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ABSTRACT OF THE THESIS

Unaligned Sequential Image Transformation with GAN

by

Siyang Wang

Master of Science in Computer Science

University of California San Diego, 2019

Professor Zhuowen Tu, Chair

The purpose of this thesis is to present a novel method of learning to generate an image

sequence from input a single image without sequentially aligned data. Given examples of a visual

phenomena that can be divided into discrete time steps, the problem is to learn a model that takes

an input from any such time and realizes this input at all other time steps in the sequence. For

example, given a scenery picture in spring and output the corresponding pictures in sequence of

summer, fall, and winter without changing overall layout and semantic information presented

in the input picture. Furthermore, it is assumed that ground-truth aligned sequences are not

provided. This broadens the real-world application of this method as it is often difficult to collect

aligned sequential data for many problems. This task generalizes the unpaired image-to-image
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problem from generating pairs to generating sequences and associates a direction of time with the

phenomena observed.

We show that this problem can be solved by incorporating Generative Adversarial Net-

works (GAN), a popular deep unsupervised learning technique, and a periodic assumption about

the sequential visual phenomena modeled. The periodic assumption is enforced in model training

by a novel Loop Consistency loss, inspired by the popular Cycle Consistency loss that has

achieved huge success in unpaired image-to-image transformation. The two parts of the model,

GAN and Loop Consistency, can be seen as two levels of constraints that together facilitate

model training. The transformation unit itself is a neural network. We show the effects of

different network architecture changes on generation quality and present the results of the model

in comparison with several competitive baseline models.
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Chapter 1

Introduction

Image-to-image translation is the problem of learning a transformation function that takes

input from one image domain and transform it into another image domain that is both realistic

and semantically meaningful. There are many examples of this problem in application. Given

a young person’s face, we’d like to learn a function that transforms it into an old face without

changing the overall facial structure and features. Another example would be learning a function

that transforms a scenery picture in spring to winter without changing the layout and semantic

components, such as trees, mountains, creeks present in the picture. In this specific example,

the learned transformation function should have some level of understanding about the semantic

components and their corresponding transformation into the other domain, such as that the trees

should be covered in snow and the creeks should be frozen when transforming from spring to

winter.

Machine learning approaches have dominated this task in recent years and will be the

focus of this thesis. If aligned data is available, then this is a regression problem. As an example,

in order to learn a transformation from young faces to old faces, first collect an aligned image data

set consisting of the same person’s face image at both a young and an old age. In mathematical

terms, this means that we have a data set with xi’s and yi’s such that there’s a ground truth function
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f (xi) = yi ∀i, and the problem is to approximate f . The straightforward regression approach then

tries to minimize some loss function L = ||G(xi)− yi||1 with respect to some hypothesis G. The

problem is that using a simple distance function as the loss (l1 distance in the previous example)

does not capture well the closeness of the generated image G(xi) and the ground truth yi. In the

face aging example, if G(xi) = y∗i where y∗i is yi but translated to the left by some pixels, then

L = ||G(xi)− yi||1 = ||y∗i − yi||1 would be big. This is clearly not useful for training G as the loss

function is still giving error signal despite G already generating good results.

Generative Adversarial Networks (GAN) [GPAM+14] is an unsupervised learning ap-

proach that learns a data distribution by jointly training a generator and a discriminator. The

generator maps a noise vector (usually drawn from a multi-dimensional Gaussian) to the target

data distribution space. The generator’s goal is to fool the discriminator whose job is to distinguish

generated data from real data. The loss for the generator function in GAN (referred as GAN

loss) is the loss of the discriminator function accuracy (often calculated with cross entropy),

thus the discriminator can be seen as a learned loss function that is better than a vanilla distance

function. In image problems, the discriminator is usually a Convolutional Neural Network (CNN)

[LBB+98] which is able to extract low-level and high-level features that are translation-invariant.

It is important to note that the generator function G is also a CNN in unsupervised learning of

image distributions.

A pioneering work, pix2pix [IZZE17] shows that it is possible to realize a real image from

one domain as a highly realistic and semantically meaningful image in another with aligned data

set using a combination of distance function loss (such as l1) and GAN loss. This is the current

state-of-the-art model in image-to-image translation with aligned data. However, data alignment

is usually difficult to obtain for many image-to-image translation problems. For example, in

scenery picture season change problem, it is very difficult to take a picture at the same location

in spring and winter, not to mention doing this for many different locations. In other cases, a

ground-truth alignment may not exist at all, such as transforming a zebra to a horse. A meaningful
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transformation can still be made by painting the body of the horse with the color pattern of the

zebra, but it’s impossible to collect aligned data.

