
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Accuracy Aware Privacy Preserving Decision Support

Permalink
https://escholarship.org/uc/item/80j1p36q

Author
Ghayyur, Sameera

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/80j1p36q
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Accuracy Aware Privacy Preserving Decision Support

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Sameera Ghayyur

Dissertation Committee:
Sharad Mehrotra, Chair

Xi He
Nalini Venkatasubramanian

Michael Goodrich

2022

Chapter 3 © 2018 Association for Computing Machinery
Chapter 5 © 2022 VLDB Endowment

All other materials © 2022 Sameera Ghayyur

DEDICATION

To my father, for being my biggest cheerleader!

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

LIST OF ALGORITHMS ix

ACKNOWLEDGMENTS x

VITA xi

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Thesis Organization . 4

2 Preliminaries and Related Work 6
2.1 Privacy Primer . 6

2.1.1 Data Suppression . 7
2.1.2 De-Identification/Anonymization . 8
2.1.3 Differential Privacy . 9

2.2 Related Work . 13

3 IoT-Detective: Analyzing Differential Privacy For Decision Support in
IoT domain 15
3.1 Preliminaries . 16

3.1.1 TIPPERS . 16
3.1.2 PeGaSus . 18

3.2 Demonstration Study . 19
3.2.1 The IoT-Detective Game . 19

4 Empirical Evaluation of Diverse PETs to Publish Smart Space Occupancy
Data 23
4.1 Introduction . 24
4.2 Background . 27

4.2.1 Data . 27
4.2.2 Techniques . 29

iii

4.3 Methodology . 31
4.4 Posterior Computation . 33

4.4.1 Posterior without Privacy Techniques 33
4.4.2 Posterior with a Privacy Technique 35

4.5 Experiments . 38
4.5.1 Prior distribution . 39
4.5.2 Posterior distribution . 40

4.6 Results . 43
4.6.1 Exact vs Predicted noise distribution 44
4.6.2 Comparing different privacy techniques 47

4.7 Conclusion . 55

5 MIDE: Accuracy Aware Minimally Invasive Data Exploration For Decision
Support 56
5.1 Introduction . 56
5.2 Privacy in Decision Support . 62

5.2.1 Predicate-wise Differential Privacy 64
5.2.2 Min-Entropy based Privacy Metric 67
5.2.3 Problem Definition . 69

5.3 Algorithms for MIDE . 70
5.3.1 Threshold-shift Laplace Mechanism 70
5.3.2 Progressive Predicate-wise Laplace Mechanism 73
5.3.3 Data Dependent Mechanism . 77

5.4 Computing Privacy Loss . 79
5.5 Experiments . 83

5.5.1 Setup . 88
5.5.2 Experimental Results . 89

5.6 Conclusion . 92

6 Accuracy Aware Privacy Preserving Decision Support with Complex Queries 93
6.1 Introduction . 93
6.2 Query Definition . 95

6.2.1 Query Conjunction . 97
6.2.2 Query Disjunction . 99

6.3 Privacy and Accuracy Guarantees For Complex DS Queries 101
6.3.1 Problem Definition . 102
6.3.2 Query Conjunction Mechanism . 103
6.3.3 Query Disjunction Mechanism . 105

6.4 Accuracy Aware Privacy Preserving Algorithms For Complex DS Queries . 108
6.4.1 Algorithms for Query Conjunction 108
6.4.2 Algorithms for Query Disjunction . 113
6.4.3 Generalized Conjunction/Disjunction Query 116

6.5 Preliminary Experiments . 119
6.6 Conclusion and Future Work . 122

iv

7 Conclusion and Future Work 123

Bibliography 125

Appendix A MIDE Appendix 131

Appendix B Empirical Study Appendix 150

v

LIST OF FIGURES

Page

1.1 MIDE framework for minimally invasive data exploration for decision support
applications . 3

3.1 Screenshot of the Building Analytics app. 17
3.2 Screenshot of the IoT-Detective game interface. 20

4.1 Methodology defined. 31
4.2 A sample plot: x-axis is the timepoint, y-axis the total number of people

localized within each confidence class. 43
4.3 Prior guessing probabilities for δ = 0% (left), δ = 50% (middle), δ = 90%

(right) . 45
4.4 Posterior guesses from noisy Laplace counts for δ = 0% (left), δ = 50%

(middle), δ = 90% (right), ϵ ∈ {0.1, 1.0, 5.0,∞} (top to bottom) 46
4.5 Posterior guesses for worst-case DP, δ = 90%, ϵ ∈ {0.1, 1.0, 5.0} (left to right) 46
4.6 Successful guesses from noisy Laplace counts with δ = 90% using true distri-

bution (top) and scaled kernel density estimation (bottom), ϵ ∈ {0.1, 1.0, 5.0}
(left to right) . 47

4.7 Comparison of different mechanisms for the external visitor attacker. 52
4.8 Comparison of different mechanisms for the student attacker. 53
4.9 Comparison of different mechanisms for the administrator attacker. 54

5.1 Occupancy Heatmap of a Building in UCI. 58
5.2 The figure shows accuracy guarantees of (i) Naive Laplace Mechanism: noisy

aggregates are compared with threshold c (ii) Threshold Shift Laplace Mech-
anism: noisy aggregates are compared with shifted threshold c− α. The dots
represent aggregates on the predicates. By shifting the threshold to c − α,
(ii) achieves β-False Negative Rate (Definition 5.1) as compared to (i) where
there is no guarantee on false negatives in the region [c, c+ α] 72

5.3 PPWLM with 2 iterations. (a) shows the original aggregated counts and the
threshold c. (b) and (c) show the noisy aggregated values for each predicate
for iteration 1 and iteration 2. In iteration 1, predicates with noisy aggregates
< c−α1 are outputted as negatives, those with noisy aggregates > c−α1 are
outputted as positives, the remaining are undecided and continue in iteration
2. Iteration 2 outputs all predicates with noisy aggregates > c−α2 as positives. 76

vi

5.4 Possible options at k-th step of MinEnt algorithm. Option 1 distributes as
much slack as possible to p̂k (solid green line) and the rest to p̂1, . . . , p̂k−1 (dot-
ted green line). Option 2 distributes as much slack as possible to p̂1, ..., p̂k−1

and the rest to p̂k. Option 3 distributes slack to p̂1, . . . , p̂k−1 and p̂k instead
of distributing as much as possible to either. 81

5.5 This figure shows the distribution of the distances from the thresholds for all
aggregates for Q1, Q2, Q3, Q4 with thresholds = High (H), Medium (M) and
Low (L). 84

5.6 Privacy loss in terms of ϵ∗(Ex-Post DP) and Min-Entropy γ(Θ) for Q1, Q2,
Q3, Q4 with threshold = High (H),Medium (M), Low (L) at β = 0.05, α = 1 85

5.7 Accuracy in terms of False Negative Rate (FNR) and False Positive Rate
(FPR) for Q1, Q2, Q3, Q4 with threshold = High (H), Medium (M), Low (L)
at β = 0.05, α = 1. 86

5.8 Accuracy (FNR,FPR) and Privacy (ϵ∗,γ(Θ)) for Q3 (NYTaxi data) with
threshold = Low over varying α. 87

6.1 The figure shows output of intersection and union of M1 and M2 and high-
lights FP(in green) and FN(in red) cases where M1 and M2 are output of
mechanism to answer Q1 and Q2. 103

6.2 The figure shows query tree for (a) Q = Q1 ∪ (Q2 ∩ Q3), (b) Q = Q1 ∪ Q23

where Q23 = Q2 ∩Q3 . 118
6.3 Privacy loss in terms of epsilon, accuracy in terms of False Negative Rate

(FNR) and False Positive Rate (FPR) β = 0.005 for query conjunction. . . . 121
6.4 Privacy loss in terms of epsilon, accuracy in terms of False Negative Rate

(FNR) and False Positive Rate (FPR) β = 0.005 for query disjunction. . . . 121

vii

LIST OF TABLES

Page

4.1 Running times (in seconds) of computing posterior probabilities for Laplace
noise. 47

4.2 Parameters achieving the same utility for different privacy mechanisms. . . . 49

viii

LIST OF ALGORITHMS

Page
1 Threshold Shift Laplace Mechanism. 72
2 Progressive Predicate-wise Laplace Mechanism 75
3 Data Dependent Progressive Mechanism DPPWLP 80
4 Estimated Epsilon for next step in DPPWLM 80
5 Minimize Entropy . 83
6 Query Conjunction based on Threshold Shift Laplace Mechanism. 110
7 Query Disjunction based on Threshold Shift Laplace Mechanism. 115
8 Conditions . 146

ix

ACKNOWLEDGMENTS

I want to take this opportunity to thank a lot of people who have been instrumental in
completing my PhD.

First and foremost, my advisor, Sharad Mehrotra, for introducing me to the world of
privacy and your valuable feedback and support. You have been there for me every step
of the way throughout my PhD journey. Your passion for research is truly inspirational. I
would like to thank Xi He for being a remarkable mentor and guiding my research work
with your expertise in privacy.

I would like to thank my other collaborators for the research work presented in this thesis -
Dhrubajyoti Gosh, Roberto Yus, Yan Chen, Ashwin Machanavajjhala, Michael
Hay, Gerome Miklau, Alisa Pankova, Peeter Laud. I would also like to thankMichael
Goodrich and Nalini Venkatasubramanian for being part of my thesis committee and
your valuable feedback. I would also like to mention some of my mentors Mumtaz Abbas,
Basit Shafiq, Sadia Khan, Paul Gagliardi and Asim Farooqi who always believed
in me and have inspired me to pursue my dreams. I am thankful to my lab mates, spe-
cially Dhrub, Primal, Roberto, Guoxi and Peeyush, for your intellectual company and
friendship.

I am extremely lucky and grateful to have wonderful friends who have been there for me, in
person and from afar - Anam, Sumaya, Wardah, Greta, Pedro, Maruf, Efi, Yaqoob,
Ayesha and many others that I may have missed.

Most importantly, I am grateful to my parents -Razia Sultana andMuhammad Ghayyur
Ahsan, my siblings - Zakiya, Mudeera and Hassan and my grandfather - Muhammad
Awwal Shah - for always believing in me and being supportive of my academic endeavors.
I am thankful to my little nephews - Rohaan and Sharoon, for cheering me from afar with
your cute little voice notes.

I am especially thankful to Josh for your kindness, love and support.

This work was partially funded by the research sponsored by DARPA under agreement
number FA8750-16-2-0021, NSF Grants No. 1952247, 2133391, 2032525, 2008993.

x

VITA

Sameera Ghayyur

EDUCATION

Doctor of Philosophy in Computer Science 2022
University of California, Irvine Irvine, California

Master of Science in Computer Science 2015
Lahore University of Management Sciences Lahore, Pakistan

Bachelor of Science in Computer Science 2013
Lahore University of Management Sciences Lahore, Pakistan

RESEARCH EXPERIENCE

Graduate Research Assistant 2017–2022
University of California, Irvine Irvine, California

Research Assistant 2015–2016
Lahore University of Management Sciences Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2016–2021
University of California, Irvine Irvine, California

Lecturer 2015–2016
Forman Christian College (A Chartered University) Lahore, Pakistan

xi

REFEREED CONFERENCE PUBLICATIONS

MIDE: Accuracy Aware Minimally Invasive Data Ex-
ploration For Decision Support

Sep 2022

48th International Conference on Very Large Databases (VLDB)

Designing privacy preserving data sharing middleware
for internet of things

Nov 2020

3rd International SenSys+BuildSys Workshop on Data: Acquisition to Analysis (DATA)

Semiotic: Bridging the semantic gap in iot spaces Nov 2019
6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities,
and Transportation (BuildSys)

Towards accuracy aware minimally invasive monitoring
(MiM)

Nov 2019

ACM Conference on Computer and Communications Security, Theory and Practice of
Differential Privacy Workshop (TPDP)

Iot-detective: Analyzing iot data under differential pri-
vacy

Jun 2018

ACM Proceedings of the 2018 International Conference on Management of Data (SIG-
MOD)

REFEREED JOURNAL PUBLICATIONS

Composability verification of multi-service workflows in
a policy-driven cloud computing environment

2015

IEEE Transactions on Dependable and Secure Computing (TDSC)

BOOK CHAPTERS

A Privacy-Sensitive Collaborative Approach to Business
Process Development

2015

E-Business and Telecommunications, Communications in Computer and Information
Science Series, Springer

xii

ABSTRACT OF THE DISSERTATION

Accuracy Aware Privacy Preserving Decision Support

By

Sameera Ghayyur

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Sharad Mehrotra, Chair

In this thesis, we study privacy in the context of Decision Support(DS) applications. DS

applications utilize data collected from numerous sources to guide important decisions. How-

ever, such applications could face severe privacy challenges if the data contains sensitive

information about individuals. While techniques such as differential privacy are suited for

privacy-preserving data sharing, their usefulness in the context of decision support (DS)

applications is limited due to privacy and utility trade-offs as these techniques do not offer

any guarantees on the quality of results. DS tasks, in contrast, require guarantees on the

output quality to avoid making misleading and inaccurate decisions.

We explore the concept of minimally invasive data exploration for decision support that at-

tempts to minimize privacy loss while supporting bounded guarantees on accuracy. We build

a demo application and conduct empirical studies to understand privacy utility trade-offs of

different privacy techniques and to highlight the need for accuracy driven privacy preserving

data analysis. We formally define decision support queries and their accuracy requirements

and present privacy preserving algorithms to answer these queries that minimize the privacy

loss while providing the required accuracy guarantees for decision support.

xiii

Chapter 1

Introduction

Decision Support (DS) applications [22, 53, 4] analyze data collected from numerous sources

to produce valuable insights and allow timely and informed decision-making. These decision

support applications are built on top of data analysis tools/ techniques such as OLAP(On-

line analytical processing) and various data mining techniques e.g., decision trees, machine

learning algorithms like neural networks, random forest trees.

On-line analytical processing (OLAP) and data warehousing are essential elements of deci-

sion support that are widely used in organizational decision making[46]. In a typical OLAP

system, the data is aggregated over n-dimensional data cube and can be used to learn aggre-

gated statistics e.g. how many copies of a particular book were sold in all northeast stores in

the years 2021 and 2022? This kind of aggregated statistics can be used to make important

business decisions e.g. deciding whether the company should keep selling a particular prod-

uct. Similarly, data collected from Wifi access points can be used to learn the occupancy

statistics inside a building. This data can be used to detect violation of fire code or efficient

space utilization inside a building. Another example is of assisted living situations where one

of the primary challenges is fall prevention of the elderly. The elderly could be monitored

1

using cameras and wearable devices to collect aggregated statistics e.g., number of sudden

accelerations in a week. Such data can be used to make a decision about whether the elderly

is a high fall risk and we can make a decision to monitor such an individual more closely.

While data driven Decision Support(DS) systems provide highly valuable information to

guide important decisions, the data collected can be highly sensitive and can leak sensitive

information about individuals. For example, prior work [32] has shown that occupancy data,

with enough background knowledge, can lead to inferences about location of individuals,

which, in turn, can leak sensitive information (e.g., faculty arriving late to classes, staff

consistently leaving work early, smoking habits of individuals, etc.).

Ensuring user privacy in the data driven systems is a challenging and well-recognized re-

search topic. Most of the commonly used privacy preserving technologies in the literature

e.g. anonymization, obfuscation, randomization and differential privacy achieve privacy by

adding noise or removing sensitive information. The techniques protect privacy at a cost of

utility of the data and there is a direct trade-off between the utility and privacy. If the data

is not accurate or noisy, the decisions made using privacy preserving decision support sys-

tem can be misleading and inaccurate. Therefore, decision support systems not only need to

incorporate privacy to protect individuals’ data but also need insurance about the accuracy

of the decision.

In this dissertation, we solve the problem of accuracy driven privacy preserving decision

support applications. There are several privacy techniques that have been well studied in

different application contexts for data analysis. Before we embark on developing privacy

techniques for DS, we first explore existing state of the art techniques in the context of

DS. Privacy loss is usually defined in the context of adversarial model i.e. ability of the

adversary to learn sensitive information. Differential Privacy (DP) stands out among other

techniques as it provides strong formal guarantees for privacy loss and protects against very

strong adversaries, even ones who know the entire dataset except for one piece of information

2

Figure 1.1: MIDE framework for minimally invasive data exploration for decision support
applications
.

about one individual. In practical world, however, adversary might not be as strong and

approach required may only need to protect against a limited adversary. We conduct two

studies to understand the existing techniques both DP and techniques for different types of

adversary models in the context of decision support. These studies demonstrate that same

privacy levels for data analysis can result in vastly different utility depending on the dataset

and highlight the need for accuracy centric approach to privacy preserving decision support

as inaccurate results can be misleading and defeat the very purpose of decision support

application.

We formally define decision support queries, their accuracy requirements and provide various

algorithms to answer decision support queries that satisfy the required accuracy bounds

while minimizing the privacy loss through our framework called ’MIDE’ (Minimally Invasive

Data Exploration). MIDE uses privacy preserving mechanism to answer queries through an

interactive agent that controls the privacy level necessary to correctly perform the decision

support task as shown in Figure 1.1.

3

1.1 Thesis Organization

In Chapter 2, we present related work in the context of privacy preserving data analysis and

decision support applications. To provide motivation for the need for accuracy guarantees

for privacy preserving data driven solutions, we present two separate pieces of works (Chap-

ter 3 and 4). This work highlights the importance of accuracy aware privacy preserving

data analytics. It considers privacy preserving occupancy analysis for building management

system as an example to highlight limitations of current privacy techniques and their pri-

vacy/ utility trade-offs. Chapter 3 presents an informal study based on a demo application

presented at a conference(SIGMOD’19) to assess the usefulness of private streaming data

in a real-world application setting in IoT domain. The demo consists of a game, in which

participants carry out visual data analysis tasks on private data streams, earning points

when they achieve results similar to those on the true data stream. The data collected from

this demo helped us understand impact of privacy mechanisms on usefulness of data for DS.

Chapter 4 presents a privacy case study of privacy mechanisms to publish occupancy data

in the context of a smart building. The goal of the study was to explore the practical pri-

vacy implications for individuals’ privacy of the release of occupancy counts. We proposed a

methodology to compare across privacy techniques (e.g. randomization, differential privacy)

with different privacy parameters and guarantees under realistic adversarial scenarios. This

study highlights the trade-off between privacy and utility across various techniques.

Chapter 5 and 6 present accuracy aware privacy preserving data exploration algorithms for

decision support systems. Most of the recent work on privacy preserving techniques focuses

on maximizes accuracy given some privacy constraints. In decision support systems, accu-

racy is of prime importance as inaccurate results may render DS applications utterly useless.

Our algorithms focus on accuracy first approach while minimizing privacy loss. Chapter 5 fo-

cuses on developing privacy preserving techniques for simple decision support queries where

decisions are made based on a condition on single aggregate statistical value. These algo-

4

rithms satisfy given accuracy constraints and minimize the privacy loss. Chapter 6 present

accuracy aware privacy preserving algorithms for more complex DS queries where decisions

are made based on conjunction/disjunction of a set of conditions on multiple aggregated

statistics. These algorithms also focus on providing required accuracy guarantees while min-

imizing privacy loss. In Chapter 7, we provide conclusion and possible future directions for

our work.

5

Chapter 2

Preliminaries and Related Work

In this chapter, we provide background and related work in the context of privacy preserv-

ing decision support systems. First, we provide a privacy primer where we describe most

commonly used privacy preserving technologies to release data. Since utility is of prime

importance in the context of decision support application, we also provide an overview of

the work in the context of privacy vs. utility trade offs and accuracy aware state of the art

work for most widely used privacy technique differential privacy.

2.1 Privacy Primer

We live in a world that is becoming increasingly data driven. Large amounts of personal

data is being collected by different organization (medical history, census berue,location data,

) to facilitate and improve people’s lives.

Much of the prior work on privacy has been motivated by the need for data sharing while

ensuring privacy of sensitive data about individuals. Examples include privacy-preserving

sharing of demographic data (e.g., US Census), medical data to support research (e.g., cancer

6

registries), or collecting click-stream data for vulnerability analysis (e.g., from browsers).

Limiting the data release to only aggregated statistics does not guarantee privacy. An

adversary could easily learn the confidential contents of a statistical database by creating

a series of targeted queries and remembering the results.Lets consider the example of an

adversary that asks the following set of aggregate queries on census database. Q1) Number

of people with gender =′ M ′? Answer: 50. Q2) Number of people that have also age > 50?

Answer: 10. Q3) Number of people that, in addition, have degree=’eng’? Answer: 1. Now

the adversary knows there is a single individual that satisfies the above constraints. The

adversary can learn that individual’s salary by using these constraints on the following query:

Average salary of all individuals with gender =′ M ′ and age > 50 and degree = eng? This

query will give the adversary exact salary of the individual person. Research shows that

privacy properties in a database could only be preserved by considering each new query in

light of all previous queries [8] which is shown to be an NP hard problem.

There are several privacy enhancing technologies that can be used to share valuable insights

from user data. We provide some of the widely used techniques and their limitations as

follows.

2.1.1 Data Suppression

Suppression techniques work by not answering queries if number of individuals are too small

in order to prevent leakage of information about individuals. This technique does not prevent

adversary from knowing confidential information about individuals. For example, lets say

adversary knows some unique information about an individual e.g., the employee’s age is

more than 50, their gender is male and they have an engineering degree. Adversary can ask

a series of questions 1) Average salary of all individuals, 2) Average salary of all individuals

except whose gender =′ M ′ , age > 50 and degree = eng? Based on these two queries

7

adversary can learn information about targeted employee salary.

2.1.2 De-Identification/Anonymization

De-identification or anonymization techniques work by replacing identifier fields (fields that

contain information specific to an individual) with fictitious data such as characters or

other data. There are several techniques that have been developed in the past e.g., K-

anonymization, L-diversity, T-closeness. We provide details about more commonly used

anonymization technique i.e. k-anonymization and discuss the possible privacy attacks.

K-Anonymization To achieve k-anonymity, the attributes of a dataset are suppressed/-

generalized until all rows are identical with at least k-1 rows. Formally, an algorithm satisfies

k-anonymization if it outputs only k-anonymous table. A table is considered k-anonymous

if every record in the table has the same quasi-identifier values as k − 1 other records.

These algorithms are found to be vulnerable towards different types of attackers [60, 48]. K-

anonymity is a widely used privacy enhancing technology that can be used to release data to

public. However it can be susceptible to multiple types of attack e.g., Homogeneity Attack,

Background Knowledge Attack. Homogeneity Attack leverages the case where all the values

for a sensitive attribute within a set of k records are same. In this case, even though the data

was k-anonymized, it is possible to predict the exact sensitive value of the set of k records.

Background Knowledge Attack leverages the association/relationship between one or more

quasi-identifier values with the sensitive value to reduce the set of possible values for the

sensitive value. There have been many such cases in the past that show that k-anonimization

does not provide any guarantees for privacy. For example, it has been shown that publicly

released Netflix Prize data set that contains anonymous movie ratings of about half a mil-

lion subscribers of Netflix, an adversary can use deanonimazation techniques to identify this

subscriber’s record in the dataset with only a little bit of background knowledge about an

8

individual[49].

Similarly, privacy techniques such as l-diversity[40], t-closeness[36] which are refinement of

anonymization techniques are also vulnerable in the face of a powerful adversary. We need

data analysis algorithms that can mine aggregated personal data with provable guarantees

of privacy for individuals even with strong and powerful adversary.

2.1.3 Differential Privacy

Differential privacy [13] has emerged as a widely used privacy definition with provable privacy

guarantees. An algorithm is said to follow differential privacy given an input dataset D ∈ D,

if output of the algorithm does not change significantly, when a single tuple is added or

removed from D. It is formally defined as follows:

Definition 2.1 (Differential Privacy (DP)). A randomized mechanism M : D → O satisfies

ϵ-differential privacy, if

P [M(D) ∈ O] ≤ eϵP [M(D′) ∈ O] (2.1)

for any set of outputs O ⊆ O, and any pair of neighboring databases D,D′ where D and D’

differ by only one tuple, i.e., | D \D′ ∩D′ \D |= 1.

In this definition, ϵ is the privacy budget that controls the amount of privacy loss where

ϵ ≥ 0. A higher ϵ value implies weaker privacy, whereas a lower ϵ value implies stronger

privacy.

A Bayesian interpretation DP [26] is to bound the posterior odds of an adversary with respect

to prior odds on whether a tuple x is in D and takes value t ∈ T , where T is the domain

of the tuples. The adversary’s prior odds for the tuple x is defined as P [x=t∧x∈D]
P [x ̸∈D]

, where

9

the numerator refers to the prior belief that x is in the database and takes value t and the

denominator denotes the prior belief that x is not in the database. The posterior odds after

observing an output o of the DP mechanism M , is expressed as P [x=t∧x∈D|o]
P [x̸∈D|o] . As M satisfies

ϵ-DP, we have the following guarantees, given non-zero prior beliefs for x and t,

| ln(P [x = t ∧ x ∈ D|o]
P [x ̸∈ D|o]

/
P [x = t ∧ x ∈ D]

P [x ̸∈ D]
)| ≤ ϵ (2.2)

Differential Privacy Properties

Differential privacy has important properties [33, 13] to allow the composition of multiple

DP mechanisms.

Theorem 2.1 (Sequential Composition). Consider k algorithms M1, ...,Mk each satisfying

ϵi-DP. The sequential execution of M1, ...,Mk satisfies
∑k

i=1 ϵi-DP.

Theorem 2.2 (Parallel Composition). Consider k algorithms M1, ...,Mk, each satisfying

ϵi-DP. The dataset D is partitioned into k disjoint parts and each Mi is executed on the ith

partition. Then the parallel execution of M1, ...,Mk satisfies max(ϵi)-DP.

Theorem 2.3 (Post-Processing). Let M1 : D → O be an algorithm that satisfies ϵ-differential

privacy. Then if an algorithm M2 is applied to the output of M1, then the overall mechanism

M2 M1 also satisfies ϵ-DP.

Ex-Post Differential Privacy. It is possible to design DP algorithms that do not satisfy

the differential privacy definition, but the output of such computations are private and can

be quantified after the computation is finished. For example, consider an algorithm that

repeatedly runs an ϵ-DP algorithm, until a stopping condition is met and the condition is

defined by the output itself. This experiment does not satisfy ϵ-differential privacy for any

fixed value of ϵ, since we do not know in advance how many times ϵ-DP algorithm will run.

However, when the algorithm stops, we can see that it stopped after k runs so the ex-post

10

privacy loss for such algorithm will be kϵ. More details on Ex-Post differential privacy can

be found in [37].

Differential Privacy Mechanisms

There are several DP mechanism proposed in the literature that can be used to achieve

differential privacy. In the following, we present some of the most widely used mechanishms

to achieve differential privacy.

Laplace Mechanism. The Laplace mechanism is one of the commonly used DP mechanisms

and it achieves ϵ-DP by adding noise drawn from a Laplace distribution that is proportional

to the sensitivity (Definition 2.2).

Theorem 2.4 (Laplace Mechanism (LM)). Given a function g : D → Rd, the Laplace

Mechanism outputs g(D) + η, where η is a d-dimensional vector of independent random

variables drawn from a Laplace distribution with the probability density function p(x|λ) =

1
2λ
e−|x|/λ, where λ = ∆g/ϵ, and it satisfies ϵ-DP.

Definition 2.2 (Sensitivity). Given a function g : D → Rd, the sensitivity of g is defined

as the maximum L1 distance between function outputs of any two neighboring databases D

and D′ that differ by only one tuple.

∆g = max
∀D,D′

∥g(D)− g(D′)∥1 (2.3)

For instance, a counting query has a sensitivity of 1.

Exponential Mechanism. The exponential mechanism[42] can be used to provide differen-

tially private answers to queries where responses of such queries are not numeric values. For

instance “what colour of eyes is most common?” or “which country has the highest preva-

lence of heart disease?”. It is also useful for constructing better mechanisms for numeric

11

computations like medians, modes, and averages. This work[42] provides formal definition

of exponential mechanism and how to achieve ϵ-DP.

Randomized Response Mechanism. The randomized response is predecessor to differen-

tial privacy which was designed as a method used to be used in surveys[59] and can be used

to achieve ϵ differential privacy. The basic concept of randomized response is that to answer

a yes/no question, first, flip a coin. If the coin is heads, answer the question truthfully. If

the coin is tails, flip another coin, if the second coin is heads, answer “yes”; if it is tails,

answer “no”. The randomization in this algorithm comes from the two coin flips. As in all

other differentially private algorithms, this randomization creates uncertainty about the true

answer, which is the source of privacy.

There are several other building blocks on differential privacy and readers may refer to [13]

for more details. In the following, we describe important line of work in differential privacy

research.

Answering Queries vs. Publishing Synthetic Data Depending analysis task at hand, a

data analyst is either allowed to run multiple customized queries over the data in a differen-

tially private manner[33, 34, 43] or differentially private synthetic data is generated once and

all the analyst interactions are done over the differentially private data[19, 20]. Being able

to answer multiple customized queries over data requires keeping track of ϵ. In this work,

we consider the former method of analyzing the data in a differentially private manner.

Differential Privacy for Complex Data The standard definition of differential privacy

is not well suited for data set that could be more complex and may have multiple types

of entities that may be related to each other e.g., streaming data set where an individual

may be represented by multiple rows in a table. There has been prior work that critically

analyzes the privacy guarantees provided by differential private algorithms in terms of sensi-

tive information disclosed to the adversary. These line of work (Pufferfish[26], Blowfish[21])

12

provides more generalized privacy definitions inspired by differential privacy which can be

customized according to the complexity of data.

2.2 Related Work

As discussed above, most of the privacy preserving techniques work by adding noise/ran-

domization or suppression of sensitive information. Hence, incorporating privacy can lead

to inaccurate results when performing data analysis. In the context of Decision Support

application, accuracy is of primary importance as without accuracy, the decision support

applications will lead to incorrect decision i.e., defeating the very purpose of the application.

In our work, we consider differential privacy(DP) to incorporate privacy in DS applications

as DP provides strong privacy guarantees.

Accuracy-aware differentially private (DP) systems [47, 16, 37, 38] have been studied in the

literature. These systems allow data analysts to specify their accuracy requirements for their

queries/ applications while achieving bounded privacy loss. However, queries supported by

these systems or their accuracy specifications do not directly match the need for decision

support applications. GUPT [47] considers sample and aggregate framework which requires

the query can be answered accurately from a data sample. Hence, it is not applicable to

our aggregate threshold queries for decision support. APEx [16] and DPella [38] are able to

answer aggregate threshold queries(basic decision support) with an accuracy guarantee, but

this guarantee differs from the accuracy requirement of decision support query in terms of

false negatives, and hence their algorithms also do not directly apply. The work by Ligett et

al. [37] handles arbitrarily complex mechanisms and use empirical error of the mechanisms to

pick epsilon, but the testing of the empirical errors requires additional privacy budget. Ligett

et al. also introduced the notion of ex-post DP for accuracy-aware one-shot mechanisms.

In our work, we extend this ex-post notion to predicate-wise DP, our fine-grained privacy

13

management framework for decision support.

