UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title

Sequencing mRNA from cryosliced Drosophila embryos to screen genome-wide patterning
changes

Permalink
https://escholarship.org/uc/item/81h3g2xN
Author

Combs, Peter Acufa

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/81h3q2xh
https://escholarship.org
http://www.cdlib.org/

Sequencing mRNA from cryosliced Drosophila embryos to screen genome-wide
patterning changes

by
Peter Acuna Combs
A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in
Biophysics
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Michael B. Eisen, Chair
Professor Steven Brenner
Professor Han Lim
Professor Lior Pachter

Spring 2015



Sequencing mRNA from cryosliced Drosophila embryos to screen genome-wide
patterning changes

Copyright 2015
by
Peter Acuna Combs

This dissertation is licensed under the Creative Commons Attribution 3.0 License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.



Abstract

Sequencing mRNA from cryosliced Drosophila embryos to screen genome-wide patterning
changes

by
Peter Acuna Combs
Doctor of Philosophy in Biophysics
University of California, Berkeley
Professor Michael B. Eisen, Chair

A complex, spatially and temporally dynamic network of gene expression underlies proper
metazoan development, yet methods have not previously existed to assay this network in an
efficient, systematic manner. Brute-force application of in situ imaging has been used to
painstakingly assay the network, but is impractical to apply to assay the complete gene ex-
pression network in multiple mutant conditions. Sequencing, in contrast, is fast and genome-
wide, but is generally applied to homogenized tissues, discarding any spatial information.

In the first phase of my research, I have developed methods for performing mRNAseq
to globally profile gene expression in dissected subsets of single Drosophila embryos. The
patterns I measure are consistent between replicates, and also faithfully reproduce patterns
already known from in situ hybridization experiments. However, the global nature of this
experiment also reveals spatial patterning in many genes that have not been successfully
assayed, even in relatively large-scale projects. Furthermore, I demonstrate that this can
be used across samples from different developmental time points to produce a genome-wide
developmental atlas of zygotic gene activation.

Because the small sample size of slices of single embryos limited the ability to use stan-
dard cDNA library preparation protocols, I next assayed a number of previously published
protocols that were specifically designed for minute samples. Previous literature had not
addressed whether these protocols would be suitable for reconstructing spatial patterns,
and I was particularly concerned that pre-amplification steps would introduce unacceptable
non-linearities in the data. Upon analyzing the results, however, I determined that all the
protocols I tried were acceptable, and all approximately equally good. I also investigated a
few modifications to one of the protocols that reduces the cost of library preparation such
that it is no longer the primary limiting factor in terms of number of samples to be sequenced.

Finally, with these methods well refined, I have sliced and sequenced embryos with severe
genetic perturbations to maternally provided factors at the head of the patterning network.
Comparing embryos deficient in the key pioneer factor zelda, I have revealed that this lethal
mutant is nevertheless able to correctly produce the majority of gene expression patterns



in the wild-type embryo. Embryos lacking the maternally provided activator bicoid show a
greater loss of proper patterning, including the surprising result of ubiquitous over-expression
of a number of genes. Simple models of local action of bicoid cannot easily account for
this change. Surveying bicoid over-expression mutants and hunchback knock-downs has also
yielded a large number of unexpected patterning changes. All of these changes recapitulate
previously measured patterning changes, but also highlight new avenues to investigate.
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Chapter 1

Introduction

One of the central goals of modern genetics is, given the genome sequence combined with
some suitable set of initial conditions, to be able to predict the pattern of expression of
genes over space and time. Being able to effectively “decode” the genome would offer a wide
range of possible applications, from improved diagnostics to more reliably designing complex
biosynthetic pathways. Even absent the myriad practical applications, this understanding
(even within a single organism) would be a massive step forward towards understanding the
full beauty of life.

There are good reasons to hope that this goal, while certainly ambitious, is achievable.
First and foremost is the fact that complex organisms are able to faithfully reproduce them-
selves from only a single fertilized egg. This reliability means that the information encoded
in the genome must be able to be read consistently with only the material present in the
fertilized egg. While this is merely an “existence proof” that some kind of system is capable
of making sense of genomic information, the recent pace of scientific discovery and develop-
ment of new techniques has allowed us to probe cells with ever greater speed, breadth, and
resolution. With each technological achievement, we thus step ever closer to understanding
the complete genomic program.

Because rapid and heritable phenotypic changes are not common between generations,
we can surmise that the information that describes the morphology, physiology, and behavior
of an organism is encoded in a relatively stable form. The genome is certainly one of the
forms that this information is stored in, but I would argue that the information is also
stored in the laws of physics themselves. Much as a computer’s software does not fully
describe its operation, but relies on assumptions about how the machine will respond to its
instructions, so too is the program of the genome interpreted by a physical machine—the
organism itself —which is embedded in the real world[Citation needed]

The analytical tools and frameworks from physics have long provided an attractive lens
to bring to bear on questions in biology in general, and in molecular genetics in partic-
ular. Throughout the development of molecular biology over the last three quarters of a
century, physicists have provided numerous key insights, and I have taken particular inspira-
tion from several of these figures. Max Delbriick contributed valuable insights and rigorous
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mathematical formalism to an experiment that provided strong experimental evidence for
random—rather than directed—mutation (Luria & Delbriick 1943). Even understanding the
double-helical structure of DNA by erstwhile physicist Francis Crick (with data by physi-
cists Rosalind Franklin and Maurice Wilkins, and some insight from biologist James Watson)
suggested the mode of information transfer across successive generations (Watson & Crick
1953). In my own education, the work of Bill Bialek, Michael Elowitz, Uri Alon, and Alexan-
der van Oudenaarden among many others (in addition to those who came from non-physics
backgrounds) have shaped my thinking in terms of the kinds of questions from biology that
physics is well suited to answer (See Gregor, Tank, et al. 2007; Elowitz et al. 2002; Ozbudak
et al. 2002; Mangan & Alon 2003, as a few examples).

Even in the early embryo, physics provides a number of both limitations and implicit
instructions that inform the patterning of development. The terms “limitations” and “in-
structions” imply that there is some goal that the cells are either aided or hindered in their
quest to achieve. This amount of anthropomorphization is convenient, but ultimately one
must recognize that it is a metaphor to aid us in understanding. No such intentionality is
genuinely present in the system!. I will briefly describe two particularly relevant examples
that highlight the importance of physics in understanding biology.

The formation of the ventral furrow is the first step of gastrulation. During this process,
the blastula-stage embryo (a nearly hollow ball of cells) undergoes a relatively large scale
involution, with the single-layered ball producing two layers, the primordia of the meso-
derm and ectoderm (Sweeton et al. 1991; Campos-Ortega & Hartenstein 1997). The primary
method by which this is accomplished is mediated through subtle differences in tension on
the apical surface of the cells of the blastoderm (Polyakov et al. 2014). The tension builds
until reaching a critical point, when gastrulation begins and proceeds as a single, smooth
motion. While each cell does not have a concrete program of where to go or how to get
there, the boundary conditions of the embryo impose a path that is consistent across the
conditions under which the embryo develops. Thus, the proteins around the rim of the basal
surface of the cell have effectively offloaded some of the program of their destinations onto
the physics of the embryo.

While in the previous example, the embryo exploits physics to make the process of its
rearrangement more elegant, there are also circumstances where physics makes problems
harder than one might naively assume. Proper gene expression relies upon nuclei “reading
out” the concentration of various internal and external factors, then responding to them by
producing more factors. While our intuition of measuring the concentration of a molecule
may be informed by a career in the lab, where we can simply plug our molecule into some
device, the machinery inside a cell is not so lucky. Given the concentration of certain tran-
scription factors in the developing embryo, and the amount of time that the embryo evidently
takes to respond to those factors, it becomes clear that the accuracy of the measurement
of the concentration is primarily limited by the fact that these factors are actually diffusing

IThe question of what kinds of systems are capable of such intentionality is perhaps better left to the
Philosophy department. . .
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(Gregor, Tank, et al. 2007). While the extent to which gene regulatory systems are normally
at the edges of expression fidelity is debatable (Krotov et al. 2014), there seems to be a
non-trivial set of error-correcting machinery that is able to tolerate some amount of noise in
the input.

Even in the relatively deterministic situation of developmental transcription, it is impor-
tant to be aware of these limitations. It has recently been demonstrated that redundant
enhancers are prevalent throughout the fly genome (Perry, Boettiger & Levine 2011). While
the precise purpose of these conserved enhancers are still somewhat mysterious, one hypothe-
sized function is that they allow for precise and robust expression of their target genes (Lagha
et al. 2012). Effectively, they may compensate for noise, allowing nuclei multiple chances to
“get it right”. Alternatively, the very similar (yet not precisely identical) patterns might
cooperate to yield the proper pattern (Barolo 2012).

The first draft of “the” human genome? was completed in 2000, and the entire genome
officially completed in 2003. This was accompanied by a number of predictions that with
the genome, we would be able to understand, and ultimately cure, a large number of human
diseases. Despite these optimistic predictions, the last dozen years have not seen a massive
increase in the number of genetically informed treatments available, and those that we have
seen (for instance, a number of cancer treatments like Gleevec and BRCA testing) have
largely built on work that was begun even before the availability of the complete genome?.
Indeed, much ink has been spilled in the medical genetics field searching for the source of
“missing heritability”, the idea that known genetic markers explain little of the heritable
variation of traits (Reviewed in Eichler et al. 2010).

This project yielded a number of surprises. Building on a long history of humans believing
that they are categorically different from the rest of the animal kingdom, the predicted
number of coding genes based on the relative organismal complexity was much higher than
the complement of 20-25,000 that were found to be actually present (International Human
Genome Sequencing Consortium 2004). Thus, much of the complexity actually present in
the system® seems not to be present in the coding genes themselves. In fact, we shouldn’t
even necessarily expect that to be the case. Borrowing the “DNA as blueprint and parts
list” analogy, in constructing a more complicated building, for the most part the same nails,
rivets, and beams are used in an 5-story office building as in a skyscraper. Instead of having

20bviously, every individual has a distinct genome (Even identical twins should have dozens of somatic
mutations that distinguish them (Bruder et al. 2008; Roach et al. 2010)). On the one hand, this inter-
individual variation is a major factor in the inheritance of variation. However, from another perspective,
each of these changes is not so extreme that those carrying them are not able to form a relatively complete
human being. Even many genetically inherited birth defects affect a small number of pathways (important
though they may be).

3Surely some of this is due to a conservative regulatory system, but I am unconvinced that knowing
a genome sequence will be especially predictive for most “interesting” health traits. Also, where’s my
hoverboard?

41 think it fair to say that humans are categorically different from all other animals, and will continue
to be seen so until one of those animals writes a doctoral dissertation. How much that is due to complexity
is both debatable, and well beyond the scope of this dissertation.
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fundamentally different parts, the majority of the complexity lies in the arrangement. In
biological systems, genes are largely conserved, but there is an increased complexity of when
and where those genes are expressed.

Genome in hand, the next major phase in human genetics began with the ENCODE
(ENcyclopedia Of DNA Elements) project, a large, multi-center collaboration to identify
the “function”® of every segment of DNA in the human genome. Across many tissues, on
the order of 80% of the genome is subject to some sort of differential activity, although the
meaning of this activity is unclear. Even with the bulk of the data generation of that project
complete, a general predictive understanding of gene regulation has not emerged.

Experimental System

It is more clear than ever that a well-characterized model system is crucial for understanding
the function of these DNA elements. The fruit fly in particular is an attractive choice for
many reasons. Having been studied in the lab for more than 100 years, we have a thorough
understanding of the developmental genetics in numerous sub-systems. As one of the first
animals to have its genome sequenced, gene annotations are effectively complete®(Adams
et al. 2000). It is also inexpensive and straightforward to raise large cultures, and work on
invertebrates is unencumbered by IRB oversight concerns’. Nevertheless, it has a complex
life cycle, and many differentiation processes are homologous to those in vertebrates (See
L. H. Wu & Lengyel 1998; Muhr et al. 2001; Dush & Martin 1992; Panganiban et al. 1997,
for just a few examples).

The work presented here is performed entirely in the early Drosophila embryo, at the
pre-blastoderm and blastoderm stages. The period studied is approximately 1 hour long,
and takes place within 3 hours of the fertilized egg being laid. This system offers a number
of advantages for the purpose of attempting to infer the correlation between sequence and
expression.

First and foremost, the early Drosophila embryo is among the best studied systems in
developmental genetics. Fruit flies have been used for more than 100 years as tractable model
organisms, with a wealth of inherited morphological markers. More recently, Wieschaus,
Nusslein-Vollhard, and Lewis (among many others) brought the development of embryonic
phenotypes to the forefront, for which they were awarded the Nobel Prize in 1995.

The bicoid gradient, in particular, has been a fruitful subject in exploring developmental
patterning. This maternally deposited activator is localized to the anterior of the embryo.
This anterior localization is achieved through maternal deposition of the mRNA, which is

°I'm not going to touch this one, but I do recommend Graur et al. (2013).

6If anything, the FlyBase annotation has erred on the side of being too complete, including splice isoforms
with relatively tenuous experimental support. However, these are labelled clearly, and can be removed if
necessary.

"The crucial issue to me seems to be whether invertebrates are deserving of our ethical consideration.
While I have spent comparatively little time truly contemplating the richness of a lab fly’s life, it seems to
me at least as comfortable as one in the wild
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then translated into a diffusible protein that forms an approximately exponential gradient.
While a number of studies have demonstrated that a simple Synthesis-Diffusion-Degradation
model cannot completely account for the shape of the gradient, the approximation works
surprisingly well (Grimm & E. Wieschaus 2010; Grimm, Coppey, et al. 2010; Drocco et al.
2012). Despite these higher order effects, the relatively simple model is useful for making
mechanistic predictions of the response to bicoid (Gregor, Tank, et al. 2007; Gregor, E. F.
Wieschaus, et al. 2007; Gregor, Bialek, et al. 2005).

Another attractive feature of the early Drosophila embryo is that the system is in a
relatively naive state. Recent experiments examining the deposition of chromatin marks
at this stage have suggested that most histones are unmodified throughout the first 13
syncytial divisions, and only acquire activating or repressive marks during Stage 5, roughly
concomitant with the first major wave of zygotic genome activation (X.-y. Li, Harrison, et al.
2014).

In the past three decades of work, the Drosophila research community has teased apart
many of the key factors in the network that directs primary anterior-posterior patterning.
Consistent with the design of circuits in other gene expression systems (Shen-Orr et al. 2002;
Mangan & Alon 2003), the anterior-posterior patterning network is heavily enriched for feed-
forward loops. In this architecture, genes at the first layer directly affect gene expression in
(at least) two subsequent layers. This arrangement of interactions has a number of theoretical
properties that allow for robust, tightly spatially positioned expression.

In general, most fine patterns are directed by a modular system of cis-regulatory modules
(CRMs)—regions of sequence on the order of 1 kilobase that are accessible to transcription
factors (TFs). These CRMs are often called enhancers, and the two terms are used somewhat
interchangeably—though in general CRMs can also down-regulate the expression of a gene or
set of genes via repressive means. In the relatively compact Drosophila genome, the majority
of enhancers are within a few 10s of kbase of the genes they drive, though distances of nearly
1 megabase have been reported in other organisms (Jeong et al. 2006). Given this distance,
it is widely assumed that enhancers loop to form physical contact with the genes they drive.
Different subsets of the same pattern can be driven by different enhancers, and there are
even reported cases of two or more enhancers that drive effectively identical patterns in the
same gene (Perry, Boettiger & Levine 2011). Nevertheless, it is unclear how these CRMs
make contact with the core promoters they drive.

