
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Absolute Extreme Points of Matrix Convex Sets

Permalink
https://escholarship.org/uc/item/81h738p9

Author
Evert, Eric

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/81h738p9
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Absolute Extreme Points of Matrix Convex Sets

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Eric Evert

Committee in charge:

Professor J. William Helton, Chair
Professor Jim Agler
Professor Jorge Cortés
Professor Jiawang Nie
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ABSTRACT OF THE DISSERTATION

Absolute Extreme Points of Matrix Convex Sets

by

Eric Evert

Doctor of Philosophy in Mathematics

University of California San Diego, 2018

Professor J. William Helton, Chair

Let S�Hn�g denote g-tuples of self-adjoint operators on a Hilbert space Hn with

dimHn � n. Given tuples X � �X1, . . . ,Xg� > S�Hn1�g and Y � �Y1, . . . , Yg� > S�Hn2�g, a

matrix convex combination of X and Y is a sum of the form

V �

1 XV1 � V
�

2 Y V2 V �

1 V1 � V
�

2 V2 � In

where V1 � Hn � Hn1 and V2 � Hn � Hn2 are contractions. Matrix convex sets are sets which

are closed under matrix convex combinations. A key feature of matrix convex combinations

is that the g-tuples X,Y , and V �

1 XV1 � V �

2 Y V2 do not need to have the same size. As a
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result, matrix convex sets are a dimension-free analog of convex sets.

While in the classical setting there is only one notion of an extreme point, there

are three main notions of extreme points for matrix convex sets: ordinary, matrix, and

absolute extreme points. Absolute extreme points are closely related to the classical Arveson

boundary. A central goal in the theory of matrix convex sets is to determine if one of these

types of extreme points for a matrix convex set minimally recovers the set through matrix

convex combinations.

Chapter II shows the existence of a class of closed bounded matrix convex sets

which do not have absolute extreme points. The sets we consider are noncommutative sets,

KX , formed by taking matrix convex combinations of a single tuple X. If X is a tuple of

compact operators with no nontrivial finite dimensional reducing subspaces and 0 is in

the finite interior of KX , then KX is a closed bounded matrix convex set with no absolute

extreme points.

In Chapter III, we show that every real compact matrix convex set which is defined

by a linear matrix inequality is the matrix convex hull of its absolute extreme points, and

that the absolute extreme points are a minimal set with this property. Furthermore, we

give an algorithm which expresses a tuple as a matrix convex combination of absolute

extreme points with optimal bounds. Similar results hold when working over the field of

complex numbers rather than the reals.
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Chapter I

Introduction

This dissertation will discuss convexity and extreme points for a type of dimension-

free set called noncommutative (nc) sets. NC sets are sets which contain g-tuples of

self-adjoint operators acting on an n dimensional Hilbert space where n ranges over all

natural numbers; hence comes the term “dimension-free”.

I.1 Background

In the classical setting, a convex combination is a sum of the form

λx1 � �1 � λ�x2 0 B λ B 1

where x1 and x2 are elements of a subset K of a vector space V . The set of convex

combinations of elements of K is called the convex hull of K, and K is said to be convex if

K is equal to its convex hull. An element x of a convex set K is an extreme point of K

if, roughly speaking, x cannot be expressed as a nontrivial convex combination of other

elements of K. An important result in the theory of convex sets is the following theorem

due to Minkowski:
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Let K ` Rg be a compact convex set. Then K is equal to the convex hull of its extreme

points. Furthermore, the extreme points of K are the minimal set with this property.

The natural notion of a convex combination for a dimension-free set must also

be dimension-free. These dimension-free convex combinations are called matrix convex

combinations, and an nc set which is closed under matrix convex combinations is said to

be matrix convex.

A central goal in the study of matrix convex sets is to determine if there is a type

of extreme point for matrix convex sets which is minimal with respect to spanning the set

through matrix convex combinations. That is, we desire a generalization of Minkowski’s

classical result to the dimension-free setting. In this dimension-free setting, there are three

main types of extreme points: Euclidean (classical), matrix, and absolute extreme points.

The study of matrix convex sets is closely related to the study of completely positive

maps on an operator system. Indeed, matrix convex sets are in one-to-one correspondence

with sets of completely positive maps on an operator system. Under this correspondence,

a matrix extreme point becomes a pure completely positive map [F04] while an absolute

extreme point becomes an irreducible boundary representation [KLS14] in the sense of

Arveson [A69].

Nearly fifty years ago, Arveson conjectured that, in the infinite dimensional setting,

the set of completely positive maps on an operator system is spanned by its irreducible

boundary representations [A69]. In our language, Arveson conjectured that infinite dimen-

sional “operator” convex sets are spanned by their infinite dimensional absolute extreme

points. Little progress was made on Arveson’s conjecture until 2005 when Dritschel and

McCullough showed that the set of completely positive maps on any operator system is

the span of its (not necessarily irreducible) infinite dimensional boundary representations

[DM05]. A decade later, Davidson and Kennedy gave a complete and positive answer to

Arveson’s original question in the infinite dimensional setting [DK15]. The finite dimen-
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sional version of the problem has been pursued for some time but until now has remained

unsettled.

The Euclidean and matrix extreme points of a matrix convex set are well understood.

Both the Euclidean and the matrix extreme points of a compact matrix convex set are known

to span the set through matrix convex combinations [WW99]. However these extreme

points do not fulfill satisfactory notions of minimality as spanning sets [A69, F00, F04].

Absolute extreme points are the most restricted type of extreme point for matrix

convex sets [KLS14, EHKM18]. The additional restrictions placed on absolute extreme

points guarantee that if a matrix convex set is spanned by its absolute extreme points,

then the absolute extreme points are a minimal spanning set.

The advantage of absolute extreme points over matrix extreme points or Euclidean

extreme points in terms of minimality can be significant. In fact, there are examples of

matrix convex sets spanned by their absolute extreme points which have finitely many

absolute extreme points (up to unitary equivalence) but infinitely many Euclidean and

matrix extreme points, see [EHKM18, Theorem 1.2].

Furthermore, absolute extreme points have computational advantages over Euclidean

and matrix extreme points. As an example, determining if a g-tuple of self-adjoint operators

acting on an n-dimensional Hilbert space is an absolute extreme point of a “noncommutative

semialgebraic” matrix convex set, that is, a matrix convex set which is defined by polynomial

inequalities in matrix variables, is equivalent to solving a linear system in ng unknowns. In

comparison, checking if such a tuple is a Euclidean extreme point is equivalent to solving

a linear system in n�n � 1�g~2 unknowns (see Section III.2.2). No algorithm is known to

determine if a tuple is a matrix extreme point of an nc semialgebraic matrix convex set.

These nc semialgebraic matrix convex sets are often called free spectrahedra.

This dissertation answers the long-standing open question, “is every closed bounded

matrix convex set (free spectrahedron) the matrix convex hull of its absolute extreme
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points?” In Chapter II we show that the question has a negative answer for general matrix

convex sets.

Theorem I.1.1. There exists a compact matrix convex set which has no absolute extreme

points.

Chapter III provides a positive answer to the question for free spectrahedra.

Theorem I.1.2. Every compact free spectrahedron which is closed under complex conju-

gation is the matrix convex hull of its absolute extreme points. Furthermore, the set of

absolute extreme points is the minimal set which spans the free spectrahedron through matrix

convex combinations.

Both proofs are constructive. The proof of Theorem I.1.1 constructs a class of

compact matrix convex sets which do not have absolute extreme points. A specific

example of such a set is given in Section II.3. The proof of Theorem I.1.2 provides an

algorithm which writes any element of a compact free spectrahedron which is closed under

complex conjugation as a matrix convex combination of absolute extreme points of the free

spectrahedron.

The remainder of this section introduces our basic definitions and notation and gives

precise statements of our main results, Theorem I.4.1, Theorem I.6.1 and Theorem I.7.2.

I.2 Notation and definitions

Let H be a separable Hilbert space over K where K � R or C and take �Hn�n to be

a nested sequence of subspaces of H such that

dim�Hn� � n for all n > N and H � 8nHn

4



where the closure is in norm. For any Hilbert space M over K, we use the notation

Md � `d1M where d > N 8 �ª�. We say an operator on M is self-adjoint to mean it is

self-adjoint if K � C or symmetric if K � R. We use B�M�g,S�M�g, and K�M�g to denote

the sets of g-tuples of bounded operators, bounded self-adjoint operators, and compact

self-adjoint operators on M, respectively. Similarly, given Hilbert spaces M1,M2, we let

B�M1,M2�g be the set of g-tuples of bounded operators mapping M1 �M2. Say an

operator U > B�M� is a unitary if U�U � IM. Similarly, an operator V > B�M1,M2� is

an isometry if V �V � IM1 .

Fix a Hilbert space M over K and a subspace M ` M. Say M is a reducing

subspace for an operator Z > B�M� if M is an invariant subspace of both Z and Z�. Say

the tuple

Y � �Y1, . . . , Yg� > B�M�g

is irreducible (over K) if the operators Y1, . . . , Yg have no common reducing subspaces.

Given a g-tuple Y > S�M�g and an operator W > B�M� we define the conjugation

of Y by W by

W �YW � �W �Y1W, . . . ,W
�YgW �.

If W is a unitary (isometry) then we say W �YW is a unitary (isometric) conjugation

of Y .

Given tuples Y,Z > B�M�g say Y and Z are unitarily equivalent, denoted by

Y �u Z, if there exists a unitary U �M�M such that

U�Y U � �U�Y1U, . . . , U
�YgU� � Z.
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I.2.1 Free sets

Matrix convexity is a property possessed by some noncommutative (dimension-free)

sets. A noncommutative set or nc set is a set Γ ` �S�Hn�g�ªn�1 which contains g-tuples

of self-adjoint operators acting on Hn for all positive integers n. Given a noncommutative

set Γ and positive integer n, we define the set Γ at level n, denoted Γ�n�, by

Γ�n� � Γ 9 S�Hn�g.

That is, Γ�n� is the set of g-tuples of self-adjoint operators acting on Hn which are elements

of Γ.

Say an nc set Γ is closed with respect to direct sums if for any pair of positive

integers n,m > N and tuples Y > Γ�n� and Z > Γ�m� we have Y `Z > Γ�n �m� where

Y `Z � �Y1 `Z1, . . . , Yg `Zg�.

We say Γ is closed under unitary conjugation if X > Γ and Y �u X, that is, Y � U�XU

for some unitary U , implies Y > Γ.

An nc set Γ ` �S�Hn�g�n is a free set if Γ is closed with respect to direct sums and

unitary conjugation. A free set Γ is bounded if there is a real number C A 0 such that

C �

g

Q
i�1

X2
i k 0

for every tuple X > Γ. We say Γ is closed if Γ�n� is closed for all n > N and we say Γ is

compact if Γ is closed and bounded.

6



I.3 Matrix convex sets

Let K ` �S�Hn�g�n. A matrix convex combination of elements of K is a finite

sum of the form
k

Q
i�1

V �

i Y
iVi

k

Q
i�1

V �

i Vi � In

where Y i >K�ni� and Vi > B�Hn,Hni
� for i � 1, . . . , k. If additionally Vi x 0 for each i, then

the sum is said to be weakly proper. If K is closed under matrix convex combinations

then K is matrix convex.