Fine-grained privacy specifications have been considered previously at tuple level, like per-

sonalized DP[24] where each tuple has its own pre-set privacy budget; or at group level,

like one-sided DP [29] that specifies a set of tuples are non-sensitive based on their values.

Predicate-wise DP allows the tracking of the privacy budget at group level partitioned by

the predicates. It generalizes one-sided DP, a case with only two groups. Though each tuple

cannot leak its own privacy budget, the group-level (predicate-wise) budget can be leaked

for budget accounting. Both personalized DP and one-sided DP do not have any accuracy-

aware designed algorithms or a privacy metric for comparing group-level privacy budgets.

Adapting them for decision support is not straightforward. Predicate-wise DP can also be

treated as a development over the parallel composition property [43] of DP. This provides a

formal framework for algorithm design over disjoint datasets.

In the context of privacy-preserving decision support using DP, Cuong et. al. [56] considered

similar aggregate threshold queries. They focus on optimizing a fairness goal for resource

allocation when observing that there are more disparities in decision errors for groups with

closer aggregates to the thresholds. Hence, the algorithms do not apply to our queries.

Furthermore, the paper did not take the accuracy-first approach, it is not clear how to set

the privacy budget to achieve the desired fairness goal.

14

Chapter 3

IoT-Detective: Analyzing

Differential Privacy For Decision

Support in IoT domain

In this chapter, we study how state-of-the-art DP techniques perform for DS applicatons.

We focus on IoT(Internet of Things) applications in the context of a state-of-the-art IoT

testbed (TIPPERS [45]) located at UC Irvine. In TIPPERS, data arrives in a stream and

is used to develop dashboards based on the sensor data. These dashboard/applications are

are can be used to drive decisions. We adapt a recently-proposed system, PeGaSus [5],

which releases streaming data under the formal guarantee of differential privacy. We first

describe Tippers and the application, and provide summary of PeGaSus and its privacy

guarantees. We then discuss how we adapt PeGaSus for our context and conduct a study

of its effectiveness in supporting DS applicaitons. In particular, we create a game called

IoT-Detective, in which participants carry out visual data analysis tasks on private data

streams, earning points when they achieve results similar to those on the true data stream.

15

We demonstrate the effectiveness of DP in such a task and privacy-utility trade-offs through

demonstration study which we conducted at SIGMOD’18 conefrence.

3.1 Preliminaries

We briefly describe our IoT testbed, called TIPPERS, and the differentially private engine

for releasing streaming data, PeGaSus.

3.1.1 TIPPERS

TIPPERS (Testbed for IoT-based Privacy-preserving PERvasive Spaces) is an experimen-

tal 6-story smart building testbed designed to study the numerous privacy challenges that

result from fine-grained monitoring of building occupants and visitors using a diverse set of

sensors [45]. To date, TIPPERS has installed 40 cameras, 64 WiFi APs, several hundred

bluetooth beacons covering all major regions in the building, over a hundred smart plug me-

ters to monitor energy consumption of connected devices, over six thousand HVAC sensors

measuring airflow and ventilation as well as temperature at different parts of the building,

and a large number of light and motion sensors. Data from these sensors flows through the

TIPPERS system that fuses the underlying sensor data to produce mainly two higher-level

data streams – PRESENCE, which monitors location of all individuals who are inside the

building as a function of time, and ENERGY, which monitors energy usage at different

spatial resolutions. The information managed by the TIPPERS database system is used to

build a variety of applications from real-time awareness of resources, people, and events, to

mechanisms to perform analytics on historical data.

The focus of the demo is on the Building Analytics App, shown in Figure 3.1. This app

provides analytics about data gathered from multiple sensors in the building (e.g., occupancy,

16

temperature, and energy consumption). The user can view occupancy data for different time

intervals and space granularities. The application is designed to gain an understanding of

how the building is used as a function of time in order to better plan spaces and events, as

well as to better control HVAC systems in order to be more energy efficient. For instance,

patterns of building usage by occupants for different regions of the building could lead to

customized HVAC settings that save energy without inconveniencing occupants. Likewise,

occupancy data can also be used to determine if there are regions in the building that are

under/over utilized and such information can lead to plans for better space management

(e.g., understanding class rooms that are overflowing or underflowing or determining which

lounge spaces are popular). The tasks we choose for our experimental game described as part

of this demo are motivated by such real world needs of building analysts. For the context

of this demo, the main focus is on occupancy data which is derived from PRESENCE data

stream. The PRESENCE data stream has continuously been collected now for about two

years, resulting in about 300 million location events since January 2016.

Figure 3.1: Screenshot of the Building Analytics app.

17

3.1.2 PeGaSus

PeGaSus is a novel system for releasing continuous query answers on real time streams under

differential privacy [5]. PeGaSus assumes the input has been pre-processed into a stream of

tuples (u, s, t) meaning user u was observed in state s at logical time t. The logical timestep

captures a short window of time (e.g., 5 minutes). States correspond to events of the form

“user u connected to a specific WiFi AP.” Pre-processing ensures that, at each time t, a user

can be in at most m states for some fixed and known m.

PeGaSus supports a variety of continuous queries over the data stream. The most basic query

is the unit counting query, which corresponds to releasing the number of users in a given

target state at each time point. It supports other queries over a single target state such as

sliding window sum queries—which report aggregated counts over time windows—and event

monitoring queries—which report whether or not a specific temporal event occurred (e.g., the

number of connections exceeding a threshold). PeGaSus also supports queries over multiple

target states (e.g., monitoring individual loads on each access point), and aggregations over

states (e.g., monitoring loads aggregated over all access points on a floor of a building).

PeGaSus ensures event-differential privacy. Informally, this means that modifying the stream

by adding or removing (up to m) tuples from a single user u at a single logical time t does

not significantly change the output (quantified by privacy loss parameter ϵ). We refer the

reader to the full paper [5] for a formal privacy statement, and its implications.

PeGaSus consists of three modules: a Perturber , which generates a stream of noisy counts,

a Grouper , which privately partitions the stream into contiguous regions that have roughly

uniform counts and a query specific Smoother , which combines the output of the Perturber

and Grouper to generate the final estimate of the query answer at each time step. Only the

Perturber and Grouper access the sensitive stream.

18

3.2 Demonstration Study

The demonstration study is based on IoT-Detective, a game where the demo participant

plays the role of the building analyst and uses a tool similar to the Building Analytics app

to explore the differentially private data and perform various analysis tasks. The objective

of the game is to perform analysis as accurately as possible and achieve the highest score

across all attendees.

The target group of this demonstration were the SIGMOD’ 18 conference attendees. The

players did not need to have any prior knowledge of differential privacy.

3.2.1 The IoT-Detective Game

The demo consists of a game where a player — in this case, an attendee — is challenged to

identify a real world event or pattern using tools provided by TIPPERS on the differentially

private data, much like a building manager might in a real-world deployment. This type of

event monitoring can be used for making decision e.g. regarding better space utilization.

To play the game, the demo participant interacts with the IoT-Detective game (see

Figure 3.2), which is very similar to the Building Analytics app, but has some additional

game-specific features, such as a timer, leader board, etc. The game is played in rounds

and a player can play as many rounds as possible in the allotted time. In each round, the

player is given a specific task which requires answering a factual question about types of

events during certain time periods (e.g., to identify the most likely time a weekly meeting

occurs). The player can then use the app to navigate through the data to identify the

relevant (differentially private) data streams and temporal windows and derive an estimate

for the answer. The accuracy of the answer is measured in terms of the difference between

the player’s estimate and the correct answer on the true (non-differentially private) data.

19

Players will be rewarded with points after accurately accomplishing each task. The amount

of points will depend on a combination of the accuracy of their estimate, the time taken to

complete the task, and the number of tasks they have completed (to incentivize participants

to play more than one round). The demo will track player points and maintain a leader

board to encourage friendly competition.

Figure 3.2: Screenshot of the IoT-Detective game interface.

The accuracy of a player’s answer depends on two primary factors. First, it depends on the

player’s ability to successfully navigate the user interface—thus, the demo is serving as a

valuable user test to see if the tool is intuitive and effective for these analytics tasks. Second,

it depends on the amount of noise injected into the data stream by PeGaSus. By varying

the privacy parameters across users and rounds, we gathered some preliminary data on how

much noise is tolerable for varying tasks—thus exploring the practical viability of differential

privacy in streaming data settings.

Example Tasks The Building Analytics Game app is initialized with a differentially pri-

vate dataset that reports occupancy information at 5 minute intervals for each room in the

20

building.

An example of a task might be: “On [specific date], count the number of time units (5

minute intervals) in which the occupancy of the [main conference room] exceeds [60].” The

parts in brackets can be varied to generate different versions of this task. The motivation for

this task is that building managers may wish to detect when a room exceeds its maximum

permitted occupancy under fire code regulations, or identify rooms/times in which space

is heavily-utilized. Players will be asked to perform a variety of tasks. The following are

additional illustrative examples:

• High occupancy regions. The rooms can be naturally organized into a fixed set of regions

e.g., Facilities Offices, Department of Informatics, etc. This task is to identify which region

is the most occupied at night (6pm to 6am) on [a particular day]. Most occupied could

mean average number of people are highest during night time. The motivation for this

task is better HVAC control at late hours when there are fewer occupants in the building.

The accuracy measure can be the difference in rank between the user’s choice and the true

answer.

• “Broken” sensors. We presume here that when a sensor breaks, it no longer senses its

environment and continuously reports a constant value, such as zero. Thus, we formulate

the task as follows: identify the earliest point in time in which [a particular sensor] starts

continuously reporting zero. This is motivated by the practical challenges that building

managers face with equipment maintenance. The accuracy measure is distance to the

actual time the sensor breaks (we will artificially modify the dataset to make a sensor

appear broken).

• Occupancy at routine events. The task is to identify the start time of a regularly occurring

event in a particular room e.g. start time of a lecture in a classroom. The motivation

is to facilitate better scheduling or detecting events that deviate from a schedule. The

accuracy measure is the distance between the player’s estimate and the actual start time

21

of the event.

Post-demo empirical evaluation The demo system recorded traces of the games of all

participants. Based on immediate feedback to users on their success and analysis of the

trace, this demo helped us to better understand the impact of the privacy mechanism on the

usefulness of visually displayed stream data. Although a conference demo is inappropriate

as the basis of a formal, controlled user study, the experience of gathering results gave us

some idea of challenges in DS applications due to privacy-utility tradeoffs. The usefulness

of privacy preserving data can vary depending on the underlying data set and the privacy

level i.e. ϵ. If the privacy level is too high, the users were unable to perform the analysis

tasks correctly. It is hard to determine what privacy level is too high to render the privacy

preserving data useless as it can depend on the data and the analysis task. Hence, without

setting appropriate privacy level, the decision support application may not work due to

low utility of the data and setting the right privacy level to make accurate decisions is a

challenging problem.

22

Chapter 4

Empirical Evaluation of Diverse PETs

to Publish Smart Space Occupancy

Data

This chapter considers an experimental evaluation of diverse privacy enhancing technologies

(PETs) to publish occupancy data derived from continuous sensor streams in emerging smart

buildings that can be highly valueable for decsion making. Ensuring individual’s privacy

in such a context, specially with formal privacy guarantees, is a hard challenge that has

attracted significant research interest [25]. Different techniques that offer different levels of

privacy guarantee have been proposed - e.g., techniques that are derivative of differential

privacy define privacy goals (such as protect published data from revealing user’s precise

location or participation on an event at any small interval of time) and offer formal privacy

guarantees (for the defined goals). Others, motivated by k-anonymity and techniques such

as [2] offer practical privacy but do not offer formal privacy guarantees.

Our study evaluates the practical implications to individual’s privacy, defined as the certainty

23

at which the location of an individual’s location at a given point, of publishing a contin-

uous occupancy map generated from streaming sensor data. We present our methodology

for computing such adversarial guess based on aggregated data published while utilizing

three different PETs. Additionally, we present realistic adversaries in our context (from a

rogue building administrator to a group of students trying to stalk others). The empirical

evaluation based on our methodology is performed in a real dataset containing 3 months of

occupancy levels of a University building derived from connectivity events captured by the

64 WiFi access points within the building.

4.1 Introduction

The adoption of Internet of Things (IoT) devices (i.e., sensors and actuators) in our daily

lives is transforming our spaces (e.g., homes, office buildings, cities) into smart spaces. This

opens up endless opportunities to provide smart services based on data captured from the

space itself and people within it that can result in benefits to users from the point of view

of automation or comfort. In particular, a potentially useful smart space dataset that is

currently being used in a plethora of applications is that of occupancy levels within the

space. This data can be obtained from multiple different sources such as WiFi Access

Points [9, 62], beacons [7], video cameras [55], etc. This dataset can be leveraged to, among

others, optimize thermal comfort in the space [27] as well as demand response [28] or help

in evacuating the space in case of an emergency [63]. Similarly, occupancy levels can enable

inhabitants of the building optimize their activities by, for example, detecting which meeting

rooms are available at the moment or which food court has the less number of people in queue.

However, as such occupancy information is obtained by monitoring location of individuals

there is a risk that analysis of occupancy data can violate individuals privacy [51]. For

example, patterns of movement, affinity towards spaces and other people in the building

24

could be potentially learnt from such occupancy information.

In this chapter, we focus on the continuous publishing of statistical data: stream of occu-

pancy counts of different regions within a building that are published continuously in order

to generate a dynamic heatmap of occupancy. This heatmap is further utilized by users to

understand different characteristics of the space1. Regarding the possible information disclo-

sure, we do not consider disclosure of presence of an individual in the dataset as a problem

since in scenarios such as ours (a University building) this information is typically publicly

available (e.g., enrolled students, faculty, and staff members in the different departments).

Instead, we focus on protecting the location of a user at time t. We consider this as a funda-

mental piece of private information that can be further utilized to extract information about

the habits, patterns, social network, events in which the user participated, etc.

The most widely used privacy method to publish continuous statistical data is differential

privacy [11] according to [25]. These methods differ in the specific level of protection they

provide (e.g., any single event of an individual vs. all the events vs. sequence of event),

the kind of attacks they protect against (e.g., complimentary release vs. data dependency

attacks), category of data or publishing mode (e.g., batch vs. streaming). The use case of

interest to us is the periodic generation of a heatmap of occupancy from which an attacker

must not be able to learn the current location of an individual. We thus focus on approaches

for protecting leakage of an event of an individual’s from streaming/infinite data [3, 52, 35, 6]

(see [25] for a comparison of those methods). In particular, PeGaSus [6], an algorithm for

event-level diffentially private stream processing, has been utilized in a similar context to

our use case to release occupancy counts in a smart building [17]. In addition to differential

privacy methods, another mechanism traditionally used in publishing of location data is

k-anonymity [54] which aims at obfuscating the identity of the individuals in the dataset

1The specific use of the heatmap is beyond the scope of this work as different users/profiles might have
very different use cases in mind (e.g., a student might be looking for a study room available, whereas the
building administrator might be monitoring whether fire code violations are taking place).

25

and can potentially be used before performing the aggregation to compute occupancy levels.

Similarly, methods based on mixed zones [2], which anonymize user identity by restricting

the positions where users can be located, has been explored in the context of location privacy

preservation.

The previous techniques (a representative but not comprehensive set of traditional PETs

used for this purpose) have different implications. First, is the issue of utility of the pub-

lished dataset after applying such PETs. Addition of noise to the occupancy counts or

anonymization of source data before computing occupancy might impact applications (in

some situations severely –e.g., if the goal is to perform automatic fire code violation control–

). However, we can assume that different PETs can be tuned (e.g., by means of their

parameters) to achieve a specific utility requirement when the final application requirement

is clear. Second, each technique has a different impact on individuals privacy. From formal

privacy guarantees, as in the case of DP, to weaker guarantees, as in the case of anonymiza-

tion. Additionally, different PETs have different underlying assumptions about possible

attack models. For instance, DP techniques are aimed to consider attackers with an almost

unlimited knowledge which for release of data to a limited/controlled population could re-

sult in an overestimation of the adversarial strength. Third, in some situations the priors

computed depending on the underlying context could be so strong that would make the

influence of the PET small (e.g., imagine an office space with the same daily set of people in

which their trajectories are highly predictable). Fourth, the robustness of the data published

by non-deterministic PETs (e.g., based on differential privacy) will depend on the specific

perturbation performed which, even if on average remains constant, in specific situations

can be better or worse. All of the previous points make it challenging to understand the

implications of each data releasing technique for each specific context.

In this chapter, we present an empirical evaluation of the practical privacy implications

of three privacy preserving methods (two techniques based on differential privacy and a

26

technique based on k-anonymity and mixed zones). The study is perform in the context

of a real building which captures connectivity data streams from WiFi access points and

publishes continuous occupancy data (see Sec. 4.2). For the purpose of evaluation, we

propose a methodology to compute privacy loss of individuals (see Sec. 4.3). Typically,

privacy analysis in the literature is done in the context of differential private mechanisms

which are compared based on their epsilon parameter as a bound on privacy loss. In our

case, since we want to compare also techniques which are not based on differential privacy,

we need a privacy metric to represent real privacy loss of individuals. We also present

a posterior computation method (see Sec. 4.4) which considers both the computation of

posteriors with and without privacy mechanisms. This is required to compare the privacy

loss when publishing real occupancy counts with the loss when publishing data with each

of the PETs analyzed. Based on the previous we present a set of experiments (see Sec. 4.5)

and show the results per privacy technique considering realistic adversaries in our context

such as a rogue administrator or a group of student trying to stalk others (see Sec. 4.6).

4.2 Background

In this section, we describe the dataset and the evaluated privacy techniques for this study.

4.2.1 Data

The data used in this study comprises occupancy levels of different spaces along time. We

have used a fragment of the dataset collected by Tippers[44] for building Donald Bren Hall

at University of California, Irvine. This dataset contains Wifi connectivity data of 3 months

(Feburary to April 2018) containing 36,436 number of devices connecting to 64 Wifi access

points. Over the 3 months period, these devices generated 3,895,732 connectivity events.

27

System S generates occupancy data based on connectivity events captured by standard WiFi

Access Points (APs) using SNMP traps when WiFi-enabled devices (e.g., smartphones)

connect to any of the 64 APs in the building. An event occurs when the device initially

connects with a specific AP, and then such events continue to occur periodically. Device re-

connection triggers if the signal strength between the device and the connected AP decreases.

It also occur stochastically even when devices are stationary and the signal strength is

stable depending upon the type of device, device manufacturer, type of OS, and network

characteristics. Such events are stored in a table to which we will refer as “Observation” with

the schema < MACdevice,MACAP , timestamp > where MACdevice and MACAP represent

the MAC address of the user device and of the WiFi AP, respectively. The first step in

the processing of the events is to enrich them to generate a table to which we will refer as

“Presence” with the schema < UserID,LocationID, StartTS,EndTS >. Where UserId

is an id used to anonymize the MAC address of the device, LocationID is the id of the

region of the building covered by MACAP , StartTS represents the time when the event

was generated (and therefore is equal to timestamp), and EndTS is an attribute used to

represent the validity of the event (initialized as timestamp + 10 where 10 minutes is a

validity obtained experimentally after analyzing connectivity patterns of different devices).

In the following, we will assume that the anonymization process involves hashing the MAC

address deterministically (a same MAC receives the same hash) unless another technique

is explicitly mentioned. Indeed, we will show when describing the privacy techniques that

some of them apply a different type of anonymization. When a new event arrives at time

t (< UserIDi,MACAPi
, t >) we look for the last presence tuple generated for that same

user (< UserIDi,MACAPj
, t− k >) and update its EndTS to t if k ≤ t− k + 10. Finally,

there is a table to which we refer as “Occupancy” which stores the occupancy of different

locations with the schema < LocationID, count, timestamp >. Every five minutes (i.e.,

time t) a query is executed in the “Presence” table to count the number of distinct UserID

in each LocationID where StartTS < t < EndTS and the results are inserted into the

28

“Occupancy” table.

Occupancy Heatmap. This stream of occupancy counts of different regions within a

building that are released using PETs to allow the user to generate a dynamic heatmap of

occupancy. The heatmap assigns colors ranging from c1, c2, ..., cn (in order of low to high

occupancy) where n = 10 to each location l at a time t. We compute each color ci based on

the distance from average occupancy µ of the place l at the time t as observed in the past

data. If the occupancy is above µ+ 2σ, the occupancy is the highest i.e., c10. Similarly, if it

is below µ − 2σ, it gets the lowest color value c1. The rest of the colors are assigned based

on dividing the range (µ− 2σ,µ+ 2σ) equally.

4.2.2 Techniques

We evaluate the following techniques to release privacy preserving aggregate level data (oc-

cupancy).

Differential Privacy: The goal of a differential private algorithm is to prevent and ad-

versary from telling whether a particular individual’s information was used to derive its

answer [11]. In our set up, a differential private mechanism is used to output occupancy

counts based on the presence data. Therefore, the output is a noisy version of the occupancy

levels of each space. Differential private algorithms offer strong privacy guarantees, under

certain assumptions. However, the utility of the output data directly depends of the privacy

level (controlled through their ϵ parameter). In particular we use two differentially private

mechanisms. First, we use a standard Laplace mechanism to add Laplace noise to the counts

of occupancy in the occupancy table (we will refer to this technique as simply Laplace in

the rest of the chapter). Second, we use the PeGaSus [6] mechanism which is an instance

of DP for streaming data.PeGaSus ensures event-differential privacy which means modify-

ing the stream by adding or removing tuples from a single user u at a single time t does

29

not significantly change the output of the mechanism. PeGaSus consists of a Perturber,

a Grouper and a Smoother. The Perturber generates a stream of noisy counts based on

laplace noise. The grouper privately partitions the stream into contiguous regions that have

roughly uniform counts and the Smoother combines the output of Perturber and Grouper

to generate the final estimate of the count at each time t. PeGaSus just like any Differential

Privacy mechanism quantifies the privacy loss parameter in terms of ϵ. (we will refer to this

technique as PeGaSus in the rest of the chapter).

k-anonymity: MAC randomization at the client side, which generates a new MAC address

for a device when connecting to a network, to prevent tracking has been shown to fail as

it becomes stable when connected to it [41]. The goal of this technique is to perform such

randomization at the server side when the connectivity events are captured. Instead of a

deterministic hashing of the MAC address, in this technique the hashing is defined to be

salted with a salt that changes periodically every k minutes (thus each salt has a TTL –Time

To Live–). This implies that for a user that remains connected to the same WiFi AP for a

longer period than the TTL if two connectivity observations are captured and the difference

between their timestamps is greater than the TTL, then the UserID associated to them

will be different even if the MAC address of the device is the same. The rest of the process

to translate connectivity events to presence and occupancy is the same as explained before.

This technique is aimed at linkage attacks to protect user trajectory information. Notice

that the occupancy data will be less accurate given that people can be counted several times

depending on the TTL. This technique has no formal guarantees of privacy w.r.t. released

counts, as counting does not depend on the object identities anyway.(we will refer to this

technique as TTL in the rest of the chapter).

30

4.3 Methodology

In this study, we are targeting systems where location of individuals is collected, but only

occupancy data is available through the queries. For this class of systems, we want to

evaluate the privacy implications of a given technique following the methodology summarized

in Figure 4.1. Notice that the methodology is general and can be used in other contexts too.

Therefore, along with the explanation of each component we explain how they have been

instantiated in our scenario.

Figure 4.1: Methodology defined.

We define a database D that contains all the data captured by the smart building (see

Sec. 4.2.1). The data, as well as its schema, is fixed. We define T to be the set of Privacy

Enhancing Techniques utilized for answering the adversary’s allowed queries (see Sec. 4.2.2).

Thus, we consider that a technique T ∈ T answers the queryQT as AT in a privacy preserving

manner after consulting D.

Adversarial Model. As an adversary, we consider a tuple of algorithms whose goal is to

retrieve/guess information about individuals in the dataset. We consider that such informa-

tion cannot be directly accessed by the adversary by posing queries on the dataset. Also,

we consider that the adversary can pose some queries on the dataset. More formally, we

31

define such tuple of algorithms for: 1) Creating the prior P by asking questions QP , that the

adversary can pose on D, in addition to his/her background knowledge, for prior creation. 2)

Computing the guess AG′
to the question he/she wants to retrieve/guess from D by posing

questions QT to the technique and using answer to QT (i.e., AT) and the prior P . The

goal AG that the adversary wants to retrieve/guess from D that can be retrieved by posing

questions QG may be specified as a set of SQL queries against the database D. Notice that

QG cannot be posed on D by adversary.

In the context of our study, we consider that the adversarial prior P is created by observing

past occupancy as well as presence data QP . Also, the adversary aims at guessing (AG)

the location of individuals at a time t. The adversary may have access to some background

knowledge about some users location at time t (see Sec. 4.5 for more details about the specific

background knowledge of different attackers). The adversary is allowed to pose queries (QT)

to obtain occupancy counts (AT) through technique T at the given time t.

Privacy Metric. As the goal is to determine the practical privacy implications of technique

T , we define a measure based on privacy loss. This is defined as the number of people for

which the adversary can guess the correct location at time t with a specific confidence class

(in our experiments we defined six levels of confidence classes). First, we compute the

adversary’s guess based on prior P . This measure indicates how good is the adversary’s

guess of AG based on just the prior. Then, we computed the adversary’s guess AD based

on answers to QT without using any technique. This measure indicates how good is the

adversary’s guess of AG if the adversary was allowed to run query QT over database D

without any privacy preserving mechanism T . Finally, we compute the adversary’s guess

AG′
based on prior P and answers to QT using technique T . This measure indicates how

good is the adversary’s guess of AG based on the prior (P) and answers to queries QT using

privacy preserving mechanism T .

32

4.4 Posterior Computation

In this section we present our method to compute posterior for an adversary with and without

privacy mechanisms.

4.4.1 Posterior without Privacy Techniques

Let U be the set of users, L the set of locations, and T the set of observed timepoints. For

all u ∈ U , l ∈ L, t ∈ T , let ptul denote the prior probability of the user u being in the location

l at the timepoint t. Now fix a particular timepoint t. Assume that, for each location l,

the attacker has obtained the total count ctl of users that are in location l at time t. We

want to see how the probability ptul changes after the attacker observes the counts (ctℓ)ℓ∈L.

Let Ct
ℓ be the random variable corresponding to occupancy of room ℓ at time t. Define an

event C :=
∧

ℓ∈L (C
t
ℓ = ctℓ). Let the notation “u ∈ l@t” denote the event “the user u was in

location l at time t”. Using Bayesian inference, we get

Pr[u ∈ l@t | C] =
1

1 +
∑

l ̸=ℓ∈L Pr[u∈ℓ@t∧C]

Pr[u∈l@t∧C]

. (4.1)

To compute (4.1), we need to estimate Pr[u ∈ l@t ∧ C] for all l ∈ L. This can be done

as follows. The user u is assigned the location l. The remaining |U| − 1 users need to be

distributed to locations in such a way that the resulting occupancies would satisfy C. That

is, the users are partitioned into |L| disjoint sets Sℓ (ℓ ∈ L), where |Sl| = ctl−1, and |Sℓ| = ctℓ

for ℓ ̸= l. The quantity Pr[u ∈ l@t ∧ C] can be computed by summing up the probabilities

of all possible partitionings of users to such sets, which gives us

Pr[u ∈ l@t ∧ C] = ptul ·
∑

(|Sℓ|=ct
ℓ
)ℓ ̸=l,|Sl|=ct

l
−1

∀k,ℓ:Sk∩Sℓ=∅,∀ℓ:u/∈Sℓ

∏
ℓ∈L

∏
v∈Sℓ

ptvℓ .

33

We could directly compute the sum over all possible partitionings, but it would be com-

putationally too expensive. We need to make some additional assumptions to simplify the

computation.

Non-individualized distributions.

Let us assume that we have ptul = ptvl for all users u, v ∈ U , i.e., the distribution of locations

does not depend on the individuality of a particular user. This is reasonable in the case

where the potential attacker only knows how an average user behaves in general, but does not

distinguish between them, e.g., the attacker learned this by a prior observation of occupancy

counts for a certain period of time. Let nt
u be the total number of users recorded at time

t. The rooms are occupied according to multinomial distribution: if we order the users and

assume that the first ct1 go to S1, the next c
t
2 got to S2, etc, there are (n

t
u−1)! possibilities to

rearrange the users, and since the ordering inside Sj does not matter, we get (nt
u−1)!

ct1!···(ctl−1)!···ctnl
!

possible partitionings for nl = |L| rooms. We get

Pr[u ∈ l@t ∧ C] = ctl ·
(nt

u − 1)!

ct1! · · · ctnl
!

∏
ℓ∈L

(ptℓ)
ctℓ , (4.2)

which gives us the posterior probability

Pr[u ∈ l@t | C] =
1

1 +
∑

l ̸=ℓ∈L ctℓ
ctl

=
ctl
nt
u

. (4.3)

This is quite an intuitive result, since if all users are treated equally, then any user will most

likely be located in the most popular place, even if the prior probability of being there is

very small. In fact, the posterior probability does not depend on the prior probability at

all, but only on the counts, as the prior probability only defines the distribution of room

occupancy, which is overridden by actual counts. More detailed derivations of Eq. 4.2 and

34

Eq. 4.3 are given in App. B.1.

Increasing attacker’s knowledge.

If the attacker only knows the counts, his/her probability of guessing will be quite low even

if no privacy mechanism is used. In reality, it is unlikely that the attacker has no other

information at all. It is quite possible that he/she already knows the location of some people

at the time of the attack. For example, some locations may be observed by the attacker

directly (e.g., if the attacker is physically located in the space, he/she could observe who

is around him/her) or through security cameras (e.g., for an attacker with access to the

security camera system). We will refer to those areas for which the attacker has information

about who is located inside of it at the time of the attack as open regions. Considering such

open regions reduces the total number of locations where the victim could potentially be, so

the posterior probability increases. The prior probability will also change, and will be scaled

according to the number of open regions.

4.4.2 Posterior with a Privacy Technique

Let X be the random variable representing attacker’s opinion about the input x, and C

about the true output c (without noise). Let Y be the random variable representing the

noisy output y, and fY (·) its probability density function. We let x denote the part of the

input, guessing which is the attacker’s goal, i.e., the location of the victim. Let X be the

total space of possible values of x, i.e., all possible locations. The particular timepoint that

we consider is implicit, and we do not use it in the notation.

In Sec. 4.4.1, we have shown how to compute Pr[u ∈ l | C = c] for a count histogram c =

(ctℓ)ℓ∈L. In this case, X = x iff u ∈ l, so we can use the results of Sec. 4.4.1 to compute

35

Pr[X = x|C = c]. We can use these results also to compute Pr[X = x|C = c,A] where A is

the additional knowledge that comes from opening some regions to the attacker. We want

to estimate Pr[X = x|Y = y,A].