The most extensively studied enhancer in Drosophila—if not all of animal development—
is the one that drives the second stripe of the even-skipped gene, commonly called the “eve
stripe 2 enhancer”. A series of experiments in the late 1980s and early 1990s (Frasch &
Levine 1987; Harding et al. 1989; Kraut & Levine 1991; Small, Kraut, et al. 1991; Small
et al. 1992) worked out the molecular details of the system. In brief, broad activation
domains driven by the TFs bicoid and hunchback pervade the anterior of the embryo, bind
to the stripe 2 enhancer, and activate expression. Sharp borders are established through the
repressive actions of giant in the anterior and Kruppel at the posterior. This motif of broad
distribution of activators and sharp borders being established by repressors is also present
in other enhancers found in the early fly embryo (Small et al. 1996).
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In part driven by the abundance of data, early genes in this system have become a popular
choice for mathematical modeling as well (Jaeger, Blagov, et al. 2004; Janssens et al. 2006).
While they currently require an abundance of training data and do not yet take into ac-
count the full range of possible regulatory mechanisms, thermodynamic modeling has shown
some promise in predicting the expression patterns (Samee & Sinha 2014). More recently,
multi-factor logistic regression has been used to study the eve stripes in cellular-resolution
detail, and to distinguish between alternative models of TF action (Ilsley et al. 2013; Staller,
Vincent, et al. 2015). As a step towards understanding gene expression networks as ab-
stract, dynamical systems, several groups have sought to understand key network features
like criticality and dynamical attractors (Krotov et al. 2014; Jaeger & Monk 2014).

Despite the extensive work to understand this system, the majority of gene interactions
are only understood at an abstract level—for instance, gene X acts on gene Y to form such-
and-such a pattern. Only in a handful of cases do we truly understand the precise mechanisms
by which these activation and repression steps are achieved in the context of TF binding
to well-understood sites. Furthermore, while we are able to perform Chromatin Immuno-
Precipitation (ChIP) experiments to directly assay the binding sites of a wide variety of
transcription factors, it is not generally possible to identify from sequence alone whether any
given potential binding site will be bound, to what level, and why (MacArthur et al. 2009;
Kaplan et al. 2011; Cheng et al. 2013; Zabet & Adryan 2015). Furthermore, even knowing the
locations and activities of CRMs is not sufficient to predict gene expression, since enhancers
can loop across genes that separate a gene from its regulatory sequence (Wilczynski et al.
2012)

We also lack a distinct understanding of how the regions of DNA that encode these
CRMs “know” to be functionally active. There exists a deep literature in a variety of
systems of the particular kinds of histone marks and chromatin structure that distinguish
active regulatory regions from parts of the genome that are not capable of driving patterns;
typically this consists of histone H3K4 mono-methylation and un-compact DNA that is
accessible to DNase and other DNA modifying and binding enzymes (Negre, C. D. Brown,
Shah, et al. 2010; Negre, C. D. Brown, Ma, et al. 2011; Bogdanovic et al. 2012; Filion et al.
2010; Thomas et al. 2011; X.-y. Li, Thomas, et al. 2011; Giresi et al. 2007; Buenrostro et al.
2013).

While there are certainly new facets of enhancer-dependent regulation that have been
illuminated only relatively recently (Shadow enhancers in Perry, Boettiger, Bothma, et al.
2010; and dynamic range tuning in H. G. Garcia et al. 2013), it seems likely that we have a
handle on enough of the biology to be able to predict a large number of expression patterns.
What is missing, however, is a sufficiently large set of training examples. Historically, we
have painstakingly generated these examples by testing possible CRM constructs in a range
of embryos mutant for putative TFs that drive that CRM. However, this approach is labor
intensive, expensive, and relatively slow (taking several months between design of a construct
and having the lines in hand to test them). Furthermore, the transgenic CRMs that have
been tested thus far are not in the endogenous locus, introducing potential artifacts.

The goal of the project presented in this dissertation is to study the perturbations of
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every gene in response to a broad range of conditions. Though clearly not the be-all-end-all
solution to the general problem of predicting gene expression, I will demonstrate that such
a dataset is useful in revealing new patterns, highlighting changes in patterned genes after
perturbation, and making progress towards understanding the function of non-coding DNA.

Technical methods

The work I will present depends heavily on massively parallel short-read sequencing assays®.
In particular, T use Illumina sequencing-by-synthesis to profile millions of distinct DNA
molecules in parallel.

For profiling messenger RNA populations, there are several major steps. First, the mRNA
is converted to DNA, which is more stable and has a well-developed collection of commercial
available enzymes that perform useful modifications. We then selectively convert only the
mRNA into cDNA through reverse-transcription, because the bulk of the RNA molecules in
a cell are actually part of the ribosome or other cellular machinery, and uninteresting for
the types of analyses we are interested in. Next, appropriate sequencing adapters are ligated
onto the cDNA for use in the sequencers.

The library of adapter-ligated cDNA molecules is then delivered to the sequencing center.
Here, the molecules are hybridized at low concentration to probes complementary for the
adapter sequence on the surface of a glass slide; the low concentration ensures that most
molecules will not be close to another, different molecule. The single molecules are then
amplified in a process called bridge-PCR, whereby each single-molecule spot is copied to a
strictly nearby probe. Thus, the single molecule becomes a cluster of effectively identical
products. Finally, the sequence is actually generated: for each base, a fluorescent-labelled
nucleotide with a terminator is incorporated on the complementary strand, imaged to call the
base that was incorporated, then the terminator moiety is removed. Through this process,
the sequence of hundreds of millions of spots can be determined over just a few days (Bentley
et al. 2008).

Overview of the approach

The work described in this dissertation generated a genome-wide atlas of gene expression pat-
terns using high-throughput sequencing of cDNAs. Sequencing is relatively fast—turnaround
time from embryos to quantified global expression levels is as little as 3 weeks (though usually
longer due to the desire for multiplexing and the variable length of the sequencing queue).
Moreover, it is inexpensive compared to any other conceivable method for generating simi-

8The collection of approaches are sometimes called Next-Gen Sequencing (NGS), though there is actually
a third generation of technologies that are starting to emerge, all of which use un-amplified single DNA
molecules to generate their output. These single molecule sequencing approaches are still relatively new,
and on a cost per base comparison are not yet competitive with NGS approaches, though they do have a
number of attractive features which make them useful complements.
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lar coverage of the genome?. Using careful sectioning of Drosophila embryos, RNA can be
relatively easily recovered in sufficient quantities to perform mRNA-seq experiments.

In effect, any biological experiment is a slice across a multi-dimensional problem space.
The nature of a slice is that it keeps information from one direction, while discarding infor-
mation from others. An in situ hybridization micrograph, for instance, keeps information in
(for instance) the X and Y directions', while discarding information along Z. However, in
addition to the spatial dimensions represented, the image also implicitly keeps information
only a single time point (the time dimension), and only from one gene out of all of the
genes being expressed (the “genome dimension”). When we discard information from other
dimensions, there is the option of either averaging across those dimensions, or in taking just
a small subset. For instance, when looking at a 2-dimensional image of a 3-dimensional
object, the Z direction is averaged over some more or less limited range (typically the depth
of focus of the image, which can be much greater than the X-Y resolution of the image).
Finally, different slices can be combined to gain a sense of the change across space, time, or
genome. The key to designing informative experiments, then, is to choose which dimensions
we are capable of looking at, and which ones we must average across.

In this work, I extend and improve upon genome-wide methods to provide spatially
resolve slices. In situ hybridization experiments, for instance, keep X and Y, average over Z,
and discard the large majority of the genes expressed in any given individual. By contrast,
typical RNAseq studies (J. B. Brown et al. 2014; Tan et al. 2013; Graveley et al. 2011;
Mortazavi et al. 2008, to name a very few) with many individuals will keep the full coverage
of genes, while averaging over X, Y, Z, and time. The tradeoff that I set out to make is to
keep information in the X, genome, and time directions, while only averaging over Y and Z.

Such an atlas of gene expression is not without certain limitations. First, the spatial
resolution is a good deal lower than in imaging based studies. Second, because we don’t
fully understand the relationship between all genes and the enhancers that pattern them,
our gene-level atlas is not capable of distinguishing the use of different enhancers that, in
aggregate, produce relatively complex spatial patterns, even though each is restricted only to
a subset of the embryo. Nevertheless, compared to examining in situ hybridization patterns
of the thousands of genes bound by a given TF, this approach is fast and inexpensive.

9There is a common idea that sequencing is an expensive experiment overall. I do not disagree with
this statement, but the costs are not generally where one would expect. While a lane of sequencing does
cost on the order of $1000, plus sequencing reagents, advances in sequencing technology allow multiplexing
of approximately 30-50 different samples to a suitable depth of coverage, and a skilled user can generate
these libraries in a week. A similar qPCR experiment, at say $1/gene/samples (probably quite generous),
would only be able to assay ~ 30 genes. Instead, I believe that the majority of the true cost of a sequencing
experiment lies in the researcher’s time taken to analyze the samples. Since both graduate students and
postdocs cost a grant on the order of $60,000/year, one extra week of time spent analyzing the data wipes
out any potential savings. A good RNAseq dataset should be able to test lots of hypotheses, so it will cost
more to analyze it fully, but also generate much more science per dollar.

0Throughout this work, I will adopt the convention from decades of Drosophila embryology, where
Anterior is to the left (X), dorsal is up (Y), and the left-right axis comes out of the page (Z).
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Here 1 show progress in determining genome-wide spatial patterns in single Drosophila
embryos by:

1. the development and demonstration of methods in wild-type Drosophila melanogaster
(Chapter 2),

2. the improvement of those methods for generation of sequencing libraries from very
small inputs at a reasonable cost (Chapter 3), and

3. the application of those methods towards a number of patterning mutants in D. mel-
anogaster (Chapter 4).
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Chapter 2

Sequencing mRNA from Cryo-Sliced
Drosophila Embryos to Determine
Genome-Wide Spatial Patterns of
Gene Expression

Note that the bulk of this chapter was published as:
Combs, P. A. & Eisen, M. B. Sequencing mRNA from cryo-sliced Drosophila embryos to
determine genome-wide spatial patterns of gene expression. PLoS ONE 8, 71820 (2013).

2.1 Abstract

Complex spatial and temporal patterns of gene expression underlie embryo differentiation,
yet methods do not yet exist for the efficient genome-wide determination of spatial ex-
pression patterns during development. In situ imaging of transcripts and proteins is the
gold-standard, but it is difficult and time consuming to apply to an entire genome, even
when highly automated. Sequencing, in contrast, is fast and genome-wide, but is generally
applied to homogenized tissues, thereby discarding spatial information. To take advantage
of the efficiency and comprehensiveness of sequencing while retaining spatial information,
we cryosectioned individual blastoderm stage Drosophila melanogaster embryos along the
anterior-posterior axis and developed methods to reliably sequence the mRNA isolated from
each 25um slice. The spatial patterns of gene expression we infer closely match patterns
previously determined by in situ hybridization and microscopy. We applied this method to
generate a genome-wide timecourse of spatial gene expression from shortly after fertiliza-
tion through gastrulation. We identified numerous genes with spatial patterns that have
not yet been described in the several ongoing systematic in situ based projects. This sim-
ple experiment demonstrates the potential for combining careful anatomical dissection with
high-throughput sequencing to obtain spatially resolved gene expression on a genome-wide
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scale.

2.2 Introduction

Analyzing gene expression in multicellular organisms involves a tradeoff between the spatial
precision of imaging and the efficiency and comprehensiveness of genomic methods. RNA in
situ hybridization (ISH) and antibody staining of fixed samples, or fluorescent imaging of live
samples, provides high resolution spatial information for small numbers of genes (Fowlkes
et al. 2008; Tomancak et al. 2007; Lécuyer et al. 2007). But even with automated sample
preparation, imaging, and analysis, in situ based methods are difficult to apply to an entire
genome’s worth of transcripts or proteins. High throughput genomic methods, such as DNA
microarray hybridization or RNA sequencing, are fast and relatively inexpensive, but, at
least for the small species worked with in most labs, the amount of input material they
require has generally limited their application to homogenized samples, often from multiple
individuals. Methods involving the tagging, sorting, and analysis of RNA from cells in
specific spatial domains have shown promise (Steiner et al. 2012), but remain non-trivial to
apply systematically, especially across genotypes and species.

Recent advances in DNA sequencing suggest an alternative approach. With increasingly
sensitive sequencers and improved protocols for sample preparation, it is now possible to
analyze small samples without amplification. Several years ago we developed methods to
analyze the RNA from individual Drosophila embryos (Lott et al. 2011). As we often recov-
ered more RNA from each embryo than was required to obtain accurate measures of gene
expression, we wondered whether we could obtain good data from pieces of individual em-
bryos, and whether we could obtain reliable spatial expression information from such data.
To test this possibility, we chose to focus on anterior-posterior (A-P) patterning in the early
D. melanogaster embryo, as the system is extremely well-characterized and the geometry of
the early embryo also lends itself to biologically meaningful physical dissection by simple
sectioning along the elongated A-P axis.

2.3 Results

To test whether we could consistently recover and sequence RNA from sectioned D. melan-
ogaster embryos, we collected embryos from our laboratory stock of the line CantonS (CaS),
aged them for approximately 2.5 hours so that the bulk of the embryos were in the cellular
blastoderm stage, and fixed them in methanol. We examined the embryos under a light
microscope and selected single embryos that were roughly halfway through cellularization
(mitotic cell cycle 14; developmental stage 5). We embedded each embryo in a cryoprotecting
gel, flash-froze it in liquid nitrogren, and took transverse sections along the anterior-posterior
axis. For this initial trial we used 60um sections, meaning that we cut each approximately
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350pum embryo into six pieces. We placed each piece into a separate tube, isolated RNA
using Trizol, and prepared sequencing libraries using the Illumina Tru-Seq kit .

In early trials we had difficulty routinely obtaining good quality RNA-seq libraries from
every section. We surmised that we were losing material from some slices during library
preparation as a result of the small amount (approximately 15ng) of total RNA per slice.
To overcome this limitation, after the initial RNA extraction we added RNA from a single
embryo of a distantly related Drosophila species to each tube to serve as a carrier.

We used RNA as a carrier, instead of a standard carrier like salmon sperm DNA or
linear acrylamide, so that the carrier was present throughout the experiment, and we used
RNA from multiple Drosophila species in particular so that the sequence reads from the
carrier RNA would not be wasted. In this first experiment the carrier RNA was part of
an experiment examining gene expression in early embryos of other Drosophila species. We
only used embryos from species that were fully sequenced and sufficiently diverged from D.
melanogaster to allow us to readily separate reads derived from the D. melanogaster slice
and the carrier species computationally after sequencing.

With the additional approximately 100ng of total RNA from the carrier in each sample,
library preparation became far more robust. We independently sliced three CaS embryos,
prepared libraries from the sliced RNA using the standard TruSeq RNA kit, and sequenced
them using an Illumina HiSeq 2000, obtaining approximately 40 million 50 bp paired-end
reads for each slice+carrier sample. We aligned these reads to the D. melanogaster and
carrier genomes using TopHat(Langmead & Salzberg 2012; Kim et al. 2013), and identified
between 1.7 and 31.4 percent of reads as having come unambiguously from D. melanogaster
(see Table 2.1). We then used Cufflinks(Trapnell, Roberts, et al. 2012) to infer expression
levels for all annotated mRNAs using the D. melanogaster reads alone.

The data for each slice within an embryo were generally highly correlated (Supplemental
Figure 2.51), reflecting the large number of highly expressed genes with spatially uniform
expression patterns. The data for equivalent slices of embryos 2 and 3 were also highly
correlated, while the slices for embryo 1 were systematically less well matched to their coun-
terparts in embryos 2 and 3 (Supplemental Figure 2.52), suggesting that it may have been
sampled at a slightly different developmental stage.

To examine how well our data recapitulated known spatial profiles, we identified a panel
of genes with known anterior-posterior patterns of gene expression and compared our data to
their published expression patterns. Figure 2.1A shows RNA in-situ hybridization patterns
from the Berkeley Drosophila Genome Project (BDGP) (Tomancak et al. 2007) alongside
the expression data for that gene from our sliced embryos, demonstrating a close qualitative
agreement between the visualized expression patterns and our sliced RNA-seq data.