The authors of pix2pix [IZZE17] successfully extended their GAN-based framework that

requires aligned data to unaligned image-to-image transformation by adding another layer of con-

straint that they call Cycle Consistency [ZPIE17] to compensate for aligned data. Their proposed

model CycleGAN trains a pair of generators, GA−>B and GB−>A, between two image domains

XA and XB and two discriminators in each domain, DA and DB. They require the generators to not

only fool the discriminators but also conform to Cycle Consistency ||GB−>A(GA−>B(xA))− xA||1

where xA ∼ XA. Methods [KCK+17, LBK17] similar to CycleGAN have also been developed

roughly around the same time. These methods are state-of-the-art in many unaligned image-to-

image problems. The key to the success of these methods including CycleGAN is the combination

of GAN loss and an added layer of constraint such as Cycle Consistency.

However, CycleGAN family models are still somewhat limited since they only handle the

translation problem (directly) between two domains. Modeling more than two domains would

require separate instantiations of CycleGAN between any two pairs of domains — resulting in

a quadratic model complexity. A major recent work, StarGAN [CCK+18], addresses this by

facilitating a fully connected domain-translation graph, allowing transformation between two

arbitrary domains with a single model. This flexibility, however, appears restricted to domains

corresponding to specific attribute changes such as emotions and appearance in face image

transformation. It is designed for general-purpose multi-domain transformation without aligned

data and does not directly model the sequential multi-domain problems that we are trying to

solve.

Within nature, a multitude of settings exist where neither a set of pairs nor a fully-

connected graph are the most natural representations of how one might proceed from one domain

to another. In particular, many natural processes are sequential or even periodic, often with a

notion of time, and therefore the translation process should reflect this. A common phenomena
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modeled as an image-to-image task is the visual change of natural scenes between two seasons

[ZPIE17], , Winter and Summer. This neglects the fact that nature first proceeds to Spring after

Winter and Fall after Summer and therefore the pairing induces a very discontinuous reflection

of the underlying process. Instead, we hope that by modeling a higher resolution discretization

of this process, the model can more realistically approach the true model while reducing the

necessary complexity of the model.

Aligned sequences of a process are often even more difficult to come by than paired

image-to-image data. It is already very difficult to collect the face image of the same person at

two different ages which means doing so for more than two ages is even more difficult. Thus, it

is more plausible to gather a large number of examples from each step (domain) in a sequence

without correspondences between the content of the examples. It then becomes crucial to mimic

the success of unpaired image-to-image transformation. Therefore, we consider a setting where

the process being modeled is periodic (or can be made so) with unaligned examples from each

time step. Given an example from an arbitrary point in the sequence, we then generate an

aligned sequence over all other time steps — expecting a faithful realization of the image at

each step. The key condition required is that after generating an entire loop (returning from

the last domain to the input domain), one should expect to return to the original input. This is

quite a weak condition and promotes model flexibility, because at any step within the loop, the

transformation can be very drastic as long as the final step of the loop returns to the original

input. We denote this extension to the Cycle Consistency of [ZPIE17] as Loop Consistency and

therefore name our approach as Loop-Consistent Generative Adversarial Networks (LoopGAN).

This is a departure from many image-to-image approaches that have very short (usually length

2) paths of computation defining what it means to have gone “there and back”, e.g. the ability

to enforce reconstruction or consistency. Since we do not have aligned sequences, the lengths

of these paths for LoopGAN are as large as the number of domains being modeled and require

different approaches to make learning feasible. These are not entirely different from the problems
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that often arise in recurrent neural networks and we can draw similarities to our model as a

memory-less recurrent structure applied to images.

We apply our method to the sequential (although aperiodic) phenomena of human aging

[ZQ17], as well as, the periodic phenomena of the seasons of the Alps [AATVG18]. We build

three sets of baseline models. The first set consists of popular unpaired image-to-image models

CycleGAN [ZPIE17] and UNIT [LBK17]. These two models are chosen because they represent

two main families of unpaired image-to-image models that differ in the way that Cycle Consistency

is enforced. CycleGAN represents a family of models [LTH+18] [ARS+18] that explicitly

enforces Cycle Consistency, while UNIT represents a family of models [LBK17] [HLBK18] that

implicitly enforces Cycle Consistency. Because CycleGAN and UNIT can only be applied to two

domains at a time, we train a separate model for each pair of domains in the sequential domains of

the two data sets. For example, in changing seasons problem, we train a separate model between

every two seasons which amount to 6 models in total to facilitate transformation between the

four domains (seasons). Besides this radical approach to achieve sequential generation with

bi-domain models, we are also interested in the ability of bi-domain models learning sequential

generation. We thus build another set of baseline models by chaining bi-domain models between

consecutive domains in a sequential transformation problem. Take changing seasons problem

as an example again. We train a CycleGAN between consecutive seasons as spring-summer,

summer-fall, fall-winter, winter-spring, four in total, two less than training a model between every

two seasons. We do the same for UNIT. The third set of baseline models consists of just the

aforementioned StarGAN [CCK+18], a general-purpose multi-domain model. This is to show

the difference between a general-purpose multi-domain model and ours which explicitly models

a multi-domain problem that has a natural sequential order. We show favorable results against all

three sets of baseline methods in two sequential image transformation tasks.
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Chapter 2

GAN Approaches to Image-to-image

Transformation

This chapter provides the main context for the thesis which is image-to-image transfor-

mation approaches that incorporate GAN. The foundations, GAN and DCGAN, are introduced

first. The application of GAN in image-to-image transformation is introduced afterwards. In the

last part, some related areas that are not necessarily GAN or image-to-image transformation are

briefly introduced to provide full context for the thesis’ proposed method.