A worst-case bound for Laplace mechanism

First of all, let us discuss a known upper bound on posterior probability for Laplace mech-

anism, taken from [31]. Assume that the attacker already knows the location of all other

users except the victim. Let X be the set of possible choices for the attacker, i.e., lo-

cations of the victim. Laplace mechanism parametrized by ϵ gives us an upper bound

fY (y | X = x) ≤ eϵ·|x−x′|fY (y | X = x′) for all x, x′ ∈ X. Using Bayesian inference, for

all y ∈ Y , we can write

Pr[x|Y = y] =
fY (y |X = x)Pr[x]

fY (y)

=
1

1 +
∑

x′∈X\{x} fY (y | X=x′)Pr[x′]

fY (y | X=x)Pr[x]

≤ 1

1 + e−ϵ

∑
x′∈X\{x} Pr[x′]

Pr[x]

,

so, in our case study an upper bound on posterior guessing probability is 1/(1 + e−ϵ · (1 −

ptul)/p
t
ul), where ptul is the prior probability of user u being in location l at time t.

One disadvantage of the obtained upper bound is that we assumed a very strong attacker

who already knows locations of all other users. We could try to increase the number of

unknown users, which changes the definition of X. This would decrease the prior, but at the

same time we would get e−ϵk instead of e−ϵ, where k is the number of unknown users. The

36

exponent grows too fast with k. Hence, we cannot experiment with adversarial knowledge

parameter A to get smaller levels of posterior probability.

Another problem is that the obtained upper bound is very generic and does not depend on

the true query output q(x), so it approaches 1 as noise approaches 0, and we cannot use it

to evaluate a particular query output. Intuitively, if the privacy mechanism releases q(x) + η

for some randomly sampled η, then the attacker cannot get more advantage in guessing x

than from observing q(x). Hence, we are looking for other approaches that would give us an

upper bound Pr[x | q(x)] on posterior guessing advantage.

Posterior for a particular noisy output instance

Let us try to evaluate the quantity Pr[x|y,A] = Pr[x|Y = y,A] directly. Let C be the set of

all possible true outputs (e.g., count histograms). Using chain rule, we can write it out as

Pr[x|y,A] =
∑
z∈C

Pr[x|y,C = z,A] ·Pr[z|y,A] .

This equality can be viewed as an attacker making a guess z about the real output q(x) and

checking how likely this z could be obtained from the noisy output y. After the attacker has

selected z according to y, it makes it guess purely from z and the additional knowledge A, so

Pr[x|y,C = z,A] = Pr[x|C = z,A]. To estimate Pr[z|y,A], the attacker takes into account

the likelihood of the noise that would turn z into y, as well as the probability of z itself. It

can be done using Bayesian inference Pr[z|y,A] = fY (y|C=z,A)·Pr[z | A]
fY (y | A)

. Since A only contains

knowledge about the data, and not the distribution, we have fY (y|C = z,A) = fY (y|C = z),

which can be computed from the noise distribution. The quantity Pr[z |A] can be computed

from prior probabilities, taking into account the additional knowledge. From these two

37

quantities, we can in turn compute fY (y |A) =
∑

z∈C fY (y|C = z)Pr[z |A]. We get

Pr[x|y,A] =
∑

z∈C Pr[x|C = z,A] · fY (y|z)Pr[z | A]∑
z∈C fY (y|z)Pr[z | A]

. (4.4)

Intuitively, we want that our estimated posterior probability would stay between the prior

Pr[x |A] and the probability Pr[x |c,A] of guessing from the true count c. We state and

prove this property in App. B.2.

Posterior for a particular true output instance

Fixing a particular y ∈ Y can make the attacker seem too successful or too unlucky, depend-

ing on the y ∈ Y that we have got. Knowing a particular distribution on Y , we may estimate

how much the attacker may guess in average for a particular output c := q(x) ∈ C. First of

all, we could directly compute the average posterior probability for all possible outcomes y

as

Pr[x|A] =
∫
Y

Pr[x|y,A] · fY (y|c) dy . (4.5)

This approach is good if the resulting integral has closed form, or at least can be approx-

imated efficiently. However, in practice it may be computationally hard to compute the

integral precisely. Alternatively, we can empirically compute the posterior probability on

many instances of randomly generated noise.

4.5 Experiments

The experiments are performed on presence and occupancy records for 3 months (February,

March, April, 2018), which comprises N = 89 days. We use the first N − 1 days of presence

38

data for constructing prior probabilities. We then use the last N -th day of the occupancy

table to compute posterior probabilities, showing how attacker’s guesses improve compared

to guessing from prior. Our analysis consists of the following steps.

1. We split a day into 10-min spans. This gives us T = 144 time units per day.

2. For each 10-min span t of a day, for each location l and each user u, we compute prior

probabilities Pprior(u,t,l) from the first N − 1 days.

3. Based on the prior probabilities Pprior(u,t,l) and the noisy occupancy counts generated

by a particular privacy mechanism M on the N -th day, we compute the posterior

probabilities PM
noisyOcc(u,t,l). Among other mechanisms, we estimateM(x) = x (guessing

from true occupancy counts) andM(x) = ⊥ (guessing just from prior).

4. Let Ptrue(u,t,l) ∈ {0, 1} be the actual user locations, i.e., Ptrue(u,t,l) = 1 iff u was in

location l at time t. Compute the following for each user u and time t:

PM
guess(u,t) =

∑
l∈L

PM
noisyOcc(u,t,l) · Ptrue(u,t,l) .

5. Plot aggregate privacy metric: how many people have been localized correctly from

PM
guess(u,t) with a probability within certain range, excluding those who have been lo-

calized with similar confidence purely from prior.

4.5.1 Prior distribution

For a fixed timepoint t, the attacker receives a prior distribution of location of an “average

user”, expressed as ptl ∈ [0..1] for all l ∈ L, where
∑

l∈L p
t
l = 1. The values ptl are computed

from the training period using counting. That is, for each time of day t, we count the total

number of users mt
l recorded in region j at time t, and define ptl = mt

l/
∑

l∈L m
t
l . Hence, the

39

prior defines an expected distribution over region counts for different times of the day. Here

we use the meta-knowledge that similar pattern repeats periodically. The priors would be

more precise if we generated, for instance, a separate prior for each weekday, or found some

more interesting meta-data like exceptional holidays which should be discarded as outliers.

The problem is that, the more we partition the prior, the less data we have to estimate it.

Also, too strong prior may nullify guessing advantage, as the attacker would learn too much

already from the prior.

4.5.2 Posterior distribution

The attacker receives noisy occupancy counts (ytl)l∈L of all regions at timepoint t. Depending

on the attacker type, certain regions in the buildings are opened. If the opening does not

reveal the location of u immediately, it modifies the priors as ptul =
ptul∑

ℓ∈Lclosed
ptuℓ

for l ∈ Lclosed,

where Lclosed is the set of regions that remained closed.

For true outputs, the victim’s location depends solely on the counts of the current timepoint.

This is however different for privacy enhancing mechanisms, where sequential timepoints may

leak information about each other’s randomness. For example, if the attacker knows that

the counts most likely do not change during a 1.5 hour span (e.g., if the region is a classroom

and it is a lecture time), then the noise will be essentially applied to exactly the same counts,

and multiple outputs help in undoing it. Hence, let us only estimate how much the attacker

learns from the output of single timepoint. That is, while we still report results for all

timepoints t, we assume a separate attacker for each reported timepoint.

Let m be the total number of objects, and p := ptℓ be the probability of each object being

in region l. The question is now how to efficiently compute Eq. 4.4. Since z is not a

single count, but a vector of region occupancies, summing up all combinations z1, . . . , zn is

infeasible. Hence, let us estimate how much the attacker learns from observing the occupancy

40

of one region without taking into account the others. For guessing from true counts, we only

need to know zl andm, so similarly to the issue with different timepoints, taking into account

more zj-s can only help in undoing the noise, e.g., if the attacker knows that some regions

are occupied simultaneously.

While these two constraints are fine for guessing for true counts, they give us only a lower

bound for general privacy mechanisms, showing how much an attacker can learn at least.

Similarly to composition theorems of differential privacy, we can extend our results to several

outputs as described in App. B.3, but it may give us too rough upper bounds. As a result,

we are comparing different privacy mechanisms based on observing a single output. It may

be that some mechanism scales better with the number of observed outputs than another,

which remains out of scope of this chapter.

We are now ready to estimate the posterior probability. Using Eq. 4.4, we get

Pr[x|Y = y] =

∑m
z=1Pr[x|C = z] · fY (y|z)Pr[z]∑m

z=1 fY (y|z)Pr[z]
,

where y is the occupancy of one particular region, and the probabilities are instantiated as

follows.

• Pr[x|C = z] = z
m
.

• Pr[z] =
(
m
z

)
pz(1− p)z.

• fY (y|z) depends on the particular analyzed privacy mechanism.

The quantity fY (y|z) is either given in advance (for a known noise distribution like Laplace),

or approximated from (y, z) points of training data using kernel density estimation (KDE).

41

This is a quite standard density approximation technique, which can be viewed as assigning

to each sample point a bell-shaped curve centered at that point, and then summing all curves

up, scaling the result to get a probability distribution. We use Gaussian kernel of Python

scipy library [58]. By default, the Gaussian KDE bandwidth parameter in scipy library is

n−1/(d+4), where n the number of data points and d the number of dimensions. In our case,

n comes from the training data (88 days), and since we are computing a separate kernel

for each true count z (the approximated probability density is conditional), we have d = 1.

We note that attacker’s success may depend on the bandwidth parameter, and choosing one

that approximates the noise distribution most precisely is out of scope of this work.

In general, we do not know which parameters we should take into account in training. E.g.,

even if we include all occupancies of all regions to predict occupancy of a single region, some

meta-knowledge like day of the week or time of the day can actually affect the noise distribu-

tion. For DP, we actually know that the noisy output depends only on the randomness and

the true output, but in general we do not know all dependencies in advance. To simplify the

training process, in our experiments we compute the noise distribution for a single location

at a single timepoint, as if the randomness was sampled independently.

The posterior confidence of the attacker may be erroneous due to improperly computed

noise distribution, or improperly computed priors. The latter may happen even if we use a

well-defined DP mechanism. Hence, we add an important condition to our privacy metric.

We model a particular attacker who actually makes a particular guess about victim’s loca-

tion. We then check whether that guess has been correct or not, and nullify the estimated

advantage if the guess was incorrect.

42

4.6 Results

The results of our experiments are presented as plots (a sample plot is given in Figure 4.2).

For each of the T timepoints, we count the total number of people whom the attacker

managed to localize correctly with certain confidence, defined as the posterior probability

of being in the room where the user has actually been according to the presence table. On

each plot, the x-axis denotes the timepoint, and the y-axis is the number of localized people.

The colors, ranging from light blue to dark red, correspond to localization confidence p,

where light blue is the lowest confidence class (0.0 < p ≤ 0.1), and dark red is the largest

confidence class (0.9 < p ≤ 1). Notice that the plot shows for each time point the total

amount of people localized in the building broken into different confidence classes. This

means that, for instance, out of the 123 people located in the building at 11:40am of the

particular day in Figure 4.2, 22 are localized with the lowest confidence 0.0 < p ≤ 0.1, 55

with confidence 0.1 < p ≤ 0.25, 26 with confidence 0.25 < p ≤ 0.5, and 20 with confidence

0.5 < p ≤ 0.75. There are no red and dark red areas for 11:40am, so there have been no

people localized with confidence p > 0.75. The plot format will be the same for all plots in

this chapter, so we will avoid repeating labels and legends on further plots to conserve space.

Figure 4.2: A sample plot: x-axis is the timepoint, y-axis the total number of people localized
within each confidence class.

43

4.6.1 Exact vs Predicted noise distribution

First of all, we need to estimate how well predicting fY (y|z) using kernel density estimation

from training data works compared to true noise distribution. We do it on the example of

Laplace noise, for which we already know the true distribution of noise fY (y|z) = ϵ
2
· eϵ·|y−z|.

Prior

The plots of prior probabilities are given in Figure 4.3. The three columns correspond to the

initial knowledge of the attacker, where he knows δ ∈ {0%, 50%, 90%} of people locations.

In this experiment, the regions have been opened randomly. We compute the posterior

probability for each user on the condition that their location has not been revealed to the

attacker directly, so formally for each potential victim we consider a separate attacker who

knows δ of the other users. This is why we do not observe that δ of the graph is dark red.

Posterior from Exact Noise Distribution.

For posteriors we will only show those probabilities that have been improved compared to the

prior, thus demonstrating the advantage. The results are given in Figure 4.4. The rows of

the plot matrices correspond to ϵ ∈ {0.1, 1.0, 5.0,∞}, where∞ is guessing from true outputs.

We can see how confidence increases with ϵ. We see that ϵ ≥ 5.0 already gives us a plot very

similar to guessing from true outputs, so it does not make sense to consider larger epsilons.

For smaller epsilons, we indeed get smaller confidence, which converges to 0 as ϵ→ 0. While

the posterior probability always increases with δ, we see that the advantage may sometimes

be larger for smaller δ, which means that the attacker guesses so poorly from prior that even

a very noisy answer gives some benefits.

We compare obtained results with the worst-case upper bound estimate considered in Sec. 4.4.2,

44

which does not depend neither on δ nor the particular counts, and holds for any ϵ-DP mech-

anism. The results are given in Figure 4.5 for ϵ ∈ {0.1, 1.0, 5.0}. We see that, for larger ϵ,

the upper bound gets larger than the probabilities of guessing from true counts, so the upper

bound is too rough for our type of attacker. These bounds nevertheless seem to be good for

small ϵ.

Table 4.1 shows the times of computing the posterior probabilities. The first row corresponds

to computation of the worst case bound of Sec. 4.4.2. The second row corresponds to precise

computation of posterior (Eq. 4.4). In general, the precise computation of posterior is O(n)

times slower for n rooms since we are evaluating a sum over n terms. In our example, it is

ca 9 times slower for n = 64 rooms. The preprocessing time is spent on the bookkeeping

related to loading data from the database. We do not count the time spent on generating

the occupancy tables.

Figure 4.3: Prior guessing probabilities for δ = 0% (left), δ = 50% (middle), δ = 90% (right)

Posterior from Predicted Noise Distribution.

Since the trained noise distribution does not depend on δ anyway, let us only consider δ = 0.9.

First of all, we repeat the experiment with known DP noise distributions, filtering out the

guesses that have actually been correct (top row of Figure 4.6). We then repeat a similar ex-

periment with noise distribution learned from prior data, using Gaussian kernel with default

parameters (bottom row of Figure 4.6). The plots are shown for ϵ ∈ {0.1, 1.0, 5.0} (left to

right). We see that the guesses based on trained distribution perform similarly to the true

45

Figure 4.4: Posterior guesses from noisy Laplace counts for δ = 0% (left), δ = 50% (middle),
δ = 90% (right), ϵ ∈ {0.1, 1.0, 5.0,∞} (top to bottom)

Figure 4.5: Posterior guesses for worst-case DP, δ = 90%, ϵ ∈ {0.1, 1.0, 5.0} (left to right)

distribution of Laplace noise.

The third row of Table 4.1 shows the times for the trained distribution experiment. We see

that the testing time is a bit higher, which is due to computing fY (y|z) from kernel. In

addition, there is now also some time spent on one training to compute the kernel itself. We

note that for DP experiments, we need a separate training for each ϵ.

46

Table 4.1: Running times (in seconds) of computing posterior probabilities for Laplace noise.

Preprocess Training Posterior evaluation

worst-case DP bound 4 0 0.6
Pr[x|y] for known fY (y|z) 4 0 5.4

Pr[x|y] for unknown fY (y|z) 4 6.9 7.3

Figure 4.6: Successful guesses from noisy Laplace counts with δ = 90% using true distribution
(top) and scaled kernel density estimation (bottom), ϵ ∈ {0.1, 1.0, 5.0} (left to right)

4.6.2 Comparing different privacy techniques

We now compare the techniques in Sec. 4.2.2 w.r.t. the attacker’s success in breaking user

privacy for the same level of utility. The noise density functions of all methods is approx-

imated from training data using Gaussian kernel with scaling 0.1. The parameter 0.1 has

been chosen empirically as the one for which the attacker was more successful. We note

that a different scaling parameter can be preferred for different mechanisms, and that the

goodness scaling in turn depends on the size of training data sample: the more datapoints

we have, the more we want to narrow the kernels to get a more precise estimate.

TTL (described in Sec. 4.2.2) changes the unique identifiers of the objects every k seconds

for a fixed parameter k. However, counting does not depend on the identifiers anyway. The

only way in which TTL can affect released counts is that the same user may be recorded

47

multiple times if his identity has been updated within the 10-minute span for which the

count is computed. If the attacker knows the value k, it can just divide all counts by the

expected number of repetitions to get the true counts back. We see that there are no provable

security guarantees at all. However, in practice the number of repetitions turns out to less

predictable, as the identities are not being updated ”for all users at once”, but depend on

the time when the user has connected to the system. While there is no randomness, the

non-determinism of user movement can be viewed as a random variable whose distribution

is difficult to estimate theoretically.

Setting up Privacy Parameters

To fairly compare privacy loss across diverse PETs, their utility should be similar as there is

an inherent privacy vs. utility tradeoff. We have developed a tool which, given a specific task,

obtains the configuration parameters per PET (i.e., epsilon and TTL) that will satisfy a given

utility requirement. The tool takes as input the WiFi connectivity data, the PET to apply,

a function that computes utility, and a requirement for the utility. Then, it tries different

values for the privacy parameter until it finds one that satisfies the utility requirement. In

our set up, we define the task to be that of generating a heatmap (as described in Sec. 4.2.1)

given the occupancy data (real data or data generated through a PET). Our utility metric is

computed as a percentage difference between the heatmap color assigned to the occupancy

value generated by the PET and the heatmap color assigned to the real occupancy value

(100% utility means real data and data generated by the PET are assigned same color).

Then, we average this utility across time and space to get the utility value for a given

dataset.

We computed parameters for PeGaSus, Laplace, and TTL that give us the utility 75% and

90%. These parameters are summarized in Table 4.2. We compute these parameters over 5

runs for non-deterministic techniques (i.e., Laplace, PeGaSus). The utility in each run lies

48

within 75± 0.2% and 90± 0.2% for the given parameters. Since the privacy parameters for

the same utility are very different for day and night time, we also extract privacy parameters

for day and night times and perform different experiments. Since TTL tends to map empty

rooms to empty in most cases, for TTL we get high utility at night when the most true

counts are 0, which allows us to introduce more noise, i.e., refresh the user identities more

frequently. To get 90% utility for PeGaSus for day time, ϵ turns out to be very high i.e. 15.

For high values of utility, we see a very small increase (only 2%) in utility from ϵ = 2 to

ϵ = 15 which is possible due to error introduced by grouping/smoothing of contiguous similar

occupancy counts. Since the utility is averaged over time and space, we also show average

variance in utility over time and space σu (which turns out to be similar across techniques).

Table 4.2: Parameters achieving the same utility for different privacy mechanisms.

utility Laplace PeGaSus TTL
σu ϵ σu ϵ σu T

day 75% 23.7 0.1 24.1 0.04 20.4 1sec
90% 14.5 0.66 16.9 15 14.9 2min

night 75% 26.6 0.18 26.6 0.00001 19.5 1sec
90% 19.3 1.675 19.5 4 19.5 1sec

Results per Attacker Type

Instead of opening regions to the attacker randomly as in Sec. 4.6.1, we consider in the

following certain types of realistic attackers in the context of the dataset. There are 64

regions in the building, each having typically granting access to different profiles of people

(e.g., students, professors, staff). We will consider three types of attackers based on such

information.

1. An external attacker who is not present in the building and thus, does not have access

49

to any region (i.e., 0 open regions).

2. A student (or group of student) who coordinate an attack and gain access to all regions

where a student can enter (i.e., 37 open regions). This includes classrooms and public

areas.

3. A building administrator who has access to the security camera system and thus has

access to all the regions covered by cameras (i.e., 39 open regions). This set of spaces

includes public areas as well as corridors near offices.

Figures 4.7-4.9 compare different privacy techniques in different settings for the previous

attackers. The columns correspond to the four types of experiments (day/night, 75%/90%-

utility), and the rows to different privacy mechanisms, including guessing from true counts

(the last row). In each graph, the X-axis is time (7am-7pm for day and 7pm-7am for night

in intervals of 10 minutes) and the Y-axis is the number of people correctly localized at

each confidence level2. As the noise added by DP techniques will be different in different

executions, each experiment has been repeated n=30 times, and for each posterior probability

class we took the average number of people that has been guessed with that probability.

Finally, we consider that in the case of these realistic adversaries an open region implies

that the adversary knows exactly who is inside of it. Thus, in the following we consider

such information to be prior and in the plots we focus on how the different PETS affect the

guessability of those individuals in closed rooms. Let us now discuss the results for different

attackers.

External attacker. In Figure 4.7, we see the results for an external attacker who has a

weaker prior as he/she does not have access to real location information for any user at the

time of the attack. Given the true counts, the external attacker can localize some users

from, albeit with confidence p ≤ 50%. In particular, during the day time and early morning,

2Note that the scaling of Y-axis for day and night time are different, as the total number of people in the
building is very different for them.

50

when the occupancy of the building reaches its peak, the external attacker can perform the

most successful attack by correctly guessing the localization of 50 people with a confidence of

0.25 ≤ p ≤ 50%. Notice that during the night, the number of people in the building is small

and the most successful attack occurs in the early morning with 10 individuals localized with

low confidence. Using privacy mechanisms eliminates most of these localizations. Indeed,

with parameters satisfying 75% utility, which increase the privacy protection, the localization

possible when publishing real counts is completely eliminated. Notice that when a higher

utility is required (90%), the mechanisms might publish data closer to the real occupancy

and therefore there is some leakage. Notice that the results are averages from different runs

which means that mechanisms based on differential privacy, which are not deterministic,

might perform better or worse in specific situations. We explore this aspect further in

App. B.4. From the plots, we cannot determine whether one mechanism is better than the

other one, as the number of localizations is small for all of them.

Student attacker. A student attacker has access to 37 of the 64 regions. Hence, the

attacker knows the real location of all the individuals in those regions at the time of the

attack. For the remaining set of users in closed regions, in Figure 4.8, we see that a student

can localize more people than an external attacker, indeed in the strongest attack the student

attacker is able to localize 10 people during day time and 20 during the night time with a

high confidence 0.75 ≤ p ≤ 0.9. This happens at the end/beginning of the working day

when the building is less occupied vs. the middle of the day when most of the classrooms are

full. This attacker has some success even if privacy mechanisms are applied, specially for the

published dataset at daytime to achieve 90% utility. Both mechanisms based on differential

privacy offer slightly better practical privacy than TTL until the middle of the day in the

plot corresponding to daytime. The Laplace mechanism gives the most privacy in this

situation when compared to PeGaSus and TTL. Nevertheless, notice that in this situation

the difference between mechanisms is small as the number of users that are localized either

51

Day Night
75% utility 90% utility 75% utility 90% utility

Laplace, ϵ = 0.1 Laplace, ϵ = 0.66 Laplace, ϵ = 0.18 Laplace, ϵ = 1.675

PeGaSus, ϵ = 0.04 PeGaSus, ϵ = 15 PeGaSus, ϵ = 0.00001 PeGaSus, ϵ = 4

TTL, 1 sec TTL, 120 sec TTL, 1 sec TTL, 1 sec

True counts True counts True counts True counts

Figure 4.7: Comparison of different mechanisms for the external visitor attacker.

because of they are located in an open room or because the attacker’s prior is large.

Administrator attacker. An administrator is given access to 39 of the 64 regions. This

situation is similar to the previous but the set of open regions is different including those

that contain offices. The results are also similar to those of the student attacker, although

in general there is more privacy loss across techniques and for the true counts. This occurs

because this adversary has access to real location of more people as the open regions cover

a higher amount of the building’s population. As in the case of student attacker, both the

techniques based on differential privacy perform slightly better than the TTL technique.

Similarly, the Laplace technique performs slightly better than PeGaSus. When comparing

TTL and PeGaSus for the daytime and 90% utility we notice how both perform very similarly

52

Day Night
75% utility 90% utility 75% utility 90% utility

Laplace, ϵ = 0.1 Laplace, ϵ = 0.66 Laplace, ϵ = 0.18 Laplace, ϵ = 1.675

PeGaSus, ϵ = 0.04 PeGaSus, ϵ = 15 PeGaSus, ϵ = 0.00001 PeGaSus, ϵ = 4

TTL, 1 sec TTL, 120 sec TTL, 1 sec TTL, 1 sec

True counts True counts True counts True counts

Figure 4.8: Comparison of different mechanisms for the student attacker.

in the afternoon when the building is less occupied. Also, when focusing on the nighttime,

at 90% utility all the techniques perform very similarly.

Summary

Differential privacy in general consider very strong attackers that have access to almost

unlimited information. In our set up with more realistic adversaries, we have seen that when

the adversary is weaker (e.g., our external attacker). The practical privacy offered by Laplace

and PeGaSus is almost the same than the one offered by TTL. Even when the practical

privacy for Laplace and PeGaSus is similar, for higher utility values the formal privacy

guarantee for PeGaSus is less than Laplace during the daytime and nighttime, whereas for

53

Day Night
75% utility 90% utility 75% utility 90% utility

Laplace, ϵ = 0.1 Laplace, ϵ = 0.66 Laplace, ϵ = 0.18 Laplace, ϵ = 1.675

PeGaSus, ϵ = 0.04 PeGaSus, ϵ = 15 PeGaSus, ϵ = 0.00001 PeGaSus, ϵ = 4

TTL, 1 sec TTL, 120 sec TTL, 1 sec TTL, 1 sec

True counts True counts True counts True counts

Figure 4.9: Comparison of different mechanisms for the administrator attacker.

lower utility values it is the opposite. When the adversaries become stronger (e.g., the

student or administrator attacker), Laplace and PeGaSus offer more practical privacy than

TTL, as it is expected. However, in some specific situations (e.g., in the afternoon when the

building is less occupied) all the techniques behave similarly. Additionally, with stronger

attackers the privacy loss due to the prior and adversarial knowledge at the time of the

attack is high already. This means that effectively, in such situations the privacy of most

of the individuals would be already compromised. Therefore, the difference between the

differential privacy based techniques and TTL in terms of number of people being localized

is small.

We would like to highlight that even when in terms of practical privacy the techniques be-

have similarly, TTL lacks of formal privacy guarantees which means that stronger attackers

54

using more sophisticated attack methods could potentially result in higher privacy loss. Ad-

ditionally, the results for Laplace and PeGaSus, which are the average over 30 counts, could

potentially be worse depending on the noisy count generated in a single run at publishing

time. In App. B.4, we present a sample analysis of Laplace and PeGaSus for some particular

noisy counts. However, comparing the distributions of attacker’s success for different privacy

mechanisms remains out of scope of this work.

4.7 Conclusion

We have performed a case privacy study of privacy mechanisms to publish occupancy data

in the context of a smart building. The goal of the study was to explore the practical

privacy implications for individuals privacy of the release of occupancy counts. We proposed

a methodology to compare across privacy techniques with different privacy parameters and

guarantees. Additionally, we presented a posterior computation method to perform an attack

on data output by a privacy technique to infer, with certain confidence level, where an

individual is located at a point of time. In our study, we performed experiments based on

a real dataset containing connectivity events captured at a smart building for a period of

three months. The results show that the practical privacy for individuals, under our attack

model, offered by the Laplace, PeGaSus, and TTL mechanisms is similar with the former

two performing slightly better than the latter. When comparing the two differential privacy

mechanisms in terms of their formal guarantees, PeGaSus provides better formal guarantees

for lower utility values whereas Laplace provides better guarantees for higher utility values.

This highlights that while generic methods of differential privacy analysis give some bounds

to strong types of attacker, when facing weaker and more realistic attackers, techniques with

no formal guarantees can still offer similar practical privacy.

55

Chapter 5

MIDE: Accuracy Aware Minimally

Invasive Data Exploration For

Decision Support

5.1 Introduction

Decision-support (DS) applications [22, 53, 4] allow timely and informed decision-making and

planning based on analyzing data, but such applications could face severe privacy challenges

if the data analyzed contains personally identifiable information about individuals. For

instance, a building management system may maintain the occupancy statistics (like in

Figure 5.1) to detect violation of fire code, adherence to the CDC (Center For Disease

Control) guideline in the context of COVID-19, or for better space utilization. If the location

of interest has an aggregated occupancy that is higher than a threshold, an alarm is raised,

but this aggregated statistics can leak sensitive information about users [18]. For example,

prior work [32] has shown, with enough background knowledge, occupancy data can lead to

56

inferences about the location of individuals, which, in turn, can leak sensitive information

(e.g., in an office building staff consistently leaving work early, smoking habits of individuals).

As another example, consider assisted living situations where one of the primary challenges

is fall prevention [57] of the elderly and the goal is to balance safety with privacy. We could

monitor someone invasively using a camera, but such invasiveness is not necessary if the

person is not a high fall risk. To make a decision about using invasive means of monitoring,

wearables can be used to collect aggregated statistics e.g., number of sudden accelerations

in a week. Sudden accelerations exceeding a threshold could be interpreted to mean high

fall risk and we can make a decision to monitor such an individual more invasively. The

commonality in such DS applications is that the aggregated statistics are collected and

compared to a preset threshold that classifies objects as either satisfying the predicate (i.e.,

true), or as not satisfying the predicate (i.e., false). Simply releasing the aggregated statistics,

however, can lead to privacy violation of individuals , i.e., reconstruction attack as shown in

[14, 12, 10, 32].

Much of the prior work on privacy has been motivated by the need for data sharing while

ensuring the privacy of sensitive data. Examples include privacy-preserving sharing of de-

mographic data (e.g., US Census), medical data to support research (e.g., cancer registries),

or collecting click-stream data for vulnerability analysis (e.g., from browsers). Over the past

decade, differential privacy [13] has emerged as one of the most popular privacy notions. It

provides a formal mathematical guarantee that individual records are hidden even with the

release of aggregate statistics and it is possible to bound the information leakage by a total

privacy budget across multiple data releases. This has led to a wide range of adoption of

differential privacy in a number of products at the US Census Bureau [15], Google [39], and

Uber [23].

While differential privacy is suited for privacy-preserving sharing, its usefulness in the con-

text of decision support (DS) applications is limited. DS tasks require guarantees on the

57

Figure 5.1: Occupancy Heatmap of a Building in UCI.

output quality, especially, for false negatives that may result due to the addition of noise

to aggregated statistics. Such false negatives may result in events of interest/anomalies not

being detected. For instance, in the elderly fall prevention example, a false negative may

cause increased fall risk (from aggregated statistics of the number of accelerations) to go un-

noticed preventing timely escalation and intervention. False positives are also not desirable,

e.g., in the elderly fall prevention scenario, it may result in unnecessary escalation by using

more invasive camera technology and wasted resources of video processing. Likewise, in the

example of a fire code violation in a building, false positives on highly occupied spaces in

the building may result in a heightened investigation of the region. While one would desire

effective bounds on both false negatives and positives, in DS applications, increased false

negatives are far more debilitating (compared to false positives) since they effectively defeat

the very purpose of decision support. Thus, in DS applications, we desire to have bounded

guarantees on false negatives without significantly increasing the number of false positives.