In order to more quantitatively compare our data to existing patterns, we constructed a
reference set of spatial expression patterns along the A-P axis using three-dimensional “vir-
tual embryos” from the Berkeley Drosophila Transcription Network Project, which contain
expression patterns for 95 genes at single-nucleus resolution (Fowlkes et al. 2008). We trans-
formed the relative expression levels from these images into absolute values (FPKM) using
genome-wide expression data from intact single embryos (Lott et al. 2011). We compared the
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Figure 2.1. Expression in the slices closely matches published expression data. (A)
Published in situ patterns for 33 genes are shown alongside reconstrucred spatial patterns for
these genes from each of the three 60um sliced CaS embryos. The reconstructed patterns were
each scaled to the slice with the highest expression level for each embryo individually. (B) To
evaluate the overall quality of our reconstructed spatial expression patterns, we compared
expression levels of 98 genes from each slice in our 60 um data (averaged across the three
embryos) to all possible 60um sections from a cellular resolution spatial atlas of gene expression
from the Berkeley Drosophila Transcription Network Project (Fowlkes et al. 2008) with absolute
expression levels computed using data from Lott et al. 2011. We computed the posterior
probability that a slice from our data corresponded to a slice from the BDTNP atlas using a
simple Bayesian procedure that compares the level of each gene in a slice to the level of that gene
in sections of the atlas. The line graphs are the posterior probabilities that each slice started at a
given position in the atlas. Each slice has a clear peak and the ordering of the peaks corresponds
to the ordering of the slices, as expected. The colored bars show the portion of the embryo
spanned by the slice assuming it begins at the peak in the posterior probability distribution.
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Table 2.1. Sequencing statistics for sliced single-stage wild-type mRINA-Seq samples
Counts are for read ends. Discordant read ends are always classed as ambiguous, but failure of

one end to map does not disqualify the other.

Replicate | Slice | Carrier | Bar- Total Reads | Uniquely mapped | Ambiguous
Species | code D. mel reads (%) Reads (%)
Index
1 1 D. per 1 69,339,972 | 2,284,228 (3.2%) 1,634,055 (2.3%)
1 2 D. per 2 73,632,862 | 3,706,630 (5.0%) 1,603,444 (2.1%)
1 3 D. per 3 82,076,328 | 6,002,034 (7.3%) 1,774,485 (2.1%)
1 4 D. per 4 73,437,708 | 6,401,565 (8.7%) 1,592,665 (2.1%)
1 5 D. per 5 75,922,812 | 4,951,178 (6.5%) 1,559,097 (2.0%)
1 6 D. per 6 78,623,784 | 1,355,079 (1.7%) 1,574,067 (2.0%)
2 1 D. wil 7 59,813,036 | 4,066,295 (6.7%) 878,476 (1.4%)
2 2 D. wil 8 90,961,338 | 15,212,716 (16.7%) | 1,301,095 (1.4%)
2 3 D. wil 9 73,201,902 | 14,855,374 (20.2%) | 911,768 (1.2%)
2 4 D. wil 10 75,754,772 | 23,858,301 (31.4%) | 1,136,031 (1.4%)
2 5 D. wil 11 84,497,566 | 10,026,713 (11.8%) | 1,080,910 (1.2%)
2 6 D. wil 12 66,316,952 | 13,122,508 (19.7%) | 898,776 (1.3%)
3 1 D. moj | 13 75,847,986 | 12,496,248 (16.4%) | 3,615,452 (4.7%)
3 2 D. moj | 14 72,497,660 | 4,005,714 (5.5%) 803,381 (1.1%)
3 3 D. moj | 15 77,532,368 | 11,138,154 (14.3%) | 772,446 (0.9%)
3 4 D. moj | 16 83,400,882 | 8,227,562 (9.8%) 861,839 (1.0%)
3 5 D. moj | 18 83,608,454 | 2,630,069 (3.1%) 795,169 (0.9%)
3 6 D. moj | 19 85,823,784 | 2,239,493 (2.6%) 829,382 (0.9%)

observed expression for these 95 genes from an average of each of our slices to all possible
60pum slices of these virtual embryos (Figure 2.1B). High scores for most slices fell into
narrow windows, with the best matches for each slice falling sequentially along the embryo
with a spacing of about 60um , the same thickness as the slices.

We next used the program Cuffdiff (Trapnell, Hendrickson, et al. 2013) to identify 85
genes with statistically significant differences in expression between slices (Dataset S2; this
is a very conservative estimate). We compared these genes to those examined by the BDGP,
the most comprehensive annotation of spatial localization in D. melanogaster development
that we are aware of (Tomancak et al. 2007). Of our differentially expressed genes, 21 had
no imaging data available, and 33 were annotated as present in a subset of the embryo (the
annotation term meant to capture patterned genes); the remaining 31 genes showed either
clear patterns that were not annotated with the most general keyword, or no clear staining
(Supplemental Figure 2.S3). There were 194 genes tagged by the BDGP as patterned that
were not picked up as having statistically significant patterns in our data. However, most of
these had primarily dorsal-ventral patterns, faint patterns, later staging in the images used
for annotation, or had good qualitative agreement with our data but fell above the cutoff
for statistical significance (Supplemental Figure 2.54).

As a more sensitive approach to finding patterned genes, we applied k-means clustering



CHAPTER 2. GLOBAL PATTERNS FROM CRYO-SLICED EMBRYOS 15

to our data. We first filtered on expression level (at least one slice in one embryo with FPKM
> 10) and agreement between replicates (average Pearson correlation between embryos of
> 0.5), then clustered based on normalized expression (k = 20, centroid linkage; 20 was
chosen empirically as smaller k’s merged genes with different patterns and larger k’s provided
no additional useful information) (de Hoon et al. 2004). We identified several broad classes
of expression, including localization to each of the poles, and five different gap gene-like
bands along the AP axis (Figure 2.2 and Supplemental Figure 2.S5). Of the 745 genes,
only 349 had images in the BDGP set(Tomancak et al. 2007). Staining for these genes is
sometimes undetectable and well-matched stages are often missing from the databases, but
where comparisons were possible, the BDGP image data agrees with our RNA-seq patterns
(Supplemental Figure 2.56).

To extend our dataset, we collected individual embryos from seven different time points
based on morphology—stage 2, stage 4, and 5 time points within stage 5—and sliced them
into 25um sections, yielding between 10 and 15 contiguous, usable slices per embryo. For
these embryos we used total RNA from the yeasts Saccharomyces cerevisiae and Torulas-
pora delbruckii as carrier, which are so far diverged as to have fewer than 0.003% of reads
ambiguously mapping.

These finer slices are better able to distinguish broad gap-gene domains, with several slices
of relatively low expression between the multiple domains of hb, kni, and ¢t. Excitingly, we
can also distinguish the repression between stripes of pair-rule genes like eve as well (Figure
2.3). Given the non-orthogonal orientation of the anterior-most and posterior-most eve
stripes relative to the AP axis, we do not expect to see all 7 pair-rule stripes, but at least
three can be unambiguously observed.

Putting the 60pum and 25um slice datasets together, we find a large number of genes
with reproducible patterns in the 60um slices whose formation over time can be clearly
seen in the timed 25um slices, including many without previously described early patterns
(Supplemental Figure 2.57).

2.4 Discussion

The experiments reported here demonstrate that slicing and sequencing animal embryos is a
practical and effective method to systematically characterize spatial patterns of expression.
While we are by no means the first to dissect samples and characterize their RNAs—Ding
& Lipshitz 1993 pioneered this kind of analysis twenty years ago—to our knowledge we are
the first to successfully apply such a technique to report genome-wide spatial patterns in a
single developing animal embryo.

Given the degree to which the D. melanogaster embryo has been studied, and the presence
of at least two large in situ based studies whose goals were to systematically identify and
characterize genes with patterned expression in the embryo, we were surprised by the large
number of genes we find as clearly patterned that had not been previously described as such.
We note in particular a large number of genes with expression restricted to the poles, most
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Figure 2.2. Heat maps of gene expression clusters. Of the & = 20 clusters, 13 with
non-uniform patterns are shown. The expression levels for each gene was normalized for
clustering and display so that the maximum expression of each gene in each embryo is dark blue.
The plot above each cluster is the mean normalized expression level in that cluster. All clusters
are listed in Dataset S3.
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Figure 2.3. Expression of key patterning genes across early development. Expression
levels in the 25um timeseries are normalized to the highest expression level at any time pioint.
For slices with poor quality data (timepoint 4, slice 10; timepoint 6, slice 6; timepoint 7, slice 7;
and timepoint 7, slice 8) data imputed from neighboring slices is shown. Expression levels for the
60pm slice samples are normalized to the highest level in each embryo.

with no known role in either anterior patterning or pole cell formation or activity. This
emphasizes the potential for sequencing-based methods to replace in situ based studies in
the systematic analysis of patterned gene expression, as they are not only simpler, cheaper,
and easier to apply to different species and genetic backgrounds, but appear to be more
sensitive.

The data we present here are far from perfect - the relatively small number of reads per
slice (due to the presence and sequencing of carrier RNA) means that the slice by slice data
are somewhat noisy. However the consistency between replicates and the agreement between
the 25um and 60pm data demonstrate that the experiment clearly worked, and additional
sequencing depth and better methods for working with small samples should greatly reduce
the noise as we move forward.

Obviously, to truly replace in situ based methods, sequencing based methods will need
to achieve greater resolution than presented here. One can envision several basic approaches
to achieving the ultimate goal of determining the location of every RNA in a spatially
complex tissue. Sequencing RNAs in place in intact tissues would obviously be the ideal
method, and we are aware of several groups working towards this goal. In the interim,
however, methods to isolate and characterize smaller and smaller subsets of cells are our
only alternative. One possibility is to combine spatially restricted reporter gene expression
and cell sorting to purify and characterize the RNA composition of differentiated tissue—
c.f. Steiner et al. 2012. While elegant, this approach cannot be rapidly applied to different
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genetic backgrounds, requires separate tags for every region/tissue to be analyzed, and will
likely not work on single individuals.

Sectioning based methods offer several advantages, principally that they can be applied
to almost any sample from any genetic background or species, and allow for the biological
precision of investigating single individuals. The 60pum and 25um slices we used here
represent reasonable tradeoffs between sequencing depth and spatial resolution given the
current limits of sample preparation and sequencing methods, but with methods having been
described to sequence the RNAs from single cells, and with sequencing costs continuing to
plummet, it should be possible to obtain far better resolution in the near future. A rough
estimate suggests that a single embryo contains enough RNA to sequence over 700 samples
to a depth of 20 million reads. Thus it is theoretically possible to dice an embryo into
20pm cubes and sequence each one to obtain genome-wide three-dimensional expression
data, although this presents several difficult but likely solvable technical challenges, especially
handling and tracking hundreds or thousands of tiny samples.

2.5 Materials and Methods

Fly Line, Imaging, and Slicing

We raised flies on standard media at 25° in uncrowded conditions, and collected eggs from
many 3 to 10-day old females from our Canton-S lab stocks. We washed and dechorionated
the embryos, then fixed them according to a standard methanol cracking protocol. Briefly,
we placed embryos in 20ml glass vials containing 10ml of heptane and 10ml of PEM (100mM
PIPES, 2mM EGTA, 1mM MgSO4) and mixed gently. We then removed the aqueous phase,
added 10ml of methanol, shook vigorously for 15-30 seconds, and collected the devitellinized
embryos, which we washed several times in methanol to remove residual heptane. We then
placed the fixed embryos on a slide in halocarbon oil, and imaged on a Nikon 80i with DS-5M
camera. After selecting embryos with the appropriate stage according to depth of membrane
invagination and other morphological features, we washed embryos with methanol saturated
with bromophenol blue dye (Fisher, Fair Lawn NJ), aligned them in standard cryotomy
cups (Polysciences Inc, Warrington, PA), covered them with OCT tissue freezing medium
(Triangle Biomedical, Durham, NC), and flash froze them in liquid nitrogen.

We sliced frozen embryos on a Microm HM 550 (Thermo Scientific, Kalamozoo, MI) at
a thickness of 60pum or 25um . We adjusted the horizontal position of the blade after every
slice to eliminate the possibility of carry-over from previous slices, and used a new blade
for every embryo. We placed each slice in an individual RNase-free, non-stick tube (Life
Technologies, Grand Island, NY).
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RNA Extraction, Library Preparation, and Sequencing

We performed RNA extraction in TRIzol (Life Technologies, Grand Island, NY) according
to manufacturer instructions, except with a higher concentration of glycogen as carrier (20
ng) and a higher relative volume of TRIzol to the expected material (1mL, as in Lott et al.
2011). For the 60um slices, we pooled total RNA from each slice with total RNA from single
D. persimilis, D. willistoni, or D. mojavensis embryos, then made libraries according to a
modified TruSeq mRNA protocol from I[llumina. We prepared all reactions with half-volume
sizes to increase relative sample concentration, and after AmpureXP cleanup steps, we took
care to pipette off all of the resuspended sample, leaving less than 0.5 pL, rather than the
1-3 L in the protocol. Furthermore, we only performed 13 cycles of PCR amplification
rather than the 15 in the protocol, to minimize PCR duplication bias.

Libraries were quantified using the Kapa Library Quantification kit for the Illumina
Genome Analyzer platform (Kapa Biosystems) on a Roche LC480 RT-PCR machine accord-
ing to the manufacturer’s instructions, then pooled to equalize index concentration. Pooled
libraries were then submitted to the Vincent Coates Genome Sequencing Laboratory for
50bp paired-end sequencing according to standard protocols for the Illumina HiSeq 2000.
Bases were called using HiSeq Control Software v1.8 and Real Time Analysis v2.8.

Mapping and Quantification

Reads were mapped using TopHat v2.0.6 to a combination of the FlyBase reference genomes
(version FB2012_05) for D. melanogaster and the appropriate carrier species genomes with
a maximum of 6 read mismatches (McQuilton et al. 2012; Trapnell, Pachter, et al. 2009).
Reads were then assigned to either the D. melanogaster or carrier genomes if there were at
least 4 positions per read to prefer one species over the other. We used only the reads that
mapped to D. melanogaster to generate transcript abundances in Cufflinks.

Data and Software

We have deposited all reads in the NCBI GEO under the accession number GSE43506. The
processed data are available at the journal website (Dataset S1) and at http://eisenlab.
org/sliceseq with a search feature for the 25um dataset. All custom analysis software
is available https://github.com/eisenlab/SliceSeq, and is primarily written in Python
(Van Rossum & Drake 2003; Cock et al. 2009; Hunter 2007; Jones et al. 2001; Perez &
Granger 2007). Commit bOb115a was used to perform all analyses in this paper.

Acknowledgments

We thank peer reviewer Boris Adryan for helpful comments, and many readers who con-
tributed feedback on a preprint of the manuscript posted on MBE’s blog and the arXiv. We



CHAPTER 2. GLOBAL PATTERNS FROM CRYO-SLICED EMBRYOS 20

also thank members of the Eisen lab for their assistance, especially Susan Lott and Jackie
Villalta.

2.6 Supplemental Figures



CHAPTER 2. GLOBAL PATTERNS FROM CRYO-SLICED EMBRYOS 21

1

2

A"
o

3

ﬂﬂi

4

5

AN KAARK NNRAY

4
3
k

CaS2
5 4 3 2
CA
1
~ . (Y o 1 5.t
- - '?‘.. i b3 d
< E B
* 1
.
CaS3
5 4 3 2
1 E |
- ’: 1 E |

2

3

o .
o . so
g ERL ElA i
I s
3
3
" "

5

Supplemental Figure 2.S1. Correlation of slices within embryos. Log-log plots of FPKM
values between slices within each of the three 60um sliced embryos.
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Supplemental Figure 2.S2. Correlation of slices between embryos. Log-log plots of
FPKM values of corresponding slices between each of the three 60um sliced embryos.
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Supplemental Figure 2.S3. Genes called as patterned by Cuffdiff lacking subset tag
in BDGP database. Images are from BDGP; graphs are average of three CaS embryos. Many
of these are known patterned genes, highlighting the incompleteness of available annotations.
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Supplemental Figure 2.S4. Genes with subset tag in BDGP not called as patterned

by Cuffdiff.
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Chapter 3

Low-cost, low-input RN A-seq
protocols perform nearly as well as
high-input protocols

Note that the bulk of this chapter was published as:
Combs, P. A. & Eisen, M. B. Low-cost, low-input RNA-seq protocols perform nearly as
well as high-input protocols. PeerJ 3, ¢869 (2015)

3.1 Abstract

Recently, a number of protocols extending RNA-sequencing to the single-cell regime have
been published. However, we were concerned that the additional steps to deal with such
minute quantities of input sample would introduce serious biases that would make analysis
of the data using existing approaches invalid. In this study, we performed a critical evaluation
of several of these low-volume RNA-seq protocols, and found that they performed slightly
less well in per-gene linearity of response, but with at least two orders of magnitude less
sample required. We also explored a simple modification to one of these protocols that, for
many samples, reduced the cost of library preparation to approximately $20/sample.