2.1 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) is first proposed in [GPAM+14] as an unsu-

pervised approach of learning a data distribution. The key is to simultaneously train a pair of

generator and discriminator such that the generator is trying to generate data points to fool the

discriminator which is tasked to distinguish between generated (fake) and real data points. The

GAN framework has the unique advantage of approximating a data distribution with a learned

distance function, i.e. the discriminator. This is especially useful for high-dimensional data such
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as images, as existing mathematical distance measures such as l− 1 or l− 2 are too rigid for

image data and do not capture the true closeness of two image data distributions. For example,

translating the same image to the left by a few pixels would result in a very high l−1 distance

while the two images are essentially the same. In the GAN framework, however, the discriminator

can be designed to especially attend to the characteristics of the data distribution. In the case of

images, the discriminator is usually a CNN which is able to extract both low-level and high-level

features while being translation-invariant. Thus, a CNN-based discriminator can approximate the

closeness of real data distribution and generator output much better than a traditional distance

measure such as l−1 and better guides the generator to generate high-quality images, i.e. better

learning the underlying distribution.

2.2 Deep Convolutional GAN (DCGAN)

A class of GAN designed to learn image data distribution is Deep Convolutional GAN

(DCGAN) [RMC15]. This model uses CNN architecture for both discriminator and generator.

The discriminator has similar architecture as a normal image classification CNN. The generator

has a special type of convolution operation that is not often used in CNN context known as

deconvolution. It can be seen as the reverse operation of convolution. The normal convolution

operations used in classification CNN produce smaller feature maps. Deconvolution, on the

other hand, produces feature maps that are bigger than the input. If we see convolution as a

form of downsampling, then deconvolution is a form of upsampling. Deconvolution is key to

DCGAN generator, because the input to the generator is a noise vector that is low in dimension

compared to the output. Layers of deconvolution magnify the low-dimensional input noise signal

to high-dimensional image output. DCGAN extends the frame work of GAN to image data and

shows that incorporating CNN with GAN is the state-of-the-art approach to learn image data

distribution in an unsupervised manner.
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2.3 Supervised Image-to-image Transformation with GAN

Image-to-image transformation is the task of transforming an image in one domain to

another. Here, domains are loosely defined as a set of images with shared semantic meaning and

appearance similarity. They are also sometimes defined according to the transformation task.

Face aging is a popular image-to-image transformation problem. Define two image domains

XA and XB as young and old. The problem is to learn a transformation function that takes in

an image from XA and transform it into XB. However, there are usually additional constraints

on the transformed image, otherwise the function can just output some existing image in XB. It

is assumed that there exists some ground-truth transformation. In a data set that is paired (or

sometimes called supervised), this ground-truth transformation is partially represented in image

pairing. Thus, the problem can be easily framed as a regression problem. We simply regress

GA−>B to ground-truth by minimizing E(xA,xB) (XA,XB)||GA−>B(xA)− xB||1 where (XA,XB) is the

paired data distribution.

However, the problem with regressing to a simple distance function is that it can be too

rigid in some cases. The same image translated by a few pixels results in a high l−1. Thus, it

clearly does not represent the true distance well. Adding GAN to the loss function alleviates

this problem as the distance function is now learned and can guide the generator (transformation

function) to match both low-level and high-level features of the target transformation domain

distribution. It’s important to note that the type of GAN used in image-to-image transformation is

generally called conditional GAN (cGAN) as the generator is conditioned on a specific prior (an

image in this case) instead of a noise function.

It is shown [IZZE17] that this approach produces state-of-the-art transformation when

paired data is available. In the ablation studies, the authors showed that using l−1 regression by

itself often causes the produced image to be blurry. They suggested that the generator is afraid of

producing sharp images because any pixel-level difference would cause high l−1 error and is
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thus encouraged to produce blurry images that capture the overall structure and have relatively

low l−1 error. The final version of their model pix2pix combines l−1 with GAN and produces

better images than either loss function by itself.

2.4 Unsupervised Image-to-image Transformation

Paired image-to-image data can be hard to collect. For example, it would be very difficult

to collect a large number of scenery pictures taken at the exactly the same location and angle in

two different seasons (spring and winter). It is more feasible to collect a large number of spring

scenery picture and winter scenery pictures without paired relationship in the sense that no two

pictures are taken at exactly the same location and angle. How then to learn a transformation

between two image domains without paired relationship?

