 4, Ĉ4;3 is open and convex;
however, we lose one useful property of the normalized
map x̂ : ℝ3/Ĉ4;2: Specifically, let bx9 : ℝ2/Ĉ4;2 be given
by bx9ðx1; y1Þ ¼ x̂ðx1; y1; 1Þ; noting that x̂ðx1; ly1; ly2Þ ¼
x̂ðx1; y1; y2Þ for l. 0: Under this definition bx9 is generically
one-to-one (i.e., one-to-one away from a set of measure zero).
Meanwhile, the analogous construction bx9 : ℝ4/Ĉ4;3; map-
ping the three-epoch demography with break points ðx1; x2Þ
and population sizes ðy1; y2; 1Þ to the corresponding nor-
malized coalescence vector has two-dimensional preimages,
generically. For this reason, contour images do not lend them-
selves to easy description.

However, as a heuristic, we can choose a distinguished
member of this preimage with nice properties. In the orange
region adjacent to b3 depicted in Figure 6, every preimage
contains a limit demography with first and third epochs set to
zero, and second epoch set to one. This can be thought of as
a demography with a population boom in the second epoch.
In the blue region adjacent to the line segment from
ð1=3; 1=3; 1=3Þ to ð1; 0; 0Þ; every preimage contains a limit
demography with second epoch set to zero. This corresponds
to a demography with a population bottleneck in the second
epoch. Because the set of demographies mapping to each
point is two dimensional, this does not describe all demogra-
phies characterized by a chosen SFS, but it does give us in-
tuition for the types of demographies to expect.

We can also describe the image of themap bx9 : ℝ4/Ĉ4;3 on
the boundaries of our domain. The easiest way to visualize
the map is first to understand how the time variables
affect the value of the columns of M1ð4; 3Þ and to view
the y variables as specifying points in the convex hull of
those three columns. The boundaries of the square
ðx1; x2Þ 2 ½0; 1�3 ½0; 1� map the columns (after rescaling to
the simplex) as follows:

Figure 3 Coalescence and SFS manifolds for
sample of size four and two population epochs.
(A) The coalescence manifold C4;2 is the union
of red and green cones. The 2-simplex, shaded
in blue, intersects C4;2 in the normalized coales-
cence manifold Ĉ4;2: The green region corre-
sponds to recent-small, ancient-large demographies;
the red region to recent-large, ancient-small
demographies. (B) The SFS manifold Ξ4;2 is the
union of red and green cones. The 2-simplex
intersects Ξ4;2 in the normalized SFS manifold
Ξ̂4;2: Here, too, the green region corresponds
to small-then-large demographies; the red region
to large-then-small demographies. As mentioned
earlier, Ξ4;2 is obtained from C4;2 by a linear
transformation.

Figure 4 Fixed-time and fixed-size contours
in Ĉ4;2. (A) The blue line segments corre-
spond to the image of x4;2ðx*; y!Þ where x*
is a constant fixing the break point between
the two demographies. The other input
y!¼ ðy1; y2Þ varies over all positive vectors,
though scaled y! vectors point to the same
normalized value. As y1=y2/0; the image
approaches g1 and as y2=y1/0; the image
approaches g2: (B) The blue curves corre-
spond to the image of x4;2ðx; y!*Þ where
y!* is a fixed vector indicating the popula-
tion values and x takes all values in ð0;1Þ:
The end points 0 and 1 correspond to break
points at N and 0, respectively. For y*1 , y*2 ; x
traces a loop in the green region; for y*1 . y*2 ;
x traces a loop in the red region.
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The case of x2 ¼ 1 is the most interesting: when we fix
y1 ¼ y3 ¼ 0 and y2 ¼ 1; we obtain the boundary curve
g3ðtÞ: Note that x2 ¼ 1 corresponds to a second epoch of
length zero. The intuition is that very short population
booms at the second epoch lead to coalescence vectors
close to g3: The maps encoded by a general column of
M1ð4; kÞ correspond to the interior of the orange region
in Figure 7A. Adding in convex combinations of points
gives the lined region, which is the remainder of C4;3; this
is discussed more rigorously in the Appendix. When the
number of epochs k steps higher, all columns of M1ð4; kÞ
still map to the same region of the simplex, so C4;k will still