3.2 Introduction

Second-generation sequencing of RNA (RNA-seq) has proven to be a sensitive and increas-
ingly inexpensive approach for a number of different experiments, including annotating genes
in genomes, quantifying gene expression levels in a broad range of sample types, and de-
termining differential expression between samples. As technology improves, transcriptome
profiling has been able to be applied to smaller and smaller samples, allowing for more pow-
erful assays to determine transcriptional output. For instance, our lab has used RNA-seq on
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single Drosophila embryos to measure zygotic gene activation (Lott et al. 2011) and medium-
resolution spatial patterning (Combs & Eisen 2013). Further improvements will allow an even
broader array of potential experiments on samples that were previously too small.

For instance, over the past few years, a number of groups have published descriptions of
protocols to perform RNA-seq on single cells (typically mammalian cells) (Tang et al. 2009;
Ramskold et al. 2012; Sasagawa et al. 2013; Hashimshony et al. 2012; Islam et al. 2011).
A number of studies, both from the original authors of the single-cell RNA-seq protocols
and from others, have assessed various aspects of these protocols (such as the lower limit of
detection, strand specificity, and uniformity of coverage), both individually and competitively
(Levin et al. 2010; Bhargava et al. 2014; A. R. Wu et al. 2014; Marinov et al. 2013). One
particularly powerful use of these approaches is to sequence individual cells in bulk tissues,
revealing different states and cellular identities (Buganim et al. 2012; Treutlein et al. 2014).

However, we felt that published descriptions of single-cell and other low-volume protocols
did not adequately address whether a change in concentration of a given transcript between
two samples would result in a proportional change in the FPKM (or any other measure
of transcriptional activity) between those samples. While there are biases inherent to any
protocol, we were concerned that direct amplification of the mRNA would select for PCR
compatible genes in difficult to predict, and potentially non-linear ways. For many of the
published applications of single cell RNA-seq, this is not likely a critical flaw, since the clus-
tering approaches used are moderately robust to quantitative changes. However, to measure
spatial and temporal activation of genes across an embryo, it is important that the output
is monotonic with respect to concentration, and ideally linear. A linear response allows for
more easily interpretable experimental results, without necessarily relying on complicated
transformations of the data.

While it is possible to estimate absolute numbers of cellular RNAs from an RNA-seq
experiment, doing so requires spike-ins of known concentration and estimates of total cellular
RNA content (Mortazavi et al. 2008; Lin et al. 2012). However, many RNA-seq experiments
do not do these controls, nor are such controls strictly necessary under reasonable, though
often untested, assumptions of approximately constant RNA content. While ultimately
absolute concentrations will be necessary to fully predict properties such as noise tolerance
of the regulatory circuits (Gregor, Tank, et al. 2007; Gregor, Bialek, et al. 2005), many
current modeling efforts rely only on scaled concentration measurements, often derived from
in situ-hybridization experiments (M. Garcia et al. 2013; Ilsley et al. 2013; He et al. 2010).
Given that, we felt it was not important that different protocols should necessarily agree on
any particular expression value for a given gene, nor are we fully convinced that absolute
expression of any particular gene can truly reliably be predicted in a particular experiment.

In order to convince ourselves that data generated from limiting samples would be suitable
for evaluating the spatial distribution of gene expression or other experiments where a linear
response is necessary for proper interpretation of the data, we evaluated several protocols for
performing RNA-seq on extremely small samples. We also investigated a simple modification
to one of the protocols that reduced sample preparation cost per library by more than 2-
fold. This study provides a single, consistent comparison of these diverse approaches, and
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shows that in fact all data from the low-volume protocols we examined are usable in similar
contexts to the earlier bulk approach.

3.3 Methods

RNA Extraction, Library Preparation, and Sequencing

We performed RNA extraction in TRIzol (Life Technologies, Grand Island, NY) according
to manufacturer instructions, except with a higher concentration of glycogen as carrier (20
ng) and a higher relative volume of TRIzol to the expected material (1 mL, as in Lott et al.
(2011) and Combs & Eisen (2013)). We quantified RNA concentrations using a fluorometric
Qubit RNA HS assay (Life Technologies).

TruSeq libraries were prepared with the “TruSeq RNA Sample Preparation Kit v2” (Il-
lumina Cat.#RS-122-2001) according to manufacturer instructions, except for the following
modifications. All reactions were performed in half the volume of reagents. We find that
this increases the effective concentration of RNA and cDNA. We performed all reactions and
cleanups in 8-tube PCR strip tubes, which allowed us to reduce the volume of Resuspension
Buffer to minimize volume left behind after each cleanup.

Clontech libraries were prepared with the “Low Input Library Prep Kit” (Clontech
Cat.#634947). We generated ¢cDNA by using TruSeq reagents until the cDNA synthesis
step. Then, we used the Low Input Library Prep Kit to modify the cDNA into sequencing-
competent libraries. We assume that a similar cDNA synthesis could be performed using
oligo dT Dynabeads, RNA fragmentation reagents, and Superscript II (Life Technologies),
for an approximate cost per sample of $15, but have not directly tested this with the Clontech
reagents.

TotalScript libraries were prepared with the “TotalScript RNA-Seq Kit” and “TotalScript
Index Kit” (Epicentre Cat.#TSRNA1296 and TSIDX12910). We followed the manufac-
turer’s instructions, and used the oligo dT priming option. We performed the mixed prim-
ing option in parallel, which yielded approximately 4-fold more library, but did not sequence
them due to concerns of ribosomal contamination.

SMARTSseq2 libraries were prepared according to the protocol in Picelli, Faridani, et al.
2014. Because we had already extracted and mixed the RNA, we began at step 5 with 3.7
pL of ANTPs and 1 L of 37 M oligo dT primer, yielding the same concentration of primer
and oligo as originally reported. We used 18 cycles for the preamplification PCR in step 14,
added 1ng of cDNA to the Nextera XT reactions in step 28, and used 6 and 8 cycles for the
final enrichment in step 33 (experiments 2 and 3, respectively).

Libraries were quantified using a combination of Qubit High Sensitivity DNA (Life Tech-
nologies) and Bioanalyzer (Agilent Technologies, Sunnyvale, CA) readings. Total yield Y in
femtomoles was estimated using Qubit concentration C' measured in (ng/uL), total volume
V in pL, average size S in bp,

Y[fmole] = C[ng/uL) - 10~°[g/ng] - V[uL] - 10**[fmole/mole] + 608.9[g/mole] < S[bp] (3.1)
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We then pooled libraries to equalize index concentration before sequencing.

Due to a pooling error in experiment 2 where non-concentration normalized tubes were
mistakenly used instead of the normalized samples, the TruSeq libraries were included at
much higher abundance. Pooled libraries were then submitted to the Vincent Coates Genome
Sequencing Laboratory for 50bp single-end sequencing according to standard protocols for
the Illumina HiSeq 2500. Bases were called using HiSeq Control Software v1.8 and Real
Time Analysis v2.8.

Mapping and Quantification

Reads were mapped using STAR (Dobin et al. 2013) to a combination of the FlyBase ref-
erence genome version 5.54 for D. melanogaster and D. virilis (McQuilton et al. 2012). We
randomly sampled the mapped reads to use an equal number in each sample compared. We
used HT'Seq (command line options htseq-count --idattr=’gene name’ --stranded=no
--sorted=pos) to count absolute read abundance per gene (Anders et al. 2014).

Simulation of Experiment 2

We wrote a Python script that simulated Experiment 2 assuming only uncorrelated counting
noise in the number of reads per gene. The read counts from the sample with 20% D. wvirilis
and the TruSeq protocol was used to generate the base probabilities. D. wvirilis gene proba-
bilities were adjusted downwards, and the remaining probability was assigned evenly to the
D. melanogaster genes. The SciPy function stats.multinomial was used to simulate read
counts, assuming an equal number of reads as in the original experiment. Gene expression
levels were normalized using equation 3.2, as in the actual experiment.

3.4 Results

Experiment 1: Evaluation of Illumina TruSeq

In our hands, the Illumina TruSeq protocol has performed extremely reliably with samples on
the scale of 100ng of total RNA, the manufacturer recommended lower limit of the protocol.
However, attempts to create libraries from much smaller samples yielded low complexity
libraries, corresponding to as much as 30-fold PCR duplication of fragments (Appendix
A). Anecdotally, less than 5% of libraries made with at least 90ng of total RNA yielded
abnormally low concentrations, which we observed correlated with low complexity (Data
not shown). To determine the lower limit of input needed to reliably produce libraries, we
attempted to make libraries from 40, 50, 60, 70, and 80 ng of Drosophila total RNA, each in
triplicate.

We considered the two libraries with lower than usual concentration to be failures. Al-
though there is detectable material post-amplification, the size distributions as measured by
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Table 3.1. Total TruSeq cDNA library yields made with a given amount of input
total RNA. Yields measured by Nanodrop of cDNA libraries resuspended in 25uL of EB. The
italicized samples were near the lower limit of detection, and when analyzed with a Bioanalyzer,
showed abnormal size distribution of cDNA fragments.

Amount Input RNA | Replicate A | Replicate B | Replicate C
40 ng 57 ng 425 ng 672 ng
50 ng 435 ng 768 ng 755 ng
60 ng 115 ng 663 ng 668 ng
70 ng 300 ng 593 ng 653 ng
80 ng 468 ng 550 ng 840 ng

Bioanalyzer of these libraries is significantly different than known good libraries and manu-
facturer provided documentation (Supplemental Figure S1). In our experience, sequencing
libraries with much lower than usual yield and abnormal size distributions has yielded li-
braries with low complexity and poor correlation to replicates.

While a failure rate of approximately 1 in 3 might be acceptable for some purposes, we
ultimately wanted to perform RNA sequencing on precious samples, where a failure in any one
of a dozen or more libraries would necessitate regenerating all of the libraries. Furthermore,
due to the low sample volumes involved (less than approximately 500pg of poly-adenylated
mRNA), common laboratory equipment is not able to determine the particular point in the
protocol where the failures occurred.

It is clearly possible to use less than the manufacturer suggested amount of input RNA.
Thus, we consider 70 ng of total RNA to be the conservative lower limit to the protocol.
While this is about 30% smaller than the manufacturer suggests, it is still several orders of
magnitude larger than we needed it to be. We therefore considered using other small-volume
and “single-cell” RNA-seq kits, which often use a pre-amplification step that is known to
influence estimation of absolute levels (Picelli, Bjorklund, et al. 2013).

Experiment 2: Competitive Comparison of Low-volume RNAseq
protocols

We first sought to determine whether the low-volume RNAseq protocols available faithfully
recapitulate linear changes in abundance of known inputs, even if absolute levels are not
directly comparable to other protocols. We generated synthetic spike-ins by combining D.
melanogaster and D. virilis total RNA in known, predefined proportions of 0, 5, 10, and 20%
D. wvirilis RNA. For each of the low-volume protocols, we used Ing of total RNA as input,
whereas for the TruSeq protocol we used 100ng.

Although pre-defined mixes of spike-in controls have been developed and are commercially
available (Jiang et al. 2011), we felt it was important to ensure that a given protocol would
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function reproducibly with natural RNA, which almost certainly has a different distribution
of 6-mers, which could conceivably affect random ¢cDNA priming and other amplification
effects. Furthermore, our spike-in sample more densely covers the approximately 10° fold
coverage typical of RNA abundances. It should be noted, however, that our sample is not
directly comparable to any other standards, nor is the material of known strandedness. We
assumed that the majority of each sample is from the standard annotated transcripts, but
did not verify this prior to library construction and sequencing.

We then estimated yield by measuring concentration in ng/ul. with a Qubit High Sensi-
tivity DNA assay and average fragment size with a Bioanalyzer High Sensitivity chip. The
different protocols had a variation in yield of libraries from between 6 fmole (approximately
3.6 trillion molecules) and 2,400 femtomoles, with the TruSeq a clear outlier at the high end
of the range, and the other protocols all below 200 fmole (Table 3). While the number of
PCR cycles in the final enrichment steps can be adjusted, all of these quantities are suffi-
cient to generate hundreds of millions of reads—far more than is typically required for an
RNA-seq experiment. We pooled the samples, attempting equimolar fractions in the final
pool; however, due to a pooling error, we generated significantly more reads than intended
for the TruSeq protocol, and correspondingly fewer in the other protocols. Unless otherwise
noted, we therefore sub-sampled the mapped reads to the lowest number of mapped reads
in any library in order to provide a fair comparison between protocols.

We were interested in the fold-change of each D. wvirilis gene across the four libraries,
rather than the absolute abundance of any particular gene. Therefore, after mapping and
gene quantification, we normalized the abundance A;; of every gene ¢ across the j = 4
libraries by a weighted average of the quantity ); of D. wirilis in library j, as show in
equation 3.2. Thus, within a given gene, a linear fit of Aij vs (); should have a slope of one
and an intercept of zero. As expected, this normalized abundance increased with increasing
D. wvirilis concentration (Supplemental Figure S2).

T (@)

We then filtered the D. virilis genes for those with at least 20 mapped fragments in the
library with 20% D. wvirilis, then calculated an independent linear regression and the Pearson
correlation coefficient between the expected and measured concentration of D. virilis for each
of those genes. As shown in Figure 1A and Supplemental Figure S3, this can be thought of
as plotting the measured and known values, then fitting a line for each gene. As expected,
for every protocol, the mean slope was 1 (t-test, p < 5 x 1077 for all protocols). Similarly,
the average intercepts for all protocols was 0 (t-test, p < 5 x 1077 for all protocols). Also
unsurprisingly, the TruSeq protocol had a noticeably higher mean correlation coefficient
(0.98 £ 0.02) than any of the other protocols (0.95 + 0.06, 0.92 £ 0.09, and 0.95 + 0.06 for
Clontech, TotalScript, and SMART-seq2, respectively). The mean correlation coefficient
was statistically and practically indistinguishable between the Clontech libraries and the
SMART-seq2 libraries (t-test p = .11, Figure 1). Taken together, all of these measures

A
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indicate that the TruSeq protocol is better able to capture the linear trend in increasing
transcript number.

While the TruSeq protocol clearly performed better than the low-volume kits (Figure
1), we wondered how well an ideal RNA-seq protocol could perform. We simulated an
experiment with known levels of D. virilis spike in and assuming a multinomial distribution of
read counts, and repeated the simulation 1,000 times to estimate the distribution of relevant
quality metrics (Supplemental Figure S4). Surprisingly, the mean correlation coefficient for
the TruSeq protocol was higher than the mean correlation coefficient of every repetition of
the simulation, though indistinguishable for practical purposes (0.984 vs 0.982). The slopes
were equally well clustered around 1, with an interquartile range of 0.0864 for the TruSeq
protocol compared to 0.0843, the mean of all simulations; 13% of simulations had a higher
IQR. We thus conclude that the major limiting factor for the TruSeq protocol to generate
a linear response in the data is likely the sequencing depth, whereas the other protocols all
contain additional biases.

Although there is some variation in the precise shape of the distributions of fit param-
eters, these were relatively small compared to the difference between any of these and the
conventional TruSeq protocol. Indeed, the major differentiator we found among the low-
volume protocols we compared was cost. For only a handful of libraries, the kit-based all
inclusive model of the Clontech and TotalScript kits could be a significant benefit, allow-
ing the purchase of only as much of the reagents as required. By contrast, the Smart-seq2
protocol requires the a la carte purchase of a number of reagents, some of which are not
available or more expensive per unit for smaller quantities. Furthermore, there could poten-
tially be a “hot dogs and buns” problem, where reagents are sold in non-integer multiples of
each other, leading to leftovers. Many of these reagents are not single-purpose, however, so
leftovers could in principle be repurposed in other experiments.

Table 3.2. Summary of protocols used in experiments 2 and 3. Cost is estimated per
library assuming a enough libraries to consume all reagents at US catalog prices as of May 2014,
and includes $2 for TRIzol RNA extraction, but not experimenter labor, sample QC, labware, or
sequencing. Difference in prices in the Smart-seq2 protocols entirely due to scaling in cost of
Nextera reagents.

Protocol Shorthand | Cost/library
TruSeq TruS $45
Clontech CT $105
Epicentre TotalScript TotS $115
Smart-seq2, standard protocol SS $55
Smart-seq2, 2.5 fold dilution | SS—2.5x $28
Smart-seq2, 5 fold dilution SS—5x $20




CHAPTER 3. LOW-INPUT RNA-SEQ

Table 3.3. Sequencing summary statistics for libraries.
used in table 2. Reads indicates the total number of reads, and Mapped the total number of reads
that mapped at least once to either genome. Experiments 2 and 3 were run in a single HiSeq lane
each. Yield estimates were generated by adjusting Qubit High Sensitivity DNA readings by the

average fragment size as measured by Bioanalyzer.