An extension to the work on pix2pix [IZZE17], Zhu et al. proposed CycleGAN [ZPIE17]

which has a similar GAN setup as [IZZE17] but is able to learn transformation between two

domains without paired training data. To achieve this, CycleGAN simultaneously train two

generators, one for each direction between the two domains. Besides the GAN loss enforced upon

by domain-wise discriminators, the authors proposed to add a cycle-consistency loss which forces

the two generators to be reversible. This consistency loss turns out to be the key as in the ablation

study shows that the model breaks and produces incoherent images with just GAN loss [Zhu19].

Concurrent to CycleGAN, UNIT [LBK17] proposed a method that implicitly enforces

cycle consistency using a VAE-like structure while achieving comparable results. It assumes that

the two image domains share a latent space. The model trains two sets of encoder-decoder in

each domain. The loss consists of two parts, VAE loss and implicit cycle-consistency loss. The

VAE loss guides the in-domain encoder-decoder to learn the in-domain image distribution. The

cycle-consistency loss guides a cross-domain encoder-decoder pair to first encode an image in

the source domain to the shared-latent space and then decode into the target domain where a
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discriminator is trained to distinguish real and transformed images. The VAE loss is l−1 and the

cycle-consistency loss is GAN. The cycle consistency is not directly enforced as in CycleGAN

but through the shared-latent space assumption.

A major problem with both CycleGAN and UNIT is that the learned transformation

has to be deterministic or one-to-one. This assumption is not true for many image-to-image

problems. For example, in transforming a cat picture to leopard, there exists many plausible

transformations. Restricting the scope of transformation to singular could also potentially cripple

the training process as the model tries hard to find the one transformation while the data presents

a variety of possibilities that confuse the model. To solve this problem, one-to-many non-

deterministic unsupervised models [HLBK18] [ARS+18] are proposed. Augmented CycleGAN

[ARS+18] is proposed as an extension to vanilla CycleGAN that is enabled to make one-to-many

transformations by condition the transformation on both the input image and a noise vector. Multi-

modal transformation [HLBK18] is proposed as an extension to UNIT to achieve one-to-many

transformation in a VAE-like setting. This model proposes to learn two separate latent spaces, one

is shared between the two image domains called content code, the other is domain specific called

style code. A transformation is made by first embed the input image into the content code space

and then sample a style code from the target domain style code distribution and then combine the

two as input to a decoder to the target domain.

Both CycleGAN family and UNIT family models have achieved great success in image-to-

image transformation without paired training data. However, they are not designed to be directly

applied to problems with more than two domains. For example, transforming a spring image

to not just winter but also summer and fall. Two simple solutions would be to either train all

pair-wise reversible transformations A-B, A-C, A-D, B-C, B-D, C-D (if the domains are A,B,C,D)

or to train minimum number of pair-wise reversible transformations that bridge domains in a

chained fashion, A-B, B-C, C-D, D-A. Note that in order to transform from A to C in the chained

approach, the image needs to be first transformed into B trough A-B and then to C through B-C.
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Either approach requires the number of parameters proportional to the number of domains. These

are the baseline models we compare our model against.

2.5 Multi-domain Unsupervised Transformation

StarGAN [HLBK18] extends CycleGAN for any number of domains. A single network

takes inputs defining the source image and desired domain transformation. This model is aimed at

general-purpose multi-domain unsupervised transformation, meaning that it makes no assumption

about the relationship between the domains, such as temporal relationship. However, it is has

been mainly shown to be successful for the domains consisting of facial attributes and expressions

of emotion.

The generality of StarGAN’s application scope could also be its pitfall in some specific

applications. We argue through experiments that it has limited usage in multi-domain problems

where there exists a ground-truth temporal relationship between domains.

2.6 Other Related Works

2.6.1 Style Transfer

A specific task in image-to-image transformation called style transfer is broadly defined

as the task of transforming a photo into an artistic style while preserving its content [GEB15,

JAFF16]. Common approaches use a pre-trained CNN as feature extractor and optimize the

output image to match low-level features with that of style image and match high-level features

with that of content image [GEB15, JAFF16]. A network architecture innovation made popular by

this field known as AdaIn [HB17, DSK17] combines instance normalization with learned affine

parameters. It needs just a small set of parameters compared to the main network weights achieve

different style transfers within the same network. It also shows great potential in improving image
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quality for image generation [KLA19] and image-to-image transformation [HLBK18]. This is a

key component of the network architecture proposed in this work.

2.6.2 Face Aging

Generating a series of faces in different ages given a single face image has been widely

studied in computer vision. State-of-the-art methods [ZQ17, PATVG18] use a combination of

pre-trained age estimator and GAN to learn to transform the given image to different ages that are

both age-accurate and preserve original facial structure. They rely heavily on a domain-specific

age estimator and thus have limited application to the more general sequential image generation

tasks that we try to tackle here.