Given a set K ` �S�Hn�g�n, define the matrix convex hull of K, denoted

comatK,

to be the smallest matrix convex set containing K. Equivalently, comatK is the set of all

matrix convex combinations of elements of K. We emphasize that comatK is not assumed

to be closed.

Every matrix convex set is a free set. Let K be a matrix convex set and let X >K.

Notice that U�XU is a matrix convex combination of X for any unitary U , so it follows

that K is closed under unitary conjugation. Now let �Y i�ki�1 be a collection of tuples such

that Y i >K�ni� for i � 1, . . . , k. Setting

Vi � �0ni�n1 � 0ni�ni�1
Ini�ni

0ni�ni�1
� 0ni�nk

�

gives

`
k
i�1Y

i �

k

Q
i�1

V �

i Y
iVi

k

Q
i�1

V �

i Vi � I.

Thus K is closed under unitary conjugation and direct sums, so K is a free set.

Matrix convex combinations can equivalently be expressed via isometric conjugation.

7



As before, let �Y i�ki�1 ` K be a finite collection of elements of K and let �Vi�ki�1 be a

collection of mappings from Hn to Hni
such that Pki�1 V

�

i Vi � In. Define the g-tuple Y and

the isometry V by

Y � `ki�1Y
i V � � �V �

1 � V �

k
� .

Then

V �Y V �

k

Q
i�1

V �

i Y
iVi V �V �

k

Q
i�1

V �

i Vi � In. (I.3.1)

In words, V �Y V is an isometric conjugation which is equal to the matrix convex combination

Pki�1 V
�

i Y
iVi. A matrix convex combination of the form V �Y V is called a compression

of Y . As an immediate consequence, a free set is matrix convex if and only if it is closed

under isometric conjugation.

In the construction of a matrix convex set which has no absolute extreme points we

will often consider matrix convex combinations of a single tuple. In other words, we often

consider the case where Y 1 � Y 2 � � � Y k. In this case we use the observation

`
k
i�1Y

i � �Ik a Y 1�

to write equation (I.3.1) in the form

V ��Ik a Y 1�V �

k

Q
i�1

V �

i Y
iVi V �V �

k

Q
i�1

V �

i Vi � In

where V � � �V �

1 � V �

k
� as before.

I.3.1 Extreme points of matrix convex sets

Let K be a matrix convex set. It is easy to show that the set K�n� is convex for

each integer n. Indeed, given positive real numbers λ1, . . . , λk such that Pki�1 λi � 1 and

8



tuples Y 1, . . . , Y k >K�n�, setting Vi �
º
λiIn shows

k

Q
i�1

λiY
i �

k

Q
i�1

V �

i Y
iVi

k

Q
i�1

λiIn �
k

Q
i�1

V �

i Vi � In.

Since K is matrix convex, it follows that K�n� is convex.

Since each K�n� is convex, it is natural to consider the tuples Y which are extreme

points of K�n� in the classical sense. We say Y >K�n� is a Euclidean extreme point of

K if Y is a classical extreme point of K�n�. As an immediate consequence of Minkowski’s

result for compact convex sets, every compact matrix convex set is the matrix convex hull

of its Euclidean extreme points.

Say Y >K�n� is an absolute extreme point of K if whenever Y is written as a

weakly proper matrix convex combination Y � Pki�1 V
�

i Z
iVi, then for all i either ni � n and

Y �u Zi or ni A n and there exists a tuple Z̃i > K such that Y ` Z̃i �u Zi. We let ∂absK

denote the set of absolute extreme points of K and we call ∂absK the absolute boundary

of K. We comment that an absolute extreme point X has the property that X1, . . . ,Xg

is an irreducible collection of operators. We omit a formal definition of matrix extreme

points as we will make little use of this type of extreme point.

I.4 Matrix convex sets without absolute extreme

points

Our first main result is Theorem I.4.1 which gives a class of compact matrix

convex sets each of which has no absolute extreme points. Our candidate sets are each

noncommutative convex hulls, sets we now define.
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Let X > S�H�g and for each n > N define the set KX�n� ` S�Hn�g by

KX�n� � �Y > S�Hn�g S Y � V ��IH aX�V for some isometry V � Hn � `
ª

1 H�. (I.4.1)

We then define KX ` �S�Hn�g�n by

KX � �KX�n��ªn�1. (I.4.2)

We call KX the noncommutative convex hull of X.

Given a g-tuple X, we say 0 is in the finite interior of KX if there exists an

integer d > N and a unit vector v > Hd � `di�1H such that

v��Id aX�v � 0 > Rg.

Theorem I.4.1. Let X > K�H�g be a g-tuple of compact self-adjoint operators on H and

let KX be the noncommutative convex hull of X. Assume that X has no nontrivial finite

dimensional reducing subspaces and assume 0 is in the finite interior of KX . Then KX is

a compact matrix convex set which has no absolute extreme points.

Proof. The proof of Theorem I.4.1 is given in Section II.2.

I.4.1 Noncommutative convex hulls in relation to matrix ranges

We remark that our notion of the noncommutative convex hull of X is closely related

to Arveson’s notion of the matrix range of X [A72]. Given a tuple X > S�H�g the matrix

range of X, denoted W�X�, is the set

W�X� � �Wn�X��ªn�1

10



where

Wn�X� � ��φ�X1�, . . . , φ�Xg��S φ � C��X�� B�Hn� is a unital completely positive map�.

Here C��X� denotes the unital C�-algebra generated by X.

[P02, Theorem 7.4] shows that the matrix range of a tuple is always closed. Further-

more, as a consequence of Voiculescu’s Weyl-von Neumann Theorem (e.g. [D96, Theorem

II.5.3]), we have KX �WX for any X > S�H�g. However, KX may fail to be closed.

As an example, set

X � diag�α~n�n � βI > S�H�
where α,β > R and α A 0. Then

KX�1� � �β,α � β� ` R.

It follows that KX is not closed.

In addition to [A72], see [DDSS17] and [PSS18] for further discussion of matrix

ranges.

I.5 Free spectrahedra

Free spectrahedra are a class of matrix convex sets which are the solution set

of a linear matrix inequality. Every closed matrix convex set is an intersection of free

spectrahedra [EW97]. Furthermore, all closed noncommutative semialgebraic matrix

convex sets, that is, matrix convex sets which are defined by noncommutative polynomial

inequalities in matrix variables, are free spectrahedra [HM12].
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Let d > N be a positive integer and let

A � �A1, . . .Ag� > B�Hd�g

be a g-tuple of self-adjoint operators on Hd. A homogeneous linear pencil, denoted by

ΛA, is the map x( ΛA�x� defined by

ΛA�x� � A1x1 �� �Agxg.

The monic linear pencil LA is the map x( LA�x� defined by

LA�x� � Id �A1x1 �� �Agxg. (I.5.1)

A linear matrix inequality is an inequality of the form

LA�x� k 0.

Given a positive integer n > N and an X > S�Hn�g, the evaluation of the monic linear

pencil LA on X is defined by

LA�X� � Idn �ΛA�X� � Idn �A1 aX1 �� �Ag aXg.

The free spectrahedron at level n, denoted DK
A�n�, is the set

D
K
A�n� � �X > S�Hn�g S LA�X� k 0�.

12



The corresponding free spectrahedron is the set �DK
A�n��n ` �S�Hn�g�n. In other words,

D
K
A � �X > �S�Hn�g�nS LA�X� k 0�.

For emphasis, the elements of the real free spectrahedron DR
A are g-tuples of real

symmetric operators where H is a real Hilbert space, while the elements of the complex

free spectrahedron DC
A are g-tuples of complex self-adjoint operators and where H is a

complex Hilbert space.

We say a free spectrahedron DK
A is closed under complex conjugation if X > DK

A

implies

X � �X1, . . . ,Xg� > DK
A.

Note that when K � R the real free spectrahedron DR
A is trivially closed under complex

conjugation. See [HKM13], [Z17], and [K+] for further discussion of linear pencils and free

spectrahedra.

Remark I.5.1. Given a tuple Z > S�H�g, [DDSS17, Proposition 3.1] shows that DK
Z is

the polar dual of KZ , where DK
Z is the matrix convex set defined by the monic operator

pencil

LZ�x� � I �Z1x1 �� �Zgxg.

We emphasize that DK
Z is seldom a free spectrahedron since Z is not a tuple of finite

dimensional operators. Also see [HKM17, Theorem 4.6] for the finite dimensional case and

extensions.

I.6 Absolute extreme points span

Our second main result shows that every compact free spectrahedron which is

closed under complex conjugation is the matrix convex hull of its absolute extreme points.
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Furthermore, it shows that the absolute boundary is the smallest set of irreducible tuples

which is closed under unitary conjugation and spans the free spectrahedron.

Theorem I.6.1. Assume K � R or C and let DK
A be a compact free spectrahedron which

is closed under complex conjugation. Then DK
A is the matrix convex hull of its absolute

extreme points. In notation,

D
K
A � comat∂abs

D
K
A.

Furthermore, if E ` DK
A is a set of irreducible tuples which is closed under unitary

conjugation and whose matrix convex hull is equal to DK
A, then E contains the absolute

boundary of DK
A. In other words,

D
K
A � comatE � ∂abs

D
K
A ` E.

In this sense the absolute extreme points are the minimal spanning set of DK
A.

Proof. The fact that DK
A is the matrix convex hull of its absolute extreme points follows

immediately from the forthcoming Theorem I.7.2.

We now prove the second part of the result. Let E ` DK
A be a set of irreducible tuples

which is closed under unitary conjugation and satisfies comatE � DK
A, and let X > ∂absDK

A�n�.
By assumption X > comatE, so there must exist a finite collection of tuples �Y i� ` E and

contractions Vi � Hn � Hni
such that

X �

finite

Q
i�1

V �

i Y
iVi.

Since X is an absolute extreme point of DK
A and each Y i is irreducible, we conclude

that for each i we have ni � n and there is a unitary Ui � Hn � Hn such that U�

i Y
iUi �X.

By assumption E is closed under unitary conjugation, so it follows that X > E.
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I.7 Dilations to Arveson extreme points

Our third main result is a more quantitative version of Theorem I.6.1. This result

will view matrix convex combinations and absolute extreme points from a dilation theoretic

perspective and will give a Caratheodory-like bound on the number of terms needed to

express a tuple as a matrix convex combination of absolute extreme points.

I.7.1 Dilations

Let K ` �S�Hn�g�n be a matrix convex set and let X > K�n�. If there exists a

positive integer ` > N and g-tuples β > B�H`,Hn�g and γ > S�H`�g such that

Y �

����
X β

β� γ

���� �

����
����
X1 β1

β�1 γ1

���� ,�,
����
Xg βg

β�g γg

����
���� >K,

then we say Y is an `-dilation of X. The tuple Y is said to be a trivial dilation of

X if β � 0. Note that, if V � � �In 0� , then X � V �Y V with V �V � In. That is, X is a

matrix convex combination of Y in the spirit of equation (I.3.1).

Given tuples A > S�Hd�g and X > S�Hn�g the dilation subspace of DA at X,

denoted KK
A,X , is defined by

KK
A,X � �β > B�H1,Hn�g S kerLA�X� ` ker ΛA�β���.