1

1If we ignored false positives and only considered false negatives, a trivial algorithm would be to simply
ignore the query condition and return all the objects. This will meet the bounded requirement of false neg-
atives and will have zero false negatives. But that also defeats the purpose of decision support applications.

58

Traditionally, DP-based approaches focus on providing formal privacy guarantees (in the

form of a privacy parameter) while trying to maximize utility. These techniques do not offer

guarantees on the quality of data outputted. Recent studies have addressed this challenge

by designing accuracy aware DP techniques where the goal is to provide provable bounds

on utility, e.g., [16, 38, 47]. Such approaches, however, are unsuitable for DS for several

reasons: first, such approaches do not differentiate between false positives and false negatives,

and offer a symmetric guarantee on both which makes them suboptimal in the DS context.

Furthermore, the guarantee such approaches offer have a region of uncertainty around the

threshold such that bounded guarantees (on either false positives or negatives) do not apply

to data that falls in that region. This makes the techniques unsuitable for DS applications

that require a tight guarantee on (at least) the false negatives.

In this work, we explore a utility-aware technique that provides (probabilistically) bounded

guarantee on utility (in terms of asymmetric bounds on false negatives that are guaranteed to

remain lower than a limited number) while minimizing privacy loss using differential privacy.

The key intuition is to modify the DS query appropriately (before adding noise) so as to

control the trade-off between false positives and false negatives and supports guaranteed

utility in terms of false negatives. In particular, we generalize the query condition (e.g.,

replacing a query condition X > τ by X > τ ′, where τ ′ < τ) to admit a larger number of

false positives but reduce the probability of data being wrongly classified as a false negative.

While a scheme that offers a bounded guarantee on false negatives can be designed by weak-

ening the query condition, a proper design leads to subtle complexities. As will become

evident, the (probabilistic) guarantee on false negatives, the weakening of the query con-

dition, and the amount of privacy loss (ϵ in differential privacy terms) are interrelated. In

particular, the weaker we make the query condition (i.e., over-generalization), the lower the

privacy loss (smaller ϵ), while maintaining a bound on the false negatives. However, the

weaker the query condition, the more the number of false positives. Ideally, we would like

59

to weaken the condition as much as possible, as long as it does not cause false positives to

arbitrarily increase. This depends upon the data distribution. Imagine, for instance, that

there is almost no data (or very little data) around the threshold specified in the query —

such would be the case, for instance, for outlier queries. In such a case, weakening the query

condition significantly would be desirable since that would allow us to reduce privacy loss

without increasing false positives, while still ensuring the required bounds on false negatives.

In this chapter, we explore the design space of solutions alluded to in the discussion above.

We first explore a single-step approach that minimally weakens/generalizes the query condi-

tion to achieve the bounded guarantee. We then explore a multi-step approach, wherein we

aggressively make a decision to significantly weaken the query condition, and then, based on

the outcome (i.e., possibility of too many false positives) progressively refine the condition

at the cost of loss of privacy (i.e., larger ϵ), while maintaining false negative bounds. Like

prior multi-step approaches of Apex [16], our multi-step approach also offers Ex-Post Differ-

ential Privacy [37] where the final privacy budget spent is determined after the completion

of algorithm. Finally, we explore a data dependent version2 of the multi-step algorithm that

exploits the knowledge of data distribution learnt in previous steps to minimize the privacy

loss.

In our algorithms, different objects/entities can be processed (i.e., tested for threshold sat-

isfaction) at different levels of privacy (ϵ). In the initial steps, the objects are processed at

smaller ϵ (i.e., higher privacy), and as the algorithm proceeds, some of the objects may be

processed more invasively at higher values of ϵ with the goal of reduce the overall privacy

loss. We, thus, refer to our approach as Minimally Invasive Data Exploration (MIDE).

The idea of different entities having different privacy levels has been studied in several pieces

of prior work e.g. Personalized Differential Privacy [24], One-sided Privacy [29]. However,

2Data dependent algorithms have been studied in the context of differential privacy setting where privacy
is fixed and we need to optimize utility [33, 61]

60

these works do not explore or provide a metric for overall privacy loss.

In summary, our contributions in this work are as follows:

• We introduce and formally define the problem of accuracy aware privacy-preserving deci-

sion support that has wide applicability in privacy preserving applications.

• We introduce Predicate-wise Differential Privacy (referred to as PWDP) which is suited

for a data dependent approach to accuracy aware privacy-preserving analysis. We formally

define the associated privacy metric for PWDP.

• We develop multiple efficient algorithms for the problem of accuracy aware privacy pre-

serving decision support, including a multi-step algorithm and its data dependent variant.

• We show the applicability of our approach in a detailed study of several real-world sce-

narios.

The organization of this chapter is as follows: Section 5.2 defines the decision support

queries, accuracy requirements of such queries, and our problem statement. This section

also provides a new privacy definition of Predicate-wise Differential Privacy (PWDP) and

defines a new privacy metric to measure the privacy loss. We use this to minimize privacy

loss for our accuracy aware differentially private decision support algorithms in Section 5.3.

Section 5.4 provides an algorithm to compute the new privacy loss metric. In section 5.5, we

evaluate our algorithms using multiple real datasets. This chapter contains several theorems

and lemmas, the proofs of which can be found in the Appendix.

61

5.2 Privacy in Decision Support

Decision support applications such as violation detection of the fire code based on the oc-

cupancy statistics or fall prevention based on weekly movement statistics, can be supported

by a class of aggregate threshold queries. Such a query checks whether the aggregated values

computed on a subset of tuples pass the thresholds or not.

Formally, an aggregate threshold query, denoted by QΛ
g(.)>C , consists of (i) an aggregate

function g(.); (ii) a set of predicates Λ = {λ1, λ2, ..., λk}; and (iii) a set of corresponding

thresholds C = {c1, c2, ..., ck}. Each predicate λi takes in a tuple and outputs True or False

based on the value of the tuple. Let Dλi
be the set of tuples in D that evaluate λi to be

True. This query returns all the predicates that have an aggregate g(Dλi
) greater than their

respective threshold ci, i.e.,

QΛ
g(.)>C(D) = {λi ∈ Λ | g(Dλi

) > ci} (5.1)

For example, consider a location dataset inside a building with schema Location Data(person,

location, timestamp), a decision support application would like to learn which locations have

more people than their maximum capacity. In this example, the predicate is conditioned on

the location of a tuple, the aggregate is the number of people for a given location, and the

threshold is the maximum capacity of that location. Another way to look at the problem is

that the whole database could be viewed as points in a multi-dimensional space, and each

predicate defines a subspace or a region. Given a set of such non-overlapping regions, the

goal is to find the regions that contain points more than a certain threshold.

Answering such an aggregate threshold query with differential privacy guarantees has been

considered in prior work [43, 38, 16], but these solutions may fail the accuracy requirements

of a decision support application or demand an unnecessarily large privacy budget. Next, we

62

will describe and formalize the accuracy requirement and privacy requirement for decision

support queries.

Accuracy Requirement. Two types of errors can be made by a randomized mechanism

that answers a decision support query defined in Eqn. (6.1): (i) false positives, predicates

that have smaller aggregate values than the thresholds but appear in the output; (ii) false

negatives, predicates that have bigger aggregate values than the thresholds but are not

outputted. While both false negatives and positives impact the effectiveness of the decision

support application, preventing false negatives is far more crucial than false positives. A

false negative may prevent timely intervention (e.g., in the context of fall detection, or room

code violation) which might be the very purpose of the decision support application. False

positives, on the other hand, may result in false alarms that might have negative consequences

in terms of wasted resources and/or violation of privacy (e.g., as in more invasive monitoring

in the fall detection example mentioned earlier). While one would like to minimize both,

bounding false negative is far more crucial in decision support compare to false positives.

We formalize this accuracy requirement as follows.

Definition 5.1 (Accuracy Requirement (β-False Negative Rate)). We say a mechanism

M : D → O satisfies β-false negative rate for an aggregate threshold query QΛ
g(.)>C if for any

database D ∈ D, we have

∀λi ∈ Λ, P [λi ̸∈M(D)|λi ∈ QΛ
g(.)>C(D)] ≤ β (5.2)

Prior DP mechanisms such as the Laplace mechanism (Theorem 2.4) add noise from zero-

mean distribution to the aggregate and compare it with the threshold, which place equal

weights on false positives and false negatives. This approach can fail to bound both errors

together by setting the privacy budget too small (large noise); or have guarantees on both

false positives and false negatives, but with a high privacy cost. This symmetrical guarantee

63

will be illustrated in Section 5.3.1. To bound the false negative rate without incurring

additional privacy cost, we design a class of mechanisms that generalizes the thresholds in

the query. For example, for an aggregate threshold query where we are checking X > c for

an aggregate X, we generalize the query threshold to X > c−α. This type of generalization

allows us to achieve trade-off between false negatives and false positives that helps us achieve

β-false negative rate with a minimal privacy cost. This generalization parameter α and the

accuracy parameter β are translated to privacy cost ϵ. We will present these algorithms in

Section 5.3.

Privacy Requirement. The privacy budget (ϵ) of a DP mechanism depends on the accu-

racy specification (e.g. β in Def. 5.1). Furthermore, if the DP mechanism is data-dependent,

then the minimum privacy budget to achieve the accuracy requirement also varies among the

data and depends on the output. This privacy loss is known as ex-post DP [37]. If running

the DP mechanism on the disjoint part of the data (based on the predicates) in parallel, each

part of the data may end up with different ex-post privacy loss. For example, to achieve the

same β-false negative rate, a predicate with an aggregate value that is far from the threshold

can tolerate a large generalization parameter α and result in a small privacy loss; while an-

other predicate that is close to the threshold requires a big privacy budget. To capture this

predicate-wise privacy loss for DP applications, we propose a new framework Predicate-wise

Differential Privacy to generalize DP and ex-post DP. This framework allows the decision

support application to attain the required level of utility while using higher privacy levels

for some predicates and lower privacy levels for other predicates.

5.2.1 Predicate-wise Differential Privacy

Consider a set of mutually exclusive predicates {λ1, λ2, ..., λk} that they can partition a

dataset D into disjoint parts {Dλ1 , Dλ2 , ..., Dλk
}. We define the new privacy as follows. In

64

this new framework, there is a privacy parameter ϵi associated with each predicate λi.

Definition 5.2 (Predicate-wise Differential Privacy (PWDP)). Given Θ = {(λ1, ϵ1), (λ2, ϵ2),

..., (λk, ϵk)}, a set of mutually exclusive predicates that partition the full domain of the

database and their corresponding privacy budgets, we say a randomized mechanism M sat-

isfies Θ-Predicate-wise DP if for all i, for any neighboring databases D and D′ differing in

a record that satisfies λi, denoted by D ∼i D′ i.e., | (Dλi
\ D′

λi
) ∩ (D′

λi
\ Dλi

) |= 1 and

Dλj
= D′

λj
for all j ̸= i, the following condition holds:

Pr[M(D) ∈ O] ≤ eϵi × Pr[M(D′) ∈ O] (5.3)

In this new definition, the neighboring databases still differ by a single record (adding/remov-

ing a record), but the output distribution ratio depends on the value of the record. For ex-

ample, for a location dataset inside a building with schema Location Data(person, location),

if it consists of only two predicates λ1 = (location = room1) and λ2 = (location = room2).

Adding or removing a tuple (person1, room1) will only affect the aggregate for only one of

the above predicates (i.e. λ1) as predicates are mutually exclusive. If this record takes a

value t that satisfies one of the predicates λi and hence fails other predicates, then output

distribution ratio is bounded by eϵi . A simple approach to achieve a predicate-wise DP is to

run an ϵi-DP mechanism on a data partition Dλi
.

Theorem 5.1. Given Θ = {(λ1, ϵ1), (λ2, ϵ2), ..., (λk, ϵk)}, a set of mutually exclusive pred-

icates and their corresponding privacy budgets, running ϵi-DP mechanism Mi over Dλi
in

parallel for i = 1, . . . , k, achieves Θ-predicate-wise DP.

It is also easy to see that a Θ-predicate-wise DP mechanism satisfies ϵ-DP, where ϵ =

maxϵi∈Θ ϵi by parallel composition of DP.

Predicate-wise DP also has the following composition properties. If two mechanisms consider

65

different sets of mutually exclusive predicates, then the composed guarantee will create a

new set of mutually exclusive predicates to partition the dataset further. If a new partition

has participated in only one mechanism, it takes the privacy budget of that mechanism, and

if it has participated in both mechanisms, it takes the sum of the two privacy budgets.

Theorem 5.2. Let M1 and M2 be predicate-wise DP mechanisms with Θ1 = {(λ1, ϵ1), ...

, (λk1 , ϵk1)}, and Θ2 = {(λ′
1, ϵ

′
1), ..., (λ

′
k2
, ϵ′k2)}, respectively. Let M = f(M1(D),M2(D)), then

M is Θ-predicate-wise DP with the following predicates and their respective privacy budgets:

Θ = {(λi ∧ λ′
j, ϵi + ϵ′j) | ∀(λi, ϵi) ∈ Θ1, (λ

′
j, ϵ

′
j) ∈ Θ2, λi ∧ λ′

j ̸= ∅} (5.4)

where λi∧λ′
j ̸= ∅ denotes that the two predicates overlap. We exclude the conjunctions of non-

overlapping predicate pairs. The resulted predicate set is mutually exclusive and partitions

the full domain.

Last, we provide the ex-post version of predicate-wise DP, that generalizes the ex-post

DP [37]. We will use it for our data dependent algorithms.

Definition 5.3 (Ex-Post Predicate-wise DP). Let E : O → R|Θ| be a function on the output

space of a Θ-predicate-wise DP mechanism M : D → O. We say M satisfies E(o)-Ex-post

predicate-wise DP if for all o ∈ O, and any neighboring database D and D′ differing in a

record that satisfy λi,

max
D,D′:D∼iD′

ln
P [M(D) = o]

P [M(D′) = o]
≤ Ei(o), (5.5)

where Ei(o) denotes the ith entry of E(o), the ex-post privacy cost for predicate λi.

Theorem 5.3. A PWDP mechanismM with Θ = {(λ1, ϵ1), ..., (λk, ϵk)} satisfies ϵ-DP with

ϵ = maxi ϵi. A mechanismM with an ex-post PWDP loss E(o) has an ϵ(o)-ex-post DP with

66

ϵ(o) = maxi Ei(o).

PWDP can be used to track privacy loss in a more fine-grained manner (even without

knowing the exact mechanisms) and result in a lower privacy loss even in terms of DP loss

. Consider a database that only consists of two predicates λ1, λ2 to partition the domain.

Consider two mechanisms M1 and M2, where the PWDP cost for M1 is ϵM1,λ1 = 0.1 ,

ϵM1,λ2 = 0.5 and the cost for M2 is ϵM2,λ1 = 0.5, ϵM2,λ2 = 0.1. Keeping track of the fine

grained epsilon loss per predicate using PWDP results in ex-post DP loss of 0.6. However,

if we used DP, M1 has a privacy loss of 0.5, and M2 has a privacy loss of 0.5, and hence,

the overall ϵ DP loss would be 1 by sequential/parallel composition. Hence, a fine-graiend

tracking of privacy loss allows a tigheter privacy analysis, and more queries to be answered

with the same DP loss.

PWDP and its ex-post privacy can also be interpreted as providing bounds on adversarial

posterior odds ratio just like DP. After observing an output o of a PWDP mechanism M ,

the adversary can not successfully distinguish whether a tuple x is in D and takes a value

t that satisfies λi, denoted by tλi
or the tuple x is not in D. Given adversary’s prior odds

ratio i.e., P [x ∈ D ∧ x = tλi
]/P [x ̸∈ D], the bounds on adversary’s posterior odds ratio i.e.,

P [x ∈ D ∧ x = tλi
|o]/P [x ̸∈ D|o] is as follows:

| ln(P [x ∈ D ∧ x = tλi
|o]

P [x /∈ D|o]
/
P [x ∈ D ∧ x = tλi

]

P [x /∈ D]
)| ≤ ϵi (5.6)

Similarly, the ratio is bounded by Ei(o) for ex-post privacy.

5.2.2 Min-Entropy based Privacy Metric

Traditionally, DP mechanisms quantify privacy loss using ϵ. However, in predicate-wise DP,

entities have different ϵ values. Comparing scenarios of different sets of epsilon values is

67

non-trivial. For example, consider (ϵ1 = 0.1, ϵ2 = 0.5, ϵ3 = 1) v.s. (ϵ1 = 0.2, ϵ2 = 0.4, ϵ3 = 1)

for three predicates, it is not obvious which scenario has a lower overall privacy loss as both

have the same maximum epsilon value (1.0) and the same averaged epsilon value (0.53).

This section introduces our privacy metric for predicate-wise DP using entropy. In informa-

tion theory, entropy is a well known metric for measuring uncertainty of a random variable.

Given a discrete random variable X with possible outcomes of x1, ..., xk, with occurrence

probabilities of P (x1), ..., P (xk), the entropy of X is defined as: −
∑k

i=1 P (xi) logP (xi). In

the context of predicate-wise DP, the adversary is guessing which predicate from the given

set {λ1, .., λk} a record x ∈ D can satisfy based on the output of a predicate-wise DP mech-

anism o. We use p̂i to denote the posterior belief that x takes tλi
, a value satisfies λi. This

posterior is proportional to p̄i =
∑

tλi
(
P [x∈D∧x=tλi |o]

P [x∈D|o]) and hence p̂i = p̄i/
∑

i p̄i. Then, the

entropy over {p̂1, . . . , p̂k} can measure how uncertain the adversary’ belief about the value

of x.

There is no direct information for the posterior beliefs, but based on the predicate-wise DP

guarantee (Eqn. (5.6)), we can derive a lower and upper bound for each posterior belief p̂i.

Lemma 5.1. Given a Θ-Predicate-wise DP mechanism M with output o, where Θ = {(λ1, ϵ1),

(λ2, ϵ2), ..., (λk, ϵk)}, each adversarial posterior guess p̂i ∝
∑

tλi

P [x∈D∧x=tλi |o]
P [x∈D|o] is bounded:

e−ϵi∑
i e

ϵi
≤ p̂i ≤

eϵi∑
i e

−ϵi
, (5.7)

when priors pi ∝
∑

tλi

P [x∈D∧x=tλ]
P [x∈D]

are the same for i ∈ [1, k].

This lemma assumes that the priors are the same for all predicates, which is possible when

the adversary does not know the person. We also present the extended lemma for general

priors in the appendix. Under these bounds, the largest entropy can always be attained

when setting p̂i the same for all the predicates. Hence, we consider the least uncertainty

(min-entropy) as the privacy metric for predicate-wise DP.

68

Definition 5.4. [Min-Entropy of PWDP] The privacy metric (Min-Entropy) of a Θ-Predicate-

wise DP with Θ = {(λ1, ϵ1), ..., (λk, ϵk)} is defined as follows:

γ(Θ) = min
∑k

i=1−p̂i log p̂i (5.8)

s.t. e−ϵi∑
i e

ϵi
≤ p̂i ≤ eϵi∑

i e
−ϵi
∀i ∈ [1, k], and

∑
i p̂i = 1

Our privacy metric measures the lower bound on entropy, i.e., the least uncertainty in the

adversarial guess as γ(Θ). A high value of γ(Θ) means lower privacy loss, as the least

uncertainty in adversarial guess is higher. Whereas, a low γ(Θ) means a higher privacy loss.

We use this metric to compare the privacy loss of different Θs with the same set of predicates

Λ. More details about an algorithm to compute this min-entropy metric are provided in §5.4.

5.2.3 Problem Definition

Consider the accuracy and privacy requirements defined above for decision support applica-

tions, we formalize our Accuracy Aware Minimally Invasive Data Exploration problem (or

MIDE in short) as follows. Given an aggregate threshold query QΛ
g(.)>C on a dataset D, we

want to develop a set of differentially private mechanisms that answer the query with β-false

negative rate guarantee (Def. 5.1) and minimal privacy loss in terms of ex-post privacy loss

(Def. 5.3) and min-entropy (Def. 5.4). Among these mechanisms, we want to choose the DP

mechanism with the minimal privacy loss.

69

5.3 Algorithms for MIDE

In the section, we propose three algorithms that solve the MIDE problem. Recall that a

decision support queryQΛ
g(.)>c(D) consists of a set of predicates Λ = {λ1, ..., λk}, an aggregate

function g(.) and a set of thresholds C = {c1, c2, ..., ck}. In this chapter, we consider that the

predicates in Λ are mutually exclusive and the aggregate function g(.) is a counting function

with sensitivity of 1. Extensions to other predicates and aggregates are discussed in the end.

All algorithms aims to satisfy the accuracy requirement of decision support query i.e., the

bound on β false negative rate (Definition 5.1). Our first algorithm is based on the mod-

ification of a previous work in the literature: APEx [16]. The second algorithm uses the

concept of Predicate-wise DP (as introduced in §5.2.1) by iteratively increasing the privacy

budget ϵ for each predicate till it reaches its accuracy bound. The third algorithm is a data

dependent method that increases the privacy budget adaptively for different predicates in

each iteration based on the outcome of the previous iterations.

5.3.1 Threshold-shift Laplace Mechanism

The Laplace Mechanism (Definition 2.4) can be used directly to answer the decision support

query of QΛ
g(.)>C in a privacy preserving manner. However, a naive application of this mech-

anism for this query can result in a large number of false positives and false negatives. We

will first illustrate this limitation below, and then introduce an improved application, named

as Threshold-shift Laplace mechanism, that achieves the required β-false negative rate.

Naive Laplace Mechanism. This mechanism adds a noise ηi to the aggregated count

for each predicate λi, i.e., g(Dλi
), where ηi ∼ Laplace(0, 1/ϵ). All predicates with noisy

aggregate counts that are greater than the query thresholds i.e., g(Dλi
)+ηi > ci are returned

as the query result. This randomized mechanism makes two types of errors in the output: (i)

70

false positives which are the predicates with true aggregate g(Dλi
) ≤ ci but noisy aggregate

g(Dλi
) + ηi > ci, ; (ii) false negatives which have true aggregate g(Dλi

) > ci but noisy

aggregate g(Dλi
) + ηi ≤ ci.

If setting the privacy budget for Laplace Mechanism like prior work APEx [16] by ϵ = ln(1/(2β))
α

, we can achieve the following accuracy guarantees: with a small probability β, a predicate

λi with a true aggregate g(Dλi
) > ci + α will have a noisy aggregate smaller than ci (false

negative); a predicate λi with a true aggregate g(Dλi
) < ci − α will have a noisy aggregate

bigger than ci (false positive). These guarantees are illustrated in Figure 5.2(i). However,

no accuracy are guaranteed (bounded false positive/negative rates) for the predicates with

true aggregates falling into the region of [ci − α, ci + α]. If most of the predicates have

aggregates falling in to this uncertain region, the naive Laplace mechanism would output

many predicates falsely and fail the accuracy requirement of decision support queries. One

approach is to increase the privacy budget to shrink this uncertain region and hence reduce

both false positives and false negatives. However, the decision support applications place

more importance on the false negatives. We propose the following mechanism to bound the

false negatives without increasing the privacy cost.

Threshold Shift Laplace Mechanism. This mechanism aims to achieve a bounded false

negative rate for all the predicates (Definition 5.1) unlike the previous naive mechanism.

Instead of comparing the noisy aggregates with the initial threshold C in the query QΛ
g(.)>C ,

this mechanism compares each noisy aggregate g(Dλi
) + ηi with a shifted threshold ci − α,

where α is a generalized parameter and noise ηi is based on a privacy budget ϵ = ln(1/(2β))
α

.

This mechanism then returns all the predicates that have noisy aggregates greater than the

shifted thresholds, i.e. g(Dλi
) + ηi > ci − α.

Figure 5.2(ii) illustrates the guarantees of the new mechanism. Due to the generalization

of the threshold from c to c − α, the uncertain region with no accuracy guarantees shifts

from [c − α, c + α] to [c − 2α, c]. This ensures that all the predicates with true aggregates

71

False Negatives bounded by False Positives bounded by

False Negatives bounded by False Positives bounded by

(i)

(ii)

Figure 5.2: The figure shows accuracy guarantees of (i) Naive Laplace Mechanism: noisy
aggregates are compared with threshold c (ii) Threshold Shift Laplace Mechanism: noisy
aggregates are compared with shifted threshold c−α. The dots represent aggregates on the
predicates. By shifting the threshold to c−α, (ii) achieves β-False Negative Rate (Definition
5.1) as compared to (i) where there is no guarantee on false negatives in the region [c, c+α]

Algorithm 1 Threshold Shift Laplace Mechanism.

1: procedure ThresholdShiftLM(QΛ
g(.)>C , D, α, β, ϵmax)

2: ϵ← ln(1/(2β))
α

3: if ϵ ≤ ϵmax then
4: O ← {λi ∈ Λ | g(Dλi

) + ηi > ci − α, ηi ∼ Lap(0, 1/ϵ)}
5: return O, ϵ
6: end if
7: return ‘Query Denied’
8: end procedure

greater than the original thresholds are in a guaranteed region, where they would have

noisy aggregates smaller than the shifted thresholds and become false negatives with a small

probability β.

This mechanism achieves β-false negative rate without increasing the privacy budget com-

pared to the naive Laplace mechanism. Note that in this strategy, the false negative guaran-

tee is independent of the choice of α, but such a guarantee comes at the cost of a potential

increase of the false positives, which are the predicates with aggregates falling in the new

72

uncertain region [c− 2α, c]. These predicates should not appear in the output as their true

aggregate is smaller than the original thresholds, but their noisy aggregates are very likely

greater than the shifted thresholds to output them. We name this region [c − 2α, c] as α-

uncertain region of false positives for all mechanisms that use a threshold-shift approach. A

larger generalization parameter α leads to a larger uncertain region, and can result in more

false positives. We will use this generalized parameter α to limit the false positives.

Definition 5.5. (Uncertainty Region) For each predicate λi ∈ Λ, the Uncertainty Region is

based on the threshold ci ∈ C and the query generalization parameter α. It is defined the

interval [ci − 2α, ci]. If the predicate λi’s aggregate value lies in this interval, the algorithm

does not provide any bound on probability of λi to be in the output to the query as false

positive.

The Threshold-shift Laplace Mechanism is summarized in Algorithm 1. Given the β-false

negative rate and α-uncertain region of false post as input, this algorithm first computes the

minimal privacy budget to achieve these accuracy requirements, denoted by ϵ (line 2). It

also takes the maximum privacy budget allowed for the query ϵmax as input. If the budget

is sufficient, then the algorithm proceeds with perturbing the aggregate for each predicate

g(Dλi
) + ηi and returns the ones with noisy aggregates greater than the shifted thresholds

ci − α (line 4); otherwise, the query is denied (line 7). The guarantees of this algorithm are

stated as follows.

Theorem 5.4. Algorithm 1 satisfies ϵmax-DP and β-false negative rate. If the query is not

denied, its ex-post DP cost is ϵ = ln(1/(2β))
α

.

5.3.2 Progressive Predicate-wise Laplace Mechanism

If we know that the aggregate value for a predicate λi is significantly smaller than its thresh-

old, i.e., g(Dλi
) << ci, then having a larger generalization α (which results in a smaller

73

privacy loss) will still allow this predicate to stay out of the uncertain region of false posi-

tive, i.e., g(Dλi
) < ci − 2α.

Example 5.1. Consider two predicates λ1, λ2 with aggregates g(Dλ1) = 10 and g(Dλ2) =

150, which are smaller than their thresholds c1 = c2 = 200. To achieve β = 0.01-false

negative rate using the Threshold Shift Laplace Mechanism, if generalizing the threshold from

200 to 120 by α = 80 (which results in ϵ = ln(1/2(0.01))/(80) = 0.049), the first predicate

with aggregate value 10 is still out of the uncertain region of false positives [200− 2 · 80, 200]

and it should be reported correctly with a high probability.However, the aggregate value of

the second predicate falls into this α = 80-uncertain region, and hence it requires a tighter

generalization parameter, e.g. α′ = 40 to be in a region with guarantees, which leads to a

larger privacy cost ϵ = ln(1/2(0.01))/(40) = 0.098.

This observation motivates us to design an algorithm that provides different generalizations

for the given predicates based on their aggregate values. Since the aggregate values g(Dλi
)

are unknown at first, we start each predicate with a large generalization parameter (and a

small privacy budget), and incrementally tightens the generalization parameter (increases the

privacy budget) till the predicate can be outputted or pruned with a high certainty. We name

this algorithm Progressive Predicate-wise Laplace Mechanism, summarized in Algorithm 2.

Besides the same input as the Threshold Shift Laplace mechanism, Algorithm 2 takes in

an initial privacy budget of ϵ1 for the initial generalization and the number of iterations m.

As each predicate can be tested at most m times, we aim β/m-false negative rate for each

iteration to ensure that the overall false negative rate is bounded by β (Theorem 5.5). First,

we estimate the total ϵm needed to satisfy the accuracy guarantee over m iterations. If the

privacy budget is sufficient, ϵm < ϵmax (Line 2), we proceed the algorithm; otherwise, the

query is denied.

The algorithm starts with ϵ1 and its corresponding generalization α1 in the first iteration

74

Algorithm 2 Progressive Predicate-wise Laplace Mechanism

1: procedure ProgressivePWLM(QΛ
g(.)>C , D, α, β, ϵmax, ϵ1,m)

2: set final privacy cost ϵm ← ln(1/(2β/m))
α

3: set ϵj ← ϵ1 · ωj−1 and αj ← ln(1/(2β/m))
ϵj

for j = 1, . . . ,m, where ω = (ϵm
ϵ1
)1/(m−1)

4: if ϵm ≤ ϵmax then
5: [η1, . . . , η|Λ|]← Lap(1/ϵ1)

|Λ|

6: Od ← {λi ∈ Λ | g(Dλi
) + ηi > ci + α1}

7: Ou ← {λi ∈ Λ | g(Dλi
) + ηi > ci − α1 ∧ λi ̸∈ Od}

8: for j = 2, . . . ,m do
9: if Ou = ∅ then return Od, ϵj−1

10: end if
11: [η1, . . . , η|Λ|] = PrivRelax(ϵj−1, ϵj, [η1, . . . , η|Λ|])
12: Od ← Od ∪ {λi ∈ Ou | g(Dλi

) + ηi > ci + αj}
13: Ou ← {λi ∈ Ou | g(Dλi

) + ηi > ci − αj ∧ λi ̸∈ Od}
14: end for
15: return Ou ∪Od, ϵm
16: end if
17: return ’Query Denied’
18: end procedure

(Lines 5-7). The algorithm increments ϵj in each iteration geometrically by a factor of

ω = (ϵm
ϵ1
)

1
m−1 (Line 3), and the corresponding generalization parameter in the j-th itera-

tion decreases by the same ratio. We consider geometric increments instead of arithmetic

increments as smaller increments in the earlier iterations (i.e., using smaller epsilon values)

have a higher chance of achieving lower privacy loss. At the j-th iteration, the algorithm

adds Laplace noise to the aggregate per predicate based on ϵj using Laplace mechanism or

using PrivRelax [30]. PrivRelax generates noises for the next iteration j (noises based on

ϵj) by drawing correlated noises based on the noise drawn in the previous iteration (noises

generated using ϵj−1). This correlated noise ensures that the total privacy loss over the m

iterations is bounded by ϵm.