2.6.3 Video Prediction

Video prediction attempts to predict some number of future frames of a video based on

a set of input frames [SCW+15, VPT16]. Full videos with annotated input frames and target

frames are often required for training these models. A combination of RNN and CNN models

has seen success in this task [SMS15, SCW+15]. Predictive vision techniques [VPT16, VT17,

WJY+19] that use CNN or RNN to generate future videos also require aligned video clips in

training. A recent work [GJFF+18] added a GAN as an extra layer of supervision for learning

human trajectories. At a high level, video prediction can be seen as a supervised setting of our

unsupervised task. Moreover, video prediction mostly aims at predicting movement of objects

rather than transformation of a still object or scene which is the focus of our task.
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Chapter 3

Unaligned Sequential Transformation with

Loop-Consistent GAN

This chapter proposes a GAN-based sequential image transformation model. The overall

model formulation, loss objectives, and detailed network architectures are introduced followed by

comparisons with several baseline models on two sequential image transformation tasks. At the

end of the chapter, some aspects of the model are further explored with extended experiments.

3.1 Method

We formulate our method and objectives for a GAN-based sequential image transformation

model in this section. Consider a setting of n domains, X1, . . . ,Xn where i < j implies that Xi

occurs temporally before X j. This defines a sequence of domains. To make this independent of

the starting domain, we additionally expect that can translate from Xn to X1 — something a priori

when the sequence represents a periodic phenomena. We define a single generator G(x, i) where

i ∈ {1, . . . ,n} and x ∈ Xi. Then, a translation between two domains Xi and X j of an input xi ∈ Xi

is given by repeated applications of G in the form of G‖ j−i‖(xi, i) (allowing for incrementing

13



the second argument modulo n+ 1 after each application of G). By applying G to an input n

times, we have formed a direct loop of translations where the source and target domains are equal.

While we use a single generator, we make use of n discriminators {Di}n
i=1 where Di is tasked

with discriminating between a translation from any source domain to Xi. Since we are given only

samples from each domain Xi, we refer to each domain Xi = {x j}Ni
j=1 as consisting of Ni examples

from the domain Xi with data distribution pdata(xi).

Gen 
A

Real 
A

𝑙 𝐷

Gen 
B

Real 
B

𝐷

Gen 
C

Real 
C

𝐺Gen 
D

Real 
D

𝐷

𝐺 𝐺 𝐺

Loop-consistency Loss GAN Loss

Figure 3.1: LoopGAN framework. For simplicity, only a single loop starting at one real
domain in a four-domain problem is illustrated here. All four steps share a single generator G,
parameterized by the step variable.

3.1.1 Adversarial Loss

Suppose xi ∼ pdata(xi). Then we expect that for all other domains j, G|| j−i||(xi, i) should

be indistinguishable under D j from (true) examples drawn from pdata(x j). Additionally, each D j

should aim to minimize the ability for G to generate examples that it cannot identify as fake. This

forms the adversarial objective for a specific domain as:

LGAN(G,Di) = E
xi∼pdata(xi)

[logDi(xi)]+∑
j 6=i

E
x j∼pdata(x j)

[
log(1−Di(G∗(x j)))

]
where G∗ denotes iteratively applying G until x j is transformed into domain Xi, i.e. || j− i|| times.

Taking this over all possible source domains, we get an overall adversarial objective as:
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LGAN(G,D1, . . . ,Dn) = E
i∼q(i)

[
E

xi∼pdata(xi)
[logDi(xi)]+∑

j 6=i
E

x j∼pdata(x j)

[
log(1−Di(G∗(x j)))

]]

where q(i) is a prior on the set of domains, e.g., uniform.

3.1.2 Loop Consistency Loss

Within [ZPIE17], an adversarial loss was supplemented with a cycle consistency loss that

ensured applying the generator from domain A to domain B followed by applying a separate

generator from B to A acts like an identity function. However, LoopGAN only has a single

generator and supports an arbitrary number of domains. Instead, we build a loop of computations

by applying the generator G to a source image n times (equal to the number of domains being

modeled). This constitutes loop consistency and allows us to reduce the set of possible transfor-

mations learned to those that adhere to the consistency condition. Loop consistency takes the

form of an L1 reconstruction objective for a domain Xi as:

LLoop(G,Xi) = E
xi∼p(xi)

||xi−Gn(xi, i)‖1

3.1.3 Full Objective

The combined loss of LoopGAN over both adversarial and loop-consistency losses is

becomes:

L(G, D1, . . . ,Dn,X1, . . . ,Xn) = LGAN(G,D1, . . . ,Dn)+λEi∼q(i) [LLoop(G,Xi)]]

= Ei∼q(i)

[
Exi∼pdata(xi)

[
logDi(xi)

]
+∑ j 6=i Ex j∼pdata(x j)

[
log
(
1−Di(G∗(x j))

)]
+λExi∼pdata(xi) ‖xi−Gn(xi)‖1

]
where λ weighs the trade-off between adversarial and loop consistency losses.