Protocols are the shorthands

Expt | Protocol | % D. wvirilis Yield Total Reads | Mapped Reads
2 CT 0% 6.5 fmole 3,803,843 3,374,520 (89%)
2 K 5% 15.7 fmole 4,372,738 4,164,781 (95%)
2 K 10% 47.4 fmole 10,013,087 | 9,527,023 (95%)
2 K 20% 17.8 fmole 4,781,463 4,317,101 (90%)
2 TotS 0% 176.8 fmole 3,281,134 2,930,058 (89%)
2 K 5% 170.2 fmole 2,498,134 2,237,330 (90%)
2 K 10% 102.5 fmole 5,777,523 5,424,366 (94%)
2 K 20% 119.9 fmole 6,068,996 5,740,496 (95%)
2 TruS 0% 2,401.0 fmole | 67,560,511 | 64,024,881 (95%)
2 K 5% 2,001.1 fmole | 23,370,854 | 22,589,083 (97%)
2 K 10% 2,174.2 fmole | 39,454,390 | 38,093,763 (97%)
2 K 20% 2,379.2 fmole | 35,265,536 | 34,304,792 (97%)
2 SS 0% 34.3 fmole 2,439,518 2,297,087 (94%)
2 K 5% 59.6 fmole 2,550,023 2,419,889 (95%)
2 K 10% 67.9 fmole 2,534,628 2,444,568 (96%)
2 K 20% 39.8 fmole 2,504,340 2,389,850 (95%)
3 SS—2.5x% 0% 104.4 fmole 15,769,915 | 14,393,959 (91%)
3 K 1% 124.7 fmole | 21,349,748 | 20,084,131 (94%)
3 K 5% 113.0 fmole 17,047,120 | 16,329,641 (96%)
3 K 10% 103.5 fmole | 23,762,232 | 22,372,562 (94%)
3 7 20% 123.8 fmole | 20,809,781 | 20,041,548 (96%)
3 SS—5Hx 0% 59.4 fmole 19,214,155 | 17,324,598 (90%)
3 K 1% 58.6 fmole 23,832,274 | 22,364,220 (94%)
3 K 5% 65.4 fmole 18,149,452 | 17,157,450 (95%)
3 K 10% 28.8 fmole 15,821,419 | 14,869,864 (94%)
3 K 20% 57.2 fmole 22,466,345 | 21,620,603 (96%)
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Figure 3.1. Comparison of linearity between different RN A-seq protocols. A)
Normalized levels of gene expression A across libraries using the TruSeq protocol, where each line
is for a different gene. B-E) Distributions of slopes, intercepts, and correlation coefficient for
linear regressions of the abundance of each gene, as in panel A.
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Table 3.4. Distribution of fit parameters. A simple linear fit, flij =m-Q; + b was
computed for each gene i, and a correlation coefficent r calculated. For brevity, Z is the mean of
some variable x, and o, is its standard deviation.

Protocol mto,, btoy Fto,
TruSeq 1.01£0.0698 | -0.10841.05 | 0.98+0.019
Clontech 1.01£0.12 -0.217+£1.79 | 0.954+0.061
Epicentre TotalScript 0.9524+0.129 0.7154+1.93 | 0.93£0.094
Smart-seq?2 1.03£0.121 | -0.50641.82 | 0.95£0.057
Smart-seq2, 2.5 fold dilution | 0.9964+0.111 | 0.0623+1.67 | 0.96£0.053
Smart-seq2, 5 fold dilution 1.01+0.111 | -0.173£1.66 | 0.96+£0.049

Experiment 3: Further modifications to the SMART-seq2 protocol

Although the SMART-seq2 was the cheapest of the protocols when amortized over a large
number of libraries, we wondered whether it could be performed even more cheaply without
compromising data quality. This would enable us to include more biological replicates in the
future experiments for which we are evaluating these protocols. In the original protocol, we
noticed that roughly 60% of the cost came from the Nextera XT reagents. Thus, reducing
the cost of tagmentation was the obvious goal to target.

We made additional libraries, again starting with 1ng of total RNA. We amplified a single
set of spike-in libraries with 0, 5, 10, and 20% D. wvirilis total RNA as in experiment 2, and
made a single an additional sample with 1% D. wvirilis RNA. Starting at the point in the
SMART-seq2 protocol where tagmentation was started, we performed reactions in volumes
2.5x and 5x smaller, using proportionally less cDNA as well. Due to the low total yield, we
increased the number of enrichment cycles from 6 to 8 (see methods).

When normalized to the same number of reads as in experiment 2, the protocols with
diluted Nextera reagents performed effectively identically: for instance, the mean correlation
coefficients were in both cases 0.96 £0.05 (Fig. 2 and Table 4). This is despite the additional
cycles of enrichment, which improved yield.

Because we used a common set of pre-amplified cDNA samples that was performed in a
distinct pre-amplification from experiment 2, we can estimate the contribution of that pre-
amplification to the overall variation. If, in fact, the pre-amplification is a major contributor
to the variation, then we would expect to find that the correlation between, for instance,
the slopes of two runs of the same experiment with different pre-amplifications would be
significantly lower than the correlation between the slopes of two runs using the same pre-
amplified cDNA pools.

Unsurprisingly, the sets of samples that used the same preamplification were more cor-
related with each other than with the set of samples that used a separate pre-amplification
(Fig. 3). By analogy to dual-reporter expression studies such as Elowitz et al. (2002), we
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term variation along the diagonal “extrinsic noise” (1. = std(m; + my)), and variation
perpendicular to the diagonal “intrinsic noise” (7, = std(my — my)), being intrinsic to the
pre-amplification step. Using that metric, the intrinsic noise is lower for the samples with the
same pre-amplification (9;,; = 0.09) than for the samples with different pre-amplifications
(Mine = 0.16). Somewhat surprisingly, the extrinsic noise is higher for the samples with the
same pre-amplification (7., = 0.20 vs 7.,y = 0.16), perhaps due to the 2 additional cycles of
PCR enrichment.

A) SMART-seq2 — 2.5x reduction B) SMART-seq2 — 5x reduction
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Figure 3.2. Distributions of slopes, intercepts, and correlation coefficients for
experiment 3. Nextera XT reactions were reduced in volume by the indicated amount.

3.5 Discussion

When sample size is not the limiting factor, it is clear that using well-established protocols
that involve minimal sequence-specific manipulation of the sample yields the best results,
both in terms of reproducibility and linearity of response. However, if it is not practical
to collect such relatively large samples, experiment 2 shows that any of the “single-cell”
protocols we have tested should perform similarly to each other, and can be used as a drop-
in replacement. While preamplification steps do introduce some detectable variance, it is
not vastly detrimental to the data quality, and does not introduce obvious sequence-specific
biases.

Such methods should be strongly preferred if it is feasible to collect a suitably homogenous
sample. While bulk tissues may be a mixture of multiple distinct cell types, this may or may
not affect the particular research question an RNAseq experiment is designed to answer.
In our hands, the lower limit of reliable library construction using the Illumina TruSeq
kit is approximately 70ng of total RNA and we have used this amount of RNA in as-yet
unpublished experiments on dissected slices of embryos. With non precious samples, the
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Figure 3.3. Estimating the source of preamplification noise. Plotted are the estimated
slopes for each gene between experiments. The blue, “Different pre-amplification” compares the
2.5x diluted and full sized reactions, whereas the green “same pre-amplification” points compare
the 2.5x and 5x dilution samples, which used the same preamplified cDNA but different
tagmentation reactions.

practical limit is likely to be even lower. The manufacturer suggested 100ng is almost
certainly safe, and we can think of relatively few experiments where it is not practical to
collect more RNA than this. Although we have anecdotally observed significant user-to-user
variation within our lab, it seems unreasonable to expect order-of-magnitude improvements
are possible in techniques for precious samples. We suggest that this limit may be related
to cDNA binding to tubes or purification beads, but since the quantities are lower than the
detection threshold of many standard quality control approaches, we cannot directly verify
this.

Compared to the regimes these protocols were designed for, we used a relatively large
amount of input RNA—1 ng of total RNA—corresponding to approximately 50 nuclei of a
mid-blastula transition Drosophila embryo. Previous studies have shown that this amount
of RNA is well above the level where stochastic variation in the number of mRNAs per
cell will strongly affect the measured expression of a vast majority of genes (Marinov et
al. 2013). It is nevertheless a small enough quantity to be experimentally relevant. For
instance, we have previously dissected single embryos into approximately 12 sections, yielding
approximately 10ng per section(Combs & Eisen 2013), and one could conceivably perform
similar experiments on imaginal discs or antennal structures, which contain a similar amount
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of cells (Klebes et al. 2002; Hansson & Anton 2000).

One of the more striking results is that costs can be significantly reduced by simply
performing smaller reactions, without noticeably degrading data quality. We do not sus-
pect this will be true for arbitrarily small samples, such as from single cells. Instead, it is
likely only true for samples near the high end of the effective range of the protocol. We
have not explored where this result breaks down, and strongly caution others to verify this
independently using small pilot experiments before scaling up.

3.6 Conclusions

The selection of protocols for performing RNAseq depends on the amount of material avail-
able to be profiled. We found that high quality libraries can be generated with slightly
less than the manufacturer’s recommended minimum using the standard Illumina TruSeq
protocol. When sufficient material is available to use the TruSeq protocol, we find that this
produces data with a better linear response to the increasing concentration of any given
gene than a number of different “single cell” protocols, which have roughly comparable
performance in this metric. Finally, we found that at least one of these protocols, SMART-
seq2 could be easily modified to significantly reduce the cost of library preparation, without
compromising data quality.
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Data Deposition

We have deposited all reads in the NCBI GEO under the accession number GSE64673. The
processed data is available at http://eisenlab.org/lowvolume. All custom analysis software is
available at https://github.com/eisenlab/SliceSeq, and is primarily written in Python (Van
Rossum & Drake 2003; Cock et al. 2009; Hunter 2007; Jones et al. 2001; Perez & Granger
2007). Commit 9fc810e7 was used to perform all analyses in this paper.

3.8 Supplemental Material

Appendix A Estimating complexity of RNAseq libraries.
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Supplemental Figure 3.S2. Histograms of distributions of expression levels for all the

protocols we used.
abundance of D. wirilis genes.

Increasing the amount of D. wirilis in each library increases the average
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Chapter 4

Genome-wide convergent phenotypes
in diverse Drosophila melanogaster
early patterning mutants

Abstract

Genome sequencing has become commonplace, but the understanding of how those genomes
ultimately specify cell fate during development is still elusive. Extrapolating insights from
deep investigation of a handful of developmentally important Drosophila genes to under-
standing the regulation of all genes is a major challenge. The developing embryo provides a
unique opportunity to study the role of gene expression in pattern specification; the precise
and consistent spatial positioning of key transcription factors essentially provides separate
transcriptional-readout experiments at a critical point in development.

We cryosectioned and sequenced mRNA from single Drosophila melanogaster embryos at
the blastoderm stage to screen for spatially-varying regulation of transcription. Expanding
on our previous screening of wild type embryos, here we present data from dosage mutants
for key maternally provided regulators, including depletion of zelda and hunchback and
both over-expression and depletion of bicoid. These data recapitulate all of the expected
patterning changes driven by these regulators; for instance, we show spatially-confined up-
regulation of expression in the bicoid over-expression condition, and down-regulation of those
genes in the bicoid knock-down case, consistent with bicoid’s known function as an anterior-
localized activator.

Our data highlight the role of combinatorial regulation of patterning gene expression.
When comparing changes in multiple conditions, genes responsive to one mutation tend to
respond to other mutations in a similar fashion. Furthermore, genes that respond differently
to these mutations tend to have more complex patterns of TF binding.
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Introduction

Proper animal development relies on complex, highly coordinated gene expression patterns in
both space and time. In Drosophila (and many other long germ-band insects), this is achieved
through nuclei nearly simultaneously reading out a number transcription factors (TFs) that
have been maternally deposited in a spatially dependent manner, which establishes the
dorsal-ventral and anterior-posterior axes. In many eukaryotes, this readout of regulatory
signals is mediated through enhancers and other cis-regulatory elements that are located
anywhere from several kilobases to megabases away from the promoters of the genes they
regulate.

The classical reverse genetics approach involves mutating a gene, then investigating the
phenotypic consequences of that mutation. This approach has been extremely successful
in helping to elucidate the mechanisms of transcriptional regulation for a number of key
loci. However, historically in situ hybridization has been used to assay these consequences.
By necessity, previous studies have focused only on the patterning changes of a handful
of genes, since assaying more genes is impractical. While these changes are often rationally
selected—including known transcription factors that, in turn, drive other patterns—the scale
of previous experiments means that they have only illustrated the common types of changes
observed, rather than completely cataloging a given TF’s effects.

For the TFs I have investigated in this study (bicoid, hunchback, and zelda), there are
high quality chromatin immunoprecipitation (ChIP) experiments already in the literature
for wild-type flies (MacArthur et al. 2009; Harrison et al. 2011). These experiments can
suggest potential targets, but due to the large number of binding sites in the genome as well
as the dense, interconnected regulatory network that can potentially buffer changes, simply
performing in situs on every gene with a binding site is a prohibitively large experiment,
and unlikely to perform radically better than chance. Strong binding is suggestive, but not
conclusive, for functional effect. TFs bind to hundreds of sites throughout the genome, and
can show strong ChIP signal at many hundreds more where no binding is found. The true
gold-standard for assaying function of a particular binding site must therefore demonstrate
some downstream effect that is different when that binding is removed.

In this study, I extend my previous method for sequencing mRNA from spatially restricted
Drosophila melanogaster samples and apply it to a number lines that are mutant for TF's
known to be important in establishing proper spatial patterns of expression. Our goal was
to determine which patterned genes show distinct, TF dependent spatio-temporal regulation
at the blastoderm stage. We identify a large number of genes with both expected and
unexpected patterning changes, and through integrated analysis of previous ChIP data for
a large number of anterior-posterior patterning factors, I highlight common themes in genes
with complex dependence on these TFs.
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Results

Genome-wide atlases of the blastoderm stage of multiple dosage
mutants

[ sliced embryos and sequenced the resulting mRNA from 4 mutant genotypes (fig. 4.1A): a
zld germline clone, an RNAi knockdown for bcd, a knockdown for hb, and an overexpression
line for bed with approximately 2.4x wildtype expression. I chose two time points: cycle
13 (determined using nuclear density of either DAPI stained embryos or of the Histone-
RFP present in the zId line) and mid-to-late cycle 14 (determined using 50-65% membrane
invagination at stage 5) (fig. 4.1B). Genes expressed in cycle 13 are towards the end of the
early round of genome activation and are enriched for ZLD binding (Tadros & Lipshitz 2009;
Lott et al. 2011; Harrison et al. 2011), but are early enough that the majority of patterning
disruptions are likely to be direct effects of the mutants. By contrast, I chose the stage 5
time point in order to highlight the full extent of the patterning changes across the network.

In order to show the range of patterning differences observed, I generated quilt plots of
all the gene expression present in the dataset (Figure 4.2) (Wand et al. 2014). Of the 7104
genes with at least 1I5FPKM in at least one slice, approximately 3000 had uniform expression
in all the wild-type embryos that was not greatly perturbed in any of the mutants. The
total number of expressed genes is very consistent with previous estimates of the number of
maternally deposited and zygotically transcribed genes (Lott et al. 2011).

The set of genes with anterior or posterior localization recapitulate the known literature
(Staller, Fowlkes, et al. 2015) and general expectations in the bed- case: those expressed in
the anterior typically lose expression (Figure 4.3A), and those in the posterior also frequently
gain an expression domain in the anterior (Figure 4.3B). Surprisingly, most of these patterns
are qualitatively unaffected in the other mutants. In the absence of zld, most of these genes
are able to retain the proper anterior patterning (although they may have differences in
expression levels). Similarly, these genes seem not to be strongly dependent on maternal hb
for patterning information, with most genes retaining a distinct anterior expression domain.
As described in Liang et al. (2008), there are some genes that are normally ubiquitously
expressed in the wild-type that become localized to the poles in the zld- embryo (Figure 4.3C).