We categorize the predicates into three categories: (i) decided, denoted by Od, which include

predicates with noisy aggregates greater than the generalized thresholds and they are always

outputted by the mechanism; (ii) undecided, denoted by Ou, which include the predicates

with noisy aggregates in the range of [ci − αj, ci + αj], and they are passed to the next

75

 Marked as positive
 Marked as negative
 Marked as undecided

Increasing

Noisy
values

Iteration 1:

Noisy
values

Iteration 2:

Original
Aggregated

values

Final
Output

(a)

(b)

(c)

(d)

Figure 5.3: PPWLM with 2 iterations. (a) shows the original aggregated counts and the
threshold c. (b) and (c) show the noisy aggregated values for each predicate for iteration 1
and iteration 2. In iteration 1, predicates with noisy aggregates < c − α1 are outputted as
negatives, those with noisy aggregates > c − α1 are outputted as positives, the remaining
are undecided and continue in iteration 2. Iteration 2 outputs all predicates with noisy
aggregates > c− α2 as positives.

iteration; and (iii) eliminated, which are the predicates with noisy aggregates lower than

ci − αj, and they are not considered in the next step or the output of the query. The union

of Od and Ou for each iteration is always a solution that achieves β-false negative rate like

the Threshold Shift Laplace Mechanism, but by an iterative tightening of the generalization

factor, the number of false positives are improved with a minimal privacy loss. The algorithm

terminates when the set Ou is empty i.e., the algorithm has made decisions for all the

predicates (Line 9). Otherwise, the algorithm terminates when it has spent the privacy

budget of ϵm which satisfies the accuracy guarantees of α and β (Line 15). In this situation,

the algorithm returns Ou as the answer of the query. The privacy loss in terms of ex-post

DP or ex-post PWDP is dependent on the input data and releasing it breaks ϵmax- DP. It is

crucial that the ex-post (PW)DP loss is not released to the data analyst (adversary), as it

will violate the ϵmax-DP guarantees.

76

Theorem 5.5. Algorithm 2 satisfies ϵmax-DP and β-false negative rate. If the query is not

denied, its ex-post DP cost is less than ϵm = ln(1/(2β/m)
α

.

Figure 5.3 demonstrates the benefits of using this multiple step approach using m = 2.

Figure 5.3(a) shows the true aggregated values of all predicates and the threshold c In the

first iteration, the noisy aggregates (indicated by the position of the dots in Figure 5.3(b))

by spending ϵ1 are compared against the corresponding generalized threshold c − α1. Four

predicates marked negative have smaller noisy aggregates than c − α1 and are eliminated

from the next iteration. Among the four predicates with noisy aggregates greater than

c − α1, one of them has a noisy aggregate greater than c + α1 and hence it is directly

outputted as a positive, while the other three continue to the next iteration. This iteration

guarantees that there is a low probability β/2 for a predicate with true aggregate greater than

c to be eliminated. In the second iteration, the newly perturbed aggregates with a larger

privacy budget ϵ2 (Figure 5.3(c)) are compared with a less generalized threshold c − α2.

One additional predicate gets eliminated as its noisy aggregate is smaller than c− α2. The

final output include 3 predicates. In this example, the final result does not contain any false

negatives. Also, five predicates end up using ϵ1 and three undecided predicates after iteration

1, end up using ϵ2 privacy budgets. In some cases, the overall privacy loss can be smaller

than the previous Threshold Shift Laplace mechanism, if we measure the privacy loss using

ex-post Predicate-wise Differential Privacy and min-entropy γ(Θ) as described in §5.2.2.

5.3.3 Data Dependent Mechanism

The algorithm of previous section, (i.e., Algorithm 2) used a fixed number of iterations and

updated the privacy parameter and generalization parameter in a geometric manner. This

section makes the case that this choice may not be optimal all the time. If the algorithm has

knowledge about the data distribution, it can perform better in terms of privacy loss. Since

77

we are using a multi-step algorithm, we can make use of the noisy aggregated values from

the previous iteration to determine the number of iterations and the privacy/generalization

parameters for the subsequent steps. We call this algorithm Data Dependent Progressive

Laplace Mechanism, summarized in Algorithm 3. The privacy loss in terms of ex-post DP

or ex-post PWDP is data dependent just like PPWLM so the ex-post (PW)DP loss is not

released to the data analyst (adversary) in order to achieve ϵmax DP guarantee.

Algorithm 3 first plans the privacy budgets (Lines 2 - 3), denoted by a vector B of m entries,

in a way similar to Algorithm 2. In the first iteration, it still starts with ϵ1 and stores the

noisy aggregates G. Based on the noisy aggregates, the predicates are classified into three

categories, decided positives Od, undecided ones Ou, and decided negatives (Λ − Od − Ou).

For all the predicates with a confident decision (i.e., decided positives and decided negatives),

their ex-post privacy cost stop at ϵ1 and are saved in a vector E while the others in Ou are

temporarily set to be the final cost ϵm (Line 9). In the next iteration, rather than using

the planned privacy budget stored in B, we use the noisy aggregates G and the temporary

ex-post privacy cost E to estimate the best privacy level that maximizes the min-entropy

γ(Θ).

The estimation of the best privacy level for the next iteration is presented in Algorithm 4. It

searches the privacy level ϵnext for the next iteration in the remaining privacy levels in B and

for each privacy level in B, it also further divides the intervals into mf number of fine-grained

steps (Line 4). The algorithm aims to find an ϵnext that can lead to a predicate-wise privacy

loss E ′ with a largest min-entropy; hence, the algorithm will be able to skip all the privacy

levels before ϵnext (Lines 5- 10). The algorithm removes the unused privacy levels from the

budget plan B and updates the corresponding β for the next iteration (Line 12).

We cannot compute the exact predicate-wise privacy loss without running the algorithm.

To estimate this privacy loss, the algorithm first uses the noisy aggregates G to compute

how many of the undecided predicates from previous iteration Ou will still remain undecided

78

if a privacy level of ϵnext is used in the current iteration. For each predicate λi ∈ Ou, the

algorithm estimates its probability of remaining undecided (i.e., its new noisy aggregate

g(Dλi
) + η′i falls into the range of [ci − αj, ci + αj]) by using its noisy aggregate G[i] which

was perturbed by ηi at a privacy level ϵj−1 from the previous iteration; and then sum them

up as an expected number for the undecided predicates:

nu =
∑
λi∈Ou

P (g(Dλi
) + η′i ∈ [ci − αj, ci + αj]) (5.9)

≈
∑
λi∈Ou

∫ ci+αj

ci−αj

∫ ∞

−∞

ϵj−1

2
e−|x−G[i]|ϵj−1 × ϵj

2
e−|z−x|ϵjdxdz

Theorem 5.6. Algorithm 3 satisfies ϵmax-DP and β-false negative rate. If the query is not

denied, its ex-post DP cost is max(E).

This data dependent algorithm comes at computation cost as we choose ϵ in each iteration

based on min-entropy. In the worst case scenario, the cost of computing min-entropy can be

exponential in terms of number of predicates; hence it may incur high computation overhead

the when number of predicates are very high. We present an efficient algorithm to compute

this cost next.

5.4 Computing Privacy Loss

We use an entropy based privacy metric for PWDP to compute the privacy loss of our multi-

step algorithms (i.e., PPWLM and DPPWLM). Furthermore, we use this metric to estimate

the optimal ϵ values in each iteration to minimize the privacy loss in DPPWLM.

Our privacy metric for PWDP measures the lower bound on entropy, i.e., the least un-

79

Algorithm 3 Data Dependent Progressive Mechanism DPPWLP

1: procedure DPPWLM(QΛ
g(.)>C , D, α, β, ϵmax, ϵ1,m,mf)

2: set final privacy cost ϵm ← ln(1/(2β/m))
α

3: set B[j] = ϵ1ω
j−1 for j ∈ [1,m], where ω = (ϵm

ϵ1
)1/(m−1)

4: if ϵm ≤ ϵmax then
5: [η1, . . . , η|Λ|]← Lap(1/ϵ1)

|Λ|

6: set G[i] = g(Dλi
) + ηi for λi ∈ Λ and α1 =

ln(1/(2β/m))
ϵ1

7: Od ← {λi ∈ Λ | G[i] > ci + α1}
8: Ou ← {λi ∈ (Λ−Od) | G[i] > ci − α1}
9: Initialize predicate epsilon E[i] = ϵ1 if λi ∈ (Λ− Ou); for the other predicates, it

with final cost E[i] = ϵm
10: initalize j ← 1
11: while ϵj ≤ ϵm and Ou ̸= ∅ do
12: j ← j + 1
13: ϵj, βj, B = NextStepParams(E,G,B,Ou, β,m,mf)
14: [η1, . . . , η|Λ|] = PrivRelax(ϵj−1, ϵj, [η1, . . . , η|Λ|])

15: set G[i] = g(Dλi
) + ηi for λi ∈ Ou, αj =

ln(1/(2βj))

ϵj

16: Od ← Od ∪ {λi ∈ Ou | G[i] > ci + αj}
17: O′

u ← Ou, Ou ← {λi ∈ (Ou −Od) | G[i] > ci − αj}
18: set predicate epsilon E[i] = ϵj if λi ∈ (O′

u −Ou)
19: end while
20: return Ou ∪Od, ϵj
21: end if
22: return ‘Query Denied’
23: end procedure

Algorithm 4 Estimated Epsilon for next step in DPPWLM

1: procedure NextStepParams(E,G,B,Ou, β,m,mf)
2: initalize entmax = 0, ϵnext = B[0],
3: ropt = 1, ϵopt = ϵnext
4: for r ∈ [1, . . . , |B| − 1] and s ∈ [1, . . . ,mf] do

5: ϵnext ← ϵnext +
(B[r+1]−B[r])

mf

6: E ′ ← E and choose (|Ou|−nu) number of predicates from Ou and set their E ′[λi]
= ϵnext

7: entnext= MinEnt(bE′) ▷ bE′ are bounds on p̂i (Eq A.2) based on E ′.
8: if entmax ≤ entnext then
9: entmax ← entnext, ropt ← r, ϵopt ← ϵnext
10: end if
11: end for
12: return (ϵopt,

β·ropt
m

, B[ropt + 1 :])
13: end procedure

80

1

2
.
.

k

Option 1 Option 2 Option 3

Figure 5.4: Possible options at k-th step of MinEnt algorithm. Option 1 distributes as much
slack as possible to p̂k (solid green line) and the rest to p̂1, . . . , p̂k−1 (dotted green line).
Option 2 distributes as much slack as possible to p̂1, ..., p̂k−1 and the rest to p̂k. Option 3
distributes slack to p̂1, . . . , p̂k−1 and p̂k instead of distributing as much as possible to either.

certainty in the adversarial guess as follows: γ(Θ) = min(
∑k

i=1−p̂i log p̂i), subject to

e−ϵi∑
i e

ϵi
≤ p̂i ≤ eϵi∑

i e
−ϵi

and
∑

i p̂i = 1. This is a concave optimization problem with constraints.

Finding the global minima with constraints for a concave function is computationally diffi-

cult since the function may have several local minimas [50]. However, finding the minima

of the sum of entropy functions is a tractable problem, since the shape of entropy function

is known and simple (i.e., with only one maxima instead of multiple local maxima). We

leverage this idea to develop a dynamic programming based algorithm that finds the global

minima of the sum of entropy functions, i.e., to compute γ(Θ).

Given Θ, i.e., a set of k predicates with their epsilons, the algorithm first computes their

corresponding lower bounds (li =
e−ϵi∑
i e

ϵi
) and upper bounds (ui =

eϵi∑
i e

−ϵi
) and then sort them

based on their upper bounds in ascending order as an input to Algorithm 5. For simplicity,

we assume that u1 ≤ u2 · · · ≤ uk without introducing new indices.

If we start by allocating each p̂i with its lower bound li, there is a remaining amount s =

(1−
∑k

i=1 li) which has to be distributed to among p̂is to ensure
∑

i p̂i = 1 and p̂i ≤ ui while

81

minimizing the entropy function. We call this remaining amount slack. The maximum slack

that can be distributed to p̂i is bounded by ∆i = ui − li. We consider three options that

cover all possible distributions of the slack s among the k predicates:

• Option 1. Distribute as much slack as possible to the p̂k (the one with the largest upper

bound).

• Option 2. Distribute as little slack as possible to the p̂k, and hence distribute as much

slack as possible to p̂1, . . . , p̂k−1.

• Option 3. Unlike the previous two options, here the slack is divided between p̂k and the

sub-problem of size k − 1 i.e., p̂k−1, ..., p̂1 without fully allocating to either of them.

These three options are illustrated in Figure 5.4. The figure represents the interval of [li, ui]

from i = 1, . . . , k. Note that a lower ϵi value will have a higher li and a lower ui value.

For option 1, if the slack s > ∆k, there is still remaining slack to be distributed among the

k − 1 predicates. This gives a sub-problem of size k − 1, i.e. distributing the new slack

s′ = (s−∆k) among the first (k−1) predicates. For option 2, if the slack s <
∑k

i=1∆i, then

the remaining slack will be added to p̂k; otherwise, we need to solve a sub-problem of size

k − 1, i.e., distributing the full slack s among the first (k − 1) predicates. We don’t need to

solve additional sub-problem. For option 3, we can show that it always results in a poorer

solution than the solution coming from option 1 or option 2.

Theorem 5.7. Given a set of intervals of posterior probabilities {(li, ui) | i = 1, 2, ...k} and

a slack s to be distributed among the intervals, the option 3 always performs worse than

either the strategies of option 1 or option 2 in terms of minimizing entropy.

Hence, Algorithm 5 considers only option 1 and option 2 and only option 1 requires solving

a sub-problem with a smaller number of predicates. At the base case when k = 1, all the

slack is allocated to this predicate (Line 2). When k > 1, we consider option 1 and option 2

described above. For option 1, the solution is stored in p1 (Lines 5-6) which requires solving

82

Algorithm 5 Minimize Entropy
1: procedure MinEnt({(li, ui)∀i ∈ {1, 2, ..., k}}, s) ▷ sorted by ui in ascending order. Initially,

s = (1−
∑k

i=1 li) is a slack variable.
2: if k = 1 then return [l1 + s]
3: end if
4: ∆i = ui − li, ∀i ∈ {1, 2, ..., k}
5: p1[k] = lk +min(∆k, s)
6: p1[1 : k − 1] =MinEnt([li, ui]∀i ∈ {1, ..., k − 1}, s−min(∆k, s))
7: p2[1 : k − 1] =MinEnt([li, ui]∀i ∈ {1, ..., k − 1},min(

∑k−1
i=1 ∆i, s))

8: p2[k] = lk + s−min(
∑k−1

i=1 ∆i, s)
9: if CalEntropy(p1) ¡ CalEntropy(p2) then return p1
10: else return p2
11: end if
12: end procedure
13: procedure CalEntropy(p)

14: return −
∑|p|

i=1 p[i] log(p[i])
15: end procedure

a sub-problem for the first (k − 1) predicates with the remaining slack s−min(∆k, s). For

option 2, the solution is stored in p2 (Lines 7-8) which requires solving a sub-problem for the

first (k − 1) predicates with the full slack s. The solution with higher entropy is returned.

Theorem 5.8. Algorithm 5 outputs the optimal solution to the min-entropy problem γ(Θ).

5.5 Experiments

This section evaluates our algorithms (Algorithms 1,2, and 3) for MIDE using various queries

taken from real life scenarios and over real datasets. This is to show that all the algorithms

effectively achieve their accuracy guarantees in terms of bounded false negative rate; among

them, the data dependent mechanism (Algorithm 3) obtains the lowest minimal privacy cost

over most of the queries.

83

(a) Q1H/M/L (b) Q2H/M/L

(c) Q3H/M/L (d) Q4H/M/L

Figure 5.5: This figure shows the distribution of the distances from the thresholds for all
aggregates for Q1, Q2, Q3, Q4 with thresholds = High (H), Medium (M) and Low (L).

84

(a) UCI data (Q1, Q2) Epsilon (b) UCI data (Q1, Q2) Entropy

(c) NYTaxi data (Q3, Q4) Epsilon (d) NYTaxi data (Q3, Q4) Entropy

Figure 5.6: Privacy loss in terms of ϵ∗(Ex-Post DP) and Min-Entropy γ(Θ) for Q1, Q2, Q3,
Q4 with threshold = High (H),Medium (M), Low (L) at β = 0.05, α = 1

.

85

(a) UCI data (Q1, Q2) FNR (b) UCI data (Q1, Q2) FPR

(c) NYTaxi data (Q3, Q4) FNR (d) NYTaxi data (Q3, Q4) FPR

Figure 5.7: Accuracy in terms of False Negative Rate (FNR) and False Positive Rate (FPR)
for Q1, Q2, Q3, Q4 with threshold = High (H), Medium (M), Low (L) at β = 0.05, α = 1.

86

(a) FNR (b) FPR

(c) Min-Entropy γ(Θ) (d) Ex-Post Privacy Loss ϵ∗

Figure 5.8: Accuracy (FNR,FPR) and Privacy (ϵ∗,γ(Θ)) for Q3 (NYTaxi data) with thresh-
old = Low over varying α.

87

5.5.1 Setup

Datasets & Queries. We used two real-world datasets and designed queries for the evalu-

ation as described below.

UCI Dataset. This dataset contains the occupancy data of 24 different buildings of University

of California, Irvine campus collected in 2018 October [44]. The data consists of 3 million

records where attributes are userID, location, time. The DS queries find out the anomalous

incidents (e.g., violation of fire safety norm setup by the California fire department), i.e.,

buildings with occupancy (number of individuals) that was higher than their capacity. We

run 2 queries: Q1 on a weekday (Oct 09) and Q2 on a weekend (Oct 13) that has different

data distributions. Both queries check every hour between 7 a.m. to 10 p.m. if a building’s

occupancy is exceeding the threshold. Total number of predicates for both Q1 and Q2 are

15(number of hours)×24(number of buildings)= 420. Q1 and Q2 are also coupled with three

levels of thresholds (high, medium, low), set as 1, 0.8, and 0.6 times of the building capacities.

NYTaxi Dataset. This dataset records taxi trips in New York City in 2020 [1], consisting

of 15.7 million records with 18 attributes, e.g., pick-up and drop-off locations and their

timestamps. We group the pickup locations into 34 different regions and run queries to find

out the regions and timestamps that had anomalous pickup counts. We run two queries: Q3

is run on March (1-14) (before the lockdown); and Q2 is run on March (15-30) (after the

lockdown). Both queries check for each day in the corresponding time range if a regions’s

pickup count was higher than the threshold for all 34 regions. Total number of predicates for

Q3 are 34 (regions)×14(days)= 476 and for Q4 are 34 (regions)×16(days)= 544. For each

predicate, we use the maximum number of pickups from Jan and Feb times a multiplicative

factors of 1, 0.8, 0.6 as the high, medium, low thresholds.

We display the distributions of the absolute distance of the aggregates in each query from

their corresponding thresholds in Figure 5.5. We use uniform priors for these datasets to

88

compute min-entropy.

Algorithms & Parameters. We consider three MIDE algorithms: Threshold Shifted

Laplace Mechanism (TSLM), Progressive Predicate-wise Laplace Mechanism (PPWLM), and

Data Dependent PPWLM (DPPWL). The naive Laplace Mechanism (NLM) is evaluated at

the same privacy cost as TSLM as a baseline for accuracy.

Our accuracy requirements is defined in terms of two parameters: β-false negative rate and

α-uncertain region of false positives. We consider values for β ∈ {0.01, 0.02, . . . , 0.1} and

α ∈ {1, 10, 20, . . . , 200}. The default values are β = 0.05 and α = 1. For algorithms with

multiple iterations including PPWLM and DPPWLM, we set the starting epsilon ϵ1 be

0.00001, the total number of iterations to be m = 4, the maximum value without exceeding

ϵmax = 4 at the default choice for α and β. For DPPWLM, we set the fine grained steps

mf = 3. We run each algorithm 100 times and report their averaged privacy or utility

metrics.

5.5.2 Experimental Results

Privacy Results. We compare the algorithms based on two privacy metrics: ex-post DP,

denoted by ϵ∗, and min-entropy for predicate-wise DP, γ(Θ). For TSLM, all predicates end

with the same epsilon values, and hence the same lower and upper bounds for the posteriors

to compute the min-entropy (Definition 5.4) using Algorithm 5. The privacy results for 4

queries (Q1-Q4) with their corresponding threshold levels (denoted by H,M,L) are presented

in Figure 5.6 when setting the accuracy parameters β = 0.05 and α = 1.

DPPWLM achieves a privacy cost that is near to the lowest or the lowest for all the queries.

As it uses a multi-step approach, it allows earlier stop and hence a smaller ex-post DP

cost than a single-step method TSLM for Q1H,Q2H/M, Q3H/M/L,Q4H/M/L, as shown in

89

Figures 5.6a and 5.6c. DPPWLM does not always have an earlier stop, which depends on

data distribution. For Q1M/L and Q2L, the distances of the counts from the thresholds

shown in Figures 5.5a and 5.5b are relative small for most of the predicates, i.e., the counts

are closer to thresholds. For such a case, all predicates need to consume a high privacy

budget to be accurately decided and incur a slightly higher ex-post privacy than TSLM due

to the division of the β among multiple steps. However, it is better than the other multi-

step approach PPWLM, because DPPWLM uses learned data distribution to determines the

number of iterations and hence budget allocation adaptively. Furthermore, as DPPWLM

optimizes min-entropy, we observe that it achieves the highest min-entropy for all the queries

as shown in Figures 5.6b and 5.6d.

Accuracy Results. For each run of the algorithm, we measured the number of false

negatives nfn and the number of false positives nfp. Then we report the averaged false

negative rate (FNR) as nfn/np and the averaged false positive rate (FPR) as nfp/nn over

multiple runs, where np and nn are the number of positives and the number of negatives

respectively. The results are presented in Figure 5.7 when β = 0.05 and α = 1.

Figures 5.7a and 5.7c show that all the MIDE algorithms achieve a bounded FNR lower than

β = 0.05, which is the key accuracy requirement of DS. Note that the multi-step approach

DPPWLM can make different decisions in each step (e.g., epsilon values) depending on

the randomness of the algorithm and the data distribution, so there is no guarantee that

DPPWLM will always win PPWLM in terms of utility (e.g., DPPWLM has a lower FNR

than PPWLM for all queries except Q1M), but both of them have a bounded FNR. The

trade-off of FNR in terms of FPR is relatively low, less than 0.04, for all MIDE algorithms

and queries shown in Figures 5.7b and 5.7d.

Accuracy-Privacy Tradeoffs. TSLM achieves a better utility (FPR and FNR, and

FPR/FNR tradeoff) than multi-step algorithms, but at a privacy cost. Since DPPWLM

90

performs better than PPWLM (in both privacy cost and utility), we focus on the tradeoff

comparisons between DPPWLM and TSLM. The privacy goal of DPPWLM is to optimize

min-entropy (a higher min-entropy is preferred). The utility goal is to achieve a bounded

FNR and optimize FPR (a smaller FPR is preferred). We compare its min-entropy (Figures

5.6b/5.6d) and its FPR (Figures 5.7b/5.7d) with TSLM. On average, DPPWLM improves

the min-entropy of TSLM from 0.25 to a value above 0.8 in Figures 5.6b/5.6d, while it sac-

rifices the FPR of TSLM from ˜0 to a value at most 0.034 in Figures 5.7b/5.7d for all the

queries.

Comparison with Naive Laplace Mechanism. We use Q3 with threshold = ‘low’ for

the comparison between the naive laplace mechanism (NLM) and our algorithms in Figure

5.8 by changing the accuracy parameter α. As there is no guideline for setting the parameter

of NLM to achieve β-FNR, we use the same privacy budget for NLM as TSLM. When α

increases, the privacy budget becomes smaller. Figure 5.8a shows that NLM does not satisfy

β-false negative guarantee as α increases while the other algorithms still have a bounded

FNR. Figure 5.8b shows that the trade off in terms of false positives for false negatives is

data dependent. If many true negatives lie close to thresholds (most of our datasets), then

the trade-off cost is high. The NLM has the same ex-post privacy loss and min-entropy as our

TSLM as both algorithm use the same privacy budget. The results for our privacy metric

(Figure 5.8c, 5.8d) show that our DPPWLM has the lowest privacy loss across different

values of α. Similar results are observed when changing β.

Varying Parameters for Multi-step Algorithms. We evaluated our multi-step algo-

rithms with varying starting epsilon values ϵ1 ∈ {10−5, 10−4, . . . , 10−1} and varying number

of steps m ∈ {2, 4, . . . , 12}. Due to space constraint, we leave the plots in Appendix and

summarize the results here.

As ϵ1 increases, PPWLM and DPPWLM have a larger privacy loss (both ex-post DP and

91

min-entropy). If ϵ1 is too small, all predicates may be undecided in the first step in both

approaches. However, DPPWLM chooses appropriate epsilons in the subsequent steps to

effectively classify the predicates. When changing ϵ1, there are no significant differences in

utility and fulfilling the required accuracy bounds. The utility improves slightly if DPPWLM

ends with a relatively higher privacy loss due to the data distribution and choice of ϵ and β

in the intermediate steps.

Our experiments show that increasing the number of steps by more than 4 can result in

a higher ex-post DP loss for both PPWLM and DPPWLM as ϵm for the last step will

exceed ϵmax = 4. On the other hand, choosing a smaller number of steps may not result in

an optimal solution as a data dependent algorithm becomes limited in the optimal choice

of epsilon. The DPPWLM does better in min-entropy than PPWLM with a larger m as

DPPWLM optimizes the choice of ϵ and β to maximize the min-entropy. The utility satisfies

the required bound and varies slightly depending on the data distribution and the choice of

ϵ and β across multiple steps.

5.6 Conclusion

In conclusion, we presented minimally invasive data exploration for decision support appli-

cations for basic form of decision support queries (aggregate threshold queries). We formally

defined the accuracy requirement and presented three different privacy preserving algorithms

that aim to minimize privacy loss while providing accuracy guarantees. We provided a new

privacy definition to capture predicate-wise privacy loss and an entropy based privacy met-

ric. Our results show that our data-dependent algorithm is robust and minimizes privacy

loss for different data distributions.

92

Chapter 6

Accuracy Aware Privacy Preserving

Decision Support with Complex

Queries

6.1 Introduction

In this chapter, we study privacy in the context of complex decision support queries. Previous

work in DS queries (e.g. MIDE) deals with simple DS query that classifies objects either

true or false based on the condition on a single aggregate statistic. This work considers more

complicated DS queries based on conjunctive/disjunctive conditions on multiple aggregate

statistics on an object. We formally define such queries and their accuracy requirement

and provide algorithms that attempt to minimize privacy loss while supporting bounded

guarantee on the accuracy. Our preliminary experiments show that our algorithms satisfy

accuracy guarantees and minimize privacy loss.

On-line analytical processing (OLAP) and data warehousing are essential elements of decision

93

support that are widely used in organizational decision making. For example, in OLAP (On

Line Analytic Processing), the analyst can use the information in database to guide strategic

business decisions. In a typical OLAP system, the data is aggregated over n-dimensional

data cube and can be used to learn aggregated statistics e.g. how many items of a particular

clothing were sold in all northeast stores in the years 2021 and 2022? This kind of statistics

can be used to make important business decisions e.g. deciding whether the company should

keep selling a particular product. The commonality in such DS applications is that the ag-

gregated statistics are collected and compared to a preset threshold that classifies objects as

either satisfying the predicate (i.e. true), or as not satisfying the predicate (i.e. false). The

aggregated statistics used in decision making are derived from databases which may contain

sensitive information about individuals. Most widely used privacy preserving techniques for

query analytics (e.g. Differential Privacy [13]) protect user privacy at the cost of utility.

If the data is not accurate or noisy, the decisions made using privacy preserving decision

support system can be misleading and inaccurate. Therefore, the goal in answering decision

support queries is to preserve privacy of individual while ensuring required accuracy level.

Previous work (Chapter 5) presents MIDE that can be used to answer Decision Support

queries in a privacy preserving way while ensuring required accuracy level. However, MIDE

only deals with most basic form of Decision Support query where we have a single statistical

measure that is compared to a corresponding threshold. Decision Support queries can be a

combination (conjunction/disjunction) of multiple conditions where each condition consists

of a statistical value compared to it’s corresponding threshold. For example, in sales DS

systems, to gauge if a product is profitable in North America, we may want to evaluate if

profits in USA exceed a corresponding threshold and profits in Canada exceed a correspond-

ing threshold (conjunction of two conditions). Similarly, we may want to provide an alert

when a specific group of items reaches the minimum profit or exceeds the amount of sales

from past quarter (disjunction of two conditions).

In business applications, KPIs (Key Performance Indicators) provide an analytical basis for

94

such decision making queries. KPIs are defined as business metrics that help gauge the

progress towards an intended goal and play a crucial role in monitoring and evaluating the

processes carried out by the company. A KPI handles information about a set goal, the

performance recorded in the data cube in OLAP, and a status value. Typically, to make

a decision, analyst can use multiple conditions over the boolean status values of multiple

KPIs.

In this chapter, we formally define complex decision support queries and provide algorithm

to evaluate such queries in a privacy preserving manner that results in minimal privacy loss

and satisfies the accuracy requirement for such queries. The organization of this chapter

is as follows. In Section 6.2, we first define the complex decision support queries, provide

accuracy requirements for such queries and describe our problem statement. In Section 6.4,

we provide differentially private algorithms that can be used to answer complex DS queries

while satisfying accuracy guarantees and minimizing privacy loss. In Section 6.5, we provide

preliminary experiments to evaluate our algorithm using real data set. In Section 6.6, we

discuss conclusion and future work.

6.2 Query Definition

In this section, we present complex decision support queries. First, we generalize the basic

decision support query (aggregate threshold query) as described in Chapter 5 and then

define more complex DS queries i.e. conjunction and disjunction queries. We generalize the

aggregate threshold query by adding an optional filter clause to the query. Such a query

checks whether the aggregated values computed on a subset of tuples pass the thresholds or

not. Formally,

Aggregate Threshold Query. An aggregate threshold query, denoted by QΛ,f
g(.)θC , consists

95

of (i) an aggregate function g(.); (ii) a set of predicates Λ = {λ1, λ2, ..., λk}; (iii) a operator

θ (iv) a set of corresponding thresholds C = {c1, c2, ..., ck} and (v) an optional filter f . The

filter f takes in a tuple and outputs True or False based on the value of the tuple. We use

Df to denote all the tuples that satisfy the filter. Each predicate λi takes in a tuple from

filtered tuples Df and outputs True or False based on the value of the tuple. We let Df
λi

be

the set of tuples in D that evaluate λi to be True. This query returns all the predicates that

have the aggregate g(Df
λi
) satisfy the condition g(Df

λi
)θci where θ is a comparison operator

such as ¿,¡,= and ci is their respective threshold. Formally,

QΛ,f
g(.)θC(D) = {λi ∈ Λ | g(Df

λi
)θci} (6.1)

This is equivalent to group-by-having query in SQL. Given a sales dataset with schema

SALES DATA(product id , location, profit , timestamp), the following is an example of ag-

gregate threshold query.