Figure 5 Pairing the boundaries of demogra-
phy space and Ĉ4;2: (A) The domain of x4;2:

Note that for fixed y1=y2; the normalized coa-
lescence vector is the same. (B) The normalized
SFS manifold bΞ4;2 projected onto its first two
coordinates. (C) The normalized coalescence
manifold Ĉ4;2 projected onto its first two coor-
dinates. The red square on the left, correspond-
ing to y1 . y2; maps to the red regions on the
right; the green square on the left, correspond-
ing to y2 , y1;maps to the green regions on the
right. The black line segments on the left [cor-
responding to y1=y2 ¼ 1; y2 , y1 and x1 ¼ 0
(equivalently t1 ¼ N); y2 . y1 and x1 ¼ 1 (equiv-
alently t1 ¼ 0)] all map to the central black
points on the right, since they each mimic a
constant demography. The green line corre-
sponding to y1 ¼ 0 maps to the curve b1 inbΞ4;2 and the curve g1 in Ĉ4;2; the red line cor-
responding to y2 ¼ 0 maps to the curve b2 inbΞ4;2 and the curve g2 in Ĉ4;2: The orange point
ðx1 ¼ 1; y2 ¼ 0Þ maps to ð1=3;1=3;1=3Þ in Ĉ4;2
and maps to ð1;0;0Þ in bΞ4;2: The blue point
ðx1 ¼ 0; y1 ¼ 0Þ maps to ð1;0; 0Þ in Ĉ4;2 and
ð1=3;1=3; 1=3Þ in bΞ4;2: The remaining aqua
and violet segments map to the segments of
the same color.

Figure 6 Regions of bΞ4;3 and sample demogra-
phies. The image depicts Ξ4;3 partitioned into
different colored regions. The purple point in
the center is the SFS corresponding to the con-
stant demography. The green region contains
SFS corresponding to recent-small, ancient-large
demographies. The red region corresponds to
recent-large, ancient-small demographies. The
orange region contains SFS corresponding to
three-epoch demographies with a boom in the
second epoch. The blue region contains SFS cor-
responding to three-epoch demographies with a
bottleneck in the second epoch. These are not
the unique demographies mapping to each re-
gion of Ξ4;3; but they depict, in some sense, the
simplest demographies yielding those SFS.
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be contained in this convex hull. The region C4;3 is
depicted in Figure 7A.

As mentioned earlier, the SFS manifold Ξn;k is merely a
linear transformation of Cn;k; however, since it is of interest in
its own right, we include the formulas for Ξ4;k analogous to
those derived in this section.

Proposition 5. The following hold for the normalized ð4; kÞ
SFS manifold:

bΞ4;1 ¼
�

6
11

;
3
11

;
2
11

�
:

bΞ4;2 is the union of bΞ4;1 with the convex hulls of two curves:

b1 ¼��
18þ 10t2 þ 2t5

54þ t5
;
182 3t5

54þ t5
;
18210t2 þ 2t5

54þ t5

�
: 0, t, 1

�
;

b2 ¼� 
18þ 10½2�t þ 2½5�t

54þ ½5�t
;
182 3½5�t
54þ ½5�t

;
182 10½2�t þ 2½5�t

54þ ½5�t

!

: 0, t, 1

�
:

Here, also, ½n�t denotes 1þ t þ⋯þ tn: Finally, bΞ4;k ¼ bΞ4;3 for
all k, and bΞ4;3 is the convex hull of b3; where

b3 ¼� 
3þ 5t2 þ 2t5

9þ t5
;
32 3t5

9þ t5
;
32 5t2 þ 2t5

9þ t5

!
: 0, t, 1

�
:

Visualizations of Ξ4;2 and Ξ4;3 may be found in Figure 3B and
Figure 7B.

General properties

In this section, we examine the constant κn; defined earlier as
the smallest index for which Cn;k4Cn;κn for all k. The tools for
the proofs in this section come from algebraic geometry
(for the derivation of the lower bound) and convex geome-
try (for the upper bound).

The gist of the algebraic geometry argument is that, under
the M2ðn; kÞ formulation, the manifold Cn;k can be seen to be
part of another manifold built by a sequence of well-under-
stood algebraic constructions. Details of this perspective are
reserved for the proofs section in the Appendix.