In this definition, H is a Hilbert space over K and kerLA�X� and ker ΛA�β�� are subspaces

of Hdn. The dilation subspace is examined in greater detail in Section III.1.1.
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I.7.2 Arveson extreme points span

The Arveson boundary of a matrix convex set K is a classical dilation theoretic

object which is closely related to the absolute boundary of K. We say a tuple X >K is an

Arveson extreme point of K if K does not contain a nontrivial dilation of X. In other

words, X >K is an Arveson extreme point of K if and only if, if

����
X β

β� γ

���� >K

for some tuples β > B�H`,Hn�g and γ > S�H`�g, then β � 0. The set of Arveson extreme

points of K, denoted by ∂ArvK , is called the Arveson boundary of K. If Y is an Arveson

extreme point of K and Y is an (`-)dilation of X >K then we will say Y is an Arveson

(`-)dilation of X.

The Arveson and absolute extreme points of a matrix convex set are closely related.

Indeed the following theorem shows that a tuple is an absolute extreme point if and only if

it is an irreducible Arveson extreme point.

Theorem I.7.1. Let DK
A be a free spectrahedron which is closed under complex conjugation.

Then X > DK
A is an absolute extreme point of DK

A if and only if X is irreducible over K and

X is an Arveson extreme point of DK
A.

Proof. The original statement and proof of this result is given as [EHKM18, Theorem

1.1 (3)] over the field of complex numbers. A proof for the case where K � R is given

in Section III.6. We comment that the original statement handles more general complex

dimension-free sets; however, this version is well suited to our needs.

Our next theorem shows that every element of a compact free spectrahedron DK
A

which is closed under complex conjugation dilates to the Arveson boundary of DK
A.
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Theorem I.7.2. Let A be a g-tuple of self-adjoint operators on S�Hd�g and let DK
A be a

compact free spectrahedron which is closed under complex conjugation. Let X > DK
A�n� with

dimKK
A,X � `.

1. There exists an integer k B 2` � n B 2ng � n and k-dilation Y of X such that Y is an

Arveson extreme point of DC
A. Thus, X is a matrix convex combination of absolute

extreme points of DC
A whose sum of sizes is equal to n � k.

2. Suppose X is a tuple of real symmetric matrices, then there exists an integer k B ` B ng

and k-dilation Y of X such that Y is an Arveson extreme point of DK
A. Thus, X is a

matrix convex combination of absolute extreme points of DK
A whose sum of sizes is

equal to n � k.

As an immediate consequence, DK
A is the matrix convex hull of its absolute extreme points.

Proof. The proof that X > DR
A dilates to an Arveson extreme point of DR

A is given in Section

III.1.3. We prove that X > DC
A dilates to an Arveson extreme point of DC

A in Section III.3.

We now prove that DK
A is the matrix convex hull of its absolute extreme points.

Let X > DK
A. The first part of Theorem I.7.2 shows that, in the complex setting, there

is an Arveson extreme point Y > DK
A�n � k� for some k B 2 dimKK

A,X � n such that X is a

compression of Y .

The g-tuple Y is unitarily equivalent to a direct sum of m irreducible tuples

�Y i�mi�1 for some integer m. These too are Arveson, hence absolute, extreme points, see

Theorem I.7.1. Since X is a compression of Y , it follows that X is a compression of

`
m
i�1Y

i. Equivalently, there is an isometry V � Hn � Hn�k such that X � V ��`mi�1Y
i�V .
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Decomposing V � � �V �

1 � V �
m
� with respect to the block structure of �`mi�1Y

i� gives

X �

m

Q
i�1

V �

i Y
iVi

m

Q
i�1

V �

i Vi � In with Y i > DK
A�ni� and

m

Q
i�1

ni � n � k. (I.7.1)

That is, X is a matrix convex combination of the absolute extreme points Y 1, . . . , Y m.

The proof when X is a g-tuple of real symmetric operators on S�Hn�g is identical

with n � k replaced by n � k̃ where k̃ B dimKK
A,X .

We comment that there are examples of a free spectrahedron DK
A and an irreducible

tuple X > DK
A and an Arveson dilation Y of X that has minimal size such that Y is

reducible.

I.8 Reader’s guide

Chapter II discusses the absolute extreme points of general matrix convex sets. The

main goal of this chapter is to construct a class of compact matrix convex sets which do not

have absolute extreme points. In Section II.1 we show that the noncommutative convex

hull KX is a bounded matrix convex set for any tuple X > S�H�g. We then show that such

a set is closed provided that X is compact and 0 is in the finite interior of KX . Section

II.2 completes the proof of Theorem I.4.1 by showing that every element of KX has a

nontrivial dilation when X has no nontrivial finite dimensional reducing subspaces. Section

II.3 gives an explicit example of a tuple X which satisfies the assumptions of Theorem

I.4.1. The chapter ends with Section II.4 which gives an alternative proof of Theorem

I.4.1. This proof is done in the original language of Arveson and further discusses the

correspondence between matrix convex sets and completely positive maps. In this proof

we consider an operator system RKX
such that CS�RKX

�, the set of unital completely

positive maps on RKX
with finite dimensional range, is matrix affine homeomorphic to the
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noncommutative convex hull KX . In particular, we show that there are no maximal unital

completely positive maps in CS�RKX
�.

In Chapter III, we turn to showing that every compact free spectrahedron which

is closed under complex conjugation is the matrix convex hull of its absolute extreme

points. Section III.1 introduces the notion of a maximal 1-dilation of an element of a

free spectrahedron. The main result of this section is Theorem III.1.3 which implies that

Arveson dilations of a tuple X in a real free spectrahedron can be constructed by taking

a sequence of maximal 1-dilations of X. This result is then used to prove Theorem I.7.2

when K � R. In Section III.2 we discuss numerical algorithms for real free spectrahedra.

Our first algorithm is Proposition III.2.1 which gives a numerical algorithm that can be

used to construct Arveson dilations. The second algorithm we discuss is Proposition III.2.2

which describes a linear system that can be solved to determine if a tuple is an Arveson

extreme point of a free spectrahedron. Section III.3 completes the proof of Theorem I.7.2

in the general setting. Section III.4 expands on the historical context of our results for free

spectrahedra. Section III.4.1 describes a count on the number of parameters needed to

express a tuple as a matrix convex combination of absolute extreme points which is given

by Theorem I.7.2. Section III.4.2 compares our results to results for general matrix convex

sets, and Section III.4.3 discusses the original terminology and viewpoint of [A69], [DM05],

and [DK15]. In the second to last section of the chapter, Section III.5, we discuss the NC

LDL� calculation that appears in the proof of Theorem III.1.3. We end with Section III.6

which proves the real analogue of Theorem I.7.1.
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Chapter II

Matrix convex sets without absolute

extreme points

This chapter will give the construction of a class of compact matrix convex sets

which have no absolute extreme points. We briefly recall the main definitions that will be

used in the section.

Throughout the chapter let H be a separable Hilbert space over K where K � R or

C and take �Hn�n to be a nested sequence of subspaces of H such that

dim�Hn� � n for all n > N and H � 8nHn

where the closure is in norm. Let X > S�H�g. The noncommutative convex hull of X is the

set KX � �KX�n��n where

KX�n� � �Y > S�Hn�g S Y � V ��IH aX�V for some isometry V � Hn � `
ª

1 H�

for each positive integer n. We say 0 is in the finite interior of KX if there exists an integer
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d > N and a unit vector v > Hd such that

v��Id aX�v � 0 > Rg.

Equivalently, 0 is in the finite interior of KX if 0 is in the convex hull of the joint numerical

range of X.

II.1 Matrix convex sets which are matrix convex com-

binations of a compact tuple

Our first objective in constructing a compact matrix convex set without absolute

extreme points is to show that noncommutative convex hulls are bounded matrix convex

sets and that there are reasonable assumptions which can be made on X such that KX is

closed. The main result of this section is Theorem II.1.5 which shows that KX is a compact

matrix convex set when X is a tuple of compact operators and 0 is in the finite interior of

KX .

II.1.1 Convexity and closedness of KX

We begin by giving results related to the convexity and closedness of KX . We first

state a lemma which shows that KX is a bounded matrix convex set for any X > S�H�g.
Lemma II.1.1. Let X > S�H�g be a g-tuple of self-adjoint operators on H and let KX be

the noncommutative convex hull of X. Then KX is a bounded matrix convex set.

Proof. To see KX is bounded, observe that for any n and any isometry V � Hn � H
ª we

have the inequality

YV ��IH aX�V Y B Y�IH aX�Y � YXY.
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Furthermore, it is straightforward to show that KX is closed under direct sums.

Since KX is closed under isometric and unitary conjugation by definition, it follows that

KX is matrix convex.

We now aim to prove that KX is closed when X is compact and 0 is in the finite

interior of KX . Proposition II.1.2 shows that, with these assumptions, for each fixed n the

set KX�n� can be defined as the set of compressions of a tuple of compact operators and is

the key result in proving that KX is closed.

Proposition II.1.2. Let X > K�H�g be a g-tuple of self-adjoint compact operators on H.

1. For each n > N there exists an integer mn depending only on n and g such that for

each Y >KX�n� there is a contraction W � Hn � H
mn such that Y �W ��Imn aX�W .

2. Assume 0 is in the finite interior of KX . Then there exists an integer m0 depending

only on g such that for each Y >KX�n� there is an isometry T � Hn � H
mn�nm0 such

that Y � T ��Imn�nm0 aX�T . In particular we have

KX�n� � �Y > S�Hn�g S Y � T ��Imn�nm0aX�T for some isometry T � Hn � H
mn�nm0�.
(II.1.1)

Before giving the proof of Proposition II.1.2, we state two lemmas which will

be useful in the proofs of Proposition II.1.2 and Theorem II.1.5. The first lemma is a

convergence argument, while the second lemma shows that, when 0 is in the finite interior

of KX , contractive conjugation can be replaced with isometric conjugation.

Lemma II.1.3. Let m,n > N be positive integers. Let Z > K�Hm�g be a g-tuple of

compact self-adjoint operators on Hm and let �W `�ª`�1 ` B�Hn,Hm� be a sequence of

contractions which converges in the weak operator topology on B�Hn,Hm� to some operator

W > B�Hn,Hm�. Then the sequence �W �

` ZW`�ª`�1 ` S�Hn�g converges in norm to W �ZW >

S�Hn�g.
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Proof. Since W �ZW and W �

` ZW` for all ` are all tuples of finite dimensional operators, it

is sufficient to show that for each i � 1, . . . , g and for all h > Hn we have

lim Y`�W �

` ZiW` �W
�ZiW �h,heY � 0. (II.1.2)

To this end, fix h > Hn and observe that

lim Y`�W �

` ZiW` �W �ZW �h,heY B lim Y`W �

` Zi�W` �W �h,heY
� lim Y`�W �

` �W
��ZiWh,heY. (II.1.3)

Note that the sequence �W �

` � converges to W � in the strong operator topology since these

operators map into a finite dimensional space. This implies that

lim Y`�W �

` �W
��ZiWh,heY B YhY lim Y�W �

` �W
���ZiWh�Y � 0. (II.1.4)

To handle the remaining term in equation (II.1.3) note that ZiW` converges strongly

to ZiW since Zi is compact. Also note that sup` YW �

` Y B 1 since the W` are contractions.