Most spatial patterns are robust to mutation

I next compared expression patterns from each of the mutant lines at late cycle 14 to similar
expression patterns in wild-type. Because there are a different number of slices both between
the wild type and mutant flies, and between replicates of the mutant flies, I decided to use
Earth Mover Distance (EMD) to compare patterns (Rubner et al. 1998). This metric cap-
tures intuitive notions about what kinds of patterns are dissimilar, yielding higher distances
for dissimilar distributions of RNA, and zero for identical distributions. Patterns were nor-
malized to have the same maximum expression, in order to highlight changes in positioning
of patterns, rather than changes in absolute level. In contrast to traditional RNA-seq dif-
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Figure 4.1. Schematic of experimental approach. A) We fixed embryos in methanol, then
selected individual embryos at the correct stage, aligned them in sectioning cups, and sliced to the
indicated thickness. We extracted RNA from individual slices, prepared barcoded libraries, then
pooled them prior to sequencing. B) Overview of the mutant genotypes used. Two replicates per
time point at two time points, based on nuclear density and morphology. C) Cartoon of
heatmaps. Each genotype is assigned its own color (matching those in B), with darker colors
representing higher expression and white representing no expression detected in that slice. Each
boxed column represents a single individual, and within that column, slices are arranged posterior
to the left and anterior to the right.
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ferential expression metrics, this approach takes advantage of the spatial nature of the data,
and with the fine slices, adjacent slices are able to function as “pseudo-replicates”. Adjacent
slices are, on average, much more similar than those from farther away in the same embryo
(Figure 4.51).

The overall level of divergence in pattern across all genes is, in most cases, slightly larger
than when comparing nearby time-points in wild-type or replicates of the same genotype
and time point (Figure 4.4). Notably, the zld- mutant is more similar to wild-type than the
mutants of the other, spatially distributed transcription factors. This suggests that zld is a
categorically different TF, consistent with its role as a pioneer factor rather than a direct
activator. However, the low level of divergence is a reflection of the fact that the majority
of genes are not dynamically expressed in either time or space.

In order to demonstrate that these mutants are more likely to affect already known
BCD regulatory systems, I examined genes that were close to 64 BCD dependent enhancers
previously identified (H. Chen et al. 2012; Ochoa-Espinosa et al. 2005; Schroeder et al.
2004; Biemar et al. 2005; Hartmann et al. 2001; Kantorovitz et al. 2009; Riddihough & Ish-
Horowicz 1991). Although the bulk of these enhancers do not have validated associations
with particular genes, I assumed that they would be relatively close to the genes that they
drive. Of the 66 genes whose TSS’s were the closest in either direction and within 10kb of the
center of the tested CRM, only 32 were expressed at greater than 10FPKM in at least one
slice of any of the wild-type embryos. Of these, only 10 had an obvious anterior localization
bias (31%), with the majority of the rest being approximately uniformly expressed across the
embryo (Figure 4.5). The majority of genes with ubiquitious or central localization did not
radically change in either the bicoid overexpression or knockdown conditions. As expected,
genes with anterior localization suffered a loss of patterning in the depletion mutant, and a
posterior shift in the over-expression condition. I assume that genes that are not localized
to the anterior are either driven by multiple enhancers, such that loss of expression from one
does not severely affect the overall expression, or that they are merely close to the enhancer,
but unrelated.

Figure 4.2 (preceding page). Heatmaps of gene expression patterns for all expressed
genes. FEach individual embryo is represented by one boxed column in the heatmap. Within a
column, slices are arranged anterior to the left, and posterior to the right. Each embryo is colored
according to genotype, with green for the bed over-expression, blue for wild-type, magenta for bcd
knockdown, cyan for hb knockdown, and orange for the zld mutant. Within a genotype, darker
colors correspond to higher expression and white to zero expression, on a linear scale normalized
for each gene separately to the highest expression for that gene in the embryo or to 10FPKM,
whichever is greater. Slices that did not match quality control standards are replaced by
averaging the adjacent slices, and are marked with hash marks. Rows are arranged by using
Earth Mover Distance to perform hierarchical clustering, so that genes with similar patterns
across all of the embryos are usually close together.
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Table 4.1. TF depletion is more likely to make a non-uniform pattern uniform than
vice versa.

Low Expr to Pat- Patterned to Uni- Patterned to Low Uniform to Pat-

terned form Expr terned
g20 343 32 25 64
bed 96 69 40 12
hb 348 36 20 43
zld 71 34 61 28

I measured EMD for each gene at cycle 14D in each genotype compared to a uniform
distribution. I considered genes uniform if they had an EMD<0.04, and non-uniform if
they have an EMD>0.08. I then considered genes with at least 15 FPKM in at least one
slice in both wild-type and the mutant line.

Effects of TF depletion on patterned genes

I next sought to demonstrate that the technique of cryoslicing mutants is useful for identifying
the effects of these early patterning genes. In comparison to fig. 4.3, where we looked for
known patterning changes that we would expect from the literature, we also want to make
sure that the largest and most common patterning changes that naturally arise from the
data recapitulate the known literature. For each mutant genotype, we

Unsurprisingly, depletion of TFs known to be important for patterning are likely to make
an otherwise non-uniform pattern more so (Table 4.1). Of the 465 genes that have clearly
non-uniform patterning in the wild-type at cycle 14D, 12-20% are affected in each depletion
mutant, either losing expression entirely or becoming uniform. The over-expression line is
at the low end of this range, also at 12%.

However, this is not always simply abrogating expression—a large number of genes seem
to have higher expression everywhere. In the case of bed depletion, approximately a third of
these cases are genes that are restricted to the anterior in wild-type that become approxi-
mately uniform throughout the embryo (Figure 4.7). While some of these are due to genes

Figure 4.3 (preceding page). Heatmaps of gene expression patterns for anterior and
posterior genes recapitulate expected patterning changes. FEach individual embryo is
represented by one boxed column in the heatmap. Within a column, slices are arranged anterior
to the left, and posterior to the right. Each embryo is colored according to genotype, with green
for the bed over-expression, blue for wild-type, magenta for bcd knockdown, cyan for hb
knockdown, and orange for the zld mutant. Within a genotype, darker colors correspond to higher
expression and white to zero expression, on a linear scale normalized for each gene separately to
the highest expression for that gene in the embryo or to 10FPKM, whichever is greater.
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blue. Median distances are marked in red.

Table 4.2. Patterning changes are strongly associated with increased TF binding.

Low Expr to Pat- Patterend to Uni- Patterned to Low Uniform to Pat-

terned form Expr terned
g20 bed,gt,knihkb,tll  — — bed
bed gt kni,tll bed,cad,gt — bed,kni
hb  bed,gt,kni,tll — — bed
zld — — bed,cad,gt kni,tll  bed,cad,gt kni,tll

Using the genes with identified patterning changes in Table 4.1, T performed a y? test with
a Bonferroni-corrected p-value of 0.05.

with an early uniform pattern that fails to properly resolve into spatially restricted domains,
approximately half are true ectopic expression (Figure 4.52).

As a first step to identifying likely regulatory motifs, I used binding data for 9 non-pair-
rule AP TFs (MacArthur et al. 2009) and for zld (Harrison et al. 2011) to search for factors
with differential rates of binding among the sets of genes with patterning changes (Table 4.2).
This analysis highlights that zelda operates in a qualitatively different manner from the other
transcription factors—in it’s absence other TF's are likely to continue expression, though in
abnormal patterns. Additionally, zId is crucial for maintaining patterned expression, as the
most common change is from patterned genes integrating one or more AP factors to minimal

overall expression.
Furthermore, bicoid stands out as a major factor involved in AP patterning. In all of the
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Figure 4.5. Patterning changes of genes near BCD-dependent enhancers in bcd
knockdown and overexpression are clearly visible in anterior-localized genes. A) Each
individual is represented in its own heatmap. The magenta heatmaps are from the bcd- embryos,
blue from wild-type, and green from 2.4x bicoid. B) Each gene with anterior localized expression
in WT, with data from each individual as its own row, to highlight position changes across the
mutant genotypes.

mutant conditions except bed and zld depletion, having a BCD binding site is associated with
an increase in patterned expression. In all of the conditions, a BCD binding site is associated
with a ubiquitous becoming patterned, and this pattern is often anterior expression.

In addition to patterning changes, some genes with ubiquitous localization actually
showed the same response in absolute level as a result of both bed depletion and over-
expression. Of these genes, 1002 showed at least 1.5 fold higher expression on both condi-
tions, and 414 showed a 1.5 fold decrease in expression. Such a scenario suggests that these
genes are, at wild-type levels, tuned to a particular level of bicoid expression.

It is difficult to reconcile increases of expression in the posterior with any local model
of transcription factor action. BCD protein is only present at approximately 5nM at 50%
embryo length, and negligible levels more posterior (Gregor, Tank, et al. 2007). It is conceiv-
able that bed activates a repressor gene somewhere in the anterior, which then diffuses more
rapidly than BCD to cover at least some of the posterior of the embryo. Nevertheless, there
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Figure 4.6. Averaging patterning changes in each genotype recapitulates known
gene localization and function. Each individual is represented in its own heatmap. The
magenta heatmaps are from the bcd- embryos, blue from wild-type, and green from 2.4x bicoid.
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Figure 4.7. Patterned genes in wild-type that become uniformly expressed are
widespread in bed-. Each embryo is normalized independently.
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Figure 4.8. Genes that change in bcd- are likely to change in the same way in zld-,
and vice-versa. Change versus the wild-type is plotted on the x and y axes. Each point is
colored according to its AD score, calculated in eq. (4.1), in order to highlight genes that change
differently between the two conditions.

have previously been hints that bicoid can function as far to the posterior as hairy stripe 7
(La Rosée et al. 1997).

Genes are likely to change in similar ways in different mutant
conditions

I next asked whether patterning changes in one genotype could be used to predict whether
the pattern changes in another. Therefore, I plotted the EMD between wild-type and the
bicoid RNAI line on the X axis, and wild-type to the zelda GLC on the Y axis (Figure 4.8).
Unsurprisingly, the majority of genes did not change, but of those that did, only a small
fraction of them changed in one condition but not the other (the blue and green regions
near the axes). I grouped genes according to whether they were in the top 20% of the
EMD distribution for each genotype independently, then performed a Pearson’s y? test of
independence of change in bcd- versus zld-. The result was highly significant (p<1x1071%),
with the largest overrepresentation coming from the case where both changed. Repeating
this across all combinations of wild-type and two other mutant genotypes yielded the same
results: in every case, there were between 2.2 to 2.7 times as many genes that changed in
both categories as would be expected (Figure 4.53).

Of these genes that do change in both conditions, the majority changed in effectively
identical ways. I computed a modified EMD that down-weights genes that are very similar
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Table 4.3. TF binding is enriched near differentially changing genes between W'T,
bed-, and zld-.

odds ratio base freq  p-value

bed 4.69 17.40% 1.2e-09
kni 4.19 3.01% 0.000176
gt 3.79 19.00%  2.81e-08
cad 3.17  31.10% 6.73e-08
kr 3.1 56.58% 1.6e-07
tll 2.97 7.64% 0.000597
hb 2.21 39.53% 0.000143
hkb 2.1 23.86%  0.00115

2 test results for TF binding within 10kb of the TSS for the wild-type/bcd-/zld- three-way
comparison. I examined the top 50 genes by AD, compared to the 200 genes closest to the
median AD of genes that change in response to both mutations. Base frequency indicates
the fraction of genes expressed at this time point with at least one ChIP peak for that TF.
In this comparison, only Dichaete and zelda binding were not significant at a
Bonferroni-corrected p-value of 0.05.

to wild-type in at least one mutant genotype:
AD =EMD(M1,M2) — |[EMD(M1, WT) — EMD(M2, WT)| (4.1)

where EMD(x, y) is the Earth Mover Distance between identically staged embryos of geno-
type x and genotype y. Even among only the set of genes that change in both conditions, AD
is small (mean of 3.5%, 95th percentile of 11.9%)—equivalent to a shift of the entire pattern
by about 1 or 2 slices in either direction. However, there are 13 genes that change differently
between wild-type, bed-, and zld- (AD>20%). These genes have noticeably different patterns
in all three genotypes (Figure 4.54).

Differential response to mutation is strongly associated with
transcription factor binding

I sought to understand what is different about genes with a high AD, compared to those
that change in response to wild-type, but have a low AD (that is, those that change in the
same way in response to distinct mutant conditions). I found that genes with a high AD
score were strongly enriched for a number of TF binding sites (Tables 4.51 and 4.3).

Next, I binned genes by AD score, then examined trends in combinatorial transcription
factor binding. As AD score increases, genes are more likely to be bound by multiple TF's
(Figure 4.9). Due to the high background rate of binding, assaying the presence of at least
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Figure 4.9. Higher AD scores are correlated with increased combinatorial binding.
I grouped genes into non-overlapping windows of 50 genes by AD score, and calculated the
fraction of those genes with at least 3,4, ... etc. of the 10 early AP TFs bound (including zld). I
also plotted a simple linear regression on the binned points.

3 factors is not readily able to distinguish between genes with high and low AD’s, as nearly
70% of all genes expressed have at least 3 TFs bound. Assaying for the presence of more
factors is better able to identify which genes are likely to change, and the top 50 genes all
have at least 8 factors bound.

I sought to understand the extent to which genes with the same pattern of upstream regu-
lators had the same responses to perturbation. I grouped genes according to the complement
of ChIP-validated TF binding sites near that gene, then examined the patterning changes.
Although with 10 different TF's there are potentially over one thousand distinct combinations
of binding patterns, in practice the dense, combinatorial patterns found around patterning
enhancers reduces this set to a much more manageable 157 different combinations, of which
only 52 had at least 30 genes.

Within these sets of genes with similar TF binding profiles, I then asked whether the dis-
tribution of patterning changes was, overall, any different from the distribution of patterning
changes overall. 1 performed a KS-test between the distribution of summed EMD scores for
the 2.4x bed, bed-, and zld- between the set of genes with a given binding pattern, and for all
genes overall. I found only 2 binding patterns with a Bonferroni-corrected p-value less than
.05. Both of these sets were highly bound, and they were also very similar to each other in
their binding, differing only in the presence of a KNI site (Figure 4.10).

Despite the similar binding patterns near these genes, there is a wide range of responses.
The wild-type expression patterns run nearly the complete gamut, including uniform ex-
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pression, anterior stripes, posterior stripes, and central expression domains. Additionally,
the presence of a KNI site seems to yield an increased number of genes with an anterior
expression domain.

Discussion

I have generated a dataset that is unparalleled in its coverage assaying patterning changes in
mutant conditions. When these patterning mutants have been described previously, either
major morphological readouts like cuticle staining or in situ hybridization has been used to
illustrate the effects on downstream target genes (Driever & Niisslein-Volhard 1988; Liang
et al. 2008; Staller, Fowlkes, et al. 2015). However, in situ hybridization suffers from a strong
selection bias in the genes that are chosen. By assaying spatial differences in the patterning of
every gene in the genome, I demonstrate the full effect that these TFs have on developmental
gene expression networks.

Despite the importance of the factors I chose for establishing spatially and temporally
correct patterning, only a relatively small number of genes have significant expression pat-
tern changes. Many of the targets that do show clearly abnormal expression patterns are,
themselves, key transcription factors. This suggests that, even though key, maternally pro-
vided patterning factors bind to thousands of places throughout the genome (MacArthur
et al. 2009), many of those binding sites are not functional in any meaningful sense. Cer-
tainly some of this binding is due to artifacts in the ChIP data, and even reproducible,
non-artifactual binding should not be confused with function(Graur et al. 2013; Teytelman
et al. 2013). However, the fact that genes near binding sites for multiple factors tend to have
more complicated responses to mutation suggests that there is some truth to the idea that
gene regulation in complex animals tends to be combinatorial, even if the ChIP data are
imperfect.

I was surprised how much proper bicoid expression seems to be required for proper pat-
terning at all points along the embryo, not just in the anterior. The fact that bed is normally
understood to be an activator, while the plurality of genes with higher, ubiquitous expres-
sion in the mutant are normally localized to the anterior in wild-type suggests that this is
normally mediated through one or more repressors that depend on bed. As one of three
TF's overrepresented at genes with this phenotype, ¢t is likely to be involved in this global
derepression, but since it is itself neither ubiquitous throughout the embryo nor universally
bound at the genes that change, it is likely not the only player.