Two concrete consequences follow from this observation:

1. The ability to compute all equations satisfied by Cn;k using
computer algebra.

2. A formula for the dimension of the coalescence and SFS
manifolds.

While the former is harder to explain without more setup,
the latter can be simply stated: the dimension of the normal-
ized coalescencemanifold Ĉn;k is 0whenwe have the constant
demography ðk ¼ 1Þ: If we allow k constant pieces, the mani-
fold has dimension 2k2 2 unless 2k2 2 is greater than n2 2;
the dimension of the simplex Dn22: In that case, it has di-
mension n2 2:

Proposition 6. The dimension of Ĉn;k is given by:

dim Ĉn;k ¼
	
0; k ¼ 1;
minð2k22; n22Þ; else:

In particular, Cn;k is a proper subset of Cn;kþ1 for k, Øn=2ø:
While Proposition 6 is useful for analyzing individual co-

alescence manifolds, it also leads to the observation that
κn $ Øn=2ø; since the inclusions are proper until that index.
It is worth remarking that a slightly weaker lower bound of
κn $ Øn=2ø follows immediately from the identifiability result
of corollary 7 in Bhaskar and Song (2014), which states that
for a piecewise-constant population size function with k
pieces, the expected SFS of a sample of size n$ 2k suffices
to uniquely identify the function.

Figure 7 Coalescence and SFS manifolds for
a sample of size four and three population
epochs. (A) The coalescence manifold C4;3 is
the entire yellow and orange region. The
2-simplex, shaded in blue, intersects C4;3 in the
normalized coalescence manifold Ĉ4;3: The or-
ange region of Ĉ4;3; bounded by g1;g2; and
g3; is the image of the surface described by
the columns of M1ð4; 3Þ; while the yellow re-
gion adds in vectors gained by using convex
combinations. (B) The SFS manifold Ξ4;3 is the
entire yellow and orange region. The 2-simplex
intersects Ξ4;3 in the normalized SFS manifoldbΞ4;3: The SFS manifold Ξ4;3 is obtained from

C4;3 by a linear transformation. The orange region of Ξ̂4;3; bounded by b1;b2; and b3; is the image of the surface described by the columns of
M1ð4;3Þ; while the yellow region adds in vectors gained by using linear combinations.
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Wewill illustrate how these algebraic ideas can be applied
in the next case we have not seen, namely sample size n ¼ 5:

Example 7. Note that Ĉ5;1 ¼ ð30=48; 10=48; 5=48; 3=48Þ;
by Proposition 2. We will use the new ideas above to describe
Ĉ5;k for higher values of k.

Since the normalized coalescence manifold has dimension
minð2k2 2; n2 2Þ;we know that Ĉ5;2 has dimension 2 inside
of the 3-simplex; therefore, we anticipate that it will satisfy
one equation, matching its codimension. The degree of the
algebraic variety implies that this polynomial should have
degree 8. Indeed, when we compute this equation using com-
puter algebra software Macaulay2 (Grayson and Stillman
2002),we obtain a huge degree-8 polynomialwith 105 terms,
whose largest integer coefficient is 5; 598; 720: Finally, Ĉ5;3 is
full-dimensional in the 3-simplex, so it will satisfy no alge-
braic equations relative to the simplex. It would be defined
instead by the inequalities determining its boundary.

The convex geometry argument is more elementary. As we
noted, the M1 formulation is contained in the convex hull
over the surface described by a general column of M1: Be-
cause the columns are related, our selection of points in the
surface is not unrestricted. For this reason, it is not obviously
equal to the convex hull. However, once we fix some collection
of values x1; . . . ; xk to be input in the formula for Cn;k; we can
use convex geometry for the resulting polytope. In particular,
we use Carathéodory’s theorem [Carathéodory (1907) or
Barvinok (2002), theorem2.3], which states that for X a subset
ofℝn; every x 2 coneðXÞ can be represented as a positive com-
bination of vectors x1; . . . ; xm 2 X for some m# n:

The argument, roughly, allows us to construct any point in
that convex hull, with as few as nþ 1 points. This allows us to
place the point in Cn; j for j# 2n2 1: Since no new SFS are
generated by usingmore than 2n2 1 epochs, we learn that κn

is bounded above by 2n2 1:
Combining the two bounds obtained in this section, we

have the main theorem described in the Introduction.
Theorem 8. For any integer n$ 2; there exists a positive

integer kn such that Ξn;k4Ξn;kn for all k$1: Furthermore, κn

satisfies

Øn=2ø#κn #2n2 1:

Additionally, Ξn;k is nonconvex for all values of 2# k,κn:

This allows us to express the SFS from any piecewise-
constant demography as coming from a demography with
relatively few epochs. Because the SFS is an integral over the
demography, the SFS froma generalmeasurable demography
can be uniformly approximated by a piecewise-constant de-
mography with sufficiently many epochs. Our results imply
that it canbeprecisely obtainedby ademographywith atmost
2n2 1 epochs.

Data availability

The authors affirm that all data necessary for confirming the
conclusions of the article are present within the article, fig-
ures, and tables.

Discussion

In this work, we characterized the manifold of expected SFS
Ξn;k generated by piecewise-constant population histories
with k epochs, while giving a complete geometric description
of this manifold for the sample size n ¼ 4 and k ¼ 2 epochs.
This special case is already rich enough to shed light on the
issues that practitioners can face when inferring population
demographies from SFS data using popular software pro-
grams. While we demonstrated these issues in Figure 1 using
the fastNeutrino program (Bhaskar et al. 2015), the issues we
point out are inherent to the geometry of the SFS manifold
and not specific to any particular demographic inference
software. Our simulations showed that the demographic in-
ference problem from SFS data can be fraught with inter-
pretability issues, due to the sensitivity of the inferred
demographies to small changes in the observed SFS data.
These results can also be viewed as complementary to recent
pessimistic minimax bounds on the number of segregating
sites required to reliably infer ancient population size histo-
ries (Terhorst and Song 2015; Baharian and Gravel 2018).

Our investigation of piecewise-constant population histo-
ries also lets us showa general result that the expected SFS for
a sample of size n under any population history can also be
generated by a piecewise-constant population history with at
most 2n2 1 epochs. This result could have potential applica-
tions for developing nonparametric statistical tests of neutral-
ity. Most existing tests of neutrality using classical population
genetic statistics such as Tajima’s D (Tajima 1989) implicitly
test the null hypothesis of selective neutrality and a constant
effective population size (Stajich and Hahn 2004). We have
characterized the expected SFS of samples of size n under
arbitrary population histories in terms of the expected SFS
under piecewise-constant population histories with at most
κn epochs. As a result, the Kullback–Leibler (KL) divergence
of an observed SFS j obs

n to the expected SFS jnðh*Þ un-
der the best-fitting, piecewise-constant population history
h* 2 Pκn with at most κn # 2n2 1 epochs is also equal (up
to a constant shift) to the negative log-likelihood of the ob-
served SFS j obs

n under the best-fitting population size history
without any constraints on its form. (This assumes the com-
monly used Poisson random field model where sites being
analyzed are unlinked.) One can then use the KL divergence
inferred by existing parametric demographic inference pro-
grams to create rejection regions for the null hypothesis of
selective neutrality without having to make any parametric
assumption on the underlying demography. Such an ap-
proach would also obviate the need for interpreting the
inferred demography itself, since the space of piecewise-
constant population histories is only being used to compute
the best possible log-likelihood under any single population
demographic model. This approach could serve as an alter-
native to recent works which first estimate a parametric de-
mography using genome-wide sites, and then perform a
hypothesis test in each genomic region using simulated dis-
tributions of SFS statistics like Tajima’s D under the inferred
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demography (Rafajlović et al. 2014). We leave the explora-
tion of such tests for future work.
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Appendix

Formula for An

Recall that the SFS can be related to times to first coalescence by the formula jn ¼ Anc: The formula forAn is given recursively in
Polanski and Kimmel (2003) (equations 13–15) by the following formulas (with variable names changed for clarity):

ðAnÞb;2 ¼
6

nþ 1

ðAnÞb;3 ¼
30ðn2 2bÞ

ðnþ 1Þðnþ 2Þ

ðAnÞb; jþ2 ¼ 2
ð1þ jÞð3þ 2jÞðn2 jÞ
jð2j2 1Þðnþ jþ 1Þ ðAnÞb; j þ

ð3þ 2jÞðn2 2bÞ
jðnþ jþ 1Þ ðAnÞb; jþ1:

Proof of Proposition 1

First, we reduce the integral expression for cm to a finite sum; then we make appropriate manipulations until we arrive at the
desired expressions.