Using these facts we have

lim Y`W �

` Zi�W` �W �h,heY B YhY lim YW �

` YY�ZiW` �ZiW �hY � 0. (II.1.5)

Combining equations (II.1.4) and (II.1.5) shows limW �

` ZiW` �W �ZiW for i � 1, . . . , g.

Lemma II.1.4. Let X > K�H�g be a g-tuple of compact self-adjoint operators on H and

assume 0 is in the finite interior of KX . Then there exists an integer m0 depending only

on g such that, given any integers m,n > N and any contraction W � Hn � H
m, there exists
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an isometry T � Hn � H
m�nm0 such that

W ��Im aX�W � T ��Im�nm0 aX�T.

Proof. By assumption 0 is in the finite interior of KX . It follows that there is an integer

m0 > N and an isometry Z0 � H1 � H
m0 such that Z�

0 �Im0 aX�Z0 � 0. This implies that

for each n there is an isometry Z0n � Hn � H
nm0 such that 0n � Z�

0n
�Inm0 aX�Z0n . Define

T � Hn � H
m�nm0 by

T �

����
Z0n�In �W �W � 1

2

W

���� . (II.1.6)

Then T is an isometry and T ��Im�nm0aX�T �W ��ImaX�W , and the integer m0 depends

only on g.

We now prove Proposition II.1.2.

Proof. Given Y � V ��IHaX�V >KX�n� where V � Hn � H
ª is an isometry, let P` � H � H

be the orthogonal projection of H onto H`. Since X is compact, the sequence P`XP`

converges to X in norm, and IH a P`XP` converges to IH aX in norm. Defining

Y ` � V ��IH a P`XP`�V, (II.1.7)

it follows that limY ` � Y > S�Hn�g.
Observe that

Y ` � ��IH a ι�` �V ���IH a �ι�`Xι`����IH a ι�` �V �

for all ` where ι` � H` � H is the inclusion map. Defining the quantities

X` � ι�`Xι` > B�H`�g and V` � ��IH a ι�` �V � > B�Hn,H
ª

` �,
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we have V �

` �IH aX`�V` � Y ` and V` is a contraction for all `.

Fix d, ` > N and a g-tuple A > S�Hd�g. It is straightforward to show

LY `�A� � �V �

` a Id��IH aLX`�A���V` a Id�.

It follows that LY `�A� k 0 if LX`�A� k 0. Therefore DX` b DY ` for all ` > N.

Using [HKM12, Theorem 1.1] we conclude that there is an integer mn depending

only on n and g such that for each ` > N there is a contraction W �

` � Hn � H
mn

` such that

�W �

`���Imn aX
`�W �

` � Y
`. (II.1.8)

For each ` define the operator W` � Hn � H
mn by

W` � �Imn a ι`�W �

` . (II.1.9)

Then each W` is a contraction and

Y ` �W �

` �Imn aX�W`

for all ` > N.

By passing to a subsequence if necessary, we may assume that the W` converge

to some contraction W � Hn � H
mn in the weak operator topology on B�Hn,Hmn�. By

assumption X is compact, so Imn aX is compact. Using Lemma II.1.3, it follows that

W ��Imn aX�W � limW �

` �Imn aX�W`.

It follows that Y �W ��Imn aX�W , which completes the proof of item (1).

Item (2) is immediate from Lemma II.1.4 and the assumption that 0 is in the finite
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interior of KX .

We now prove KX is a compact matrix convex set.

Theorem II.1.5. Let X > K�H�g be a g-tuple of self-adjoint compact operators on H and

let KX be the noncommutative convex hull of X. Assume that 0 is in the finite interior of

KX . Then KX is a compact matrix convex set.

Proof. Lemma II.1.1 shows that KX is bounded and matrix convex. It remains to show

that KX�n� is closed for each n. Let �Y `� `KX�n� be a sequence of elements of KX�n�
converging to some g-tuple Y > S�Hn�g. By Proposition II.1.2 there exists a fixed integer mn

depending only on n and g and contractions W` � Hn � H
mn such that W �

` �ImnaX�W` � Y `

for all `. By passing to a subsequence if necessary, we can assume that the W` converge in

the weak operator topology to some contraction W � Hn � H
mn . By assumption X and

Imn aX are compact, so Lemma II.1.3 shows that

Y �W ��Imn aX�W.

Furthermore, we assumed 0 is in the finite interior of KX , so using Lemma II.1.4

there exists an integer m0 depending only on g and an isometry T � Hn � H
mn�nm0 such

that

T �XT �W �XW � Y.

We conclude Y >KX�n� and KX�n� is closed.

Remark II.1.6. Using Theorem II.1.5 with Voiculescu’s Weyl-von Neumann Theorem

(e.g. [D96, Theorem II.5.3]) it follows that KX is equal to the matrix range of X when X

is a g-tuple of compact operators and 0 is in the finite interior of KX .
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II.2 Absolute extreme points of noncommutative con-

vex hulls

We are almost in position to prove Theorem I.4.1. We first give a lemma that

describes the reducing subspaces of a direct sum of a fixed g-tuple with itself.

Lemma II.2.1. Let H be an infinite dimensional Hilbert space and let X > S�H�g be a

g-tuple of self-adjoint operators on H. Assume that every nontrivial reducing subspace of

X is infinite dimensional. Then, for any integer N > N, every nontrivial reducing subspace

of IN aX > S�HN�g is infinite dimensional.

Proof. Fix an integer N > N and let W ` HN be any reducing subspace for IN aX. For each

n � 1, . . . ,N define Mn � H. Then HN � `Nn�1Mn. For each n � 1, . . . ,N let ιn �Mn � H
N

be the inclusion map of Mn in HN . Given v > W , define vn > ι�nW by vn � ι�nv for all

n � 1, . . . ,N . Then v can be written v � `Nn�1vn. Observe that �IN aXi�v � `Nn�1�Xivn� for

all i � 1, . . . , g. Since W is a reducing subspace for IN aX, it follows that `Nn�1�Xivn� >W
for all v >W and all i � 1, . . . , g. Fix an n0 > �1, . . . ,N�. Then applying ι�n0

to both sides of

the equality we find

Xivn0 � ι
�

n0
�`Nn�1 �Xivn�� > ι�n0

W

for all vn0 > ι
�
n0
W and all i � 1, . . . , g. Since X is a tuple of self-adjoint operators, this shows

that ι�n0
W is a reducing subspace for X for all n0 > �1, . . . ,N�. As X was assumed to have

no nontrivial finite dimensional reducing subspaces, it follows that either ι�nW � �0� or

ι�nW is infinite dimensional for each n � 1, . . . ,N . If ι�nW � �0� for all n � 1, . . . ,N , then

W � �0�. If ι�nW x �0� for any n, then W is infinite dimensional.

We now complete the proof of Theorem I.4.1.

Proof. Theorem II.1.5 shows that KX is a compact matrix convex set, so we only need

to show ∂absKX � g. Let Y > KX�n�. Using Proposition II.1.2, there is an integer mn
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depending on n and g and an isometry V � Hn � H
mn such that

Y � V ��Imn aX�V.

It follows that there are tuples α > B�Hmn\Hn,Hn, �g and β > S�Hmn\Hn�g and a unitary

U > B�Hmn� such that

U��Imn aX�U �

����
Y α

α� β

���� > S�Hmn�g. (II.2.1)

Furthermore, Lemma II.2.1 shows Imn aX has no nontrivial finite dimensional invariant

subspaces, so α x 0.

Since α x 0, there is a unit vector v > Hmn\Hn such that αv x 0. LetW � Hn�1 � H
mn

be the isometry

W �

����
In 0

0 v

���� .

Then

W �U��Imn aX�UW �

����
Y αv

v�α� v�βv

���� > S�Hn�1�g

where αv x 0. Additionally, W �U��Imn aX�UW > KX since UW is an isometry. Using

[EHKM18, Theorem 1.1 (3)], it follows that Y ¶ ∂absKX .

II.3 Examples

The following section gives an explicit example of a tuple X > K�H�2 of compact

operators with no nontrivial finite dimensional reducing subspaces so that 0 is in the finite

interior of KX . Throughout the section set H � `2�N� and Hn � `2�1, . . . , n� ` H for all

n > N.
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Given a weight vector w � �w1,w2, . . . � > Rª define the weighted forward shift

Sw � H � H by

Swv � �0,w1v1,w2v2, . . . �
for all v > H. Additionally, for each n > N, let In � H � H be the operator defined by

Inv � �v1, . . . , vn,0,0, . . . �

for all v > H.

Proposition II.3.1. Let X1 � diag�λ1, λ2, . . . � where the λi nonzero real numbers con-

verging to 0 with distinct norms and let Sw be a weighted shift where w > Rª is chosen so

wi x 0 for all i and Sw is compact. Set

X2 � Sw � S
�

w.

Then there exist real numbers α1, α2 so that the tuple

X̃ � �X1 � α1I2,X2 � α2I2�

is a tuple of compact self-adjoint operators with no finite dimensional reducing subspaces

and so that 0 is in the finite interior of KX̃ .

Before giving the proof of Proposition II.3.1, we state a lemma which describes the

closed invariant subspaces of a diagonal operator.

Lemma II.3.2. Let X � diag�λ1, λ2, . . . � where the λi nonzero real numbers converging to

0 with distinct norms, and let W be a closed invariant subspace of X. Then W � `j>JEj

for some index set J ` N where Ej denotes jth coordinate subspace.
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Proof. If W � �0� then the proof is trivial, so assume W x �0�. Define

J � �j > NS there exists a vector v � �v1, v2, . . . � >W so that vj x 0�.

Since W x �0� we have J x g. We will show W � `j>JEj.

By assumption the λi have distinct norms and converge to zero so there is a unique

index j0 > J such that Sλj0 S � maxj>J Sλj S. Choose a vector v > J so that vj0 x 0. Then

lim
`�ª

X`v

λ`j0
� vj0ej0 .

Therefore ej0 >W since W is closed.

Since Ej0 and W are closed invariant subspaces of X with Ej0 `W , it follows that

W � Ej0 `W
� where W � is a closed invariant subspace of X. Proceeding by induction

completes the proof.

We now prove Proposition II.3.1.

Proof. We first prove the existence of the real numbers α1, α2 so that 0 is in the finite

interior of KX . Let ι2 � H2 � H be the inclusion map of H2 � H. Since λ1 x λ2, there exists

a unit vector v0 > H2 so that, setting

α1 � �`ι�2X1ι2v0, v0e,

the eigenvalues of

X1 � α1I2 � diag�λ1 � α1, λ2 � α1, λ3, λ4, . . . �
are nonzero real numbers with distinct norms.

Set

α2 � �`ι�2X2ι2v0, v0e.
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Then

v�0�ι2X1ι2 � α1I2, ι2X2ι2 � α2I2�v0 � 0 > R2.

Setting X̃i �Xi � αiI2 for i � 1,2, it follows that

v�0�ι�2X̃1ι2, ι
�

2X̃2ι2�v0 � 0 > R2. (II.3.1)

Therefore, 0 is in the finite interior of X̃ � �X̃1, X̃2�.
It is clear that X̃ is a tuple of compact self-adjoint operators, so it remains to show

that X̃ has no finite dimensional reducing subspaces. Assume towards a contradiction that

W is a finite dimensional reducing subspace for X̃. Then W must be a closed invariant

subspace of X̃1. Recall that α1 was chosen so that X̃1 is a diagonal operator whose diagonal

entries are real numbers that converge to 0 with distinct norms. Using Lemma II.3.2, it

follows that W � `j>JEj for some finite index set J ` N where Ej denotes jth coordinate

subspace.