The mutants I examined seemed to produce very similar changes in their downstream
targets, despite the wild-type TFs having widely varying spatial distributions. Our initial
expectation was that there would be many more ways to fail to properly pattern expression,
and that different mutations would have different average effects from each other. Indeed,
relying on different mutations having different responses has been the key to genetic analysis
of fine scale patterns such as the eve stripes (Frasch & Levine 1987; Frasch, Warrior, et al.
1988; Small et al. 1996; Andrioli et al. 2002). Although averaging across the most different
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genes in a mutant genotype does yield different patterns (Figure 4.6), for any given gene
excursions from the correct spatial expression pattern seems to be largely canalized (Fig-
ure 4.8). This seemingly-canalized expression change may be a consequence of the types of
genes we can easily measure patterning changes among—we cannot resolve individual pair-
rule stripes, for instance—so genes with coarser patterns may be more likely to have a single
“failure” phenotype, as compared to those with finer patterns, which have more layers of
regulation to perturb.

We do recognize a number of distinct limitations of this data set towards predicting gene
expression change as a function of mutation. The spatial resolution is still much coarser than
in situ hybridization based experiments. This is especially concerning near regions where
there are fine stripes of expression, which cannot be resolved between adjacent slices, or at
regions where there is a transition between expression domains, where it is possible that the
slicing axis is not perfectly aligned with the domain border. Finally, it is worth remembering
that especially in the later stages examined, the gap gene positions will also be perturbed,
so any observed changes in pattern positioning is likely to be a combination of direct effects
and downstream effects of the original mutation.

A number of recent studies have used various technical or experimental techniques to
improve the resolution of RNA-seq maps of gene expression in developing embryos. Iterated
sectioning of different embryos in all three dimensions can be deconvolved to yield estimates
of the original pattern (Junker et al. 2014). Similarly, sequencing mRNA from dissociated
nuclei allows for the maximum possible spatial resolution, assuming the original location of
those nuclei can be estimated (Satija et al. 2015; Achim et al. 2015). While these approaches
are worthwhile for establishing a baseline map of expression patterns in wild-type embryos,
the expense of sequencing still makes single-dimensional studies worthwhile. Furthermore,
the single-cell approaches in Satija et al. (2015); Achim et al. (2015) require some prior
knowledge of spatial gene expression, which may be significantly perturbed in patterning
mutants. Other approaches for multiplexed in situ profiling of mRNA abundance have been
described, but are not yet cheap or reliable enough to be readily useful for screening mutants
(Lee et al. 2014; K. H. Chen et al. 2015).

Additionally, the time and expense required for a single individual necessarily means that
I have profiled only a small number of individuals. I was therefore careful to choose only
highly penetrant mutations for analysis, and to choose individuals at as similar staging as I
could. However, even for genes with a consistent, precise time-dependent response between
individuals, the differences in staging are likely to be a significant contributor to variation.
Furthermore, I only examined two relatively distant time points in this study (approximately
45 minutes apart), making comparisons across time fraught at best.

Nevertheless, this experiment suggests a number of genes for more detailed follow up
studies. As our predictive power for relatively well-studied model systems, such as the eve
stripes improves, it will be especially important to take these insights to other expression
patterns in the embryo. The risk of over-fitting increases with the depth of study of any
particular model system, even if any given study is relatively well controlled. Therefore,
by demonstrating that particular insights hard-won in these model systems are broadly
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applicable, we can gain some confidence in the results, and we approach having a rigorous,
broadly applicable predictive model of gene regulation.

Ultimately, I believe more datasets addressing chromatin state in response to different
conditions will be necessary for accurate prediction of spatial responses to mutation. In a
ChIP-seq dataset on embryos with different, uniform levels of bicoid expression, hundreds
of peaks seem to vary with differing affinities to BCD protein (Colleen Hannon and Eric
Wieschaus, personal communication, March 2015). The zygotically expressed genes near
these differential peaks also have different spatial localization in wild-type, and different
average responses to the mutants presented here. In addition to spatially resolved expression
measurements, spatially resolved binding and chromatin accessibility data will likely be
necessary. While ChIP-seq experiments currently require several orders of magnitude more
input material than can be reasonably collected from spatially resolved samples, recent
methods developments in measuring chromatin accessibility have shown that it is possible
to collect data from as few as 500 mammalian nuclei (Buenrostro et al. 2013). A similar
amount of DNA is present in a single Drosophila embryo, which suggests that spatially
resolved chromatin accessibility data may be achievable.

Materials and Methods

Fly lines, imaging, and slicing

Zelda germline clone flies (w zld- FRT /FMT7a; His2Av RFP) were a gift of Melissa Harrison,
and were mated and raised as described previously. Embryos were collected from mothers
3-10 days old.

The construction of the bed and hb RNAI flies has been described previously (Staller, Yan,
et al. 2013) and were obtained from the DePace Lab at Harvard Medical School. Briefly,
we generated Fls from the cross of maternal tubulin Gal4 mothers (line 2318) with UAS-
shRNA-bcd or UAS-shRNA-hb fathers (lines GL00407 and GLO01321 respectively), then
collected embryos from the sibling-mated F1s. In order to take advantage of the slowed
oogenesis and resulting greater RNA1 efficiency, we aged the F1 mothers for approximately
30 days at 25°C.

The bed overexpression lines were a generous gift of Thomas Gregor at Princeton Univer-
sity. We used line 20, which has 2.4x wild-type levels of eGFP-bcd fusion. Flies were kept
in uncrowded conditions, and embryos were collected at 25°C from 3-7 day old mothers.

We washed, dechorionated, and fixed the embryos according to our standard protocol (see
(Combs & Eisen 2013)), incubated in 3 pM DAPI for 5 minutes, washed twice with PBS, and
then imaged on a Nikon 80i microscope with a Hamamatsu ORCA-Flash4.0 CCD camera.
We did not DAPI stain the zld- embryos because they had a histone RFP marker. After
selecting embryos with the appropriate stage according to density of nuclei in histone-RFP
or DAPI staining and membrane invagination for the cycle 14 embryos, we washed embryos
with methanol saturated with bromophenol blue (Fisher), aligned them in standard cryotome
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cups (Polysciences Inc), covered them with VWR Clear Frozen Section Compound (VWR,
West Chester, PA), and froze them at -80C.

We sliced the embryos as in Combs & Eisen (2013). Single slices were placed directly in
non-stick RNase-free tubes (Life Technologies), and kept on dry ice until storage at -80C.

RNA Extraction, Library Preparation, and Sequencing

We performed RNA extraction in TRIzol as previously (Combs & Eisen 2013). All RNA
quality was confirmed using a BioAnalyzer 2100 RNA Pico chip (Agilent).

We generated libraries of the zld- embryos using the TruSeq mRNA unstranded kit (Il-
lumina). As described previously, we added in 70ng of yeast total RNA as a carrier and
performed reactions in half-sized volumes to improve concentration (Combs & Eisen 2013).

We generated libraries from the RNAi and overexpression embryos using the SMARTseq?2
protocol; we skipped the cell lysis steps because RNA had already been extracted (Picelli,
Faridani, et al. 2014; Combs & FEisen 2015). As described previously, tagmentation steps
were performed at 1/5th volume to reduce costs (Combs & Eisen 2015).

Data analysis and deposition

All data was compared to FlyBase genome version r6.03 (2014_6). Mapping was performed
using RNA-STAR v2.3.0.1 (Dobin et al. 2013), and expression estimates were generated using
Cufflinks v2.2.1 on only the D. melanogaster reads(Trapnell, Roberts, et al. 2012). Reads
from Combs & Eisen (2013) were re-mapped to the new genome version. When carrier RNA
was used (data from Combs & Eisen (2013) and the zld- embryos), we discarded as ambiguous
reads with 3 or fewer mismatches to prefer one species or the other. The vast majority of
mapped reads (>99.99%) of were unambiguous as to the species of origin. After mapping, we
removed samples that had fewer than 500,000 D. melanogaster reads and samples with less
than a 70% mapping rate when no carrier RNA was used; no other filtering or corrections
were performed.

Specific analysis code was custom-written in Python. Custom analysis code is available
from https://github.com/petercombs/EisenLab-Code. All analyses presented here and
all data figures were made using commit 2c144be.

Newly generated sequencing reads will be deposited at the Gene Expression Omnibus.
Mapped reads, additional files, and a searchable database will be available at http://
eisenlab.org/mutantslices.

In situ hybridization

Probe templates were generated by PCR amplifying cDNA with gene specific T7 promoter
fusion primers to cover at least 500 bp of the transcripts. We then made RNA probes using
a DIG-labelling kit (Roche), and resuspended in formamide.
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Hybridization was performed as described previously (Kosman et al. 2004). All genotypes
for each gene were processed in parallel, with hybridization and development times varying
by less than 3 minutes.

1.00

0.95 -

0.90 -

0.85 -

0.80

Spearman Rank Correlation

0.75+
0.70 L 1
Adjacent Distant
N=282 =>33.3% embryo length
N=1167

Supplemental Figure 4.S1. Adjacent slices are more similar than distant ones. Violin
plots of the Spearman Rank correlations between adjacent slices and pairs of slices separated by
more than one third of the embryo length.
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Supplemental Table 4.S1. TF binding is enriched near differentially changing genes
across all three-way comparisons.

odds ratio base freq p-value

WT vs bed- vs 2.4% bed

kni 16.4 3.28%  8.93e-07
t11 5.5 8.08%  7.72e-05
bed 4.1 17.58%  9.24e-05
gt 3.47 19.55% 0.00053
hkb 3.1 24.15% 0.0016
cad 3.09 31.98% 0.00067
WT vs bed- vs hb-

kni 11.0 3.34% 0.00297
t1l 5.31 8.15% 0.000671
bed 3.29 17.67% 0.00183
D 0.281 90.70% 0.00251
WT vs zld- vs 2.4x bed

kni 12.3 3.06%  3.63e-07
t1l 11.3 7.67%  3.91e-11
cad 7.05 31.20%  1.62e-08
bed 6.74 17.55%  7.02¢-09
gt 4.56 18.99%  5.95e-06
kr 4.56 56.67%  8.79e-05
hb 3.95 39.74%  4.62e-05
WT vs zld- vs hb-

kni 9.33 3.04% 0.000162
bed 7.82 17.51%  6.34e-10
gt 6.14 19.01%  7.57e-08
t1l 5.05 7.67% 0.000156
cad 4.77 31.01%  2.05e-06
kr 3.41 56.61% 0.00102
hb 2.84 39.68% 0.00186
WT vs 2.4x bed vs hb-

t1l 18.5 8.16%  1.19e-07
kni 8.95 3.32% 0.00169
gt 4.27 19.57%  3.32¢-05
bed 3.78 17.76%  0.000173
hb 2.9 40.61% 0.00147
cad 2.87 31.72% 0.00152

x? test results for TF binding within 10kb of the TSS for the indicated three-way comparison. I examined
the top 50 genes by AD, compared to the 200 genes closest to the median AD of genes that change in
response to both mutations. Base frequency indicates the fraction of genes with at least one ChIP peak for
that TF and that are expressed at this time point in all three conditions.
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14D highlight absolute expression level changes. Slices with higher expression are clipped

to the maximum expression in wild-type.
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Supplemental Figure 4.S4. Only a handful of genes change differently between the
different conditions. In the WT vs bcd- vs zld- three-way comparison, only 13 genes had a AD
score above 20%. Thumbnails indicate wild-type pattern in blue, bed- pattern in both replicates
in pink, and zld- pattern in orange. All expression is scaled to the highest in each individual.
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Chapter 5

Future Directions and Outlook

Perhaps the most remarkable feature of the experiments I have presented here is the lack of
a number of features of the system that I would have predicted. I searched quite extensively
for genes that seemed to show differential splicing across space, but could not find any
convincing evidence of this phenomenon. While the relatively shallow sequencing made this
somewhat more complicated, there is clear evidence of changes in alternative promoter use
across time. The gene hunchback has two promoters, one which is primarily used for maternal
transcripts and one for zygotic transcripts (Margolis et al. 1995). Comparing hb expression
in the early and late embryos from the wild-type time course, there is a marked shift in
the usage of these two promoters (Figure 5.1). Thus, if there were a very strong signal of
spatially varying incorporation of exons, it ought to be detectable.

The next feature that I could not find any clear evidence for was the differential produc-
tion of eRNAs across space. A number of studies over the last half-decade have detected
bi-directional, poly-adenylated transcripts from enhancer regions (van Bakel et al. 2010;
Wang et al. 2011; Djebali et al. 2012; Mousavi et al. 2013). While the purpose, if any, of
these eRNAs is hotly debated, the null hypothesis has to be that they are merely artifacts
of the transcriptional machinery. Functional or not, they would nevertheless be exciting to
detect, as such transcription could indicate which CRM was responsible for patterning, and
for patterning changes in mutants. However, I could never detect any convincing evidence
of differential use of different, previously annotated and validated CRMs (Gallo et al. 2011).
This is not to say that there was no transcription—there are a handful of enhancers both
distal to the gene and in introns that seem to have some differential usage across space.
However, in those few cases there was not another enhancer for the same gene that had clear
expression in a different region. There were some marginal cases (see, for instance, figure
5.2), but even the clearest of them is not convincing.

This is in sharp contrast to how enhancers are understood to work to generate complex
patterns. Perhaps the best studied example, eve is driven by at least 4 different CRMs, each
of which drives one or two of the seven total stripes. The failure to observe this effect in
the eRNAs in no way challenges this idea, though. While there are a number of protocols
to actively seek out nascent RNAs (Core et al. 2008), in the protocols used here eRNAs
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Figure 5.1. Clear differences in alternate promoter usage across time, but not space.
The GBrowse track is centered to display the two alternate promoters of hunchback (only the 5’
most end of the second exon, which is included in both hb isoforms, is shown). There is clearly
enough read depth to distinguish alternate promoter usage between the early (blue) and late (red)
stages, but no convincing evidence of alternative promoter usage is evident across different slices
of the same time point.
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ought to be considered off-target effects, even if they are actually poly-adenylated. Thus,
a lack of a spatially varying signal could be due to any number of technical artifacts, and
not to a bonafide lack of differential transcription®. It is also not clear that the protocols
to more specifically search for eRNA signal are easily applicable to the early embryo—the
closed nature of the system makes it difficult to use clever molecular biology techniques such
as labelled nucleotides.

HE H N r . N _|
1IN I T
Figure 5.2. eRNA FPKM of six Ubx enhancers. Each of the six rows represents coverage
over a disjoint enhancer region known to drive ubz, and the columns are arranged by time and AP

order. Although there are slight differences in the rows, they are not convincingly different from
noise overlaid on the expression of the gene itself.

Finally, I was greatly surprised by how limited the patterning effects were of altering levels
of key patterning transcription factors. While I should perhaps have predicted that there
would be systems that attempt to mitigate deleterious effects, I was nevertheless surprised
by how few genes really were affected. This could be a great boon for future experiments,
however. If one could predict which genes are likely to have their patterning altered, then
generating a complete inventory by in situ hybridization should be relatively quick. While
performing thousands of stains is impractical, assaying a few hundred patterns is ambitious,
but entirely doable.

These gene expression data are useful in targeting the search for perturbed patterns,
but are not in and of themselves capable of fully unravelling the response. As shown in
the experiments in chapter 4, it is important to use the RNAseq data to target further,
higher resolution studies on the same mutants. A single in situ hybridization experiment
can quickly and cheaply show the full shape of the gene expression pattern and the change
in the pattern over time.

5.1 Additional Experiments

I would, with the gentle reader’s forbearance, also like to briefly describe two additional
experiments in the vein of the already presented research that I believe would be illuminating
with regards to issues of the regulation of gene expression. These are feasible with relatively
little additional technology development required, and of a small enough scale that the
sequencing experiments for each could be completed in less than six months?.

Tt is also possible that at this stage, there truly are no spatially patterned eRNAs, despite patterning
of the associated genes. If that were truly the case, it would be a remarkable finding. However, absence of
evidence is not evidence of absence, and my data does not significantly alter the posterior probability.

2Data analysis is another question entirely, and such far-reaching datasets are likely to be fruitful for
years of analysis.