Coalescence in the Wright–Fisher model is an inhomogeneous Poisson process with parameter
�
m
2

�

hðtÞ: Therefore, the

probability density of first coalescence at time T is:

ℙðno coalescence in ½0;TÞÞℙðcoalescence at time TÞ ¼ exp

"
2

Z T

0

�
m
2

�
hðtÞ dt

# �
m
2

�
hðTÞ dt:

Let RhðtÞ ¼
R T
0 1=hðtÞdt: To compute the expected time to first coalescence, we have the integral:

cm ¼

Z N

0

t �

�
m
2

�
hðtÞ exp

"
2

�
m
2

�
RhðtÞ

#
dt

¼
Z N

0
exp

"
2

�
m
2

�
RhðtÞ

#
dt  ðintegration by partsÞ:

Substituting variables, t ¼ RhðtÞ; note that dt ¼ hðR21ðtÞÞdt: Therefore, the integral becomes:

cm ¼
Z N

0
~hðtÞexp

�
2

�
m
2

�
t

�
dt;

where ~hðtÞ ¼ h½R21ðtÞ�
The population size hðtÞ is a piecewise-constant function, whose value is hðtÞ ¼ hj if tj21 # t, tj: As specified in Proposition

1, t0 ¼ 0; tk ¼ N; and ðy1; . . . ; ykÞ is the vector of population sizes. Observe that ~hðtÞ is also piecewise constant. In particular,

~hðtÞ ¼

y1; 0# t,
t1
y1
;

y2;
t1
y1

# t,
t1
y1

þ t2 2 t1
y2

;

⋮ ⋮

8>>>>>><>>>>>>:
Let sj ¼ tj 2 tj21 for brevity. The resulting formula is:

~hðtÞ ¼ yj; for
Xj21

k¼1

sk
yk

# t,
Xj
k¼1

sk
yk
:
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We turn the integral into a sum of integrals on the constant epochs:

cm ¼
Z N

0
~yðtÞexp

"
2
�m
2

�
t

#
dt

¼
Xk
j¼1

Z Pj
sl=ylPj21
sl=yl

yjexp

"
2
�m
2

�
t

#
dt

¼
Xk
j¼1

yj

"
21�m
2

� exp
"
2
�m
2

�
t

##t¼
Pj

sl=yl

t¼
Pj21

sl=yl

¼ 1�m
2

� Xk
j¼1

yj

 Yj21

l¼1

exp

"
2
�m
2

�
sl

,
yl

#! 
12 exp

"
2
�m
2

�
sj

,
yj

#!8>>>><>>>>:

9>>>>=>>>>;:

We now make the substitution xj ¼ expð2sj=yjÞ: Note that the old restriction tjþ1 . tj . 0 becomes the new constraint
0, xj , 1: Our formula for the cm is now:

cm ¼ 1�
m
2

�
264Xk

j¼1

yj

0B@Yj21

l¼1

x

�
m
2

�
l

1CA
0B@12 x

�
m
2

�
j

1CA
375:

Noting the linear form of this expression, we factor as a matrix multiplication:26664
1

1
3

⋱
1� n

2

�

377753

2666664
1 x1 . . .

Yk21

i¼1

xi

1 x31 ⋯
Yk21

i¼1

x3i

⋮ ⋮ ⋱ ⋮

1 x

�
n
2

�
1 ⋯

Yk21

i¼1

x

�
n
2

�
i

37777753

266664
1 0 0 ⋯ 0
21 1 0 ⋱ 0
0 21 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ 0 21 1

3777753
24 y1

⋮
yk

35 ¼
24 c2

⋮
cn

35:

Combining the first three matrices yields (2); combining the first two and last two separately yields (3). h

Proof of Proposition 2

We justify each equation in turn:

1. As mentioned in the Introduction, this is a classical result in population genetics, and can be derived directly from (3).
2. The inclusion C2;1 ⊂ C2;k is immediate, so we need only show that any a 2 C2;k satisfies a. 0: Using (2), a is written as a sum

of products of strictly positive numbers; so C2;k ⊂ C2;1:
3. First, we show that C3;2 is the interior of the open cone spanned by ð1; 0Þ and ð1; 1Þ: Fix y1 ¼ a=ð12 x1Þ (for a positive) and

consider x½x1; a=ð12 x1Þ; y2� :

x x1;
a

12 x1
; y2 ¼

aþ x1y2
1
3
a

1þ x1 þ x21

�þ 1
3
x31y2

264
375 ¼ a

1
1
3


1þ x1 þ x21

�
24 35þ x1y2

1
1
3
x21

24 35:
1CA

0B@
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When x1/0; the second vector approaches ð1; 0Þ;when x1/1; the first vector approaches ð1; 1Þ: The vectors are in the interior
of that cone for all other permissible values of x1 and y2: To show that C3;k ¼ C3;2; note that for larger values of k, the same cone
of vectors are produced. In particular, xðx1; . . . ; xk21; y1; . . . ; ykÞ yields

Xk21

j¼1

(
yj

 Yj21

i¼1

xi

!
ð12 xjÞ

1

1
3

 Yj21

i¼1

x2i

!�
1þ xj þ x2j

�
2664

3775
)

þ yk

 Yk21

i¼1

xi

! 1

1
3

 Yk21

i¼1

x2i

!264
375:

Clearly, the second coordinate of all vectors is bounded between zero and one.

Proof of Proposition 3

First we observe that g1 and g2 are normalizations of the curves defined by parameterizations

t; 13t

3; 16t
6
�

and
12 t; 13ð12 t3Þ; 16ð12 t6Þ� where t is constrained to the open interval ð0; 1Þ:
Now we claim that the definition in terms of the map xðx; yÞ is equivalent to the definition in terms of these two curves. We

can use the first formulation of x to prove this:

xðx1; y1; y2Þ ¼ y1

2664
12 x1

12 x31
��

3�
12 x61

�.
6

3775þ y2

2664
x1

x31
�
3

x61
.
6

3775 ¼ y1

2664
1

1
3

1
6

3775þ ðy22 y1Þ

2664
x1

1
3
x31

1
6
x61

3775 ¼ ðy1 2 y2Þ

2664
12 x1

1
3


12 x31

�
1
6

�
12 x61

�

3775þ y2

2664
1

1
3

1
6

3775:

When y2 ¼ y1; the image is the point ð2=3; 2=9; 1=9Þ ¼ X as stated. When y2 . y1;we can use the left-hand expression to view
the image as a point on the line segment between C4;1 and the curve ðt; t3=3; t6=6Þ:When y2 , y1; the right-hand expression can
be used to write the image as a point on the line segment between X and ½12 t; ð12 t3Þ=3; ð12 t6Þ=6�: This means that the
image of x is contained in the regions and point specified.

To show that the reverse inclusion holds, we fix a point P in the interior of the convex hull of g1. By convexity, the line
segment from X to P is contained in the region; continue in the direction P2X until the line intersects the curve. This must
occur because all points in the region are further from the bounding line than X. The point of intersection q is specified as
q ¼ g1ðtÞ for some t 2 ð0; 1Þ: By convexity, there exists some r such that r  C4;1 þ ð12 rÞq ¼ P: Fixing x1 ¼ t; y1 ¼ r; and
y2 ¼ 1 shows that P is in the image of x. The same argument holds with slight variation for g2:

Proof of Proposition 4

The strategy to prove the equality of C4;3 and the cone over ft; t3; t6g comes in two steps:

1. Show that the columns of M1ð4; kÞ are always contained in the region R whose boundary is g1[  g2[ g3:

2. Divide the convex hull of R into two regions and show that each of these regions are included in Ĉ4;3:
First we demonstrate that the regions map precisely into R. We have already shown in the main text that

the boundaries of ð0; 1Þ3 ð0; 1Þ map to the boundaries of R under the mapping defined by ðx1; x2Þ↦½x1ð12 x2Þ;
x31ð12 x32Þ=3; x31ð12 x32Þ=6�31=S;where S is the sum of the coordinates. We compute the Jacobian of this map explicitly
in Macaulay2 (Grayson and Stillman 2002). The result is:

21
�
6S3 x91ðx221Þ4x22 þ x2 þ 1

�
x22 þ 3x2 þ 1

�
:

Plainly, this is nowhere zero in our domain. The inverse function theorem then implies that the interior is contained in the image
of the boundaries. This accomplishes Step 1 of our proof.