An example instantiation of our framework for one loop in a four-domain problem is shown
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in Figure 3.1. When training G, our objective function actually consists of four loops including

A→ B→C→D→ A, B→C→D→ A→ B, C→D→ A→ B→C, and D→ A→ B→C→D.

This is consistent with how CycleGAN is trained where two cycles are included.

3.2 Implementation

3.2.1 Network Architecture

We adopt the network architecture for style transfer proposed in [JAFF16] as our generator.

This architecture has three main components: a down-sampling module Enc(x), a sequence of

residual blocks T (h, i), and an up-sampling module Dec(h). The generator G therefore is the

composition G(x, i) = Dec(T (Enc(x), i)) where the dependence of T on i only relates to the step-

specific AdaIN parameters [HB17] while all other parameters are independent of i. Following the

notations from [JAFF16, ZPIE17], let c7-k denote a 7 × 7 Conv-ReLU layer with k filters and

stride 1, dk denote a 3× 3 Conv-ReLU layer with k filters and stride 2, Rk denote a residual block

with two 3× 3 Conv-AdaIn-ReLU layers with k filters each, uk denotes a 3× 3 fractional-strided-

Conv-LayerNorm-ReLU layer with k filters and stride 1
2 . The layer compositions of modules are

down-sampling: c7-32, d64, d128; residual blocks: R128 × 6; up-sampling: u128, u64, c7-3. We

use the PatchGAN discriminator architecture as [ZPIE17]: c4-64, c4-128, c4-256, c4-1, where

c4-k denotes a 4 × 4 Conv-InstanceNorm-LeakyRelu(0.2) layer with k filters and stride 2.

3.2.2 Recurrent Transformation

Suppose we wish to translate some xi ∈ Xi to another domain X j. A naive approach would

formulate this as repeated application of G, | j− i| times. However, referencing our definition of G,

we can unroll this to find that we must apply Enc and Dec j− i times throughout the computation.

However, Enc and Dec are only responsible for bringing an observation into and out of the space
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of T . This is not only a waste of computation when we only require an output at X j, but it has

serious implications for the ability of gradients to propagate through the computation. Therefore,

we implement G(xi, i) as: a single application of Enc(xi), j− i applications of T (h), and a single

application of Dec(h). T is applied recurrently and the entire generator is of the form:

G(xi, i) = Dec(T | j−i|(Enc(xi)))

We show in our ablation studies that this re-formulation is critical to the learning process

and the resulting quality of the transformations learned. Additionally, T (h, i) is given a a set of

separate, learnable normalization (AdaIN [HB17]) parameters that it selects based off of i with

all other parameters of T being stationary across time steps. The overall architecture is shown in

Figure 3.2.

Figure 3.2: LoopGAN network. All modules share parameters.

3.2.3 Training

For all datasets, the loop-consistency loss coefficient λ is set to 10. We use Adam optimizer

[KB14] with initial learning rate of 0.0002, β1 = 0.5, β2 = 0.999. We train the face aging dataset

and Alps seasons dataset for 50 epochs and 70 epochs respectively with initial learning rate and

linearly decay learning rate to 0 for 10 epochs for both datasets.
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3.3 Experimental Results

We apply LoopGAN to two very different sequential image generation tasks: face ag-

ing and chaging seasons of scenery pictures. Baselines are built with two bi-domain mod-

els, CycleGAN[ZPIE17] and UNIT[LBK17] and also a general-purpose multi-domain model

StarGAN[CCK+18]. We are interested in the sequential transformation capabilities of separately

trained bi-domains compared to LoopGAN. Therefore, for each of the two bi-domains models, we

train a separate model between every pair of sequential domains, i.e. Xi and Xi+1 and additionally

train a model between every pair (not necessarily sequential) domains Xi and X j (i 6= j). The

first approach allows us to build a baseline for sequential generation by chaining the (separately

learned) models in the necessary order. For instance, if we have four domains: A, B, C, D, then we

can train four separate CycleGAN (or UNIT) models: GAB,GBC,GCD,GDA and correctly compose

them to replicate the desired sequential transformation. Additionally, we can train direct versions

e.g. GAC of CycleGAN (or UNIT) for a more complete comparison against LoopGAN. We refer

to composed versions of separately trained models as Chained-CycleGAN and Chained-UNIT

depending on the base translation method used. Since StarGAN[CCK+18] inherently allows

transformation between any two domains, we can apply this in a chained or direct manner without

any additional models needing to be trained.

3.3.1 Face Aging

We adopt the UTKFace dataset [ZQ17] for modeling the face aging task. It consists of

over 20,000 face-only images of different ages. We divide the dataset into four groups in order of

increasing age according to the ground truth age given in the dataset as A consisting of ages from

10-20, B containing ages25-35, C containing ages 40-50, and D containing ages 50-100. The

number of images for each group are 1531, 5000, 2245, 4957, respectively, where a 95/5 train/test

split is made. The results of LoopGAN generation are shown in on the left side in Figure 3.3.