Let j0 be the largest integer in J . Since Sw is a weighted forward shift with nonzero

weights, it is straightforward to see that

X̃2Ej0 � �Sw � S�w � α2I2�Ej0 ~̀ W.

This shows that W cannot be a reducing subspace of X̃. Therefore X̃ has no finite

dimensional reducing subspaces.

II.4 Alternate proof of Theorem I.4.1

We now give an alternate proof of Theorem I.4.1. This proof is accomplished by

considering an operator system RKX
such that the set of unital completely positive maps

on RKX
with finite dimensional range, denoted CS�RKX

�, is matrix affine homeomorphic
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to KX . We show that CS�RKX
� has no maximal completely positive maps. We begin with

a brief collection of definitions related to completely positive maps and operator systems.

II.4.1 Completely positive maps

We will assume the reader’s familiarity with operator systems and completely

positive maps. For a comprehensive discussion of these subjects see [P02, Chapter 3].

Let R be an operator system and let φ � R � B�M1� be a unital completely

positive map for some Hilbert space M1. A dilation of φ is a unital completely positive

map of the form ψ � R � B�M2� such that M2 is a Hilbert space containing M1 and

ι�
M1
ψ�r�ιM1 � φ�r� for all r > R. Here ιM1 �M1 �M2 is the inclusion map of M1 into

M2. A unital completely positive map φ is called maximal if any dilation ψ of φ has the

form ψ � φ` ψ� for some unital completely positive ψ�.

We use the notation

CSn�R� � �φ �R� B�Hn�S φ is u.c.p.�

to denote the set of unital completely positive maps sending R into B�Hn� and we define

CS�R� � �CSn�R��n

to be the set of unital completely positive maps on R with finite dimensional range.

II.4.2 Matrix affine maps

We now introduce and briefly discuss the notion of matrix affine maps on a matrix

convex set. We direct the reader to [WW99, Section 3] for a more detailed discussion of

matrix affine maps.
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Let K ` �S�Hn�g�n be a compact matrix convex set. A matrix affine map on K

is a sequence θ � �θn�n of mappings θn � K�n� �Mn�W � for some vector space W , such

that

θn � k

Q
`�1

V �

` Y
`V`� �

k

Q
`�1

V �

` θn`
�Y `�V`, (II.4.1)

for all Y ` > K�n`� and V` > B�Hn`
,Mn�W �� for ` � 1, . . . , k satisfying Pk`�1 V

�

` V` � In. If

each θn is a homeomorphism, then we will say θ is a matrix affine homeomorphism.

Given a matrix convex set K we will let

RK � �θ � �θn�nS θn �K�n�� B�Hn� for all n > N and θ is matrix affine�

denote the set of matrix affine maps on K sending K�n� into B�Hn�. As an example,

if A > B�Hd�g is a g-tuple of operators on Hd, then the monic linear pencil LA and the

homogeneous linear pencil ΛA�x�, i.e. the maps x( LA�x� and x( ΛA�x�, are elements

of Md�RK�.
In [WW99, Proposition 3.5], Webster and Winkler show that the set RK is an

operator system if K ` �S�Hn�g�n is a compact matrix convex set. Given a positive integer

d, the positive cone in Md�RK� is defined by θ >Md�RK�� if and only if θ�Y � k 0 for all

Y >K.

Additionally, [WW99, Proposition 3.5] shows that, with these assumptions, K is

matrix affinely homeomorphic to CS�RK�. In particular the map sending Y > K�n� to

φY > CSn�RK� where φY is defined by

φY �θ� � θn�Y � for all θ >RK (II.4.2)

defines a matrix affine homeomorphism from K to CS�RK�. The identification between

the matrix convex set K and CS�RK� is strengthened by [KLS14, Theorem 4.2] where
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Kleski shows that Y is an absolute extreme point of K if and only if φY > CS�RK� is an

irreducible maximal completely positive map on RK .

II.4.3 Matrix affine maps on K are affine linear pencils

Webster and Winkler [WW99] comment that, if all the elements of K�1� are self-

adjoint, as is the case in our setting, then the set of matrix affine maps on K is equivalent

to the set of affine maps on K. [WW99] does not give a proof of this fact, as they do not

use it, so for the reader’s convenience we provide a proof here.

We first introduce the notion of an affine linear pencil. Let A � �A0,A1, . . . ,Ag� >
B�Hd�g for some positive integer d. The affine linear pencil defined by A, denoted

LA�x� is the map x( LA�x� defined by

LA�x� � A0 �A1x1 �� �Agxg.

Similar to the monic case, the evaluation of LA on a tuple X > S�Hn�gis defined by

LA�X� � A0 a In �A1 aX1 �� �Ag aXg.

We emphasize that the operators A0, . . . ,Ag are not required to be self-adjoint in this

definition.

Proposition II.4.1. Let K be a compact matrix convex set and assume 0 > K. Fix a

d > N and let θ >Md�RK�. Then there exists a g � 1 tuple of operators

A � �A0,A1, . . . ,Ag� > B�Hd�g�1

such that θ�Y � � LA�Y � for all Y >K.
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Proof. Note that all the elements of K are self-adjoint, so if Y > K and α > K satisfy

αY >K then α > R. Therefore, to show θ > RK is affine it is sufficient to show θ is affine

over the reals. Temporarily assume θ >RK is self-adjoint. Define the map ψ � �ψn�n by

ψn�Y � � θn�Y � � θn�0n� for all Y >K�n� and all n > N.

We will show that ψ is linear over R for each n.

Fix n and a tuple Y >K�n� and let α > �0,1�. Since 0 >K and matrix convex sets

are closed under taking direct sums we have Y ` 0n > K�2n�. Let V � Kn
� K2n be the

isometry

V �

����
º
αInº

1 � αIn

����
and set V1 �

º
αIn and V2 �

º
1 � αIn. Then we have

αψn�Y � � αθn�Y � � �1 � α�θn�0� � θn�0�
� V �

1 θn�Y �V1 � V �

2 θn�0�V2 � θn�0�
� θn�V ��Y ` 0�V � � θn�0� � ψn�αY �.

Now let α A 1 and assume αY > K�n�. Then 1
α > �0,1� so 1

αψn�αY � � ψn�Y �. It

follows that

ψn�αY � � αψn�Y �
for all α C 0 satisfying αY >K.

We now show that, given Y 1, Y 2 >K�n� such that Y 1 � Y 2 >K�n�, we have

ψn�Y 1
� Y 2� � ψn�Y 1

� Y 2�.
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To this end, set

V �

����
1º
2
In

1º
2
In

���� .

Since ψ is matrix affine we have

ψn�1
2Y

1� � ψn�1
2Y

2� � 1
2ψn�Y 1� � 1

2ψn�Y 2�
� V �

1 ψn�Y 1�V1 � V �

2 ψn�Y 2�V2

� ψ2n�V ��Y 1 ` Y 2�V �
� ψn�1

2Y
1 �

1
2Y

2�.
By assumption Y 1 � Y 2 >K so we find

ψn�Y 1� � ψn�Y 2� � 2�ψn�1

2
Y 1� � ψn�1

2
Y 2�� � 2ψn�1

2
Y 1

�
1

2
Y 2� � ψn�Y 1

� Y 2�.

Additionally, given Y >K�n� such that �Y >K we have

0n � ψ�0n� � ψn�Y � Y � � ψn�Y � � ψn��Y �.

Therefore ψn��Y � � �ψn�Y �. We conclude that ψn is linear for each n and θn is affine for

each n.

Now recall that we are dealing with self-adjoint θ. In particular θ1 is affine and self-

adjoint, so there exists a g � 1-tuple �α0, α1, . . . , αg� > Rg�1 such that θ1�Y � � α0 �P
g
i�1αiYi

for all Y > K�1�. Since θ is self-adjoint and matrix affine, each θn is determined by the

equality

`θn�Y �ζ, ζe � θ1�ζ�Y ζ�
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for all Y >K�n� and all unit vectors ζ > Kn and all n. It follows that

θn�Y � � α0In �
g

Q
i�1

αiYi

for all Y >K�n� and all n.

If H is a real Hilbert space, then every element of RK is self-adjoint, so this completes

the proof for d � 1 when K � R. If H is a complex Hilbert space and θ > RK is not self-

adjoint then θ can be written θ � θ1 � iθ2 where θ1 and θ2 are self-adjoint. It follows from

above that there is a g � 1 tuple �α0, α1, . . . , αg� > Cg�1 such that

θn�Y � � α0In �
g

Q
i�1

αiYi (II.4.3)

for all Y >K�n� and all n.

It immediately follows that if θ >Md�RK�, then there exists a tuple

A � �A0,A1, . . . ,Ag� >Md�K�g�1

such that

θ�Y � � A0 a In �
g

Q
i�1

Ai a Yi � LA�Y �
for all Y >K�n� and all n. Identifying Md�K�g�1 with B�Hd�g�1 for each d completes the

proof.

In light of Proposition II.4.1, if 0 >K, then for a fixed d > N we have

Md�RK� � �LA �K �Md�K�S A > B�Hd�g�1� (II.4.4)

where LA is the map x( LA�x�.
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Remark II.4.2. As an aside for the reader interested in polar duals, we note that Propo-

sition II.4.1 points towards a strong relationship between positive cone in 8dMd�RK� and

KX, the polar dual of K. In particular, given a tuple A � �A0,A1, . . . ,Ag� > B�Hd�g�1 it

can be shown that LA >Md�RK�� if and only if there exists a tuple Ã >KX�m� for some

m B d and a positive definite operator Ã0 > B�Hm� such that A is unitarily equivalent to

the tuple

�Ã0 ` 0d�m, Ã
1~2
0 Ã1Ã

1~2
0 ` 0d�m, . . . , Ã

1~2
0 ÃgÃ

1~2
0 ` 0d�m�.

We omit the proof of this fact as we will not make use of the fine structure of the positive

cone in 8dMd�RK�. See [HKM17] for a general discussion of polar duals and [EHKM18]

for a discussion of the extreme points of polar duals of free spectrahedra.

II.4.4 Maps on RK

Given a Hilbert space M and a g-tuple of operators Z > B�M�g we define the map

φZ �RK � B�M� by

φZ�LA� � LA�Z� for all affine linear pencils LA >RK . (II.4.5)

We are particularly interested in the case where K � KX for some g-tuple of self-

adjoint compact operators X > K�H�g. The following proposition shows that the map

φX � RKX
� B�H� is a unital completely positive map on RKX

when 0 is in the finite

interior of KX .

Proposition II.4.3. Let X > K�H�g and assume 0 is in the finite interior of KX . Then

φX � RKX
� B�H� as defined by equation (II.4.5) is a unital completely positive map on

RKX
.

Proof. By assumption 0 is in the finite interior of KX . Therefore, Proposition II.4.1 shows
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that RKX
is equal to the set of affine linear pencils on KX .

For all integers n > N let Pn � H � H be the orthogonal projection of H onto Hn, and

define Xn > K�H�g to be the tuple Xn � PnXPn. Observe that Xn � ι�nXιn ` 0HÙ

n
where

ιn � Hn � H is the inclusion map of Hn into H.