For Step 2, we divide the image into two regions:

1. The triangle defined by vertices ð1; 0; 0Þ; ð2=3; 2=9; 1=9Þ; and ð1=3; 1=3; 1=3Þ; including the two edges ½ð1=3;
1=3; 1=3Þ; ð2=3; 2=9; 1=9Þ� and ½ð2=3; 2=9; 1=9Þ; ð1; 0; 0Þ�:
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2. The remainder of the convex hull of R—explicitly, the interior of the region bounded by g3 and the line segment
½ð1=3; 1=3; 1=3Þ; ð1; 0; 0Þ�:
To show that the triangle is included, let x2 ¼ e � 0 and let x1 vary. The third column then sits arbitrarily close to ð1; 0; 0Þ and

the first column traces out g2: Set y2 � 0 and toggle y1 and y3 to obtain the full span, including the interior of the triangle, and
the line segment ½ð1=3; 1=3; 1=3Þ; ð2=3; 2=9; 1=9Þ�: Set x1 ¼ 12 e; and the first column sits at ð1=3; 1=3; 1=3Þ while the third
column traces out g1: This catches the missing line segment.

For the remainder of the convex hull,fix a point P in this region. This point lies on a line segment between ð2=3; 2=9; 1=9Þ and
some point Q in g3: Suppose it is equal to r � ð2=3; 2=9; 1=9Þ þ ð12 rÞ � Q: Set x2 ¼ 12 e � 1:We can choose ɛ and x1 so that
the second column is arbitrarily close to P. Furthermore, observe that the first column is approximately equal to the point on g2
corresponding to x1 and the third column is approximately the point on g1 corresponding to x1: Choosing y1 ¼ y3 ¼ r and
y2 ¼ 12 r points us to

r �
0@0@ j

g1ðx1Þ
j

1Aþ
0@ j

g2ðx1Þ
j

1A1Aþ ð12 rÞ �
0@ j

g3ðx1Þ
j

1A ¼ r �
0@ 2=3

2=9
1=9

1Aþ ð12 rÞ � Q ¼ P:

Proof of Proposition 5

This is a direct application of the linear map W4; computed as in Polanski and Kimmel (2003):

W4 ¼
0@ 6=5 2 4=5

6=5 0 26=5
6=5 22 4=5

1A:

Proof of Proposition 6

To prove the result about dimension, we show that Cn;k is a relatively open subset of a certain algebraic variety. Because the
relevant operations are native to projective geometry, we transport our objects of interest in the obvious way to projective
space. The same scaling properties that allow us to focus on the simplex also lead to good behavior in projective space.

Lemma 9. For k$ 2; the Zariski closure of Cn;k is the affine cone over J ðsk22ðCn; pnÞÞ; where:
1. The symbol Cn denotes the projective curve defined by mapping ½s : t� to

Cn ¼

264�2
2

�21

s

� n
2

�
2

� 2
2

�
t

� 2
2

�
:

�
3
2

�21

s

� n
2

�
2

� 3
2

�
t

� 3
2

�
: ⋯ :

�
n
2

�21

t

� n
2

�375:
2. The symbol pn is the projective point 1 : 13 :

1
6 : ⋯ : 1�

n
2

�
2664

3775:
3. The operation J denotes the join of algebraic varieties.
4. The operation sið�Þ denotes the i-th secant variety. Following Harris (2013), the i-th secant variety is the union of

i-dimensional planes generated by iþ 1 points in the variety.