LoopGAN shows advantage over baseline models in two aspects. The overall facial
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Figure 3.3: Face Aging with LoopGAN compared to baselines. Input real images are highlighted
with rectangles.
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Figure 3.4: Comparing estimated age distribution between model generated images and train
images.

structure is preserved better than other models which we believe is due to the enforced loop

consistency loss. Moreover, LoopGAN is able to make more apparent age changes compared to

the rest of baseline models. Baseline models struggle in either of the two aspects. CycleGAN

models preserve facial structure well due to the strong cycle consistency constraint, however they

struggle to make apparent age changes for the same reason. UNIT models on the other hand only

implicitly enforce cycle consistency, thus are able to make much more apparent age changes. But

this flexibility comes at the cost of less facial structure preserved from the input image.

In order to quantitatively compare the amount of age change between models, we obtain

an age distribution of generated images by running a pre-trained age estimator DEX [RTVG15].

The estimated age distributions of generated images (from input test images) are compared against

those of the train images in Figure 3.4. The age distribution of LoopGAN generated images is

closer to that of the train images across all four age groups when compared to the baseline models

— suggesting that it more faithfully learns the sequential age distribution changes of train data.

3.3.2 Changing Seasons

We use the collected scenery photos of Alps mountains of four seasons from [AATVG18].

They are ordered into a sequence starting from Spring (A), to Summer (B), Fall (C), and Winter

(D). They each have approximately 1700 images and are divided into 95/5% training and test set.

We show the results in Figure 3.5. Overall, LoopGAN is able to make drastic season

change while maintaining the overall structure of the input scenery images.
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Figure 3.5: Alps season changes with LoopGAN compared to baselines. Input real images are
highlighted with rectangles.

21



3.4 Model Features

3.4.1 Stable Loop Dynamics

LoopGAN models sequential visual phenomena by assuming consistent periodic dynamics

across the stages of the sequence. How well does LoopGAN learn such dynamics? And do

chained cycle-consistent bi-domain models such as Chained-CycleGAN end up learning a similar

dynamic without the need for explicit loop consistency? To understand these questions, we

iteratively apply LoopGAN and Chained-CycleGAN in a loop 20 times. This process uses the last

generated image from previous loop to generate a new loop. The results are shown in Figure 3.6.

In loops 1 and 2, both models are generating high-quality images that are consistent across loops.

At loop 5, Chained-CycleGAN images are getting blurry while LoopGAN images are the same

as loop 1 and 2. At loop 20, Chained-CycleGAN images are unrecognizable while LoopGAN

images only suffer minor resolution decrease. This suggests that LoopGAN indeed learns a stable

periodic dynamic. Chained bi-domain models with only cycle-consistency also demonstrate a

form of periodic dynamics albeit one that becomes unstable substantially faster than LoopGAN.

Chained approaches appear to suffer from exposure bias issues as they are exposed to generated

images after the first step instead of ground-truth inputs (as during training) whereas LoopGAN

directly tackles this issue in order to achieve loop consistency.

3.4.2 Architectures

We experiment with several network architecture variations and investigate their effect

on generation quality. First, attention mechanisms have proven to be useful in GAN image

generation [ZGMO18]. In the context of tasks involving sequential images, [WGGH18] showed

that applying attention mechanisms in both the space and time dimensions helps increase video

classification accuracy. Combining these two results, we added an attention module to the residual

blocks that attend to not only the features maps of the same layer (space) but also the same layer
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Figure 3.6: Learned models applied recursively to an input real image. The left and right side
show images generated by Chained-CycleGAN and LoopGAN respectively. LoopGAN learns a
stable loop dynamic compared to Chained-CycleGAN.

of all previous generation steps (time). However, we found that the network struggles to generate

high quality image after adding this type of attention mechanism. We also noticed that [HLBK18]

used a similar network architecture but with different normalization layers. The authors mentioned

that for down-sampling, it is better to use no normalization to preserve information from input

image, and for up-sampling it is better to use layer-normalization for faster training and higher

quality. We applied these changes and found that they indeed help the network produce better

results. The results under these variations are shown in Figure 3.7 (first three rows).

Table 3.1: Model size comparison. * Note that the parameter count for vanilla and chained
versions of bi-domain models (CycleGAN, Chained-CycleGAN, UNIT, and Chained-UNIT) are
totals of separate pair-wise generators that together facilitate sequence generation.

Model Parameter Count

CycleGAN 94.056 M *
Chained-CycleGAN 62.704 M *
UNIT 133.680 M *
Chained-UNIT 89.120 M *
StarGAN 8.427 M
LoopGAN(ours) 11.008 M
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Figure 3.7: Ablation study for the architecture changes.