From the definition of KX we know that ι�nXιn > KX . Since 0, ι�nXιn > KX , using

[WW99, Proposition 3.5] we find φ0, φι�nXιn > CS�RKX
�. As such, the equality

φXn�LA� � LA�ι�nXιn ` �IHÙ

n
a 0�� � LA�ι�nXιn�` �IHÙ

n
aLA�0�� � φι�nXιn ` �IHÙ

n
aφ0�LA��

(II.4.6)

for all LA >RKX
shows that φXn is completely positive for all n > N.

Now fix d > N and LA >Md�RKX
�. Since X is compact we have limXn �X where

the convergence is in norm. Furthermore, affine linear pencils are continuous maps, so

limφXn�LA� � limLA�Xn� � LA�X� � φX�LA�.

Since each φXn is completely positive, it follows that φX is completely positive on RKX
as

claimed.

To see that φX is unital let 1R be the identity in RKX
. Then 1R is the linear pencil

1R � L�1,0,0,...,0�.

The evaluation

φX�1R� � L�1,0,0,...,0��X� � IH
shows φX is unital.
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II.4.5 Proof of Theorem I.4.1 via completely positive maps

We now give the alternate proof of Theorem I.4.1.

Proof. Theorem II.1.5 shows that KX is a compact matrix convex set, so we only need

to show ∂absKX � g. Pick an element Y >KX�n� and let RKX
be the operator system of

matrix affine maps on KX . [KLS14, Theorem 4.2] shows that Y > ∂absKX if and only if

φY is in the Arveson boundary of CS�RK� and [A08, Proposition 2.4] shows that if φY

is a boundary representation, then φY is maximal. Therefore, to show Y ¶ ∂absKX it is

sufficient to show that the unital completely positive map φY �RKX
� Hn is not maximal.

Using Proposition II.1.2 there exists an integer mn depending only on n and g and

an isometry V � Hn � H
mn so that Y � V ��Imn aX�V . This implies that there is a unitary

U � Hmn
� Hmn so that U�Imn aX�U� is a dilation of Y . It follows that the map

φU�ImnaX�U� �RKX
� B�Hmn�

is a dilation of the unital completely positive map φY �RKX
� Hn. Furthermore, Proposition

II.4.3 shows φX is a unital completely positive map on RKX
, so the equality

φU�ImnaX�U��LA� � U�Imn a φX�LA��U�

for all LA >RKX
shows φU�ImnaX�U� is a unital completely positive map on RKX

.

Assume towards a contradiction that φY is a maximal unital completely positive

map. Since φU�ImnaX�U� is a unital completely positive dilation of φY , there must exist some

unital completely positive map ψ �RKX
� HÙn so that φU�ImnaX�U� � φY ` ψ. Note that in

this definition, Hn is viewed as a subspace of Hmn , so HÙn is the orthogonal complement of

Hn in Hmn .
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For i � 1, . . . , g let ηi > RKX
be the evaluation map defined by

φS�ηi� � Si for all S >KX .

Define Z > S�HÙn�g to be the tuple

Z � �ψ�η1�, . . . , ψ�ηg��.

Considering the evaluations

φU�ImnaX�U��ηi� � φY �ηi�` ψ�ηi�

for i � 1, . . . , g shows that Imn aX � U��Y `Z�U . In particular, the invariant subspaces of

Imn aX must be equal to the invariant subspaces of U��Y `Z�U .

Since X is assumed to have no nontrivial finite dimensional reducing subspaces,

Lemma II.2.1 shows that any nontrivial reducing subspace of ImnaX is infinite dimensional.

Observe that the subspace W ` Hmn defined by

W � �U��v ` 0Hn
Ù�S v > Hn�

is a nontrivial n dimensional reducing subspace for U��Y `Z�U , and hence for Imn aX,

which contradicts Lemma II.2.1. It follows that there is no unital completely positive

map ψ so that φY ` ψ � φU�ImnaX�U� . In particular, φY is not maximal. This shows that

Y ¶ ∂absKX and ∂absKX � g.
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Chapter III

Arveson extreme points span free

spectrahedra

In this chapter we focus our attention on the absolute extreme points of free

spectrahedra. Throughout the chapter we will not need the overarching Hilbert space H.

For this reason we now fix Hn � Kn for each n where K � C or R. In this setting, an nc set

is a set which contains g-tuples of n � n self-adjoint matrices for all positive integers n.

We now let SMn�K�g denote the set of g-tuples X � �X1, . . . ,Xg� of n�n self-adjoint

matrices over K and let SM�K�g denote the nc set SM�K�g � �SMn�K�g�n. Similarly, for

positive integers n, ` and g let Mn�`�K�g denote the set of g-tuples β � �β1, . . . , βg� of n � `

matrices with entries in K.

III.1 Absolute extreme points of free spectrahedra

Recall that a free spectrahedron is a type of matrix convex set which is the set

of solutions to a linear matrix equality. That is, given a tuple A > SMd�K�g, the free
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spectrahedron DK
A is the set �DK

A�n��n where

D
K
A�n� � �X > SMn�K�g S LA�X� � Idn �A1 aX1 ��Ag aXg k 0�

for each positive integer n.

III.1.1 The dilation subspace

We begin by more carefully examining the dilation subspace. This subspace will

play an important roll in the proof of Theorem III.1.3. Recall that the dilation subspace is

the set

KK
A,X � �β >Mn�1�K�g S kerLA�X� ` ker ΛA�β���.

Here the kernels kerLA�X� and ker ΛA�X� are subspaces of Kdn.

The subspace KK
A,X is called the dilation subspace since, by considering the Schur

complement, a tuple β > Mn�1�K�g is an element of KK
A,X if and only if there is a real

number c A 0 and a tuple γ > Rg such that

Y �

����
X cβ

cβ� γ

���� > DK
A. (III.1.1)

The following lemma explains the relationship between the dilation subspace KK
A,X

and dilations of the tuple X > DK
A in greater detail.

Lemma III.1.1. Let DK
A be a free spectrahedron and let X > DK

A�n�.

1. If β >Mn�1�K�g and

Y �

����
X β

β� γ

���� > DK
A�n � 1�

is a 1-dilation of X, then β > KK
A,X .
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2. Let β >Mn�1�K�g. Then β > KK
A,X if and only if there is a real number c A 0 such that

����
X cβ

cβ� 0

���� > DK
A�n � 1�.

3. X is an Arveson extreme point of DK
A if and only if dimKK

A,X � 0.

Proof. Items (1) and (2) follow from considering the Schur compliment of LA�Y � for a

dilation

Y �

����
X β

β� γ

���� > DK
A�n � 1�

of X. Indeed, multiplying LA�X� by permutation matrices, sometimes called canonical

shuffles, see [P02, Chapter 8], shows

LA�Y � k 0 if and only if

����
LA�X� ΛA�β�
ΛA�β�� LA�γ�

���� k 0. (III.1.2)

Taking the appropriate Schur compliment then implies that

LA�Y � k 0 if and only if LA�γ� k 0 and LA�X� �ΛA�β�LA�γ��ΛA�β�� k 0 (III.1.3)

where � denotes the Moore-Penrose pseudoinverse. Item (1) and item (2) are immediate

consequences of equation (III.1.3). See [EHKM18, Corollary 2.3] for a related argument.

Item (3) follows from items (1) and (2).

III.1.2 Maximal 1-dilations

An important aspect of the proof of our main result is constructing dilations which

satisfy a notion of maximality. Given a matrix convex set K and a tuple X >K�n�, say
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the dilation

Y �

����
X cβ̂

cβ̂� γ̂

���� >K�n � 1�

is a maximal 1-dilation of X if Y is a 1-dilation of X and β̂ is nonzero and the real

number c and tuple γ̂ > Rg are solutions to the sequence of maximization problems

c �� Maximizer
α>R,γ>Rg

α

s.t.

����
X αβ̂

αβ̂� γ

���� >K�n � 1�

and γ̂ �� A Local Maximizer
γ>Rg

YγY
s.t.

����
X cβ̂

cβ̂� γ

���� >K�n � 1�

where Y � Y denotes the usual norm on Rg. We note that maximal 1-dilations can be

computed numerically, see Proposition III.2.1. We emphasize that γ̂ produced by the

second optimization need only be any local maximizer, and global maximality is not

required.

Remark III.1.2. If K is a compact matrix convex set and X > K is not an Arveson

extreme point of K, then a routine compactness argument shows the existence of nontrivial

maximal 1-dilations of X.

Other notions of maximal dilations (in the infinite dimensional setting) are discussed

in [DM05], [A08, Section 2] and [DK15, Section 1].
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III.1.3 Maximal dilations reduce the dimension of the dilation

subspace

Let A > SMd�R�g, let DR
A be a compact real free spectrahedron, and let X > DR

A.

The following theorem shows that maximal 1-dilations of X reduce the dimension of the

dilation subspace.

Theorem III.1.3. Let A > SMd�R�g be a g-tuple of self-adjoint matrices over R such that

DR
A is a compact real free spectrahedron and let X > DR

A�n�. Assume X is not an Arveson

extreme point of DR
A. Then there exists a nontrivial maximal 1-dilation Ŷ > DR

A�n � 1� of

X. Furthermore, any such Ŷ satisfies

dimKR
A,Ŷ

@ dimKR
A,X .

Proof. Let Ŷ be a maximal 1-dilation of X. Equivalently, choose the dilation Ŷ (choose β̂

and γ̂� such that

Ŷ �

����
X β̂

β̂� γ̂

���� is in DR
A�n � 1�,

and if

Ỹc �

����
X cβ̂

cβ̂� γ

���� is in DR
A�n � 1�

for a tuple γ > Rg and a real number c > R, then c B 1.1 Furthermore, if c � 1 and

Ỹ > DR
A�n � 1�, then there exists an ε A 0 such that Yγ̂ � γY @ ε implies YγY B Yγ̂Y. As

mentioned in Remark III.1.2, the existence of such a Ŷ follows from the assumptions that

X is not an Arveson extreme point of DR
A and that DR

A is level-wise compact.

We will show that

dimKR
A,Ŷ

@ dimKR
A,X .

1 If Ỹc is an element of DR
A�n � 1� then so is Ỹ

�c. For this reason, it is equivalent to require ScS B 1.
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First consider the subspace

EA,Ŷ �� �η >Mn�1�R�g S there exists a σ > Rg so that kerLA�Ŷ � b ker ΛA �η� σ��.

In other words EA,Ŷ is the projection ι of KR
A,Ŷ

defined by

EA,Ŷ �� ι�KR
A,X� where ι

����
η

σ

���� � η

for η >Mn�1�R�g and σ > Rg. We will show dimEA,Ŷ @ dimKR
A,X .

If η > EA,Ŷ , then there exists a tuple σ̃ > Rg such that

�η� σ̃� > KR
A,Ŷ

.

From Lemma III.1.1 (2), it follows that there is a real number c A 0 so that setting σ � cσ̃

gives

��������

X β̂ cη

β̂� γ̂ σ

cη� σ� 0

��������
> DR

A.