SELECT product_id FROM SALES_DATA

Where location = ’USA’

GROUP BY product_id HAVING count(*) > c

The where clause age > 25 is an example of a filter f , product id = p1, product id =

p1, ...product id = pk are examples set of k predicates i.e. Λ, count() is the aggregate

function g(.) and threshold is same for all the predicates i.e. c. In the rest of this chapter,

we focus on θ =′>′ and discuss other operators in generalized version of the query.

Accuracy for Aggregate Threshold Query. The following definition provides accuracy

definitions for an aggregate threshold query.

Definition 6.1 (β-False Negative Rate). We say a mechanism M : D → O satisfies β-false

96

negative rate for an aggregate threshold query QΛ,f
g(.)>C if for any database D ∈ D, we have

∀λi ∈ Λ, P [λi ̸∈M(D)|λi ∈ QΛ,f
g(.)>C(D)] ≤ β (6.2)

Definition 6.2 (α-False Positive Rate). We say a mechanism M : D → O satisfies α-false

positive rate for an aggregate threshold query QΛ,f
g(.)>C if for any database D ∈ D, we have

∀λi ∈ Λ, P [λi ∈M(D)|λi ̸∈ QΛ,f
g(.)>C(D)] ≤ α (6.3)

In the following, we define complex decision support queries where instead of a having one

clause that compares one aggregate value with its corresponding threshold , they consist

of conjunction or disjunction of multiple clauses where each clause compares an aggregated

value with it’s corresponding threshold. We provide formal definition of Query Conjunction

and Query Disjunction and their corresponding accuracy definitions as follows.

6.2.1 Query Conjunction

Consider a query Q which is conjunction of n aggregate threshold queries Q1, Q2, . . . , Qn

where we have same predicates for all queries with different filters, aggregates and thresholds

i.e. Q = Q1 ∩ Q2∩, . . . ,∩Qn. The query Q returns all the predicates that satisfy all the n

queries.

Definition 6.3 (Query Conjunction). Given a set of n aggregate threshold queries Q1, Q2, . . . , Qn

where Qj = Q
Λ,fj
gj(.)>Cj

, the conjunction of these Queries returns all predicates λi such that all

the aggregates gj(D
fj
λi
) are greater than their respective threshold cj,i for all j ∈ {1, 2, . . . , n}

97

and i ∈ {1, 2, . . . , k}. More formally,

Q1 ∩Q2∩, . . . ,∩Qn(D) = {λi ∈ Λ | g1(Df1
λi
) > c1,i} ∩

{λi ∈ Λ | g2(Df2
λi
) > c2,i}∩, . . . ,∩{λi ∈ Λ | gn(Dfn

λi
) > cn,i} (6.4)

This is equivalent to using intersect operator between multiple group-by-having queries in

SQL. Given a sales dataset with schema SALES DATA(product id , location, profit , timestamp),

the following is an example of conjunction of two aggregate threshold queries.

(SELECT product_id FROM SALES_DATA

Where location = ’USA’

GROUP BY product_id HAVING count(*) > c1)

INTERSECT

(SELECT product_id FROM SALES_DATA

Where location = ’Canada’

GROUP BY product_id HAVING count(*) > c2)

In this query, product id = p1, product id = p2, ...product id = pk are set of k predicates i.e.

Λ. The query uses INTERSECT operator between two aggregate threshold queries Q1 and

Q2. Q1 returns all the predicates (product id) for which number of sales in ’USA’ are greater

than a certain threshold. Q2 returns all the predicates (product id) for which number of

sales in ’Canada’ are greater than a certain threshold. The conjunction query returns all the

predicates that satisfy both Q1 and Q2.

Query Conjunction Accuracy. Let query Q be conjunction of n such aggregate threshold

queries i.e. Q = Q1 ∩Q2∩, . . . ,∩Qn. The accuracy in terms of false negative rate and false

positive rate for Q can be derived as follows:

98

Definition 6.4 (β-False Negative Rate for query conjunction). We say a mechanism M :

D → O satisfies β-false negative rate for a conjunction query Q = Q1 ∩ Q2∩, . . . , Qn if for

any database D ∈ D, we have

∀λi ∈ Λ, P [λi ̸∈M(D)|λi ∈ Q1(D) ∩Q2(D)∩, . . . ∩Qn(D)] ≤ β (6.5)

Definition 6.5 (α-False Positive Rate for query conjunction). We say a mechanism M :

D → O satisfies α-false positive rate for a conjunction query Q = Q1 ∩ Q2∩, . . . , Qn if for

any database D ∈ D, we have

∀λi ∈ Λ, P [λi ∈M(D)|λi ̸∈ Q1(D) ∩Q2(D)∩, . . . ∩Qn(D)] ≤ α (6.6)

6.2.2 Query Disjunction

Consider a query Q which is disjunction of n aggregate threshold queries Q1, Q2, . . . , Qn

where we have same predicates for all queries with different filters, aggregates and thresholds

i.e. Q = Q1∪Q2∪, . . . ,∪Qn. The query Q returns all the predicates that satisfy at least one

of the n queries.

Definition 6.6 (Query Disjunction). Given a set of n aggregate threshold queries Q1, Q2, . . . , Qn

where Qj = Q
Λ,fj
gj(.)>Cj

, the disjunction of these queries returns all predicates λi such that

at least one of the aggregates gj(D
fj
λi
) is greater than their respective threshold cj,i for all

j ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . , k}. More formally,

Q1 ∪Q2∪, . . . ,∪Qn(D) = {λi ∈ Λ | g1(Df1
λi
) > c1,i} ∪

{λi ∈ Λ | g2(Df2
λi
) > c2,i}∪, . . . ,∪{λi ∈ Λ | gn(Dfn

λi
) > cn,i} (6.7)

99

This is equivalent to using union operator between multiple group-by-having queries in SQL.

Given a sales dataset with schema SALES DATA(product id , location, profit , timestamp),

the following is an example of disjunction of two aggregate threshold queries.

(SELECT product_id FROM SALES_DATA

Where location = ’USA’

GROUP BY product_id HAVING count(*) > c1)

UNION

(SELECT product_id FROM SALES_DATA

Where location = ’Canada’

GROUP BY product_id HAVING count(*) > c2)

In this query, product id = p1, product id = p2, ...product id = pk are set of k predicates i.e.

Λ. The query uses UNION operator between two aggregate threshold queries Q1 and Q2.

Q1 returns all the predicates (product id) for which number of sales in ’USA’ are greater

than a certain threshold. Q2 returns all the predicates (product id) for which number of

sales in ’Canada’ are greater than a certain threshold. The disjunction query returns all the

predicates that satisfy either Q1 or Q2 or both.

Query Disjunction Accuracy. Let query Q be conjunction of n such aggregate threshold

queries i.e. Q = Q1 ∪Q2∪, . . . ,∪Qn. The accuracy in terms of false negative rate and false

positive rate for Q can be derived as follows:

Definition 6.7 (β-False Negative Rate for query conjunction). We say a mechanism M :

D → O satisfies β-false negative rate for a disjunction query Q = Q1 ∪ Q2∪, . . . , Qn if for

any database D ∈ D, we have

∀λi ∈ Λ, P [λi ̸∈M(D)|λi ∈ Q1(D) ∪Q2(D)∪, . . . ∩Qn(D)] ≤ β (6.8)

100

Definition 6.8 (α-False Positive Rate for query disjunction). We say a mechanism M :

D → O satisfies α-false positive rate for a disjunction query Q = Q1 ∪ Q2∪, . . . , Qn if for

any database D ∈ D, we have

∀λi ∈ Λ, P [λi ∈M(D)|λi ̸∈ Q1(D) ∪Q2(D)∪, . . . ∪Qn(D)] ≤ α (6.9)

We can easily generalize the above definitions to consider more general queries based on

any logical expression with conjunction and disjunction by appropriately combining the

intersections and unions. Further note that our query condition g(.)θc does not need to

consider negation as ∼ g(.)θc can always be written as g(.)θ′c where θ′ is dual of θ. For

example ∼ g(.) < c can be written as g(.) > c. In the following, we focus on conjunctive

and disjunctive queries and devise accuracy aware privacy preserving algorithms and later

generalize the full logical expression using conjunctive and disjunctive query algorithms.

6.3 Privacy and Accuracy Guarantees For Complex

DS Queries

Chapter 5 demonstrated that DS tasks require guarantees on the output quality, especially,

for false negatives that may result due to the addition of noise to aggregated statistics. Such

false negatives may result in events of interest/anomalies not being detected. False positives

are also not desirable. While one would desire effective bounds on both false negatives and

positives, in DS applications, increased false negatives are far more debilitating (compared to

false positives) since they effectively defeat the very purpose of decision support. Thus, in DS

applications, we desire to have bounded guarantees on false negatives without significantly

101

increasing the number of false positives. 1

DP mechanisms such as the Laplace mechanism add noise from zero-mean distribution to the

aggregate and compare it with the threshold, which place equal weights on false positives

and false negatives. This approach can fail to bound both errors together by setting the

privacy budget too small (large noise); or have guarantees on both false positives and false

negatives, but with a high privacy cost.

To bound the false negative rate without incurring additional privacy cost, we design a class

of mechanisms that generalizes the thresholds in the query for each aggregate value. For

example, for an aggregate threshold query where we are checking X > c for an aggregate

X, we generalize the query threshold to X > c − u. This type of generalization allows us

to achieve trade-off between false negatives and false positives that helps us achieve β-false

negative rate with a minimal privacy cost. This generalization parameter u and the accuracy

parameter β are translated to privacy cost ϵ.

6.3.1 Problem Definition

Considering the accuracy and privacy requirements defined above for decision support queries,

we formalize our problem definition as follows. Given complex decision support query Q on

a dataset D, we want to develop a set of differentially private mechanisms that answer the

query with β-false negative rate guarantee (Def. 6.7,6.7) and minimal privacy loss in terms

of ϵ.

In this section, we first present mechanisms to answer complex decision support queries which

consist of conjunction or disjunction of 2 aggregate threshold queries and their accuracy and

privacy guarantees.

1If we ignored false positives and only considered false negatives, a trivial algorithm would be to simply
ignore the query condition and return all the objects. This will meet the bounded requirement of false neg-
atives and will have zero false negatives. But that also defeats the purpose of decision support applications.

102

Figure 6.1: The figure shows output of intersection and union of M1 and M2 and highlights
FP(in green) and FN(in red) cases where M1 and M2 are output of mechanism to answer
Q1 and Q2.

6.3.2 Query Conjunction Mechanism

The following mechanism provides a way to answer conjunctive queries Q where Q = Q1∩Q2

based on mechanism to answer individual aggregate threshold queries.

Definition 6.9 (Query Conjunction Mechanism). Let mechanism Mi : D → Oi satisfy αi-

false positive rate and βi-false negative rate for aggregate threshold query Qi. We can answer

query Q which is a conjunction of 2 aggregate threshold queries Q1 and Q2 using mechanism

M where M(D) = M1(D) ∩M2(D).

To understand the intuition of how we support bounded false negatives, lets consider a

conjunctive query Q = Q1 ∩ Q2. We answer queries Q1 and Q2 with differential private

mechanism M1(D) and M2(D). Note that output of these mechanisms can be one of the

following true positive (TP), true negative (TN), false positive (FP) and false negative (FN).

103

Given the above cases, we can ascertain the output of mechanism M(D) = M1(D)∩M2(D)

as described in Figure 6.1 which gives us 3 cases when mechanism M will result in FNs.

In the following, we use this intuition to provide bounds on false negative rate for such a

mechanism M based on FNR and FPR of each Mi in case of n = 2.

Theorem 6.1. Given mechanism M where M(D) = M1(D) ∩M2(D) and βi and αi are

respective FNR and FPR rates for Mi, ∀i = 1, 2. FNR for M is bounded by β if (1−α1)β2+

(1− α2)β1 + β1β2 < β

Proof. Given mechanism Mi : D → Oi satisfy αi-false positive rate and βi-false negative

rate for aggregate threshold query Qi. We can derive the β-FNR for mechanism M where

104

M(D) = M1(D) ∩M2(D) to answer conjunctive query Q in terms of αi and βi as follows.

∀λi ∈ Λ,

FNR = P [λi ̸∈M1(D) ∩M2(D)|λi ∈ Q1(D) ∩Q2(D)]

Let A = P [λi ∈M1(D)], B = P [λi ∈M2(D)], C = P [λi ∈ Q1(D)],

and D = P [λi ∈ Q1(D)]

FNR = P [AB|CD] = P [A ∪B|CD] = P [AB ∪ AB ∪ AB|CD]

=
P [(AB ∪ AB ∪ AB) ∩ CD]

P [CD]

=
P [(AB ∩ CD) ∪ (AB ∩ CD) ∪ (AB ∩ CD)]

P [CD]

Mutually exclusive events

=
P [AB ∩ CD] + P [AB ∩ CD] + P [AB ∩ CD]

P [CD]

Assuming A,C are independent of B,D

=
P [AC]P [BD] + P [AC]P [BD] + P [AC]P [BD]

P [C][D]

= P [A|C]P [B|D] + P [A|C]P [B|D] + P [A|C]P [B|D]

= P [λi ̸∈M1(D)|λi ∈ Q1(D)]P [λi ∈M2(D)|λi ∈ Q2(D)]

+P [λi ∈M1(D)|λi ∈ Q1(D)]P [λi ̸∈M2(D)|λi ∈ Q2(D)]

+P [λi ̸∈M1(D)|λi ∈ Q1(D)]P [λi ̸∈M2(D)|λi ∈ Q2(D)]

= (1− α1)β2 + β1(1− α2) + β1β2 (6.10)

6.3.3 Query Disjunction Mechanism

The following mechanism provides a way to answer disjunctive queries Q where Q = Q1∪Q2

based on mechanism to answer individual aggregate threshold queries.

Definition 6.10 (Query Disjunction Mechanism). Let mechanism Mi : D → Oi satisfy αi-

105

false positive rate and βi-false negative rate for aggregate threshold query Qi. We can answer

query Q which is a disjunction of 2 aggregate threshold queries Q1 and Q2 using mechanism

M where M(D) = M1(D) ∪M2(D).

To understand the intuition of how we support bounded false negatives, lets consider a

disjunctive query Q = Q1 ∪ Q2. We answer queries Q1 and Q2 with differential private

mechanism M1(D) and M2(D). Note that output of these mechanisms can be one of the

following true positive (TP), true negative (TN), false positive (FP) and false negative (FN).

Given the above cases, we can ascertain the output of mechanism M(D) = M1(D)∪M2(D)

as described in Figure 6.1 which gives us 3 cases when mechanism M will result in FNs.

In the following, we use this intuition to provide bounds on false negative rate for such a

mechanism M based on FNR and FPR of each Mi in case of n = 2.

Theorem 6.2. Given mechanism M where M(D) = M1(D) ∪M2(D) and βj and αj are

respective FNR and FPR rates for Mj, ∀j = 1, 2. FNR for mechanism M is bounded by

β if
(1−α1)β2q′1q2+β1(1−α2)q1q′2+β1β2q1q2

q′1q2+q1q′2+q1q2
< β where q1 and q2 are selectivity of the query i.e.

qj = P [λi ∈ Qj(D)] and q′j = 1− qj.

Proof. Given mechanism Mj : D → Oj satisfy αj-false positive rate and βj-false negative

rate for aggregate threshold query Qj. We can derive the β-FNR for mechanism M where

M(D) = M1(D) ∪M2(D) to answer disjunctive query Q in terms of αj and βj as follows.

106

∀λi ∈ Λ,

FNR = P [λi ̸∈M1(D) ∪M2(D)|λi ∈ Q1(D) ∪Q2(D)]

Let A = P [λi ∈M1(D)], B = P [λi ∈M2(D)], C = P [λi ∈ Q1(D)],

and D = P [λi ∈ Q1(D)]

FNR = P [A ∪B|C ∪D] = P [A ∩B|C ∪D] = P [A ∩B|CD ∩ CD ∩ CD]

=
P [(A ∩B) ∩ (CD ∩ CD ∩ CD)]

P [CD ∩ CD ∩ CD]

=
P [(A ∩B ∩ CD) ∪ (A ∩B ∩ CD) ∪ (A ∩B ∪ CD)]

P [CD ∩ CD ∩ CD]

=
P [A ∩ C]P [B ∩D] + P [A ∩ C]P [B ∩D] + P [A ∩ C]P [B ∩D]

P [CD ∩ CD ∩ CD]

=
P [A|C]P [B|D]P [CD] + P [A|C]P [B|D]P [CD] + P [A|C]P [B|D]P [CD]

P [CD ∩ CD ∩ CD]

=
(1− α1)β2q

′
1q2 + β1(1− α2)q1q

′
2 + β1β2q1q2

q′1q2 + q1q′2 + q1q2
(6.11)

To provides β bound on FNR for mechanism M , we need to satisfy the following condition.

(1− α1)β2q
′
1q2 + β1(1− α2)q1q

′
2 + β1β2q1q2

q′1q2 + q1q′2 + q1q2
< β

107

6.4 Accuracy Aware Privacy Preserving Algorithms

For Complex DS Queries

In Section 6.3, we provided mechanism to answer conjunction/disjunction of two queries

and their accuracy and privacy guarantees. In this section, we provide algorithms to answer

these queries using the concept of threshold shift algorithm from Chapter 5 to achievβ-FNR

guarantees. We describe how these algorithm can be generalized conjunction/disjunction of

n variables. We add a discussion on more decision support queries that can be a combination

of arbitrary number of conjunctions/disjunctions.

6.4.1 Algorithms for Query Conjunction

In Section 6.3, we presented mechanism M (Definition 6.9) to answer conjunction of two

queries. To provides β bound on FNR for mechanism M , we need to satisfy the following

condition.

(1− α1)β2 + (1− α2)β1 + β1β2 < β

The following algorithms use the concept of threshold shifting from Chapter 5 to answer

conjunction query in a privacy preserving manner and satisfy the β-false negative guarantee.

We use M1 and M2 to be threshold shift laplace mechanism (TSLM) from Chapter 5. We

know for TSLM, False positive rate αj > βj. We can simplify the condition to bound FNR

108

(from Theorem 6.1) as follows:

β1 + β2 − β1β2 < β

We can further simplify it by using upper bound on FNR.

β1 + β2 < β

(6.12)

In the following, we provide two algorithms for query conjunction. We first provide a naive

threshold shift algorithm for query conjunction that achieves β-false negative guarantee and

then provide optimized threshold shift algorithm that not only satisfies the β-false negative

guarantee but also minimizes the privacy loss.

Naive threshold shift algorithm for Query Conjunction.

To satisfy the β-FNR accuracy requirement, we want to set β1 and β2 to be any value that

satisfies β1 + β2 < β (Equation 6.12). For naive algorithm, we simply choose β1 = β2 that

satisfy the FNR constraint on query conjunction. The FNR constraint (Equation 6.12) can

be rewritten as following:

β1 + β1 ≤ β

β1 ≤ β/2 (6.13)

109

Algorithm 6 Query Conjunction based on Threshold Shift Laplace Mechanism.

1: procedure NaiveTSAConjunction(Q1, Q2, D, u1, u2, β, ϵmax)
2: β1 = β/2
3: β2 = β/2

4: ϵj ← ln(1/(2βj))

uj
for j =1,2

5: if
∑

j ϵj ≤ ϵmax then
6: Oj ← {λi ∈ Λ | gj(Dλi

) + ηi > ci,j − uj, ηi ∼ Lap(0, 1/ϵj)}
7: return O1 ∩O2, ϵ1 + ϵ2
8: end if
9: return ‘Query Denied’
10: end procedure

We can set β1 = β2 = β/2 to achieve β-false negative rate.

We present the Naive Threshold Shift Algorithm for query conjunction in Algorithm box 6.

This algorithm compares each noisy aggregate for Qj, gj(Dλi
) + ηi with a shifted threshold

ci,j − ui, where ui is a generalized parameter and noise ηi is based on a privacy budget

ϵj =
ln(1/(2βi))

uj
where β1 = β/2 and β2 = β/2. The set Oj consists the predicates that have

noisy aggregates greater than the shifted thresholds for Qj, i.e. gj(Dλi
)+ ηi > ci,j − uj. The

algorithm returns intersection of Oj. This algorithm satisfies over all β − FNR guarantee

and the privacy loss for this algorithm is ϵ = ϵ1 + ϵ2.

Optimized Threshold-shift Algorithm For Query Conjunction.

This algorithm aims to minimize privacy loss and achieve a bounded false negative rate for

all the predicates (Equation 6.12) using concept of threshold shift from Chapter 5. We want

to choose β1 and β2 that satisfy the bound in Equation 6.12 while minimizing the privacy

loss.

Overall privacy loss for conjunction of two query can be written as follows

110

ϵ = ϵ1 + ϵ2

=
ln(1/(2β1))

u1

+
ln(1/(2β2))

u2

We want to minimize ϵ,

= ln(1/2β1)
1
u1 + ln(1/2β2)

1
u2

= − ln(2β1)
1
u1 − ln(2β2)

1
u2

≈ (β1)
1
u1 (β2)

1
u2 (6.14)

To choose β1 and β2 that minimizes the privacy loss and satisfies the accuracy guarantees,

we minimize ϵ i.e. minimize (β1)
1
u1 (β2)

1
u2 subject to FNR < β i.e. β1 + β2 < β. In the

following, we solve this optimization problem.

111

Using Langrange Method,

d

dβ2

((β1)
1
u1 (β2)

1
u2) = λ

d

dβ2

(β1 + β2)

(β1)
1
u1 (β2)

1
u2

−1
/(u2) = λ (6.15)

Similarly,

(β1)
1
u1

−1
(β2)

1
u2 /(u1) = λ (6.16)

From Equation 6.15 and 6.16

β1 =
u2β2

u1

Substitute in optimization equality constraint

β2 + (
u2β2

u1

) = β

β2 = u1β/(u1 + u2)

Similarly, β1 = u2β/(u1 + u2) (6.17)

These values for β1, β2 for min-privacy Threshold Shift Algorithm for query conjunction sat-

isfy the overall β-FNR. Since these values are derived based on optimization of ϵ, Optimized

Threshold Shift Algorithm for query conjunction minimizes the privacy loss.

We can convert Naive Threshold-shift Algorithm (Algorithm 6) to Optimize Threshold-shift

Algorithm by modifying line 2 and 3 and setting β1, β2 according to Equation 6.17. The rest

of the algorithm remains the same.

112

6.4.2 Algorithms for Query Disjunction

In Section 6.3, we presented mechanism M (Definition 6.10) to answer disjunction of two

queries. To provides β bound on FNR for mechanism M , we need to satisfy the following

condition.

(1− α1)β2q
′
1q2 + β1(1− α2)q1q

′
2 + β1β2q1q2

q′1q2 + q1q′2 + q1q2
< β

The following algorithms use the concept of threshold shifting from Chapter 5 to answer

disjunction query in a privacy preserving manner and satisfy the β-false negative guarantee.

We use M1 and M2 to be threshold shift laplace mechanism (TSLM) from Chapter 5. We

know for TSLM, False positive rate αj > βj. We can simplify the condition to bound FNR

(from Theorem 6.2) as follows:

FNR ≤ β2q2 − β2q1q2 + β1q1 − β1q1q2 − β1β2q1 − β1β2q2 + 3β1β2q1q2
q1 + q2 − q1q2

≤ β2(q2 − q1q2) + β1(q1 − q1q2)− β1β2(q1 + q2 − q1q2) + 2β1β2q1q2
q1 + q2 − q1q2

≤ β2 + β1 − β1β2 +
−β1q2 − β2q1 + 2β1β2q1q2

q1 + q2 − q1q2

(6.18)

113

We can further simplify it by using upper bound on FNR.

β1 + β2 < β

(6.19)

In the following, we provide two algorithms for query disjunction. We first provide a naive

threshold shift algorithm for query disjunction that achieves β-false negative guarantee and

then provide optimized threshold shift algorithm that not only satisfies the β-false negative

guarantee but also minimizes the privacy loss.

Naive threshold shift algorithm for Query Disjunction.

To satisfy the β-FNR accuracy requirement, we want to set β1 and β2 to be any value that

satisfies β1 + β2 < β (Equation 6.19). For naive algorithm, we simply choose β1 = β2 that

satisfy the FNR constraint on query disjunction. The FNR constraint (Equation 6.19) can

be rewritten as following:

β1 + β1 ≤ β

β1 ≤ β/2 (6.20)

We can set β1 = β2 = β/2 to achieve β-false negative rate.

We present the Naive Threshold Shift Algorithm for query disjunction in Algorithm box 7.

This algorithm compares each noisy aggregate for Qj, gj(Dλi
) + ηi with a shifted threshold

ci,j − ui, where ui is a generalized parameter and noise ηi is based on a privacy budget

114

Algorithm 7 Query Disjunction based on Threshold Shift Laplace Mechanism.

1: procedure NaiveTSADisjunction(Q1, Q2, D, u1, u2, β, ϵmax)
2: β1 = β/2
3: β2 = β/2

4: ϵj ← ln(1/(2βj))

uj
for j =1,2

5: if
∑

j ϵj ≤ ϵmax then
6: Oj ← {λi ∈ Λ | gj(Dλi

) + ηi > ci,j − uj, ηi ∼ Lap(0, 1/ϵj)}
7: return O1 ∪O2, ϵ1 + ϵ2
8: end if
9: return ‘Query Denied’
10: end procedure

ϵj =
ln(1/(2βi))

uj
where β1 = β/2 and β2 = β/2. The set Oj consists the predicates that have

noisy aggregates greater than the shifted thresholds for Qj, i.e. gj(Dλi
)+ ηi > ci,j − uj. The

algorithm returns union of Oj. This algorithm satisfies over all β−FNR guarantee and the

privacy loss for this algorithm is ϵ = ϵ1 + ϵ2.

Optimized Threshold-shift Algorithm For Query Disjunction.

This algorithm aims to minimize privacy loss and achieve a bounded false negative rate for

all the predicates (Equation 6.19) using concept of threshold shift from Chapter 5. We want

to choose β1 and β2 that satisfy the bound in Equation 6.18 while minimizing the privacy

loss.

Notice that privacy loss for disjunction of two querys is the same as conjunction of two

queries as ϵ = ϵ1 + ϵ2 and the bound in Equation 6.18 to satisfy β-FNR is also the same as

conjunction of two queries i.e. minimize (β1)
1
u1 (β2)

1
u2 subject to FNR < β i.e. β1 + β2 < β.

These values for β1, β2 for min-privacy Threshold Shift Algorithm for query disjunction sat-

isfy the overall β-FNR. Since these values are derived based on optimization of ϵ, Optimized

Threshold Shift Algorithm for query disjunction minimizes the privacy loss.

We can convert Naive Threshold-shift Algorithm (Algorithm 7) to Optimize Threshold-shift

Algorithm for query conjunction by modifying line 2 and 3 and setting β1, β2 according to

115

Equation 6.17 i.e. β1 = u2β/(u1+u2), β2 = u1β/(u1+u2). The rest of the algorithm remains

the same.

6.4.3 Generalized Conjunction/Disjunction Query

In this section, we present generalized conjunction/disjunction queries. First, we generalize

how to select βj for each Qj in case where the DS query consists of n aggregate threshold

queries Q1, Q2, ..., Qn. Generalization to conjunction/disjunction to n queries is described as

follows.

Query conjunction/disjunction with n aggregate threshold queries. Consider con-

junction of n aggregate threshold queries i.e. Q = Q1 ∩ Q2∩, ...,∩Qn, where Qj can be

defined as Q
Λ,fj
gj(.)>Cj

(D) = {λi ∈ Λ | gj(D
fj
λi
) > cj i}. All Qj have same Λ = λi, λ2, ..., λk and

corresponding filter fj, aggregate function gj(.) and threshold Cj = cj1, ..., cjk

Algorithm 6 can be modified to answer generalized version of conjunction query which is

an intersection of n aggregate threshold queries as described above. To ensure β-FNR and

minimize the privacy loss, we modify Algorithm 6 and set βj as follows,

βj =
β
∏n,x ̸=j

x=1 (ux)∑n
y=1

∏n,x̸=y
x=1 (ux)

,∀j = {1, 2, ..., n} (6.21)

This expression is derived from optimizing the more general solution to optimization problem

of minimizing epsilon expression as decribed in Equation 6.14 i.e. (β1)
1
u1 (β2)

1
u2 ...(βn)

1
un .

subject to having FNR < β which translates to

116

β1 + β2 + ...+ βn < β (6.22)

Similarly, we can modify Algorithm 7 to answer generalized version of disjunction query

which is the union of n aggregate threshold queries i.e. Q = Q1 ∪ Q2∪, ...,∪Qn. To ensure

β-FNR guarantee and minimize privacy loss in terms of ϵ, we set βj according to Equation

6.21 in Algorithm 7.

DS Query With Combination Of Conjunction And Disjunction.

We will illustrate by an example that algorithm for combination of conjunction/disjunction

of queries is similar to either conjunction or disjunction of n queries.Consider an example

query Q = Q1 ∪ (Q2 ∩ Q3). We can represent the query tree for query Q as presented in

Figure 6.2 (a). In this query tree, we know how to answer sub-tree of this query as it just

conjunction of two queries. Lets Q23 be the sub-tree where Q23 = Q2∩Q3 (as shown in Figure

6.2)(b). Lets say we can answer the conjunction of Q2 and Q3 with β23-FNR guarantee with

ϵ23 differential privacy. We need to satisfy the following bounds on β23 ,

β2 + β3 < β23 (6.23)

where β2 and β3 are respective FNR bound on individual queries Q2 and Q3. The privacy

loss for such query Q23 would be ϵ23 = ϵ2 + ϵ3.

Similarly, to answer query Q which is a disjunction of two queries Q = Q1∪Q23 with β-FNR

guarantee, we need to satisfy the following bounds,

117

Figure 6.2: The figure shows query tree for (a) Q = Q1∪ (Q2∩Q3), (b) Q = Q1∪Q23 where
Q23 = Q2 ∩Q3

β23 + β1 < β (6.24)

where β23 and β1 are FNR of individual queries Q23 and Q1. The privacy loss for query Q

would be ϵ = ϵ23 + ϵ1.

From equation 6.23 and 6.25, we can write the bounds for query Q = Q1 ∪ (Q2 ∩ Q3) as

follows,

β1 + β2 + β3 < β (6.25)

where β1,β2 and β3 are FNR guarantees of individual query Q1, Q2 and Q3. The privacy

loss ϵ = ϵ1 + ϵ2 + ϵ3. Notice that this combination of conjunction and disjunction of query

has same bounds that we need to satisfy for either conjunction or disjunction of 3 queries.

118

We can use the same optimization for combination of conjunction and disjunction of n queries

as we presented for either conjunction or disjunction of n queries in this section. The only

difference is that in combination of conjuction/disjunction, the order of conjunction matter.

We can answer these type of queries by performing intersection and union of results of each

individual queries in the order they appear in the original queries.

We can represent a combination of conjunction and disjunction of n queries in multiple ways.