Proof of Lemma 9. The variety J ðsk22ðCnÞ; pnÞÞ is the image of the following map:

c

�
s!; t!; l

!� ¼

1 s

� n
2

�
21

1 t1 ⋯ s

� n
2

�
k21 tk21

1
3

1
3
s

�n
2

�
23

1 t31 ⋯
1
3
s

� n
2

�
23

k21 t3k21

⋮ ⋮ ⋱ ⋮

1� n
2

� 1� n
2

� t

� n
2

�
1 ⋯

1� n
2

� t

� n
2

�
k21

0BBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCA

0BB@
l0
l1
⋮

lk21

1CCA;
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where si and ti are not simultaneously zero, and l is unrestricted.
Define the map f : ℝ2k21/ðℙ1Þk21 3ℝk sending ðx1; . . . ; xk21; y1; . . . ; ykÞ to 

½1 : x1�; ½1 : x1x2�; . . . ; 1 :
Yk21

i¼1

xi

" #
; y1; y1 þ y2; . . . ;

Xk
i¼1

yi

!
:

We can recast the expression in (3) as the composition c∘f: Based on this formulation, the set Cn;k is clearly contained in
J ðsk22ðCnÞ; pÞ: To demonstrate the equality of the Zariski closures, we only need to show that the dimensions match and that
the variety is irreducible. Both joins and secants have the property that irreducible inputs yield irreducible outputs, so the
variety of interest is irreducible. The image of u is open in ðℙ1Þk21 3ℙk22; and the map c has deficient rank on a set of positive
codimension. Therefore, the composition of c∘f has full dimension. This proves the Lemma. h

The i-th secant variety of an irreducible nondegenerate curve in ℙn has projective dimension given by minð2iþ 1; nÞ (Harris
2013, exercise 16.16). The curve Cn is a toric transformation of a coordinate projection of the rational normal curve. The
rational normal curve is nondegenerate and both of these operations preserve that property. This means our secant variety has
projective dimension minð2ðk2 2Þ þ 1; n2 2Þ ¼ minð2k2 3; n2 2Þ: The join with a point adds 1 to the dimension of the
variety, while the operation of passing to the affine cone adds 1 to the dimension of the variety and the ambient space.
However, normalizing to the ðn2 2Þ-simplex subtracts 1 from both variety and ambient space again. This means that
dim Ĉn;k ¼ minð2k2 2; n2 2Þ; assuming that k$ 2:

Proof of Upper Bound in Theorem 8

Suppose a point c is in Cn;  q: By definition, this implies that there is a point ðx1; . . . ; xq21; y1; . . . ; yqÞ such that (2) yields

12 x1 x1ð12 x2Þ ⋯
Yq21

i¼1

xi

1
3


12 x31

� 1
3
x31

12 x32

�
⋯

1
3

Yq21

i¼1

x3i

1� n
2

�
0BBB@12 x

� n
2

�
1

1CCCA 1� n
2

� x
� n
2

�
1

0BBB@12 x

� n
2

�
2

1CCCA ⋯
1� n
2

� Yq21

i¼1

x

� n
2

�
i

26666666666666666664

37777777777777777775

24 y1
⋮
yq

35 ¼
24 c2

⋮
cn

35:

Since the point c is in the cone over the q columns of the matrix, Carathéodory’s theorem implies that it is also in the cone over
some n2 1 of the columns. Therefore, we can replace the vector y1; . . . ; yq with y91; . . . ; y9q so that all but n2 1 (or fewer) are
zero.

Passing to the expression in (3), this gives us:

1 x1 ⋯
Yq21

i¼1

xi

1
3

1
3
x31 ⋯

1
3

Yq21

i¼1

x3i

⋮ ⋮ ⋮ ⋮

1� n
2

� 1� n
2

� x

� n
2

�
1 ⋯

1� n
2

� Yq21

i¼1

x

� n
2

�
i

266666666666666666664

377777777777777777775

y91
y92 2 y91

⋮
y9q2 y9q21

26664
37775 ¼

24 c2
⋮
cn

35:
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Since at most n2 1 of the y9i are nonzero, at most 2n2 2 of the entries of the vector at right are nonzero.We delete the columns
of the X matrix corresponding to zero entries except the first column. A new sequence ðx91; . . . ; x92n22Þ may then be obtained
from the ratio between the first entries in adjacent columns. The new sequence y$1 ; . . . ; y

$
2n21 is obtained by taking the sequence

of partial sums of the vector.

Proof of Nonconvexity in Theorem 8

To prove this final result, we combine two properties already proven:

1. The manifold Cn;k is a proper subset of Cn;kþ1 for all k,κn (from Proposition 6).
2. The manifold Cn;κn is contained in the convex hull of Cn;2: (This follows from Equation 2.)

Since Cn;k contains Cn;2 and is properly contained in the convex hull of Cn;2; it cannot be convex.
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