Since DR
A is matrix convex it follows that

����
1 0 0

0 0 1

����

��������

X β̂ cη

β̂� γ̂ σ

cη� σ� 0

��������

��������

1 0

0 0

0 1

��������
�

����
X cη

cη� 0

���� > DR
A,

so Lemma III.1.1 (1) shows η > KR
A,X . In particular this shows

EA,Ŷ ` KR
A,X . (III.1.4)
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Now, assume towards a contradiction that

dimEA,Ŷ � dimKR
A,X .

Using equation (III.1.4) this implies that

EA,Ŷ � KR
A,X .

In particular we have β̂ > EA,Ŷ . It follows that there is a real number c x 0 and a tuple

σ > Rg so that

LA

��������

X β̂ cβ̂

β̂� γ̂ σ

cβ̂� σ 0

��������
k 0. (III.1.5)

Using the NC LDL�-decomposition (up to canonical shuffles) shows that inequality

(III.1.5) holds if and only if LA�X� k 0 and the Schur complements

Id � c
2Q k 0 (III.1.6)

and

LA�γ̂� �Q � �ΛA�σ� � cQ�� �Id � c2Q�� �ΛA�σ� � cQ� k 0 (III.1.7)

where

Q �� ΛA�β̂��LA�X��ΛA�β̂�. (III.1.8)

It follows that

LA�γ̂� �Q k 0 (III.1.9)

and

ker�LA�γ̂� �Q� b ker�ΛA�σ� � cQ�. (III.1.10)
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Inequalities (III.1.9) and (III.1.10) imply that there exists a real number α̃ A 0 such

that 0 @ α B α̃ implies

LA�γ̂� �Q � α �ΛA�σ� � cQ� k 0.

It follows from this that

LA�γ̂ � ασ� � �1 � cα�Q
� LA�γ̂ � ασ� � �ΛA�º1 � cαβ̂��LA�X��ΛA�º1 � cαβ̂�� k 0.

(III.1.11)

Since LA�X� k 0, equation (III.1.11) implies

LA

����
X

º
1 � cαβ̂º

1 � cαβ̂� γ̂ � ασ

���� k 0. (III.1.12)

Therefore, from our choice of Ŷ , hence of β̂, we must have

º
1 � cα B 1.

It follows that cα � 0. However, we have assumed α A 0 and c x 0, so this is a contradiction.

We conclude

dimEA,Ŷ @ dimKR
A,X . (III.1.13)

Now seeking a contradiction assume that dimKR
A,Ŷ

� dimKR
A,X . Then inequality

(III.1.13) implies that there exist tuples η > Mn�1�R�g and σ1, σ2 > Rg such that σ1 x σ2

and so ����
η

σ1

���� ,
����
η

σ2

���� > KR
A,Ŷ

.
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It follows that ����
0

σ1 � σ2

���� > KR
A,Ŷ

. (III.1.14)

Set σ̂ � σ1 � σ2 x 0 > Rg. As before, equation (III.1.14) with Lemma III.1.1 (2) implies that

there is a real number c x 0 > R so that

LA

��������

X β̂ 0

β̂� γ̂ cσ̂

0 cσ̂ 0

��������
k 0. (III.1.15)

Considering the NC LDL� decomposition shows that equation (III.1.15) holds if and only if

LA�X� k 0 and LA�γ̂� �Q � c2ΛA�σ̂�ΛA�σ̂� k 0, (III.1.16)

where Q � ΛA�β̂��LA�X��ΛA�β̂� as before. It follows from this that

ker�LA�γ̂� �Q� b ker ΛA�σ̂� and LA�γ̂� �Q k 0. (III.1.17)

This implies that there is a real number α̃ A 0 so that, for all α > R satisfying 0 @ α B α̃, we

have

LA�γ̂� �Q �ΛA�ασ̂� � LA�γ̂ � ασ̂� �Q k 0.

Since this is the appropriate Schur compliment and since LA�X� k 0 it follows that

LA

����
X β̂

β̂� γ̂ � ασ̂

���� k 0 (III.1.18)
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whenever 0 @ α B α̃. Therefore, the local maximality of γ̂ implies

Yγ̂ � ασ̂Y B Yγ̂Y and Yγ̂ � ασ̂Y B Yγ̂Y

for sufficiently small α > �0, α̃�, a contradiction to the assumptions that α x 0 and σ̂ x 0.

We conclude that dimKR
A,Ŷ

@ dimKR
A,X as asserted by Theorem III.1.3.

Proof of Theorem I.7.2 for real free spectrahedra

We are now in position to prove Theorem I.7.2 in the case where DR
A is a compact

real free spectrahedron.

Proof of Theorem I.7.2 when K � R. Given a tuple X > DR
A with dimKR

A,X � `, the existence

of a k-dilation Y of X such that Y > ∂ArvDR
A for some k B ` is an immediate consequence of

Theorem III.1.3 and Lemma III.1.1 (3).

The fact that DR
A is the matrix convex hull of its Arveson extreme points, hence of

its absolute extreme points, is proved immediately after the statement of Theorem I.7.2.

III.2 Numerical computation

In this section we provide an algorithm which constructs Arveson dilations of

elements of a real free spectrahedron. Additionally we describe computational methods to

determine if a tuple X is an Arveson extreme point of DR
A.

III.2.1 Computation of maximal 1-dilations

Given a compact real free spectrahedron DR
A, the following algorithm dilates a tuple

X > DR
A to an Arveson extreme point Y > DR

A in dimKR
A,X steps or less.
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Proposition III.2.1. Let A > SMd�R�g be a g-tuple of self-adjoint matrices over R such

that DR
A is a compact real free spectrahedron. Given a tuple X > DR

A�n�, set Y 0 �X. For

integers k � 0,1,2 . . . and while dimKR
A,Y k A 0 define

Y k�1
��

����
Y k ckβ̂k

ck�β̂k�� γ̂k

����

where β̂k is any nonzero element of KR
A,Y k and

ck �� Maximizer
c>R,γ>Rg

c

s.t. LA

����
Y k cβ̂k

c�β̂k�� γ

���� k 0,

and γ̂k �� A Local Maximizer
γ>Rg

YγY
s.t. LA

����
Y k ckβ̂k

ck�β̂k�� γ

���� k 0.

Then dimKR
A,Y ` � 0 for some integer ` B dimKR

A,X B ng and Y ` is an Arveson `-dilation of

X.

Proof. This follows from the proof of Theorem III.1.3.

The optimization over c in Proposition III.2.1 is a semidefinite program, while the

optimization over γ is a local maximization of a convex quadratic over a spectrahedron.

III.2.2 Classification of extreme points using linear systems

Lemma III.1.1 (3) gives a linear system which can be solved to determine if an

element of a free spectrahedron is an Arveson extreme point.
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Proposition III.2.2. Let A > SMd�K�g and let DK
A be a free spectrahedron. Let X be an

element of DK
A at level n and let PA,X � kerLA�X�� Knd be the inclusion map of kerLA�X�

into Knd. Then X is an Arveson extreme point of DK
A if and only if the only solution to

the homogeneous linear system

ΛA�β��PA,X � 0 (III.2.1)

where β >Mn�1�K�g is β � 0.

Proof. If ΛA�β��PA,X � 0 for a tuple β > Mn�1�K�g, then β > KK
A,X . Lemma III.1.1 (3)

completes the proof.

Set ` � dimKK
A,X . Since β is a g-tuple of Mn�1 matrices and A is a g-tuple of n � n

self-adjoint matrices, the linear system in equation (III.2.1) is a system of d` equation in

ng unknowns.

A similar linear system can be solved to determine if a tuple is a Euclidean extreme

point of a free spectrahedron. In this case the linear system is a system of d`n equation in

n�n � 1�g~2 unknowns.

III.3 Complex free spectrahedra

This section will prove that every element of a compact complex free spectrahedron

which is closed under complex conjugation is the matrix convex hull of its absolute extreme

points. We begin with a lemma which shows that the set of real elements in the absolute

boundary of a complex free spectrahedron DC
A which is closed under complex conjugation

is exactly equal to the absolute boundary of DR
A.

Lemma III.3.1. Let A be a g-tuple of d � d real symmetric matrices and let X > DC
A be a

g-tuple of n � n real symmetric matrices.
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1. X is an Arveson extreme point of DC
A if and only if X is an Arveson extreme point

of DR
A.

2. X is an absolute extreme point of DC
A if and only if X is an absolute extreme point

of DR
A.

Proof. We first prove item (1). It is straightforward to show that X is an Arveson extreme

point of DR
A if X is an Arveson extreme point of DC

A. To prove the converse, assume X is

an Arveson extreme point of DR
A and let β >Mn�1�C�g be a tuple such that

����
X β

β� γ

���� > DC
A.

By assumption A is a tuple of real symmetric matrices so DC
A is closed under complex

conjugation. It follows that

����
X β

β� γ

���� �

����
X β

β
�

γ

���� > DC
A.

Since DC
A is convex we conclude that

����
X Re�β�

Re�β�� γ

���� �
1

2

����
����
X β

β� γ

���� �
����
X β

β
�

γ

����
���� > DC

A.

This matrix has real entries so it is an element of DR
A. However, X was assumed to be an

absolute extreme point of DR
A so we must have Re�β� � 0.

Now, DC
A is matrix convex so we know

����
X iβ

�iβ�� γ

���� �

����
1 0

0 �i

����
����
X β

β� γ

����
����

1 0

0 i

���� > DC
A.
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However, this matrix is in DR
A since Re�β� � 0 from which it follows that Im�iβ� � 0. We

have assumed that X is an Arveson extreme point of DR
A, so iβ � 0, hence β � 0. We

conclude that X is an Arveson extreme point of DC
A, as claimed.

Item (2) immediately follows from item (1) and Theorem I.7.1 together with Lemma

III.6.1 which shows that a real symmetric tuple is irreducible over R if and only if it is

irreducible over C. Note that the issue of irreducibility is independent of the other aspects

of the proof, hence its delay until Section III.6.

Our next lemma gives a list of equalities for the dilation subspace which will be

used in proving the bound on the dimension of the absolute extreme points appearing in

Theorem I.7.2.

Lemma III.3.2. Let DK
A be a real or complex free spectrahedron. The following equalities

hold for the dilation subspace:

1. Let X > DK
A�n1� and Z > DK

A�n2�. Then

KK
A,X`Z � ��β� σ��� >M�n1�n2��1�K�gT β > KK

A,X and σ > KK
A,Z  .

Additionally,

KK
A,X`Z � dimKK

A,X � dimKK
A,Z .

2. Let X > DK
A�n� and let U >Mn�K� be a unitary. Then

KK
A,X � U�KK

A,U�XU and dimKK
A,X � dimKKA,U�XU .

3. Assume DK
A is closed under complex conjugation. Then

KK
A,X � KK

A,X
and dimKK

A,X � dimKK
A,X

.
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Proof. The proof of item (1) is immediate from the fact that kerLA�X`Z� ` ker ΛA �β� σ��
if and only if kerLA�X� ` ker ΛA�β�� and kerLA�Z� ` ker ΛA�σ��.

To prove item (2) let U >Mn�K� be a unitary and observe that

����
X β

β� γ

���� > DK
A �

����
U�XU U�β

β�U γ

���� �

����
U� 0

0 1

����
����
X β

β� γ

����
����
U 0

0 1

���� > DK
A.

To prove item (3): assume DK
A is closed under complex conjugation. Then

����
X β

β� γ

���� > DK
A �

����
X β

β� γ

���� > DK
A.