For example, Q = Q1∪ (Q2∩Q3) can also be written as Q = (Q1∪Q2)∩ (Q1∪Q3). We leave

the selection of most optimized query tree that minimizes the privacy loss for a combination

of conjunction and disjunction of n queries for future work.

6.5 Preliminary Experiments

This section evaluates our Threshold-shift and naive Mechanisms for Query Conjunction and

Query Disjunction as presented in Section 6.3.2 and 6.4.2 for various complex DS queries

over real datasets. This is to show that all the algorithms effectively achieve their accuracy

guarantees in terms of bounded false negative rates. Algorithm to minimize privacy loss i.e.

Threshold-shift Mechanism for both query conjunction and disjunction performs better than

naive mechanism in terms of privacy loss.

NYTaxi Dataset. This dataset records taxi trips in New York City in 2020 [1], consisting

of 15.7 million records with 18 attributes, e.g. pick-up and drop-off locations, fare amount

and timestamps. We group the pickup locations into 34 different regions and run queries

to find out the regions that had anomalous pickup counts and or anomalous average fare

amount each day in the month of March. We run 62 queries, 30 queries for (one per day)

for conjunctive condition (pickup counts greater than certain threshold and average fare

amount is also greater than threshold) and 30 queries (one per day) for disjunctive condition

119

(pickup counts greater than certain threshold or average fare amount is also greater than

threshold). Total number of predicates for all queries are 34 (number of regions). For

each condition(e.g. count¿t), we set threshold such that the selectivity (ratio of predicates

satisfying the condition) of the query is 0.3. We set uncertain region u1, u2 for aggregates

f1, f2 (number of trips, average fare amount) to be 0.05 ∗ (max(gj(.))−min(gj(.))). We use

accuracy requirement on FNR β = 0.005 and ϵmax = 4.

Experimental Evaluation. Figure 6.3 and 6.4 show results for conjunction and disjunction

of queries on NYTaxi Dataset. The x-axis shows the query indexes (1 query for each day

in the month of march 2020). We evaluate Threshold Shift Algorithm and Naive Algorithm

for both query conjunction and disjunction. We run each algorithm for 100 iterations and

present privacy loss and accuracy of each query.

Figure 6.3a and 6.4a shows privacy loss in terms of ϵ on y-axis. The privacy loss is minimized

for Threshold Shift Algorithm for query conjunction and disjunction as compared to the

naive method. The privacy loss is lower because Threshold Shift Algorithm selects β1 and

β2 based on optimizing ϵ loss as compared to naive algorithm that chooses β1 = β2 = β/2.

For accuracy analysis, we measured the number of false negatives nfn and the number of

false positives nfp for each run of the algorithm. Then we report the averaged false negative

rate (FNR) as nfn/np and the averaged false positive rate (FPR) as nfp/nn over multiple

runs, where np and nn are the number of positives and the number of negatives respectively.

The results are presented in Figure 6.3c,6.4c, 6.3b and 6.4b.In terms of accuracy, both naive

and Threshold Shift Algorithm satisfy the β-FNR and have a similar FPR which is data

dependent. The disjunction of queries has higher FPR as compared to conjunctive query.

120

(a) Epsilon (b) FNR (c) FPR

Figure 6.3: Privacy loss in terms of epsilon, accuracy in terms of False Negative Rate (FNR)
and False Positive Rate (FPR) β = 0.005 for query conjunction.

(a) Epsilon (b) FNR (c) FPR

Figure 6.4: Privacy loss in terms of epsilon, accuracy in terms of False Negative Rate (FNR)
and False Positive Rate (FPR) β = 0.005 for query disjunction.

121

6.6 Conclusion and Future Work

In this chapter, we presented accuracy-aware privacy preserving algorithms to answer com-

plex decision support queries. We formally defined the complex queries and their accuracy

requirement and presented differentially private algorithms that aim to minimize privacy

loss while providing accuracy guarantees. Our preliminary results show that both naive and

optimized algorithms achieve β-FNR guarantee and our optimize algorithm achieves lower

privacy loss as compared to naive algorithm for different data distributions. We also present

algorithms that optimize privacy loss for more general DS queries that consists of combina-

tion of conjunction and disjunction queries. In the future work, we would like to explore

using progressive and data dependent algorithm from MIDE to answer conjunction/disjunc-

tion of n queries to optimize privacy loss and perform an extensive experimental study to

evaluate our algorithms. We would also like to explore different version of query tree to

explore the most optimized representation that minimizes privacy loss.

122

Chapter 7

Conclusion and Future Work

In this thesis, we formally define decision support queries and their accuracy requirement

and present privacy preserving algorithms for decision support that satisfy the accuracy

requirements of the decision support application while trying to provide maximum privacy

using differential privacy. Privacy in the context of decision support query is a complex

problem and this work is a precursor for a lot of future directions. In this work, we limit the

scope to binary classifiers using simple/complex DS queries. One possible future direction

for this work is to consider more general class classifiers as generalizing the classifier trade-off

between false positive/false negatives applies to a broad class of classifiers. In the context

of complex DS queries, using progressive and data dependent algorithm from MIDE to

answer conjunction/disjunction of n queries to optimize privacy loss could be another future

direction. Similarly, different version of query tree can also be used to explore the most

optimized representation that minimizes privacy loss. Another possible future direction is

to generalize minimally invasive architecture to broader class of SQL queries (e.g. queries

with overlapping predicates). Other types of advance DP mechanism such as hierarchical

mechanism [33] and exponential mechanism [13] can also be used to answer such queries. It

would be interesting to generalize the β-FNR guarantee and accounting for privacy loss in

123

terms of predicate-wise DP framework. Fairness in the context of Predicate-wise DP is an

interesting problem to solve as entities end with different privacy loss depending on the data

distribution. Another future direction to extend this work is to consider decision support

applications/queries in the context of streaming dataset.

124

Bibliography

[1] Tlc trip record data. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page,
2020. Accessed: 2021-12-31.

[2] A. R. Beresford and F. Stajano. Mix zones: user privacy in location-aware services.
In 2nd IEEE Annual Conference on Pervasive Computing and Communications Work-
shops, pages 127–131, 2004.

[3] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. ACM
Trans. Inf. Syst. Secur., 14(3), 2011.

[4] P. Chatterjee, L. J. Cymberknop, and R. L. Armentano. Iot-based decision support
system for intelligent healthcare — applied to cardiovascular diseases. In 2017 7th In-
ternational Conference on Communication Systems and Network Technologies (CSNT),
pages 362–366, 2017.

[5] Y. Chen, A. Machanavajjhala, M. Hay, and G. Miklau. PeGaSus: Data-adaptive differ-
entially private stream processing. In ACM Conf. on Computer and Communications
Security (CCS), pages 1375–1388, 2017.

[6] Y. Chen, A. Machanavajjhala, M. Hay, and G. Miklau. Pegasus: Data-adaptive dif-
ferentially private stream processing. In 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, page 1375–1388, 2017.

[7] A. Corna, L. Fontana, A. A. Nacci, and D. Sciuto. Occupancy detection via ibeacon on
android devices for smart building management. In 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 629–632, 2015.

[8] D. E. Denning, P. J. Denning, and M. D. Schwartz. The tracker: A threat to statistical
database security. ACM Trans. Database Syst., 4(1):76–96, mar 1979.

[9] S. Depatla, A. Muralidharan, and Y. Mostofi. Occupancy estimation using only wifi
power measurements. IEEE Journal on Selected Areas in Communications, 33(7):1381–
1393, 2015.

[10] I. Dinur and K. Nissim. Revealing information while preserving privacy. In Proceedings
of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 202–210, 2003.

125

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In 3rd Conference on Theory of Cryptography, TCC’06, page
265–284, 2006.

[12] C. Dwork, F. McSherry, and K. Talwar. The price of privacy and the limits of lp
decoding. In Proceedings of the thirty-ninth annual ACM Symposium on Theory of
Computing, pages 85–94, 2007.

[13] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3–4):211–407, Aug. 2014.

[14] C. Dwork and S. Yekhanin. New efficient attacks on statistical disclosure control mech-
anisms. In Annual International Cryptology Conference, pages 469–480. Springer, 2008.

[15] U. Erlingsson et al. Rappor: Randomized aggregatable privacy-preserving ordinal re-
sponse. In ACM SIGSAC, 2014.

[16] C. Ge et al. Apex: Accuracy-aware differentially private data exploration. SIGMOD,
2019.

[17] S. Ghayyur, Y. Chen, R. Yus, A. Machanavajjhala, M. Hay, G. Miklau, and S. Mehro-
tra. Iot-detective: Analyzing iot data under differential privacy. In Proceedings of the
2018 International Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, pages 1725–1728, 2018.

[18] S. Ghayyur et al. Iot-detective: Analyzing iot data under differential privacy. SIGMOD
’18, pages 1725–1728, New York, NY, USA, 2018. ACM.

[19] M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially
private data release. ArXiv, abs/1012.4763, 2012.

[20] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially-
private histograms through consistency. Proceedings of the VLDB Endowment, 3, 04
2009.

[21] X. He, A. Machanavajjhala, and B. Ding. Blowfish privacy: Tuning privacy-utility trade-
offs using policies. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’14, page 1447–1458, New York, NY, USA, 2014.
Association for Computing Machinery.

[22] N. T. N. Hien and P. Haddawy. A decision support system for evaluating interna-
tional student applications. In 2007 37th Annual Frontiers In Education Conference
- Global Engineering: Knowledge Without Borders, Opportunities Without Passports,
pages F2A–1–F2A–6, 2007.

[23] N. Johnson et al. Towards practical differential privacy for sql queries. Proc. VLDB
Endow., 11(5):526–539, Jan. 2018.

126

[24] Z. Jorgensen, T. Yu, and G. Cormode. Conservative or liberal? personalized differential
privacy. In 2015 IEEE 31st International Conference on Data Engineering, pages 1023–
1034, 2015.

[25] M. Katsomallos, K. Tzompanaki, and D. Kotzinos. Privacy, space and time: a survey on
privacy-preserving continuous data publishing. Journal of Spatial Information Science,
2019(19):57–103, 2019.

[26] D. Kifer and A. Machanavajjhala. Pufferfish: A framework for mathematical privacy
definitions. ACM Trans. Database Syst., 39(1), Jan. 2014.

[27] W. Kleiminger, F. Mattern, and S. Santini. Predicting household occupancy for smart
heating control: A comparative performance analysis of state-of-the-art approaches.
Energy and Buildings, 85:493 – 505, 2014.

[28] C. D. Korkas, S. Baldi, I. Michailidis, and E. B. Kosmatopoulos. Occupancy-based
demand response and thermal comfort optimization in microgrids with renewable energy
sources and energy storage. Applied Energy, 163:93 – 104, 2016.

[29] I. Kotsogiannis, S. Doudalis, S. Haney, A. Machanavajjhala, and S. Mehrotra. One-sided
differential privacy. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pages 493–504, 2020.

[30] F. Koufogiannis et al. Gradual release of sensitive data under differential privacy. CoRR,
abs/1504.00429, 2015.

[31] J. Lee and C. Clifton. How much is enough? choosing ϵ for differential privacy. In X. Lai,
J. Zhou, and H. Li, editors, Information Security, 14th International Conference, ISC
2011, Xi’an, China, October 26-29, 2011. Proceedings, volume 7001 of Lecture Notes in
Computer Science, pages 325–340. Springer, 2011.

[32] P. Lee, E.-J. Shin, V. Guralnik, S. Mehrotra, N. Venkatasubramanian, and K. T. Smith.
Exploring privacy breaches and mitigation strategies of occupancy sensors in smart
buildings. In Proceedings of the 1st ACM International Workshop on Technology En-
ablers and Innovative Applications for Smart Cities and Communities, TESCA’19, page
18–21, New York, NY, USA, 2019. Association for Computing Machinery.

[33] C. Li, M. Hay, G. Miklau, and Y. Wang. A data-and workload-aware algorithm for range
queries under differential privacy. Proceedings of the VLDB Endowment, 7(5):341–352,
2014.

[34] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting
queries under differential privacy. In Proceedings of the Twenty-Ninth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’10, page
123–134, New York, NY, USA, 2010. Association for Computing Machinery.

[35] F. Li, J. Sun, S. Papadimitriou, G. A. Mihaila, and I. Stanoi. Hiding in the crowd:
Privacy preservation on evolving streams through correlation tracking. In 2007 IEEE
23rd International Conference on Data Engineering, pages 686–695, 2007.

127

[36] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and
l-diversity. In 2007 IEEE 23rd International Conference on Data Engineering, pages
106–115, 2007.

[37] K. Ligett, S. Neel, A. Roth, B. Waggoner, and Z. Wu. Accuracy first: Selecting a
differential privacy level for accuracy-constrained erm. Journal of Privacy and Confi-
dentiality, 9, 05 2017.

[38] E. Lobo-Vesga, A. Russo, and M. Gaboardi. A programming framework for differential
privacy with accuracy concentration bounds. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 411–428, Los Alamitos, CA, USA, may 2020. IEEE Computer
Society.

[39] A. Machanavajjhala et al. Privacy: Theory meets practice on the map. In 2008 IEEE
24th International Conference on Data Engineering, pages 277–286, April 2008.

[40] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. L-diversity:
privacy beyond k-anonymity. In 22nd International Conference on Data Engineering
(ICDE’06), pages 24–24, 2006.

[41] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown, C. Riggins, E. C. Rye, and
D. Brown. A study of MAC address randomization in mobile devices and when it fails.
PoPETs, 2017(4):365–383, 2017.

[42] F. McSherry and K. Talwar. Mechanism design via differential privacy. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 94–103, 2007.

[43] F. D. McSherry. Privacy integrated queries: An extensible platform for privacy-
preserving data analysis. SIGMOD ’09, page 19–30, New York, NY, USA, 2009. Asso-
ciation for Computing Machinery.

[44] S. Mehrotra et al. Tippers: A privacy cognizant iot environment. In 2016 IEEE PerCom
Workshops, March 2016.

[45] S. Mehrotra, A. Kobsa, N. Venkatasubramanian, and S. R. Rajagopalan. TIPPERS:
A privacy cognizant iot environment. In IEEE Int. Conf. on Pervasive Computing and
Communication Workshops (PerCom Workshops), pages 1–6, 2016.

[46] J. Mohammed Dahr, A. Khalaf, I. Najm, and M. Ahmed. Implementing sales decision
support system using data mart based on olap, kpi, and data mining approaches. Journal
of Engineering Science and Technology, 17:0275, 02 2022.

[47] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. Gupt: privacy preserving data
analysis made easy. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, pages 349–360, 2012.

[48] Y.-A. Montjoye, C. Hidalgo, M. Verleysen, and V. Blondel. Unique in the crowd: The
privacy bounds of human mobility. Scientific reports, 3:1376, 03 2013.

128

[49] A. Narayanan and V. Shmatikov. Robust de-anonymization of large datasets (how to
break anonymity of the netflix prize dataset). 11 2006.

[50] P. M. Pardalos and J. B. Rosen. Methods for global concave minimization: A biblio-
graphic survey. Siam Review, 28(3):367–379, 1986.

[51] R. A. Popa, A. J. Blumberg, H. Balakrishnan, and F. H. Li. Privacy and accountability
for location-based aggregate statistics. In 18th ACM Conference on Computer and
Communications Security, CCS ’11, page 653–666, 2011.

[52] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe. Privapprox:
Privacy-preserving stream analytics. In 2017 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’17, page 659–672, 2017.

[53] R. Shirsath, N. Khadke, D. More, P. Patil, and H. Patil. Agriculture decision support
system using data mining. In 2017 International Conference on Intelligent Computing
and Control (I2C2), pages 1–5, 2017.

[54] L. Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst., 10(5):557–570, 2002.

[55] R. Tomastik, Y. Lin, and A. Banaszuk. Video-based estimation of building occupancy
during emergency egress. In 2008 American Control Conference, pages 894–901, 2008.

[56] C. Tran, F. Fioretto, P. Van Hentenryck, and Z. Yao. Decision making with differential
privacy under a fairness lens. 05 2021.

[57] A. Ungar, M. Rafanelli, I. Iacomelli, M. A. Brunetti, A. Ceccofiglio, F. Tesi, and N. Mar-
chionni. Fall prevention in the elderly. Clinical Cases in mineral and bone metabolism,
10(2):91, 2013.

[58] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and S. . . Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods, 2020.

[59] S. L. Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

[60] R. C. wing Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack in privacy
preserving data publishing. In VLDB, 2007.

[61] J. Zhang, X. Xiao, and X. Xie. Privtree: A differentially private algorithm for hierar-
chical decompositions. In Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD ’16, page 155–170, New York, NY, USA, 2016. Association for
Computing Machinery.

129

[62] H. Zou, Y. Zhou, J. Yang, W. Gu, L. Xie, and C. Spanos. Freedetector: Device-free
occupancy detection with commodity wifi. In 2017 IEEE International Conference on
Sensing, Communication and Networking (SECON Workshops), pages 1–5, 2017.

[63] I. A. Zualkernan, F. A. Aloul, V. Sakkia, H. A. Noman, S. Sowdagar, and O. A. Ham-
madi. An iot-based emergency evacuation system. In 2019 IEEE International Confer-
ence on Internet of Things and Intelligence System (IoTaIS), pages 62–66, 2019.

130

Appendix A

MIDE Appendix

A.1 Proofs

A.1.1 Properties of PWDP

Proof for Lemma 5.1. Given a Θ-Predicate-wise DP mechanism M with output o, where

Θ = {(λ1, ϵ1), (λ2, ϵ2), ..., (λk, ϵk)}, each adversarial posterior guess p̂i ∝
∑

tλi

P [x∈D∧x=tλi |o]
P [x∈D|o]

is bounded:

e−ϵi∑
i e

ϵi
≤ p̂i ≤

eϵi∑
i e

−ϵi
, (A.1)

when priors pi ∝
∑

tλi

P [x∈D∧x=tλ]
P [x∈D]

are the same for i ∈ [1, k].

131

Proof.

Let x be any tuple and

ri = P [x ∈ D ∧ x = tλi
] and r0 = P [x ̸∈ D] = 1−

∑k
i=1 ri

qi = ri/r0 ,Assuming uniform priors: ∀i, qi = q

pi = P [x ∈ D ∧ x = tλi
| o] and p0 = P [x ̸∈ D|o]∑k

i=1 pi + p0 = 1

Adversary’s posterior guess: p̂i = pi/(1− p0)

From the definition of Predicate-wise differential privacy Equation A.2:

e−ϵiq ≤ pi/p0 ≤ eϵiq∑
j e

−ϵjqp0 + p0 ≤ 1 ≤
∑

j e
ϵjqp0 + p0

1

1 +
∑

j qe
ϵj
≤ p0 ≤

1

1 +
∑

j qe
−ϵj

1 +
∑

j qe
ϵj∑

j qe
ϵj
≤ 1

1− p0
≤

1 +
∑

j qe
−ϵj∑

j qe
−ϵj

1∑
j qe

ϵj
≤ p0

1− p0
≤ 1∑

j qe
−ϵj

qe−ϵip0
1− p0

≤ pi
1− p0

≤ qeϵip0
1− p0

e−ϵiq∑
j qe

ϵj
≤ p̂i ≤

eϵiq∑
j qe

−ϵj

e−ϵi∑
j e

ϵj
≤ p̂i ≤

eϵi∑
j e

−ϵj

Bounds on adversarial posterior guess in case of non-uniform priors. The following

lemma provides bounds on adversay’s posterior guess in case of non uniform priors. We

132

update the constraints in the optimization of min entropy using these bounds to calculate

the min-entropy metric.

Lemma A.1. Given a Θ-Predicate-wise DP mechanism M with output o, where Θ =

{(λ1, ϵ1), (λ2, ϵ2), ..., (λk, ϵk)}, and adversarial prior qi ∝
∑

tλi

P [x∈D∧x=tλi]

P [x∈D]
, each adversarial

posterior guess p̂i ∝
∑

tλi

P [x∈D∧x=tλi |o]
P [x∈D|o] is bounded:

e−ϵiqi∑
j qje

ϵj
≤ p̂i ≤

eϵiqi∑
j qje

−ϵj
, (A.2)

133

Proof.

Let x be any tuple and

ri = P [x ∈ D ∧ x = tλi
] and r0 = P [x ̸∈ D] = 1−

∑k
i=1 ri

qi = ri/r0

pi = P [x ∈ D ∧ x = tλi
| o] and p0 = P [x ̸∈ D|o]∑k

i=1 pi + p0 = 1

Adversary’s posterior guess: p̂i = pi/(1− p0)

From the definition of Predicate-wise DP Equation A.2 :

e−ϵiqi ≤ pi/p0 ≤ eϵiqi∑
j e

−ϵjqjp0 + p0 ≤ 1 ≤
∑

j e
ϵjqjp0 + p0

1

1 +
∑

j qje
ϵj
≤ p0 ≤

1

1 +
∑

j qje
−ϵj

1 +
∑

j qje
ϵj∑

j qje
ϵj
≤ 1

1− p0
≤

1 +
∑

j qje
−ϵj∑

j qje
−ϵj

1∑
j qje

ϵj
≤ p0

1− p0
≤ 1∑

j qje
−ϵj

qie
−ϵip0

1− p0
≤ pi

1− p0
≤ qie

ϵip0
1− p0

e−ϵiqi∑
j qje

ϵj
≤ p̂i ≤

eϵiqi∑
j qje

−ϵj

Please note that our scheme provides a bounded epsilon post-DP guarantees, just like any

DP-based mechanism. The assumption of uniform prior does not influence those guarantees.

However, the uniform prior assumption does influence the min-entropy metric and hence

134

also the data dependent algorithm which tries to maximize the min-entropy. In Algorithm

4, we take priors as input, and hence instead of computing the posterior bounds based on

uniform prior (line 7 Algorithm 4), we can compute the bounds based on the generalized

lemma (Lemma 13) that establishes generalized priors without changing the algorithm.

Proof for Theorem 5.1. Given Θ = {(λ1, ϵ1), (λ2, ϵ2), ..., (λk, ϵk)}, a set of mutually exclu-

sive predicates and their corresponding privacy budgets, running ϵi-DP mechanism Mi over

Dλi
in parallel for i = 1, . . . , k, achieves Θ-predicate-wise DP.

Proof. Consider the differing tuple x in D and D′ is in Dλj

P [M(D) ∈ O] = Πk
i=1P [Mi(Dλi

) ∈ Oi|O1, ..., Oi−1]

≤ Πk
i!=jP [Mi(Dλi

) ∈ Oi|O1, ..., Oi−1]e
ϵjP [Mj(D

′
λj
) ∈ Oj|O1, ..., Oj−1]

≤ Πk
i!=jP [Mi(D

′
λi
) ∈ Oi|O1, ..., Oi−1]e

ϵjP [Mj(D
′
λj
) ∈ Oj|O1, ..., Oj−1]

≤ eϵjP [M(D′) ∈ O]

Proof for Theorem 5.3. A PWDP mechanismM with Θ = {(λ1, ϵ1), ..., (λk, ϵk)} satisfies

ϵ-DP with ϵ = maxi ϵi. A mechanismM with an ex-post PWDP loss E(o) has an ϵ(o)-ex-post

DP with ϵ(o) = maxi Ei(o).

Proof. A PWDP mechanism with Θ = {(λ1, ϵ1), ..., (λk, ϵk)} is equivalent to running ϵi-DP

mechanism Mi over Dλi
in parallel for i = 1, 2, ..., k as running ϵi-DP mechanism Mi over

Dλi
in parallel for i = 1, 2, ..., k, achieves Θ-PWDP (Theorem 5.1). In PWDP, Dλi

are

mutually exclusive, hence by parallel composition property of DP (Definition 2.2), a PWDP

mechanismM satisfies ϵ-DP with ϵ = maxi ϵi.

135

A.1.2 Guarantees of MIDE Algorithms

Proof for Theorem 5.4. Algorithm 1 satisfies ϵmax-DP and β-false negative rate. If the

query is not denied, its ex-post DP cost is ϵ = ln(1/(2β))
α

..

Proof. The algorithm satisfies ϵmax-DP according to Definition 2.4 as it adds noise from

Laplace Distribution with mean of 0 and standard deviation of 1/ϵ where ϵ ≤ ϵmax as

checked in line 5.

In the following, we show that the false negative rate is bounded by β. For λi ∈ Λ

P [λi ̸∈ O|λi ∈ QΛ
g(.)>C(D)]

= P [g(Dλi
) + ηi ≤ ci − α|g(Dλi

) > ci]

≤ P [ηi < −α] ≤ e
− ln(1

2β
)

2
≤ β

Since the probability that the noise ηi is less than (−α) is bounded by β, shifting the threshold

from ci to ci − α ensures that the predicates for which g(Dλi
) > ci are eliminated after the

noise addition with a high probability of (1− β). Hence, it guarantees that the probability

of a predicate to be false negative is bounded by β.

Proof for Theorem 5.5. Algorithm 2 satisfies ϵmax-DP and β-false negative rate. If the

query is not denied, its ex-post DP cost is less than ϵm = ln(1/(2β/m)
α

.

Proof. Algorithm 2 uses m iterations with ϵ1,ϵm privacy budget for each iteration. Any

predicate λi ∈ Λ ends up using one of the ϵj Let η1, η2, · · · , ηm be the noise values drawn

from a Laplace distribution with the following variances: 1
ϵ1
, 1

ϵ2
, · · · , 1

ϵm
.

136

P [λi ∈ False Negative] =

P [g(Dλi
) + η1 ≤ (c− α1)|g(Dλi

) > c]+

P [g(Dλi
) + η1 > (c− α1)|g(Dλi

) > c] · P [g(Dλi
) + η2 < c− α2|g(Dλi

) > c]

+ · · ·+
m−1∏
j=1

P [g(Dλi
) + ηj > (c− αj)|g(Dλi

) > c]

· P [g(Dλi
) + ηm < c− αm|g(Dλi

) > c]

In this equation P [g(Dλi
) + η1 ≤ (c − α1)|g(Dλi

) > c] ≤ β1 as the noise η1 is drawn

from Laplace distribution with parameter 1
ϵ1

where ϵ1 =
ln(1

2β1
)

α1
. Similarly, P [g(Dλi

) + η2 <

c − α2|g(Dλi
) > c] ≤ β2. The coefficient of the second term, i.e., P [g(Dλi

) + η1 > (c −

α1)|g(Dλi
) > c] > (1 − β1). As the maximum value of (1 − β1) is 1, Equation ?? can be

re-written as follows:

β1 + (1− β1)β2 + (1− β1)(1− β2)β3 + ...+
m−1∏
j=1

(1− βj)βm

≤ β1 + β2 + ...+ βm

(A.3)

As we use βj = β/m in Algorithm 2, P [λi ∈ FalseNegative] ≤
∑m

j=1 βj ≤ β and hence it

saitisfies the β-False Negative Rate accuracy requirement.

The algorithm satisfies ϵmax-differential privacy according to Definition 2.4 as it adds noise

from Laplace Distribution with mean of 0 and standard deviation of 1/ϵj in each step j (Line

11) where ϵj ≤ ϵm and ϵm ≤ ϵmax as checked in Line 4. By the definition of ex-post DP loss,

the algorithm’s ex-post DP cost is at most ϵm as the algorithm does not use ϵ > ϵm for any

iteration.

Proof for Theorem 5.6. Algorithm 3 satisfies ϵmax-DP and β-false negative rate. If the

query is not denied, its ex-post DP cost is max(E).

137

Proof. Similar to Algorithm 2, this algorithm satisfies β-false negative guarantees as
∑m

j=1 βj ≤

β where βj is β used in iteration j.

The algorithm satisfies ϵmax-differential privacy according to Definition 2.4. In each step j,

it adds noise from Laplace Distribution with mean of 0 and standard deviation of 1/ϵj (Line

14) where ϵj ≤ ϵm ≤ ϵmax (Line 4). Hence the algorithm satisfies ϵmax DP. By the definition

of ex-post DP loss, the algorithm’s ex-post DP cost is at most ϵm as the algorithm does not

use ϵ > ϵm for any iteration. Algorithm 3 satisfies Θ = E- PWDP, hence the ex-post DP

cost is max(E) as described in Theorem 5.3.

Expected Number of Undecided Predicates. To calculate the expected number of

undecided predicates in iteration j, we estimate whether a predicate λi is still undecided in j-

th iteration (i.e., to be reconsidered in j+1-th iteration), i.e., P (g(Dλi
)+η′i ∈ [ci−αj, ci+αj].

Since our algorithm does not know the actual value of g(Dλi
), we use a distribution on g(Dλi

)

based on the noisy count G[i] = (g(Dλi
) + ηi) where ηi ∼ Laplace(1/ϵj−1) from the previous

iteration j − 1. The distribution on aggregated counts g(Dλi
) can be thought of as X ∼

Laplace(µx = G[i], 1/ϵj−1). Using the distribution on g(Dλi
) i.e., X, and the distribution on

η′i i.e., Y ∼ Laplace(µy = 0, σy = 1/ϵj), we calculate the combined distribution of Z = X+Y

is the distribution of noisy aggregates in iteration j i.e., the distribution of g(Dλi
)+η′i. Given

two random distributions of X and Y that are independent, the cumulative density function

(CDF) of Z = X + Y can be written as follows:

138

f
Z=X+Y

(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx

f
Z=X+Y

(z) =

∫ ∞

−∞

ϵj−1

2
e−|x−µx|ϵj−1 × ϵj

2
e−|z−x|ϵjdx

for Z > µx

f
Z=X+Y

(z) =
ϵj−1ϵj
4
× e(µx−z)

(eϵj + eϵj−1

ϵj + ϵj−1

+
eϵj − eϵj−1

ϵj−1 − ϵj

)
for Z ≤ µx

f
Z=X+Y

(z) =
ϵj−1ϵj
4
× e(z−µx)

(eϵj + eϵj−1

ϵj + ϵj−1

+
eϵj − eϵj−1

ϵj−1 − ϵj

)

(A.4)

We can calculate the Expected number of undecided predicated based on distribution of

noisy aggregates g(Dλi
) + η′i from iteration j i.e., fZ as follows

nu =
∑
λi∈Ou

P (g(Dλi
) + η′i ∈ [ci − αj, ci + αj])

≈
∑
λi∈Ou

∫ ci+αj

ci−αj

fZdz

≈
∑
λi∈Ou

∫ ci+αj

ci−αj

∫ ∞

−∞

ϵj−1

2
e−|x−G[i]|ϵj−1 × ϵj

2
e−|z−x|ϵjdxdz

(A.5)

139

Case 1

x2 x1 xmax

Case 2

x2 x1 xmax

Case 3 (a)

x 1
-d

x 2
+

d

x2 x1 xmax

Case 4

x 1
-d

x 2
+

d

x2 x1xmax

Case 5

x 1
-d

x 2
+

d

x2 x1xmax

Case 6 (a)

x 1
-d

x 2
+

d

x2 x1xmax

x 1
-d

x 2
+

d

x 2
+

d
x 1

-d

Case 3 (b)

x 1
-d

x 2
+

d

x2 x1 xmax

Case 6 (b)

x 1
-d

x 2
+

d

x2 x1xmax

Figure A.1: Different cases for x1, x2 and d in LemmaA.1.3.