Moreover, we show the the importance of the recurrent form of T (h) discussed in Section

3.2.2. We compare the choice to invoke Enc and Dec at each time step versus applying them

once with some number of recurrent applications of T in Figure 3.7 (last row) and show the poor

quality observed when performing the loop naively.

Lastly, we calculate the parameter count of generator networks compared in the face aging

and season change experiments above and show that our final generator network architecture is

parameter-efficient compared to baseline models in Table 3.1. This parameter-efficiency is mainly

due to the fact that every transformation step uses a shared network as opposed to its own separate

network. Less parameters also act as an added layer of regularization and accelerate training.

For completeness, a selection of failure cases on face aging task are shown in Figure

3.8 and Figure 3.9. Input images and failure generations are highlighted respectively in red and

purple (viewed in color). In both cases, the highlighted generated images (the first column in (a)

and the last column in (b)) bear some semantic dissimilarity to the input images. It seems that

sometimes the network overfit to more drastic transformations that only preserve overall facial

structure and orientation but neglects all other features.
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Figure 3.8: Failure case 1.

Figure 3.9: Failure case 2.

3.4.3 Linear Interpolation

The AdaIn parameters [HB17] achieve affine transformations in each layer with two

channel-wise parameters γ,β, where the output of AdaIn layers can be expressed as,

yAdaIn(x,γ,β) = γ
x−mean(x)

std(x)
+β.

We hypothesize that by weighting these two parameters by σ ∈ [0,1] at test time can possibly

achieve linear interpolation between input and the full transformation (σ = 1). To see the effect

of this interpolation scheme, we generate an extra interpolated transformation between every two

transformation stages by weighting the AdaIn parameters with sigma = 0.5.

The results on the Alps changing seasons dataset are shown in Figure 3.10. The input

(spring images) are highlighted with red rectangles and the full transformations (summer, fall,

and winter) are highlighted with purple rectangles. The images in between are interpolated

transformation obtained by weighting the AdaIn parameters with sigma = 0.5. The results show

that this simple linear weighting can generate interpolation at test time with good quality. Note
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Figure 3.10: Linear interpolation on AdaIn parameters between transformation stages.

that this process is done completely at test time, suggesting that the AdaIn parameters somehow

learned a continuous representation of the sequential transformation albeit with discrete data.

This feature enhances our model’s application scope and shows promise in applying our

model to areas such as video prediction and video synthesis.

3.4.4 Generating Multiple Sequences

Multi-modal transformation is a central problem in image-to-image transformation. There

often exists more than one feasible transformation from one image domain to another. So if

the transformation function is defined to be one-to-one, then no matter how the training process

is carried out, it can not learn a good transformation as it may be confused by parallel signals.

For example, the same young person’s face can be transformed into old with or without glasses

and the model should at least have the capacity to learn this. This has largely been solved in

image-to-image transformation with models proposed in [HLBK18] and [ARS+18]. The key
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idea is to condition the transformation function on not only the input image but also a random

vector drawn from a pre-determined distribution.

Sequential image transformation also requires multi-modal. This is not hard to see if

we take the same face aging example. As the model transforms a young person’s face through

multiple stages, adding a pair of glasses at any point is semantically meaningful. Thus, we also

explore architecture changes that enable the model to do this. We look at architecture proposed in

[KLA19] where the AdaIn parameters are functions of an input noise vector. Since the AdaIn

parameters control transformation, this setup allows transformation to be conditioned on a noise

vector. The architecture is shown in Figure 3.11. Note that noise vector z controls all steps of

transformation in the sequence and not just a single step.

Figure 3.11: Sequence transformation conditioned on a noise vector.

However, experiments show that this architecture does not produce a variety of sequences

as expected. We believe that this is due to lack of hyper parameter tuning which requires future

work.
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Chapter 4

Conclusion

This thesis presents an in-depth study on sequential image transformation without aligned

data. This is a problem yet to be studied in-depth and has a lot of applications. The related

works on GAN-based unpaired image-to-image transformation models are introduced. The

shortcomings of these existing image-to-image models on sequential image transformation are

discussed and showcased through experiments.

We proposed an extension to the family of image-to-image translation methods that

directly model sequential image transformation. We require that the translation task can be

modeled as a consistent loop. This allows us to use a shared generator across all time steps

leading to significant efficiency gains over a nave chaining of image-to-image transformation

models. Despite this, our architecture compares favorably and even shows stable dynamics

of the both the face aging and seasonal phenomena modeled, when compared with the classic

image-to-image transformation models such CycleGAN and UNIT.

I would like to acknowledge Professor Zhuowen Tu for his support as the chair of my

committee. Through multiple drafts and many long nights, his guidance has proved to be

invaluable.

This entire thesis, in part is currently being prepared for submission for publication of the
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material. Siyang Wang; Justin Lazarow; Kwonjoon Lee; Zhuowen Tu. The thesis author was the

primary investiator and author of this material. Thanks to my co-authors.

I would also like to thank Weijian Xu for giving me countless helpful discussions.
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