We now give a classification of free spectrahedra which are closed under complex

conjugation.

Lemma III.3.3. Let A be a g-tuple of d � d complex self-adjoint matrices. Then the

complex free spectrahedron DC
A is closed under complex conjugation if and only if there is a

g-tuple B of real symmetric matrices of size less than or equal to 2d�2d such that DC
A � DC

B.

Proof. We first prove the forwards direction. Let X be a g-tuple of complex self-adjoint

matrices. Since DC
A is closed under complex conjugation we know that X > DC

A if and only if

LA�X� k 0 and LA�X� k 0. (III.3.1)

Thus X > DC
A if and only if LA`A�X� k 0.

Write A � S � iT where S is a tuple of n � n real symmetric matrices and T is a

tuple of n � n real skew symmetric matrices. Then A `A is unitarily equivalent to the
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g-tuple of real symmetric matrices B defined by

B ��

����
S �T

T S

���� � U�

����
S � iT 0

0 S � iT

����U (III.3.2)

where U >M2n�C� is the unitary

U �

º
2

2

����
In iIn

iIn In

���� .

We conclude that X > DC
A if and only if

LB�X� k 0.

It follows that DC
A � DC

B.

The converse is straightforward.

We are now in position to complete the proof of the Theorem I.7.2.

Proof of Theorem I.7.2. Let DC
A be a compact complex free spectrahedron which is closed

under complex conjugation and let X > DC
A�n�. In light of Lemma III.3.3, we may without

loss of generality assume that A is a g-tuple of real symmetric matrices. Set ` � dimKC
A,X .

If X is an element of DR
A, that is, if X is a tuple of real symmetric matrices, then the

proof that X dilates to an Arveson extreme point Y > DC
A�n � k� for some integer k B ` is

immediate from Theorem III.1.3 with Lemma III.3.1.

To handle the general case where Im�X� x 0, write X � S � iT where S is a g-tuple

of n � n real symmetric matrices and T is a g-tuple of n � n real skew symmetric matrices.

By assumption DC
A is closed under complex conjugation so we know S � iT > DC

A. As shown

in equation (III.3.2), the tuple �S � iT � ` �S � iT � is unitarily equivalent to the tuple
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Z > DC
A�2n� defined by

Z ��

����
S �T

T S

���� .

It follows that X is a compression of Z.

Observe that Z is a tuple of 2n�2n real symmetric matrices so Z > DC
A implies Z > DR

A.

Furthermore, an application of Lemma III.3.2 shows that dimKC
A,Z � 2`, hence dimKR

A,Z B 2`.

Theorem III.1.3 shows that Z dilates to an Arveson extreme point Z̃ > DR
A�2n� k� for some

integer k B 2` B 2ng and Lemma III.3.1 implies that Z̃ is an Arveson extreme point of DC
A.

It follows that X is a compression of the Arveson extreme point Z̃.

As in the real case, the proof that DC
A is the matrix convex hull of its absolute

extreme points is given immediately after the statement of Theorem I.7.2.

III.4 Remarks

This section contains remarks which expand on the historical context of our results.

Section III.4.1 discusses the number of parameters needed to express a tuple as a matrix

convex combination of absolute extreme points, while Section III.4.2 explores the relationship

between the absolute extreme points of free spectrahedra and of general matrix convex sets.

Section III.4.3 discusses infinite dimensional operator convex sets in Arveson’s original

context.

III.4.1 Parameter counts for (matrix) convex combinations of

extreme points

The classical Caratheodory Theorem gives an upper bound on how many terms are

required to represent an element of a convex set as a convex combination of its extreme

points. Theorem I.7.2 is the analog of this for a free convex set. In addition to giving
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a bound on the number of absolute extreme points needed to express an arbitrary tuple

X > DK
A�n�, Theorem I.7.2 gives a bound on the number of parameters needed to express

the absolute extreme points appearing in the matrix convex combination for X.

Given a compact free spectrahedron DK
A, the classical Caratheodory Theorem

states that a tuple X > DK
A�n� ` SMn�K�g can be written as a convex combination

of dimSMn�K�g � 1 classical extreme points of DK
A�n�, each an element of SMn�K�g.

The maximum number of parameters in the extreme points required by this classical

representation is

�dimSMn�K�g � 1��dimSMn�K�g� � �n�n � 1�g~2 � 1��n�n � 1�g~2� � O�n4g2�.

In contrast, Theorem I.7.2 shows that X > DK
A�n� can be written as a matrix

convex combination of a single Arveson extreme point Y > DK
A�n � k� for some integer

k B 2ng �n. The maximum parameter count on the Arveson extreme point required in this

dimension-free representation is

dimSM2n�g�1��K�g � 2�n � ng��n � ng � 1�g � O�n2g3�.

This suggests that matrix convex combinations are advantageous over classical convex

combinations in terms of the number of parameters needed to store the representation of a

tuple as a (matrix) convex combination of extreme points when n is large but that they

are disadvantageous if g is large.
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III.4.2 Absolute extreme points of general matrix convex sets

Let K ` SM�K�g be a compact matrix convex set. It is well known that there is a

Hilbert space M and a self-adjoint operator A > B�M� such that K � DK
A

, i.e.,

K � �X > SM�K�g S LA�X� k 0�,

where LA�X� is defined as in the introduction [EW97].

While Theorem I.7.2 shows every compact real free spectrahedron DR
A is spanned by

its absolute extreme points, Theorem I.4.1 shows the existence of a compact real matrix

convex set DR
A

which has no finite dimensional absolute extreme points.

The critical failure of our proof for a general matrix convex set DR
A

occurs at equation

(III.1.10) in Theorem III.1.3. In Theorem III.1.3 the tuple A is finite dimensional, while A

being discussed here in Section III.4.2 is a tuple of operators acting on M which may be

infinite dimensional. Thus, the kernel containment

ker�LA�γ̂� �Q� ` ker�ΛA�σ� � cQ�

along with

LA�γ̂� �Q k 0

does not imply the existence of a real number α A 0 such that

LA�γ̂� �Q � α�ΛA�σ� � cQ� k 0.

Here Q � ΛA�β̂��LA�X��ΛA�β̂� similar to before.

A concrete example of this failure follows. Let M � `2�N�, let M � diag�1~n2� >
B�M�, and let N � diag�1~n� > B�M�. Then M k 0 and �0� � kerM b kerN , however
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M � αN ~k 0 for any real number α A 0.

III.4.3 Alternative contexts

Much of the literature such as [A69], [DM05], and [DK15] referred to in the in-

troduction takes a different viewpoint than the one here. We now briefly describe the

correspondence.

As discussed in Section II.4, operator convex sets are in one-to-one correspondence

with the set of completely positive maps on an operator system [WW99], an area which

has received great interest over the last several decades. Under this correspondence, an

absolute extreme point of an operator convex set becomes a boundary representation of an

operator system [KLS14].

Arveson’s original question was phrased in the setting of completely positive maps on

an operator system. In this language, Arveson conjectured that every operator system has

sufficiently many boundary representations to “completely norm it”. Additionally, Arveson

conjectured that these boundary representations generate the C�-envelope. Roughly

speaking, the C�-envelope of an operator system is the “smallest” C�-algebra containing

that operator system [P02]. In this language, Theorem I.6.1 shows that every operator

system with a finite-dimensional realization (see [FNT17]) is completely normed by its finite

dimensional boundary representations. For further material related to operator systems,

completely positive maps, boundary representations, and the C�-envelope we direct the

reader to [Ham79], [D96], [MS98], [F00], [F04], [FHL18], and [PSS18].
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III.5 The NC LDL� of block 3 � 3 matrices

This section contains a brief discussion of the NC LDL� decomposition of the

evaluation of a linear pencil LA on a block 3�3 matrix. Consider a general block 3�3 tuple

Z ��

��������

X β η

β� γ σ

η� σ� ψ

��������
where X > SMn1�K�g and γ > SMn2�K�g and ψ > SMn3�K�g and β, η, and σ are each

g-tuples of matrices of appropriate size. We know that

LA

��������

X β η

β� γ σ

η� σ� ψ

��������
�c.s.

��������

LA�X� ΛA�β� ΛA�η�
ΛA�β�� LA�γ� ΛA�σ�
ΛA�η�� ΛA�σ�� LA�ψ�

��������
�� Z

where �c.s. denotes equivalence up to permutations (canonical shuffles). It follows that

LA�Z� k 0 if and only if Z k 0.

The NC LDL� of Z has as its block diagonal factor D the matrix

D �

��������

LA�X� 0 0

0 S 0

0 0 LA�γ� �ΛA�β��LA�X��ΛA�β� �W �S�W

��������
where

S � LA�ψ� �ΛA�η��LA�X��ΛA�η�
W � ΛA�σ�� �ΛA�η��LA�X��ΛA�β�.
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It follows that LA�Z� k 0 if and only if LA�X� k 0 and S k 0 and

LA�γ� �ΛA�β��LA�X��ΛA�β� �W �S�W k 0.

Considering the case where K � R and γ > Rg and ψ � 0 > Rg, hence σ � σ� > Rg,

and substituting η � cβ̂ or η � 0 gives equations (III.1.7) and (III.1.16), respectively.

III.6 Proof of Theorem I.7.1 over the real numbers

We now give a proof of Theorem I.7.1 over the real numbers. Recall that a tuple

X > SMn�K�g is irreducible over K if the matrices X1, . . . ,Xg have no common reducing

subspaces in Kn; a tuple is reducible over K if it is not irreducible over K. We begin with

a lemma which shows that a tuple of real symmetric matrices is reducible over R if and

only if it is reducible over C.

Lemma III.6.1. Let X be a g-tuple of real symmetric n�n matrices. Then X is reducible

over R if and only if X is reducible over C.

Proof. The forward direction of the proof is straightforward.

Now assume X is reducible over C. Then the assumption that X is real symmetric

implies that there exists a nonzero self-adjoint matrix W > Mn�R� ` Mn�C� such that

W x αIn for any α > C and WX �XW � 0. Let E1, . . . ,Ek ` Cn denote the real eigenspaces

of W corresponding to the eigenvalues λ1, . . . , λk of W , respectively. Since X is real and

WX �XW � 0, each Ej is a reducing subspace for X. Additionally, we must have k C 2

since W is not a constant multiple of the identity. Therefore, each Ej is a nontrivial real

reducing subspace for X. We conclude that X is reducible over R.

We now prove our real analogue of [EHKM18, Theorem 1.1 (3)], Theorem I.7.1.
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Proof of Theorem I.7.1 when K � R. First assume that X > SMn�R�g is an irreducible Arve-

son extreme point of DR
A. Lemma III.3.1 (1) shows that X is an Arveson extreme point of

DC
A. Furthermore, Lemma III.6.1 shows that X is irreducible over C. Therefore, [EHKM18,

Theorem 1.1 (3)] shows that X is an absolute extreme point of DC
A. It immediately follows

that X is an absolute extreme point of DR
A.

We now prove the converse. The proof that X is irreducible over R when X is an

absolute extreme point of DR
A is straightforward. The fact that X must be an Arveson

extreme point of DR
A when X is an absolute extreme point of DR

A is immediate from

[EHKM18, Lemma 3.13], the proof of which is identical over the reals or complexes.
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