CHAPTER 5. FUTURE DIRECTIONS AND OUTLOOK 70

Evolution: a grand mutation experiment

In the work presented in Chapter 4, I examined in detail the effect of perturbing the tran-
scriptional network on patterning, either by increasing or decreasing the concentration of
key transcription factors. None of the mutations were guaranteed to inflict tolerable effects
to the network, and indeed three of the four genotypes examined were lethal, some as early
as cellularization, like the zld mutant. The responses of the network to these mutations are
unlikely to be representative of a “typical” perturbation, such as a different growth tem-
perature (Indeed Kuntz & Eisen 2014, have shown that a broad range of temperatures are
tolerable to most flies, with few detectable changes aside from developmental rate).

The Drosophila phylogeny, however, is more than 40 million years old. Between distant
branches of the tree, there is a total of 4.1 substitutions per neutral site, approximately
similar to the evolutionary distance between humans and platypodes (Drosophila 12 Genomes
Consortium et al. 2007; Stark et al. 2007). During that time, mutation will have allowed the
network to explore at least the local neighborhood in parameter space. The constraints of
natural selection have meant that as this exploration has proceeded, only those parameters
that are capable of producing a valid fruit fly are tolerated. While a few detailed theoretical
treatments have looked into the critical range where these parameters can exist, certain
factors can tolerate an order of magnitude variation in expression level.

Here I propose examining the patterning networks of a range of Drosophila species using
cryosectioned embryos. This study should certainly include D. yakuba, D. pseudoobscura, and
D. wirilis, for which ChIP experiments have already been performed (Paris et al. 2013), but
ideally would cover the tree more broadly. The most obvious variations in adult phenotype
among these species has to do with wing size and shape, body size, and pigmentation. There
are not major differences in segmentation or the body plan—the flies all look like flies—which
are the features that many of the patterning genes expressed before gastrulation (such as the
pair-rule, segment polarity, and hox genes) critically control. Additionally, examining hybrid
embryos of D. melanogaster with it sister species D. simulans is likely to provide insights into
transcriptional regulation. If there are any genes with effectively identical patterns in both
D. melanogaster and D. simulans, but different patterns in the hybrid, that would indicate
parallel evolution in the cis-regulatory modules that control those genes’ expression.

The goal of such a study would be two-fold: first, it would help to place empirical limits on
the amount of expression variation that can be tolerated. It is unlikely that these systems
are sufficiently well studied that these limits could be deduced from first principles and
examining only the D. melanogaster network alone. The second goal of the study would be
to better understand how cis-regulatory grammars operate. It has been demonstrated that
enhancers with wildly varying binding site organization can drive nearly identical expression
patterns (Hare et al. 2008), but such examples are few and far between. I assert that if we
were presented by an oracle with every possible enhancer sequence that could drive a given
expression pattern, it would be possible to deduce from that set the rules that govern the
system. In this way, one can imagine the system as analogous to the games “Mastermind” or
“Black Box”, where one player (the “solver”) is able to probe a system with defined inputs,
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and must use the outputs to deduce the hidden, internal state (Strom & Barolo 2011). These
sorts of games usually impose a limit on the number of probes the solver is allowed to make,
which is suggestive of the fact that probing all possible states makes the game too easy. As
a caveat, in Black Box it is possible to construct multiple solutions consistent with a given
input-output mapping; by analogy, even with the complete set of enhancers it might not
be possible to completely rule out certain models. Even this worst-case scenario, however,
would be a great leap over the current state of the art.

The spatial organization of chromatin accessibility

It is well known that transcription factors both depend on proper chromatin state for suc-
cessful binding and also modify chromatin state through the displacement of nucleosomes
after they have bound. However, due to the relatively large amount of sample required for
most chromatin experiments, very little is known about whether TFs have different affinity
in different parts of the embryo nor whether chromatin state is spatially as well as temporally
dynamic. It seems very likely to me that the answer to both of these questions is yes, but
the precise identities of the binding sites and nucleosomes that are most dynamic will have
a huge impact on gene expression prediction.

As yet unpublished experiments from the Eisen lab, inspired in part by the feasibility
of performing RNA-seq on subsets of a single embryo, have examined whether transcription
factor binding varies in a spatially dependent manner. The TF giant, for instance, has two
expression domains, one in the anterior of the embryo and one in the posterior. In this
conceptually simple (yet technically demanding) experiment, Colin Brown looked at ChIP-
seq data in these two separate domains. While a majority of binding peaks are present in
both the anterior and posterior, a handful of were present in only one half. These data
jibe conceptually with other unpublished data from an orthogonal experiment conducted
by Colleen Hannon in Eric Wieschaus’s lab, wherein bicoid ChIP-seq peaks are assayed in
embryos with a varying, uniform concentration of bicoid. It seems likely that peaks with
responses to different bicoid concentrations are also highlighting the presence of other TF's in
the embryo. While it is perhaps not surprising that binding of one factor should be different
among different milieux of various other transcription factors, such a result has not been
demonstrated elsewhere in similarly close tissues®. These experiments have provided, at the
very least, suggestive evidence of widespread spatial patterns not only of gene expression,
but also in the organization of the transcriptional apparatus.

In somewhat surprising contrast with techniques measuring RNA levels from ever smaller
samples, techniques for reducing the quantities required for profiling chromatin have been
slower in being developed. The ATACseq protocol, recently published by the Greenleaf lab,
is to my knowledge the only approach for measuring chromatin accessibility that is applicable

3In the trivial case, one can look at the binding of a factor across different tissues—and the ENCODE
project has done this in exhausting (if not yet exhaustive) detail—but these are in the majority of cases
terminally differentiated tissues, and perhaps not informative to the process of differentiation that is actively
playing out in the early embryo.
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to samples smaller than ~ 10° nuclei. This relatively simple approach, using tagmentation
enzymes to directly ligate Illumina sequencing adapters to native chromatin, is quick and
relatively easy to perform. More excitingly, however, the approach is claimed to work for
samples with as few as 500 nuclei; if extensible to Drosophila embryos, one could conceivably
assay chromatin accessibility at 10 different points along any given axis of a stage 5 embryo.

The point of such an experiment would be to limit the space of possibilities for how the
nucleus “knows” that a particular region of DNA is an enhancer, while another is not. If
some amount of sequence-specific transcription factor binding is able to displace nucleosomes,
then more permanent chromatin marks are added nearby, we would expect that in parts of
the embryo very distant from the enhancer’s region of activity, where none of the sequence-
specific factors that actually drive that enhancer are expressed, DNA would primarily be
closed chromatin, rather than the open chromatin characteristic of enhancers.

If not, then that would require a ubiquitous enhancer-marking machinery. One partic-
ular hope was that zelda would be just such a global enhancer marker, though transgene
experiments in zelda depleted embryos have so far been unable to confirm that hypothe-
sis. However, the gold-standard experiment of adding or removing zelda binding sites in
endogenous enhancers has not been performed. Fortunately, the advent of genome editing
techniques makes such an experiment feasible. Presumably CRISPR-Cas9 would be the
preferred method for its low cost and easy retargetability.

I have performed preliminary experiments using ATACseq on single Drosophila embryos,
and have generated sequencing libraries whose fragment size distribution is consistent with
good libraries. While I have not yet actually sequenced these libraries, it seems reasonable to
believe they might recapitulate chromatin accessibility from larger experiments. If this is the
case, then a push could be made towards developing dissection techniques that preserve the
chromatin structure suitably well for spatial patterns of differential chromatin accessibility
to be assayed.

Unfortunately, there are a number of limitations to directly applying the techniques
developed for RNA towards profiling chromatin. Both freezing and fixing samples tend to
create noisier data (B. Wu and J. Buenrostro, personal communication). Fixing seems to
be the more detrimental process, but this is not strictly required for the slicing. Fixing the
embryos serves a few purposes in my experiments with RNA: first and foremost, it simplifies
the process of staging embryos, since the embryos are no longer developing the time pressure
for staging accurately is alleviated; second, by permeabilizing the embryo, dyes can be used
that allow only the slices from the frozen block of cryosectioning media that contain a piece
of the embryo to be retained; finally, it is believed to provide some more structural integrity
to the manipulation required to align the sample in the block, though this has not been
verified or assayed.

Stopping the development for staging is dispensable. In practice, while it does take a
few minutes to properly align the embryo in the cup, working efficiently should minimize the
staging error. There are also alternative ways to dye the embryo. While a major function
of the egg shell is to keep out foreign molecules, it is possible wash the embryos with a
gentle detergent, then apply a non-toxic stain (Rand et al. 2010). This could also allow
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the introduction of a non-toxic nuclear marker, such as Hoechst 33342. The most likely
response, if any, is an increase in stress-response pathways. This could be assayed through
bulk embryo RNAseq, and at any rate would be unlikely to also affect the ATACseq data
around patterning enhancers.
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Appendix A

Estimating Complexity of RN Aseq
Libraries

The presence of a PCR amplification step in most RNA-seq protocols has the potential to
introduce a significant number of duplicated reads that arise from the same cDNA fragment
(Benjamini & Speed 2012; Xu et al. 2012). Although there are experimental approaches
to mitigate this effect (Mamanova et al. 2010), another computational option is to simply
remove reads that map to identical locations(H. Li et al. 2009; Xu et al. 2012). However,
this has the potential to remove bonafide duplicates—those that came from different cDNA
fragments, but due perhaps to the high expression level of a gene or deep sequencing for
a library, came from the same location along a transcript. Moreover, we have found that
libraries with high levels of PCR duplication tend to be less reliable when compared to
replicates, and so prefer to simply discard those libraries, regenerating them from the initial
RNA when possible.

However, there is not to our knowledge an accepted method to determine whether a
sample has a high level of duplication. While examining GBrowse tracks for “blockiness”
can qualitatively identify problems (as in Figure Al), it is both time consuming and not
particularly rigorous. Noting the fraction of reads that map to unique locations is imperfect,
as it will be sensitive to the depth of sequencing, and therefore potentially difficult to compare
across libraries.

Comparing the number of unique read start sites to the total number of bases in a gene
offers one potential way to quantify the amount of PCR duplication actually present in
the library. We simulated drawing unique, independent positions from a 1.5kb transcript
(the average Drosophila transcript size, according to Daines et al. (2011))., and noting the
fraction of unique start sites. We recognize that this simulation is highly idealized: there
is a position-dependent bias, most often favoring the 5/ end of the read (Mortazavi et al.
2008; Hansen et al. 2010; Picelli, Faridani, et al. 2014); not all read start sites are equally
likely, as fragmentation followed size selection can lose the reads closest to either end; and
in a stranded protocol (which we have not tested here) the “forward” read must, necessarily,
come before the “reverse” read. Nevertheless, this captures the essence of the problem, and
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Figure Al. GBrowse views of the same 2kb region of Chromosome 3R in two
libraries with different levels of duplication. Despite the similar number of reads in each
sample, the lower library has much less information, due to a relatively high level of PCR
duplication.

we will show that it closely matches real data.

For each gene, we calculated f, the fraction of bases in that gene that had a read start
at that position. We plotted this quantity in figure A2 against the number of reads mapping
to that gene divided by the gene length (that is, the total coverage, ¢). As expected, as the
average coverage for each gene increased, the fraction of unique start sites increased as well,
until the coverage approached 1x, at which point the available start sites became saturated.

Crucially, when we plotted these on a log-log plot, the region below about 10% of the
occupied start sites was approximately linear for at least 3 logs below that. The fit equation
was:

logyo f = Msim - logy ¢ + bsim = .986 log;, ¢ — 0.031 (A1)

or

f = 10Psimgm™ (A.2)

We expect the slope m to be slightly less than 1, to indicate that increasing the cover-
age should increase the fraction of start sites occupied, but with some chance of multiple,
independent reads coming from the same location, even in the absence of duplication.

This leads to an easy interpretation of the score B = 10%m~? as the average level of PCR
duplication. A lower intercept corresponds to a shift to the right on the plot, which in turn
means that the coverage to yield a given number of unique sites must be higher.
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Figure A2. Log-log plot of simulated unique sites as a function of coverage. Simulated
values are in blue, and the fit to the portion of the graph below 10% of the unique start sites is

the dotted red line.
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Figure A3. Log-log plot of actual of fractions of unique sites vs coverage. A)
Previously published RNAseq data. Green points from modENCODE Consortium et al. 2010,
with a B-score of 1.3. Blue points from Lott et al. 2011, with a B-score of 2.6. B) Unpublished,
low-quality RNAseq data. Green points have a B-score of 5.7, blue points have a B-score of 36.5
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Protocol | % Virilis b m B score
TruS 0 -0.6546 | 0.9195 | 4.2030
TruS 5 -0.4405 | 1.0584 | 2.5676
TruS 10 -0.5567 | 0.9998 | 3.3550
TruS 20 -0.5245 | 1.0224 | 3.1149
CT 0 -0.9669 | 0.8645 | 8.6285
CT 5 -0.5320 | 1.0386 | 3.1701
CT 10 -0.3784 | 1.1027 | 2.2254
CT 20 -0.5421 | 1.0335 | 3.2442
TotS 0 -0.2840 | 1.0871 | 1.7907
TotS 5 -0.2583 | 1.0769 | 1.6877
TotS 10 -0.4882 | 1.0199 | 2.8659
TotS 20 -0.4940 | 1.0202 | 2.9046
S2 0 -0.2139 | 1.1206 | 1.5238

S2 5 -0.1748 | 1.1303 | 1.3927

S2 10 -0.1586 | 1.1324 | 1.3416

S2 20 -0.1607 | 1.1302 | 1.3483
S2—2.5% 0 -0.5398 | 1.0036 | 3.2275
S2—2.5% 1 -0.6005 | 0.9771 | 3.7118
S2—2.5% 5 -0.5448 | 1.0038 | 3.2645
S2—2.5x% 10 -0.6117 | 0.9713 | 3.8084
S2—2.5% 20 -0.5532 | 0.9987 | 3.3284
S2—5x 0 -0.5944 | 0.9815 | 3.6599
S2—5x 1 -0.6373 | 0.9620 | 4.0397
S2—5Hx 5 -0.5707 | 0.9842 | 3.4650
S2—5x 10 -0.5695 | 0.9951 | 3.4557
S2—5x% 20 -0.5831 | 0.9930 | 3.5658

Table Al. Fit parameters and estimate duplication rate (B-score) of libraries used in
Chapter 3

When we calculated the B-score for samples from previously published datasets, both
from our lab (Lott et al. 2011) and the modENCODE consortium (modENCODE Consortium
et al. 2010), we found that the scores were all less than 3 (Figure A3A). By contrast, previous
libraries from our lab that have been unpublished due to our lack of confidence that the data
was not highly enriched for duplicates (including the lower panel of Figure A1) had B-scores
in excess of 5 and up to 30 (Figure A3B). RNAseq data used in the main text of this study
had B-scores as shown in table 1 in this document. Although in many cases they are higher
than ideal, they are comparable to previously published data, and only one is greater than
4.3.

We also simulated the fits for various sizes between 100bp and 10kb. Although the
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fit parameters did have a clear, increasing trend in response to increasing the simulated
transcript size (Figure A4), the increase was small compared to the actual values. A variation
of 0.005 in the intercept, which is used to calculate the B-score, corresponds to an actual
difference of about 1%. We are thus not concerned about the choice of 1.5kb to simulate the
ideal scenario.
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Figure A4. Regression coefficients vs size of transcript. Simulated at 100, 500, 1000,
1500, 3000, 5000, and 10,000 bp transcript sizes.

A.1 Simulation Code

from __future__ import division

from scipy import random

from numpy import (zeros, zeros_like, arange,
unique, mean, loglO)

from scipy.stats import linregress

from progressbar import ProgressBar

avg_size = 1500.
n_reps = 100

regs = []
all_sizes = [100., 500., 1000., 1500., 3000., 5000., 10000.]
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for avg_size in all_sizes:

cs = arange(l, 5*avg_size)
fs = zeros_like(cs)
pb = ProgressBar()

all_fracs = []
for ¢ in pb(cs):
fracs = zeros(n_reps)
for i in range(n_reps):
fracs[i] = len(unique(
random.randint (0, avg_size, c))
)/avg_size
# Use randint to generate random read positions,
# then count the number of unique start sites
# and normalize by size of the transcript
all_fracs.append((c/avg_size, fracs[i]))
fslc-1] = mean(fracs)

print (’-’%30)

print (avg_size)

print (’-’%30)

regs.append(linregress(loglO(cs[fs<.1]/avg_size),
log10(fs[fs<.11)))

print(regs[-1])