A.1.3 Correctness of MinEnt Algorithm

In this section, we provide the proof of Theorem 5.7. The proof of the theorem is dependent

on a lemma as described below.

Lemma A.2. Let x1, x2, d ∈ R+ where x1 > x2, and let f(x) = −xlog(x), then f(x1) +

f(x2) < f(x1 − d) + f(x2 + d).

Proof. The proof of this lemma depends on the exact values of x1, x2, and d. We consider

the different values of the variables as different scenarios (see Figure A.1) and show that the

Lemma A.1.3 holds in all scenarios. In the following, we refer to xmax as the value of x ∈ R+

at which the entropy function attains its maximum value.

Case 1. x2 < x1 < xmax and d < (x2 − x1)/2. The entropy function is a concave

function with a monotonically increasing pattern within 0 and xmax. Hence, between any

two points x1 and x1 − d both less than xmax, the following relationship of f(x) holds:

f(x1)−f(x1−d)
d

< f ′(x1−d), where f ′(x1−d) is the slope of f(x) at (x1−d). The reason is that

the tangent at point x1 will have higher slope as compared to the straight line connecting

(x1, f(x1)) and (x1− d, f(x1− d)). Similarly for the points x2+ d and x2 following condition

holds: f(x2+d)−f(x2)
d

> f ′(x2 + d), since (x2 + d) is the larger among the points of x2 and

140

(x2 + d). Simplifying them, we derive the following condition:

f(x1)− f(x1 − d) > d(f ′(x1 − d)), f(x2 + d)− f(x2) < d(f ′(x2 + d))

⇒ f(x1)− f(x1 − d) > d(f ′(x1 − d)),

f(x2)− f(x2 + d) > −d(f ′(x2 + d))

Adding these two terms,

⇒ [f(x1)− f(x1 − d)]− [f(x2 + d)− f(x2)] <

d(f ′(x1 − d)− f ′(x2 + d))

(A.6)

Since f ′(x1 − d)− f ′(x2 + d) < 0 when x1 > x2, the L.H.S. of the equation in Lemma A.1.3

will be less than zero.

Case 2. x2 < x1 < xmax and d > (x2 − x1)/2 and d < (x2 − x1). We use the similar

arguments as the previous case here. Only difference from the previous case is that the value

of (x1 − d) becomes lower than the value of (x2 + d). The ordering of the points become as

follows: x2 < x1 − d < x2 + d < x1. Hence, if we choose the pair of points x1 and (x2 + d),

the following condition holds: f(x1)−f(x2+d)
x1−x2−d

< f ′(x2 + d). Similarly, considering the pair of

points x2 and (x1 − d), the following condition holds: f(x1−d)−f(x2)
x1−d−x2

< f ′(x1 − d). Hence, we

derive the following condition:

[f(x1)− f(x2 + d)]− [f(x1 − d)− f(x2)]

< (x1 − d− x2)(f
′(x2 + d)− f ′(x1 − d)) < 0

(A.7)

Hence the equation in the Lemma is satisfied for this case.

Case 3. x2 < x1 < xmax and d > (x2 − x1). In this case, the value of (x1 − d) becomes

lower than x2 and the value of x2 becomes higher than x1. The ordering of the four points

are as follows: x1− d < x2 < x1 < x2 + d. If the slope of the line joining x1 and x2 + d stays

above zero, then the proof of the lemma stays the same as Case 2, since Equation A.8 is

141

satisfied. If the slope of the line becomes negative(i.e., f(x1)−f(x2+d)
x1−x2−d

< 0), then the following

condition holds: f(x1)−f(x2+d)
x1−d−x2

< f ′(x1), since f ′(x1) > 0. Hence, we derive the following

condition:

[f(x1)− f(x2 + d)]− [f(x1 − d)− f(x2)]

< (x1 − d− x2)(f
′(x1)− f ′(x1 − d)) < 0

(A.8)

Hence the equation in the Lemma is satisfied for this case.

Case 4. xmax < x2 < x1 and d < (x2 − x1)/2. In this part of the domain, the entropy

function is a monotonically decreasing function. The ordering of the four points are as

follows: x2 < x2 + d < x1 − d < x1. Considering the points x1 and x1 − d, we derive the

following condition: f(x1)−f(x1−d)
d

< f ′(x1− d). This is true because the value of f ′(x1− d) is

more negative as compared to the slope of line joining x1 and x1−d. Similarly the condition

of f(x2+d)−f(x2)
d

> f ′(x2 + d) holds. Hence, proceeding the same way as Case 1, we observe

that Equation A.6 and the lemma holds.

Case 5. xmax < x2 < x1 and d > (x2 − x1)/2 and d < (x2 − x1). The ordering of

the points are as follows: x2 < x1 − d < x2 + d < x1. Considering the pair of points x1

and x2 + d, the following condition holds: f(x1)−f(x2+d)
x1−x2−d

< f ′(x1). Similarly the condition of

f(x1−d)−f(x2)
x1−d−x2

> f ′(x2) is true. Hence the following condition can be derived from them:

[f(x1)− f(x2 + d)]− [f(x1 − d)− f(x2)]

< (x1 − d− x2)(f
′(x2)− f ′(x1)) < 0

(A.9)

Case 6. xmax < x2 < x1 and d > (x2 − x1). The ordering of the point is as follows:

142

x1 − d < x2 < x1 < x2 + d. If the value of d is such that the slope of the line joining x2 and

x1−d remain negative then the proof follows the same as Case 5. If the slope of f(x2)−f(x1−d)
x1−d−x2

becomes positive, then f(x1−d)−f(x2)
x1−d−x2

> f ′(x1− d) holds since f ′(x1− d) is positive. Hence we

can derive the following:

[f(x1)− f(x2 + d)]− [f(x1 − d)− f(x2)]

< (x1 − d− x2)(f
′(x2)− f ′(x1 − d)) < 0

(A.10)

From the above condition, we can conclude that the L.H.S. of the equation in Lemma A.1.3

is less than the R.H.S. of the equation.

Proof of Theorem 5.7. As a first step, we prove that option 3 is worse than either option

1 or option 2 when the number of predicates k is 2. Using this result, we later generalize it

to the scenario of k > 2.

Let {l1, u1}, {l2, u2} be a set of two ranges of posterior probability values of the adversary

p1, p2 such that u1 ≤ u2 and l1 ≥ l2. Let s be the total amount of slack that needs to be

distributed among these two ranges and ∆1 = u1−l1 and ∆2 = u2−l2. Let f(x) = −x log(x),

our optimization function for Option 1, Option 2 and Option 3 can be written as follows

Opt1 : f(l2 +min(∆2, s)) + f(l1 + (s−min(∆2, s))

Opt2 : f(l1 +min(∆1, s) + f(l2 + (s−min(∆1, s))

Opt3 : f(l2 + α∆2) + f(l1 + (s− α∆2)) where 0 < α < 1,

s− α∆2 < ∆1

(A.11)

143

We show it for all possible cases:

Case 1. s < ∆2 and s < ∆1. For this case, Opt1 and Opt2 will be as follows:

Opt1 : f(l2 + s) + f(l1)

Opt2 : f(l1 + s) + f(l2)

(A.12)

if l2+ s > l1, Opt1 is better than Opt3 by Lemma A.1.3 for x1 = l2+ s, x2 = l1, d = s−α∆2.

Similarly, if l1 ≥ l2 + s, Opt2 is better than Opt3 by Lemma A.1.3.

Case 2.s < ∆2 and s ≥ ∆1. For this case, Opt1, and Opt2 will be as follows:

Opt1 : f(l2 + s) + f(l1)

Opt2 : f(l1 +∆1) + f(l2 + s−∆1)

(A.13)

if l2+ s > l1, Opt1 is better than Opt3 by Lemma A.1.3 for x1 = l2+ s, x2 = l1, d = s−α∆2.

Similarly, if l1 ≥ l2 + s, Opt2 is better than Opt3 by Lemma A.1.3.

Case 3. s ≥ ∆2 and s ≥ ∆1. For this case, Opt1, Opt2, Opt3 will be as follows:

Opt1 : f(l2 +∆2) + f(l1 + s−∆2)

Opt2 : f(l1 +∆1) + f(l2 + s−∆1)

(A.14)

As l2 + ∆2 > l1 + s − ∆2, Opt1 is always better than Opt3 by Lemma A.1.3 for x1 =

l2 +∆2, x2 = l1 + s−∆2, d = ∆2 − α∆2.

144

Hence, based on all possible cases (Case 1, Case 2, Case 3) either option 1 or option 2 are

always better than option 3 for k=2.

For k > 2, we prove the theorem as follows: we divide the overall slack into two parts: s′ and

(s− s′). The slack of s′ is divided among two ranges of pm and pn and the slack of (s− s′)

distributed among the remaining intervals of {pi | i ̸= m, i ̸= n}. We represent the overall

objective function as
∑k

i=1 f(pi), where pi is the solution chosen for i-th interval. We assume

that the slack of s′ is optimally distributed among the intervals other than m-th and n-th

interval. We rewrite the objective function as follows F1(pi)+ f(pm)+ f(pn), where function

F1(pi) is the value of the summation function when slack (s − s′) is optimally distributed

among the intervals other than m-th and n-th intervals.

In order to distribute slack s′ among pm and pn, we have already shown in the previous proof

that the option 1 or option 2 performs better than option 3.

A.1.4 Complexity of MinEnt Algorithm.

The time complexity of the algorithm is O(2k) where k is the number of predicates, k = |Λ|.

To limit the exponential time complexity, we exploit several edge cases containing conditions

(presented in Algorithm 8) on the solutions of p1 and p2 to restrict the recursion tree. For

example, let us consider the first condition, where the slack s is greater than both
∑k−1

i=1 ∆i

and ∆k in iteration i. For the solution of the subproblem of size k − 1 for option 2 i.e.,

p2, we assign ui for all p̂is and the the rest of the slack is added to p2[k] instead of calling

the MinEnt() again. Similarly, for condition 2, when s in smaller than both
∑k−1

i=1 ∆i and

∆k, option 1 has a simpler solution that is to assign all slack to p2[k] and terminate option

1. This results in calling MinEnt() function only once. There is only one edge case that

calls MinEnt() twice. Using these conditions, we are able to reduce some of the complexity.

145

Another optimization that we do is to round of slack and upper and lower bound on p̂i to 3

decimal points. This also results in faster termination of MinEnt() algorithm with a good

estimate on min- entropy.

Algorithm 8 Conditions

if s ≥ max(
∑k−1

i=1 ∆i,∆k) then
p1[k] = uk
p1[i] =MinEnt([li, ui]∀i ∈ {1, ..., k − 1}, s−∆k)
p2[i] = ui, ∀i ∈ {1, 2, ..., k − 1}
p2[k] = lk + s−

∑k−1
i=1 ∆i

else if s ≤ min(
∑k−1

i=1 ∆i,∆k) then
p1[k] = lk + s
p1[i] = li, ∀i ∈ {1, 2, ..., k − 1}
p2[i] =MinEnt([li, ui]∀i ∈ {1, 2, ..., k − 1}, s)
p2[k] = lk

else if s ≥ ∆k and s ≤
∑k−1

i=1 ∆i then
p1[k] = uk
p1[i] =MinEnt([li, ui]∀i ∈ {1, ..., k − 1}, s−∆k)
p2[i] =MinEnt([li, ui]∀i ∈ {1, 2, ..., k − 1}, s)
p2[k] = lk

else if s ≤ ∆k and s ≥
∑k−1

i=1 ∆i then
p1[k] = lk + s
p1[i] = li, ∀i ∈ {1, 2, ..., k − 1}
p2[i] = ui, ∀i ∈ {1, 2, ..., k − 1}
p2[k] = lk + s−

∑k−1
i=1 ∆i

end if

A.1.5 Additional Experiment Results

Epsilon per predicate. Figure A.3 shows the cumulative number of predicates that have

a final ex-post privacy cost smaller than a value for a sample query Q3 with threshold =

‘Medium’ . In TSLM, all the predicates ended with a high ϵ value of 1.2. In contrast,

both the multi-step algorithms PPWLM and DPPWLM made decision for a large number

of predicates at a much lower ϵ value than TSLM. For example, DPPWLM had up to 380

predicates with an ϵ value lower than 0.01, which leads to a much smaller min-entropy than

the other algorithms. This example shows the progressive algorithms have an advantage over

146

(a) Min-Entropy γ(Θ) (b) Ex-Post Privacy Loss ϵ∗

(c) Min-Entropy γ(Θ) (d) Ex-Post Privacy Loss ϵ∗

Figure A.2: Privacy Loss (ϵ∗,γ(Θ)) for Q3 (NYTaxi data) with threshold = Low over varying
start epsilon ϵ1 (a),(b) and over varying number of steps m (c),(d)

TSLM to achieve lower privacy loss per predicate.

Start epsilon for progressive algorithms. We choose a small epsilon as the starting

epsilon (ϵ1 = 0.00001) in our experiments. We present the results of privacy loss in terms

of min-entropy and ex-post dp in Figure A.2a (a) and (b) of DPPWLM over varying values

of starting epsilon for one of the queries Q3 on NYTaxi data with threshold = LOW. The

results show that a larger value of starting epsilon may result in overall higher privacy loss in

terms of both min-entropy and ex-post DP loss as the algorithm misses the opportunity of

using smaller values of epsilons in the beginning. If epsilon is too small, all predicates may

147

Figure A.3: Cumulative distribution of epsilon per predicate in TSLM, PPWLM, DPPWLM
for Q3 with threshold = Medium.

end up undecided in the first step. This can be data dependent because if all aggregates lie

close to the threshold choosing a very small epsilon is not ideal as it will make the uncertain

region to be large enough that none of the predicates get eliminated. Our data dependent

algorithm takes care of it, it may end up resulting in all predicates to be undecided in the first

step however it will choose appropriate epsilons in the next step such that some predicates

are classified the results show that the best starting epsilon for DPPWLM is 0.00001 and

this results holds for other queries too.

Number of steps We choose number of steps m = 4 without exceeding our ϵmax = 4

requirement. We perform the experiments for one of the queries Q3 on NYTaxi data with

threshold = LOW and present the result in Figure A.2 (c) and (d). The plots shows the

privacy metrics min-entropy and ex-post privacy loss with varying number of steps. We can

see that for PPWLM, as we increase the number of steps more than 4, ex-post privacy loss

exceeds our DP requirement of ϵmax = 4 as there was no early stop for this particular query.

148

This mean there was at-least one predicate with did not get classified until the last step.

For number of steps less than m = 4, both PPWLM and DPPWLM under perform and

have higher ex-post dp cost as there are not enough number of steps to exploit the data

distribution. The ex-post dp cost for DPPWLM can be different than PPWLM based on

data distribution and at which step the algorithm stops. The classification of a predicate

as decided (positive or negative) or undecided (needs to be reclassified in the next step)

depends on the selection of epsilon and β for intermediate steps. In this particular query,

the ex-post dp cost never exceeds ϵmax. However it is possible that it exceeds for DPPWLM

just like it did for PPWLM depending upon the data distribution. Our experiments show

that it is best to select max number of steps (m=4) to ensure that we satisfy our ϵmax = 4

requirement and our data dependent algorithm DPPWLM has more options to select the

best ϵ and β in each step. The DPPWLM does better in term of min-entropy as the number

of steps increases as compare to PPWLM as DPPWLM is optimizes the choice of ϵ and β

to maximize the min entropy.

149

Appendix B

Empirical Study Appendix

B.1 Derivations of some probabilities

Pr[u ∈ l@t | C]

=
Pr[u ∈ l@t ∧ C]

Pr[C]

=
Pr[u ∈ l@t ∧ C]

Pr[u ∈ l@t ∧ C] +Pr[u /∈ l@t ∧ C]

=
1

1 + Pr[u/∈l@t∧C]
Pr[u∈l@t∧C]

=
1

1 +
∑

l ̸=ℓ∈L Pr[u∈ℓ@t∧C]

Pr[u∈l@t∧C]

.

150

Pr[u ∈ l@t ∧ C]

= ptul ·
∑

(|Sℓ|=ct
ℓ
)ℓ ̸=l,|Sl|=ct

l
−1

∀k,ℓ:Sk∩Sℓ=∅,∀ℓ:u/∈Sℓ

∏
ℓ∈L

∏
v∈Sℓ

ptvℓ

= ptl ·
∑

(|Sℓ|=ct
ℓ
)ℓ ̸=l,|Sl|=ct

l
−1

∀k,ℓ:Sk∩Sℓ=∅,∀ℓ:u/∈Sℓ

∏
ℓ∈L

∏
v∈Sℓ

ptℓ

= ptl ·
∑

(|Sℓ|=ct
ℓ
)ℓ ̸=l,|Sl|=ct

l
−1

∀k,ℓ:Sk∩Sℓ=∅,∀ℓ:u/∈Sℓ

∏
ℓ∈L

(ptℓ)
|Sℓ|

= ptl ·
(nt

u − 1)!

ct1! · · · (ctl − 1)! · · · ctnl
!
(ptl)

ctl−1
∏

l ̸=ℓ∈L

(ptℓ)
ctℓ

= ctl ·
(nt

u − 1)!

ct1! · · · ctnl
!

∏
ℓ∈L

(ptℓ)
ctℓ .

Pr[u ∈ l@t | C]

=
1

1 +
∑

l̸=ℓ∈L Pr[u∈ℓ@t∧C]

Pr[u∈l@t∧C]

=
1

1 +
∑

l̸=ℓ∈L ctℓ
ctj

=
1

1 +
nt
u−ctj
ctj

=
ctj
nt
u

.

B.2 Convergence

For Laplace noise, the estimates Pr[x |y,A] on attacker’s posterior probability stay between

Pr[x | A], i.e. the prior, and Pr[x | c,A], i.e. guessing from true counts.

Theorem B.1. Let Laplace mechanism Lap(1/ϵ) be in use. We have

• limϵ→0Pr[x |y,A] = Pr[x | A];

151

• limϵ→∞Pr[x |y,A] = Pr[x | c,A].

Proof. First of all, let us state the properties that we require from the noise distribution.

• limϵ→∞ fY (y | c) = 1;

• limϵ→0 fY (y | z) = 0 for z ̸= c;

• limϵ→0 fY (y | z) = α(ϵ) for some constant α(ϵ) for all y, z.

For Laplace noise, we have limϵ→∞
ϵ
2
· e−ϵ|y−c| = 1 iff y = c, and limϵ→0

ϵ
2
· e−ϵ|y−c| = ϵ

2
. As

we show next, these properties are sufficient to prove Theorem B.1, so our proof works for

any other distribution satisfying these properties, e.g. any additive noise with bell-shaped

distribution that scales with ϵ. Take the definition of Pr[x |y,A] from Eq. 4.4. We have

limϵ→0Pr[x |y,A]

= lim
ϵ→0

∑
z∈C Pr[x|C = z,A] · fY (y|z)Pr[z | A]∑

z∈C fY (y|z)Pr[z | A]

=

∑
z∈C Pr[x|C = z,A] · α(ϵ) ·Pr[z | A]∑

z∈C α(ϵ) ·Pr[z | A]
= Pr[x | A] .

limϵ→∞Pr[x |y,A]

= lim
ϵ→∞

∑
z∈C Pr[x|C = z,A] · fY (y|z)Pr[z | A]∑

z∈C fY (y|z)Pr[z | A]

=
Pr[x|C = c,A] · fY (y|c)Pr[c | A]

fY (y|c)Pr[c | A]
= Pr[x|C = c,A] .

152

B.3 Composition

Let c = (c1, . . . , cn) be the true output. First of all, since we want to bound atatcker’s

inference probability by Pr[x|c], we need to take into account at least all elements of c on

which Pr[x|c] depends, and we cannot estimate it only based on Pr[x|cl] for some particular

l ∈ L. Hence, we need to constrain ourselves to the situtations c = ca, cb, where Pr[x|c] =

Pr[x|ca]. In our case study, we have Pr[x|z] = z
m
. Indeed, the value m does depend on the

other counts as well, but we treat m as a public parameter that makes ci correlated.

Parallel composition for independent ca, cb is similar to the one of DP.

Theorem B.2. Let C = Ca × Cb. Let Pr[za, zb |A] = Pr[za |A] · Pr[zb |A] for all za ∈ Ca,

zb ∈ Cb. We have

Pr[x |y,A] =
∑

za∈Ca
Pr[x|za,A] · fY (y|za)Pr[za | A]∑
za∈Ca

fY (y|za)Pr[za | A]
.

It is more complicated with sequential composition. In another extreme, ci may be com-

pletely correlated, givingPr[g(za)|Ca = za] = 1 for a deterministic function g. In a particular

case where g is an identity function, we get something similar to sequential composition of

DP. This allows to use the same z instead of za and zb, so that summation over zb can be

avoided. We can use it if multiple queries are applied to the same data.

Theorem B.3. Let C = Ca × Cb, where Ca = Cb. Let Pr[Cb = za|Ca = za,A] = 1 for all

za ∈ Ca. We have

Pr[x |y,A] =
∑

za∈Ca
Pr[x|za,A]fY (ya, yb|za)Pr[za | A]∑
za∈Ca

fY (ya, yb|za)Pr[za | A]
.

153

where fY (ya, yb|za) = fY (ya|za) · fY (yb|za).

Finally, it is possible that the outputs are strongly correlated, but g is not an identity

function. In this case, the estimation is more difficult, as we want to get a general upper

bound for all possible definitions of g. One idea is to apply the worst case bound to the Zb

part, e.g. Sec. 4.4.2 for a DP mechanism.

Theorem B.4. Let C = Ca × Cb, Pr[g(za)|Ca = za,A] = 1 for a deterministic function g.

We have

Pr[x |y,A] ≤ max
zb,z

′
b∈Zb

(
fY (yb|zb)
fY (yb|z′b)

)
·

·
∑

za∈Ca
Pr[x|za,A] · fY (ya|za)Pr[za | A]∑
za∈Ca

fY (ya|za)Pr[za | A]
.

We can instantiate Theorem B.4 on an ϵ-DP mechanism.

Corollary 1. Let C = C1× · · · ×Cn. Let an ϵ-DP mechanism w.r.t. norm ∥·∥ be applied to

each Cj. Let maxx,x′∈X∥x− x′∥ = m. We have

Pr[x |y,A] ≤ eϵ·m(n−1)·

·
∑

z∈C1
Pr[x|z,A] · fY (ya|z)Pr[z | A]∑
z∈C1

fY (ya|z)Pr[z | A]
.

We will now state and prove some Lemmas which help us in proving Theorems B.2-B.4 and

Corollary 1.

Lemma B.1. Let M be any ϵ-differentially private mechanism. Let z, z′ ∈ q(X). Let

M = maxx∈q−1(z),x′∈q−1(z′)∥x− x′∥. For all y, y′ ∈M(X) we have

fY (y|z) ≤ fY (y|z′) · eϵM .

154

Proof. We have z = q(x) and z′ = q(x′) for some x, x ∈ X. Since q(x) can be computed

from x, we have fY (y|q(x), x) = fY (y|x). Let q−1(z) := {x | q(x) = z}. Denote Xz := q−1(z)

and X ′
z := q−1(z′). We have

fY (y|z)
fY (y|z′)

=

∑
x∈Xz

fY (y|x, z)Pr[x | z]∑
x′∈X′

z
fY (y|x′, z′)Pr[x′ | z′]

=

∑
x∈Xz

fY (y|x)Pr[x | z]∑
x′∈X′

z
fY (y|x′)Pr[x′ | z′]

=
∑
x∈Xz

fY (y|x) Pr[x | z]∑
x′∈X′

z
fY (y|x′)Pr[x′ | z′]

≤
∑
x∈Xz

eϵ∥x−x′∥∑
x′∈X′

z
Pr[x′ | z′]

Pr[x | z]

≤ eϵM
∑

x∈Xz
Pr[x | z]∑

x′∈X′
z
Pr[x′ | z′]

= eϵM .

For shortness of notation, let us remove the additional knowledge A from all conditional

probabilities and make it implicit. This will not affect the proofs, as A is found in the

premises of all theorems. We have

Pr[x |y] =
∑

z∈C Pr[x|z]fY (y|z)Pr[z]∑
z∈C fY (y|z)Pr[z]

=

∑
za∈Ca

∑
zb∈Cb

Pr[x|za]fY (ya, yb|za, zb)Pr[za, zb]∑
za∈Ca

∑
zb∈Cb

fY (ya, yb|za, zb)Pr[za, zb]

Assuming that the noise distribution depends only on a single output (as in the case of

Laplace noise), we get fY (ya, yb|za, zb) = fYa(ya|za) · fYb
(yb|zb).

155

B.3.1 Proof of Theorem B.2

For independent variables, Pr[za, zb] = Pr[za]Pr[zb]. This allows to split both the numerator

and the denominator into a product of two independent sums.

Pr[x |y] =
∑

za∈Ca
Pr[x|za]fYa(ya|za)Pr[za]∑

za∈Ca
fYa(ya|za)Pr[za]

·

·
∑

zb∈Cb
fYb

(yb|zb) Pr[zb]∑
zb∈Cb

fYb
(yb|zb) Pr[zb]

=

∑
za∈Ca

Pr[x|za]fY (y|za)Pr[za]∑
za∈Ca

fY (y|za)Pr[za]
.

B.3.2 Proof of Theorem B.3

As Pr[za|Ca = za] = 1 for all za ∈ Ca, we can write Pr[za, zb] = Pr[za] and only sum over

Ca. We are left with

Pr[x |y] =

∑
za∈Ca

Pr[x|za]fY (ya, yb|za, za)Pr[za]∑
za∈Ca

fY (ya, yb|za, za)Pr[za]

=

∑
za∈Ca

Pr[x|za,A] · fY (ya, yb|za)Pr[za]∑
za∈Ca

fY (ya, yb|za)Pr[za]
.

B.3.3 Proof of Theorem B.4

Let g be a deterministic function such that Pr[g(za)|Ca = za,A] = 1. We have

Pr[x |y] = ∑
za∈Ca

Pr[x|za] · fYa(ya|za)fYb
(yb|g(za))Pr[za]∑

za∈Ca
fYa(ya|za)fYb

(yb|g(za))Pr[za]
.

156

Differently from the previous case, we cannot compute the quantity more precisely unless

we know g. We rewrite the expression as

Pr[x |y] =
∑
za∈Ca

Pr[x|za] · fYa(ya|za) ·Pr[za]·

· 1∑
z′a∈Ca

fYa(ya|z′a)
fYb (yb|g(z

′
a))

fYb (yb|g(za))
Pr[z′a]

.

A trivial upper bound on
fYb (yb|g(za))
fYb (yb|g(z

′
a))

is maxzb,z′b∈Zb

fYb (yb|zb)
fYb (yb|z

′
b)
. This upper bound is independent

of the summation variables and can be taken out of the sum.

B.3.4 Proof of Corollary 1

By assumption of Corollary 1, we are dealing with an ϵ-DP mechanism. by Lemma B.1,

we have
fYi (yi|zi)
fYi (yi|z

′
i)
≤ eϵ·maxx,x′∥x−x′∥. In our case ∥x − x′∥ ≤ m for a singe occupancy count.

We instantiate Theorem B.4 with Za = C1 and Zb = (C2, . . . , Cn). We have
fYb (yn|zb)
fYb (yb|z

′
b)

=∏n
j=2 fYj (yj |zj)∏n
j=2 fYj (yj |z

′
j)
≤

∏n
j=2 e

ϵ·maxx,x′∥x−x′∥ = eϵ·m(n−1).

B.4 Evaluating Particular Instances of Noisy Counts

While Figures 4.7-4.9 show average guessing advantage over 30 instances of noisy data,

Figure B.1 depicts results for some single run experiments. Each row corresponds to a

particular instance of noisy counts. In this example, we are comparing Laplace and PeGaSus

for 75% day utility, for the student attacker (two left columns) and the administrator attacker

(two right columns). We see that success of PeGaSus comes from the fact that localizations

157

for some timepoints get completely missed. In overall, using Laplace noise seems to give

more stable results that do not vary much over instances. Using PeGaSus, some people can

be predicted better and some worse. For the student attacker, the advantage of PeGaSus is

not as clear as it is in Figure 4.8.

In general, choosing a suitable privacy mechanism depends on how we define the privacy

goal. Do we want to minimize the average probability of localization over all people (an

individual localized with 100% confidence is fine if there is only one such person), or do we

want to minimize the maximum probability over all people (we guarantee privacy for all,

but less for each).

158

Student attacker Administrator attacker
Laplace, ϵ = 0.66 PeGaSus, ϵ = 15 Laplace, ϵ = 0.66 PeGaSus, ϵ = 15

Figure B.1: Comparison of PeGaSus and Laplace mechanisms for single runs on particular
noisy data instances

159

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Thesis Organization

	Preliminaries and Related Work
	Privacy Primer
	Data Suppression
	De-Identification/Anonymization
	Differential Privacy

	Related Work

	IoT-Detective: Analyzing Differential Privacy For Decision Support in IoT domain
	Preliminaries
	TIPPERS
	PeGaSus

	 Demonstration Study
	The IoT-Detective Game

	 Empirical Evaluation of Diverse PETs to Publish Smart Space Occupancy Data
	Introduction
	Background
	Data
	Techniques

	Methodology
	Posterior Computation
	Posterior without Privacy Techniques
	Posterior with a Privacy Technique

	Experiments
	Prior distribution
	Posterior distribution

	Results
	Exact vs Predicted noise distribution
	Comparing different privacy techniques

	Conclusion

	MIDE: Accuracy Aware Minimally Invasive Data Exploration For Decision Support
	Introduction
	Privacy in Decision Support
	Predicate-wise Differential Privacy
	Min-Entropy based Privacy Metric
	Problem Definition

	Algorithms for MIDE
	Threshold-shift Laplace Mechanism
	Progressive Predicate-wise Laplace Mechanism
	Data Dependent Mechanism

	Computing Privacy Loss
	Experiments
	Setup
	Experimental Results

	Conclusion

	Accuracy Aware Privacy Preserving Decision Support with Complex Queries
	Introduction
	Query Definition
	Query Conjunction
	Query Disjunction

	Privacy and Accuracy Guarantees For Complex DS Queries
	Problem Definition
	Query Conjunction Mechanism
	Query Disjunction Mechanism

	 Accuracy Aware Privacy Preserving Algorithms For Complex DS Queries
	Algorithms for Query Conjunction
	Algorithms for Query Disjunction
	Generalized Conjunction/Disjunction Query

	Preliminary Experiments
	Conclusion and Future Work

	Conclusion and Future Work
	Bibliography
	Appendix MIDE Appendix
	Proofs
	Properties of PWDP
	Guarantees of MIDE Algorithms
	Correctness of MinEnt Algorithm
	Complexity of MinEnt Algorithm.
	Additional Experiment Results

	Appendix Empirical Study Appendix
	Derivations of some probabilities
	Convergence
	Composition
	Proof of Theorem B.2
	Proof of Theorem B.3
	Proof of Theorem B.4
	Proof of Corollary 1

	Evaluating Particular Instances of Noisy Counts

